
Forcing algebras and closure operations

Let R denote a commutative ring and let I = (f1, . . . , fn) be an ideal. Let
f ∈ R and let

B = R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn − f)

be the corresponding forcing algebra and

ϕ : Spec (B) −→ Spec (R)

the corresponding spectrum morphism. How are properties of ϕ (or or the
R-algebra B) related to certain ideal closure operations? We start with some
examples. The element f belongs to the ideal I if and only if we can write
f = r1f1 + . . . + rnfn. By the universal property of the forcing algebra this
means that there exists an R-algebra-homomorphism

B −→ R,

hence f ∈ I holds if and only if ϕ admits a scheme section. This is also
equivalent to

R −→ B

admitting an R-module section or B being a pure algebra (so for forcing
algebras properties might be equivalent which are not equivalent for arbitrary
algebras).

The radical of an ideal

Now we look at the radical of the ideal I,

rad (I) = {f ∈ R| fk ∈ I for some k} .
The importance of the radical comes mainly from Hilbert’s Nullstellensatz,
saying that for algebras of finite type over an algebraically closed field there
is a natural bijection between radical ideals and closed algebraic zero-sets.
So geometrically one can see from an ideal only its radical. As this is quite
a coarse closure operation we should expect that this corresponds to a quite
coarse property of the morphism ϕ as well. Indeed, it is true that f ∈ rad (I)
if and only if ϕ is surjective. This is true since the radical of an ideal is the
intersection of all prime ideals in which it is contained. Hence an element f
belongs to the radical if and only if for all residue class homomorphisms

ϕ :R −→ κ(p)

where I is sent to 0, also f is sent to 0. But this means for the forcing
equation that whenever the equation degenerates to 0, then also the inho-
mogeneous part becomes zero, and so there will always be a solution to the
inhomogeneous equation. Exercise: Define the radical of a submodule inside
a module.
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Integral closure of an ideal

Another closure operation is integral closure. It is defined by

I = {f ∈ R| fk + a1f
k−1 + . . .+ ak−1f + ak = 0 for some k and ai ∈ I i} .

This notion is important for describing the integral closure of the blow up
of the ideal I. Another characterization is that there exists a z ∈ R, not
contained in any minimal prime ideal of R, such that zfn ∈ In holds for all
n. Another equivalent property - the valuative criterion - is that for all ring
homomorphisms

θ :R −→ D

to a discrete valuation domain D (assume that R is noetherian) the con-
tainment θ(f) ∈ θ(I)D holds. The characterization of the integral closure in
terms of forcing algebras requires some notions from topology. A continuous
map

ϕ :X −→ Y

between topological spaces X and Y is called a submersion, if it is surjective
and if Y carries the image topology (quotient topology) under this map. This
means that a subset W ⊆ Y is open if and only if its preimage ϕ−1(W ) is
open. Since the spectrum of a ring endowed with the Zarisiki topology is a
topological space, this notion can be applied to the spectrum morphism of a
ring homomorphism. With this notion we can state that f ∈ Ī if and only if
the forcing morphism

ϕ : Spec (B) −→ Spec (R)

is a universal submersion (universal means here that for any ring change
R→ R′ to a noetherian ring R′, the resulting homomorphism R′ → B′ still
has this property). The relation between these two notions stem from the
fact that also for universal submersions there exist a criterion in terms of
discrete valuation domains. For a morphism

Z −→ Spec (D)

(D a discrete valuation domain) to be a submersion means that above the
only chain of prime ideals in Spec (D), namely (0) ⊂ mD, there exists a chain
of prime ideals p′ ⊆ q′ in Spec (D) lying over this chain. So this property is
stronger that lying over (which means surjective) but weaker than the going-
down or going-up property (in the presence of surjectivity). If we are dealing
only with algebras of finite type over the complex numbers C, then we may
also consider the corresponding complex spaces with their natural topology
induced from the euklidean topology of Cn. Then universal submersive with
respect to the Zariski topology is the same as submersive in the complex
topology (the target space needs to be normal).

Example 3.1. Let K be a field and consider R = K[X]. Since this is a prin-
cipal ideal domain, the only interesting forcing algebras (if we are only intere-
sted in the local behavior around (X)) are of the form K[X,T ]/(XnT−Xm).
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For m ≥ n this K[X]-algebra admits a section (corresponding to the fact that
Xm ∈ (Xn)), and if n ≥ 1 there exists an affine line over the maximal ideal
(X). So now assume m < n. If m = 0, then we have a hyperbola mapping to
an affine line, with the fiber over (X) being empty, corresponding to the fact
that 1 does not belong to the radical of (Xn) for n ≥ 1. So assume finally
1 ≤ m < n. Then Xm belongs to the radical of (Xn), but not to its integral
closure (which is the identical closure on a one-dimensional regular ring). We
can write the forcing equation as XnT − Xm = Xm(Xn−mT − 1). So the
spectrum of the forcing algebra consists of a (thickend) line over (X) and of
a hyperbola. The forcing morphism is surjective, but it is not a submersion.
For example, the preimage of (X) is a connected component hence open, but
this single point is not open.

Example 3.2. Let K be a field and let R = K[X, Y ] be the polynomial ring
in two variables. We consider the ideal I = (X2, Y ) and the element X. This
element belongs to the radical of this ideal, hence the forcing morphism

Spec (K[X, Y, T1, T2]/(X
2T1 + Y T2 +X) −→ Spec (K[X, Y ])

is surjective. We claim that it is not a submersion. For this we look at the
reduction modulo Y . In K[X, Y ]/(Y ) ∼= K[X] the ideal becomes (X2) which
does not contain X. Hence by the valuative criterion for integral closure, X
does not belong to the integral closure of the ideal. One can also say that the
chain V (X, Y ) ⊂ V (Y ) in the affine plane does not have a lift (as a chain)
to the spectrum of the forcing algebra. For the ideal I = (X2, Y 2) and the
element XY the situation looks different. Let

θ :K[X, Y ] −→ D

be a ring homomorphism to a discrete valuation domain D. If X or Y is
mapped to 0, then also XY is mapped to 0 and hence belongs to the ex-
tendend ideal. So assume that θ(X) = uπr and θ(Y ) = vπs, where π is a
local parameter of D and u and v are units. Then θ(XY ) = uvπr+s and the
exponent is at least the minimum of 2r and 2s, hence θ(XY ) ∈ (π2r, π2s) =
(θ(X2), θ(Y 2))D. Hence XY belongs to the integral closure of (X2, Y 2) and
the forcing morphism

Spec (K[X, Y, T1, T2]/(X
2T1 + Y 2T2 +XY ) −→ Spec (K[X, Y ])

is a universal submersion.

Continuous closure

Suppose now that R = C[X1, . . . , Xk]. Then every polynomial f ∈ R can be
considered as a continuous function

f :Ck −→ C, (x1, . . . , xk) 7−→ f(x1, . . . , xk)

in the complex topology. If I = (f1, . . . , fn) is an ideal and f ∈ R is an
element, we say that f belongs to the continuous closure of I, if there exist
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continuous functions
g1, . . . , gk :Ck −→ C

such that

f =
n∑

i=1

gifi

(identity of functions) (the same definition works for C-algebras of finite
type). It is not at all clear at once that there may exist polynomials f 6∈ I
but inside the continuous closure of I. For C[X] it is easy to show that the
continuous closure is (like the integral closure) just the ideal itself. We also
remark that when we would only allow holomorphic functions g1, . . . , gk then
we could not get something larger. However, with continuous functions we
can for example write

X2Y 2 = g1X
3 + g2Y

3 .

Continuous closure is always inside the integral closure and hence also inside
the radical. The element XY does not belong to the continuous closure of
(X2, Y 2), though it belongs to the integral closure of I. In terms of forcing
algebras, an element f belongs to the continuous closure if and only if the
complex forcing mapping

ϕC : Spec (B)C −→ Spec (R)C

(between the corresponding complex spaces) admits a continuous section.
The closure operations we have considered so far can be characterized by so-
me property of the forcing algebra. However, they can not be characterized by
a property of the corresponding torsor alone. For example, for R = K[X, Y ],
we may write

1

XY
=

X

X2Y
=

XY

X2Y 2
=

X2Y 2

X3Y 3
,

so the torsors given by the forcing algebras

R[T1, T2]/(XT1 + Y T2 + 1), R[T1, T2]/(X
2T1 + Y T2 +X),

R[T1, T2]/(X
2T1 + Y 2T2 +XY ) and R[T1, T2]/(X

3T1 + Y 3T2 +X2Y 2)

are all the same (the restriction over D(X, Y )), but there global properties
are quite different. We have a non-surjection, a surjective non submersion,
a submersion which does not admit (for K = C) a continuous section and
a map which admits a continuous section. In the next lecture we will look
at closure operations which can be characterized by a property of the torsor
alone, so they only depend on the cohomology class of the syzygzy sheaf.
These closure operations are plus closure, tight closure and solid closure.
In particular we will be interested in a two-dimensional base ring (typically
normal with an isolated singularity) and the question when a torsor over
the punctured spectrum is an affine scheme. This is directly related to the
question whether an element belongs to the tight closure (solid closure over
a field of characteristic zero).


