TCPA Programming in Linux

Dr. David Safford
Mgr., Global Security Analysis Lab
IBM Research




Outline

*

*
*
*

*

Resources

What is TCPA?
Getting Started
Programming in Linux
Next Steps




Resources:

» Trusted Computing Platform Alliance (TCPA)
home page and main specification v1.1b:

* http://www.trustedcomputing.org
» Trusted Computing Group (TCG) home page:
* http://www.trustedcomputinggroup.org

* Research external page (papers, linux driver):
* http://www.research.ibm.com/gsal/tcpa

* Research internal page (tutorial/libtcpa/driver):
* http://dr.watson.iom.com/gsal/tcpa




What is TCPA?:

+ Officially IBM Embedded Security Subsystem (ESS) 2.0
Shipped October 2002 on Thinkpads, desktops
Hardware RNG, on chip RSA key generation
RSA signature, encryption/decryption
Non-volatile key storage

PCR (platform configuration register)
¢ Register extend — state hashed into 160 bit register.
¢ Seal and unseal data depending on PCR value
+ Wrap and unwrap keys dependent on PCR
¢ can be used for trusted boot, secure key release




Programming view of the TPM

Functional Units Non-volatile memory

Endorsement Key (2048b)

Storage Root Key (2048b)

HMAC Owner Auth Secret (160b)

RSA Key Generation

RSA Encrypt/Decrypt

Volatile memory

RSA Key Slot-0

RSA Key Slot-9

Key Handles

Auth Session Handles




The Non-Volatile Keys

* Pubek: the RSA Public Endorsement Key
» Created, but not recorded at manufacture
¢ Cannot be changed
* Used to encrypt sensitive data to TPM
* SRK: the RSA storage root key
¢ Erased by BIOS or owner “clear”
¢ Created on chip with TPM_TakeOwnership command
* Access protected with authentication shared key
* Ownerauth: 160 bit symmetric shared key
¢ Used to authenticate all owner sensitive commands
¢ Given by owner to TPM in TPM_TakeOwnership




TCPA Software Stack (TSS) Spec:

Application
TSP: TCPA Service Provider (concurrency)
TCS: TCPA Core Services (resource/audit mgt)
TDDL: TCPA Device Driver Library (TPM commands)
¢ (Linux libtcpa)
TDD: TCPA Device Driver (open/read/write)
¢ (Linux tpm.o device driver module)




Libtcpa

* Intended as tutorial/introduction to TCPA on Linux
* Implements interesting subset of commands
+ Ownership, sign, seal/unseal
» Uses openssl for crypto support
* Not a full featured TSS stack:
* No synchronization for concurrent requests
* No resource management
* No audit management
* No key migration




Getting Started

* Compile and install tpm.o
* Compile libtcpa and example programs
* Enable and clear chip:
¢ Power on while holding down “function” (Fn) key
(this establishes “physicalpresence”)
* At bios prompt, release Fn, and press F1 for setup
¢ config -> security subsystem
* “enable” chip
¢ “clear” chip




TPM startup

* At power on, chip starts up “activated”

» BIOS is responsible for “startup”, or “deactivate”

* Even deactivated TPM will respond to “safe” cmds:
¢ TPM Reset
* TPM_GetCapability (particularly version)

¢ (these are good test commands, as they should
always work.)




The TPM device

/dev/tpm -> character, major 10, minor 224
open, write/read as normal character device

All TPM commands are synchronous send/receive
* write() command blob to TPM
¢ read() result blob from TPM

Key and authentication handles give context




TPM Command format

» All data is in network (big-endian) byte order!

* Blobs:
2 byte TAG (to-TPM or from-TPM)
4 byte total blob length
4 byte command or result code
. command/result specific data




TPM_Transmit()

#include <stdio.h>

#include <stdint.h>

#include <netinet.h>

#tdefine TCPA PARAMSIZE OFFSET 2
#tdefine TCPA RETURN OFFSET 6
fdefine TCPA MAX BUFF _SIZE 4096

int TPM Transmit(unsigned char *blob)

{
int tpmfp, len;

uint32 t size;
if (tpmfp = open("/dev/tpm", O RDWR)) < 0) {
fprintf(stderr,"Can't open TPM Driver\n");
return(ret);

}
size = ntohl(*(uint32 t *)&blob[TCPA PARAMSIZE OFFSET]);

len = write(tpmfp, blob, size);

/* error handling omitted */

len = read(tpmfp, blob, TCPA MAX BUFF SIZE);

/* error handling omitted */

return(ntohl(*(uint32 t *)&blob[TCPA RETURN OFFSET]));




TPM Reset

uint32 t TPM Reset()
{

unsigned char blob[] =

0
0
0
)

14
return(TPM Transmit(blob));

should return a blob {0,196,
0,0,0,10,
0,0,0,0}

/*TPM_TAG_RQU COMMAND*/
/* blob length, bytes */
/*TPM_ORD Reset */

/* TPM TAG RSP _COMMAND */
/* blob length, bytes */
/* return code, success */




TPM_GetCapability: Version

uint32 t TPM GetCapability Version()

{

unsigned char blob[4096] = { 93, TPM TAG_RQU COMMAND */

8, blob length, bytes */

01, TPM _ORD GetCapability */
TCPA_CAP_VERSION */

14
10,0} no sub capability */

4

4

1
0
0
0
0

0
0
0
0
0

4

return(TPM Transmit(blob));

should return a blob {0,19

14 14

6 TPM TAG RSP _COMMAND */
0,18, blob length, bytes */

0 return code, success */
0 length of return data */
0

,0, version on my T30 */




TPM_TakeOwnership()

Done (immediately) after clearing TPM.
Takes two arguments:

¢ Unsigned char ownerauth[20] /* hashed owner pass */

¢ Unsigned char srkauth[20] /* hashed SRK pass */
Returns public SRK
Auth fields are encrypted under Pubek
Uses Object Independent Authorization Protocol (OIAP)
User now has authentication on Owner, SRK.




Signing and Wrapping

* TPM_CreateWrapKey
¢ On-chip generation and wrapping of RSA key
¢ Keys are typed for signature or encryption

+ SRK is the top level encryption key
¢ Returns encrypted key blob to user

TPM_LoadKey

TPM_EvictKey

TPM_Sign

TPM Seal, TPM_ Unseal




Next Steps

* “tutorial” paper and code published in Linux Journal
* Interesting applications

¢ Loopback key sealing

¢ OpenPKCS11 support

¢ OpenSSL support
* Full TSS library/daemon




