Algebraische Kurven

Arbeitsblatt 11

Aufwärmaufgaben

Aufgabe 11.1. Skizziere die Graphen der Funktionen x und y auf V(xy). Man mache sich klar, dass das Produkt xy die Nullfunktion ist.

AUFGABE 11.2. Betrachte die Hyperbel V(xy-1) über dem Körper $K=\mathbb{Z}/(11)$. Bestimme das Inverse von $4x^3$ im zugehörigen Koordinatenring.

AUFGABE 11.3. Sei R ein kommutativer Ring und sei f_j , $j \in J$, eine Familie von Elementen in R. Es sei angenommen, dass die f_j zusammen das Einheitsideal erzeugen. Zeige, dass es eine endliche Teilfamilie f_j , $j \in J_0 \subseteq J$ gibt, die ebenfalls das Einheitsideal erzeugt.

AUFGABE 11.4. Sei K ein algebraisch abgeschlossener Körper und seien $\mathfrak{a}, \mathfrak{b} \subseteq K[X_1, \ldots, X_n]$ zwei Radikalideale. Zeige, dass die Nullstellengebilde $V(\mathfrak{a})$ und $V(\mathfrak{b})$ genau dann affin-linear äquivalent sind, wenn es eine affin-lineare Variablentransformation gibt, die die beiden Ideale ineinander überführt.

AUFGABE 11.5. Es sei K ein Körper und $V, W \subseteq \mathbb{A}^n_K$ seien zwei affinalgebraische Mengen. Es sei $V \subseteq W$ vorausgesetzt. Man definiere einen K-Algebra-Homomorphismus zwischen den beiden Koordinatenringen R(V) und R(W) und beschreibe dessen wichtigste Eigenschaften. Man gebe ein Beispiel von zwei affin-algebraischen Mengen, die nicht ineinander enthalten sind, wo aber die Koordiantenringe isomorph sind.

Aufgaben zum Abgeben

Aufgabe 11.6. (4 Punkte)

Sei $F \in \mathbb{C}[X_1, \ldots, X_n]$ und sei $U \subseteq \mathbb{A}^n_{\mathbb{C}}$ eine Teilmenge, die in der metrischen Topologie offen und nicht leer sei. Es sei $F|_U = 0$ die Nullfunktion. Zeige, dass dann F das Nullpolynom ist.

AUFGABE 11.7. (3 Punkte)

Beweise Fakt ***** direkt aus Fakt *****.

Aufgabe 11.8. (7 Punkte)

Es sei K ein algebraisch abgeschlossener Körper, und R der Polynomring in n Variablen über K. Wir wollen einen alternativen Beweis einsehen, dass $\operatorname{Id}(V(J)) = \operatorname{rad}(J)$ für jedes Ideal J in R ist, der auf Fakt **** aufbaut. Sei $f \in \operatorname{Id}(V(J))$. Betrachte den Ring R[T] und zeige, dass das Ideal

$$J' = (J, 1 - f \cdot T)$$

trivial ist. Schließe daraus, dass f im Radikal von J liegt.

Aufgabe 11.9. (3 Punkte)

Sei $F \in K[X_1, ..., X_n]$ und betrachte die dadurch definierte polynomiale Abbildung

$$\varphi \colon \mathbb{A}^n_K \longrightarrow \mathbb{A}^{n+1}_K, (x_1, \dots, x_n) \longmapsto (x_1, \dots, x_n, F(x_1, \dots, x_n)),$$

die eine Bijektion des affinen Raumes mit dem Graph von φ definiert. Zu einer affin-algebraischen Menge $V(\mathfrak{a}) \subseteq \mathbb{A}^n_K$ betrachten wir das Bild $V' = \varphi(V)$. Man zeige, dass V' ebenfalls affin-algebraisch ist und man gebe ein beschreibendes Ideal an. Zeige, dass V genau dann irreduzibel ist, wenn V' irreduzibel ist.

Aufgabe 11.10. (5 Punkte)

Wir betrachten die beiden algebraischen Kurven

$$V(x^2 + y^2 - 2)$$
 und $V(x^2 + 2y^2 - 1)$

über dem Körper $\mathbb{Z}/(7)$. Zeige, dass der Durchschnitt leer ist, und finde einen Erweiterungskörper $K \supseteq \mathbb{Z}/(7)$, über dem der Durchschnitt nicht leer ist. Berechne alle Punkte im Durchschnitt über K und über jedem anderen Erweiterungskörper. Man beschreibe auch den Koordinatenring des Durchschnitts.