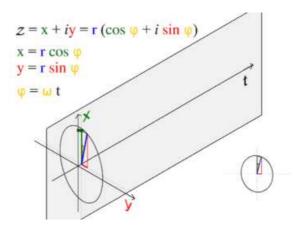
Mathematik für Anwender II

Vorlesung 34

Differenzierbare Kurven



Eine Animation des Graphen der trigonometrischen Parametrisierung des Einheitskreises. Die grünen Punkte sind Punkte des Graphen.

Es sei I ein reelles Intervall, V ein endlichdimensionaler reeller Vektorraum und

$$f: I \longrightarrow V$$

eine Abbildung. Eine solche Abbildung nennen wir auch eine Kurve oder einen Weg in V. Häufig stellt man sich dabei I als ein Zeitintervall und die Abbildung als einen Bewegungsprozess im Raum V vor. Jedem Zeitpunkt $t \in I$ wird also ein Ortspunkt $f(t) \in V$ zugeordnet. Es gibt mehrere Möglichkeiten, sich eine solche Abbildung zu veranschaulichen. Bei eindimensionalem V, also $V \cong \mathbb{R}$, ist der Graph die übliche Darstellungsweise. Einen Graphen gibt es bekanntlich zu jeder Abbildung. Bei $V \cong \mathbb{R}^2$ ist der Graph eine Teilmenge von $\mathbb{R} \times \mathbb{R}^2 = \mathbb{R}^3$. Häufig skizziert man bei einer Kurve bei $V = \mathbb{R}^2$ oder $V = \mathbb{R}^3$ nur das Bild (man spricht auch von der Bahn oder der Spur der Kurve) der Kurve. Man beachte aber, dass das Bild nur eine Teilinformation der Abbildung aufzeigt.

Bei einem Bewegungsprozess interessiert man sich natürlich für die "Geschwindigkeit" zu einem bestimmten Zeitpunkt. Dabei versteht man unter Geschwindigkeit nicht nur deren Betrag (oder Norm), sondern auch deren Richtung (die Sprechweisen sind uneinheitlich).

Eine gleichmäßige Bewegung auf einem Kreis mit Mittelpunkt (0,0) und Radius r, bei der eine volle Kreisbewegung die Zeit a benötigt, die zum Zeitpunkt 0 im Punkt (r,0) startet und gegen den Uhrzeigersinn verläuft, wird durch

$$\mathbb{R} \longrightarrow \mathbb{R}^2, t \longmapsto \left(r \cos \frac{2\pi}{a} t, r \sin \frac{2\pi}{a} t\right)$$

beschrieben. Der Geschwindigkeitsvektor der Kreisbewegung ist zu jedem Zeitpunkt t tangential an den Ortspunkt auf dem Kreis (und steht senkrecht zum Ortsvektor). Die Norm der Geschwindigkeit ist bei einer Kreisbewegung konstant, aber die Richtung ändert sich kontinuierlich.

Die Vorstellung der Momentangeschwindigkeit wird durch den Begriff der differenzierbaren Kurve und ihrer Ableitung präzisiert, der eine direkte Verallgemeinerung von differenzierbaren Funktionen ist. Die Idee ist wieder, zu zwei Zeitpunkten t < t' den Durchschnittsgeschwindigkeitsvektor (die wir den Differenzenquotienten nennen)

$$\frac{f(t') - f(t)}{t' - t} \in V$$

zu betrachten und davon den Limes für $t' \mapsto t$ zu bestimmen.

Um einen Limes bilden zu können, brauchen wir, wie schon im Eindimensionalen, eine Metrik (eine Abstandsfunktion) auf V. Wir werden daher euklidische Vektorräume betrachten, also reelle endlichdimensionale Vektorräume, für die ein Skalarprodukt erklärt ist. Ein Skalarprodukt auf V definiert über

$$||v|| := \sqrt{\langle v, v \rangle}$$

eine Norm und über

$$d(u,v) := ||u-v||$$

eine Metrik. Für einen Vektor v, der bezüglich einer Orthonormalbasis durch die Koordinaten

$$v = (v_1, \ldots, v_n)$$

gegeben ist, lautet die Formel für die Norm

$$||v|| = \sqrt{v_1^2 + \ldots + v_n^2}.$$

Da es auf jedem endlichdimensionalen Vektorraum V eine Basis v_1, \ldots, v_n und damit eine dadurch induzierte bijektive lineare Abbildung

$$\mathbb{R}^n \longrightarrow V, e_i \longmapsto v_i,$$

gibt, gibt es auch auf jedem reellen endlichdimensionalen Vektorraum ein Skalarprodukt und damit eine euklidische Metrik. Diese hängt jedoch von

der gewählten Basis ab. Allerdings hängen die offenen Mengen,¹ der Konvergenzbegriff und Grenzwerteigenschaften nicht von einer solchen Wahl ab, wie das folgende Lemma zeigt.

LEMMA 34.1. Es sei V ein reeller endlichdimensionaler Vektorraum. Es seien zwei Skalarprodukte $\langle -, - \rangle_1$ und $\langle -, - \rangle_2$ auf V gegeben. Dann stimmen die über die zugehörigen Normen $||-||_1$ und $||-||_2$ definierten Topologien überein, d.h. eine Teilmenge $U \subseteq V$ ist genau dann offen bezüglich der einen Metrik, wenn sie offen bezüglich der anderen Metrik ist.

Beweis. Dieser Beweis wurde in der Vorlesung nicht vorgeführt.

Für uns bedeutet das, dass die im Folgenden zu entwickelnden Differenzierbarkeitsbegriffe nicht vom gewählten Skalarprodukt abhängen. Mit etwas mehr Aufwand kann man auch zeigen, dass eine beliebige (nicht notwendigerweise euklidische) Norm auf einem reellen endlichdimensionalen Vektorraum ebenfalls die gleiche Topologie definiert, und man genauso gut mit einer beliebigen Norm arbeiten könnte. Zunächst müssen wir den Grenzwertbegriff für Abbildungen zwischen metrischen Räumen erweitern.

DEFINITION 34.2. Sei (M, d) ein metrischer Raum, sei $T \subseteq M$ eine Teilmenge und sei $a \in M$ ein Berührpunkt von T. Es sei

$$q:T\longrightarrow L$$

eine Abbildung in einen weiteren metrischen Raum L. Dann heißt $b \in L$ der Grenzwert (oder Limes) von g in a, wenn es für jedes $\epsilon > 0$ ein $\delta > 0$ gibt mit der folgenden Eigenschaft: Für jedes $x \in T \cap U(a, \delta)$ ist $g(x) \in U(b, \epsilon)$. In diesem Fall schreibt man

$$\lim_{x \to a} g(x) = b.$$

Eine alternative Bedingung ist, dass für jede Folge $(x_n)_{n\in\mathbb{N}}$ aus T, die gegen a konvergiert, die Bildfolge $(f(x_n))_{n\in\mathbb{N}}$ gegen b konvergiert.

Diese Definition werden wir hauptsächlich in der Situation M=I ein reelles Intervall, $T=I\setminus\{t\},\ a=t,\ L=V$ ein euklidischer Vektorraum und den Differenzenquotienten

$$g: t' \longrightarrow \frac{f(t') - f(t)}{t' - t}$$

anwenden. Dieser ist für t'=t nicht definiert, wir suchen aber dennoch einen sinnvollen Wert für ihn.

DEFINITION 34.3. Es sei I ein reelles Intervall, V ein euklidischer Vektorraum und

$$f: I \longrightarrow V$$

¹Die Menge der offenen Mengen eines metrischen Raumes wird als *Topologie* bezeichnet. Wesentliche Begriffe wie Konvergenz und Stetigkeit hängen nur von der Topologie ab.

eine Abbildung. Dann heißt f in $t \in I$ differenzierbar, wenn der Limes

$$\lim_{h\to 0} \frac{f(t+h) - f(t)}{h}$$

existiert. Dieser Limes heißt dann die Ableitung von f in t und wird mit

bezeichnet.

Die Ableitung ist selbst wieder ein Vektor in V. Statt Ableitung sprich man auch vom Differentialquotienten in einem (Zeit)-Punkt t. Bei $f'(t) \neq 0$ versteht man unter der Tangente an f(t) zum Zeitpunkt t die durch

$$\{f(t) + s \cdot f'(t) | s \in \mathbb{R}\}$$

gegebene Gerade.

DEFINITION 34.4. Es sei I ein reelles Intervall, V ein euklidischer Vektorraum und

$$f: I \longrightarrow V$$

eine Abbildung. Dann heißt f differenzierbar, wenn f in jedem Punkt $t \in I$ differenzierbar ist. Die Abbildung

$$I \longrightarrow V, t \longmapsto f'(t),$$

heißt dann die Ableitung von f.

Die Ableitung einer differenzierbaren Kurve ist damit selbst wieder eine Kurve. Wenn die Ableitung stetig ist, so nennt man die Kurve stetig differenzierbar. Wenn die Ableitung selbst differenzierbar ist, so nennt man die Ableitung der Ableitung die zweite Ableitung der Ausgangskurve.

Das folgende Lemma zeigt, dass dieser Differenzierbarkeitsbegriff nichts wesentlich neues ist, da er auf die Differenzierbarkeit von Funktionen in einer Variablen zurückgeführt werden kann.

Lemma 34.5. Es sei I ein reelles Intervall, V ein euklidischer Vektorraum und

$$f: I \longrightarrow V$$

eine Abbildung. Es sei v_1, v_2, \ldots, v_n eine Basis von V und es seien

$$f_i: I \longrightarrow \mathbb{R}$$

die zugehörigen Komponentenfunktionen von f. Es sei $t \in I$. Dann ist f genau dann differenzierbar in t, wenn sämtliche Funktionen f_j in t differenzierbar sind. In diesem Fall gilt

$$f'(t) = f'_1(t) \cdot v_1 + f'_2(t) \cdot v_2 + \ldots + f'_n(t) \cdot v_n$$
.

Beweis. Sei $t_0 \in I$ und $t \in I$, $t \neq t_0$. Es ist

$$\frac{f(t) - f(t_0)}{t - t_0} = \frac{\sum_{j=1}^n f_j(t) \cdot v_j - \sum_{j=1}^n f_j(t_0) \cdot v_j}{t - t_0}$$
$$= \sum_{j=1}^n \frac{f_j(t) - f_j(t_0)}{t - t_0} \cdot v_j.$$

Nach Aufgabe 34.5 existiert der Limes links für $t \to t_0$ genau dann, wenn der entsprechende Limes rechts komponentenweise existiert.

Die vorstehende Aussage wird hauptsächlich für die Standardbasis des \mathbb{R}^n angewendet.

Beispiel 34.6. Die Kurve

$$f: \mathbb{R} \longrightarrow \mathbb{R}^3, t \longmapsto (t^2 - t^3, t \cdot \sin t, e^{-t})$$

ist in jedem Punkt $t \in \mathbb{R}$ differenzierbar, und zwar ist

$$f'(t) = (2t - 3t^2, \sin t + t \cdot \cos t, -e^{-t}).$$

Beispiel 34.7. Die trigonometrische Parametrisierung des Einheitskreises

$$f: \mathbb{R} \longrightarrow \mathbb{R}^2, t \longmapsto (\cos t, \sin t)$$

besitzt nach Lemma 34.5 und nach Satz 21.5 die Ableitung

$$f'(t) = (-\sin t, \cos t).$$

Wegen

$$\left\langle \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}, \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix} \right\rangle = -\cos t \sin t + \sin t \cos t = 0$$

steht der Geschwindigkeitsvektor stets senkrecht auf dem Ortsvektor.

Lemma 34.8. Es sei I ein reelles Intervall und V ein euklidischer Vektorraum. Es seien

$$f, g: I \longrightarrow V$$

zwei in $t_0 \in I$ differenzierbare Kurven und es sei

$$h: I \longrightarrow \mathbb{R}$$

eine in t_0 differenzierbare Funktion. Dann gelten folgende Aussagen.

(1) Die Summe

$$f + g : I \longrightarrow V, t \longmapsto f(t) + g(t),$$

ist in t_0 differenzierbar mit

$$(f+g)'(t_0) = f'(t_0) + g'(t_0).$$

(2) Das Produkt

$$hf: I \longrightarrow V, t \longmapsto h(t) \cdot f(t),$$

ist differenzierbar in t_0 mit

$$(hf)'(t_0) = h(t_0) \cdot f'(t_0) + h'(t_0) \cdot f(t_0).$$

Insbesondere ist für $c \in \mathbb{R}$ auch cf differenzierbar in t_0 mit

$$(cf)'(t_0) = cf'(t_0)$$
.

(3) Wenn h nullstellenfrei ist, so ist auch die Quotientenfunktion

$$\frac{f}{h}: I \longrightarrow V, t \longmapsto \frac{f(t)}{h(t)},$$

in t_0 differenzierbar mit

$$\left(\frac{f}{h}\right)'(t_0) = \frac{h(t_0)f'(t_0) - h'(t_0)f(t_0)}{(h(t_0))^2}.$$

Beweis. Siehe Aufgabe 34.4.

Man kann natürlich zwei Abbildungen $f,g:I\to V$ nicht miteinander multiplizieren, so dass in der obigen Produktregel eine differenzierbare Kurve und eine differenzierbare Funktion auftritt. Ebenso muss die Kettenregel mit Bedacht formuliert werden. Später werden wir noch eine allgemeinere Kettenregel kennenlernen.

Lemma 34.9. Es seien I und J zwei reelle Intervalle, es sei

$$h: I \longrightarrow J, s \longmapsto h(s).$$

eine in $s_0 \in I$ differenzierbare Funktion und es sei

$$f: J \longrightarrow V, t \longmapsto f(t),$$

eine in $t_0 = h(s_0)$ differenzierbare Kurve in einen euklidischen Vektorraum V. Dann ist auch die zusammengesetzte Kurve

$$f \circ h : I \longrightarrow V, s \longmapsto f(h(s)),$$

in s_0 differenzierbar und es gilt

$$(f \circ h)'(s_0) = h'(s_0) \cdot f'(h(s_0)).$$

Beweis. Es seien f_1, \ldots, f_n die Komponentenfunktionen von f bezüglich einer Basis von V. Nach der Kettenregel in einer Variablen gilt

$$(f_i \circ h)'(s_0) = h'(s_0) \cdot f_i'(h(s_0))$$

für jedes i = 1, ..., n. Dies ist wegen Lemma 34.5 die Behauptung.

In der vorstehenden Situation sollte man sich h als eine Umparametrisierung der Zeit vorstellen. Die Bahn der Kurve bleibt erhalten, es ändert sich aber die Geschwindigkeit und die Richtung, mit der die Bahn durchlaufen wird. Wenn $h: \mathbb{R} \to \mathbb{R}$ die Negation ist, so wird die Kurve mit umgekehrter Zeitrichtung durchlaufen. Die Aussage besagt in diesem Fall, dass die Ableitung der umgekehrten Kurve negiert werden muss.

Lemma 34.10. Es sei I ein reelles Intervall, V und W seien euklidische Vektorräume und es sei

$$f: I \longrightarrow V$$

eine differenzierbare Kurve. Es sei

$$L:V\longrightarrow W$$

eine lineare Abbildung. Dann ist auch die zusammengesetzte Abbildung

$$L \circ f : I \longrightarrow W, t \longmapsto L(f(t)),$$

differenzierbar und es gilt

$$(L \circ f)'(t) = L(f'(t)).$$

Beweis. Sei $t_0 \in I$ fixiert und sei $t \in I$, $t \neq t_0$. Wegen der Linearität ist

$$L\left(\frac{f(t) - f(t_0)}{t - t_0}\right) = \frac{L(f(t)) - L(f(t_0))}{t - t_0}.$$

D.h. der Differenzenquotient zu $L \circ f$ ist gleich dem Wert unter L des Differenzenquotienten zu f. Wegen der Voraussetzung und der Stetigkeit einer linearen Abbildung existiert der Limes links für $t \to t_0$, also existiert auch der Limes rechts, und das bedeutet, dass der Differentialquotient der zusammengesetzten Abbildung $L \circ f$ existiert und mit dem Wert unter L des Differentialquotienten zu f übereinstimmt.

Beispiel 34.11. Es sei

$$f: \mathbb{R} \longrightarrow \mathbb{R}^3$$

eine differenzierbare Bewegung im Raum, bei der man sich nur für die lineare Projektion der Bewegung auf eine Ebene interessiert. Eine solche Situation liegt beispielsweise vor, wenn man zu einer Flugbewegung nur die Bewegung des Schattens des Flugkörpers auf der Erdoberfläche beschreiben möchte (bei parallel gedachten Lichtstrahlen). Die Projektion wird (in geeigneten Koordinaten) durch eine lineare Abbildung

$$L: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$$

beschrieben. Lemma 34.10 besagt in dieser Situation, dass der Geschwindigkeitsvektor der Schattenbewegung einfach die Projektion des Geschwindigkeitsvektors der Flugbewegung ist.

Abbildungsverzeichnis

 $\label{eq:Quelle} \mbox{Quelle} = \mbox{ComplexSinInATimeAxe.gif} \; , \; \mbox{Autor} = \mbox{Nashev}, \; \mbox{Lizenz} = \qquad \qquad 1$