Eletricity

Formulas

Potential Difference (V)

1. Potential Difference = Work Done/ Quantity Of Charge Moved

$$V = W/Q$$

1 volt (
$$V$$
) = 1 joule (J) / 1 coulomb (C)

2. Potential Difference= Resistance x Current

$$V = R \times I$$

1 volt
$$(V) = 1$$
 ohm $(R)/1$ amphere (I)

Current (I)

Current= Quantity Of Charge Moved/ Time Taken

$$I = Q/t$$

1 amphere (A)= 1 coulomb (C) / 1 second (s)

$$1 \text{ mA} = 1/1000 \text{ A}$$

Resistance (R)

Resistance= Potential Difference/ Current

$$R = V/I$$

$$1 \text{ ohm } (R) = 1 \text{ volt } (V) / 1 \text{ amphere } (A)$$

Resistivity (p)

Resistivity = Resistance x Area Of Cross Section/ Length Of Conductor

$$p=R \times A/1$$

```
1 ohm m (p) = ohm (R) X (metre )square (A) / metre (1)
```

Resistance In Series (R)

Resistance = Resistance 1 + Resistance 2 + Resiatance 3 + ...

$$R (ohm) = R 1 + R 2 + R 3 + ...$$

Resistance In Parallel (R)

1/ Resistance 1 / Resistance 1 + 1/Resistance 2 + ...

$$1/R$$
 (ohm)= $1/R$ 1 =+ $1/R$ 2 + ...

Electric Power (P)

1. Power= Work Done/ Time Taken

$$P = W/T$$

1 watt (
$$P$$
)= 1 joule (W) / 1 secound (t)

$$1 \text{ kW} = 1000 \text{ W}$$

2. Power= Potential Difference x Current

$$P = V \times I$$

1 watt (
$$W$$
) = 1 volt (V) x 1 amphere (A)

3. Power= Potential Difference (square)/ Resistance

$$P=V$$
 (square) / R

1 watt (
$$P$$
)= 1 volt (square) (V) / 1 ohm (R)

4. Power= Current (square) x Resistance

$$P=I$$
 (square) $x R$

1 watt (
$$P$$
) = 1 amphere (square) (I) x 1 ohm (R)

Electric Energy (E)

Electric Energy= Power x Time

$$E=P \times t$$

```
1 \text{ kWh } (E) = 1 \text{ watt } (P) \times 1 \text{ hour } (t)
```

Heating Energy (H)

Heat Produced= Current (square) x Resistance x time

1 joule (
$$H$$
) = 1 amphere (square) (I) x 1 ohm (R) x 1 secound (t)