Mathematics for natural sciences I

Exercise sheet 28

Warm-up-exercises

Exercise 28.1. Let $x \in \mathbb{R}$ and consider the function

$$
f: \mathbb{R}_{+} \longrightarrow \mathbb{R}, t \longmapsto f(t)=t^{x} e^{-t}
$$

Determine the extrema of this function.

Exercise 28.2. Prove that for the factorial function the relationship

$$
\operatorname{Fak}\left(\frac{2 k-1}{2}\right)=\frac{\prod_{i=1}^{k}(2 i-1)}{2^{k}} \cdot \sqrt{\pi}
$$

holds.

Exercise 28.3. a) Prove that for $x \geq 1$ the estimate

$$
\int_{1}^{\infty} t^{x} e^{-t} d t \leq 1
$$

holds.
b) Prove that the function $H(x)$ defined by

$$
H(x)=\int_{1}^{\infty} t^{x} e^{-t} d t
$$

for $x \geq 1$ is increasing.
c) Prove that $10!\geq e^{11}+1$.
d) Prove that for the factorial function for $x \geq 10$ the estimate

$$
\operatorname{Fak}(x) \geq e^{x}
$$

holds.

Exercise 28.4. Solve the initial value problem

$$
y^{\prime}=\sin t \text { with } y(\pi)=7 .
$$

Exercise 28.5. Solve the initial value problem

$$
y^{\prime}=3 t^{2}-4 t+7 \text { with } y(2)=5
$$

Exercise 28.6. Find all the solutions for the ordinary differential equation

$$
y^{\prime}=y .
$$

Exercise 28.7. Make clear and mathematically clear to yourself that in a location-independent differential equation (i.e. $f(t, y)$ does not depend on y) the difference between two solutions y_{1} and y_{2} does not depend on time, that is $y_{1}(t)-y_{2}(t)$ is constant. Show with an example that this may not happen in a time-independent differential equation.

Hand-in-exercises

Exercise 28.8. (2 points)
Prove that for the factorial function the relationship

$$
\operatorname{Fak}(x)=\int_{0}^{1}(-\ln t)^{x} d t
$$

holds.

EXERCISE 28.9. (3 points)
Solve the initial value problem

$$
y^{\prime}=3 t^{3}-2 t+5 \text { with } y(3)=4
$$

Exercise 28.10. (3 points)
Find a solution for the ordinary differential equation

$$
y^{\prime}=t+y
$$

Exercise 28.11. (4 points)
Solve the initial value problem

$$
y^{\prime}=\frac{t^{3}}{t^{2}+1} \text { with } y(1)=2
$$

