NAME
uno - static analysis tool for ANSI-C programs

SYNOPSIS
uno [-D..] [-U..][-I..][-CPP=..][-a] [-g X] [-h] [-1] [-m X] [-n] [-p X] [-9] [-t] [-u] [-V] [-V] [-W] [-x f] *.Cc

DESCRIPTION
UNo is a tool for analyzing programs written in ANSI-C. By default, the tool scans the sources for the
three most commonly occuring defects of C programs: use of uninitialized variables, nil-pointer dereferenc-
ing problems, and out-of-bound array indexing problems. It can optionally also report on a series of other,
more cosmetic, flaws of the code, such as redundant variable and function declarations, unused fields in
structures, variables set but not used, the use of conditions with side-effects, etc.

The UNo analysis proceeds in two phases: a local analysis of each function in the code, and a global analy-
sis for the entire program. The local analysis can be done on also incomplete code, but the global analysis
expects a complete program that can be searched starting from the main() routine.

UNo allows the user to define new properties to check for, by writing simple C-functions that encode the
required check. The properties can specify either a local check, applied to each function separately, or a
global check, applied to the program as a whole. The local check applies to the use of local variables of
any type, the global check applies to the use of global pointers only.

The first group of options allows for the definition of compiler directives on the command line, to guide the
preprocessing of the sources.

-Dname=def
Define name with value def as if by a #define.

-Dname
Define name with value 1.

-Ildir Add directory dir to the list of directories that is searched by the preprocessor for include files.

-Uname
Remove any definitions of name, where name is a reserved symbol that may be predefined by the
preprocessor. If present, this action supersedes the possible use of -D for the same symbol, irre-
spective of the order in which these options are given.

-CPP=...
Set the preprocessor to the name specified. For instance, CPP="cl -EP -nologo" .

The next set of options controls how the analysis is performed.

-a Report all error paths in the local analyses, rather than only paths that end in distinct statements in
the source.

-g X Check the global property definition stored in file x, instead of the default property for the use or
dereferencing of uninitialized global pointers (by default initialized to zero). By convention, the
property function must be declared as void uno_check(void) {}.

-h or -help Prints a usage summary with the main tool options.
-l Perform only the local analysis, do not write intermediate files.

-m f Use a master definitions file, with UNO type definitions, for the local analyses. This can be useful
in cases where the source being analyzed is incomplete, e.g., header files are missing. The user
can add terse declarations of symbol names that should be understood to be typenames by the UNO
parser. By convention this is done in a file named _uno_.dfn, which is placed in the same direc-
tory where UNO is invoked. The file may contains entries of the form: UnoType bool; UnoType
complex;

which suffice to identify them as typenames to the tool, without requiring further detail. Defini-
tions are given one per line, and terminated by a semi-colon. The file may also contain any stan-
dard preprocessing command understood by ANSI-compliant C preprocessors. This can be used to
avoid the expansion of macro names, for instance, so that they can be tracked in UNO properties,

e.g.: #define assert(x) Assert(x) /* avoid macro-expansion */

If the filename for the definitions file is _uno_.dfn, and the file is placed in the directory where
UNo is invoked, the definitions file will automatically be included. If the file name is different, or
located elsewhere, the -m option can be used.

-n Ignore all preprocessing directives in the source files being analyzed. This can be useful for ana-
lyzing output from a preprocessor, where the directives can be non-ANSI compliant. Cross-refer-
encing information to the original source files is lost in this case.

-p X Check the local property definition stored in file x. As with global checks, the property function
must be declared as void uno_check(void) {}.

-S Print only the symbol table information for each source file, and exit.

-t Provide detailed function call traces for any error scenario found during the global analysis.

-u Complain about redundancies of all sorts.

-V Print the current UNO version number and exit.

-V Verbose mode, currently mostly for debugging purposes.

-w Picky, or lint-like, mode. Complains about a larger variety of things, including more cosmetic

flaws in the code. Includes -u and - .

-x f Declare f to be a function that does not return. This affects the control-flow of the program and can
therefore be important for the results of the analysis. By default, only the functions named exit ,
fatal , and panic are presumed not to return control to the caller.

NOTES
Unless the -l flag is used, UNO writes a small intermediate file at the end of the local analysis for each
source file. The intermediate files for all source files enables the global analysis. Each intermediate file has
the same base-name as the .c source file from which it was generated, but with the extension .uno instead of
.c. UNo cleans up the intermediate files at the end of the global analysis. For very large source trees it can
be beneficial to preserve the .uno files in between subsequent analysis, so that they are only recreated when
necessary.

SEE ALSO
More background information on the design of the tool, examples of properties and applications, can be
found in:
G.J. Holzmann, ‘UNo: Static Source Code Checking for User-Defined Properties,’
Proc. IDPT 2002, 6th World Conf. on Integrated Design & Process Technology, June 2002, Pasadena,
CA.

