
We consider a linear homogeneous equation

f1t1 + . . .+ fntn = 0

and also a linear inhomogeneous equation

f1t1 + . . .+ fntn = f0 ,

where f1, . . . , fn, f0 are elements in a field K. The solution set to the homo-
geneous equation is a vector space V over K of dimension n− 1 or n (if all
fi are 0). For the solution set T of the inhomogeneous equation there exists
an action

V × T −→ T , (v, t) 7−→ v + t,

and if we fix one solution t0 ∈ T (supposing that one solution exists), then
there exists a bijection

V −→ T , v 7−→ v + t0.

Suppose now that X is a geometric object (a topological space, a manifold,
a variety, the spectrum of a ring) and that

f1, . . . , fn, f0 :X −→ K

are functions on X. Then we get the space

T = {(P, t1, . . . , tn)| f1(P )t1 + . . .+ fn(P )tn = f0(P )} ⊆ X ×Kn

together with the projection to X. For a fixed point P ∈ X, the fiber of T
over P is the solution set to the corresponding inhomogeneous equation. For
f0 = 0, we get a solution space

V −→ X,

where all fibers are vector spaces (maybe of non-constant dimension) and
where again V acts on T . Locally, there are bijections V ∼= T . Let

U = {Q ∈ X| fi(Q) 6= 0 for at least one i} .
Then V |U is a vector bundle and T |U is a V |U -principal fiber bundle. T is
fiberwise an affine space over the base and locally an affine space over U , so
locally it is an easy object. We are interested in global properties of T and
of T |U .

Group schemes and their actions

We have seen in the first lecture that a vector bundle is in particular a group
scheme, i.e. there is a scheme morphism (the addition)

α :V ×X V −→ V,

a morphism
0 :X −→ V

(the zero section) and a negative morphism

− :V −→ V

1



2

fulfilling several natural conditions. In general, as a group may act on a set,
a group scheme may act on another scheme. We give the precise definition.

Definition 2.1. Let (G,α, n) denote a group scheme over a scheme X and
let

T −→ X

denote a scheme over X. A morphism

β :G×X T −→ T

is called a group scheme action of G on T , if the diagram

G×X G×X T
idG×β−→ G×X T

↓ ↓
G×X T

β−→ T

commutes and if the composition

T
∼=−→ X ×X T

n×IdT−→ G×X T
β−→ T

is the identity on T .

The multiplication of a group scheme may be considered as an operation
of the group scheme on itself. These are in some sense the easiest group
operations. The next easiest case is the situation of an operation which looks
locally like the group acting on itself. This leads to the following natural
definition.

Definition 2.2. Let G denote a group scheme over a scheme X. A scheme
T → X together with a group scheme action

β :G×X T −→ T

is called a geometric (Zariski)-torsor for G (or a G-principal fiber bundle or
a principal homogeneous space) if there exists an open covering X =

⋃
i∈I Ui

and isomorphisms
ϕi :T |Ui

−→ G|Ui

such that the diagrams (we set U = Ui and ϕ = ϕi)

G|U ×U T |U
β−→ T |U

↓ ↓
G|U ×U G|U

β−→ G|U
commute.
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Torsors of vector bundles

We look now at the torsors of vector bundles. They can be classified in the
following way.

Proposition 2.3. Let X denote a Noetherian separated scheme and let

p :V −→ X

denote a geometric vector bundle on X with sheaf of sections S. Then there
exists a correspondence between first cohomology classes c ∈ H1(X,S) and
geometric V -torsors.

Proof. We will describe this correspondence. Let T denote a V -torsor. Then
there exists by definition an open covering X =

⋃
i∈I Ui such that there exists

isomorphisms
ϕi :T |Ui

−→ V |Ui

which are compatible with the action of V |Ui
on itself. The isomorphisms ϕi

induce automorphisms

ψij = ϕj ◦ ϕ−1i :V |Ui∩Uj
−→ V |Ui∩Uj

.

These automorphisms are compatible with the action of V on itself, and this
means that they are of the form

ψij = IdV |Ui∩Uj
+ sij

with suitable sections sij ∈ Γ(Ui ∩Uj,S). This family defines a Cech-cocycle
for the covering and gives therefore a cohomology class in H1(X,S). For
the reverse direction, suppose that the cohomology class c ∈ H1(X,S) is
represented by a Cech-cocycle sij ∈ Γ(Ui ∩ Uj,S) for an open covering X =⋃
i∈I Ui. Set TiÂ := V |Ui

. We take the morphisms

ψij :Ti|Ui∩Uj
= V |Ui∩Uj

−→ V |Ui∩Uj
= Tj|Ui∩Uj

given by ψijÂ := IdV |Ui∩Uj
+ sij to glue the Ti together to a scheme T

over X. This is possible since the cocycle condition guarantees the glueing
condition for schemes (EGA I, 0, 4.1.7). The action of Vi on Ti by itself glues
also together to give an action on T . �

It follows immediately that for an affine scheme there are no non-trivial
torsor for any vector bundle. There will however be in general many non-
trivial torsors on the punctured spectrum (and on a projective variety). This
is already true if we take the affine line A1

X over X (corresponding to the
structure sheaf) as vector bundle and consider the A1

X-torsors. These are in
particular an interesting class of schemes for a two-dimensional ring.

Example 2.4. Let (R,m) denote a two-dimensional local noetherian domain
and let f and g be two parameters in R, i.e. elements which generate the
maximal ideal m up to radical. Then the punctured spectrum is

U = D(m) = D(f, g) = D(f) ∪D(g)
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and every cohomology class c ∈ H1(U,OX) can be represented by a Cech
cohomology class

c =
h

f igj

with some h ∈ R (i, j ≥ 1). If R is normal then the cohomology class is 0 if
and only if h ∈ (f i, gj). To see this, we work with i = j = 1, which does not
make a difference as powers of powers are again parameters. We note that
under the normality assumption the syzygy module Syz (f, g) is free of rank
one ((g,−f) is a generator). Then we look at the short exact sequence on U ,

0 −→ OU ∼= Syz (f, g) −→ O2
U

f,g−→ OU −→ 0

and its corresponding long exact sequence of cohomology,

0 −→ R −→ R2 f,g−→ R
δ−→ H1(U,O) −→ . . . .

Here, the connecting homomorphisms δ for an element h ∈ R works in the
following way. On both open subsets D(f) and D(g) we get the local repre-
sentatives (h

f
, 0) and (0, h

g
) and their difference, considered in Γ(D(fg),OU),

defines the cohomology class. This difference is just h
fg

. By the exactness of

the long cohomology sequence, c = δ(h) = h
fg

= 0 if and only if h comes

from the left, which is true if and only if h belongs to the ideal generated
by (f, g). If we want to realize the geometric torsor corresponding to such a
cohomology class, we start with two affine lines over D(f) and D(g), which
we write as Spec (Rf [V ]) and Spec (Rg[W ]). According to Proposition 2.3
these have to be glued with the identification W = V + h

fg
.

Forcing algebras and induced torsors

We have seen in the first lecture that the spectrum of the algebra

A = R[S1, . . . , Sn]/(f1S1 + . . .+ fnSn)

is, when restricted to U = D(f1, . . . , fn), a model for the geometric syzygy
bundle (and in general a syzygy group scheme). Now we make the transition
from homogeneous linear equations to inhomogeneous linear equations with
the following definition.

Definition 2.5. Let R be a commutative ring and let f1, . . . , fn and f be
elements in R. Then the R-algebra

R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn − f)

is called the forcing algebra of these elements (or these data).

The forcing algebra B forces f to lie inside the extended ideal (f1, . . . , fn)B.
For every R-algebra S such that f ∈ (f1, . . . , fn)S there exists a (non unique)
ring homomorphism B → S by sending Ti to the coefficient si ∈ S in an
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expression f = s1f1 + . . . + snfn. The forcing algebra induces the spectrum
morphism

Spec (B) −→ Spec (R).

Over a point x ∈ X = Spec (R), the fiber of this morphism is given by

Spec (B ⊗R κ(x)) ,

and we can write

B ⊗R κ(x) = κ(x)[T1, . . . , Tn]/(f1(x)T1 + . . .+ fn(x)Tn − f(x)) ,

where fi(x) means the evaluation of fi in the residue class field. Hence the
κ(x)-points in the fiber are exactly the solution to the inhomogeneous linear
equation f1(x)T1+ . . .+fn(x)Tn = f(x). In particular, all the fibers are affine
spaces. If we localize the forcing algebra at fi we get

(R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn − f))fi∼= Rfi [T1, . . . , Ti−1, Ti+1, . . . , Tn],

since we can write

Ti = −
∑
j 6=i

fj

fi
Tj +

f

fi
.

So over every D(fi) the spectrum of the forcing algebra is an (n − 1)-
dimensional affine space over the base. On the intersetions D(fi) ∩ D(fj)
we get (as in the first lecture) two identifications with affine space, but the
transition morphisms are now not linear anymore, only affine-linear (because
of the translation with f

fi
).

Proposition 2.6. Let R denote a commutative ring, I = (f1, . . . , fn) an
ideal with the syzygy group scheme given by G = Spec (R[S1, . . . , Sn]/(f1S1 +
. . .+ fnSn)). Let f ∈ R be another element and let

Z = Spec (R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn − f))

be the spectrum of the corresponding forcing algebra. Then there is a natural
action of G on Z. The restriction of this action to the open subset U = D(I)
makes Z|U to a torsor for the vector bundle G|U = Syz (f1, . . . , fn)|U .

Proof. The action is induced by the co-operation which sends Ti 7→ Si + Ti.
In terms of points this is just the mapping which sends a syzygy (s1, . . . , sn)
and a solution t1, . . . , tn of the forcing equation to the new solution (s1 +
t1, . . . , sn+ tn) of the forcing equation. For the second statement let V = G|U
denote the syzygy bundle over U . We may consider the situation on Ui =
D(fi), where we have the isomorphism

V |Ui
−→ TUi

, (s1, . . . , sn) 7−→ (s1, . . . , si−1, si +
f

fi
, si+1, . . . , sn).

With these isomorphisms the natural diagram
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V |Ui
×Ui

V |Ui
−→ V |Ui

↓ ↓
V |Ui

×Ui
T |Ui

−→ T |Ui

commutes, so locally the natural action of the vector bundle on the restricted
spectrum of the forcing algebra is isomorphic to the addition of the vector
bundle on itself. �

As TU is a V -torsor, and as every V -torsor is represented by a unique co-
homology class, there should be natural cohomology class coming from the
forcing data. To see this, let R be a noetherian ring and I = (f1, . . . , fn) be
an ideal. Then on U = D(I) we have the short exact sequence

0 −→ Syz (f1, . . . , fn) −→ OnU −→ OU −→ 0 .

An element f ∈ R defines an element f ∈ Γ(U,OU) and hence a cohomology
class δ(f) ∈ H1(U, Syz (f1, . . . , fn)). Hence f defines in fact a Syz (f1, . . . , fn)-
torsor over U . We will see that this torsor is induced by the forcing algebra
given by f1, . . . , fn and f .

Theorem 2.7. Let R denote a noetherian ring, let I = (f1, . . . , fn) denote an
ideal and let f ∈ R be another element. Let c ∈ H1(D(I), Syz (f1, . . . , fn))
be the corresponding cohomology class and let B = R[T1, . . . , Tn]/(f1T1 +
. . . + fnTn − f) denote the forcing algebra for these data. Then the scheme
Spec (B)|D(I) together with the natural action of the syzygy bundle on it is
isomorphic to the torsor given by c.

Proof. We compute the cohomology class δ(f) ∈ Syz (f1, . . . , fn) and the
cohomology class given by the forcing algebra. For the first computation we
look at the short exact sequence

0 −→ Syz (f1, . . . , fn) −→ OnU −→ OU −→ 0 .

On D(fi), the element f is the image of (0, . . . , 0, f
fi
, 0, . . . , 0) (the non-zero

entry is at the ith place). The cohomology class is therefore represented by
the family of differences

(0, . . . , 0,
f

fi
, 0, . . . , 0,− f

fj
, 0, . . . , 0) ∈ Γ(D(fi) ∩D(fj), Syz (f1, . . . , fn)) .

On the other hand, there are isomorphisms

V |D(fi) −→ T |D(fi), (s1, . . . , sn) 7−→ (s1, . . . , si−1, si +
f

fi
, si+1, . . . , sn).

The difference of two such isomorphisms on D(fifj) is the same as before.
�
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Example 2.8. We continue with Example 2.4, so let (R,m) denote a two-
dimensional normal local noetherian domain and let f and g be two parame-
ters in R. The torsor given by a cohomology class c = h

fg
∈ H1(U,OX) can

be realized by the forcing algebra

R[T1, T2]/(fT1 + gT2 − h) .

Note that different forcing algebra may give the same torsor, because the
torsor depends only on the spectrum of the forcing algebra restricted to the
punctured spectrum of R. For example, the cohomology class 1

fg
= fg

f2g2

defines one torsor, but the two quotients yield the two forcing algebras
R[T1, T2]/(fT1+gT2+1) and R[T1, T2]/(f

2T1+g2T2+fg), which are quite dif-
ferent. The fiber over the maximal ideal of the first one is empty, whereas the
fiber over the maximal ideal of the second one is a plane. If R is regular, say
R = K[X, Y ] (or the localization of this at (X, Y ) or the corresponding power
series ring) then the first cohomology classes are linear combinations of 1

xiyj
,

i, j ≥ 1. They are realized by the forcing algebras K[X, Y ]/(X iT1+Y jT2−1).
Since the fiber over the maximal ideal is empty, the spectrum of the forcing
algebra equals the torsor. Or, the other way round, the torsor is itself an
affine scheme.

It is a difficult question when a torsor is an affine scheme. In the next two
lecture we will deal with global properties of torsors and forcing algebras and
how these properties are related to closure operations of ideals. Exercise for
Sunday: Show that f belongs to the radical of the ideal (f1, . . . , fn) if and
only if the spectrum morphism

Spec (R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn − f)) −→ Spec (R)

is surjective.


