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1. Lecture

1.1. Systems of linear equations.

We start with some linear algebra. Let K be a field. We consider a system
of linear homogeneous equations over K,

f11t1 + . . .+ f1ntn = 0 ,

f21t1 + . . .+ f2ntn = 0 ,

...

fm1t1 + . . .+ fmntn = 0 ,

where the fij are elements in K. The solution set to this system of homo-
geneous equations is a vector space V over K, its dimension is n − rk(A),
where A = (fij)ij is the matrix given by these elements. Additional elements
f1, . . . , fm ∈ K give rise to the system of inhomogeneous linear equations,

f11t1 + . . .+ f1ntn = f1 ,

f21t1 + . . .+ f2ntn = f2 ,

...

fm1t1 + . . .+ fmntn = fm .

The solution set T of this inhomogeneous system may be empty, but nevert-
heless it is tightly related to the solution space of the homogeneous system.
First of all, there exists an action

V × T −→ T, (v, t) 7−→ v + t,

because the sum of a solution of the homogeneous system and a solution of
the inhomogeneous system is again a solution of the inhomogeneous system.
This action is a group action of the group (V,+, 0) on the set T . Moreover, if
we fix one solution t0 ∈ T (supposing that at least one solution exists), then
there exists a bijection

V −→ T, v 7−→ v + t0.

So T can be identified with the vector space V , however not in a canonical
way. The group V acts simply transitive on T .
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Suppose now that X is a geometric object (a topological space, a manifold,
a variety, the spectrum of a ring) and that instead of elements in the field K
we have functions

fij :X −→ K

on X (which are continuous, or differentiable, or algebraic). We form the
Matrix of functions A = (fij)ij, which yields for every point P ∈ X a matrix
A(P ) over K. Then we get from these data the space

V =







(P, t1, . . . , tn)|A(P )





t1

tn



 = 0







⊆ X ×Kn

together with the projection to X. For a fixed point P ∈ X, the fiber of V
over P is the solution space to the corresponding homogeneous system of
linear equations given by inserting P . In particular, all fibers of the map

V −→ X,

are vector spaces (maybe of non-constant dimension). This vector space
structures yield an addition

V ×X V −→ V, (P ; t1, . . . , tn; s1, . . . , sn) 7−→ (P ; t1 + s1, . . . , tn + sn)

(only points in the same fiber can be added). The mapping

X −→ V, P 7−→ (P ; 0, . . . , 0)

is called the zero-section.

Suppose now that there are additionally functions

f1, . . . , fm :X −→ K

given. Then we can form the set

T =







(P, t1, . . . , tn)|A(P )





t1

tn



 =





f1(P )

fn(P )











⊆ X ×Kn

with the mapping to X. Again, every fiber of T over a point P ∈ X is the
solution set to the system of inhomogeneous linear equations which arises by
inserting P . The actions of the fibers VP on TP (coming from linear algebra)
extend to an action

V ×X T −→ T, (P ; t1, . . . , tn; s1, . . . , sn) 7−→ (P ; t1 + s1, . . . , tn + sn).

Also, if a (continuous, differentiable, algebraic) map

s :X −→ T

with s(P ) ∈ TP exists, then we can construct an (continuous, differentiable,
algebraic) isomorphism between V and T . However, different from the situa-
tion in linear algebra (which corresponds to the situation where X is just
one point), such a section does rarely exist.
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These objects T have new and sometimes difficult global properties which
we try to understand in these lectures. We will work mainly in an algebraic
setting and restrict to the situation where just one equation

f1T1 + . . .+ fnTn = f

is given. Then in the homogeneous case (f = 0) the fibers are vector spaces
of dimension n − 1 or n, and the later holds exactly for the points P ∈ X
where f1(P ) = . . . = fn(P ) = 0. In the inhomogeneous case the fibers are
either empty or of dimension n− 1 or n. We give some typical examples.

Example 1.1. We consider the line (X = A1
K) (or X = K,R,C etc.) with

the (identical) function x. For f1 = x and f = 0, i.e. for the equation xt = 0,
the geometric object V consists of a horizontal line (corresponding to the
zero-solution) and a vertical line over x = 0. So all fibers except one are
zero-dimensional vector spaces. For the equation 0t = x, V consists of one
vertical line, almost all fibers are empty. For the equation xt = 1, V is a
hyperbola, and all fibers are zero-dimensional with the exception that the
fiber over x = 0 is empty.

Example 1.2. Let X denote a plane (K2,R2,A2
K) with coordinate functions

x and y. We consider a linear equation of type

xat1 + ybt2 = xcyd .

The fiber of the solution set T over a point 6= (0, 0) is onedimensional, whereas
the fiber over (0, 0) has dimension two (for a, b, c, d ≥ 1). Many properties of
T depend on these four exponents.

In (most of) these example we can observe the following behavior. On an
open subset, the dimension of the fibers is constant and equals n− 1, wheres
the fiber over some special points degenerates to an n-dimensional solution
set (or becomes empty).

1.2. Forcing algebras.

We describe now the algebraic setting of systems of linear equations depen-
ding on a base space. For a commutative ring R, its spectrum X = Spec (R)
is a topological space on which the ring elements can be considered as func-
tions. The value of f ∈ R at a prime ideal P ∈ Spec (R) is just the image
of f under the morphism R → R/P → κ(P ) = Q(R/P ). In this interpre-
tation, a ring element is a function with values in different fields. Suppose
that R contains a field K. Then an element f ∈ R gives rise to the ring
homomorphism

K[Y ] −→ R, Y 7−→ f,

which itself gives rise to a scheme morphism

Spec (R) −→ Spec (K[Y ]) ∼= A1
K .

This is another way to consider f as a function on Spec (R).
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Definition 1.3. Let R be a commutative ring and let f1, . . . , fn and f be
elements in R. Then the R-algebra

R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn − f)

is called the forcing algebra of these elements (or these data).

The forcing algebra B forces f to lie inside the extended ideal (f1, . . . , fn)B
(hence the name) For every R-algebra S such that f ∈ (f1, . . . , fn)S there
exists a (non unique) ring homomorphism B → S by sending Ti to the
coefficient si ∈ S in an expression f = s1f1 + . . .+ snfn.

The forcing algebra induces the spectrum morphism

Spec (B) −→ Spec (R).

Over a point P ∈ X = Spec (R), the fiber of this morphism is given by

Spec (B ⊗R κ(P )) ,

and we can write

B ⊗R κ(P ) = κ(P )[T1, . . . , Tn]/(f1(P )T1 + . . .+ fn(P )Tn − f(P )) ,

where fi(P ) means the evaluation of the fi in the residue class field. Hence
the κ(P )-points in the fiber are exactly the solution to the inhomogeneous
linear equation f1(P )T1 + . . .+ fn(P )Tn = f(P ). In particular, all the fibers
are (empty or) affine spaces.

2. Lecture

2.1. Forcing algebras and closure operations.

Let R denote a commutative ring and let I = (f1, . . . , fn) be an ideal. Let
f ∈ R and let

B = R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn − f)

be the corresponding forcing algebra and

ϕ : Spec (B) −→ Spec (R)

the corresponding spectrum morphism. How are properties of ϕ (or of the
R-algebra B) related to certain ideal closure operations?

We start with some examples. The element f belongs to the ideal I if and
only if we can write f = r1f1 + . . . + rnfn. By the universal property of the
forcing algebra this means that there exists an R-algebra-homomorphism

B −→ R,

hence f ∈ I holds if and only if ϕ admits a scheme section. This is also
equivalent to

R −→ B
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admitting an R-module section or B being a pure R-algebra (so for forcing
algebras properties might be equivalent which are not equivalent for arbitrary
algebras).

The radical of an ideal

Now we look at the radical of the ideal I,

rad (I) =
{

f ∈ R| fk ∈ I for some k
}

.

The importance of the radical comes mainly from Hilbert’s Nullstellensatz,
saying that for algebras of finite type over an algebraically closed field there
is a natural bijection between radical ideals and closed algebraic zero-sets.
So geometrically one can see from an ideal only its radical. As this is quite
a coarse closure operation we should expect that this corresponds to a quite
coarse property of the morphism ϕ as well. Indeed, it is true that f ∈ rad (I)
if and only if ϕ is surjective. This is true since the radical of an ideal is the
intersection of all prime ideals in which it is contained. Hence an element f
belongs to the radical if and only if for all residue class homomorphisms

ϕ :R −→ κ(p)

where I is sent to 0, also f is sent to 0. But this means for the forcing
equation that whenever the equation degenerates to 0, then also the inho-
mogeneous part becomes zero, and so there will always be a solution to the
inhomogeneous equation.

Exercise: Define the radical of a submodule inside a module.

Integral closure of an ideal

Another closure operation is integral closure. It is defined by

I =
{

f ∈ R| fk + a1f
k−1 + . . .+ ak−1f + ak = 0 for some k and ai ∈ I i

}

.

This notion is important for describing the normalization of the blow up
of the ideal I. Another characterization is that there exists a z ∈ R, not
contained in any minimal prime ideal of R, such that zfn ∈ In holds for all
n. Another equivalent property - the valuative criterion - is that for all ring
homomorphisms

θ :R −→ D

to a discrete valuation domain D (assume that R is noetherian) the contain-
ment θ(f) ∈ θ(I)D holds.

The characterization of the integral closure in terms of forcing algebras re-
quires some notions from topology. A continuous map

ϕ :X −→ Y

between topological spaces X and Y is called a submersion, if it is surjective
and if Y carries the image topology (quotient topology) under this map. This
means that a subset W ⊆ Y is open if and only if its preimage ϕ−1(W ) is
open. Since the spectrum of a ring endowed with the Zarisiki topology is a
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topological space, this notion can be applied to the spectrum morphism of a
ring homomorphism. With this notion we can state that f ∈ Ī if and only if
the forcing morphism

ϕ : Spec (B) −→ Spec (R)

is a universal submersion (universal means here that for any ring change
R → R′ to a noetherian ring R′, the resulting homomorphism R′ → B′ still
has this property). The relation between these two notions stems from the
fact that also for universal submersions there exists a criterion in terms of
discrete valuation domains: A morphism of finite type between two affine
noetherian schemes is a universal submersion if and only if the base change
to any discrete valuation domain yields a submersion. For a morphism

Z −→ Spec (D)

(D a discrete valuation domain) to be a submersion means that above the
only chain of prime ideals in Spec (D), namely (0) ⊂ mD, there exists a chain
of prime ideals p′ ⊆ q′ in Z lying over this chain. This pair-lifting property
holds for a universal submersion

Spec (S) −→ Spec (R)

for any pair of prime ideals p ⊆ q in Spec (R). This property is stronger that
lying over (which means surjective) but weaker than the going-down or the
going-up property (in the presence of surjectivity).

If we are dealing only with algebras of finite type over the complex numbers
C, then we may also consider the corresponding complex spaces with their
natural topology induced from the euklidean topology of Cn. Then universal
submersive with respect to the Zariski topology is the same as submersive in
the complex topology (the target space needs to be normal).

Example 2.1. Let K be a field and consider R = K[X]. Since this is a prin-
cipal ideal domain, the only interesting forcing algebras (if we are only intere-
sted in the local behavior around (X)) are of the form K[X,T ]/(XnT−Xm).
Form ≥ n thisK[X]-algebra admits a section (corresponding to the fact that
Xm ∈ (Xn)), and if n ≥ 1 there exists an affine line over the maximal ideal
(X). So now assume m < n. If m = 0, then we have a hyperbola mapping to
an affine line, with the fiber over (X) being empty, corresponding to the fact
that 1 does not belong to the radical of (Xn) for n ≥ 1. So assume finally
1 ≤ m < n. Then Xm belongs to the radical of (Xn), but not to its integral
closure (which is the identical closure on a one-dimensional regular ring). We
can write the forcing equation as XnT − Xm = Xm(Xn−mT − 1). So the
spectrum of the forcing algebra consists of a (thickend) line over (X) and of
a hyperbola. The forcing morphism is surjective, but it is not a submersion.
For example, the preimage of D(X) is a connected component hence open,
but this single point is not open.
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Example 2.2. Let K be a field and let R = K[X, Y ] be the polynomial ring
in two variables. We consider the ideal I = (X2, Y ) and the element X. This
element belongs to the radical of this ideal, hence the forcing morphism

Spec (K[X, Y, T1, T2]/(X
2T1 + Y T2 +X) −→ Spec (K[X, Y ])

is surjective. We claim that it is not a submersion. For this we look at the
reduction modulo Y . In K[X, Y ]/(Y ) ∼= K[X] the ideal becomes (X2) which
does not contain X. Hence by the valuative criterion for integral closure, X
does not belong to the integral closure of the ideal. One can also say that the
chain V (X, Y ) ⊂ V (Y ) in the affine plane does not have a lift (as a chain)
to the spectrum of the forcing algebra.

For the ideal I = (X2, Y 2) and the element XY the situation looks different.
Let

θ :K[X, Y ] −→ D

be a ring homomorphism to a discrete valuation domain D. If X or Y is
mapped to 0, then also XY is mapped to 0 and hence belongs to the ex-
tendend ideal. So assume that θ(X) = uπr and θ(Y ) = vπs, where π is a
local parameter of D and u and v are units. Then θ(XY ) = uvπr+s and the
exponent is at least the minimum of 2r and 2s, hence θ(XY ) ∈ (π2r, π2s) =
(θ(X2), θ(Y 2))D. Hence XY belongs to the integral closure of (X2, Y 2) and
the forcing morphism

Spec (K[X, Y, T1, T2]/(X
2T1 + Y 2T2 +XY ) −→ Spec (K[X, Y ])

is a universal submersion.

Continuous closure

Suppose now that R = C[X1, . . . , Xk]. Then every polynomial f ∈ R can be
considered as a continuous function

f :Ck −→ C, (x1, . . . , xk) 7−→ f(x1, . . . , xk)

in the complex topology. If I = (f1, . . . , fn) is an ideal and f ∈ R is an
element, we say that f belongs to the continuous closure of I, if there exist
continuous functions

g1, . . . , gn :Ck −→ C

such that

f =
n

∑

i=1

gifi

(identity of functions) (the same definition works for C-algebras of finite
type).

It is not at all clear at once that there may exist polynomials f 6∈ I but inside
the continuous closure of I. For C[X] it is easy to show that the continuous
closure is (like the integral closure) just the ideal itself. We also remark that
when we would only allow holomorphic functions g1, . . . , gn then we could not
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get something larger. However, with continuous functions we can for example
write

X2Y 2 = g1X
3 + g2Y

3 .

Continuous closure is always inside the integral closure and hence also inside
the radical. The element XY does not belong to the continuous closure of
(X2, Y 2), though it belongs to the integral closure of I. In terms of forcing
algebras, an element f belongs to the continuous closure if and only if the
complex forcing mapping

ϕC : Spec (B)C −→ Spec (R)C

(between the corresponding complex spaces) admits a continuous section.

3. Lecture

3.1. Geometric vector bundles.

We have seen that the fibers of the spectrum of a forcing algebra are (empty
or) affine spaces. However, this is not only fiberwise true, but more general:
If we localize the forcing algebra at fi we get

(R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn − f))fi
∼= Rfi [T1, . . . , Ti−1, Ti+1, . . . , Tn],

since we can write

Ti = −
∑

j 6=i

fj
fi
Tj +

f

fi
.

So over every D(fi) the spectrum of the forcing algebra is an (n − 1)-
dimensional affine space over the base. So locally, restricted to D(fi), we
have isomorphisms

T |D(fi)
∼= D(fi)× An−1 .

On the intersectionsD(fi)∩D(fj) we get two identifications with affine space,
and the transition morphisms are linear if f = 0, but only affine-linear in
general (because of the translation with f

fi
).

So the forcing algebra has locally the form Rfi [T1, . . . , Ti−1, Ti+1, . . . , Tn] and
its spectrum Spec (B) has locally the form D(fi) × An−1

K . This description
holds on the union U =

⋃n

i=1D(fi). Moreover, in the homogeneous case (f=0)
the transition mappings are linear. Hence V |U is a geometric vector bundle
according to the following definition.

Definition 3.1. Let X denote a scheme. A scheme

p :V −→ X

is called a geometric vector bundle of rank r over X if there exists an open
covering X =

⋃

i∈I Ui and Ui-isomorphisms

ψi :Ui × Ar = Ar
Ui

−→ V |Ui
= p−1(Ui)
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such that for every open affine subset U ⊆ Ui ∩ Uj the transition mappings

ψ−1
j ◦ ψi :A

r
Ui
|U −→ Ar

Uj
|U

are linear automorphisms, i.e. they are induced by an automorphism of the
polynomial ring Γ(U,OX)[T1, . . . , Tr] given by Ti 7→

∑r

j=1 aijTj .

Here we can restrict always to affine open coverings. If X is separated then
the intersection of two affine open subschemes is again affine and then it
is enough to check the condition on the intersection. The trivial bundle of
rank r is the r-dimensional affine space Ar

X over X, and locally every vector
bundle looks like this. Many properties of an affine space are enjoyed by
general vector bundles. For example, in the affine space we have the natural
addition

+ : (Ar
U)×U (Ar

U) −→ Ar
U , (v1, . . . , vr, w1, . . . , wr) 7−→ (v1 +w1, . . . , vr +wr),

and this carries over to a vector bundle, that is, we have an addition

α :V ×X V −→ V.

The reason for this is that the isomorphisms occurring in the definition of a
geometric vector bundle are linear, hence the addition on V |U coming from
an isomorphism with some affine space over U is independent of the choosen
isomorphism. For the same reason there is a unique closed subscheme of V
called the zero-section which is locally defined to be 0 × U ⊆ Ar

U . Also, the
multiplication by a scalar, i.e. the mapping

· :AU ×U (Ar
U) −→ Ar

U , (s, v1, . . . , vr) 7−→ (sv1, . . . , svr),

carries over to a scalar multiplication

· :AX ×X V −→ V.

In particular, for every point P ∈ X the fiber VP = V ×X P is an affine space
over κ(P ).

For a geometric vector bundle p :V → X and an open subset U ⊆ X one
sets

Γ(U, V ) = {s : U → V |U | p ◦ s = idU} ,

so this is the set of sections in V over U . This gives in fact for every scheme
over X a set-valued sheaf. Because of the observations just mentioned, these
sections can also be added and multiplied by elements in the structure sheaf,
and so we get for every vector bundle a locally free sheaf, which is free on
the open subsets where the vector bundle is trivial.

Definition 3.2. A coherent OX-module F on a scheme X is called locally
free of rank r, if there exists an open covering X =

⋃

i∈I Ui and OUi
-module-

isomorphisms F|Ui
∼= Or|Ui

for every i ∈ I.

Vector bundles and locally free sheaves are essentially the same objects.
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Theorem 3.3. Let X denote a scheme. Then the category of locally free
sheaves on X and the category of geometric vector bundles on X are equi-
valent. A geometric vector bundle V → X corresponds to the sheaf of its
sections, and a locally free sheaf F corresponds to the (relative) Spectrum of
the symmetric algebra of the dual module F∗.

The free sheaf of rank r corresponds to the affine space Ar
X over X.

3.2. Torsors of vector bundles.

We have seen that V = Spec (R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn)) acts on the
spectrum of a forcing algebra T = Spec (R[T1, . . . , Tn]/(f1T1+. . .+fnTn+f))
by addition. The restriction of V to U is a vector bundle, and T restricted
to U becomes a V -torsor.

Definition 3.4. Let V denote a geometric vector bundle over a scheme X.
A scheme T → X together with an action

β :V ×X T −→ T

is called a geometric (Zariski)-torsor for V (or a V -principal fiber bundle or
a principal homogeneous space) if there exists an open covering X =

⋃

i∈I Ui

and isomorphisms
ϕi :T |Ui

−→ V |Ui

such that the diagrams (we set U = Ui and ϕ = ϕi)

V |U ×U T |U
β

−→ T |U
↓ ↓

V |U ×U V |U
α

−→ V |U
commute.

The torsors of vector bundles can be classified in the following way.

Proposition 3.5. Let X denote a Noetherian separated scheme and let

p :V −→ X

denote a geometric vector bundle on X with sheaf of sections S. Then there
exists a correspondence between first cohomology classes c ∈ H1(X,S) and
geometric V -torsors.

Beweis. We will describe this correspondence. Let T denote a V -torsor. Then
there exists by definition an open covering X =

⋃

i∈I Ui such that there exists
isomorphisms

ϕi :T |Ui
−→ V |Ui

which are compatible with the action of V |Ui
on itself. The isomorphisms ϕi

induce automorphisms

ψij = ϕj ◦ ϕ
−1
i :V |Ui∩Uj

−→ V |Ui∩Uj
.
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These automorphisms are compatible with the action of V on itself, and this
means that they are of the form

ψij = IdV |Ui∩Uj
+ sij

with suitable sections sij ∈ Γ(Ui ∩Uj ,S). This family defines a Cech-cocycle
for the covering and gives therefore a cohomology class in H1(X,S). For
the reverse direction, suppose that the cohomology class c ∈ H1(X,S) is
represented by a Cech-cocycle sij ∈ Γ(Ui ∩ Uj,S) for an open covering X =
⋃

i∈I Ui. Set Ti := V |Ui
. We take the morphisms

ψij :Ti|Ui∩Uj
= V |Ui∩Uj

−→ V |Ui∩Uj
= Tj|Ui∩Uj

given by ψij := IdV |Ui∩Uj
+ sij to glue the Ti together to a scheme T over X.

This is possible since the cocycle condition guarantees the glueing condition
for schemes (EGA I, 0, 4.1.7). The action of Ti = V |Ui

on itself glues also
together to give an action on T . �

It follows immediately that for an affine scheme (i.e. a scheme of type
Spec(R)) there are no non-trivial torsor for any vector bundle. There will
however be in general many non-trivial torsors on the punctured spectrum
(and on a projective variety).

4. Lecture

4.1. Forcing algebras and induced torsors.

As TU is a VU -torsor, and as every V -torsor is represented by a unique coho-
mology class, there should be a natural cohomology class coming from the
forcing data. To see this, let R be a noetherian ring and I = (f1, . . . , fn) be
an ideal. Then on U = D(I) we have the short exact sequence

0 −→ Syz (f1, . . . , fn) −→ On
U −→ OU −→ 0 .

An element f ∈ R defines an element f ∈ Γ(U,OU) and hence a cohomology
class δ(f) ∈ H1(U, Syz (f1, . . . , fn)). Hence f defines in fact a Syz (f1, . . . , fn)-
torsor over U . We will see that this torsor is induced by the forcing algebra
given by f1, . . . , fn and f .

Theorem 4.1. Let R denote a noetherian ring, let I = (f1, . . . , fn) denote an
ideal and let f ∈ R be another element. Let c ∈ H1(D(I), Syz (f1, . . . , fn))
be the corresponding cohomology class and let B = R[T1, . . . , Tn]/(f1T1 +
. . . + fnTn − f) denote the forcing algebra for these data. Then the scheme
Spec (B)|D(I) together with the natural action of the syzygy bundle on it is
isomorphic to the torsor given by c.

Beweis. We compute the cohomology class δ(f) ∈ H1(U, Syz (f1, . . . , fn))
and the cohomology class given by the forcing algebra. For the first compu-
tation we look at the short exact sequence

0 −→ Syz (f1, . . . , fn) −→ On
U −→ OU −→ 0 .
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On D(fi), the element f is the image of (0, . . . , 0, f

fi
, 0, . . . , 0) (the non-zero

entry is at the ith place). The cohomology class is therefore represented by
the family of differences

(0, . . . , 0,
f

fi
, 0, . . . , 0,−

f

fj
, 0, . . . , 0) ∈ Γ(D(fi) ∩D(fj), Syz (f1, . . . , fn)) .

On the other hand, there are isomorphisms

V |D(fi) −→ T |D(fi), (s1, . . . , sn) 7−→ (s1, . . . , si−1, si +
f

fi
, si+1, . . . , sn).

The difference of two such isomorphisms on D(fifj) is the same as before.
�

Example 4.2. Let (R,m) denote a two-dimensional normal local noetherian
domain and let f and g be two parameters in R. On D(m) we have the short
exact sequence

0 −→ OU
∼= Syz (f, g) −→ O2

U

f,g
−→ OU −→ 0

and its corresponding long exact sequence of cohomology,

0 −→ R −→ R2 f,g
−→ R

δ
−→ H1(U,O) −→ . . . .

The connecting homomorphisms δ sends an element h ∈ R to h
fg
. The torsor

given by such a cohomology class c = h
fg

∈ H1(U,OX) can be realized by the

forcing algebra
R[T1, T2]/(fT1 + gT2 − h) .

Note that different forcing algebras may give the same torsor, because the
torsor depends only on the spectrum of the forcing algebra restricted to the
punctured spectrum of R. For example, the cohomology class 1

fg
= fg

f2g2

defines one torsor, but the two quotients yield the two forcing algebras
R[T1, T2]/(fT1 + gT2 − 1) and R[T1, T2]/(f

2T1 + g2T2 − fg), which are quite
different. The fiber over the maximal ideal of the first one is empty, whereas
the fiber over the maximal ideal of the second one is a plane.

If R is regular, say R = K[X, Y ] (or the localization of this at (X, Y ) or
the corresponding power series ring) then the first cohomology classes are
K-linear combinations of 1

xiyj
, i, j ≥ 1. They are realized by the forcing

algebras K[X, Y ]/(X iT1 + Y jT2 − 1). Since the fiber over the maximal ideal
is empty, the spectrum of the forcing algebra equals the torsor. Or, the other
way round, the torsor is itself an affine scheme.

The closure operations we have considered in the second lecture can be cha-
racterized by some property of the forcing algebra. However, they can not be
characterized by a property of the corresponding torsor alone. For example,
for R = K[X, Y ], we may write

1

XY
=

X

X2Y
=

XY

X2Y 2
=

X2Y 2

X3Y 3
,
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so the torsors given by the forcing algebras

R[T1, T2]/(XT1 + Y T2 + 1),

R[T1, T2]/(X
2T1 + Y T2 +X),

R[T1, T2]/(X
2T1 + Y 2T2 +XY ) and

R[T1, T2]/(X
3T1 + Y 3T2 +X2Y 2)

are all the same (the restriction over D(X, Y )), but there global properties
are quite different. We have a non-surjection, a surjective non submersion, a
submersion which does not admit (for K = C) a continuous section and a
map which admits a continuous section.

5. Lecture

In this lecture we deal with closure operations which depend only on the
torsor which the forcing algebra defines, so they only depend on the cohomo-
logy class of the forcing data inside the syzygy bundle. Our main example
is tight closure, a theory developed by Hochster and Huneke, and related
closure operations like solid closure and plus closure.

5.1. Tight closure and solid closure.

Let R be a noetherian domain of positive characteristic, let

F : R −→ R, f 7−→ f p,

be the Frobenius homomorphism, and

F e : R −→ R, f 7−→ f q, q = pe ,

its eth iteration. Let I be an ideal and set

I [q] = extended ideal of I under F e

Then define the tight closure of I to be the ideal

I∗ := {f ∈ R : there exists z 6= 0 such that zf q ∈ I [q] for all q = pe} .

The element f defines the cohomology class c ∈ H1(D(I), Syz (f1, . . . , fn)).
Suppose that R is normal and that I has height at least 2 (think of a local
normal domain of dimension at least 2 and an m-primary ideal I). Then the
eth Frobenius pull-back of the cohomology class is

F e∗(c) ∈ H1(D(I), F e∗(Syz (f1, . . . , fn)) ∼= H1(D(I), Syz (f q
1 , . . . , f

q
n))

(q = pe) and this is the cohomology class corresponding to f q. By the height
assumption, zF e(c) = 0 if and only if zf q ∈ (f q

1 , . . . , f
q
n), and if this holds for

all e then f ∈ I∗ by definition. This shows already that tight closure under
the given conditions does only depend on the cohomology class.
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This is also a consequence of the following theorem of Hochster which gi-
ves a characterization of tight closure in terms of forcing algebra and local
cohomology.

Theorem 5.1. Let R be a normal excellent local domain with maximal ideal
m over a field of positive characteristic. Let f1, . . . , fn generate an m-primary
ideal I and let f be another element in R. Then f ∈ I∗ if and only if

Hdim(R)
m (B) 6= 0 ,

where B = R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn + f) denotes the forcing algebra
of these elements.

If the dimension d is at least two, then

Hd
m(R) −→ Hd

m(B) ∼= Hd
mB(B) ∼= Hd−1(D(mB),OB) .

This means that we have to look at the cohomological properties of the
complement of the exceptional fiber over the closed point, i.e. the torsor
given by these data. If the dimension is two, then we have to look whether
the first cohomology of the structure sheaf vanishes. This is true (by Serre’s
cohomological criterion for affineness) if and only if the open subset D(mB)
is an affine scheme (the spectrum of a ring).

The right hand side of this equivalence - the non-vanishing of the top-
dimensional local cohomology - is independent of any characteristic assump-
tion, and can be taken as the basis for the definition of another closure
operation, called solid closure. So the theorem above says that in positive
characteristic tight closure and solid closure coincide. There is also a defini-
tion of tight closure for algebras over a field of characteristic 0 by reduction
to positive characteristic.

An important property of tight closure is that it is trivial for regular rings,
i.e. I∗ = I for every ideal I. This rests upon Kunz’s theorem saying that the
Frobenius homomorphism for regular rings is flat. This property implies the
following cohomological property of torsors.

Corollary 5.2. Let (R,m) denote a regular local ring of dimension d and of
positive characteristic, let I = (f1, . . . , fn) be an m-primary ideal and f ∈ R
an element with f 6∈ I. Let B = R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn + f) be the
corresponding forcing algebra. Then for the extended ideal mB we have

Hd
mB(B) = Hd−1(D(mB),OB) = 0.

Beweis. This follows from Theorem 5.1 and f 6∈ I∗. �

In dimension two this is true in every (even mixed) characteristic.

Theorem 5.3. Let (R,m) denote a two-dimensional regular local ring, let
I = (f1, . . . , fn) be an m-primary ideal and f ∈ R an element with f 6∈ I.
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Let B = R[T1, . . . , Tn]/(f1T1 + . . . + fnTn + f) be the corresponding forcing
algebra. Then for the extended ideal mB we have

H2
mB(B) = H1(D(mB),OB) = 0.

In particular, the open subset T = D(mB) is an affine scheme if and only if
f 6∈ I.

The main point for the proof of this result is that for f 6∈ I, the natural
mapping

H1(U,OX) −→ H1(T,OT )

is not injective by a Matlis duality argument. Since the local cohomology of
a regular ring is explicitely known, this map annihilates some cohomology
class of the form 1

fg
where f, g are parameters. But then it annihilates the

complete local cohomology module and then T is an affine scheme.

For non-regular two-dimensional rings it is a difficult question in general to
decide whether a torsor is affine or not. A satisfactory answer is only known
in the normal twodimensional graded case over a field, which we will deal
with in the final lectures.

In higher dimension in characteristic zero it is not true that a regular ring
is solidly closed (meaning that every ideal equals its solid closure), as was
shown by the following example of Paul Roberts.

Example 5.4. Let K be a field of characteristic 0 and let

B = K[X, Y, Z][U, V,W ]/(X3U + Y 3V + Z3W −X2Y 2Z2) .

Then the ideal a = (X, Y, Z)B has the property that H3
a (B) 6= 0. This means

that in R = K[X, Y, Z] the element X2Y 2Z2 belongs to the solid closure of
the ideal (X3, Y 3, Z3), and hence the threedimensional polynomial ring is not
solidly closed.

This example was the motivation for the introduction of parasolid closure,
which has all the good properties of solid closure but which is also trivial for
regular rings.

6. Lecture

If R is a normal local domain of dimension 2 and I = (f1, . . . , fn) an m-
primary ideal, then f ∈ I∗ (or inside the solid closure) if and only if D(m) ⊆
Spec (B) is an affine scheme, where B denotes the forcing algebra. Here we
will discuss in general, with this application in mind, when a scheme is affine.

6.1. Affine schemes.

A scheme U is called affine if it is isomorphic to the spectrum of some
commutative ring R. If the scheme is of finite type over a field (or a ring) K
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(if we have a variety), then this is equivalent to saying that there exist global
functions

g1, . . . , gm ∈ Γ(U,OU)

such that the mapping

U −→ Am
K , x 7−→ (g1(x), . . . , gm(x)),

is a closed embedding. The relation to cohomology is given by the following
well-known theorem of Serre.

Theorem 6.1. Let U denote a noetherian scheme. Then the following pro-
perties are equivalent.

(1) U is an affine scheme.
(2) For every quasicoherent sheaf F on U and all i ≥ 1 we have H i(U,F)

= 0.
(3) For every coherent ideal sheaf I on U we have H1(U, I) = 0.

It is in general a difficult question whether a given scheme U is affine. For
example, suppose that X = Spec (R) is an affine scheme and

U = D(a) ⊆ X

is an open subset (such schemes are called quasiaffine) defined by an ideal
a ⊆ R. When is U itself affine? The cohomological criterion above simplifies
to the condition that H i(U,OX) = 0 for i ≥ 1.

Of course, if a = (f) is a principal ideal (or up to radical a principal ideal),
then U = D(f) ∼= Spec (Rf ) is affine. On the other hand, if (R,m) is a local
ring of dimension ≥ 2, then

D(m) ⊂ Spec (R)

is not affine, since

Hd−1(U,OX) = Hd
m(R) 6= 0

by the relation between sheaf cohomology and local cohomology and a theo-
rem of Grothendieck.

6.2. Codimension condition.

One can show that for an open affine subset U ⊆ X the closed complement
Y = X \ U must be of pure codimension one (U must be the complement
of the support of an effective divisor). In a regular or (locally Q)- factorial
domain the complement of every divisor is affine, since the divisor can be
described (at least locally geometrically) by one equation. But it is easy
to give examples to show that this is not true for normal threedimensional
domains. The following example is a standardexample for this phenomenon
and is in fact given by a forcing algebra.
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Example 6.2. Let K be a field and consider the ring

R = K[x, y, u, v]/(xu− yv) .

The ideal p = (x, y) is a prime ideal in R of height one. Hence the open subset
U = D(x, y) is the complement of an irreducible hypersurface. However, U
is not affine. For this we consider the closed subscheme

A2
K
∼= Z = V (u, v) ⊆ Spec (R)

and

Z ∩ U ⊆ U .

If U were affine, then also the closed subscheme Z ∩U ∼= A2
K \{(0, 0)} would

be affine, but this is not true, since the complement of the punctured plane
has codimension 2.

6.3. Ring of global sections of affine schemes.

Lemma 6.3. Let R be a noetherian ring and U = D(a) ⊆ Spec (R) an open
subset. Then the following hold.

(1) U is an affine scheme if and only if aΓ(U,OX) = (1).
(2) If this holds, and q1f1 + . . . + qnfn = 1 with a = (f1, . . . , fn) and

qi ∈ Γ(U,OX), then Γ(U,OX) = R[q1, . . . , qn]. In particular, the ring
of global sections over U is finitely generated over R.

Beweis. We only give a sketch. (1). There always exists a natural scheme
morphism

U −→ Spec (Γ(U,OX)),

and U is affine if and only if this morphism is an isomorphism. It is always
an open embedding (because it is an isomorphism on the D(f), f ∈ a), and
the image is D(aΓ(U,OX)). This is everything if and only if the extended
ideal is the unit ideal.

(2). We write 1 = q1f1 + . . .+ qnfn and consider the natural morphism

U −→ Spec (R[q1, . . . , qn])

corresponding to the ring inclusion R[q1, . . . , qn] ⊆ Γ(U,OX). This morphism
is again an open embedding and its image is everything. �

An application of this is the follwoing computation.

Example 6.4. We consider the Fermat cubicR = K[X, Y, Z]/(X3+Y 3+Z3),
the ideal I = (X, Y ) and the element Z. We claim that for characteristic 6= 3
the element Z does not belong to the solid closure of I. Equivalently, the
open subset

D(X, Y ) ⊆ Spec (R[S, T ]/(XS + Y T + Z))
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is affine. For this we show that the extended ideal inside the ring of global
sections is the unit ideal. First of all we get the equation

X3 + Y 3 = (XS + Y T )3 = X3S3 + 3X2S2Y T + 3XSY 2T 2 + Y 3T 3

or, equivalently,

X3
(

S3 − 1
)

+ 3X2Y S2T + 3XY 2ST 2 + Y 3
(

T 3 − 1
)

= 0.

We write this as

X3(S3 − 1) = −3X2Y S2T − 3XY 2ST 2 − Y 3(T 3 − 1)
= Y

(

−3X2Y S2T − 3XY 2ST 2 − Y 3
(

T 3 − 1
))

,

which yields on D(X, Y ) the rational function

Q =
S3 − 1

Y
=

−3X2Y S2T − 3XY 2ST 2 − Y 3 (T 3 − 1)

X3
.

This shows that S3 − 1 = QY belongs to the extended ideal. Similarly, one
can show that also the other coefficients 3S2T, 3ST 2, T 3 − 1 belong to the
extended ideal. Therefore in characteristic different from 3, the extended
ideal is the unit ideal.

We will see later also examples where the ring of global sections is not finitely
generated.

Example 6.5. We consider the Fermat cubic R = K[X, Y, Z]/(X3 + Y 3 +
Z3), the ideal I = (X, Y ) and the element Z2. We claim that in positive
characteristic 6= 3 the element Z2 does belong to the tight closure of I.
Equivalently, the open subset

D(X, Y ) ⊆ Spec (R[S, T ]/(XS + Y T + Z2))

is not affine. The element Z2 defines the cohomology class

c =
Z2

XY
∈ H1(D(X, Y ),OX)

and its Frobenius pull-backs are F e∗(c) = Z2q

XqY q ∈ H1(D(X, Y ),OX). This
cohomology module has a Z-graded structure (the degree is given by the
difference of the degree of the numerator and the degree of the denominator)
and, moreover, it is 0 in positive degree (this is related to the fact that the
corresponding projective curve is elliptic). Therefore for any homogeneous
element t ∈ R of positive degree we have tF e∗(c) = 0 and so Z2 belongs to
the tight closure.

From this it follows also that in characteristic 0 the element Z2 belongs to the
solid closure, because affineness is an open property in an arithmetic family.
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7. Lecture

7.1. Affineness and superheight.

We have seen in the last lecture that the complement of an affine open sub-
set must have pure codimension 1. We have also seen in Example 6.2 that
the non-affineness can be established by looking at the behavior of the codi-
mension when the situation is restricted to closed subschemes. The following
definition and theorem is an algebraic version of this observation.

Definition 7.1. Let R be a noetherian commutative ring and let I ⊆ R be
an ideal. The (noetherian) superheight is the supremum

sup (ht (IS) : S is a notherian R− algebra) .

Theorem 7.2. Let R be a noetherian commutative ring and let I ⊆ R be an
ideal and U = D(I) ⊆ X = Spec (R). Then the following are equivalent.

(1) U is an affine scheme.
(2) I has superheight ≤ 1 and Γ(U,OX) is a finitely generated R-algebra.

It is not true at all that the ring of global sections of an open subset U of
the spectrum X of a noetherian ring is of finite type over this ring. This
is not even true if X is an affine variety. This problem is directly related
to Hilbert’s fourteenth problem, which has a negative answer. We will later
present examples where U has superheight one, yet is not affine, hence its
ring of global sections is not finitely generated.

If R is a two-dimensional local ring with parameters f, g and if B is the
forcing algebra for some m-primary ideal, then the ring of global sections of
the torsor is just

Γ(D(mB),OB) = Bf ∩ Bg.

7.2. Plus closure.

For an ideal I ⊆ R in a domain R define

I+ = {f ∈ R : there exists a finite domain extension R ⊆ T

such that f ∈ IT}

Equivalent: let R+ be the absolute integral closure of R. This is the integral
closure of R in an algebraic closure of the quotient field Q(R) (first considered
by Artin). Then

f ∈ I+ if and only if f ∈ IR+ .

The plus closure commutes with localization.

We also have the inclusion I+ ⊆ I∗. Here the question arises:

Question: Is I+ = I∗?

This question is known as the tantalizing question in tight closure theory.
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In terms of forcing algebras and their torsors, the containment inside the plus
closure means that there exists a d-dimensional closed subscheme inside the
torsor which meets the exceptional fiber (the fiber over the maximal ideal) in
one point, and this means that the superheight of the extended ideal is d. In
this case the local cohomological dimension of the torsor must be d as well,
since it contains a closed subscheme with this cohomological dimension. So
also the plus closure depends only on the torsor.

In characteristic zero, the plus closure behaves very differently compared with
positive characteristic. If R is a normal domain of characteristic 0, then the
trace map shows that the plus closure is trivial, I+ = I for every ideal I.

7.3. Examples.

In the following two examples we use results from tight closure theory to
establish (non)-affineness properties of certain torsors.

Example 7.3. Let K be a field and consider the Fermat ring

R = K[X, Y, Z]/(Xd + Y d + Zd)

together with the ideal I = (X, Y ) and f = Z2. For d ≥ 3 we have Z2 6∈
(X, Y ). This element is however in the tight closure (X, Y )∗ of the ideal in
positive characteristic (assume that the characteristic p does not divide d)
and is therefore also in characteristic 0 inside the tight closure and inside the
solid closure. Hence the open subset

D(X, Y ) ⊆ Spec (K[X, Y, Z, S, T ]/(Xd + Y d + Zd, SX + TY − Z2))

is not an affine scheme. In positive characteristic, Z2 is also contained in
the plus closure (X, Y )+ and therefore this open subset contains punctured
surfaces (the spectrum of the forcing algebra contains two-dimensional clo-
sed subschemes which meet the exceptional fiber V (X, Y ) in only one point;
the ideal (X, Y ) has superheight 2 in the forcing algebra). In characteristic
zero however, the superheight is one because plus closure is trivial for nor-
mal domains in characteristic 0, and therefore by Theorem 7.2 the algebra
Γ(D(X, Y ),OB) is not finitely generated. For K = C and d = 3 one can also
show that D(X, Y )C is, considered as a complex space, a Stein space.

Example 7.4. Let K be a field of positive characteristic p ≥ 7 and consider
the ring

R = K[X, Y, Z]/(X5 + Y 3 + Z2)

together with the ideal I = (X, Y ) and f = Z. Since R has a rational
singularity, it is F -regular, i.e. all ideals are tightly closed. Therefore Z 6∈
(X, Y )∗ and so the torsor

D(X, Y ) ⊆ Spec (K[X, Y, Z, S, T ]/(X5 + Y 3 + Z2, SX + TY − Z))

is an affine scheme. In characteristic zero this can be proved by either
using that R is a quotient singularity or by using the natural grading
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(deg (X) = 6, deg (Y ) = 10, deg (Z) = 15) where the corresponding co-
homology class Z

XY
gets degree −1 and then applying the geometric criteria

on the corresponding projective curve (rather the corresponding curve of the
standard-homogenization U30 + V 30 +W 30 = 0).

8. Lecture

In the remaining lectures we will continue with the question when are the
torsors given by a forcing algebras over a two-dimensional ring affine? We
will look at the graded situation to be able to work on the corresponding
projective curve.

In particular we want to address the following questions

(1) Is there a procedure to decide whether the torsor is affine?
(2) Is it non-affine if and only if there exists a geometric reason for it not

to be affine (because the superheight is too large)?
(3) How does the affineness vary in an arithmetic family, when we vary

the prime characteristic?
(4) How does the affineness vary in a geometric family, when we vary the

base ring?

In terms of tight closure, these questions are directly related to the tantalizing
question of tight closure (is it the same as plus closure), the dependence
of tight closure on the characteristic and the localization problem of tight
closure.

8.1. Geometric interpretation in dimension two.

We will restrict now to the two-dimensional homogeneous case in order to
work on the corresponding projective curve. We want to find an object over
the curve which corresponds to the forcing algebra or its induced torsor.

Let R be a two-dimensional standard-graded normal domain over an algebrai-
cally closed field K. Let C = Proj R be the corresponding smooth projective
curve and let

I = (f1, . . . , fn)

be an R+-primary homogeneous ideal with generators of degrees d1, . . . , dn.
Then we get on C the short exact sequence

0 −→ Syz (f1, . . . , fn)(m) −→
n

⊕

i=1

OC(m− di)
f1,...,fn
−→ OC(m) −→ 0 .

Here Syz (f1, . . . , fn)(m) is a vector bundle, called the syzygy bundle, of rank
n− 1 and of degree

((n− 1)m−

n
∑

i=1

di) deg (C) .
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Thus a homogeneous element f of degree m defines a cohomology class
δ(f) ∈ H1(C, Syz (f1, . . . , fn)(m)), so this defines a torsor over the projective
curve. We mention an alternative description of the torsor corresponding to
a first cohomology class in a locally free sheaf which is better suited for the
projective situation.

Remark 8.1. Let S denote a locally free sheaf on a scheme X. For a coho-
mology class c ∈ H1(X,S) one can construct a geometric object: Because of
H1(X,S) ∼= Ext1(OX ,S), the class defines an extension

0 −→ S −→ S ′ −→ OX −→ 0 .

This extension is such that under the connecting homomorphism of cohomo-
logy, 1 ∈ Γ(X,OX) is sent to c ∈ H1(X,S). The extension yields projective
subbundles

P(S∗) ⊂ P(S ′∗) .

If V is the corresponding vector bundle, one may think of P(S∗) as P(V )
which consists for every base point x ∈ X of all the lines in the fiber Vx run-
ning through the zero point. The projective subbundle P(V ) has codimension
one inside P(V ′), for every point it is a projective space lying (linearly) insi-
de a projective space of one dimension higher. The complement then is over
every point then an affine space. One can show that the global complement

T = P(S ′∗)− P(S∗)

is another model for the torsor given by the cohomology class. The advantage
of this viewpoint is that we may work, in particular when X is projective, in
an entirely projective setting.

8.2. Semistability of vector bundles.

In the situation of a forcing algebra for homogeneous elements, this torsor T
can also be obtained as Proj B, where B is the (not necessarily positively)
graded forcing algebra. In particular, it follows that the containment f ∈ I∗ is
equivalent to the property that T is not an affine variety. For this properties,
positivity (ampleness) properties of the syzygy bundle are crucial. We need
the concept of (Mumford) semistability.

Definition 8.2. Let S be a vector bundle on a smooth projective curve C.

It is called semistable, if deg(T )
rk(T )

≤ deg(S)
rk(S)

for all subbundles T .

Suppose that the base field has positive characteristic p > 0. Then S is
called strongly semistable, if all (absolute) Frobenius pull-backs F e∗(S) are
semistable.

An important property of a semistable bundle of negative degree is that it can
not have any global section 6= 0. Note that a semistable vector bundle need
not be strongly semistable, the following is probably the simplest example.
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Example 8.3. Let C be the smooth Fermat quartic given by x4+y4+z4 and
consider on it the syzygy bundle Syz (x, y, z) (which is also the restricted co-
tangent bundle from the projective plane). This bundle is semistable. Suppose
that the characteristic is 3. Then its Frobenius pull-back is Syz (x3, y3, z3).
The curve equation gives a global nontrivial section of this bundle of total
degree 4. But the degree of Syz (x3, y3, z3)(4) is negative, hence it can not be
semistable anymore.

For a strongly semistable vector bundle S on C and a cohomology class
c ∈ H1(C,S) with corresponding torsor we obtain the following affineness
criterion.

Theorem 8.4. Let C denote a smooth projective curve over an algebraically
closed field K and let S be a strongly semistable vector bundle over C to-
gether with a cohomology class c ∈ H1(C,S). Then the torsor T (c) is an
affine scheme if and only if deg (S) < 0 and c 6= 0 (F e(c) 6= 0 in positive
characteristic).

This result rests on the ampleness of S ′∨ occuring in the dual exact sequence
0 → OC → S ′∨ → S∨ → 0 given by c (work of Hartshorne and Gieseker). It
implies for a strongly semistable syzygy bundles the following degree formula
for tight closure.

Theorem 8.5. Suppose that Syz (f1, . . . , fn) is strongly semistable. Then

Rm ⊆ I∗ for m ≥

∑

di
n− 1

and (for almost all prime numbers)

Rm ∩ I∗ ⊆ I for m <

∑

di
n− 1

.

We indicate the proof of the inclusion result. The degree condition implies
that c = δ(f) ∈ H1(C,S) is such that S = Syz (f1, . . . , fn)(m) has nonnegati-
ve degree. Then also all Frobenius pull-backs F ∗(S) have nonnegative degree.
Let L = O(k) be a twist of the tautological line bundle on C such that its
degree is larger than the degree of ω−1

C , the dual of the canonical sheaf. Let
z ∈ H0(Y,L) be a non-zero element. Then zF e∗(c) ∈ H1(C,F e∗(S)⊗L), and
by Serre duality we have

H1(C,F e∗(S)⊗ L) ∼= H0(F e∗(S∗)⊗ L−1 ⊗ ωC)
∨ .

On the right hand side we have a semistable sheaf of negative degree, which
can not have a nontrivial section. Hence zF e∗ = 0 and therefore f belongs
to the tight closure.

8.3. Harder-Narasimhan filtration.

In general, there exists an exact criterion depending on c and the strong
Harder-Narasimhan filtration of S. For this we give the definition of the
Harder-Narasimhan filtration.
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Definition 8.6. Let S be a vector bundle on a smooth projective curve C
over an algebraically closed fieldK. Then the (uniquely determined) filtration

0 = S0 ⊂ S1 ⊂ . . . ⊂ St−1 ⊂ St = S

of subbundles such that all quotient bundles Sk/Sk−1 are semistable with de-
creasing slopes µk = µ(Sk/Sk−1), is called the Harder-Narasimhan filtration
of S.

The Harder-Narasimhan filtration exists uniquely (by a Theorem of Harder
and Narasimhan). A Harder-Narasimhan filtration is called strong if all the
quotients Si/Si−1 are strongly semistable. A Harder-Narasimhan filtration
is not strong in general, however, by a Theorem of A. Langer, there exists
some Frobenius pull-back F e∗(S) such that its Harder-Narasimhan filtration
is strong.

Theorem 8.7. Let C denote a smooth projective curve over an algebraically
closed field K and let S be a vector bundle over C together with a cohomology
class c ∈ H1(C,S). Let

S1 ⊂ S2 ⊂ . . . ⊂ St−1 ⊂ St = S

be a strong Harder-Narasimhan filteration. Then the torsor T (c) is an affine
scheme if and only if the following (inductively defined property starting with
t) holds: there is an i such that deg (Si/Si−1) < 0 and the image of c in this
sheaf is 6= 0 (and also the Frobenius pull-backs of this class are 6= 0).

9. Lecture

9.1. Plus closure in dimension two.

Let K be a field and let R be a normal two-dimensional standard-graded do-
main over K with corresponding smooth projective curve C. A homogeneous
m-primary ideal with homogeneous ideal generators f1, . . . , fn and another
homogeneous element f of degree m yield a cohomology class

c = δ(f) ∈ H1(C, Syz (f1, . . . , fn)(m)) .

Let T (c) be the corresponding torsor.

We have seen in the last lecture that the affineness of this torsor over C
is equivalent to the affineness of the corresponding torsor over D(m) ⊆
Spec (R). Now we want to understand what the property f ∈ I+ means
for c and for T (c). Instead of the plus closure we will work with the graded
plus closure I+gr, where f ∈ I+gr holds if and only if there exists a finite gra-
ded extension R ⊆ S such that f ∈ IS. The existence of such an S translates
into the existence of a finite morphism

ϕ :C ′ = Proj (S) −→ Proj (R) = C
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such that ϕ∗(c) = 0. Here we may assume that C ′ is also smooth. Therefore
we discuss the more general question when a cohomology class c ∈ H1(C,S),
where S is a locally free sheaf on C, can be annihilated by a finite morphism

C ′ −→ C

of smooth projective curves. The advantage of this more general approach is
that we may work with short exact sequences (in particular, the sequences co-
ming from the Harder-Narasimhan filtration) in order to reduce the problem
to semistable bundles which do not necessarily come from an ideal situation.

Lemma 9.1. Let C denote a smooth projective curve over an algebraically
closed field K, let S be a locally free sheaf on C and let c ∈ H1(C,S) be
a cohomology class with corresponding torsor T → C. Then the following
conditions are equivalent.

(1) There exists a finite morphism

ϕ :C ′ −→ C

from a smooth projective curve C ′ such that ϕ∗(c) = 0.
(2) There exists a projective curve Z ⊆ T .

Beweis. If (1) holds, then the pull-back ϕ∗(T ) = T ×C C ′ is trivial (as a
torsor), as it equals the torsor given by ϕ∗(c) = 0. Hence ϕ∗(T ) is isomorphic
to a vector bundle and contains in particular a copy of C ′. The image Z of
this copy is a projective curve inside T .

If (2) holds, then let C ′ be the normalization of Z. Since Z dominates C, the
resulting morphism

ϕ :C ′ −→ C

is finite. Since this morphism factors through T and since T annihilates the
cohomology class by which it is defined, it follows that ϕ∗(c) = 0. �

We want to show that the cohomological criterion for (non)-affineness of
a torsor along the Harder-Narasimhan filtration of the vector bundle also
holds for the existence of projective curves inside the torsor, under the con-
dition that the projective curve is defined over a finite field. This implies
that tight closure is (graded) plus closure for graded m-primary ideals in a
two-dimensional graded domain over a finite field.

9.2. Annihilation of cohomology classes of strongly semistable shea-

ves.

We deal first with the situation of a strongly semistable sheaf S of degree
0. The following two results are due to Lange and Stuhler. We say that a
locally free sheaf is étale trivializable if there exists a finite étale morphism
ϕ :C ′ → C such that ϕ∗(S) ∼= Or

C′ . Such bundles are directly related to
linear representations of the étale fundamental group.
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Lemma 9.2. Let K denote a finite field (or the algebraic closure of a finite
field) and let C be a smooth projective curve over K. Let S be a locally free
sheaf over C. Then S is étale trivializable if and only if there exists some n
such that F n∗S ∼= S.

Theorem 9.3. Let K denote a finite field (or the algebraic closure of a finite
field) and let C be a smooth projective curve over K. Let S be a strongly
semistable locally free sheaf over C of degree 0. Then there exists a finite
mapping

ϕ :C ′ −→ C

such that ϕ∗(S) is trivial.

Beweis. We consider the family of locally free sheaves F e∗(S), e ∈ N. Because
these are all semistable of degree 0, and defined over the same finite field,
we must have (by the existence of the moduli space for vector bundles) a
repetition, i.e. F e∗(S) ∼= F e′∗(S) for some e′ > e. By Lemma 9.2 the bundle
F e∗(S) admits an étale trivialization ϕ :C ′ → C. Hence the finite map F e ◦ϕ
trivializes the bundle. �

Theorem 9.4. Let K denote a finite field (or the algebraic closure of a
finite field) and let C be a smooth projective curve over K. Let S be a strongly
semistable locally free sheaf over C of nonnegative degree and let c ∈ H1(C,S)
denote a cohomology class. Then there exists a finite mapping

ϕ :C ′ −→ C

such that ϕ∗(c) is trivial.

Beweis. If the degree of S is positive, then a Frobenius pull-back F e∗(S) has
arbitrary large degree and is still semistable. By Serre dualtiy we get that
H1(C,F e∗(S)) = 0. So in this case we can annihilate the class by an iteration
of the Frobenius alone.

So suppose that the degree is 0. Then there exists by Theorem 9.3 a finite
morphism which trivializes the bundle. So we may assume that S ∼= Or

C .
Then the cohomology class has several components ci ∈ H1(C,OC) and it
is enough to annihilate them separately by finite morphisms. But this is
possible by the parameter theorem of K. Smith (or directly using Frobenius
and Artin-Schreier extensions). �

9.3. The general case.

We look now at an arbitrary locally free sheaf S on C, a smooth projective
curve over a finite field. We want to show that the same numerical criterion
(formulated in terms of the Harder-Narasimhan filtration) for non-affineness
of a torsor holds also for the finite annihilation of the corresponding coho-
momology class (or the existence of a projective curve inside the torsor).
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Theorem 9.5. Let K denote a finite field (or the algebraic closure of a finite
field) and let C be a smooth projective curve over K. Let S be a locally free
sheaf over C and let c ∈ H1(C,S) denote a cohomology class. Let S1 ⊂
. . . ⊂ St be a strong Harder-Narasimhan filtration of F e∗(S). We choose i
such that Si/Si−1 has degree ≥ 0 and that Si+1/Si has degree < 0. We set
Q = F e∗(S)/Si. Then the following are equivalent.

(1) The class c can be annihilated by a finite morphism.
(2) Some Frobenius power of the image of F e∗(c) inside H1(C,Q) is 0.

Beweis. Suppose that (1) holds. Then the torsor is not affine and hence by
Theorem 8.7 also (2) holds.

So suppose that (2) is true. By applying a certain power of the Frobenius
we may assume that the image of the cohomology class in Q is 0. Hence the
class stems from a cohomology class ci ∈ H1(C,Si). We look at the short
exact sequence

0 −→ Si−1 −→ Si −→ Si/Si−1 −→ 0 ,

where the sheaf of the right hand side has a nonnegative degree. Therefore
the image of ci in H

1(C,Si/Si−1) can ba annihilated by a finite morphism due
to Theorem 9.4. Hence after applying a finite morphism we may assume that
ci stems from a cohomology class ci−1 ∈ H1(C,Si−1). Going on inductively
we see c can be annihilated by a finite morphism. �

Theorem 9.6. Let C denote a smooth projective curve over the algebraic
closure of a finite field field K, let S be a locally free sheaf on C and let
c ∈ H1(C,S) be a cohomology class with corresponding torsor T → C. Then
T is affine if and only if it does not contain any projective curve.

Beweis. Due to Theorem 8.7 and Theorem 9.5, for both properties the same
numerical criterion does hold. �

These results imply the following theorem in the setting of a twodimensional
graded ring.

Theorem 9.7. Let R be a standard-graded, two-dimensional normal domain
over (the algebraic closure of) a finite field. Let I be an R+-primary graded
ideal. Then

I∗ = I+ .

This is also true for non-primary graded ideals and also for submodules in
finitely generated graded submodules. Moreover, G. Dietz has shown that
one can get rid also of the graded assumption (of the ideal or module, but
not of the ring).
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10. Lecture

10.1. Affineness under deformations.

We consider a base scheme B and a morphism

Z −→ B

together with an open subscheme W ⊆ Z. For every base point b ∈ B we get
the open subset

Wb ⊆ Zb

inside the fiber Zb. It is a natural question to ask how properties of Wb vary
with b. In particular we may ask how the cohomological dimension of Wb

varies and how the affineness may vary.

In the algebraic setting we have a D-algebra S and an ideal a ⊆ S which
defines for every prime ideal p ∈ Spec (D) the extended ideal ap in S⊗Dκ(p).

This question is already interesting when B is a one-dimensional integral
scheme, in particular in the following two situations.

(1) B = Spec (Z). Then we talk about an arithmetic deformation and
want to know how affineness varies with the characteristic and how
the relation is to characteristic zero.

(2) B = A1
K = Spec (K[t]), where K is a field. Then we talk about a

geometric deformation and want to know how affineness varies with
the parameter t, in particular how the behaviour over the special
points where the residue class field is algebraic over K is related to
the behaviour over the generic point.

It is fairly easy to show that if the open subset in the generic fiber is affine,
then also the open subsets are affine for almost all special points.

We deal with this question where W is a torsor over a family of smooth
projective curves (or a torsor over a punctured twodimensional spectrum).
The arithmetic as well as the geometric variant of this question are directly
related to questions in tight closure theory. Because of the above mentioned
degree criteria in the strongly semistable case, a weird behavior of the af-
fineness property of torsors is only possible if we have a weird behavior of
strong semistability.

10.2. Arithmetic deformations.

We start with the arithmetic situation, the following example is due to Bren-
ner and Katzman.

Example 10.1. Consider Z[x, y, z]/(x7 + y7 + z7) and consider the ideal
I = (x4, y4, z4) and the element f = x3y3. Consider reductions Z → Z/(p).
Then

f ∈ I∗ holds in Z/(p)[x, y, z]/(x7 + y7 + z7) for p = 3 mod 7
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and

f 6∈ I∗ holds in Z/(p)[x, y, z]/(x7 + y7 + z7) for p = 2 mod 7 .

In particular, the bundle Syz (x4, y4, z4) is semistable in the generic fiber, but
not strongly semistable for any reduction p = 2 mod 7. The corresponding
torsor is an affine scheme for infinitely many prime reductions and not an
affine scheme for infinitely many prime reductions.

In terms of affineness (or local cohomology) this example has the following
properties: the ideal

(x, y, z) ⊆ Z/(p)[x, y, z, s1, s2, s3]/(x
7 + y7 + z7, s1x

4 + s2y
4 + s3z

4 + x3y3)

has cohomological dimension 1 if p = 3 mod 7 and has cohomological di-
mension 0 (equivalently, D(x, y, z) is an affine scheme) if p = 2 mod 7.

10.3. Geometric deformations - A counterexample to the localiza-

tion problem.

Let S ⊆ R be a multiplicative system and I an ideal in R. Then the locali-
zation problem of tight closure is the question whether the identity

(I∗)S = (IRS)
∗

holds.

Here the inclusion ⊆ is always true and ⊇ is the problem. The problem means
explicitly:

if f ∈ (IRS)
∗, can we find an h ∈ S such that hf ∈ I∗ holds in R?

Proposition 10.2. Let Z/(p) ⊂ D be a one-dimensional domain and D ⊆ R
of finite type, and I an ideal in R. Suppose that localization holds and that

f ∈ I∗ holds in R⊗D Q(D) = RD∗ = RQ(D)

(S = D∗ = D − {0} is the multiplicative system). Then f ∈ I∗ holds in
R⊗D κ(p) for almost all p in Spec D.

Beweis. By localization, there exists h ∈ D, h 6= 0, such that

hf ∈ I∗ in R .

By persistence of tight closure (under a ring homomorphism) we get

hf ∈ I∗ in Rκ(p) .

The element h does not belong to p for almost all p, so h is a unit in Rκ(p)

and hence

f ∈ I∗ in Rκ(p)

for almost all p. �
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In order to get a counterexample for the localization property we will look
now at geometric deformations:

D = Fp[t] ⊂ Fp[t][x, y, z]/(g) = S

where t has degree 0 and x, y, z have degree 1 and g is homogeneous. Then
(for every field Fp[t] → K)

S ⊗Fp[t] K

is a two-dimensional standard-graded ring over K. For residue class fields of
points of A1

Fp
= Spec Fp[t] we have basically two possibilities.

• K = Fp(t), the function field. This is the generic or transcendental case.

• K = Fq, the special or algebraic or finite case.

How does f ∈ I∗ vary with K? To analyze the behavior of tight closure in
such a family we can use what we know in the two-dimensional standard-
graded situation.

In order to establish an example where tight closure does not behave uni-
formly under a geometric deformation we first need a situation where strong
semistability does not behave uniformly. Such an example was given, in terms
of Hilbert-Kunz theory, by Paul Monsky in 1997.

Example 10.3. Let

g = z4 + z2xy + z(x3 + y3) + (t+ t2)x2y2 .

Consider
S = F2[t, x, y, z]/(g) .

Then Monsky proved the following results on the Hilbert-Kunz multiplicity
of the maximal ideal (x, y, z) in S ⊗F2[t] L, L a field:

eHK(S ⊗F2[t] L) =

{

3 for L = F2(t)

3 + 1
4d

for L = Fq = Fp(α), (t 7→ α, d = deg(α)) .

By the geometric interpretation of Hilbert-Kunz theory this means that the
restricted cotangent bundle

Syz (x, y, z) = (ΩP2)C

is strongly semistable in the transcendental case, but not strongly semistable
in the algebraic case. In fact, for d = deg(α), t 7→ α, where K = F2(α), the
d-th Frobenius pull-back destabilizes.

The maximal ideal (x, y, z) can not be used directly. However, we look at the
second Frobenius pull-back which is (characteristic two) just

I = (x4, y4, z4) .

By the degree formula we have to look for an element of degree 6. Let’s take

f = y3z3 .
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This is our example (x3y3 does not work). First, by strong semistability in
the transcendental case we have

f ∈ I∗ in R⊗ F2(t)

by the degree formula. If localization would hold, then f would also belong
to the tight closure of I for almost all algebraic instances Fq = F2(α), t 7→ α.
Contrary to that we show that for all algebraic instances the element f
belongs never to the tight closure of I.

Lemma 10.4. Let Fq = Fp(α), t 7→ α,

deg(α) = d. Set Q = 2d−1. Then

xyfQ 6∈ I [Q] .

Beweis. This is an elementary but tedious computation. �

Theorem 10.5. Tight closure does not commute with localization.

Beweis. One knows in our situation that xy is a so called test element. Hence
the previous Lemma shows that f 6∈ I∗. �

In terms of affineness (or local cohomology) this example has the following
properties: the ideal

(x, y, z) ⊆ F2(t)[x, y, z, s1, s2, s3]/(g, s1x
4 + s2y

4 + s3z
4 + y3z3)

has cohomological dimension 1 if t is transcendental and has cohomological
dimension 0 (equivalently, D(x, y, z) is an affine scheme) if t is algebraic.

Corollary 10.6. Tight closure is not plus closure in graded dimension two
for fields with transcendental elements.

Beweis. Consider

R = F2(t)[x, y, z]/(g) .

In this ring y3z3 ∈ I∗, but it can not belong to the plus closure. Else there
would be a curve mapping Y → CF2(t) which annihilates the cohomology class
c and this would extend to a mapping of relative curves almost everywhere.

�

Corollary 10.7. There is an example of a smooth projective (relatively over
the affine line) variety Z and an effective divisor D ⊂ Z and a morphism

Z −→ A1
F2

such that (Z − D)η is not an affine variety over the generic point, but for
every algebraic point x the fiber (Z −D)x is an affine variety.
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Beweis. Take C → A1
F2

to be the Monsky quartic and consider the syzygzy
bundle

S = Syz (x4, y4, z4)(6)

together with the cohomology class c determined by f = y3z3. This class
defines an extension

0 −→ S −→ S ′ −→ OC −→ 0

and hence P(S∗) ⊂ P(S ′∗). Then P(S ′∗)−P(S∗) is an example with the stated
properties by the previous results. �

It is an open question whether such an example can exist in characteristic
zero.


