X16 Edit user manual

October 8, 2023

Contents

2.1 Getting started|.

2.2 Entering text|.

2.3 Saving and loading text files|

2.4 Keyboard shortcuts|

2.7 Built-in help|

B

More on text editing|

3.1 Supported character sets|

3.5 Text justification|.

3.6 Cut, copy and uncut|.
3.7 Search and replacel.

4

More on file handling]

4.1 Commodore DOS file paths|

5 Miscell i ons
5.1 User-configurable key bindings|

5.2 Line break encoding|

5.3 Color settings|

|A List of keyboard shortcuts|

[B—X16 Edit API

IB.1 Default entry point]

IB.2 Load file entry point|.

IB.3 Load file with options entry point|. . . .

IB.4 Code samples for the RAM version| . . .

IB.4.1 Default entry point]

IB.4.2 Load file entry point].

IB.4.3 Load file with options entry point|

IB.5 Code samples for the ROM version| . . .

IB.5.2 Default entry point|

IB.5.3 Load file entry point].

IB.5.4 Load file with options entry point|

IC_Licensel

10
10
10

10
10
11
11

12

13
13
13
13
14
14
14
15
15
15
16
16
17

18

1 Introduction

Thank you for trying out X16 Edit!

X16 Edit is a simple text editor written in 65C02 assembly especially for the Com-
mander X16 retro computer.

The look and feel of the program is inspired by GNU Nano. There are, naturally, a
lot of differences, but you will feel at home if you are used to Nano.

The Commander X16 was devised by David Murray a.k.a. the 8-Bit Guy. For more
information on the platform, go to www.commanderx16.com.

2 Basic usage

2.1 Getting started

The default version of X16 Edit consists of just one file, X1I6EDIT-x.x.x.PRG, where
X.X.X is the version number.

There are several more executable files in the X16 Edit project, but you may ignore
them for the time being.

The editor is loaded and run in the same way as a BASIC program.

To run the editor on hardware, just store the program file on an SD card. Insert the
SD card into your X16 computer. Type LOAD"X16EDIT-x.x.x.PRG" to load the
program. And then RUN to start it.

If you want to run the editor in the x16emu emulator, you first need to store the
X16 Edit executable in the host computer’s file system. Then type the following
command in the terminal:

x16emu -sdcard sdcard.img -prg X16EDIT-x.x.x.PRG -run

It is recommended that an SD card image is attached to the emulator with the "-
sdcard” option, as this will more closely emulate the hardware. When you download
the emulator you get an empty SD card image (sdcard.img) that can be used for
this purpose.

A valid path to the editor executable must be specified after the "-prg” option.
Otherwise the emulator will not know where to find the program.

The "-run" option automatically starts the editor after the emulator is booted. You
may remove this option and start the editor manually by typing RUN in the emulator.

http://www.commanderx16.com

2.2 Entering text

X16 Edit is a modeless text editor. As soon as it is started, everything you type is
stored in the text buffer.

The cursor is moved with keys normally used for that purpose on a modern keyboard,
i.e. the arrow keys, Tab, Home, End, PgUp and PgDn.

The go to line feature (Ctrl+L) lets you move the cursor to a specific line number.

As you type and reach the right margin, the editor does not by default insert a
line break. Instead the current line is scrolled horizontally to make room for more
characters. There is no limit to the length of a line other than the available memory.

2.3 Saving and loading text files

The current text buffer is saved to file on the SD card when you press Ctrl4+0. Type
in the file name you like to use, and press the ENTER key. You will be prompted
to confirm before overwriting a file that already exists.

To load a file from the SD card, press Ctrl4+R. Just type in the name of the file you
want to load, and then press the ENTER key.

2.4 Keyboard shortcuts

X16 Edit is controlled by keyboard shortcuts. You find a complete list of shortcuts
in Appendix A.

Shortcuts are primarily selected by pressing and holding down Ctrl at the same time
as you press a shortcut key.

You may also press and release the ESC key. A message is displayed in the status bar
indicating that the program is ready to receive a command. Just press a shortcut
key without holding down any modifier.

2.5 Mouse control

The editor is primarily made to be controlled by the keyboard. There are, however,
some basic mouse controls.

The cursor may be positioned in the file by clicking the left mouse button.

You may select part of the text by pressing the left mouse button where you want
the selection to start and release it where you want the selection to end. Selections
can be copied or cut. More on that later.

To use the mouse control you must enable the mouse before starting the editor with
the following command:

MOUSE 1

2.6 User interface

X16 Edit's user interface is similar to GNU Nano, and should be mostly self-
explanatory. It consists of the following main parts:

e Title bar
e Editor area
e Status bar

e Shortcut list

The title bar is at the top row of the screen. The name of the current file is displayed
at the center. If the text buffer has not been saved to file, it displays "New text
buffer”. At the right edge the letters "MOD" are shown if the text buffer has been
changed since last saved to file.

The editor area is right below the title bar. It takes up most of the screen, and it
is here you do all text editing.

The status bar is at the third row from the bottom of the screen. All messages
from the program are displayed in the status bar. If the program needs to prompt
you for input, the input prompt is displayed here as well.

At the input prompt you may either press ENTER to confirm your input or press
ESC to abort the current operation.

The cursor position is displayed at the right edge of the status bar if there is no
active message or prompt.

The shortcut list takes up the last two rows of the screen. Here you find the most
common keyboard shortcuts.

X16 Edit uses the screen mode (screen height and width) that is active when starting
the program. Especially the shortcut list and the help screen change appearance to
fit in low screen resolutions.

2.7 Built-in help

A lists of all keyboard shortcuts and a short description of each command is available
in the built-in help screen (Ctrl+G).

3 More on text editing

3.1 Supported character sets
The editor supports the following built-in character sets:

e PETSCII upper case/graphics. This is the default mode of both the Com-
mander X16 and the C64.

e PETSCII upper/lower case. This is the same mode as is available on the C64.

e [SO character set. This mode is new for the X16, and there is no corresponding
mode supported by Commodore 8 bit computers. Text is encoded according to
ISO-8859-15, making it easier to transfer files to and from modern computers.

On startup, the editor detects the current character set and continues using that.

You may change the character set by pressing Ctrl4+E, which cycles through the
options.

3.2 Tab stop

The default tab stop width is four spaces.
You may change the width by Ctrl4+1-9.

3.3 Auto-indent

The auto-indent feature is used to keep the level of indentation when line breaks
are inserted manually or automatically by the word wrap feature.

Auto-indent is turned off when the editor starts. To toggle the feature on or off,
press Ctrl+A.

3.4 Word wrap

The editor does not automatically insert line breaks by default. Instead the current
line is scrolled horizontally when you reach the right margin.

Automatic word wrap may be toggled on or off by pressing Ctrl4+Z. When turned
on you are prompted for the column where to wrap.

The word wrap feature works in a very simplified way. When you reach the right
margin the editor breaks the line after the previous blank space. If there is no blank
space on the line, the line break is inserted at the right margin. The line break
position is not recalculated if you delete characters from the line or if you insert new
characters at the beginning of the line.

3.5 Text justification

The justify command (Ctrl4J) divides the text buffer into paragraphs and recalcu-
lates all line breaks according to the line width specified in the word wrap feature
(default 80). The word wrap function need not be enabled to run the justify func-
tion.

When auto-indent is turned off a new paragraph is considered to begin

e if two or more consecutive line breaks are found, or

e if a line starts with one or more blank spaces.
If auto-indent is turned on, a new paragraph is considered to begin

e if two or more consecutive line breaks are found,
e if a line contains only blank space characters, or

e if the level of indent is different from the previous line.

3.6 Cut, copy and uncut

The editor supports cut, copy, and uncut (commonly called paste in other editors).

Parts of the text can be selected for copying or cutting with the keyboard or mouse.
A selection is made with the keyboard by holding down Shift while you move the
cursor with the arrow keys or the Home or End keys. A selection can similarily be
made by holding the left mouse button and move the pointer to the end of the
selection before the button is released.

If no text has been selected, the copy (Ctrl+C) and cut (Ctrl+K) commands copy
a whole line into the clipboard.

You may do multiple copies or cuts into the clipboard. The clipboard holds a
maximum of 3 kB of data.

Uncut (Ctrl+U) copies the content of the clipboard into the text buffer at the cursor
position. It is possible to do repeated uncuts. The clipboard is cleared upon the
first cut or copy after uncutting.

3.7 Search and replace
The search command (Ctrl4+W) lets you search the text buffer for a particular string.
The replace function (Ctrl+S) lets you replace it with another string.

Both search and replace are case sensitive. Search starts from the character after
the cursor and is forward looking.

If the string you are searching for is found, the cursor is moved to that position.

When replacing a string, you are given the option to only replace the next occurrence
or all subsequent occurrences.

4 More on file handling

4.1 Commodore DOS file paths

The editor accepts a full Commodore DOS file path when prompting you for a file
name.

A Commodore DQOS file path consists of a directory and a file name separated by a
colon, for example:

e //MY-APP/:APPNAME.PRG
o /MY-APP/:APPNAME.PRG

The first example starting with double slashes is an absolute path from the root
of the SD card. The second example starting with a single slash is a realtive path
starting from the current directory.

4.2 The built-in file browser

At the prompt where a file name is entered you may alternatively press Ctrl4+T to
show the built-in file browser. The file browser is there to make it easier to move
between directories and select files.

To select an item in the file browser, first highlight it with the up or down arrow
keys, and then press Enter.

If the selected item is a directory, it will be made the new current directory, and its
content will be displayed in the file browser.

”

If not all items fit on one page the listing is ended with "— MORE —". In case
the items are spread over several pages, you may go to the next page with PgDn or
Ctrl+V and back to a previous page with PgUp or Ctrl+Y.

If there are no more items to show the listing is ended with "— END —".

4.3 Change disk drive device number

By default the file handling functions use device #8. The device number may be
changed by pressing Ctrl4-D.

4.4 Disk drive commands
You may invoke disk drive commands by pressing Ctrl+1. The raw disk drive com-
mand is entered in the prompt that is displayed.

Any valid command may be invoked. Some of the most useful commands are:

e "C:dst=src", copy src file to dst file

e "R:dst=src”", rename src file to dst file
o "S:filename”, delete filename

e "CD:dirname”, change current directory
e "MD:dirname”, create directory

e "RD:dirname”, remove directory

Just be careful! There is nothing stopping you from deleting files or even formatting
the disk.

5 Miscellaneous functions

5.1 User-configurable key bindings

The shortcut key bindings in X16 Edit are user-configurable.

On startup the editor reads custom key bindings from the file X16EDITRC in the
root directory of the SD card. If that file is not found, the default key bindings are
used.

X16EDITRC is simply a stream of bytes representing the custom shortcuts without
any metadata. Each key is represented by the value returned from the Kernal
function GETIN.

The values in X16EDITRC are bound to shortcuts in a fixed order, the same order
as the shortcuts appear in Appendix A.

If X16EDITRC holds fewer values than there are shortcuts, the editor will use default
bindings for the remaining ones. If there are more values in the file than there are
shortcuts, the excess is ignored.

To make it a bit easier to setup X16EDITRC, you may use the provided tool
(X16EDIT-KEYBINDINGS.PRG).

5.2 Line break encoding

X16 Edit internally uses LF (ASCII $0A) as line break marker.

When reading a file, X16 Edit interprets every occurrence of LF (ASCII $0A) and
CR (ASCII $0C) as a line break. Windows style line breaks (CR+LF) are, however,
converted to just one LF.

The selected character set determines how line breaks are encoded when saving the
text buffer to file. If in one of the PETSCIlI modes, line breaks are encoded with
CR. If in ISO mode, line breaks are encoded with LF.

5.3 Color settings

Both the background and the text color may be changed while using the editor.
The program runs in 16 color text mode, so there are 16 background and 16 text
colors to choose from.

Ctrl4+T cycles through text color options. And Ctrl+B cycles through background
colors.

5.4 Text buffer size

The text buffer is stored in banked RAM, which is 512 kB expandable to 2 MB.
The text buffer may not exceed the available banked RAM.

Press Ctrl+M to get information on the remaining memory reserved for the text
buffer. It will be reported as blocks free. A block may at most hold 251 characters.

6 Advanced topics

6.1 Building X16 Edit from source

If you like to build X16 Edit yourself you may download the source code from
www.github.com /stefan-b-jakobsson /x16-edit.

You will need the cc65 development tools to build the project. You will also need
the Izsa compression utility.

The project is built using Makefile.

e "make” or "make ram” will build the standard RAM version
e "make rom” builds the ROM version

e "make all" builds both targets

10

6.2 X16 Edit ROM version

The ROM version of the editor consists of two consequtive 16 kB ROM banks.

To use the ROM version you first need to prepare a custom ROM image. When
you download the emulator you get the standard rom.bin image. Append X16 Edit
to the end of it with the following command (Linux and MacOS):

cat rom.bin x16edit-rom-x.x.x.bin > customrom.bin
You then need to write the custom ROM image to the actual ROM circuit to use
it on real hardware.
A custom ROM image can easily be attached to the emulator with the "-rom”
option, for example as follows:

x16emu -sdcard sdcard.img -rom customrom.bin

The Kernal is in development, and the ROM bank layout may change over time.
A user may also store other utilities in ROM. In order to programatically find in
which ROM bank X16 Edit is stored, there is an application signature at $FFFO.
The signature consists of the text "X16EDIT" followed by three bytes representing
the program version (major, minor, patch).

If the editor's first ROM bank is 10, it can be started from BASIC like this:

BANK 10,10
SYS $C000

If you like to use one of the other entry points that are described in Appendix B,
you need to write a startup program stored in RAM. Code samples doing this are
also found in Appendix B.

6.3 The X16 Edit API
The X16 Edit API consists of the following three entry points:

e Default entry point, starts the editor with default options and an empty new
text buffer

e Load file entry point, starts the editor with default options and then loads the
specified text file

e Load file with options, start the editor with custom options and then loads
the specified text file

Information on how to call the different entry points and code samples are available
in Appendix B.

11

A List of keyboard shortcuts

This is a complete list of keyboard shortcuts supported by X16 Edit. You may select
commands in any of the following ways:

e Ctrl+shortcut key
e Press and release ESC+-shortcut key

e A function key from the F-key column

Key F-key Description

F1 Display built-in help screen

F2 Exit from the program

F3 Write text buffer to file

F5 Open and read a file into the buffer

— Create new text buffer

F4 Justify text buffer

F7 Page up

F8 Page down

— Cut line or selection to clipboard

— Copy line or selection to clipboard

— Paste (uncut) all content from clipboard
— Deletes current line, no copy to clipboard
F6 Search and find string in buffer (case sensitive)
— Replace string (case sensitive)

— Goto line number

— Toggle auto indent on/off

— Toggle word wrap on/off

— Change charset

— Invoke DOS command

— Set file storage device number, default is 8
— Cycle through text colors

— Cycle through background colors

— Show memory usage (1 block=251 bytes)
space — Insert non-breaking space

1.9 — Set tab stop width

Zw—|o—mN>|—m§Ecmx<—<z_zxoxm

12

B X16 Edit API

B.1 Default entry point

Purpose: Start the editor with default options and an empty new text buffer
Call address: $080D (RAM version), $C000 (ROM version)

Parameters: None

B.2 Load file entry point

Purpose: Start the editor and load a specified text file
Call address: $0810 (RAM version), $C003 (ROM version)

Parameters:

Register Address Description

X First RAM bank used by the program
Y Last RAM bank used by the program
r0 $02-03 Pointer to file name

r1L $04 File name length, or 0=no file

If the specified file does not exist, the editor will display an error message. If the
file name length is 0, the program will not try to load a text file on startup.

The first and last RAM bank settings control what part of banked RAM is used by
the program. This option may be used to reserve the rest of banked RAM for other
purposes.

B.3 Load file with options entry point

Purpose: Start editor with custom options and then load the specified text file
Call address: $0813 (RAM version), $C006 (ROM version)

Parameters:

Register Address Bits Description

X First RAM bank used by the program
Y Last RAM bank used by the program
r0 $02-03 Pointer to file name

riL $04 File name length, or 0=no file

r1H $05 0 Auto indent on/off

13

r1H $05 1 Word wrap on/off

r1H $05 2-7 Unused

r2L $06 Tab stop width (1..9)

r2H $07 Word wrap position (10..250)
r3L $08 Current device number (8..30)
r3H $09 0-3 Text color

r3H $09 4-7 Background color

r4L $0A 0-3 Header text color

r4L $0A 4-7 Header background color

r4H $0B 0-3 Status bar text color

r4H $0B 4-7 Status bar background color

Parameters out of range are silently ignored, and default values are used instead.
Color settings are ignored if both the text and background color is 0.

If the specified file does not exist, the editor will display an error message. If the
file name length is 0, the program will not try to load a text file.

The first and last RAM bank settings control what part of banked RAM is used by
the program. This option may be used to reserve the rest of banked RAM for other
purposes.

B.4 Code samples for the RAM version
B.4.1 Default entry point

jsr $080d ; No parameters, just call the entry point
rts

B.4.2 Load file entry point

1ldx #$01 ; First RAM bank used by the editor
ldy #$£ff ; And last RAM bank

1da #<fname ; Pointer to file name (LSB)
sta $02 ; Store in rOL

1da #>fname ; Pointer to file name (MSB)
sta $03 ; Store in rOH

lda #fname_end-fname ; File name length

sta $04 ; Store in riL

jsr $0810 ; Call entry point

rts

fname:

.byt "mytextfile.txt"
fname_end:

14

B.4.3 Load file with options entry point

1dx
ldy
1lda
sta
1lda
sta
1lda
sta
1lda
sta
1lda
sta
1lda
sta
1lda
sta
1lda
sta
1lda
sta
1lda
sta
jsr
rts

fname:

#$01
#PEf
#<fname
$02
#>fname
$03
#fname_end-fname
$04
#$01
$05
#$04
$06
#$28
$07
#$08
$08
#$b1
$09
#$07
$0a
#$00
$0b
$0813

.byt "mytextfile.txt"
fname_end:

; First RAM bank used by the editor
; And last RAM bank

; Pointer to file name (LSB)

; Store in rOL

; Pointer to file name (MSB)

; Store in rOH

; File name length

; Store in riL

; Auto-indent on, word wrap off

; Store in riH

; Tab width

; Store in r2L

; Word wrap position

; Store in r2H

; Disk drive device number

; Store in r3L

; Text white, background light green
; Store in r3H (screen color)

; Text yellow, background black

; Store in r4lL (header color)

; Use default color

; Store in r4H (status bar color)
; Call entry point

B.5 Code samples for the ROM version

B.5.1 Search ROM banks for X16 Edit

The X16 Edit ROM bank may be identified by the application signature (" X16EDIT")
stored at $FFF0. This code sample searches all ROM banks for the signature. If
found, the ROM bank is returned in A with carry clear; otherwise carry is set on

return.

find_me:

lda
pha
stz
ldy

$01

$01
#$00

; Store current ROM bank on stack

; Prepare searching from ROM bank O

15

scan:

lda $££f£f0,y ; Signature starts at $£ff0
cmp signature,y
bne next ; Signature didn’t match, check next ROM bank
iny ; Increase char pointer
cpy #3$07 ; Have we got 7 matching chars? If not, keep looking
bne scan
clc ; Set C = 0 as indicator X16 Edit was found
1lda $01 ; Load ROM bank into A
bra exit
next:
ldy #3$00 ; Reset char pointer
inc $01 ; Select next ROM bank
lda $01
cmp #$20 ; Have we checked all ROM banks?
bne scan
sec ; Set C = 1 as indicator X16 Edit was not found
exit:
plx ; Restore original ROM bank
stx $01
rts
signature: .byt $58,$31,$36,%$45,$44,$49,%54 ; = "X16EDIT"

B.5.2 Default entry point

1da $01 ; Store current ROM bank on stack
pha
jsr find_me ; Search ROM banks
bcs done ; Exit if X16 Edit wasn’t found
sta $01 ; Set ROM bank
jsr $c000 ; Call entry point
done:
pla ; Restore original ROM bank
sta $01
rts

B.5.3 Load file entry point

lda $01 ; Store current ROM bank on stack
pha

16

jsr
bcs
sta
1dx
ldy
1lda
sta
1lda
sta
1lda
sta
jsr
done:
pla
sta
rts

fname:

.byt "mytextfile.txt"

find_me
done
$01
#$01
#$£f
#<fname
$02
#>fname
$03
#fname_end-fname
$04
$c003

$01

fname_end:

; Search ROM banks

; Exit if X16 Edit wasn’t found
; Set ROM bank

; First RAM bank used by the editor
; And last RAM bank

; Pointer to file name (LSB)

; Store in rOL

; Pointer to file name (MSB)

; Store in rOH

; File name length

; Store in riL

; Call entry point

; Restore original ROM bank

B.5.4 Load file with options entry point

1lda
pha
jsr
bcs
sta

1dx
ldy
1lda
sta
1lda
sta
1lda
sta
1lda
sta
1lda
sta
1lda
sta
1lda
sta

$01

find_me
done
$01

#$01
#$£f
#<fname
$02
#>fname
$03
#fname_end-fname
$04
#$01
$05
#$04
$06
#$28
$o7
#3$08
$08

; Store current ROM bank on stack

; Search ROM banks
; Exit if X16 Edit wasn’t found
; Set ROM bank

; First RAM bank used by the editor
; And last RAM bank

; Pointer to file name (LSB)

; Store in rOL

; Pointer to file name (MSB)

; Store in rOH

; File name length

; Store in riL

; Auto-indent on, word wrap off
; Store in r1H

; Tab width

; Store in r2L

; Word wrap position

; Store in r2H

; Disk drive device number

; Store in r3L

17

lda #$bl ; Text white, background light green

sta $09 ; Store in r3H (screen color)
lda #3$07 ; Text yellow, background black
sta $0a ; Store in r4lL (header color)
1da #$00 ; Use default color
sta $0b ; Store in r4H (status bar color)
jsr $c006 ; Call entry point

done:
pla ; Restore original ROM bank
sta $01
rts

fname:

.byt "mytextfile.txt"
fname_end:

C License

Copyright 2020-2023, Stefan Jakobsson.

The X16 Edit program, including this manual, is released under the 2-Clause BSD
License.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.

THE SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CON-
TRIBUTORS “AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PRO-
CUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE.

18

	Introduction
	Basic usage
	Getting started
	Entering text
	Saving and loading text files
	Keyboard shortcuts
	Mouse control
	User interface
	Built-in help

	More on text editing
	Supported character sets
	Tab stop
	Auto-indent
	Word wrap
	Text justification
	Cut, copy and uncut
	Search and replace

	More on file handling
	Commodore DOS file paths
	The built-in file browser
	Change disk drive device number
	Disk drive commands

	Miscellaneous functions
	User-configurable key bindings
	Line break encoding
	Color settings
	Text buffer size

	Advanced topics
	Building X16 Edit from source
	X16 Edit ROM version
	The X16 Edit API

	List of keyboard shortcuts
	X16 Edit API
	Default entry point
	Load file entry point
	Load file with options entry point
	Code samples for the RAM version
	Default entry point
	Load file entry point
	Load file with options entry point

	Code samples for the ROM version
	Search ROM banks for X16 Edit
	Default entry point
	Load file entry point
	Load file with options entry point

	License

