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Computation of tight closure

Lecture 3

In this lecture we want to discuss how tight closure inclusion or non-inclusion
behaves when we change the data a little bit. We may change the characte-
ristic, or some parameters in the equation defining the rings, or some para-
meters in the generators defining the ideals. If Syz (f1, . . . , fn)(m) is strongly
semistable and of positive (or negative) degree, then it is ample (or anti-
ample). This is an open property, so deforming some parameters will not
change tight closure inclusion or exclusion. However, if Syz (f1, . . . , fn)(m) is
strongly semistable of degree 0, then small pertubations may destroy strong
semistability and hence affect tight closure inclusion or exclusion.

Affineness under deformations

We consider a base scheme B and a morphism

Z −→ B

together with an open subscheme W ⊆ Z. For every base point b ∈ B we get
the open subset

Wb ⊆ Zb

inside the fiber Zb. It is a natural question to ask how properties of Wb vary
with b. In particular we may ask how the cohomological dimension of Wb

varies and how the affineness1 may vary.

In the algebraic setting we have a D-algebra S and an ideal a ⊆ S which
defines for every prime ideal p ∈ Spec (D) the extended ideal ap in S⊗Dκ(p).

This question is already interesting when B is a one-dimensional integral
scheme, in particular in the following two situations.

(1) B = Spec (Z). Then we talk about an arithmetic deformation and
want to know how affineness varies with the characteristic and how
the relation is to characteristic zero.

(2) B = A
1
K = Spec (K[t]), where K is a field. Then we talk about a

geometric deformation and want to know how affineness varies with
the parameter t, in particular how the behaviour over the special

1The cohomological dimension of a scheme X is the maximal number i such that
Hi(X,F) 6= 0 for some quasicoherent sheaf F . A noetherian scheme is affine if and only if
its cohomological dimension is 0. Tight closure can be characterized by the cohomological
dimension of torsors.
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points where the residue class field is algebraic over K is related to
the behaviour over the generic point.

It is fairly easy to show that if the open subset in the generic fiber is affine,
then also the open subsets are affine for almost all special points.

We deal with this question where W is a torsor over a family of smooth
projective curves (or a torsor over a punctured twodimensional spectrum).
The arithmetic as well as the geometric variant of this question are directly
related to questions in tight closure theory. Because of the above mentioned
degree criteria in the strongly semistable case, a weird behavior of the af-
fineness property of torsors is only possible if we have a weird behavior of
strong semistability.

Arithmetic deformations

We start with the arithmetic situation, the following example is due to Bren-
ner and Katzman.

Example 3.1. Consider Z[x, y, z]/(x7 + y7 + z7) and consider the ideal I =
(x4, y4, z4) and the element f = x3y3. Consider reductions Z → Z/(p). Then

f ∈ I∗ holds in Z/(p)[x, y, z]/(x7 + y7 + z7) for p = 3 mod 7

and

f 6∈ I∗ holds in Z/(p)[x, y, z]/(x7 + y7 + z7) for p = 2 mod 7 .

In particular, the bundle Syz (x4, y4, z4) is semistable in the generic fiber, but
not strongly semistable for any reduction p = 2 mod 7. The corresponding
torsor is an affine scheme for infinitely many prime reductions and not an
affine scheme for infinitely many prime reductions.

In terms of affineness (or local cohomology) this example has the following
properties: the ideal

(x, y, z) ⊆ Z/(p)[x, y, z, s1, s2, s3]/(x
7 + y7 + z7, s1x

4 + s2y
4 + s3z

4 + x3y3)

has cohomological dimension 1 if p = 3 mod 7 and has cohomological di-
mension 0 (equivalently, D(x, y, z) is an affine scheme) if p = 2 mod 7.

Geometric deformations - A counterexample to the localization

problem

Let S ⊆ R be a multiplicative system and I an ideal in R. Then the locali-
zation problem of tight closure is the question whether the identity

(I∗)S = (IRS)
∗

holds.
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Here the inclusion ⊆ is always true and ⊇ is the problem. The problem means
explicitly:

if f ∈ (IRS)
∗, can we find an h ∈ S such that hf ∈ I∗ holds in R?

Proposition 3.2. Let Z/(p) ⊂ D be a one-dimensional domain and D ⊆ R
of finite type, and I an ideal in R. Suppose that localization holds and that

f ∈ I∗ holds in R⊗D Q(D) = RD∗ = RQ(D)

(S = D∗ = D \ {0} is the multiplicative system). Then f ∈ I∗ holds in
R⊗D κ(p) for almost all p in Spec D.

In order to get a counterexample for the localization property we will look
now at geometric deformations:

D = Fp[t] ⊂ Fp[t][x, y, z]/(g) = S

where t has degree 0 and x, y, z have degree 1 and g is homogeneous. Then
(for every field Fp[t] → K)

S ⊗Fp[t] K

is a two-dimensional standard-graded ring over K. For residue class fields of
points of A1

Fp
= Spec Fp[t] we have basically two possibilities.

• K = Fp(t), the function field. This is the generic or transcendental case.

• K = Fq, the special or algebraic or finite case.

How does f ∈ I∗ vary with K? To analyze the behavior of tight closure in
such a family we can use what we know in the two-dimensional standard-
graded situation.

In order to establish an example where tight closure does not behave uni-
formly under a geometric deformation we first need a situation where strong
semistability does not behave uniformly. Such an example was given, in terms
of Hilbert-Kunz theory, by Paul Monsky in 1997.

Example 3.3. Let

g = z4 + z2xy + z(x3 + y3) + (t+ t2)x2y2 .

Consider

S = F2[t, x, y, z]/(g) .

Then Monsky proved the following results on the Hilbert-Kunz multiplicity
of the maximal ideal (x, y, z) in S ⊗F2[t] L, L a field:

eHK(S ⊗F2[t] L) =

{

3 for L = F2(t)

3 + 1
4d

for L = Fq = Fp(α), (t 7→ α, d = deg(α)) .
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By the geometric interpretation of Hilbert-Kunz theory this means that the
restricted cotangent bundle

Syz (x, y, z) = (ΩP2)C

is strongly semistable in the transcendental case, but not strongly semistable
in the algebraic case. In fact, for d = deg(α), t 7→ α, where K = F2(α), the
d-th Frobenius pull-back destabilizes.

The maximal ideal (x, y, z) can not be used directly. However, we look at the
second Frobenius pull-back which is (characteristic two) just

I = (x4, y4, z4) .

By the degree formula we have to look for an element of degree 6. Let’s take

f = y3z3 .

This is our example (x3y3 does not work). First, by strong semistability in
the transcendental case we have

f ∈ I∗ in R⊗ F2(t)

by the degree formula. If localization would hold, then f would also belong
to the tight closure of I for almost all algebraic instances Fq = F2(α), t 7→ α.
Contrary to that we show that for all algebraic instances the element f
belongs never to the tight closure of I.

Lemma 3.4. Let Fq = Fp(α), t 7→ α,

deg(α) = d. Set Q = 2d−1. Then

xyfQ 6∈ I [Q] .

Proof. This is an elementary but tedious computation. �

Theorem 3.5. Tight closure does not commute with localization.

Proof. One knows in our situation that xy is a so-called test element. Hence
the previous Lemma shows that f 6∈ I∗. �

Corollary 3.6. Tight closure is not plus closure in graded dimension two
for fields with transcendental elements.

Proof. Consider

R = F2(t)[x, y, z]/(g) .

In this ring y3z3 ∈ I∗, but it can not belong to the plus closure. Else there
would be a curve mapping Y → CF2(t) which annihilates the cohomology class
c and this would extend to a mapping of relative curves almost everywhere.

�
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Generic results

Is it more difficult to decide whether an element belongs to the tight closure
of an ideal or to the ideal itself? I want to discuss one situation where tight
closure behaves easier.

Suppose that we are in a graded situation of a given ring (or a given ring
dimension) and have fixed a number (at least the ring dimension) of homo-
geneous generators and their degrees. Suppose that we want to know the
degree bound for (tight closure or ideal) inclusion for generic choice of the
ideal generators. Generic means that we write the coefficients of the genera-
tors as indeterminates and consider the situation over the (large) affine space
corresponding to these indeterminates or over its function field. This problem
is already interesting and difficult for the polynomial ring: Suppose we are in
P = K[X, Y, Z] and want to study the generic inclusion bound for say n ≥ 4
generic polynomials F1, . . . , Fn all of degree a. What is the minimal degree
number m such that P≥m ⊆ (F1, . . . , Fn). The answer is

⌈

1

2(n− 1)

(

3− 3n+ 2an+
√
1− 2n+ n2 + 4a2n

)

⌉

.

This rests on the fact that the Fröberg conjecture is solved in dimension 3
by Anick (the Fröberg conjecture gives a precise description of the Hilbert
function for an ideal in a polynomial ring which is generically generated. Here
we only need to know in which degree the Hilbert function of the residue class
ring becomes 0).

The corresponding generic ideal inclusion bound for arbitrary graded rings
depends heavily (already in the parameter case) on the ring itself. Surprisin-
gly, the generic ideal inclusion bound for tight closure does not depend on
the ring and is only slightly worse than the bound for the polynomial ring.
The following theorem is due to Brenner and Fischbacher-Weitz.

Theorem 3.7. Let d ≥ 1 and a1, . . . , an be natural numbers, n ≥ d + 1.
Let K[x0, x1, . . . , xd] ⊆ R be a finite extension of standard-graded domains
(a graded Noether normalization). Suppose that there exist n homogeneous
polynomials g1, . . . , gn in P = K[x0, x1, . . . , xd] with deg (gi) = ai such that
P≥m ⊆ (g1, . . . , gn). Then

(1) Rm+d ⊆ (f1, . . . , fn)
∗ holds in the generic point of the parameter

space of homogeneous elements f1, . . . , fn in R of this degree type
(the coefficients of the fi are taken as indeterminates).

(2) Rm+d+1 ⊆ (f1, . . . , fn)
F ⊆ (f1, . . . , fn)

∗ holds for (open) generic
choice of homogeneous elements f1, . . . , fn in R of this degree ty-
pe.

Example 3.8. Suppose that we are in K[x, y, z] and that n = 4 and a = 10.
Then the generic degree bound for ideal inclusion in the polynomial ring
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is 19. Therefore by Theorem 3.7 the generic degree bound for tight closure
inclusion in a three-dimensional graded ring is 21.

Example 3.9. Suppose that n = d+1 in the situation of Theorem 3.7. Then
generic elements f1, . . . , fd+1 are parameters. In the polynomial ring P =
K[x0, x1, . . . , xd] we have for parameters of degree a1, . . . , ad+1 the inclusion

P
≥
∑d

i=0
ai−d ⊆ (f1, . . . , fd+1) ,

because the graded Koszul resolution ends in R(−
∑d

i=0 ai) and

(Hd+1
m (P ))k = 0 for k ≥ −d .

So the theorem implies for a graded ring R finite over P that P
≥
∑d

i=0
ai

⊆
(f1, . . . , fd+1) holds for generic elements. But by the graded Briançon-Skoda
Theorem (see Theorem 1.5). this holds without the generic assumption.


