Algebraische Kurven

Arbeitsblatt 13

Aufwärmaufgaben

AUFGABE 13.1. Es sei K ein Körper mit q Elementen und sei $V = V(\mathfrak{a}) \subseteq \mathbb{A}^n_K$ eine affin-algebraische Menge. Zeige, dass der Koordinatenring von V nicht gleich $K[x_1,\ldots,x_n]/(x_1^q-x_1,\ldots,x_n^q-x_n)+\mathfrak{a}$ sein muss.

AUFGABE 13.2. Sei K ein algebraisch abgeschlossener Körper und sei R eine reduzierte K-Algebra von endlichem Typ. Beweise den Identit atssatz in der folgenden Gestalt: Wenn für $f,g \in R$ gilt, dass f(P) = g(P) ist für alle $P \in K$ -Spek (R), so ist f = g.

AUFGABE 13.3. Sei R ein kommutativer Ring und $S\subseteq R$ ein multiplikatives System. Man definiert die Nenneraufnahme

$$R_{c}$$

schrittweise wie folgt. Es sei zunächst M die Menge der formalen Brüche mit Nenner in S, also

$$M = \left\{ \frac{r}{s} | r \in R, s \in S \right\}.$$

Zeige, dass durch

$$\frac{r}{s} \sim \frac{r'}{s'}$$
 genau dann, wenn es ein $t \in S$ gibt mit $trs' = tr's$

eine Äquivalenzrelation auf M definiert ist. Wir bezeichnen mit R_S die Menge der Äquivalenzklassen. Definiere auf R_S eine Ringstruktur und definiere einen Ringhomomorphismus $R \to R_S$.

In den folgenden Aufgaben dürfen Sie, wenn Sie wollen, bei Nenneraufnahmen annehmen, dass Integritätsbereiche vorliegen.

AUFGABE 13.4. Seien R und A kommutative Ringe und sei $S \subseteq R$ ein multiplikatives System. Es sei $\varphi: R \to A$ ein Ringhomomorphismus derart, dass $\varphi(s)$ eine Einheit in A ist für alle $s \in S$. Zeige: Dann gibt es einen eindeutig bestimmten Ringhomomorphismus

$$\tilde{\varphi}: R_S \longrightarrow A$$
,

 $\operatorname{der} \varphi$ fortsetzt.

AUFGABE 13.5. Sei R ein kommutativer Ring und sei $f \in R$ mit zugehöriger Nenneraufnahme R_f . Beweise die R-Algebra-Isomorphie

$$R_f \cong R[T]/(Tf-1)$$
.

Aufgabe 13.6.*

Sei K ein Körper, R=K[X,Y] der Polynomring in zwei Variablen, $S\subseteq R$ ein multiplikatives System und $F\in R$ ein Polynom. Zeige, dass es eine eindeutige R-Algebra-Isomorphie

$$(R/(F))_S \cong (R_S)/(F)$$

gibt.

AUFGABE 13.7. Sei K ein algebraisch abgeschlossener Körper und seien R und S kommutative K-Algebran von endlichem Typ. Es sei $f \in R$ und $\varphi: R \to S$ sei ein K-Algebra-Homomorphismus. Zeige, dass die Spektrumsabbildung φ^* genau dann durch D(f) faktorisiert, wenn $\varphi(f)$ eine Einheit in S ist.

Aufgabe 13.8.*

Sei K ein algebraisch abgeschlossener Körper und R eine integre endlich erzeugte K-Algebra. Es seien $f,g\in R$. Zeige, dass die folgenden Aussagen äquivalent sind.

- (1) $D(f) \subseteq D(q)$
- (2) Es gibt einen R-Algebra-Homomorphismus $R_g \to R_f$.

Zeige ferner, dass diese Äquivalenz für $K = \mathbb{R}$ nicht gilt.

Die folgende Aufgabe verwendet den Begriff des saturierten multiplikativen Systems.

Ein multiplikatives System S in einem kommutativen Ring R heißt saturiert, wenn folgendes gilt: Ist $g \in R$ und gibt es ein $f \in S$, das von g geteilt wird, so ist auch $g \in S$.

AUFGABE 13.9. Seien A, B kommutative Ringe und sei $\varphi: A \to B$ ein Ringhomomorphismus . Zeige, dass das Urbild $\varphi^{-1}(B^{\times})$ der Einheitengruppe ein saturiertes multiplikatives System in A ist.

Aufgabe 13.10. Sei R ein kommutativer Ring. Zeige, dass die Menge der Nichtnullteiler in R ein saturiertes multiplikatives System bilden.

Aufgabe 13.11.*

Man gebe ein Beispiel einer integren, endlich erzeugten \mathbb{C} -Algebra R und eines multiplikativen Systems $S \subseteq R$, $0 \notin S$, an derart, dass die Nenneraufnahme R_S kein Körper ist, aber jedes maximale Ideal aus R zum Einheitsideal in R_S wird.

AUFGABE 13.12. Zeige, dass ein Integritätsbereich ein zusammenhängender Ring ist.

AUFGABE 13.13. Sei R ein kommutativer Ring und sei $f \in R$. Es sei f sowohl nilpotent als auch idempotent. Zeige, dass f = 0 ist.

AUFGABE 13.14. Seien R und S kommutative Ringe und sei $R \times S$ der Produktring $R \times S$. Zeige, dass die Teilmenge $R \times 0$ ein Hauptideal ist.

AUFGABE 13.15. Sei X ein topologischer Raum, der nicht leer und nicht zusammenhängend sei. Zeige, dass es dann eine stetige Abbildung $f: X \to \mathbb{R}$, $f \neq 0, 1$, (\mathbb{R} sei mit der metrischen Topologie versehen) gibt, die idempotent im Ring der stetigen Funktionen auf X ist.

Aufgaben zum Abgeben

AUFGABE 13.16. (4 Punkte)

Betrachte zwei parallele Geraden V und das Achsenkreuz W. Beschreibe eine möglichst natürliche surjektive Abbildung zwischen V und W (in welche Richtung?), und zwar sowohl geometrisch als auch algebraisch. Gibt es auch eine surjektive polynomiale Abbildung in die andere Richtung?

Aufgabe 13.17. (6 Punkte)

Betrachte die durch $Y^2 = X^3 + X^2$ gegebene Kurve C (siehe Beispiel 6.3) und die offene Menge $U = D(X) \subseteq C$. Finde eine abgeschlossene Realisierung von U in \mathbb{A}^3_K und zeige, dass es auch eine solche Realisierung in \mathbb{A}^2_K gibt. Skizziere die Bildkurve unter der Abbildung

$$U \longrightarrow \mathbb{A}^2_K, (x,y) \longmapsto \left(\frac{1}{x}, y\right).$$

Ist U isomorph zu einer offenen Menge der affinen Geraden?

Aufgabe 13.18. (3 Punkte)

Bestimme die nilpotenten und die idempotenten Elemente in $\mathbb{Z}/(175)$.

Aufgabe 13.19. (4 Punkte)

Sei K ein algebraisch abgeschlossener Körper und betrachte den Durchschnitt der beiden algebraischen Kurven

$$V(X^2 + Y^2 - 1)$$
 und $V(Y - X^2)$.

Identifiziere den Restklassenring

$$R = K[X, Y]/(X^2 + Y^2 - 1, Y - X^2)$$

mit einem Produktring und beschreibe die Restklassenabbildung $K[X,Y] \to R$ mittels dieser Identifizierung. Bestimme Urbilder in K[X,Y] für sämtliche idempotenten Elemente des Produktringes.

Aufgabe 13.20. (4 Punkte)

Sei K ein Körper und seien P_1, \ldots, P_n endlich viele Punkte in der affinen Ebene \mathbb{A}^2_K . Es seien $a_1, \ldots, a_n \in K$ beliebig vorgegebene Werte. Zeige, dass es ein Polynom $F \in K[X,Y]$ gibt mit $F(P_i) = a_i$ für alle $i = 1, \ldots, n$.