
Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002

© 2002 Society for Design and Process Science

STATIC SOURCE CODE CHECKING FOR USER-DEFINED PROPERTIES

Gerard J. Holzmann
Bell Laboratories, Lucent Technologies

600 Mountain Avenue
Murray Hill, NJ 07974

ABSTRACT

Only a small fraction of the output generated by typical
static analysis tools tends to reveal serious software
defects. There are two main causes for this phenomenon.
The first is that the typical static analyzer casts its nets too
broadly, reporting everything reportable, rather than what
is likely to be a true bug. The second cause is that most
static analyzers can check the code for only a fixed set of
flaws. We describe a simple source code analyzer, UNO,
that tries to remedy these problems. The default properties
searched for by UNO are restricted to the most common
types of error in C programs: use of uninitialized vari-
ables, nil-pointer dereferencing, and out-of-bound array
indexing. The checking capabilities of UNO can be
extended by the user with the definition of application-
dependent properties, which are written as ANSI-C func-
tions.

INTRODUCTION

It would be attractive if we could develop a tool that could
intercept all defects in a given piece of software with cer-
tainty, and with great efficiency to boot. Alas, it has long
been known that such a tool cannot exist (Turing 1936).
This does not mean that all attempts to build software
checking tools are doomed to fail; it does mean that no
such tool can promise to be all-encompassing. Not all real
errors can always be caught, and not all errors caught can
always be real. Increasing the number of real errors
caught by a static analysis tool often increases also the
number of false reports, and although the former increases
the usefulness of the tool, the latter can seriously under-
mine it.

In the design of UNO we try to accomplish two
goals.

• By focusing the tool on the types of software
defects that occur most commonly in practice, we
can increase the signal to noise ratio of the tool.

• By allowing the user to define precisely targeted,
application-specific properties, we can extend the

power of the tool in the area of primary interest to
the user. This extension of the checking power of a
static analyzer is similar to the one found in logic
model checking tools, and can be based on similar
algorithms (Clarke et al. 1999, Holzmann 1997,
2000).

RELATED WORK

The notion of analysis based on the symbolic execution of
code is surprisingly old, e.g. Boyer et al. 1975, Clarke
1976, Osterweil 1976, but never appears to have taken
hold in mainstream tools. An well-known example of a
broadly distributed, yet still thinly used code analysis tool
is lint, which dates from 1977 (Johnson 1978). More
recent significant extensions of this tool include lclint
(Evans et al. 1994), and the commercial tools PClint and
FlexeLint, which attempt to cast their nets considerably
more broadly than the original. Other well-known tools
include PREfix (Bush et al. 2000), and its recent adaption
PREfast (Pincus 2000).

Elaborate static checking capabilities have also been
built into commercial tools such as KLOCwork accelera-
tor and PolySpace, leading to some remarkable promises
of defect coverage by the tool vendors. Some commercial
code checkers gain power by targeting a restricted class of
potential defects, e.g. Visual Threads (Savage et al. 1997),
Purify, andInsure++.

The checking power of a tool can also be increased
significantly if more information about the purpose of a
piece of code is provided through source code annotations,
e.g. Detlefs et al. 1998, and the Microsoft Vault tool.

Almost none of the existing tools can be extended
with user-defined properties; the few exceptions do not
allow for free access to dataflow information in defining
additional checks, e.g. ParaSoft’s tool CodeWizard, Lord
1997, and Cobleigh et al. 2001. An exception is Dawson
Engler’s MC, or Meta-level Compiler (Engler 2000).
Engler’s MC supports the definition of properties for static
checking in a more powerful language called Metal.
There are two main differences with UNO, the tool we

describe in this paper. First, unlike MC, UNO properties
do not require a special language, but are written as func-
tions in ANSI-C, supported by a small library of primi-
tives that give direct access to dataflow information. Sec-
ondly, unlike MC, UNO properties need not be compiled
and linked with the tool before they can be used: they are
interpreted on-the-fly by UNO. As we shall see, the style
of property specification in UNO differs substantially from
Metal, though the length of comparable specifications is
very similar in and Metal.

CATCHING SOFTWARE DEFECTS

Consider the following trivial, yet flawed, C program.

1 int *ptr;
2
3 void
4 main(void)
5 {
6 if (ptr)
7 *ptr = 0;
8 if (!ptr)
9 *ptr = 1;

10 }

Figure 1 summarizes the output from lint, LCLint, and for
this little program. First, the default run of lint produces a
fairly cosmetic complaint. Many other things could be
complained about with equal cause. The main procedure,
for instance, should return a result of type int, not void,
and the procedure should expect two parameters for possi-
ble command line arguments.

If we use the option -p to lint for more feedback, the
tool generates 67 lines of output, including copious warn-
ings about small disagreements within default C header
files. The one real error in this program is not flagged: the
nil-pointer dereference on line 9. (The statement on line 7
is unreachable.)

Lclint, lint’s modern incarnation, catches the error,
but hides it in a range of messages and explanatory text, as
illustrated in Figure 1. If we give UNO the program, the
default output is to the point, revealing just the bug.

In a scan of a ten-line program, some verbosity is
not much of an issue. For more realistic programs,
though, generating hundreds or thousands of lines of righ-
teous warnings can easily obscure the few serious defects
that may be hidden in its midst. UNO attempts to generate
less output by restricting to a careful check of serious
types of software defects only.

UNO is built as an extension of the public-domain
compiler front-end tool ctree (Flisakowski 1997). We
used the same version of ctree earlier to build a model
extractor for ANSI-C code, enabling the logic verification

of multi-threaded systems code directly from its source,
using the SPIN model checker as a background verification
engine (Holzmann 1997 and 2000, Holzmann and Smith
1999).

The main extensions we built to turn ctree into UNO
are:

• A dataflow analysis module, collecting basic def-
use information for every node in the parse tree.

• A conversion routine that converts the parse tree for
each C procedure into a control flow graph.

• Basic analysis routines that run the predefined
checks for uninitialized variables, nil-pointer deref-
erencing, and out-of-bound array indexing on the
source code, using the control-flow graphs for the
local checks and the function-call graph for the glo-
bal checks.

• A generic model checking routine that accepts a
user-specified property and checks it against the
control-flow graphs and/or the function-call graph
for the source code being analyzed.

• The addition of a program to perform a global anal-
ysis of a program in a separate second pass, based
on information gathered in the first pass.

The dataflow analysis module constructs a linked
list of all data objects referenced at or below each node in
the parsetree. It marks each data object with tags that
record whether the object is declared, invoked as a func-
tion, evaluated as a variable, dereferenced, assigned a new
value, or if it’s address is taken. The most commonly
used tags are: FCALL (to tag procedure names), DECL
(to tag a variable declaration), DEREF (to tag a derefer-
encing operation), ALIAS (to tag symbols whose address
is taken), DEF (to tag symbols whose value is changed),
and USE (to tag symbols whose value is used). The
dataflow module also collects information about known
array bounds and about variables used as array indices.
This information is recorded separately, for use in the
array bounds analysis. The special tag ANY matches any
of the data-flow tags, and the special tag NONE matches
none.

The second extension converts the parse tree that is
generated for each C procedure by ctree into a control-
flow graph, interpreting goto and return statements, and
branch and iteration structures. All subsequent analyses
are done either via depth-first searches in these control-
flow graphs or in the global function call graph that is also
constructed here.

The program sources for applications are typically
divided over a large number of different source files that
can be compiled separately and then linked to form the

final executable. UNO starts by analyzing each source file
separately, performing a detailed local analysis on the
functions defined in that file, and saving other information
for a later global analysis in intermediate files. If the
intermediate files are preserved, clearly the analysis of a
program source file need not be repeated unless the source
file, or any of the files it depends on, was changed since
the matching intermediate file was written.

In the first phase of the analysis UNO can check the
usage of local variables, and of statically declared global
variables. In the second phase, the global analysis is per-
formed based on only the information collected in the col-
lection of intermediate files. The use of all non-static glo-
bal variables is analyzed, e.g. to find possible dereferences
of uninitialized global pointers.

LOCAL ANALYSIS

One of the objectives of the analysis is to find paths in the
the control-flow graphs of functions from the point of dec-
laration of a variable to the point of its first assignment
(i.e., def) or evaluation (i.e., use). This can easily be inter-
preted as a classic model checking problem, where the
property to be checked defines the required temporal rela-
tion between def and use operations, and the system is
given by the control flow graph of a C-function. Both
property and control flow graph can be defined formally
as labeled transition systems.

Let {N, n0 , F, L, T} be a labeled transition system
(LTS), where N is a finite set of nodes, n0 ∈ N is the start
node, F ⊂ N is the set of final, or accepting, nodes, L is a
set of labels on transitions, discussed in more detail below,
and T ⊂ L×N×N is the transition relation, assigning a label
from set L to each valid transition between nodes from set
N in the graph.

The control flow graph for a given C-function is
readily formalized as a labeled transition system: the
nodes in the graph form set N, set F includes the nodes
that are reached immediately after a statement is executed
that returns control to a caller of the procedure directly or
indirectly (e.g., a return or exit statement), and the label
set L contains the set of dataflow tag markings for each
statement.

Figure 2 gives the structure of the labeled transition
system to capture the def before use property that forbids
the uninitialized use of a variable. Execution starts at the
initial node n0 . When a declaration for the variable is
seen without immediate initialization (assuming it is not
an array declaration), the property LTS moves to n1 ,
where it waits to see either a transition with a DEF or with
a USE tag, ignoring everything else. In the first case, the
property moves to the non-final (and non-accepting) state

n2 from where no further moves are possible. In the sec-
ond case, the property moves into its final (and accepting)
state n3 , corresponding to the detection of a def before use
error.

We can check if any execution path in the control
flow graph of a given procedure violates the def before
use property by computing the product of the two labeled
transition systems in a standard way (Holzmann 2000).
First note that we can express all paths through the control
flow graph of a procedure as a set of strings on L. Call
this set S. In a similar way we can also express all accept-
ing paths through the reachability graph for the labeled
transition system of the property (cf. Figure 2) as a set of
strings on the same label set L. Call this set V. If the
intersection of S and V is non-empty, the procedure con-
tains at least one execution path that matches an accepting
path of the def before use LTS, corresponding to a possi-
ble violation of the def before use requirement.

The check for compliance with the def before use
requirement then comes down to the computation of the
intersection of two languages, standard in model checking.
It would be inefficient to perform this check separately for
every variable that is declared. We can, however, easily
combine the work for all variables in a single depth-first
search of the control-flow graph for each procedure. For a
given property, such a search has a complexity that
increases only linearly with the size of the input (the com-
plexity of the depth-first search as such).

Array-Bound Violations: A check for array bound viola-
tions can be done in much the same way as the check for
the def before use property. The differences are only in
the definition of the label set L, and the precise circum-
stances under which we can declare an accepting run in
the LTS for the property.

As a simple example, consider the following little
program.

1 void
2 main(void)
3 {
4 int a[10], b[5], c[6*8];
5 int i;
6
7 for (i = 1; i < 11; i++)
8 a[i] = 0;
9 }

which triggers the following verdict:

$ uno array.c
uno: in fct main, array index can \

exceed upper-bound (10>9), var ’i’
statement : array.c:8: a[i]=0

declaration: array.c:5: int i;

The range of possible values for a scalar variable can be
deduced from assignment operations (e.g., i =0 ;) and com-
parisons in conditional branch instructions. For instance,
from the conditional if(i <5) we can conclude that along
the true branch scalar variable i can only have values less
than 5, and along the false branch it can only have values
larger than or equal to 5. The information is combined
when multiple conditionals are passed along a path, and
fixed at each assignment. A precise indication of a value
range is easily lost though. For instance, when the current
value range for i is (i≥0 ∧ i <5) and the next operation
seen is i + + then the known range for i reduces to (i≥0).

Value ranges are computed conservatively in UNO.
The range could be extended by relying on specialized
tools for resolving constraint systems, e.g. (Kelly et al.
1996). Limits clearly will remain also in that case, so it is
uncertain if such an extension could indeed significantly
improve UNO’s performance in practice.

Eliminating Infeasible Paths: A path through the control
flow graph consists of a simple sequence of transitions.
Only two basic types of transitions are of interest to us in
determining if a specific path is feasible or not: some tran-
sitions correspond to steps through a conditional branch
point in the program source (e.g., (i >5) ≡ true or
(i >5) ≡ false); the remaining transitions correspond to
unconditional steps (e.g., i + +). If a path is infeasible it
must contain at least one conditional that cannot hold in
the given context. It may, for instance, contradict earlier
conditionals that appear in the same path. The sequence
(i >5) ≡ true ; (i <5) ≡ true ; clearly is not consistent.
The conditional can also conflict with earlier assignments.
For instance, the sequence i =6 ; (i >5) ≡ false ; is not
consistent. In many cases UNO can determine if a path is
feasible or not. It can use this information to suppress
error reports on execution paths that turn out to be infeasi-
ble, and it can also, more profitably, use this information
to shortcut the search procedure that is used to compute
the language intersection of property and system. A
resolver tool, such as the Omega calculator from (Kelley
et al. 1996), can be used to improve accuracy, but as
before, not all infeasible paths can always be detected, and
therefore a reasonable engineering compromise must be
sought.

GLOBAL ANALYSIS

To check if a global variable can be evaluated or derefer-
enced before it is defined is harder than checking if the
same is true for a local variable. Globals in C are by
default initialized to zero, so in principle it is impossible
to violate the rule that a value must be assigned before the

variable is evaluated. An initial value of zero is still a
problem, though, when the variable is a pointer. Derefer-
encing a nil-pointer is always a fatal error. The second
phase of the analysis is therefore concentrated on the anal-
ysis of dereferencing operations on global pointer vari-
ables, all initialized to a nil value by default.

For global variables we need to be able to take into
account the possible call chain through the function call
graph, not just the information derived from possible exe-
cution paths within local control-flow graphs of functions.
This can quickly become overly complex, especially for
large code bases. UNO therefore uses an approximation
method based on the information gathered from the inter-
mediate files from the first pass of the analysis. The func-
tion call graph plays a central role in this analysis.

The analysis starts at the main() routine and recur-
sively descends into all functions that can be called from
that routine, via a depth-first search. Because the search
touches all functions reachable from main, as a by product
of the analysis, it can also readily identify all functions
that are not called, which can capture a remarkable
amount of discarded code in evolving programs.

To be able to do the global analysis in a meaningful
way, the analyzer must have access to some minimal
information from the first pass. It needs to know, for
instance, the list of functions that can be called from a
given function, and it needs to know on which execution
paths pointer variables may be evaluated, dereferenced, or
set. The first pass of UNO captures this information by
generating, among other information, a highly condensed
version of the control-flow graph for each function, that
contains only this information. If no globals are set or
used, the abstract graph contains only the points where
other functions are called. To make the analyses more pre-
cise, also information about points in the abstract graph
where global variables have known (zero or nonzero)
value, are recorded. The check now reduces to the same
problem as encountered in the local analyses: a standard
model checking problem.

UNO uses a predefined property to capture global
nil-pointer dereferencing problems, but also accepts user-
defined global properties, again defined as ANSI-C func-
tions in a style we discuss in more detail shortly.

UNO’s abstract function graphs do not attempt to
compute possible return values. Since the tool is focused
on def-use analysis, only assignments are important, not
the values being assigned. The tool PREfix (Bush et al.
2000) attempts to capture more information by generating
functional models of each function, based on a restricted
symbolic execution of the function source. The user of
the tool can control the maximum number of execution

paths that will be generated for each function, and the
maximum number of times loops are unrolled. Inevitably,
the path conditions can quickly become overly complex,
making analysis either very time consuming or undecid-
able. Although not explicitly stated in Bush et al. 2000,
the potential for added accuracy of this type of analysis
does not necessarily outweigh the overhead involved.
There is great benefit in a fast tool that can do a reason-
able, though still approximate, analysis. Much the same
observations have lead to a successor tool to PREfix,
called PREfast. The new tool is said to be less precise,
but faster and therefore of more immediate use to pro-
grammers (Pincus 2000).

DEFINING PROPERTIES

One of the more interesting features of UNO is its ability
to accept user-defined properties of application specific
requirements. The properties are defined in ANSI-C, but
they do not have to be compiled before they can be used.
The user can specify the file that contains the definition of
a UNO property in the format below on the command line,
for instance as:

$ uno -prop sample.prop *.c

where the check defined in the file sample.prop is applied
to all functions in all C source files covered by the expan-
sion of *.c. The extension .prop used here is a convention
to more easily recognize and categorize UNO property
files; it is not required by the tool. The name of the proce-
dure that is defined in the file, though, must be equal to
uno_check().

The code in sample.prop is parsed, like any other C
procedure. The control-flow graph that is prepared is now
used to guide the search for errors. UNO interprets the
code, calling upon a small library of primitives to access
dataflow information where required.

There are two types of predefined primitives in the
UNO property definitions language: actions and queries.
We mention the most important below; a complete list can
be found in Holzmann 2002. UNO actions include:
error (msg) to print an erro message with the path
through the control flow graph, or function call graph, that
leads to the point where the action was invoked, mark (N)
to mark selected symbols with the integer value N, and
unmark () to remove marks from the selected symbols.
UNO queries include:

select(char *name, tag require, tag forbid)
unselect(char *name, tag require, tag forbid)
refine(tag require, tag forbid)

match(int mark,tag require,tag forbid)
marked(int mark,tag require,tag forbid)
path_ends()

The parameters used here have the following meanings:

name specifies a name for the symbol to be matched;
the empty string matches any symbol-name.

require defines one or more required def-use tags for
the symbol. The match tag DEF DECL, for
instance, matches if the symbol has a DEF
and/or a DECL tag.

forbid defines one or more xor-ed def-use tags that
may not be attached to the symbol.

mark specifies a requirement on a previous marking
of the symbol.

The query select () selects symbols from the cur-
rent statement, based on the criteria specified, erasing any
previous selection. The query unselect () excludes the
matching symbols from an existing selection. The query
match () reduces the existing selection to the matching
symbols, which now include a requirement on a pre-
existing integer mark. All three above queries return true
if the resulting selection is non-empty, and false other-
wise. The query path_ends () returns true when the cur-
rent node in the control-flow graph corresponds to the end
of an execution path, just before the function returns to its
caller. And finally, the query marked () returns true if
matching symbols exist that have the mark specified, but
it does not change the selection.

Side-Effects in Assertions

A simple first example of a UNO property is a check for
the occurrence of side-effects or function calls in the argu-
ments to an assert statement. As noted in Engler et al.
2000, such side-effects can introduce bugs in the code
when the assertions are disabled at a later stage of code
development. The UNO property can be defined as:

void
uno_check(void) // side-effects in asserts
{

if (select("assert", FCALL, NONE))
if (select("", DEF|FCALL, NONE))
if (unselect("assert", ANY, NONE))

error("side effect or fct in assert");
}

The property is defined directly in ANSI-C, using three
queries and one error-action. UNO runs the check over all
paths in the control flow graphs of all functions in the pro-
gram source, evaluating the queries at each node in a
given control-flow graph.

The first call to select returns true only when a node

in the control-flow graph is reached that contains a call to
a function named assert. The second call to select, exe-
cuted only when the first call returned true, makes a new
selection, this time of all symbols that have a DEF or an
FCALL tag from the dataflow analysis. This set, because
of the match for function calls through the FCALL tag,
will of course also match the symbol for the assert func-
tion call. The call to unselect, executed only if the first
two calls returned true, will remove that symbol from the
selection. If any symbol now remains in the selection,
either a side-effect or a function call in the argument list
of the assert call was detected, and an error can be
reported.

Def after Def Scenarios

A slightly more interesting check is to look for def after
def scenarios in the source code. In this case two value
assignments can follow each other immediately, with no
intervening use of the value. The first assignment can in
that case often be avoided. Here is how the property can
be written for UNO:

void
uno_check(void) // def-after-def errors
{

if (select("", USE, NONE))
if (match(1, ANY, NONE))

unmark();

if (select("", DEF, NONE))
{ if (match(1, ANY, NONE))

error("def after def");
else

mark(1);
}

}

The call to select catches the symbols for all variables that
have a USE tag, meaning that they are evaluated in the
current statement. The call to match finds the names of
symbols that were assigned a mark of one before, i.e., in a
DEF context (see below). If there are any such matches,
the markings from those symbols are removed, since this
means that a USE properly followed the earlier DEF.
The next part of the property arranges for new markings to
be assigned when a DEF is encountered. The call to
select finds the symbols with a DEF tag. The call of
match tries to identify symbols with these names that were
already marked. If there are any matches here, an error can
be reported. If not, a new marking is assigned.

If we apply this check to the following little pro-
gram

1 int
2 main(void)
3 { int x;
4
5 x = 1;
6 if (x == 1)
7 { x = 2;
8 x = 20;
9 } else
10 x = 3;
11 x = 4;
12 }

UNO faithfully reports the three possible error paths. The
first is:

$ uno -prop defdef.prop example.c
uno: 1: main() ’def after def error’

1: example.c:2: <main()>;
2: example.c:3: <int x; >;
3: example.c:5: <x=1>;

C 4: example.c:6: <(x==1)>
5: example.c:7: <x=2>;
6: example.c:8: <x=20>;

The line marked with a C in the left margin is a condi-
tional in the path. UNO will try to weed out infeasible
paths, but it will not always be able to do so completely.
The information provided in the error traces is always suf-
ficient for the user to quickly make a final determination
of the feasibility of each error though.

Locking Discipline

Locking violations are not difficult to catch in a compiler,
if it were not for the unfortunate fact that most applica-
tions use their own specific library of lock and unlock
calls. There can also be multiple independet locks, so in
the analysis we should be able to track them all indepen-
dently. Let us assume the a lock library is used where the
lock routine returns a value that must be used in a subse-
quent call to the unlock routine. A UNO property for this
type of check can be defined as follows.

void
uno_check(void) // handle multiple locks
{

if (select("lock", FCALL, NONE))
if (select("", DEF, NONE))
{ if (match(1, DEF, NONE))

error("lock after lock");
else

mark(1);
}

if (select("unlock", FCALL, NONE))
if (select("", USE, NONE))
{ if (match(1, DEF, NONE))

unmark();
else

error("unlock without prior lock");
}

if (path_ends())
if (marked(1, ANY, NONE))

error("lock without unlock");
}

Note that the same structure of the property can be used to
check other types of parameterized operations that appear
in pairs, such as combinations of fopen and fclose, and of
malloc and free, provided that the requirement is that the
pairs must always appear together along every path within
each function.

AN APPLICATION

In Holzmann 2002, data for the application of UNO to a
small number of public domain software packages, such
as Sendmail, Unravel, and Linux is presented. As one
example, we summarize the results of the application of
UNO’s builtin tests to the Unravel sources here.

Unravel is a public domain program slicing tool.
We applied UNO to the most recent source distribution,
dated July 26, 1996. The package contains about 21
KLOC in source files. There are 36 separate C source
files in the distribution. The local UNO check on these
sources takes 12.1 seconds of system and user time (on the
250 MHz SGI MIPS machine). The global check takes
4.0 seconds.

UNO reports 15 errors in the local analysis. All 15
reports are warnings about the use of a ‘‘possibly unini-
tialized variable,’’ in various contexts. 12 reports reveal
true errors. The remaining 3 reports involve execution
paths that UNO could not determine to be infeasible. As
one example, this code in MultiSlice.c:

572 int line,ix,at,h;
573
574 ix = w->slicetext.slicesrc. \

line[line_from].n_highlight;
575 if (ix+5 > MAXHL) return;
576 ix = w->slicetext.slicesrc. \

line[line_to].n_highlight;
577 if (ix+5 > MAXHL) return;
578 if(DEBUG) printf ("Setting \

line %d0,line);

triggers the valid report:

uno: in fct SliceSet, possibly \
uninitialized variable ’line’

statement : MultiSlice.c:578: \
printf()

declaration: MultiSlice.c:572: \
int line,ix,at,h;

Another, perhaps more interesting, example is the follow-
ing code from the file slice_driver.c:

113 int stmt_proc;
114
115 clear_active();
116 for (i = 1; i <= n_procs; i++){
117 if (procs[i].file_id == file)
118 if ((stmt >= procs[i].entry) &&
119 (stmt <= procs[i].exit)){
120 stmt_proc = i;
121 break;
122 }
123 }
124 if ((stmt_proc < 1) || \
124 (stmt_proc > n_procs)){

which triggers the valid report:

uno: in fct do_slice, possibly \
uninitialized variable ’stmt_proc’

statement : auto-slice.c:170: \
((stmt_proc<1)||(stmt_proc>n_procs))

declaration: auto-slice.c:154: \
int stmt_proc;

CONCLUSION

We have described the basic design of a relatively simple
static analysis tool called UNO. The tool is meant to inter-
cept the most common types of errors in ANSI-C pro-
grams: uninitialized variables, nil-pointer dereferencing,
and out-of-bound array indexing. The most interesting part
of the tool, however, is it’s extendibility with user-defined
properties. The properties are written directly in ANSI-C.

The support for user-defined properties can signifi-
cantly extend the power of a code analyzer. In UNO we
have chosen to shift the emphasis in the tool towards the
definition of such properties. There is also a drawback in
this approach, though. The ideal checking method places
no demands on the user: the code need not be annotated
and no other guidance is needed to gain benefit from the
check. Writing application-specific properties, just like
adding annotations into the code, is a way to provide the
extra guidance and it takes time and some skill to do it
well. UNO properties can be written in an implementation
independent way and can be re-used frequently. Small
libraries may be developed of typical properties that can
act as templates, requiring only minor adaption for a given
application.

REFERENCES

W. Bush, J.D. Pincus, and D.J.Sielaff, A static analyzer
for finding dynamic programming errors. Software Prac-
tice and Experience, Vol. 30, No. 7, pp. 775-802.

E.M. Clarke, O. Grumberg, and D. Peled, Model Check-
ing, MIT Press, Boston, 1999.

R.S. Boyer, B. Elspas, and K.N. Levitt, Select— a formal
system for testing and debugging programs by symbolic
execution. Proc. Int. Conf. Reliable Software, April 1975,
pp. 234-244.

L. Clarke, Test data generation and symbolic execution of
programs as an aid to program validation. PhD Thesis,
Iniv. of Colorado, 1976.

J.C. Cobleigh, L.A. Clarke, L.J. Osterweil, Flavers: a
finite state verification technique for software systems.
Technical Report UM-CS-2001-017, CS Dept., Univ. of
Mass., Amherst, MA 01003, April 2001.

D.L. Detlefs, K.R.M. Leino, G. Nelson, and J.B. Saxe,
Extended static checking. Technical Report SRC-159,
COMPAQ SRC, Dec. 1998.

D. Engler, B. Chelf, A. Chou, and S. Hallem, Checking
system rules using system-specific, programmer-written
compiler extensions. Proc. 4th Symp. on Operating Sys-
tems Design and Implementation (OSDI), Usenix Organi-
zation, San Diego, CA., Oct. 22-25, 2000.

D. Evans, J. Guttag, J. Horning, and Y.M. Tan. Lclint: A
tool for using specifications to check code. Proc. ACM
SIGSOFT Symposium on Foundations of Software Engi-
neering, December 1994.

S. Flisakowski. CTree distribution, July 1997.
http://www.kagi.com/flisakow/.

G.J. Holzmann, The model checker Spin, IEEE Trans. on
Softw. Eng., Vol 23, No. 5, May 1997, pp. 279-295.

G.J. Holzmann, and M.H. Smith, A practical method for
the verification of event-driven software, Proc. Intern.
Conf. on Software Eng. (ICSE99), May 1999, Los Ange-
les, CA, pp. 597-607, (to appear in: IEEE Trans. on Softw.
Eng., 2002.)

G.J. Holzmann, Software Model Checking, Lecture Notes,
NATO Summer School, Marktoberdorf, Germany, August
2000, IOS Press, Computer and System Sciences, Vol.
180, pp. 309-355.

G.J. Holzmann, UNO: Static Source Code Checking for
User-Defined Properties, Bell Labs Technical Report, 27
pgs, January 2002. (Full version of the paper. Available
from the author.)

S.C. Johnson, Lint, a C program checker, Unix
Programmer’s Manual, 7th Edition, Vol. 2A, Jan. 1979.

W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman,
and D. Wonnacott, The Omega calculator and library,
Version 1.1.0. Technical Report November 18, 1996,
University of Maryland.

T. Lord, Application specific static code checking for C
programs: Ctool. Online description, 1997.
ftp://krusty.e-technik.uni-dortmund
.de/pub/people/mvo/twaddle.tar.gz.

L.J. Osterweil, L.D. Fosdick, DAVE-A Validation Error
Detection and Documentation System for Fortran Pro-
grams, Software - Practice and Experience Vol. 6, No. 4,
pp. 473-486, 1976.

J. Pincus, Analysis is necessary, but far from sufficient.
Invited presentation, International Symposium on Soft-
ware Testing and Analysis (ISSTA), ACM SigSoft,
August 2000, Portland, Oregon.

S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T.E. Anderson. Eraser: A dynamic data race detector for
multithreaded programming. ACM Trans. on Computer
Systems, Vol. 15, No. 4, pp. 391-411, 1997.

A.M. Turing, On computable numbers, with an applica-
tion to the Entscheidungs problem. Proc. London Mathe-
matical Soc., Ser. 2-42, pp. 230-265 (see p. 247), 1936.

D. Wagner, J.S. Foster, E.A. Brewer, A. Aiken, A First
Step Towards Automated Detection of Buffer Overrun
Vulnerabilities, Proc. Network and Distributed Systems
Security (NDSS 2000), San Diego, CA., USA, Feb. 2000.

URL’s for Tools Mentioned:

http://KLOCwork.com
http://www.parasoft.com
http://www.polyspace.com
http://research.microsoft.com/vault
http://www.cs.umd.edu/projects/omega
http://www.gimpel.com
http://hissa.ncsl.nist.gov/unravel.html

$ lint expr.c
declared global, could be static

ptr expr.c(1)

$ lint -p expr.c | wc
67 571 5390

$ lclint expr.c
LCLint 2.5q --- 26 July 2000

expr.c:4:1: Function main declared to return void, should return int
The function main does not match the expected type.
(-maintype will suppress message)

expr.c: (in function main)
expr.c:9:4: Dereference of null pointer ptr: *ptr

A possibly null pointer is dereferenced. Value is either the result of a
function which may return null (in which case, code should check it is not
null), or a global, parameter or structure field declared with the null
qualifier. (-nullderef will suppress message)

expr.c:1:6: Variable exported but not used outside expr: ptr
A declaration is exported, but not used outside this module. Declaration
can use static qualifier. (-exportlocal will suppress message)

Finished LCLint checking --- 3 code errors found

$ uno expr.c
uno: in fct main, possible global nil-ptr dereference ’ptr’

statement : expr.c:9: (*ptr)=1
declaration: expr.c:1: int *ptr;

Fig. 1 Output from LCLint and UNO

n0

n1

n2 n3

Start.
.

.
.

.
.

.

DECL ∧ ¬ (DEF ∨ ARRAY_DECL)

DEF USE ∧ ¬ USEafterdef

¬ DECL ∨ DEF ∨ ARRAY_DECL

¬ DEF ∧ ¬ USE

Fig. 2 Property Automaton for Def Before Use

