
Prof. Dr. H. Brenner Ann Arbor 2012

Computation of tight closure

Lecture 2

Geometric interpretation in dimension two

We will restrict now to the two-dimensional normal graded case in order to
work on the corresponding smooth projective curve.

Let R be a two-dimensional standard-graded normal domain over an algebrai-
cally closed field K. Let C = Proj R be the corresponding smooth projective
curve and let

I = (f1, . . . , fn)

be an R+-primary homogeneous ideal with generators of degrees d1, . . . , dn.
Then we get on C the short exact sequence

0 −→ Syz (f1, . . . , fn)(m) −→
n

⊕

i=1

OC(m− di)
f1,...,fn
−→ OC(m) −→ 0 .

Here Syz (f1, . . . , fn)(m) is a vector bundle, called the syzygy bundle, of rank
n− 1 and of degree

((n− 1)m−
n

∑

i=1

di) deg (C) .

Thus a homogeneous element f of degreem defines a cohomology class δ(f) ∈
H1(C, Syz (f1, . . . , fn)(m)). Again we have that f ∈ I∗ if and only if δ(f) is
tightly zero. The advantages to work on the projective curve are:

(1) We may work in dimension 1.
(2) The projective curve is smooth, we do not need to worry about

singularities.
(3) We can use the well-developed theory of vector bundles on curves,

in particular the notion of degree, of semistable bundles and the
existence of moduli spaces.

(4) We can use ampleness results. Tight closure is then related to posi-
tivity and negativity of bundles.

(5) We can work within projective bundles, so that everything can be
embedded into a smooth projective situation.

The following example shows already that one can not expect a sharp degree
bound for primary non-parameter ideals. It also shows that one can compute
tight closure whenever we have a nice decomposition of the syzygy bundle.
This is always the case when the ideal has finite projective dimension. The
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notion of the strong Harder-Narasimhan filtration which we introduce below
is a replacement of such a decomposition.

Example 2.1. We consider the ideal I = (x4, y4, xy3) in S = K[x, y] and
in finite graded extensions S ⊆ R (e.g. R = K[x, y, z]/(F ), where F is a
homogeneous integral equation for z over K[x, y]) and describe an algorithm
to compute the tight closure I∗. The graded resolution of the ideal is

0 −→ S(−5)⊕S(−7) −→ S(−4)⊕S(−4)⊕S(−4)
x4,y4,xy3

−→ S −→ S/I −→ 0 ,

where the map on the left is given by sending the generators to

(0, x,−y) and (y3, 0,−x3) .

On the projective line this corresponds to

0 −→ O(−5)⊕O(−7) = Syz(x4, y4, xy3) −→

O(−4)⊕O(−4)⊕O(−4)
x4,y4,xy3

−→ O −→ 0.

This sequence is also exact over the curve C = Proj(R) and can be used to
compute the tight closure of the ideal in R. A homogeneous element h ∈ R
of degree m yields a cohomology class in

H1(C, Syz(x4, y4, xy3)(m)) ∼= H1(C,OC(m− 5))⊕H1(C,OC(m− 7)) ,

which can be easily computed using Čech cohomology. On D+(x), h comes

from
(

h
x4 , 0, 0

)

and on D+(y) it comes from
(

0, h
y4
, 0
)

. Their difference, the
syzygy

(

h

x4
,−

h

y4
, 0

)

equals

−
h

xy4
(0, x,−y) +

h

x4y3
(

y3, 0,−x3
)

.

Hence the components of this cohomology class are

−
h

xy4
∈ H1(C,OC(m− 5)) and

h

x4y3
∈ H1(C,OC(m− 7)) .

Therefore whether h belongs to the tight closure of I depends on these two
components, which both correspond to a parameter situation.

First of all, if m ≥ 7, then both degrees are non-negative and therefore these
classes are tightly 0 by (the proof of) Fakt *****. If m = 6, we only have
to look at the second component inside H1(C,OC(−1)). For the monomial
y3z3 the second component is 0 (independent of F ), hence it belongs to
the tight closure, though the first component need not be 0. The monomial
x2y2z2 yields z2

x2y
, which is not 0 unless the equation has low degree. This

class is (with some exceptions in small characteristics) not tightly 0. Hence
x2y2z2 does not belong to the tight closure. For m = 5, still only the second
component is interesting, therefore y3z2 belongs to the tight closure, but
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xy2z2 not (under the same restrictions). For m ≤ 4 both components lie
in negative degree, so an element will belong to the tight closure only if it
belongs to the ideal itself. For the element y3z the second component is 0,
but not the first component.

Torsors

A cohomology class c ∈ H1(C,S) in a locally free sheaf S has a geometric
realization (or a geometric model), namely a so-called S-torsor (or a principal
fiber bundle). This is an affine-linear bundle over C on which S acts by
translations. The relation between cohomology classes and S-torsors work
over any noetherian separated scheme by a general construction. We mention
an alternative description of the torsor corresponding to a first cohomology
class in a locally free sheaf which is better suited for the projective situation.

Remark 2.2. Let S denote a locally free sheaf on a scheme X. For a coho-
mology class c ∈ H1(X,S) one can construct a geometric object: Because of
H1(X,S) ∼= Ext1(OX ,S), the class defines an extension

0 −→ S −→ S ′ −→ OX −→ 0 .

This extension is such that under the connecting homomorphism of cohomo-
logy, 1 ∈ Γ(X,OX) is sent to c ∈ H1(X,S). The extension yields projective
subbundles1

P(S∨) ⊂ P(S ′∨) .

If V is the corresponding geometric vector bundle, one may think of P(S∨) as
P(V ) which consists for every base point x ∈ X of all the lines in the fiber Vx

running through the zero point. The projective subbundle P(V ) has codimen-
sion one inside P(V ′), for every point it is a projective space lying (linearly)
inside a projective space of one dimension higher. The complement is then
over every point an affine space. One can show that the global complement

T = P(S ′∨) \ P(S∨)

is another model for the torsor given by the cohomology class. The advantage
of this viewpoint is that we may work, in particular when X is projective, in
an entirely projective setting.

Properties of a cohomology class are equivalent to geometric properties of the
corresponding torsor T . The property of being tightly zero (itself equivalent
to f ∈ I∗, if the cohomology class is δ(f)) is equivalent to the property
that T is not an affine variety (i.e. not isomorphic to the spectrum of a
ring). This rests on interpretation of tight closure as solid closure. For this

1S∨ denotes the dual bundle. According to our convention, the geometric vector bundle
corresponding to a locally free sheaf T is given by Spec (⊕k≥0S

k(T )) and the projective
bundle is Proj (⊕k≥0S

k(T )), where Sk denotes the kth symmetric power.
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(non) affineness property, positivity (ampleness) properties of the bundle are
crucial.

Semistability of vector bundles

For inclusion and exclusion results we need the concept of (Mumford) semi-
stability.

Definition 2.3. Let S be a vector bundle on a smooth projective curve C.

It is called semistable, if deg(T )
rk(T )

≤ deg(S)
rk(S)

for all subbundles T .

Suppose that the base field has positive characteristic p > 0. Then S is
called strongly semistable, if all (absolute) Frobenius pull-backs F e∗(S) are
semistable.

An important property of a semistable bundle of negative degree is that it can
not have any global section 6= 0. Note that a semistable vector bundle need
not be strongly semistable, the following is probably the simplest example.

Example 2.4. Let C be the smooth Fermat quartic given by x4+y4+z4 and
consider on it the syzygy bundle Syz (x, y, z) (which is also the restricted co-
tangent bundle from the projective plane). This bundle is semistable. Suppose
that the characteristic is 3. Then its Frobenius pull-back is Syz (x3, y3, z3).
The curve equation gives a global nontrivial section of this bundle of total
degree 4. But the degree of Syz (x3, y3, z3)(4) is negative, hence it can not be
semistable anymore.

Example 2.5. Let R = K[x, y, z]/(x3+y3+z3), where K is a field of positive
characteristic p 6= 3, I = (x2, y2, z2), and C = Proj (R). The equation x3 +
y3 + z3 = 0 yields the short exact sequence

0 −→ OC −→ Syz(x2, y2, z2)(3) −→ OC −→ 0 .

This shows that Syz(x2, y2, z2) is strongly semistable.

For a strongly semistable vector bundle S on C and a cohomology class
c ∈ H1(C,S) with corresponding torsor we obtain the following affineness
criterion.

Theorem 2.6. Let C denote a smooth projective curve over an algebraically
closed field K and let S be a strongly semistable vector bundle over C together
with a cohomology class c ∈ H1(C,S). Then the torsor T (c) is an affine
scheme if and only if deg (S) < 0 and c 6= 0 (F e(c) 6= 0 for all e in positive
characteristic2).

2Here one has to check only finitely many es and there exist good estimates how far
one has to go. Also, in a relative situation, this is only an extra condition for finitely many
prime numbers.
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This result rests on the ampleness of S ′∨ occuring in the dual exact sequence
0 → OC → S ′∨ → S∨ → 0 given by c (work of Hartshorne and Gieseker). It
implies for a strongly semistable syzygy bundle the following degree formula
for tight closure.

Theorem 2.7. Suppose that Syz (f1, . . . , fn) is strongly semistable. Then

Rm ⊆ I∗ for m ≥

∑

di
n− 1

and (for almost all prime numbers) Rm ∩ I∗ ⊆ I

for m <

∑

di
n− 1

.

We indicate the proof of the inclusion result. The degree condition implies
that c = δ(f) ∈ H1(C,S) is such that S = Syz (f1, . . . , fn)(m) has nonnegati-
ve degree. Then also all Frobenius pull-backs F ∗(S) have nonnegative degree.
Let L = O(k) be a twist of the tautological line bundle on C such that its
degree is larger than the degree of ω−1

C , the dual of the canonical sheaf. Let
z ∈ H0(C,L) be a non-zero element. Then zF e∗(c) ∈ H1(C,F e∗(S)⊗L), and
by Serre duality we have

H1(C,F e∗(S)⊗ L) ∼= H0(C,F e∗(S∗)⊗ L−1 ⊗ ωC)
∨ .

On the right hand side we have a semistable sheaf of negative degree, which
can not have a nontrivial section. Hence zF e∗ = 0 and therefore f belongs
to the tight closure.

Harder-Narasimhan filtration

In general, there exists an exact criterion depending on c and the strong
Harder-Narasimhan filtration of S. For this we give the definition of the
Harder-Narasimhan filtration.

Definition 2.8. Let S be a vector bundle on a smooth projective curve C
over an algebraically closed fieldK. Then the (uniquely determined) filtration

0 = S0 ⊂ S1 ⊂ . . . ⊂ St−1 ⊂ St = S

of subbundles such that all quotient bundles Sk/Sk−1 are semistable with de-
creasing slopes µk = µ(Sk/Sk−1), is called the Harder-Narasimhan filtration
of S.

The number µ1 is called the maximal slope and the number µt is called
the minimal slope of S. In Example 2.1 the Harder-Narasimhan filtration of
Syz (x4, y4, xy3) is

OC(−5) ⊂ Syz (x4, y4, xy3) ,

the quotient is OC(−7). The (strong) Harder-Narasimhan filtration is a re-
placement for the easy decomposition we had in this example.

The Harder-Narasimhan filtration exists uniquely (by a Theorem of Harder
and Narasimhan). A Harder-Narasimhan filtration is called strong if all the
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quotients Sk/Sk−1 are strongly semistable. A Harder-Narasimhan filtration
is not strong in general, however, by a Theorem of A. Langer, there exists
some Frobenius pull-back F e∗(S) such that its Harder-Narasimhan filtration
is strong.

Theorem 2.9. Let C denote a smooth projective curve over an algebraically
closed field K and let S be a vector bundle over C together with a cohomology
class c ∈ H1(C,S). Let

S1 ⊂ S2 ⊂ . . . ⊂ St−1 ⊂ St = S

be a strong Harder-Narasimhan filteration. Then the torsor T (c) is an affine
scheme if and only if the following (inductively defined property starting with
t) holds: there is an i such that deg (Si/Si−1) < 0 and the image of c in this
sheaf is 6= 0 (and also the Frobenius pull-backs of this class are 6= 0).

Remark 2.10. A notion of strong semistabilty exists also on higher dimen-
sional normal projective varieties (depending on a polarization). If Syzd is
the top-dimensional syzygy bundle for a homogeneous ideal I ⊆ R and m is
such that the minimal slope of Syzd(m) is nonnegative, then R≥m ⊆ I∗. It
is however more difficult to determine the degree of this syzygy bundle and
to obtain exclusion results. Even if this bundle is strongly semistable there
is no known inclusion/exclusion degree bound.

We describe two important consequences from this characterization of tight
closure in terms of vector bundles.

Plus closure

Recall that the plus closure I+ of an ideal I is given by f ∈ I+ if and only if
there exists a finite extension (of domains) R ⊆ S such that f ∈ IS. In terms
of the torsor this is equivalent to the property that there exists a projective
curve inside the torsor, or that the corresponding cohomology class can be
annihilated by a finite morphism of projective curves. Over a finite field, the
same criterion along the strong Harder-Narasimhan filtration which holds for
tight closure also holds for (graded) plus closure. Therefore we get.

Theorem 2.11. Let R be a standard-graded, two-dimensional normal domain
over (the algebraic closure of) a finite field. Let I be an R+-primary graded
ideal. Then

I∗ = I+ .

This is also true for non-primary graded ideals and also for submodules in
finitely generated graded submodules. Moreover, G. Dietz has shown that
one can get rid also of the graded assumption (of the ideal or module, but
not of the ring).

Test exponents



7

The problem with an algorithmic computation of tight closure is that we have
to check infinitely many conditions. For a test element z (a well established
theory) a test exponent is a number e0 such that zf q ∈ I [q] for all q = pe and
e ≤ e0 implies f ∈ I∗. This makes also sense for a restricted class of ideals.
But even for parameter ideals nothing substantial is known.

The following variant is more promising and has the same computational
effect: Let τ denote the test ideal of R. We call e0 a test ideal exponent (for
a class of ideals) if

zf q ∈ I [q] for all z ∈ τ

and for all q = pe and e ≤ e0 implies f ∈ I∗. For this one has to know the
test ideal, but this is known in many cases. For the class of parameter ideals
in the Gorenstein case this works, because then I∗ = (I : τ) and so we can
take even 0 as test ideal exponent.

The methods from above allow us to extend this to homogeneous primary
ideals in a standard-graded two-dimensional domain over a finite field. The
test ideal exponent is however huge and not suitable for computations. It
depends on the genus, the number of ideal generators and most importantly
on the number of elements in the field (via the finite number of semistable
bundles in the moduli space).

Theorem 2.12. Let R be a standard-graded, two-dimensional (geometrically)
normal Gorenstein domain over a finite field. Fix n and suppose that p ≥
4(g − 1)(n− 1)3, where g is the genus of the curve. Then there exists a test
ideal component for the class of primary homogeneous ideals generated by n
elements.

The finite field assumption in the last two statements is necessary. Both
proofs rely on the fact that for fixed rank and degree there exists only finitely
many semistable sheaves defined over the field with these numerical data.


