
TCPA Programming in Linux

Dr. David Safford
Mgr., Global Security Analysis Lab
IBM Research

Outline

Resources
What is TCPA?
Getting Started
Programming in Linux
Next Steps

Resources:

Trusted Computing Platform Alliance (TCPA)
home page and main specification v1.1b:

http://www.trustedcomputing.org
Trusted Computing Group (TCG) home page:

http://www.trustedcomputinggroup.org
Research external page (papers, linux driver):

http://www.research.ibm.com/gsal/tcpa
Research internal page (tutorial/libtcpa/driver):

http://dr.watson.ibm.com/gsal/tcpa

What is TCPA?:

Officially IBM Embedded Security Subsystem (ESS) 2.0
Shipped October 2002 on Thinkpads, desktops
Hardware RNG, on chip RSA key generation
RSA signature, encryption/decryption
Non-volatile key storage
PCR (platform configuration register)

Register extend – state hashed into 160 bit register.
Seal and unseal data depending on PCR value
Wrap and unwrap keys dependent on PCR
can be used for trusted boot, secure key release

Programming view of the TPM

Functional Units Non-volatile memory Volatile memory

RNG

Hash

HMAC

RSA Key Generation

RSA Encrypt/Decrypt

Endorsement Key (2048b)

Storage Root Key (2048b)

Owner Auth Secret (160b)

RSA Key Slot-0

 . . .

RSA Key Slot-9

PCR-0

 . . .

PCR-15

Key Handles

Auth Session Handles

The Non-Volatile Keys

Pubek: the RSA Public Endorsement Key
Created, but not recorded at manufacture
Cannot be changed
Used to encrypt sensitive data to TPM

SRK: the RSA storage root key
Erased by BIOS or owner “clear”
Created on chip with TPM_TakeOwnership command
Access protected with authentication shared key

Ownerauth: 160 bit symmetric shared key
Used to authenticate all owner sensitive commands
Given by owner to TPM in TPM_TakeOwnership

TCPA Software Stack (TSS) Spec:

Application
TSP: TCPA Service Provider (concurrency)
TCS: TCPA Core Services (resource/audit mgt)
TDDL: TCPA Device Driver Library (TPM commands)

(Linux libtcpa)
TDD: TCPA Device Driver (open/read/write)

(Linux tpm.o device driver module)

Libtcpa

Intended as tutorial/introduction to TCPA on Linux
Implements interesting subset of commands

Ownership, sign, seal/unseal
Uses openssl for crypto support
Not a full featured TSS stack:

No synchronization for concurrent requests
No resource management
No audit management
No key migration

Getting Started

Compile and install tpm.o
Compile libtcpa and example programs
Enable and clear chip:

Power on while holding down “function” (Fn) key
(this establishes “physicalpresence”)
At bios prompt, release Fn, and press F1 for setup
config -> security subsystem

“enable” chip
“clear” chip

TPM startup

At power on, chip starts up “activated”
BIOS is responsible for “startup”, or “deactivate”
Even deactivated TPM will respond to “safe” cmds:

TPM_Reset
TPM_GetCapability (particularly version)
(these are good test commands, as they should
always work.)

The TPM device

/dev/tpm -> character, major 10, minor 224
open, write/read as normal character device
All TPM commands are synchronous send/receive

write() command blob to TPM
read() result blob from TPM

Key and authentication handles give context

TPM Command format

All data is in network (big-endian) byte order!
Blobs:

2 byte TAG (to-TPM or from-TPM)
4 byte total blob length
4 byte command or result code

 ... command/result specific data

TPM_Transmit()
#include <stdio.h>
#include <stdint.h>
#include <netinet.h>
#define TCPA_PARAMSIZE_OFFSET 2
#define TCPA_RETURN_OFFSET 6
#define TCPA_MAX_BUFF_SIZE 4096
int TPM_Transmit(unsigned char *blob)
{
 int tpmfp, len;
 uint32_t size;
 if(tpmfp = open("/dev/tpm", O_RDWR)) < 0) {
 fprintf(stderr,"Can't open TPM Driver\n");
 return(ret);
 }
 size = ntohl(*(uint32_t *)&blob[TCPA_PARAMSIZE_OFFSET]);
 len = write(tpmfp, blob, size);
 /* error handling omitted */
 len = read(tpmfp, blob, TCPA_MAX_BUFF_SIZE);
 /* error handling omitted */
 return(ntohl(*(uint32_t *)&blob[TCPA_RETURN_OFFSET]));
}

TPM_Reset

uint32_t TPM_Reset()
{
 unsigned char blob[] = {0,193, /*TPM_TAG_RQU_COMMAND*/
 0,0,0,10, /* blob length, bytes */
 0,0,0,90}; /*TPM_ORD_Reset */
 return(TPM_Transmit(blob));
}

should return a blob {0,196, /* TPM_TAG_RSP_COMMAND */
 0,0,0,10, /* blob length, bytes */
 0,0,0,0} /* return code, success */

TPM_GetCapability: Version

uint32_t TPM_GetCapability_Version()
{
 unsigned char blob[4096] = {0,193, /* TPM_TAG_RQU_COMMAND */
 0,0,0,18, /* blob length, bytes */
 0,0,0,101, /* TPM_ORD_GetCapability */
 0,0,0,6, /* TCPA_CAP_VERSION */
 0,0,0,0}; /* no sub capability */
 return(TPM_Transmit(blob));
}

should return a blob {0,196, /* TPM_TAG_RSP_COMMAND */
 0,0,0,18, /* blob length, bytes */
 0,0,0,0, /* return code, success */
 0,0,0,4, /* length of return data */
 1,1,0,6} /* version on my T30 */

TPM_TakeOwnership()

Done (immediately) after clearing TPM.
Takes two arguments:

Unsigned char ownerauth[20] /* hashed owner pass */
Unsigned char srkauth[20] /* hashed SRK pass */

Returns public SRK
Auth fields are encrypted under Pubek
Uses Object Independent Authorization Protocol (OIAP)
User now has authentication on Owner, SRK.

Signing and Wrapping

TPM_CreateWrapKey
On-chip generation and wrapping of RSA key

Keys are typed for signature or encryption
SRK is the top level encryption key
Returns encrypted key blob to user

TPM_LoadKey
TPM_EvictKey
TPM_Sign
TPM_Seal, TPM_Unseal

Next Steps

“tutorial” paper and code published in Linux Journal
Interesting applications

Loopback key sealing
OpenPKCS11 support
OpenSSL support

Full TSS library/daemon

