@server
iSeries
CICS for iSeries Application
Programming Guide

Version 5

SC41-5454-02

7

@server
iSeries
CICS for iSeries Application
Programming Guide

Version 5

SC41-5454-02

Note
Before using this information and the product it supports, be sure to read the information in
[Appendix F, “Notices,” on page 585

Third Edition (April 2004)

This edition applies to version 5, release 3, modification 0 of IBM CICS Transaction Server for iSeries (product
number 5722-DFH) and to all subsequent releases and modifications until otherwise indicated in new editions. This
version does not run on all reduced instruction set computer (RISC) models nor does it run on CISC models.

This edition replaces SC41-5454-01.

© Copyright International Business Machines Corporation 1998, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures. ix
Tables . Xi
About CICS® for iSeries Application
Programming Guide (SC41-5454) . . Xiii
Who should read this book . . . xiii
What you need to know to understand thls book xiii
Conventions and terminology used in this book xiii
Prerequisite and related information . . Xxiv
CICS/400 library . . Xiv
Books from related hbrarres . Xiv
How to send your comments . XV
Part 1. Introduction . .1
Chapter 1. Introducing CICS for iSeries
application programming . 3
If CICS is new to you .3
What's different about CICS programs’ ... 3
Benefits of CICS for iSeries to CICS programmers . . 3

Chapter 2. Portability and migration
considerations . .
Migrating from another CICS platform

CICS/400 Lo

BMS .

Terminal Control

COBOL .

ILE C.

SQL

iSeries

Source code. .

Migrating from another CICS / 400 release
BMS. . .
Application programs
Resource definitions

Chapter 3. Preparing and writing CICS
applications in COBOL .
Preparing a COBOL application
Coding CICS statements in COBOL apphcatlons
Preprocessing. .
Translating a COBOL program .
Compiling an application program
Writing CICS programs in COBOL
Modular programming
Pointer-based addressing .
Getting map set storage .
Source code considerations .
Calling programs from COBOL.
Using CICS commands
Using COBOL CALL statements

© Copyright IBM Corp. 1998, 2004

. M

.11

12
.13
.13
. 16
.17
.18
.18
.19
. 20
.22
.22
.23

Rules governing calling CICS COBOL programs 24
Program activation . . 25
Sample application programs .27
Data declarations used by the ACCT sample . 28
Defining resources for the ACCT sample .29
Running the ACCT sample . . 29
Displaying an account record .29
Adding an account record . . 30
Searching by account holder’s name . .31
Modifying an account record .31
Deleting an account record . .32
Printing an account record . 33
Chapter 4. Preparing and wrltlng CICS
applications in ILE C. . 35
Preparing an ILE C application . . 35
Coding CICS statements in iSeries apphcatlons 37
Preprocessing. . . 38
Translating an ILE C program . . 38
Compiling an application program . 40
Writing CICS programs in ILE C .41
Modular programming .42
Pointer-based addressing . .42
Getting map set storage .44
Passing arguments by value . .44
Exception handling . . 46
Data declarations needed for ILE C .47
Naming EIB fields . . 47
Source code considerations . .47
Calling programs and ILE procedures from ILE C 48
Using EXEC CICS commands .. .48
Using C language calls . . 49
Rules governing calling CICS ILE C programs . 50
Program activation51
Sample application programs . .53
Data declarations used by the FILEA sample . .55
Defining resources for the FILEA sample . 55
Running the FILEA sample . . 56
Part 2. Application design . 59
Chapter 5. Designing efficient
applications . 61
Program size and structure 61
Choosing between pseudoconversatronal and
conversational design 61
General programming techmques . . 63
Processor usage . . . 64
Recovery design 1mphcatlor1s . 64
Terminal interruptibility . . 66
Summary of pseudoconversational and
conversational design . . 66
Using resources effectively . 66
Processor storage . 66
iii

Processor time
Exclusive-use resources
Line transmission capacity
Other suggestions .
Auxiliary trace .
Unnecessary commands .
Resource retention .

Data definition and mampulatlon c0n51derat10ns

Storing data within a transaction .
Transaction work area (TWA)
User storage .

COMMAREA in EXEC CICS LINK and EXEC

CICS XCTL commands
Program storage . ..
Sharing data across transactions
Common work area (CWA) .
TCTTE user area (TCTUA) .
COMMAREA in EXEC CICS RETURN
commands.
Display screen
Temporary storage . .
Intrapartition transient data .
Your own files
Data operations .
Emulating VSAM flles
Browsing files
Logging files .
Sequential file access
Terminal operations .
Data stream con51derat10ns .
BMS considerations. .
Additional terminal control con51derat10ns .
Performance considerations .
CICS and multiprocessor AS/ 4005
CICS SIT parameters .
COBOL application code .
ILE C application code
*DEBUG or *NODEBUG .

call . .
Terminal commumcatron

Chapter 6. Dealing with exception

conditions .

Programs in any supported language .
How to use the RESP and RESP2 options
How to use the NOHANDLE option .

COBOL programs only

How to use the EXEC CICS IGNORE
CONDITION command . .
Passing control to a specified label
Relying on the system default action .
Mixing the methods

How CICS keeps track of what to do

Chapter 7. Testing your appllcatlon
Testing applications .

Screen usage, checks and consrderahons
Types of problems.

Levels of testing

EXEC CICS LINK command or host language

. 67
. 67
. 67
. 67
. 67
. 68
. 68

68
. 68
. 69
. 69

. 70
. 70
. 70
.71
.71

.72
.72
.73
. 74
.74
.75
.75
. 76
. 76
. 76
.77
.77
.77
. 80
. 81
. 81
. 81
. 82
. 83
. 83

. 83
. 84

. 87

. 87
. 87
.90
.91

.91
.92
. 95
. 98
.99

101

. 101
. 101
. 102
. 103

iV CICS for iSeries Application Programming Guide V5

Finding a problem in application code on a

production system. . 103
Chapter 8. Recovery considerations 105
CICS and OS/400 commitment control recovery 105
Defining recoverable files to CICS (an overview) 105
Syncpointing . 106
User journaling. . 106
Journal records . . 106
Journal output synchronlzatlon . 107
Chapter 9. Abnormal termination
recovery e e e . 109
Creating a program-level abend exit . . 110
Restrictions on retrying operations . 110
Trace 111
Trace entry pomts . 112
Dump . . 112
Part 3. Files and databases . . 113
Chapter 10. File control . . 115
Emulated VSAM files. . . 115
Key-sequenced file (KSDS) . . 116
Entry-sequenced file (ESDS) . 116
Relative record file (RRDS) . . 116
VSAM-like logical views. . 116
Reading records . . . 117
Direct reading (using EXEC CICS READ) . . 118
Sequential reading (browsing) . . 119
Skip-sequential processing . . 121
Updating records . . . 122
Specifying record length . 122
Deleting records . 123
Deleting groups of records (generlc delete) . 123
Adding records. . 123
Adding to a KSDS. . 123
Adding to an ESDS . 124
Adding to an RRDS . . 124
Specifying record length. . 124
Review of file control command options . 124
The RIDFLD option . . . 124
The INTO and SET options. . 125
The FROM option . . 125
Avoiding transaction deadlocks . 126
KEYLENGTH option for remote files . 127
Record identification . . . 127
Identifying records by key . 127
Relative byte address (RBA) and relatlve record
number (RRN) 128
CICS locking of emulated VSAM records in
recoverable files . 128
Part 4. Data communication . . 131
Chapter 11. Introduction to data
communication . 133

Chapter 12. Introduction to basic
mapping support (BMS). 135

How BMS affects programming 135
BMS maps 136
BMS map def1n1t10n Y &
Creating BMS map sets137
Cataloging BMS mapsets137
BMS commands138
Level of BMS B <)
Base and towers archltecture . oo 139
Summary of support for CICS/400 BMS oo 139

Chapter 13. CICS/400 basic mapping

support (BMS) . .. B B
Information display systems .o S 31
IBM 3270 Information Display System B S |
IBM 5250 Information Dlsplay System I |
Input operations . . . B 5 |
Output operations.143
Display field concepts143
Attribute character14
Screen layout design 146
Screen sizes147
Defining BMS maps147
Defining a map set . . . B V4
Defining maps within a map set B I V4
Defining fields withina BMS map 148
Terminating a map set definition. 148
Creating BMSmaps148
Symbolic descriptionmap 148
Physicalmap149
Map set suffixing . . . oo 149
Writing programs to use BMS services 151
Copying symbolic description maps. 152
Data structures. 152
Sending data to a dlsplay dev1ce15
Cursor positioning . . o0 1589
Accessing data outside the program. oo 159
Receiving data from a display. 160
Responding to terminal input 162
Text processing. . . Y
Display characters in text (Y
Control characters in text . . . 165
Character attribute control (3270 dev1ces only) 165
Graphic data fields166
Printed output . . . B (74
Using the hardware prmt key . .. 167
Using asynchronous page build transactlon .. 167
Printer formatting considerations. 168

Chapter 14. Terminal control. 169

Terminal-oriented task identification. 170
Logical unit communication protocol 170
Send/receive mode 170
Send/receive protocol (INVITE optlon) A V4|
Chaining the inputdata.171
Chaining the outputdata171
Response protocol. . . . 172
Preventing interruptions (bracket protocol) .. 172

Handling attention identifiers (EXEC CICS

HANDLE AID). . . . 173
0S/400 display data streams . . 174
Terminal control and DBCS. . 174
Chapter 15. Intercommunication
considerations . . 175
Design considerations . 175
Transaction routing . 175
Function shipping . . 176
Distributed program lmk (DPL) .. 176
Using the distributed program link functlon .. 177
Examples of distributed program link . . 178
Programming considerations for distributed
program link . 182
Asynchronous processing . 185
Distributed transaction processmg (DTP) . 186
Common Programming Interface
Communications (CPI Communications) . 186
Part 5. CICS management
functions . 187
Chapter 16. Control region. . 189
Chapter 17. Application shell. . 191
Chapter 18. Interval control . 193
Timer-related tasks . 194
Expiration times . 194
Request identifiers. . 196
Chapter 19. Task control . 197
Chapter 20. Program control . . 199
Defining and using CICS tables . 199
Application program logical levels . 200
Link to another program expecting return . . 200
Passing data to other programs . 201
COMMAREA . 201
INPUTMSG . . . 203
Using the INPUTMSG optlon on the EXEC
CICS RETURN command .o . 205
Other ways of passing data. . 205
Examples of passing data . 205
Chapter 21. Access to system
information .. . 21
System programming commands . . 211
EXEC interface block (EIB) . . 211
Chapter 22. Storage control . 213
Chapter 23. Transient data control 215
Intrapartition destinations . . 215
Extrapartition destinations . . 215
Indirect destinations . . 216

Contents V

Automatic transaction initiation (ATI) . . 216
Chapter 24. Temporary storage
control . . 219
Temporary storage queues . . 219
Temporary storage commands. . . 220
Typical uses of temporary storage control . . 220
Chapter 25. Printer spooling . . 223
When are printer spooling files closed?. . 223
Part 6. Supplied transactions . 225
Chapter 26. Introduction to
CICS-supplied transactions . 227
Chapter 27. Execution diagnostic
facility (EDF). . 229
Getting started 229
Restrictions when using EDF . . 229
Where does EDF intercept the program? . 230
What does EDF display? . . 231
The header . . . 231
The body . e .. 231
How you can intervene in program executlon 234
EDF menu functions . . 235
How to use EDF . 238
Using EDF in single-screen mode . 238
Using EDF in dual-screen mode . . 240
Stopping EDF . . . 240
Overtyping to make Changes . . 240
Chapter 28. Temporary storage
browse (CEBR) . 243
How to use the CEBR transaction . 243
What does the CEBR transaction dlsplay7 . 244
The header . S . 244
The command area . 244
The body . . 244
The message line . . . 245
The CEBR options on functlon keys . 245
The CEBR commands .. 246
Using the CEBR transaction w1th tran51ent data 248
Security considerations . . 248
Chapter 29. Command-level
interpreter (CECI). . 249
How to use CECI . . 249
What does CECI display? . 250
The command line . 250
The status line . . 251
The body . . 253
The message line . . 254
CECI options on function keys . 254
Additional displays . 255
Expanded area . . 255
Variables . . . 255
The EXEC interface block (EIB) . 257

Vi CICS for iSeries Application Programming Guide V5

Error messages display257
Making changes258
How CECIruns258

CECIsessions258

Abends25

Exception conditions259

Program control commands 259

Terminal Sharing259

Saving commands.260
Security considerations261
Part 7. Programming reference 263
Chapter 30. 0S/400 control Ianguage
(CL) commands . 265

Interpreting the syntax diagrams. 265

CRTCICSCBL266
CRTCICSC28
CRTCICSMAP30
Chapter 31. Programming reference 305
Introduction to EXEC CICS commands. 305
Command format.305
CICS syntax notationused306
Argument values307
COBOL argument values e (0
ILE C argument values309
CICS-value data areas (CVDAs) 309
DATASET option31
INTO and SET options31
LENGTH options312
NOHANDLE option312
RESP and RESP2 options313
System programming commands. 314
INQUIRE and SET commands. 315
PERFORM command.2318
DISCARD commands318
Commands by function319
Abend support. . . . < 1)
APPC mapped conversatlon ..o 319
BMS39
Built-in function319
Diagnostic services319
Environment services.319
Exception support.320
File control320
Interval control.321
Journaling321
Printer spooling321
Program control321
Storage control321
Syncpoint321
Task control PG A |
Temporary storage control o321
Terminal control322
Transient data control322
Chapter 32. Application programming
commands - reference . 323

ABEND .
ADDRESS
ALLOCATE .
ASKTIME

ASSIGN .

BIF DEEDIT.
CANCEL.
CONNECT PROCESS
CONVERSE (APPC) .

CONVERSE (5250 or 3270 loglcal)

DELAY

DELETE .

DELETEQ TD .
DELETEQ TS

DEQ . .

DUMP TRANSACTION
ENDBR

ENQ . . .

ENTER TRACENUM
EXTRACT ATTRIBUTES (APPC)
EXTRACT PROCESS .
FORMATTIME .

FREE (APPC)
FREEMAIN .
GETMAIN

HANDLE ABEND.
HANDLE AID
HANDLE CONDITION .
IGNORE CONDITION .
ISSUE ABEND . .
ISSUE CONFIRMATION
ISSUE ERASEAUP
ISSUE ERROR .

ISSUE PREPARE

ISSUE SIGNAL (APPC) .
LINK . .o
LOAD.

POP HANDLE .

POST .

PUSH HANDLE

READ.

READNEXT.
READPREV .

READQ TD .

READQ TS .

RECEIVE (APPC) .
RECEIVE (5250 or 3270 loglcal)
RECEIVE MAP.
RELEASE.

RESETBR.

RETRIEVE

RETURN .

REWRITE

SEND (APPC) .

SEND (SCS) .

SEND (5250 or 3270 loglcal)
SEND CONTROL . .
SEND MAP .

SEND TEXT.
SPOOLCLOSE .
SPOOLOPEN OUTPUT .

. 323
. 324
. 325
. 326
. 327
. 332
. 333
. 335
. 337
. 339
. 341
. 344
. 348
. 349
. 350
. 352
. 353
. 355
. 357
. 359
. 360
. 361
. 364
. 365
. 367
. 369
. 371
. 372
. 373
. 374
. 375
. 376
. 377
. 378
. 379
. 380
. 385
. 386
. 387
. 389
. 390
. 395
. 400
. 404
. 407
. 410
. 412
. 415
. 417
. 418
. 421
. 424
. 427
. 430
. 432
. 433
. 435
. 436
. 439
. 441
. 442

SPOOLWRITE44
START445
STARTBR.45
SUSPEND457
SYNCPOINT . . . P 15V
SYNCPOINT ROLLBACK458
UNLOCK458
WAIT CONVID46l
WAIT EVENT461
WAIT JOURNALNUM462
WRITE463
WRITE]OURNALNUM - 1Y4
WRITEQTD.469
WRITEQTS.47
XCITL47

Chapter 33. System programming

reference 477
DISCARD commands477
DISCARD AUTINSTMODEL477
DISCARD FILE.478
DISCARD PROGRAM478
DISCARD TRANSACTION.479
INQUIRE commands.480
INQUIRE AUTINSTMODEL480
INQUIRE AUTINSTMODEL (browse) 480
INQUIRE CONNECTION481
INQUIRE CONNECTION (browse)483
NQUIRE FILE484
INQUIRE FILE (browse).487
INQUIRE JOURNALNUM488
INQUIRE JOURNALNUM (browse). 489
INQUIRE PROGRAM49
INQUIRE PROGRAM (browse)492
INQUIRE SYSTEM493
INQUIRE TASK4%
INQUIRE TDQUEUE.4%
INQUIRE TDQUEUE (browse)499
INQUIRE TERMINAL or NETNAME 500
INQUIRE TERMINAL (browse)504
INQUIRE TRACEDESTb505
INQUIRE TRANSACTION.b506
INQUIRE TRANSACTION (browse). 508
PERFORM SHUTDOWN command 509
SET commands.509
SET CONNECTIONb509
SET FILE.51
SET]OURNALNUMbh14
SET PROGRAMb15
SET SYSTEMb517
SETTASKbh17
SET TDQUEUE.b518
SET TERMINAL52
SET TRACEDEST52
SET TRANSACTION.52
Part 8. Appendixes 527

Appendix A. EXEC interface block 529
EIB fields.b29

Contents Vil

Appendix B. BMS-related constants 545

Field attribute and printer control characters . . . 545

Attention identifier constants, DFHAID 548

Appendix C. Terminal control 549

Commands and options for terminals and logical

units . . . e o B
Fullword lengths .o . 549
Read from terminal or loglcal umt (EXEC CICS
RECEIVE) 549
Write to terminal or loglcal umt (EXEC CICS
SEND). 550
Converse with termmal or loglcal umt (EXEC
CICSCONVERSE).550

Display device operations . . . 550
Erase all unprotected fields (EXEC CICS ISSUE
ERASEAUP). 551
Input operation without data (EXEC CICS
RECEIVE)55

Appendix D. BMS macro summary 553

Defining map sets, maps, and fields. 553
Map set definition macro (DFHMSD) 553
Map definition macro (DFHMDI). 553

viil CICS for iSeries Application Programming Guide V5

Field definition macro (DFHMDF)
Ending a map set definition
Defining field groups.
DFHMSD. .
DFHMDI.
DFHMDF .
Sample map with DBCS data def1n1t1ons .

Appendix E. CICS-value data areas
supported by CICS/400 .
CVDAs by symbolic name .

CVDAs by numeric value .
CVDAs returned by the INQUIRE

TERMINAL | NETNAME DEVICE command .

Appendix F. Notices
Programming Interface Information .
Trademarks .

Glossary

Index .

. 553
. 553
. 553
. 555
. 562
. 566
. 576

. 579
. 579
. 581

. 583
. 585
. 586
. 586
. 589

. 599

Figures

—_

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

29.
30.

Preparing a COBOL application program 12
Screen showing an example of using source

type CICSCBL17
Example of an SEU screen showmg code
containing CICS commands18
Example of pointer-based addressmg in a

COBOL program. . . . 19
Example of processing BMS maps in a COBOL
program . . . 20
Control is returned to the next hrgher logrcal
level.. . . .23
Flow of control between COBOL programs and
run units in CICS/40027
ACCT sample screen: Workrng wrth the ACCT
samples.28
ACCT sample screen: Menu .o .. 29
ACCT sample screen: Displaying a record 30

ACCT sample screen: Adding a new record 31
ACCT sample screen: Searching by account

holder’s name.31
ACCT sample screen: Modifying a record 32
ACCT sample screen: Deleting a record 33
Preparing an ILE C application program 37
An example of using source type QCSRC 41
Example of using pointer—based addressing in

a ILE C program. . . . 43
Example of processing BMS maps in an ILE C
program . . . 45
Control is returned to the next hrgher 10g1ca1
level.. . . . 48
Flow of control between ILE C programs and
activation groups in CICS. 53

Screen showing the members of file QCSRC
containing the FILEA application programs . . 54
Screen showing the members of file

QMAPSRC containing FILEA sample maps . .55
Data stream conversion 84
An extract from COBOL program ACCTOl 89
Trapping the unexpected with the EXEC CICS
HANDLE CONDITION ERROR command . . 94
Using EXEC CICS PUSH HANDLE and EXEC

CICS POP HANDLE commands . . . 96
How CICS selects whether to take the system

default action98
ABEND exit processmg e b |
BMS map set suffixing logic 150
Some suffixes and subfields. 153

© Copyright IBM Corp. 1998, 2004

31.
32.
33.
34.

35.

36.

37.
38.

39.
40.
41.
42.
43.

44.
45.
46.
47.
48.
49.
50.
51.
52.

53.
54.

55.

56.

57.

58.
59.

60.
61.
62.

Setting output map data structure to nulls
Modifying map field attributes.

Mlustration of distributed program link
COBOL example of a distributed program
link . . .
Using d1str1buted program hnk wrth the
SYNCONRETURN option

Using distributed program link w1thout the
SYNCONRETURN option .
Example of mixing DPL and DTP.

API commands prohibited in programs
invoked by distributed program link.
Application program logical levels

Use of INPUTMSG in a linked-to chain
COBOL example-EXEC CICS LINK command
ILE C example-EXEC CICS LINK command
COBOL example-EXEC CICS RETURN
command .

ILE C example—EXEC CICS RETURN
command . . e
Typical EDF dlsplay . .
Typical EDF display at program 1n1t1at10n
Typical EDF display at start of execution of a
CICS command . .

Typical EDF display at completron of a CICS
command . .

Typical EDF dlsplay at program termmatlon
Typical EDF display at task termination
Typical EDF display when an abend occurs
Typical EDF display at abnormal task
termination . .

Typical EDF display for STOP CONDITIONS
Typical CEBR display of temporary storage
queue contents .

Typical CEBR display of default temporary
storage queue

Typical CECI display for command syntax
check . . .
Typical CECI drsplay for about to start
command . .

Typical CECI d1sp1ay for Command completed
Typical CECI display of variables associated
with CECI session . . e
Typical CECI display of the EIB

Typical CECI display of the message dlsplay
Sample map with DBCS data definitions

154

. 155

177

. 178

. 181

. 182
. 183

. 185
. 201

204
206
207

. 208

. 209
. 231

232

. 232

. 233

233
233
234

. 234
237

. 243

. 244

. 250

. 252
253

. 255

. 257
257
577

ix

X CICS for iSeries Application Programming Guide V5

Tables

COBOL compiler limits . . .21
Rules to be used with CICS COBOL programs 24
3. Rules for passing values as arguments in

N =

EXEC CICS commands.46
4. Rules to be used with ILE C programs . . .50
5. Requests that require exclusive use and when

the reservation terminates. . . .75
6. Commands that hold position and when the

hold is released . . .75
7. Correspondence between 5250 and 3270 AIDs 143
8. CICS/400 LU protocol options. 170
9. Options on EXEC CICS LINK command

supporting DPL.178

© Copyright IBM Corp. 1998, 2004

10.
11.
12.
13.

14.
15.

16.

ADDCICSPPT and CHGCICSPPT CL
command parameters supporting DPL .
Language identifiers . .
Command syntax conventions .
Standard attribute and printer control
character list, DFHBMSCA .

Bit map for attributes .

Standard attention identifier constants hst,

DFHAID .
BMS terminal types

. 178
. 283
. 306

. 545
. 547

. 548
. 560

xi

xil CICS for iSeries Application Programming Guide V5

About CICS® for iSeries Application Programming Guide

(SC41-5454)

This book contains two types of information. Parts 1-6 of this book give guidance
in using the CICS/400 application programming interface; they are complemented
by the reference information in [Part 7, “Programming reference,” on page 263

Who should read this book

This book is for CICS application programmers. If you are an experienced
programmer, you do not need to read all of the information in the guidance section
of this manual (parts 1-6). If you are less experienced, you should find the
guidance information helpful. If you are new to CICS programming, you should
consider reading the CICS Application Programming Primer, SC33-0674, which will
give you a basic introduction to CICS application programming. The primer is
primarily for mainframe CICS users, but most of the content of the book also
applies to CICS/400 application programming. Also see [Chapter 1, “Introducing]|

[CICS for iSeries application programming,” on page 3| of this book to determine

what material you should become familiar with.

What you need to know to understand this book

You must be able to program in either COBOL /400, ILE COBOL or ILE C. You
need general knowledge about CICS and the general concepts of the Integrated
Language Environment® (ILE).

Conventions and terminology used in this book

CICS refers to CICS/400 unless otherwise stated.
API refers to the CICS command-level application programming interface.

COBOL refers to COBOL/400 or ILE COBOL unless specifically stated
otherwise.

C refers to ILE C unless specifically stated otherwise.

As a general rule, any files, parameters, and messages whose names start with
the letters “AEG” or “DFH” belong to CICS.

Any item whose name begins with an asterisk and is spelled in capitals is a
special name recognized by the iSeries, either an object type (see Glossary), such
as *PRTF for printer file, or a special value that can be assumed by an option of
a command. For example: *NOSOURCE is a special value of the CICSOPT
options on the CRTCICSCBL (create CICS COBOL) CL command.

The term mainframe is used to refer to CICS products that run on computers of
the S/370™, System/390%, or zSeries® family. (Not all of these products run on
all of these computers, for example, CICS Transaction Server for ZOS Version 2
does not run on System/370").

— CICS Transaction Server for z/OS® Version 2, program number 5697-E93

— CICS Transaction Server for OS/390® Version 1, program number 5655-147
— CICS/ESA® Version 4, program number 5655-018

— CICS Transaction Server for VSE/ESA™, program number 5648-054
CICS/VSE Version 2, program number 5686-026

© Copyright IBM Corp. 1998, 2004 xiii

Prerequisite and related information

CICS/400 library
These books form the CICS/400 library that is delivered with the product:
CICS for iSeries Administration and Operations Guide, SC41-5455-00

This guide gives introductory information about CICS/400. It then provides
information about system and resource definition, setup of a system, and
operator commands.

CICS for iSeries Application Programming Guide, SC41-5454-02

This manual provides programming guidance information, in narrative form
with examples. This is followed by the reference section describing the
syntax and use of each command.

CICS for iSeries Intercommunication, SC41-5456-00

This manual describes the CICS/400 side of communication between CICS
systems running on different platforms. There is a similar manual for each
CICS platform.

CICS for iSeries Problem Determination, SC41-5453-00

This manual provides guidance in problem determination for users of
CICS/400.

CICS Family: Interproduct Communication, SC34-6267-00

This manual, which is also part of the libraries of the other CICS family
members, gives an overview of communication between CICS systems
running on different platforms.

CICS Family: API Structure, SC33-1007-02

This manual, which is also part of the libraries of the other CICS family
members, gives a quick reference to the level of support that each member
of the CICS family gives to the CICS application programming interface. It
is designed for customers and software vendors developing applications
able to run on more than one CICS platform and porting applications from
one platform to another.

Books from related libraries

Other CICS books
CICS Application Programming Primer, SC33-0674-01

Compilers

ILE C:
ILE Concepts, SC41-5606-07
WebSphere Development Studio: ILE C/C++ Language Reference, SC09-7852-00
WebSphere Development Studio: ILE C/C++ Programmer’s Guide, SC09-2712-04

ILE COBOL.:
ILE Concepts, SC41-5606-07
WebSphere Development Studio: ILE COBOL Reference, SC09-2539-04
WebSphere Development Studio: ILE COBOL Programmer’s Guide, SC09-2540-04

COBOL/400®:
COBOL/400 User’s Guide, SC09-1812-00

Xiv CICS for iSeries Application Programming Guide V5

COBOL/400 Reference, SC09-1813-00
SAA® CPI COBOL Reference, SC26-4354-02

SQL

Refer to the Database topic and File and file systems topic in the iSeries
Information Center.

System Programming Support, Control language (CL)
CL Programming, SC41-5721-06
Refer to the Programming topic in the iSeries Information Center.

pommpn user access
(CUA™)

SAA CUA Basic Interface Design Guide, SC26-4583-00

Miscellaneous books
3270 Device Emulation Support, SC41-5408-00

Refer to the Database topic and File and file systems topic in the iSeries
Information Center.

Backup and Recovery, SC41-5304-07

Performance Tools for iSeries, SC41-5340-01

Install, upgrade, or delete OS/400 and related software, SC41-5120-07

Refer to the Programming APIs topic in the iSeries” Information Center.
iSeries Security Reference, SC41-5302-07

3270 Data Stream Programmer’s Reference, GA23-0059-07

Use the iSeries Information Center as your starting point for looking up iSeries
technical information. You can access the Information Center two ways:

* From the following Web site:
http://www.ibm.com/eserver/iseries/infocenter

¢ From the iSeries Information Center, SK3T-4091-04 CD-ROM. This CD-ROM ships
with your new iSeries hardware or IBM Operating System /400 software upgrade
order. You can also order the CD-ROM from the IBM® Publications Center:

http://www.ibm.com/shop/publications/order

The iSeries Information Center contains new and updated iSeries information such
as software and hardware installation, Linux, WebSphere®, Java', high availability,
database, logical partitions, CL commands, and system application programming
interfaces (APIs). In addition, it provides advisors and finders to assist in planning,
troubleshooting, and configuring your iSeries hardware and software.

With every new hardware order, you receive the iSeries Setup and Operations
CD-ROM, SK3T-4098-02. This CD-ROM contains IBM @server IBM e(logo)server
iSeries Access for Windows and the EZ-Setup wizard. iSeries Access Family offers
a powerful set of client and server capabilities for connecting PCs to iSeries
servers. The EZ-Setup wizard automates many of the iSeries setup tasks.

How to send your comments

Your feedback is important in helping to provide the most accurate and
high-quality information. If you have any comments about this book or any other
iSeries documentation, fill out the readers’ comment form at the back of this book.

About CICS® for iSeries Application Programming Guide (SC41-5454) XV

 If you prefer to send comments by mail, use the readers’ comment form with the
address that is printed on the back. If you are mailing a readers’ comment form
from a country or region other than the United States, you can give the form to
the local IBM branch office or IBM representative for postage-paid mailing.

 If you prefer to send comments by FAX, use either of the following numbers:
— United States, Canada, and Puerto Rico: 1-800-937-3430
— Other countries or regions: 1-507-253-5192
 If you prefer to send comments electronically, use one of these e-mail addresses:
— Comments on books:
RCHCLERK®@us.ibm.com
— Comments on the iSeries Information Center:
RCHINFOC@us.ibm.com

Be sure to include the following:

e The name of the book or iSeries Information Center topic.

* The publication number of a book.

* The page number or topic of a book to which your comment applies.

XVl CICS for iSeries Application Programming Guide V5

Part 1.

Chapter 1. Introducing CICS for iSeries
application programming .

If CICS is new to you

What's different about CICS programs7 .
Benefits of CICS for iSeries to CICS programmers

Introduction

Chapter 2. Portability and migration
considerations .
Migrating from another CICS platform
CICS/400 . .
BMS .
Terminal Control
COBOL .
ILE C.
SQL
iSeries
Source code.
Migrating from another CICS / 400 release
BMS. ..
Application programs .
Resource definitions

Chapter 3. Preparing and writing CICS
applications in COBOL . S
Preparing a COBOL application

Coding CICS statements in COBOL apphcatlons

Preprocessing. .

Translating a COBOL program .
Characteristics of the input source f11e
CCSID of source files .

Output from the translator

Compiling an application program

Writing CICS programs in COBOL

Modular programming

Pointer-based addressing . .

Example of using pointer Varlables

Getting map set storage .

Source code considerations .

Calling programs from COBOL.
Usmg CICS commands
Using COBOL CALL statements
Static COBOL call
Dynamic COBOL call .
Rules governing calling CICS COBOL programs
Program activation .
Sample application programs

Data declarations used by the ACCT sample

Defining resources for the ACCT sample

Running the ACCT sample .

Displaying an account record

Adding an account record .

Searching by account holder’s name .

Modifying an account record

Deleting an account record .

Printing an account record

© Copyright IBM Corp. 1998, 2004

W W Www

O O O OOy Ul GO

.1
11

12

.13
.13
.14
.15
.15
. 16
.17
. 18
.19
.19
. 20
.22
.22
.23
.23
.24

24

. 25
.27
. 28
.29
.29
.29
. 30
.31
.31
.32
. 33

Chapter 4. Preparing and wrltlng Cics
applications in ILE C. . .o
Preparing an ILE C application .

Coding CICS statements in iSeries apphcatlons

Preprocessing. .

Translating an ILE C program .
Characteristics of the input source ﬁle
Output from the translator

Compiling an application program

Writing CICS programs in ILE C
Modular programming

Use of #include .

Use of modules .

Pointer-based addressing . .

Example of using pointer Var1ables

EXEC CICS ADDRESS EIB .

EXEC CICS ADDRESS COMMAREA .

EXEC CICS READ/REWRITE .

Getting map set storage

Passing arguments by value .

Exception handling . .

Data declarations needed for ILE C

Naming EIB fields .

Data types. .

Source code Cons1derat10ns .

Calling programs and ILE procedures from ILE C
Using EXEC CICS commands .o
Using C language calls

Dynamic program calls

Calling procedures .

Procedure pointer calls . .
Rules governing calling CICS ILE C programs.
Program activation . .o

Sample application programs .
Data declarations used by the FILEA sample .
Defining resources for the FILEA sample
Running the FILEA sample . .

Operator instruction sample program.

Browse sample program . .

Inquiry and update sample program

Low balance report sample program .

Order entry sample program .

Order entry queue print sample program

. 35
. 35

37

. 38
. 38
. 39
. 39
. 40
.41
.42
.42
.42
.42
.42
. 42
. 43
. 43
. 44
.44
. 46
. 47
. 47
. 47
. 47

48

. 48
. 49
. 49
. 49
. 50
. 50
. 51
. 53
. 55
. 55
. 56
. 56
. 56
. 56
. 57
. 57
. 58

2 CICS for iSeries Application Programming Guide V5

Chapter 1. Introducing CICS for iSeries application
programming

This manual assumes that you know about CICS in general, and about Original
Program Model (OPM) COBOL/400 or Integrated Language Environment (ILE),
ILE C or ILE COBOL application programming in particular. If you are not
experienced in CICS, read |“If CICS is new to you”|for a list of recommended
reading. If you are an experienced CICS programmer, and already have some CICS
applications you want to migrate to CICS/400, see |Chapter 2, “Portability andl
Imigration considerations,” on page 5

If CICS is new to you

If you are not familiar with the basic concepts of CICS programming, you need to
read some introductory text before reading this manual, for example the CICS
Application Programming Primer, SC33-0674-01. The primer was written for CICS
mainframe users, but most of the content of the book also applies to CICS/400
application programming.

There are significant differences, so consider the following points when reading the

primer:

* CICS/400 supports emulated VSAM and SQL databases. It does not support
DL/IL

¢ Basic mapping support is for minimum function BMS and the EXEC CICS SEND
TEXT command.

* CICS/400 supports both 3270 and 5250 terminals. However, the programmer
uses the same options for either terminal.

* OS/400 jobs use Control Language (CL) instead of Job Control Language (JCL).

* Resource definition is handled differently from the way it is in CICS
mainframes. For information about setting up CICS tables, see the CICS for
iSeries Administration and Operations Guide, SC41-5455-00.

* The architecture of the iSeries is different from that of CICS mainframe
implementations. For example: partitions are not used, storage requests are
handled differently, and security is controlled by OS/400 rather than by CICS.

What’s different about CICS programs?

There is not very much different about CICS programs. A typical CICS transaction
is like the core of a program in which a single input is processed, with CICS taking
care of opening and closing the files for you.

With CICS programs, you request operating system services, such as file
input/output, by issuing an EXEC CICS command instead of using the
corresponding language facility (for example, READ or WRITE).

Benefits of CICS for iSeries to CICS programmers

* OS/400 offers online help and messaging for all OS/400 CL commands used in
the development of CICS/400 applications

* You can port CICS COBOL and C applications from any CICS platform to
individual iSeries systems with minimal work.

© Copyright IBM Corp. 1998, 2004 3

* The execution diagnostic facility (EDF) similar to mainframe CICS EDF is
available for debugging both COBOL and C application programs.

¢ CICS/400 programs can access mainframe VSAM data transparently through
function shipping. Access to data in the OS/400 is through a CICS VSAM
interface. CICS/400 cannot function-ship requests for DL/I (IMS) databases, but
these can be accessed by using distributed transaction processing or the
distributed program link function.

¢ Communication facilities may be used on iSeries-to-mainframe links or in
peer-to-peer processing in a LAN. In addition to function shipping, the full
range of CICS intercommunication facilities between systems is available:

— Transactions can be run on a remote system (transaction routing). The remote
system may be a CICS/400 system or that of another CICS platform. Terminal
definitions may be shipped to a mainframe on request or duplicated there
permanently. You effect transaction routing either by defining a transaction as
remote, or by using the CRTE routing transaction.

— Distributed transaction processing enables transactions to initiate and
communicate synchronously with transactions in remote systems. To do this,
transactions issue CICS commands for APPC conversations.

— Transactions may also start remote transactions using asynchronous
processing.

— Distributed program link allows you to use the EXEC CICS LINK command
from CICS/400 to link to a program on a remote system.

e CICS/400 supports:

— Both mainframe and iSeries temporary storage (TS). Local TS requests are
always mapped to auxiliary storage whether the request is main or auxiliary.

— Transient data (TD), including extrapartition TD destinations.
— Recoverable and unrecoverable queues.

— Interval control start and automatic transaction initiation (ATI) from TD
trigger level.

* Data integrity, both in and between iSeries and mainframe, is achieved by
dynamic transaction backout, emergency restart, coordination of iSeries and
mainframe syncpoints, and coordination support for external resource managers.

* CICS/400 provides server support for CICS clients. A CICS client is a front-end
CICS system running in a workstation. A CICS client gains access to a CICS
network through a communications link with a CICS server. The client requests
that are supported by a CICS/400 server are transaction routing and function
shipping. To the CICS/400 application program, it is transparent whether the
request is from a CICS client or from a peer system.

* CICS/400 supports two-phase commitment of protected resources.

4 CICS for iSeries Application Programming Guide V5

Chapter 2. Portability and migration considerations

This chapter lists some specific items that have been identified as possible
migration considerations. You should read it if you are migrating application
programs, either from another CICS platform, or from one release of CICS/400 to
another.

Migrating from another CICS platform

This section lists some points that you should consider when migrating to
CICS/400 from another CICS platform.

CICS/400

e The CICS Family: API Structure, SC33-1007-02 manual describes the differences at
the keyword level (for the supported commands, options, and conditions)
between the CICS application programming interface (API) implementation on
the various CICS platforms.

¢ CICS/400 supports the command-level interface only. The CICS/400 API is a
subset of that defined by the CICS architecture.

* The virtual storage access method (VSAM) is emulated. BDAM and DL/I are not
supported. Support is provided for KSDS, ESDS, and RRDS file structures. Read
[Part 3, “Files and databases,” on page 113| for details.

* Relative byte address (RBA) record identification is not supported for
key-sequenced files on the EXEC CICS DELETE, EXEC CICS READ, EXEC CICS
READNEXT, EXEC CICS READPREV, EXEC CICS RESETBR, EXEC CICS
STARTBR, and EXEC CICS WRITE commands.

+ CICS/400 accommodates connectivity between itself and other CICS products,
by using the intersystem communication facilities of OS/400 for handling the LU
6.2 communication protocol. For further information, see [Chapter 15)
[“Intercommunication considerations,” on page 175/

+ CICS/400 uses the prefix “AEG” for naming internal CICS/400 files and
functions. But for portability, the prefix “DFH” is recognized, to allow CICS
application programs to be compatible with CICS/400. The BMS macros have
the “DFH” prefix, see |[Appendix D, “BMS macro summary,” on page 553, as do
the BMS-related constants, see [Appendix B, “BMS-related constants,” on page|
and copybook members.

* CICS/400 does not suspend HANDLE processing if a subprogram is invoked by
a host language call. You can use the EXEC CICS LINK command as an
alternative, or if programming in COBOL /400, place the EXEC CICS PUSH
HANDLE command before and the EXEC CICS POP HANDLE command after
the host language call.

* EXEC CICS commands that specify an INTO option and some length parameters
require special care. A mismatch between the length specified on the EXEC CICS
command, and the actual length of the INTO area may provide unpredictable
results.

* CICS task numbers may not be unique in CICS/400. The task number is based
on the job number of the user running a CICS shell, followed by a single digit.
This digit is incremented each time a new task is initiated within the shell.
When the digit reaches 9, it is reset to zero. In addition, the task number is reset
to the job number+1 each time the CICS shell is started. If the user repeatedly

© Copyright IBM Corp. 1998, 2004 5

stops and starts CICS shells without signing off OS/400 completely, the first task
in each shell will have the same task number. If any part of your application
relies on a unique task numbers (for example, when allocating temporary
storage queue names), the code must be changed.

* The following commands and options are retained for compatibility but are
treated as no-operations:

— EXEC CICS SUSPEND, EXEC CICS WAIT JOURNAL and EXEC CICS WAIT
JOURNALNUM

— MASSINSERT option on EXEC CICS WRITE

— WAIT, STARTIO, and NOSUSPEND options on EXEC CICS WRITE
JOURNALNUM

— DEFRESP option on EXEC CICS CONVERSE
— BELOW and ANY options on EXEC CICS GETMAIN
— LAST, CNOTCOMPL, and DEFRESP options on EXEC CICS SEND command

Note: The LAST option is available if you are sending data in an APPC
mapped conversation.

BMS

* CICS/400 basic mapping support (BMS) most closely matches minimum
function BMS, with the addition of EXEC CICS SEND TEXT. See[“Level of BMS’|
on page 139| for a discussion of the levels of BMS. See|Chapter 13, “CICS/400|
basic mapping support (BMS),” on page 141|for a discussion of the support
provided for BMS.

¢ BMS macro source input is the only acceptable input for CICS/400 map
generation.

* You must remove any non-BMS assembler-language statements (for example,
PRINT NOGEN) from BMS source maps.

* On CICS/400, when a user begins a conversational or pseudoconversational
transaction, no messages can be delivered to that user’s terminal from any
source except the transaction being processed. On other CICS platforms,
pseudoconversational sequences deliver these messages as soon as no
transaction is running for that user’s terminal, which may be immediately after
any screen in the sequence.

* To override the attribute data displayed by BMS, you can set the corresponding
subfield in the data structure to X'00, if using 3270 devices, but should use X'40'
if using 5250 devices.

Terminal Control

* An application that uses EXEC CICS RECEIVE rather than EXEC CICS RECEIVE
MAP should allow for the addition of SBA data to the front of data returned
from a 5250 terminal.

COBOL

CICS/400® supports both the COBOL /400 and ILE COBOL compilers. In the
following discussion, the term COBOL isused to apply to both compilers.

 If you want to use your own source code line numbers for debugging purposes,
you do not have to use a CRTCBLPGM option. You can use the NUMBER
option of the COBOL PROCESS statement in your source to get columns 1-6
(the statement numbers) as the reference numbers for the compile.

6 CICS for iSeries Application Programming Guide V5

* USAGE IS POINTER fields cannot be used in data areas associated with the

FROM option of EXEC CICS START, WRITEQ TD, and WRITEQ TS commands,
because the process used to pass the data results in the value not being
recognized as a pointer by OS/400.

* CICS/400 does not support BLL cells.
* You should check COBOL conditional statements of the form:

IFA=BORC
because complicated, abbreviated, combined conditions may fail. You should
consider using the form:

IFA=BORA=C

to avoid possible compiler errors.

* Any COBOL statements containing redefined groups, for example:

01 A PIC X(100)

01 B REDEFINES A.

01 C REDEFINES B.

cause OS/400® to issue warning messages. You should consider adding PIC to

the redefines to avoid warning messages, for example:
01 A PIC X(160)

01 B REDEFINES A PIC X(2).
01 C REDEFINES B PIC X(2).

* Any COBOL OCCURS statements must be of the form:

02 A PIC X(02) OCCURS 1 TO 100 TIMES DEPENDING ON X
instead of

OCCURS 100 TIMES

* Any COMPUTE statements must be:

COMPUTE X =Y
rather than

COMPUTE X EQUAL Y

* You must change all COMP and USAGE IS COMPUTATIONAL fields to

BINARY (COMP equates to COMP-3 in CICS/400).

* You should bear in mind the following restrictions when using pointers in

COBOL:

— Pointers are 16 bytes.

— Pointer arithmetic is not allowed.

— Pointer variables should be defined as USAGE IS POINTER.
— Redefining pointers is not recommended.

— Writing a pointer to a file nullifies the pointer.

¢ OS5/400 initializes working storage depending upon whether the *STDINZ or
the *NOSTDINZ compiler option in used, as given in the following table:

*STDINZ *NOSTDINZ
Group XX'40'. The value in the VALUE clause,
else XX'00'.
Single item The value in the VALUE clause, The value in the VALUE clause,

else a default appropriate for the else XX'00'.
type of field, for example zero for
numeric fields.

* You must change SELECT statement ASSIGN clauses to DATABASE-XXX or
PRINTER-XXX.

Chapter 2. Portability and migration considerations

7

You should remove any LABEL RECORD clauses in the sort description of
your SORT files.

A GROUP item that contains spaces does not compare equal to zeros. You will
receive a warning message if you code the following in COBOL under
0S/400:

IF NBR-FLD = SPACES

If there are any pointer fields used by the program, it is advisable to compile
migrated code with the MAP compiler option specified on the COBOL
PROCESS statement. You should also examine the layout of storage in the
linkage section and working storage section. This is because the amount of
storage used for a pointer on OS/400 is 16 bytes, whereas on MVS™ and ESA
it is 4 bytes. The compiler attempts to insert fillers to achieve the correct
alignment but these do not always lead to the most efficient use of storage,
nor to the correct positioning within data structures.

NOSYNC must be used for COBOL programs using CICS maps. Aligned
maps create an output copybook where the USAGE BINARY fields are SYNC.
COBOL ignores this; the compiler option default is NOSYNC. If you use the
process option of SYNC, there may be serious problems with CICS maps.

COBOL does not do a propagated MOVE. For example, with COBOL, the
code:

01 GROUPC.
03 DATAO1 PIC X.
03 DATA02 PIC X(30).

01 GROUPD PIC X(31) VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ12345".

MOVE GROUPD TO GROUPC.
MOVE SPACE TO DATAO1.
MOVE GROUPC TO DATAOZ.

results in the following:

Statement Resulting Value in GROUPC
MOVE GROUPD TO GROUPC "ABCDEFGHIJKLMNOPQRSTUVWXYZ12345"
MOVE SPACE TO DATAO1 " BCDEFGHIJKLMNOPQRSTUVWXYZ12345"

MOVE GROUPC TO DATA02 ! !
With COBOL, the same code results in the following:

Statement Resulting Value in GROUPC

MOVE GROUPD TO GROUPC "ABCDEFGHIJKLMNOPQRSTUVWXYZ12345"
MOVE SPACE TO DATAO1 " BCDEFGHIJKLMNOPQRSTUVWXYZ12345"
MOVE GROUPC TO DATAO02 " BCDEFGHIJKLMNOPQRSTUVWXYZ1234"

If you are migrating copybooks that contain EXEC CICS statements, they can
be translated and the generated source copied into COBOL programs.
However, if your copybook contains EXEC CICS HANDLE or EXEC CICS
IGNORE statements, the generated source should not be copied into the CICS
application. EXEC CICS HANDLE and EXEC CICS IGNORE statements must
be translated as inline source statements.

If you are migrating COBOL applications from platforms that support
non-AD/Cycle COBOL structures, you must check that all continuation
statements start in the correct column. A valid CICS for MVS/ESA COBOL
program can contain continuation statements that start in column 8, (following
the hyphen in column 7). To conform to AD/Cycle®, continuation statements
must not start before column 12. If your continuation statements start before
column 12, the CICS/400 translator will not recognize them.

COBOL does not support a graphic data type. VS COBOL II programs can use
“PIC G” definitions, but these are not currently supported in COBOL /400.

8 CICS for iSeries Application Programming Guide V5

You can define graphic fields in DDS copybooks, and COBOL accepts fields
defined in this way, but converts the fields to alphanumeric fields in the
compiled program. For ILE COBOL, these fields are converted to fixed-length
G-type fields if *PICGGRAPHIC is defined as a CICS option.

¢ COBOL programs may contain “DBCS only” literals, or DBCS/SBCS literals,
but not both types of literal.
“DBCS only” fields may contain a maximum of 80 DBCS characters for OPM
COBOL and 128 DBCS characters for ILE COBOL. Both may be continued
from one line in a program to the next. The method of this continuation is
consistent with that of VS COBOL IL
DBCS/SBCS literals cannot continue across lines and are restricted to AREA B
on one line.
DBCS characters can be used only in literals and comments, and there are
some restrictions for literals such as the CALL and CANCEL statements. You
should refer to the COBOL /400 publications for complete details of these
restrictions. (See [“Books from related libraries” on page xiv.)

* Differences exist in the rules governing methods of calling subprograms,
specifically with respect to the initialization of COBOL working storage in
subprograms called by COBOL calls. See [Table 2 on page 24

ILE C

* CICS/400 does not support use of the #pragma XOPTS directive. All CICS
translator options must be specified on the CRTCICSC CL command used to
invoke the ILE C translator.

* CICS/400 does not pass the TRANSID to main() in argv[0]. CICS conforms to
the OSI C standard by providing the program name in argv[0]. Access to the
TRANSID can be obtained through the EIB.

SQL

¢ SQL column names cannot be longer than 10 characters; this also affects
Distributed Relational Database Architecture” (DRDA®) applications.

iSeries
* CICS/400 does not support, and cannot be run, within a System/36 " or
System/38"" emulated environment.

* Read [Chapter 14, “Terminal control,” on page 169| for information about 5250
terminals. If you want to communicate with other CICS systems, read
[Chapter 15, “Intercommunication considerations,” on page 175.|

¢ The OS/400 CL command manuals describe the details of the control language,
which is different from JCL. ["Books from related libraries” on page xiv| gives a
list of specific manual references.

Source code

¢ Imbedded hexadecimal characters with a value less than X'40' cannot be edited
by the source entry utility (SEU). You must remove them from your program
source code because the translator will not be able to handle them.

Chapter 2. Portability and migration considerations 9

Migrating from another CICS/400 release

This section lists some points that you should consider when migrating from one
release of CICS/400 to another. Further information on release-to-release
compatibility can be found in the CICS for iSeries Administration and Operations
Guide, SC41-5455-00.

BMS

* You cannot use BMS maps created under the current release on a previous
release, but you can use BMS maps created under a previous release on the
current release.

Application programs

* You can run application programs from a previous release under the current
release, and those from the current release under a previous release, provided
that you specify the TGTRLS(*PRV) option on the CL compilation command.

Resource definitions

* The previous releases that are supported for migration purposes are the last
release of the previous version and the previous release of the current version.

* You cannot use current release resource definition files on previous releases, but
you can migrate to a supported previous release using the SAVCICSGRP
command.

* You can convert previous release resource definition files to the current release.
You can use either the INZCICS command after the new version has been
installed or the CONVERT parameter of the STRCICS command. See the CICS
for iSeries Administration and Operations Guide.

10 CICS for iSeries Application Programming Guide V5

Chapter 3. Preparing and writing CICS applications in COBOL

This chapter describes:

“Preparing a COBOL application”]

— [“Coding CICS statements in COBOL applications” on page 12|

— [‘Preprocessing” on page 13

— [“Translating a COBOL program” on page 13|

— [“Compiling an application program” on page 16|
“Writing CICS programs in COBOL” on page 17|
— |"Modular programming” on page 18

— [“Pointer-based addressing” on page 18|

— ["Getting map set storage” on page 19|

- [“Source code considerations” on page 20|

+ [“Calling programs from COBOL” on page 22|

+ |“Sample application programs” on page 27|

Preparing a COBOL application

The iSeries provides two compilers for COBOL applications using CICS:
¢ COBOL/400. This is the Original Program Model compiler.

* ILE COBOL. This compiler creates programs that run in the Integrated Language
Environment (ILE) environment.

To create a CICS COBOL application you select the appropriate compiler by using
on of the following values for the Compile Type option in the CRTCICSCBL
command:

* The *PGM option is the default value and is used to create a CICS program
using the COBOL/400 compiler.

* Either the *BNDPGM or *MODULE options may be used to create a CICS
COBOL program or module using the ILE COBOL compiler.

You use the CRTCICSCBL CL command to invoke the CICS/400 precompiler,
which in turn invokes the following;:

¢ The EXEC CICS command language translator, to convert the EXEC CICS
commands in your applications into COBOL statements that the compiler
understands. See [‘Translating a COBOL program” on page 13|for more
information about how to do this.

* The SQL precompiler, if any SQL statements are encountered in your source
program.

¢ The appropriate COBOL compiler, to produce a program object that is stored in
an OS/400 library.

When your application program is executed, the statements inserted by the
translator invoke the EXEC interface program. This program then provides the
functions requested by each command by invoking one or more CICS service
programs. The EXEC interface program also obtains and provides addressability to
required areas of storage, and releases them automatically when they are no longer
required.

© Copyright IBM Corp. 1998, 2004 11

As you can see from three listings can be produced. You can use these
listings to check for any syntax errors.

COBOL COBOL
cource [CRTCICSCBL [—» output
{1)

i

Translation
listing

SQL
Translation
listing (2}

COBOL
compile
listing ()

{1} Executable code if *“NOGEMN is not specified,
compare with ranslated source in QTEMPIQACY CICS.

{2} Listing is generated if SQL statements are found
in the source.

{3 Listing is generated if *“MNOGEN is not specified and
na franslation emors are found.

Figure 1. Preparing a COBOL application program. This picture shows the CICS/400 translator, CRTCICSCBL, with a
COBOL source file as input, a translator output file, and the three listings that may be produced; the translation listing,
the SQL translation listing, and the COBOL compile listing.

Coding CICS statements in COBOL applications

When you need a CICS system service, for example when reading a record from a
file, you include an EXEC CICS command in your code.

Each command specifies the function you want; for example, EXEC CICS READ to
read a file. You then supply a number of options. Each option takes the form of a
keyword, and may require an argument. For example, if you are reading a file, you
use the FILE option, supplying the file name as the argument to the option. Some
options do not require an argument; for example, the UPDATE option on the
READ command simply tells CICS that you are updating the file. You mark the
end of the command with the words END-EXEC.

For more information on the EXEC CICS command format, see|Chapter 31
[“Programming reference,” on page 305] The commands and their options are
described in |[Chapter 32, “Application programming commands - reference,” on|

|Eage 323.|

12 CICS for iSeries Application Programming Guide V5

When you specify an argument value, you can use a literal, or a data area where
the value you want is stored. If you use a literal, follow the usual COBOL rules
and put it in quotes unless it is a number. In other types of commands, these
values may be paragraph names in your program, telling CICS where to go if a
certain type of exception condition arises. Do not use quotes around paragraph
names.

The statements generated by the translator never contain periods, unless you
include one explicitly after the END-EXEC. This means you can use CICS
commands within control statements (by leaving the period out of the command),
or you can end a sentence with the command (by including the period). See
[“Translating a COBOL program”| for more information about the translator.

Preprocessing

You may use a preprocessor to process source statements before the CICS
translator is invoked. However, any preprocessor run before CICS translation must
be able to ignore CICS statements.

Translating a COBOL program

The CICS application program interface translator translates COBOL programs
with embedded EXEC CICS commands. The CICS translator program scans each
statement and:

* Verifies that each CICS statement is valid and free of syntax errors. The
validation procedure lists error messages in the output listing to help you correct
any syntax errors.

* Prepares each CICS statement for compilation in the host language. For most
EXEC CICS statements, the CICS translator inserts a comment, a series of
COBOL MOVE statements, a CALL statement to the CICS interface program
(AEGEIPGM), and possibly more COBOL MOVE statements.

* Flags any SQL statements that are found within the source code. When all
CICS statements have been validated and prepared for compilation, the SQL
translator is invoked if SQL statements are encountered within this source code,
provided that the *GEN (default) option has been used on the CICSOPT
parameter of the CRTCICSCBL CL command. Otherwise the translation process
stops at the end of translation of the CICS commands.

To obtain diagnostic information when you translate a program, specify the
*SOURCE and *XREFCICS translator options of the CICSOPT parameter. This
creates an output spool file showing you the results of the translation process.

The translator translates the EXEC commands into MOVE statements followed by
a CALL statement in COBOL, and possibly more MOVE statements. The purpose
of the MOVE statements is to assign constants to COBOL data variables; this
enables constants and names to be specified as arguments to options in the
commands.

Declarations for the generated variables are included automatically in working
storage by the translator inserting a COBOL COPY statement. The variables
included by this COPY statement are reserved and all begin with a “DFH” prefix.

Note: Do not use EXEC, CICS, END-EXEC, or names starting with “DFH”, as
names for user variables.

Chapter 3. Preparing and writing CICS applications in COBOL 13

The translator modifies the linkage section by inserting the EIB structure as the
first parameter, and inserts a DFHCOMMAREA as the second parameter, if one is
not already present. It also inserts declarations for the variables used as the
receiving fields for the COBOL MOVE statements inserted by the translator.

You specify translator options using the OS/400 CL command, CRTCICSCBL. The
translator provides a number of optional facilities; for example, to specify what
information is required on the listing. The translator options and their defaults are
listed in [Chapter 30, “OS/400 control language (CL) commands,” on page 265

Example

A command such as:
EXEC CICS RECEIVE MAP('MAPA') END-EXEC.

may be translated to:

MOVE O TO DFH-ARG-INDEX(6).
MOVE 'MAPA'
TO DFH-STRING-VALUE(1).
MOVE 1 TO DFH-ARG-INDEX(9).
MOVE 8 TO DFH-ARG-CODE(1).
MOVE X"00008120" TO DFH-ARG-MASK(1).
MOVE X"00000000" TO DFH-ARG-MASK(2) .
MOVE X"00000000" TO DFH-ARG-MASK(3).
MOVE X"00000000" TO DFH-ARG-MASK(4) .
MOVE 3 TO DFH-ARG-COUNT.
MOVE -1 TO DFH-DEBUG-LINE.
MOVE 62 TO DFH-FN-CODE.
CALL "AEGEIPGM" USING DFHTTFTR,
MAPAI.
IF DFH-EIBLABEL NOT EQUAL TO 0
GO TO AEG-API-ERROR.
END-IF.

The CICS translator assumes that the host language statements are syntactically
correct. If they are not, the translator may not correctly identify CICS statements.
There are limits on the forms of source statements that can be passed through the
translator. For example, literals and comments (which are not accepted by the
application language compiler) can interfere with the translator source scanning
process and cause errors.

Characteristics of the input source file

The translator reads input from the source physical file member specified. This
source file contains language source statements in COBOL. It may contain the
following items of relevance to the translator:

e EXEC CICS commands
e DFHRESP built-in functions
e DFHVALUE built-in functions

For COBOL the translator writes its output to the QACYCICS file of the QTEMP
library. The specific member is given the same name as the source member. This
contains the translated application program with the CICS functions commented
out and followed by the equivalent language statements or function calls.

Note: If *NOGEN is specified as a CICSOPT option, the translation process ends at
the end of the translation of the CICS commands.

Example

14 CICS for iSeries Application Programming Guide V5

The following example uses the CRTCICSCBL command to create a COBOL
program named SAMPLE in library USERLIBI. See [Chapter 30, “OS/400 control|
language (CL) commands,” on page 265/ for more details.

CRTCICSCBL PGM(USERLIB1/SAMPLE)
CICSOPT(*SRC *XREFCICS)

CCSID of source files

The SQL translator reads the source records using the coded character set identifier
(CCSID) of the source file. When processing SQL INCLUDE statements, the
included source is converted to the CCSID of the original source file if necessary. If
the included source cannot be converted to the CCSID of the original source file,
an error occurs.

If double-byte character set (DBCS) literals are specified in the application program
source, the CCSID, for converting DBCS characters, must indicate that the system
supports DBCS literals. For more information about CCSID, see the Database and
File and file systems topics in the iSeries Information Center. Before using the
translator for DBCS purposes, you should refer to the COBOL/400 User’s Guide or
WebSphere Development Studio: ILE COBOL Programmer’s Guide and become familiar
with the DBCS support provided by COBOL.

If the second byte of a DBCS character has the code point X'7F', which is an SBCS
double quotation mark, then if the string is surrounded by or contains double
quotation marks, it will be misinterpreted by the translator. To avoid this, you are
recommended to surround a string in a COBOL application, with single quotation
marks instead of double quotation marks, if it contains any DBCS characters.

Output from the translator
The translator produces:

* Listings

 temporary source file members

Listings: The following listings are output by the translator to the printer file:

Translator options
Options specified in the CRTCICSCBL CL command.

Translator source
Source statements, with record numbers assigned by the translator, if you
specify the *SOURCE option.

Translator cross-reference
Cross-reference listing (if you specify the CICSOPT options *XREFCICS
and *SRC) showing the translator line numbers of CICS statements in
which host names and column names are referred to.

Translator diagnostics

Messages showing the translator record numbers of statements in error.

The output to the printer file uses a CCSID value of 65535. The data is not
converted when it is output to the printer file.

Temporary source file members: Source statements processed by the translator

are written to QACYCICS in the QTEMP library. In your translator-changed source
code, CICS statements have been converted to a comment, MOVE, or CALL to the

Chapter 3. Preparing and writing CICS applications in COBOL 15

CICS interface program AEGEIPGM. The name of the temporary source file
member is the same as that of the original source file member. When CICS creates
the QACYCICS file, it uses the CCSID value of the source file as the CCSID value
for QACYCICS.

QACYCICS can be moved to a permanent library after translation, if you want to
compile at a later time.

Compiling an application program

Having prepared your program source, and translated it to remove any EXEC
CICS statements, you next need to compile it to create an executable program.

Unless *NOGEN is specified, the CICS precompiler automatically calls the relevant
compiler after the successful completion of the translation.

¢ The CRTCICSCBL CL program using the *PGM option automatically calls either
CRTCBLPGM or CRTSQLCBL depending on whether the input source contains
EXEC SQL commands. The CRTCBLPGM command is run specifying the
program name, source file name, translator created source member name, text
and USRPRFE.

the following options under CICSOPT are passed to the COBOL /400 compiler:
- *SRC, *NOSRC

*SOURCE, *NOSOURCE

*APOST, *QUOTE

SECLVL, *NOSECLVL

* The CRTCICSCBL CL program using the *BNDPGM option automatically calls
the CRTBNDCBL or the CRTSQLCBLI compiler depending on whether the input
source contains EXEC SQL commands. If the *MODULE option is selected to
create a COBOL module rather than a program, CRTDBLMOD is called. If this
option is used, then CRTPGM must be used to create an executable program.

The following options under CICSOPT are passed to the ILE COBOL compiler:
- *SRC, *NOSRC

- *SOURCE, *NOSOURCE

- *APOST, *QUOTE

— *SECLVL, *NOSECLVL

- *STDTRUNC, *NOSTDTRUNC

- *RANGE, NORANGE

- *PICXGRAPHIC, *NOPICXGRAPHIC, *PICGGRAPHIC, *NOPICGGRAPHIC

(See [“Conventions and terminology used in this book” on page xiii| for a discussion
of the formation of these option names.) COBOL compiler defaults are used for all
other parameters.

See page for an explanation of the limitations on the SQL options that the
COBOL compiler CL commands can pass to the SQL preprocessor.

Notes:

1. You must not change the translated source member in QTEMP/QACYCICS
before issuing the CRTCBLPGM, CRTSQLCBL, CRTBNDCBL or the
CRTSQLCBLI command, or the compile may fail. The REPLACE option is
passed on to the CRTCBLPGM command.

2. When setting the compiler options, check that PIC S9(4) BINARY fields are
regarded as having a range -32 767 through +32 767; otherwise you might

16 CICS for iSeries Application Programming Guide V5

experience problems with LENGTH fields greater than 9999 bytes. If you have
problems with this, refer to the ILE COBOL/400 manuals for more details
about the NOTRUNC option.

Writing CICS programs in COBOL

This section describes some things you should be aware of when writing COBOL
programs.

COBOL programs are usually coded as members of source type CICSCBL in source
file QLBLSRC. See for an example of using source type CICSCBL.

/]] N
Work with Members Using PDM

File QLBLSRC
Library QCICSSAMP Position to

Type options, press Enter.
2=Edit 3=Copy 4=Delete 5=Display 6=Print
7=Rename 8=Display description 9=Save 13=Change text ...

Opt Member Type Text

ACCTREC CICSCBL Account file record format
ACCTSET CICSCBL ACCT Sample Transaction

ACCTOO CICSCBL ACCTOO CICS COBOL Source

ACCTO1 CICSCBL ACCTO1 CICS COBOL Source

ACCTO2 CICSCBL ACCTO2 CICS COBOL Source

ACCTO3 CICSCBL ACCTO3 CICS COBOL Source

ACCTO4 CICSCBL ACCTO4 CICS COBOL Source

ACIXREC CICSCBL Index file record format

More...
Parameters or command
===>
F3=Exit F4=Prompt F5=Refresh F6=Create
\\F9=Retr1eve F10=Command entry F23=More options F24=More keys)

Figure 2. Screen showing an example of using source type CICSCBL

Syntax checking for CICS COBOL applications is provided by the Source Entry
Utility (SEU) when source type CICSCBL is used. All EXEC CICS commands are
marked by the word CICS in the line number field, as shown in [Figure 3 on page|

Chapter 3. Preparing and writing CICS applications in COBOL 17

4] N\
Columns . . . : 1 71 Edit SAMPLE/QLBLSRC
SEU==> SAMPLE
FMT CB -A+++B+++++H+HH

0006.00 ENVIRONMENT DIVISION.
0006.01
0007.00 DATA DIVISION.
0007.01
0008.00 WORKING-STORAGE SECTION.
0009.00
0010.00 01 MSG-TEXT PIC X(23) VALUE IS
0011.00 ' 5722DFH CICS '.
0012.00
0013.00 PROCEDURE DIVISION.
0014.00
CICS EXEC CICS SEND TEXT FROM(MSG-TEXT) LENGTH(23) ERASE
CICS END-EXEC
CICS EXEC CICS RETURN NOHANDLE END-EXEC.
0017.01
0018.00 EPILOG.
0019.00 GOBACK.
kkkkkkkkkkkkkkxk End of data
F3=Exit F4=Prompt F5=Refresh F9=Retrieve F10=Cursor

\\F16=Repeat find F17=Repeat change F24=More keys

Figure 3. Example of an SEU screen showing code containing CICS commands

For general information about writing COBOL programs, refer to the WebSphere
Development Studio: ILE COBOL Reference.

Modular programming

If there is common code that is shared among many programs it can be saved as a
member of a copybook. It must be translated before being stored, but do not edit
the translated output. If you copy or manipulate statements originally inserted by
the CICS translator in an application program, you may get unpredictable results.

Segments of programs to be copied into the procedure division can be translated
by the command language translator, stored in their translated form, and later
copied into the program to be compiled.

Note: Any command using a LABEL option can not be pre-translated and later
copied into application programs. EXEC CICS HANDLE CONDITION,
EXEC CICS HANDLE ABEND, and EXEC CICS HANDLE AID commands
cannot be made common code because the code generated by the translator
for these commands varies depending on their placement in the application
program.

When using ILE, you can create modules for common code. These modules can
then be combined with other modules to create an executable program. The source
code for the module can contain EXEC CICS statements.

Pointer-based addressing

CICS application programs need to access data dynamically when it is in a CICS

internal area, and only the address is passed to the program. Examples are:

* CICS areas such as the CWA, TWA, and TCTTE user area (TCTUA), accessed
using the EXEC CICS ADDRESS command

* Input data, obtained by EXEC CICS commands such as READ and RECEIVE
with the SET option

COBOL provides a simple method of obtaining addressability to the data areas
defined in the linkage section, using pointer variables and the ADDRESS special

18 CICS for iSeries Application Programming Guide V5

register. The ADDRESS special register holds the address of a record defined in the
linkage section with level 01 or 77. This register can be used in the SET option of
the EXEC CICS commands GETMAIN, LOAD, READ, and READQ.

Exam?le of using pointer variables
igure 4

shows how to obtain addressability to the data for pointer addressing. If
the records in the EXEC CICS READ or EXEC CICS REWRITE commands are
fixed-length, COBOL does not require a LENGTH option. This example assumes
variable-length records. After the EXEC CICS READ command, you can get the
length of the record from the field named in the LENGTH option (here,
LRECL-REC1). In the EXEC CICS REWRITE command, you must code a LENGTH
option if you want to replace the updated record with a record of a different
length.

WORKING-STORAGE SECTION.
77 LRECL-REC1 PIC S9(4) COMP-4.
LINKAGE SECTION.

01 REC-1.
02 FLAGL PIC X.
02 MAIN-DATA PIC X(5000).
02 OPTL-DATA PIC X(1000).

01 REC-2.
02 ...

PROCEDURE DIVISION.

EXEC CICS READ UPDATE...
SET(ADDRESS OF REC-1)
LENGTH(LRECL-REC1)

END-EXEC.

IF FLAG1 EQUAL 'Y'
MOVE OPTL-DATA TO ...

EXEC CICS REWRITE...
FROM(REC-1)
END-EXEC.

Figure 4. Example of pointer-based addressing in a COBOL program

Note: In the above example, COMP-4 has been used. You can specify BINARY in
preference to COMP-4. However, you must not specify COMP because the
COBOL compiler treats this as equivalent to packed decimal (that is,
COMP-3). COBOL compilers on other systems may treat COMP as
equivalent to COMP-4.

Getting map set storage

If your basic mapping support (BMS) map is in the linkage section, you must
acquire map storage dynamically with the EXEC CICS GETMAIN command. You
may either release storage with the EXEC CICS FREEMAIN command or keep it
until the task is complete. Early release helps you to optimize storage use, and can
be useful in a long conversational transaction. See [Chapter 12, “Introduction to]
bbasic mapping support (BMS),” on page 135| for further information about BMS.

Chapter 3. Preparing and writing CICS applications in COBOL 19

With other COBOL compilers you must determine the necessary amount of
storage, which must be sufficient for the largest map in your map sets. This can be
difficult to determine, and probably involves examining all the map assemblies.
With COBOL, use the LENGTH special register:

EXEC CICS GETMAIN
SET(ADDRESS OF datarea)
LENGTH(LENGTH OF datarea)
END-EXEC.

In COBOL, the actual processing of maps in the linkage section is simplified by the
elimination of BLL cells.

shows the method of processing BMS maps in the linkage section. The
highlighted material describes the contents of the MAPSET1 COBOL copybook.
MAPSET1 was defined as follows:

MAPSET1 DFHMSD TYPE=DSECT,
LANG=COBOL,
STORAGE=AUTO,
MODE=IN

In this example, it is assumed that the COBOL program has been compiled and
that MAPSET1 has been included in the program.

WORKING-STORAGE SECTION.
77 FLDO PIC X VALUE IS LOW-VALUE.

LINKAGE SECTION.
COPY MAPSETL.
01 MAP1I.

02 FILLER PIC X(12).
02 FILLERIL BINARY PIC S9(4).

02 FIELD90 PIC X(20).
PROCEDURE DIVISION.

EXEC CICS GETMAIN
FLENGTH(LENGTH OF MAP1I)
SET (ADDRESS OF MAP1I)
INITIMG(FLDO)

END-EXEC.

Figure 5. Example of processing BMS maps in a COBOL program

Source code considerations

You do not define your files in a CICS COBOL program, but in the CICS
file-control table entries. At most sites this table is updated by the system
administrator. See the CICS for iSeries Administration and Operations Guide for more
information about setting up entries in the file control table.

20 CICS for iSeries Application Programming Guide V5

* Do not use the entries in the environment division and the data division that are
normally associated with files. In particular, the entire file section is omitted
from the data division. However, you still need to code the headers for both of
these divisions. Put the record formats that usually appear there in either the
working storage or linkage sections.

* Do not use the COBOL READ, WRITE, OPEN, and CLOSE statements. Use the
appropriate CICS commands for storing and retrieving data, and for
communication with terminals.

* The translator expands all CICS commands to COBOL CALL commands, so the
compiler expects a return to the calling program. Control returns to CICS after
the EXEC CICS RETURN command.

* The COBOL compiler limits are given in [Table 1 See the appropriate COBOL
compiler reference book for other compiler limits.

Table 1. COBOL compiler limits

Language element COBOL/400 Limit ILE COBOL Limit
Table size—mixed length (bytes) |3 000 000 16 711 568
Table size—variable length (bytes) |32 767 16 711 568
Table element size (bytes) 32767 16 711 568
GO TO proc-name DEPENDING | 255 Virtually no limit
ON

* If both the identification and procedure divisions are presented to the translator
in the form of a source program or copybook, the following coding is produced
or expanded:

DFHWRKSTART
inserted at the beginning of the working storage section. This indicates
the beginning of WORKING STORAGE.

DFHTTFTR
inserted at the end of the working storage section. This brings in a 01
level of the same name containing a number of COBOL data areas used
as receiver fields by COBOL statements inserted by the translator.

DFHWRKEND
inserted at the end of the working storage section. This indicates the end
of working storage.

DFHEIBLK
inserted at the start of the linkage section as the first 01 level in the
section. This brings in the EXEC interface block (EIB). See
[“EXEC interface block,” on page 529|for a description of the fields in the
EIB.

DFHCOMMAREA
generated, if not specified, as the second 01 level in the linkage section.
This brings in the communication area. See [“COMMAREA in EXEC|
[CICS LINK and EXEC CICS XCTL commands” on page 70| for more
information about the communication area.

If no identification division is present, only the CICS commands are expanded.

If the identification division only is present, only DFHEIBLK and
DFHCOMMAREA are produced.

Chapter 3. Preparing and writing CICS applications in COBOL 21

 If a debugging line is to be used as a comment, it must not contain any
unmatched quotation marks.

* Statements that produce variable-length areas, such as OCCURS DEPENDING
ON, should be used with caution within the working storage section.

* Avoid invoking interactive CICS shells from within a COBOL program.

The STRCICSUSR CL command, which starts an interactive application shell,
invokes an intermediate COBOL program before invoking the shell program.
This intermediate program deactivates the COBOL run unit to enable CICS error
handling.

When the shell terminates, the run unit is not reactivated. If the shell was
invoked from a higher level COBOL program then unpredictable results could
occur during exceptions.

* Using PERFORM to execute a COBOL subroutine is much more efficient than
using CICS to link to, or transfer control to, another program. However, each
PERFORM brings in a copy of the designated subroutine. Repeating the
subroutine in each of your COBOL application programs uses much more
storage. Like other COBOL compilers, the COBOL compiler allows a COBOL
program to use a CALL to external routines. The called routines can issue CICS
commands. This avoids the CICS overhead of transferring control between
programs, but it does mean loading the routines for every calling program. Try
to keep the code you PERFORM as near as you can to the controlling PERFORM
statement, to minimize the risk of the two items being in separate pages of
storage.

Using PERFORM with code that isn’t a true “subroutine” (as in structured
programming) may also affect response time. Consider these guidelines when
using PERFORM:

— Use PERFORM to help structure code, at the cost of increased paging.
— Keep called code as close as possible to the PERFORM statement.
— Use PERFORM for long code, or code used in a great many places.

Calling programs from COBOL

22

In a CICS system, there are two ways of transferring control to another program:
* Using EXEC CICS LINK and XCTL commands
* Using host language calls

Using CICS commands

In an COBOL CICS application, you can invoke CICS services to link or transfer
control to an external program.

The calling program contains one of the following CICS commands:
* EXEC CICS LINK

EXEC CICS LINK PROGRAM('SUBPGM')
END-EXEC.

EXEC CICS LINK PROGRAM(subpgm)
END-EXEC.

* EXEC CICS XCTL

EXEC CICS XCTL PROGRAM('PGMNAME')
END-EXEC.

EXEC CICS XCTL PROGRAM(pgmname)
END-EXEC.

CICS for iSeries Application Programming Guide V5

Note:

The called program may be named explicitly as a non-numeric literal within
quotation marks or as a COBOL data area with length equal to that required
for the name of the program.

provides an overview of how control is transferred between programs
when either the EXEC CICS LINK or the EXEC CICS XCTL (transfer control)
command is used.

PROGRAM A

EXEC CICGS LIMK

-

»PROGRAM B

»PROGRAM C

EXEC CICS XCTL

Figure 6.

EXEC CICS5 RETURM

Control is returned to the next higher logical level.

The EXEC CICS LINK command transfers control to the specified program (B) at a
new logical level. Program B could use the EXEC CICS RETURN command to
cause control to return to the calling program (A). This is similar to the use of a
COBOL CALL statement.

The EXEC CICS XCTL command in Program B transfers control to Program C at
the same logical level. You cannot return control to the calling program (B) using
an EXEC CICS RETURN command or a host language statement. When program C
completes, control returns to program A.

In a CICS system, when control is transferred from an active program to an
external program, but the transferring program remains active and control can be
returned to it, the program to which control is transferred is called a subprogram.

Using COBOL CALL statements

In a COBOL application, there are two types of call that can be made during run

time:

e Static call
¢ Dynamic call

Static COBOL call

The calling program contains a COBOL statement of the form:

CALL ‘subpgname’

The called subprogram is explicitly named as a literal string and the reference to
the called program is determined at compile time.

Chapter 3. Preparing and writing CICS applications in COBOL 23

Dynamic COBOL call

The calling program contains a COBOL statement of the form:
CALL identifier

The identifier is the name of a COBOL data area that must contain the name of the
called subprogram.

Rules governing calling CICS COBOL programs

Whether you use CICS commands or host language calls to call subprograms
depends on a number of factors including functionality, portability, and
performance. outlines some of the requirements and conventions that you
need to consider when choosing your implementation. This table defines
requirements when a COBOL program is called as a main transaction program
(called by CICS at logical level 1) or as a subprogram.

Table 2. Rules to be used with CICS COBOL programs

Programming requirement | Main program Subprogram called by Subprogram called by
EXEC CICS LINK/XCTL language call

Install in control region REQUIRED REQUIRED OPTIONAL

Processing Program Table | Transaction will abend If not defined, not

(PPT) APCT if not found or found, or disabled,

not authorized. a PGMIDERR

condition is raised
in the calling program.

Translation REQUIRED OPTIONAL
Control is passed to the COBOL program entry
point.

Source code Any COBOL function supported by CICS, including precompiled EXEC SQL
statements.

Parameters and shared data | If the COMMAREA is used, it must be passed in the If translated, may receive
EXEC CICS LINK command. data passed by any of the

standard CICS methods
(COMMAREA, TCTUA, TS
queues, TWA).

When using language calls
to call a translated CICS
COBOL program, the
calling program must
supply pointers to the
EXEC Interface Block and
the COMMAREA as the
first two parameters as

expected.
Returning control to the Use EXEC CICS RETURN. Use GOBACK or EXIT
calling program Optionally, use GOBACK, EXIT PROGRAM, or PROGRAM. Use of EXEC
STOP RUN. For ILE COBOL, use CICS RETURN or STOP
EXIT PROGRAM AND CONTINUE RUN UNIT. RUN may give

unpredictable results.

24 CICS for iSeries Application Programming Guide V5

Table 2. Rules to be used with CICS COBOL programs (continued)

Programming requirement

Main program

Subprogram called by
EXEC CICS LINK/XCTL

Subprogram called by
language call

Program activation

On each entry, a CICS run unit is initialized and a new
initialized copy of WORKING STORAGE is provided. In
some circumstances, this can cause a performance
degradation. CICS supports recursive program links.
Native COBOL run-unit processing is suspended during
a CICS application shell. If performance is unsatisfactory
with LINK commands, COBOL calls may give improved

results.

On first entry to the called
subprogram, WORKING
STORAGE is initialized. On
subsequent entries to the
called subprogram,
WORKING STORAGE is
provided in its last-used
state; that is, no storage is
freed, acquired, or
initialized.

The subprogram is
deactivated only when the
run unit ends or when an
appropriate COBOL
CANCEL statement is
issued.

Recursive calls may give
unpredictable results.

Condition AID and abend
handling

Condition AID and abend
handling is initially
defaulted.

The system default action
for unhandled conditions is
usually to abend the task.

EIBAID and EIBRESP fields
may be tested if
NOHANDLE or RESP
options are coded on CICS
commands.

For more information on
exception handling, see

Chapter 6, “Dealing with|

lexception conditions,” on|

[page 87.|

On entry to the run unit,
no condition or abend
handling is active. Within
the subprogram, the normal
CICS rules apply. If an
abend occurs while no
abend handling is active,
CICS searches successively
higher logical levels
(starting with the caller)
and passes control to the
label or program specified
in the first active HANDLE
ABEND command found. If
none is found, the
transaction abends.

If translated, CICS assumes
that the calling program
has issued a PUSH
HANDLE command to
suspend HANDLE
processing. In order to
establish an abend or
condition handling
environment that will exist
for the duration of the
subprogram, new HANDLE
commands should be
issued on entry to the
subprogram. The
environment created
remains in effect until
either another HANDLE
command is issued, or the
subprogram returns control
to the caller. Upon return
from the called
subprogram, the calling
program should issue a
POP HANDLE command
to restore HANDLE
processing.

Program activation

Activation is the process of preparing a program to run. It includes allocating the
data or static storage needed by the program. There are rules that govern when a
program is activated and deactivated.

A run unit is a running set of one or more programs that communicate with each
other by COBOL CALL statements. In a CICS environment, a run unit is created by

Chapter 3. Preparing and writing CICS applications in COBOL 25

the first program in a CICS task or by a program invoked by an EXEC CICS LINK
or EXEC CICS XCTL command. The first program in a run unit is usually referred
to as the main program.

Native COBOL run unit processing is suspended within a CICS/400 application
shell. The run unit main program, which is a PPT resource defined to CICS, is
activated by CICS. Subprograms called using COBOL CALL statements are
activated the first time they are called. On subsequent calls, COBOL WORKING
STORAGE will be in its ‘last-used” state and the re-initialization of any items
becomes the responsibility of the programmer. Such subprograms are deactivated
only when the run unit ends or when an appropriate COBOL CANCEL statement
is issued.

A called program must not directly or indirectly execute its caller (such as program
X calling program Y; program Y calling program Z; and program Z then calling
program X). This is called a recursive call. COBOL allows recursion in both main
programs and subprograms. However, if you want your programs to conform to
Systems Application Architecture® (SAA) standards, do not use recursive calls
within a run unit.

Because each EXEC CICS LINK or EXEC CICS XCTL command initiates a new run
unit, each time you link to a COBOL program working storage will be reinitialized.

[Figure 7 on page 27| shows run units, logical levels, and the effects of using CICS
commands and COBOL verbs to transfer control between programs. The dashed
boxes marked A, B, and C show the scope of COBOL run units.

26 CICS for iSeries Application Programming Guide V5

|
|

GOBACK — I

STOF RUN :

EXIT PROGRAM —

EXEC CICS RETURN I
|
|
|
I
I

|

|

|

|

|

I A GOBACK
I [

|

I

| .

EXEC CICS LINH—l EXIT FROGRAM

GOBACK —

STOP RUN —

EXIT PROGRAM —
EXEC CICS RETURNM

CALLX
-+ I_ GOBACHK
EXEC CICS XCTL— EAIT FROGRAM

| CALL '?

| -+ I_G-::Emcu
GOBACK — EXIT PROGRAM

' STOP RUN —

I EXIT PROGRAM —

|

|

EXEC CIC5 RETURN

Figure 7. Flow of control between COBOL programs and run units in CICS/400

Sample application programs

Disclaimer:

Chapter 3. Preparing and writing CICS applications in COBOL ~ 27

The ACCT sample application contains programming source code for
your consideration. This sample has not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, performance or function of the programs. All programs
herein are provided to you “as is”. IBM EXPRESSLY DISCLAIMS ALL
WARRANTIES, INCLUDING THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

A set of sample application programs, called ACCT, is provided as an example of
how CICS commands can be used in a program written in the COBOL language.
All ACCT objects are in the QCICSSAMP library.

If the COBOL compiler is installed on your system, you can modify the ACCT
sample programs. is a screen showing the members of file QLBLSRC that
contain the source for the ACCT application programs. Note that the TYPE of the
members containing CICS code is CICSCBL.

4]] ™\
Work with Members Using PDM AS400A
File QLBLSRC
Library QCICSSAMP Position to
Type options, press Enter.
2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename
8=Display descr. 9=Save 13=Change text 14=Compile 15=Create module.
Opt Member Type Text
ACCTREC CBL Account file record format
ACCTSET CBL ACCTSET CICS BMS Source
ACCTO0 CICSCBL ACCTOO CICS COBOL Source
ACCTO1 CICSCBL ACCTO1 CICS COBOL Source
ACCTO2 CICSCBL ACCTO2 CICS COBOL Source
ACCTO3 CICSCBL ACCTO3 CICS COBOL Source
ACCTO4 CICSCBL ACCTO4 CICS COBOL Source
ACIXREC CBL Index file record format
Bottom
Parameters or command
===>
F3=Exit F4=Prompt F5=Refresh F6=Create
F9=Retrieve F10=Command entry F23=More options F24=More keys

Figure 8. ACCT sample screen: Working with the ACCT samples

The BMS maps used by the ACCT sample are contained in a single mapset. The
source for this mapset is in member ACCTSET of file QMAPSRC. The TYPE of the
source members is CICSMAP.

Data declarations used by the ACCT sample

e The data for each account for the ACCT sample is stored in a physical file,
ACCTFIL, in the QCICSSAMP library. The record format for this file is declared
to a program by copying the copybook ACCTFIL into the working storage
section. The source for the copybook is in member ACCTFIL of file QDDSSRC.

* The ACCT sample uses a physical file, ACCTIX, as an index of the account data
by customer name. The copybook for the record format is called ACIXREC and
the source is in ACCTIX; both ACIXREC and ACCTIX are members of file
QDDSSRC. Note that logical files can be used to provide alternative indexes into
a physical file.

28 CICS for iSeries Application Programming Guide V5

Defining resources for the ACCT sample

A sample program, CRTSAMP, is provided to simplify resource definition for the
ACCT sample. This program creates a CICS group, called ACCT, and other
necessary resources for a control region. You specify the name of the control region
and the library in which the resources are created as parameters for the program.
When the CICS resources have been defined, the control region is started.

To run the CRTSAMP program, enter:
CALL CRTSAMP Tibrary-name sys-id

where sys-id is the name of the sample control region to be created and
Tibrary-name is the library that the CICS resources are stored in. These are
required parameters. The source for CRTSAMP is in member CRTSAMP of file
QCLSRC in library QCICSSAMP.

Running the ACCT sample

1. Use CRTSAMP to create a control region and the CICS group, ACCT, that
defines all the CICS resources needed to run the ACCT sample.

2. Start a CICS user shell for the control region created in step 1.

3. When the user shell has started, enter the transaction identifier ACCT to start the
ACCT sample. The BMS map shown inis displayed at the terminal.

4 N
ACCOUNT FILE: MENU
TO SEARCH BY NAME, ENTER: ONLY SURNAME
REQUIRED. EITHER
SURNAME : FIRST NAME: MAY BE PARTIAL.
FOR INDIVIDUAL RECORDS, ENTER:
PRINTER REQUIRED
REQUEST TYPE: _ ACCOUNT: PRINTER: ONLY FOR PRINT
REQUESTS.
REQUEST TYPES: D = DISPLAY A = ADD X = DELETE
P = PRINT M = MODIFY
\THEN PRESS "ENTER" -OR- PRESS "CLEAR" TO EXIT)

Figure 9. ACCT sample screen: Menu

Note: The input fields in are marked with underscores, but these do not
appear on the actual screen.

If you press the CLEAR key, the application ends and control passes back to CICS.

To request a function, fill in the appropriate fields on the map and press ENTER. If
the request is invalid, the menu map is redisplayed, with a message that describes
the error.

Displaying an account record
To display an account record, starting from the ACCT menu display, enter ‘D’ in
the REQUEST TYPE field and the account number in the ACCOUNT field and press
ENTER. The account details are displayed. [Figure 10 on page 30| is an example of
what the screen might look like following a request to display an account record.

Chapter 3. Preparing and writing CICS applications in COBOL 29

4 ™\
ACCOUNT FILE: RECORD DISPLAY
ACCOUNT NO: 11111 SURNAME: Matthews
FIRST: Dan MI: TITLE: MR
TELEPHONE: 0001234567 ADDRESS: 1, The House
The Road
The City
OTHERS WHO MAY CHARGE:
NO. CARDS ISSUED: 1 DATE ISSUED: 02 04 93 REASON: N
CARD CODE: N APPROVED BY: ISW SPECIAL CODES: L
ACCOUNT STATUS: N CHARGE LIMIT: 1000.00
HISTORY: BALANCE BILLED AMOUNT PAID AMOUNT
0.00 00/00/00 0.00 00/00/00 0.00
0.00 00/00/00 0.00 00/00/00 0.00
0.00 00/00/00 0.00 00/00/00 0.00
PRESS 'CLEAR' OR 'ENTER' WHEN FINISHED
o J

Figure 10. ACCT sample screen: Displaying a record

Adding an account record

To add an account record, starting from the ACCT menu display, enter ‘A’ in the
REQUEST TYPE field and the account number in the ACCOUNT field and press ENTER. If
an account already exists with the account number specified, the application
returns to the menu with a message that describes the error. [Figure 11 on page 31|
shows the map displayed on the screen, with details for a new account already
entered. The ACCOUNT NUMBER field is already set to the value entered on the menu.
To continue with the request, enter the account details into the map and press
ENTER; otherwise press CLEAR to cancel the request. If any of the details added are
invalid, the map is redisplayed with the current data, and the field containing the
invalid data is highlighted with asterisks.

Note: The CARD CODE field indicates whether the card is lost (L), stolen (S), new (N),
or reissued (R). No checking is done on the REASON and SPECIAL CODES fields.

30 CICS for iSeries Application Programming Guide V5

4 N
ACCOUNT FILE: NEW RECORD
ACCOUNT NO: 11111 SURNAME: Matthews
FIRST: Dan MI: TITLE: MR
TELEPHONE: 01234567 ADDRESS : 1, The House
The Road
The City
OTHERS WHO MAY CHARGE:
NO. CARDS ISSUED: 1 DATE ISSUED: 02 04 93 REASON: N
CARD CODE: N APPROVED BY: ISW SPECIAL CODES: L
FILL IN AND PRESS 'ENTER,' OR 'CLEAR' TO CANCEL
o %

Figure 11. ACCT sample screen: Adding a new record

Searching by account holder’s name

You can search for account information by name, instead of by account number. To
do this, you enter a name in the SURNAME field and, optionally, in the FIRST NAME
field on the menu map, and press ENTER. If the name entered is not valid (not
alphabetic), or no match can be found, the menu map is redisplayed with a
message. shows an example of the display returned when you search for
a name.

4 N
ACCOUNT FILE: MENU
TO SEARCH BY NAME, ENTER: ONLY SURNAME
REQUIRED. EITHER
SURNAME : FIRST NAME: MAY BE PARTIAL.
FOR INDIVIDUAL RECORDS, ENTER:
PRINTER REQUIRED
REQUEST TYPE: ACCOUNT: PRINTER: ONLY FOR PRINT
REQUESTS.
REQUEST TYPES: D = DISPLAY A = ADD X = DELETE
P = PRINT M = MODIFY
THEN PRESS "ENTER" -OR- PRESS "CLEAR" TO EXIT
ACCT SURNAME FIRST MI TTL ADDRESS ST LIMIT
11111 Matthews Dan MR 1, The House N 1000.00
& %

Figure 12. ACCT sample screen: Searching by account holder’s name

Modifying an account record

To modify an account record, starting from the ACCT menu display, enter ‘M’ in
the REQUEST TYPE field and the account number in the ACCOUNT field and press
ENTER. If the account does not exist or is already in use, the application returns to
the menu display with a message.

Chapter 3. Preparing and writing CICS applications in COBOL 31

shows an update map for an example account record Changes are made
to the record by typing over the current values. If an invalid change is made, the
map is redisplayed and the field containing the invalid data is highlighted with

asterisks.
S
ACCOUNT FILE: RECORD CHANGE
ACCOUNT NO: 11111 SURNAME : Matthews
FIRST: Dan MI: TITLE: MR
TELEPHONE: 0001234567 ADDRESS: 1, The House
The Road
The City
OTHERS WHO MAY CHARGE:
NO. CARDS ISSUED: 1 DATE ISSUED: 02 04 93 REASON: N
CARD CODE: N APPROVED BY: ISW SPECIAL CODES: L
ACCOUNT STATUS: N CHARGE LIMIT: 1000.00
HISTORY: BALANCE BILLED AMOUNT PAID AMOUNT
0.00 00/00/00 0.00 00/00/00 0.00
0.00 00/00/00 0.00 00/00/00 0.00
0.00 00/00/00 0.00 00/00/00 0.00
MAKE CHANGES AND 'ENTER' OR 'CLEAR' TO CANCEL
- J

Figure 13. ACCT sample screen: Modifying a record

When you have entered your request, the record is updated and you are returned
to the menu with a message confirming that the operation was successful.

Deleting an account record

To delete an account record, starting from the ACCT menu display, enter ‘X’ in the
REQUEST TYPE field and the account number to be deleted in the ACCOUNT field and
press ENTER. If the account does not exist or is already in use, the application
returns to the menu with a message informing you of the error. [Figure 14 on page]
is an account deletion map for an example account record.

32 CICS for iSeries Application Programming Guide V5

Ve
ACCOUNT FILE: DELETION

ACCOUNT NO: 11111 SURNAME: Matthews
FIRST: Dan MI: TITLE: MR
TELEPHONE: 0001234567 ADDRESS: 1, The House
The Road
The City

OTHERS WHO MAY CHARGE:

NO. CARDS ISSUED: 1 DATE ISSUED: 02 04 93 REASON: N

CARD CODE: N APPROVED BY: ISW SPECIAL CODES: L

ACCOUNT STATUS: N CHARGE LIMIT: 1000.00

HISTORY: BALANCE BILLED AMOUNT PAID AMOUNT
0.00 00/00/00 0.00 00/00/00 0.00
0.00 00/00/00 0.00 00/00/00 0.00
0.00 00/00/00 0.00 00/00/00 0.00

ENTER 'Y' TO CONFIRM OR 'CLEAR' TO CANCEL

- J
Figure 14. ACCT sample screen: Deleting a record

You are asked to confirm the deletion request. When you have done so, the record
is deleted and you are returned to the menu with a message confirming that the
operation was successful.

Printing an account record

To do this, starting from the ACCT menu display, enter ‘P” in the REQUEST TYPE
field and the account number to be printed in the ACCOUNT field and press ENTER. If
the account does not exist, or is already in use, the application returns to the menu
with a message informing you of the error. When you have entered your request,
the record is sent to the printer and you see a message confirming that the
operation was successful.

To print the change log, enter the transaction identifier ACLG from a blank entry
screen in CICS. The change log is sent to the device specified to CICS as L860 in
the CICS terminal control table and you see a message confirming that the
operation was successful.

Chapter 3. Preparing and writing CICS applications in COBOL 33

34 CICS for iSeries Application Programming Guide V5

Chapter 4. Preparing and writing CICS applications in ILE C

This chapter covers:

“Preparing an ILE C application”|

— [“Coding CICS statements in iSeries applications” on page 37]

— [‘Preprocessing” on page 38

— [“Translating an ILE C program” on page 38|

— [“Compiling an application program” on page 40|

riting CICS programs in ILE C” on page 41|

- |"Modular programming” on page 42

— [“Pointer-based addressing” on page 42|

— ["Getting map set storage” on page 44|

— [“Passing arguments by value” on page 44|

— [“Exception handling” on page 46

- [“Data declarations needed for ILE C” on page 47]
- [“Naming EIB fields” on page 47|

- [“Source code considerations” on page 47|

+ [“Calling programs and ILE procedures from ILE C” on page 48|

+ |“Sample application programs” on page 53|

Preparing an ILE C application

The tasks involved for preparing an ILE CICS application program are:
* Preprocessing an ILE C CICS program

¢ Translating an ILE C CICS program

* Compiling the output from the translator into an ILE module

* Binding of one or more modules into a program

ILE modules appear language independent to the program binder. Modules in any
supported ILE language can be bound together into one program.

Note: For CICS/400 Version 5, the only supported ILE language is ILE C. You can
also mix ILE and AD/Cycle applications across and within logical levels,
using the EXEC CICS LINK and XCTL commands. See [’Calling programs|
[and ILE procedures from ILE C” on page 48| for details of logical levels.

You use the CRTCICSC CL command to invoke the CICS/400 precompiler, which
performs the following steps:

1. Calls the ILE C preprocessor to include header files and expand macro
definitions, if selected by including the value *PP in the CICSOPT parameter
list.

2. Calls the CICS C translator to convert the EXEC CICS commands in your
application into C statements that can be compiled by the ILE C compiler. See

[“Translating an ILE C program” on page 38| for more information about the
CICS C translator.

© Copyright IBM Corp. 1998, 2004 35

If conversion errors occur, or the *NOGEN option has been specified on the
CICSOPT parameter list, processing stops at this point. The converted output
will have been written to the file member specified by the OUTFILE and
OUTMBR parameters.

3. If the program source contains EXEC SQL statements, the CRTSQLCI CL
command is called to convert EXEC SQL statements.

If conversion errors occur, or the *“NOGEN option has been specified on the
SQLOPT parameter list, processing stops at this point.

4. Calls the CRTMOD CL command to invoke the ILE C compiler and create a
module, if OBJTYPE(*MODULE) was specified.

5. If the *PGM option has been specified for the OBJTYPE parameter, the
CRTPGM CL command is called to create a bound program.

When your application program is executed, the statements inserted by the
translator invoke the EXEC interface program. This program then provides the
functions requested by each command by invoking one or more CICS service
programs. The EXEC interface program also obtains and provides addressability to
required areas of storage, and releases them automatically when they are no longer
required.

As you can see from [Figure 15 on page 37, three listings can be produced. You can
use these listings to check for any syntax errors.

36 CICS for iSeries Application Programming Guide V5

—» cRTCICSC | output

{1)

Translation
listing

source

SOL
Translation
listing (2}

L
compile
listing (3)

{1 *MODULE or "PGM object depending on OBJTYPE().
Assumes default CICSOPT ("GEM) aplion specihed.

{2} Listing is generated if SQL statements are found
in the source.

{3} Listing is generated if *“NOGEM is not specified and
na franslation ermors are found.

Figure 15. Preparing an ILE C application program. This picture shows the CICS/400 precompiler, CRTCICSC, with a
ILE C source file as input, a translator output file, and the three listings that may be produced: the translation listing,
the SQL translation listing, and the ILE C compile listing.

Coding CICS statements in iSeries applications

When you need a CICS system service, for example when reading a record from a
file, you include an EXEC CICS command in your code.

Each command specifies the function you want; for example, EXEC CICS READ to
read a file. You then supply a number of options. Each option takes the form of a
keyword, and may require an argument. For example, if you are reading a file, you
use the FILE option, supplying the file name as the argument to the option. Some
options do not require an argument; for example, the UPDATE option on the
READ command simply tells CICS that you are updating the file. You mark the
end of the command with a semi-colon (;).

For more information on the EXEC CICS command format, see|Chapter 31
|”Programming reference,” on page 305] The commands and their options are
described in [Chapter 32, “Application programming commands - reference,” on|

Igage 323.|

Chapter 4. Preparing and writing CICS applications in ILE C 37

When you specify an argument value, you can use a literal, or a data area where
the value you want is stored. If you use a literal, follow the usual iSeries rules. See
[“Translating an ILE C program”| for more information about the translator.

Preprocessing

If the CICSOPT parameter of the CRTCICSC CL command is set to *PP, the ILE C
preprocessor is called to resolve any #define and #include statements before the
translator is called. This stage is optional and is omitted by default.

Translating an ILE C program

The CICS translator converts ILE C programs with embedded EXEC CICS
commands. The CICS translator scans each statement and:

* Verifies that each CICS statement is valid and free of syntax errors. The
validation procedure lists error messages in the output listing to help you correct
any syntax errors.

* Prepares each CICS statement for compilation by the ILE C compiler. For most
EXEC CICS statements, the CICS translator inserts comment limiters round the
EXEC CICS commands, a series of C assignments in place of the EXEC CICS
commands, a function call to the CICS interface module (AEGEIPGM), and more
C assignments.

* Flags any SQL statements that are found within the source code. When all
CICS statements have been validated and prepared for compilation, the SQL
translator is invoked if SQL statements are encountered within this source code,
provided that the *GEN (default) option is used on the CICSOPT parameter of
the CRTCICSC CL command. Otherwise, the translation process ends after the
translation of the CICS commands.

To obtain diagnostic information when you translate, specify the *SOURCE and
*XREFCICS translator options of the CICSOPT parameter. This creates an output
spool file showing you the results of the translation process.

The translator comments out the EXEC commands and inserts ILE C statements
that assign constants to ILE C data variables; this enables constants and names to
be specified as arguments to options in the commands.

The file DFHTTFTR.H contains the declarations for the generated variables. The
translator inserts a #include statement for this file at the beginning of the
translated source file. The variables included by this #include statement are
reserved and all begin with a “DFH” prefix.

Note: Do not use EXEC, CICS, or names starting with “AEG”, “DFH”, or “FAA”,
as names for user variables.

The file DFHEIBLK.H contains the EXEC interface block (EIB) structure. The
translator inserts a #include statement for this file at the beginning of the
translated source file. See [Appendix A, “EXEC interface block,” on page 529|for
details of the EIB.

The translator provides a number of optional facilities. For example, you can
specify the information you require on the listing. You specify translator options on
the CICSOPT option of the CRTCICSC CL command. See [*CRTCICSC” on page
for details.

38 CICS for iSeries Application Programming Guide V5

The CICS translator assumes that the host language statements are syntactically
correct. If they are not, the translator may not correctly identify CICS statements.

Characteristics of the input source file

The translator reads input from the source physical file member specified. This
source file contains language source statements in ILE C. It may contain the
following items of relevance to the translator:

 EXEC CICS commands
¢ DFHRESP built-in functions
 DFHVALUE built-in functions

You can specify the name of the library and file to be used for the translator
output. By default, the translator writes its output to file QACYCICS in the
QTEMP library, and the specific member is given the same name as the source
member. This contains the translated application program with the CICS functions
commented out and followed by the equivalent language statements or function
calls.

Note: If *NOGEN is specified as a CICSOPT option, compilation terminates at the
end of the CICS translation process.

Example
The following example uses the CRTCICSC CL command to create a ILE C module

named SAMPLE in library USERLIB1. See [Chapter 30, “OS/400 control language
[(CL) commands,” on page 265 for more details.

CRTCICSC OBJ(USERLIB1/SAMPLE)
CICSOPT (*SRC *XREFCICS)

Output from the translator
The translator produces:

* Listings

¢ Temporary source files

Listings: The following listings are output by the translator to the printer file:

Translator options
Options specified in the CICSOPT parameter of the CRTCICSC CL
command.

Translator source
Source statements, with record numbers assigned by the translator,
if you specify the *SOURCE option.

Translator cross-reference
Cross-reference listing (if you specify the CICSOPT options
*XREFCICS and *SRC) showing the line numbers of CICS
statements in which host names and column names are referenced.

Translator diagnostics
Messages showing the record numbers of statements in error.

Temporary source file members: Statements generated by the translator are
written to the file and library specified in the OUTFILE option, and the member

Chapter 4. Preparing and writing CICS applications in ILE C 39

specified in the OUTMBR option, of the CRTCICSC CL command. By default, file
QACYCICS in the QTEMP library is used.

In your translated source code, CICS statements have been converted to a
comment, assignments, and a function call to the CICS interface module
AEGEIPGM. The name of the temporary source file is given in the OUTMBR
option of the CRTCICSC CL command. When CICS creates the QACYCICS file, it
uses the coded character-set identifier (CCSID) value of the source file as the
CCSID value for QACYCICS.

Example

For an ILE C application program, each command is replaced by one or more
assignment statements and function calls. For example, a command such as:

EXEC CICS RECEIVE MAP("MAPA");

may be translated to:

/*

EXEC CICS RECEIVE MAP("MAPA");

*

/

{\
cpyblap(dfhttftr.ArgData[0].StringValue,16, \

"MAPA", (short)7,' '); \

dfhttftr.ArgIndx[5] = 0; \
dfhttftr.ArgIndx[1] .DataArea = &mapa.mapai; \
dfhttftr.ArgIndx[8] = 1; \
dfhttftr.ArgMask[0] = 0x00008120; \
dfhttftr.ArgMask[1] = 0x00000000; \
dfhttftr.ArgMask[2] = 0x00000000; \
dfhttftr.ArgMask[3] = 0x00000000; \
dfhttftr.ArgCount = 3; \
dfhttftr.FnCode = 62; \
dfhttftr.DebugLine = -1; \
AEGEIPGM(&dfhttftr); \

Compiling an application program
Having preprocessed your program source code to resolve #include and #define
statements, and translated it to remove any CICS and SQL statements, you next

compile the program to create a program module. If the program is a simple one
containing only one module, you can create the module and bind it in one step.

Unless the *NOGEN option is selected on the CICSOPT parameter list, the CICS
precompiler calls the CRTMOD CL command to invoke the ILE C compiler and
create a module. For simple, one-module programs you may specify
OBJTYPE(*PGM), in which case the CRTPGM CL command is called to create a
bound program. The program is bound to the CICS interface service program,
AEGEIPGM. When preparing more complex applications, specify
OBJTYPE(*MODULE). Then you can bind the compiled module with other
modules or to service programs as required, using the CRTPGM or CRTSRVPGM
CL commands.

40 CICS for iSeries Application Programming Guide V5

Note: You must specify the value QCICS/AEGEIPGM in the BNDSRVPGM
parameter list to resolve the static procedure calls made to the CICS
application interface routines.

The following options under CICSOPT are passed to the ILE C compiler:
* *SRC, *NOSRC

+ *SOURCE, *NOSOURCE

* *SECLVL, *NOSECLVL

(See [“Conventions and terminology used in this book” on page xiii for a discussion
of the formation of these option names.)

The REPLACE option is passed onto the CRTSQLCI, CRTCMOD, and CRTBNDC
commands. See page 66| for an explanation of the limitations on the SQL options
that the CRTCICSC CL command can pass to the SQL preprocessor.

Note: You must not change the translated source member before compilation or
the compilation may fail.

Writing CICS programs in ILE C

CICS/400 Version 5 supports ILE C programs. You can define and use both ILE C,
ILE COBOL and COBOL/400 programs in a CICS/400 control region.

ILE C programs are normally coded as members of source type CICSC in source
file QCSRC. See for an example of using source type CICSC.

/]] N\
Work with Members Using PDM AS4001

File QCSRC
Library QCICSSAMP Position to

Type options, press Enter.
2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename
8=Display description 9=Save 13=Change text 14=Compile 15=Create module...

Opt Member Type Text

DFH$DALL CICSC FILEA Inquiry/Update program

DFH$DBRW CIcSC FILEA Browse program

DFH$DCOM CICSC FILEA Order entry queue print program

DFH$DMNU CIcsc FILEA Operator instruction program

DFH$DREN CICSC FILEA Order entry program

DFH$DREP CICSC FILEA Low balance report program

Bottom

Parameters or command
===>
F3=Exit F4=Prompt F5=Refresh F6=Create
F9=Retrieve F10=Command entry F23=More options F24=More keys

This is a subsetted Tist.

Figure 16. An example of using source type QCSRC

See the ILE Concepts manual for information about ILE and the benefits of running
applications under ILE.

For more general information about writing ILE C programs, refer to the WebSphere
Development Studio: ILE C/C++ Language Reference, WebSphere Development Studio: ILE
C/C++ Programmer’s Guide, andWebSphere Development Studio: ILE C/C++ Compiler
Reference.

Chapter 4. Preparing and writing CICS applications in ILE C 41

Modular programming

This section describes some considerations for modular programming.

Use of #include
Source code containing CICS statements that is shared among many programs can

be included in the programs using the #include statement. There are two methods
of handling include files containing CICS statements:

1. Translate the include file before it is stored, but do not edit the translated
output. If you copy or manipulate statements inserted by the CICS translator
into an application program, the results may be unpredictable.

2. Specify the *PP option in the CICSOPT parameter of the CRTCICSC CL
command. The CICS precompiler calls the ILE C compiler preprocessor to
resolve the #include statements in the source code before calling the CICS C
translator to convert EXEC CICS commands into C statements.

Use of modules

A module is an ILE object that is created when OBJTYPE(*MODULE) is specified
on the CRTCICSC CL command. A module can be run only if it is bound into an
ILE program or service program using the Create Program (CRTPGM) or Create
Service Program (CRTSRVPGM) command. Several modules are usually bound
together, but a module can be bound by itself.

A service program provides a means of packaging externally-supported callable
routines (functions or procedures) into a separate object. Bound programs and
other service programs can access these routines by resolving their imports to the
exports provided by a service program. The connections to these services are made
when the calling programs are created. This improves call performance to these
routines without including the code in the calling program.

When the Create Program (CRTPGM) or Create Service Program (CRTSRVPGM)
command is used to bind CICS modules into a program or service program object,
the CICS service program AEGEIPGM must be included in the BNDSRVPGM
option of the command.

Pointer-based addressing

CICS application programs need to access data from CICS internal areas using only
the address passed to the program. Examples are:

* CICS areas such as the EIB, CWA, TWA, and TCTTE user area (TCTUA),
obtained using the EXEC CICS ADDRESS command

* Input data, obtained by EXEC CICS commands such as READ and RECEIVE
with the SET option

Example of using pointer variables
The use of these pointers is illustrated in [Figure 17 on page 43|

EXEC CICS ADDRESS EIB
Following CICS conventions, the address of the EXEC Interface Block (EIB) is not

passed as an argument to an ILE C main() function. In order to obtain the address
of the EIB, an EXEC CICS ADDRESS EIB command is required at the beginning of
each program that requires access to the EIB. This includes any program that codes
EXEC CICS commands with RESP or RESP2 options.

42 CICS for iSeries Application Programming Guide V5

EXEC CICS ADDRESS COMMAREA

The address of the communication area is also not passed as an argument to a ILE
C main() function. This means that ILE C functions must use ADDRESS

COMMAREA to obtain the address of the communication area.

struct filea_struct {

stat;
numb[6] ;
name[20] ;
addrx[20];
phone[8];
datex[8];
amount[8];
comment[9];

}s

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

char
char
char
char
char
char
char
char

static struct filea_struct filea;
static signed short int filea_size = sizeof(filea);

static struct filea_struct *commarea; /* COMMAREA Structure */
static short int comlen; /* Length of COMMAREA */
int rcode; /* RESP value */

main(int argc, char xargv[])

}

EXEC CICS ADDRESS EIB(dfheiptr); /* Address of EIB */
EXEC CICS ADDRESS COMMAREA(commarea); /* Address of COMMAREA */

EXEC CICS READ UPDATE FILE("FILEA ") INTO(&filea)
LENGTH(filea_size) RIDFLD(commarea->numb) RESP(rcode);

switch (rcode)

case DFHRESP(NORMAL) :
break;
case DFHRESP(NOTFND) :

Notfound();

default:

Errors();

}

EXEC CICS REWRITE FILE("FILEA ") FROM(&filea)
LENGTH(filea_size) RESP(rcode);

switch(rcode) {

case DFHRESP(NORMAL) :
break;
case DFHRESP(DUPREC) :

DupRec();

default:

Errors();

}

EXEC CICS RETURN TRANSID(dfheiptr->eibtrnid)
COMMAREA (commarea) LENGTH(comlen);

Figure 17. Example of using pointer-based addressing in a ILE C program

EXEC CICS READ/REWRITE

shows how to obtain addressability to the data for pointer addressing.
Note that ILE C always requires a LENGTH option on EXEC CICS READ and

WRITE commands. After the EXEC CICS READ command, you can

get the length
of the record from the field named in the LENGTH option (in Figure

Chapter 4. Preparing and writing CICS applications in ILE C 43

filea_size). In the EXEC CICS REWRITE command, you must code a LENGTH
option if you want to replace the updated record with a record of a different
length.

Getting map set storage

If you specify BASE=name in a DFHMSD macro, the logical map contains only a
variable declaration for a variable of type mapstruct®.

You must acquire map storage dynamically using the EXEC CICS GETMAIN
command. You may either release storage with the EXEC CICS FREEMAIN
command or keep it until the task is complete. Early release helps you to optimize
storage use, and can be useful in a long conversational transaction. See
[“Introduction to basic mapping support (BMS),” on page 135 for further
information about BMS.

[Figure 18 on page 45 shows a method of processing BMS maps. The highlighted
material describes the contents of the MAPSET1.H ILE C header file. MAPSET1
was defined as follows:

MAPSET1 DFHMSD TYPE=DSECT,
LANG=C,
STORAGE=AUTO,
MODE=INOUT

In this example, STORAGE=AUTO has been specified. Therefore, the MAPSET1.H
logical map declares an automatic global variable of type mapstruct. You do not
need to acquire or release map storage.

Passing arguments by value

In ILE C, arguments are normally passed by value rather than by reference. By value
means that when you pass arguments to a function, for example:

function(argl, arg2, arg3);

the ILE C compiler builds a data area containing copies of the arguments to be
passed to the function.

Other languages, such as COBOL/400, pass their arguments by reference, which
means that the compiler passes a list of addresses pointing to the arguments to be
passed. This is the call interface supported by CICS.

In order to provide a more compatible interface to the OS environment, the ILE C
compiler provides a #pragma (an implementation-defined instruction to the
compiler) to influence the linkage conventions used when generating code.
Accordingly, the translator generates the following line of code in the translated
output:

#pragma arguments (DFHEIPGM,0S,nowiden)

This designates the function DFHEIPGM as having its arguments passed
conforming to the OS linkage conventions. Non-address arguments are copied to
temporary locations, and the address of the copy is passed to the CICS procedure
DFHEIPGM. Arguments that are addresses or pointers are passed directly to
DFHEIPGM.

44 CICS for iSeries Application Programming Guide V5

When you send values from a ILE C program to CICS, the translator takes the
necessary action to generate code that will result in an argument list of the correct
format being passed to CICS. to pass it The translator prefixes arguments (where
possible) with the & (address of) operator. This generates a pointer to the data
item; the address of the data item is placed directly into the parameter list.

However, the translator often cannot determine the data type being passed and
therefore relies on your passing a suitable argument.

#include <stdio.h>
#include "MAPSET1.H"
union {
_Packed struct {
char dfhms1[12];
short int msgl;
char msgf;
char msgi[39];
short int keyl;
char keyf;
char keyi[6];
} dfhdgai;
_Packed struct {
char dfhms2[12];
short int dfhms3;
char msga;
char msgo[39];
short int dfhms4;
char keya;
char keyo[6];
} dfhdgao;
} dfhdga;
main()
{
EXEC CICS SEND MAP("DFHDGA ") MAPSET("MAPSET1")
MAPONLY ERASE;
EXEC CICS RETURN;
1

Figure 18. Example of processing BMS maps in an ILE C program

For example, if the translator is presented with the following line of C source:
EXEC CICS RECEIVE INTO(myarea) LENGTH(mylen);

it generates this ILE C replacement code:

DFHEIPGM(.... ,myarea,&mylen);
This works, provided the variable myarea is a pointer (or equivalent, for example,
the name of a character array). If myarea is defined as a structure, for example:
struct {
char header_info[8];

char the_message[80];
} myarea;

the compiler makes a copy of myarea into some temporary storage and passes the
address of the copy in the parameter list. The variable myarea remains unchanged,
that is, CICS updates the copy instead.

able 3 on page 46| shows the rules that apply when passing values as arguments
pag ppPly P g)
in EXEC CICS commands.

Chapter 4. Preparing and writing CICS applications in ILE C 45

Table 3. Rules for passing values as arguments in EXEC CICS commands

Data type

Usage

Handling the argument

Character array

Data area (R)
Data value (S)

Only the name of the array should be passed. ILE C generates a pointer to the
data location.

Integer Data area (R) The translator prefixes the variable with &.

variables -

(halfword) Data value (S) | The translator does nothing.

Integer Data area (R) The translator prefixes the variable with &.

variables -

(fullword) Data value (S) |The translator does nothing.

Integer literals |Data value (S) |The translator does nothing.

(halfword)

Integer literals |Data value (S) |The translator does nothing.

(fullword)

Pointers Data area (R) |The translator prefixes the variable with &.
Data value (S)

Structures Data area (R) |You should prefix the structure name with & so that CICS is passed the address

Data value (S)

of your structure and not the address of a copy. Failure to do this will result in
the loss of any data passed back in the structure.

Note: With the SEND and RECEIVE MAP BMS commands, the translator interprets that a structure is being passed
in the FROM and INTO options and automatically prefixes the name with an &.

Character Data area (R) The translator prefixes the variable with &.
variables Data value (S) | The translator does nothing.

Character Data value (S) | The translator does nothing.

literals

Note: “(R)” indicates “Receiver”, where data is being received from CICS; “(S)”
indicates “Sender”, where data is being passed to CICS.

Thoroughly review your programs for correct pointer usage.

Exception handling

In ILE C applications, you cannot use the EXEC CICS commands related to
nonstructured exception handling. The commands are:

* EXEC CICS HANDLE CONDITION option (with or without a label)
* EXEC CICS HANDLE AID option (with or without a label)

» EXEC CICS IGNORE CONDITION option

» EXEC CICS PUSH HANDLE

« EXEC CICS POP HANDLE

* EXEC CICS HANDLE ABEND LABEL

Use of these commands is diagnosed by the translator.

EXEC CICS HANDLE ABEND PROGRAM commands are allowed, but you cannot
use EXEC CICS PUSH HANDLE or POP HANDLE commands to suspend the
active abend exit program.

In an ILE C application, every EXEC CICS command which does not explicitly
specify either the NOHANDLE or the RESP option is treated as if it had the
NOHANDLE option specified. This means that the set of “system action”

46 CICS for iSeries Application Programming Guide V5

transaction abends that result from a condition occurring but not being handled, is
not possible in a ILE C application. Control always flows to the next instruction,
and it is up to the application to test for a normal response. For more information
on condition handling, see Chapter 6, “Dealing with exception conditions,” on|

Data declarations needed for ILE C
The following data declarations are provided by CICS for ILE C in file QCICS/H:
* Execution interface block (EIB) definitions.
The DFHEIBLK.H C header file includes a definition of the EIB.
* BMS screen attributes definitions.

ILE C versions of the DFHBMSCA, DFHMSRCA, and DFHAID files are
supplied by CICS, and may be included by the application programmer when
using BMS.

The EIB declarations are enclosed by #infdef and #endif, and are included in all
translated files. The ILE C compiler ignores duplicated declarations.

Naming EIB fields

Within a ILE C application program, fields in the EIB are referred to in lowercase
and fully qualified as, for example, dfheiptr->eibtrnid, in contrast to EIBTRNID as
used in other programming languages.

Data types
The following mapping of data types is used:

* Halfword binary integers are defined as “short int”
* Fullword binary integers are defined as “long int”
* Single-character fields are defined as “unsigned char”

* Character strings are defined as “unsigned char” arrays

Source code considerations

If at all possible, you should use CICS commands to request operating system
functions, rather than the equivalent ILE C statements. For example, use the EXEC
CICS GETMAIN command rather than malloc(), because CICS will free the storage
for you at the end of the task. If you have to use ILE C statements rather than
CICS commands, it is your responsibility to do the inverse operation to clean up.
For example, if you open a file, you must also close it.

The following restrictions apply to a ILE C program that is to be used as a CICS

application program:

* You can use upper, lower, or mixed case for keywords and arguments on EXEC
CICS commands, with the exception of the words EXEC CICS. A name, such as
a file name or a transaction id, must be coded in the same case as the external
definitions.

* Do not omit the LENGTH option from commands that require a LENGTH
option (for example, READ, READNEXT, READPREYV, and WRITE).

* All strings passed to CICS/400 commands from ILE C programs must be
delimited with double quotation marks.

ILE C string manipulation functions are allowed, but they result in a null byte
being appended as an end-of-string marker. This is not acceptable if the string is
to be passed to CICS/400. In particular, names of temporary storage queues

Chapter 4. Preparing and writing CICS applications in ILE C 47

(which may contain null characters) must be supplied as eight characters.
CICS/400 does not perform any padding to fill out short queue names supplied
by ILE C applications.

* Where CICS expects a fixed-length character string such as a program name,
map name, or queue name, any literals passed must be padded with blanks up
to the required length.

Calling programs and ILE procedures from ILE C

In a CICS system, there are two ways of transferring control to another program:
* Using EXEC CICS LINK and XCTL commands
* Using ILE C language calls

Using EXEC CICS commands

In a ILE C CICS application you can invoke CICS services to link or transfer
control to an external program.

The calling program contains one of the following CICS commands:
* EXEC CICS LINK

EXEC CICS LINK PROGRAM(“SUBPGM”) ;

EXEC CICS LINK PROGRAM(SubPgmPtr) ;
* EXEC CICS XCTL

EXEC CICS XCTL PROGRAM(“PGMNAME”) ;

EXEC CICS XCTL PROGRAM(PgmPtr) ;

Note: The called program may be stated explicitly as a constant string literal
within quotation marks or as a variable of type char *.

provides an overview of how control is transferred between programs
when either the EXEC CICS LINK or the EXEC CICS XCTL (transfer control)
command is used.

PROGRAM A

EXEC CICGS LINK ——l

-4
»PROGRAM B = PROGRAM C
EXEC CICS XCTL EXEC CICS RETURM

Figure 19. Control is returned to the next higher logical level.

48 CICS for iSeries Application Programming Guide V5

The EXEC CICS LINK command transfers control to the specified program (B) at a
new logical level. Program B could use the EXEC CICS RETURN command to
cause control to return to the calling program (A). This is similar to the use of an
ILE C dynamic program call.

The EXEC CICS XCTL command in Program B transfers control to Program C at
the same logical level. You cannot return control to the calling program (B) using
an EXEC CICS RETURN command or a host language statement. When Program C
completes, control returns to Program A.

In a CICS system, when control is transferred from an active program to an
external program, but the transferring program remains active and control can be
returned to it, the program to which control is transferred is called a subprogram.

Using C language calls

In an ILE C application, there are three types of call that can be made during run
time:

* Dynamic program calls

e Static procedure calls

* Procedure pointer calls

Dynamic program calls
A dynamic program call is a call made to a program object (*PGM). A call to an
ILE C program or an OPM program are all examples of dynamic program calls.

If you have an ILE C program calling a program (*PGM) use the #pragma linkage
(PGMNAME, OS) directive in your ILE Csource to tell the compiler that
PGMNAME is an external program, not a bound ILE procedure.

In contrast to static procedure calls, which are bound at compile time, symbols for
dynamic program calls are resolved to addresses when the call is performed. As a
result, a dynamic program call uses more system resources than a static procedure
call.

Calling procedures

ILE C programs are called by dynamic program calls, but the procedures within an
activated ILE C program can be accessed using static procedure calls or procedure
pointer calls. ILE C programs that have not been activated yet must be called by a
dynamic program call.

A call to an ILE procedure adds a new call stack entry to the bottom of the stack
and passes control to the specified procedure. Examples include any of the
following:

1. A call to a procedure in the same module

2. A call to a procedure in a different module in the same ILE program or service
program

3. A call to a procedure that has been exported from an ILE service program
For a static procedure call, the called procedure must be bound to the calling
procedure during binding. The call always accesses the same procedure. This
contrasts with a call to a procedure through a pointer, where the target of the call

can vary with each call.

The term procedure in ILE is equivalent to the term function in ILE C.

Chapter 4. Preparing and writing CICS applications in ILE C 49

ILE C allows arguments to be passed between procedures that are written in
different ILE high-level languages (HLLs). The calling function must make sure
that the arguments are the size and type expected by the called function.

Procedure pointer calls
Procedure pointer calls provide a way to call a procedure dynamically. For

example, by manipulating arrays, or tables, of procedure names or addresses, you
can dynamically route a procedure call to different procedures.

Procedure pointer calls add entries to the call stack in exactly the same manner as
static procedure calls. Any procedure that can be called using a static procedure
call can also be called through a procedure pointer. If the called procedure is in the
same activation group, the cost of a procedure pointer call is almost identical to the
cost of a static procedure call. Procedure pointer calls can additionally access
procedures in any ILE program that has been activated.

Note: Calls to bound procedures are not supported by the EXEC CICS LINK and
XCTL commands. You must use static procedure or procedure pointer calls
when calling bound procedures.

Rules governing calling CICS ILE C programs

Whether you use CICS commands or host language calls to call subprograms
depends on a number of factors including functionality, portability, and
performance. outlines some of the requirements and conventions that you
need to consider when choosing your implementation. This table defines
requirements when a ILE C program is called as a main transaction program
(called by CICS at logical level 1) or as a subprogram.

Table 4. Rules to be used with ILE C programs

Programming requirement

Main program

Subprogram called by
EXEC CICS LINK/XCTL

Subprogram called by
language call

Control is passed to the program entry point (PEP) of the

called program.

Install in control region REQUIRED REQUIRED OPTIONAL
Processing Program Table Transaction abends APCT if | If not defined, not found,
(PPT). not found or not or disabled, a PGMIDERR
authorized. condition is raised in the
calling program.
Translation REQUIRED OPTIONAL

If translated and compiled
with CRTCICSC
OBJTYPE(*MODULE), then
bound into an ILE *PGM or
*SRVPGM), may be called
using a static procedure
call.

Source code

Any ILE C function calls including precompiled EXEC SQL statements.

Parameters and shared data

No automatic addressability to CICS control areas.
Use EXEC CICS ADDRESS COMMAREA and

ADDRESS EIB.

When using language calls to call a translated CICS
COBOL/400 program, the calling program must supply
pointers to the EXEC Interface Block and the
COMMAREA as parameters as expected.

If translated, may receive
data passed by any of the
standard CICS methods
(COMMAREA, TCTUA, TS
queues).

50 CICS for iSeries Application Programming Guide V5

Table 4. Rules to be used with ILE C programs (continued)

Programming requirement

Main program

Subprogram called by
EXEC CICS LINK/XCTL

Subprogram called by
language call

Return control to the

Use EXEC CICS RETURN

Use exit() or return().

Use of EXEC CICS
RETURN may give
unpredictable results.

calling program Optionally, use exit() or return() from main(). Return
codes specified by exit() or return() are stored in
dfheiptr->eibresp2.

Declare program as int PGM(void).

Program activation Programs are activated according to the ACTGRP() attribute of the program as

assigned at bind time.

Applications ported from other members of the CICS
family normally require ACTGRP(*NEW) to ensure
equivalent activation rules. See [“Program activation.”|

Will normally be
ACTGRP(*CALLER).

Exception handling On entry to a new logical level, no abend handling is active. If an abend occurs while
no higher abend handling is active, CICS searches successively higher logical levels
(starting with the caller) and passes control to the program specified in the first active
HANDLE ABEND PROGRAM found. If no active HANDLE ABEND PROGRAM is
found, the transaction ends with that abend code.

Note: EXEC CICS HANDLE AID and HANDLE CONDITION commands are not

supported in CICS ILE C applications.

Program activation

Activation is the process of preparing a program or service program to run. It
includes allocating the data or static variables needed by the program. The
necessary storage space is allocated from an activation group.

There are rules which govern when an ILE program is activated and deactivated. A
program is activated the first time that it is called. A program may remain
activated even when it completes normally and is no longer active on the call
stack. On subsequent calls to an activated program, static storage will be in its
‘last-used” state and reinitialization of any items becomes the responsibility of the
programmer.

If a called program requires a new activation group - ACTGRP(*NEW) - or
specifies a named activation group which has not been specified on any program
previously activated in your OS/400 job, a new activation group will be started to
manage allocation of storage and other data management facilities for the program.
A program is only deactivated when its activation group ends.

The CICS/400 application developer can create ILE programs and service
programs with activation group attributes of *“NEW, *CALLER, or username. Use of
activation groups will determine the run-time semantics of the CICS application.
To provide equivalent semantics to those of other CICS platforms, you are
recommended to compile with ACTGRP(*NEW) all programs that are defined in
the PPT. This will ensure that static storage is in its first-use state on every call or
link to the program and that recursive or reentrant calls are supported.

If your application design does not require static storage to be initialized on every
call, you may use ACTGRP(*CALLER). This will result in improved performance.
If you do not require support for a recursive program link, but do require static
storage to be initialized on every LINK or XCTL to a program, you may specifiy
the ACTGRP(*CALLER) and ALWRINZ(*YES) options on the OS/400 CRTPGM
command. This use of the ALWRINZ option is peculiar to CICS/400 and allows
you to gain the performance benefits of ACTGRP(*CALLER) with the static storage

Chapter 4. Preparing and writing CICS applications in ILE C 51

reinitialization properties of standard CICS program activation after LINK or XCTL
commands. Static storage of a program created with ALWRINZ(*YES) is not
reinitialized if the program is invoked through a dynamic program call rather than
through the CICS program control commands. Recursive links to a program
compiled with ALWRINZ(*YES) may result in task abends or other unpredictable
results.

For further information on controlling the effects of activation groups, refer to the
ILE Concepts manual and the WebSphere Development Studio: ILE C/C++ Programmer’s
Guide.

[Figure 20 on page 53| shows logical levels, activation groups, and the effects of
using CICS commands and native C to transfer control between programs. The
dashed boxes marked A, B, C, and D show the scope of activation groups.

52 CICS for iSeries Application Programming Guide V5

LEVEL

a
| —_ e e e e e
: T 14
11 |
| U *PGM ACTGRP[*NEW) 11]V "PGM ACTGRP{*"NEW) I
| ul] . main(} 11 Vi miain() I
| exill }; — 11 |
I return ; —— T return ; ILE‘JEL
EXEC CICS RETURN 1
| 11 procel]) |
| linkage(M,03); V() ; H |
| - I . l
EXEC CICS LIHH—| axit]) ;
! = Wt !
M~y — =5 &0 o0 & & — .1 S — T
——— - — — — — — — — — — — — 1 l
B
= WPGM ACTGRP{UTMEW, —i X CPGM ACTGRP{CALLER) I
| main(X1 | main() |
I exill }; — I
retumn ; — return ;
I EXEC CICS RETURN I
| 3""-2| procwl]) |
| linkage(X,05); X {]; |
R
| EXEC CICS XCTL — exit)) ; —— | | |
| |
I— - e— e = e — — —_— e e e e e e e —— JLE‘u"EL
- — - T T———"""1 ¢
-l Y PG ACT GRP"MEW) Z "SRV ACTGRP{*"CALLER) |
| maing } Z1 procz1{} |
| I_' |
I proczi({)} return I
| exit) ; exit]) ; |
| return ; :‘ |
I EXEC CICS RETURN I
e e e ——— e — e e, e, eT/m/meYe—m—m———————m—/——— a ¥

Figure 20. Flow of control between ILE C programs and activation groups in CICS

Sample application programs

Disclaimer:

Chapter 4. Preparing and writing CICS applications in ILE C

The FILEA sample application contains programming source code for
your consideration. This sample has not been thoroughly tested under
all conditions. IBM, therefore, cannot guarantee or imply reliability,
servicability, performance or function of the programs. All programs
herein are provided to you “as is”. IBM EXPRESSLY DISCLAIMS ALL
WARRANTIES, INCLUDING THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

A set of sample application programs, called FILEA, is provided as an example of
how CICS commands can be used in a program written in the C language. All
FILEA objects are in the QCICSSAMP library.

If the ILE C compiler is installed on your system then you can modify the FILEA
sample programs. is a screen showing the members of file QCSRC that

contain the source for the FILEA application programs. Note that the TYPE of the
source members is CICSC.

4]] ™\
Work with Members Using PDM AS4001

File QCSRC
Library QCICSSAMP Position to

Type options, press Enter.
2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename
8=Display description 9=Save 13=Change text 14=Compile 15=Create module...

Opt Member Type Text
DFH$DALL CICSC FILEA Inquiry/Update program
DFH$DBRW CICSC FILEA Browse program
DFH$DCOM CICSC FILEA Order entry queue print program
DFH$DMNU CICSC FILEA Operator intruction program
DFH$DREN CICSC FILEA Order entry program
DFH$DREP CICSC FILEA Low balance report program
Bottom
Parameters or command
S==
F3=Exit F4=Prompt F5=Refresh F6=Create
F9=Retrieve F10=Command entry F23=More options F24=More keys
This is a subsetted Tist.
o J
Figure 21. Screen showing the members of file QCSRC containing the FILEA application

programs

[Figure 22 on page 55|is a screen showing the members of file QMAPSRC that
contain the source for the BMS maps used in the FILEA sample. Note that the
TYPE of the source members is CICSMAP.

54 CICS for iSeries Application Programming Guide V5

Work with Members Using PDM AS4001
File QMAPSRC
Library QCICSSAMP Position to

Type options, press Enter.
2=Edit 3=Copy 4=Delete 5=Display 6=Print 7=Rename
8=Display description 9=Save 13=Change text 14=Compile 15=Create module...

Opt Member Type Text
DFH$DGA CICSMAP Operator instruction map
DFH$DGB CICSMAP Record display/entry map
DFH$DGC CICSMAP Browse map
DFH$DGD CICSMAP Low balance report map
DFH$DGK CICSMAP Order entry map
DFH$DGL CICSMAP Order entry queue print map

Bottom
Parameters or command
===
F3=Exit F4=Prompt F5=Refresh F6=Create
F9=Retrieve F10=Command entry F23=More options F24=More keys
This is a subsetted Tist.
o %

Figure 22. Screen showing the members of file QUAPSRC containing FILEA sample maps

Data declarations used by the FILEA sample

* The data for each account for the FILEA sample is stored in a physical file,
FILEA, in the QCICSSAMP library. The record format for this file is declared to
the FILEA sample programs by including the header file DFHEDFIL.H. This
header file is member DFHEDFIL in file H in library QCICSSAMP.

* The FILEA sample uses the L860 transient data queue for order processing. The
data for each order is of a specific format and consists of several fields. This
format is declared to the FILEA sample programs by including the header file
DFH£DL86.H. This header file is member DFHEDLS6 in file H in library
QCICSSAMP.

The LOGA transient data queue also has an ILE C data structure associated with
it, however this is declared in the source of the sample programs and hence no
header file is required.

Defining resources for the FILEA sample

A sample program, CRTSAMP, is provided to simplify resource definition for the
FILEA sample. This program creates a CICS group, called FILEA, and other
necessary resources for a control region. You specify the name of the control region
and the library in which the resources are created as parameters for the program.
When the CICS resources have been defined, the control region is started.

To run the CRTSAMP program, enter:
CALL CRTSAMP Tibrary-name sys-id

where sys-id is the name of the sample control region to be created and
Tibrary-name is the library that the CICS resources are stored in. These are
required parameters. The source for CRTSAMP is in member CRTSAMP of file
QCLSRC in library QCICSSAMP.

Chapter 4. Preparing and writing CICS applications in ILE C 55

Running the FILEA sample
To run the FILEA sample:

1. Use CRTSAMP to create a control region and the CICS group, FILEA, that
defines all the CICS resources needed to run the FILEA sample.

2. Start a CICS user shell for the control region created in step 1.

When the user shell has started, enter the transaction identifier DMNU to start the
FILEA transaction.

The FILEA sample consists of six programs:
* The operator instruction sample program
* The browse sample program

¢ The inquiry and update sample program
* The low balance report sample program
e The order entry sample program

* The order entry queue print sample program

These samples are described in the following sections.

Operator instruction sample program

Program Transaction Identifiers BMS maps
DFH$DMNU DMNU DFH$DGA

The instruction program displays a map containing operator instructions. This map
lists some of the FILEA sample application programs and the transaction identifiers
that can be used to invoke them. To initiate the browse, add, update, or inquiry

programs, the appropriate transaction identifier must be entered on the menu map.

Browse sample program

Program Transaction Identifiers BMS maps

DFH$DBRW DBRW DFH$DGA, DFH$DGC

The browse program sequentially retrieves pages or sets of records for display,
starting at a point in the FILEA data file specified by the operator. To start a
browse, type the transaction identifier and the account number into the menu and
press the Enter key. If the account number is omitted, browsing begins at the start
of the file. Press the PF1 key, or type F and press the Enter key, to page forward
through the data. Press the PF2 key, or type B and press the Enter key, to page
backward through the data.

Inquiry and update sample program

Program Transaction Identifiers BMS maps
DFH$DALL DADD, DINQ, DUPD DFHDGA, DFHDGB

The inquiry and update sample program lets you make an inquiry about, add to,
or update records in a file. You can select one of these actions by entering the
appropriate transaction identifier in the operator instruction menu.

56 CICS for iSeries Application Programming Guide V5

To make an inquiry, enter the transaction identifier for the inquiry transaction, and
an account number into the menu. The program maps in the account number and
reads the record from the FILEA data file. The details of the requested record are
displayed on the screen.

To add a record, enter the transaction identifier and the account number into the
operator menu. A map is displayed with the title FILE ADD, the account number
and a set of empty data fields. Once data has been entered, the addition is written
to the FILEA data file and recorded on the LOGA transient data queue. The
operator menu is then displayed with the message RECORD ADDED.

To update a record, enter the relevant transaction identifier and the account
number into the menu. The program reads and displays the requested FILEA
record. Once entered, the updated record is rewritten to the FILEA data file and
the update is recorded on the LOGA transient data queue. The application then
returns to the operator menu with the message RECORD UPDATED.

Low balance report sample program

Program Transaction Identifiers BMS maps

DFH$DREP DREP DFH$DGD

The low balance report sample program produces a report that lists all records in
the FILEA data file for which the account balance is less than or equal to $50.00. To
run the report, enter the transaction identifier on the operator menu or on a clear
screen. If an account number is specified, it is ignored.

Order entry sample program

Program Transaction Identifiers BMS maps

DFH$DREN DORD DFH$DGK

The order-entry sample program provides a data entry facility for customer orders
for parts from a warehouse. Orders are recorded on a transient data queue that is
defined so as to start the order entry queue print transaction automatically when a
fixed number of orders have been accumulated. The queue print transaction sends
the orders to a printer terminal at the warehouse. To begin order entry, type the
transaction identifier on to a blank screen and press ENTER. The order entry
program displays a map on the screen requesting the operator to enter order
details. The customer number must be valid, that is, it must exist in the FILEA
data file. The order details are mapped in and checked; an invalid order is
redisplayed for correction. When valid, an order is written to the transient data
queue L860 and the order entry screen is redisplayed ready for the next order to
be entered. If CLEAR is pressed, the order entry program terminates. L860O, the
name of the transient data queue, is also the name of the terminal where the order
entry queue print transaction is to be triggered when the number of items on the
queue reaches 30. The trigger level may be changed using the CEMT command as
follows:

CEMT SET QUEUE(L860) TRIGGER(n)

where 7 is the destination trigger level.

Chapter 4. Preparing and writing CICS applications in ILE C 57

Order entry queue print sample program

Program Transaction Identifiers BMS maps

DFH$DCOM DORQ DFH$DGL

The order entry queue print sample program sends customer orders to a printer
terminal at the warehouse. This program reads the transient data queue written to
by the order entry sample program. The queue print transaction can be invoked in
one of three ways:

* You can type the transaction identifier on to a clear screen. The program finds
that the terminal identifier is not L860O and issues a START command to begin
printing in one hour. The message PROCESSING COMPLETE is displayed and
your terminal is available for other work.

* One hour after you enter this transaction identifier the queue print transaction is
automatically invoked by CICS interval control. In this case the terminal
identifier, specified by START, is L860 so the program prints the orders at the
warehouse.

* The queue print transaction is started when the number of items (customer
orders) on the transient data queue reaches 30. The trigger level is specified in
the destination control table (DCT) entry for L86O. In this case, the terminal
identifier is the same as the queue name (L860) and the program prints the
orders.

When invoked with a terminal identifier of L860, the program reads each order,
checks the customer’s credit, and either prints the order at the warehouse or writes
the rejected order to LOGA, the same transient data queue as used by the inquiry
and update FILEA sample program. When all orders have been processed, or if
there were no orders to process, the message ORDER QUEUE IS EMPTY is printed
at the warehouse.

58 CICS for iSeries Application Programming Guide V5

Part 2. Application design

Chapter 5. Designing efficient applications .
Program size and structure .
Choosing between pseudoconversatlonal and
conversational design . . .
General programming technlques .
Storage usage. .
Minimizing memory requlrements
Processor usage . .
Recovery design 1mp11cat10ns
Terminal interruptibility .
Summary of pseudoconversat10nal and
conversational design .
Using resources effectively
Processor storage
Processor time
Exclusive-use resources
Line transmission capacity
Other suggestions
Auxiliary trace .
Unnecessary commands .
Resource retention .

Data definition and manrpulatron con51derat10ns

Storing data within a transaction .
Transaction work area (TWA)
User storage .
COMMAREA in EXEC CICS LINK and EXEC
CICS XCTL commands
Program storage . .

Sharing data across transactlons
Common work area (CWA) .
TCTTE user area (TCTUA) .
COMMAREA in EXEC CICS RETURN
commands.
Display screen
Temporary storage . .
Intrapartition transient data .
Your own files

Data operations .
Emulating VSAM flles
Browsing files
Logging files .
Sequential file access

Terminal operations .
Data stream consrderatlons .
BMS considerations.

Avoid turning on modlfled data tags (MDTs)

unnecessarily .
Use FRSET to reduce 1nbound trafﬁc
Do not send blank fields to the screen

Use the MAPONLY option when possible .
Send only changed fields to an existing screen

Design data entry operations to reduce line
traffic . .
Compress data sent to the screen .

Use nulls instead of blanks .

© Copyright IBM Corp. 1998, 2004

. 61
. 61

. 61
. 63
. 63
. 63
. 64
. 64
. 66

. 66
. 66
. 66
. 67
. 67
. 67
. 67
. 67
. 68
. 68

68

. 68
. 69
. 69

.70
. 70
. 70
.71
.71

.72
.72
.73
.74
. 74
.75
.75
. 76
. 76
. 76
.77
.77
.77

.77
. 78
.78
.78

.79
.79
.79

Use methods that avoid the need for nulls or

blanks . . . 80
Sending messages to destrnatrons other than
the input terminal 80
Additional terminal control C0n51derat10ns . . 80
Use only one EXEC CICS SEND command per
screen . . 80
Use the EXEC CICS CONVERSE command . 80
Avoid using unnecessary transactions . 80
Send unformatted data without maps . 81
Performance considerations . . .81
CICS and multiprocessor AS/ 4005 .81
CICS SIT parameters . . 81
CICS internal trace (INTTRCCTL) and
auxiliary trace (AUXTRCCTL) . . 81
CICS files left open count and open timeout
(FILECTL). . . 81
CICS interval control processmg (ITVCTL) . 82
BMS map set suffixing (DEVCTL) . .82
COBOL application code . . .82
COBOL generation options . . 82
ILE C application code . 83
ILE C generation options . . 83
*DEBUG or *NODEBUG . . . 83
EXEC CICS LINK command or host language
call . .o . .83
Terminal communlcatlon . 84
BMS and terminal types . . 84
BMS DATAONLY option . . 84
Data stream compression . . 84
Chapter 6. Dealing with exception conditions . . 87
Programs in any supported language. . . 87
How to use the RESP and RESP2 options . 87
Example of coding and testing a RESP value 88
How to use the NOHANDLE option . . 90
COBOL programs only .91
How to use the EXEC CICS IGNORE
CONDITION command . .91
Passing control to a specified label .92
How to use the EXEC CICS HANDLE
CONDITION condition command . .92
How to use the EXEC CICS HANDLE
CONDITION ERROR command .94
Relying on the system default action . .95
How to use EXEC CICS PUSH HANDLE and
POP HANDLE commands . . 95
How to use an EXEC CICS HANDLE
CONDITION condition command . . .97
How CICS selects whether to take the system
default action. . 97
Mixing the methods . 98
How CICS keeps track of what to do .99
Chapter 7. Testing your application . . 101
Testing applications .o . 101
59

Screen usage, checks and considerations
Types of problems.

Levels of testing
Finding a problem in application code on a
production system.

Chapter 8. Recovery considerations .
CICS and OS/400 commitment control recovery
Defining recoverable files to CICS (an overview)
Syncpointing
User journaling.

Journal records.

Journal output synchronization

Chapter 9. Abnormal termination recovery.
Creating a program-level abend exit .
Restrictions on retrying operations
Trace .o
Trace entry points .
System trace entry points
User trace entry points
Dump .

60 CICS for iSeries Application Programming Guide V5

. 101
. 102
. 103
. 103

. 105

105
105

. 106
. 106
. 106
. 107

. 109
. 110
. 110
. 111
. 112
. 112
. 112
. 112

Chapter 5. Designing efficient applications

In this chapter, design changes are suggested that can improve performance and
efficiency without much change to the application program itself.

Program size and structure

The most efficient structure for a program is to have all the code in one program,
with no subprograms. This structure can mean that programs are difficult to
maintain. To overcome these potential problems, you might like to consider the
following guidelines on program structure.

For modestly sized blocks of code that are processed sequentially, inline code is
most efficient. The exceptions to this rule are blocks of code that are:

* Fairly long and used independently at several different points in the application

* Subject to frequent change (in which case, you balance the overhead of EXEC
CICS LINK or EXEC CICS XCTL commands with ease of maintenance)

* Infrequently used, such as error recovery logic and code to handle uncommon
data combinations

If you have a block of code that, for one of these reasons, has to be written as a
subroutine, the best way of dealing with this from a performance viewpoint is to
use a closed subroutine within the invoking program (for example, code that is
dealt with by a PERFORM command in COBOL). If it is needed by other
programs, it should be a separate program. A separate program can be invoked
using either an EXEC CICS LINK or XCTL command, or by a host language call.
Host language calls are more efficient than the EXEC CICS commands, but are
functionally different in areas such as working storage initialization. See either
“Calling programs from COBOL” on page 22| or [‘Calling programs and ILH
procedures from ILE C” on page 4§ for more information.

Choosing between pseudoconversational and conversational design

In a conversational transaction, the length of time spent in processing each of a
user’s responses is extremely short when compared to the amount of time waiting
for the input. A conversational transaction is one that involves more than one input
from the terminal, so that the transaction and the user enter into a conversation. A
nonconversational transaction has only one input (the one that causes the
transaction to be invoked). It processes that input, responds to the terminal, and
terminates.

Processor speeds are considerably faster than terminal transmission times, which,
in turn, are considerably faster than user response times. This is especially true if
users have to think about the entry or have to enter many characters of input.
Consequently, conversational transactions tie up storage and other resources for
much longer than nonconversational transactions.

A pseudoconversational transaction sequence contains a series of
nonconversational transactions that look to the user like a single conversational
transaction involving several screens of input. Each transaction in the sequence
handles one input, sends back the response, and terminates.

© Copyright IBM Corp. 1998, 2004 61

Before a pseudoconversational transaction terminates, it can pass data forward to
be used by the next transaction initiated from the same terminal, whenever that
transaction arrives. A pseudoconversational transaction can specify what the next
transaction is to be, and it does this by setting the transaction identifier of the
transaction that handles the next input. However, you should be aware that if
another transaction is started for that device, it may interrupt the
pseudoconversational chain you have designed.

No transaction exists for the terminal from the time a response is written until the
user sends the next input and CICS starts the next transaction to respond to it.
Information that would normally be stored in the program between inputs is
passed from one transaction in the sequence to the next using the COMMAREA or

one of the other facilities that CICS provides for this purpose. (See

lacross transactions” on page 70| for details.)

There are two major issues to consider in choosing between conversational and
pseudoconversational programming. The effect of the transaction on contention
resources, such as storage and processor usage. Storage is required for control
blocks, data areas, and programs that make up a transaction, and the processor is
required to start, process, and terminate tasks. Conversational programs have a
very high impact on storage, because they last so long, relative to the sum of the
transactions that would make up an equivalent pseudoconversational sequence.
However, there is less processor overhead, because only one transaction is initiated
instead of one for every input.

The second issue is the effect on exclusive-use resources, such as records in
recoverable files, recoverable transient data queues, enqueue items, and so on.
Again, a conversational transaction holds on to these resources for much longer
than the corresponding sequence of nonconversational transactions.

CICS ensures that changes to recoverable resources (such as files, transient data,
and temporary storage) made by a logical unit of work (LUW) are made
completely or not at all. An LUW is equivalent to a transaction, unless that
transaction issues EXEC CICS SYNCPOINT commands, in which case an LUW
lasts between syncpoints.

When a transaction makes a change to a recoverable resource, CICS makes that
resource unavailable to any other transaction that wants to change it until the
original transaction has completed. In the case of a conversational transaction, the
resources in question may be unavailable to other terminals for relatively long
periods.

For example, if one user tries to update a particular record in a recoverable data
set, and another user tries to do so before the first one finishes, the second user’s
transaction is suspended. This has advantages and disadvantages. You would not
want the second user to begin updating the record while the first user is changing
it, because one of them would be working from what is about to become an
obsolete version of the record, and these changes would erase the other user’s
changes. On the other hand, you also do not want the second user to experience
the long, unexplained wait that occurs when that transaction attempts to read for
update the record that is being changed.

If you use pseudoconversational transactions, however, the resources are only

briefly unavailable (that is, during the short component transactions). However,
unless all recoverable resources can be updated in just one of these transactions,

62 CICS for iSeries Application Programming Guide V5

recovery is impossible because LUWs cannot extend across transactions. So, if you
cannot isolate updates to recoverable resources in this way, you must use
conversational transactions.

The previous example poses a further problem for pseudoconversational
transactions. Although you could confine all updating to the final transaction of
the sequence, there is nothing to prevent a second user from beginning an update
transaction against the same record while the first user is still entering changes.
This means that you need additional application logic to ensure integrity. You can
use some form of enqueuing, or you can have the transaction compare the original
version of the record with the current version before actually applying the update.

There are factors other than performance overhead to consider when choosing
between pseudoconversational and conversational design for CICS applications.
The method you choose can affect how you write the application programs. You
may need extra CICS requests for pseudoconversations, particularly if you are
updating recoverable files. After you have done this, however, operational control
(performance monitoring, capacity planning, recovery, system shutdown, and
distributing system messages) may be much easier.

General programming techniques

Programming techniques can affect the performance and efficiency of the CICS
system.

Storage usage
A truly conversational CICS task is one that converses with the terminal user for

several or many interactions, by issuing a terminal read request after each write
(for example, using either an EXEC CICS SEND command followed by an EXEC
CICS RECEIVE command, or an EXEC CICS CONVERSE command). This means
that the task spends most of its extended life waiting for the next input from the
terminal user.

Any CICS task requires some storage throughout its life and, in a conversational
task, some of this storage is carried over the periods when the task is waiting for
terminal I/0O. The storage areas involved include the TCA and associated task
control blocks and the storage required for all programs that are in use when any
terminal read request is issued. Also included are the work areas (such as copies of
COBOL/400 working storage) associated with this task’s use of those programs.

With careful design, you can sometimes arrange for only one very small program
to be retained during the period of the conversation. The storage needed could be
shared by other users. You must multiply the rest of the virtual storage

requirement by the number of concurrent conversational sessions using that code.

By contrast, a pseudoconversational sequence of tasks requires almost all of its
storage only for the period actually spent processing message pairs. Typically, this
takes a period of 1-3 seconds in each minute (the rest being time waiting for
operator input). The overall requirement for multiple concurrent users is thus
perhaps five percent of that needed for conversational tasks. However, you should
allow for data areas that are passed from each task to the next. This may be a
COMMAREA of a few bytes or a large area of temporary storage.

Minimizing memory requirements

To improve performance, you should try to minimize the size of memory required.
You can do this by:

Chapter 5. Designing efficient applications 63

* Writing modular programs and structuring the modules according to frequency
and anticipated time of reference. Do not modularize merely for the sake of size;
consider duplicate code inline as opposed to subroutines or separate modules.

» Using separate subprograms whenever the flow of the program suggests that
execution will not be sequential.

* Not tying up memory awaiting a reply from a terminal user.

¢ Using command-level file control locate-mode input/output rather than
move-mode. Use of multiple temporary storage queues is restricted. programs,
using static storage for constant data.

* Avoiding the use of EXEC CICS LINK commands where possible, because they
generate requests for memory and require additional processor time.

* Specifying constants as literals in the procedure division, rather than as data
variables in the WORKING STORAGE SECTION. The reason for this is that
there is a separate copy of working storage for every task executing the
program, whereas literals are considered part of the program itself, of which
only one copy is used in CICS.

» Using static storage in ILE C for data that is genuinely constant, for the same
reason as in the point above. Static storage is the same between different
invocations of the same transaction and is shared between them.

* Reusing data areas in the program as much as possible. You can do this with
the REDEFINES clause in COBOL and the union clause in ILE C. In particular,
if you have a map set that uses only one map at a time, code the DFHMSD
map set definition without specifying either the STORAGE=AUTO or the
BASE operand. This allows the maps in the map set to redefine one another.
Refer to["DFHMSD” on page 555 for more information.

Refer to data directly by:
* Avoiding long searches for data in tables

* Using data structures that can be addressed directly, such as arrays, rather
than structures that must be searched, such as chain

* Avoiding methods that simulate indirect addressing
* Using binary or hash search algorithms

Processor usage

Pseudoconversational tasks require a new task to be created to process each
message-pair, and to be deleted when that task has finished. These may include
the cost of initializing a new work area for the program that is first entered. (In a
conversational task, this area is retained permanently, as already mentioned.)

There may also be extra processor overhead because of extra requests needed to
retrieve data passed from the previous task of the pseudoconversation, and
possibly to pass data to the next task.

Recovery design implications

The fundamental and powerful recovery facilities that CICS provides have
performance implications. CICS serializes updates to recoverable resources so that,
if a transaction fails, its changes to those resources can be backed out
independently of those made by any other transaction. Therefore, a transaction
updating a recoverable resource gets control of that resource until it terminates or
indicates with an EXEC CICS SYNCPOINT command that it wants to commit
those changes. Other transactions requiring the same resource for update must
wait until the first transaction finishes with it.

64 CICS for iSeries Application Programming Guide V5

The primary resources that produce these enqueue delays are files, databases,
temporary storage, and transient data queues. For transient data, the “read” end of
the queue is considered a separate resource from the “write” end (that is, one
transaction can read from a queue while another is writing to it, provided that the
records are committed).

To reduce transaction delays from contention for resource ownership, the length of
time between the claiming of the resource and its release (the end of the LUW)
should be minimized. In particular, conversational transactions should not own a
critical resource across a terminal read.

Note: Even for nonrecoverable files, CICS prevents two transactions from reading
the same record for update at the same time. This enqueue ends as soon as
the update is complete, rather than at the end of the LUW.

This protection scheme can also produce deadlocks as well as delays, unless
specific conventions are observed. If two transactions update more than one
recoverable resource, they must update the resources in the same order. If they
each update two files, for example, file “A” should be updated before file “B” in
all transactions. Similarly, if transactions update several records in a single file,
they should always do so in some predictable order (low key to high, or
conversely). Transient data and temporary storage must be included among such
resources.

Many applications require a succession of interactions with the user to get all the
data needed to create a file record. A conversational application might create a
partial order record and then update it in stages, as the terminal operator enters
items. If all the updates are to be committed and backed out together, this means
retaining the protective enqueues on records throughout the conversation until the
order is complete. You may need to protect both the current order being entered
and the stock records that have been decreased by the number of items ordered.
Thus, a whole series of enqueues could be carried forward through the
conversation for several minutes, and any other user making a conflicting request
might wait without warning until the end of the order. Lastly, if the conversation
went on to another order, presumably a CICS syncpoint would be taken to commit
the previous one.

In a pseudoconversational implementation, the above approach is not possible
because updates on one task are committed independently of any other. Therefore,
an order that must be complete “in one piece” must be created by just one task.
However many interactions it takes to get all the necessary input, the final task has
to be the one that creates the order. Data supplied earlier in the conversation must
be saved somewhere between transactions—usually in temporary storage on disk.
That is, you must incur extra overhead in I/O to TS while the order is built up.

If the operator is taking orders over the telephone, with no written backup
material on paper, then maybe the TS data itself should be made recoverable to
avoid the remote client having to dictate the order again later on.

To summarize the issue: recovery places separate design constraints on both

conversational and pseudoconversational implementations, but the performance
cost of the pseudoconversational approach is usually more acceptable.

Chapter 5. Designing efficient applications 65

Terminal interruptibility

When a conversational task is running, CICS allows nothing else to send messages
to that task’s terminal. This has advantages and disadvantages. The advantage is
that unexpected messages (for example, broadcasts) cannot interrupt the
user-machine dialogue and, worse, corrupt the formatted screen. The disadvantage
is that the end user cannot then be informed of important information, such as the
intention of the control operator to shut down CICS after 10 minutes. More
importantly, the unwitting failure of the end user to terminate the conversation
may in fact prevent or delay a normal CICS shutdown.

Pseudoconversational applications can allow messages to come through between
message pairs of a conversation. This means that notices like shutdown warnings
can be delivered. This might disturb the display screen contents, and can
sometimes interfere with transaction sequences controlled by the EXEC CICS
RETURN command with the TRANSID option. However, this can be prevented by
forcing the terminal into NOATI status during the middle of a linked sequence of
interactions (like building one order in the example above), or by judiciously
allowing space at the top or bottom of the screen for use by any message being
sent to the screen.

The main problem is that CICS shutdown could occur in mid sequence—in our
example, when an order is only partly built. This is because CICS cannot
distinguish between the last CICS task of a user transaction and any other. You can
guard against this by ensuring that users are warned of any intended shutdown
sufficiently far in advance, so they do not start work that they might not complete
in time.

Summary of pseudoconversational and conversational design

Conversational tasks may be easier to write, and may require less processor time,
but they have serious disadvantages in their need for more memory and in their
effect on the overall operability of the CICS systems containing them.

Using resources effectively

This section gives advice about designing application programs to minimize the
use of resources.

When you have decided which services you want an application to provide, you
need to consider what resources you must conserve while providing these services.
These are:

» Processor storage
* Processor time
* Exclusive-use resources (such as terminals, file records, and scratch-pad areas)

* Line transmission capacity

There will occasionally be conflict when trying to save one resource at the cost of
another. The appropriate compromises will vary from one application to the next.

Processor storage

Your applications use up processor storage in two ways. First, there are the CICS
control blocks associated with any transaction being processed. Second, there are
the programs being executed to run the transaction. The programs, in turn, take up
space both for executable code and for working storage areas. In an online system,

66 CICS for iSeries Application Programming Guide V5

the storage needs for these purposes fluctuate, existing at most for the duration of
a transaction. You should consider the following guidelines in your application
programs:

¢ Keep programs short.

* Keep working storage short.

* Keep programs short in duration of use.

* Keep GOTOs to a minimum.

* Avoid long searches for data.

* Place subroutines near the code that calls them.

Processor time

Calls for operating system services take much longer than straight application
code. This is true whether you are coding in CICS, where a call takes the form of a
CICS command, or a programming language, where a call is implicit in your
input-output statements (OPEN, READ, WRITE). Careful attention to CICS design
can reduce processor time much more than fine tuning your code. In a similar
manner you can also code a single input/output operation in a regular program.

Consider the following guidelines to use processor time effectively:
* Avoid unnecessary operating system services.
* Avoid excessively long calculations.

Exclusive-use resources

Some resources can be used by only one transaction at a time. An example of this
is a file record, which CICS allows only one transaction to update at any one time.
CICS does this by providing the enqueue mechanisms to prevent conflicts between
transactions over such resources. When one user has update access to such a
resource, everyone else who wants it has to wait. You should therefore minimize
the duration of transactions that require exclusive-use of resources. For a more
thorough discussion of enqueue, see [Chapter 19, “Task control,” on page 197

Line transmission capacity

In an online system with terminals located a long way from the processor, signals
carried over the network take time to reach their destination. Transmission time,
especially over a congested line, may be a major component of the total response
time.

To lessen the effect of this, you should avoid sending unnecessary data to and
from screens.

For the most part, CICS does this for you automatically, using the terminal
hardware features.

Other suggestions
Here are some other suggestions that can improve the performance of application

code.

Auxiliary trace

Use auxiliary trace to review your application programs. For example, it can show
up any obviously unnecessary code, such as a file browse from the beginning of a
file instead of by key, too many or too large EXEC CICS GETMAIN commands,

Chapter 5. Designing efficient applications 67

failure to release storage when it is no longer needed, unintentional logic loops,
and failure to unlock records held for exclusive control that are no longer needed.

Note: Any form of tracing incurs a significant performance overhead. Consider
carefully whether you really need TRACE in a production system.

Unnecessary commands

Avoid unnecessary commands. For example, an EXEC CICS ASKTIME command
may be unnecessary, because the start of transaction time in the EIB is adequate for
most purposes.

Resource retention

Be aware that file control EXEC CICS READ UPDATE and EXEC CICS DELETE
commands, and any activity on recoverable resources, imply a lock on the
resource. Ensure that tasks cannot be deadlocked because of crossed locks—insist
on a standard order that resources are acquired.

Where CICS recovery forces retention of resources to end-of-task (or to user
syncpoint), reduce resource retention by acquiring as late as possible. That is, issue
the EXEC CICS READ UPDATE command only after the completion of other work
such as editing and table lookups. Similarly, release resources quickly by one of the
following methods:

e Issue an EXEC CICS WRITE, an EXEC CICS REWRITE, an EXEC CICS DELETE
or an EXEC CICS RETURN command.

¢ Use the EXEC CICS UNLOCK command if the update will not be completed.

e Issue an EXEC CICS SYNCPOINT command as soon as the data can be
committed.

Data definition and manipulation considerations

Avoid browsing or updating too many records at one time.

Define data in its most readily usable form; that is, do not make array indexes in
zoned decimal format.

Avoid repeated conversion of data. If the converted form is needed several times,
use work fields to hold the data that has been converted.

Avoid repeated subscript references to the same source of data. It is better to
transfer the data once to a work field, and refer to it there.

Storing data within a transaction

CICS provides a variety of facilities for storing data within and between
transactions. Each one differs according to how available it leaves data to other
programs within a transaction and to other transactions; in the way it is
implemented; and in its overhead, recovery, and enqueuing characteristics.

Storage facilities that exist for the lifetime of a transaction include:
* Transaction work area (TWA)

* User storage (via an EXEC CICS GETMAIN command issued without the
SHARED option)

* COMMAREA
* Program storage

68 CICS for iSeries Application Programming Guide V5

All of these areas are main storage facilities and come from the same basic
source—CICS storage services. However, program storage is allocated by the
operating system. None of these storage areas is recoverable. They differ, however,
in accessibility and duration, and therefore each meets a different set of storage
needs.

Transaction work area (TWA)

The transaction work area (TWA) is allocated when a transaction is initiated. It
lasts for the entire duration of the transaction, and is accessible to all local
programs in the transaction. Any remote programs that are linked via a distributed
program link command do not have access to the TWA of the client transaction.
The size of the TWA is determined by the TWASIZE parameter in the
ADDCICSPCT CL command. If this is entered as TWASIZE=nnn, then the TWA is
always allocated, lasts for the entire duration of the transaction, and is accessible to
all of the programs in a transaction. See the CICS for iSeries Administration and
Operations Guide for more information about specifying the TWASIZE.

Processor overhead associated with using the TWA is minimal. You do not need an
EXEC CICS GETMAIN command to access it, and you address it using a single
EXEC CICS ADDRESS command.

The TWA is suitable for fairly small data storage requirements and for larger
requirements that are both relatively fixed in size and are used more or less for the
duration of the transaction. Because the TWA exists for the entire transaction, a
large TWA size has much greater effect for conversational than for
nonconversational transactions.

User storage

User storage is available to all the programs in a transaction, but some effort is
required to pass it between programs using EXEC CICS LINK or EXEC CICS
XCTL commands. Its size is not fixed, and it can be obtained (using EXEC CICS
GETMAIN commands) just when the transaction requires it and returned as soon
as it is not needed. Therefore, user storage is useful for large storage requirements
that are variable in size or are shorter-lived than the transaction.

The SHARED option of the EXEC CICS GETMAIN command causes the acquired
storage to be retained after the end of the task. The storage can be passed in the
communication area from one task to the next at the same terminal. The first task
returns the address of the communication area in the COMMAREA option of the
EXEC CICS RETURN command. The second task accesses the address in the
COMMAREA option of the EXEC CICS ADDRESS command. The second task
does not necessarily have to issue the EXEC CICS ADDRESS command to get the
address of the COMMAREA, since the COMMAREA address is automatically
passed to the next program in a pseudoconversational sequence.

The amount of processor overhead involved in an EXEC CICS GETMAIN
command means that you should not use it for a small amount of storage. You
should use the TWA for the smaller amounts or group them together into a larger
request. Although the storage acquired by an EXEC CICS GETMAIN command
may be held somewhat longer when using combined requests, the processor
overhead and the reference set size are both reduced.

Chapter 5. Designing efficient applications 69

COMMAREA in EXEC CICS LINK and EXEC CICS XCTL
commands

A communication area (COMMAREA) is used to transfer information between two
programs within a transaction or between two transactions from the same terminal.
For information about using COMMAREA between transactions, see
[“COMMAREA in EXEC CICS RETURN commands” on page 72|

Information in COMMAREA is available only to the two participating programs,
unless those programs take explicit steps to make the data available to other
programs that may be invoked later in the transaction. When one program links to
another, the COMMAREA may be any data area to which the linking program has
access. It is often in the working storage or LINKAGE SECTION of that program.
In this area, the linking program can both pass data to the program it is invoking
and receive results from that program. When one program transfers control (using
an EXEC CICS XCTL command) to another, CICS may copy the specified
COMMAREA into a new area of storage, because the invoking program and its
control blocks may no longer be available after it transfers control. In either case,
the address of the area is passed to the program that is receiving control, and the
CICS command-level interface sets up addressability. See [“Program controll
fcommands” on page 259|for further information.

Program storage

CICS creates a separate copy of the variable area of a CICS command-level
program for each transaction using the program. This area is known as program
storage. This area is called the WORKING-STORAGE SECTION in COBOL /400
and automatic storage in ILE C. Like the TWA, this area is of fixed size and is
allocated by CICS without you having to issue an EXEC CICS GETMAIN
command. Unlike the TWA, however, this storage lasts only while the program is
being run. This makes it useful for data areas that are not required outside the
program and that are either small or, if large, are fixed in size and are required for
all or most of the execution time of the program.

Sharing data across transactions

CICS facilities for sharing data across transactions include:
* Common work area (CWA)

* TCTTE user area (TCTUA)

¢ COMMAREA in EXEC CICS RETURN commands

* Display screen

e Temporary storage

* Intrapartition transient data

* Your own files

The last three items provide more flexibility and function than the other items in
the list, and therefore involve somewhat more overhead. You can also use any of
these methods within transactions.

With the exception of COMMAREA, the display screen, and the TCTUA, data

stored in these facilities is available to any transaction in the system. Subject to
resource-level security restrictions, any transaction may write to them and any
transaction may read them.

70 CICS for iSeries Application Programming Guide V5

Common work area (CWA)

The common work area (CWA) is a single control block that is allocated at system
startup time and exists for the duration of that CICS session. The size is fixed, as
specified in the WRKARASIZE parameter of the system initialization table. The
CWA has the following characteristics:

* There is almost no overhead in storing or retrieving data from the CWA.
Command-level programs must issue one EXEC CICS ADDRESS command to
get the address of the area but, after that, they can access it directly.

* Data in the CWA is not recovered if a transaction or the system fails.

* CICS does not regulate use of the CWA. All programs in all applications that use
the CWA must follow the same rules for shared use. These are usually set down
by the system programmers, in cooperation with application developers, and
require all programs to use the same “copy” module to describe the layout of
the area.

¢ The CWA is especially suitable for small amounts of data, such as status
information, that are read or updated frequently by multiple programs in an
application.

* The CWA is not suitable for large-volume or short-lived data because it is
always allocated.

You should ensure that data used in one transaction does not overlay data used in
another. Do not exceed the length of the CWA.

TCTTE user area (TCTUA)

The TCTTE user area (TCTUA) is defined using the USRARASIZE parameter on
the ADDCICSTCT CL command. Each entry in the TCT specifies whether the
TCTUA is present and, if so, how long it is.

TCTUAs have the following characteristics in common with the CWA:

* Minimal processor overhead (only one EXEC CICS ADDRESS command needed)
* No recovery

* No regulation of use by CICS

* Fixed length

* Unsuitability for large-volume or short-lived data

Unlike the CWA, however, the TCTUA for a particular terminal is shared only
among transactions using that terminal. It is therefore useful for storing small
amounts of data of fairly standard length between a series of transactions in a
pseudoconversational sequence. Another difference is that it is not necessarily
permanently allocated, because the TCTUA only exists while the TCTTE is set up.
For nonautoinstall terminals the TCTUA is allocated from system startup; for
autoinstall terminals the TCTUA is allocated when the TCTTE is generated.

Using the TCTUA in this way does not require special discipline among using
transactions, because data is always read by the transaction following the one that
wrote it. However, if you use TCTUAs to store longer-term data (for example,
terminal or operator information needed by an entire application), they require the
same care as the CWA to ensure that data used in one transaction does not overlay
data used in another. You should not exceed the length of the allocated TCTUA,
because this produces a storage violation.

Chapter 5. Designing efficient applications 71

COMMAREA in EXEC CICS RETURN commands

COMMAREA is used to pass information between application programs. The
pointer reference is set to the address of the communication area. If the
communication area does not exist, the length of the COMMAREA in the EIB,
EIBCALEN, is set to zero.

The COMMAREA option of the EXEC CICS RETURN command is designed
specifically for passing data between successive transactions in a
pseudoconversational sequence. It is implemented as a special form of user

storage, although the EXEC interface, rather than the application program,
manages COMMAREAs.

The COMMAREA is main storage allocated from the CICS nonshared user storage,
and is pointed to by a TCTTE, for instance, between tasks of a
pseudoconversational application. The COMMAREA is freed unless it is passed to
the next task.

To summarize:
¢ It is not recoverable.

* It is not suitable for large amounts of data (because main storage is used, and it
is held until the terminal user responds).

* As with using COMMAREA to transfer data between programes, it is available
only to the first program in a transaction, unless that program explicitly passes
the data or its address to succeeding programs.

Display screen

You can also store data between pseudoconversational transactions from a 3270 or
5250 display terminal on the display screen itself. For example, if users make errors
in data that they are asked to enter on a screen, the transaction processing the
input usually points out the errors on the screen (with highlights or messages), sets
the next transaction identifier to point to itself (so that it processes the corrected
input), and returns to CICS.

The transaction has two ways of using the valid data. It can save it (for example,
in COMMAREA), and pass it on for the next time it is run. In this case, the
transaction must merge the changed data on the screen with the data from
previous entries. Alternatively, it can save the data on the screen by not turning off
the modified data tags of the keyed fields.

Saving the data on the screen is easy to code, but has two limitations. Firstly, you
must not use it with screens that contain large amounts of data if the likelihood of
errors is high. This is because of the additional network traffic needed to resend
the unchanged data. It does not apply to locally attached terminals.

Secondly, if the user presses the CLEAR key, the screen data is lost, and the
transaction must be able to recover from this. You can avoid this by defining the
CLEAR key to mean CANCEL or QUIT, if this is appropriate for the application
concerned.

Data other than keyed data may also be stored on the screen. This data can be

protected from changes (except those caused by CLEAR) and can be nondisplay, if
necessary.

72 CICS for iSeries Application Programming Guide V5

Temporary storage

Temporary storage is the primary CICS facility for storing data that must be
available to multiple transactions.

Data items in temporary storage are kept in queues whose names are assigned
dynamically by the program storing the data. A temporary storage queue
containing multiple items can be thought of as a small file whose records can be
addressed either sequentially or directly, by item number. If a queue contains only
a single item, it can be thought of as a named scratch-pad area.

Temporary storage is implemented in two different ways. The one used for a
particular queue is determined by what is specified on the command that creates
the first item. Specifying the MAIN option means that the queue is kept in main
storage, in space taken from the shared storage area. The AUXILIARY option
means that the queue is written to a physical file. Whichever method you use,
CICS maintains an index of items in main storage.

Both these methods have characteristics that you should bear in mind:

* Main temporary storage requires much more internal storage than auxiliary. In
general, you should use it only for small queues that have short lifetimes or are
accessed frequently. Auxiliary temporary storage is specifically designed for
relatively large amounts of data that have a relatively long lifetime or are
accessed infrequently.

* You can make queues in auxiliary storage recoverable, but not queues in main
storage. Only one transaction at a time can update a recoverable temporary
storage queue. So, if you choose to make queues recoverable, bear in mind the
probability of enqueues.

* If a task tries to write to temporary storage and there is no space available, CICS
normally suspends the task. The task is not resumed until another task frees the
necessary space in storage or the auxiliary TS file. This can produce unexplained
response delays, especially if the waiting task owns exclusive-use resources, in
which case all other tasks needing those resources must also wait.

* It can be more efficient to use main temporary storage exclusively in
low-volume systems that have no need for recovery.

The following points apply to temporary storage in general:

* You must use an EXEC CICS command every time data is written to or read
from a temporary storage queue, and CICS must find or insert the data using its
internal index. This means that the overhead for using main temporary storage
is greater than for the CWA or TCTUA. With auxiliary storage there is usually
file I/O, which increases overhead even more.

* You need not allocate temporary storage until it is required; you need keep it
only as long as it is required, and the item size is not fixed until you issue the
command that creates it. This makes it a good choice for relatively high-volume
data and data that varies in length or duration.

* The fact that temporary storage queues can be named as they are created
provides a powerful form of direct access to saved data. You can access
scratch-pad areas for terminals, records, and so on, simply by including the
terminal name or record key in the queue name.

* Resource-level protection for auxiliary temporary storage queues is provided by
security authorization to physical files.

Chapter 5. Designing efficient applications 73

Intrapartition transient data

Intrapartition transient data has some characteristics in common with auxiliary
temporary storage. (See [“Sequential file access” on page 7§ for information about
extrapartition transient data.) Like temporary storage, intrapartition transient data
consists of queues of data, kept together in a single file, with an index that CICS
maintains in main storage.

You can use transient data for many of the purposes for which you would use
auxiliary temporary storage, but there are some important differences:

* Transient data queue names must be defined in the destination control table
(DCT) before CICS is started. You cannot define them arbitrarily at the time the
data is created. Thus, transient data does not have the same random access
characteristics as temporary storage.

* Transient data queues must be read sequentially. That is, after a transaction
reads an item, that item is removed from the queue and is not available to any
other transaction. In contrast, items in temporary storage queues may be read
either sequentially or directly (by item number). They can be read any number
of times and are not removed from the queue until the entire queue is purged.

These two characteristics make transient data inappropriate for scratch-pad data
but suitable for queued data such as audit trails and output to be printed. In
fact, for data that is read sequentially once, transient data is preferable to
temporary storage.

* Items in a temporary storage queue can be changed; items in transient data
queues cannot.

* Transient data queues are always written to a file. (There is no form of transient
data that corresponds to main temporary storage.)

* You can define transient data queues so that writing items to the queue causes a
specific transaction to be initiated (for example, to process the queue).
Temporary storage has nothing that corresponds to this “trigger” mechanism,
although you may be able to use an EXEC CICS START command to perform a
similar function.

* For recoverable transient data queues, uncommitted records can only be read by
a second task when the writing task has completed a logical unit of work. For
temporary storage queues, the writing task does not need to complete a logical
unit of work before another task can read the records written.

* Because the commands for intrapartition and extrapartition transient data are
identical, you can switch easily between the internal CICS facility (intrapartition)
and an external file, described in [“Sequential file access” on page 76) To do this,
you need only change the DCT, not your application programs. Temporary
storage has no corresponding function of this kind.

Your own files

You can also use your own files to save data between transactions. This method
probably has the largest overhead in terms of instructions processed, buffers,
control blocks, and user programming requirements, but does provide extra
functions and flexibility.

74 CICS for iSeries Application Programming Guide V5

Data operations

CICS supports:

Emulation of VSAM files
Browsing

Logging
Sequential data set access

Emulating VSAM files

The efficiency of database and file operations is an important factor in the
performance of any CICS system.

To minimize contention delays using VSAM emulated files:
* Minimize the time that they are reserved for exclusive use. The exclusive-use

enqueue is the way CICS and OS/400 prevent concurrent updates. It is held on
the record level. The AS/400® also holds a lock on the file level while the file is
opened. The hold for exclusive use ends when either the request is completed, at
the next syncpoint, or when the task has completed, depending on whether or
not the resource is recoverable. For nonrecoverable files, the exclusive use that
starts with an EXEC CICS READ UPDATE command ends when OS/400 data
management has completed the EXEC CICS REWRITE command. For
recoverable files, the CICS exclusive use ends at either a syncpoint or end of
task.

The table shows which requests require exclusive use and when that reservation
terminates.

Table 5. Requests that require exclusive use and when the reservation terminates

Command Released by

READ UPDATE REWRITE/DELETE/UNLOCK/
SYNCPOINT

WRITE MASSINSERT! Completion of WRITE

WRITE Completion of WRITE

DELETE RIDFLD Completion of DELETE

* Hold position in an emulated VSAM file for as short a time as possible. The
table shows which commands hold position and when the hold is released.

Table 6. Commands that hold position and when the hold is released

Command Released by

READ UPDATE REWRITE/DELETE/UNLOCK/
SYNCPOINT

WRITE MASSINSERT" Completion of WRITE

STARTBR ENDBR

'If a request is made to close a file (using SET " FILE), the file is not closed until
the task has terminated. For nonrecoverable files, EXEC CICS UNLOCK or EXEC
CICS SYNCPOINT commands also close the file. For recoverable files, only the
next EXEC CICS SYNCPOINT command also closes the file.

To minimize processor overhead in emulated VSAM files:

Chapter 5. Designing efficient applications 75

* Minimize the number of open files within a CICS shell. CICS opens files within
each CICS shell when they are first referred to. Open processing on the iSeries is
a relatively expensive operation in terms of processor resources and system
storage requirements. CICS attempts to optimize the open processing by keeping
files opened across task completion boundaries on the probability that a
subsequent task will access the same file. The programmer should be aware that
too many opened files may cause excessive demand of system storage and
increase page faults.

* Ideally, you would want CICS to have the files used by an application already
opened. However, if your users are executing a mixture of applications that
access a multitude of files, you can reduce the number of files that CICS keeps
open across tasks with the FILECTL system initialization parameter.

* Use skip-sequential processing if you are reading many nonadjacent records in
sequence. (Skip-sequential processing begins with an EXEC CICS STARTBR
command. Each record is retrieved with an EXEC CICS READNEXT command,
but the key feedback area pointed to by the RIDFLD option is supplied with the
key of the next requested record before the EXEC CICS READNEXT command is
issued.)

* Use the GENERIC option on the EXEC CICS DELETE command when deleting
a group of records in a KSDS whose keys start with a common character string.
CICS internally optimizes an EXEC CICS DELETE GENERIC command.

Browsing files

CICS provides the ability to browse emulated VSAM files in an optimized manner
that is very efficient. You should use the browse function when you are reading
records sequentially.

Logging files
Both CICS and OS/400 provide options to log activity using either CICS journal
control facilities or OS/400 journals against a file. Logging using CICS journal
control facilities enables you to use the logged file for postprocessing, or you may
want to log reads for security reasons. OS/400 journals are primarily used by
0S/400 commitment control during syncpoint processing, thus providing data
integrity for the file. You have to balance the need for postprocessing, security and
data integrity, against the overhead of user journaling.

Sequential file access

CICS provides a number of different sequential processing options. Temporar
storage and intrapartition transient data queues (already discussed in ["Temporary|
lstorage” on page 73 and in [‘Intrapartition transient data” on page 74) are the most
efficient to use, but they must be created and processed entirely within CICS. The
following methods apply to sequential files that must be processed externally to
CICS:

* Extrapartition transient data

* VSAM entry-sequenced files

* Journals

Extrapartition transient data is the CICS way of handling standard sequential files.
It is the least efficient of the three forms of sequential support listed, because CICS
has to synchronize access to the files. Moreover, extrapartition transient files are
not recoverable.

76 CICS for iSeries Application Programming Guide V5

Emulated VSAM ESDSs, on the other hand, are more efficient. CICS journals
provide another good alternative to extrapartition transient data, although
primarily for output files.

Journal records are written in a special format. Each record has a system prefix and
an optional user-built prefix, and record length is variable. Journals are opened for
output and many users can share one journal.

You can only use journals for output (online) while CICS is running. Reading
records from a journal is possible only offline by means of a batch job.

Terminal operations

There are some design factors, related to communicating with terminals, that may
affect performance.

Data stream considerations

Good screen design and effective use of display devices can significantly affect the
number of bytes transmitted on a network link. It is particularly important to keep
the number of bytes as small as possible because, in most cases, this is the slowest
part of the path a transaction takes. The efficiency of the data stream therefore
affects both response time and line usage.

BMS considerations

Basic Mapping Support (BMS) is discussed in detail in [Chapter 13, “CICS /400)
basic mapping support (BMS),” on page 141]

When building a formatted data stream with BMS, you should bear in mind, the
factors described in the following sections.

Avoid turning on modified data tags (MDTs) unnecessarily

The MDT is the bit in the attribute byte that determines whether a field should be
transmitted on a READ MODIFIED command (the command used by CICS for all
but copy operations).

The MDT for a field is normally turned on by the 5250 or 3270 hardware when the
user enters data into a field. However, you can also turn on the tag when you send
a map to the screen, either by specifying FSET in the map or by sending an
override attribute byte that has the tag on. You should never set the tag on in this
way for a field that is constant in the map, or for a field that has no label (and
therefore is not sent to the program that receives the map).

Also, you do not normally need to specify FSET for an ordinary input field. This is
because, as already mentioned, the MDT is turned on automatically in any field in
which the user enters data. The MDT is then received in the next EXEC CICS
RECEIVE MAP command. These tags remain on, no matter how many times the
screen is sent, until explicitly turned off by the program (by the FRSET,
ERASEAUP, or ERASE option, or by an override attribute with the tag off).

You can store information, between inputs, that the user did not enter on the
screen. This is an intended reason for turning the MDT on by a program. However,
this storage technique is appropriate only to small amounts of data, and is more
suitable for local than for remote terminals, because of the transmission overhead
involved. For example, this technique is particularly useful for storing default
values for input fields. In some applications, the user must complete a screen in

Chapter 5. Designing efficient applications 77

which some fields already contain default values. A user who does not want to
change a default just skips that field. The program processing the input has to be
informed what these defaults are. If they are always the same, they can be
supplied as constants in the program. If they are variable, however, and depend on
earlier inputs, you can simply save them on the screen by turning the MDT on
with FSET in the map that writes the screen. The program reading the screen then
receives the default value from a user who does not change the field and the new
value from a user who does.

Note: The saved values are not returned to the screen if the CLEAR, PA1, PA2, or
PA3 key is pressed.

Use FRSET to reduce inbound traffic

If you have a screen with many input fields, which you may have to read several
times, you can reduce the length of the input data stream by specifying FRSET
when you write back to the screen in preparation for the next read. FRSET turns
off the MDTs, so that fields entered before that write are not present unless the
user reenters them the next time. If you are dealing with a relatively full screen
and a process where there may be a number of error cycles (or repeat
transmissions for some other reason), this can be a substantial saving. However,
because only changed fields are sent on subsequent reads, the program must save
input from each cycle and merge the new data with the old. This is not necessary
if you are not using FRSET, because the MDTs remain on, and all fields are sent
regardless of when they were entered.

Do not send blank fields to the screen
Sending fields to the screen that consist entirely of blanks or that are filled out on

the right by trailing blanks usually wastes line capacity. The only case in which
BMS requires you to do this is when you need to erase a field on the screen that
currently contains data, or to replace it with data shorter than that currently on the
screen, without changing the rest of the screen.

This is because, when BMS builds the data stream representing your map, it
includes blanks (X'40') but omits nulls (X'00'). This makes the output data stream
shorter. BMS omits any field whose first data character is null, regardless of
subsequent characters in the field.

BMS requires you to initialize to nulls any area to be used to build a map. This is
done by moving nulls (X'00') to the mapnameO field in the symbolic map
structure. See [“Output map data structures” on page 153 BMS uses nulls in
attribute positions and in the first position of data to indicate that no change is to
be made to the value in the map. If you are reusing a map area in a program or in
a TIOA, you should take special care to clear it in this way.

Use the MAPONLY option when possible

The MAPONLY option sends only the constant data in a map, and does not merge
any variable data from the program. The resulting data stream is not always
shorter, but the operation has a shorter path length in BMS. When you send a
skeleton screen to be used for data entry, you can often use MAPONLY.

Send only changed fields to an existing screen

Sending only changed fields is important when, for example, a message is added
to the screen, or one or two fields on an input screen are highlighted to show
errors. In these situations, you should use the DATAONLY option to send a map
that consists of nulls except for the changed fields. For fields in which only the
attribute byte has changed, you need send only that byte, and send the remaining

78 CICS for iSeries Application Programming Guide V5

fields as nulls. BMS uses this input to build a data stream consisting of only the
fields in question, and all other fields on the screen remain unchanged.

For example, when a program that is checking an input screen for errors finds one,
there are two options. It can simply add the error information to the input map
(highlighted attributes, error messages, and so on) and resend it, or it can build an
entirely new screen, consisting of just the error and message fields. The former is
slightly easier to code (you do not need to have two map areas or move any
fields), but it may result in much longer transmissions because the output data
stream contains the correct input fields as well as the error and message fields. In
fact, it may even be longer than the original input stream because, if there were
empty or short fields in the input, BMS may have replaced the missing characters
with blanks or zeros.

For 5250 terminals, additional processing is required to support the DATAONLY
option. In a network of predominantly 5250 devices, you may want to avoid this
option.

With the 3270 hardware, if the input stream for a terminal exceeds 256 bytes, the
terminal control unit automatically breaks it up into separate transmissions of 256
bytes maximum. This means that a long input stream may require several physical
I/0 operations. Although this is not apparent to the application program, it does
cause additional line and processor overhead. The output stream is generally sent
in a single transmission.

Design data entry operations to reduce line traffic

Often, users are required to complete the same screen several times. Only the data
changes on each cycle; the titles, field labels, instructions, and so on remain
unchanged. In this situation, when an entry is accepted and processed, you can
respond with an EXEC CICS SEND CONTROL ERASEAUP command (or a map
that contains only a short confirmation message and specifies the ERASEAUP
option). This causes all of the unprotected fields on the screen (that is, all of the
input data from the last entry) to be erased and to have their MDTs reset. The
labels and other text, which are in protected fields, are unchanged, the screen is
ready for the next data-entry cycle, and only the necessary data has been sent.

Compress data sent to the screen

When you send unformatted data to the screen, or create a formatted screen
outside BMS, you can compress the data further by inserting set buffer address
(SBA) and repeat-to-address (RA) orders into the data stream. SBA allows you to
position data on the screen, and RA causes the character following it to be
generated from the current point in the buffer until a specified ending address.
SBA is useful whenever there are substantial unused areas on the screen that are
followed by data. RA is useful when there are long sequences of the same
character, such as blanks or dashes, on the screen. However, you should note that
the speed with which RA processes is not uniform across all display devices. You
should check how it applies to your configuration before using it.

Use nulls instead of blanks

You should note that, outside BMS, nulls have no special significance in an output
data stream. If you need a blank area on a screen, you can send either blanks or
nulls to it; they take up the same space in the output stream. However, if the blank
field is likely to be changed by the user and subsequently read, use nulls, because
they are not transmitted back.

Chapter 5. Designing efficient applications 79

Use methods that avoid the need for nulls or blanks

For any large area of a screen that needs to be blank, you should consider methods
other than transmitting blanks or nulls; for example, using BMS, putting SBA and
RA orders directly into the data stream, or using the ERASE and ERASEAUP
options.

Sending messages to destinations other than the input terminal
You have a choice of two other methods of delivering output to a terminal not

associated with the transaction.

1. You can use an EXEC CICS START command, with the TERMID option, to
specify the terminal to