Algebraische Kurven

Arbeitsblatt 16

Aufwärmaufgaben

AUFGABE 16.1. Sei X = K-Spek (R) das K-Spektrum einer endlich erzeugten kommutativen K-Algebra. Dann wird ein irreduzibler Filter durch offene Mengen der Form D(f) erzeugt.

AUFGABE 16.2. Sei U eine quasiaffine Varietät über einem algebraisch abgeschlossenen Körper K. Zeige, dass die Einheiten in $\Gamma(U, \mathcal{O})$ den Morphismen von U nach $\mathbb{A}_K^{\times} = \mathbb{A}_K^1 \setminus \{0\}$ entsprechen.

AUFGABE 16.3. Betrachte $V=V(XW-YZ)\subseteq \mathbb{A}^4_K$. Beschreibe eine offene Menge $U\subseteq \mathbb{A}^4_K$ derart, dass der zu $U\cap V\subseteq U$ gehörende Ringhomomorphismus

$$\Gamma(U,\mathcal{O}) \longrightarrow \Gamma(U \cap V,\mathcal{O})$$

nicht surjektiv ist.

AUFGABE 16.4. Zeige, dass der Ring $\Gamma(U, \mathcal{O})$ reduziert ist.

AUFGABE 16.5. Sei R eine kommutative K-Algebra von endlichem Typ über einem algebraisch abgeschlossenen Körper. Sei $U \subseteq K$ -Spek (R) eine offene Teilmenge und $f: U \longrightarrow K$ eine Funktion. Es sei $U = \bigcup_{i \in I} U_i$ eine offene Überdeckung mit der Eigenschaft, dass die Einschränkungen $f_i = f|_{U_i}$ algebraische Funktionen sind. Zeige, dass dann f selbst algebraisch ist.

Aufgabe 16.6. Sei U eine quasiaffine Varietät über einem algebraisch abgeschlossenen Körper und sei

$$\psi \colon U \longrightarrow \mathbb{A}^n_K$$

ein Morphismus. Zeige, dass ψ genau dann durch die abgeschlossene Menge $V(\mathfrak{a}) \subseteq \mathbb{A}^n_K$ faktorisiert, wenn \mathfrak{a} im Kern des globalen Ringhomomorphismus

$$\tilde{\psi}: K[T_1,\ldots,T_n] \longrightarrow \Gamma(U,\mathcal{O})$$

liegt.

AUFGABE 16.7. Sei $X = K - \operatorname{Spek}(R)$ eine affine Varietät und $Z \subseteq X$ eine abgeschlossene Teilmenge. Zeige, dass der Umgebungsfilter U(Z) von offenen Mengen der Form D(f) erzeugt wird.

Aufgabe 16.8. Sei X ein topologischer Raum. Zeige, dass ein Ultrafilter irreduzibel ist.

Aufgabe 16.9.*

Man beschreibe einen K-Algebra-Homomorphismus derart, dass die induzierte Abbildung der K-Spektren die Addition auf K beschreibt.

AUFGABE 16.10. Sei K ein algebraisch abgeschlossener Körper. Zeige, dass die Addition, die Multiplikation, das Negative, das Inverse und die Division in K sich als Morphismen realisieren lassen.

Aufgabe 16.11. Sei M ein kommutatives Monoid. Finde eine allgemeine Definition von Filter derart, dass einerseits die topologischen Filter und andererseits die saturierten multiplikativen Systeme sich als Spezialfälle ergeben.

Aufgabe 16.12. (Punkte)

Sei R ein kommutativer Ring und sei $\mathfrak{a} = (f_1, \ldots, f_n)$ ein endlich erzeugtes Ideal. Es sei $f \in R$ ein weiteres Element. Dann nennt man die R-Algebra

$$A = R[T_1, \dots, T_n]/(f_1T_1 + \dots + f_nT_n + f)$$

die erzwingende Algebra zu den f_1, \ldots, f_n, f . Zeige, dass A folgende Eigenschaft erfüllt: zu jedem Ringhomomorphismus $\varphi: R \to S$ in einen kommutativen Ring S mit der Eigenschaft $\varphi(f) \in \mathfrak{a}S$ gibt es einen R-Algebra Homomorphismus $\vartheta: A \longrightarrow S$. Zeige ebenso, dass dieser Homomorphismus nicht eindeutig bestimmt ist.

AUFGABE 16.13. Sei R eine kommutative K-Algebra von endlichem Typ über einem algebraisch abgeschlossenen Körper. Es seien f_1, \ldots, f_n, f Elemente in R und es sei

$$A = R[T_1, \dots, T_n]/(f_1T_1 + \dots + f_nT_n + f)$$

die erzwingende Algebra zu diesen Daten. Charakterisiere die Fasern des zugehörigen Morphismus

$$K - \operatorname{Spek}(A) \longrightarrow K - \operatorname{Spek}(R)$$

Aufgaben zum Abgeben

Aufgabe 16.14. (4 Punkte)

Sei $X = K - \operatorname{Spek}(R)$ eine affine Varietät und seien $P_1, \ldots, P_n \in X$ endlich viele Punkte. Es sei F der Umgebungsfilter dieser Punkte und \mathcal{O}_F der zugehörige Halm. Zeige, dass \mathcal{O}_F genau dann ein lokaler Ring ist, wenn n = 1 ist.

Aufgabe 16.15. (4 Punkte)

Sei K ein algebraisch abgeschlossener Körper und seien R und S integre K-Algebren von endlichem Typ. Es sei $\varphi: R \to S$ ein K-Algebra Homomorphismus mit zugehörigem Morphismus $\varphi^*: K - \operatorname{Spek}(S) \to K - \operatorname{Spek}(R)$. Zeige, dass folgende Aussagen äquivalent sind.

- (1) φ ist injektiv.
- (2) Das Bild von φ^* ist dicht in K-Spek (R).
- (3) φ induziert einen Ringhomomorphismus $Q(R) \to Q(S)$.

Aufgabe 16.16. (4 Punkte)

Sei K ein algebraisch abgeschlossener Körper und seien R und S zwei integre K-Algebra von endlichem Typ. Es sei ein K-Algebra Homomorphismus

$$\varphi: Q(R) \longrightarrow Q(S)$$

zwischen den Quotientenkörpern gegeben. Zeige, dass es eine offene Teilmenge $U\subseteq K-\mathrm{Spek}\,(S)$ und einen Morphismus

$$U \longrightarrow K - \operatorname{Spek}(R)$$

gibt, der φ induziert.

Aufgabe 16.17. (5 Punkte)

Man gebe ein Beispiel von zwei affin-algebraischen Kurven C_1 und C_2 über $\mathbb C$ und einem Morphismus

$$\psi: C_1 \longrightarrow C_2$$
,

der bijektiv ist, wo aber die Umkehrabbildung nicht stetig in der metrischen Topologie ist.

Aufgabe 16.18. (8 Punkte)

Man gebe ein Beispiel von zwei affinen Varietäten V_1 und V_2 und einem Morphismus

$$\psi: V_1 \longrightarrow V_2$$
,

der bijektiv ist, wo aber die Umkehrungabbildung nicht stetig (in der Zariski-Topologie) ist.

(und daher auch kein Morphismus)

Aufgabe 16.19. (3 Punkte)

Sei $U \subseteq K$ -Spek (R) eine quasiaffine Varietät und sei $f \in \Gamma(U, \mathcal{O})$ eine algebraische Funktion. Es seien $q = g_i/h_i$, $i = 1, \ldots, n$, lokale Darstellungen von f auf $D(h_i) \subseteq U$. Zeige, dass das Urbild $f^{-1}(0)$ gleich der abgeschlossenen Menge $V(h_1g_1, \ldots, h_ng_n) \cap U$ ist.