

Application System/400

Cryptographic Support/400

Version 3

SC41-3342-00

IBM Application System/400

Cryptographic Support/400

Version 3

SC41-3342-00

 Take Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page v.

| First Edition (September 1994)

| This edition applies to the licensed program IBM Cryptographic Support/400, (Program 5763-CR1), and the IBM Operating
| System/400, (Program 5763-SS1), Version 3 Release 1 Modification 0, and to all subsequent releases and modifications until other-
| wise indicated in new editions. Make sure you are using the proper edition for the level of the product.

| Full function DES products, which includes the IBM Cryptographic Support/400, are market limited to U.S. firms, their subsidiaries,
and banking customers. These limitations affect all countries except Canada. Exceptions to this marketing limitation must be sub-
mitted by individual license application through the country export control function. No customer commitment will be made until a
specific license is issued.

| Order publications through your IBM representative or the IBM branch serving your locality. If you live in the United States, Puerto
| Rico, or Guam, you can order publications through the IBM Software Manufacturing Company at 800+879-2755. Publications are not

stocked at the address given below.

A form for reader comments is provided at the back of this publication. If the form has been removed, you can mail your comments
to:

Attn Department 245
IBM Corporation
3605 Highway 52 N
Rochester, MN 55901-9986 USA

or you can fax your comments to:

United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192

| If you have access to Internet, you can send your comments electronically to idclerk@rchvmw2.vnet.ibm.com; IBMMAIL, to
| ibmmail(usib56rz).

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you or restricting your use of it.

 Copyright International Business Machines Corporation 1994. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . v
| Programming Interface Information . v
| Trademarks and Service Marks . v

About Cryptographic Support/400 (SC41-3342) vii
| Who Should Use This Book . vii

Chapter 1. Introduction to Cryptographic Support/400 1-1
Functions . 1-2
The Cryptographic Process . 1-2

Chapter 2. Data Encryption and Decryption 2-1
The Data Encryption Algorithm . 2-1

Cipher Block Chaining . 2-1
Padding . 2-3

Concealing Data . 2-4
Authenticating Data . 2-4

Chapter 3. Cryptographic Key Management 3-1
Key Types . 3-1

Key Encrypting Keys . 3-1
Data Encrypting Keys . 3-4
Weak Key Values . 3-5

Communications Security Procedures . 3-5
Exchanging Session Keys . 3-5
Validating Session Keys . 3-6
Starting a Cryptographic Session . 3-6

File Security Procedures . 3-8
Encrypting and Decrypting a File at Two Locations 3-8
Encrypting and Decrypting a File at the Same Location 3-9

Key Security . 3-9
Defining a Unique Host Master Key . 3-9
Key Selection . 3-9
Changing Cryptographic Key Values . 3-10
Sending Cryptographic Keys to Other Locations 3-10
Protecting Data Encrypting Keys Encrypted under the Host Master Key . 3-10
Protecting the Host Master Key and the Cross-Domain Key Table 3-10
Other Considerations . 3-11

Chapter 4. Personal Identification Number (PIN) Functions 4-1
PIN Generation Algorithm . 4-1
Using the PIN Commands . 4-2

Chapter 5. AS/400 Cryptographic Support Commands and Call Interfaces 5-1
Add Cross-Domain Key (ADDCRSDMNK) Command 5-1
Change Master Key (CHGMSTK) Command . 5-2
Change Cross-Domain Key (CHGCRSDMNK) Command 5-5
Cipher Data (CPHDTA) Command . 5-6

CPHDTA CPP (QCRCIPHR) . 5-8
Special Considerations . 5-9

 Copyright IBM Corp. 1994 iii

Encrypt Cipher Key (ENCCPHK) Command 5-10
ENCCPHK CPP (QCRENCKY) . 5-11

Encipher from Master Key (ENCFRMMSTK) Command 5-11
ENCFRMMSTK CPP (QCRENCFR) . 5-12

Encipher to Master Key (ENCTOMSTK) Command 5-13
ENCTOMSTK CPP (QCRENCTO) . 5-13

Generate Cipher Key (GENCPHK) Command 5-14
GENCPHK CPP (QCRGENKY) . 5-15

Generate Message Authentication Code (GENMAC) Command 5-16
GENMAC CPP (QCRGENMA) . 5-17

Generate PIN (GENPIN) Command . 5-17
GENPIN CPP (QCRGENPN) . 5-18

Generate Cross-Domain Key (GENCRSDMNK) Command 5-19
Special Considerations . 5-20

Remove Cross-Domain Key (RMVCRSDMNK) Command 5-21
Set Master Key (SETMSTK) Command . 5-22
Translate PIN (TRNPIN) Command . 5-24

TRNPIN CPP (QCRTRNPN) . 5-25
Verify Master Key (VFYMSTK) Command . 5-25
Verify PIN (VFYPIN) Command . 5-26

VFYPIN CPP (QCRVFYPN) . 5-28

Chapter 6. System/36 Environment Cryptographic Support Call Interfaces 6-1
General Encryption/Decryption . 6-1
Specific Encryption . 6-2
Special Considerations . 6-4
Escape Messages . 6-4
AS/400 System and System/36 Differences . 6-4

Chapter 7. Data Security Considerations . 7-1

Chapter 8. Coding Examples . 8-1
Using a CL Program . 8-1
Calling QCRCIPHR . 8-2

BASIC . 8-3
COBOL . 8-3
RPG III . 8-3
PL/1 . 8-4

Chapter 9. Performance Considerations . 9-1

Glossary . G-1

Bibliography . H-1

Index . X-1

iv AS/400 Cryptographic Support/400

 Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,

| or service is not intended to state or imply that only that IBM product, program, or service may be used.
| Any functionally equivalent product, program, or service that does not infringe any of the intellectual prop-
| erty rights of IBM may be used instead of the IBM product, program, or service. The evaluation and
| verification of operation in conjunction with other products, except those expressly designated by IBM, are
| the responsibility of the user.

| IBM may have patents or pending patent applications covering subject matter in this document. The fur-
| nishing of this document does not give you any license to these patents. You can send license inquiries,
| in writing, to the IBM Director of Commercial Relations, IBM Corporation, 208 Harbor Drive, Stamford, CT
| 06904 , U.S.A.

| This publication could contain technical inaccuracies or typographical errors.

| This publication may refer to products that are announced but not currently available in your country. This
| publication may also refer to products that have not been announced in your country. IBM makes no
| commitment to make available any unannounced products referred to herein. The final decision to
| announce any product is based on IBM's business and technical judgment.

| Changes or additions to the text are indicated by a vertical line (|) to the left of the change or addition.

This publication contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

This publication contains small programs that are furnished by IBM as simple examples to provide an
illustration. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. All programs contained herein
are provided to you "AS IS". THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

| Programming Interface Information

| Cryptographic Support/400 is intended to help the programmer with data security capabilities for the
| AS/400 system. This publication contains no programming interfaces for customers.

| Trademarks and Service Marks

| The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM Corporation
| in the United States or other countries or both:

| Application System/400
| AS/400
| IBM

| Operating System/400
| OS/400
| 400

 Copyright IBM Corp. 1994 v

vi AS/400 Cryptographic Support/400

About Cryptographic Support/400 (SC41-3342)

| This book describes the data security capabilities of the Cryptographic Support/400
| licensed program. It explains how to use the support and provides reference infor-

mation for programmers. This book may refer to products that are announced but
not available yet.

This book contains small programs which are furnished by IBM as simple examples
to provide an illustration. These examples have not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or
function of these programs. All programs contained herein are provided to you "AS
IS". THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

For a list of related publications, see the Bibliography.

| Who Should Use This Book
This book is intended for programmers who are responsible for data security on the
AS/400 system.

Before reading this book, you should be familiar with the IBM AS/400 Operating
System/400 (OS/400 program).

| To use some functions of Cryptographic Support/400, you need to know an AS/400
programming language and be able to enter and create a program at an AS/400
work station.

| For a quick introduction to cryptography and a summary of the Cryptographic
| Support/400 function, see Chapter 1, “Introduction to Cryptographic Support/400.”

 Copyright IBM Corp. 1994 vii

viii AS/400 Cryptographic Support/400

Chapter 1. Introduction to Cryptographic Support/400

The AS/400*, Operating System/400* (OS/400*) security features provide protection
of data in the system. However, data sent or stored outside the system’s controlled
environment is susceptible to access without permission (see Figure 1-1).

Physically Secure Unsecured
Areas

Line

Secure Remote
Location

Secure
AS/400 System
Location System Secure

AS/400
System

5250
Display
Station

Disk
Unit

Tape
Unit

Diskette
Unit

Diskette
Unit

Modem

Tape
Unit

Modem

4701
Contorller

4704
Display
Station

4730
Display
Station

RSLQ000-2

Figure 1-1. Diagram of Data Security Exposures

| Cryptographic Support/400 provides security for data not protected by the OS/400
| licensed program and physical security measures. Cryptographic Support/400 also

can add a level of protection to sensitive data stored in the system. This protection
can be used for:

� Communications security for information traveling across a communications
line

� File security for data stored on tape, diskette, the system database, or other
storage media

The AS/400 system can provide communications security in a financial environ-
ment. This book focuses on communications security with the IBM 4700 Finance
Communications System. However, both communications and file security proce-
dures are similar. See “File Security Procedures” on page 3-8 for differences and
special considerations for file security procedures.

 Copyright IBM Corp. 1994 1-1

 Functions
Cryptographic Support functions fall into three categories:

� Data encryption and decryption change plaintext (intelligible data) into
ciphertext (unintelligible data) or vice versa through the following:

– The Data Encryption Algorithm (DEA)
– Cipher block chaining

 – Data padding

Data encryption and decryption are also used to generate a message
authentication code. You can use the message authentication code to ensure
that data was not changed when sent to another location.

� Key management protects cryptographic key identities through the use of:

– Data encrypting key management, including key generation, key encryption,
and key translation

– Cross-domain key management, including maintenance of a cross-domain
key table

– Installing a host system master key

� Personal identification number (PIN) functions assign a unique number to a
person or organization. There are three PIN functions you can use:

 – Generation
 – Validation
 – Translation

The Cryptographic Process
Cryptographic Support consists of the following parts:

� Licensed internal code, which resides below the machine interface (MI)
| � Cryptographic Support/400 licensed program
| � System/36 environment interface to Cryptographic Support/400

The licensed internal code performs the following functions that must be hidden for
security reasons or that require the faster operating speed of the licensed internal
code for performance reasons:

� Data encryption using the DEA, cipher block chaining, and padding
� Random key generation

 � Key translation
� PIN generation, verification, and translation

| Note: A link load of the DEA is performed at install time of the Cryptographic
| Support/400 licensed program. Therefore, if a previous version of licensed

internal code is subsequently installed, you will need to re-install the
Cryptographic Support licensed program.

The licensed program supplies your link to Cryptographic Support. It consists of:

� A set of control language (CL) commands
� The command processing programs (CPPs)

Some CL commands may be typed interactively at your work station. Others
must be started from a CL program. Some of the CPPs can be called directly
by a program written in another AS/400 language.

1-2 AS/400 Cryptographic Support/400

The System/36 environment interface to Cryptographic Support provides equivalent
function for the following System/36 subroutines:

SUBR30 The System/36-compatible RPG II subroutine for cryptography

SUBR31 The System/36-compatible COBOL subroutine for cryptography

 Chapter 1. Introduction to Cryptographic Support/400 1-3

1-4 AS/400 Cryptographic Support/400

Chapter 2. Data Encryption and Decryption

Data encryption is a process of changing plaintext into ciphertext. The decryption
process changes data from ciphertext to plaintext.

The Data Encryption Algorithm
The Data Encryption Algorithm (DEA) is the central part of Cryptographic Support.
The DEA is a set of mathematical steps that changes plaintext into ciphertext and
vice versa. The DEA was adopted from the Data Encryption Standard (DES), used
since 1977 for the cryptographic protection of unclassified sensitive data.

Cryptographic Support uses the DEA for three purposes:

 � Concealing data
 � Authenticating data
� Generating a personal identification number (PIN)

To encrypt data, an application program supplies the DEA with an 8-byte key. The
key is presented to the DEA as a 64-bit value. The DEA uses the first 7 bits of
each 8-bit byte, for a total of 56 bits, as the key. The remaining 8 bits enforce odd
parity of each byte when required. The DEA uses the key and the input data to
calculate the output. Given fixed input data, the output is unique for each unique
set of 56 bits. Figure 2-1 illustrates this process.

Key

Algorithm Output

RSLQ001

Input

Figure 2-1. DEA Process

Cipher Block Chaining
The DEA encrypts data only in 8-byte blocks. When patterns repeat in the plaintext
over multiple 8-byte blocks, these patterns may also occur in the ciphertext, making
it more susceptible to analysis. Cipher block chaining is a technique used to
obscure and reduce repeated patterns in ciphertext, making it more resistant to
analysis.

Cipher block chaining uses a logic operator, exclusive-OR (XOR), to change blocks
of data before encryption. The exclusive-OR operation uses an initial chaining
value to change the first data block. You provide this chaining value on the
encryption request. Cipher block chaining is done by using the exclusive-OR oper-

 Copyright IBM Corp. 1994 2-1

ation on each following 8-byte block of data with the previously encrypted data
block.

During the decrypting operation, the process is reversed. Again, the first block of
data uses an initial chaining value in the exclusive-OR operation. Decryption with
cipher block chaining is done by using the exclusive-OR operation on each block of
data with the previous block of encrypted data.

Figure 2-2 and Figure 2-3 illustrate cipher block chaining in the encryption and
decryption processes.

8-Byte Blocks of Plaintext

8-Byte Blocks of Ciphertext
RSLQ002-0

Initial
Chaining
Value

XORXOR

D1

E1

D2

E2

D3

E3

DN

EN

Encrypt Encrypt Encrypt Encrypt

XOR XOR

Figure 2-2. Encryption Process

8-Byte Blocks of Plaintext

8-Byte Blocks of Ciphertext

RSLQ003-0

Initial
Chaining
Value

XORXOR

D1

E1

D2

E2

D3

E3

DN

EN

Decrypt Decrypt Decrypt Decrypt

XOR XOR

Figure 2-3. Decryption Process

If a block of encrypted data is damaged during sending, only that block and the
following block are affected.

When the data length is greater than 8 bytes but not an exact multiple of 8, the last
8-byte encrypted block is encrypted again. The exclusive-OR operation is then
used on the first 1-to-7 bytes from this result with the remaining 1-to-7-byte block to

2-2 AS/400 Cryptographic Support/400

produce the last encrypted block. If the data length is fewer than 8 bytes, the initial
chaining value is used in place of the previous encrypted block. This process is
identical for encrypting or decrypting.

You can indicate whether you want to use cipher block chaining on the encryption
or decryption request. If you want to use cipher block chaining on the decryption
request, you must know both the key and the initial chaining value used to encrypt
the data.

When communicating with a remote application, both the sending and receiving
locations must agree on when cipher block chaining will be used. How to keep
sending and receiving programs in agreement with a key and an initial chaining
value is described in “Communications Security Procedures” on page 3-5.

 Padding
The DEA requires an 8-byte block of data to perform encryption. Unless you
specify cipher block chaining, the length of the data to be encrypted must be an
8-byte multiple.

Cryptographic Support uses padding to fill a data block containing fewer than 8
bytes with pad characters. When you request padding, supply the pad character,
such as a zero or blank, on the encryption request. Cryptographic Support pads to
the next 8-byte multiple and records the total number of pad characters used in the
last byte of the data block. This count includes the recording byte.

For example, suppose you have 9 bytes of data as shown in Figure 2-4:

R O C H E S T E R 8 Bytes 1 Byte

RSLQ004-0

Figure 2-4. Data Block before Padding

If you request padding, the DEA changes the data as shown in Figure 2-5 (where *
is the pad character):

R O C H E S T E R * * * * * * 7 8 Bytes 8 Bytes

RSLQ005-0

Figure 2-5. Data Block after Padding

Your data decrypting program must indicate that padding has been done on the
decryption request. After decryption, Cryptographic Support checks the last byte of
data and updates the return data length to reflect the original length of the
decrypted data without pad characters. However, the pad characters and pad
count remain attached to the data.

 Chapter 2. Data Encryption and Decryption 2-3

 Concealing Data
You can use the DEA to conceal data through the Cipher Data (CPHDTA)
command or its command processing program (CPP), QCRCIPHR, or by calling the
System/36 environment subroutines, SUBR30 or SUBR31. Your user application
supplies the variable length of data and the data encrypting key. Additionally,
CPHDTA or QCRCIPHR allows you to do the following:

� Request chaining with a specified initial chaining value
� Request padding with a specified pad character
� Supply the data encrypting key in either plaintext or ciphertext

To ensure that data is usable once it is decrypted, the application program per-
forming data encryption must agree with the application program performing the
decryption. Consider the following:

� Will data be padded?

� Is cipher block chaining used?

� How will the cryptographic key be selected?

� How will the key be distributed if you are communicating with a remote
location?

 Authenticating Data
Although you can use the CPHDTA command for data authentication,
Cryptographic Support provides the Generate Message Authentication Code
(GENMAC) command for verifying data authenticity.

The application program issues the GENMAC command, or calls its CPP,
QCRGENMA, directly. QCRGENMA uses cipher block chaining and returns only
the last 8 bytes of encrypted data. Generally, only the first 4 bytes are used as the
message authentication code (MAC), but all 8 bytes can be used.

You should append the MAC to the end of the encrypted data before sending to
another location. The receiving location should generate a separate MAC from the
data and compare it with the one received to check for any alterations that may
have occurred during sending.

Multiple physical records do not need to be sent individually with a separate MAC
for each record. The GENMAC command is issued against each record and uses
the encrypted 8 bytes returned as the initial chaining value for the next record. The
MAC from the last record is appended to the end of the data as shown in
Figure 2-6 on page 2-5.

2-4 AS/400 Cryptographic Support/400

Record 1 GENMAC Intermediate Chaining Value

Initial Chaining Value

Intermediate Chaining Value

Use first 4 bytes as the MAC

GENMAC

GENMAC

Record 2

Record 3

Record 3 MAC

RSLQ006-1

Record 2Record 1

Figure 2-6. Using GENMAC to Send Multiple Records

When encrypting and authenticating a message, the ciphertext must be created
before generating the MAC. For security reasons, the key used to encrypt the data
and generate the MAC should not be the same.

 Chapter 2. Data Encryption and Decryption 2-5

2-6 AS/400 Cryptographic Support/400

Chapter 3. Cryptographic Key Management

The degree of protection provided by data encryption depends on the security of
the cryptographic keys. Good key management protects cryptographic key identi-
ties.

 Key Types
Cryptographic Support defines the following two key categories:

� Key encrypting keys encrypt other cryptographic keys. Key encrypting keys
prevent decryption of the data encrypting key without permission.

� Data encrypting keys encrypt data sent across communication lines or stored
within a file.

Key Encrypting Keys
Key encrypting keys are used by the system to encrypt other cryptographic keys.
The key encrypting keys include the cross-domain keys and the host master key .

 Cross-Domain Keys
Cross-domain keys encrypt data encrypting keys sent to another location or stored
in a file. Cross-domain keys allow the frequent exchange of data encrypting keys
between two locations. Additionally, using a different cross-domain key at each
location protects data at one location from being known at another location without
permission.

Each cross-domain key has an associated key name and key use. This allows
your program to refer to the key without exposing its actual value. Defining the
cross-domain key use also limits the cryptographic functions of that particular key.

There are three types of cross-domain keys:

� Sending cross-domain keys encrypt data encrypting keys sent to another
location.

� Receiving cross-domain keys decrypt data encrypting keys received from
another location.

� Personal identification number (PIN) keys decrypt PINs and encrypt or
decrypt PIN validation data.

| Cryptographic Support/400 provides a file that serves as a table for storing cross-
domain keys. This file is called QACRKTBL and is located in the library
QUSRSYS. You should save this file to tape or diskette and store it in a secure
place. You can use this saved file to restore the file if it is damaged.

 Copyright IBM Corp. 1994 3-1

The following commands maintain the cross-domain key table:

When adding or changing keys in the cross-domain key table, the value you supply
must have odd parity in each byte. The resulting sum of all binary digits containing
binary 1B must be an odd number.

The parity of the cross-domain key is checked for damage each time it is used.
Damaged keys should be removed and added again to the cross-domain key table
or restored using the saved file QUSRSYS/QACRKTBL.

Cryptographic Support encrypts the cross-domain keys stored in the table. This
prevents anyone who is able to read the table values from using a cross-domain
key to decrypt a data encrypting key without permission.

When the Cryptographic Support licensed program is installed on your system for
the first time, the cross-domain key table, QACRKTBL, is created in library
QUSRSYS. This is done using a prototype file, QACRPTBL, which is copied to
QUSRSYS and renamed to QACRKTBL.

If, when installing the Cryptographic Support licensed program, the QACRKTBL
already exists in QUSRSYS, the copy does not occur.

If, when installing the Cryptographic Support licensed program, QACRKTBL already
exists in QCRP (because your system has an old version of the Cryptographic
Support licensed program), QACRKTBL is moved to QUSRSYS.

Note: If any user programs refer to QCRP/QACRKTBL, change them to refer to
QUSRSYS/QACRKTBL.

Command Function

Add Cross-Domain Key
(ADDCRSDMNK)

Used to type in the name, use, and value of a cross-
domain key and to add that information to the key table

Change Cross-Domain Key
(CHGCRSDMNK)

Changes the value of keys in the table

Remove Cross-Domain Key
(RMVCRSDMNK)

Removes any or all keys from the table

Generate Cross-Domain Key
(GENCRSDMNK)

Generates random key values and adds those keys to
the table

Host Master Key
The host master key is the only cryptographic key not encrypted by the system.
You must physically protect the host master key.

Master key variants are cryptographic keys used to encrypt the cross-domain keys
and are created by altering the master key with an algorithm. This allows the
system to act as though several master keys are in use.

There are three variants of the host master key. Each variant encrypts a different
cross-domain key type. The original form of the master key is also used to encrypt
data encrypting keys. The following table summarizes the use of the master key
and its variants:

3-2 AS/400 Cryptographic Support/400

The host master key is stored securely below the AS/400 machine interface. It is
accessible only through the supplied Cryptographic Support commands and some
service personnel (QSRV and QSRVBAS) tools that dump or display storage. See
Chapter 7, “Data Security Considerations,” for more information.

For additional security, the system must be in a restricted environment when a new
master key is installed. End all subsystems, except the controlling subsystem and
one active work station, with the End System (ENDSYS) command.

Cryptographic Support provides the following commands for managing the host
master key:

� Set Master Key (SETMSTK) command

� Verify Master Key (VFYMSTK) command

� Change Master Key (CHGMSTK) command

The SETMSTK command sets or changes the value of the host master key. Use
this command when first installing the host master key.

The SETMSTK command asks for the values of two 8-byte key parts. By using the
exclusive-OR operation on these two values, a host master key is produced. The
host master key must have odd parity in every byte. The 8-byte key parts you
provide must ensure this.

Separate displays ask for each 8-byte key part. This allows the master key to be
installed by two individuals, each having one key part but neither knowing the value
of the new master key.

To avoid typing mistakes, each display also asks for an 8-byte binary value key
part complement. An exclusive-OR operation on the 8-byte key part and the 8-byte
binary complement must produce 8 bytes of hex FF.

The SETMSTK command returns a 2-byte verification code after the new master
key has been installed. Record and save this value as it is used with the
VFYMSTK and CHGMSTK commands. The VFYMSTK command uses the master
key verification code to determine if the host master key has been changed since
the verification code was last created.

Like the SETMSTK command, the CHGMSTK command allows you to change the
value of the master key. However, the CHGMSTK command requires that you type
in the old master key verification code. This permits the security officer
(QSECOFR) to allow other user profiles to change the host master key, but only if
they know the verification code. You can also use the SETMSTK command to
reset the value of the master key if the verification code is lost.

Master Key Variant Used to Encrypt

Master Key Session keys
Message authentication keys

Variant 1 Sending cross-domain keys
Output PIN protection keys

Variant 2 Receiving cross-domain keys

Variant 3 Input PIN protection keys
PIN validation keys

 Chapter 3. Cryptographic Key Management 3-3

When a SETMSTK or CHGMSTK command is processed, keys stored in the cross-
domain key table are automatically encrypted again under the new master key vari-
ants. Save the cross-domain key table again after installing a new master key.

When a host master key exists, you can write a control language (CL) program to
generate a new master key and its key parts. Use the Generate Cipher Key
(GENCPHK) command in this program to generate a random 8-byte value. This is
the new master key. Alter the last bit of each byte where necessary to ensure that
every byte has odd parity. Use the GENCPHK command again to generate the
first key part. To get the second key part, use the exclusive-OR operation on the
first key part with the new master key value. If you do not want to use two key
parts, specify the master key value for the first key part and 8 bytes of hex 00 for
the second key part.

When you change the host master key, save its value in a secure place. You will
need this value whenever a new base licensed internal code (VMC) is installed, or
if the host master key is damaged. See “Key Security” on page 3-9 for information
on restoring the value of the host master key.

Data Encrypting Keys
Use data encrypting keys to encrypt or decrypt sensitive data. When exchanging
encrypted data between two locations, the data encrypting key is called a session
key . See “Exchanging Session Keys” on page 3-5 and “Validating Session Keys”
on page 3-6 for further information on session keys.

If you are storing encrypted data, the data encrypting key used to encrypt the data
is called a file key . See “File Security Procedures” on page 3-8 for more informa-
tion on file keys.

You can also use a data encrypting key to generate a Message Authentication
Code (MAC). “Authenticating Data” on page 2-4 describes how a MAC is used to
detect any changes to data during transmission. The data encrypting key used for
this purpose is called a message authentication key.

The host master key can be used to encrypt data encrypting keys supplied to the
Cryptographic Support encryption routines. Encrypted data encrypting keys reduce
the possibility of observing the keys through the use of the OS/400 service and
debug commands.

Cryptographic Support provides the following two commands to encrypt a data
encrypting key under the master key:

� Encrypt Cipher Key (ENCCPHK) command
� Generate Cipher Key (GENCPHK) command

You supply a value to the ENCCPHK command for the data encrypting key in the
plaintext. It then returns the value encrypted under the host master key. When
you use this command, be sure to protect the plaintext key value from observation
without permission.

The GENCPHK command is the preferred method of generating data encrypting
keys. This command produces a random key and returns its value encrypted under
the host master key. By using the GENCPHK command, your program never
needs to handle data encrypting keys in plaintext.

3-4 AS/400 Cryptographic Support/400

An optional function of the GENCPHK command is to encrypt the value of the
random data encrypting key under one or two cross-domain keys. For information
on this function, see “Exchanging Session Keys” on page 3-5.

Weak Key Values
When you supply a host master key or cross-domain key, certain values are
rejected by Cryptographic Support. These are called weak key values because
there are known techniques that can be used to decrypt data encrypting keys
encrypted under these values.

The following values are considered weak values for the host master key and
cross-domain keys:

Hex ð1ð1ð1ð1ð1ð1ð1ð1
Hex FEFEFEFEFEFEFEFE
Hex 1F1F1F1F1E1E1E1E
Hex EðEðEðEðF1F1F1F1

The following are also considered weak values for the host master key because of
the resulting values of the host master key variants:

Hex 8989898989898989
Hex 2323232323232323
Hex 7676767676767676
Hex DCDCDCDCDCDCDCDC
Hex 9797979797979797
Hex 3D3D3D3D2C2C2C2C
Hex 6868686879797979
Hex C2C2C2C2D3D3D3D3
Hex 4545454545454545
Hex BABABABABABABABA
Hex 5B5B5B5B4A4A4A4A
Hex 4A4A4A4B5B5B5B5B

Communications Security Procedures
During a cryptographic session, your application program should perform two major
key functions to ensure data security. These are the exchange and validation of
session keys.

Exchanging Session Keys
To increase security, generate new session and message authentication keys each
time your program begins a session with another program. If the session extends
longer than one day, stop the session daily to generate a new key before resuming
the exchange of ciphertext.

Sending a session key across communication lines is the most economical means
of exchange when new session keys are frequently generated. Encrypting the
session key under a cross-domain key protects it from observation on a data link.
When you receive a session key from another location, it is encrypted under one of
your receiving cross-domain keys. The sending and receiving locations should
agree on the value of the cross-domain key used for encrypting the session key
before sending the key.

 Chapter 3. Cryptographic Key Management 3-5

To decrypt the received data, supply the CPHDTA command or its CPP with the
session key in either its plaintext or encrypted form. The latter method, which uses
a session key encrypted under the host master key, is the most secure method of
data decryption.

The Encipher to Master Key (ENCTOMSTK) command converts the session key
from encryption under a receiving cross-domain key to encryption under the host
master key without exposing the session key in its plaintext form.

To send a session key to another location, encrypt the key under a sending cross-
domain key. When encrypting data, supply the CPHDTA command or its CPP with
the session key encrypted under the master key. Use either of the following
methods to obtain a session key encrypted under a sending cross-domain key:

� The GENCPHK command can return the key value encrypted under the master
key and under a cross-domain key. Use the first returned value to encrypt the
data and the second returned value as the session key for sending to a remote
location.

� The Encipher from Master Key (ENCFRMMSTK) command uses the value of a
key encrypted under the host master key as input data. The value of the same
key encrypted under a specified sending cross-domain key is returned.

The GENCPHK or ENCFRMMSTK commands are equally secure methods of
sending a session key from one location to another as long as the session key is
never used in its plaintext form.

Validating Session Keys
Data exchange between two locations may begin once a session key has been
distributed. However, if the session key is damaged (such as during transmission
or by using an incorrect cross-domain key), retrieving information from the
encrypted data is impossible. A key validation procedure prevents this from occur-
ring.

A special session protocol verifies that the application program at each location has
an identical data encrypting key. One such protocol requires the exchange of a
test message encrypted by both applications. The initiator of the verification proce-
dure decrypts the message twice to confirm its accuracy. The procedure described
in “Starting a Cryptographic Session” details this process. Also see the 4700
Finance Communication System Controller Programming Library, Volume 5:
Cryptographic Programming book for another key validation technique.

Starting a Cryptographic Session
Figure 3-1 on page 3-7 shows the start of a cryptographic session, demonstrating
session key generation, distribution, and validation. Both locations are AS/400
systems, and both previously agreed on the value of the cross-domain key.

3-6 AS/400 Cryptographic Support/400

GENCPHK
under

Host Master Key
and Sending

Cross-Domain
Key

Location A Location B

Session
Key

Plaintext
ICV

ENCTOMSTK
under

Host Master Key

GENCPHK

ICV

CPHDTA
under

Session Key

CPHDTA
under

Session Key

Encrypted
ICV

CPHDTA
Twice under
Session Key

ICV

RSLQ007-2

Figure 3-1. Cryptographic Session Flowchart

The following describes the cryptographic session shown in Figure 3-1:

.1/ Using the GENCPHK command, a random session key is generated and
encrypted under the host master key and a sending cross-domain key.
The session key encrypted under the cross-domain key is sent to location
B.

.2/ The ENCTOMSTK command receives and decrypts the session key under
the receiving cross-domain key and encrypts it again under the host master
key.

.3/ The GENCPHK command generates a random 8-byte value used as a test
message and initial chaining value (ICV).

 Chapter 3. Cryptographic Key Management 3-7

.4/ The CPHDTA command encrypts the ICV under the session key and sends
it to location A.

.5/ Location A receives the encrypted ICV. It uses the CPHDTA command to
again encrypt the ICV under the session key and sends it back to location
B.

Location A also decrypts the ICV using the session key to get the plaintext
ICV.

.6/ Location B uses the CPHDTA command to decrypt the ICV twice under the
session key. This produces an ICV which is then compared with the ori-
ginal ICV.

File Security Procedures
When storing encrypted data, the file key used to encrypt the data must also be
stored so the file can be decrypted later. The file key should be encrypted under a
cross-domain key. Access without permission to the data would require knowledge
of the secured cross-domain key value.

Do not store the file key encrypted under the host master key, for the following
reasons:

� When the host master key value changes, the values of the keys encrypted
under the host master key also change. This means the original plaintext value
of these keys can no longer be used. The file keys cannot be translated from
encryption under the old master key to encryption under the new master key.

� If you recover a file on a different system, you would need to disclose the value
of the host master key to that system. However, good key management does
not reveal the host master key to another system.

� Knowledge of the file key encrypted under the host master key would enable
decryption of the file data by an insider using the CPHDTA command. If the
file key is encrypted under a cross-domain key, the person trying to gain
access would require the name of the cross-domain key and access to the
ENCTOMSTK command or its CPP.

To prevent decryption of the data at your location, encrypt the data encrypting key
under a sending cross-domain key using the GENCPHK or ENCFRMMSTK
command.

Alternatively, if decryption of the file data is required at your location, encrypt the
data encrypting key under a receiving cross-domain key using the GENCPHK
command.

Encrypting and Decrypting a File at Two Locations
If system location A wants to encrypt a file to a secondary storage medium for
recovery by system location B, both locations must agree on a cross-domain key
value.

3-8 AS/400 Cryptographic Support/400

Location A then does the following:

1. Uses the GENCPHK command to generate a file key encrypted under the host
master key and a sending cross-domain key

2. Encrypts the data using the file key encrypted under the host master key

3. Stores the file key encrypted under the sending cross-domain key with the data

4. Destroys the file key encrypted under the host master key

Location B then does the following:

1. Uses the ENCTOMSTK command to translate the file key encrypted under the
receiving cross-domain key to encryption under the host master key

2. Decrypts the file data

Encrypting and Decrypting a File at the Same Location
When encrypting and decrypting a file at the same location, use the GENCPHK
command to generate a file key encrypted under the receiving cross-domain key
and under the host master key.

Use the file key encrypted under the host master key to encrypt the data file. Store
the file key encrypted under the receiving cross-domain key with the encrypted
data. You can later use that key with the ENCTOMSTK command to get the file
key encrypted under the host master key. Then you can decrypt the data.

When you store a file key encrypted under a receiving cross-domain key, someone
could obtain the encrypted file data without permission and, with access to the
system, use the ENCTOMSTK command to translate the file key and decrypt the
file data. Therefore, permission to use the ENCTOMSTK command and its CPP
must be tightly controlled.

 Key Security
You are responsible for specific security procedures that ensure the security of
encrypted data.

Defining a Unique Host Master Key
Your data security depends on the use of a unique host master key. If the same
host master key value is used by two locations, the security of the encrypted data
at both locations is at risk from data decryption without permission. Therefore, do
not use a host master key value that is in use at another location.

 Key Selection
Proper key selection limits the success of searches for keys without permission.
Consider the following when selecting a key:

� A cryptanalyst may correctly guess the key if a meaningful key (such as the
name of a programmer) is used.

� Do not use a known word or name. A computer can try all words in a lan-
guage dictionary in a matter of minutes.

� Ensure that pseudo-random number generators do not exhibit a predictable
pattern.

 Chapter 3. Cryptographic Key Management 3-9

Use the GENCRSDMNK and GENCPHK commands, instead of organized and pre-
dictable methods, to generate all cryptographic keys, including the host master key.

Changing Cryptographic Key Values
Change key values frequently to provide maximum security. Generate a new
session key for each session or at least once a day. Change key encrypting keys
every 6 to 12 months. Cost, security, and convenience considerations may influ-
ence the rate of change.

To change the value of a cross-domain key under which a file key is encrypted,
that file must first be decrypted and then encrypted again under a new data
encrypting key after the cross-domain key has been changed. No function is pro-
vided to decrypt the file’s current data encrypting key and encrypt it again under the
new cross-domain key. If the file contains a significant amount of encrypted data,
this could become a time-consuming procedure. To avoid this problem, you may
wish to change cross-domain keys associated with file keys less frequently than
you change other cross-domain keys.

Use a given cross-domain key to protect only a few files. This prevents the secu-
rity of many files from being dependent on the security of a single cross-domain
key.

Sending Cryptographic Keys to Other Locations
Cross-domain keys with the same value must be used for cryptographic commu-
nication between two locations. One location defines the plain value of the key and
sends that value to the other location. Use a secure method of sending the
cryptographic key, such as through a bonded courier or registered mail.

Protecting Data Encrypting Keys Encrypted under the Host Master Key
Data encrypting keys encrypted under the host master key are used with the
CPHDTA and GENMAC commands to encrypt or decrypt data. The application
programs that handle these keys must also protect them with the same level of
security provided for plaintext keys.

A data encrypting key encrypted under the host master key is destroyed each time
the host master key is changed. To safeguard the data encrypting key, store it
encrypted under a cross-domain key that does not change.

Protecting the Host Master Key and the Cross-Domain Key Table
A cross-domain key may be damaged if it is accidentally altered or removed, or if
the host master key becomes damaged. If damage occurs, it is impossible to
recover the value of the data encrypting keys encrypted under that cross-domain
key unless a copy of the cross-domain key exists.

3-10 AS/400 Cryptographic Support/400

To ensure the integrity of the cross-domain key values, save the cross-domain key
table each time you perform the following functions:

� After adding or changing a cross-domain key.

� After installing a new host master key. Since the values in the cross-domain
key table are encrypted again under the new variants of the host master key,
the new values must be recorded.

� Before restoring library QUSRSYS with an older version of the key table.
QACRKTBL is kept in library QUSRSYS, and will be overlaid if QUSRSYS is
restored.

To make a copy of the cross-domain key table, save the file
QUSRSYS/QACRKTBL to tape or diskette using the SAVOBJ command. Restore
the key table using the RSTOBJ command.

Record the value of the host master key and keep it in a secure place for the fol-
lowing reasons:

� If the master key is damaged, the values in the cross-domain key table will not
be encrypted again when you install a new host master key. This will corrupt
your cross-domain key values.

� The value of the host master key will be overlaid when installing the base
licensed internal code. This will also corrupt the cross-domain key values.

In either of these situations, the host master key must be set to its original value
before you can read the cross-domain key table. Restoring this value when the
host master key is damaged or overlaid will prevent having to manually reinstall all
the cross-domain keys. If the saved copy of the cross-domain key table needs to
be restored in addition to the master key, use the following procedure:

1. Install the master key.

2. Restore the cross-domain key table.

3. Change the value of the host master key, if desired.

The values in the cross-domain key table will automatically be encrypted again
under the new variants of the new host master key.

The cross-domain key table also needs protection from access without permission.
See Chapter 7, “Data Security Considerations,” for a discussion of key table
authorization.

 Other Considerations
When planning key management, consider the following:

� Do not make the keys available in plaintext to any person or process not
authorized to use them.

� Record key assignments made to resources or people.

� Encrypt keys kept on the system or sent across data links.

 Chapter 3. Cryptographic Key Management 3-11

3-12 AS/400 Cryptographic Support/400

Chapter 4. Personal Identification Number (PIN) Functions

A personal identification number, or PIN, is a unique number assigned to an indi-
vidual by an organization. PINs are commonly assigned to customers by financial
institutions. The PIN is typed at a keyboard and compared with other customer-
associated data to provide proof of identity.

PIN Generation Algorithm
A PIN is a unique value produced using an algorithm to alter byte values supplied
by the PIN validation key and validation data.

The following steps describe how you use the PIN generation algorithm:

1. Use the Generate Cipher Key (GENCPHK) command to produce the PIN vali-
dation key. You must ensure that each byte has odd parity.

2. Get the validation data. This is generally the first 8 bytes from the second track
of the customer identification card. If the validation data is fewer than 8 bytes,
pad it with a predetermined pad character (for example, blanks). Present these
8 bytes to your program in the form of 16 hexadecimal characters, or have your
program change them as shown in Figure 4-1.

Validation
Data

’ABCDEF’

Pad to 8 bytes and
transform to hexa-
decimal characters

’C1C2C3C4C5C64040’
RSLQ008-1

Figure 4-1. Changing Validation Data

3. Generate the PIN value using the GENPIN command or by performing the fol-
lowing steps:

a. Encrypt the validation data using the PIN validation key and specific
encryption on the CPHDTA command, or when calling QCRCIPHR,
SUBR30, or SUBR31. The result is 16 hexadecimal characters, as shown
in Figure 4-2.

Specific
Encipher

PIN Validation Key

’C1C2C3C4C5C64040’ RSLQ009-2

’28F4DE098BAFD771’

Figure 4-2. Validation Data Encryption

b. Use a decimalization table to replace each hexadecimal character with a
decimal character. The decimalization table consists of 16 decimal charac-
ters. Each of the 16 hexadecimal characters that result from step 3 is
mapped through the decimalization table and replaced by a decimal char-
acter.

 Copyright IBM Corp. 1994 4-1

In Figure 4-3, the third hexadecimal character, F, indicates that its offset,
decimal 15, determines which decimal character occupies the third position
of the decimalized string. In this decimalization table, the character located
at offset 15 is decimal character 5. Therefore, the third character of the
decimal string on the right is 5.

Note: The decimalization table shown here is only an example and should
not be misconstrued as the table you should use.

Decimalization Table

RSLQ010-0

0123456789012345 ’2854340981053771’’28F4DE098BAFD771’

Figure 4-3. Decimalization Table Replacement

4. Use the farthest left x digits, resulting from step 3b, as the intermediate PIN
(where x is the defined length of the PIN) as shown below. If the PINs are
assigned by a financial institution, use the intermediate PIN as the customer
PIN. If the customer has previously selected a PIN value, proceed to step 5.

x (defined length of PIN) = 4, so intermediate PIN = 2854

5. Calculate the offset data by subtracting the intermediate PIN from the
customer-selected PIN value using decimal subtraction with no carry, as illus-
trated below:

3000 (customer-selected PIN) – 2854 (intermediate PIN) = 1256 (offset data)

6. Record the offset data where it can be secured by the PIN validation program
(generally on the customer’s identification card). If only part of the assigned
PIN is validated, record the number of PIN digits you are going to validate. Or
record the farthest right y digits of the offset data, where y is the PIN check
length.

Using the PIN Commands
Cryptographic Support provides three commands for performing PIN operations:

� Generate PIN (GENPIN) command
� Verify PIN (VFYPIN) command
� Translate PIN (TRNPIN) command

The GENPIN command generates a PIN algorithmically related to a given set of
validation data. The GENPIN command performs steps 3a and 3b from the algo-
rithm described in “PIN Generation Algorithm” on page 4-1. You must supply the
command with the following:

� 16 hexadecimal characters representing 8 bytes of validation data
� The name of a PIN validation key stored in the cross-domain key table
� A decimalization table

The GENPIN command returns 16 decimal digits, of which all or part may be used
as the PIN, as illustrated in step 4 in “PIN Generation Algorithm.” When using pre-
selected PIN values, your program must calculate and store the offset data as
described in steps 5 and 6 in “PIN Generation Algorithm.”

4-2 AS/400 Cryptographic Support/400

The VFYPIN command checks that the correct PIN is used for a given set of vali-
dation data. The command generates a PIN from given validation data and com-
pares it against a given PIN value. The result of this comparison is returned in a
1-byte status parameter.

To generate the PIN value from the validation data, the VFYPIN command per-
forms steps 3 through 5 from the algorithm described in “PIN Generation Algorithm”
on page 4-1.

In addition to the validation data, an encrypted PIN value, and a status parameter,
you must supply the following:

� The protection key under which the PIN is encrypted
� The name of the PIN validation key
� A decimalization table
� A PIN check length

You can also supply the following data to the VFYPIN command:

� A PIN pad character
� The offset data added to the generated PIN before comparison with the given

PIN

The encrypted PIN must be supplied as 16-byte hexadecimal characters repre-
senting the 8-byte encrypted PIN value. VFYPIN assumes the PIN was in 3624
format before encryption. The 3624 PIN format stores the PIN in 8 bytes with each
byte containing 2 digits. If the PIN is not 16 digits long, the remaining digits are
padded with a 4-bit value.

For example, assume the PIN value is 5162923 and the padding hexadecimal char-
acter is E. Figure 4-4 shows how the PIN looks in 3624 format.

51 62 92 3E EE EE EE EE8 Bytes

RSLQ011-0

Figure 4-4. Hexadecimal Padding Example

To use this 8-byte value with the VFYPIN command, it must be encrypted under a
PIN protection key stored in the cross-domain key table. The encrypted value is
supplied to VFYPIN as 16 hexadecimal characters.

Use the CPHDTA command to encrypt the plaintext PIN. When the PIN is in the
8-byte 3624 format, you must change it to 16 hexadecimal characters after
encryption. When the plaintext PIN is in the 16-byte 3624 format, select the spe-
cific encryption option on the CPHDTA command, which then calculates the
changes.

The TRNPIN command decrypts a PIN from encryption under an input PIN pro-
tection key to encryption under an output PIN protection key.

 Chapter 4. Personal Identification Number (PIN) Functions 4-3

Like data encrypting keys, PINs are handled in an encrypted form as much as pos-
sible. PINs are encrypted by two types of protection keys:

� Input PIN protection keys protect PINs received from another system and
PINs handled within the system. When you specify a PIN value for a PIN
command parameter, the value must be encrypted under an input PIN pro-
tection key.

� Output PIN protection keys are used to protect PINs sent to a remote
location. These keys must be created as sending cross-domain keys.

In addition to a PIN protection key, PIN commands may require a PIN validation
key. A PIN validation key generates a PIN by encrypting the validation data as
described in step 3 of the “PIN Generation Algorithm” on page 4-1. The same vali-
dation key verifies the PIN and must be stored and associated with the customer’s
validation data. For example, you could assign a particular PIN validation key to a
range of customer numbers.

PIN validation keys and input PIN protection keys are stored in the cross-domain
table with a key use of *PIN. Output PIN protection keys are stored in the cross-
domain key table with a key use of *SND.

The GENPIN, VFYPIN, and TRNPIN commands all request the validation data or
the encrypted PIN as input data. Internally, these are 8-byte values. Externally,
you supply each of these values to the PIN commands as 16 hexadecimal charac-
ters representing the 8-byte value. For example, suppose an 8-byte validation data
has the following hexadecimal value:

 Hex 010AF3F9F5C6E2C2

You would supply the same value in a 16-byte character hexadecimal format:

 Char 010AF3F9F5C6E2C2

For further information on PIN management, see the 4700 Finance Communication
System Controller Programming Library, Volume 5: Cryptographic Programming
book.

4-4 AS/400 Cryptographic Support/400

Chapter 5. AS/400 Cryptographic Support Commands and
Call Interfaces

The user’s interface to Cryptographic Support consists of a set of control language
(CL) commands and the programs they call, the command processing programs
(CPPs). Some CL commands may be typed interactively at your work station.
Others must be run from a CL program, or their CPPs can be called directly if your
program is written in another AS/400 language.

Add Cross-Domain Key (ADDCRSDMNK) Command
The Add Cross-Domain Key (ADDCRSDMNK) command allows you to specify a
new cross-domain key that is added to the cross-domain key table. The
ADDCRSDMNK command asks for the name of the key, its use, and key value.

Following is the syntax for the ADDCRSDMNK command:

ADDCRSDMNK───
 ┌──────────────────┐
 │Job: I Pgm: I │
 └──────────────────┘

When you run the ADDCRSDMNK command, the following display appears:

à@ ð
Add Cross-Domain Key

 Type choices, press Enter.

 Cross-domain key:
Name __________
Use ____ \SND, \RCV, \PIN
Value ________________ Hex value

 F3=Exit F9=Change cross-domain key F12=Cancel

á ñ

The prompts in the Add Cross-Domain Key display have the following meaning:

Name. Specify a valid AS/400 name for the cross-domain key. Use this name to
refer to the cross-domain key.

Use. Specify *SND for a sending cross-domain key, *RCV for a receiving cross-
domain key, or *PIN for a PIN key.

 Copyright IBM Corp. 1994 5-1

Value. Specify 16 hexadecimal characters that represent the 8-byte value of the
cross-domain key. The value specified must have odd parity in every byte.

The following escape messages can be generated for the ADDCRSDMNK
command:

CRP0001 Cryptographic Support not found.

CRP0003 Host master key damaged or not defined.

CRP0004 Error occurred while opening file QACRKTBL in QUSRSYS.

CRP0005 Error occurred while processing file QACRKTBL in QUSRSYS.

CRP0008 Error occurred while closing file QACRKTBL in QUSRSYS.

Change Master Key (CHGMSTK) Command
The Change Master Key (CHGMSTK) command installs a new host master key on
your system, then decrypts and encrypts the values again in the cross-domain key
table under the new host master key. The exclusive-OR operation used on two key
parts that you supply produces the new host master key, which must have odd
parity in each byte.

To install the new host master key, the value of the old host master key verification
code must also be supplied. After installing a new host master key, a message at
the bottom of the display shows the new verification code. This verification code
should be recorded and stored in a secure place. The CHGMSTK and Verify
Master Key (VFYMSTK) commands require this verification code.

A message sent to the history log, QHST, records the time, date, and job that
changed the value of the host master key.

To use the CHGMSTK command, place your system in a restricted state. To reach
a restricted state, enter the End System (ENDSYS) command. After installing the
master key, return your system to a normal state by restarting your subsystems.

Following is the syntax for the CHGMSTK command:

CHGMSTK──
 ┌──────────────────┐
 │Job: I Pgm: I │
 └──────────────────┘

5-2 AS/400 Cryptographic Support/400

When you run the CHGMSTK command, the following display appears:

à@ ð
Change Master Key Page 1 of 2

 Type choices, press Enter.

Part 1 of new master key ________________
Bit complement of part 1 ________________
Current master key
verification code ____

 F3=Exit F12=Cancel

á ñ

The prompts in the Change Master Key display have the following meaning:

Part 1 of new master key. Specify 16 hexadecimal characters that represent the
8-byte value of the first key part. An exclusive-OR operation of key parts 1 and 2
produces the host master key. The master key must have odd parity in every byte.

Bit complement of part 1. Specify 16 hexadecimal characters that represent the
8-byte complement of part 1. An exclusive-OR operation of key part 1 and its com-
plement should produce 8 bytes of hex FF.

Current master key verification code. Specify 4 hexadecimal characters that repre-
sent the 2-byte value of the current master key verification code.

 Chapter 5. AS/400 Cryptographic Support Commands and Call Interfaces 5-3

The following is the second display produced by the CHGMSTK command.

à@ ð
Change Master Key Page 2 of 2

 Type choices, press Enter.

Part 2 of new master key ________________
Bit complement of part 2 ________________

 F3=Exit F12=Cancel

á ñ

The prompts in the second Change Master Key display have the following meaning:

Part 2 of new master key. Specify 16 hexadecimal characters that represent the
8-byte value of the second key part. An exclusive-OR operation of key parts 1 and
2 produces the host master key. The host master key must have odd parity in
every byte.

Bit complement of part 2. Specify 16 hexadecimal characters that represent the
8-byte complement of part 2. An exclusive-OR operation of key part 2 and its com-
plement should produce 8 bytes of hex FF.

The following escape messages can be generated for the CHGMSTK command:

CRP0001 Cryptographic Support not found.

CRP0003 Host master key damaged or not defined.

CRP0004 Error occurred while opening file QACRKTBL in QUSRSYS.

CRP0005 Error occurred while processing file QACRKTBL in QUSRSYS.

CRP0008 Error occurred while closing file QACRKTBL in QUSRSYS.

CRP0201 The system is not in a restricted state.

CRP0208 Master key value has bad parity.

CRP0209 Master key value is a weak key value.

5-4 AS/400 Cryptographic Support/400

Change Cross-Domain Key (CHGCRSDMNK) Command
The Change Cross-Domain Key (CHGCRSDMNK) command allows you to change
the value of a cross-domain key in the key table. The CHGCRSDMNK command
asks for the name of the key, its use, and the new key value.

Following is the syntax for the CHGCRSDMNK command:

CHGCRSDMNK───
 ┌──────────────────┐
 │Job: I Pgm: I │
 └──────────────────┘

When you run the CHGCRSDMNK command, the following display appears:

à@ ð
Change Cross-Domain Key

 Type choices, press Enter.

 Cross-domain key:
Name __________
Use ____ \SND, \RCV, \PIN
Value ________________ Hex value

 F3=Exit F6=Add cross-domain key F12=Cancel

á ñ

The prompts in the Change Cross-Domain Key display have the following meaning:

Name. Specify a valid AS/400 name for the cross-domain key. Use this name to
refer to the cross-domain key.

Use. Specify *SND for a sending cross-domain key, *RCV for a receiving cross-
domain key, or *PIN for a PIN key.

Value. Specify 16 hexadecimal characters that represent the new 8-byte value of
the cross-domain key. This value must have odd parity in every byte.

 Chapter 5. AS/400 Cryptographic Support Commands and Call Interfaces 5-5

The following escape messages can be generated for the CHGCRSDMNK
command:

CRP0001 Cryptographic Support not found.

CRP0003 Host master key damaged or not defined.

CRP0004 Error occurred while opening file QACRKTBL in QUSRSYS.

CRP0005 Error occurred while processing file QACRKTBL in QUSRSYS.

CRP0008 Error occurred while closing file QACRKTBL in QUSRSYS.

Cipher Data (CPHDTA) Command
Use the Cipher Data (CPHDTA) command to encrypt or decrypt a variable length of
data.

Following is the syntax for the CPHDTA command:

CPHDTA───DATA input─data──5

5───DTALEN data─length───CPHK cipher─key───RTNVAR return─variable─────────────5

 ┌─\ECPH──┐
5───OPTION──┼─\SCPH──┼──5
 └─\DCPH──┘
 Required
 Optional
 ┌5\CLEAR───┐ ┌5\NO───┐
5───KTYPE──┤ ├───CHAIN──┤ ├────────────────────────────────────5
 └─\CIPHER──┘ └─\YES──┘

 ┌5\NONE───────────────────┐
5───ICV──┤ ├──5
 └─initial─chaining─value──┘

 ┌5\NO───┐ ┌5X'ðð'──────────┐
5───PAD──┤ ├───PADCHAR──┤ ├──────────────────────────────5
 └─\YES──┘ └─pad─character──┘

5───RTNDTALEN return─data─length─variable──────────────────────────────────────
 ┌──────────────────┐
 │Pgm: B,I │
 └──────────────────┘

The CPHDTA command uses the following parameters:

DATA
Specifies the data, or a variable containing the data, to be encrypted or
decrypted. The data must be at least as long as the length specified in the
DTALEN parameter. If you indicate specific encryption (*SCPH) in the OPTION
parameter, only values 0 through 9 and A through F may be specified in this
parameter.

DTALEN
Specifies the length, or a variable containing the length, of the data to be
encrypted or decrypted.

When encrypting data, the length must be a multiple of 8 bytes if both the PAD
and CHAIN parameters are specified as *NO. The length must be less than

5-6 AS/400 Cryptographic Support/400

65 528 bytes if the PAD parameter is specified as *YES. The length must be
less than or equal to 65 528 bytes if the PAD parameter is specified as *NO. If
you indicate specific encryption (*SCPH) in the OPTION parameter, this value
must be 16.

When decrypting data, the length must be a multiple of 8 bytes unless cipher
block chaining was used when the data was encrypted. The length must be
less than or equal to 65 528 bytes.

CPHK
Specifies an 8-byte value, or a variable containing an 8-byte value, to be used
as the key for the Data Encryption Algorithm (DEA). There are no restrictions
on the value of this parameter.

RTNVAR
Specifies a variable to receive the results of the encryption or decryption opera-
tion. If PAD is specified as *YES and OPTION is specified as *ECPH,
RTNVAR must be at least as long as the next 8-byte multiple past the value
specified for DTALEN. Otherwise, RTNVAR must be at least as long as the
DTALEN value.

OPTION
Specifies the function to be performed:

*ECPH. A copy of the data in the DATA parameter is encrypted and placed in
the RTNVAR parameter.

*SCPH. The DATA parameter contains 16 hexadecimal characters that repre-
sent 8 bytes of data to encrypt (for example, 'C1' represents 'A'). A copy of the
16 hexadecimal characters in the DATA parameter is converted to an 8-byte
field and encrypted. The resulting 8 bytes of ciphertext are converted back to
16 hexadecimal characters and placed in the RTNVAR parameter.

*DCPH. A copy of the data in the DATA parameter is decrypted and placed in
the variable specified in the RTNVAR parameter.

KTYPE
Specifies the format of the key specified in the CPHK parameter:

*CLEAR . The cipher key is specified in plaintext. If the OPTION parameter is
*SCPH, KTYPE must specify *CLEAR.

*CIPHER. The cipher key is encrypted under the host master key. If the
CHAIN or PAD option is specified as *YES, KTYPE must specify *CIPHER.

CHAIN
Specifies if cipher block chaining is to be used during the cipher operation:

*NO. Cipher block chaining is not used. If the OPTION parameter is *SCPH or
the KTYPE parameter is *CLEAR, CHAIN must specify *NO.

*YES. Cipher block chaining is used.

ICV
Specifies an 8-byte value, or a variable containing an 8-byte value, to be used
as the initial chaining value when performing cipher block chaining. This
parameter is ignored if the CHAIN option is *NO.

*NONE. There is no initial chaining value.

 Chapter 5. AS/400 Cryptographic Support Commands and Call Interfaces 5-7

initial-chaining-value. Enter the value to be used as the initial chaining value
for cipher block chaining. There are no restrictions on the value for this param-
eter. A value is required if the CHAIN option is specified *YES.

PAD
Specifies whether padding is to be performed:

*NO. Padding is not performed. If the OPTION parameter is *SCPH, PAD
must be *NO.

*YES. Before encrypting, Cryptographic Support pads DATA out to the next
8-byte multiple using the PADCHAR parameter. A count of the number of pad
characters then replaces the last byte.

After decrypting DATA, Cryptographic Support leaves the pad characters and
count byte appended to the data. The length of the data without the pad char-
acters is returned in the variable RTNDTALEN.

PADCHAR
Specifies a 1-byte value, or a variable containing a 1-byte value, to be used as
the pad character when the OPTION parameter is *ECPH and the PAD param-
eter is *YES. The default is hex 00.

RTNDTALEN
Specifies a variable to receive the length of the returned data. When the
OPTION parameter is *DCPH and the PAD parameter is *YES, this length is
the length of the decrypted data without padding. Otherwise, RTNDTALEN
contains the length of the data placed in the RTNVAR parameter.

See “Special Considerations” on page 5-9 for additional information on using the
CPHDTA parameters. See Chapter 8, “Coding Examples,” for examples of using
the CPHDTA command.

CPHDTA CPP (QCRCIPHR)
The program QCRCIPHR, in library QCRP, can access the same cryptographic
functions as the CPHDTA command. QCRCIPHR expects 5 or 11 parameters to
be passed on the call.

The parameter types and their required order are listed below. The following five
parameters are required:

Order

Required
Parameter

Type

Length
(Bytes)

1 DATA Variable or constant. variable

2 DTALEN Packed variable or constant with 5
digits, 0 decimal places.

3 CPHK Variable or constant. 8

4 RTNVAR Variable. variable, at least
8

5 OPTION Variable or constant. Valid values
are E (encryption), S (specific
encryption), and D (decryption).

1

5-8 AS/400 Cryptographic Support/400

The following six parameters are optional. However, if one is specified, all must be
specified.

See Chapter 8, “Coding Examples,” for examples of calling QCRCIPHR.

Order

Optional
Parameter

Type

Length
(Bytes)

6 KTYPE Variable or constant. Valid values
are C to specify a clear key type,
and E, to specify an encrypted key
type.

1

7 CHAIN Variable or constant. Valid values
are N, to specify no chaining is to
be used, and Y, to specify chaining
is to be used.

1

8 ICV Variable or constant. Specify 8
bytes of hex zero for no initial
chaining value.

8

9 PAD Variable or constant. Valid values
are N, to specify no padding is to be
used, and Y, to specify padding is to
be used.

1

10 PADCHAR Variable or constant. 1

11 RTNDTALEN Packed variable with 5 digits, 0
decimal places.

 Special Considerations
Consider the following information when writing a program that uses the CPHDTA
functions:

� When the RTNVAR parameter is longer than the data being returned, the value
returned is left-adjusted, and the remainder of RTNVAR is unchanged.

� To overlay the input to the CPHDTA command with the output, specify the
same area for the DATA and RTNVAR parameters. Be sure the language in
which your application is written can support this overlay.

� Parameters containing ciphertext (the DATA parameter when decrypting and
the RTNVAR parameter when encrypting) can be any binary value and should
always be treated as character variables in your program.

� Parameters containing plaintext (the DATA parameter when encrypting and the
RTNVAR parameter when decrypting) may be of any data type. If your applica-
tion uses character fields for the plaintext parameters containing decimal data,
some adjustments may be required to maintain the sign and decimal position
when moving data between character and decimal fields.

� The RTNVAR parameter must be large enough to contain the returned data. If
it is not, results that cannot be predicted, such as loss of program data, occur.

� Variable length variables, such as those used in BASIC, must be passed in a
fixed length format. The variables must not contain the field length, but only
the actual data.

 Chapter 5. AS/400 Cryptographic Support Commands and Call Interfaces 5-9

The following escape messages can be generated for the CPHDTA command:

CRP0001 Cryptographic Support not found.

CRP0002 Input parameters contain errors.

CRP0003 Host master key damaged or not defined.

CRP0050 DTALEN &1 exceeds length of DATA or RTNVAR parameter.

CRP0051 DATA parameter contains characters that are not valid.

CRP0052 DTALEN value contains characters that are not valid.

CRP0053 RTNVAR parameter overlaps end of DATA parameter limits.

Encrypt Cipher Key (ENCCPHK) Command
The Encrypt Cipher Key (ENCCPHK) command encrypts a plaintext data encrypting
key under the host master key.

Following is the syntax for the ENCCPHK command:

 Required

ENCCPHK───CLRK cleartext─data─encrypting─key──────────────────────────────────5

5───CPHK cipher─key─return─variable──
 ┌──────────────────┐
 │Pgm: B,I │
 └──────────────────┘

The ENCCPHK command uses the following parameters:

CLRK
Specifies an 8-byte value, or a variable containing an 8-byte value, of a
plaintext data encrypting key. There are no restrictions on the value of this
parameter.

CPHK
Specifies an 8-byte variable to receive the value of the data encrypting key
specified in the CLRK parameter after it is encrypted under the master key.

5-10 AS/400 Cryptographic Support/400

ENCCPHK CPP (QCRENCKY)
The program QCRENCKY, in library QCRP, can access the same cryptographic
functions as the ENCCPHK command. QCRENCKY expects two parameters to be
passed on the call.

The parameter types and their required order are listed below:

The following escape messages can be generated for the ENCCPHK command:

CRP0001 Cryptographic Support not found.

CRP0003 Host master key damaged or not defined.

Order

Parameter

Type

Length
(Bytes)

1 CLRK Variable or constant 8

2 CPHK Variable 8

Encipher from Master Key (ENCFRMMSTK) Command
The Encipher from Master Key (ENCFRMMSTK) command decrypts a data
encrypting key from encryption under the host master key and encrypts it under
one or two sending cross-domain keys.

Following is the syntax for the ENCFRMMSTK command:

ENCFRMMSTK───CPHK cipher─key──5

5───CRSDMNK1 sending─cross─domain─key─name────────────────────────────────────5

5───KRTNVAR1 return─variable──5
 Required
 Optional
 ┌5\NONE─────────────────────────┐
5───CRSDMNK2──┤ ├───────────────────────────────5
 └─sending─cross─domain─key─name─┘

5───KRTNVAR2 return─variable──
 ┌──────────────────┐
 │Pgm: B,I │
 └──────────────────┘

The ENCFRMMSTK command uses the following parameters:

CPHK
Specifies an 8-byte value, or a variable containing an 8-byte value, that is the
value of a data encrypting key encrypted under the host master key. There are
no restrictions on the value of this parameter.

CRSDMNK1
Specifies the name, or a variable containing the name, of a sending cross-
domain key. The value in the CPHK parameter is decrypted using the host
master key and encrypted using this sending cross-domain key.

 Chapter 5. AS/400 Cryptographic Support Commands and Call Interfaces 5-11

KRTNVAR1
Specifies an 8-byte variable to receive the data encrypting key encrypted under
the sending cross-domain key.

CRSDMNK2
Specifies the name of a second sending cross-domain key. The value in the
CPHK parameter is decrypted using the host master key and encrypted using
this second sending cross-domain key.

*NONE. No sending cross-domain key is to be used to encrypt the data
encrypting key.

sending-cross-domain-key-name. Enter the name, or a variable containing the
name, of a cross-domain key.

KRTNVAR2
Specifies an 8-byte variable to receive the data encrypting key encrypted under
the second sending cross-domain key.

ENCFRMMSTK CPP (QCRENCFR)
The program QCRENCFR, in library QCRP, can access the same cryptographic
functions as the ENCFRMMSTK command. QCRENCFR requires three parame-
ters to be passed on the call. An additional two parameters are optional.

The parameter types and their required order are listed below. The following three
parameters are required:

The following two parameters are optional. However, if either is specified, both
must be specified.

The following escape messages can be generated for the ENCFRMMSTK
command:

CRP0001 Cryptographic Support not found.

CRP0002 Input parameters contain errors.

CRP0003 Host master key damaged or not defined.

CRP0004 Error occurred while opening file QACRKTBL in QUSRSYS.

CRP0005 Error occurred while processing file QACRKTBL in QUSRSYS.

CRP0006 Key &1 with use &2 damaged.

CRP0008 Error occurred while closing file QACRKTBL in QUSRSYS.

Order

Parameter

Type

Length
(Bytes)

1 CPHK Variable or constant 8

2 CRSDMNK1 Variable or constant 10

3 KRTNVAR1 Variable 8

Order

Parameter

Type

Length
(Bytes)

4 CRSDMNK2 Variable or constant 10

5 KRTNVAR2 Variable 8

5-12 AS/400 Cryptographic Support/400

CRP0701 Number of parameters not valid.

Encipher to Master Key (ENCTOMSTK) Command
The Encipher to Master Key (ENCTOMSTK) command decrypts a data encrypting
key from encryption under a receiving cross-domain key and encrypts it under the
host master key.

Following is the syntax for the ENCTOMSTK command:

 Required
ENCTOMSTK───CPHK cipher─key─return─variable───────────────────────────────────5

5───CRSDMNK receiving─cross─domain─key─name───────────────────────────────────5

5───ENCCPHK encrypted─cipher─key──
 ┌──────────────────┐
 │Pgm: B,I │
 └──────────────────┘

The ENCTOMSTK command uses the following parameters:

CPHK
Specifies an 8-byte variable to receive the data encrypting key encrypted under
the host master key.

CRSDMNK
Specifies the name, or a variable containing the name, of a receiving cross-
domain key. The value in the ENCCPHK parameter is decrypted using the
receiving cross-domain key and encrypted using the host master key.

ENCCPHK
Specifies the 8-byte value, or a variable containing the 8-byte value, of a data
encrypting key encrypted under the receiving cross-domain key specified in the
CRSDMNK parameter.

ENCTOMSTK CPP (QCRENCTO)
The program QCRENCTO, in library QCRP, can access the same cryptographic
functions as the ENCTOMSTK command. QCRENCTO requires three parameters
to be passed on the call.

The parameter types and their required order are listed below:

The following escape messages can be generated for the ENCTOMSTK command:

CRP0001 Cryptographic Support not found.

CRP0003 Host master key damaged or not defined.

Order

Parameter

Type

Length
(Bytes)

1 CPHK Variable 8

2 CRSDMNK Variable or constant 10

3 ENCCPHK Variable or constant 8

 Chapter 5. AS/400 Cryptographic Support Commands and Call Interfaces 5-13

CRP0004 Error occurred while opening file QACRKTBL in QUSRSYS.

CRP0005 Error occurred while processing file QACRKTBL in QUSRSYS.

CRP0006 Key &1 with use &2 damaged.

CRP0007 Key &1 with use &2 not found in key table.

CRP0008 Error occurred while closing file QACRKTBL in QUSRSYS.

Generate Cipher Key (GENCPHK) Command
The Generate Cipher Key (GENCPHK) command generates a pseudo-random data
encrypting key encrypted under the host master key. The GENCPHK command
optionally returns the random data encrypting key encrypted under a sending or
receiving cross-domain key.

Following is the syntax for the GENCPHK command:

GENCPHK───CPHK cipher─key─return─variable─────────────────────────────────────5
 Required
 Optional
 ┌5\NONE─────────────────────────┐
5───SNDCRSDMNK──┤ ├─────────────────────────────5
 └─sending─cross─domain─key─name─┘

5───SNDRTNVAR return─variable───5

 ┌5\NONE───────────────────────────┐
5───RCVCRSDMNK──┤ ├───────────────────────────5
 └─receiving─cross─domain─key─name─┘

5───RCVRTNVAR return─variable──
 ┌──────────────────┐
 │Pgm: B,I │
 └──────────────────┘

The GENCPHK command uses the following parameters:

CPHK
Specifies an 8-byte variable to receive the value of the generated data
encrypting key encrypted under the host master key.

SNDCRSDMNK
Specifies the name of a sending cross-domain key that is to be used to encrypt
the generated data encrypting key:

*NONE. No sending cross-domain key is to be used to encrypt the generated
data encrypting key.

sending-cross-domain-key-name. Enter the name, or a variable containing the
name, of a sending cross-domain key.

SNDRTNVAR
Specifies an 8-byte variable to receive the value of the generated data
encrypting key encrypted under the sending cross-domain key specified in the
SNDCRSDMNK parameter.

5-14 AS/400 Cryptographic Support/400

RCVCRSDMNK
Specifies the name of a receiving cross-domain key that is to be used to
encrypt the generated data encrypting key:

*NONE. No receiving cross-domain key is to be used to encrypt the generated
data encrypting key.

receiving-cross-domain-key-name. Enter the name, or a variable containing the
name, of a receiving cross-domain key.

RCVRTNVAR
Specifies an 8-byte variable to receive the value of the generated data
encrypting key encrypted under the receiving cross-domain key specified in the
RCVCRSDMNK parameter.

GENCPHK CPP (QCRGENKY)
The program QCRGENKY, in library QCRP, can access the same cryptographic
functions as the GENCPHK command QCRGENKY requires one, three, or five
parameters to be passed on the call.

The following parameter is required:

The following four parameters are optional. However, either parameters 2 and 3
must be specified, or all five parameters must be specified.

The following escape messages can be generated for the GENCPHK command:

CRP0001 Cryptographic Support not found.

CRP0003 Host master key damaged or not defined.

CRP0004 Error occurred while opening file QACRKTBL in QUSRSYS.

CRP0005 Error occurred while processing file QACRKTBL in QUSRSYS.

CRP0008 Error occurred while closing file QACRKTBL in QUSRSYS.

CRP0901 Number of parameters not valid.

CRP0904 Cannot encipher generated key under some cross-domain keys.

Order

Parameter

Type

Length
(Bytes)

1 CPHK Variable 8

Order

Parameter

Type

Length
(Bytes)

2 SNDCRSDMNK Variable or constant 10

3 SNDRTNVAR Variable 8

4 RCVCRSDMNK Variable or constant 10

5 RCVRTNVAR Variable 8

 Chapter 5. AS/400 Cryptographic Support Commands and Call Interfaces 5-15

Generate Message Authentication Code (GENMAC) Command
The Generate Message Authentication Code (GENMAC) command encrypts a vari-
able length of data using cipher block chaining and returns the last 8 bytes as a
message authentication code.

Following is the syntax for the GENMAC command:

GENMAC───DATA input─data──5

5───DTALEN data─length───CPHK cipher─key──────────────────────────────────────5

5───ICV initial─chaining─value───RTNVAR return─variable───────────────────────5
 Required
 Optional
 ┌5\NO──┐ ┌5X'ðð'─────────┐
5───PAD──┤ ├───PADCHAR──┤ ├─────────────────────────────────
 └─\YES─┘ └─pad─character─┘
 ┌──────────────────┐
 │Pgm: B,I │
 └──────────────────┘

The GENMAC command uses the following parameters:

DATA
Specifies the data, or a variable containing the data, to be encrypted. The
DATA must be at least as long as the length specified in the DTALEN param-
eter.

DTALEN
Specifies the length, or a variable containing the length, of the data to be
encrypted. The length must be less than 32 760 bytes.

CPHK
Specifies an 8-byte value, or a variable containing an 8-byte value, to be used
as the key for the DEA. This value must be the value of the key encrypted
under the host master key. There are no restrictions on the value of this
parameter.

ICV
Specifies an 8-byte value, or a variable containing an 8-byte value, to be used
as the initial chaining value when performing cipher block chaining. There are
no restrictions on the value of this parameter.

RTNVAR
Specifies a variable to receive the 8-byte message authentication code.

PAD
Specifies whether padding is to be performed by Cryptographic Support:

*NO. Padding is not performed.

*YES. Before encrypting, Cryptographic Support pads DATA out to the next
8-byte multiple using the PADCHAR parameter. The last byte is then replaced
with a count of the number of pad characters.

PADCHAR
Specifies a 1-byte value, or a variable containing a 1-byte value, to be used as
the pad character when the PAD parameter is *YES. The default is hex 00.

5-16 AS/400 Cryptographic Support/400

GENMAC CPP (QCRGENMA)
The program QCRGENMA, in library QCRP, can access the same cryptographic
functions as the GENMAC command. QCRGENMA requires seven parameters to
be passed on the call.

The parameter types and their required order are listed below:

The following escape messages can be generated for the GENMAC command:

CRP0001 Cryptographic Support not found.

CRP0002 Input parameters contain errors.

CRP0003 Host master key damaged or not defined.

CRP0052 DTALEN value contains characters that are not valid.

CRP0055 DTALEN &1 is larger than length of DATA parameter.

Order

Parameter

Type

Length
(Bytes)

1 DATA Variable or constant. variable

2 DTALEN Packed variable or constant with 5
digits, 0 decimal places.

3 CPHK Variable or constant. 8

4 ICV Variable or constant. Specify 8 bytes
of hex zero for no initial chaining value.

8

5 RTNVAR Variable. 8

6 PAD Character variable or constant. Valid
values are N to specify no padding is
to be used, and Y to specify padding is
to be used.

1

7 PADCHAR Variable or constant. 1

Generate PIN (GENPIN) Command
The Generate PIN (GENPIN) command produces a personal identification number
(PIN) that is algorithmically related to the customer’s validation data. The gener-
ated PIN value contains 16 decimal digits that may be assigned to a customer. If
the customer has a preselected PIN value, these digits may be used as an interme-
diate PIN.

Following is the syntax for the GENPIN command:

 Required

GENPIN───PINVLDK PIN─validation─key───5

5───DECTBL decimalization─table───VLDDTA validation─data──────────────────────5

5───PINRTNVAR PIN─return─variable───
 ┌──────────────────┐
 │Pgm: B,I │
 └──────────────────┘

 Chapter 5. AS/400 Cryptographic Support Commands and Call Interfaces 5-17

The GENPIN command uses the following parameters:

PINVLDK
Specifies the name, or a variable containing the name, of a PIN validation key
used to encrypt the validation data. The PIN validation key must exist in the
cross-domain key table with a defined use of PIN.

DECTBL
Specifies 16 numeric digits (0 through 9), or a character variable containing 16
numeric digits, to be used as the decimalization table when generating the PIN.

VLDDTA
Specifies 16 hexadecimal characters, or a character variable containing 16
hexadecimal characters, that represent the 8 bytes of validation data to be
used for generating the PIN.

PINRTNVAR
Specifies a variable to receive the 16-digit generated PIN.

GENPIN CPP (QCRGENPN)
The program QCRGENPN, in library QCRP, can access the same cryptographic
functions as the GENPIN command. QCRGENPN expects four parameters to be
passed on the call.

The parameter types and their required order are listed below:

The following escape messages can be generated for the GENPIN command:

CRP0001 Cryptographic Support not found.

CRP0003 Host master key damaged or not defined.

CRP0004 Error occurred while opening file QACRKTBL in QUSRSYS.

CRP0005 Error occurred while processing file QACRKTBL in QUSRSYS.

CRP0006 Key &1 with use &2 damaged.

CRP0007 Key &1 with use &2 not found in key table.

CRP0008 Error occurred while closing file QACRKTBL in QUSRSYS.

CRP1101 DECTBL value contains characters that are not valid.

CRP1104 VLDDTA value contains characters that are not valid.

Order

Parameter

Type

Length
(Bytes)

1 PINVLDK Variable or constant 10

2 DECTBL Character variable or constant 16

3 VLDDTA Character variable or constant 16

4 PINRTNVAR Variable 16

5-18 AS/400 Cryptographic Support/400

Generate Cross-Domain Key (GENCRSDMNK) Command
The Generate Cross-Domain Key (GENCRSDMNK) command generates pseudo-
random key values, installs them in the cross-domain key table, and prints a list of
the keys generated. The spooled file containing this list is sent to the output queue
of the job from which the command is submitted.

Following is the syntax for the GENCRSDMNK command:

 Required
GENCRSDMNK───CRSDMNK key─name───5

5───NBR number─of─keys───SEED seed─value──────────────────────────────────────5

 ┌─\SND────────┐
5───KUSE──┼─\RCV────────┼──
 └─\PIN────────┘
 ┌──────────────────┐
 │Job: B,I Pgm: B,I│
 └──────────────────┘

The GENCRSDMNK command uses the following parameters:

CRSDMNK
Specifies a valid AS/400 name, or a variable containing a name, to be used
when generating the key names.

All generated key names are 10 characters long with numerics in positions 7
through 10. When you specify a key name, any characters in positions 7
through 10 must be numeric. If you specify a key name base that has fewer
than 10 characters, the name is filled in with 0’s up to the last character, which
is made a 1. This becomes the name of the first key generated.

For each following key value, the last 4 characters of the key name, which are
always numbers, are incremented by 1 to become the next key name.
GENCRSDMNK does not generate any key names past 9999.

The following examples show the name specified for the CRSDMNK parameter
and the first key name generated from it:

CRSDMNK Value Generated Key Name

A Aðððððððð1

ABCDEF12 ABCDEF12ð1

A123 A123ððððð1

ABCDEF1234 ABCDEF1234

NBR
Specifies the number, or a variable containing the number, of keys to be gener-
ated. The value specified plus the 4-digit number from the first key name
cannot exceed 10 000 keys.

SEED
Specifies 16 hexadecimal characters, or a character variable containing 16
hexadecimal characters, that represent the 8-byte value to be used as the seed
to start the random number generation routine.

 Chapter 5. AS/400 Cryptographic Support Commands and Call Interfaces 5-19

KUSE
Specifies the use of the keys to be generated:

*SND. The generated keys are added to the cross-domain key table as
sending cross-domain keys.

*RCV. The generated keys are added to the cross-domain key table as
receiving cross-domain keys.

*PIN. The generated keys are added to the cross-domain key table as PIN
keys.

 Special Considerations
The following special considerations apply when you use GENCRSDMNK:

� Because GENCRSDMNK creates a list of the plaintext values of the generated
keys, issue the GENCRSDMNK command only in a secure environment. Print
the list of the values immediately, and store it in a safe place.

� The name of the print file is QPCRGENX. If this file is spooled, it appears in
the default output queue of the job from which the GENCRSDMNK command is
submitted.

� If the SAVE attribute of the spooled file is *YES, it is not deleted from the
output queue after it has printed. Use option 4 on the Output Queue display to
delete the spooled file from the system. To avoid spooling, change the SPOOL
parameter of the print file to *NO, using the Change Print File (CHGPRTF)
command before running GENCRSDMNK.

The following escape messages can be generated for the GENCRSDMNK
command:

CRP0001 Cryptographic Support not found.

CRP0003 Host master key damaged or not defined.

CRP0004 Error occurred while opening file QACRKTBL in QUSRSYS.

CRP0005 Error occurred while processing file QACRKTBL in QUSRSYS.

CRP0008 Error occurred while closing file QACRKTBL in QUSRSYS.

CRP0601 Cross-domain key value &1 is not valid.

CRP0602 A key name cannot be generated past &1.

CRP0603 Error occurred while generating keys.

CRP0605 SEED value hex &1 contains characters that are not valid.

CRP0606 NBR &1 not valid.

5-20 AS/400 Cryptographic Support/400

Remove Cross-Domain Key (RMVCRSDMNK) Command
The Remove Cross-Domain Key (RMVCRSDMNK) command removes one or more
specified keys from the cross-domain key table.

Following is the syntax for the RMVCRSDMNK command:

 Required
 ┌─\ALL──────────────┐
RMVCRSDMNK───CRSDMNK──┼─generic\─key─name─┼───────────────────────────────────5
 └─key─name──────────┘

 ┌─\ALL─┐
5───KUSE──┼─\SND─┼───
 ├─\RCV─┤
 └─\PIN─┘
 ┌──────────────────┐
 │Job: B,I Pgm: B,I│
 └──────────────────┘

The RMVCRSDMNK command uses the following parameters:

CRSDMNK
Specifies the name or generic name of the keys, with a key use specified in the
KUSE parameter, that are to be removed from the cross-domain key table.
This parameter can also specify that all keys defined with the use specified in
the KUSE parameter are to be removed.

*ALL . All keys with a key use specified in the KUSE parameter are to be
removed from the cross-domain key table.

generic*-key-name. All keys with the same generic name with a key use speci-
fied in the KUSE parameter are to be removed from the cross-domain key
table. To specify a generic name, add an asterisk after the characters that are
common in all the key names to be removed (for example, ABC*). If an
asterisk is not included with the name, the system assumes that the name is a
complete key name.

key-name. The key with the specified name with a key use specified in the
KUSE parameter is to be removed from the cross-domain key table.

KUSE
Specifies the key use of the keys specified in the CRSDMNK parameter that
are to be removed from the cross-domain key table. This parameter can also
specify that all key uses of the named keys are to be removed.

*ALL . The keys named in the CRSDMNK parameter with any key use are to
be removed.

*SND. The keys named in the CRSDMNK parameter with a key use of sending
are to be removed.

*RCV. The keys named in the CRSDMNK parameter with a key use of
receiving are to be removed.

*PIN. The keys named in the CRSDMNK parameter with a key use of PIN are
to be removed.

The following escape messages can be generated for the RMVCRSDMNK
command:

 Chapter 5. AS/400 Cryptographic Support Commands and Call Interfaces 5-21

CRP0004 Error occurred while opening file QACRKTBL in QUSRSYS.

CRP0005 Error occurred while processing file QACRKTBL in QUSRSYS.

CRP0007 Key &1 with use &2 not found in key table.

CRP0008 Error occurred while closing file QACRKTBL in QUSRSYS.

CRP0308 Key &1 with use &2 in use.

CRP0503 Error occurred when removing keys from key table.

CRP0504 Error occurred when clearing key table.

Set Master Key (SETMSTK) Command
The Set Master Key (SETMSTK) command installs a new host master key on your
system. If an old master key exists, the values in the cross-domain key table are
encrypted again under the new host master key value.

The exclusive-OR operation, used on the two key part values you supply, produces
the new host master key, which must have odd parity in each byte.

After installing the new host master key, a message at the bottom of the display
shows the verification code. This verification code should be recorded and stored
in a secure place. The CHGMSTK and VFYMSTK commands require this verifica-
tion code.

A message is sent to the history log, QHST, to record the time, date, and job that
set the new host master key.

To use the SETMSTK command, place your system in a restricted state. To get to
a restricted state, enter the End System (ENDSYS) command. After installing the
master key, return your system to a normal state by restarting your subsystems.

Following is the syntax for the SETMSTK command:

SETMSTK──
 ┌──────────────────┐
 │Job: I Pgm: I │
 └──────────────────┘

When you run the SETMSTK command, the following display appears:

5-22 AS/400 Cryptographic Support/400

à@ ð
Set Master Key Page 1 of 2

 Type choices, press Enter.

Part 1 of new master key ________________
Bit complement of part 1 ________________

 F3=Exit F12=Cancel

á ñ

The prompts in the first Set Master Key display have the following meaning:

Part 1 of new master key. Specify 16 hexadecimal characters that represent the
8-byte value of the first key part. An exclusive-OR operation of key parts 1 and 2
produce the host master key. The master key must have odd parity in every byte.

Bit complement of part 1. Specify 16 hexadecimal characters that represent the
8-byte complement of part 1. An exclusive-OR operation of key part 1 and its com-
plement should produce 8 bytes of hex FF.

Following is the second display that appears when you run the SETMSTK
command:

à@ ð
Set Master Key Page 2 of 2

 Type choices, press Enter.

Part 2 of new master key ________________
Bit complement of part 2 ________________

 F3=Exit F12=Cancel

á ñ

The prompts in the second Set Master Key display have the following meaning:

 Chapter 5. AS/400 Cryptographic Support Commands and Call Interfaces 5-23

Part 2 of new master key. Specify 16 hexadecimal characters that represent the
8-byte value of the second key part. An exclusive-OR operation of key parts 1 and
2 produce the host master key. The master key must have odd parity in every
byte.

Bit complement of part 2. Specify 16 hexadecimal characters that represent the
8-byte complement of part 2. An exclusive-OR operation of key part 2 and its com-
plement should produce 8 bytes of hex FF.

The following escape messages can be generated for the SETMSTK command:

CRP0001 Cryptographic Support not found.

CRP0004 Error occurred while opening file QACRKTBL in QUSRSYS.

CRP0005 Error occurred while processing file QACRKTBL in QUSRSYS.

CRP0008 Error occurred while closing file QACRKTBL in QUSRSYS.

CRP0201 The system is not in a restricted state.

CRP0208 Master key value has bad parity.

CRP0209 Master key value is a weak key value.

Translate PIN (TRNPIN) Command
The Translate PIN (TRNPIN) command decrypts a PIN from encryption under an
input PIN protection key and encrypts it under an output PIN protection key.

Following is the syntax for the TRNPIN command:

 Required
TRNPIN───INPINPTCK input─PIN─protection─key──────────────────────────────────5

5───ENCPIN enciphered─PIN────OUTPINPTCK output─PIN─protection─key────────────5

5───RTNVAR return─variable──

 ┌──────────────────┐
 │Pgm: B,I │
 └──────────────────┘

The TRNPIN command uses the following parameters:

INPINPTCK
Specifies the name, or a variable containing the name, of the input PIN pro-
tection key under which the PIN is encrypted. This key must exist in the cross-
domain key table with a defined use of PIN.

ENCPIN
Specifies 16 hexadecimal characters, or a character variable containing 16
hexadecimal characters, that represent a PIN encrypted under the input PIN
protection key.

OUTPINPTCK
Specifies the name, or a variable containing the name, of the output PIN pro-
tection key. The value specified in the ENCPIN parameter is decrypted using
the input PIN protection key and encrypted using the output PIN protection key.

5-24 AS/400 Cryptographic Support/400

This key must exist in the cross-domain key table with a defined use of
sending.

RTNVAR
Specifies a variable to receive the 16-character value of the PIN encrypted
under the output PIN protection key.

TRNPIN CPP (QCRTRNPN)
The program QCRTRNPN, in library QCRP, can access the same cryptographic
functions as the TRNPIN command. QCRTRNPN requires four parameters to be
passed on the call.

The parameter types and their required order are listed below:

The following escape messages can be generated for the TRNPIN command:

CRP0001 Cryptographic Support not found.

CRP0003 Host master key damaged or not defined.

CRP0004 Error occurred while opening file QACRKTBL in QUSRSYS.

CRP0005 Error occurred while processing file QACRKTBL in QUSRSYS.

CRP0006 Key &1 with use &2 damaged.

CRP0007 Key &1 with use &2 not found in key table.

CRP0008 Error occurred while closing file QACRKTBL in QUSRSYS.

CRP1103 ENCPIN value contains characters that are not valid.

Order

Parameter

Type

Length
(Bytes)

1 INPINPTCK Variable or constant 10

2 ENCPIN Character variable or constant 16

3 OUTPINPTCK Variable or constant 10

4 RTNVAR Variable 16

Verify Master Key (VFYMSTK) Command
The Verify Master Key (VFYMSTK) command compares the verification code you
type in on the prompt display with the verification code of the current host master
key. If the verification codes do not match, the master key has either been
changed since you received your verification code or the verification code was
incorrectly typed. If the verification codes match, a message at the bottom of the
display indicates that the typed verification code is correct.

Following is the syntax for the VFYMSTK command:

VFYMSTK──
 ┌──────────────────┐
 │Job: I Pgm: I │
 └──────────────────┘

 Chapter 5. AS/400 Cryptographic Support Commands and Call Interfaces 5-25

When you run the VFYMSTK command, the following display appears:

à@ ð
Verify Master Key

 Type choices, press Enter.

Current master key
verification code ____

 F3=Exit F12=Cancel

á ñ

The prompt for the Verify Master Key display has the following meaning:

Current master key verification code. Specify 4 hexadecimal characters that repre-
sent the 2-byte verification code of what should be the current host master key.

The following escape messages can be generated for the VFYMSTK command:

CRP0001 Cryptographic Support not found.

CRP0003 Host master key damaged or not defined.

Verify PIN (VFYPIN) Command
The Verify PIN (VFYPIN) command determines if the customer’s personal identifi-
cation number is algorithmically related to the customer’s validation data. The
result of the test is returned in a 1-byte variable.

Following is the syntax for the VFYPIN command:

VFYPIN───INPINPTCK input─PIN─protection─key───────────────────────────────────5

5───ENCPIN enciphered─PIN───PINVLDK PIN─validation─key────────────────────────5

5───DECTBL decimalization─table───VLDDTA validation─data──────────────────────5

5───PINCHKLEN PIN─check─length───RTNVAR return─variable───────────────────────5
 Required
 Optional
 ┌5\NONE─────────────┐ ┌5\NONE───────┐
5───PINPADCHAR──┤ ├───OFFSET──┤ ├────────────────
 └─PIN─pad─character─┘ └─offset─data─┘
 ┌──────────────────┐
 │Pgm: B,I │
 └──────────────────┘

5-26 AS/400 Cryptographic Support/400

The VFYPIN command uses the following parameters:

INPINPTCK
Specifies the name, or a variable containing the name, of the input PIN pro-
tection key under which the PIN is encrypted. This key must exist in the cross-
domain key table with a defined use of PIN.

ENCPIN
Specifies 16 hexadecimal characters, or a character variable containing 16
hexadecimal characters, that represent a PIN in 3624 format encrypted under
the input PIN protection key.

PINVLDK
Specifies the name, or a variable containing the name, of a PIN validation key
that is to be used to encrypt the validation data. This key must exist in the
cross-domain key table with a defined use of PIN.

DECTBL
Specifies 16 numeric digits (0 through 9), or a character variable containing 16
numeric digits, to be used as the decimalization table when verifying the PIN.

VLDDTA
Specifies 16 hexadecimal characters, or a character variable containing 16
hexadecimal characters, that represent the 8 bytes of validation data to be
used for verifying the PIN.

PINCHKLEN
Specifies the number, or a variable containing the number, of PIN digits to be
verified.

RTNVAR
Specifies a variable to receive the 1-byte verification status. If the PIN is valid,
the status is set to 0. If the PIN is invalid, the status is set to 1.

PINPADCHAR
Specifies the hexadecimal character used to pad the PIN before being
encrypted. It is removed from the end of the PIN before verification.

*NONE. The PIN was not padded before being encrypted.

PIN-pad-character. Enter 1 hexadecimal character, or a variable containing 1
hexadecimal character, that represents the value used to pad the PIN before it
was encrypted.

OFFSET
Specifies a numeric value to be added to the intermediate PIN created from the
validation data before comparing it with the supplied PIN.

*NONE. No offset value should be added to the intermediate PIN before com-
paring it with the supplied PIN. Specifying *NONE for the OFFSET parameter
is equivalent to entering a value of zero for the parameter.

offset-data. Enter 16 numeric digits (0 through 9), or a character variable con-
taining 16 numeric digits, that represent the value to be added to the interme-
diate PIN before comparing it with the supplied PIN.

 Chapter 5. AS/400 Cryptographic Support Commands and Call Interfaces 5-27

VFYPIN CPP (QCRVFYPN)
The program QCRVFYPN, in library QCRP, can access the same cryptographic
functions as the VFYPIN command. QCRVFYPN requires nine parameters to be
passed on the call.

The parameter types and their required order are listed below:

The following escape messages can be generated for the VFYPIN command:

CRP0001 Cryptographic Support not found.

CRP0003 Host master key damaged or not defined.

CRP0004 Error occurred while opening file QACRKTBL in QUSRSYS.

CRP0005 Error occurred while processing file QACRKTBL in QUSRSYS.

CRP0006 Key &1 with use &2 damaged.

CRP0007 Key &1 with use &2 not found in key table.

CRP0008 Error occurred while closing file QACRKTBL in QUSRSYS.

CRP1101 DECTBL value contains characters that are not valid.

CRP1103 ENCPIN value contains characters that are not valid.

CRP1104 VLDDTA value contains characters that are not valid.

CRP1105 PINCHKLEN &1 not valid.

CRP1106 PINPADCHAR &1 not valid.

CRP1107 OFFSET value contains characters that are not valid.

Order

Parameter

Type

Length
(Bytes)

1 INPINPTCK Variable or constant 10

2 ENCPIN Character variable or constant 16

3 PINVLDK Variable or constant 10

4 DECTBL Character variable or constant 16

5 VLDDTA Character variable or constant 16

6 PINCHKLEN Packed variable or constant with 5
digits, 0 decimal places

7 RTNVAR Variable 1

8 PINPADCHAR Variable or constant 1

9 OFFSET Character variable or constant 16

5-28 AS/400 Cryptographic Support/400

Chapter 6. System/36 Environment Cryptographic Support
Call Interfaces

On the System/36, subroutines provided Cryptographic Support for RPG II,
COBOL, and assembler application programs. The subroutines SUBR30 for
System/36-compatible RPG II and SUBR31 for System/36-compatible COBOL are
supported on the AS/400 system.

The AS/400 user's interface to SUBR30 and SUBR31 is identical to that on the
System/36, except for some new error messages.

SUBR30 and SUBR31 provide these functions:

 � General encryption/decryption
 � Specific encryption

Each function has a specific set of parameters.

 General Encryption/Decryption
To call the general encryption/decryption function from RPG II, make the following
entries on the calculation specifications:

C

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

75 76 77 78 79 80

Fo
rm

 Ty
p

e

N
o

t

N
o

t

N
o

t

Date

Graphic

Key

Resulting
Indicators

Page of

Indicators Result Field

Line

Name Length
Factor 1 Operation Factor 2 Comments

International Business Machines Corporation

RPG CALCULATION SPECIFICATIONS GX21-9093-3 UM/050*

Printed in U.S.A.

Program

Programmer

Arithmetic

Plus Minus Zero

Compare

1>2 1<2 1=2

Lockup(Factor 2)is

High Low Equal

And And

Card Electro Number

1 2

Program
Identification

Keying
Instruction

C

C

C

C

C

C

C

C

C

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

RSLQ012

C
o

n
tr

o
l L

e
ve

l (
L0

 -
 L

9,
LR

, S
R

, A
N

/O
R

)

D
e

c
im

a
l P

o
sit

io
n

s

H
a

lf
A

d
ju

st
 (

H
)

The format of the COBOL call to SUBR31 for general encryption/decryption is:

CALL 'SUBR31' USING ENC,KEY,LENGTH,DATA

ENC
Is a 1-byte alphameric field that contains an E or a D.

E Means encryption is to be performed.

D Means decryption is to be performed.

 Copyright IBM Corp. 1994 6-1

KEY
Is an 8-byte alphameric field that contains the key to be used to encrypt or
decrypt the data.

LENGTH
Is a 3-byte zoned decimal field that specifies the total length of the data to be
encrypted or decrypted. The value specified for LENGTH must be less than or
equal to the length of the DATA field. The DEA encrypts and decrypts data in
blocks of 8 bytes. Thus, the value of LENGTH must be a multiple of 8 greater
than 0. If LENGTH contains a value greater than 256, SUBR30 and SUBR31
assume a value of 256.

DATA
Is an alphameric field that contains the data to be encrypted or decrypted.
When SUBR30 or SUBR31 return control to your program, DATA contains the
encrypted or decrypted data.

There is no explicit return code field for SUBR30 or SUBR31. However, if an error
occurs, SUBR30 and SUBR31 overlay the ENC field with one of the following
return codes:

1 The value of ENC is not E, D, or V.

3 The value of LENGTH is not valid.

In addition, some errors may cause exceptions. See “Special Considerations” on
page 6-4 for more information.

 Specific Encryption
The specific encryption function encrypts character data as if it were hexadecimal
data. The input data is considered to be a character representation of hexadecimal
data. SUBR30 and SUBR31 convert the input data into its hexadecimal equivalent,
encrypt the hexadecimal equivalent, convert the results into a character represen-
tation, and pass the character data back to your program.

To call the specific encryption function from RPG II, make the following entries on
the calculation specifications:

6-2 AS/400 Cryptographic Support/400

C

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74

75 76 77 78 79 80
Fo

rm
 T

yp
e

N
o

t

N
o

t

N
o

t

Date

Graphic

Key

Resulting
Indicators

Page of

Indicators Result Field

Line
Name Length

Factor 1 Operation Factor 2 Comments

International Business Machines Corporation

RPG CALCULATION SPECIFICATIONS GX21-9093-3 UM/050*

Printed in U.S.A.

Program

Programmer

Arithmetic

Plus Minus Zero

Compare

1>2 1<2 1=2

Lockup(Factor 2)is

High Low Equal

And And

Card Electro Number

1 2

Program
Identification

Keying
Instruction

C

C

C

C

C

C

C

C

C

0 1

0 2

0 3

0 4

0 5

0 6

0 7

0 8

0 9

RSLQ013

C
o

n
tr

o
l L

e
ve

l (
L0

 -
 L

9
,

LR
, S

R
,

A
N

/O
R

)

D
e

c
im

a
l P

o
si

tio
n

s

H
a

lf
A

d
ju

st
 (

H
)

The format of the COBOL call to SUBR31 for specific encryption is:

CALL 'SUBR31' USING ENC,KEY,VDATA

ENC
Is a 1-byte alphameric field that contains a V, which indicates that a specific
encryption is to be performed.

KEY
Is an 8-byte alphameric field that contains the key to be used to encrypt the
data.

VDATA
Is a 16-byte alphameric field that contains the hexadecimal representation (0
through 9 or A through F) of the data to be encrypted. When SUBR30 or
SUBR31 returns control to your program, VDATA contains the hexadecimal
representation of the encrypted character data. No matter what length is
defined for VDATA, SUBR30, and SUBR31, assume that VDATA is a
16-character left-adjusted field.

There is no explicit return code field for SUBR30 and SUBR31. However, if an
error occurs, SUBR30 and SUBR31 overlay the ENC field with one of the following
return codes:

1 The value of ENC is not E, D, or V.

2 The data in VDATA is not valid data (0 through 9 or A through F).

In addition, some errors may cause exceptions. See “Special Considerations” on
page 6-4 for more information.

 Chapter 6. System/36 Environment Cryptographic Support Call Interfaces 6-3

 Special Considerations
Consider the following when using the System/36 environment Cryptographic
Support call interfaces:

� SUBR30 and SUBR31 are shipped in library QSSP. To obtain QSSP, the
| System/36 environment option of the base operating system, 5763-SS1, must

be installed.

� SUBR30 and SUBR31 use services provided by the Cryptographic Support/400
| licensed program, 5763-CR1. An error occurs if this licensed program is not

installed.

� SUBR30 and SUBR31 call QCRP/QCRCIPHR. The user must have authority
to QCRP/QCRCIPHR.

� SUBR30 and SUBR31 can be called from any high-level language program as
long as the parameters are passed in the defined formats.

� If the value of LENGTH is greater than the defined length of DATA, results that
cannot be predicted may occur.

 Escape Messages
The following escape messages can be generated by SUBR30 and SUBR31:

CPF2CA0 Cryptographic Support/400 licensed program, 5763-CR1, is not
installed.

CPF9820 Not authorized to use library QCRP.

CRP0001 Cryptographic Support not found.

AS/400 System and System/36 Differences
Note the following differences between the AS/400 system and the System/36
when working with the System/36 environment Cryptographic Support call
interfaces:

� Besides invalid zoned-decimal data, the following LENGTH problems can cause
the ENC field to be set to 3.

– LENGTH = 0
– LENGTH not a multiple of 8

� Some errors may cause diagnostic messages to appear on the job log or
escape messages.

6-4 AS/400 Cryptographic Support/400

Chapter 7. Data Security Considerations

Cryptography provides security against external access without permission through
wiretapping and theft of removable storage. Access without permission from within
the system is protected by controlled use of the cryptographic keys and functions.
This can be accomplished by:

� Maintaining the secrecy of values used as input into cryptographic operations
� Limiting authorization to Cryptographic Support

When Cryptographic Support is installed on your system, the commands and their
command processing programs (CPPs), as listed in Chapter 5, “AS/400
Cryptographic Support Commands and Call Interfaces,” are owned by the
QSECOFR profile and have AUT(*EXCLUDE). To grant other user profiles
authority to any commands or to change the public authority to a command, you
must also change authority to the CPP.

The System/36 environment cryptographic subroutines SUBR30 and SUBR31 are
not shipped with EXCLUDE authority. However, both subroutines call QCRCIPHR,
the CPHDTA CPP, to perform the encryption or decryption request. If the user is
not authorized to QCRCIPHR, the request will fail.

The cross-domain key table physical file (QUSRSYS/QACRKTBL) is also owned by
QSECOFR with AUT(*EXCLUDE). If you grant other users authority to any com-
mands that use the cross-domain key table or refer to a cross-domain key,
authority must also be granted to use QACRKTBL. Grant authority to use only the
commands needed to perform the command function.

Use system security functions to protect both the data and keys within the system.
Restrict use of dedicated service tools (DST), the QSECOFR, and the QSRV and
QSRVBAS user IDs by using unique, nontrivial passwords. Restrict the use of the
following service and debugging commands to authorized users:

� Dump Job Internal (DMPJOBINT)
� Print Internal Data (PRTINTDTA)
� Trace Internal (TRCINT)
� Dump Job (DMPJOB)
� Start Service Job (STRSRVJOB)
� Trace Job (TRCJOB)
� Dump Object (DMPOBJ)
� Dump System Object (DMPSYSOBJ)
� Start Debug (STRDBG)
� Add Breakpoint (ADDBKP)
� Add Trace (ADDTRC)
� Display Job Log (DSPJOBLOG)
� Start System Service Tools (STRSST)

 Copyright IBM Corp. 1994 7-1

7-2 AS/400 Cryptographic Support/400

 Chapter 8. Coding Examples

Two methods of accessing Cryptographic Support are diagramed in this chapter.
One method uses a control language (CL) program with system commands, and
the other calls a command processing program (CPP) using other languages.

Using a CL Program
The following example shows the use of the CPHDTA command within a CL
program. Records are read from a file named TRANSX and sensitive portions are
encrypted using a key and initial chaining value passed as parameters. The
program named SEND is called to send the file across a data link.

The following two fields in the file TRANSX require encryption:

Account number An 8-byte field in positions 1 through 8

Amount A 12-byte field in positions 39 through 50

The user requests cipher block chaining with no padding to perform this encryption
process.

Note: Not all programming considerations or techniques are shown in the fol-
lowing example. You should review the example before you begin applica-
tion design and coding.

 Copyright IBM Corp. 1994 8-1

PGM PARM(&KEY &ICVVAL)
DCL VAR(&KEY) TYPE(\CHAR) LEN(8)
DCL VAR(&ICVVAL) TYPE(\CHAR) LEN(8)

 DCLF FILE(TRANSX)
DCL VAR(&CPHTRANS) TYPE(\CHAR) LEN(5ð)
DCL VAR(&ACTNO) TYPE(\CHAR) LEN(8)
DCL VAR(&AMTNO) TYPE(\CHAR) LEN(12)

LOOP:
/\ READ A RECORD \/

 RCVF
/\ MONITOR FOR END OF FILE \/

MONMSG MSGID(CPFð864) EXEC(GOTO CMDLBL(COMP))

/\ MAKE A COPY OF THE RECORD \/
 CHGVAR VAR(&CPHTRANS) VALUE(&TRANSX)

/\ CIPHER ACCOUNT FIELD INTO TEMPORARY FIELD\/
CPHDTA DATA(%SUBSTRING(&CPHTRANS 1 8)) DTALEN(8) +

CPHK(&KEY) RTNVAR(&ACTNO) OPTION(\ECPH) +
KTYPE(\CIPHER) CHAIN(\YES) ICV(&ICVVAL)

/\ REPLACE RECORD WITH ENCIPHERED ACCOUNT # \/
CHGVAR VAR(&SUBSTRING(&CPHTRANS 1 8)) VALUE(&ACTNO)

/\ CIPHER AMOUNT FIELD INTO TEMPORARY FIELD \/
CPHDTA DATA(%SUBSTRING(&CPHTRANS 39 12)) DTALEN(12) +

CPHK(&KEY) RTNVAR(&AMTNO) OPTION(\ECPH) +
KTYPE(\CIPHER) CHAIN(\YES) ICV(&ICVVAL)

/\ REPLACE RECORD WITH ENCIPHERED AMOUNT \/
CHGVAR VAR(%SUBSTRING(&CPHTRANS 39 12)) VALUE(&AMTNO)

/\ SEND RECORD TO REMOTE LOCATION \/
 CALL PGM(SEND) PARM(&CPHTRANS)

/\ REPEAT LOOP UNTIL END OF FILE \/
 GOTO CMDLBL(LOOP)
COMP: ENDPGM

 Calling QCRCIPHR
The following examples show how to access system Cryptographic Support by
calling the program QCRCIPHR in various languages. In each example, it is
assumed the calling program reads a record containing a 10-character field, named
FLDA, that must be encrypted. The key is passed to the program as an 8-byte
variable named KEY.

Cipher block chaining, padding, and an encrypted key value are not required in
these examples. You call QCRCIPHR with the shorter parameter list.

Note: Not all programming considerations or techniques are shown in the fol-
lowing examples. You should review the examples before you begin appli-
cation design and coding.

8-2 AS/400 Cryptographic Support/400

 BASIC
 :
25 DECLARE PROGRAM QCRCIPHR (C 16,PD 5,C 8,C 16, C 1) QCRCIPHR.QCRP
 :
85 CALL QCRCIPHR (FLDA$,16,KEY,FLDB$,'E')
95 LET FLDA$ = FLDB$
 :

 COBOL
 :
DATA DIVISION.
 :
WORKING STORAGE SECTION.
ð1 DATA PIC X(16).
ð1 DTALEN PIC 9(5) VALUE 16.
ð1 OPTION PIC X(1) VALUE “E”.
 :
LINKAGE SECTION.
ð1 KEY PIC X(8).
 :
PROCEDURE DIVISION USING KEY.
 :
MOVE FLDA TO DATA.
CALL “QCRCIPHR” USING DATA, DTALEN, KEY, DATA, OPTION.
MOVE DATA TO FLDA.
 :

 RPG III
 :
C \ENTRY PLIST
C PARM KEY 8
 :
C CALL 'QCRCIPHR'
C PARM FLDA DATA 16
C PARM 16 DTALEN 5ð
C PARM KEY
C FLDA PARM RTNVAR 16
C PARM 'E' OPTION 1
 :

 Chapter 8. Coding Examples 8-3

 PL/1
ENCPROC: PROCEDURE (KEY);
 DECLARE
 KEY CHAR(8),

DTALEN FIXED DEC (5,ð) STATIC INIT (16),
OPTION CHARACTER(1) STATIC INIT ('E'),

 DATA CHARACTER(16);
 DECLARE
 QCRCIPHR ENTRY
 (CHARACTER (16),

FIXED DEC (5,ð),
 CHARACTER (8),
 CHARACTER (16),
 CHARACTER (1));
 :
 BEGIN;
 :
 CALL QCRCIPHR(FLDA,DTALEN,KEY,DATA,OPTION);

FLDA = DATA;
 :

8-4 AS/400 Cryptographic Support/400

 Chapter 9. Performance Considerations

Using the Data Encryption Algorithm (DEA) can affect the performance of your
system. This should be considered when designing the application program used
to access Cryptographic Support.

The following table shows the calculated average amount of time required to
encrypt or decrypt varying lengths of data with cipher block chaining on dedicated
system models. The first column lists the length of the data processed by one call
of QCRCIPHR. The other columns list the amount of time, according to model
number.

Data
Length
in Bytes

Average Time on System Model (Seconds)

 B10 B20 B30 B40 B50 B60 B70

1 024 0.75 0.44 0.63 0.39 0.25 0.14 0.11

4 096 2.98 1.76 2.52 1.58 1.00 0.57 0.42

32 768 23.60 13.95 19.96 12.46 7.91 4.48 3.36

For best performance, encrypt only those fields containing sensitive data.
However, when determining which data to encrypt, do not place security standards
at risk by placing undue importance on performance objectives.

 Copyright IBM Corp. 1994 9-1

9-2 AS/400 Cryptographic Support/400

 Glossary

This glossary includes terms and definitions from the
ISO Vocabulary—Information Processing and the ISO
Vocabulary—Office Machines, developed by the Inter-
national Organization for Standardization, Technical
Committee 97, Subcommittee 1. Definitions of pub-
lished segments of the vocabularies are identified by
the symbol (I) after the definition; definitions from draft
international standards, draft proposals, and working
papers in development by the ISO/TC97/SC1 vocabu-
lary subcommittee are identified by the symbol (T) after
the definition, indicating final agreement has not yet
been reached among participating members.

algorithm . A finite set of well-defined rules for the
solution of a problem in a finite number of steps. See
also cryptographic algorithm.

alphanumeric . Pertaining to the letters, A-Z; numbers,
0-9; and special symbols, $, #, @, ., or _. Synonymous
with alphameric.

American National Standards Institute (ANSI) . An
organization sponsored by the Computer and Business
Equipment Manufacturers Association for establishing
voluntary industry standards.

ANSI. See American National Standards Institute
(ANSI).

batch job . A predefined group of processing actions
submitted to the system to be performed with little or no
interaction between the user and the system. Contrast
with interactive job.

character . Any letter, number, or other symbol in the
data character set that is part of the organization,
control, or representation of data.

cipher block chaining . A method of reducing repeti-
tive patterns in ciphertext by performing an
exclusive-OR operation on each 8-byte block of data,
with the previously encrypted 8-byte block before it is
encrypted.

ciphertext . Data that is unintelligible to all except
those who have the key to decode it to plaintext. Con-
trast with plaintext.

CL. See control language.

command processing program (CPP) . A program
that processes a command. This program performs
some validity checking and processes the command so
that the requested function is performed.

complement . A binary value that, in an exclusive-OR
operation with a given binary value of the same length,
produces a binary value of all ones.

control language (CL) . The set of all commands with
which a user requests system functions.

CPP. See command processing program (CPP).

cross-domain key . A type of key-encrypting key used
to encrypt a data-encrypting key that is being sent
across a data line or being stored in a file.

cross-domain key table . A table in the system-
supplied physical file QACRKTBL in library QUSRSYS
used to store all key-encrypting keys other than the host
master key and its variants. Each record of the file con-
tains the name of the key, its use, and its value. There
are three types of uses: sending, receiving, and per-
sonal identification numbers (PIN).

cryptanalyst . A specialist in solving cryptographic
problems.

cryptographic algorithm . A set of rules that specify
the mathematical steps required to encrypt and decrypt
data. See also algorithm.

cryptography . The transformation of data to conceal
its meaning; secret code.

Data Encryption Algorithm (DEA) . Equivalent to the
Data Encryption Standard. Adopted by the American
National Standards Institute in 1981.

Data Encryption Standard (DES) . A cryptographic
algorithm designed to encrypt and decrypt data using a
64-bit key as specified in the Federal Information Pro-
cessing Standard 46, January 15, 1977.

data-encrypting key . A key used to encrypt data that
is not a cryptographic key. Used with the CPHDTA and
GENMAC commands.

DEA. See Data Encryption Algorithm (DEA).

decimalization table . A table of 16 decimal characters
that is used to convert a hexadecimal value to a
decimal value. Each hexadecimal digit is used as an
offset into the (decimalization) table and is replaced with
the value found there.

decrypt . To convert ciphertext into plaintext. Contrast
with encrypt.

 Copyright IBM Corp. 1994 G-1

dedicated service tools (DST) . The part of the
service function used to service the system when the
operating system is not working.

DES. See Data Encryption Standard (DES).

encrypt . To systematically scramble information so
that it cannot be read without knowing the coding key.

exclusive-OR . A logic operator having the property
that if P is a binary digit and Q is a binary digit and
either P or Q is 1, but not both, then P exclusive-OR Q
is 1.

hexadecimal . Pertaining to a numbering system with a
base of 16.

host master key . A type of key-encrypting key used to
encrypt data-encrypting keys and whose variants are
used to encrypt all other key-encrypting keys stored on
the system.

host master-key variant . A key-encrypting key
derived from the host master key that is used to encrypt
a certain type of cross-domain key.

ICV. See initial chaining value.

initial chaining value (ICV) . An 8-byte, pseudo-
random number used to start a cipher block chaining
operation.

input PIN-protection key . A key-encrypting key that
encrypts a personal identification number (PIN) that is
received from another location. While a PIN is being
used on the system, it remains encrypted under the
input PIN-protection key.

interactive job . A job started for a person who signs
on to a work station. Contrast with batch job.

key . A 64-bit value (containing 56 independent bits
and 8 parity bits) used by the Data Encryption Algorithm
to determine the output of the algorithm.

key schedule . Sixteen 8-byte keys created by the
Data Encryption Algorithm from the supplied
cryptographic key that are used to encrypt or decrypt
the supplied data.

key table . See cross-domain key table.

key translation . The conversion of a data encrypting
key from encryption under a previous key-encrypting
key to encryption under another key-encrypting key.

key-encrypting key . A key used to encrypt another
cryptographic key. See also cross-domain key and host
master key.

licensed internal code . An instruction or group of
instructions located in storage or device controllers that
is shipped from the IBM Software Division with the
operating system to control the operation of a device or
controller. The licensed internal code cannot be called
by the operating system or an application program.
See also model-unique licensed internal code.

licensed program . An IBM-written program that per-
forms functions related to processing user data.

MAC. See message authentication code (MAC).

machine interface (MI) . The instruction set that tells
the computer how to operate.

master key . See host master key.

message authentication code (MAC) . The first 4
bytes from the last 8-byte block of ciphertext produced
when encrypting a message using cipher block
chaining, that is added to the end of the plaintext
message from which it was created and used to detect
whether the message was changed during transmission.

message authentication key . A data encrypting key
used to encrypt data to produce a message
authentication code.

MI. See machine interface (MI).

output PIN-protection key . A key encrypting key
used to encrypt a PIN before it is sent to another
location.

packed decimal format . Representation of a decimal
value in which each byte within a field represents two
numeric digits except the far right byte, which contains
one digit in bits 0 through 3 and the sign in bits 4
through 7. For all other bytes, bits 0 through 3 repre-
sent one digit; bits 4 through 7 represent one digit. For
example, the decimal value + 123 is represented as
0001 0010 0011 1111. Contrast with zoned decimal
format.

pad . To fill unused positions in a field with dummy
data, usually zeros or blanks.

personal identification number (PIN) . A unique
number assigned by an organization to an individual
and used as proof of identity. PINs are commonly
assigned by financial institutions to their customers.

PIN. See personal identification number (PIN).

PIN check length . The number of digits from the per-
sonal identification number that are verified.

PIN translation . The conversion of a personal identifi-
cation number (PIN) encrypted under an input

G-2 AS/400 Cryptographic Support/400

PIN-protection key to encryption under an output
PIN-protection key.

PIN-validation key . A key-encrypting key used to
encrypt the validation data in the process of creating a
customer’s personal identification number (PIN).

plaintext . Data that can be read without decoding.
Contrast with ciphertext.

pseudo-random number . A number that is obtained
by some defined arithmetic process, but is effectively a
random number for the purpose for which it is required.
Contrast with random number.

random number . A number obtained by chance.
Contrast with pseudo-random number.

receiving cross-domain key . A cross-domain key
used to decrypt a data-encrypting key that was
encrypted by another location.

seed . A value supplied on the GENCRSDMNK
command to add a level of randomness to the creation
of pseudo-random cross-domain keys.

sending cross-domain key . A cross-domain key used
to encrypt a data-encrypting key before it is sent to
another location.

session key . A data-encrypting key used to encrypt
data before it is sent to another location.

System/36 environment . A function of the operating
system that processes most of the System/36 operator
control language (OCL) statements and procedure
statements to run System/36 application programs and
allows the user to process the control language (CL)
commands. Contrast with System/38 environment.

System/38 environment . A function of the operating
system that processes most of the System/38 control
language (CL) statements and programs to run
System/38 application programs. Contrast with
System/36 environment.

validation data . Information about a customer used to
create and verify the customer’s personal identification
number (PIN).

variant . See host master-key variant.

weak key . A value for a key-encrypting key that has
known techniques that a code breaker can use to
decrypt a data-encrypting key encrypted with this value.

zoned decimal format . A format for representing
numbers in which the digit is contained in bits 4 through
7 and the sign is contained in bits 0 through 3 of the far
right byte; bits 0 through 3 of all other bytes contain 1s
(hex F). For example, in zoned decimal format, the
decimal value of +123 is represented as 1111 0001
1111 0010 1111 0011. Same as unpacked decimal
format. Contrast with packed decimal format.

 Glossary G-3

G-4 AS/400 Cryptographic Support/400

 Bibliography

This book is also referred to as System/38 Environment
Programming.

| The books below are listed with their full title and base
| order number.

� Publications General Information, SC41-3000, lists
all AS/400 publications.

� CL Programming, SC41-3721, provides a wide-
range discussion of AS/400 programming topics,
including a general discussion of objects and
libraries, CL programming, working with objects in
CL programs, and creating CL programs.

� CL Reference, SC41-3722, describes commands
and parameters used for various OS/400 functions.

� DB2/400 Database Programming, SC41-3701, pro-
vides a detailed discussion of the AS/400 database
organization, including information on how to create,
describe, and update database files on the system.

� Data Management, SC41-3710, describes how to
manage key aspects of the system. These include
the following:

– How to describe device files to the system

– How to create jobs and output queues including
information on spooling, job queues, and
spooling output files

– How to override and copy files

� System Operation, SC41-3203, provides information
about how to use the system unit control panel,
send and receive messages, respond to error mes-
sages, start and stop the system, and do system
tasks.

� System Startup and Problem Handling, SC41-3206,
provides information needed before the operating
system is available, and information needed for
solving problems when the operating system is not
available.

 Copyright IBM Corp. 1994 H-1

H-2 AS/400 Cryptographic Support/400

 Index

A
Add Cross-Domain Key (ADDCRSDMNK) command

description 5-1
escape messages 5-2

ADDCRSDMNK command
See Add Cross-Domain Key (ADDCRSDMNK)

command
authenticating data

generating a MAC 2-4
GENMAC command 2-4
QCRGENMA 2-4
sending multiple records 2-4

B
BASIC coding example 8-3
Bibliography H-1

C
Change Cross-Domain Key (CHGCRSDMNK)

command
description 5-5
escape messages 5-6

Change Master Key (CHGMSTK) command
changing the master key 3-3
description 5-2
escape messages 5-4

CHGCRSDMNK command
See Change Cross-Domain Key (CHGCRSDMNK)

command
CHGMSTK command

See Change Master Key (CHGMSTK) command
cipher block chaining 2-1
Cipher Data (CPHDTA) command

concealing data 2-4
description 5-6
encrypting a PIN 4-3
escape messages 5-10
protecting data encrypting keys 3-10
special considerations 5-9
with the DEA 2-4

ciphertext 2-1
CL coding example 8-1
COBOL coding example 8-3
coding examples

calling QCRCIPHR
in BASIC 8-3
in COBOL 8-3
in PL/1 8-4
in RPG III 8-3

CL program 8-1

command processing programs
QCRCIPHR 2-4, 5-8, 8-2
QCRENCFR 5-12
QCRENCKY 5-11
QCRENCTO 5-13
QCRGENKY 5-15
QCRGENMA 2-4, 5-17
QCRGENPN 5-18
QCRTRNPN 5-25
QCRVFYPN 5-28
user link 1-2

commands
Add Cross-Domain Key (ADDCRSDMNK) 5-1
Change Cross-Domain Key (CHGCRSDMNK) 5-5
Change Master Key (CHGMSTK) 5-2
Cipher Data (CPHDTA) 5-6
Encipher from Master Key (ENCFRMMSTK) 5-11
Encipher to Master Key (ENCTOMSTK) 5-13
Encrypt Cipher Key (ENCCPHK) 5-10
Generate Cipher Key (GENCPHK) 5-14
Generate Cross-Domain Key

(GENCRSDMNK) 5-19
Generate Message Authentication Code

(GENMAC) 5-16
Generate PIN (GENPIN) 5-17
Remove Cross-Domain Key (RMVCRSDMNK) 5-21
Set Master Key (SETMSTK) command 5-22
Translate PIN (TRNPIN) 5-24
Verify Master Key (VFYMSTK) 5-25
Verify PIN (VFYPIN) 5-26

communications security
exchanging session keys

beginning sessions 3-5
encrypting session keys 3-5
using ENCFRMMSTK 3-6
using ENCTOMSTK 3-6

session starting example 3-6
validating session keys

test message exchange 3-6
concealing data 2-4
CPHDTA command

See Cipher Data (CPHDTA) command
cross-domain keys

cross-domain key table 3-1, 4-4
damaged keys 3-2
protecting 3-10
purpose 3-1
QACRKTBL file 3-1
types

personal identification number (PIN) keys 3-1
receiving cross-domain keys 3-1
sending cross-domain keys 3-1

 Copyright IBM Corp. 1994 X-1

cryptographic functions
data encryption and decryption 1-2
key management 1-2
personal identification number (PIN) 1-2

cryptographic process 1-2

D
damaged data block 2-2
damaged keys 3-2
data encrypting keys

file key 3-4
generating a message authentication code 3-4
message authentication key 3-4
protecting 3-10
purpose 3-4
session key 3-4

Data Encryption Algorithm (DEA)
cipher block chaining

damaged data block 2-2
initial chaining value 2-1
requesting 2-3
using exclusive-OR 2-1
variable data length 2-2

padding
pad character 2-3
using 2-3

performance considerations 9-1
process 2-1
purpose 2-1

data security
commands

granting authority 7-1
restricting use 7-1

decryption process 2-2

E
ENCCPHK command

See Encrypt Cipher Key (ENCCPHK) command
ENCFRMMSTK command

See Encipher from Master Key (ENCFRMMSTK)
command

Encipher from Master Key (ENCFRMMSTK)
command

description 5-11
escape messages 5-12
using 3-6, 3-8

Encipher to Master Key (ENCTOMSTK) command
description 5-13
escape messages 5-13
translating file key 3-9
using 3-6

Encrypt Cipher Key (ENCCPHK) command
description 5-10
encrypting a data encrypting key 3-4

Encrypt Cipher Key (ENCCPHK) command (con-
tinued)

escape messages 5-11
encrypting data 2-1
encryption process 2-1
ENCTOMSTK command

See Encipher to Master Key (ENCTOMSTK)
command

escape messages
ADDCRSDMNK command 5-2
CHGCRSDMNK command 5-6
CHGMSTK command 5-4
CPHDTA command 5-10
ENCCPHK command 5-11
ENCRRMMSTK command 5-12
ENCTOMSTK command 5-13
GENCRSDMNK command 5-20
GENMAC command 5-17
GENPHK command 5-15
GENPIN command 5-18
RMVCRSDMNK command 5-21
SETMSTK command 5-24
TRNPIN command 5-25
VFHMSTK command 5-26
VFYPIN command 5-28

exclusive-OR 2-1

F
file key 3-4, 3-8
file security

location considerations 3-8, 3-9
storing the file key 3-8

G
GENCPHK command

See Generate Cipher Key (GENCPHK) command
GENCRSDMNK command

See Generate Cross-Domain Key (GENCRSDMNK)
command

general encryption/decryption function for
COBOL 6-1

general encryption/decryption function for
RPG II 6-1

Generate Cipher Key (GENCPHK) command
description 5-14
encrypting a session key 3-6
encrypting data encrypting keys 3-8
escape messages 5-15
file security 3-9
generating a host master key 3-4
generating data encrypting keys 3-4
PIN generation 4-1

Generate Cross-Domain Key (GENCRSDMNK)
command

X-2 AS/400 Cryptographic Support/400

Generate Cross-Domain Key (GENCRSDMNK)
command (continued)

description 5-19
escape messages 5-20
special considerations 5-20

Generate Message Authentication Code (GENMAC)
command

description 5-16
escape messages 5-17
protecting data encrypting keys 3-10
verifying data authenticity 2-4

Generate PIN (GENPIN) command
description 5-17
escape messages 5-18
generating a PIN 4-1, 4-2

GENMAC command
See Generate Message Authentication Code

(GENMAC) command
GENPIN command

See Generate PIN (GENPIN) command

H
host master key

access 3-3
changing with CHGMSTK 3-3
installing 3-3
master key variants 3-2
protecting 3-2, 3-10
setting with SETMSTK 3-3
storing 3-4
using the GENCPHK command 3-4
verification code 3-3

I
initial chaining value (ICV) 2-1, 3-7
input PIN protection key 4-4
intelligible data 2-1

K
key encrypting keys

cross-domain keys 3-1
host master keys 3-1
purpose 3-1

keys
input PIN protection key 4-4
output PIN protection key 4-4
PIN validation key 4-4
security

changing key values 3-10
defining a unique host master key 3-9
key selection 3-9
protection 3-10
saving QACRKTBL 3-11
sending cryptographic keys 3-10

keys (continued)
types

data encrypting keys 3-1
key encrypting keys 3-1

L
licensed program 1-2

M
message authentication code (MAC) 2-4
message authentication key 3-4

O
output PIN protection key 4-4

P
pad characters 2-3
performance considerations 9-1
personal identification number (PIN)

commands
GENPIN 4-2
TRNPIN 4-2
VFYPIN 4-2

description 4-1
generation algorithm 4-1
input PIN protection key 4-4
output PIN protection key 4-4
PIN validation key 4-4

PIN validation key 4-4
PL/1 coding example 8-4
plaintext 2-1
processing programs 1-2

Q
QACRKTBL file 3-1
QCRCIPHR 2-4, 5-8, 8-2
QCREGENKY 5-15
QCRENCFR 5-12
QCRENCKY 5-11
QCRENCTO 5-13
QCRGENMA 2-4, 5-17
QCRGENPN 5-18
QCRTRNPN 5-25
QCRVFYPN 5-28

R
related printed information H-1
Remove Cross-Domain Key (RMVCRSCMNK)

command
description 5-21
escape messages 5-21

 Index X-3

RMVCRSCMNK command
See Remove Cross-Domain Key (RMVCRSCMNK)

command
RPG III coding example 8-3
RSTOBJ command 3-11

S
SAVOBJ command 3-11
security

communications 3-5
considerations 3-11
data 7-1
features 1-1
file 3-8
key 3-9

session key 3-4
Set Master Key (SETMSTK) command

description 5-22
escape messages 5-24
setting the host master key 3-3

SETMSTK command
See Set Master Key (SETMSTK) command

specific encryption function for COBOL 6-3
specific encryption function for RPG II 6-2
SUBR30

escape messages 6-4
functions 6-1

SUBR31
escape messages 6-4
functions 6-1

System/36 environment
considerations 6-4
differences between the System/36 and the AS/400

system 6-4
escape messages 6-4
introduction 6-1

T
time requirements 9-1
Translate PIN (TRNPIN) command

description 5-24
encrypting a PIN 4-3
escape messages 5-25

TRNPIN command
See Translate PIN (TRNPIN) command

U
unintelligible data 2-1

V
validation key 4-4
variable data length 2-2

Verify Master Key (VFYMSTK) command
description 5-25
escape messages 5-26
using the master key verification code 3-3

Verify PIN (VFYPIN) command
description 5-26
escape messages 5-28
verifying a PIN 4-3

VFYMSTK command
See Verify Master Key (VFYMSTK) command

VFYPIN command
See Verify PIN (VFYPIN) command

W
weak key values 3-5

X-4 AS/400 Cryptographic Support/400

Reader Comments—We'd Like to Hear from You!

Application System/400
Cryptographic Support/400
Version 3

Publication No. SC41-3342-00

Overall, how would you rate this manual?

Very
Satisfied Satisfied Dissatis-

fied

Very
Dissatis-

fied

Overall satisfaction

How satisfied are you that the information in this manual is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your tasks

T H A N K Y O U !

Please tell us how we can improve this manual:

May we contact you to discuss your responses? __ Yes __ No

Phone: (____) ___________ Fax: (____) ___________

To return this form:

 � Mail it
 � Fax it

United States and Canada: 800+937-3430
 Other countries: (+1)+507+253-5192
� Hand it to your IBM representative.

Note that IBM may use or distribute the responses to this form without obligation.

Name Address

Company or Organization

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader Comments—We'd Like to Hear from You!
SC41-3342-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN DEPT 245
IBM CORPORATION
3605 HWY 52 N
ROCHESTER MN 55901-9986

Fold and Tape Please do not staple Fold and Tape

SC41-3342-00

IBM

Program Number: 5763-CR1

Printed in U.S.A.

SC41-3342-ðð

