
Affine schemes

A scheme U is called affine if it is isomorphic to the spectrum of some
commutative ring R. If the scheme is of finite type (if we have a variety),
then this is equivalent to saying that there exist global functions

g1, . . . , gk ∈ Γ(U,OU)

such that the mapping

U −→ Ak, x 7−→ (g1(x), . . . , gk(x)),

is a closed embedding. The relation to cohomology is given by the following
well-known theorem of Serre.

Theorem 5.1. Let U denote a noetherian scheme. Then the following pro-
perties are equivalent.

(1) U is an affine scheme.
(2) For every quasicoherent sheaf F on U and all i ≥ 1 we have H i(U,F) =

0.
(3) For every coherent ideal sheaf I on U we have H1(U, I) = 0.

It is in general a difficult question whether a given scheme U is affine. For
example, suppose that X = Spec (R) is an affine scheme and

U = D(a) ⊆ X

is an open subset (such schemes are called quasiaffine) defined by an ideal
a ⊆ R. When is U itself affine? The cohomological criterion above simplifies
to the condition that H i(U,OX) = 0 for i ≥ 1.

Of course, if a = (f) is a principal ideal (or up to radical a principal ideal),
then U = D(f) ∼= Spec (Rf ) is affine. On the other hand, if (R,m) is a local
ring of dimension ≥ 2, then

D(m) ⊂ Spec (R)

is not affine, since
Hd−1(U,OX) = Hd

m(R)

by the relation between sheaf cohomology and local cohomology and a theo-
rem of Grothendieck.

Affineness and superheight

One can show that for an open affine subset U ⊆ X the closed complement
Y = X \ U must be of pure codimension one (U must be the complement
of the support of an effective divisor). In a regular or (locally Q)- factorial
domain the complement of every divisor is affine, since the divisor can be
described (at least locally geometrically) by one equation. But it is easy
to give examples to show that this is not true for normal threedimensional
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domains. The following example is a standardexample for this phenomenon
and is in fact given by a forcing algebra.

Example 5.2. Let K be a field and consider the ring

R = K[x, y, u, v]/(xu− yv) .

The ideal p = (x, y) is a prime ideal in R of height one. Hence the open subset
U = D(x, y) is the complement of an irreducible hypersurface. However, U
is not affine. For this we consider the closed subscheme

A2
K
∼= Z = V (u, v) ⊆ Spec (R)

and
Z ∩ U ⊆ U .

If U were affine, then also the closed subscheme Z ∩U ∼= A2
K \{(0, 0)} would

be affine, but this is not true, since the complement of the punctured plane
has codimension 2.

The argument employed in this example rests on the following definition and
the next theorem.

Definition 5.3. Let R be a noetherian commutative ring and let I ⊆ R be
an ideal. The (noetherian) superheight is the supremum

sup (ht (IS) : S is a notherian R− algebra) .

Theorem 5.4. Let R be a noetherian commutative ring and let I ⊆ R be an
ideal and U = D(I) ⊆ X = Spec (R). Then the following are equivalent.

(1) U is an affine scheme.
(2) I has superheight ≤ 1 and Γ(U,OX) is a finitely generated R-algebra.

It is not true at all that the ring of global sections of an open subset U of
the spectrum X of a noetherian ring is of finite type over this ring. This
is not even true if X is an affine variety. This problem is directly related
to Hilbert’s fourteenth problem, which has a negative answer. We will later
present examples where U has superheight one, yet is not affine, hence its
ring of global sections is not finitely generated.

If R is a two-dimensional local ring with parameters f, g and if B is the
forcing algebra for some m-primary ideal, then the ring of global sections of
the torsor is just

Γ(D(mB),OB) = Bf ∩Bg.

In the following two examples we use results from tight closure theory to
establish (non)-affineness properties of certain torsors.

Example 5.5. Let K be a field and consider the Fermat ring

R = K[X, Y, Z]/(Xd + Y d + Zd)

together with the ideal I = (X, Y ) and f = Z2. For d ≥ 3 we have Z2 6∈
(X, Y ). This element is however in the tight closure (X, Y )∗ of the ideal in
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positive characteristic (assume that the characteristic p does not divide d)
and is therefore also in characteristic 0 inside the tight closure and inside the
solid closure. Hence the open subset

D(X, Y ) ⊆ Spec (K[X, Y, Z, S, T ]/(Xd + Y d + Zd, SX + TY − Z2))

is not an affine scheme. In positive characteristic, Z2 is also contained in
the plus closure (X, Y )+ and therefore this open subset contains punctured
surfaces (the spectrum of the forcing algebra contains two-dimensional closed
subschemes which meet the exceptional fiber V (X, Y ) in only one point; the
ideal (X, Y ) has superheight 2 in the forcing algebra). In characteristic zero
however, due to Remark 4.8. the superheight is one and therefore by Theorem
5.4 the algebra Γ(D(X, Y ),OB) is not finitely generated. For K = C and
d = 3 one can also show that D(X, Y )C is, considered as a complex space, a
Stein space.

Example 5.6. Let K be a field of positive characteristic p ≥ 7 and consider
the ring

R = K[X, Y, Z]/(X5 + Y 3 + Z2)

together with the ideal I = (X,Y ) and f = Z. Since R has a rational
singularity, it is F -regular, i.e. all ideals are tightly closed. Therefore Z 6∈
(X, Y )∗ and so the torsor

D(X, Y ) ⊆ Spec (K[X,Y, Z, S, T ]/(X5 + Y 3 + Z2, SX + TY − Z))

is an affine scheme. In characteristic zero this can be proved by either using
that R is a quotient singularity or by using the natural grading (deg (X) =
6, deg (Y ) = 10, deg (Z) = 15) where the corresponding cohomology class
Z

XY
gets degree −1 and then applying the geometric criteria on the corre-

sponding projective curve (rather the corresponding curve of the standard-
homogenization U30 + V 30 + W 30 = 0).


