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1. Lecture

Lecture 1 - Linear equations, forcing algebras and ideal closure

operations

1.1. Systems of linear equations.

We start with some linear algebra. Let K be a field. We consider a system
of linear homogeneous equations over K,

f11t1 + . . .+ f1ntn = 0 ,

f21t1 + . . .+ f2ntn = 0 ,

...

fm1t1 + . . .+ fmntn = 0 ,

where the fij are elements in K. The solution set to this system of homo-
geneous equations is a vector space V over K, its dimension is n − rk(A),
where A = (fij)ij is the matrix given by these elements. Additional elements
f1, . . . , fm ∈ K give rise to the system of inhomogeneous linear equations,

f11t1 + . . .+ f1ntn = f1 ,

f21t1 + . . .+ f2ntn = f2 ,

...

fm1t1 + . . .+ fmntn = fm .

The solution set T of this inhomogeneous system may be empty, but never-
theless it is tightly related to the solution space of the homogeneous system.
First of all, there exists an action

V × T −→ T, (v, t) 7−→ v + t,

because the sum of a solution of the homogeneous system and a solution of
the inhomogeneous system is again a solution of the inhomogeneous system.
This action is a group action of the group (V,+, 0) on the set T . Moreover,
if we fix one solution t0 ∈ T (supposing that at least one solution exists),
then there exists a bijection

V −→ T, v 7−→ v + t0.

So T can be identified with the vector space V , however not in a canonical
way. The group V acts simply transitive on T .
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Suppose now that X is a geometric object (a topological space, a manifold,
a variety, the spectrum of a ring) and that instead of elements in the field K
we have functions

fij :X −→ K

on X (which are continuous, or differentiable, or algebraic). We form the
Matrix of functions A = (fij)ij, which yields for every point P ∈ X a matrix
A(P ) over K. Then we get from these data the space

V =







(P, t1, . . . , tn)|A(P )





t1

tn



 = 0







⊆ X ×Kn

together with the projection to X. For a fixed point P ∈ X, the fiber of
V over P is the solution space to the corresponding homogeneous system of
linear equations given by inserting P . In particular, all fibers of the map

V −→ X,

are vector spaces (maybe of non-constant dimension). This vector space
structures yield an addition

V ×X V −→ V, (P ; t1, . . . , tn; s1, . . . , sn) 7−→ (P ; t1 + s1, . . . , tn + sn)

(only points in the same fiber can be added). The mapping

X −→ V, P 7−→ (P ; 0, . . . , 0)

is called the zero-section.

Suppose now that there are additionally functions

f1, . . . , fm :X −→ K

given. Then we can form the set

T =







(P, t1, . . . , tn)|A(P )





t1

tn



 =





f1(P )

fn(P )











⊆ X ×Kn

with the mapping to X. Again, every fiber of T over a point P ∈ X is the
solution set to the system of inhomogeneous linear equations which arises by
inserting P . The actions of the fibers VP on TP (coming from linear algebra)
extend to an action

V ×X T −→ T, (P ; t1, . . . , tn; s1, . . . , sn) 7−→ (P ; t1 + s1, . . . , tn + sn).

Also, if a (continuous, differentiable, algebraic) map

s :X −→ T

with s(P ) ∈ TP exists, then we can construct an (continuous, differentiable,
algebraic) isomorphism between V and T . However, different from the situ-
ation in linear algebra (which corresponds to the situation where X is just
one point), such a section does rarely exist.
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These objects T have new and sometimes difficult global properties which
we try to understand in these lectures. We will work mainly in an algebraic
setting and restrict to the situation where just one equation

f1T1 + . . .+ fnTn = f

is given. Then in the homogeneous case (f = 0) the fibers are vector spaces
of dimension n − 1 or n, and the later holds exactly for the points P ∈ X
where f1(P ) = . . . = fn(P ) = 0. In the inhomogeneous case the fibers are
either empty or of dimension n− 1 or n. We give some typical examples.

Example 1.1. We consider the line (X = A
1
K) (or X = K,R,C etc.) with

the (identical) function x. For f1 = x and f = 0, i.e. for the equation
xt = 0, the geometric object V consists of a horizontal line (corresponding
to the zero-solution) and a vertical line over x = 0. So all fibers except one
are zero-dimensional vector spaces. For the equation 0t = x, V consists of
one vertical line, almost all fibers are empty. For the equation xt = 1, V is
a hyperbola, and all fibers are zero-dimensional with the exception that the
fiber over x = 0 is empty.

Example 1.2. Let X denote a plane (K2,R2,A2
K) with coordinate functions

x and y. We consider a linear equation of type

xat1 + ybt2 = xcyd .

The fiber of the solution set T over a point 6= (0, 0) is onedimensional, whereas
the fiber over (0, 0) has dimension two (for a, b, c, d ≥ 1). Many properties
of T depend on these four exponents.

In (most of) these example we can observe the following behavior. On an
open subset, the dimension of the fibers is constant and equals n−1, whereas
the fiber over some special points degenerates to an n-dimensional solution
set (or becomes empty).

1.2. Forcing algebras.

We describe now the algebraic setting of systems of linear equations depend-
ing on a base space. For a commutative ring R, its spectrum X = Spec (R)
is a topological space on which the ring elements can be considered as func-
tions. The value of f ∈ R at a prime ideal P ∈ Spec (R) is just the image
of f under the morphism R → R/P → κ(P ) = Q(R/P ). In this interpre-
tation, a ring element is a function with values in different fields. Suppose
that R contains a field K. Then an element f ∈ R gives rise to the ring
homomorphism

K[Y ] −→ R, Y 7−→ f,

which itself gives rise to a scheme morphism

Spec (R) −→ Spec (K[Y ]) ∼= A
1
K .

This is another way to consider f as a function on Spec (R).
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Definition 1.3. Let R be a commutative ring and let f1, . . . , fn and f be
elements in R. Then the R-algebra

R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn − f)

is called the forcing algebra of these elements (or these data).

The forcing algebra B forces f to lie inside the extended ideal (f1, . . . , fn)B
(hence the name) For every R-algebra S such that f ∈ (f1, . . . , fn)S there
exists a (non unique) ring homomorphism B → S by sending Ti to the
coefficient si ∈ S in an expression f = s1f1 + . . .+ snfn.

The forcing algebra induces the spectrum morphism

Spec (B) −→ Spec (R).

Over a point P ∈ X = Spec (R), the fiber of this morphism is given by

Spec (B ⊗R κ(P )) ,

and we can write

B ⊗R κ(P ) = κ(P )[T1, . . . , Tn]/(f1(P )T1 + . . .+ fn(P )Tn − f(P )) ,

where fi(P ) means the evaluation of the fi in the residue class field. Hence
the κ(P )-points in the fiber are exactly the solution to the inhomogeneous
linear equation f1(P )T1 + . . .+ fn(P )Tn = f(P ). In particular, all the fibers
are (empty or) affine spaces.

1.3. Forcing algebras and closure operations.

Let R denote a commutative ring and let I = (f1, . . . , fn) be an ideal. Let
f ∈ R and let

B = R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn − f)

be the corresponding forcing algebra and

ϕ : Spec (B) −→ Spec (R)

the corresponding spectrum morphism. How are properties of ϕ (or of the
R-algebra B) related to certain ideal closure operations?

We start with some examples. The element f belongs to the ideal I if and
only if we can write f = r1f1 + . . .+ rnfn. By the universal property of the
forcing algebra this means that there exists an R-algebra-homomorphism

B −→ R,

hence f ∈ I holds if and only if ϕ admits a scheme section. This is also
equivalent to

R −→ B

admitting an R-module section or B being a pure R-algebra (so for forcing
algebras properties might be equivalent which are not equivalent for arbitrary
algebras).
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We have a look at the radical of the ideal I,

rad (I) =
{

f ∈ R| fk ∈ I for some k
}

.

As this is quite a coarse closure operation we should expect that this corre-
sponds to a quite coarse property of the morphism ϕ as well. Indeed, it is
true that f ∈ rad (I) if and only if ϕ is surjective. This and the interpreta-
tion of other closure operations in terms of forcing algebras will be discussed
in the tutorial session and in the next lecture.

1.4. Geometric vector bundles.

We have seen that the fibers of the spectrum of a forcing algebra are (empty
or) affine spaces. However, this is not only fiberwise true, but more general:
If we localize the forcing algebra at fi we get

(R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn − f))fi
∼= Rfi [T1, . . . , Ti−1, Ti+1, . . . , Tn],

since we can write

Ti = −
∑

j 6=i

fj
fi
Tj +

f

fi
.

So over every D(fi) the spectrum of the forcing algebra is an (n − 1)-
dimensional affine space over the base. So locally, restricted to D(fi), we
have isomorphisms

T |D(fi)
∼= D(fi)× A

n−1 .

On the intersectionsD(fi)∩D(fj) we get two identifications with affine space,
and the transition morphisms are linear if f = 0, but only affine-linear in
general (because of the translation with f

fi
).

So the forcing algebra has locally the form Rfi [T1, . . . , Ti−1, Ti+1, . . . , Tn] and
its spectrum Spec (B) has locally the form D(fi) × A

n−1
K . This description

holds on the union U =
⋃n

i=1D(fi). Moreover, in the homogeneous case
(f=0) the transition mappings are linear. Hence V |U is a geometric vector
bundle according to the following definition.

Definition 1.4. Let X denote a scheme. A scheme

p :V −→ X

is called a geometric vector bundle of rank r over X if there exists an open
covering X =

⋃

i∈I Ui and Ui-isomorphisms

ψi :Ui × A
r = A

r
Ui

−→ V |Ui
= p−1(Ui)

such that for every open affine subset U ⊆ Ui ∩ Uj the transition mappings

ψ−1
j ◦ ψi :A

r
Ui
|U −→ A

r
Uj
|U

are linear automorphisms, i.e. they are induced by an automorphism of the
polynomial ring Γ(U,OX)[T1, . . . , Tr] given by Ti 7→

∑r

j=1 aijTj .
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Here we can restrict always to affine open coverings. If X is separated then
the intersection of two affine open subschemes is again affine and then it
is enough to check the condition on the intersection. The trivial bundle of
rank r is the r-dimensional affine space Ar

X over X, and locally every vector
bundle looks like this. Many properties of an affine space are enjoyed by
general vector bundles. For example, in the affine space we have the natural
addition

+ :Ar
U ×U A

r
U −→ A

r
U , (v1, . . . , vr, w1, . . . , wr) 7−→ (v1 + w1, . . . , vr + wr),

and this carries over to a vector bundle, that is, we have an addition

α :V ×X V −→ V.

The reason for this is that the isomorphisms occurring in the definition of a
geometric vector bundle are linear, hence the addition on V |U coming from
an isomorphism with some affine space over U is independent of the choosen
isomorphism. For the same reason there is a unique closed subscheme of V
called the zero-section which is locally defined to be 0× U ⊆ A

r
U . Also, the

multiplication by a scalar, i.e. the mapping

· :AU ×U A
r
U −→ A

r
U , (s, v1, . . . , vr) 7−→ (sv1, . . . , svr),

carries over to a scalar multiplication

· :AX ×X V −→ V.

In particular, for every point P ∈ X the fiber VP = V ×X P is an affine space
over κ(P ).

For a geometric vector bundle p :V → X and an open subset U ⊆ X one
sets

Γ(U, V ) = {s : U → V |U | p ◦ s = idU} ,

so this is the set of sections in V over U . This gives in fact for every scheme
over X a set-valued sheaf. Because of the observations just mentioned, these
sections can also be added and multiplied by elements in the structure sheaf,
and so we get for every vector bundle a locally free sheaf, which is free on
the open subsets where the vector bundle is trivial.

Definition 1.5. A coherent OX-module F on a scheme X is called locally
free of rank r, if there exists an open covering X =

⋃

i∈I Ui and OUi
-module-

isomorphisms F|Ui
∼= Or|Ui

for every i ∈ I.

Vector bundles and locally free sheaves are essentially the same objects.

Theorem 1.6. Let X denote a scheme. Then the category of locally free
sheaves on X and the category of geometric vector bundles on X are equiv-
alent. A geometric vector bundle V → X corresponds to the sheaf of its
sections, and a locally free sheaf F corresponds to the (relative) Spectrum of
the symmetric algebra of the dual module F∗.
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The free sheaf of rank r corresponds to the affine space A
r
X over X.

As the solution vector space of a system of homogeneous linear equations
acts on the solution set of a system of inhomogeneous linear equations, the
spectrum of a homogeneous forcing algebra acts on the spectrum of an inho-
mogeneous forcing algebra. This action is given by

Spec (A)×Spec (B) −→ Spec (B), (t1, . . . , tn, s1, . . . , sn) 7−→ (t1+s1, . . . , tn+sn).

On the ring level this map is induced by Si 7→ Si + Ti.

2. Lecture

2.1. Torsors of vector bundles.

We have seen that V = Spec (R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn)) acts on the
spectrum of a forcing algebra T = Spec (R[T1, . . . , Tn]/(f1T1+. . .+fnTn+f))
by addition. The restriction of V to U is a vector bundle, and T restricted
to U becomes a V -torsor.

Definition 2.1. Let V denote a geometric vector bundle over a scheme X.
A scheme T → X together with an action

β :V ×X T −→ T

is called a geometric (Zariski)-torsor for V (or a V -principal fiber bundle or
a principal homogeneous space) if there exists an open covering X =

⋃

i∈I Ui

and isomorphisms
ϕi :T |Ui

−→ V |Ui

such that the diagrams (we set U = Ui and ϕ = ϕi)

V |U ×U T |U
β

−→ T |U
↓ ↓

V |U ×U V |U
α

−→ V |U
commute.

The torsors of vector bundles can be classified in the following way.

Proposition 2.2. Let X denote a Noetherian separated scheme and let

p :V −→ X

denote a geometric vector bundle on X with sheaf of sections S. Then there
exists a correspondence between first cohomology classes c ∈ H1(X,S) and
geometric V -torsors.

Beweis. We will describe this correspondence. Let T denote a V -torsor. Then
there exists by definition an open covering X =

⋃

i∈I Ui such that there exists
isomorphisms

ϕi :T |Ui
−→ V |Ui
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which are compatible with the action of V |Ui
on itself. The isomorphisms ϕi

induce automorphisms

ψij = ϕj ◦ ϕ
−1
i :V |Ui∩Uj

−→ V |Ui∩Uj
.

These automorphisms are compatible with the action of V on itself, and this
means that they are of the form

ψij = IdV |Ui∩Uj
+ sij

with suitable sections sij ∈ Γ(Ui∩Uj,S). This family defines a Cech-cocycle
for the covering and gives therefore a cohomology class in H1(X,S). For
the reverse direction, suppose that the cohomology class c ∈ H1(X,S) is
represented by a Cech-cocycle sij ∈ Γ(Ui ∩ Uj,S) for an open covering X =
⋃

i∈I Ui. Set Ti := V |Ui
. We take the morphisms

ψij :Ti|Ui∩Uj
= V |Ui∩Uj

−→ V |Ui∩Uj
= Tj|Ui∩Uj

given by ψij := IdV |Ui∩Uj
+ sij to glue the Ti together to a scheme T over X.

This is possible since the cocycle condition guarantees the glueing condition
for schemes (EGA I, 0, 4.1.7). The action of Ti = V |Ui

on itself glues also
together to give an action on T . �

It follows immediately that for an affine scheme (i.e. a scheme of type
Spec (R)) there are no non-trivial torsor for any vector bundle. There will
however be in general many non-trivial torsors on the punctured spectrum
(and on a projective variety).

2.2. Forcing algebras and induced torsors.

As TU is a VU -torsor, and as every V -torsor is represented by a unique coho-
mology class, there should be a natural cohomology class coming from the
forcing data. To see this, let R be a noetherian ring and I = (f1, . . . , fn) be
an ideal. Then on U = D(I) we have the short exact sequence

0 −→ Syz (f1, . . . , fn) −→ On
U −→ OU −→ 0 .

An element f ∈ R defines an element f ∈ Γ(U,OU) and hence a coho-
mology class δ(f) ∈ H1(U, Syz (f1, . . . , fn)). Hence f defines in fact a
Syz (f1, . . . , fn)-torsor over U . We will see that this torsor is induced by
the forcing algebra given by f1, . . . , fn and f .

Theorem 2.3. Let R denote a noetherian ring, let I = (f1, . . . , fn) denote an
ideal and let f ∈ R be another element. Let c ∈ H1(D(I), Syz (f1, . . . , fn))
be the corresponding cohomology class and let B = R[T1, . . . , Tn]/(f1T1 +
. . . + fnTn − f) denote the forcing algebra for these data. Then the scheme
Spec (B)|D(I) together with the natural action of the syzygy bundle on it is
isomorphic to the torsor given by c.
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Beweis. We compute the cohomology class δ(f) ∈ H1(U, Syz (f1, . . . , fn))
and the cohomology class given by the forcing algebra. For the first compu-
tation we look at the short exact sequence

0 −→ Syz (f1, . . . , fn) −→ On
U −→ OU −→ 0 .

On D(fi), the element f is the image of (0, . . . , 0, f

fi
, 0, . . . , 0) (the non-zero

entry is at the ith place). The cohomology class is therefore represented by
the family of differences

(0, . . . , 0,
f

fi
, 0, . . . , 0,−

f

fj
, 0, . . . , 0) ∈ Γ(D(fi) ∩D(fj), Syz (f1, . . . , fn)) .

On the other hand, there are isomorphisms

V |D(fi) −→ T |D(fi), (s1, . . . , sn) 7−→ (s1, . . . , si−1, si +
f

fi
, si+1, . . . , sn).

The difference of two such isomorphisms on D(fifj) is the same as before.
�

Example 2.4. Let (R,m) denote a two-dimensional normal local noetherian
domain and let f and g be two parameters in R. On U = D(m) we have the
short exact sequence

0 −→ OU
∼= Syz (f, g) −→ O2

U

f,g
−→ OU −→ 0

and its corresponding long exact sequence of cohomology,

0 −→ R −→ R2 f,g
−→ R

δ
−→ H1(U,O) −→ . . . .

The connecting homomorphisms δ sends an element h ∈ R to h
fg
. The torsor

given by such a cohomology class c = h
fg

∈ H1(U,OX) can be realized by the

forcing algebra

R[T1, T2]/(fT1 + gT2 − h) .

Note that different forcing algebras may give the same torsor, because the
torsor depends only on the spectrum of the forcing algebra restricted to
the punctured spectrum of R. For example, the cohomology class 1

fg
=

fg

f2g2
defines one torsor, but the two quotients yield the two forcing algebras

R[T1, T2]/(fT1 + gT2 − 1) and R[T1, T2]/(f
2T1 + g2T2 − fg), which are quite

different. The fiber over the maximal ideal of the first one is empty, whereas
the fiber over the maximal ideal of the second one is a plane.

If R is regular, say R = K[X, Y ] (or the localization of this at (X, Y ) or
the corresponding power series ring) then the first cohomology classes are
K-linear combinations of 1

xiyj
, i, j ≥ 1. They are realized by the forcing

algebras K[X, Y, T1, T2]/(X
iT1+Y

jT2−1). Since the fiber over the maximal
ideal is empty, the spectrum of the forcing algebra equals the torsor. Or, the
other way round, the torsor is itself an affine scheme.
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The closure operations we have considered in the second lecture can be char-
acterized by some property of the forcing algebra. However, they can not be
characterized by a property of the corresponding torsor alone. For example,
for R = K[X, Y ], we may write

1

XY
=

X

X2Y
=

XY

X2Y 2
=

X2Y 2

X3Y 3
,

so the torsors given by the forcing algebras

R[T1, T2]/(XT1 + Y T2 + 1), R[T1, T2]/(X
2T1 + Y T2 +X),

R[T1, T2]/(X
2T1 + Y 2T2 +XY ) and R[T1, T2]/(X

3T1 + Y 3T2 +X2Y 2)

are all the same (the restriction over D(X, Y )), but their global properties
are quite different. We have a non-surjection, a surjective non submersion,
a submersion which does not admit (for K = C) a continuous section and a
map which admits a continuous section.

We deal now with closure operations which depend only on the torsor which
the forcing algebra defines, so they only depend on the cohomology class of
the forcing data inside the syzygy bundle. Our main example is tight closure,
a theory developed by Hochster and Huneke, and related closure operations
like solid closure and plus closure.

2.3. Tight closure and solid closure.

Let R be a noetherian domain of positive characteristic, let

F : R −→ R, f 7−→ f p,

be the Frobenius homomorphism, and

F e : R −→ R, f 7−→ f q, q = pe ,

its eth iteration. Let I be an ideal and set

I [q] = extended ideal of I under F e

Then define the tight closure of I to be the ideal

I∗ := {f ∈ R : there exists z 6= 0 such that zf q ∈ I [q] for all q = pe} .

The element f defines the cohomology class c ∈ H1(D(I), Syz (f1, . . . , fn)).
Suppose that R is normal and that I has height at least 2 (think of a local
normal domain of dimension at least 2 and an m-primary ideal I). Then the
eth Frobenius pull-back of the cohomology class is

F e∗(c) ∈ H1(D(I), F e∗(Syz (f1, . . . , fn)) ∼= H1(D(I), Syz (f q
1 , . . . , f

q
n))

(q = pe) and this is the cohomology class corresponding to f q. By the height
assumption, zF e∗(c) = 0 if and only if zf q ∈ (f q

1 , . . . , f
q
n), and if this holds

for all e then f ∈ I∗ by definition. This shows already that tight closure
under the given conditions does only depend on the cohomology class.
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This is also a consequence of the following theorem of Hochster which gives
a characterization of tight closure in terms of forcing algebra and local coho-
mology.

Theorem 2.5. Let R be a normal excellent local domain with maximal ideal
m over a field of positive characteristic. Let f1, . . . , fn generate an m-primary
ideal I and let f be another element in R. Then f ∈ I∗ if and only if

Hdim(R)
m

(B) 6= 0 ,

where B = R[T1, . . . , Tn]/(f1T1 + . . .+ fnTn + f) denotes the forcing algebra
of these elements.

If the dimension d is at least two, then

Hd
m
(R) −→ Hd

m
(B) ∼= Hd

mB(B) ∼= Hd−1(D(mB),OB) .

This means that we have to look at the cohomological properties of the
complement of the exceptional fiber over the closed point, i.e. the torsor
given by these data. If the dimension is two, then we have to look whether
the first cohomology of the structure sheaf vanishes. This is true (by Serre’s
cohomological criterion for affineness) if and only if the open subset D(mB)
is an affine scheme (the spectrum of a ring).

The right hand side of this equivalence - the non-vanishing of the top-
dimensional local cohomology - is independent of any characteristic assump-
tion, and can be taken as the basis for the definition of another closure
operation, called solid closure. So the theorem above says that in positive
characteristic tight closure and solid closure coincide. There is also a defini-
tion of tight closure for algebras over a field of characteristic 0 by reduction
to positive characteristic.

An important property of tight closure is that it is trivial for regular rings,
i.e. I∗ = I for every ideal I. This rests upon Kunz’s theorem saying that the
Frobenius homomorphism for regular rings is flat. This property implies the
following cohomological property of torsors.

Corollary 2.6. Let (R,m) denote a regular local ring of dimension d and of
positive characteristic, let I = (f1, . . . , fn) be an m-primary ideal and f ∈ R
an element with f 6∈ I. Let B = R[T1, . . . , Tn]/(f1T1+ . . .+ fnTn+ f) be the
corresponding forcing algebra. Then for the extended ideal mB we have

Hd
mB(B) = Hd−1(D(mB),OB) = 0.

Beweis. This follows from Theorem 2.5 and f 6∈ I∗. �

2.4. Plus closure.

For an ideal I ⊆ R in a domain R define

I+ = {f ∈ R : there exists a finite domain extension R ⊆ T such that f ∈ IT} .
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Equivalent: let R+ be the absolute integral closure of R. This is the integral
closure of R in an algebraic closure of the quotient field Q(R) (first considered
by Artin). Then

f ∈ I+ if and only if f ∈ IR+ .

The plus closure commutes with localization.

We also have the inclusion I+ ⊆ I∗. Here the question arises:

Question: Is I+ = I∗?

This question is known as the tantalizing question in tight closure theory.

In terms of forcing algebras and their torsors, the containment inside the plus
closure means that there exists a d-dimensional closed subscheme inside the
torsor which meets the exceptional fiber (the fiber over the maximal ideal) in
one point, and this means that the superheight of the extended ideal is d. In
this case the local cohomological dimension of the torsor must be d as well,
since it contains a closed subscheme with this cohomological dimension. So
also the plus closure depends only on the torsor.

3. Lecture

In the last lectures we will continue with the question when are the torsors
given by a forcing algebras over a two-dimensional ring affine? We will look
at the graded situation to be able to work on the corresponding projective
curve.

In particular we want to address the following questions

(1) Is there a procedure to decide whether the torsor is affine?
(2) Is it non-affine if and only if there exists a geometric reason for it not

to be affine (because the superheight is too large)?
(3) How does the affineness vary in an arithmetic family, when we vary

the prime characteristic?
(4) How does the affineness vary in a geometric family, when we vary the

base ring?

In terms of tight closure, these questions are directly related to the tantalizing
question of tight closure (is it the same as plus closure), the dependence
of tight closure on the characteristic and the localization problem of tight
closure.

3.1. Geometric interpretation in dimension two.

We will restrict now to the two-dimensional homogeneous case in order to
work on the corresponding projective curve. We want to find an object over
the curve which corresponds to the forcing algebra or its induced torsor.

Let R be a two-dimensional standard-graded normal domain over an alge-
braically closed field K. Let C = Proj R be the corresponding smooth
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projective curve and let
I = (f1, . . . , fn)

be an R+-primary homogeneous ideal with generators of degrees d1, . . . , dn.
Then we get on C the short exact sequence

0 −→ Syz (f1, . . . , fn)(m) −→
n

⊕

i=1

OC(m− di)
f1,...,fn
−→ OC(m) −→ 0 .

Here Syz (f1, . . . , fn)(m) is a vector bundle, called the syzygy bundle, of rank
n− 1 and of degree

((n− 1)m−
n

∑

i=1

di) deg (C) .

Thus a homogeneous element f of degree m defines a cohomology class
δ(f) ∈ H1(C, Syz (f1, . . . , fn)(m)), so this defines a torsor over the projective
curve. We mention an alternative description of the torsor corresponding to
a first cohomology class in a locally free sheaf which is better suited for the
projective situation.

Remark 3.1. Let S denote a locally free sheaf on a scheme X. For a coho-
mology class c ∈ H1(X,S) one can construct a geometric object: Because of
H1(X,S) ∼= Ext1(OX ,S), the class defines an extension

0 −→ S −→ S ′ −→ OX −→ 0 .

This extension is such that under the connecting homomorphism of cohomol-
ogy, 1 ∈ Γ(X,OX) is sent to c ∈ H1(X,S). The extension yields projective
subbundles

P(S∨) ⊂ P(S ′∨) .

If V is the corresponding geometric vector bundle, one may think of P(S∨) as
P(V ) which consists for every base point x ∈ X of all the lines in the fiber Vx
passing through the origin. The projective subbundle P(V ) has codimension
one inside P(V ′), for every point it is a projective space lying (linearly)
inside a projective space of one dimension higher. The complement is then
over every point an affine space. One can show that the global complement

T = P(S ′∨) \ P(S∨)

is another model for the torsor given by the cohomology class. The advantage
of this viewpoint is that we may work, in particular when X is projective, in
an entirely projective setting.

3.2. Semistability of vector bundles.

In the situation of a forcing algebra for homogeneous elements, this torsor T
can also be obtained as Proj B, where B is the (not necessarily positively)
graded forcing algebra. In particular, it follows that the containment f ∈ I∗ is
equivalent to the property that T is not an affine variety. For this properties,
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positivity (ampleness) properties of the syzygy bundle are crucial. We need
the concept of (Mumford) semistability.

Definition 3.2. Let S be a vector bundle on a smooth projective curve C.

It is called semistable, if µ(T ) = deg(T )
rk(T )

≤ deg(S)
rk(S)

= µ(S) for all subbundles T .

Suppose that the base field has positive characteristic p > 0. Then S is
called strongly semistable, if all (absolute) Frobenius pull-backs F e∗(S) are
semistable.

An important property of a semistable bundle of negative degree is that it can
not have any global section 6= 0. Note that a semistable vector bundle need
not be strongly semistable, the following is probably the simplest example.

Example 3.3. Let C be the smooth Fermat quartic given by x4 + y4 + z4

and consider on it the syzygy bundle Syz (x, y, z) (which is also the restricted
cotangent bundle from the projective plane). This bundle is semistable.
Suppose that the characteristic is 3. Then its Frobenius pull-back is Syz
(x3, y3, z3). The curve equation gives a global nontrivial section of this bundle
of total degree 4. But the degree of Syz (x3, y3, z3)(4) is negative, hence it
can not be semistable anymore.

For a strongly semistable vector bundle S on C and a cohomology class
c ∈ H1(C,S) with corresponding torsor we obtain the following affineness
criterion.

Theorem 3.4. Let C denote a smooth projective curve over an algebraically
closed field K and let S be a strongly semistable vector bundle over C together
with a cohomology class c ∈ H1(C,S). Then the torsor T (c) is an affine
scheme if and only if deg (S) < 0 and c 6= 0 (F e(c) 6= 0 for all e in positive
characteristic).

This result rests on the ampleness of S ′∨ occuring in the dual exact sequence
0 → OC → S ′∨ → S∨ → 0 given by c (work of Hartshorne and Gieseker). It
implies for a strongly semistable syzygy bundles the following degree formula
for tight closure.

Theorem 3.5. Suppose that Syz (f1, . . . , fn) is strongly semistable. Then

Rm ⊆ I∗ for m ≥

∑

di
n− 1

and (for almost all prime numbers)

Rm ∩ I∗ ⊆ I for m <

∑

di
n− 1

.

We indicate the proof of the inclusion result. The degree condition implies
that c = δ(f) ∈ H1(C,S) is such that S = Syz (f1, . . . , fn)(m) has non-
negative degree. Then also all Frobenius pull-backs F ∗(S) have nonnegative
degree. Let L = O(k) be a twist of the tautological line bundle on C such
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that its degree is larger than the degree of ω−1
C , the dual of the canonical sheaf.

Let z ∈ H0(Y,L) be a non-zero element. Then zF e∗(c) ∈ H1(C,F e∗(S)⊗L),
and by Serre duality we have

H1(C,F e∗(S)⊗ L) ∼= H0(F e∗(S∗)⊗ L−1 ⊗ ωC)
∨ .

On the right hand side we have a semistable sheaf of negative degree, which
can not have a nontrivial section. Hence zF e∗ = 0 and therefore f belongs
to the tight closure.

3.3. Harder-Narasimhan filtration.

In general, there exists an exact criterion depending on c and the strong
Harder-Narasimhan filtration of S. For this we give the definition of the
Harder-Narasimhan filtration.

Definition 3.6. Let S be a vector bundle on a smooth projective curve
C over an algebraically closed field K. Then the (uniquely determined)
filtration

0 = S0 ⊂ S1 ⊂ . . . ⊂ St−1 ⊂ St = S

of subbundles such that all quotient bundles Sk/Sk−1 are semistable with de-
creasing slopes µk = µ(Sk/Sk−1), is called the Harder-Narasimhan filtration
of S.

The Harder-Narasimhan filtration exists uniquely (by a Theorem of Harder
and Narasimhan). A Harder-Narasimhan filtration is called strong if all the
quotients Si/Si−1 are strongly semistable. A Harder-Narasimhan filtration
is not strong in general, however, by a Theorem of A. Langer, there exists
some Frobenius pull-back F e∗(S) such that its Harder-Narasimhan filtration
is strong.

Theorem 3.7. Let C denote a smooth projective curve over an algebraically
closed field K and let S be a vector bundle over C together with a cohomology
class c ∈ H1(C,S). Let

S1 ⊂ S2 ⊂ . . . ⊂ St−1 ⊂ St = S

be a strong Harder-Narasimhan filtration. Then the torsor T (c) is an affine
scheme if and only if the following (inductively defined property starting with
t) holds: there is an i such that deg (Si/Si−1) < 0 and the image of c in this
sheaf is 6= 0 (and also all Frobenius pull-backs of this class are 6= 0).

3.4. Plus closure in dimension two.

Let K be a field and let R be a normal two-dimensional standard-graded do-
main over K with corresponding smooth projective curve C. A homogeneous
m-primary ideal with homogeneous ideal generators f1, . . . , fn and another
homogeneous element f of degree m yield a cohomology class

c = δ(f) ∈ H1(C, Syz (f1, . . . , fn)(m)) .
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Let T (c) be the corresponding torsor.

We have seen in the last lecture that the affineness of this torsor over C
is equivalent to the affineness of the corresponding torsor over D(m) ⊆
Spec (R). Now we want to understand what the property f ∈ I+ means
for c and for T (c). Instead of the plus closure we will work with the graded
plus closure I+gr, where f ∈ I+gr holds if and only if there exists a finite
graded extension R ⊆ S such that f ∈ IS. The existence of such an S
translates into the existence of a finite morphism

ϕ :C ′ = Proj (S) −→ Proj (R) = C

such that ϕ∗(c) = 0. Here we may assume that C ′ is also smooth. Therefore
we discuss the more general question when a cohomology class c ∈ H1(C,S),
where S is a locally free sheaf on C, can be annihilated by a finite morphism

C ′ −→ C

of smooth projective curves. The advantage of this more general approach is
that we may work with short exact sequences (in particular, the sequences
coming from the Harder-Narasimhan filtration) in order to reduce the prob-
lem to semistable bundles which do not necessarily come from an ideal situ-
ation.

Lemma 3.8. Let C denote a smooth projective curve over an algebraically
closed field K, let S be a locally free sheaf on C and let c ∈ H1(C,S) be
a cohomology class with corresponding torsor T → C. Then the following
conditions are equivalent.

(1) There exists a finite morphism

ϕ :C ′ −→ C

from a smooth projective curve C ′ such that ϕ∗(c) = 0.
(2) There exists a projective curve Z ⊆ T .

Beweis. If (1) holds, then the pull-back ϕ∗(T ) = T ×C C ′ is trivial (as a
torsor), as it equals the torsor given by ϕ∗(c) = 0. Hence ϕ∗(T ) is isomorphic
to a vector bundle and contains in particular a copy of C ′. The image Z of
this copy is a projective curve inside T .

If (2) holds, then let C ′ be the normalization of Z. Since Z dominates C,
the resulting morphism

ϕ :C ′ −→ C

is finite. Since this morphism factors through T and since T annihilates the
cohomology class by which it is defined, it follows that ϕ∗(c) = 0. �

We want to show that the cohomological criterion for (non)-affineness of a
torsor along the Harder-Narasimhan filtration of the vector bundle also holds
for the existence of projective curves inside the torsor, under the condition
that the projective curve is defined over a finite field. This implies that
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tight closure is (graded) plus closure for graded m-primary ideals in a two-
dimensional graded domain over a finite field.

3.5. Annihilation of cohomology classes of strongly semistable

sheaves.

We deal first with the situation of a strongly semistable sheaf S of degree
0. The following two results are due to Lange and Stuhler. We say that a
locally free sheaf is étale trivializable if there exists a finite étale morphism
ϕ :C ′ → C such that ϕ∗(S) ∼= Or

C′ . Such bundles are directly related to
linear representations of the étale fundamental group.

Lemma 3.9. Let K denote a finite field (or the algebraic closure of a finite
field) and let C be a smooth projective curve over K. Let S be a locally free
sheaf over C. Then S is étale trivializable if and only if there exists some n
such that F n∗S ∼= S.

Theorem 3.10. Let K denote a finite field (or the algebraic closure of a
finite field) and let C be a smooth projective curve over K. Let S be a
strongly semistable locally free sheaf over C of degree 0. Then there exists a
finite mapping

ϕ :C ′ −→ C

such that ϕ∗(S) is trivial.

Beweis. We consider the family of locally free sheaves F e∗(S), e ∈ N. Because
these are all semistable of degree 0, and defined over the same finite field,
we must have (by the existence of the moduli space for vector bundles) a
repetition, i.e. F e∗(S) ∼= F e′∗(S) for some e′ > e. By Lemma 3.9 the bundle
F e∗(S) admits an étale trivialization ϕ :C ′ → C. Hence the finite map F e ◦ϕ
trivializes the bundle. �

Theorem 3.11. Let K denote a finite field (or the algebraic closure of a
finite field) and let C be a smooth projective curve over K. Let S be a
strongly semistable locally free sheaf over C of nonnegative degree and let
c ∈ H1(C,S) denote a cohomology class. Then there exists a finite mapping

ϕ :C ′ −→ C

such that ϕ∗(c) is trivial.

Beweis. If the degree of S is positive, then a Frobenius pull-back F e∗(S) has
arbitrary large degree and is still semistable. By Serre dualtiy we get that
H1(C,F e∗(S)) = 0. So in this case we can annihilate the class by an iteration
of the Frobenius alone.

So suppose that the degree is 0. Then there exists by Theorem 3.10 a finite
morphism which trivializes the bundle. So we may assume that S ∼= Or

C .
Then the cohomology class has several components ci ∈ H1(C,OC) and it
is enough to annihilate them separately by finite morphisms. But this is
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possible by the parameter theorem of K. Smith (or directly using Frobenius
and Artin-Schreier extensions). �

3.6. The general case.

We look now at an arbitrary locally free sheaf S on C, a smooth projective
curve over a finite field. We want to show that the same numerical criterion
(formulated in terms of the Harder-Narasimhan filtration) for non-affineness
of a torsor holds also for the finite annihilation of the corresponding coho-
momology class (or the existence of a projective curve inside the torsor).

Theorem 3.12. Let K denote a finite field (or the algebraic closure of a
finite field) and let C be a smooth projective curve over K. Let S be a
locally free sheaf over C and let c ∈ H1(C,S) denote a cohomology class.
Let S1 ⊂ . . . ⊂ St be a strong Harder-Narasimhan filtration of F e∗(S). We
choose i such that Si/Si−1 has degree ≥ 0 and that Si+1/Si has degree < 0.
We set Q = F e∗(S)/Si. Then the following are equivalent.

(1) The class c can be annihilated by a finite morphism.
(2) Some Frobenius power of the image of F e∗(c) inside H1(C,Q) is 0.

Beweis. Suppose that (1) holds. Then the torsor is not affine and hence by
Theorem 3.7 also (2) holds.

So suppose that (2) is true. By applying a certain power of the Frobenius
we may assume that the image of the cohomology class in Q is 0. Hence the
class stems from a cohomology class ci ∈ H1(C,Si). We look at the short
exact sequence

0 −→ Si−1 −→ Si −→ Si/Si−1 −→ 0 ,

where the sheaf of the right hand side has a nonnegative degree. Therefore
the image of ci in H

1(C,Si/Si−1) can be annihilated by a finite morphism due
to Theorem 3.11. Hence after applying a finite morphism we may assume that
ci stems from a cohomology class ci−1 ∈ H1(C,Si−1). Going on inductively
we see c can be annihilated by a finite morphism. �

Theorem 3.13. Let C denote a smooth projective curve over the algebraic
closure of a finite field K, let S be a locally free sheaf on C and let c ∈
H1(C,S) be a cohomology class with corresponding torsor T → C. Then T
is affine if and only if it does not contain any projective curve.

Beweis. Due to Theorem 3.7 and Theorem 3.12, for both properties the same
numerical criterion does hold. �

These results imply the following theorem in the setting of a twodimensional
graded ring.
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Theorem 3.14. Let R be a standard-graded, two-dimensional normal do-
main over (the algebraic closure of) a finite field. Let I be an R+-primary
graded ideal. Then

I∗ = I+ .

This is also true for non-primary graded ideals and also for submodules in
finitely generated graded submodules. Moreover, G. Dietz has shown that
one can get rid also of the graded assumption (of the ideal or module, but
not of the ring).


