Zahlentheorie (Osnabrück SS 2008)

Arbeitsblatt 10

Aufgabe 1. (2 Punkte)

Seien x und y ungerade. Zeige, dass $x^2 + y^2$ keine Quadratzahl ist.

Aufgabe 2. (1 Punkt)

Zeige, dass die quadratische Gleichung

$$x^2 - 5y^2 = 2$$

keine ganzzahlige Lösung besitzt.

Aufgabe 3. (4 Punkte)

Zeige: in $\mathbb{Z}/(p)$, wo p eine Primzahl ist, lässt sich jedes Element schreiben als Summe von zwei Quadraten.

Aufgabe 4. (3 Punkte)

Bestimme in $\mathbb{Z}/(11)$ alle Lösungen (x,y) der Gleichung

$$x^2 + y^2 = 1.$$

Aufgabe 5. (4 Punkte)

Bestimme in $\mathbb{Z}/(7)$ alle Lösungen (x,y) der diophantischen quadratischen Gleichung

$$3x^2 + 2y^2 + 5xy + 4x + 8y + 6 = 0.$$

Aufgabe 6. (2 Punkte)

Wieviele Lösungen hat die Gleichung

$$x^5 = a$$

in $\mathbb{Z}/(19)$ für ein gegebenes $a \in \mathbb{Z}/(19)$?

Aufgabe 7. (2 Punkte)

Skizziere ein Dreieck D derart, dass eine Höhe das Dreieck D in zwei verschiedene rechtwinklige Dreiecke D_1 und D_2 unterteilt so, dass die Seitenlängen von D_1 und D_2 jeweils pythagoreische Tripel bilden. Gib die Seitenlängen an.

Aufgabe 8. (bis 2 Punkte)

Ergänze die Tabelle

Pythagoreische Tripel/Parametrische Charakterisierung/z bis 100/Tabelle um alle pythagoreischen Tripel (x,y,z) mit $z\leq 100$. Dabei sollen u und v teilerfremd sein und nicht beide ungerade. Die Tabelle soll nach der Größe von z geordnet sein.

Aufgabe 9. (2 Punkte)

Zeige: um den Großen Fermat für alle Exponenten $n \geq 3$ zu zeigen, genügt es, ihn für alle ungeraden Primzahlen als Exponenten zu beweisen.

Aufgabe 10. (2 Punkte)

Zeige unter Verwendung des Satzes von Wiles, dass die diophantische Gleichung

$$x^n + y^n + z^n = 0$$

für $n \ge 2$ keine von (0,0,0) verschiedene Lösung besitzt.