BASLOAD-ROM User Manual

December 16, 2023

Contents

[L_Introductionl

2 Hello World Example|

I3__Source Code Files|

5.2 Option: ## Comment|,
5.3 Option: #REM O [1]
5.4 Option: #INCLUDE "tilename™
[5.5 Option: ZAUTONUM O [1|,
[5.6 Option: #CONTROLCODES O [1]
b.7 Option: #SYMFILE "@:filename™|

[6_ Running BASLOAD]

10

1 Introduction

BASLOAD runs natively on the Commander X16 retro computer. It loads BASIC
source code in plain text format from the SD card and converts it to runnable BASIC
programs.

The goal of BASLOAD is to make BASIC programming for the Commander X16
more convenient.

The main benefits of BASLOAD are:

e Source code may be edited in any text editor

e Line numbers are not used in the source code; named labels are decleared as
targets for GOTOs and GOSUBs

e Long variable names are supported, while only the first two characters of a
variable name are significant in the built-in BASIC

This manual only describes the ROM based version of BASLOAD.

The Commander X16 was devised by David Murray a.k.a. the 8-Bit Guy. For more
information on the platform, go to www.commanderx16.com.

2 Hello World Example

Lets begin with a simple Hello world example in BASLOAD formatted source code.
Open your text editor, type in the code below, and save it to the file "HELLO.BAS”
on the SD card.

LOOP:
PRINT "HELLO, WORLD!"
GOTO LOOP

Convert the file to a runnable program with the following command:

BASLOAD "HELLQO.BAS"

http://www.commanderx16.com

The program is now loaded into memory. You can type LIST to show it and RUN
to execute it.

If you get a ?Syntax Error, it means that BASLOAD is not present in your ROM.

3 Source Code Files

BASLOAD expects source code files to be stored on the Commander X16's SD card.

Source code files may be created with any text editor as long as the following
requirements are met:

e The source code must be plain ASCIIl or PETSCII encoded text

e Line breaks may be encoded with CR, LF or CRLF

e A line may not be more than 250 characters long

4 BASIC Syntax

4.1 General

Source code written for BASLOAD is meant to be as close as possible to BASIC
typed in at the on-screen editor (the "built-in BASIC").

The source code follows the same syntax and supports the same commands and
operators as the built-in BASIC. For further information on this topic, see x16-
docs/Basic Programming,.

There are, however, four important differences between BASLOAD source code and
the built-in BASIC:
e Line numbers are not used in BASLOAD source code

e Labels are decleared as targets for GOTOs, GOSUBs and other commands
that normally take a line number

e Variable names have up to 64 significant characters, compared to two in the
built-in BASIC

e Some whitespace is required to separate identifiers, i.e. commands, labels,
and variables, from each other

https://github.com/X16Community/x16-docs/blob/master/X16%20Reference%20-%2003%20-%20BASIC.md
https://github.com/X16Community/x16-docs/blob/master/X16%20Reference%20-%2003%20-%20BASIC.md

4.2 Identifiers

BASIC commands, labels and variables are commonly referred to as "identifiers” in
this manual.

Identifiers start with a letter, any of A-Z.

Subsequent characters may be any of:

o A letter A—Z
e A digit 0-9

e A decimal point (.)

Identifiers are not case-sensitive, and may be at most 64 characters long.

An identifier may not be exactly the same as an already existing identifier.

4.3 Labels

Labels are used as targets for commands that take a line number in the built-in
BASIC, such as GOTO, GOSUB and RESTORE.

A label is decleared at the beginnig of a line. There may, however, be whitespace
before the start of the declaration.

A label must be a valid identifier, as described above. The end of a label declaration
is marked with a colon.

Examples:

e LOOP: is a valid label declaration

e PRINT: is not a valid label declaration as PRINT is a reserved word

e PRINTME: is valid

When you want to refer to a label later on in the source code, for instance after a
GOTO command, you just type the label name without colon.

Example:

LOOP:

GOTO LOOP

4.4 Variables

Variables are automatically decleared when they are first used in code.
A variable must be a valid identifier as described above.

As in the built-in BASIC, you add a dollar sign ($) to the end of the variable name
to make it a string or a percentage sign (%) to make it an integer.

Examples:

INPUT "WHAT IS YOUR NAME"; NAME$
PRINT "HELLO, "; NAME$

4.5 Whitespace to Separate ldentifiers

BASLOAD requires some whitespace to separate identifiers. Specifically, two identi-
fiers next to each other must be separated by whitespace if not otherwise separated
by a character outside the group of characters allowed in identifier names.

The following characters are recognized as whitespace:

e Blank space (PETSCII/ASCII 32)
e Horizontal tab (PETSCII/ASCII 9)
o Shift + Blank space (PETSCII/ASCII 160)

Examples:

e PRINTME needs to be separated if you want to PRINT the value of ME

e PRINT”ME" does not need to be separated as double quote cannot be part
of an identifier name

5 BASLOAD Options

5.1 General

BASLOAD lets you put options in the source code that affect the output. In some
programming languages they are called directives.

An option must be placed at the beginning of a line, but there may be whitespace
before it.

Options have the following syntax:

#<NAME> <ARGUMENT>

The following options are supported:

o HH#
o #REM

#INCLUDE

#AUTONUM

e #CONTROLCODES

e #SYMFILE
The argument is separated from the option name by one or more whitespace char-
acters. It may be either an integer number or a string. A string may optionally

be enclosed in duoble quotes, which makes it possible for it to contain whitespace
characters.

5.2 Option: ## Comment

This option is an alternative comment that is never outputted to runnable code.

Example:

A comment

5.3 Option: #REM 0 | 1
This option lets you select whether REM statements are included in the resulting
code or not. #REM 0 turns off the output and #REM 1 turns it on again.

It is possible to change the option value multiple times in the source code. The
option takes effect from the line where it is encountered and remains in force until
changed.

The default value is 0 (off).

Example that turns on output of REM statements:

#REM 1

5.4 Option: #INCLUDE ” filename”

This option includes the content of another BASIC source file where it is encoun-
tered.

An included source file can in its turn include another source file. The maximum
depth of includes is limited by the fact that the Commander X16 can have at most
ten files open at the same time.

Example that includes the file FUNC.BAS:

#INCLUDE "FUNC.BAS"

5.5 Option: #AUTONUM 0 | 1

The autonum option makes it possible to set how many steps the line number of
the resulting code is advanced for each outputted line.

The option takes effect from the line where it is found and remains in force until
changed. It is possible to change the value multiple times in a source file.

The default step value is 1.

This option may come in handy if you want to make room to insert code directly
into the runnable code, for instance for debugging.

Example that advances the output line counter 10 steps per line

#AUTONUM 10

5.6 Option: #CONTROLCODES 0 |1

The controlcodes option makes it possible to type named PETSCII control charac-
ters, such as arrow up or down.

The available named control characters are listed in Appendix A.

The controlcodes option takes effect form the line where it is encountered and
remains in force until changed. It is possible to set and change the option multiple
times in the source code.

The default value is 0 (off).
The named control characters are only available within a string.

If you want to put a left curly bracket or a backslash in a string, you need to escape
each of them with a backslash while this option is active.

Examples:

#CONTROLCODES 1
PRINT "{CLEAR}Hello, world": REM {CLEAR}->PETSCII $93
PRINT "\{CLEAR} clears the screen": REM {CLEAR} unconverted

5.7 Option: #SYMFILE ” @:filename”

This option writes symbols (labels and variables) found during the translation of
the source code to the specified symbol file.

Symbol files are inteded to help while debugging BASLOAD code.

The symfile option may only be placed at the top of the source code before any
runnable code has been outputted.

The option may not be used more than once in the source code.

It is recommended that you add @: before the filename. That will cause an existing
symbol file to be overwritten, which generally is what you want. Otherwise it is not
possible to run BASLOAD multiple times without file exists error.

Example that writes the symbol file "MYPRG.SYM", overwriting the file if it exists:

#SYMFILE "@:MYPRG.SYM"

6 Running BASLOAD

6.1 Planned Interface

There are two ways planned to start BASLOAD, neither of which is yet part of the
official ROM.

The first method is to use a dedicated BASIC command, like BASLOAD " filename”.
The second method is a keyboard shortcut in X16 Edit, the text editor.

6.2 API

BASLOAD can be integrated into other programs, and started through its API as
set out below.

Call address: $C000

Input parameters:

Register Address Description

ROL $02 File name length
ROH $03 Device number
— $00:BFO0-BFFF File name buffer
Returns:
Register Address Description
R1L $04 Return code
R1H..R2H $05-07 Source line number where error occured
R3 $08-09 Pointer to source file name where error

occured (always bank 1)
— $00:BF00-BFFF Plain text return message

The possible return codes are:

e 0 =0K
e 1 = Line too long

e 2 = Symbol too long

= Duplicate sybols
e 4 = Symbol table full

e 5 = Qut of variable names

6 = Label expected

7 = Label not expected

e 8 = Line number overflow

9 = Option unknown
e 10 = File error
e 11 = Invalid param

12 = Invalid control code

13 = Invalid symbol file

14 = Symbol file 1/0O error

A Named PETSCII Control Characters

In order to use named control characters you must first put this line in the source

code:

#CONTROLCODES 1

PETSCII Name Description

$01 {SWAP COLORS} SWAP COLORS

$02 {PAGE DOWN} PAGE DOWN

$03 {STOP} STOP

$04 {END} END

$05 {WHITE} COLOR: WHITE

$05 {WHT} COLOR: WHITE

$06 {MENU} MENU

$07 {BELL} BELL

$08 {CHARSET SWITCH OFF} DISALLOW CHARSET SW (SHIFT+ALT)
$09 {TAB} TAB / ALLOW CHARSET SW
$09 {CHARSET SWITCH ON} TAB / ALLOW CHARSET SW
$0A {LF} LF

$0D {CR} RETURN

$0E {LOWER} CHARSET: LOWER/UPPER
$OF {ISO ON} CHARSET: ISO ON

$10 {F9} F9

$11 {DOWN} CURSOR: DOWN

$12 {RVS ON} REVERSE ON

$13 {HOME} HOME

$14 {BACKSPACE} DEL (PS/2 BACKSPACE)
$15 {F10} F10

$16 {F11} F11

$17 {F12} F12

$18 {SHIFT TAB} SHIFT+TAB

$19 {DEL} FWD DEL (PS/2 DEL)

$1B {ESC} ESC

$1C {RED} COLOR: RED

$1D {RIGHT} CURSOR: RIGHT

$1E {GREEN} COLOR: GREEN

$1E {GRN} COLOR: GREEN

$1F {BLUE} COLOR: BLUE

$1F {BLU} COLOR: BLUE

$80 {VERBATIM} VERBATIM MODE

$81 {ORANGE} COLOR: ORANGE

10

$81
$82
$85
$86
$87
$88
$89
$8A
$8B
$8C
$8D
$8E
$8F
$90
$90
$91
$92
$93
$93
$94
$95
$96
$97
$98
$99
$9A
$9B
$9C
$aC
$9D
$9E
$9E
$9F
$9F

{ORG}
{PAGE UP}
{F1}

{F3}

{F5}

{F7}

{F2}

{F4}

{F6}

{F8}
{SHIFT CR}
{UPPER}
{1SO OFF}
{BLACK}
{BLK}
{UP}
{RVS OFF}
{CLEAR}
{CLR}
{INSERT}
{BROWN}

{LIGHT RED}

{GREY 3}
{GREY 2}

{LIGHT GREEN}
{LIGHT BLUE}

{GREY 1}
{PURPLE}
{PUR}
{LEFT}
{YELLOW}
{YEL}
{CYAN}
{CYN}

COLOR: ORANGE
PAGE UP

F1

F3

F5

F7

F2

F4

F6

F8

SHIFTED RETURN
CHARSET: UPPER/PETSCII
CHARSET: ISO OFF
COLOR: BLACK
COLOR: BLACK
CURSOR: UP
REVERSE OFF
CLEAR

CLEAR

INSERT

COLOR: BROWN
COLOR: LIGHT RED
COLOR: DARK GRAY
COLOR: MIDDLE GRAY
COLOR: LIGHT GREEN
COLOR: LIGHT BLUE
COLOR: LIGHT GRAY
COLOR: PURPLE
COLOR: PURPLE
CURSOR: LEFT
COLOR: YELLOW
COLOR: YELLOW
COLOR: CYAN
COLOR: CYAN

	Introduction
	Hello World Example
	Source Code Files
	BASIC Syntax
	General
	Identifiers
	Labels
	Variables
	Whitespace to Separate Identifiers

	BASLOAD Options
	General
	Option: ## Comment
	Option: #REM 0 | 1
	Option: #INCLUDE "filename"
	Option: #AUTONUM 0 | 1
	Option: #CONTROLCODES 0 | 1
	Option: #SYMFILE "@:filename"

	Running BASLOAD
	Planned Interface
	API

	Named PETSCII Control Characters

