Mathematics for natural sciences I

Exercise sheet 29

Warm-up-exercises

Exercise 29.1. Find all solutions to the ordinary differential equation

$$
y^{\prime}=-\frac{y}{t} .
$$

Exercise 29.2. Find all solutions to the ordinary differential equation

$$
y^{\prime}=\frac{y}{t^{2}} .
$$

Exercise 29.3. Find all solutions to the ordinary differential equation

$$
y^{\prime}=e^{t} y
$$

Exercise 29.4. Find the solutions of the inhomogeneous linear differential equation

$$
y^{\prime}=y+7
$$

Exercise 29.5. Find the solutions to the inhomogeneous linear differential equation

$$
y^{\prime}=y+\frac{\sinh t}{\cosh ^{2} t} .
$$

Exercise 29.6. Let

$$
f: I \longrightarrow \mathbb{R}_{+}
$$

be a differentiable function on the interval $I \subseteq \mathbb{R}$. Find a homogeneous linear ordinary differential equation for which f is a solution.

Exercise 29.7. Let

$$
y^{\prime}=g(t) y
$$

be a homogeneous linear ordinary differential equation with a function g differentiable infinitely many times and let y be a differentiable solution.
a) Prove that y is also infinitely differentiable.
b) Let $y\left(t_{0}\right)=0$ for a time-point t_{0}. Prove, using the formula

$$
(f \cdot g)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} f^{(k)} \cdot g^{(n-k)}
$$

that $y^{(n)}\left(t_{0}\right)=0$ for all $n \in \mathbb{N}$.

Exercise 29.8. a) Find all solutions for the ordinary differential equation $\left(t \in \mathbb{R}_{+}\right)$

$$
y^{\prime}=\frac{y}{t} .
$$

b) Find all solutions for the ordinary differential equation $\left(t \in \mathbb{R}_{+}\right)$

$$
y^{\prime}=\frac{y}{t}+t^{7} .
$$

c) Solve the initial value problem

$$
y^{\prime}=\frac{y}{t}+t^{7} \text { and } y(1)=5
$$

The following statement is called the superposition principle for inhomogeneous linear differential equations. It says in particular that the difference of two solutions of an inhomogeneous linear differential equation is a solution of the corresponding homogeneous linear differential equation.

Exercise 29.9. Let $I \subseteq \mathbb{R}$ be a real interval and let

$$
g, h_{1}, h_{2}: I \longrightarrow \mathbb{R}
$$

be functions. Let y_{1} be a solution to the differential equation $y^{\prime}=g(t) y+h_{1}(t)$ and let y_{2} be a solution to the differential equation $y^{\prime}=g(t) y+h_{2}(t)$. Prove that $y_{1}+y_{2}$ is a solution to the differential equation

$$
y^{\prime}=g(t) y+h_{1}(t)+h_{2}(t) .
$$

Hand-in-exercises

Exercise 29.10. (2 points)
Confirm by computation that the function

$$
y(t)=c \frac{\sqrt{t-1}}{\sqrt{t+1}}
$$

found in Example 29.7 satisfies the differential equation

$$
y^{\prime}=y /\left(t^{2}-1\right)
$$

Exercise 29.11. (3 points)
Find all solutions to the ordinary differential equation

$$
y^{\prime}=\frac{y}{t^{2}-3} .
$$

EXERCISE 29.12. (5 points)
Solve the initial value problem

$$
y^{\prime}=\frac{t}{t^{2}+2} y \text { with } y(3)=7
$$

Exercise 29.13. (3 points)
Find the solutions to the inhomogeneous linear differential equation

$$
y^{\prime}=y+e^{2 t}-4 e^{-3 t}+1 .
$$

Exercise 29.14. (5 points)
Find the solutions to the inhomogeneous linear differential equation

$$
y^{\prime}=\frac{y}{t}+\frac{t^{3}-2 t+5}{t^{2}-3} .
$$

