
iSeries

 

WebSphere
®

 

Development

 

Studio

ILE

 

C/C++

 

Programmer’s

 

Guide

 

Version

 

5

 

SC09-2712-05

  

ERserver

 

���





iSeries

 

WebSphere
®

 

Development

 

Studio

ILE

 

C/C++

 

Programmer’s

 

Guide

 

Version

 

5

 

SC09-2712-05

  

ERserver

 

���



Note!

 

Before

 

using

 

this

 

information

 

and

 

the

 

product

 

it

 

supports,

 

be

 

sure

 

to

 

read

 

the

 

general

 

information

 

under

 

“Notices”

 

on

 

page

 

555.

Fifth

 

Edition

 

(April

 

2004)

 

This

 

edition

 

applies

 

to

 

Version

 

5,

 

Release

 

3,

 

Modification

 

0,

 

of

 

IBM

 

WebSphere®

 

Development

 

Studio

 

for

 

iSeries

 

(program

 

5722-WDS),

 

ILE

 

C/C++

 

compilers,

 

and

 

to

 

all

 

subsequent

 

releases

 

and

 

modifications

 

until

 

otherwise

 

indicated

 

in

 

new

 

editions.

 

Changes

 

or

 

additions

 

to

 

the

 

text

 

and

 

illustrations

 

are

 

indicated

 

by

 

a

 

vertical

 

line

 

to

 

the

 

left

 

of

 

the

 

change

 

or

 

addition.

 

Order

 

publications

 

through

 

your

 

IBM

 

representative

 

or

 

the

 

IBM

 

branch

 

office

 

serving

 

your

 

locality.

 

Publications

 

are

 

not

 

stocked

 

at

 

the

 

address

 

given

 

below.

 

IBM

 

welcomes

 

your

 

comments.

 

You

 

can

 

send

 

comments

 

to:

compinfo@ca.ibm.com

 

When

 

you

 

send

 

information

 

to

 

IBM,

 

you

 

grant

 

IBM

 

a

 

nonexclusive

 

right

 

to

 

use

 

or

 

distribute

 

the

 

information

 

in

 

any

 

way

 

it

 

believes

 

appropriate

 

without

 

incurring

 

any

 

obligation

 

to

 

you.

 

©

 

Copyright

 

International

 

Business

 

Machines

 

Corporation

 

1993,

 

2004.

 

All

 

rights

 

reserved.

 

US

 

Government

 

Users

 

Restricted

 

Rights

 

–

 

Use,

 

duplication

 

or

 

disclosure

 

restricted

 

by

 

GSA

 

ADP

 

Schedule

 

Contract

 

with

 

IBM

 

Corp.

 



Contents

 

About

 

This

 

Guide

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xi

 

Who

 

Should

 

Use

 

This

 

Guide

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xi

 

Prerequisite

 

and

 

Related

 

Information

  

.

 

.

 

.

 

.

 

.

 

. xi

 

Install

 

Licensed

 

Program

 

Information

  

.

 

.

 

.

 

.

 

. xii

 

Notes

 

About

 

Examples

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xii

 

Control

 

Language

 

Commands

 

and

 

the

 

Procedures

 

in

 

This

 

Guide

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xii

 

How

 

to

 

Send

 

Your

 

Comments

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xii

 

Figures

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xiii

 

Tables

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. xix

 

Part

 

1.

 

Introduction

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 1

 

Chapter

 

1.

 

Introduction

 

to

 

the

 

ILE

 

C/C++

 

Compiler

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 3

 

Multi-Language

 

Program

 

Creation

  

.

 

.

 

.

 

.

 

.

 

.

 

. 3

 

Programming

 

Languages

 

Supported

 

by

 

the

 

OS/400

 

Operating

 

System

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 3

 

ILE

 

Program

 

Creation

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 3

 

Binding

 

Directories

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 4

 

Service

 

Programs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 4

 

Program

 

and

 

Resource

 

Management

  

.

 

.

 

.

 

.

 

.

 

. 4

 

Program

 

Flow

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 4

 

Resource

 

Allocation

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 5

 

Bindable

 

APIs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 5

 

Run-Time

 

Exceptions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 5

 

Program

 

Debugging

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 6

 

Part

 

2.

 

Creating

 

and

 

Compiling

 

Programs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 7

 

Chapter

 

2.

 

Creating

 

a

 

Program

  

.

 

.

 

.

 

.

 

. 9

 

The

 

Program

 

Development

 

Process

  

.

 

.

 

.

 

.

 

.

 

.

 

. 9

 

Preparing

 

a

 

Program

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 9

 

Compiling

 

a

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 9

 

Binding

 

Modules

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 10

 

Running

 

or

 

Calling

 

Objects

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 10

 

Debugging

 

a

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 10

 

Entering

 

Source

 

Statements

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 10

 

Example

 

Of

 

Creating

 

a

 

Source

 

File

 

.

 

.

 

.

 

.

 

.

 

. 11

 

Instructions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 11

 

Source

 

Code

 

Sample

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 11

 

Creating

 

a

 

Program

 

in

 

One

 

Step

  

.

 

.

 

.

 

.

 

.

 

.

 

. 12

 

Creating

 

a

 

Program

 

in

 

Two

 

Steps

  

.

 

.

 

.

 

.

 

.

 

.

 

. 14

 

Identifying

 

Program

 

and

 

User

 

Entry

 

Procedures

 

14

 

Understanding

 

the

 

Internal

 

Structure

 

of

 

a

 

Program

 

Object

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 15

 

Using

 

Static

 

Procedure

 

Calls

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 15

 

Working

 

with

 

Binding

 

Directories

  

.

 

.

 

.

 

.

 

.

 

. 15

 

Creating

 

a

 

Binding

 

Directory

  

.

 

.

 

.

 

.

 

.

 

.

 

. 16

 

Using

 

the

 

Binder

 

to

 

Create

 

a

 

Program

  

.

 

.

 

.

 

. 16

 

Preparing

 

to

 

Create

 

a

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

. 16

 

Specifying

 

Parameters

 

for

 

the

 

CRTPGM

 

Command

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 17

 

How

 

Import

 

Requests

 

Are

 

Resolved

  

.

 

.

 

.

 

.

 

. 18

 

Using

 

a

 

Binder

 

Listing

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 18

 

Updating

 

a

 

Module

 

or

 

a

 

Program

 

Object

  

.

 

.

 

. 20

 

Updating

 

a

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 21

 

Activating

 

Groups

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 21

 

Messaging

 

Support

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 22

 

Chapter

 

3.

 

Service

 

Programs

  

.

 

.

 

.

 

.

 

. 23

 

Differences

 

Between

 

Programs

 

and

 

Service

 

Programs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 23

 

Public

 

Interface

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 23

 

Considerations

 

When

 

Creating

 

a

 

Service

 

Program

 

24

 

Using

 

the

 

Binder

 

to

 

Create

 

a

 

Service

 

Program

  

.

 

.

 

. 24

 

Specifying

 

Parameters

 

for

 

the

 

CRTSRVPGM

 

Command

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 24

 

Updating

 

or

 

Changing

 

a

 

Service

 

Program

  

.

 

.

 

. 25

 

Using

 

Control

 

Language

 

(CL)

 

Commands

 

with

 

Service

 

Programs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 25

 

Creating,

 

Compiling,

 

and

 

Binding

 

a

 

Service

 

Program

 

25

 

Creating

 

the

 

Source

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 26

 

Compiling

 

and

 

Binding

 

the

 

Service

 

Program

  

.

 

. 28

 

Binding

 

the

 

Service

 

Program

 

to

 

a

 

Program

  

.

 

.

 

. 28

 

Chapter

 

4.

 

Working

 

with

 

Exports

 

from

 

Service

 

Programs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 31

 

Determining

 

Exports

 

from

 

Service

 

Programs

  

.

 

.

 

. 31

 

Displaying

 

Exported

 

Defined

 

Symbols

 

with

 

the

 

Display

 

Module

 

Command

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 31

 

Creating

 

a

 

Binder

 

Language

 

Source

 

File

  

.

 

.

 

.

 

.

 

. 32

 

Creating

 

Binder

 

Language

 

Using

 

SEU

  

.

 

.

 

.

 

. 32

 

Creating

 

Binder

 

Language

 

Using

 

the

 

RTVBNDSRC

 

Command

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 33

 

Updating

 

a

 

Service

 

Program

 

Export

 

List

 

.

 

.

 

.

 

.

 

. 34

 

Using

 

the

 

Demangling

 

Functions

  

.

 

.

 

.

 

.

 

.

 

.

 

. 34

 

Handling

 

Unresolved

 

Import

 

Requests

 

During

 

Program

 

Creation

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 35

 

Creating

 

an

 

Export

 

Service

 

Program

 

Using

 

Binder

 

Language

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 36

 

Creating

 

a

 

Program

 

with

 

Circular

 

References

  

.

 

.

 

. 36

 

Creating

 

the

 

Source

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 37

 

Compiling

 

the

 

Source

 

Files

 

into

 

Modules

  

.

 

.

 

. 38

 

Generating

 

the

 

Binder

 

Language

 

to

 

Create

 

the

 

Service

 

Program

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 38

 

Binding

 

the

 

Modules

 

into

 

the

 

Program

  

.

 

.

 

.

 

. 39

 

Handling

 

Unresolved

 

Import

 

Requests

 

Using

 

the

 

*UNRSLVREF

 

Parameter

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 40

 

Handling

 

Unresolved

 

Import

 

Requests

 

by

 

Changing

 

Program

 

Creation

 

Order

  

.

 

.

 

.

 

.

 

. 40

 

Binding

 

a

 

Program

 

to

 

a

 

Non-Existent

 

Service

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 41

 

Instructions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 42

 

Code

 

Samples

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 42

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

iii



Running

 

the

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 42

 

Updating

 

a

 

Service

 

Program

 

Export

 

List

 

.

 

.

 

.

 

.

 

. 43

 

Program

 

Description

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 43

 

Creating

 

the

 

Source

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 44

 

Compiling

 

and

 

Binding

 

Programs

 

and

 

Service

 

Programs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 46

 

Running

 

the

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 47

 

Chapter

 

5.

 

Running

 

a

 

Program

  

.

 

.

 

.

 

. 49

 

The

 

ILE

 

C/C++

 

Run-Time

 

Model

  

.

 

.

 

.

 

.

 

.

 

.

 

. 49

 

Activations

 

and

 

Activation

 

Groups

  

.

 

.

 

.

 

.

 

.

 

. 50

 

Run-Time

 

Library

 

Functions

 

and

 

Activation

 

Groups

 

51

 

Calling

 

Programs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 52

 

Using

 

the

 

Call

 

(CALL)

 

Command

  

.

 

.

 

.

 

.

 

.

 

. 52

 

Using

 

the

 

Transfer

 

Control

 

(TFRCTL)

 

Command

 

55

 

Creating

 

a

 

CL

 

Command

 

to

 

Run

 

a

 

Program

  

.

 

. 56

 

Normal

 

and

 

Abnormal

 

End-of-Program

  

.

 

.

 

.

 

.

 

. 58

 

Managing

 

Activation

 

Groups

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 59

 

Specifying

 

an

 

Activation

 

Group

 

.

 

.

 

.

 

.

 

.

 

.

 

. 59

 

Presence

 

of

 

a

 

Program

 

on

 

the

 

Call

 

Stack

 

.

 

.

 

.

 

. 62

 

Deleting

 

an

 

Activation

 

Group

  

.

 

.

 

.

 

.

 

.

 

.

 

. 63

 

Reclaiming

 

System

 

Resources

  

.

 

.

 

.

 

.

 

.

 

.

 

. 63

 

Managing

 

Run-Time

 

Storage

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 64

 

Managing

 

the

 

Default

 

Heap

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 64

 

Chapter

 

6.

 

Improving

 

Run-Time

 

Performance

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 67

 

Choosing

 

Data

 

Types

 

to

 

Improve

 

Performance

 

.

 

.

 

. 67

 

Avoiding

 

Use

 

of

 

the

 

Volatile

 

Qualifier

  

.

 

.

 

.

 

. 67

 

Replacing

 

Bit

 

Fields

 

with

 

Other

 

Data

 

Types

 

.

 

.

 

. 68

 

Minimizing

 

the

 

Use

 

of

 

Static

 

and

 

Global

 

Variables

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 68

 

Using

 

the

 

Register

 

Storage

 

Class

  

.

 

.

 

.

 

.

 

.

 

. 68

 

Creating

 

Classes

 

to

 

Improve

 

Performance

  

.

 

.

 

.

 

. 68

 

Enabling

 

Performance

 

Measurement

  

.

 

.

 

.

 

.

 

.

 

. 68

 

Using

 

a

 

Compiler

 

Option

 

to

 

Enable

 

Performance

 

Measurement

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 68

 

Minimizing

 

Exception

 

Handling

  

.

 

.

 

.

 

.

 

.

 

.

 

. 69

 

Turning

 

on

 

Return

 

Codes

 

during

 

Record

 

I/O

  

.

 

. 69

 

Turning

 

Off

 

C2M

 

Messages

 

during

 

Record

 

Input

 

and

 

Output

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 69

 

Using

 

a

 

Direct

 

Monitor

 

Handler

  

.

 

.

 

.

 

.

 

.

 

. 70

 

Minimizing

 

Percolation

 

of

 

Exceptions

 

.

 

.

 

.

 

.

 

. 70

 

Reducing

 

the

 

Number

 

of

 

Function

 

Calls

 

and

 

Arguments

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 72

 

Inlining

 

Function

 

Calls

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 72

 

Using

 

Static

 

Class

 

Member

 

Functions

 

or

 

Global

 

Variables

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 72

 

Passing

 

Arguments

 

in

 

Registers

  

.

 

.

 

.

 

.

 

.

 

. 73

 

Using

 

Prototypes

 

to

 

Minimize

 

Function

 

Call

 

Processing

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 73

 

Choosing

 

Input

 

and

 

Output

 

Functions

 

to

 

Improve

 

Performance

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 73

 

Using

 

Record

 

Input

 

and

 

Output

 

Functions

  

.

 

.

 

. 74

 

ISO

 

C

 

Record

 

I/O

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 74

 

ILE

 

C

 

Record

 

I/O

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 74

 

Using

 

Input

 

and

 

Output

 

Feedback

 

Information

 

75

 

Blocking

 

Records

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 75

 

Manipulating

 

the

 

System

 

Buffer

  

.

 

.

 

.

 

.

 

.

 

. 76

 

Opening

 

Files

 

Once

 

for

 

Both

 

Input

 

and

 

Output

 

76

 

Minimizing

 

the

 

Use

 

of

 

Shared

 

Files

  

.

 

.

 

.

 

.

 

. 77

 

Minimizing

 

the

 

Number

 

of

 

File

 

Opens

 

and

 

Closes

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 77

 

Defining

 

Tape

 

Files

 

to

 

Improve

 

Performance

  

.

 

. 77

 

Improving

 

Performance

 

when

 

Using

 

Stream

 

Input

 

and

 

Output

 

Functions

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 77

 

Using

 

C++

 

Input

 

and

 

Output

 

Stream

 

Classes

  

.

 

. 78

 

Using

 

Physical

 

Files

 

Instead

 

of

 

Source

 

Physical

 

Files

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 78

 

Specifying

 

Library

 

Names

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 78

 

Using

 

Pointers

 

to

 

Improve

 

Performance

  

.

 

.

 

.

 

.

 

. 78

 

Avoiding

 

Use

 

of

 

Open

 

Pointers

 

.

 

.

 

.

 

.

 

.

 

.

 

. 78

 

Avoiding

 

Pointer

 

Comparisons

  

.

 

.

 

.

 

.

 

.

 

.

 

. 78

 

Reducing

 

Indirect

 

Access

 

through

 

Pointers

  

.

 

.

 

. 81

 

Using

 

Shallow

 

Copy

 

instead

 

of

 

Deep

 

Copy

 

.

 

.

 

.

 

. 82

 

Minimizing

 

Space

 

Requirements

  

.

 

.

 

.

 

.

 

.

 

.

 

. 82

 

Choosing

 

Appropriate

 

Data

 

Types

 

.

 

.

 

.

 

.

 

.

 

. 82

 

Minimizing

 

Dynamic

 

Memory

 

Allocation

 

Calls

 

82

 

Arranging

 

Variables

 

to

 

Reduce

 

Padding

  

.

 

.

 

.

 

. 83

 

Removing

 

Observability

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 85

 

Compressing

 

Objects

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 85

 

Optimizing

 

Use

 

of

 

Activation

 

Groups

  

.

 

.

 

.

 

.

 

. 85

 

Calling

 

Functions

 

in

 

Other

 

Activation

 

Groups

  

.

 

. 85

 

Reducing

 

Program

 

Startup

 

Time

  

.

 

.

 

.

 

.

 

.

 

. 86

 

Minimizing

 

Use

 

of

 

Virtual

 

Functions

  

.

 

.

 

.

 

.

 

.

 

. 86

 

Choosing

 

Compiler

 

Options

 

to

 

Optimize

 

for

 

Speed

 

or

 

Size

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 86

 

Setting

 

Run-Time

 

Limits

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 87

 

Chapter

 

7.

 

Example:

 

Creating

 

an

 

ILE

 

C

 

Application

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 89

 

Process

 

Flow

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 89

 

ILE

 

Activation

 

Group

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 91

 

Resource

 

Requirements

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 92

 

Task

 

Summary

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 92

 

Instructions

 

to

 

Create

 

the

 

Sample

 

Application

  

.

 

.

 

. 93

 

Source

 

Code

 

Samples

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 96

 

Source

 

Code

 

for

 

an

 

Audit

 

Log

 

File

 

.

 

.

 

.

 

.

 

.

 

. 96

 

Source

 

Code

 

Pass

 

Terminal

 

Session

 

Input

 

to

 

an

 

ILE

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 97

 

Source

 

Code

 

to

 

Define

 

a

 

CL

 

Command

 

to

 

Collect

 

Session

 

Data

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 97

 

Source

 

Code

 

for

 

a

 

User

 

Entry

 

Procedure

 

(UEP)

 

98

 

Source

 

Code

 

to

 

Calculate

 

Tax

 

and

 

Format

 

Cost

 

for

 

Output

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 100

 

Source

 

Code

 

to

 

Write

 

an

 

Audit

 

Trail

 

.

 

.

 

.

 

.

 

. 102

 

Source

 

Code

 

to

 

Export

 

Tax

 

Rate

 

Data

  

.

 

.

 

.

 

. 103

 

Binder

 

Language

 

to

 

Export

 

Tax

 

Rate

 

Data

  

.

 

.

 

. 104

 

Binder

 

Language

 

to

 

Export

 

the

 

write-audit-trail

 

Procedure

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 104

 

Part

 

3.

 

Debugging

 

Programs

  

.

 

.

 

. 105

 

Chapter

 

8.

 

The

 

ILE

 

Source

 

Debugger

 

107

 

Debug

 

Data

 

Options

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 107

 

Debug

 

Language

 

Syntax

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 107

 

Limitations

 

of

 

the

 

Debug

 

Language

 

Syntax

  

.

 

.

 

. 107

 

Debug

 

Commands

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 108

 

Examples

 

of

 

Using

 

Debug

 

Expressions

 

in

 

ILE

 

C

 

Programs

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 110

   

iv

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Examples

 

of

 

Program

 

Definitions

 

and

 

Corresponding

 

Debug

 

Expressions

  

.

 

.

 

.

 

.

 

. 110

 

Examples

 

of

 

Displaying

 

System

 

and

 

Space

 

Pointers

 

in

 

the

 

ILE

 

Source

 

Debugger

  

.

 

.

 

.

 

. 119

 

Chapter

 

9.

 

Preparing

 

a

 

Program

 

for

 

Debugging

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 123

 

Setting

 

Up

 

a

 

Test

 

Library

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 123

 

Creating

 

a

 

Listing

 

View

 

for

 

Debugging

 

.

 

.

 

.

 

.

 

. 123

 

Chapter

 

10.

 

Working

 

with

 

Source

 

Debug

 

Sessions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 125

 

Starting

 

a

 

Source

 

Debug

 

Session

  

.

 

.

 

.

 

.

 

.

 

.

 

. 125

 

Adding

 

and

 

Removing

 

Programs

 

from

 

a

 

Debug

 

Session

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 128

 

Setting

 

or

 

Changing

 

Debug

 

Options

 

During

 

a

 

Session

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 129

 

Example:

 

Adding

 

an

 

OPM

 

Program

 

to

 

an

 

ILE

 

Debug

 

Session

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 129

 

Example:

 

Setting

 

Debug

 

Options

 

during

 

a

 

Debug

 

Session

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 129

 

Viewing

 

the

 

Program

 

Source

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 130

 

Displaying

 

Other

 

Modules

 

in

 

Your

 

Program

  

.

 

. 130

 

Displaying

 

a

 

Different

 

View

 

Of

 

a

 

Module

  

.

 

.

 

. 131

 

Chapter

 

11.

 

Using

 

Breakpoints

 

to

 

Aid

 

Debugging

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 133

 

Types

 

Of

 

Breakpoints

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 133

 

Job

 

and

 

Thread

 

Breakpoints

  

.

 

.

 

.

 

.

 

.

 

.

 

. 133

 

Conditional

 

and

 

Unconditional

 

Breakpoints

  

.

 

. 133

 

Setting

 

Breakpoints

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 133

 

Setting

 

Unconditional

 

Breakpoints

 

from

 

the

 

Display

 

Module

 

Source

 

Display

  

.

 

.

 

.

 

.

 

.

 

. 134

 

Setting

 

Unconditional

 

Breakpoints

 

from

 

the

 

Command

 

Line

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 135

 

Setting

 

Conditional

 

Breakpoints

 

for

 

a

 

Macro

  

.

 

. 135

 

Setting

 

Conditional

 

Breakpoints

 

for

 

a

 

Statement

 

136

 

Setting

 

Conditional

 

Thread

 

Breakpoints

  

.

 

.

 

.

 

. 136

 

Setting

 

a

 

Conditional

 

Thread

 

Breakpoint

 

from

 

the

 

Work

 

with

 

Module

 

Breakpoints

 

Display

  

.

 

. 136

 

Setting

 

a

 

Conditional

 

Thread

 

Breakpoint

 

from

 

the

 

Command

 

Line

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 136

 

Testing

 

Breakpoints

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 137

 

Removing

 

All

 

Breakpoints

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 137

 

Chapter

 

12.

 

Using

 

Watches

 

to

 

Aid

 

Debugging

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 139

 

Characteristics

 

and

 

Limitations

 

Of

 

Watches

  

.

 

.

 

. 139

 

Setting

 

and

 

Removing

 

Watch

 

Conditions

  

.

 

.

 

.

 

. 140

 

Setting

 

watch

 

conditions

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 140

 

Using

 

the

 

WATCH

 

Debug

 

Command

  

.

 

.

 

.

 

. 140

 

Removing

 

Watch

 

Conditions

  

.

 

.

 

.

 

.

 

.

 

.

 

. 142

 

Automatic

 

Removal

 

Of

 

Watch

 

Conditions

  

.

 

.

 

. 142

 

Example

 

Of

 

Setting

 

a

 

Watch

 

Condition

  

.

 

.

 

.

 

.

 

. 142

 

Displaying

 

Active

 

Watches

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 144

 

Chapter

 

13.

 

Stepping

 

Through

 

Programs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 145

 

Stepping

 

Over

 

Programs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 145

 

Using

 

F10

 

to

 

Step

 

Over

 

Programs

  

.

 

.

 

.

 

.

 

. 145

 

Using

 

the

 

STEP

 

OVER

 

Debug

 

Command

  

.

 

.

 

. 145

 

Stepping

 

into

 

Programs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 145

 

Using

 

F22

 

to

 

Step

 

into

 

Programs

  

.

 

.

 

.

 

.

 

.

 

. 145

 

Using

 

the

 

STEP

 

INTO

 

Debug

 

Command

  

.

 

.

 

. 146

 

Stepping

 

into

 

Called

 

Programs

  

.

 

.

 

.

 

.

 

.

 

. 146

 

Example

 

of

 

Stepping

 

into

 

a

 

Program

 

Using

 

F22

 

146

 

Stepping

 

into

 

an

 

OPM

 

Program

  

.

 

.

 

.

 

.

 

.

 

. 148

 

Stepping

 

Over

 

Procedures

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 148

 

Stepping

 

into

 

Procedures

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 149

 

Chapter

 

14.

 

Debugging

 

Variables

  

.

 

.

 

. 151

 

Displaying

 

the

 

Value

 

Of

 

a

 

Variable

  

.

 

.

 

.

 

.

 

.

 

. 151

 

Using

 

F11

 

to

 

Display

 

Variables

  

.

 

.

 

.

 

.

 

.

 

. 151

 

Changing

 

the

 

Value

 

of

 

a

 

Variable

 

.

 

.

 

.

 

.

 

.

 

.

 

. 152

 

Changing

 

the

 

Value

 

of

 

a

 

Scalar

 

Variable

  

.

 

.

 

.

 

. 153

 

Equating

 

a

 

Name

 

with

 

a

 

Variable,

 

Expression,

 

or

 

Debug

 

Command

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 154

 

Displaying

 

a

 

Structure

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 155

 

Displaying

 

Variables

 

As

 

Hexadecimal

 

Values

 

155

 

Displaying

 

Null-Ended

 

Character

 

Arrays

  

.

 

.

 

. 156

 

Displaying

 

Character

 

Arrays

  

.

 

.

 

.

 

.

 

.

 

.

 

. 158

 

Sample

 

EVAL

 

Commands

 

for

 

Pointers,

 

Variables,

 

and

 

Bit

 

Fields

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 159

 

EVAL

 

Commands

 

for

 

System

 

and

 

Space

 

Pointers

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 161

 

Source

 

for

 

Sample

 

EVAL

 

Commands

  

.

 

.

 

.

 

.

 

. 163

 

Source

 

for

 

Sample

 

EVAL

 

Commands

 

for

 

Displaying

 

System

 

and

 

Space

 

Pointers

  

.

 

.

 

.

 

.

 

. 165

 

Source

 

for

 

Sample

 

EVAL

 

Commands

 

for

 

Displaying

 

C++

 

Constructs

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 167

 

Chapter

 

15.

 

Changing

 

Module

 

Optimization

 

and

 

Observability

 

.

 

.

 

.

 

. 171

 

Changing

 

Optimization

 

Levels

  

.

 

.

 

.

 

.

 

.

 

.

 

. 171

 

Removing

 

Module

 

Observability

  

.

 

.

 

.

 

.

 

.

 

.

 

. 173

 

Part

 

4.

 

Performing

 

I/O

 

Operations

 

175

 

Chapter

 

16.

 

Using

 

ILE

 

C/C++

 

Stream

 

and

 

Record

 

I/O

 

Functions

 

with

 

iSeries

 

Data

 

Management

 

files

  

.

 

.

 

.

 

.

 

.

 

.

 

. 177

 

ILE

 

C

 

Record

 

I/O

 

Functions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 177

 

Stream

 

Buffering

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 177

 

Dynamic

 

Stream

 

File

 

Creation

 

.

 

.

 

.

 

.

 

.

 

.

 

. 178

 

Open

 

Modes

 

for

 

Dynamically

 

Created

 

Stream

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 178

 

Standard

 

I/O

 

Text

 

Stream

 

Files

 

(<stdio.h>)

  

.

 

. 179

 

iSeries

 

Data

 

Management

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

. 179

 

iSeries

 

Data

 

Management

 

File

 

Types

 

.

 

.

 

.

 

.

 

. 180

 

Data

 

Management

 

Stream

 

Files

 

and

 

ILE

 

C

 

I/O

 

Operations

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 180

 

iSeries

 

Data

 

Management

 

File

 

Naming

 

Conventions

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 181

 

File

 

Control

 

Structure

 

of

 

Text

 

Streams

 

and

 

Binary

 

Streams

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 182

 

I/O

 

Processes

 

for

 

Text

 

Stream

 

Files

  

.

 

.

 

.

 

.

 

.

 

. 183

 

Opening

 

Text

 

Stream

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 183

 

Writing

 

Text

 

Stream

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 185

   

Contents

 

v



Reading

 

Text

 

Stream

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 186

 

Updating

 

Text

 

Stream

 

Files

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 187

 

I/O

 

Process

 

for

 

Binary

 

Stream

 

Files

  

.

 

.

 

.

 

.

 

.

 

. 187

 

Opening

 

Binary

 

Stream

 

Files

 

(character

 

at

 

a

 

time)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 187

 

Writing

 

Binary

 

Stream

 

Files

 

(character

 

at

 

a

 

time)

 

189

 

Reading

 

Binary

 

Stream

 

Files

 

(character

 

at

 

a

 

time)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 190

 

Updating

 

Binary

 

Stream

 

Files

 

(character

 

at

 

a

 

time)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 191

 

Opening

 

Binary

 

Stream

 

Files

 

(record

 

at

 

a

 

time)

 

193

 

Writing

 

Binary

 

Stream

 

Files

 

(record

 

at

 

a

 

time)

 

194

 

Reading

 

Binary

 

Stream

 

Files

 

(record

 

at

 

a

 

time)

 

195

 

Open

 

Feedback

 

Area

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 196

 

I/O

 

Feedback

 

Area

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 196

 

Using

 

Session

 

Manager

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 196

 

Obtaining

 

the

 

Session

 

Handle

  

.

 

.

 

.

 

.

 

.

 

.

 

. 197

 

Using

 

Session

 

Manager

 

APIs

  

.

 

.

 

.

 

.

 

.

 

.

 

. 197

 

Example:

 

Using

 

an

 

ILE

 

Bindable

 

API

 

to

 

Display

 

a

 

DSM

 

Session

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 197

 

Chapter

 

17.

 

Using

 

ILE

 

C/C++

 

Stream

 

Functions

 

with

 

the

 

iSeries

 

Integrated

 

File

 

System

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 201

 

The

 

Integrated

 

File

 

System

 

(IFS)

  

.

 

.

 

.

 

.

 

.

 

.

 

. 201

 

root(/)

 

File

 

System

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 202

 

Open

 

Systems

 

(QOpenSys)

 

File

 

System

 

.

 

.

 

.

 

. 203

 

Library

 

(QSYS.LIB)

 

File

 

System

  

.

 

.

 

.

 

.

 

.

 

. 203

 

Document

 

Library

 

Services

 

(QDLS)

 

File

 

System

 

204

 

LAN

 

Server/400

 

(QLANSrv)

 

File

 

System

  

.

 

.

 

. 204

 

Optical

 

Support

 

(QOPT)

 

File

 

System

  

.

 

.

 

.

 

. 205

 

File

 

Server

 

(QFileSvr.400)

 

File

 

System

  

.

 

.

 

.

 

. 206

 

Enabling

 

Integrated

 

File

 

System

 

Stream

 

I/O

  

.

 

.

 

. 207

 

Using

 

Stream

 

I/O

 

with

 

Large

 

Files

  

.

 

.

 

.

 

.

 

. 207

 

Stream

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 207

 

Stream

 

Files

 

Versus

 

Database

 

Files

  

.

 

.

 

.

 

.

 

.

 

. 208

 

Text

 

Streams

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 209

 

Binary

 

Streams

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 209

 

Opening

 

Text

 

Stream

 

and

 

Binary

 

Stream

 

Files

  

.

 

. 210

 

Storing

 

Data

 

as

 

a

 

Text

 

Stream

 

or

 

as

 

a

 

Binary

 

Stream

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 210

 

Using

 

the

 

Integrated

 

File

 

System

 

(IFS)

  

.

 

.

 

.

 

.

 

. 211

 

Copying

 

Source

 

Files

 

into

 

the

 

IFS

 

.

 

.

 

.

 

.

 

.

 

. 212

 

Editing

 

Stream

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 212

 

The

 

SRCSTMF

 

Parameter

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 212

 

Header

 

File

 

Search

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 212

 

Preprocessor

 

Output

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 218

 

Listing

 

Output

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 218

 

Code

 

Pages

 

and

 

CCSIDs

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 219

 

Pitfalls

 

to

 

Avoid

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 219

 

Examples

 

of

 

Using

 

Integrated

 

File

 

System

 

Source

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 220

 

Using

 

Stream

 

I/O

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 220

 

Part

 

5.

 

Working

 

with

 

iSeries

 

File

 

Systems

 

and

 

Devices

 

.

 

.

 

.

 

.

 

.

 

.

 

. 223

 

Chapter

 

18.

 

Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program

  

.

 

.

 

.

 

. 225

 

Creating

 

Externally

 

Described

 

Database

 

Files

 

.

 

.

 

. 225

 

Creating

 

Type

 

Definitions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 226

 

Creating

 

Header

 

Descriptions

  

.

 

.

 

.

 

.

 

.

 

.

 

. 226

 

Specifying

 

the

 

Record

 

Format

 

Name

 

.

 

.

 

.

 

.

 

. 227

 

Specifying

 

Record

 

Field

 

Names

  

.

 

.

 

.

 

.

 

.

 

. 228

 

Including

 

Database

 

Files

 

in

 

the

 

Type

 

Definition

 

228

 

Defining

 

the

 

Structure

 

Type

 

(KEY

 

Field)

  

.

 

.

 

. 228

 

Using

 

Long

 

Names

 

for

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

. 231

 

Level

 

Checking

 

to

 

Verify

 

Descriptions

  

.

 

.

 

.

 

.

 

. 232

 

Using

 

the

 

GENCSRC

 

Utility

 

for

 

Level

 

Checking

 

233

 

Using

 

the

 

#pragma

 

mapinc

 

Directive

 

for

 

Level

 

Checking

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 235

 

Avoiding

 

Field

 

Alignment

 

Problems

 

in

 

C/C++

 

Structures

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 237

 

Including

 

External

 

Field

 

Definitions

 

in

 

a

 

Program

 

237

 

The

 

INPUT

 

Option

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 238

 

The

 

OUTPUT

 

Option

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 238

 

The

 

BOTH

 

Option

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 238

 

Defining

 

and

 

Using

 

Indicators

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 240

 

Creation

 

of

 

Indicators

 

in

 

the

 

File

 

Buffer

 

.

 

.

 

.

 

. 240

 

Creating

 

a

 

Separate

 

Indicator

 

Area

  

.

 

.

 

.

 

.

 

. 240

 

Including

 

Physical

 

and

 

Logical

 

Database

 

Files

 

in

 

a

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 242

 

Including

 

Device

 

Files

 

in

 

a

 

Program

 

.

 

.

 

.

 

.

 

.

 

. 243

 

Including

 

Externally

 

Described

 

Multiple

 

Record

 

Formats

 

in

 

a

 

Logical

 

File

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 243

 

Using

 

Externally

 

Described

 

Packed

 

Decimal

 

Data

 

in

 

a

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 246

 

Chapter

 

19.

 

Using

 

Database

 

Files

 

and

 

Distributed

 

Data

 

Management

 

Files

 

in

 

a

 

Program

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 249

 

Database

 

Files

 

and

 

Distributed

 

Data

 

Management

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 249

 

Physical

 

Files

 

and

 

Logical

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

. 249

 

Describing

 

Records

 

in

 

Database

 

Files

  

.

 

.

 

.

 

. 250

 

Data

 

Files

 

and

 

Source

 

Files

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 250

 

Access

 

Paths

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 250

 

Arranging

 

Key

 

Fields

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 251

 

Duplicate

 

Key

 

Values

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 251

 

Deleted

 

Records

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 252

 

Locking

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 252

 

Sharing

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 252

 

Null-Capable

 

Fields

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 253

 

Opening

 

Database

 

and

 

DDM

 

Files

 

as

 

Record

 

Files

 

254

 

Record

 

Functions

 

for

 

Database

 

and

 

DDM

 

Files

 

254

 

I/O

 

Considerations

 

for

 

DDM

 

Files

  

.

 

.

 

.

 

.

 

. 255

 

Opening

 

Database

 

and

 

DDM

 

Files

 

as

 

Binary

 

Stream

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 255

 

I/O

 

Considerations

 

for

 

Binary

 

Stream

 

Database

 

and

 

DDM

 

Files

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 255

 

Binary

 

Stream

 

Functions

 

for

 

Database

 

and

 

DDM

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 255

 

Processing

 

a

 

Database

 

Record

 

File

 

in

 

Arrival

 

Sequence

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 256

 

Instructions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 256

 

Source

 

Code

 

Sample

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 256

 

Processing

 

a

 

Database

 

Record

 

File

 

in

 

Keyed

 

Sequence

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 257

   

vi

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Processing

 

a

 

Database

 

Record

 

File

 

Using

 

Record

 

Input

 

and

 

Output

 

Functions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 259

 

Synchronizing

 

Database

 

File

 

Changes

 

in

 

a

 

Single

 

Job

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 262

 

Blocking

 

Records

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 267

 

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 269

 

Using

 

OS/400

 

Feedback

 

Areas

 

for

 

all

 

Device

 

Files

 

269

 

Using

 

Indicators

 

to

 

Transfer

 

Information

  

.

 

.

 

.

 

. 269

 

Types

 

of

 

Indicators

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 269

 

Separate

 

Indicator

 

Areas

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 270

 

Major

 

and

 

Minor

 

Return

 

Codes

  

.

 

.

 

.

 

.

 

.

 

. 270

 

Example:

 

Returning

 

Indicators

 

to

 

a

 

Separate

 

Indicator

 

Area

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 270

 

Example:

 

Returning

 

Indicators

 

to

 

the

 

File

 

Buffer

 

272

 

Establishing

 

the

 

Default

 

Program

 

Device

  

.

 

.

 

.

 

. 274

 

Changing

 

the

 

Default

 

Program

 

Device

  

.

 

.

 

.

 

.

 

. 276

 

Obtaining

 

Feedback

 

Information

  

.

 

.

 

.

 

.

 

.

 

.

 

. 279

 

Using

 

Display

 

Files

 

and

 

Subfiles

  

.

 

.

 

.

 

.

 

.

 

.

 

. 281

 

Display

 

Files

 

and

 

Subfiles

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 281

 

Using

 

Subfiles

 

to

 

Minimize

 

I/O

 

Operations

  

.

 

. 282

 

Opening

 

Display

 

Files

 

and

 

Subfiles

 

as

 

Binary

 

Stream

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 284

 

Opening

 

Display

 

Files

 

as

 

Record

 

Files

  

.

 

.

 

.

 

. 285

 

Using

 

Intersystem

 

Communication

 

Function

 

Files

 

287

 

I/O

 

Considerations

 

for

 

Intersystem

 

Communication

 

Function

 

Files

  

.

 

.

 

.

 

.

 

.

 

. 287

 

Opening

 

ICF

 

Files

 

as

 

Binary

 

Stream

 

Files

  

.

 

.

 

. 287

 

I/O

 

Considerations

 

for

 

Binary

 

Stream

 

ICF

 

Files

 

287

 

Binary

 

Stream

 

Functions

 

for

 

ICF

 

Files

  

.

 

.

 

.

 

. 288

 

Opening

 

ICF

 

Files

 

as

 

Record

 

Files

  

.

 

.

 

.

 

.

 

. 288

 

I/O

 

Considerations

 

for

 

Record

 

ICF

 

Files

  

.

 

.

 

. 288

 

Record

 

Functions

 

for

 

ICF

 

Files

 

.

 

.

 

.

 

.

 

.

 

.

 

. 289

 

Using

 

Printer

 

Files

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 294

 

I/O

 

Considerations

 

for

 

Printer

 

Files

  

.

 

.

 

.

 

.

 

. 295

 

Opening

 

Printer

 

Files

 

as

 

Binary

 

Stream

 

Files

  

.

 

. 295

 

Opening

 

Printer

 

Files

 

as

 

Record

 

Files

  

.

 

.

 

.

 

. 295

 

Record

 

Functions

 

for

 

Printer

 

Files

  

.

 

.

 

.

 

.

 

. 295

 

Writing

 

to

 

a

 

Tape

 

File

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 298

 

I/O

 

Considerations

 

for

 

Tape

 

Files

  

.

 

.

 

.

 

.

 

. 298

 

Opening

 

Tape

 

Files

 

as

 

Binary

 

Stream

 

Files

 

.

 

.

 

. 298

 

Binary

 

Stream

 

Functions

 

for

 

Tape

 

Files

  

.

 

.

 

.

 

. 299

 

Opening

 

Tape

 

Files

 

as

 

Record

 

Files

  

.

 

.

 

.

 

.

 

. 299

 

Record

 

Functions

 

for

 

Tape

 

Files

  

.

 

.

 

.

 

.

 

.

 

. 300

 

Writing

 

to

 

a

 

Diskette

 

File

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 302

 

I/O

 

Considerations

 

for

 

Diskette

 

Files

  

.

 

.

 

.

 

. 302

 

Opening

 

Diskette

 

Files

 

as

 

Binary

 

Stream

 

Files

 

302

 

Binary

 

Stream

 

Functions

 

for

 

Diskette

 

Files

 

.

 

.

 

. 303

 

Opening

 

Diskette

 

Files

 

as

 

Record

 

Files

  

.

 

.

 

.

 

. 303

 

Record

 

Functions

 

for

 

Diskette

 

Files

  

.

 

.

 

.

 

.

 

. 303

 

Using

 

Save

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 306

 

I/O

 

Considerations

 

for

 

Save

 

Files

  

.

 

.

 

.

 

.

 

. 306

 

Opening

 

Save

 

Files

 

as

 

Binary

 

Stream

 

Files

 

.

 

.

 

. 306

 

I/O

 

Considerations

 

for

 

Binary

 

Stream

 

Save

 

Files

 

306

 

Binary

 

Stream

 

Functions

 

for

 

Save

 

Files

  

.

 

.

 

.

 

. 306

 

Opening

 

Save

 

Files

 

as

 

Record

 

Files

  

.

 

.

 

.

 

.

 

. 306

 

I/O

 

Considerations

 

for

 

Record

 

Save

 

Files

  

.

 

.

 

. 307

 

Record

 

Functions

 

for

 

Save

 

Files

  

.

 

.

 

.

 

.

 

.

 

. 307

 

Part

 

6.

 

Working

 

with

 

iSeries

 

Features

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 309

 

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 311

 

ILE

 

Language-Specific

 

Error

 

Handling

  

.

 

.

 

.

 

.

 

. 311

 

Exception

 

Messages

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 312

 

How

 

the

 

System

 

Processes

 

Exceptions

  

.

 

.

 

.

 

.

 

. 312

 

How

 

the

 

Call

 

Message

 

Queue

 

Handles

 

ILE

 

Procedures

 

and

 

Functions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 312

 

How

 

Control

 

Boundaries

 

Affect

 

Exception

 

Handling

 

in

 

ILE

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 313

 

Unmonitored

 

Exceptions

 

and

 

Unhandled

 

Exceptions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 313

 

Nested

 

Exceptions

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 314

 

Detecting

 

Stream

 

File

 

and

 

Record

 

File

 

Errors

  

.

 

.

 

. 315

 

Checking

 

the

 

Return

 

Value

 

of

 

a

 

Function

  

.

 

.

 

. 315

 

Checking

 

the

 

Errno

 

Value

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 315

 

Checking

 

the

 

Major/Minor

 

Return

 

Code

  

.

 

.

 

. 316

 

Checking

 

the

 

System

 

Exceptions

 

for

 

Record

 

Files

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 316

 

Checking

 

the

 

Global

 

Variable

 

_EXCP_MSGID

 

317

 

Using

 

ILE

 

Exception

 

Handlers

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 318

 

Types

 

of

 

Exception

 

Handlers

  

.

 

.

 

.

 

.

 

.

 

.

 

. 318

 

Using

 

ILE

 

Direct

 

Monitor

 

Handlers

  

.

 

.

 

.

 

.

 

. 318

 

Using

 

ILE

 

Condition

 

Handlers

  

.

 

.

 

.

 

.

 

.

 

. 328

 

Using

 

the

 

C/C++

 

Signal

 

Handler

 

.

 

.

 

.

 

.

 

.

 

.

 

. 337

 

When

 

to

 

Use

 

the

 

Signal

 

Handler

  

.

 

.

 

.

 

.

 

.

 

. 337

 

Raising

 

Signals

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 338

 

Signal

 

Handling

 

Function

 

Prototypes

  

.

 

.

 

.

 

. 338

 

How

 

the

 

ILE

 

C/C++

 

Run-Time

 

Environment

 

Handles

 

Signals

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 339

 

Resetting

 

the

 

Signal

 

Action

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 339

 

Stacking

 

Signal

 

Handlers

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 340

 

Example:

 

Setting

 

Up

 

a

 

Signal

 

Handler

  

.

 

.

 

.

 

. 340

 

Using

 

Both

 

C/C++

 

Signal

 

and

 

ILE

 

Exception

 

Handlers

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 344

 

Order

 

of

 

Priority

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 344

 

Example

 

of

 

Using

 

a

 

Direct

 

Monitor

 

Handler

 

and

 

Signal

 

Handler

 

Together

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 344

 

Handling

 

Nested

 

Exceptions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 345

 

Using

 

Cancel

 

Handlers

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 346

 

Example:

 

Using

 

a

 

Variety

 

of

 

Ways

 

to

 

Detect

 

Errors

 

and

 

Handle

 

Exceptions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 349

 

Instructions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 349

 

Source

 

Code

 

Samples

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 349

 

Chapter

 

22.

 

Using

 

OS/400

 

pointers

 

in

 

a

 

Program

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 353

 

OS/400

 

pointer

 

Types

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 353

 

Using

 

Open

 

Pointers

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 354

 

Using

 

Pointers

 

Other

 

than

 

Open

 

Pointers

  

.

 

.

 

.

 

. 354

 

Declaring

 

Pointer

 

Variables

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 355

 

Declaring

 

OS/400

 

pointer

 

Variables

 

in

 

C

 

and

 

C++

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 355

 

Declaring

 

a

 

Function

 

Pointer

 

to

 

a

 

Bound

 

Procedure

 

in

 

ILE

 

C

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 355

 

Declaring

 

a

 

Function

 

Pointer

 

with

 

OS-Linkage

 

in

 

ILE

 

C

 

and

 

ILE

 

C++

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 356

   

Contents

 

vii



Casting

 

Pointers

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 357

 

Example:

 

Passing

 

OS/400

 

pointers

 

as

 

Arguments

 

on

 

a

 

Dynamic

 

Program

 

Call

 

to

 

Another

 

ILE

 

C

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 359

 

Instructions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 359

 

Source

 

Code

 

Samples

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 359

 

Chapter

 

23.

 

Using

 

ILE

 

C/C++

 

Call

 

Conventions

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 363

 

Program

 

and

 

Procedure

 

Calls

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 363

 

Using

 

Dynamic

 

Program

 

Calls

 

.

 

.

 

.

 

.

 

.

 

.

 

. 363

 

How

 

the

 

ILE

 

Call

 

Stack

 

Is

 

Used

 

to

 

Control

 

Program

 

Flow

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 364

 

Renaming

 

Programs

 

and

 

Procedures

  

.

 

.

 

.

 

.

 

. 364

 

Calling

 

Programs

 

that

 

Have

 

Library

 

Qualification

 

365

 

Calling

 

C++

 

Programs

 

and

 

Procedures

 

from

 

ILE

 

C

 

367

 

Specifying

 

the

 

Linkage

 

Convention

  

.

 

.

 

.

 

.

 

. 368

 

Example:

 

An

 

ILE

 

C

 

Program

 

that

 

Uses

 

C++

 

Objects

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 368

 

Accessing

 

C++

 

Classes

 

from

 

ILE

 

C

  

.

 

.

 

.

 

.

 

.

 

. 372

 

Mapping

 

a

 

C++

 

Class

 

to

 

a

 

C

 

Structure

  

.

 

.

 

.

 

. 372

 

Example:

 

An

 

ILE

 

C

 

Program

 

that

 

Uses

 

C++

 

Objects

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 373

 

Chapter

 

24.

 

Porting

 

Programs

 

from

 

Another

 

Platform

 

to

 

ILE

  

.

 

.

 

.

 

.

 

.

 

.

 

. 379

 

Limitations

 

to

 

Porting

 

Code

 

to

 

ILE

 

C

 

or

 

C++

 

.

 

.

 

. 379

 

File

 

Inclusions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 379

 

Platform-Specific

 

Extensions

  

.

 

.

 

.

 

.

 

.

 

.

 

. 379

 

Members

 

of

 

a

 

Union

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 379

 

Members

 

of

 

a

 

Structure

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 379

 

Decimal

 

Constants

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 380

 

Decimal

 

Constants

 

and

 

Case

 

Statements

  

.

 

.

 

. 380

 

Library

 

QSYS.LIB

 

under

 

IFS

  

.

 

.

 

.

 

.

 

.

 

.

 

. 380

 

Teraspace

 

Considerations

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 381

 

Modifying

 

Calls

 

of

 

ILE

 

C++

 

Objects

 

.

 

.

 

.

 

.

 

.

 

. 381

 

Differences

 

in

 

Header

 

Files

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 381

 

Differences

 

in

 

Linkage

 

Specification

  

.

 

.

 

.

 

.

 

. 381

 

Differences

 

in

 

Function

 

Definitions

  

.

 

.

 

.

 

.

 

. 382

 

Using

 

BCD

 

Macros

 

to

 

Port

 

Coded

 

Decimal

 

Objects

 

to

 

ILE

 

C++

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 383

 

Examples

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 383

 

Mapping

 

Class

 

Template

 

Instantiations

 

to

 

ILE

 

C

 

Syntax

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 384

 

Handling

 

Extra

 

Precision

 

for

 

Multiplication

 

and

 

Division

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 384

 

Determining

 

the

 

Number

 

of

 

Digits

 

in

 

an

 

Object

 

384

 

Determining

 

the

 

Number

 

of

 

Digits

 

in

 

an

 

Internal

 

Packed

 

Decimal

 

Data

 

Object

  

.

 

.

 

.

 

. 385

 

Formatting

 

the

 

Value

 

of

 

a

 

Formatted

 

C

 

Input

 

or

 

Output

 

Function

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 386

 

Porting

 

Conditional

 

Operators

 

to

 

ILE

 

C

 

or

 

C++

 

387

 

Porting

 

ILE

 

C

 

Packed

 

Decimal

 

Data

 

Types

 

to

 

the

 

_DecimalT

 

Class

 

Template

 

.

 

.

 

.

 

.

 

.

 

.

 

. 388

 

Differences

 

in

 

Using

 

Packed

 

Structures

  

.

 

.

 

.

 

. 389

 

Differences

 

in

 

Error

 

Checking

  

.

 

.

 

.

 

.

 

.

 

.

 

. 390

 

Header

 

Files

 

that

 

Work

 

with

 

Both

 

C

 

and

 

C++

  

.

 

. 391

 

Using

 

Dual

 

Function

 

Prototypes

  

.

 

.

 

.

 

.

 

.

 

. 391

 

Permitting

 

ILE

 

C

 

Programs

 

to

 

Access

 

C++

 

Linkage

 

Functions

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 392

 

Including

 

QSYSINC

 

Header

 

Files

 

.

 

.

 

.

 

.

 

.

 

. 392

 

Handling

 

the

 

Stricter

 

C++

 

Type

 

Checking

  

.

 

.

 

.

 

. 392

 

Resolving

 

Integer

 

Data

 

Type

 

Size

 

Issues

  

.

 

.

 

. 392

 

Resolving

 

Incompatible

 

Pointer

 

Types

  

.

 

.

 

.

 

. 393

 

Disabling

 

Name

 

Mangling

 

to

 

Avoid

 

Undefined

 

Name

 

Errors

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 393

 

Resolving

 

Type

 

Mismatches

 

with

 

the

 

C++

 

Function

 

Prototype

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 394

 

Example

 

of

 

Function

 

Prototype

 

Mismatch

  

.

 

.

 

. 394

 

Handling

 

the

 

Function

 

Prototype

 

Mismatch

  

.

 

. 394

 

Declaring

 

unsigned

 

char

 

Pointers

 

as

 

unsigned

 

char

 

Variables

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 394

 

Initializing

 

Character

 

Arrays

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 395

 

Specifying

 

Access

 

to

 

String

 

Literals

  

.

 

.

 

.

 

.

 

.

 

. 395

 

Avoiding

 

Uncaught

 

Exceptions

 

by

 

Scoping

 

to

 

a

 

Single

 

Activation

 

Group

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 396

 

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

.

 

.

 

.

 

.

 

. 397

 

Inter-Language

 

Procedure

 

Calls

  

.

 

.

 

.

 

.

 

.

 

.

 

. 397

 

ILE

 

Conventions

 

for

 

Calling

 

Any

 

Program

 

(*PGM)

 

398

 

Mixing

 

Recursive

 

and

 

Non-Recursive

 

Calls

  

.

 

. 399

 

Passing

 

Arguments

 

from

 

an

 

ILE

 

Program

 

to

 

a

 

Non-EPM

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 400

 

Passing

 

Arguments

 

from

 

an

 

ILE

 

Program

 

to

 

an

 

EPM

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 401

 

Using

 

a

 

Linkage

 

Specification

 

in

 

a

 

C++

 

Dynamic

 

Program

 

Call

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 401

 

Calling

 

Any

 

ILE

 

Program

 

from

 

ILE

 

C/C++

  

.

 

.

 

. 402

 

Passing

 

Parameters

 

from

 

ILE

 

C++

 

to

 

a

 

Different

 

High-Level

 

Language

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 402

 

Type

 

Casting

 

to

 

Override

 

a

 

Function

 

without

 

Overriding

 

Linkage

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 408

 

Passing

 

Arguments

 

from

 

a

 

CL

 

Program

 

to

 

an

 

ILE

 

C++

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 408

 

How

 

CL

 

Constants

 

Are

 

Passed

 

to

 

an

 

ILE

 

C++

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 409

 

How

 

CL

 

Variables

 

Are

 

Passed

 

to

 

an

 

ILE

 

C++

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 409

 

CL

 

Example:

 

a

 

Multi-Language

 

ILE

 

Application

 

410

 

Example:

 

a

 

User-Defined

 

CL

 

Program

 

that

 

Calls

 

an

 

ILE

 

C++

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 416

 

Example:

 

CL

 

Program

 

that

 

Passes

 

Parameters

 

to

 

an

 

ILE

 

C++

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 419

 

Accessing

 

ILE

 

C

 

Procedures

 

from

 

Any

 

ILE

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 420

 

Static

 

Procedure

 

Calls

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 420

 

Procedure

 

Pointer

 

Calls

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 421

 

Called

 

Procedures

 

and

 

Operational

 

Descriptors

 

421

 

Operational

 

Descriptors

 

and

 

the

 

#pragma

 

descriptor

 

Directive

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 422

 

OPM

 

CL

 

Example:

 

Calling

 

OPM,

 

COBOL,

 

and

 

RPG

 

Programs

 

from

 

an

 

ILE

 

C

 

Program

 

.

 

.

 

.

 

. 423

 

ILE

 

CL

 

Example:

 

Calling

 

OPM,

 

COBOL,

 

and

 

RPG

 

Programs

 

from

 

an

 

ILE

 

C

 

Program

 

.

 

.

 

.

 

. 433

 

ILE-OPM

 

CL

 

Example:

 

Calling

 

OPM,

 

COBOL,

 

and

 

RPG

 

Programs

 

from

 

an

 

ILE

 

C++

 

Program

  

. 442

 

Using

 

a

 

Linkage

 

Specification

 

to

 

Call

 

an

 

ILE

 

Procedure

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 448

 

Using

 

a

 

Linkage

 

Specification

 

in

 

a

 

C++

 

Dynamic

 

Program

 

Call

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 449

   

viii

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Valid

 

String

 

Literals

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 449

 

Linkage

 

Specification

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 449

 

Chapter

 

26.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 451

 

Converting

 

from

 

Packed

 

Decimal

 

Data

 

Types

 

.

 

.

 

. 451

 

Converting

 

from

 

a

 

Packed

 

Decimal

 

Type

 

to

 

a

 

Packed

 

Decimal

 

Type

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 452

 

Converting

 

from

 

a

 

Packed

 

Decimal

 

Type

 

to

 

an

 

Integer

 

Type

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 453

 

Converting

 

from

 

a

 

Packed

 

Decimal

 

Type

 

to

 

a

 

Floating

 

Point

 

Type

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 454

 

Overflow

 

Behavior

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 455

 

Passing

 

Packed

 

Decimal

 

Data

 

to

 

a

 

Function

  

.

 

.

 

. 455

 

Passing

 

a

 

Pointer

 

to

 

a

 

Packed

 

Decimal

 

Variable

 

to

 

a

 

Function

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 456

 

Calling

 

Another

 

Program

 

that

 

Contains

 

Packed

 

Decimal

 

Data

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 457

 

Using

 

Library

 

Functions

 

with

 

a

 

Packed

 

Decimal

 

Data

 

Type

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 459

 

Understanding

 

Packed

 

Decimal

 

Data

 

Type

 

Errors

 

462

 

Packed

 

Decimal

 

Warnings

 

and

 

Error

 

Conditions

 

463

 

Suppressing

 

a

 

Run-Time

 

Overflow

 

Exception

 

464

 

Chapter

 

27.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C++

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

. 465

 

The

 

OS/400

 

Binary

 

Coded

 

Decimal

 

(BCD)

 

Header

 

File

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 465

 

Using

 

the

 

_DecimalT

 

Class

 

Template

  

.

 

.

 

.

 

.

 

. 466

 

Declaring

 

_DecimalT

 

Class

 

Template

 

Objects

 

466

 

Using

 

the

 

__D

 

Macro

 

to

 

Simplify

 

Code

 

.

 

.

 

.

 

. 467

 

_DecimalT

 

Class

 

Template

 

Input

 

and

 

Output

 

467

 

Using

 

Operators

 

with

 

the

 

_DecimalT

 

Class

 

Template

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 467

 

C++

 

Packed

 

Decimal

 

Data

 

Conversions

 

.

 

.

 

.

 

.

 

. 471

 

Converting

 

Values

 

from

 

One

 

_DecimalT

 

Class

 

Template

 

to

 

Another

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 471

 

Converting

 

Values

 

from

 

a

 

_DecimalT

 

Class

 

Template

 

to

 

an

 

Integer

 

Data

 

Type

  

.

 

.

 

.

 

.

 

. 473

 

Converting

 

Values

 

from

 

a

 

_DecimalT

 

Class

 

Template

 

to

 

a

 

Floating

 

Point

 

Data

 

Type

 

.

 

.

 

.

 

. 474

 

Determining

 

the

 

Size

 

of

 

a

 

_DecimalT

 

Class

 

Template

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 474

 

Determining

 

the

 

Number

 

of

 

Digits

 

in

 

a

 

_DecimalT

 

Class

 

Template

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 475

 

Determining

 

the

 

Precision

 

of

 

a

 

_DecimalT

 

Class

 

Template

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 475

 

How

 

Overflows

 

Are

 

Handled

  

.

 

.

 

.

 

.

 

.

 

.

 

. 475

 

Using

 

C++

 

Exception

 

Handling

 

with

 

the

 

_DecimalT

 

Template

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 476

 

_DecimalT

 

Class

 

Template

 

Run-Time

 

Exceptions

 

476

 

Defining

 

a

 

C++

 

_DecimalT

 

Class

 

Template

 

Exception

 

Handler

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 478

 

Using

 

Debug

 

Macros

 

for

 

_DecimalT

 

Class

 

Templates

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 478

 

Passing

 

a

 

_DecimalT

 

Class

 

Template

 

Object

 

to

 

a

 

Function

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 480

 

Passing

 

a

 

Pointer

 

to

 

a

 

_DecimalT

 

Class

 

Template

 

Object

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 480

 

Calling

 

Another

 

Program

 

Containing

 

a

 

_DecimalT

 

Class

 

Template

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 481

 

Validating

 

_DecimalT

 

Class

 

Template

 

Constants

 

to

 

a

 

File

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 483

 

Chapter

 

28.

 

Using

 

Templates

 

in

 

C++

 

Programs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 489

 

Managing

 

Template

 

Instantiations

  

.

 

.

 

.

 

.

 

.

 

. 489

 

Template

 

Instantiation

 

Management

 

Options

  

.

 

.

 

. 490

 

How

 

the

 

ILE

 

C++

 

Compiler

 

Handles

 

Template

 

Instantiations

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 491

 

Generation

 

of

 

Static

 

Member

 

Definitions

  

.

 

.

 

. 491

 

Internal

 

Linkage

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 491

 

External

 

Linkage

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 491

 

Example

 

of

 

a

 

Class

 

Template

 

Instantiation

 

.

 

.

 

.

 

. 492

 

Declarations

 

and

 

Definitions

  

.

 

.

 

.

 

.

 

.

 

.

 

. 492

 

Linkage

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 493

 

Using

 

the

 

Default

 

Template

 

Instantiation

 

Management

 

Option

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 494

 

Manually

 

Structuring

 

Code

 

for

 

Single

 

Instantiations

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 494

 

Explicit

 

Instantiations

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 494

 

Using

 

the

 

ILE

 

Template

 

Registry

 

Option

  

.

 

.

 

.

 

. 495

 

How

 

the

 

ILE

 

Template

 

Registry

 

Option

 

Works

 

495

 

Specifying

 

Values

 

for

 

the

 

TMPLREG

 

Parameter

 

496

 

Using

 

the

 

ILE

 

TEMPINC

 

Option

  

.

 

.

 

.

 

.

 

.

 

.

 

. 496

 

How

 

the

 

ILE

 

TEMPINC

 

Option

 

Works

  

.

 

.

 

.

 

. 496

 

Structuring

 

a

 

Program

 

for

 

TEMPINC-Managed

 

Instantiations

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 497

 

Chapter

 

29.

 

Using

 

Teraspace

 

in

 

ILE

 

C

 

and

 

C++

 

Programs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 501

 

Supported

 

Teraspace

 

Environments

  

.

 

.

 

.

 

.

 

.

 

. 501

 

C/C++

 

Pointer

 

Support

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 501

 

C/C++

 

Pointer

 

Conversions

  

.

 

.

 

.

 

.

 

.

 

.

 

. 501

 

Bindable

 

APIs

 

for

 

Using

 

Teraspace

  

.

 

.

 

.

 

.

 

. 502

 

The

 

16–Byte

 

Run-Time

 

Binding

 

Libraries

  

.

 

.

 

.

 

. 502

 

The

 

8–Byte

 

Run-Time

 

Binding

 

(RTBND)

 

Library

 

Extensions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 503

 

Using

 

RTBND

 

to

 

Optimize

 

Performance

 

of

 

a

 

C++

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 503

 

Requirements

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 503

 

Error

 

Conditions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 504

 

Limitations

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 504

 

Characteristics

 

of

 

Each

 

Teraspace

 

Storage

 

Model

 

504

 

Binary

 

Compatibility

 

Considerations

 

When

 

Porting

 

Code

 

in

 

a

 

Teraspace

 

Environment

  

.

 

.

 

.

 

.

 

.

 

. 505

 

Specifying

 

the

 

Teraspace

 

Environment

  

.

 

.

 

.

 

. 505

 

Determining

 

the

 

Size

 

of

 

a

 

Specific

 

Pointer

  

.

 

.

 

. 506

 

Maintaining

 

Consistent

 

Argument

 

Declarations

 

506

 

Source

 

Code

 

Samples

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 506

 

Example:

 

Effect

 

of

 

Forward

 

Declarations

 

on

 

the

 

Data

 

Model

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 506

 

Example:

 

Redefining

 

the

 

new

 

or

 

delete

 

Operator

 

507

 

Example:

 

How

 

a

 

Template

 

Adopts

 

a

 

Data

 

Model

 

509

 

Examples:

 

Overloading

 

Functions

  

.

 

.

 

.

 

.

 

. 509

 

Chapter

 

30.

 

Casting

 

with

 

Run-Time

 

Type

 

Information

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 511

 

The

 

RTTI

 

Language

 

Extension

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 511

   

Contents

 

ix



Using

 

C++

 

Language-Defined

 

RTTI

  

.

 

.

 

.

 

.

 

.

 

. 511

 

The

 

dynamic_cast

 

Operator

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 511

 

The

 

typeid

 

Operator

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 514

 

Using

 

RTTI

 

in

 

Constructors

 

and

 

Destructors

  

.

 

.

 

. 515

 

ILE

 

C++

 

Extensions

 

to

 

RTTI

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 516

 

The

 

extended_type_info

 

Classes

  

.

 

.

 

.

 

.

 

.

 

. 516

 

Part

 

7.

 

Using

 

International

 

Locales

 

and

 

Coded

 

Character

 

Sets

  

.

 

.

 

.

 

. 519

 

Chapter

 

31.

 

Internationalizing

 

a

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 521

 

Coded

 

Character

 

Set

 

Identifiers

  

.

 

.

 

.

 

.

 

.

 

.

 

. 521

 

Source

 

File

 

Conversions

 

to

 

CCSID

  

.

 

.

 

.

 

.

 

.

 

. 522

 

Creating

 

a

 

Source

 

Physical

 

File

 

with

 

a

 

Coded

 

Character

 

Set

 

Identifier

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 522

 

Changing

 

the

 

Coded

 

Character

 

Set

 

Identifier

 

(CCSID)

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 523

 

Converting

 

String

 

Literals

 

in

 

a

 

Source

 

File

 

.

 

.

 

.

 

. 523

 

Using

 

Unicode

 

Support

 

for

 

Wide-Character

 

Literals

 

524

 

Representation

 

of

 

Wide-Character

 

Literals

 

.

 

.

 

. 524

 

Enabling

 

Unicode

 

Character

 

Set

 

Support

  

.

 

.

 

. 525

 

Effect

 

of

 

Unicode

 

on

 

#pragma

 

convert()

 

Operations

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 525

 

GB18030

 

Code

 

Page

 

Support

  

.

 

.

 

.

 

.

 

.

 

.

 

. 526

 

Targeting

 

a

 

CCSID

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 527

 

How

 

the

 

ILE

 

C/C++

 

Compiler

 

Converts

 

a

 

Source

 

File

 

to

 

a

 

Target

 

CCSID

  

.

 

.

 

.

 

.

 

.

 

.

 

. 527

 

Literals,

 

Comments,

 

and

 

Identifiers

  

.

 

.

 

.

 

.

 

. 528

 

Limitations

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 528

 

Chapter

 

32.

 

International

 

Locale

 

Support

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 529

 

Elements

 

of

 

a

 

Language

 

Environment

  

.

 

.

 

.

 

.

 

. 529

 

Locales

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 529

 

ILE

 

C/C++

 

Support

 

for

 

Locales

  

.

 

.

 

.

 

.

 

.

 

.

 

. 529

 

ILE

 

C/C++

 

Support

 

for

 

*CLD

 

and

 

*LOCALE

 

Object

 

Types

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 530

 

C

 

Locale

 

Migration

 

Table

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 530

 

POSIX

 

Locale

 

Definition

 

and

 

*LOCALE

 

Support

 

533

 

LOCALETYPE

 

Compiler

 

Option

  

.

 

.

 

.

 

.

 

.

 

.

 

. 534

 

Creating

 

Locales

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 534

 

Creating

 

Modules

 

Using

 

LOCALETYPE(*LOCALE)

 

535

 

Categories

 

Used

 

in

 

a

 

Locale

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 535

 

Setting

 

an

 

Active

 

Locale

 

for

 

an

 

Application

  

.

 

. 536

 

Using

 

Environment

 

Variables

 

to

 

Set

 

the

 

Active

 

Locale

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 536

 

SAA

 

and

 

POSIX

 

*Locale

 

Definitions

  

.

 

.

 

.

 

.

 

.

 

. 537

 

Locale-Sensitive

 

Run-Time

 

Functions

  

.

 

.

 

.

 

.

 

. 538

 

Part

 

8.

 

Appendixes

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 539

 

Appendix

 

A.

 

The

 

GENCSRC

 

Utility

 

and

 

the

 

#pragma

 

mapinc

 

Directive

  

.

 

.

 

.

 

. 541

 

Appendix

 

B.

 

Interlanguage

 

Data-Type

 

Compatibilities

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 543

 

Bibliography

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 551

 

Notices

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 555

 

Programming

 

Interface

 

Information

  

.

 

.

 

.

 

.

 

.

 

. 556

 

Trademarks

 

and

 

Service

 

Marks

  

.

 

.

 

.

 

.

 

.

 

.

 

. 556

 

Industry

 

Standards

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 557

 

Index

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 559

  

x

 

ILE

 

C/C++

 

Programmer’s

 

Guide



About

 

This

 

Guide

 

This

 

guide

 

contains

 

instructions

 

on:

 

v

   

Entering

 

source

 

statements

 

v

   

Creating

 

a

 

program

 

in

 

two

 

steps

 

v

   

Creating

 

a

 

program

 

in

 

one

 

step

 

v

   

Running

 

a

 

program

 

v

   

Debugging

 

a

 

program

 

v

   

Managing

 

streams

 

and

 

record

 

files

 

v

   

Writing

 

programs

 

that:

 

–

   

Use

 

externally

 

described

 

files

 

–

   

Use

 

database

 

files

 

and

 

distributed

 

data

 

management

 

files

 

–

   

Use

 

device

 

files

 

–

   

Handle

 

exceptions

 

–

   

Call

 

programs

 

and

 

procedures

 

–

   

Use

 

pointers

 

on

 

the

 

iSeries®

 

system
v

   

Internationalizing

 

a

 

program

 

v

   

Using

 

templates

 

in

 

C++

 

programs

 

v

   

Porting

 

programs

 

to

 

ILE

 

C++

 

v

   

Casting

 

with

 

run-time

 

type

 

information

 

v

   

Using

 

Teraspace

 

support

 

v

   

Customizing

 

programs

 

using

 

locales

Who

 

Should

 

Use

 

This

 

Guide

 

This

 

guide

 

is

 

for

 

programmers

 

who

 

are

 

familiar

 

with

 

the

 

C

 

and

 

C++

 

programming

 

languages

 

and

 

who

 

plan

 

to

 

write

 

or

 

maintain

 

ILE

 

C/C++

 

applications.

 

Users

 

need

 

experience

 

in

 

using

 

at

 

least

 

one

 

of

 

the

 

following:

 

v

   

Applicable

 

iSeries

 

menus

 

and

 

displays

 

v

   

Control

 

Language

 

(CL)

 

commands

Prerequisite

 

and

 

Related

 

Information

 

Use

 

the

 

iSeries™

 

Information

 

Center

 

as

 

your

 

starting

 

point

 

for

 

finding

 

iSeries

 

and

 

AS/400e

 

technical

 

information.

 

You

 

can

 

access

 

the

 

Information

 

Center

 

from

 

the

 

following

 

Web

 

site:

 

http://www.ibm.com/eserver/iseries/infocenter

 

The

 

iSeries

 

Information

 

Center

 

contains

 

advisors

 

and

 

important

 

topics

 

such

 

as

 

CL

 

commands,

 

system

 

application

 

programming

 

interfaces

 

(APIs),

 

logical

 

partitions,

 

clustering,

 

Java™™

 

,

 

TCP/IP,

 

Web

 

serving,

 

and

 

secured

 

networks.

 

It

 

also

 

includes

 

links

 

to

 

related

 

IBM®

 

Redbooks™;

 

and

 

Internet

 

links

 

to

 

other

 

IBM

 

Web

 

sites

 

such

 

as

 

the

 

Technical

 

Studio

 

and

 

the

 

IBM

 

home

 

page.

 

Other

 

information

 

is

 

listed

 

in

 

the

 

“Bibliography”

 

on

 

page

 

551.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

xi



Install

 

Licensed

 

Program

 

Information

 

The

 

QSYSINC

 

library

 

must

 

be

 

installed

 

on

 

systems

 

that

 

use

 

the

 

ILE

 

C/C++

 

compiler.

 

Notes

 

About

 

Examples

 

Examples

 

illustrating

 

the

 

use

 

of

 

the

 

ILE

 

C/C++

 

compilers

 

are

 

written

 

in

 

a

 

simple

 

style.

 

Note

 

the

 

following:

 

v

   

The

 

examples

 

do

 

not

 

demonstrate

 

all

 

of

 

the

 

possible

 

uses

 

of

 

C/C++

 

language

 

constructs.

 

v

   

Some

 

examples

 

are

 

code

 

fragments

 

and

 

cannot

 

be

 

compiled

 

without

 

additional

 

code.

 

v

   

All

 

complete,

 

runnable

 

examples

 

begin

 

with

 

T1520.

 

They

 

can

 

be

 

found

 

in

 

the

 

QCPPLE

 

library,

 

in

 

source

 

file

 

QACSRC.

 

v

   

Most

 

of

 

the

 

examples

 

found

 

in

 

this

 

guide

 

are

 

illustrated

 

by

 

entering

 

Control

 

Language

 

(CL)

 

commands

 

on

 

a

 

CL

 

command

 

line.

 

You

 

can

 

use

 

a

 

CL

 

program

 

to

 

run

 

most

 

of

 

the

 

examples.

 

v

   

See

 

the

 

member

 

T1520INF

 

in

 

QCPPLE/QAINFO

 

for

 

information

 

about

 

running

 

the

 

examples

 

in

 

each

 

chapter.

Control

 

Language

 

Commands

 

and

 

the

 

Procedures

 

in

 

This

 

Guide

 

In

 

this

 

guide,

 

the

 

procedures

 

instruct

 

you

 

to

 

enter

 

CL

 

commands.

 

To

 

enter

 

a

 

CL

 

command,

 

type

 

the

 

command

 

on

 

the

 

command

 

line

 

and

 

then

 

either

 

press

 

the

 

Enter

 

key

 

or

 

press

 

F4

 

to

 

be

 

prompted

 

for

 

options

 

and

 

parameters.

 

If

 

you

 

need

 

online

 

help

 

information,

 

press

 

F1

 

(Help)

 

on

 

the

 

CL

 

command

 

prompt

 

display.

 

See

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference

 

for

 

command

 

syntax

 

for

 

the

 

CL

 

commands

 

including

 

Integrated

 

Language

 

Environment

 

(ILE)

 

CL

 

commands.

 

CL

 

commands

 

can

 

be

 

used

 

in

 

either

 

batch

 

or

 

interactive

 

mode,

 

or

 

from

 

a

 

CL

 

program.

 

Note:

  

You

 

need

 

object

 

authority

 

to

 

use

 

CL

 

commands.

 

How

 

to

 

Send

 

Your

 

Comments

 

Your

 

feedback

 

is

 

important

 

in

 

helping

 

to

 

provide

 

the

 

most

 

accurate

 

and

 

high-quality

 

information.

 

IBM

 

welcomes

 

any

 

comments

 

about

 

this

 

book

 

or

 

any

 

other

 

iSeries

 

documentation.

 

Use

 

one

 

of

 

these

 

e-mail

 

addresses:

 

v

   

Comments

 

on

 

books:

    

compinfo@ca.ibm.com

    

IBMLink:

 

to

 

toribm(torrcf)
v

   

Comments

 

on

 

the

 

iSeries

 

400

 

Information

 

Center:

    

RCHINFOC@us.ibm.com

Be

 

sure

 

to

 

include

 

the

 

following:

 

v

   

The

 

name

 

of

 

the

 

book

 

v

   

The

 

publication

 

number

 

of

 

the

 

book

 

v

   

The

 

page

 

number

 

or

 

topic

 

to

 

which

 

your

 

comment

 

applies.

  

xii

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Figures

   

1.

  

Program

 

Creation

 

in

 

ILE

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 4

   

2.

  

ILE

 

C

 

Source

 

to

 

Add

 

Integers

 

and

 

Print

 

Characters

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 12

   

3.

  

Structure

 

of

 

Program

 

MYPROG

 

.

 

.

 

.

 

.

 

.

 

. 15

   

4.

  

Example

 

of

 

a

 

Basic

 

Binder

 

Listing

  

.

 

.

 

.

 

.

 

. 20

   

5.

  

Example

 

of

 

Header

 

File

 

(search.h)

  

.

 

.

 

.

 

.

 

. 26

   

6.

  

Source

 

File

 

that

 

Contains

 

Constructor

 

Definitions

 

for

 

the

 

Search

 

Class

  

.

 

.

 

.

 

.

 

.

 

. 27

   

7.

  

File

 

that

 

Contains

 

the

 

Member

 

Function

 

Definition

 

for

 

the

 

Search

 

Class

  

.

 

.

 

.

 

.

 

.

 

. 27

   

8.

  

Source

 

Code

 

for

 

myproga.cpp

  

.

 

.

 

.

 

.

 

.

 

. 28

   

9.

  

Calls

 

between

 

Program

 

and

 

Service

 

Program

 

29

  

10.

  

Display

 

Module

 

Information

 

Screen

 

for

 

a

 

Sample

 

Module

 

SEARCH

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 32

  

11.

  

Example

 

of

 

a

 

Binder

 

Language

 

Source

 

File

 

32

  

12.

  

Binder

 

Language

 

Source

 

File

 

Generated

 

for

 

Module

 

SEARCH

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 34

  

13.

  

Binder

 

Language

 

Source

 

File

 

Generated

 

by

 

the

 

RTVBNDSRC

 

Command

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 36

  

14.

  

Unresolved

 

Import

 

Requests

 

in

 

a

 

Program

 

with

 

Circular

 

References

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 37

  

15.

  

m1.cpp

 

—

 

First

 

Source

 

File

 

for

 

Application

 

with

 

Circular

 

References

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 37

  

16.

  

m2.cpp

 

—

 

Second

 

Source

 

Files

 

for

 

Application

 

with

 

Circular

 

References

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 38

  

17.

  

m3.cpp

 

—

 

Third

 

Source

 

File

 

for

 

Application

 

with

 

Circular

 

References

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 38

  

18.

  

Binder

 

Language

 

for

 

Service

 

Program

 

SP1

 

39

  

19.

  

Binder

 

Language

 

for

 

Service

 

Program

 

SP2

 

39

  

20.

  

Binder

 

Language

 

for

 

Service

 

Program

 

SP1

 

41

  

21.

  

Example

 

of

 

Source

 

Code

 

to

 

Create

 

a

 

Dummy

 

C++

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 42

  

22.

  

Source

 

Code

 

for

 

Example

 

myprog.cpp

  

.

 

.

 

. 42

  

23.

  

Exports

 

from

 

Service

 

Program

 

COST

  

.

 

.

 

.

 

. 43

  

24.

  

Import

 

Requests

 

in

 

Programs

 

COSTDPT1

 

and

 

COSTDPT2

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 44

  

25.

  

Source

 

Code

 

for

 

Service

 

Program

 

COST

  

.

 

.

 

. 45

  

26.

  

T1520REP

 

—

 

ILE

 

C

 

Source

 

to

 

Pass

 

Parameters

 

to

 

an

 

ILE

 

C

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 53

  

27.

  

Source

 

File

 

for

 

a

 

Program

 

that

 

Passes

 

the

 

Value

 

’Hello,

 

World’

 

to

 

Another

 

Program

  

.

 

.

 

.

 

. 54

  

28.

  

Calling

 

Program

 

XRUN2

 

Using

 

the

 

TFRCTL

 

Command

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 55

  

29.

  

Example

 

of

 

Source

 

Code

 

that

 

Transfers

 

Control

 

to

 

Another

 

Program

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 56

  

30.

  

Example

 

of

 

Source

 

Code

 

that

 

Receives

 

and

 

Prints

 

a

 

Null-Terminated

 

Character

 

String

  

.

 

. 56

  

31.

  

Calling

 

Program

 

CALCOST

 

from

 

a

 

User-Defined

 

Command

 

COST

  

.

 

.

 

.

 

.

 

.

 

. 57

  

32.

  

Source

 

Code

 

for

 

Command

 

Prompt

 

that

 

Runs

 

the

 

CALCOST

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 58

  

33.

  

Source

 

Code

 

for

 

Program

 

CALCOST

  

.

 

.

 

.

 

. 58

  

34.

  

Running

 

Programs

 

in

 

a

 

Named

 

Activation

 

Group

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 60

  

35.

  

Running

 

Programs

 

in

 

Unnamed

 

Activation

 

Groups

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 61

  

36.

  

Running

 

a

 

Service

 

Program

 

in

 

the

 

Activation

 

Groups

 

of

 

Calling

 

Programs

  

.

 

.

 

.

 

.

 

.

 

.

 

. 62

  

37.

  

Example

 

of

 

Dynamic

 

Allocation

 

and

 

De-Allocation

 

of

 

Storage

 

for

 

a

 

Class

 

Object

  

.

 

. 65

  

38.

  

Example

 

of

 

Dynamic

 

Allocation

 

and

 

De-Allocation

 

of

 

Storage

 

for

 

an

 

Array

 

of

 

Objects

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 65

  

39.

  

T1520XH7

 

—

 

ILE

 

C

 

Source

 

for

 

Exception

 

Handling

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 71

  

40.

  

Example:

 

Using

 

ISO

 

C

 

Record

 

I/O

 

.

 

.

 

.

 

.

 

. 74

  

41.

  

Example:

 

Using

 

ILE

 

C

 

Record

 

I/O

  

.

 

.

 

.

 

.

 

. 75

  

42.

  

I/O

 

Feedback

 

Information

  

.

 

.

 

.

 

.

 

.

 

.

 

. 75

  

43.

  

Using

 

the

 

System

 

Buffer

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 76

  

44.

  

Example:

 

Opening

 

a

 

File

 

Twice

  

.

 

.

 

.

 

.

 

.

 

. 76

  

45.

  

Example:

 

Opening

 

a

 

File

 

Once

  

.

 

.

 

.

 

.

 

.

 

. 77

  

46.

  

Using

 

printf()

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 77

  

47.

  

Using

 

printf()

 

to

 

Reduce

 

Function

 

Calls

 

78

  

48.

  

Example

 

of

 

a

 

Program

 

that

 

Uses

 

Linked

 

Lists

 

79

  

49.

  

Example

 

of

 

Source

 

Code

 

that

 

Uses

 

a

 

short

 

Type

 

Member

 

to

 

End

 

a

 

Linked

 

List

  

.

 

.

 

.

 

. 80

  

50.

  

Example

 

of

 

Minimizing

 

Padding

 

by

 

Rearranging

 

Variables

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 84

  

51.

  

Sample

 

Application:

 

High-Level

 

Input/Processing/Output

 

Flow

  

.

 

.

 

.

 

.

 

.

 

. 89

  

52.

  

ILE

 

Activation

 

Group

 

of

 

the

 

Sample

 

Application

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 91

  

53.

  

DDS

 

Source

 

for

 

Audit

 

File

 

T1520DD1

  

.

 

.

 

.

 

. 97

  

54.

  

T1520CL1

 

—

 

CL

 

Source

 

to

 

Pass

 

Variables

 

to

 

an

 

ILE

 

C

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 97

  

55.

  

T1520CM1

 

—

 

CL

 

Command

 

Source

 

to

 

Receive

 

Input

 

Data

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 98

  

56.

  

ILE

 

C

 

Source

 

to

 

Call

 

Functions

 

in

 

Other

 

Modules

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 99

  

57.

  

Sample

 

ILE

 

C

 

Source

 

to

 

Calculate

 

Tax

 

and

 

Format

 

Cost

 

for

 

Output

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 101

  

58.

  

ILE

 

C

 

Source

 

to

 

Write

 

an

 

Audit

 

Trail

 

102

  

59.

  

T1520IC4

 

—

 

ILE

 

C

 

Source

 

to

 

Export

 

Tax

 

Rate

 

Data

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 103

  

60.

  

Binder

 

Language

 

Source

 

to

 

Export

 

Tax

 

Rate

 

Data

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 104

  

61.

  

Binder

 

Language

 

Source

 

to

 

Export

 

write_audit_trail

 

Procedure

  

.

 

.

 

.

 

.

 

.

 

.

 

. 104

  

62.

  

Example

 

of

 

ILE

 

C

 

Source

 

Data

 

Definitions

 

111

  

63.

  

Examples

 

of

 

Using

 

Pointers

 

in

 

Debug

 

Sessions,

 

Screen

 

1

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 113

  

64.

  

Examples

 

of

 

Using

 

Pointers

 

in

 

Debug

 

Sessions,

 

Screen

 

2

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 114

  

65.

  

Examples

 

of

 

Simple

 

Operations

 

Used

 

in

 

Debug

 

Expressions

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 115

  

66.

  

Examples

 

of

 

Using

 

Bit

 

Fields

 

in

 

Debug

 

Expressions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 116

  

67.

  

Examples

 

of

 

Using

 

Structures

 

and

 

Unions

 

in

 

Debug

 

Expressions

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 117

  

68.

  

Examples

 

of

 

Using

 

Enumerations

 

in

 

Debug

 

Expressions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 118

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

xiii



69.

  

System

 

and

 

Space

 

Pointers

 

in

 

ILE

 

C

 

Source

 

Code

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 119

  

70.

  

Example

 

of

 

System

 

and

 

Space

 

Pointer

 

Display

 

121

  

71.

  

Module

 

Source

 

Display

 

for

 

DEBUGEX

 

147

  

72.

  

Module

 

Source

 

Display

 

After

 

Stepping

 

into

 

CPGM

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 147

  

73.

  

Using

 

EVAL

 

to

 

Change

 

a

 

Variable

 

.

 

.

 

.

 

.

 

. 154

  

74.

  

Sample

 

EVAL

 

Commands

 

for

 

Pointers,

 

Variables,

 

and

 

Bit

 

Fields

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 159

  

75.

  

Sample

 

EVAL

 

Commands

 

for

 

C

 

Structures,

 

Unions

 

and

 

Enumerations

  

.

 

.

 

.

 

.

 

.

 

.

 

. 160

  

76.

  

Sample

 

EVAL

 

Commands

 

for

 

System

 

and

 

Space

 

Pointers

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 161

  

77.

  

Sample

 

EVAL

 

Commands

 

for

 

C++

 

Expressions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 162

  

78.

  

Using

 

EVAL

 

with

 

a

 

Class

 

Template

  

.

 

.

 

.

 

. 163

  

79.

  

Using

 

EVAL

 

with

 

a

 

Function

 

Template

 

163

  

80.

  

Source

 

for

 

Sample

 

EVAL

 

Commands

 

163

  

81.

  

Source

 

for

 

Sample

 

EVAL

 

Commands

 

for

 

Displaying

 

System

 

and

 

Space

 

Pointers

  

.

 

.

 

. 166

  

82.

  

Source

 

for

 

Sample

 

EVAL

 

Commands

 

for

 

Displaying

 

C++

 

Constructs

  

.

 

.

 

.

 

.

 

.

 

.

 

. 168

  

83.

  

iSeries

 

Data

 

Management

 

Records

 

Mapping

 

to

 

an

 

ILE

 

C

 

Stream

 

File

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 182

  

84.

  

ILE

 

C

 

Source

 

to

 

Open

 

an

 

ILE

 

C

 

Text

 

Stream

 

File

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 184

  

85.

  

Writing

 

to

 

a

 

Text

 

Stream

 

File

  

.

 

.

 

.

 

.

 

.

 

. 185

  

86.

  

ILE

 

C

 

Source

 

to

 

Write

 

Characters

 

to

 

a

 

Text

 

Stream

 

File

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 186

  

87.

  

Reading

 

from

 

a

 

Text

 

Stream

 

File

  

.

 

.

 

.

 

.

 

. 186

  

88.

  

ILE

 

C

 

Source

 

to

 

Read

 

Characters

 

from

 

a

 

Text

 

Stream

 

File

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 187

  

89.

  

ILE

 

C

 

Source

 

to

 

Open

 

a

 

Binary

 

Stream

 

File

 

189

  

90.

  

Writing

 

to

 

a

 

Binary

 

Stream

 

File

 

One

 

Character

 

at

 

a

 

Time

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 189

  

91.

  

ILE

 

C

 

Source

 

to

 

Write

 

Characters

 

to

 

a

 

Binary

 

Stream

 

File

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 190

  

92.

  

Reading

 

from

 

a

 

Binary

 

Stream

 

File

 

One

 

Character

 

at

 

a

 

Time

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 190

  

93.

  

ILE

 

C

 

Source

 

to

 

Read

 

Characters

 

from

 

a

 

Binary

 

Stream

 

File

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 191

  

94.

  

Updating

 

a

 

Binary

 

Stream

 

File

 

with

 

Data

 

Longer

 

than

 

Record

 

Length

 

.

 

.

 

.

 

.

 

.

 

.

 

. 191

  

95.

  

ILE

 

C

 

Source

 

to

 

Update

 

a

 

Binary

 

Stream

 

File

 

with

 

Data

 

Longer

 

than

 

the

 

Record

 

Length

  

.

 

. 192

  

96.

  

Updating

 

a

 

Binary

 

Stream

 

File

 

with

 

Data

 

Shorter

 

than

 

Record

 

Length

 

.

 

.

 

.

 

.

 

.

 

.

 

. 192

  

97.

  

ILE

 

C

 

Source

 

to

 

Update

 

a

 

Binary

 

Stream

 

File

 

with

 

Data

 

Shorter

 

than

 

the

 

Record

 

Length

  

.

 

. 193

  

98.

  

Writing

 

to

 

a

 

Binary

 

Stream

 

File

 

One

 

Record

 

at

 

a

 

Time

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 194

  

99.

  

ILE

 

C

 

Source

 

to

 

Write

 

to

 

a

 

Binary

 

Stream

 

File

 

by

 

Record

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 195

 

100.

  

Reading

 

from

 

a

 

Binary

 

Stream

 

File

 

a

 

Record

 

at

 

a

 

Time

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 195

 

101.

  

ILE

 

C

 

Source

 

to

 

Read

 

from

 

a

 

Binary

 

Stream

 

File

 

by

 

Record

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 196

 

102.

  

Simple

 

C

 

Program

 

to

 

Clear

 

a

 

C

 

Session

 

197

 

103.

  

T1520API

 

—

 

ILE

 

C

 

Source

 

to

 

Call

 

an

 

ILE

 

C

 

Procedure

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 198

 

104.

  

The

 

Integrated

 

File

 

System

 

Interface

  

.

 

.

 

.

 

. 202

 

105.

  

Comparison

 

of

 

a

 

Stream

 

File

 

and

 

a

 

Record-Oriented

 

File

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 208

 

106.

  

iSeries

 

Records

 

Mapping

 

to

 

a

 

C/C++

 

Stream

 

File

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 208

 

107.

  

Comparison

 

of

 

Text

 

Stream

 

and

 

Binary

 

Stream

 

Contents

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 211

 

108.

  

Header

 

Description

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 226

 

109.

  

T1520DD8

 

—

 

DDS

 

Source

 

for

 

Customer

 

Records

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 229

 

110.

  

T1520EDF

 

—

 

ILE

 

C

 

Source

 

to

 

Include

 

an

 

Externally

 

Described

 

Database

 

File

  

.

 

.

 

.

 

. 230

 

111.

  

Ouput

 

Listing

 

from

 

Program

 

T1520EDF

 

—

 

Customer

 

Master

 

Record

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 231

 

112.

  

Example

 

of

 

SLTFLD(*LVLCHK)

 

with

 

the

 

Default

 

TYPEDEFPFX(*OBJ)

  

.

 

.

 

.

 

.

 

.

 

. 234

 

113.

  

Example

 

of

 

SLTFLD(*LVLCHK)

 

with

 

the

 

Default

 

TYPEDEFPFX(*NONE)

  

.

 

.

 

.

 

.

 

. 234

 

114.

  

Example

 

of

 

SLTFLD(*LVLCHK)

 

with

 

the

 

Default

 

TYPEDEFPFX

 

value

 

*MYPREFIX

  

.

 

. 235

 

115.

  

ILE

 

C

 

Source

 

Using

 

the

 

#pragma

 

mapinc

 

lvlchk

 

Option

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 236

 

116.

  

T1520DD3

 

—

 

DDS

 

Source

 

for

 

Program

 

236

 

117.

  

Ouput

 

Listing

 

from

 

the

 

Program

  

.

 

.

 

.

 

.

 

. 237

 

118.

  

DDS

 

Source

 

for

 

a

 

Display

 

File

  

.

 

.

 

.

 

.

 

.

 

. 238

 

119.

  

Structure

 

Definition

 

for

 

a

 

Display

 

File

 

238

 

120.

  

DDS

 

Source

 

for

 

a

 

Device

 

File

  

.

 

.

 

.

 

.

 

.

 

. 239

 

121.

  

Structure

 

Definitions

 

for

 

a

 

Device

 

File

 

240

 

122.

  

DDS

 

Source

 

for

 

Indicators

  

.

 

.

 

.

 

.

 

.

 

.

 

. 241

 

123.

  

Structure

 

Definition

 

for

 

Indicators

 

.

 

.

 

.

 

.

 

. 242

 

124.

  

Header

 

Description

 

Showing

 

Comments

 

for

 

Indicators

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 242

 

125.

  

Structure

 

Definition

 

for

 

Multiple

 

Formats

 

244

 

126.

  

Structure

 

Definitions

 

for

 

a

 

Device

 

File

 

245

 

127.

  

Structure

 

Definitions

 

for

 

BOTH

 

Option

 

246

 

128.

  

T1520ASP

 

—

 

ILE

 

C

 

Source

 

to

 

Process

 

a

 

Database

 

Record

 

File

 

in

 

Arrival

 

Sequence

  

.

 

. 257

 

129.

  

T1520DD3

 

—

 

DDS

 

Source

 

for

 

Database

 

Records

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 258

 

130.

  

T1520KSP

 

—

 

ILE

 

C

 

Source

 

to

 

Process

 

a

 

Database

 

Record

 

File

 

in

 

Keyed

 

Sequence

  

.

 

. 259

 

131.

  

T1520DD4

 

—

 

DDS

 

Source

 

for

 

Database

 

Records

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 260

 

132.

  

T1520REC

 

—

 

ILE

 

C

 

Source

 

to

 

Process

 

a

 

Database

 

File

 

Using

 

Record

 

I/O

 

Functions

 

.

 

. 260

 

133.

  

T1520DD5

 

—

 

DDS

 

Source

 

for

 

Daily

 

Transactions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 263

 

134.

  

T1520DD6

 

—

 

DDS

 

Source

 

for

 

Monthly

 

Transactions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 263

 

135.

  

T1520DD7

 

—

 

DDS

 

Source

 

for

 

a

 

Purchase

 

Order

 

Display

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 263

 

136.

  

T1520COM

 

—

 

ILE

 

C

 

Source

 

to

 

Group

 

File

 

Operations

 

Using

 

Commitment

 

Control

 

.

 

.

 

. 265

 

137.

  

T1520DD0

 

—

 

DDS

 

Source

 

for

 

a

 

Phone

 

Book

 

Display

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 271

 

138.

  

T1520ID2

 

—

 

ILE

 

C

 

Source

 

to

 

Specify

 

Indicators

 

in

 

a

 

Separate

 

Indicator

 

Area

  

.

 

.

 

. 272

 

139.

  

T1520DD9

 

—

 

DDS

 

Source

 

for

 

a

 

Phone

 

Book

 

Display

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 273

 

140.

  

T1520ID1

 

—

 

ILE

 

C

 

Source

 

to

 

Specify

 

Indicators

 

as

 

Part

 

of

 

the

 

File

 

Buffer

  

.

 

.

 

.

 

. 273

 

141.

  

T1520DDD

 

—

 

DDS

 

Source

 

for

 

an

 

I/O

 

Display

 

274

   

xiv

 

ILE

 

C/C++

 

Programmer’s

 

Guide



142.

  

T1520DEV

 

—

 

ILE

 

C

 

Source

 

to

 

Establish

 

a

 

Default

 

Device

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 275

 

143.

  

T1520DDE

 

—

 

DDS

 

Source

 

for

 

Name

 

and

 

Password

 

Display

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 276

 

144.

  

T1520CDV

 

—

 

ILE

 

C

 

Source

 

to

 

Change

 

the

 

Default

 

Device

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 277

 

145.

  

T1520DDF

 

—

 

DDS

 

Source

 

for

 

a

 

Feedback

 

Display

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 279

 

146.

  

T1520FBK

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

Feedback

 

Information

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 280

 

147.

  

T1520DDG

 

—

 

DDS

 

Source

 

for

 

a

 

Subfile

 

Display

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 282

 

148.

  

T1520SUB

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

Subfiles

 

283

 

149.

  

T1520DDA

 

—

 

DDS

 

Source

 

for

 

Password

 

and

 

User

 

ID

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 290

 

150.

  

T1520DDB

 

—

 

DDS

 

Source

 

to

 

Send

 

Password

 

and

 

User

 

ID

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 290

 

151.

  

T1520DDC

 

—

 

DDS

 

Source

 

to

 

Receive

 

Password

 

and

 

User

 

ID

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 290

 

152.

  

T1520ICF

 

—

 

ILE

 

C

 

Source

 

to

 

Send

 

and

 

Receive

 

Data

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 291

 

153.

  

T1520TGT

 

—

 

ILE

 

C

 

Source

 

to

 

Check

 

Data

 

is

 

Sent

 

and

 

Returned

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 293

 

154.

  

T1520FCF

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

First

 

Character

 

Forms

 

Control

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 297

 

155.

  

Sample

 

Source

 

Statements

 

for

 

Program

 

T1520TAP

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 300

 

156.

  

T1520TAP

 

—

 

ILE

 

C

 

Source

 

to

 

Write

 

to

 

a

 

Tape

 

File

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 301

 

157.

  

T1520DSK

 

—

 

ILE

 

C

 

Source

 

to

 

Write

 

Records

 

to

 

a

 

Diskette

 

File

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 305

 

158.

  

Error

 

Handling

 

for

 

OPM

 

and

 

ILE

  

.

 

.

 

.

 

.

 

. 311

 

159.

  

ILE

 

C

 

Source

 

Code

 

with

 

Unhandled

 

Exceptions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 313

 

160.

  

ILE

 

C

 

Source

 

to

 

Check

 

for

 

the

 

Return

 

Value

 

of

 

fopen()

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 315

 

161.

  

ILE

 

C

 

Source

 

to

 

Check

 

the

 

errno

 

Value

 

for

 

fopen()

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 316

 

162.

  

_C_Maj_Min_rc

 

Type

 

Definition

  

.

 

.

 

.

 

.

 

. 316

 

163.

  

_RIOFB_T

 

Type

 

Definition

  

.

 

.

 

.

 

.

 

.

 

.

 

. 317

 

164.

  

_Sys_Struct_T

 

Type

 

Definition

  

.

 

.

 

.

 

.

 

.

 

. 317

 

165.

  

_Maj_Min_rc_T

 

Type

 

Definition

  

.

 

.

 

.

 

.

 

. 317

 

166.

  

Definition

 

of

 

Structure

 

_INTRPT_Hndlr_Parms_T

  

.

 

.

 

.

 

.

 

.

 

.

 

. 319

 

167.

  

ILE

 

C

 

Source

 

to

 

Scope

 

Direct

 

Monitor

 

Handlers

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 319

 

168.

  

ILE

 

C

 

Source

 

to

 

Use

 

Exception

 

Classes

 

320

 

169.

  

ILE

 

C

 

Source

 

to

 

Handle

 

Exceptions

  

.

 

.

 

.

 

. 321

 

170.

  

T1520XH1

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

Direct

 

Monitor

 

Handlers

 

—

 

main()

  

.

 

.

 

.

 

.

 

.

 

. 322

 

171.

  

T1520ICA

 

—

 

ILE

 

C

 

Source

 

that

 

Uses

 

Direct

 

Monitor

 

Handlers

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 324

 

172.

  

T1520XH2

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

Direct

 

Monitor

 

Handlers

 

—

 

Service

 

Program

  

.

 

.

 

. 327

 

173.

  

T1520XH3

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

Direct

 

Monitors

 

with

 

Labels

 

as

 

Handlers

  

.

 

.

 

.

 

. 328

 

174.

  

T1520XH5

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

ILE

 

Condition

 

Handlers

 

—

 

main()

  

.

 

.

 

.

 

.

 

.

 

. 329

 

175.

  

T1520XH6

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

ILE

 

Condition

 

Handlers

 

—

 

Service

 

Program

 

.

 

.

 

. 330

 

176.

  

T1520IC6

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

ILE

 

Condition

 

Handlers

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 331

 

177.

  

T1520IC7

 

—

 

ILE

 

C

 

Source

 

to

 

Percolate

 

a

 

Message

 

to

 

Handle

 

a

 

Condition

  

.

 

.

 

.

 

.

 

. 333

 

178.

  

T1520IC8

 

—

 

ILE

 

C

 

Source

 

to

 

Promote

 

a

 

Message

 

to

 

Handle

 

a

 

Condition

  

.

 

.

 

.

 

.

 

. 335

 

179.

  

ILE

 

C

 

Source

 

to

 

Manage

 

the

 

State

 

of

 

a

 

Signal

 

Handler

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 338

 

180.

  

Resetting

 

Signal

 

Handlers

  

.

 

.

 

.

 

.

 

.

 

.

 

. 340

 

181.

  

Stacking

 

Signal

 

Handlers

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 340

 

182.

  

T1520SIG

 

—

 

ILE

 

C

 

Source

 

that

 

Sets

 

Up

 

Signal

 

Handlers

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 342

 

183.

  

Exception

 

Handler

 

Priority

  

.

 

.

 

.

 

.

 

.

 

.

 

. 344

 

184.

  

ILE

 

C

 

Source

 

to

 

Nest

 

Exceptions

  

.

 

.

 

.

 

.

 

. 346

 

185.

  

T1520XH4

 

—

 

ILE

 

C

 

Source

 

that

 

Uses

 

Cancel

 

Handlers

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 347

 

186.

  

T1520DDJ

 

—

 

DDS

 

Source

 

for

 

a

 

Phone

 

Book

 

Display

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 350

 

187.

  

T1520EHD

 

—

 

ILE

 

C

 

Source

 

to

 

Handle

 

Exceptions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 351

 

188.

  

ILE

 

C

 

Source

 

to

 

Declare

 

Pointer

 

Variables

 

355

 

189.

  

ILE

 

C++

 

Source

 

to

 

Declare

 

Pointer

 

Variables

 

355

 

190.

  

ILE

 

C

 

Source

 

to

 

Declare

 

a

 

Pointer

 

to

 

a

 

Bound

 

Procedure

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 356

 

191.

  

ILE

 

C

 

Source

 

to

 

Declare

 

a

 

Pointer

 

to

 

an

 

iSeries

 

Program

 

as

 

a

 

Function

 

Pointer

  

.

 

.

 

. 357

 

192.

  

ILE

 

C++

 

Source

 

to

 

Declare

 

a

 

Pointer

 

to

 

an

 

iSeries

 

Program

 

as

 

a

 

Function

 

Pointer

  

.

 

.

 

. 357

 

193.

  

ILE

 

C

 

Source

 

to

 

Show

 

OS/400

 

pointer

 

casting

 

358

 

194.

  

T1520DL8

 

—

 

ILE

 

C

 

Source

 

that

 

Uses

 

OS/400

 

pointers

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 359

 

195.

  

T1520DL9

 

—

 

ILE

 

C

 

Source

 

that

 

Uses

 

OS/400

 

pointers

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 360

 

196.

  

Program

 

and

 

Procedure

 

Calls

 

on

 

the

 

Call

 

Stack

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 364

 

197.

  

Example

 

of

 

Using

 

the

 

#pragma

 

map

 

Directive

 

to

 

Rename

 

Functions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 365

 

198.

  

An

 

ILE

 

C++

 

Function

 

Declared

 

As

 

an

 

External

 

Function

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 368

 

199.

  

C++

 

Source

 

File

 

hourclas.cpp

 

Definitions

 

Used

 

by

 

C

 

Source

 

File

 

hour.c

  

.

 

.

 

.

 

.

 

.

 

. 369

 

200.

  

C

 

Source

 

file

 

hour.c

 

that

 

Uses

 

Definitions

 

from

 

C++

 

Source

 

File

 

hourclas.cpp

  

.

 

.

 

.

 

. 371

 

201.

  

Example

 

of

 

a

 

Shared

 

C/C++

 

Header

 

File

 

372

 

202.

  

Example

 

of

 

C++

 

Class

 

without

 

Virtual

 

Functions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 373

 

203.

  

Example

 

of

 

C

 

Structure

 

that

 

Corresponds

 

to

 

C++

 

Class

 

without

 

Virtual

 

Functions

 

.

 

.

 

.

 

. 373

 

204.

  

C++

 

Source

 

File

 

hourclas.cpp

 

that

 

Contains

 

Classes

 

Used

 

by

 

C

 

Source

 

File

 

hour.c

  

.

 

.

 

. 375

 

205.

  

C

 

Source

 

File

 

hour.c

 

that

 

Uses

 

C++

 

Classes

 

Defined

 

in

 

Source

 

File

 

hourclas.cpp

  

.

 

.

 

.

 

. 377

 

206.

  

Example

 

of

 

ILE

 

C

 

Structure

 

Definition

 

that

 

Cannot

 

Be

 

Ported

 

to

 

ILE

 

C++

  

.

 

.

 

.

 

.

 

.

 

. 380

 

207.

    

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 380

 

208.

  

Example

 

of

 

Code

 

with

 

Decimal

 

Constants

 

and

 

a

 

Case

 

Statement

 

that

 

Are

 

Incompatible

  

. 380

 

209.

  

Example

 

of

 

ILE

 

C

 

Source

 

Code

 

Using

 

the

 

extern

 

Linkage

 

Specification

  

.

 

.

 

.

 

.

 

.

 

. 382

 

210.

  

Example

 

of

 

ILE

 

C

 

Source

 

Code

 

Using

 

the

 

#pragma

 

argument

 

Linkage

 

Specification

  

.

 

. 382

   

Figures

 

xv



211.

  

Example

 

of

 

ILE

 

C++

 

Source

 

Code

 

Using

 

the

 

extern

 

Linkage

 

Specification

  

.

 

.

 

.

 

.

 

.

 

. 382

 

212.

  

BCD

 

Macros

 

that

 

Port

 

Code

 

from

 

ILE

 

C

 

to

 

ILE

 

C++

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 383

 

213.

  

ILE

 

C

 

Source

 

Code

 

to

 

Port

 

Code

 

to

 

a

 

Packed

 

Decimal

 

Data

 

Type

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 383

 

214.

  

ILE

 

C++

 

Source

 

Code

 

to

 

Port

 

Code

 

a

 

Packed

 

Decimal

 

Data

 

Type

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 383

 

215.

  

Example

 

of

 

Using

 

BCD

 

Macros

 

to

 

Port

 

Code

 

to

 

ILE

 

C++

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 384

 

216.

  

BCD

 

Macros

 

that

 

Map

 

C++

 

Class

 

Template

 

Instantiations

 

to

 

ILE

 

C

 

Syntax

  

.

 

.

 

.

 

.

 

.

 

. 384

 

217.

  

Example

 

of

 

Code

 

that

 

Determines

 

the

 

Number

 

of

 

Digits

 

in

 

a

 

Packed

 

Decimal

 

Data

 

Type.

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 385

 

218.

  

Example

 

of

 

Code

 

that

 

Determines

 

the

 

Number

 

of

 

Digits

 

in

 

a

 

_DecimalT

 

Class

 

Template

 

Object

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 385

 

219.

  

Example

 

of

 

Code

 

that

 

Determines

 

the

 

Number

 

of

 

Decimal

 

Digits

 

in

 

an

 

Internal

 

Packed

 

Decimal

 

Data

 

Object

  

.

 

.

 

.

 

.

 

.

 

. 385

 

220.

  

Example

 

of

 

Code

 

that

 

Determines

 

the

 

Number

 

of

 

Decimal

 

Digits

 

in

 

an

 

Internal

 

_DecimalT

 

Class

 

Object

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 386

 

221.

  

Example

 

of

 

a

 

Conditional

 

Expression

 

that

 

Fails

 

because

 

of

 

Class

 

Differences

 

.

 

.

 

.

 

.

 

. 387

 

222.

  

Example

 

of

 

an

 

Explicit

 

Cast

 

that

 

Resolves

 

Class

 

Differences

 

between

 

Expressions

  

.

 

.

 

. 388

 

223.

  

Example

 

of

 

Use

 

of

 

a

 

Consistent

 

Variable

 

Type

 

388

 

224.

  

ILE

 

C

 

Code

 

that

 

Uses

 

Packed

 

Decimal

 

Data

 

Types

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 389

 

225.

  

ILE

 

C++

 

Code

 

that

 

Uses

 

the

 

_DecimalT

 

Class

 

Template

 

Instead

 

of

 

the

 

C

 

Packed

 

Decimal

 

Data

 

Types

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 389

 

226.

  

Example

 

of

 

a

 

Single

 

Set

 

of

 

Dual

 

Prototypes

 

that

 

Allow

 

a

 

Header

 

File

 

to

 

be

 

Used

 

by

 

Both

 

ILE

 

C

 

and

 

ILE

 

C++

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 391

 

227.

  

Example

 

of

 

Multiple

 

Sets

 

of

 

Dual

 

Prototypes

 

that

 

Allow

 

a

 

Header

 

File

 

to

 

be

 

Used

 

by

 

Both

 

ILE

 

C

 

and

 

ILE

 

C++

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 391

 

228.

  

Example

 

of

 

Construct

 

that

 

Permits

 

ILE

 

C

 

Programs

 

to

 

Access

 

C++

 

LInkage

 

Functions

  

. 392

 

229.

  

Example

 

of

 

#pragma

 

enum

 

Directive

 

that

 

Resolves

 

Data

 

Type

 

Size

 

Issues

 

.

 

.

 

.

 

.

 

.

 

. 393

 

230.

  

Example

 

of

 

Type

 

Mismatch

  

.

 

.

 

.

 

.

 

.

 

.

 

. 394

 

231.

  

Code

 

that

 

Declares

 

an

 

unsigned

 

char

 

Pointer

 

as

 

an

 

unsigned

 

char

 

Variable

  

.

 

.

 

.

 

.

 

.

 

. 395

 

232.

  

Example

 

of

 

Code

 

Ported

 

to

 

ILE

 

that

 

Results

 

in

 

an

 

Uncaught

 

Exception

  

.

 

.

 

.

 

.

 

.

 

.

 

. 396

 

233.

  

ILE

 

C++

 

Procedures

 

Cannot

 

Call

 

Active

 

ILE

 

COBOL

 

Procedures

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 400

 

234.

  

Example

 

of

 

Using

 

the

 

#pragma

 

linkage(PGMNAME,

 

OS)

 

Directive

 

to

 

Retrieve

 

Returned

 

Function

 

Results

  

.

 

.

 

.

 

.

 

.

 

.

 

. 400

 

235.

  

ILE

 

C

 

Source

 

to

 

Call

 

a

 

Function

 

with

 

Operational

 

Descriptors

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 408

 

236.

  

Type

 

Cast

 

to

 

Override

 

a

 

Function

 

without

 

Overriding

 

Linkage

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 408

 

237.

  

ILE

 

Structure

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 410

 

238.

  

Basic

 

Object

 

Structure

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 411

 

239.

  

Example

 

of

 

the

 

Interlanguage

 

Call

 

Capabilities

 

of

 

an

 

ILE

 

C++

 

Program

  

.

 

.

 

.

 

. 413

 

240.

  

C++

 

Source

 

Code

 

T2123ICC

 

that

 

Exports

 

a

 

Variable

 

for

 

Use

 

by

 

ILE

 

COBOL

 

and

 

ILE

 

RPG

 

Procedures

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 414

 

241.

  

T2123CB2

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 415

 

242.

  

ILE

 

RPG

 

Module

 

T2123RP2

 

.

 

.

 

.

 

.

 

.

 

.

 

. 416

 

243.

  

SQUARE

 

—

 

CL

 

Command

 

Source

 

to

 

Receive

 

Input

 

Data

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 417

 

244.

  

SQITF

 

—

 

ILE

 

C

 

Source

 

to

 

Pass

 

an

 

Argument

 

by

 

Value

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 417

 

245.

  

SQ

 

—

 

ILE

 

C

 

Source

 

to

 

Perform

 

Calculations

 

and

 

Return

 

a

 

Value

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 417

 

246.

  

User-Defined

 

CL

 

Command

 

SQUARE

 

that

 

Calculates

 

the

 

Square

 

of

 

a

 

Specified

 

Number

  

. 418

 

247.

  

Example

 

of

 

CL

 

Program

 

that

 

Passes

 

Arguments

 

to

 

an

 

ILE

 

C++

 

Program

  

.

 

.

 

.

 

. 419

 

248.

  

Example

 

of

 

Generic

 

CL

 

Command

 

Prompt

 

419

 

249.

  

Example

 

of

 

C++

 

Program

 

that

 

Receives

 

Arguments

 

(Pointers)

 

by

 

Reference

  

.

 

.

 

.

 

. 420

 

250.

  

ILE

 

C

 

Source

 

to

 

Determine

 

the

 

String

 

Arguments

 

in

 

a

 

Function

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 421

 

251.

  

ILE

 

C

 

Source

 

that

 

Declares

 

a

 

Function

 

that

 

Requires

 

Operational

 

Descriptors

  

.

 

.

 

.

 

.

 

. 422

 

252.

  

ILE

 

C

 

Source

 

to

 

Generate

 

Operational

 

Descriptors

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 423

 

253.

  

OPM

 

CL

 

Example:

 

Basic

 

Program

 

Structure

 

424

 

254.

  

Structure

 

of

 

the

 

Program

 

in

 

ILE

 

C

  

.

 

.

 

.

 

. 425

 

255.

  

T1520DD2

 

—

 

DDS

 

Source

 

for

 

an

 

Audit

 

File

 

426

 

256.

  

T1520CL2

 

—

 

CL

 

Source

 

to

 

Pass

 

Variables

 

to

 

an

 

ILE

 

C

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 426

 

257.

  

T1520CM2

 

—

 

CL

 

Command

 

Source

 

to

 

Receive

 

Input

 

Data

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 427

 

258.

  

T1520IC5

 

—

 

ILE

 

C

 

Source

 

to

 

Call

 

COBOL

 

AND

 

RPG

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 428

 

259.

  

T1520CB1

 

—

 

OPM

 

COBOL

 

Source

 

to

 

Calculate

 

Tax

 

and

 

Format

 

Cost

 

.

 

.

 

.

 

.

 

.

 

. 431

 

260.

  

T1520RP1

 

—

 

OPM

 

RPG

 

Source

 

to

 

Write

 

the

 

Audit

 

Trail

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 432

 

261.

  

Basic

 

Object

 

Structure

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 433

 

262.

  

Integrated

 

Language

 

Environment

 

Structure

 

434

 

263.

  

T1520DD2

 

—

 

Source

 

to

 

Create

 

Physical

 

Files

 

435

 

264.

  

T1520CL3

 

—

 

ILE

 

CL

 

Source

 

to

 

Pass

 

Variables

 

to

 

an

 

ILE

 

C

 

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 435

 

265.

  

T1520CM2

 

—

 

Source

 

to

 

Create

 

a

 

CL

 

Command

 

Prompt

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 436

 

266.

  

T1520ICB

 

—

 

ILE

 

C

 

Source

 

to

 

Call

 

COBOL

 

and

 

RPG

 

Procedures

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 437

 

267.

  

T1520ICC

 

—

 

Source

 

Code

 

to

 

Export

 

Tax

 

Rate

 

Data

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 439

 

268.

  

T1520CB2

 

—

 

ILE

 

COBOL

 

Source

 

to

 

Calculate

 

Tax

 

and

 

Format

 

Cost

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 440

 

269.

  

T1520RP2

 

—

 

ILE

 

RPG

 

Source

 

to

 

Write

 

the

 

Audit

 

Trail

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 441

 

270.

  

ILE-OPM

 

CL

 

Example:

 

Basic

 

Program

 

Structure

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 442

 

271.

  

Structure

 

of

 

the

 

Program

 

in

 

ILE

 

C++

 

443

 

272.

  

ILE

 

C

 

Source

 

to

 

Convert

 

Packed

 

Decimals

 

452

 

273.

  

ILE

 

C

 

Source

 

to

 

Convert

 

a

 

Packed

 

Decimal

 

to

 

a

 

Packed

 

Decimal

 

with

 

Smaller

 

Precision

  

.

 

. 452

   

xvi

 

ILE

 

C/C++

 

Programmer’s

 

Guide



274.

  

ILE

 

C

 

Source

 

to

 

Convert

 

a

 

Packed

 

Decimal

 

to

 

a

 

Packed

 

Decimal

 

with

 

Smaller

 

Integral

 

Part

  

. 453

 

275.

  

ILE

 

C

 

Source

 

to

 

Convert

 

a

 

Packed

 

Decimal

 

to

 

a

 

Packed

 

Decimal

 

with

 

Smaller

 

Integral

 

Part

 

and

 

Smaller

 

Precision

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 453

 

276.

  

ILE

 

C

 

Source

 

to

 

Convert

 

a

 

Packed

 

Decimal

 

with

 

a

 

Fractional

 

Part

 

to

 

an

 

Integer

  

.

 

.

 

.

 

. 453

 

277.

  

ILE

 

C

 

Source

 

to

 

Convert

 

a

 

Packed

 

Decimal

 

with

 

Less

 

than

 

10

 

Digits

 

in

 

the

 

Integral

 

Part

 

to

 

an

 

Integer

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 454

 

278.

  

ILE

 

C

 

Source

 

to

 

Convert

 

a

 

Packed

 

Decimal

 

with

 

More

 

than

 

10

 

Digits

 

in

 

the

 

Integral

 

Part

 

to

 

an

 

Integer

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 454

 

279.

  

ILE

 

C

 

Source

 

to

 

Convert

 

a

 

Packed

 

Decimal

 

with

 

More

 

than

 

10

 

Digits

 

in

 

Both

 

Parts

 

to

 

an

 

Integer

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 454

 

280.

  

ILE

 

C

 

Source

 

to

 

Convert

 

a

 

Packed

 

Decimal

 

to

 

a

 

Floating

 

Point

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 455

 

281.

  

ILE

 

C

 

Source

 

to

 

Pass

 

Packed

 

Decimal

 

Variable

 

to

 

a

 

Function

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 456

 

282.

  

ILE

 

C

 

Source

 

to

 

Pass

 

a

 

Pointer

 

to

 

a

 

Packed

 

Decimal

 

Value

 

to

 

a

 

Function

  

.

 

.

 

.

 

.

 

.

 

. 457

 

283.

  

ILE

 

C

 

Source

 

for

 

an

 

ILE

 

C

 

Program

 

that

 

Passes

 

Packed

 

Decimal

 

Data

  

.

 

.

 

.

 

.

 

.

 

. 458

 

284.

  

COBOL

 

Source

 

that

 

Receives

 

Packed

 

Decimal

 

Data

 

from

 

an

 

ILE

 

C

 

Program

  

.

 

.

 

.

 

.

 

.

 

. 458

 

285.

  

ILE

 

C

 

Source

 

to

 

Use

 

the

 

va_arg

 

Macro

 

with

 

a

 

Packed

 

Decimal

 

Data

 

Type

  

.

 

.

 

.

 

.

 

.

 

.

 

. 459

 

286.

  

ILE

 

C

 

Source

 

to

 

Write

 

Packed

 

Decimal

 

Constants

 

to

 

a

 

File

 

and

 

Scan

 

Them

 

Back

  

.

 

. 460

 

287.

  

ILE

 

C

 

Source

 

to

 

Print

 

Packed

 

Decimal

 

Constants

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 462

 

288.

  

Packed

 

Decimal

 

Warnings

 

and

 

Error

 

Conditions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 463

 

289.

  

ILE

 

C

 

Source

 

to

 

Suppress

 

a

 

Run-Time

 

Exception

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 464

 

290.

  

Example:

 

Arithmetic

 

Operators

 

for

 

the

 

_DecimalT

 

Class

 

Template

  

.

 

.

 

.

 

.

 

.

 

.

 

. 468

 

291.

  

Example:

 

Relational

 

Operators

 

and

 

the

 

_DecimalT

 

Class

 

Template

  

.

 

.

 

.

 

.

 

.

 

.

 

. 469

 

292.

  

Example:

 

Conditional

 

Operators

 

and

 

the

 

_DecimalT

 

Class

 

Template

  

.

 

.

 

.

 

.

 

.

 

.

 

. 470

 

293.

  

Example:

 

Equality

 

Operators

 

and

 

the

 

_DecimalT

 

Class

 

Template

  

.

 

.

 

.

 

.

 

.

 

.

 

. 470

 

294.

  

Example:

 

Unary

 

Operators

 

and

 

the

 

_DecimalT

 

Class

 

Template

  

.

 

.

 

.

 

.

 

.

 

.

 

. 471

 

295.

  

Example

 

of

 

Converting

 

a

 

Value

 

from

 

One

 

_DecimalT

 

Class

 

Template

 

to

 

Another

  

.

 

.

 

. 472

 

296.

  

Example

 

of

 

Conversion

 

from

 

One

 

_DecimalT

 

Class

 

Template

 

to

 

Another

 

with

 

Smaller

 

Precision

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 472

 

297.

  

Example

 

of

 

Conversion

 

from

 

One

 

_DecimalT

 

Class

 

Template

 

to

 

Another

 

with

 

a

 

Smaller

 

Integral

 

Part

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 472

 

298.

  

Example

 

of

 

Conversion

 

from

 

One

 

_DecimalT

 

Class

 

Template

 

to

 

Another

 

with

 

a

 

Smaller

 

Integral

 

Part

 

and

 

Smaller

 

Precision

  

.

 

.

 

.

 

. 473

 

299.

  

Example

 

of

 

Converting

 

an

 

Integer

 

Type

 

to

 

a

 

_DecimalT

 

Class

 

Template

 

with

 

a

 

Fractional

 

Part

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 473

 

300.

  

Example

 

of

 

Converting

 

an

 

Integer

 

Type

 

to

 

a

 

_DecimalT

 

Class

 

Template

 

with

 

Less

 

than

 

10

 

Digits

 

in

 

the

 

Integral

 

Part

  

.

 

.

 

.

 

.

 

.

 

.

 

. 473

 

301.

  

Example

 

of

 

Converting

 

to

 

an

 

Integer

 

Type

 

from

 

a

 

_DecimalT

 

Class

 

Template

 

with

 

More

 

than

 

10

 

Digits

 

in

 

the

 

Integral

 

Part

 

.

 

.

 

.

 

.

 

. 473

 

302.

  

Example

 

of

 

Converting

 

to

 

an

 

Integer

 

Type

 

from

 

a

 

_DecimalT

 

Class

 

Template

 

with

 

a

 

Fractional

 

Part,

 

and

 

with

 

an

 

Integral

 

Part

 

that

 

Has

 

More

 

than

 

10

 

Digits

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 474

 

303.

  

Example

 

of

 

Converting

 

a

 

_DecimalT

 

Class

 

Template

 

to

 

a

 

Floating

 

Point

 

Data

 

Type

  

.

 

.

 

. 474

 

304.

  

Example

 

of

 

Determining

 

the

 

Total

 

Number

 

of

 

Bytes

 

Occupied

 

by

 

a

 

_DecimalT

 

Class

 

Template

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 475

 

305.

  

Example

 

of

 

Determining

 

the

 

Number

 

of

 

Digits

 

in

 

a

 

_DecimalT

 

Class

 

Template

  

.

 

.

 

. 475

 

306.

  

Example

 

of

 

Determining

 

the

 

Number

 

of

 

Decimal

 

Digits

 

p

 

of

 

a

 

_DecimalT

 

Class

 

Template

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 475

 

307.

  

_DecimalT

 

Class

 

Template

 

Run-Time

 

Exceptions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 476

 

308.

  

Run-Time

 

Exceptions

 

Issued

 

by

 

the

 

Compiler

 

for

 

_DecimalT

 

Class

 

Templates

 

.

 

.

 

.

 

.

 

.

 

. 477

 

309.

  

Example

 

of

 

Using

 

the

 

C++

 

Try

 

Catch

 

Throw

 

Feature

 

to

 

Handle

 

a

 

_DecimalT

 

Class

 

Template

 

Exception

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 478

 

310.

  

Commands

 

to

 

Enable

 

Error

 

Checking

 

within

 

the

 

_DecimalT

 

Class

 

Template

 

at

 

Compile

 

Time

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 479

 

311.

  

Commands

 

to

 

Disable

 

Error

 

Checking

 

within

 

the

 

_DecimalT

 

Class

 

Template

 

at

 

Compile

 

Time

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 479

 

312.

  

Example

 

of

 

Passing

 

a

 

_DecimalT

 

Class

 

Template

 

Object

 

to

 

a

 

Function

  

.

 

.

 

.

 

.

 

.

 

. 480

 

313.

  

Example

 

of

 

Passing

 

a

 

Pointer

 

to

 

a

 

_DecimalT

 

Class

 

Template

 

Object

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 481

 

314.

  

Example

 

of

 

Calling

 

an

 

ILE

 

COBOL

 

Program

 

from

 

an

 

ILE

 

C++

 

Program

 

and

 

Passing

 

a

 

_DecimalT

 

Class

 

Template

  

.

 

.

 

.

 

.

 

.

 

.

 

. 482

 

315.

  

Example

 

of

 

Writing

 

_DecimalT

 

Class

 

Template

 

Constants

 

to

 

a

 

File

  

.

 

.

 

.

 

.

 

.

 

. 484

 

316.

  

Example

 

of

 

Writing

 

_DecimalT

 

Class

 

Template

 

Constants

 

to

 

a

 

File

 

Using

 

the

 

ofstream

 

Class

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 486

 

317.

  

Example

 

of

 

Class

 

Template

 

Instantiation

 

492

 

318.

  

Example

 

of

 

C++

 

Code

 

that

 

Works

 

with

 

or

 

without

 

the

 

TEMPINC

 

Option

  

.

 

.

 

.

 

.

 

.

 

. 492

 

319.

  

Example

 

of

 

a

 

Constructor

 

Function

 

that

 

Is

 

Defined

 

Inline

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 493

 

320.

  

Example

 

of

 

a

 

Constructor

 

Function

 

that

 

Is

 

Defined

 

Externally

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 493

 

321.

  

Example

 

of

 

All

 

Instances

 

of

 

a

 

Class

 

Defined

 

in

 

a

 

Single

 

Compilation

 

Unit

  

.

 

.

 

.

 

.

 

.

 

. 495

 

322.

  

Example

 

of

 

Class

 

Definitions

 

Used

 

in

 

Template

 

Arguments

 

Also

 

Contained

 

in

 

Source

 

Code

 

(Does

 

Not

 

Compile

 

Properly)

 

.

 

. 498

 

323.

  

Example

 

of

 

Template-Implementation

 

File

 

498

 

324.

  

A

 

Typical

 

tempinc

 

File

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 499

 

325.

  

Example

 

of

 

a

 

Forward

 

Declaration

 

Based

 

on

 

the

 

LLP64

 

Data

 

Model

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 507

   

Figures

 

xvii



326.

  

Example

 

of

 

Source

 

Code

 

that

 

Redefines

 

the

 

Global

 

new

 

and

 

delete

 

Operators

  

.

 

.

 

.

 

.

 

. 508

 

327.

  

Example

 

of

 

a

 

Template

 

that

 

Adopts

 

the

 

Data

 

Model

 

in

 

Effect

 

When

 

the

 

Template

 

Is

 

Declared

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 509

 

328.

  

ILE

 

Source

 

to

 

Cast

 

a

 

Pointer

 

to

 

a

 

Derived

 

Class

 

to

 

Use

 

a

 

Detail

 

that

 

Is

 

Otherwise

 

Unavailable

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 512

 

329.

  

ILE

 

Source

 

to

 

Get

 

a

 

Pointer

 

to

 

a

 

Derived

 

Class

 

to

 

Use

 

a

 

Member

 

Function

 

in

 

Specified

 

Calculations

 

Only

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 513

 

330.

  

ILE

 

Source

 

to

 

Get

 

a

 

Pointer

 

to

 

a

 

Derived

 

Class

 

Using

 

Reference

 

Casts

  

.

 

.

 

.

 

.

 

.

 

. 513

 

331.

  

Examples

 

of

 

typeid

 

operator

 

in

 

Expressions

 

514

 

332.

  

Examples

 

of

 

typeid

 

operators

  

.

 

.

 

.

 

.

 

.

 

. 515

 

333.

  

ILE

 

Source

 

Showing

 

extended_type_info

 

Class

 

Types

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 518

 

334.

  

Source

 

File

 

CCSID

 

Conversion

 

.

 

.

 

.

 

.

 

.

 

. 522

 

335.

  

T1520CCS

 

—

 

ILE

 

C

 

Source

 

to

 

Convert

 

Strings

 

and

 

Literals

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 524

  

xviii

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Tables

  

1.

  

Programming

 

Languages

 

Supported

 

by

 

the

 

iSeries

 

family

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 3

  

2.

  

Parameters

 

for

 

CRTPGM

 

Command

 

and

 

Their

 

Default

 

Values

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 17

  

3.

  

Sections

 

of

 

the

 

Binder

 

Listing

 

Based

 

on

 

the

 

DETAIL

 

Parameter

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 18

  

4.

  

Parameters

 

and

 

Default

 

Values

 

for

 

CRTSRVPGM

 

Command

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 24

  

5.

  

Call

 

(CALL)

 

Command

 

Parameter

 

Conversions

 

54

  

6.

  

Compiler

 

Options

 

for

 

Performance

 

.

 

.

 

.

 

.

 

. 87

  

7.

  

Summary

 

of

 

Tasks

 

Required

 

to

 

Create

 

Sample

 

ILE

 

Application

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 92

  

8.

  

Comparison

 

of

 

iSeries

 

Data

 

Management

 

Text

 

Streams

 

and

 

Binary

 

Stream

 

File

 

Processing

 

.

 

. 183

  

9.

  

Integrated

 

File

 

System

 

Compilations

  

.

 

.

 

.

 

. 213

 

10.

  

Data

 

Management

 

File

 

System

 

Compilations

 

213

 

11.

  

INCDIR

 

Command

 

Parameter

  

.

 

.

 

.

 

.

 

.

 

. 215

 

12.

  

Include

 

Search

 

Order

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 216

 

13.

  

Parameter

 

Values

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 217

 

14.

  

INCDIRFIRST

 

Command

 

Options

 

.

 

.

 

.

 

.

 

. 217

 

15.

  

Lock

 

States

 

for

 

Open

 

Modes

  

.

 

.

 

.

 

.

 

.

 

. 252

 

16.

  

Flag

 

Meanings

 

for

 

Printing

 

the

 

Value

 

of

 

a

 

_DecimalT

 

Class

 

Template

 

Object

  

.

 

.

 

.

 

.

 

. 386

 

17.

  

Comparing

 

Packed

 

Structures

  

.

 

.

 

.

 

.

 

.

 

. 390

 

18.

  

Argument

 

Passing

 

for

 

ILE

 

Procedures

 

398

 

19.

  

Dynamic

 

Program

 

Calling

 

Conventions

 

399

 

20.

  

Effects

 

of

 

Various

 

Linkage

 

Specifications

 

402

 

21.

  

Default

 

Argument

 

Passing

 

Style

 

for

 

ILE

 

Programs

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 407

 

22.

  

Default

 

Argument

 

Passing

 

Style

 

for

 

ILE

 

Procedures

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 407

 

23.

  

Arguments

 

Passed

 

from

 

a

 

Command

 

Line

 

CL

 

Call

 

to

 

an

 

ILE

 

C++

 

Program

  

.

 

.

 

.

 

.

 

.

 

. 408

 

24.

  

CL

 

Constants

 

Passed

 

from

 

a

 

Compiled

 

CL

 

Program

 

to

 

an

 

ILE

 

C++

 

Program

  

.

 

.

 

.

 

.

 

. 409

 

25.

  

CL

 

Variables

 

Passed

 

from

 

a

 

Compiled

 

CL

 

Program

 

to

 

an

 

ILE

 

C++

 

Program

  

.

 

.

 

.

 

.

 

. 409

 

26.

  

Handling

 

Overflow

 

from

 

a

 

Packed

 

Decimal

 

to

 

a

 

Smaller

 

Target

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 455

 

27.

  

Constants

 

Defined

 

in

 

bcd.h

  

.

 

.

 

.

 

.

 

.

 

.

 

. 466

 

28.

  

Handling

 

Overflow

 

from

 

a

 

_DecimalT

 

Class

 

Template

 

to

 

a

 

Smaller

 

Target

  

.

 

.

 

.

 

.

 

.

 

. 475

 

29.

  

Debug

 

Macros

 

for

 

_DecimalT

 

Class

 

Templates

 

478

 

30.

  

Template

 

Instantiation

 

Management

 

Options

 

490

 

31.

  

Characteristics

 

of

 

the

 

Default

 

Teraspace

 

Storage

 

Model

 

Versus

 

the

 

RTBND(LLP64)

 

Teraspace

 

Storage

 

Model

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 504

 

32.

  

typeid

 

Operations

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 514

 

33.

  

C

 

Locale

 

Migration

 

Table

  

.

 

.

 

.

 

.

 

.

 

.

 

. 531

 

34.

  

Categories

 

Used

 

in

 

a

 

Locale

 

.

 

.

 

.

 

.

 

.

 

.

 

. 535

 

35.

  

Locale-Sensitive

 

Run-Time

 

Functions

 

538

 

36.

  

Comparison

 

of

 

GENCSRC

 

Keywords

 

and

 

#pragma

 

mapinc

 

Options

  

.

 

.

 

.

 

.

 

.

 

.

 

. 541

 

37.

  

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

ILE

 

CL

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 543

 

38.

  

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

CL

 

544

 

39.

  

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

ILE

 

RPG

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 545

 

40.

  

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

OPM

 

RPG

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 546

 

41.

  

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

ILE

 

COBOL

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 547

 

42.

  

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

OPM

 

COBOL

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

. 549

 

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

xix



xx

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Part

 

1.

 

Introduction

 

This

 

part

 

introduces

 

Integrated

 

Language

 

Environment

 

(ILE)

 

and

 

OS/400

 

operating

 

system

 

programming

 

features.

 

It

 

includes

 

overviews

 

of

 

the

 

following:

 

v

   

Multi-language

 

program

 

creation

 

v

   

Program

 

and

 

resource

 

management

 

v

   

Program

 

debugging

 

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

1



2

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

1.

 

Introduction

 

to

 

the

 

ILE

 

C/C++

 

Compiler

 

Integrated

 

Language

 

Environment

 

(ILE),

 

together

 

with

 

the

 

OS/400®

 

operating

 

system,

 

provides

 

a

 

wide

 

range

 

of

 

support

 

for

 

serious

 

program

 

development.

 

C

 

and

 

C++

 

are

 

two

 

of

 

the

 

programming

 

languages

 

supported

 

by

 

ILE

 

.

 

Table

 

1

 

lists

 

the

 

complete

 

set

 

of

 

ILE

 

languages.

 

The

 

ILE

 

C/C++

 

Compiler

 

supports

 

program

 

development

 

on

 

iSeries

 

systems

 

in

 

both

 

C

 

and

 

C++

 

programming

 

languages.

 

C++

 

extends

 

the

 

capabilities

 

of

 

the

 

C

 

compiler

 

by

 

providing:

 

v

   

Additional

 

keywords

 

v

   

Parameterized

 

types

 

(templates)

 

v

   

Support

 

of

 

object-oriented

 

programming

 

via

 

classes

 

v

   

Stricter

 

type

 

checking

ILE

 

C/C++

 

provides

 

advantages

 

in

 

the

 

following

 

areas

 

of

 

program

 

development:

 

v

   

Creation

 

of

 

multi-language

 

programs

 

and

 

applications

 

v

   

Program

 

flow

 

and

 

resource

 

management

 

v

   

Program

 

debugging

Multi-Language

 

Program

 

Creation

 

You

 

can

 

build

 

mixed-language

 

programs

 

that

 

are

 

composed

 

of

 

modules

 

written

 

in

 

any

 

ILE

 

programming

 

language.

 

Programming

 

Languages

 

Supported

 

by

 

the

 

OS/400

 

Operating

 

System

 

The

 

ILE

 

family

 

of

 

compilers

 

includes:

 

ILE

 

C++,

 

ILE

 

C,

 

ILE

 

RPG,

 

ILE

 

COBOL,

 

and

 

ILE

 

CL.

 

Table

 

1

 

lists

 

the

 

programming

 

languages

 

supported

 

by

 

the

 

OS/400

 

operating

 

system.

  

Table

 

1.

 

Programming

 

Languages

 

Supported

 

by

 

the

 

iSeries

 

family

 

Integrated

 

Language

 

Environment

 

(ILE)

 

Original

 

Program

 

Model

 

(OPM)

 

Extended

 

Program

 

Model

 

(EPM)

 

C++

 

BASIC

 

(PRPQ)

 

C

 

C

 

CL

 

FORTRAN

 

CL

 

COBOL

 

PASCAL

 

(PRPQ)

 

COBOL

 

PL/I

 

(PRPQ)

 

RPG

 

RPG

   

ILE

 

Program

 

Creation

 

ILE

 

program

 

creation

 

consists

 

of:

 

1.

   

Compiling

 

source

 

code

 

into

 

modules

 

2.

   

Binding

 

(combining)

 

one

 

or

 

more

 

modules

 

into

 

a

 

program

 

object.

You

 

can

 

create

 

and

 

maintain

 

multi-language

 

programs

 

because

 

you

 

can

 

combine

 

modules

 

from

 

any

 

ILE

 

language.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

3



Figure

 

1

 

shows

 

the

 

process

 

of

 

creating

 

an

 

ILE

 

program

 

through

 

compiler

 

and

 

binder

 

invocation.

  

Note:

  

Once

 

a

 

program

 

is

 

created,

 

you

 

can

 

update

 

it

 

by

 

using

 

the

 

Update

 

Program

 

(UPDPGM)

 

or

 

Update

 

Service

 

Program

 

(UPDSRVPGM)

 

command.

 

These

 

commands

 

are

 

useful

 

because

 

you

 

only

 

need

 

to

 

have

 

the

 

new

 

or

 

changed

 

modules

 

available

 

when

 

you

 

want

 

to

 

update

 

the

 

program.

 

Binding

 

Directories

 

You

 

can

 

create

 

a

 

binding

 

directory

 

to

 

contain

 

the

 

names

 

of

 

modules

 

and

 

service

 

programs

 

that

 

your

 

ILE

 

C++

 

program

 

or

 

service

 

program

 

may

 

need.

 

Each

 

binding

 

directory

 

is

 

created

 

in

 

a

 

specific

 

library

 

with

 

the

 

Create

 

Binding

 

Directory

 

(CRTBNDDIR)

 

command.

 

Use

 

binding

 

directories

 

to

 

reduce

 

program

 

size.

 

Modules

 

or

 

service

 

programs

 

listed

 

in

 

a

 

binding

 

directory

 

are

 

called

 

only

 

if

 

needed.

 

Service

 

Programs

 

You

 

can

 

bind

 

modules

 

into

 

service

 

programs

 

(*SRVPGM).

 

Service

 

programs

 

are

 

a

 

means

 

of

 

packaging

 

callable

 

routines

 

(functions

 

or

 

procedures)

 

into

 

a

 

separately

 

bound

 

program.

 

The

 

use

 

of

 

service

 

programs

 

provides

 

modularity

 

and

 

improves

 

maintainability.

 

You

 

can

 

use

 

off-the-shelf

 

modules

 

developed

 

by

 

third

 

parties

 

or

 

you

 

can

 

package

 

your

 

own

 

modules

 

for

 

third-party

 

use.

 

Program

 

and

 

Resource

 

Management

 

ILE

 

provides

 

a

 

common

 

basis

 

for:

 

v

   

Managing

 

program

 

flow

 

v

   

Sharing

 

resources

 

v

   

Bindable

 

application

 

program

 

interfaces

 

(APIs)

 

v

   

Handling

 

exceptions

 

during

 

a

 

program’s

 

run

 

time

Program

 

Flow

 

The

 

process

 

of

 

getting

 

a

 

program

 

or

 

service

 

program

 

ready

 

to

 

run

 

is

 

known

 

as

 

activation.

 

Activation

 

allocates

 

resources

 

within

 

a

 

job

 

so

 

that

 

one

 

or

 

more

 

programs

 

can

 

run

 

in

 

that

 

space.

 

When

 

a

 

program

 

is

 

called,

 

ILE

 

automatically

 

initiates

 

the

 

activation

 

group

 

specified

 

for

 

the

 

program.

 

If

 

the

 

specified

 

activation

 

group

 

for

 

a

 

program

 

does

 

not

 

exist

 

when

 

the

 

program

 

is

 

called,

 

it

 

is

 

created

 

within

 

the

 

job

 

to

 

hold

 

the

 

program’s

 

activation.

 

Note:

  

For

 

more

 

information

 

on

 

activation

 

groups,

 

see:

 

v

   

“Activations

 

and

 

Activation

 

Groups”

 

on

 

page

 

50.

 

C++ Module

ILE Program   or   Service Program

CRTPGM CRTSRVPGM

-Other ILE Modules
-Existing Service Programs

C++ Source Files

  

Figure

 

1.

 

Program

 

Creation

 

in

 

ILE

  

4

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

“Managing

 

Activation

 

Groups”

 

on

 

page

 

59.

Program

 

and

 

Procedure

 

Calls

 

In

 

ILE,

 

you

 

can

 

write

 

programs

 

in

 

which

 

ILE

 

C++,

 

OPM,

 

and

 

EPM

 

programs

 

can

 

work

 

together

 

by

 

using

 

dynamic

 

program

 

calls.

 

When

 

using

 

such

 

calls,

 

the

 

calling

 

program

 

specifies

 

the

 

name

 

of

 

the

 

called

 

program.

 

This

 

name

 

is

 

resolved

 

to

 

an

 

address

 

at

 

run

 

time,

 

just

 

before

 

the

 

calling

 

program

 

passes

 

control

 

to

 

the

 

called

 

program.

 

You

 

can

 

optimize

 

the

 

use

 

of

 

dynamic

 

program

 

calls

 

by

 

using

 

static

 

procedure

 

calls.

 

Because

 

the

 

procedure

 

names

 

are

 

resolved

 

at

 

bind

 

time

 

(that

 

is,

 

when

 

you

 

create

 

the

 

program),

 

static

 

procedure

 

calls

 

are

 

faster

 

than

 

dynamic

 

calls.

 

In

 

addition,

 

static

 

procedure

 

calls

 

allow

 

operational

 

descriptors.

 

Operational

 

descriptors

 

are

 

used

 

to

 

call

 

bindable

 

APIs

 

or

 

procedures

 

written

 

in

 

other

 

ILE

 

languages.

 

Note:

  

A

 

procedure

 

is

 

a

 

self-contained

 

set

 

of

 

code

 

that

 

performs

 

a

 

task

 

and

 

then

 

returns

 

to

 

the

 

caller.

 

An

 

ILE

 

C++

 

module

 

consists

 

of

 

one

 

or

 

more

 

procedures.

 

See

 

Chapter

 

23,

 

“Using

 

ILE

 

C/C++

 

Call

 

Conventions,”

 

on

 

page

 

363

 

for

 

information

 

on

 

calls

 

between

 

programs

 

and

 

procedures.

 

Resource

 

Allocation

 

An

 

activation

 

group

 

is

 

the

 

key

 

element

 

in

 

governing

 

an

 

ILE

 

program’s

 

resources

 

and

 

behavior.

 

You

 

can

 

scope

 

commitment-control

 

operations

 

to

 

the

 

activation

 

group

 

level.

 

You

 

can

 

scope

 

file

 

overrides

 

and

 

shared

 

open

 

data

 

paths

 

to

 

the

 

activation

 

group

 

of

 

the

 

running

 

program.

 

The

 

behavior

 

of

 

a

 

program

 

upon

 

termination

 

is

 

affected

 

by

 

the

 

activation

 

group

 

in

 

which

 

the

 

program

 

runs.

Note:

  

For

 

more

 

information

 

on

 

activation

 

groups,

 

see:

 

v

   

“Activations

 

and

 

Activation

 

Groups”

 

on

 

page

 

50.

 

v

   

“Managing

 

Activation

 

Groups”

 

on

 

page

 

59.

Bindable

 

APIs

 

ILE

 

offers

 

a

 

number

 

of

 

bindable

 

APIs

 

that

 

supplement

 

ILE

 

C/C++

 

functions.

 

Bindable

 

APIs

 

provide

 

program

 

calling

 

and

 

activation

 

capability,

 

condition

 

and

 

storage

 

management,

 

math

 

functions,

 

and

 

dynamic

 

screen

 

management.

 

The

 

System

 

API

 

Reference

 

contains

 

information

 

on

 

bindable

 

APIs.

 

Run-Time

 

Exceptions

 

Many

 

C

 

and

 

C++

 

run-time

 

library

 

functions

 

have

 

a

 

return

 

value

 

associated

 

with

 

them

 

for

 

error-checking

 

purposes.

 

For

 

example,

 

the

 

_Rfeov()

 

function

 

returns

 

1

 

if

 

the

 

file

 

has

 

moved

 

from

 

one

 

volume

 

to

 

the

 

next.

 

The

 

fopen()

 

function

 

returns

 

NULL

 

if

 

a

 

file

 

is

 

not

 

opened

 

successfully.

 

ILE

 

C/C++

 

Run-Time

 

Library

 

Functions

 

contains

 

information

 

about

 

the

 

ILE

 

C/C++

 

function

 

return

 

values.

   

Chapter

 

1.

 

Introduction

 

to

 

the

 

ILE

 

C/C++

 

Compiler

 

5



Program

 

Debugging

 

In

 

ILE,

 

you

 

can

 

perform

 

source-level

 

debugging

 

on

 

any

 

program

 

written

 

in

 

one

 

or

 

more

 

ILE

 

languages,

 

provided

 

that

 

the

 

program

 

was

 

compiled

 

with

 

debug

 

information.

 

You

 

can:

 

v

   

Control

 

the

 

flow

 

of

 

a

 

program

 

by

 

using

 

debug

 

commands

 

while

 

the

 

program

 

is

 

running

 

v

   

Set

 

conditional

 

and

 

unconditional

 

breakpoints

 

prior

 

to

 

running

 

the

 

program

 

v

   

Step

 

through

 

a

 

specified

 

number

 

of

 

statements

 

and

 

display

 

or

 

change

 

variables

 

after

 

calling

 

the

 

program

When

 

a

 

program

 

stops

 

because

 

of

 

a

 

breakpoint,

 

a

 

step

 

command,

 

or

 

a

 

run-time

 

error,

 

the

 

pertinent

 

module

 

is

 

displayed

 

at

 

the

 

point

 

where

 

the

 

program

 

stopped.

 

At

 

that

 

point,

 

you

 

can

 

enter

 

more

 

debug

 

commands.

 

See

 

Part

 

3,

 

“Debugging

 

Programs,”

 

on

 

page

 

105

 

for

 

information

 

on

 

debugging

 

ILE

 

C/C++

 

programs.

   

6

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Part

 

2.

 

Creating

 

and

 

Compiling

 

Programs

 

This

 

part

 

describes

 

how

 

to:

 

v

   

Use

 

compiler

 

and

 

binder

 

commands

 

to

 

create

 

ILE

 

C/C++

 

programs

 

v

   

Create

 

ILE

 

service

 

programs

 

v

   

Work

 

with

 

procedures

 

and

 

data

 

items

 

that

 

can

 

be

 

exported

 

from

 

a

 

service

 

program

 

v

   

Run

 

ILE

 

programs

 

v

   

Improve

 

program

 

performance

 

v

   

Use

 

the

 

compiler

 

and

 

binder

 

programs

 

to

 

create

 

program

 

modules

 

and

 

executables

 

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

7



8

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

2.

 

Creating

 

a

 

Program

 

This

 

chapter

 

describes:

 

v

   

The

 

program

 

development

 

process

 

v

   

How

 

to

 

enter

 

source

 

statements

 

v

   

How

 

to

 

create

 

a

 

program

 

in

 

one

 

step

 

v

   

How

 

to

 

create

 

a

 

program

 

in

 

two

 

steps

 

v

   

Messaging

 

support

The

 

Program

 

Development

 

Process

 

During

 

the

 

development

 

process,

 

an

 

ILE

 

program

 

passes

 

through

 

five

 

stages:

 

v

   

Preparing

 

v

   

Compiling

 

v

   

Binding

 

v

   

Running

 

v

   

Debugging

These

 

process

 

steps

 

are

 

not

 

necessarily

 

performed

 

in

 

the

 

order

 

listed.

 

You

 

can

 

compile,

 

correct

 

compile-time

 

errors,

 

modify,

 

and

 

recompile

 

the

 

program

 

several

 

times

 

before

 

binding

 

it.

 

Preparing

 

a

 

Program

 

Preparing

 

a

 

program

 

involves

 

designing,

 

writing,

 

and

 

creating

 

source

 

code.

 

See

 

“Entering

 

Source

 

Statements”

 

on

 

page

 

10

 

for

 

more

 

information

 

about

 

creating

 

source

 

code.

 

Compiling

 

a

 

Program

 

Issue

 

a

 

compile

 

command

 

against

 

your

 

source,

 

and

 

fix

 

any

 

compile

 

errors

 

that

 

arise.

 

You

 

can

 

see

 

the

 

errors

 

either

 

as

 

messages

 

in

 

the

 

job

 

log

 

or

 

in

 

the

 

listing

 

(if

 

you

 

chose

 

to

 

create

 

one).

 

The

 

ILE

 

C/C++

 

compiler

 

includes

 

the

 

following

 

compile

 

commands:

  

Compile

 

Command

 

Use

 

Description

 

CRTCMOD

 

Create

 

C

 

Module

 

The

 

Create

 

Module

 

command

 

creates

 

a

 

module

 

object.

 

If

 

your

 

program

 

will

 

include

 

objects

 

from

 

more

 

than

 

one

 

source

 

file,

 

you

 

must

 

use

 

the

 

Create

 

Module

 

command

 

for

 

each

 

source

 

file,

 

and

 

then

 

run

 

CRTPGM

 

specifying

 

all

 

the

 

required

 

*MODULEs

 

to

 

create

 

the

 

bound

 

program.

 

CRTCPPMOD

 

Create

 

C++

 

Module

 

CRTBNDC

 

Create

 

Bound

 

C

 

Program

 

The

 

Create

 

Bound

 

Program

 

command

 

performs

 

both

 

the

 

module

 

creation

 

and

 

the

 

binding

 

operation

 

in

 

one

 

step,

 

and

 

produces

 

a

 

*PGM

 

object

 

from

 

a

 

single

 

source

 

file.

 

CRTBNDCPP

 

Create

 

Bound

 

C++

 

Program

 

Note:

 

The

 

compile

 

command

 

might

 

also

 

originate

 

in

 

a

 

CL

 

program

 

or

 

makefile.

   

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

9



See

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference

 

for

 

more

 

information

 

about

 

the

 

Create

 

Module

 

and

 

Create

 

Bound

 

Program

 

commands

 

and

 

their

 

options.

 

Note:

 

In

 

the

 

following

 

pages:

 

1.

   

CRTCMOD

 

and/or

 

CRTCPPMOD

 

may

 

be

 

referred

 

to

 

as

 

simply

 

the

 

″Create

 

Module″

 

command.

 

2.

   

CRTBNDC

 

and/or

 

CRTBNDCPP

 

may

 

be

 

referred

 

to

 

as

 

simply

 

the

 

″Create

 

Bound

 

Program″

 

command.

 

3.

   

Examples

 

may

 

show

 

the

 

use

 

of

 

either

 

of

 

the

 

C

 

or

 

C++

 

versions

 

of

 

the

 

Create

 

Module

 

and

 

Create

 

Bound

 

Program

 

commands.

 

Unless

 

specifically

 

stated

 

otherwise,

 

both

 

C

 

and

 

C++

 

versions

 

of

 

these

 

commands

 

function

 

in

 

the

 

same

 

way

 

and

 

can

 

be

 

used

 

interchangeably,

 

according

 

to

 

the

 

language

 

of

 

the

 

source

 

program

 

being

 

compiled.

Binding

 

Modules

 

If

 

you

 

created

 

modules

 

during

 

compilation,

 

you

 

need

 

to

 

bind

 

the

 

module

 

objects

 

together

 

using

 

the

 

Create

 

Program

 

(CRTPGM)

 

or

 

Create

 

Service

 

Program

 

(CRTSRVPGM)

 

commands.

 

The

 

result

 

is

 

an

 

executable

 

*PGM

 

or

 

*SRVPGM

 

object.

 

Binding

 

combines

 

one

 

or

 

more

 

modules

 

into

 

a

 

program

 

(*PGM)

 

or

 

a

 

service

 

program

 

(*SRVPGM).

 

Modules

 

written

 

in

 

ILE

 

C

 

or

 

C++

 

can

 

be

 

bound

 

to

 

modules

 

written

 

in

 

any

 

other

 

ILE

 

language.

 

C++

 

programs

 

can

 

use

 

routines

 

from

 

C++

 

class

 

libraries,

 

C

 

libraries,

 

and

 

any

 

ILE

 

service

 

program.

 

The

 

binder

 

resolves

 

addresses

 

within

 

each

 

module,

 

import

 

requests

 

and

 

export

 

offers

 

between

 

modules

 

that

 

are

 

being

 

bound

 

together.

 

Once

 

a

 

program

 

is

 

created,

 

you

 

can

 

later

 

update

 

it

 

using

 

the

 

Update

 

Program

 

(UPDPGM)

 

or

 

Update

 

Service

 

Program

 

(UPDSRVPGM)

 

commands.

 

These

 

commands

 

are

 

useful

 

because

 

you

 

only

 

need

 

to

 

have

 

the

 

new

 

or

 

changed

 

modules

 

available

 

when

 

you

 

want

 

to

 

update

 

the

 

program.

 

Running

 

or

 

Calling

 

Objects

 

*CMD

 

objects

 

are

 

run,

 

while

 

*PGM

 

objects

 

are

 

called.

 

For

 

example,

 

to

 

run

 

HELLO

 

*CMD,

 

type

 

HELLO

 

on

 

a

 

command

 

line

 

and

 

press

 

Enter.

 

To

 

run

 

HELLO

 

*PGM,

 

type

 

CALL

 

HELLO

 

on

 

the

 

QCMD

 

line

 

and

 

press

 

Enter.

 

Debugging

 

a

 

Program

 

Debugging

 

allows

 

you

 

to

 

detect,

 

diagnose,

 

and

 

eliminate

 

run-time

 

errors

 

in

 

a

 

program.

 

You

 

can

 

use

 

the

 

ILE

 

source

 

debugger

 

to

 

debug

 

ILE

 

or

 

OPM

 

programs.

 

For

 

information

 

about

 

ILE

 

debugging

 

considerations,

 

see

 

ILE

 

Concepts,

 

SC41-5606-07

 

Entering

 

Source

 

Statements

 

Before

 

you

 

can

 

start

 

an

 

edit

 

session

 

and

 

enter

 

your

 

source

 

statements,

 

you

 

must

 

create

 

a

 

library

 

and

 

a

 

source

 

physical

 

file.

 

You

 

can

 

also

 

compile

 

source

 

statements

 

from

 

Integrated

 

File

 

System

 

(IFS)

 

files.

 

See

 

“Using

 

the

 

Integrated

 

File

 

System

 

(IFS)”

 

on

 

page

 

211

 

for

 

details.

 

You

 

can

 

use

 

the

 

Start

 

Programming

 

Development

 

Manager

 

(STRPDM)

 

command

 

to

 

start

 

an

 

edit

 

session,

 

and

 

enter

 

your

 

source

 

statements.

   

10

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Besides

 

Programming

 

Development

 

Manager

 

(PDM),

 

there

 

are

 

several

 

other

 

ways

 

to

 

enter

 

your

 

source:

 

v

   

The

 

Copy

 

File

 

(CPYF)

 

command.

 

v

   

The

 

Start

 

Source

 

Entry

 

Utility

 

(STRSEU)

 

command.

 

v

   

The

 

Programmer

 

Menu.

This

 

is

 

by

 

no

 

means

 

an

 

exhaustive

 

list.

 

There

 

are

 

other

 

ways

 

of

 

creating

 

source

 

and

 

placing

 

it

 

on

 

an

 

iSeries

 

system,

 

including

 

NFS

 

and

 

ftp.

 

Example

 

Of

 

Creating

 

a

 

Source

 

File

 

The

 

following

 

example

 

shows

 

you

 

how

 

to

 

create

 

a

 

library,

 

a

 

source

 

physical

 

file,

 

a

 

member,

 

start

 

an

 

edit

 

session,

 

enter

 

source

 

statements,

 

and

 

save

 

the

 

member.

 

Instructions

 

1.

   

To

 

create

 

a

 

library

 

called

 

MYLIB,

 

enter:

 

CRTLIB

 

LIB(MYLIB)

 

2.

   

To

 

create

 

a

 

source

 

physical

 

file

 

called

 

QCSRC

 

in

 

library

 

MYLIB,

 

enter

 

CRTSRCPF

 

FILE(MYLIB/QCSRC)

 

TEXT(’Source

 

physical

 

file

 

for

 

all

 

ILE

 

C

 

programs’)

 

QCSRC

 

is

 

the

 

default

 

source

 

file

 

name

 

for

 

ILE

 

C

 

commands

 

that

 

are

 

used

 

to

 

create

 

modules

 

and

 

programs.

 

For

 

ILE

 

C++

 

commands,

 

the

 

corresponding

 

default

 

is

 

QCPPSRC.

 

For

 

information

 

about

 

how

 

to

 

copy

 

this

 

file

 

to

 

an

 

Integrated

 

File

 

System

 

file,

 

see

 

“Using

 

the

 

Integrated

 

File

 

System

 

(IFS)”

 

on

 

page

 

211.

 

3.

   

To

 

start

 

an

 

edit

 

session

 

enter:

 

STRPDM

 

4.

   

Choose

 

option

 

3

 

(Work

 

with

 

members);

 

specify

 

the

 

source

 

file

 

name

 

QCSRC,

 

and

 

the

 

library

 

MYLIB.

 

5.

   

Press

 

F6

 

(Create),

 

enter

 

the

 

member

 

name

 

T1520ALP,

 

and

 

source

 

type

 

C.

 

The

 

SEU

 

Edit

 

display

 

appears

 

ready

 

for

 

you

 

to

 

enter

 

your

 

source

 

statements.

 

6.

   

Type

 

the

 

source

 

shown

 

in

 

“Source

 

Code

 

Sample”

 

into

 

your

 

SEU

 

Edit

 

display.

 

Trigraph

 

sequences

 

can

 

be

 

used

 

in

 

place

 

of

 

square

 

brackets,

 

as

 

demonstrated

 

in

 

Figure

 

2

 

on

 

page

 

12.

 

Note:

  

For

 

more

 

information

 

about

 

using

 

trigraph

 

sequences,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference.

 

7.

   

Press

 

F3

 

(Exit)

 

to

 

go

 

to

 

the

 

Exit

 

display.

 

Type

 

Y

 

(Yes)

 

to

 

save

 

the

 

member

 

T1520ALP.

Source

 

Code

 

Sample

 

The

 

ILE

 

C

 

compiler

 

recognizes

 

source

 

code

 

written

 

in

 

any

 

single-byte

 

EBCDIC

 

CCSID

 

(Coded

 

Character

 

Set

 

Identifier)

 

except

 

CCSID

 

290,

 

905

 

and

 

1026.

 

See

 

Chapter

 

31,

 

“Internationalizing

 

a

 

Program,”

 

on

 

page

 

521

 

for

 

information

 

on

 

CCSIDs.

 

Some

 

characters

 

from

 

the

 

C

 

and

 

C++

 

character

 

set

 

are

 

not

 

available

 

in

 

all

 

environments.

 

You

 

can

 

enter

 

these

 

characters

 

into

 

a

 

C

 

or

 

C++

 

source

 

program

 

using

 

a

 

sequence

 

of

 

three

 

characters

 

called

 

a

 

trigraph.

 

Note:

  

For

 

more

 

information

 

about

 

using

 

trigraph

 

sequences,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference.

  

Chapter

 

2.

 

Creating

 

a

 

Program

 

11



The

 

C

 

compiler

 

also

 

supports

 

digraphs.

 

(The

 

C++

 

compiler

 

does

 

not

 

support

 

digraphs.)

    

Creating

 

a

 

Program

 

in

 

One

 

Step

 

You

 

can

 

use

 

the

 

CRTBNDC

 

and

 

CRTBNDCPP

 

Create

 

Bound

 

Program

 

commands

 

to

 

create

 

a

 

program

 

(*PGM

 

object)

 

in

 

one

 

step.

 

The

 

Create

 

Bound

 

Program

 

commands

 

combine

 

the

 

steps

 

of

 

compiling

 

and

 

binding.

 

Using

 

them

 

is

 

the

 

same

 

as

 

first

 

calling

 

the

 

CRTCMOD

 

or

 

CRTCPPMOD

 

/*

 

This

 

program

 

reads

 

input

 

from

 

the

 

terminal,

 

displays

 

characters,

 

*/

 

/*

 

and

 

sums

 

and

 

prints

 

the

 

digits.

 

Enter

 

a

 

"+"

 

character

 

to

         

*/

 

/*

 

indicate

 

EOF

 

(end-of-file).

                                      

*/

    

#define

 

MAXLEN

 

60

               

/*

 

The

 

maximum

 

input

 

line

 

size.

    

*/

    

#include

 

<stdio.h>

  

#include

 

<ctype.h>

    

void

 

main(void)

  

{

     

int

  

c;

     

int

  

i

 

=

 

0,

 

j

 

=

 

0;

     

int

  

sum

 

=

 

0;

     

int

  

count,

 

cnt;

     

int

  

num[MAXLEN];

            

/*

 

An

 

array

 

of

 

digits.

             

*/

     

char

 

letter??(MAXLEN??);

     

/*

 

An

 

array

 

of

 

characters.

 

Trigraphs

                                    

replace

 

the

 

square

 

brackets.

    

*/

       

while

 

(

 

(

 

c

 

=

 

getchar(

 

)

 

)

 

!=

 

’+’

 

)

     

{

        

if

 

(

 

isalpha

 

(

 

c

 

)

 

)

      

/*

 

A

 

test

 

for

 

an

 

alphabetic

        

*/

        

{

                         

/*

 

character.

                      

*/

            

letter[i++]

 

=

 

c;

        

}

        

else

 

if

 

(

 

isdigit

 

(

 

c

 

)

 

)

 

/*

 

A

 

test

 

for

 

a

 

decimal

 

digit.

     

*/

        

{

            

num??(j++??)

 

=

 

c

 

-

 

’0’;

  

/*

 

Trigraphs

 

replace

 

the

 

square

                                        

brackets.

                   

*/

        

}

     

}

     

printf

 

(

 

"Characters

 

are

 

"

 

);

     

for

 

(

 

count

 

=

 

0;

 

count

 

<

 

i;

 

++count

 

)

     

{

        

printf

 

(

 

"%c",

 

letter[count]

 

);

      

}

     

printf(

 

"\nSum

 

of

 

Digits

 

is

 

"

 

);

     

for

 

(

 

cnt

 

=

 

0;

 

cnt

 

<

 

j;

 

++cnt

 

)

     

{

         

sum

 

+=

 

num[cnt];

     

}

     

printf

 

(

 

"%d\n",

 

sum

 

);

  

}

 

Figure

 

2.

 

ILE

 

C

 

Source

 

to

 

Add

 

Integers

 

and

 

Print

 

Characters

  

12

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Create

 

Module

 

command,

 

then

 

calling

 

the

 

Create

 

Program

 

(CRTPGM)

 

command,

 

except

 

that

 

the

 

module

 

created

 

by

 

the

 

Create

 

Module

 

command

 

step

 

is

 

deleted

 

after

 

the

 

CRTPGM

 

step.

 

To

 

use

 

the

 

Create

 

Bound

 

Program

 

commands,

 

the

 

source

 

member

 

must

 

contain

 

a

 

main()

 

function.

Note:

  

When

 

a

 

CRTPGM

 

parameter

 

does

 

not

 

appear

 

in

 

the

 

Create

 

Bound

 

Program

 

command,

 

the

 

CRTPGM

 

parameter

 

default

 

is

 

used.

 

For

 

example,

 

the

 

parameter

 

ACTGRP(*NEW)

 

is

 

the

 

default

 

for

 

the

 

CRTPGM

 

command,

 

and

 

is

 

used

 

for

 

the

 

Create

 

Bound

 

Program

 

command.

 

You

 

can

 

change

 

the

 

CRTPGM

 

parameter

 

defaults

 

by

 

using

 

the

 

Change

 

Command

 

Defaults

 

(CHGCMDDFT)

 

command.

 

You

 

can

 

use

 

the

 

CRTSQLCI

 

or

 

CRTSQLCPPI

 

command

 

to

 

start

 

the

 

ILE

 

C

 

compiler

 

and

 

create

 

a

 

program

 

object.

 

The

 

SQL

 

database

 

can

 

be

 

accessed

 

from

 

an

 

ILE

 

C/C++

 

program

 

if

 

you

 

embed

 

SQL

 

statements

 

in

 

the

 

ILE

 

C/C++

 

source.

 

Example:

 

1.

   

To

 

create

 

the

 

program

 

T1520ALP,

 

using

 

the

 

source

 

found

 

in

 

Figure

 

2

 

on

 

page

 

12,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520ALP)

 

SRCFILE(QCPPLE/QACSRC)

     

TEXT(’Adds

 

integers

 

and

 

prints

 

characters’)

 

OUTPUT(*PRINT)

         

OPTION(*SHOWINC

 

*NOLOGMSG)

 

FLAG(30)

 

MSGLMT(10)

             

CHECKOUT(*PARM)

 

DBGVIEW(*ALL)

 

The

 

options

 

specified

 

are:

 

v

   

OUTPUT(*PRINT)

 

-

 

specifies

 

that

 

you

 

want

 

a

 

compiler

 

listing.

 

v

   

OPTION(*SHOWINC

 

*NOLOGMSG)

 

-

 

specifies

 

that

 

you

 

want

 

to

 

expand

 

include

 

files

 

in

 

a

 

compiler

 

listing

 

and

 

not

 

log

 

messages

 

in

 

the

 

job

 

log.

 

v

   

FLAG(30)

 

-

 

specifies

 

that

 

you

 

want

 

severity

 

level

 

30

 

messages

 

to

 

appear

 

in

 

the

 

listing.

 

v

   

MSGLMT(10)

 

—

 

specifies

 

that

 

you

 

want

 

compilation

 

to

 

stop

 

after

 

11

 

messages

 

at

 

severity

 

level

 

30.

 

v

   

CHECKOUT(*PARM)

 

—

 

shows

 

a

 

list

 

of

 

function

 

parameters

 

not

 

used.

 

v

   

DBGVIEW(*ALL)

 

specifies

 

that

 

you

 

want

 

all

 

three

 

views

 

and

 

debug

 

data

 

to

 

debug

 

this

 

program.
2.

   

To

 

see

 

the

 

compiler

 

listing,

 

enter

 

one

 

of

 

the

 

following

 

CL

 

commands:

 

v

   

DSPJOB

 

and

 

then

 

select

 

option

 

4

 

(Display

 

spooled

 

files)

 

v

   

WRKJOB

 

and

 

then

 

select

 

option

 

4

 

(Work

 

with

 

spooled

 

files)

 

v

   

WRKOUTQ

 

queue-name

 

v

   

WRKSPLF

 

Select

 

an

 

option

 

to

 

see

 

the

 

compiler

 

listing.

 

3.

   

To

 

run

 

the

 

program

 

enter:

 

CALL

 

PGM(MYLIB/T1520ALP)

 

4.

   

Type

 

a

 

and

 

press

 

Enter.

 

Type

 

9

 

and

 

press

 

Enter.

 

Type

 

b

 

and

 

press

 

Enter.

 

Type

 

8

 

and

 

press

 

Enter.

 

Type

 

+

 

and

 

press

 

Enter.

  

The

 

interactive

 

session

 

is

 

as

 

shown:

   

Chapter

 

2.

 

Creating

 

a

 

Program

 

13



>

 

a

   

>

 

9

   

>

 

b

   

>

 

8

   

>

 

+

     

Characters

 

are

 

ab

     

Sum

 

of

 

Digits

 

is

 

17

     

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

Creating

 

a

 

Program

 

in

 

Two

 

Steps

 

To

 

take

 

advantage

 

of

 

the

 

flexibility

 

that

 

ILE

 

C/C++

 

offers,

 

you

 

can

 

compile

 

and

 

bind

 

source

 

code

 

into

 

an

 

ILE

 

C/C++

 

program

 

in

 

two

 

steps:

 

1.

   

In

 

the

 

first

 

step,

 

you

 

create

 

one

 

or

 

more

 

ILE

 

C/C++

 

module

 

objects

 

(*MODULE)

 

from

 

their

 

respective

 

source

 

members

 

using

 

the

 

Create

 

Module

 

command.

 

2.

   

In

 

the

 

second

 

step,

 

you

 

use

 

the

 

Create

 

Program

 

(CRTPGM)

 

command

 

to

 

bind

 

one

 

or

 

more

 

of

 

these

 

module

 

objects

 

into

 

an

 

executable

 

ILE

 

program

 

object

 

(*PGM).

 

Binding

 

is

 

the

 

process

 

of

 

combining

 

one

 

or

 

multiple

 

modules

 

and

 

optional

 

service

 

programs,

 

and

 

resolving

 

external

 

symbols

 

between

 

them.

 

The

 

system

 

code

 

that

 

combines

 

modules

 

and

 

resolves

 

symbols

 

is

 

called

 

the

 

binder.

For

 

example,

     

CRTCMOD

 

HELLO

     

CRTPGM

 

HELLO

     

CALL

 

HELLO

 

Using

 

modules

 

has

 

these

 

advantages:

 

v

   

Modules

 

are

 

easier

 

to

 

maintain.

 

It

 

is

 

easier

 

to

 

maintain

 

a

 

small

 

module

 

representing

 

a

 

single

 

function

 

than

 

to

 

maintain

 

an

 

entire

 

program.

 

For

 

example,

 

if

 

you

 

change

 

only

 

a

 

line

 

or

 

two

 

in

 

a

 

module,

 

you

 

may

 

only

 

need

 

to

 

recompile

 

the

 

module,

 

rather

 

than

 

the

 

entire

 

program.

 

v

   

Modules

 

are

 

easier

 

to

 

test.

 

Testing

 

of

 

functions

 

can

 

be

 

done

 

in

 

isolation.

 

You

 

do

 

not

 

have

 

to

 

run

 

the

 

entire

 

program.

 

A

 

test

 

harness

 

which

 

includes

 

the

 

module

 

under

 

test

 

can

 

be

 

used

 

instead.

 

v

   

Modules

 

are

 

easier

 

to

 

code.

 

You

 

can

 

subdivide

 

the

 

work

 

into

 

smaller

 

source

 

members

 

rather

 

than

 

coding

 

an

 

entire

 

program

 

in

 

a

 

single

 

source

 

file.

 

v

   

Modules

 

can

 

be

 

reused

 

in

 

different

 

application

 

programs.

Identifying

 

Program

 

and

 

User

 

Entry

 

Procedures

 

When

 

a

 

module

 

object

 

is

 

created,

 

a

 

program

 

entry

 

procedure

 

(PEP)

 

and

 

a

 

user

 

entry

 

procedure

 

(UEP)

 

may

 

also

 

be

 

generated.

 

Both

 

ILE

 

C

 

and

 

C++

 

require

 

the

 

main()

 

function,

 

but

 

in

 

ILE

 

C,

 

it

 

becomes

 

the

 

UEP

 

of

 

an

 

ILE

 

program.

 

After

 

the

 

PEP

 

runs,

 

it

 

calls

 

the

 

associated

 

UEP,

 

and

 

starts

 

the

 

ILE

 

program

 

running.

 

As

 

part

 

of

 

the

 

binding

 

process,

 

a

 

procedure

 

must

 

be

 

identified

 

as

 

the

 

startup

 

procedure,

 

or

 

program

 

entry

 

procedure

 

(PEP).

 

When

 

a

 

program

 

is

 

called,

 

the

 

PEP

 

receives

 

the

 

command

 

line

 

parameters

 

and

 

is

 

given

 

initial

 

control

 

for

 

the

 

program.

 

The

 

procedures

 

that

 

get

 

control

 

from

 

the

 

PEP

 

are

 

called

 

user

 

entry

 

procedures

 

(UEP).

   

14

 

ILE

 

C/C++

 

Programmer’s

 

Guide



An

 

ILE

 

module

 

contains

 

a

 

program

 

entry

 

procedure

 

only

 

if

 

it

 

contains

 

a

 

main()

 

function.

 

Therefore,

 

one

 

of

 

the

 

modules

 

being

 

bound

 

into

 

the

 

program

 

must

 

contain

 

a

 

main()

 

function.

 

Understanding

 

the

 

Internal

 

Structure

 

of

 

a

 

Program

 

Object

 

Figure

 

3

 

shows

 

the

 

internal

 

structure

 

of

 

a

 

typical

 

program

 

object,

 

MYPROG,

 

created

 

by

 

binding

 

two

 

modules,

 

TRNSRPT

 

and

 

INCALC.

 

In

 

this

 

example,

 

TRNSRPT

 

is

 

the

 

entry

 

module

 

containing

 

the

 

PEP,

 

in

 

addition

 

to

 

a

 

UEP.

 

Module

 

INCALC

 

contains

 

a

 

UEP

 

only.

    

Using

 

Static

 

Procedure

 

Calls

 

Within

 

a

 

bound

 

object,

 

procedures

 

can

 

be

 

called

 

using

 

static

 

procedure

 

calls.

 

These

 

bound

 

calls

 

are

 

faster

 

than

 

external

 

calls.

 

Therefore,

 

an

 

application

 

consisting

 

of

 

a

 

single

 

bound

 

program

 

with

 

many

 

bound

 

calls

 

should

 

perform

 

faster

 

than

 

a

 

similar

 

application

 

consisting

 

of

 

separate

 

programs

 

with

 

many

 

external

 

inter-program

 

calls.

 

Working

 

with

 

Binding

 

Directories

 

A

 

binding

 

directory

 

contains

 

the

 

names

 

of

 

the

 

modules

 

and

 

service

 

programs

 

that

 

you

 

may

 

need

 

when

 

creating

 

an

 

ILE

 

program

 

or

 

service

 

program.

 

Binding

 

directories

 

offer:

 

v

   

A

 

convenient

 

method

 

of

 

packaging

 

modules

 

or

 

service

 

programs

 

that

 

you

 

may

 

need

 

when

 

creating

 

an

 

ILE

 

program

 

or

 

service

 

program.

 

v

   

Reduce

 

program

 

size,

 

because

 

modules

 

or

 

service

 

programs

 

listed

 

in

 

a

 

binding

 

directory

 

are

 

used

 

only

 

if

 

they

 

are

 

needed.

Binding

 

directories

 

are

 

optional.

 

They

 

are

 

objects

 

identified

 

to

 

the

 

system

 

by

 

the

 

BNDDIR

 

parameter

 

on

 

the

 

CRTPGM

 

command.

 

MYPROG(*PGM)

TRNSRPT Module

INCALC Module

Program Entry Procedure

User Entry Procedure

User Entry Procedure

  

Figure

 

3.

 

Structure

 

of

 

Program

 

MYPROG

  

Chapter

 

2.

 

Creating

 

a

 

Program

 

15



Modules

 

or

 

service

 

programs

 

listed

 

in

 

a

 

binding

 

directory

 

are

 

used

 

only

 

if

 

they

 

provide

 

an

 

export

 

that

 

can

 

satisfy

 

any

 

currently

 

unresolved

 

import

 

requests.

 

Entries

 

in

 

the

 

binding

 

directory

 

may

 

refer

 

to

 

objects

 

that

 

do

 

not

 

yet

 

exist

 

at

 

the

 

time

 

the

 

binding

 

directory

 

is

 

created,

 

but

 

exist

 

later.

 

Creating

 

a

 

Binding

 

Directory

 

If

 

you

 

want

 

to

 

create

 

a

 

binding

 

directory,

 

use

 

the

 

Create

 

Binding

 

Directory

 

(CRTBNDDIR)

 

command

 

to

 

contain

 

the

 

names

 

of

 

modules

 

and

 

service

 

programs

 

that

 

your

 

ILE

 

C/C++

 

program

 

or

 

service

 

programs

 

may

 

need.

 

For

 

example,

 

CRTBNDDIR

 

BNDDIR(MYBNDDIR)

 

MODULES

 

(MOD1,

 

MOD2)

 

CRTCMOD

 

PROG(MYPROG)

 

BNDDIR

 

(MYBNDDIR)

 

or

 

CRTBNDDIR

 

BNDDIR(MYBNDDIR)

 

MODULES

 

(MOD1,

 

MOD2)

 

CRTCPPMOD

 

PROG(MYPROG)

 

BNDDIR

 

(MYBNDDIR)

 

Using

 

the

 

Binder

 

to

 

Create

 

a

 

Program

 

The

 

binder

 

is

 

invoked

 

through

 

the

 

Create

 

Program

 

(CRTPGM)

 

or

 

the

 

Create

 

Service

 

Program

 

(CRTSRVPGM)

 

commands.

 

The

 

CRTPGM

 

command

 

creates

 

a

 

program

 

object

 

from

 

one

 

or

 

more

 

module

 

object

 

objects

 

and,

 

if

 

required,

 

binds

 

to

 

one

 

or

 

more

 

service

 

programs.

 

The

 

CRTSRVPGM

 

command

 

creates

 

a

 

service

 

progam

 

object

 

from

 

one

 

or

 

more

 

module

 

objects

 

and,

 

if

 

required,

 

binds

 

to

 

one

 

or

 

more

 

service

 

programs.

 

See

 

Chapter

 

3,

 

“Service

 

Programs,”

 

on

 

page

 

23

 

for

 

more

 

information

 

about

 

service

 

programs.

 

The

 

CRTPGM

 

and

 

CRTSRVPGM

 

commands

 

invoke

 

an

 

OS/400®

 

component

 

referred

 

to

 

as

 

the

 

binder.

 

The

 

binder

 

processes

 

import

 

requests

 

for

 

procedure

 

names

 

and

 

data

 

item

 

names

 

from

 

specified

 

modules.

 

The

 

binder

 

then

 

tries

 

to

 

find

 

matching

 

exports

 

in

 

the

 

specified

 

modules,

 

service

 

programs,

 

and

 

binding

 

directories.

 

An

 

export

 

is

 

an

 

external

 

symbol

 

defined

 

in

 

a

 

module

 

or

 

program

 

that

 

is

 

available

 

for

 

use

 

by

 

other

 

modules

 

or

 

programs.

 

An

 

import

 

is

 

the

 

use

 

of,

 

or

 

reference

 

to,

 

the

 

name

 

of

 

a

 

procedure

 

or

 

data

 

item

 

that

 

is

 

not

 

defined

 

in

 

the

 

current

 

module

 

object.

 

You

 

can

 

bind

 

modules

 

created

 

by

 

the

 

compiler

 

with

 

modules

 

created

 

by

 

any

 

of

 

the

 

other

 

ILE

 

Create

 

Module

 

commands,

 

including

 

CRTRPGMOD,

 

CRTCMOD,

 

CRTCBLMOD,

 

or

 

CRTCLMOD,

 

or

 

other

 

ILE

 

compilers.

 

Note:

  

The

 

modules

 

or

 

service

 

programs

 

to

 

be

 

bound

 

must

 

already

 

have

 

been

 

created.

 

Preparing

 

to

 

Create

 

a

 

Program

 

Before

 

you

 

create

 

a

 

program

 

object

 

using

 

the

 

CRTPGM

 

command,

 

you

 

should:

 

1.

   

Establish

 

a

 

program

 

name.

 

2.

   

Identify

 

the

 

module(s)

 

and,

 

if

 

required,

 

the

 

service

 

programs

 

you

 

want

 

to

 

bind

 

into

 

a

 

program

 

object.

 

3.

   

Make

 

sure

 

that

 

the

 

program

 

has

 

a

 

program

 

entry

 

procedure

 

that

 

gets

 

control

 

when

 

a

 

dynamic

 

program

 

call

 

is

 

made.

 

(That

 

is,

 

one

 

module

 

must

 

contain

 

the

 

main()

 

function

 

of

 

the

 

program.)

  

You

 

indicate

 

which

 

module

 

contains

 

the

 

program

 

entry

 

procedure

 

through

 

the

 

ENTMOD

 

parameter.

 

The

 

default

 

is

 

ENTMOD(*FIRST),

 

which

 

means

 

that

 

the

   

16

 

ILE

 

C/C++

 

Programmer’s

 

Guide



module

 

containing

 

the

 

first

 

program

 

entry

 

procedure

 

found

 

in

 

the

 

list

 

for

 

the

 

MODULE

 

parameter

 

is

 

the

 

entry

 

module.

  

If

 

you

 

are

 

binding

 

more

 

than

 

one

 

ILE

 

module

 

together,

 

you

 

should

 

specify

 

ENTMOD(*FIRST)

 

or

 

else

 

specify

 

the

 

module

 

name

 

with

 

the

 

program

 

entry

 

procedure.

 

You

 

can

 

use

 

ENTMOD(*ONLY)

 

when

 

you

 

are

 

binding

 

only

 

one

 

module

 

into

 

a

 

program

 

object,

 

or

 

if

 

you

 

are

 

binding

 

several

 

modules

 

but

 

only

 

one

 

contains

 

a

 

program

 

entry

 

procedure.

 

For

 

example,

 

if

 

you

 

bind

 

a

 

module

 

with

 

a

 

main()

 

function

 

to

 

a

 

C

 

module

 

without

 

a

 

main()

 

function,

 

you

 

can

 

specify

 

ENTMOD(*ONLY).

 

4.

   

Identify

 

the

 

activation

 

group

 

that

 

the

 

program

 

is

 

to

 

use.

  

Specify

 

ACTGRP(*NEW)

 

if

 

your

 

program

 

has

 

no

 

special

 

requirements

 

or

 

if

 

you

 

are

 

not

 

sure

 

which

 

group

 

to

 

use.

  

Note

 

that

 

ACTGRP(*NEW)

 

is

 

the

 

default

 

activation

 

group

 

for

 

CRTPGM.

 

This

 

means

 

that

 

your

 

program

 

will

 

run

 

in

 

its

 

own

 

activation

 

group,

 

and

 

the

 

activation

 

group

 

will

 

terminate

 

once

 

the

 

program

 

terminates.

 

This

 

default

 

ensures

 

that

 

your

 

program

 

has

 

a

 

refresh

 

of

 

the

 

resources

 

necessary

 

to

 

run,

 

every

 

time

 

you

 

call

 

it.

  

See

 

“Activating

 

Groups”

 

on

 

page

 

21

 

for

 

more

 

information

 

on

 

unnamed

 

and

 

named

 

activation

 

groups.

Specifying

 

Parameters

 

for

 

the

 

CRTPGM

 

Command

 

Table

 

2

 

lists

 

CRTPGM

 

command

 

parameters

 

and

 

their

 

default

 

values.

 

Each

 

parameter

 

has

 

default

 

values

 

which

 

are

 

used

 

whenever

 

you

 

do

 

not

 

specify

 

your

 

own

 

values.

Note:

  

For

 

a

 

detailed

 

description

 

of

 

the

 

parameters,

 

,

 

see

 

the

 

CL

 

and

 

APIs

 

section

 

of

 

the

 

Programming

 

category

 

in

 

the

 

iSeries

 

400

 

Information

 

Center

 

at

 

this

 

Web

 

site:

 

http://www.ibm.com/eserver/iseries/infocenter.

  

Table

 

2.

 

Parameters

 

for

 

CRTPGM

 

Command

 

and

 

Their

 

Default

 

Values

 

Parameter

 

Group

 

Parameter(Default

 

Value)

 

Identification

 

PGM(library

 

name/program

 

name)

 

MODULE(*PGM)

 

TEXT(*ENTMODTXT)

 

Program

 

access

 

ENTMOD(*FIRST)

 

Binding

 

BNDSRVPGM(*NONE)

 

BNDDIR(*NONE)

 

Run

 

time

 

ACTGRP(*NEW)

 

Miscellaneous

 

OPTION(*GEN

 

*NODUPPROC

 

*NODUPVAR

 

*WARN

 

*RSLVREF)

 

DETAIL(*NONE)

 

ALWUPD(*YES)

 

ALWLIBUPD(*NO)

 

USRPRF(*USER)

 

REPLACE(*YES)

 

AUT(*LIBCRTAUT)

 

TGTRLS(*CURRENT)

 

ALWRINZ(*NO)

 

STGMDL(*SNGLVL)

 

IPA(*NO)

 

IPACTLFILE(*NONE)

 

IPARPLIL(*NO)

    

Chapter

 

2.

 

Creating

 

a

 

Program

 

17



How

 

Import

 

Requests

 

Are

 

Resolved

 

Whenever

 

modules

 

from

 

different

 

sources

 

are

 

combined

 

into

 

a

 

single

 

program,

 

the

 

compiler

 

might

 

have

 

to

 

process

 

duplicate

 

symbols.

 

Whenever

 

you

 

enter

 

a

 

CRTPGM

 

command,

 

the

 

ILE

 

compiler

 

resolves

 

import

 

requests

 

by:

 

1.

   

Copying

 

listed

 

modules

 

into

 

what

 

will

 

become

 

the

 

program

 

object

 

and

 

links

 

any

 

service

 

programs

 

to

 

the

 

program

 

object.

 

2.

   

Identifying

 

the

 

module

 

containing

 

the

 

program

 

entry

 

procedure

 

and

 

locates

 

the

 

first

 

import

 

in

 

this

 

module.

 

3.

   

Checking

 

the

 

modules

 

in

 

the

 

order

 

in

 

which

 

they

 

are

 

listed

 

and

 

matches

 

the

 

first

 

import

 

with

 

a

 

module

 

export.

 

4.

   

Returning

 

to

 

the

 

first

 

module

 

and

 

locates

 

the

 

next

 

import.

 

5.

   

Resolving

 

all

 

imports

 

in

 

the

 

first

 

module.

 

6.

   

Continuing

 

to

 

the

 

next

 

module

 

and

 

resolving

 

all

 

imports

 

in

 

each

 

subsequent

 

module

 

until

 

all

 

imports

 

have

 

been

 

resolved.

After

 

all

 

the

 

imports

 

have

 

been

 

resolved,

 

the

 

ILE

 

compiler

 

completes

 

the

 

binding

 

process

 

and

 

creates

 

the

 

program

 

object.

 

If

 

any

 

imports

 

cannot

 

be

 

resolved

 

with

 

an

 

export,

 

the

 

compiler

 

terminates

 

the

 

binding

 

process

 

without

 

creating

 

a

 

program

 

object.

 

Note:

  

If

 

you

 

have

 

specified

 

in

 

the

 

binder

 

language

 

that

 

a

 

variable

 

is

 

to

 

be

 

exported

 

(using

 

the

 

EXPORT

 

keyword),

 

it

 

is

 

possible

 

that

 

the

 

variable

 

name

 

will

 

be

 

identical

 

to

 

a

 

variable

 

in

 

another

 

procedure

 

within

 

the

 

bound

 

program

 

object.

 

You

 

can

 

use

 

the

 

*DUPPROC

 

option

 

on

 

the

 

CRTPGM

 

OPTION

 

parameter

 

to

 

allow

 

duplicate

 

procedure

 

names.

 

See

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference

 

for

 

further

 

information

 

on

 

how

 

to

 

handle

 

this

 

situation.

 

Using

 

a

 

Binder

 

Listing

 

The

 

binding

 

process

 

can

 

optionally

 

produce

 

a

 

binder

 

listing

 

that

 

describes

 

the

 

resources

 

used,

 

symbols

 

and

 

objects

 

encountered,

 

and

 

problems

 

that

 

were

 

resolved,

 

or

 

not

 

resolved,

 

in

 

the

 

binding

 

process.

 

The

 

listing

 

is

 

produced

 

as

 

a

 

spooled

 

file

 

for

 

the

 

job

 

you

 

use

 

to

 

enter

 

the

 

CRTPGM

 

command.

 

You

 

can

 

choose

 

a

 

DETAIL

 

parameter

 

value

 

to

 

generate

 

the

 

listing

 

at

 

three

 

levels

 

of

 

detail:

 

v

   

*BASIC

 

v

   

*EXTENDED

 

v

   

*FULL

The

 

default

 

is

 

not

 

to

 

generate

 

a

 

listing.

 

If

 

it

 

is

 

generated,

 

the

 

binder

 

listing

 

includes

 

the

 

sections

 

described

 

in

 

Table

 

3,

 

depending

 

on

 

the

 

value

 

specified

 

for

 

DETAIL.

  

Table

 

3.

 

Sections

 

of

 

the

 

Binder

 

Listing

 

Based

 

on

 

the

 

DETAIL

 

Parameter

 

Section

 

Name

 

*BASIC

 

*EXTENDED

 

*FULL

 

Command

 

Option

 

Summary

 

X

 

X

 

X

 

Brief

 

Summary

 

Table

 

X

 

X

 

X

 

Extended

 

Summary

 

Table

 

X

 

X

 

Binder

 

Information

 

Listing

 

X

 

X

   

18

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Table

 

3.

 

Sections

 

of

 

the

 

Binder

 

Listing

 

Based

 

on

 

the

 

DETAIL

 

Parameter

 

(continued)

 

Section

 

Name

 

*BASIC

 

*EXTENDED

 

*FULL

 

Cross-Reference

 

Listing

 

X

 

Binding

 

Statistics

 

X

    

The

 

information

 

in

 

this

 

listing

 

can

 

help

 

you

 

diagnose

 

problems

 

if

 

the

 

binding

 

was

 

not

 

successful,

 

or

 

give

 

feedback

 

about

 

what

 

the

 

binder

 

encountered

 

during

 

the

 

binding

 

process.

 

Figure

 

4

 

on

 

page

 

20

 

shows

 

the

 

basic

 

binder

 

listing

 

for

 

a

 

program

 

CVTHEXPGM.

 

Note

 

that

 

this

 

listing

 

is

 

taken

 

out

 

of

 

context.

 

It

 

only

 

serves

 

to

 

illustrate

 

the

 

type

 

of

 

information

 

you

 

may

 

find

 

in

 

a

 

binder

 

listing.

    

Chapter

 

2.

 

Creating

 

a

 

Program

 

19



Updating

 

a

 

Module

 

or

 

a

 

Program

 

Object

 

There

 

are

 

many

 

reasons

 

why

 

you

 

may

 

want

 

to

 

change

 

a

 

module

 

or

 

a

 

program

 

object:

 

v

   

An

 

object

 

may

 

need

 

to

 

be

 

changed

 

to

 

accommodate

 

enhancements,

 

or

 

for

 

maintenance

 

reasons.

  

You

 

can

 

isolate

 

what

 

needs

 

to

 

be

 

changed

 

by

 

using

 

debugging

 

information

 

or

 

the

 

binder

 

listing

 

from

 

the

 

CRTPGM

 

command.

 

From

 

this

 

information

 

you

 

can

 

determine

 

what

 

modules,

 

procedures,

 

or

 

fields

 

need

 

to

 

change.

 

v

   

You

 

may

 

want

 

to

 

change

 

the

 

optimization

 

level

 

or

 

observability

 

of

 

a

 

module

 

or

 

program.

 

xxxxxxxxxxxxx

 

xxxxxxxxxxxxxx

                                                    

Create

 

Program

                                                 

Page

     

1

 

5722SS1

 

V5R1M0

  

010525

                                                      

MYLIB

 

/CVTHEXPGM

   

TORAS597

  

00/12/07

    

16:25:32

  

Program

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

CVTHEXPGM

    

Library

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

    

MYLIB

  

Program

 

entry

 

procedure

 

module

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*FIRST

    

Library

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

  

Activation

 

group

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*NEW

  

Creation

 

options

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*GEN

        

*NODUPPROC

  

*NODUPVAR

   

*WARN

     

*RSLVREF

  

Listing

 

detail

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*BASIC

  

Allow

 

Update

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*YES

  

Allow

 

bound

 

*SRVPGM

 

library

 

name

 

update

 

.

 

.

 

.

 

.

 

.

 

.:

   

*NO

  

User

 

profile

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*USER

  

Replace

 

existing

 

program

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*YES

  

Authority

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*LIBCRTAUT

  

Target

 

release

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*CURRENT

  

Allow

 

reinitialization

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*NO

  

Storage

 

model

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.:

   

*SNGLVL

  

Interprocedural

 

analysis

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

  

.

 

.:

   

*NO

  

IPA

 

control

 

file

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*NONE

  

IPA

 

replace

 

IL

 

data

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.:

   

*NO

  

Text

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*ENTMODTXT

                                                          

Create

 

Program

                                               

Page

     

2

 

5722SS1

 

V5R1M0

  

010525

                                                       

MYLIB/CVTHEXPGM

  

TORAS597

 

00/12/07

 

16:25:32

  

Module

      

Library

              

Module

      

Library

              

Module

      

Library

              

Module

      

Library

  

CVTHEXPGM

   

MYLIB

  

Service

                          

Service

                          

Service

                          

Service

  

Program

     

Library

              

Program

     

Library

              

Program

     

Library

              

Program

     

Library

  

*NONE

  

Binding

                          

Binding

                          

Binding

                          

Binding

  

Directory

   

Library

              

Directory

   

Library

              

Directory

   

Library

              

Directory

   

Library

  

*NONE

                                                          

Create

 

Program

                                               

Page

     

3

 

5722SS1

 

V5R1M0

  

010525

                                                       

MYLIB/CVTHEXPGM

  

TORAS597

 

00/12/07

 

16:25:32

                                                         

Brief

 

Summary

 

Table

  

Program

 

entry

 

procedures

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

1

    

Symbol

    

Type

      

Library

     

Object

      

Bound

       

Identifier

              

*MODULE

   

MYLIB

       

CVTHEXPGM

   

*YES

        

_CXX_PEP_Fv

  

Multiple

 

strong

 

definitions

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

0

  

Unresolved

 

references

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

0

                                 

*

 

*

 

*

 

*

 

*

   

E

 

N

 

D

  

O

 

F

  

B

 

R

 

I

 

E

 

F

  

S

 

U

 

M

 

M

 

A

 

R

 

Y

  

T

 

A

 

B

 

L

 

E

   

*

 

*

 

*

 

*

 

*

                                                    

Create

 

Program

                                               

Page

     

4

 

5722SS1

 

V5R1M0

  

010525

                                                       

MYLIB/CVTHEXPGM

  

TORAS597

 

00/12/07

 

16:25:32

                                                          

Binding

 

Statistics

  

Symbol

 

collection

 

CPU

 

time

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

                

.001

  

Symbol

 

resolution

 

CPU

 

time

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

                

.000

  

Binding

 

directory

 

resolution

 

CPU

 

time

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

                

.158

  

Binder

 

language

 

compilation

 

CPU

 

time

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

                

.000

  

Listing

 

creation

 

CPU

 

time

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

                

.015

  

Program/service

 

program

 

creation

 

CPU

 

time

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

                

.030

  

Total

 

CPU

 

time

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

                

.562

  

Total

 

elapsed

 

time

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

               

2.618

                                  

*

 

*

 

*

 

*

 

*

   

E

 

N

 

D

  

O

 

F

  

B

 

I

 

N

 

D

 

I

 

N

 

G

  

S

 

T

 

A

 

T

 

I

 

S

 

T

 

I

 

C

 

S

   

*

 

*

 

*

 

*

 

*

 

*CPC5D07

 

-

 

Program

 

CVTHEXPGM

 

created

 

in

 

library

 

MYLIB.

                            

*

 

*

 

*

 

*

 

*

   

E

 

N

 

D

  

O

 

F

  

C

 

R

 

E

 

A

 

T

 

E

  

P

 

R

 

O

 

G

 

R

 

A

 

M

  

L

 

I

 

S

 

T

 

I

 

N

 

G

   

*

 

*

 

*

 

*

 

*

 

Figure

 

4.

 

Example

 

of

 

a

 

Basic

 

Binder

 

Listing

  

20

 

ILE

 

C/C++

 

Programmer’s

 

Guide



This

 

is

 

often

 

the

 

case

 

when

 

you

 

want

 

to

 

debug

 

a

 

program

 

or

 

module,

 

or

 

when

 

you

 

are

 

ready

 

to

 

put

 

a

 

program

 

into

 

production.

 

Such

 

changes

 

can

 

be

 

performed

 

more

 

quickly

 

and

 

use

 

fewer

 

system

 

resources

 

than

 

the

 

re-creation

 

of

 

the

 

object

 

in

 

question.

 

v

   

You

 

may

 

want

 

to

 

reduce

 

the

 

program

 

size

 

once

 

you

 

have

 

completed

 

an

 

application.

  

ILE

 

program

 

objects

 

have

 

additional

 

data

 

added

 

to

 

them,

 

which

 

makes

 

them

 

larger

 

than

 

similar

 

OPM

 

or

 

EPM

 

program

 

objects.

Each

 

of

 

the

 

above

 

approaches

 

requires

 

different

 

data

 

to

 

make

 

the

 

change.

 

Updating

 

a

 

Program

 

In

 

general,

 

you

 

can

 

update

 

a

 

program

 

by

 

replacing

 

modules

 

as

 

needed.

 

You

 

do

 

not

 

have

 

to

 

re-create

 

the

 

program

 

object.

 

The

 

ability

 

to

 

replace

 

specific

 

modules

 

is

 

helpful

 

if,

 

for

 

example,

 

you

 

are

 

supplying

 

an

 

application

 

to

 

other

 

sites

 

that

 

are

 

already

 

using

 

the

 

program.

 

You

 

need

 

only

 

send

 

the

 

revised

 

modules,

 

and

 

the

 

receiving

 

site

 

can

 

update

 

the

 

application

 

using

 

the

 

UPDPGM

 

and

 

UPDSRVPGM

 

commands.

 

The

 

update

 

commands

 

work

 

with

 

both

 

program

 

and

 

module

 

objects.

 

The

 

parameters

 

for

 

these

 

commands

 

are

 

very

 

similar

 

to

 

those

 

for

 

the

 

Create

 

Program

 

(CRTPGM)

 

command.

 

For

 

example,

 

to

 

replace

 

a

 

module

 

in

 

a

 

program,

 

you

 

would

 

enter

 

the

 

module

 

name

 

for

 

the

 

MODULE

 

parameter

 

and

 

the

 

library

 

name.

 

To

 

use

 

the

 

UPDPGM

 

command,

 

the

 

modules

 

to

 

be

 

replaced

 

must

 

be

 

located

 

in

 

the

 

same

 

libraries

 

they

 

were

 

in

 

when

 

the

 

program

 

was

 

created.

 

You

 

can

 

specify

 

that

 

all

 

modules,

 

or

 

only

 

some

 

subsets

 

of

 

modules,

 

are

 

to

 

be

 

replaced.

 

Activating

 

Groups

 

Activation

 

is

 

the

 

process

 

used

 

to

 

prepare

 

an

 

ILE

 

program

 

to

 

run.

 

Activation

 

allocates

 

and

 

initializes

 

static

 

storage

 

for

 

an

 

ILE

 

program,

 

and

 

completes

 

the

 

binding

 

of

 

ILE

 

programs

 

to

 

ILE

 

service

 

programs.

 

The

 

ACTGRP

 

parameter

 

on

 

the

 

CRTPGM

 

and

 

CRTSRVPGM

 

commands

 

specifies

 

the

 

activation

 

group

 

in

 

which

 

a

 

program

 

or

 

service

 

program

 

runs.

 

All

 

ILE

 

programs

 

and

 

service

 

programs

 

are

 

activated

 

within

 

a

 

substructure

 

of

 

a

 

job

 

called

 

an

 

activation

 

group.

 

This

 

substructure

 

contains

 

the

 

resources

 

necessary

 

to

 

run

 

the

 

ILE

 

programs.

 

The

 

static

 

and

 

automatic

 

program

 

variables

 

and

 

dynamic

 

storage

 

are

 

assigned

 

separate

 

address

 

spaces

 

for

 

each

 

activation

 

group.

 

Activation

 

and

 

activation

 

groups:

 

v

   

Help

 

ensure

 

that

 

ILE

 

programs

 

running

 

in

 

the

 

same

 

job

 

run

 

independently

 

without

 

intruding

 

on

 

each

 

other

 

(for

 

example,

 

commitment

 

control,

 

overrides,

 

shared

 

files)

 

by

 

scoping

 

resources

 

to

 

the

 

activation

 

group.

 

v

   

Scope

 

resources

 

to

 

the

 

ILE

 

program.

 

v

   

Uniquely

 

allocate

 

the

 

static

 

data

 

needed

 

by

 

the

 

ILE

 

program

 

or

 

service

 

program.

 

v

   

Change

 

the

 

symbolic

 

links

 

to

 

ILE

 

service

 

programs

 

into

 

physical

 

addresses.

  

Chapter

 

2.

 

Creating

 

a

 

Program

 

21



Messaging

 

Support

 

The

 

following

 

table

 

describes

 

the

 

level

 

of

 

compiler

 

messages

 

that

 

you

 

could

 

receive

 

during

 

compilation

 

of

 

your

 

source

 

code

  

Severity

 

Compiler

 

Response

 

Informational

 

(00)

 

Compilation

 

continues.

 

The

 

message

 

reports

 

conditions

 

found

 

during

 

compilation.

 

Warning

 

(10)

 

Compilation

 

continues.

 

The

 

message

 

reports

 

valid,

 

but

 

possibly

 

unintended,

 

conditions.

 

Error

 

(20)

 

Compilation

 

continues

 

and

 

object

 

code

 

is

 

generated.

 

Error

 

conditions

 

exist

 

that

 

the

 

compiler

 

can

 

correct,

 

but

 

the

 

program

 

might

 

not

 

run

 

correctly.

 

Severe

 

error

 

(30)

 

Compilation

 

continues,

 

but

 

object

 

code

 

is

 

not

 

generated.

 

Error

 

conditions

 

exist

 

that

 

the

 

compiler

 

cannot

 

correct.

 

Unrecoverable

 

error

 

(40)

 

The

 

compiler

 

halts.

 

An

 

internal

 

compiler

 

error

 

has

 

been

 

found.

 

This

 

message

 

should

 

be

 

reported

 

to

 

your

 

IBM

 

service

 

representative.

   

22

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

3.

 

Service

 

Programs

 

A

 

service

 

program

 

is

 

an

 

OS/400

 

object

 

of

 

type

 

*SRVPGM.

 

Service

 

programs

 

are

 

typically

 

used

 

for

 

common

 

functions

 

that

 

are

 

frequently

 

called

 

by

 

other

 

procedures

 

within

 

an

 

application

 

and

 

across

 

applications.

 

For

 

example,

 

the

 

ILE

 

compilers

 

use

 

service

 

programs

 

to

 

provide

 

run-time

 

services

 

such

 

as

 

math

 

functions

 

and

 

input/output

 

routines.

 

Service

 

programs

 

simplify

 

maintenance,

 

and

 

reduce

 

storage

 

requirements,

 

because

 

only

 

a

 

single

 

copy

 

of

 

a

 

service

 

program

 

is

 

maintained

 

and

 

stored.

 

This

 

chapter

 

describes:

 

v

   

The

 

difference

 

between

 

programs

 

and

 

service

 

programs

 

v

   

Public

 

interface

 

v

   

Considerations

 

when

 

creating

 

a

 

service

 

program

 

v

   

How

 

to

 

use

 

the

 

binder

 

to

 

create

 

a

 

service

 

program

 

v

   

How

 

to

 

create

 

a

 

service

 

program

Differences

 

Between

 

Programs

 

and

 

Service

 

Programs

 

A

 

service

 

program

 

differs

 

from

 

a

 

program

 

in

 

two

 

ways:

 

v

   

A

 

service

 

program

 

is

 

bound

 

to

 

existing

 

programs

 

or

 

other

 

service

 

programs.

 

It

 

cannot

 

run

 

independently.

 

v

   

A

 

service

 

program

 

does

 

not

 

contain

 

a

 

program

 

entry

 

procedure.

 

Therefore,

 

you

 

cannot

 

call

 

a

 

service

 

program

 

using

 

an

 

OS

 

linkage

 

specification.

 

However,

 

you

 

can

 

call

 

a

 

service

 

program

 

with

 

a

 

c

 

linkage

 

specification,

 

because

 

it

 

contains

 

at

 

least

 

one

 

user

 

entry

 

procedure.

 

A

 

service

 

program

 

may

 

have

 

data

 

exports

 

rather

 

than

 

a

 

user

 

entry

 

procedure.

 

v

   

Service

 

programs

 

are

 

bound

 

by

 

reference.

 

This

 

means

 

that

 

the

 

content

 

of

 

the

 

service

 

program

 

is

 

not

 

copied

 

into

 

the

 

program

 

to

 

which

 

it

 

is

 

bound.

 

Instead,

 

linkage

 

information

 

about

 

the

 

service

 

program

 

is

 

bound

 

into

 

the

 

program.

  

This

 

process

 

is

 

different

 

from

 

the

 

static

 

binding

 

process

 

used

 

to

 

bind

 

modules

 

into

 

programs.

 

However,

 

you

 

can

 

still

 

call

 

the

 

service

 

program’s

 

exported

 

procedures

 

as

 

if

 

they

 

were

 

statically

 

bound.

 

The

 

initial

 

activation

 

is

 

longer,

 

but

 

subsequent

 

calls

 

to

 

any

 

of

 

the

 

service

 

program’s

 

exported

 

procedures

 

are

 

faster

 

than

 

program

 

calls.

Public

 

Interface

 

The

 

public

 

interface

 

of

 

a

 

service

 

program

 

consists

 

of

 

the

 

names

 

of

 

the

 

exported

 

procedures

 

and

 

data

 

items

 

that

 

can

 

be

 

referenced

 

by

 

other

 

ILE

 

objects.

 

In

 

order

 

to

 

be

 

exported

 

from

 

an

 

ILE

 

service

 

program,

 

a

 

data

 

item

 

must

 

be

 

exported

 

from

 

one

 

of

 

the

 

module

 

objects

 

making

 

up

 

the

 

ILE

 

service

 

program.

 

The

 

exports

 

list

 

is

 

used

 

to

 

specify

 

the

 

public

 

interface

 

for

 

a

 

service

 

program.

 

A

 

signature

 

is

 

generated

 

from

 

the

 

procedure

 

and

 

data

 

item

 

names

 

listed

 

in

 

the

 

binder

 

language.

 

This

 

signature

 

can

 

then

 

be

 

used

 

to

 

validate

 

the

 

interface

 

to

 

the

 

service

 

program.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

23



As

 

long

 

as

 

the

 

public

 

interface

 

is

 

unchanged,

 

the

 

clients

 

of

 

a

 

service

 

program

 

do

 

not

 

have

 

to

 

be

 

recompiled

 

after

 

a

 

change

 

to

 

the

 

service

 

program.

 

Considerations

 

When

 

Creating

 

a

 

Service

 

Program

 

When

 

creating

 

a

 

service

 

program,

 

you

 

should

 

consider:

 

v

   

Whether

 

or

 

not

 

you

 

intend

 

to

 

update

 

the

 

program

 

at

 

a

 

later

 

date

 

v

   

Whether

 

or

 

not

 

any

 

updates

 

involve

 

changes

 

to

 

its

 

interface

If

 

the

 

interface

 

to

 

a

 

service

 

program

 

changes,

 

you

 

may

 

have

 

to

 

rebind

 

all

 

programs

 

bound

 

to

 

the

 

original

 

service

 

program.

 

However,

 

depending

 

on

 

the

 

changes

 

and

 

how

 

you

 

implement

 

them,

 

you

 

may

 

be

 

able

 

to

 

reduce

 

the

 

amount

 

of

 

rebinding

 

if

 

you

 

create

 

the

 

service

 

program

 

using

 

binder

 

language.

 

In

 

this

 

case,

 

after

 

updating

 

the

 

binder

 

language

 

source

 

to

 

identify

 

new

 

exports,

 

you

 

need

 

to

 

rebind

 

only

 

those

 

programs

 

that

 

require

 

the

 

new

 

exports.

 

Using

 

the

 

Binder

 

to

 

Create

 

a

 

Service

 

Program

 

Creating

 

a

 

service

 

program

 

involves

 

compiling

 

source

 

code

 

into

 

module

 

objects,

 

and

 

then

 

binding

 

one

 

or

 

more

 

module

 

objects

 

into

 

a

 

service

 

program

 

object

 

with

 

the

 

Create

 

Service

 

Program

 

(CRTSRVPGM)

 

command.

 

You

 

can

 

also

 

use

 

modules

 

created

 

with

 

other

 

ILE

 

language

 

compilers,

 

such

 

as

 

ILE

 

C/C++,

 

ILE

 

RPG/400,

 

or

 

ILE

 

COBOL/400.

 

Specifying

 

Parameters

 

for

 

the

 

CRTSRVPGM

 

Command

 

Table

 

4

 

lists

 

CRTSRVPGM

 

command

 

parameters

 

and

 

their

 

default

 

values..

 

For

 

a

 

detailed

 

description

 

of

 

the

 

parameters,

 

refer

 

to

 

the

 

CL

 

Reference

 

CHKxxx

 

through

 

CVTxxx

 

Commands:

 

SC41–5724.

 

Each

 

parameter

 

has

 

default

 

values

 

which

 

are

 

used

 

whenever

 

you

 

do

 

not

 

specify

 

your

 

own

 

values.

  

Table

 

4.

 

Parameters

 

and

 

Default

 

Values

 

for

 

CRTSRVPGM

 

Command

 

Parameter

 

Group

 

Parameter(Default

 

Value)

 

Identification

 

SRVPGM(library

 

name/service

 

program

 

name)

 

MODULE(*SRVPGM)

 

Program

 

access

 

EXPORT(*SRCFILE)

 

SRCFILE(*LIBL/QSRVSRC)

 

SRCMBR(*SRVPGM)

 

Binding

 

BNDSRVPGM(*NONE)

 

BNDDIR(*NONE)

 

Run

 

time

 

ACTGRP(*CALLER)

 

Miscellaneous

 

OPTION(*GEN

 

*NODUPPROC

 

*NODUPVAR

 

*WARN

 

*RSLVREF)

 

DETAIL(*NONE)

 

ALWUPD(*YES)

 

ALWRINZ(*NO)

 

REPLACE(*YES)

 

AUT(*LIBCRTAUT)

 

TEXT(*ENTMODTXT)

 

TGTRLS(*CURRENT)

 

USRPRF(*USER)

 

STGMDL(*SNGLVL)

 

IPA(*NO)

 

IPACTLFILE(*NONE)

 

IPARPLIL(*NO)

    

24

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Updating

 

or

 

Changing

 

a

 

Service

 

Program

 

You

 

can

 

update

 

or

 

change

 

a

 

service

 

program

 

in

 

the

 

same

 

way

 

you

 

modify

 

a

 

program

 

object.

 

In

 

other

 

words,

 

you

 

can:

 

v

   

Update

 

the

 

service

 

program,

 

using

 

the

 

Update

 

Service

 

Program

 

(UPDSRVPGM)

 

command.

 

v

   

Change

 

the

 

optimization

 

level,

 

using

 

the

 

Change

 

Service

 

Program

 

(CHGSRVPGM)

 

command

 

v

   

Remove

 

observability

 

(using

 

CHGSRVPGM)

 

v

   

Reduce

 

the

 

size,

 

using

 

the

 

Compress

 

Object

 

(CPROBJ)

 

command

See

 

“Updating

 

a

 

Module

 

or

 

a

 

Program

 

Object”

 

on

 

page

 

20

 

for

 

more

 

information

 

on

 

any

 

of

 

the

 

above

 

points.

 

If

 

you

 

use

 

binder

 

language,

 

a

 

service

 

program

 

can

 

be

 

updated

 

without

 

requiring

 

programs

 

calling

 

it

 

to

 

be

 

recompiled.

 

For

 

example,

 

to

 

add

 

a

 

new

 

procedure

 

to

 

an

 

existing

 

service

 

program:

 

1.

   

Create

 

a

 

module

 

object

 

for

 

the

 

new

 

procedure.

 

2.

   

Modify

 

the

 

binder-language

 

source

 

file

 

to

 

handle

 

the

 

interface

 

associated

 

with

 

the

 

new

 

procedure.

 

Add

 

any

 

new

 

export

 

statements

 

following

 

the

 

existing

 

ones.

 

See

 

“Updating

 

a

 

Service

 

Program

 

Export

 

List”

 

on

 

page

 

34

 

for

 

details

 

on

 

modifying

 

binder-language

 

source

 

files.

 

3.

   

Recreate

 

the

 

original

 

service

 

program

 

and

 

include

 

the

 

new

 

module.

Now

 

existing

 

programs

 

can

 

access

 

the

 

new

 

functions.

 

Because

 

the

 

old

 

exports

 

are

 

in

 

the

 

same

 

order,

 

they

 

can

 

still

 

be

 

used

 

by

 

the

 

existing

 

programs.

 

Until

 

it

 

is

 

necessary

 

to

 

also

 

update

 

the

 

existing

 

programs,

 

they

 

do

 

not

 

have

 

to

 

be

 

recompiled.

 

Using

 

Control

 

Language

 

(CL)

 

Commands

 

with

 

Service

 

Programs

 

The

 

following

 

CL

 

commands

 

can

 

be

 

used

 

with

 

service

 

programs:

 

v

   

Create

 

Service

 

Program

 

(CRTSRVPGM)

 

v

   

Change

 

Service

 

Program

 

(CHGSRVPGM)

 

v

   

Display

 

Service

 

Program

 

(DSPSRVPGM)

 

v

   

Delete

 

Service

 

Program

 

(DLTSRVPGM)

 

v

   

Update

 

Service

 

Program

 

(UPDSRVPGM)

 

v

   

Work

 

with

 

Service

 

Program

 

(WRKSRVPGM).

Creating,

 

Compiling,

 

and

 

Binding

 

a

 

Service

 

Program

 

The

 

example

 

in

 

this

 

section

 

is

 

used

 

to

 

show

 

how

 

to

 

create

 

a

 

service

 

program

 

SEARCH

 

that

 

can

 

be

 

called

 

by

 

other

 

programs

 

to

 

locate

 

a

 

character

 

string

 

in

 

any

 

given

 

string

 

of

 

characters.

 

This

 

section

 

describes

 

how

 

to:

 

v

   

Create

 

the

 

source

 

files

 

v

   

Compile

 

and

 

bind

 

the

 

service

 

program

 

v

   

Bind

 

the

 

service

 

program

 

to

 

a

 

program

  

Chapter

 

3.

 

Service

 

Programs

 

25



Creating

 

the

 

Source

 

Files

 

The

 

SEARCH

 

program

 

is

 

implemented

 

as

 

a

 

class

 

object

 

Search.

 

The

 

class

 

Search

 

contains:

 

v

   

Three

 

private

 

data

 

members:

 

skippat,

 

needle_p,

 

and

 

needle_size

 

v

   

Three

 

constructors,

 

each

 

taking

 

different

 

arguments

 

v

   

A

 

destructor

 

v

   

An

 

overloaded

 

function

 

where(),

 

which

 

takes

 

four

 

different

 

sets

 

of

 

arguments

The

 

service

 

program

 

is

 

composed

 

of

 

the

 

following

 

files:

 

v

   

A

 

user-defined

 

header

 

file

 

search.h

 

v

   

A

 

source

 

code

 

file

 

search.cpp

 

v

   

A

 

source

 

code

 

file

 

where.cpp

User

 

Header

 

File

 

The

 

class

 

and

 

function

 

declarations

 

are

 

placed

 

into

 

a

 

separate

 

header

 

file,

 

search.h,

 

as

 

shown

 

in

 

the

 

following

 

figure:

    

Source

 

Code

 

Files

 

If

 

the

 

definitions

 

for

 

the

 

member

 

functions

 

of

 

class

 

Search

 

are

 

not

 

inlined

 

in

 

the

 

class

 

declaration,

 

they

 

are

 

contained

 

in

 

two

 

separate

 

files:

 

v

   

The

 

source

 

file

 

search.cpp,

 

which

 

contains

 

constructor

 

definitions

 

for

 

class

 

Search

 

//

 

header

 

file

 

search.h

  

//

 

contains

 

declarations

 

for

 

class

 

Search,

 

and

 

inlined

 

function

   

//

 

definitions

     

#include

 

<iostream.h>

     

class

 

Search

  

{

     

private:

       

char

 

skippat[256];

       

char

 

*

 

needle_p;

       

int

  

needle_size;

     

public:

     

//

 

Constructors

       

Search(

 

unsigned

 

char

 

*

 

needle,

 

int

 

size);

       

Search

 

(

 

unsigned

 

char

 

*

 

needle);

       

Search

 

(

 

char

 

*

 

needle);

     

//Destructor

      

~Search

 

()

  

{

 

delete

 

needle_p;}

     

//Overloaded

 

member

 

functions

       

unsigned

 

int

 

where

 

(

 

char

 

*

 

haystack)

  

{

          

return

 

where

 

(haystack,

 

strlen(haystack));

       

}

       

unsigned

 

int

 

where

 

(

 

unsigned

 

char

 

*

 

haystack)

  

{

          

return

 

where

 

(haystack,

 

strlen((const

 

char

 

*)haystack));

       

}

       

unsigned

 

int

 

where

 

(

 

char

 

*

 

haystack,

 

int

 

size)

  

{

           

return

 

where

 

(

 

(unsigned

 

char

 

*)

 

haystack,

 

size);

       

}

       

unsigned

 

int

 

where

 

(

 

unsigned

 

char

 

*

 

haystack,

 

int

 

size);

   

};

 

Figure

 

5.

 

Example

 

of

 

Header

 

File

 

(search.h)

  

26

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

The

 

file

 

where.cpp,

 

which

 

contains

 

the

 

member

 

function

 

definition.

These

 

files

 

are

 

shown

 

in

 

the

 

following

 

figures:

   

//

 

where.cpp

 

//

 

contains

 

definition

 

of

 

overloaded

 

member

 

function

 

for

 

class

 

Search

       

#include

 

"search.h"

       

unsigned

 

int

 

Search::

 

where

 

(

 

unsigned

 

char

 

*

 

haystack,

 

int

 

size)

     

{

  

unsigned

 

int

 

i,

 

t;

        

int

 

j;

        

for

 

(

 

i=

 

needle_size-1,

 

j

 

=

 

needle_size-1;

 

j

 

>=

 

0;

 

--i,

 

--j

 

){

            

while

 

(

 

haystack[i]

 

!=

 

needle_p[j])

 

{

                

t

 

=

 

skippat

 

[

 

haystack

 

[i]]

 

;

                

i

 

+=

 

(needle_size

 

-

 

j

 

>

 

t)

 

?

 

needle_size

 

-

 

j

 

:

 

t

 

;

                

if

 

(i

 

>=

 

size)

                   

return

 

size;

                

j

 

=

 

needle_size

 

-

  

1;

            

}

        

}

        

return

 

++i;

     

}

 

The

 

modules

 

that

 

result

 

from

 

the

 

compilation

 

of

 

these

 

source

 

files,

 

SEARCH

 

and

 

WHERE,

 

are

 

bound

 

into

 

a

 

service

 

program,

 

SERVICE1.

 

//

 

source

 

file

 

search.cpp

 

//

 

contains

 

the

 

definitions

 

for

 

the

 

constructors

 

for

 

class

 

Search

    

#include

 

"search.h"

       

Search::Search(

 

unsigned

 

char

 

*

 

needle,

 

int

 

size)

        

:

 

needle_size(size)

 

,

 

needle_p

 

(

 

new

 

char

 

[size])

     

{

        

memset

 

(skippat,

 

needle_size,

 

256);

        

for

 

(unsigned

 

int

 

i=0;

 

i<size;

 

++i)

 

{

           

skippat

 

[needle

 

[i]]

 

=

 

size

 

-i-1;

        

}

        

memcpy

 

(needle_p,

 

needle,

 

needle_size);

     

}

     

Search::Search

 

(

 

unsigned

 

char

 

*

 

needle)

 

{

        

needle_size

 

=

 

strlen(

 

(const

 

char

 

*)needle)

 

;

        

needle_p

 

=

 

new

 

char

 

[needle_size];

        

memset

 

(skippat,

 

needle_size,

 

256);

        

for

 

(unsigned

 

int

 

i=0;

 

i<needle_size;

 

++i)

 

{

           

skippat

 

[needle

 

[i]]

 

=

 

needle_size

 

-i-1;

        

}

        

memcpy(needle_p,

 

needle,

 

needle_size);

     

}

     

Search::Search

 

(

 

char

 

*

 

needle)

 

{

        

needle_size

 

=

 

strlen(

 

needle)

 

;

        

needle_p

 

=

 

new

 

char

 

[needle_size];

        

memset

 

(skippat,needle_size,

 

256);

        

for

 

(unsigned

 

int

 

i=0;

 

i<needle_size;

 

++i)

 

{

           

skippat

 

[needle

 

[i]]

 

=

 

needle_size

 

-i-1;

        

}

        

memcpy(needle_p,

 

needle,

 

needle_size);

     

}

 

Figure

 

6.

 

Source

 

File

 

that

 

Contains

 

Constructor

 

Definitions

 

for

 

the

 

Search

 

Class

Figure

 

7.

 

File

 

that

 

Contains

 

the

 

Member

 

Function

 

Definition

 

for

 

the

 

Search

 

Class.

   

Chapter

 

3.

 

Service

 

Programs

 

27



Compiling

 

and

 

Binding

 

the

 

Service

 

Program

 

To

 

create

 

the

 

service

 

program

 

SERVICE1,

 

issue

 

the

 

following

 

commands:

 

CRTCPPMOD

 

MODULE(MYLIB/SEARCH)

 

SRCSTMF(search.cpp)

 

CRTCPPMOD

 

MODULE(MYLIB/WHERE)

 

SRCSTMF(where.cpp)

 

CRTSRVPGM

 

SRVPGM(MYLIB/SERVICE1)

 

MODULE(MYLIB/SEARCH

 

MYLIB/WHERE)

 

EXPORT(*ALL)

 

By

 

default,

 

the

 

binder

 

creates

 

the

 

service

 

program

 

in

 

your

 

current

 

library.

 

The

 

parameter

 

EXPORT(*ALL)

 

specifies

 

that

 

all

 

data

 

and

 

procedures

 

exported

 

from

 

the

 

modules

 

are

 

also

 

exported

 

from

 

the

 

service

 

program.

 

Binding

 

the

 

Service

 

Program

 

to

 

a

 

Program

 

In

 

the

 

following

 

example,

 

a

 

very

 

short

 

application

 

consisting

 

of

 

a

 

program

 

MYPROGA

 

is

 

bound

 

to

 

the

 

service

 

program.

 

The

 

source

 

code

 

for

 

MYPROGA,

 

MYPROGA.cpp,

 

is

 

shown

 

in

 

the

 

following

 

figure.

 

Note:

  

This

 

sample

 

application

 

has

 

been

 

reduced

 

to

 

minimal

 

functionality.

 

It’s

 

main

 

purpose

 

is

 

to

 

demonstrate

 

how

 

to

 

create

 

a

 

service

 

program.

  

The

 

program

 

creates

 

an

 

object

 

of

 

class

 

Search.

 

It

 

invokes

 

the

 

constructor

 

with

 

a

 

value

 

that

 

represents

 

the

 

string

 

of

 

characters

 

(″needle″)

 

to

 

be

 

searched

 

for.

 

It

 

calls

 

the

 

member

 

function

 

where()

 

with

 

the

 

string

 

to

 

be

 

searched

 

(″Find

 

the

 

needle

 

in

 

this

 

haystack″).

 

The

 

string

 

″needle″

 

is

 

located,

 

and

 

its

 

position

 

in

 

the

 

target

 

string

 

″Find

 

a

 

needle

 

in

 

this

 

haystack″

 

is

 

returned

 

and

 

printed.

 

To

 

create

 

the

 

program

 

MYPROGA

 

in

 

library

 

MYLIB,

 

and

 

bind

 

it

 

to

 

the

 

service

 

program

 

SERVICE1,

 

enter

 

the

 

following:

 

CRTPGM

 

PGM(MYLIB/MYPROGA)

 

SRCSTMF(myprogA.cpp)

 

BNDSRVPGM(MYLIB/SERVICE1)

 

Figure

 

9

 

on

 

page

 

29

 

shows

 

the

 

internal

 

and

 

external

 

function

 

calls

 

between

 

program

 

MYPROGA

 

and

 

service

 

program

 

SERVICE1.

  

//

 

myproga.cpp

 

//

 

Finds

 

a

 

character

 

string

 

in

 

another

 

character

 

string.

      

#include

 

<stdio.h>

    

#include

 

<iostream.h>

    

#include

 

<stdlib.h>

    

#include

 

"search.h"

    

#define

 

HS

 

"Find

 

the

 

needle

 

in

 

this

 

haystack"

      

void

 

main

 

()

 

{

       

int

 

i;

       

Search

 

token("needle");

       

i

 

=

 

token.where

 

(HS,

 

sizeof(HS));

       

cout

 

<<

 

"The

 

string

 

was

 

found

 

in

 

position

 

"

 

<<

 

i

 

<<

 

endl;

    

}

 

Figure

 

8.

 

Source

 

Code

 

for

 

myproga.cpp

  

28

 

ILE

 

C/C++

 

Programmer’s

 

Guide



When

 

MYPROGA

 

is

 

created,

 

it

 

includes

 

information

 

regarding

 

the

 

interface

 

it

 

uses

 

to

 

interact

 

with

 

the

 

service

 

program.

 

To

 

run

 

the

 

program,

 

enter:

 

CALL

 

MYLIB/MYPROGA

 

During

 

the

 

process

 

of

 

making

 

MYPROGA

 

ready

 

to

 

run,

 

the

 

system

 

verifies

 

that:

 

v

   

The

 

service

 

program

 

SERVICE1

 

in

 

library

 

MYLIB

 

can

 

be

 

found.

 

v

   

The

 

public

 

interface

 

used

 

by

 

MYPROGA

 

when

 

it

 

was

 

created

 

is

 

still

 

valid

 

at

 

run

 

time.

If

 

either

 

of

 

the

 

above

 

is

 

not

 

true,

 

an

 

error

 

message

 

is

 

issued.

 

The

 

output

 

of

 

MYPROGA

 

is:

 

The

 

string

 

was

 

found

 

in

 

position

 

9

 

PGM MYPROGA

main function
Internal function call

search constructor

SRVPGM SERVICE1

where() function

Function call between
PGM and SRVPGM

  

Figure

 

9.

 

Calls

 

between

 

Program

 

and

 

Service

 

Program

  

Chapter

 

3.

 

Service

 

Programs

 

29



30

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

4.

 

Working

 

with

 

Exports

 

from

 

Service

 

Programs

 

This

 

section

 

describes

 

how

 

to

 

work

 

with

 

procedures

 

and

 

data

 

items

 

that

 

can

 

be

 

exported

 

from

 

a

 

service

 

program.

 

Determining

 

Exports

 

from

 

Service

 

Programs

 

A

 

service

 

program

 

exports

 

procedures

 

and

 

data

 

items

 

that

 

can

 

be

 

imported

 

by

 

other

 

programs.

 

These

 

exports

 

represent

 

the

 

interface

 

to

 

the

 

service

 

program.

 

In

 

the

 

C/C++

 

programming

 

language,

 

procedures

 

and

 

data

 

items

 

correspond

 

to

 

functions

 

and

 

variables.

 

Information

 

about

 

exports,

 

which

 

can

 

be

 

derived

 

from

 

the

 

modules

 

that

 

form

 

a

 

particular

 

service

 

program,

 

may

 

be

 

used

 

to

 

create

 

a

 

binder

 

language

 

source

 

file

 

which

 

then

 

defines

 

the

 

interface

 

to

 

this

 

service

 

program.

 

A

 

binder

 

language

 

source

 

file

 

specifies

 

the

 

exports

 

the

 

service

 

program

 

makes

 

available

 

to

 

all

 

programs

 

that

 

call

 

it.

 

This

 

file

 

can

 

be

 

specified

 

on

 

the

 

EXPORT

 

parameter

 

of

 

the

 

CRTSRVPGM

 

command.

 

Binder

 

language

 

gives

 

you

 

better

 

control

 

over

 

the

 

exports

 

of

 

a

 

service

 

program.

 

This

 

control

 

can

 

be

 

very

 

useful

 

if

 

you

 

want

 

to:

 

v

   

Determine

 

export

 

and

 

import

 

mismatches

 

in

 

an

 

application.

 

v

   

Add

 

functionality

 

to

 

service

 

programs.

 

v

   

Reduce

 

the

 

impact

 

of

 

changes

 

to

 

a

 

service

 

program

 

on

 

the

 

users

 

of

 

an

 

application.

 

v

   

Mask

 

certain

 

service

 

program

 

exports

 

from

 

service

 

program

 

users.

 

That

 

is,

 

by

 

not

 

listing

 

certain

 

functions

 

or

 

variables

 

in

 

the

 

binder

 

language

 

source

 

file,

 

you

 

can

 

prevent

 

any

 

calling

 

programs

 

from

 

having

 

access

 

to

 

these

 

exports.

Displaying

 

Exported

 

Defined

 

Symbols

 

with

 

the

 

Display

 

Module

 

Command

 

To

 

find

 

out

 

which

 

exports

 

are

 

available

 

from

 

a

 

module,

 

enter:

 

DSPMOD

 

MODULE(library-name/module-name)

 

Specify

 

the

 

module

 

name

 

and

 

the

 

library

 

where

 

the

 

module

 

is

 

stored.

 

This

 

command

 

opens

 

the

 

Display

 

Module

 

Information

 

display.

 

At

 

the

 

bottom

 

of

 

this

 

display,

 

you

 

find

 

the

 

name

 

and

 

type

 

of

 

each

 

symbol

 

that

 

can

 

be

 

exported

 

from

 

the

 

module.

 

Note:

  

When

 

the

 

compiler

 

compiles

 

a

 

source

 

file,

 

it

 

encodes

 

function

 

names

 

and

 

certain

 

variables

 

to

 

include

 

type

 

and

 

scoping

 

information.

 

This

 

encoding

 

process

 

is

 

called

 

name

 

mangling.

 

The

 

symbol

 

names

 

in

 

the

 

sample

 

display

 

below

 

are

 

shown

 

in

 

mangled

 

form.

 

The

 

source

 

code

 

for

 

module

 

SEARCH

 

is

 

shown

 

in

 

“Source

 

Code

 

Files”

 

on

 

page

 

26.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

31



Creating

 

a

 

Binder

 

Language

 

Source

 

File

 

Binder

 

language

 

is

 

based

 

on

 

the

 

exports

 

available

 

from

 

modules

 

that

 

are

 

bound

 

into

 

service

 

programs.

 

A

 

binder

 

language

 

source

 

file

 

must

 

contain

 

the

 

following

 

entries:

 

v

   

The

 

Start

 

Program

 

Export

 

(STRPGMEXP)

 

command

 

identifies

 

the

 

beginning

 

of

 

the

 

list

 

of

 

exports

 

from

 

the

 

service

 

program.

 

v

   

Export

 

Symbol

 

(EXPORT)

 

commands

 

identify

 

each

 

a

 

symbol

 

name

 

available

 

to

 

be

 

exported

 

from

 

the

 

service

 

program.

 

v

   

The

 

End

 

Program

 

Export

 

(ENDPGMEXP)

 

command

 

identifies

 

the

 

end

 

of

 

the

 

list

 

of

 

exports

 

from

 

the

 

service

 

program.

The

 

following

 

figure

 

shows

 

the

 

structure

 

of

 

a

 

binder

 

language

 

source

 

file:

  

Note:

  

You

 

must

 

specify

 

the

 

mangled

 

name

 

of

 

each

 

symbol

 

on

 

the

 

EXPORT

 

command,

 

because

 

the

 

binder

 

looks

 

for

 

the

 

mangled

 

names

 

of

 

exports

 

when

 

it

 

tries

 

to

 

resolve

 

import

 

requests

 

from

 

other

 

modules.

 

After

 

all

 

the

 

modules

 

to

 

be

 

bound

 

into

 

a

 

service

 

program

 

have

 

been

 

created,

 

you

 

can

 

create

 

the

 

binder

 

language

 

source

 

file

 

by

 

using

 

either

 

of

 

the

 

following

 

methods:

 

v

   

You

 

can

 

write

 

this

 

file

 

yourself,

 

using

 

the

 

Source

 

Entry

 

Utility

 

(SEU).

 

v

   

You

 

can

 

generate

 

a

 

skeleton

 

binding

 

source

 

by

 

using

 

the

 

Retrieve

 

Binder

 

Source

 

(RTVBNDSRC)

 

command.

Creating

 

Binder

 

Language

 

Using

 

SEU

 

To

 

use

 

the

 

Source

 

Entry

 

Utility

 

(SEU)

 

to

 

create

 

a

 

binder

 

language

 

source

 

file,

 

follow

 

these

 

steps:

 

1.

   

Create

 

a

 

source

 

physical

 

file

 

QSRVSRC

 

in

 

library

 

MYLIB.

 

2.

   

Create

 

a

 

member

 

MEMBER1

 

that

 

will

 

contain

 

the

 

binder

 

language.

                              

Display

 

Module

 

Information

        

Display

 

3

 

of

 

3

  

Module

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

SEARCH

    

Library

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

     

MYLIB

  

Detail

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*EXPORT

  

Module

 

attribute

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

                            

Exported

 

defined

 

symbols:

  

Symbol

 

Name

                                      

Symbol

 

Type

  

__ct__6SearchFPc

                                 

PROCEDURE

  

__ct__6SearchFPUc

                                

PROCEDURE

  

__ct__6SearchFPUci

                               

PROCEDURE

  

Figure

 

10.

 

Display

 

Module

 

Information

 

Screen

 

for

 

a

 

Sample

 

Module

 

SEARCH

STRPGEXP

 

PGMLEVEL(*CURRENT)

   

EXPORT

 

SYMBOL("mangled_procedure_name_a")

   

EXPORT

 

SYMBOL("mangled_procedure_name_b")

   

...

   

...

   

EXPORT

 

SYMBOL("mangled_procedure_name_x")

 

ENDPGMEXP

 

Figure

 

11.

 

Example

 

of

 

a

 

Binder

 

Language

 

Source

 

File

  

32

 

ILE

 

C/C++

 

Programmer’s

 

Guide



3.

   

Use

 

the

 

Display

 

Module

 

(DSPMOD)

 

command

 

to

 

display

 

the

 

symbols

 

that

 

can

 

be

 

exported

 

from

 

each

 

module.

 

4.

   

Decide

 

which

 

exports

 

you

 

want

 

to

 

make

 

available

 

to

 

calling

 

programs.

 

5.

   

Use

 

the

 

Source

 

Entry

 

Utility

 

(SEU)

 

to

 

enter

 

the

 

syntax

 

of

 

the

 

binder

 

language.

You

 

need

 

one

 

export

 

statement

 

for

 

each

 

procedure

 

whose

 

exports

 

you

 

want

 

to

 

make

 

available

 

to

 

the

 

caller

 

of

 

the

 

service

 

program.

 

Do

 

not

 

list

 

symbols

 

that

 

you

 

do

 

not

 

want

 

to

 

make

 

available

 

to

 

calling

 

programs.

 

For

 

example,

 

based

 

on

 

the

 

information

 

shown

 

in

 

Figure

 

10

 

on

 

page

 

32,

 

the

 

binder

 

language

 

source

 

file

 

for

 

module

 

SEARCH

 

could

 

list

 

the

 

following

 

export

 

symbols:

 

STRPGEXP

 

PGMLEVEL(*CURRENT)

   

EXPORT

 

SYMBOL("

 

__ct__6SearchFPc")

   

EXPORT

 

SYMBOL("

 

__ct__6SearchFPUc")

   

EXPORT

 

SYMBOL("

 

__ct__6SearchFPUci")

 

ENDPGMEXP

 

Creating

 

Binder

 

Language

 

Using

 

the

 

RTVBNDSRC

 

Command

 

The

 

Retrieve

 

Binder

 

Source

 

(RTVBNDSRC)

 

command

 

can

 

automatically

 

create

 

a

 

binder

 

language

 

source

 

file.

 

It

 

retrieves

 

the

 

exports

 

from

 

a

 

module,

 

or

 

a

 

set

 

of

 

modules.

 

It

 

generates

 

the

 

binder

 

language

 

for

 

these

 

exports,

 

and

 

places

 

exports

 

and

 

binder

 

language

 

in

 

a

 

specified

 

file

 

member.

 

This

 

file

 

member

 

can

 

later

 

be

 

used

 

as

 

input

 

to

 

the

 

EXPORT

 

parameter

 

of

 

the

 

Create

 

Service

 

Program

 

(CRTSRVPGM)

 

command.

 

Note:

  

After

 

the

 

binder

 

language

 

has

 

been

 

retrieved

 

into

 

a

 

source

 

file

 

member,

 

you

 

can

 

edit

 

the

 

binder

 

language

 

and

 

modify

 

it

 

as

 

needed

 

(for

 

example,

 

if

 

you

 

make

 

changes

 

to

 

a

 

module

 

or

 

if

 

you

 

want

 

to

 

make

 

certain

 

exports

 

unavailable

 

to

 

calling

 

programs).

 

The

 

syntax

 

for

 

the

 

RTVBNDSRC

 

command

 

is:

 

RTVBNDSRC

 

MODULE(MYLIB/SEARCH)

 

SRCFILE(MYLIB/QSRVSRC)

 

SRCMBR(*DFT)

 

MBROPT(*REPLACE)

 

For

 

detailed

 

information

 

on

 

the

 

RTVBNDSRC

 

command

 

and

 

its

 

parameters

 

enter

 

RTVBNDSRC

 

on

 

a

 

command

 

line

 

and

 

press

 

F1

 

for

 

Help.

 

The

 

following

 

example

 

shows

 

how

 

to

 

create

 

a

 

binder

 

language

 

source

 

file

 

for

 

module

 

SEARCH,

 

located

 

in

 

library

 

MYLIB,

 

using

 

the

 

RTVBNDSRC

 

command.

 

The

 

source

 

code

 

for

 

module

 

SEARCH

 

is

 

shown

 

in

 

“Source

 

Code

 

Files”

 

on

 

page

 

26.

 

RTVBNDSRC

 

MODULE(MYLIB/SEARCH)

 

SRCFILE(MYLIB/QSRVSRC)

 

SRCMBR(ONE)

 

This

 

command

 

automatically:

 

1.

   

Creates

 

a

 

source

 

physical

 

file

 

QSRVSRC

 

in

 

library

 

MYLIB.

 

2.

   

Adds

 

a

 

member

 

ONE

 

to

 

QSRVSRC.

 

3.

   

Generates

 

binder

 

language

 

from

 

module

 

SEARCH

 

in

 

library

 

MYLIB

 

and

 

places

 

it

 

in

 

member

 

ONE.

Member

 

ONE

 

in

 

file

 

MYLIB/QSRVSRC

 

now

 

contains

 

the

 

following

 

binder

 

language:

    

Chapter

 

4.

 

Working

 

with

 

Exports

 

from

 

Service

 

Programs

 

33



Updating

 

a

 

Service

 

Program

 

Export

 

List

 

You

 

can

 

use

 

binder

 

language

 

to

 

reflect

 

changes

 

in

 

the

 

list

 

of

 

exports

 

a

 

service

 

program

 

makes

 

available.

 

When

 

you

 

create

 

binder

 

language,

 

a

 

signature

 

is

 

generated

 

from

 

the

 

order

 

in

 

which

 

the

 

modules

 

that

 

form

 

a

 

service

 

program

 

are

 

processed,

 

and

 

from

 

the

 

order

 

in

 

which

 

symbols

 

are

 

exported

 

from

 

these

 

modules.

 

The

 

EXPORT

 

keyword

 

in

 

the

 

binder

 

language

 

identifies

 

the

 

procedure

 

and

 

data

 

item

 

names

 

that

 

make

 

up

 

the

 

signature

 

for

 

the

 

service

 

program.

 

When

 

you

 

make

 

changes

 

to

 

the

 

exports

 

of

 

a

 

service

 

program

 

this

 

does

 

not

 

necessarily

 

mean

 

that

 

all

 

programs

 

that

 

call

 

this

 

service

 

program

 

must

 

be

 

re-created.

 

You

 

can

 

implement

 

changes

 

in

 

the

 

binder

 

language

 

such

 

that

 

they

 

are

 

backward-compatible.

 

Backward-compatible

 

means

 

that

 

programs

 

which

 

depend

 

on

 

exports

 

that

 

remain

 

unchanged

 

do

 

not

 

need

 

to

 

be

 

re-created.

 

To

 

ensure

 

backward

 

compatibility,

 

add

 

new

 

procedure

 

or

 

data

 

item

 

names

 

to

 

the

 

end

 

of

 

the

 

export

 

list,

 

and

 

re-create

 

the

 

service

 

program

 

with

 

the

 

same

 

signature.

 

This

 

lets

 

existing

 

programs

 

still

 

use

 

the

 

service

 

program,

 

because

 

the

 

order

 

of

 

the

 

unchanged

 

exports

 

remains

 

the

 

same.

 

Note:

  

When

 

changes

 

to

 

a

 

service

 

program

 

result

 

in

 

a

 

loss

 

of

 

exports,

 

or

 

in

 

a

 

change

 

of

 

existing

 

exports,

 

it

 

becomes

 

difficult

 

to

 

update

 

the

 

export

 

list

 

without

 

affecting

 

existing

 

programs

 

that

 

require

 

its

 

services.

 

Changes

 

in

 

the

 

order,

 

number,

 

or

 

name

 

of

 

exports

 

result

 

in

 

a

 

new

 

signature

 

that

 

requires

 

the

 

re-creation

 

of

 

all

 

programs

 

and

 

service

 

programs

 

that

 

use

 

the

 

changed

 

service

 

program.

 

Using

 

the

 

Demangling

 

Functions

 

You

 

can

 

retrieve

 

the

 

mangled

 

names

 

of

 

exported

 

symbols

 

with

 

the

 

RTVBNDSRC

 

command.

 

To

 

help

 

you

 

find

 

the

 

corresponding

 

demangled

 

names,

 

the

 

runtime

 

library

 

contains

 

a

 

small

 

class

 

hierarchy

 

of

 

functions

 

that

 

you

 

can

 

use

 

to

 

demangle

 

names

 

and

 

examine

 

the

 

resulting

 

parts

 

of

 

the

 

name.

 

The

 

interface

 

is

 

documented

 

in

 

the

 

<demangle.h>

 

header

 

file.

 

Using

 

the

 

demangling

 

functions,

 

you

 

can

 

write

 

programs

 

to

 

convert

 

a

 

mangled

 

name

 

to

 

a

 

demangled

 

name

 

and

 

to

 

determine

 

characteristics

 

of

 

that

 

name,

 

such

 

as

 

its

 

type

 

qualifiers

 

or

 

scope.

 

For

 

example,

 

given

 

the

 

mangled

 

name

 

of

 

a

 

function,

 

the

 

program

 

returns

 

the

 

demangled

 

name

 

of

 

the

 

function

 

and

 

the

 

names

 

of

 

its

 

qualifiers.

 

If

 

the

 

mangled

 

name

 

refers

 

to

 

a

 

class

 

member,

 

you

 

can

 

determine

 

if

 

it

 

is

 

static,

 

const,

 

or

 

volatile.

 

You

 

can

 

also

 

get

 

the

 

whole

 

text

 

of

 

the

 

mangled

 

name.

  

Columns

 

.

 

.

 

.

 

:

    

1

  

71

           

Browse

                    

MYLIB/QSRVSRC

  

SEU==>

                                                                  

ONE

  

FMT

 

**

  

...+...

 

1

 

...+...

 

2

 

...+...

 

3

 

...+...

 

4

 

...+...

 

5

 

...+...

 

6

 

...+...

 

7

         

***************

 

Beginning

 

of

 

data

 

************************************

 

0000.01

 

STRPGMEXP

 

PGMLVL(*CURRENT)

 

0000.02

 

/*********************************************************************/

 

0000.03

 

/*

   

*MODULE

      

SEARCH

       

MYLIB

        

95/06/10

  

17:34:41

       

*/

 

0000.04

 

/*********************************************************************/

 

0000.05

   

EXPORT

 

SYMBOL("__ct__6SearchFPc")

 

0000.06

   

EXPORT

 

SYMBOL("__ct__6SearchFPUc")

 

0000.07

   

EXPORT

 

SYMBOL("__ct__6SearchFPUci")

 

0000.08

 

ENDPGMEXP

         

******************

 

End

 

of

 

data

 

****************************************

  

Figure

 

12.

 

Binder

 

Language

 

Source

 

File

 

Generated

 

for

 

Module

 

SEARCH

  

34

 

ILE

 

C/C++

 

Programmer’s

 

Guide



To

 

demangle

 

a

 

name,

 

which

 

is

 

represented

 

as

 

a

 

character

 

array,

 

create

 

a

 

dynamic

 

instance

 

of

 

the

 

Name

 

class

 

and

 

provide

 

the

 

character

 

string

 

to

 

the

 

class’s

 

constructor.

 

For

 

example,

 

to

 

demangle

 

the

 

name

 

f__1XFi,

 

create:

 

char

 

*rest;

 

Name

 

*name

 

=

 

Demangle("f__1XFi",

 

rest);

 

The

 

demangling

 

functions

 

classify

 

names

 

into

 

five

 

categories:

 

function

 

names,

 

member

 

function

 

names,

 

special

 

names,

 

class

 

names,

 

and

 

member

 

variable

 

names.

 

After

 

you

 

construct

 

an

 

instance

 

of

 

class

 

Name,

 

you

 

can

 

use

 

the

 

Kind

 

member

 

function

 

of

 

Name

 

to

 

determine

 

what

 

kind

 

of

 

Name

 

the

 

instance

 

is.

 

Based

 

on

 

the

 

kind

 

of

 

name

 

returned,

 

you

 

can

 

ask

 

for

 

the

 

text

 

of

 

the

 

different

 

parts

 

of

 

the

 

name

 

or

 

of

 

the

 

entire

 

name.

 

For

 

the

 

mangled

 

name

 

f__1XFi,

 

you

 

can

 

determine:

 

name->Kind()

 

==

 

MemberFunction

 

((MemberFunctionName

 

*)

 

name)->Scope()->Text()

 

is

 

"X"

 

((MemberFunctionName

 

*)

 

name)->RootName()

 

is

 

"f"

 

((MemberFunctionName

 

*)

 

name)->Text()

 

is

 

"X::f(int)"

 

If

 

the

 

character

 

string

 

passed

 

to

 

the

 

Name

 

constructor

 

is

 

not

 

a

 

mangled

 

name,

 

the

 

Demangle

 

function

 

returns

 

NULL.

 

For

 

further

 

details

 

about

 

the

 

demangling

 

functions,

 

refer

 

to

 

the

 

information

 

contained

 

in

 

the

 

demangle.h

 

header

 

file.

 

If

 

you

 

installed

 

ILE

 

C/C++

 

using

 

default

 

settings,

 

this

 

header

 

file

 

should

 

be

 

in

 

IFS

 

in

 

the

 

/QIBM/include

 

directory

 

and

 

in

 

DM

 

in

 

QSYSINC/H.

 

Handling

 

Unresolved

 

Import

 

Requests

 

During

 

Program

 

Creation

 

An

 

unresolved

 

import

 

is

 

an

 

import

 

whose

 

type

 

and

 

name

 

do

 

not

 

yet

 

match

 

the

 

type

 

and

 

name

 

of

 

an

 

export.

 

Unresolved

 

import

 

requests

 

do

 

not

 

necessarily

 

prevent

 

you

 

from

 

creating

 

a

 

program

 

or

 

a

 

service

 

program.

 

You

 

can

 

proceed

 

in

 

two

 

ways:

 

v

   

Specify

 

the

 

*UNRSLVREF

 

option

 

on

 

the

 

CRTPGM

 

or

 

CRTSRVPGM

 

commands

 

to

 

tell

 

the

 

binder

 

to

 

go

 

ahead

 

and

 

create

 

a

 

program

 

or

 

service

 

program,

 

even

 

if

 

there

 

are

 

imports

 

in

 

the

 

modules,

 

and

 

no

 

matching

 

exports

 

can

 

be

 

found.

 

v

   

Change

 

the

 

order

 

of

 

program

 

creation

 

to

 

avoid

 

unresolved

 

references.

Both

 

approaches

 

are

 

demonstrated

 

in

 

“Creating

 

a

 

Program

 

with

 

Circular

 

References”

 

on

 

page

 

36.

 

Use

 

the

 

*UNRSLVREF

 

option

 

to

 

convert,

 

create,

 

or

 

build

 

pieces

 

of

 

code

 

when

 

all

 

the

 

pieces

 

of

 

code

 

are

 

not

 

yet

 

available.

 

After

 

the

 

development

 

or

 

conversion

 

phase

 

has

 

finished

 

and

 

all

 

import

 

requests

 

can

 

be

 

resolved,

 

make

 

sure

 

you

 

re-create

 

the

 

program

 

or

 

service

 

program

 

that

 

has

 

the

 

unresolved

 

imports.

 

If

 

you

 

use

 

the

 

*UNRSLVREF

 

option,

 

specify

 

DETAIL(*EXTENDED)

 

or

 

DETAIL(*FULL),

 

or

 

keep

 

the

 

job

 

log

 

when

 

the

 

object

 

is

 

created,

 

to

 

identify

 

the

 

procedure

 

or

 

data

 

item

 

names

 

that

 

are

 

not

 

found.

 

Note:

  

If

 

you

 

have

 

specified

 

*UNRSLVREF

 

and

 

a

 

program

 

is

 

created

 

with

 

unresolved

 

import

 

requests,

 

you

 

receive

 

an

 

error

 

message

 

(MCH3203)

 

when

 

you

 

try

 

to

 

run

 

the

 

program.

  

Chapter

 

4.

 

Working

 

with

 

Exports

 

from

 

Service

 

Programs

 

35



Creating

 

an

 

Export

 

Service

 

Program

 

Using

 

Binder

 

Language

 

The

 

Create

 

C++

 

Module

 

(CRTCPPMOD)

 

command

 

creates

 

only

 

one

 

module

 

at

 

a

 

time.

 

You

 

must

 

use

 

the

 

CRTCPPMOD

 

for

 

each

 

source

 

stream

 

file

 

or

 

source

 

file

 

member.

 

The

 

following

 

example

 

consists

 

of

 

two

 

modules:

 

SEARCH

 

asnd

 

WHERE.

 

Example:

 

To

 

use

 

binder

 

language

 

to

 

create

 

the

 

service

 

program

 

described

 

in

 

“Creating,

 

Compiling,

 

and

 

Binding

 

a

 

Service

 

Program”

 

on

 

page

 

25,

 

follow

 

these

 

steps:

 

1.

   

To

 

create

 

modules

 

from

 

all

 

source

 

files

 

enter

 

the

 

following

 

commands:

 

CRTCPPMOD

 

MODULE(MYLIB/SEARCH)

 

SRCSTMF(search.cpp)

 

CRTCPPMOD

 

MODULE(MYLIB/WHERE)

 

SRCSTMF(where.cpp)

 

Note:

  

The

 

CRTCPPMOD

 

command

 

stops

 

the

 

compilation

 

process

 

afer

 

the

 

creation

 

of

 

the

 

*MODULE

 

object.

 

The

 

binder

 

is

 

not

 

invoked.

 

2.

   

To

 

create

 

the

 

corresponding

 

binder

 

language

 

source

 

file,

 

enter

 

the

 

following

 

command:

 

RTVBNDSRC

 

MODULE(MYLIB/SEARCH

 

MYLIB/WHERE)

  

SRCFILE(MYLIB/QSRVSRC)

 

SRCMBR(TWO)

 

This

 

command

 

creates

 

the

 

binder

 

language

 

source

 

file

 

shown

 

in

 

Figure

 

13.

 

3.

   

To

 

create

 

service

 

program

 

SERVICE2,

 

enter

 

the

 

following

 

command:

 

CRTSRVPGM

 

SRVPGM(MYLIB/SERVICE2)

 

MODULE(MYLIB/SEARCH

 

MYLIB/WHERE)

       

SRCFILE(MYLIB/QSRVSRC)

 

SRCMBR(TWO)

    

Creating

 

a

 

Program

 

with

 

Circular

 

References

    

A

 

circular

 

reference

 

is

 

a

 

special

 

case

 

of

 

unresolved

 

import

 

requests.

 

It

 

occurs,

 

for

 

example,

 

when

 

a

 

service

 

program

 

SP1

 

depends

 

on

 

imports

 

from

 

a

 

service

 

program

 

SP2,

 

which

 

in

 

turn

 

depends

 

on

 

an

 

import

 

from

 

service

 

program

 

SP1.

 

Figure

 

14

 

on

 

page

 

37

 

illustrates

 

the

 

unresolved

 

import

 

requests

 

between

 

program

 

A

 

and

 

two

 

service

 

programs,

 

SP1

 

and

 

SP2.

   

Columns

 

.

 

.

 

.

 

:

    

1

  

71

           

Browse

                       

MYLIB/QSRVSRC

  

SEU==>

   

TWO

  

FMT

 

**

  

...+...

 

1

 

...+...

 

2

 

...+...

 

3

 

...+...

 

4

 

...+...

 

5

 

...+...

 

6

 

...+...

 

7

         

***************

 

Beginning

 

of

 

data

 

*************************************

 

0000.01

 

STRPGMEXP

 

PGMLVL(*CURRENT)

 

0000.02

 

/*********************************************************************/

 

0000.03

 

/*

   

*MODULE

      

SEARCH

       

MYLIB

        

95/06/11

  

15:30:51*/

 

0000.04

 

/*********************************************************************/

 

0000.05

   

EXPORT

 

SYMBOL("__ct__6SearchFPc")

 

0000.06

   

EXPORT

 

SYMBOL("__ct__6SearchFPUc")

 

0000.07

   

EXPORT

 

SYMBOL("__ct__6SearchFPUci")

 

0000.08

 

/*********************************************************************/

 

0000.09

 

/*

   

*MODULE

      

WHERE

        

MYLIB

        

95/06/11

  

15:30:51*/

 

0000.10

 

/*********************************************************************/

 

0000.11

   

EXPORT

 

SYMBOL("where__6SearchFPUci")

 

0000.12

 

ENDPGMEXP

         

******************

 

End

 

of

 

data

 

****************************************

  

Figure

 

13.

 

Binder

 

Language

 

Source

 

File

 

Generated

 

by

 

the

 

RTVBNDSRC

 

Command

  

36

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

following

 

import

 

requests

 

occur

 

between

 

program

 

A

 

and

 

the

 

two

 

service

 

programs,

 

SP1

 

and

 

SP2,

 

that

 

are

 

called

 

by

 

programA:

 

1.

   

Program

 

A

 

uses

 

function

 

func1(),

 

which

 

it

 

imports

 

from

 

service

 

program

 

SP1.

 

2.

   

Service

 

program

 

SP1

 

needs

 

to

 

import

 

function

 

func2()

 

provided

 

by

 

service

 

program

 

SP2,

 

in

 

order

 

to

 

provide

 

func1()

 

to

 

program

 

A.

 

3.

   

Service

 

program

 

SP2,

 

in

 

turn,

 

first

 

needs

 

to

 

import

 

func1

 

from

 

service

 

program

 

SP1

 

before

 

being

 

able

 

to

 

provide

 

func2.

To

 

create

 

a

 

program

 

with

 

unresolved

 

circular

 

references,

 

perform

 

the

 

following

 

tasks:

 

1.

   

Create

 

the

 

source

 

files.

 

2.

   

Compile

 

the

 

source

 

files

 

into

 

modules.

 

3.

   

Create

 

the

 

binder

 

language.

 

4.

   

Bind

 

the

 

modules

 

into

 

the

 

program.

Creating

 

the

 

Source

 

Files

 

The

 

application

 

consists

 

of

 

three

 

source

 

files,

 

m1.cpp,

 

m2.cpp,

 

and

 

m3.cpp,

 

shown

 

in

 

the

 

following

 

figures:

   

PGM A

main()

SRVPGM SP1

SRVPGM SP2

func1()

func2()

  

Figure

 

14.

 

Unresolved

 

Import

 

Requests

 

in

 

a

 

Program

 

with

 

Circular

 

References

//

 

m1.cpp

      

#include

 

<iostream.h>

      

int

 

main(void)

      

{

        

void

 

func1(int);

        

int

 

n

 

=

 

0;

        

func1(n);

             

//

 

Function

 

func1()

 

is

 

called.

      

}

 

Figure

 

15.

 

m1.cpp

 

—

 

First

 

Source

 

File

 

for

 

Application

 

with

 

Circular

 

References

  

Chapter

 

4.

 

Working

 

with

 

Exports

 

from

 

Service

 

Programs

 

37



Compiling

 

the

 

Source

 

Files

 

into

 

Modules

 

Compile

 

the

 

source

 

file

 

m1.cpp

 

into

 

a

 

module

 

object

 

from

 

which

 

you

 

later

 

create

 

program

 

A.

 

This

 

allows

 

you

 

to

 

display

 

their

 

exports

 

with

 

the

 

DSPMOD

 

command,

 

or

 

to

 

generate

 

binder

 

language

 

source

 

with

 

the

 

RTVBNDSRC

 

command.

 

To

 

create

 

module

 

objects

 

from

 

the

 

source

 

files

 

described

 

above,

 

invoke

 

the

 

commands:

 

CRTCPPMOD

 

MODULE(MYLIB/M1)

 

SRCSTMF(m1.cpp)

 

CRTCPPMOD

 

MODULE(MYLIB/M2)

 

SRCSTMF(m2.cpp)

 

CRTCPPMOD

 

MODULE(MYLIB/M3)

 

SRCSTMF(m3.cpp)

 

The

 

CRTCPPMOD

 

compiler

 

option

 

indicates

 

to

 

the

 

compiler

 

that

 

you

 

do

 

not

 

want

 

to

 

create

 

a

 

program

 

object

 

from

 

the

 

source

 

file.

 

The

 

target

 

library

 

is

 

specified

 

by

 

the

 

MODULE

 

option.

 

Generating

 

the

 

Binder

 

Language

 

to

 

Create

 

the

 

Service

 

Program

 

To

 

generate

 

binder

 

language

 

for

 

module

 

M2,

 

from

 

which

 

you

 

want

 

to

 

create

 

service

 

program

 

SP1,

 

enter

 

the

 

following

 

command:

 

RTVBNDSRC

 

MODULE(MYLIB/M2)

 

SRCFILE(MYLIB/QSRVSRC)

 

SRCMBR(BNDLANG1)

 

This

 

command

 

results

 

in

 

the

 

following

 

binder

 

language

 

being

 

created

 

for

 

module

 

M2,

 

in

 

library

 

MYLIB,

 

source

 

file

 

QSRVSRC,

 

file

 

member

 

BNDLANG1:

  

//

 

m2.cpp

      

#include

 

<iostream.h>

      

void

 

func2

 

(int);

      

void

 

func1(int

 

x)

      

{

        

if

 

(x<5)

        

{

           

x

 

+=

 

1;

           

cout

 

<<

 

"This

 

is

 

from

 

func1(),

 

n="

 

<<

 

x

 

<<

 

endl;

           

func2(x);

          

//

 

Function

 

func2()

 

is

 

called.

         

}

      

}

 

Figure

 

16.

 

m2.cpp

 

—

 

Second

 

Source

 

Files

 

for

 

Application

 

with

 

Circular

 

References

//

 

m3.cpp

      

#include

 

<iostream.h>

      

void

 

func1(int);

      

void

 

func2(int

 

y)

      

{

        

if

 

(y<5)

        

{

           

y

 

+=

 

1;

           

cout

 

<<

 

"This

 

is

 

from

 

func2(),

 

n="

 

<<

 

y

 

<<

 

endl;

           

func1(y);

          

//

 

Function

 

func1()

 

is

 

called.

        

}

      

}

 

Figure

 

17.

 

m3.cpp

 

—

 

Third

 

Source

 

File

 

for

 

Application

 

with

 

Circular

 

References

  

38

 

ILE

 

C/C++

 

Programmer’s

 

Guide



To

 

generate

 

binder

 

language

 

for

 

module

 

M3,

 

from

 

which

 

you

 

want

 

to

 

create

 

service

 

program

 

SP2,

 

issue

 

the

 

following

 

command:

 

RTVBNDSRC

 

MODULE(MYLIB/M3)

 

SRCFILE(MYLIB/QSRVSRC)

 

SRCMBR(BNDLANG2)

 

This

 

command

 

results

 

in

 

the

 

following

 

binder

 

language

 

being

 

created

 

for

 

module

 

M3,

 

in

 

library

 

MYLIB,

 

source

 

file

 

QSRVSRC,

 

file

 

member

 

BNDLANG2:

    

Binding

 

the

 

Modules

 

into

 

the

 

Program

 

Program

 

A

 

will

 

be

 

created

 

from

 

M1.

 

Service

 

program

 

SP1

 

will

 

be

 

created

 

from

 

M2.

 

Service

 

program

 

SP2

 

is

 

created

 

from

 

M3.

 

If

 

you

 

try

 

and

 

create

 

service

 

program

 

SP1

 

from

 

module

 

M2,

 

using

 

the

 

binder

 

language

 

shown

 

in

 

Figure

 

18

 

and

 

the

 

compiler

 

invocation:

 

CRTSRVPGM

 

SRVPGM(MYLIB/SP1)

 

MODULE(MYLIB/M2)

  

SRCFILE(MYLIB/QSRVSRC)

 

SRCMBR(BNDLANG1)

 

you

 

find

 

that

 

the

 

binder

 

tries

 

to

 

resolve

 

the

 

import

 

for

 

function

 

func2(),

 

but

 

fails,

 

because

 

it

 

is

 

not

 

able

 

to

 

find

 

a

 

matching

 

export.

 

Therefore,

 

service

 

program

 

SP1

 

is

 

not

 

created.

 

If

 

SP1

 

is

 

not

 

created,

 

this

 

leads

 

to

 

problems

 

if

 

you

 

try

 

and

 

create

 

service

 

program

 

SP2

 

from

 

module

 

M3

 

using

 

the

 

binder

 

language

 

shown

 

in

 

Figure

 

19

 

and

 

the

 

compiler

 

invocation:

 

CRTSRVPGM

 

SRVPGM(MYLIB/SP2)

 

MODULE(MYLIB/M3)

  

SRCFILE(MYLIB/QSRVSRC)

 

SRCMBR(BNDLANG2)

 

Service

 

program

 

SP2

 

is

 

not

 

created,

 

because

 

the

 

binder

 

fails

 

in

 

searching

 

for

 

the

 

import

 

for

 

func1()

 

in

 

service

 

program

 

SP1,

 

which

 

has

 

not

 

been

 

created

 

in

 

the

 

previous

 

step.

 

If

 

you

 

try

 

and

 

create

 

program

 

A

 

with

 

the

 

compiler

 

invocation:

 

CRTPGM

 

PGM(A)

 

MODULE(MYLIB/M1)

 

BNDSRVPGM(MYLIB/SP1

 

MYLIB/SP2)

  

Columns

 

.

 

.

 

.

 

:

    

1

  

71

           

Browse

                       

MYLIB/QSRVSRC

  

SEU==>

                                                                

BNDLANG1

  

FMT

 

**

  

...+...

 

1

 

...+...

 

2

 

...+...

 

3

 

...+...

 

4

 

...+...

 

5

 

...+...

 

6

 

...+...

 

7

         

***************

 

Beginning

 

of

 

data

 

*************************************

 

0000.01

 

STRPGMEXP

 

PGMLVL(*CURRENT)

 

0000.02

 

/*********************************************************************/

 

0000.03

 

/*

   

*MODULE

      

M2

           

MYLIB

        

95/06/11

  

18:07:04*/

 

0000.04

 

/*********************************************************************/

 

0000.05

   

EXPORT

 

SYMBOL("func1__Fi")

 

0000.06

 

ENDPGMEXP

         

******************

 

End

 

of

 

data

 

****************************************

  

Figure

 

18.

 

Binder

 

Language

 

for

 

Service

 

Program

 

SP1

 

Columns

 

.

 

.

 

.

 

:

    

1

  

71

           

Browse

                       

MYLIB/QSRVSRC

  

SEU==>

                                                                

BNDLANG2

  

FMT

 

**

  

...+...

 

1

 

...+...

 

2

 

...+...

 

3

 

...+...

 

4

 

...+...

 

5

 

...+...

 

6

 

...+...

 

7

         

***************

 

Beginning

 

of

 

data

 

*************************************

 

0000.01

 

STRPGMEXP

 

PGMLVL(*CURRENT)

 

0000.02

 

/*********************************************************************/

 

0000.03

 

/*

   

*MODULE

      

M3

           

MYLIB

        

95/06/11

  

18:08:14

       

*/

 

0000.04

 

/*********************************************************************/

 

0000.05

   

EXPORT

 

SYMBOL("func2__Fi")

 

0000.06

 

ENDPGMEXP

         

******************

 

End

 

of

 

data

 

****************************************

  

Figure

 

19.

 

Binder

 

Language

 

for

 

Service

 

Program

 

SP2

  

Chapter

 

4.

 

Working

 

with

 

Exports

 

from

 

Service

 

Programs

 

39



the

 

binder

 

fails,

 

because

 

service

 

programs

 

SP1

 

and

 

SP2

 

do

 

not

 

exist.

 

Handling

 

Unresolved

 

Import

 

Requests

 

Using

 

the

 

*UNRSLVREF

 

Parameter

 

The

 

following

 

example

 

shows:

 

v

   

How

 

to

 

create

 

service

 

program

 

SP1

 

from

 

m2.cpp,

 

shown

 

in

 

v

   

How

 

to

 

use

 

the

 

parameter

 

*UNRSLVREF

 

to

 

handle

 

the

 

unresolved

 

import

 

requests

 

which

 

would

 

otherwise

 

prevent

 

you

 

from

 

creating

 

program

 

A.

The

 

example

 

Example:

 

1.

   

To

 

create

 

service

 

program

 

SP1

 

from

 

m2.cpp,

 

enter:

 

CRTSRVPGM

 

SRVPGM(MYLIB/SP1)

 

MODULE(MYLIB/M2)

  

SRCFILE(MYLIB/QSRVSRC)

 

SRCMBR(BNDLANG1)

  

OPTION(*UNRSLVREF)

 

Because

 

the

 

*UNRSLVREF

 

option

 

is

 

specified,

 

service

 

program

 

SP1

 

is

 

created

 

even

 

though

 

the

 

import

 

request

 

for

 

func2()

 

is

 

not

 

resolved.

 

2.

   

To

 

create

 

service

 

program

 

SP2

 

from

 

module

 

M3

 

and

 

service

 

program

 

SP1,

 

enter:

 

CRTSRVPGM

 

SRVPGM(MYLIB/SP2)

 

MODULE(MYLIB/M3)

  

SRCFILE(MYLIB/QSRVSRC)

 

SRCMBR(BNDLANG2)

  

BNDSRVPGM(MYLIB/SP1)

 

Because

 

service

 

program

 

SP1

 

now

 

exists,

 

the

 

binder

 

resolves

 

all

 

the

 

import

 

requests

 

required,

 

and

 

service

 

program

 

SP2

 

is

 

created

 

successfully.

 

3.

   

To

 

re-create

 

the

 

service

 

program

 

SP1,

 

enter:

 

CRTSRVPGM

 

SRVPGM(MYLIB/SP1)

 

MODULE(MYLIB/M2)

  

SRCFILE(MYLIB/QSRVSRC)

 

SRCMBR(BNDLANG1)

  

BNDSRVPGM(MYLIB/SP2)

 

Although

 

service

 

program

 

SP1

 

does

 

exist,

 

the

 

import

 

request

 

for

 

func2()

 

is

 

not

 

resolved.

 

Therefore,

 

the

 

re-creation

 

of

 

service

 

program

 

SP1

 

is

 

required.

 

Because

 

service

 

program

 

SP2

 

now

 

exists,

 

the

 

binder

 

resolves

 

all

 

import

 

requests

 

required

 

and,

 

service

 

program

 

SP1

 

is

 

created

 

successfully.

 

4.

   

To

 

create

 

program

 

A,

 

enter:

 

CRTPGM

 

PGM(MYLIB/A)

 

MODULE(MYLIB/M1)

 

BNDSRVPGM(MYLIB/SP1

 

MYLIB/SP2)

 

Because

 

service

 

programs

 

SP1

 

and

 

SP2

 

do

 

exist,

 

the

 

binder

 

creates

 

the

 

program

 

A.

Handling

 

Unresolved

 

Import

 

Requests

 

by

 

Changing

 

Program

 

Creation

 

Order

 

You

 

can

 

also

 

change

 

the

 

order

 

of

 

program

 

creation

 

to

 

avoid

 

unresolved

 

references,

 

by

 

first

 

creating

 

a

 

service

 

program

 

with

 

all

 

modules,

 

and

 

then

 

re-creating

 

this

 

same

 

service

 

program

 

later.

 

1.

   

To

 

generate

 

binder

 

language

 

for

 

modules

 

M2

 

and

 

M3,

 

from

 

which

 

you

 

want

 

to

 

create

 

service

 

program

 

SP1,

 

issue

 

the

 

following

 

command:

 

RTVBNDSRC

 

MODULE(MYLIB/M2

 

MYLIB/M3)

 

SRCFILE(MYLIB/QSRVSRC)

    

SRCMBR(BNDLANG3)

 

This

 

command

 

results

 

in

 

the

 

binder

 

language

 

shown

 

in

 

Figure

 

20

 

on

 

page

 

41

 

being

 

created

 

in

 

library

 

MYLIB,

 

source

 

file

 

QSRVSRC,

 

file

 

member

 

BNDLANG3.

   

40

 

ILE

 

C/C++

 

Programmer’s

 

Guide



2.

   

To

 

create

 

service

 

program

 

SP1

 

from

 

module

 

M2

 

and

 

module

 

M3

 

enter:

 

CRTSRVPGM

 

SRVPGM(MYLIB/SP1)

 

MODULE(MYLIB/M2

 

MYLIB/M3)

  

SRCFILE(MYLIB/QSRVSRC)

 

SRCMBR(BNDLANG3)

 

Because

 

modules

 

M2

 

and

 

M3

 

are

 

specified,

 

all

 

import

 

requests

 

are

 

resolved

 

and

 

service

 

program

 

SP1

 

is

 

created

 

successfully.

 

3.

   

To

 

create

 

service

 

program

 

SP2,

 

enter:

 

CRTSRVPGM

 

SRVPGM(MYLIB/SP2)

 

MODULE(MYLIB/M3)

  

SRCFILE(MYLIB/QSRVSRC)

 

SRCMBR(BNDLANG2)

  

BNDSRVPGM(MYLIB/SP1)

 

Because

 

service

 

program

 

SP1

 

exists,

 

the

 

binder

 

resolves

 

all

 

the

 

import

 

requests

 

required

 

and

 

service

 

program

 

SP2

 

is

 

created

 

successfully.

 

4.

   

To

 

re-create

 

service

 

program

 

SP1,

 

enter:

 

CRTSRVPGM

 

SRVPGM(MYLIB/SP1)

 

MODULE(MYLIB/M2)

  

SRCFILE(MYLIB/QSRVSRC)

 

SRCMBR(BNDLANG1)

  

BNDSRVPGM(MYLIB/SP2)

 

Although

 

service

 

program

 

SP1

 

does

 

exist,

 

the

 

import

 

request

 

for

 

func2()

 

is

 

not

 

resolved

 

to

 

the

 

one

 

in

 

service

 

program

 

SP2.

 

Therefore,

 

a

 

re-creation

 

of

 

service

 

program

 

SP1

 

is

 

necessary

 

to

 

make

 

the

 

circular

 

reference

 

work.

  

Because

 

service

 

program

 

SP2

 

now

 

exists,

 

the

 

binder

 

can

 

resolve

 

the

 

import

 

request

 

for

 

func2()

 

from

 

service

 

program

 

SP2,

 

and

 

service

 

program

 

SP1

 

is

 

successfully

 

created.

 

5.

   

To

 

create

 

program

 

A,

 

enter:

 

CRTPGM

 

PGM(MYLIB/A)

 

MODULE(MYLIB/M1)

 

BNDSRVPGM(MYLIB/SP1

 

MYLIB/SP2)

 

Because

 

service

 

programs

 

SP1

 

and

 

SP2

 

do

 

exist,

 

the

 

binder

 

creates

 

program

 

A.

   

Binding

 

a

 

Program

 

to

 

a

 

Non-Existent

 

Service

 

Program

 

To

 

successfully

 

create

 

a

 

program

 

or

 

a

 

service

 

program,

 

all

 

required

 

modules

 

must

 

exist

 

prior

 

to

 

invoking

 

the

 

binder.

 

However,

 

if

 

you

 

want

 

to

 

bind

 

a

 

program

 

to

 

a

 

non-existent

 

service

 

program,

 

you

 

can

 

create

 

a

 

″placeholder″

 

service

 

program

 

first.

 

Consider

 

the

 

following

 

example:

   

Columns

 

.

 

.

 

.

 

:

    

1

  

71

           

Browse

                       

MYLIB/QSRVSRC

  

SEU==>

                                                                

BNDLANG3

  

FMT

 

**

  

...+...

 

1

 

...+...

 

2

 

...+...

 

3

 

...+...

 

4

 

...+...

 

5

 

...+...

 

6

 

...+...

 

7

         

***************

 

Beginning

 

of

 

data

 

************************************

 

0000.01

 

STRPGMEXP

 

PGMLVL(*CURRENT)

 

0000.02

 

/********************************************************************/

 

0000.03

 

/*

   

*MODULE

      

M2

           

MYLIB

        

95/06/11

  

18:50:23

      

*/

 

0000.04

 

/********************************************************************/

 

0000.05

   

EXPORT

 

SYMBOL("func1__Fi")

 

0000.06

 

/********************************************************************/

 

0000.07

 

/*

   

*MODULE

      

M3

           

MYLIB

        

95/06/11

  

18:50:23

      

*/

 

0000.08

 

/********************************************************************/

 

0000.09

   

EXPORT

 

SYMBOL("func2__Fi")

 

0000.10

 

ENDPGMEXP

         

******************

 

End

 

of

 

data

 

**************************************

  

Figure

 

20.

 

Binder

 

Language

 

for

 

Service

 

Program

 

SP1

  

Chapter

 

4.

 

Working

 

with

 

Exports

 

from

 

Service

 

Programs

 

41



A

 

program

 

MYPROG

 

requires

 

a

 

function

 

print()

 

to

 

be

 

exported

 

by

 

a

 

service

 

program

 

PRINT.

 

The

 

code

 

for

 

the

 

program

 

is

 

available

 

in

 

myprog.cpp.

 

However,

 

the

 

source

 

for

 

the

 

service

 

program

 

does

 

not

 

yet

 

exist.

 

To

 

work

 

around

 

this

 

problem,

 

follow

 

the

 

instructions

 

in

 

this

 

sections,

 

using

 

the

 

source

 

code

 

shown

 

in

 

the

 

sample

 

code

 

figures.

 

Instructions

 

1.

   

Create

 

a

 

source

 

file

 

dummy.cpp,

 

using

 

the

 

source

 

code

 

shown

 

in

 

Figure

 

21.

 

2.

   

Compile

 

and

 

bind

 

dummy.cpp

 

into

 

a

 

service

 

program

 

PRINT:

 

CRTCPPMOD

 

MODULE(MYLIB/DUMMY)

 

SRCSTMF(dummy.cpp)

 

CRTSRVPGM

 

SRVPGM(MYLIB/PRINT)

 

MODULE(MYLIB/DUMMY)

 

EXPORT(*ALL)

 

3.

   

Create

 

the

 

source

 

file

 

for

 

program

 

MYPROG,

 

using

 

the

 

source

 

code

 

shown

 

in

 

Figure

 

21.

 

4.

   

Create

 

the

 

program

 

MYPROG

 

from

 

myprog.cpp

 

and

 

bind

 

it

 

to

 

the

 

service

 

program

 

PRINT.

 

Enter

 

the

 

following

 

commands:

 

CRTCPPMOD

 

MODULE(MYLIB/MYPROG)

 

SRCSTMF(myprog.cpp)

 

CRTPGM

    

PGM(MYLIB/MYPROG)

 

MODULE(MYLIB/MYPROG)

   

BNDSRVPGM(MYLIB/PRINT)

 

OPTION(*UNRSLVREF)

 

The

 

option

 

*UNRSLVREF

 

ensures

 

that

 

the

 

program

 

binds

 

to

 

the

 

service

 

program,

 

although

 

there

 

is

 

no

 

matching

 

export

 

for

 

MYPROG’s

 

import

 

void

 

print(char

 

*).

Code

 

Samples

     

Running

 

the

 

Program

 

Before

 

you

 

can

 

run

 

program

 

MYPROG

 

successfully,

 

you

 

must

 

v

   

Re-create

 

service

 

program

 

PRINT

 

from

 

the

 

real

 

source

 

code

 

instead

 

of

 

from

 

the

 

placeholder

 

code

 

in

 

dummy.cpp.

    

//dummy.cpp

    

#include

 

<iostream.h>

    

void

 

function(void)

 

{

        

cout

 

<<

 

"I

 

am

 

a

 

placeholder

 

only"

 

<<

 

endl;

        

return;

    

}

 

Figure

 

21.

 

Example

 

of

 

Source

 

Code

 

to

 

Create

 

a

 

Dummy

 

C++

 

Program

   

//

 

myprog.cpp

    

#include

 

<iostream.h>

    

#define

 

size

  

80

    

void

 

print(char

 

*);

    

int

 

main(void)

 

{

      

char

 

text[size];

      

cout

 

<<

 

"Enter

 

text"

 

<<

 

endl;

      

cin

 

>>

 

text;

      

print(text);

      

return

 

1;

    

}

 

Figure

 

22.

 

Source

 

Code

 

for

 

Example

 

myprog.cpp

  

42

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

Re-create

 

program

 

MYPROG,

 

binding

 

it

 

to

 

the

 

new

 

version

 

of

 

service

 

program

 

PRINT

 

to

 

resolve

 

the

 

reference

 

to

 

print().

Note:

  

MYPROG

 

runs

 

successfully

 

only

 

if

 

PRINT

 

actually

 

exports

 

a

 

function

 

that

 

matches

 

MYPROG’s

 

import

 

request.

 

Updating

 

a

 

Service

 

Program

 

Export

 

List

 

To

 

make

 

backward-compatible

 

changes

 

to

 

an

 

ILE

 

C/C++

 

service

 

program,

 

you

 

use

 

the

 

binder

 

language.

 

This

 

language

 

allows

 

you

 

to

 

define

 

a

 

list

 

of

 

procedure

 

names

 

and

 

data

 

item

 

names

 

that

 

can

 

be

 

exported.

 

The

 

Export

 

Symbol

 

(EXPORT)

 

command

 

in

 

the

 

binder

 

language

 

identifies

 

the

 

procedure

 

and

 

data

 

item

 

names

 

that

 

make

 

up

 

the

 

signature

 

for

 

the

 

service

 

program

 

module.

 

New

 

procedure

 

or

 

data

 

item

 

names

 

should

 

be

 

added

 

to

 

the

 

end

 

of

 

the

 

export

 

list

 

to

 

ensure

 

changes

 

are

 

compatible.

 

A

 

signature

 

is

 

generated

 

by

 

the

 

order

 

in

 

which

 

the

 

modules

 

are

 

processed

 

and

 

the

 

order

 

in

 

which

 

the

 

symbols

 

are

 

exported

 

from

 

the

 

copied

 

modules.

 

A

 

service

 

program

 

becomes

 

difficult

 

to

 

update

 

once

 

the

 

exports

 

are

 

used

 

by

 

other

 

ILE

 

C/C++

 

programs.

 

If

 

the

 

service

 

program

 

is

 

changed,

 

the

 

order

 

or

 

number

 

of

 

exports

 

could

 

change.

 

If

 

the

 

signature

 

changes

 

all

 

ILE

 

C/C++

 

programs

 

and

 

service

 

programs

 

that

 

use

 

the

 

changed

 

service

 

program

 

have

 

to

 

be

 

re-created.

 

The

 

following

 

example

 

shows

 

how

 

to

 

add

 

a

 

new

 

procedure

 

called

 

cost2()

 

to

 

service

 

program

 

COST

 

without

 

having

 

to

 

re-create

 

the

 

existing

 

program

 

COSTDPT1

 

that

 

requires

 

an

 

export

 

from

 

COST.

 

Program

 

Description

 

The

 

figure

 

below

 

shows

 

the

 

exports

 

in

 

the

 

existing

 

version

 

of

 

service

 

program

 

COST,

 

and

 

in

 

the

 

updated

 

version.

   

The

 

figure

 

below

 

shows

 

the

 

import

 

requests

 

in

 

the

 

existing

 

program

 

COSTDPT1,

 

and

 

in

 

the

 

new

 

program

 

COSTDPT2.

  

COST (OLD) COST (NEW)

*SRVPGM

Exports:

cost1 ()

*SRVPGM

Exports:

cost1 ()
cost2 ()

  

Figure

 

23.

 

Exports

 

from

 

Service

 

Program

 

COST

  

Chapter

 

4.

 

Working

 

with

 

Exports

 

from

 

Service

 

Programs

 

43



The

 

binder

 

language

 

for

 

the

 

old

 

version

 

of

 

service

 

program

 

COST

 

is

 

located

 

in

 

member

 

BND

 

of

 

source

 

file

 

QSRVSRC,

 

in

 

library

 

MYLIB:

 

STRPGMEXP

 

PGMLVL(*CURRENT)

   

EXPORT

 

SYMBOL("cost1__Fi9_DecimalTXSP10SP2_")

 

ENDPGMEXP

 

The

 

export

 

signature

 

is

 

94898385315FD06BB65E44D38A852904.

 

The

 

updated

 

binder

 

language

 

includes

 

the

 

new

 

export

 

procedure

 

cost2().

 

It

 

is

 

located

 

in

 

member

 

BNDUPD

 

of

 

source

 

file

 

QSRVSRC,

 

in

 

library

 

MYLIB:

 

STRPGMEXP

 

PGMLVL(*CURRENT)

   

EXPORT

 

SYMBOL("cost1__Fi9_DecimalTXSP10SP2_")

   

EXPORT

 

SYMBOL("cost2__Fi9_DecimalTXSP10SP2_9_DecimalTXSP3SP1_")

 

ENDPGMEXP

 

The

 

new

 

export

 

signature

 

is

 

61E595C21D3EC9FDFD29749FB36B42D0.

 

In

 

the

 

binder

 

language

 

source

 

that

 

defines

 

the

 

old

 

service

 

program,

 

the

 

PGMLVL

 

value

 

is

 

changed

 

from

 

*CURRENT

 

to

 

*PRV:

 

STRPGMEXP

 

PGMLVL(*PRV)

   

EXPORT

 

SYMBOL("cost1__Fi9_DecimalTXSP10SP2_")

 

ENDPGMEXP

 

Its

 

export

 

signature

 

is

 

unchanged.

 

Note:

  

If

 

you

 

want

 

to

 

ensure

 

that

 

existing

 

programs

 

can

 

call

 

the

 

new

 

version

 

of

 

the

 

service

 

program

 

without

 

being

 

re-created,

 

ensure

 

that

 

you:

 

1.

   

Add

 

the

 

new

 

exports

 

to

 

the

 

end

 

of

 

the

 

symbol

 

list

 

in

 

the

 

binder

 

language

 

2.

   

Explicitly

 

specify

 

a

 

signature

 

for

 

the

 

new

 

version

 

of

 

the

 

service

 

program

 

that

 

is

 

identical

 

to

 

the

 

signature

 

of

 

the

 

old

 

version.

Creating

 

the

 

Source

 

Files

 

The

 

source

 

code

 

for

 

service

 

program

 

COST,

 

module

 

COST2,

 

and

 

programs

 

COSTDPT1

 

and

 

COSTDPT2

 

is

 

shown

 

in

 

the

 

following

 

figure:

   

COSTDTP1 (OLD) COSTDTP2 (NEW)

*PGM

Imports:

cost1 ()

*PGM

Imports:

cost2 ()

  

Figure

 

24.

 

Import

 

Requests

 

in

 

Programs

 

COSTDPT1

 

and

 

COSTDPT2

  

44

 

ILE

 

C/C++

 

Programmer’s

 

Guide



//

 

cost1.cpp

      

//

 

contains

 

the

 

export

 

function

 

cost1()

 

for

 

the

 

old

 

service

 

program

      

#include

 

<iostream.h>

      

#include

 

<bcd.h>

      

_DecimalT<10,2>

 

cost1

 

(

        

int

 

q,

                   

//

 

The

 

quantity.

        

_DecimalT<10,2>

 

p

 

)

      

//

 

The

 

price.

      

{

       

_DecimalT<10,2>

 

c;

        

//

 

The

 

cost.

       

c

 

=

 

q*p;

       

return

 

c;

      

}

      

//

 

cost2.cpp

      

//

 

contains

 

the

 

export

 

function

 

cost2()

 

for

 

the

 

new

 

service

 

program

      

#include

 

<iostream.h>

      

#include

 

<bcd.h>

      

_DecimalT<10,2>

 

cost2

 

(int

 

quantity,

 

_DecimalT<10,2>

 

price,

                                

_DecimalT<3,1>

  

discount

 

)

      

{

        

_DecimalT<10,2>

  

c

 

=

 

__D(quantity*price*discount/100);

        

return

 

c;

      

}

      

//

 

costdpt1.cpp

      

//

 

This

 

program

 

prompts

 

users

 

(from

 

dept1)

 

to

 

enter

 

the

      

//

 

quantity,

 

and

 

price

 

for

 

a

 

product.

 

It

 

uses

 

function

      

//

 

cost1()

 

to

 

calculate

 

the

 

cost,

 

and

 

prints

 

the

 

result

 

out.

      

#include

 

<iostream.h>

      

#include

 

<bcd.h>

      

_DecimalT<10,2>

 

cost1(int,

 

_DecimalT<10,2>);

      

int

 

main(void)

      

{

       

int

                 

quantity;

       

_DecimalT<10,2>

  

cost;

       

_DecimalT<10,2>

  

price;

       

cout

 

<<

 

"Enter

 

the

 

quantity,

 

please."

 

<<

 

endl;

       

cin

  

>>

  

quantity;

       

cout

 

<<

 

"Enter

 

the

 

price,

 

please."

 

<<

 

endl;

       

cin

  

>>

  

price;

       

cost

 

=

 

cost1(quantity,

 

price);

       

cout

 

<<

 

"The

 

cost

 

is

 

$"

 

<<

 

cost

 

<<

 

endl;

      

}

 

Figure

 

25.

 

Source

 

Code

 

for

 

Service

 

Program

 

COST

 

(Part

 

1

 

of

 

2)

  

Chapter

 

4.

 

Working

 

with

 

Exports

 

from

 

Service

 

Programs

 

45



Compiling

 

and

 

Binding

 

Programs

 

and

 

Service

 

Programs

 

1.

   

Create

 

service

 

program

 

COST

 

from

 

source

 

file

 

cost1.cpp,

 

using

 

the

 

binder

 

source

 

member

 

BND,

 

located

 

in

 

source

 

file

 

QSRVSRC,

 

in

 

library

 

MYLIB:

 

CRTCPPMOD

 

MODULE(MYLIB/COST1)

 

SRCSTMF(cost1.cpp)

 

CRTSRVPGM

 

SRVPGM(MYLIB/COST)

 

MODULE(MYLIB/COST1)

 

SRCFILE(MYLIB/QSRVSRC)

  

SRCMBR(BND)

 

DETAIL(*EXTENDED)

 

2.

   

Create

 

program

 

COSTDPT1

 

from

 

source

 

file

 

costdpt1.cpp

 

and

 

service

 

program

 

COST,

 

located

 

in

 

library

 

MYLIB:

 

CRTCPPMOD

 

MODULE(MYLIB/COSTDPT1)

 

SRCSTMF(costdpt1.cpp)

 

CRTPGM

 

PGM(MYLIB/COSTDPT1)

 

MODULE(MYLIB/COSTDPT1)

 

BNDSRVPGM(MYLIB/COST)

 

3.

   

Update

 

service

 

program

 

COST

 

to

 

include

 

module

 

COST2,

 

using

 

the

 

updated

 

binder

 

language

 

source

 

BNDUPD,

 

located

 

in

 

source

 

file

 

QSRVSRC

 

in

 

library

 

MYLIB:

 

CRTCPPMOD

 

MODULE(MYLIB/COST2)

 

SRCSTMF(cost2.cpp)

 

CRTSRVPGM

 

SRVPGM(MYLIB/COST)

 

MODULE(MYLIB/COST1

 

MYLIB/COST2)

  

SRCFILE(MYLIB/QSRVSRC)

 

SRCMBR(BND)

 

DETAIL(*EXTENDED)

 

It

 

is

 

necessary

 

to

 

re-create

 

the

 

service

 

program

 

COST,

 

using

 

the

 

two

 

modules

 

COST1

 

and

 

COST2

 

and

 

the

 

updated

 

version

 

of

 

the

 

binder

 

language

 

BNDUPD,

 

so

 

that

 

it

 

supports

 

the

 

new

 

cost2()

 

function.

 

Program

 

COSTDPT1,

 

which

 

used

 

COST

 

before

 

it

 

was

 

re-created,

 

remains

 

unchanged.

  

In

 

order

 

to

 

update

 

service

 

program

 

COST,

 

it

 

is

 

necessary

 

to

 

re-create

 

it

 

from

 

the

 

two

 

modules

 

COST1

 

and

 

COST2,

 

using

 

the

 

updated

 

version

 

of

 

the

 

binder

 

language

 

BNDUPD.

 

The

 

*EXTENDED

 

option

 

in

 

the

 

DETAIL

 

parameter

 

creates

 

an

 

extended

 

output

 

listing,

 

so

 

that

 

you

 

can

 

look

 

at

 

the

 

current

 

and

 

previous

 

signature

 

of

 

COST.

 

4.

   

Create

 

program

 

COSTDPT2

 

from

 

source

 

file

 

costdpt2:

      

//

 

costdpt2.cpp

      

//

 

This

 

program

 

prompts

 

users

 

(from

 

dept2)

 

to

 

enter

 

the

      

//

 

quantity,

 

price,

 

and

 

discount

 

rate

 

for

 

a

 

product.

      

//

 

It

 

uses

 

function

 

cost2()

 

to

 

calculate

 

the

 

cost,

 

and

 

prints

      

//

 

the

 

result

 

out.

      

#include

 

<iostream.h>

      

#include

 

<decimal.h>

      

_DecimalT<10,2>

 

cost2(int,

 

_DecimalT<10,2>,

 

_DecimalT<3,1>);

      

int

 

main(void)

      

{

       

int

             

quantity;

       

_DecimalT<10,2>

   

price;

       

_DecimalT<10,2>

   

cost;

       

_DecimalT<3,1>

    

discount;

       

cout

 

<<

 

"Enter

 

the

 

quantity,

 

please."

 

<<

 

endl;

       

cin

  

>>

  

quantity;

       

cout

 

<<

 

"Enter

 

the

 

price,

 

please."

 

<<

 

endl;

       

cin

  

>>

 

price;

       

cout

 

<<

 

"Enter

 

the

 

discount,

 

please.(

 

%)"

 

<<

 

endl;

       

cin

  

>>

 

discount;

       

cost

 

=

 

cost2(quantity,

 

price,

 

discount);

       

cout

 

<<

 

"The

 

cost

 

is

 

be

 

$"

 

<<

 

cost

 

<<

 

endl;

      

}

 

Figure

 

25.

 

Source

 

Code

 

for

 

Service

 

Program

 

COST

 

(Part

 

2

 

of

 

2)

  

46

 

ILE

 

C/C++

 

Programmer’s

 

Guide



CRTCPPMOD

 

MODULE(MYLIB/COSTDPT2)

 

SRCSTMF(costdpt2.cpp)

 

CRTPGM

 

PGM(MYLIB/COSTDPT2)

 

MODULE(MYLIB/COSTDPT2)

 

BNDSRVPGM(MYLIB/COST)

 

Running

 

the

 

Program

 

Run

 

program

 

COSTDPT1

 

from

 

an

 

OS/400

 

command

 

line

 

using

 

the

 

CL

 

command

 

CALL

 

COSTDPT1.

 

Run

 

program

 

COSTDPT2

 

from

 

an

 

OS/400

 

command

 

line

 

using

 

the

 

CL

 

command

 

CALL

 

COSTDPT2.

   

Chapter

 

4.

 

Working

 

with

 

Exports

 

from

 

Service

 

Programs

 

47



48

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

5.

 

Running

 

a

 

Program

 

There

 

are

 

several

 

ways

 

to

 

run

 

a

 

program

 

in

 

the

 

ILE

 

environment.

 

You

 

can

 

use:

 

v

   

A

 

control

 

language

 

(CL)

 

command:

 

–

   

Call

 

(CALL)

 

command

 

–

   

Transfer

 

Control

 

(TFRCTL)

 

command

 

–

   

Start

 

Programming

 

Development

 

Manager

 

(STRPDM)

 

command

 

–

   

user-defined

 

CL

 

command
v

   

An

 

ILE

 

C/C++

 

program

 

as

 

a

 

Command

 

Processing

 

Program

 

(CPP)

 

v

   

A

 

high-level

 

language

 

CALL

 

statement

Note:

  

Chapter

 

23,

 

“Using

 

ILE

 

C/C++

 

Call

 

Conventions,”

 

on

 

page

 

363

 

contains

 

information

 

on

 

interlanguage

 

calls.

 

v

   

The

 

EVOKE

 

statement

 

in

 

an

 

ICF

 

file

 

v

   

The

 

REXX

 

interpreter

 

v

   

The

 

QCAPEXC

 

program

 

v

   

The

 

ILE

 

Programmer

 

Menu

This

 

chapter

 

describes:

 

v

   

The

 

ILE

 

C/C++

 

run-time

 

model

 

v

   

Activations

 

and

 

activation

 

groups

 

v

   

Run-time

 

functions

 

and

 

activation

 

groups

 

v

   

How

 

to

 

call

 

programs

 

v

   

Normal

 

and

 

abnormal

 

end-of-program

 

v

   

How

 

to

 

manage

 

activation

 

groups

 

v

   

How

 

to

 

manage

 

run-time

 

storage

The

 

ILE

 

C/C++

 

Run-Time

 

Model

 

The

 

ILE

 

C/C++

 

run-time

 

model

 

guarantees

 

ISO

 

C/C++

 

standard

 

semantics

 

when

 

either

 

of

 

the

 

following

 

are

 

true:

 

v

   

All

 

programs

 

in

 

an

 

application

 

are

 

created

 

with

 

the

 

Create

 

Bound

 

Program

 

commands

 

(CRTBNDC

 

and

 

CRTBNDCPP).

 

v

   

The

 

following

 

options

 

are

 

used

 

with

 

the

 

Create

 

Program

 

(CRTPGM)

 

command:

  

Option

 

Description

 

ACTGRP(*NEW)

 

A

 

new

 

activation

 

group

 

is

 

created

 

on

 

every

 

call

 

of

 

the

 

created

 

*PGM,

 

and

 

the

 

activation

 

group

 

is

 

destroyed

 

when

 

the

 

program

 

ends.

 

OPTION(*NODUPPROC)

 

No

 

duplicate

 

procedure

 

definitions

 

in

 

the

 

same

 

bound

 

program

 

are

 

allowed.

 

OPTION(*NODUPVAR)

 

No

 

duplicate

 

variable

 

definitions

 

in

 

the

 

same

 

bound

 

program

 

are

 

allowed.

   

v

   

The

 

following

 

options

 

are

 

used

 

with

 

the

 

Create

 

Service

 

Program

 

(CRTSRVPGM)

 

command:

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

49



Option

 

Description

 

ACTGRP(*CALLER)

 

When

 

this

 

service

 

program

 

is

 

called,

 

it

 

is

 

activated

 

into

 

the

 

activation

 

group

 

of

 

the

 

calling

 

program.

 

OPTION(*NODUPPROC)

 

No

 

duplicate

 

procedure

 

definitions

 

in

 

the

 

same

 

bound

 

program

 

are

 

allowed.

 

OPTION(*NODUPVAR)

 

No

 

duplicate

 

variable

 

definitions

 

in

 

the

 

same

 

bound

 

program

 

are

 

allowed.

   

Note:

  

When

 

a

 

CRTPGM

 

parameter

 

does

 

not

 

appear

 

in

 

the

 

Create

 

Bound

 

Program

 

command

 

invocation,

 

the

 

default

 

is

 

the

 

CRTPGM

 

parameter.

 

For

 

example,

 

the

 

parameter

 

ACTGRP(*NEW)

 

is

 

the

 

default

 

for

 

the

 

CRTPGM

 

command,

 

and

 

is

 

used

 

for

 

the

 

Create

 

Bound

 

Program

 

command.

 

You

 

can

 

change

 

the

 

CRTPGM

 

parameter

 

defaults

 

using

 

the

 

Change

 

Command

 

Defaults

 

(CHGCMDDFT)

 

command.

 

Activations

 

and

 

Activation

 

Groups

 

After

 

successfully

 

creating

 

an

 

ILE

 

C/C++

 

program,

 

you

 

can

 

run

 

your

 

code.

 

Activation

 

is

 

the

 

process

 

of

 

getting

 

an

 

ILE

 

C/C++

 

program

 

or

 

service

 

program

 

ready

 

to

 

run.

 

When

 

an

 

ILE

 

C/C++

 

program

 

is

 

called,

 

the

 

system

 

performs

 

activation.

 

Because

 

ILE

 

C/C++

 

service

 

programs

 

are

 

not

 

called,

 

they

 

are

 

activated

 

during

 

the

 

call

 

to

 

an

 

ILE

 

C/C++

 

program

 

that

 

directly

 

or

 

indirectly

 

requires

 

their

 

services.

 

Activations

 

and

 

activation

 

groups

 

provide

 

the

 

following

 

functions

 

and

 

benefits:

 

v

   

They

 

help

 

ensure

 

that

 

ILE

 

C/C++

 

programs

 

running

 

in

 

the

 

same

 

job

 

run

 

independently

 

without

 

intruding

 

on

 

each

 

other

 

by

 

scoping

 

resources

 

to

 

the

 

activation

 

group.

 

Examples

 

of

 

programs

 

running

 

in

 

the

 

same

 

job

 

are

 

commitment

 

control,

 

overrides,

 

and

 

shared

 

files.

 

v

   

They

 

scope

 

resources

 

to

 

the

 

ILE

 

C/C++

 

program.

 

v

   

They

 

uniquely

 

allocate

 

static

 

data

 

needed

 

by

 

the

 

ILE

 

C/C++

 

program

 

or

 

service

 

program.

 

v

   

They

 

change

 

symbolic

 

links

 

to

 

ILE

 

C/C++

 

service

 

programs

 

to

 

physical

 

addresses.

When

 

activation

 

allocates

 

the

 

storage

 

necessary

 

for

 

the

 

static

 

variables

 

that

 

are

 

used

 

by

 

an

 

ILE

 

C/C++

 

program

 

or

 

service

 

program,

 

the

 

space

 

is

 

allocated

 

from

 

an

 

activation

 

group.

 

At

 

the

 

time

 

the

 

ILE

 

C/C++

 

program

 

or

 

service

 

program

 

is

 

created,

 

you

 

specify

 

the

 

activation

 

group

 

that

 

should

 

be

 

used

 

at

 

run

 

time.

 

Once

 

an

 

ILE

 

C/C++

 

program

 

is

 

activated,

 

it

 

remains

 

activated

 

until

 

the

 

activation

 

group

 

is

 

deleted.

 

Even

 

though

 

they

 

are

 

activated,

 

programs

 

do

 

not

 

appear

 

in

 

the

 

call

 

stack

 

unless

 

they

 

are

 

running.

 

When

 

an

 

OS/400

 

job

 

is

 

started,

 

the

 

system

 

creates

 

two

 

activation

 

groups

 

for

 

OPM

 

programs.

 

One

 

activation

 

group

 

is

 

reserved

 

for

 

OS/400

 

system

 

code

 

and

 

the

 

other

 

is

 

used

 

for

 

all

 

other

 

OPM

 

programs.

 

You

 

cannot

 

delete

 

the

 

OPM

 

default

 

activation

 

groups.

 

The

 

system

 

deletes

 

them

 

when

 

your

 

job

 

ends.

Note:

  

OPM

 

programs

 

are

 

not

 

threadsafe.

 

OPM

 

programs

 

should

 

be

 

migrated

 

to

 

ILE

 

and

 

made

 

threadsafe

 

before

 

they

 

are

 

called

 

in

 

a

 

multithreaded

   

50

 

ILE

 

C/C++

 

Programmer’s

 

Guide



application.

 

When

 

it

 

is

 

necessary

 

to

 

call

 

an

 

OPM

 

program

 

in

 

a

 

multithreaded

 

application,

 

start

 

another

 

process

 

to

 

run

 

the

 

OPM

 

program.

 

An

 

activation

 

group

 

can

 

continue

 

to

 

exist

 

even

 

when

 

the

 

main()

 

function

 

of

 

an

 

ILE

 

C/C++

 

program

 

is

 

not

 

on

 

the

 

call

 

stack.

 

This

 

occurs

 

when

 

the

 

ILE

 

C/C++

 

program

 

was

 

created

 

with

 

a

 

named

 

activation

 

group

 

(specifying

 

a

 

name

 

on

 

the

 

ACTGRP

 

option

 

of

 

the

 

CRTPGM

 

command),

 

and

 

the

 

main()

 

function

 

issues

 

a

 

return.

 

This

 

can

 

also

 

occur

 

when

 

the

 

ILE

 

C/C++

 

program

 

performs

 

a

 

longjmp()

 

across

 

a

 

control

 

boundary

 

by

 

using

 

a

 

jump

 

buffer

 

that

 

is

 

set

 

in

 

an

 

ILE

 

C/C++

 

procedure.

 

This

 

procedure

 

is

 

higher

 

in

 

the

 

call

 

stack

 

and

 

before

 

the

 

nearest

 

control

 

boundary.

 

Run-Time

 

Library

 

Functions

 

and

 

Activation

 

Groups

 

The

 

ILE

 

C/C++

 

run-time

 

library

 

functions

 

are

 

bound

 

to

 

the

 

application

 

in

 

the

 

activation

 

group

 

in

 

which

 

the

 

application

 

is

 

called.

 

This

 

means

 

that:

 

v

   

All

 

program

 

activations

 

in

 

the

 

same

 

activation

 

group

 

share

 

one

 

instance

 

of

 

the

 

ILE

 

C/C++

 

run-time

 

library.

 

v

   

The

 

state

 

of

 

the

 

ILE

 

C/C++

 

run-time

 

environment

 

propagates

 

across

 

program

 

call

 

boundaries.

In

 

other

 

words,

 

if

 

one

 

program

 

in

 

an

 

activation

 

group

 

changes

 

the

 

state

 

of

 

the

 

ILE

 

C/C++

 

run

 

time,

 

then

 

all

 

other

 

programs

 

in

 

that

 

activation

 

group

 

are

 

affected.

 

For

 

example,

 

other

 

programs

 

in

 

the

 

same

 

activation

 

group

 

are

 

affected

 

by

 

the

 

locale

 

setting

 

of

 

an

 

application

 

or

 

the

 

shift-in/shift-out

 

states

 

of

 

the

 

multibyte

 

functions.

 

If

 

the

 

ACTGRP

 

parameter

 

of

 

the

 

CRTPGM

 

command

 

is

 

specified

 

to

 

a

 

value

 

other

 

than

 

*NEW,

 

the

 

application’s

 

run-time

 

behavior

 

might

 

not

 

follow

 

ISO

 

C

 

or

 

ISO

 

C++

 

standards.

 

Non-ISO

 

behavior

 

may

 

occur

 

during:

 

v

   

Program

 

ending

 

(exit(),

 

abort(),

 

atexit())

 

v

   

Signal

 

handling

 

(signal(),

 

raise())

 

v

   

Multibyte

 

string

 

handling

 

(mblen())

 

v

   

Any

 

locale-dependent

 

library

 

functions

 

(isalpha(),

 

qsort())

In

 

the

 

default

 

activation

 

groups,

 

I/O

 

files

 

are

 

not

 

automatically

 

closed.

 

The

 

I/O

 

buffers

 

are

 

not

 

flushed.

 

If

 

ACTGRP

 

is

 

set

 

to

 

*CALLER,

 

multiple

 

calls

 

of

 

an

 

ILE

 

C/C++

 

program

 

share

 

one

 

instance

 

of

 

the

 

ILE

 

C/C++

 

run-time

 

library

 

state

 

in

 

the

 

same

 

activation

 

group.

 

Through

 

this

 

option,

 

ILE

 

C/C++

 

programs

 

can

 

run

 

within

 

the

 

OPM

 

default

 

activation

 

groups.

 

Certain

 

restrictions

 

exist

 

for

 

ILE

 

C/C++

 

programs

 

that

 

run

 

in

 

the

 

OPM

 

default

 

activation

 

groups.

 

For

 

example,

 

you

 

are

 

not

 

allowed

 

to

 

register

 

atexit()

 

functions

 

within

 

the

 

OPM

 

default

 

activation

 

groups.

 

If

 

the

 

activation

 

group

 

is

 

named:

 

v

   

All

 

calls

 

to

 

programs

 

in

 

this

 

activation

 

group

 

within

 

the

 

same

 

job

 

share

 

the

 

same

 

instance

 

of

 

the

 

ILE

 

C/C++

 

run-time

 

library

 

state.

 

v

   

No

 

constructors,

 

destructors,

 

or

 

static

 

initialization

 

in

 

the

 

program

 

are

 

executed.

Note:

  

Constructors,

 

destructors,

 

and

 

static

 

initializations

 

are

 

executed

 

only

 

when

 

the

 

activation

 

group

 

is

 

created.

 

It

 

is

 

possible

 

to

 

create

 

an

 

ISO-compliant

 

application

 

whose

 

programs

 

are

 

created

 

with

 

options

 

other

 

than

 

ACTGRP(*NEW).

   

Chapter

 

5.

 

Running

 

a

 

Program

 

51



Note:

  

It

 

is

 

the

 

responsibility

 

of

 

the

 

application

 

designer

 

to

 

ensure

 

that

 

the

 

sharing

 

of

 

resources,

 

and

 

run-time

 

states

 

across

 

all

 

programs

 

in

 

the

 

activation

 

group

 

do

 

not

 

result

 

in

 

non-ISO

 

behavior.

 

Calling

 

Programs

 

When

 

you

 

call

 

a

 

program,

 

the

 

OS/400

 

system

 

locates

 

the

 

corresponding

 

executable

 

code

 

and

 

performs

 

the

 

instructions

 

found

 

in

 

the

 

program.

Note:

  

Only

 

programs

 

can

 

run

 

independently.

 

Service

 

programs

 

or

 

other

 

bound

 

procedures

 

must

 

be

 

called

 

from

 

a

 

program

 

that

 

requires

 

their

 

services.

 

There

 

are

 

several

 

ways

 

to

 

call

 

a

 

program:

 

v

   

Using

 

the

 

Call

 

(CALL)

 

command

 

v

   

Using

 

the

 

Transfer

 

Control

 

(TFRCTL)

 

command

 

v

   

Creating

 

a

 

CL

 

command

 

to

 

call

 

a

 

program

Using

 

the

 

Call

 

(CALL)

 

Command

 

You

 

can

 

use

 

the

 

Call

 

(CALL)

 

command

 

to

 

run

 

a

 

program

 

interactively,

 

or

 

as

 

part

 

of

 

a

 

batch

 

job.

 

The

 

syntax

 

for

 

this

 

command

 

is:

 

��

 

CALL

 

PGM

 

(library-name/program-name)

 

��

 

For

 

example,

 

the

 

command

 

CALL

 

PGM(MYLIB/MYPROG)

 

invokes

 

the

 

program

 

MYPROG

 

located

 

in

 

the

 

library

 

MYLIB.

 

If

 

the

 

program

 

object

 

specified

 

by

 

program-name

 

exists

 

in

 

a

 

library

 

that

 

is

 

contained

 

in

 

your

 

library

 

list,

 

you

 

can

 

omit

 

the

 

library

 

name

 

in

 

the

 

command,

 

and

 

the

 

syntax

 

is:

 

��

 

CALL

 

program-name

 

��

 

For

 

example,

 

if

 

MYLIB

 

appears

 

in

 

your

 

library

 

list,

 

you

 

can

 

simply

 

enter:

 

CALL

 

MYPROG

 

Note:

  

If

 

you

 

need

 

prompting

 

for

 

the

 

command

 

parameters,

 

type

 

CALL

 

and

 

press

 

F4

 

(Prompt).

 

If

 

you

 

need

 

help

 

on

 

how

 

to

 

use

 

the

 

command,

 

type

 

CALL

 

and

 

press

 

F1(Help).

 

Passing

 

Parameters

 

to

 

the

 

Called

 

Program

 

When

 

you

 

request

 

prompting

 

with

 

the

 

Call

 

command,

 

a

 

display

 

appears

 

that

 

allows

 

you

 

to

 

supply

 

the

 

parameters

 

to

 

the

 

program

 

you

 

are

 

calling.

 

You

 

can

 

also

 

type

 

the

 

parameters

 

directly

 

onto

 

the

 

command

 

line,

 

following

 

the

 

Call

 

command.

 

If

 

the

 

program

 

requires

 

only

 

one

 

parameter,

 

enter:

 

CALL

 

MYPROG

 

’parameter

 

1’

   

52

 

ILE

 

C/C++

 

Programmer’s

 

Guide



If

 

the

 

program

 

requires

 

more

 

than

 

one

 

parameter,

 

you

 

must

 

use

 

the

 

PARM

 

keyword.

 

For

 

example:

 

CALL

 

MYPROG

 

PARM

 

(’parameter

 

1’

 

parameter

 

2’)

 

Example1::

   

The

 

following

 

example

 

shows

 

an

 

ILE

 

C/C++

 

program

 

T1520REP

 

that

 

requires

 

parameters

 

at

 

run

 

time.

 

1.

   

Suppose

 

the

 

source

 

code

 

is

 

stored

 

as

 

a

 

member

 

T1520REP

 

in

 

file

 

QACSRC

 

of

 

library

 

QCPPLE.

 

To

 

create

 

the

 

program

 

T1520REP,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520REP)

 

SRCFILE(QCPPLE/QACSRC)

 

The

 

source

 

code

 

is

 

shown

 

in

 

Figure

 

26.

 

2.

   

To

 

run

 

the

 

program

 

T1520REP,

 

enter:

 

CALL

 

PGM(MYLIB/T1520REP)

 

PARM(’Hello,

 

World’)

 

The

 

output

 

is:

   

Hello,

 

World

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

The

 

source

 

file

 

for

 

program

 

T1520REP

 

is

 

shown

 

in

 

the

 

following

 

figure:

  

Example

 

2::

   

The

 

following

 

example

 

demonstrates

 

how

 

to

 

pass

 

the

 

value

 

’Hello,

 

World’

 

to

 

program

 

XRUN1

 

which

 

expects

 

parameters

 

at

 

run

 

time.

 

Follow

 

the

 

steps

 

below

 

to

 

create

 

and

 

run

 

program

 

XRUN1:

 

1.

   

Compile

 

the

 

source

 

shown

 

above

 

with

 

default

 

compiler

 

options.

 

From

 

the

 

command

 

line,

 

enter:

 

CRTBNDCPP

 

PGM(MYLIB/XRUN1)

 

SRCSTMF(’xrun1.cpp’)

 

The

 

resulting

 

program

 

object

 

is

 

created

 

in

 

the

 

default

 

library

 

(in

 

this

 

example,

 

MYLIB).

 

2.

   

To

 

run

 

the

 

program

 

from

 

a

 

command

 

line,

 

enter:

 

CALL

 

PGM(MYLIB/XRUN1)

 

PARM(’Hello,

 

World’)

 

The

 

output

 

of

 

program

 

XRUN1

 

is:

       

Hello,

 

World

       

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

The

 

source

 

file

 

xrun1.cpp

 

for

 

program

 

XRUN1

 

is

 

shown

 

in

 

the

 

following

 

figure:

     

/*

 

Print

 

out

 

the

 

command

 

line

 

arguments.

                    

*/

    

#include

 

<stdio.h>

    

void

 

main

 

(

 

int

 

argc,

 

char

 

*argv[]

 

)

    

{

       

int

 

i;

       

for

 

(

 

i

 

=

 

1;

 

i

 

<

 

argc;

 

++i

 

)

          

printf(

 

"%s\n",

 

argv[i]

 

);

    

}

 

Figure

 

26.

 

T1520REP

 

—

 

ILE

 

C

 

Source

 

to

 

Pass

 

Parameters

 

to

 

an

 

ILE

 

C

 

Program

  

Chapter

 

5.

 

Running

 

a

 

Program

 

53



Call

 

(CALL)

 

Command

 

Parameter

 

Conversions

 

When

 

you

 

call

 

a

 

program

 

from

 

a

 

CL

 

command

 

line,

 

the

 

parameters

 

you

 

pass

 

on

 

the

 

Call

 

command

 

are

 

changed,

 

depending

 

on

 

how

 

you

 

state

 

the

 

parameters.

 

Table

 

5

 

shows

 

how

 

parameters

 

are

 

converted.

  

Table

 

5.

 

Call

 

(CALL)

 

Command

 

Parameter

 

Conversions

 

Conversion

 

Rules

 

Examples

 

Conversion

 

Results

 

String

 

literals

 

are

 

passed

 

with

 

a

 

null

 

terminating

 

character.

 

CALL

 

PGM(T1520REP)

 

PARM(abc)

 

ABC\0
(converted

 

to

 

uppercase;

 

passed

 

as

 

a

 

string)

 

Numeric

 

constants

 

are

 

passed

 

as

 

packed

 

decimal

 

digits.

 

CALL

 

PGM(T1520REP)

 

PARM(’123.4’)

 

123.4
(passed

 

as

 

a

 

packed

 

decimal

 

(15,5))

 

Characters

 

that

 

are

 

not

 

enclosed

 

in

 

single

 

quotation

 

marks

 

are:

 

v

   

Folded

 

to

 

uppercase

 

v

   

Passed

 

with

 

a

 

null

 

character

 

CALL

 

PGM(T1520REP)

 

PARM(123.4)

 

123.4\0
(passed

 

as

 

a

 

string)

 

Characters

 

that

 

are

 

enclosed

 

in

 

single

 

quotation

 

marks

 

are

 

not

 

changed.

 

Mixed

 

case

 

strings

 

are

 

supported,

 

and

 

are

 

passed

 

with

 

a

 

null

 

terminating

 

character.

 

CALL

 

PGM(T1520REP)

 

PARM(’abc’)

 

and

 

CALL

 

PGM(T1520REP)

 

PARM(’abC’)

 

abc\0
(passed

 

as

 

a

 

string)

 

and

 

abC\0

 

(passed

 

as

 

a

 

string)

    

The

 

REXX

 

interpreter

 

treats

 

all

 

REXX

 

variables

 

as

 

strings

 

(without

 

a

 

null

 

terminator).

 

REXX

 

passes

 

parameters

 

to

 

OS/400

 

which

 

then

 

calls

 

the

 

ILE

 

C/C++

 

program.

 

Conversion

 

to

 

a

 

packed

 

decimal

 

data

 

type

 

still

 

occurs,

 

and

 

strings

 

are

 

null

 

terminated.

 

Note:

  

These

 

changes

 

only

 

apply

 

to

 

calling

 

a

 

program

 

from

 

a

 

command

 

line,

 

not

 

to

 

interlanguage

 

calls.

 

See

 

Chapter

 

23,

 

“Using

 

ILE

 

C/C++

 

Call

 

Conventions,”

 

on

 

page

 

363

 

for

 

information

 

on

 

ILE

 

C/C++

 

calling

 

conventions.

 

Using

 

the

 

Process

 

Commands

 

(QCAPCMD)

 

API

 

You

 

can

 

use

 

the

 

Process

 

Commands

 

(QCAPCMD)

 

API

 

to:

 

v

   

Add

 

the

 

null

 

character

 

to

 

arguments

 

that

 

are

 

passed

 

to

 

an

 

ILE

 

C/C++

 

program.

 

v

   

Check

 

the

 

syntax

 

of

 

a

 

command

 

string

 

prior

 

to

 

running

 

it,

 

prompt

 

the

 

command

 

and

 

receive

 

the

 

changed

 

command

 

string,

 

and

 

run

 

a

 

command

 

from

 

an

 

HLL

 

(high-level

 

language).

   

//

 

xrun1.cpp

    

//

 

Prints

 

out

 

command

 

line

 

arguments.

      

#include

 

<iostream.h>

    

int

 

main

 

(

 

int

 

argc,

 

char

 

*argv[])

    

{

       

int

 

i;

       

for

 

(

 

i

 

=

 

1;

 

i

 

<

 

argc;

 

++i

 

)

          

cout

 

<<

 

argv[i]

 

<<

 

endl;

    

}

 

Figure

 

27.

 

Source

 

File

 

for

 

a

 

Program

 

that

 

Passes

 

the

 

Value

 

’Hello,

 

World’

 

to

 

Another

 

Program

  

54

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

QCAPCMD

 

API

 

is

 

used

 

to

 

perform

 

command

 

analyzer

 

processing

 

on

 

command

 

strings.

 

You

 

can

 

check

 

or

 

run

 

CL

 

commands

 

from

 

HLLs

 

as

 

well

 

as

 

check

 

syntax

 

for

 

specific

 

source

 

definition

 

types.

 

Using

 

the

 

Transfer

 

Control

 

(TFRCTL)

 

Command

 

You

 

can

 

run

 

an

 

application

 

from

 

within

 

a

 

CL

 

program

 

that

 

transfers

 

control

 

to

 

your

 

program

 

using

 

the

 

Transfer

 

Control

 

(TFRCTL)

 

command.

 

This

 

command:

 

1.

   

Transfers

 

control

 

to

 

the

 

program

 

specified

 

on

 

the

 

command.

 

2.

   

Removes

 

the

 

transferring

 

CL

 

program

 

from

 

the

 

call

 

stack.

In

 

the

 

following

 

example,

 

the

 

TFRCTL

 

command

 

in

 

a

 

CL

 

program

 

RUNCP

 

calls

 

a

 

C++

 

program

 

XRUN2,

 

which

 

is

 

specified

 

on

 

the

 

TFRCTL

 

command.

 

RUNCP

 

transfers

 

control

 

to

 

XRUN2.

 

The

 

transferring

 

program

 

RUNCP

 

is

 

removed

 

from

 

the

 

call

 

stack.

 

Figure

 

28

 

illustrates

 

the

 

call

 

to

 

the

 

CL

 

program

 

RUNCP,

 

and

 

the

 

transfer

 

of

 

control

 

to

 

the

 

C++

 

program

 

XRUN2.

    

Example:

 

Creating

 

and

 

Running

 

a

 

Program

 

that

 

Uses

 

the

 

TFRCTL

 

Command

 

To

 

create

 

and

 

run

 

programs

 

RUNCP

 

and

 

XRUN2,

 

follow

 

the

 

steps

 

below:

 

1.

    

Create

 

the

 

source

 

file

 

QCLSRC

 

and

 

enter

 

the

 

source

 

code

 

shown

 

in

 

Figure

 

29

 

on

 

page

 

56.

 

2.

   

Create

 

the

 

CL

 

program

 

RUNCP.

 

From

 

the

 

command

 

line,

 

enter:

 

CRTCLPGM

 

PGM(MYLIB/RUNCP)

 

SRCFILE(MYLIB/QCLSRC)

 

3.

   

T

 

create

 

program

 

XRUN2

 

in

 

library

 

MYLIB

 

from

 

source

 

file

 

xrun2.cpp

 

(shown

 

in

 

Figure

 

30

 

on

 

page

 

56),

 

enter:

 

CRTBNDCPP

 

PGM(MYLIB/XRUN2)

 

SRCSTMF(xrun2.cpp)

 

4.

   

Run

 

program

 

RUNCP

 

from

 

a

 

command

 

line,

 

passing

 

it

 

the

 

string

 

″nails″,

 

with

 

the

 

command:

 

CALL

 

PGM(MYLIB/RUNCP)

 

PARM(’nails’)

 

The

 

output

 

from

 

program

 

XRUN2

 

is:

 

CL Program
RUNCP
....
....
....

TRFCTL

removed from
call stack

program
exits

Control
Transfer

C++ Program
XRUN2
....
....
....

User Call

  

Figure

 

28.

 

Calling

 

Program

 

XRUN2

 

Using

 

the

 

TFRCTL

 

Command

  

Chapter

 

5.

 

Running

 

a

 

Program

 

55



string

 

=

 

nails

       

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

Code

 

Samples

  

Note:

  

In

 

the

 

example

 

“Example:

 

Creating

 

and

 

Running

 

a

 

Program

 

that

 

Uses

 

the

 

TFRCTL

 

Command”

 

on

 

page

 

55,

 

program

 

RUNCP

 

uses

 

the

 

TFRCTL

 

command

 

to

 

pass

 

control

 

to

 

the

 

ILE

 

C++

 

program

 

XRUN2,

 

which

 

does

 

not

 

return

 

control

 

to

 

RUNCP.

  

Note:

  

In

 

the

 

example

 

“Example:

 

Creating

 

and

 

Running

 

a

 

Program

 

that

 

Uses

 

the

 

TFRCTL

 

Command”

 

on

 

page

 

55,

 

program

 

XRUN2

 

receives

 

a

 

null-terminated

 

character

 

string

 

from

 

the

 

CL

 

program

 

and

 

prints

 

the

 

string.

 

Creating

 

a

 

CL

 

Command

 

to

 

Run

 

a

 

Program

 

You

 

can

 

also

 

run

 

a

 

program

 

from

 

your

 

own

 

CL

 

command.

 

To

 

create

 

a

 

command:

 

1.

   

Enter

 

a

 

set

 

of

 

command

 

statements

 

into

 

a

 

source

 

file.

 

2.

   

Process

 

the

 

source

 

file

 

and

 

create

 

a

 

command

 

object

 

(type

 

*CMD)

 

using

 

the

 

Create

 

Command

 

(CRTCMD)

 

command.

 

/*

 

Source

 

for

 

CL

 

Program

 

RUNCP

                               

*/

 

PGM

        

PARM(&STRING)

 

DCL

        

VAR(&STRING)

   

TYPE(*CHAR)

 

LEN(20)

 

DCL

        

VAR(&NULL)

     

TYPE(*CHAR)

 

LEN(1)

 

VALUE(X’00’)

   

/*

 

ADD

 

NULL

 

TERMINATOR

 

FOR

 

THE

 

ILE

 

C++

 

PROGRAM

               

*/

 

CHGVAR

     

VAR(&STRING)

 

VALUE(&STRING

 

*TCAT

 

&NULL)

 

TFRCTL

     

PGM(MYLIB/XRUN2)

 

PARM(&STRING)

   

/*

 

THE

 

DSPJOBLOG

 

COMMAND

 

IS

 

NOT

 

CARRIED

 

OUT

 

SINCE

            

*/

 

/*

 

WHEN

 

PROGRAM

 

XRRUN2

 

RETURNS,

 

IT

 

DOES

 

NOT

 

RETURN

 

TO

 

THIS

   

*/

 

/*

 

CL

 

PROGRAM.

                                               

*/

 

DSPJOBLOG

 

ENDPGM

 

Figure

 

29.

 

Example

 

of

 

Source

 

Code

 

that

 

Transfers

 

Control

 

to

 

Another

 

Program

//

 

xrun2.cpp

 

//

 

Source

 

for

 

Program

 

XRUN2

 

//

 

Receives

 

and

 

prints

 

a

 

null-terminated

 

character

 

string

   

#include

 

<iostream.h>

   

int

 

main(int

 

argc,

 

char

 

*argv[])

 

{

    

int

    

i;

    

char

 

*

 

string;

    

string

 

=

 

argv[1];

    

cout

 

<<

 

"string

 

=

 

"

 

<<

  

string

 

<<

 

endl;

 

}

 

Figure

 

30.

 

Example

 

of

 

Source

 

Code

 

that

 

Receives

 

and

 

Prints

 

a

 

Null-Terminated

 

Character

 

String

  

56

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

CRTCMD

 

command

 

definition

 

includes

 

the

 

command

 

name,

 

parameter

 

descriptions,

 

and

 

validity-checking

 

information,

 

and

 

identifies

 

the

 

program

 

that

 

performs

 

the

 

function

 

requested

 

by

 

the

 

command.

 

3.

   

Enter

 

the

 

command

 

interactively,

 

or

 

in

 

a

 

batch

 

job.

  

The

 

program

 

called

 

by

 

your

 

command

 

is

 

run.

The

 

following

 

example

 

illustrates

 

how

 

to

 

run

 

a

 

program

 

from

 

a

 

user-created

 

command:

 

Program

 

Description

 

A

 

newly

 

created

 

command

 

COST

 

prompts

 

for

 

and

 

accepts

 

user

 

input

 

values.

 

It

 

then

 

calls

 

a

 

C++

 

program

 

CALCOST

 

and

 

passes

 

it

 

the

 

input

 

values.

 

CALCOST

 

accepts

 

the

 

input

 

values

 

from

 

the

 

command

 

COST,

 

performs

 

calculations

 

on

 

these

 

values,

 

and

 

prints

 

results.

 

Figure

 

31

 

illustrates

 

this

 

example.

    

Instructions

 

To

 

create

 

and

 

run

 

the

 

example,

 

follow

 

the

 

steps

 

below:

 

1.

   

Enter

 

the

 

source

 

code

 

for

 

the

 

command

 

prompt

 

COST

 

(shown

 

in

 

Figure

 

32

 

on

 

page

 

58)

 

into

 

a

 

source

 

file

 

QCMDSRC

 

in

 

library

 

MYLIB,

 

and

 

save

 

it

 

as

 

member

 

COST:

 

2.

   

To

 

Create

 

the

 

command

 

prompt

 

COST.

 

From

 

the

 

command

 

line,

 

enter:

 

CRTCMD

 

CMD(MYLIB/COST)

 

PGM(MYLIB/CALCOST)

 

SRCFILE(MYLIB/QCMDSRC)

 

3.

   

To

 

create

 

program

 

CALCOST

 

from

 

the

 

source

 

file

 

calcost.cpp

 

(shown

 

in

 

Figure

 

32

 

on

 

page

 

58),

 

enter:

 

CRTBNDCPP

 

PGM(MYLIB/CALCOST)

 

4.

   

To

 

run

 

program

 

CALCOST:

 

a.

   

EnterCOST

 

and

 

press

 

F4

 

(Prompt).

 

The

 

prompts

 

ITEM,

 

PRICE,

 

and

 

QUANTITY

 

appear

 

in

 

order.

 

b.

   

When

 

prompted,

 

enter

 

the

 

data

 

shown

 

below:

 

Hammers

 

1.98

 

5000

 

COST

· Prompts for user input
· Accepts user-input values
· Calls program CALCOST and
passes input values to it

CALCOST

· Processes input values
· Performs calculations
· Produces printed output

Command

C++ Program

  

Figure

 

31.

 

Calling

 

Program

 

CALCOST

 

from

 

a

 

User-Defined

 

Command

 

COST

  

Chapter

 

5.

 

Running

 

a

 

Program

 

57



The

 

output

 

of

 

program

 

CALCOST

 

is:

      

It

 

costs

 

$11385.00

 

to

 

buy

 

5000

 

HAMMERS

      

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

    

>

 

Code

 

Samples

   

Note:

  

This

 

program

 

receives

 

the

 

incoming

 

arguments

 

from

 

the

 

command

 

COST,

 

calculates

 

a

 

cost,

 

and

 

prints

 

values.

 

All

 

incoming

 

arguments

 

are

 

pointers.

 

Normal

 

and

 

Abnormal

 

End-of-Program

 

When

 

a

 

program

 

ends

 

normally,

 

the

 

system

 

returns

 

control

 

to

 

the

 

caller.

 

The

 

caller

 

might

 

be

 

a

 

workstation

 

user

 

or

 

another

 

program.

 

If

 

a

 

program

 

ends

 

abnormally

 

during

 

run

 

time,

 

and

 

the

 

program

 

had

 

been

 

running

 

in

 

a

 

different

 

activation

 

group

 

from

 

its

 

caller,

 

the

 

escape

 

message

 

CEE9901

 

is

 

issued

 

and

 

control

 

is

 

returned

 

to

 

the

 

caller:

      

/*

 

Source

 

for

 

Command

 

Prompt

 

COST

 

*/

      

CMD

        

PROMPT(’CALCULATE

 

TOTAL

 

COST’)

      

PARM

       

KWD(ITEM)

 

TYPE(*CHAR)

 

LEN(20)

 

RSTD(*NO)

 

+

                   

MIN(1)

 

ALWUNPRT(*NO)

 

PROMPT(’Item

 

name’

 

1)

      

PARM

       

KWD(PRICE)

 

TYPE(*DEC)

 

LEN(10

 

2)

 

RSTD(*NO)

 

+

                   

RANGE(0.01

 

99999999.99)

 

MIN(1)

 

+

                   

ALWUNPRT(*YES)

 

PROMPT(’Unit

 

price’

 

2)

      

PARM

       

KWD(QUANTITY)

 

TYPE(*INT2)

 

RSTD(*NO)

 

RANGE(1

 

+

                   

9999)

 

MIN(1)

 

ALWUNPRT(*YES)

 

+

                   

PROMPT(’Number

 

of

 

items’

 

3)

 

Figure

 

32.

 

Source

 

Code

 

for

 

Command

 

Prompt

 

that

 

Runs

 

the

 

CALCOST

 

Program

   

//

 

calcost.cpp

    

//

 

Source

 

for

 

Program

 

CALCOST

      

#include

 

<iostream.h>

    

#include

 

<string.h>

    

#include

 

<bcd.h>

      

int

 

main(int

 

argc,

 

char

 

*argv[])

    

{

      

char

                 

*item_name;

      

_DecimalT<10,2>

      

*price;

      

short

 

int

            

*quantity;

      

const

 

_DecimalT<2,2>

 

taxrate=__D("0.15");

      

_DecimalT<17,2>

      

cost;

      

item_name

 

=

 

argv[1];

      

price

     

=

 

(_DecimalT<10,2>

 

*)

 

argv[2];

      

quantity

  

=

 

(short

 

*)

 

argv[3];

      

cost

 

=

 

(*quantity)*(*price)*(__D(1.00+taxrate));

      

cout

 

<<

 

"\nIt

 

costs

 

$"

 

<<

 

cost

 

<<

 

"

 

to

 

buy

 

"

           

<<

 

*quantity

 

<<

 

"

 

"

 

<<

 

item_name

 

<<

 

endl;

    

}

 

Figure

 

33.

 

Source

 

Code

 

for

 

Program

 

CALCOST

  

58

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Application

 

error

 

<msgid>

 

unmonitored

 

by

 

<pgm>

 

at

      

statement

 

<stmtid>,

 

instruction

 

<instruction>

 

A

 

CL

 

program

 

can

 

monitor

 

for

 

this

 

exception

 

by

 

using

 

the

 

Monitor

 

Message

 

(MONMSG)

 

command.

 

If

 

the

 

program

 

and

 

its

 

caller

 

are

 

running

 

in

 

the

 

same

 

activation

 

group

 

and

 

the

 

program

 

ends

 

abnormally,

 

the

 

message

 

that

 

is

 

issued

 

depends

 

on

 

how

 

the

 

program

 

ends.

 

If

 

it

 

ends

 

with

 

a

 

function

 

check,

 

CPF9999

 

is

 

issued.

 

Note:

  

For

 

more

 

information

 

about

 

escape

 

messages,

 

see

 

the

 

iSeries

 

Information

 

Center

 

(Message

 

Handling

 

Terms

 

and

 

Concepts:

 

http://publib.boulder.ibm.com/iseries/v5r2/ic2924/info/apis/term.htm).

 

Managing

 

Activation

 

Groups

 

Activation

 

groups

 

make

 

it

 

possible

 

for

 

multiple

 

ILE

 

programs

 

to

 

run

 

in

 

the

 

same

 

job

 

independently,

 

without

 

intruding

 

on

 

each

 

other.

 

An

 

activation

 

group

 

is

 

a

 

substructure

 

of

 

a

 

job.

 

It

 

consists

 

of

 

system

 

resources

 

such

 

as

 

storage,

 

commitment

 

definitions,

 

and

 

open

 

files.

 

These

 

resources

 

are

 

allocated

 

to

 

run

 

one

 

or

 

more

 

ILE

 

or

 

OPM

 

programs.

 

For

 

example,

 

the

 

storage

 

space

 

for

 

the

 

static

 

variables

 

of

 

a

 

program

 

is

 

allocated

 

from

 

an

 

activation

 

group.

 

Once

 

a

 

program

 

(type

 

*PGM)

 

is

 

called,

 

it

 

remains

 

activated

 

until

 

the

 

activation

 

group

 

it

 

runs

 

in

 

is

 

deleted.

 

Because

 

service

 

programs

 

are

 

not

 

called

 

directly,

 

they

 

are

 

activated

 

during

 

the

 

call

 

to

 

the

 

program

 

that

 

requires

 

their

 

services.

 

Specifying

 

an

 

Activation

 

Group

 

When

 

an

 

OS/400

 

job

 

is

 

started,

 

the

 

system

 

automatically

 

creates

 

two

 

activation

 

groups

 

to

 

be

 

used

 

by

 

OPM

 

programs.

 

One

 

activation

 

group

 

is

 

reserved

 

for

 

OS/400

 

system

 

code.

 

The

 

other

 

activation

 

group

 

is

 

used

 

for

 

all

 

other

 

OPM

 

programs.

 

The

 

symbol

 

used

 

to

 

represent

 

this

 

activation

 

group

 

is

 

*DFTACTGRP.

 

You

 

cannot

 

delete

 

the

 

OPM

 

default

 

activation

 

groups.

 

The

 

system

 

deletes

 

them

 

when

 

your

 

job

 

ends.

 

Note:

  

OPM

 

programs

 

always

 

run

 

in

 

the

 

default

 

activation

 

group;

 

you

 

cannot

 

change

 

their

 

activation

 

group

 

specification.

 

For

 

ILE

 

programs

 

you

 

specify

 

the

 

activation

 

group

 

that

 

should

 

be

 

used

 

at

 

run

 

time

 

through

 

the

 

ACTGRP

 

parameter

 

of

 

the

 

Create

 

Program

 

or

 

Create

 

Service

 

Program

 

commands.

 

You

 

can

 

choose

 

between:

 

v

   

Running

 

your

 

program

 

in

 

a

 

named

 

activation

 

group.

 

v

   

Accepting

 

the

 

default

 

activation

 

group:

 

–

   

*NEW

 

for

 

programs

 

–

   

*CALLER

 

for

 

service

 

programs
v

   

Activating

 

a

 

program

 

into

 

the

 

activation

 

group

 

of

 

a

 

calling

 

program.

Running

 

a

 

Program

 

in

 

a

 

Named

 

Activation

 

Group

 

To

 

manage

 

a

 

collection

 

of

 

ILE

 

programs

 

and

 

service

 

programs

 

as

 

one

 

application,

 

you

 

create

 

a

 

named

 

activation

 

group

 

for

 

them

 

by

 

specifying

 

a

 

user-defined

 

name

 

on

 

the

 

ACTGRP

 

parameter.

   

Chapter

 

5.

 

Running

 

a

 

Program

 

59



The

 

system

 

creates

 

the

 

named

 

activation

 

group

 

as

 

soon

 

as

 

the

 

first

 

program

 

that

 

has

 

specified

 

this

 

activation

 

group

 

is

 

called.

 

This

 

group

 

is

 

then

 

used

 

by

 

all

 

programs

 

and

 

service

 

programs

 

that

 

have

 

specified

 

its

 

name.

 

A

 

named

 

activation

 

group

 

ends

 

when

 

it

 

is

 

deleted

 

through

 

the

 

Reclaim

 

Activation

 

Group

 

(RCLACTGRP)

 

command.

 

This

 

command

 

can

 

only

 

be

 

used

 

when

 

the

 

activation

 

group

 

is

 

no

 

longer

 

in

 

use.

 

It

 

also

 

ends

 

when

 

you

 

call

 

the

 

exit()

 

function

 

in

 

your

 

code.

 

When

 

a

 

named

 

activation

 

group

 

ends,

 

all

 

resources

 

associated

 

with

 

the

 

programs

 

and

 

service

 

programs

 

of

 

the

 

group

 

are

 

returned

 

to

 

the

 

system.

 

Note:

  

Using

 

named

 

activation

 

groups

 

may

 

result

 

in

 

non-ISO

 

compliant

 

run-time

 

behavior.

 

If

 

a

 

program

 

created

 

using

 

named

 

activation

 

groups

 

remains

 

activated

 

by

 

a

 

return

 

statement,

 

you

 

encounter

 

the

 

following

 

problems:

 

v

   

Static

 

variables

 

are

 

not

 

re-initialized.

 

v

   

Static

 

constructors

 

are

 

not

 

called

 

again.

 

v

   

Static

 

destructors

 

are

 

not

 

called

 

on

 

return.

 

v

   

Other

 

programs

 

activated

 

in

 

the

 

same

 

activation

 

group

 

may

 

terminate

 

your

 

program,

 

although

 

they

 

seem

 

to

 

be

 

independent.

 

v

   

Your

 

program

 

is

 

not

 

portable,

 

if

 

you

 

count

 

on

 

the

 

behavior

 

of

 

the

 

named

 

activation

 

group.

  

In

 

the

 

following

 

example,

 

programs

 

PROG1,

 

PROG2,

 

and

 

PROG3

 

are

 

part

 

of

 

the

 

same

 

application

 

and

 

run

 

in

 

the

 

same

 

activation

 

group,

 

GROUP1.

 

Figure

 

34

 

illustrates

 

this

 

scenario:

 

To

 

create

 

these

 

programs

 

in

 

the

 

same

 

activation

 

group,

 

you

 

specify

 

GROUP1

 

on

 

the

 

ACTGRP

 

parameter

 

when

 

you

 

create

 

each

 

program:

 

CRTCPPMOD

 

MODULE(PROG1)

 

SRCSTMF(prog1.cpp)

 

CRTPGM

 

PGM(PROG1)

 

MODULE(PROG1)

 

ACTGRP(GROUP1)

 

CRTCPPMOD

 

MODULE(PROG2)

 

SRCSTMF(prog2.cpp)

 

CRTPGM

 

PGM(PROG2)

 

MODULE(PROG2)

 

ACTGRP(GROUP1)

 

CRTCPPMOD

 

MODULE(PROG3)

 

SRCSTMF(prog3.cpp)

 

CRTPGM

 

PGM(PROG3)

 

MODULE(PROG3)

 

ACTGRP(GROUP1)

 

Running

 

a

 

Program

 

in

 

Activation

 

Group

 

*NEW

 

To

 

create

 

a

 

new

 

activation

 

group

 

whenever

 

your

 

program

 

is

 

called,

 

specify

 

*NEW

 

on

 

the

 

ACTGRP

 

parameter.

 

In

 

this

 

case,

 

the

 

system

 

creates

 

a

 

name

 

for

 

the

 

activation

 

group

 

that

 

is

 

unique

 

within

 

your

 

job.

 

ACTGRP GROUP1

PROG1

PROG2

PROG3

  

Figure

 

34.

 

Running

 

Programs

 

in

 

a

 

Named

 

Activation

 

Group

  

60

 

ILE

 

C/C++

 

Programmer’s

 

Guide



*NEW

 

is

 

the

 

default

 

value

 

of

 

the

 

ACTGRP

 

parameter

 

on

 

the

 

CRTPGM

 

command.

 

An

 

activation

 

group

 

created

 

with

 

*NEW

 

always

 

ends

 

when

 

the

 

last

 

program

 

associated

 

with

 

it

 

ends.

 

Note:

  

*NEW

 

is

 

not

 

valid

 

for

 

a

 

service

 

program,

 

which

 

can

 

only

 

run

 

in

 

the

 

activation

 

group

 

of

 

its

 

caller,

 

or

 

in

 

a

 

named

 

activation

 

group.

 

If

 

you

 

create

 

a

 

program

 

with

 

ACTGRP(*NEW),

 

more

 

than

 

one

 

user

 

can

 

call

 

the

 

program

 

at

 

the

 

same

 

time

 

without

 

using

 

the

 

same

 

activation

 

group.

 

Each

 

call

 

uses

 

a

 

new

 

copy

 

of

 

the

 

program.

 

Each

 

new

 

copy

 

has

 

its

 

own

 

data

 

and

 

opens

 

its

 

files.

 

In

 

the

 

following

 

example,

 

programs

 

PROG4,

 

PROG5,

 

and

 

PROG6

 

run

 

in

 

separate

 

unnamed

 

activation

 

groups.

   

By

 

default,

 

each

 

program

 

is

 

created

 

into

 

a

 

different

 

activation

 

group,

 

identified

 

by

 

the

 

ACTGRP

 

parameter

 

(*NEW).

 

CRTCPPMOD

 

MODULE(PROG4)

 

SRCSTMF(prog4.cpp)

 

CRTPGM

 

PGM(PROG4)

 

MODULE(PROG4)

 

ACTGRP(*NEW)

 

CRTCPPMOD

 

MODULE(PROG5)

 

SRCSTMF(prog5.cpp)

 

CRTPGM

 

PGM(PROG5)

 

MODULE(PROG5)

 

ACTGRP(*NEW)

 

CRTCPPMOD

 

MODULE(PROG6)

 

SRCSTMF(prog6.cpp)

 

CRTPGM

 

PGM(PROG6)

 

MODULE(PROG6)

 

ACTGRP(*NEW)

 

Because

 

*NEW

 

is

 

the

 

default,

 

you

 

obtain

 

the

 

same

 

result

 

with

 

the

 

following

 

invocations:

 

CRTBNDCPP

 

PGM(PROG4)

 

SRCSTMF(prog4.cpp)

 

CRTBNDCPP

 

PGM(PROG5)

 

SRCSTMF(prog5.cpp)

 

CRTBNDCPP

 

PGM(PROG6)

 

SRCSTMF(prog6.cpp)

 

Note:

  

If

 

you

 

invoke

 

three

 

modules

 

in

 

one

 

command

 

a

 

single

 

program

 

object

 

PROG

 

is

 

created

 

in

 

activation

 

group

 

*NEW:

 

CRTCPPMOD

 

MODULE(PROG7)

 

SRCSTMF(prog7.cpp)

 

CRTCPPMOD

 

MODULE(PROG8)

 

SRCSTMF(prog8.cpp)

 

CRTCPPMOD

 

MODULE(PROG9)

 

SRCSTMF(prog9.cpp)

 

CRTPGM

 

PGM(PROG)

 

MODULE(PROG7

 

PROG8

 

PROG9)

 

Non-Standard

 

Behavior

 

with

 

Named

 

Activation

 

Groups

 

If

 

the

 

ACTGRP

 

parameter

 

of

 

the

 

CRTPGM

 

command

 

is

 

specified

 

as

 

a

 

value

 

other

 

than

 

*NEW,

 

the

 

application’s

 

run-time

 

behavior

 

may

 

not

 

follow

 

ISO

 

semantics.

 

Run-time

 

and

 

class

 

libraries

 

assume

 

that

 

programs

 

are

 

built

 

with

 

ACTGRP(*NEW)

 

Non-ISO

 

behavior

 

may

 

occur

 

during:

 

v

   

Program

 

termination

 

-

 

exit(),

 

abort(),

 

atexit()

 

v

   

Signal

 

handling

 

-

 

signal(),

 

raise()

 

ACTGRP *NEW

ACTGRP *NEW

ACTGRP *NEW

PROG4

PROG5

PROG6

  

Figure

 

35.

 

Running

 

Programs

 

in

 

Unnamed

 

Activation

 

Groups

  

Chapter

 

5.

 

Running

 

a

 

Program

 

61



v

   

Multibyte

 

string

 

handling

 

-

 

mblen()

 

v

   

Any

 

locale-dependent

 

library

 

functions

 

-

 

isalpha(),

 

qsort()

In

 

the

 

default

 

activation

 

groups,

 

I/O

 

files

 

are

 

not

 

automatically

 

closed.

 

The

 

I/O

 

buffers

 

are

 

not

 

flushed

 

unless

 

explicitly

 

requested.

 

Running

 

a

 

Program

 

in

 

Activation

 

Group

 

(*CALLER)

 

You

 

can

 

specify

 

that

 

an

 

ILE

 

program

 

or

 

an

 

ILE

 

service

 

program

 

be

 

activated

 

within

 

the

 

activation

 

group

 

of

 

a

 

calling

 

program,

 

by

 

setting

 

ACTGRP

 

to

 

*CALLER.

 

With

 

this

 

attribute,

 

a

 

new

 

activation

 

group

 

is

 

never

 

created

 

when

 

the

 

program

 

or

 

service

 

program

 

is

 

activated.

 

Through

 

this

 

option,

 

ILE

 

C/C++

 

programs

 

can

 

run

 

within

 

the

 

OPM

 

default

 

activation

 

groups

 

when

 

the

 

caller

 

is

 

an

 

OPM

 

program.

 

Certain

 

restrictions

 

exist

 

for

 

ILE

 

C/C++

 

programs

 

running

 

in

 

the

 

OPM

 

default

 

activation

 

groups.

 

For

 

example,

 

you

 

are

 

not

 

allowed

 

to

 

register

 

atexit()

 

functions

 

within

 

the

 

OPM

 

default

 

activation

 

groups.

 

If

 

the

 

activation

 

group

 

is

 

named,

 

all

 

calls

 

to

 

programs

 

in

 

this

 

activation

 

group

 

within

 

the

 

same

 

job

 

share

 

the

 

same

 

instance

 

of

 

the

 

ILE

 

C/C++

 

run-time

 

library

 

state.

 

It

 

is

 

possible

 

to

 

create

 

an

 

ISO-compliant

 

application

 

whose

 

programs

 

are

 

created

 

with

 

options

 

other

 

than

 

ACTGRP(*NEW).

 

While

 

non-ISO

 

behavior

 

may

 

be

 

desirable

 

in

 

certain

 

cases,

 

it

 

is

 

the

 

responsibility

 

of

 

the

 

application

 

designer

 

to

 

ensure

 

that

 

the

 

sharing

 

of

 

resources

 

and

 

run-time

 

states

 

across

 

all

 

programs

 

in

 

the

 

activation

 

group

 

does

 

not

 

result

 

in

 

incorrect

 

behavior.

 

In

 

the

 

following

 

example,

 

a

 

service

 

program

 

SRV1

 

is

 

activated

 

into

 

the

 

respective

 

activation

 

groups

 

of

 

programsPROG7

 

and

 

PROG8.

 

PROG7

 

runs

 

in

 

a

 

named

 

activation

 

group

 

GROUP2,

 

while

 

PROG8

 

runs

 

in

 

an

 

unnamed

 

activation

 

group

 

*NEW.

   

By

 

default,the

 

service

 

program

 

SRV1

 

is

 

created

 

into

 

the

 

activation

 

group

 

of

 

each

 

calling

 

program.

 

CRTCPPMOD

 

MODULE(SRV1)

 

SRCSTMF(srv1.cpp)

 

CRTSRVPGM

 

SRVPGM(SRV1)

 

MODULE(SRV1)

 

Presence

 

of

 

a

 

Program

 

on

 

the

 

Call

 

Stack

 

Even

 

though

 

it

 

is

 

activated,

 

a

 

program

 

does

 

not

 

appear

 

on

 

the

 

call

 

stack

 

unless

 

it

 

is

 

running.

 

But

 

an

 

activation

 

group

 

can

 

continue

 

to

 

exist

 

even

 

when

 

the

 

main()

 

function

 

of

 

the

 

program

 

is

 

not

 

on

 

the

 

call

 

stack.

 

This

 

occurs

 

when

 

the

 

program

 

was

 

created

 

with

 

a

 

named

 

activation

 

group,

 

and

 

the

 

main()

 

function

 

issues

 

a

 

return.

 

It

 

can

 

also

 

occur

 

when

 

the

 

program

 

performs

 

a

 

ACTGRP GROUP2

ACTGRP *NEW

PROG7
SRV1

PROG8
SRV1

  

Figure

 

36.

 

Running

 

a

 

Service

 

Program

 

in

 

the

 

Activation

 

Groups

 

of

 

Calling

 

Programs

  

62

 

ILE

 

C/C++

 

Programmer’s

 

Guide



longjmp()

 

across

 

a

 

control

 

boundary

 

by

 

using

 

a

 

jump

 

buffer

 

that

 

is

 

set

 

in

 

an

 

ILE

 

C

 

or

 

C++

 

procedure.

 

(This

 

procedure

 

is

 

higher

 

in

 

the

 

call

 

stack

 

and

 

before

 

the

 

nearest

 

control

 

boundary.)

 

Deleting

 

an

 

Activation

 

Group

 

When

 

an

 

activation

 

group

 

is

 

deleted,

 

its

 

resources

 

are

 

reclaimed.

 

The

 

resources

 

include

 

static

 

storage

 

and

 

open

 

files.

 

A

 

*NEW

 

activation

 

group

 

is

 

deleted

 

when

 

the

 

program

 

it

 

is

 

associated

 

with

 

returns

 

to

 

its

 

caller.

 

Named

 

activation

 

groups

 

are

 

persistent.

 

You

 

must

 

delete

 

them

 

explicitly.

 

Otherwise

 

they

 

end

 

only

 

when

 

the

 

job

 

ends.

 

The

 

storage

 

associated

 

with

 

programs

 

running

 

in

 

named

 

activation

 

groups

 

is

 

not

 

released

 

until

 

these

 

activation

 

groups

 

are

 

deleted.

 

The

 

OPM

 

default

 

activation

 

group

 

is

 

also

 

a

 

persistent

 

activation

 

group.

 

The

 

storage

 

associated

 

with

 

ILE

 

programs

 

running

 

in

 

the

 

default

 

activation

 

group

 

is

 

released

 

either

 

when

 

you

 

sign

 

off

 

(for

 

an

 

interactive

 

job)

 

or

 

when

 

the

 

job

 

ends

 

(for

 

a

 

batch

 

job).

 

Reclaiming

 

System

 

Resources

 

You

 

may

 

encounter

 

situations

 

where

 

system

 

storage

 

is

 

exhausted,

 

for

 

example:

 

v

   

If

 

many

 

ILE

 

programs

 

are

 

activated

 

(that

 

is,

 

called

 

at

 

least

 

once).

 

v

   

If

 

ILE

 

programs

 

that

 

use

 

large

 

amounts

 

of

 

static

 

storage

 

run

 

in

 

the

 

OPM

 

default

 

activation

 

group

 

(storage

 

is

 

not

 

reclaimed

 

until

 

the

 

job

 

ends).

 

v

   

If

 

many

 

service

 

programs

 

are

 

called

 

into

 

named

 

activation

 

groups

 

(resources

 

are

 

only

 

reclaimed

 

when

 

the

 

job

 

ends).

In

 

such

 

situations,

 

you

 

may

 

want

 

to

 

reclaim

 

system

 

resources

 

that

 

are

 

no

 

longer

 

needed

 

for

 

a

 

program,

 

but

 

are

 

still

 

tied

 

up

 

because

 

an

 

activation

 

group

 

has

 

not

 

been

 

deleted.

 

You

 

have

 

the

 

following

 

options:

 

v

   

Delete

 

a

 

named

 

activation

 

group

 

that

 

is

 

not

 

in

 

use

 

through

 

the

 

Reclaim

 

Activation

 

Group

 

(RCLACTGRP)

 

command

 

.

  

The

 

command

 

provides

 

options

 

to

 

either

 

delete

 

all

 

eligible

 

activation

 

groups

 

or

 

to

 

delete

 

an

 

activation

 

group

 

by

 

name.

 

v

   

Free

 

resources

 

for

 

programs

 

that

 

are

 

no

 

longer

 

active

 

through

 

the

 

Reclaim

 

Resources

 

(RCLRSC)

 

command.

Using

 

the

 

Reclaim

 

Resources

 

(RCLRSC)

 

Command

 

The

 

RCLRSC

 

command

 

works

 

differently

 

depending

 

on

 

how

 

the

 

program

 

was

 

created:

 

v

   

For

 

OPM

 

programs,

 

the

 

RCLRSC

 

command

 

closes

 

open

 

files

 

and

 

frees

 

static

 

storage.

 

v

   

For

 

ILE

 

programs

 

that

 

were

 

activated

 

into

 

the

 

OPM

 

default

 

activation

 

group

 

(because

 

they

 

were

 

created

 

with

 

*CALLER),

 

The

 

RCLRSC

 

command

 

closes

 

files

 

and

 

reinitializes

 

storage.

 

However,

 

the

 

storage

 

is

 

not

 

released.

 

v

   

For

 

ILE

 

programs

 

associated

 

with

 

a

 

named

 

activation

 

group,

 

the

 

RCLRSC

 

command

 

has

 

no

 

effect.

 

You

 

must

 

use

 

the

 

RCLACTGRP

 

command

 

to

 

free

 

resources

 

in

 

a

 

named

 

activation

 

group.

  

Chapter

 

5.

 

Running

 

a

 

Program

 

63



Managing

 

Run-Time

 

Storage

 

ILE

 

allows

 

you

 

to

 

manage

 

run-time

 

storage

 

directly

 

from

 

your

 

program,

 

by

 

managing

 

heaps.

 

A

 

heap

 

is

 

an

 

area

 

of

 

storage

 

used

 

for

 

allocations

 

of

 

dynamic

 

storage.

 

The

 

amount

 

of

 

dynamic

 

storage

 

required

 

by

 

an

 

application

 

depends

 

on

 

the

 

data

 

being

 

processed

 

by

 

the

 

programs

 

and

 

procedures

 

that

 

use

 

the

 

heap.

 

You

 

manage

 

heaps

 

by

 

using

 

ILE

 

bindable

 

APIs.

 

You

 

are

 

not

 

required

 

to

 

manage

 

run-time

 

storage

 

explicitly.

 

However,

 

you

 

may

 

wish

 

to

 

do

 

so

 

if

 

you

 

want

 

to

 

make

 

use

 

of

 

dynamically

 

allocated

 

storage.

 

For

 

example,

 

if

 

you

 

do

 

not

 

know

 

exactly

 

how

 

big

 

an

 

array

 

should

 

be,

 

you

 

could

 

acquire

 

the

 

actual

 

storage

 

for

 

the

 

array

 

at

 

run

 

time,

 

once

 

your

 

program

 

determines

 

how

 

big

 

the

 

array

 

should

 

be.

 

There

 

are

 

two

 

types

 

of

 

heaps

 

available

 

on

 

the

 

system:

 

v

   

default

 

heap

 

v

   

user-created

 

heap

You

 

can

 

use

 

one

 

or

 

more

 

user-created

 

heaps

 

to

 

isolate

 

the

 

dynamic

 

storage

 

required

 

by

 

some

 

programs

 

and

 

procedures

 

within

 

an

 

activation

 

group.

 

The

 

rest

 

of

 

this

 

section

 

explains

 

how

 

to

 

use

 

a

 

default

 

heap

 

to

 

manage

 

run-time

 

storage

 

in

 

a

 

program.

 

Managing

 

the

 

Default

 

Heap

 

The

 

first

 

request

 

for

 

dynamic

 

storage

 

within

 

an

 

activation

 

group

 

results

 

in

 

the

 

creation

 

of

 

a

 

default

 

heap

 

from

 

which

 

the

 

storage

 

allocation

 

takes

 

place.

 

Additional

 

requests

 

for

 

dynamic

 

storage

 

are

 

met

 

by

 

further

 

allocations

 

from

 

the

 

default

 

heap.

 

If

 

there

 

is

 

insufficient

 

storage

 

in

 

the

 

heap

 

to

 

satisfy

 

the

 

current

 

request

 

for

 

dynamic

 

storage,

 

the

 

heap

 

is

 

extended,

 

and

 

the

 

additional

 

storage

 

is

 

allocated.

 

Allocated

 

dynamic

 

storage

 

remains

 

allocated

 

until

 

it

 

is

 

explicitly

 

freed,

 

or

 

until

 

the

 

heap

 

is

 

discarded.

 

The

 

default

 

heap

 

is

 

discarded

 

only

 

when

 

the

 

owning

 

activation

 

group

 

ends.

 

Programs

 

in

 

the

 

same

 

activation

 

group

 

all

 

use

 

the

 

same

 

default

 

heap.

 

If

 

one

 

program

 

accesses

 

storage

 

beyond

 

what

 

has

 

been

 

allocated,

 

it

 

can

 

cause

 

problems

 

for

 

another

 

program.

 

For

 

example,

 

assume

 

that

 

two

 

programs,

 

PGM1

 

and

 

PGM2

 

are

 

running

 

in

 

the

 

same

 

activation

 

group.

 

10

 

bytes

 

are

 

allocated

 

for

 

PGM1,

 

but

 

11

 

bytes

 

are

 

changed

 

by

 

it.

 

If

 

the

 

extra

 

byte

 

was

 

in

 

fact

 

allocated

 

for

 

PGM2

 

problems

 

may

 

arise

 

for

 

PGM2.

 

Using

 

Bindable

 

APIs

 

to

 

Manage

 

the

 

Default

 

Heap

 

You

 

can

 

use

 

the

 

following

 

ILE

 

bindable

 

APIs

 

on

 

the

 

default

 

heap:

 

Free

 

Storage

 

(CEEFRST)

 

Frees

 

one

 

previous

 

allocation

 

of

 

heap

 

storage

 

Get

 

Heap

 

Storage

 

(CEEGTST)

 

Allocates

 

storage

 

within

 

a

 

heap

 

Reallocate

 

Storage

 

(CEECZST)

 

Changes

 

the

 

size

 

of

 

previously

 

allocated

 

storage

  

64

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Dynamically

 

Allocating

 

Storage

 

at

 

Run

 

Time

    

In

 

an

 

ILE

 

C++

 

program,

 

you

 

manage

 

dynamic

 

storage

 

belonging

 

to

 

the

 

default

 

heap

 

using

 

the

 

operators

 

new

 

and

 

delete

 

to

 

create

 

and

 

delete

 

dynamic

 

objects.

 

Dynamic

 

objects

 

are

 

never

 

created

 

and

 

deleted

 

automatically.

 

Their

 

creation

 

can

 

fail

 

if

 

there

 

is

 

not

 

enough

 

free

 

heap

 

space

 

available,

 

and

 

your

 

programs

 

must

 

provide

 

for

 

this

 

possibility.

 

The

 

following

 

figures

 

illustrate

 

how

 

to

 

use

 

the

 

new

 

and

 

delete

 

operators

 

for

 

dynamic

 

storage

 

allocation:

     

Overriding

 

Replacement

 

Functions

    

The

 

C++

 

standard

 

allows

 

an

 

application

 

to

 

redefine

 

a

 

number

 

of

 

replacement

 

functions.

 

The

 

program’s

 

definitions

 

are

 

used

 

instead

 

of

 

the

 

default

 

versions

 

supplied

 

by

 

the

 

library.

 

Such

 

replacement

 

occurs

 

prior

 

to

 

program

 

startup.

 

A

 

C++

 

program

 

may

 

provide

 

the

 

definition

 

for

 

any

 

of

 

the

 

eight

 

dynamic

 

memory

 

allocation

 

functions.

 

These

 

include:

 

v

   

void

 

*operator

 

new

 

(size_t)

 

throw(std::bad_alloc);

 

v

   

void

 

*operator

 

new

 

(size_t,

 

const

 

std::nothrow_t&)

 

throw();

 

v

   

void

 

*operator

 

new[]

 

(size_t)

 

throw(std:bad_alloc);

 

v

   

void

 

*operator

 

new[]

 

(size_t,

 

const

 

std::nothrow_t&)

 

throw();

 

v

   

void

 

operator

 

delete

 

(void*)

 

throw();

 

v

   

void

 

operator

 

delete

 

(void*,

 

const

 

std::nothrow_t&)

 

throw();

 

v

   

void

 

operator

 

delete

 

[]

 

(void*)

 

throw();

 

v

   

void

 

operator

 

delete

 

[]

 

(void*,

 

const

 

std::nothrow_t&)

 

throw();

 

Limitations:

   

When

 

overriding

 

replacement

 

functions,

 

consider

 

the

 

following

 

limitations:

 

TClass

 

*p;

                        

//

 

Define

 

pointer

      

p=

 

new

 

TClass;

               

//

 

Construct

 

object

      

if

 

(!p)

 

{

         

Error("Unable

 

to

 

construct

 

object");

         

exit(1);

      

}

      

...

      

delete

 

p;

                    

//

 

Delete

 

object

 

Figure

 

37.

 

Example

 

of

 

Dynamic

 

Allocation

 

and

 

De-Allocation

 

of

 

Storage

 

for

 

a

 

Class

 

Object

TClass

 

*array;

                          

//

 

Define

 

pointer

      

array

 

=

 

new

 

TClass[100];//

 

Construct

 

array

 

of

 

100

 

objects

      

...

      

delete[]

 

array;

         

//

 

Delete

 

array

 

Note:

  

In

 

this

 

example,

 

you

 

use

 

delete[]

 

to

 

delete

 

the

 

array.

 

Without

 

the

 

brackets,

 

delete

 

deletes

 

the

 

entire

 

array,

 

but

 

calls

 

the

 

destructor

 

only

 

for

 

the

 

first

 

element

 

in

 

the

 

array.

 

If

 

you

 

have

 

an

 

array

 

of

 

values

 

that

 

do

 

not

 

have

 

destructors,

 

you

 

can

 

use

 

delete

 

or

 

delete[].

Figure

 

38.

 

Example

 

of

 

Dynamic

 

Allocation

 

and

 

De-Allocation

 

of

 

Storage

 

for

 

an

 

Array

 

of

 

Objects

  

Chapter

 

5.

 

Running

 

a

 

Program

 

65



v

   

A

 

program

 

that

 

contains

 

a

 

main

 

function

 

has

 

to

 

be

 

compiled

 

with

 

C++

 

compiler.

 

v

   

When

 

the

 

main()

 

entry

 

point

 

is

 

not

 

a

 

C++

 

module,

 

the

 

calls

 

to

 

global

 

new

 

or

 

delete

 

operators

 

work

 

only

 

if

 

they

 

are

 

in

 

the

 

same

 

compilation

 

unit

 

(where

 

the

 

definition

 

of

 

the

 

corresponding

 

replacement

 

functions

 

are

 

visible).

 

v

   

Infinite

 

recursion

 

can

 

occur

 

when

 

you

 

use

 

standard

 

library

 

objects

 

in

 

the

 

implementation

 

of

 

replacement

 

functions

 

because

 

the

 

library

 

makes

 

extensive

 

use

 

of

 

calls

 

to

 

the

 

allocation

 

operators.

 

Note:

  

Avoid

 

using

 

iostreams

 

for

 

logging.

Overloading

 

the

 

new

 

or

 

delete

 

Operator

    

The

 

ISO

 

C++

 

Standard

 

categorizes

 

operator

 

new

 

and

 

operator

 

delete

 

as

 

replacement

 

functions,

 

which

 

means

 

that

 

they

 

can

 

be

 

redefined

 

in

 

a

 

C++

 

program.

 

However,

 

the

 

standard

 

allows

 

only

 

one

 

definition

 

of

 

an

 

operator

 

to

 

be

 

in

 

effect

 

during

 

program

 

execution.

 

Note:

  

Visibility

 

issues

 

can

 

arise

 

if

 

a

 

program

 

does

 

both

 

of

 

the

 

following:

 

v

   

Overloads

 

operator

 

new

 

or

 

operator

 

delete

 

v

   

Uses

 

multiple

 

C++

 

translation

 

units

For

 

detailed

 

information

 

about

 

visibility

 

issues,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference.

 

Example:

 

Suppose

 

an

 

application

 

uses

 

three

 

C++

 

source

 

files

 

(one.cpp,

 

two.cpp,

 

and

 

three.cpp):

 

v

   

One.cpp

 

contains

 

the

 

main

 

function.

 

v

   

Two.cpp

 

contains

 

a

 

redefinition

 

of

 

operator

 

new

 

or

 

operator

 

delete.

 

v

   

Three.cpp

 

calls

 

operator

 

new.

After

 

you

 

compile

 

the

 

application,

 

the

 

redefined

 

operator

 

new

 

(or

 

operator

 

delete)

 

is

 

visible

 

to,

 

and

 

used

 

for,

 

all

 

translation

 

units.

 

Given

 

the

 

same

 

three-translation

 

unit

 

scenario,

 

suppose

 

that

 

one.cpp

 

is

 

compiled

 

with

 

the

 

C

 

compiler.

 

The

 

redefined

 

operator

 

is

 

visible

 

in

 

translation

 

unit

 

two.cpp

 

but

 

not

 

in

 

three.cpp.

 

Any

 

calls

 

to

 

operator

 

new

 

(or

 

operator

 

delete)

 

outside

 

of

 

translation

 

unit

 

two.cpp

 

uses

 

the

 

standard

 

version,

 

not

 

the

 

user-defined

 

version,

 

of

 

the

 

operator.

 

Note:

  

Because

 

user-defined

 

and

 

standard

 

operators

 

have

 

different

 

signatures,

 

no

 

binder

 

error

 

or

 

compiler

 

warning

 

is

 

generated.

  

66

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

6.

 

Improving

 

Run-Time

 

Performance

 

When

 

you

 

examine

 

a

 

program

 

to

 

improve

 

performance,

 

look

 

at

 

those

 

aspects

 

which

 

have

 

a

 

significant

 

impact

 

every

 

time

 

a

 

program

 

is

 

run.

 

Often

 

run-time

 

performance

 

can

 

be

 

improved

 

through

 

minor

 

changes

 

to

 

your

 

source

 

programs.

 

The

 

amount

 

of

 

improvement

 

each

 

change

 

provides

 

depends

 

on

 

v

   

How

 

your

 

program

 

is

 

organized

 

v

   

The

 

functions

 

and

 

language

 

constructs

 

your

 

program

 

uses

Some

 

changes

 

may

 

provide

 

substantial

 

performance

 

improvement

 

to

 

your

 

program,

 

while

 

others

 

may

 

offer

 

almost

 

no

 

improvement.

 

Note:

  

Some

 

tips

 

may

 

contradict

 

each

 

other

 

because

 

they

 

trade

 

one

 

advantage

 

for

 

another.

 

For

 

example,

 

one

 

tip

 

is

 

to

 

reduce

 

the

 

size

 

of

 

the

 

call

 

stack

 

by

 

using

 

static

 

and

 

global

 

variables,

 

while

 

another

 

tip

 

is

 

to

 

improve

 

execution

 

startup

 

performance

 

by

 

reducing

 

the

 

use

 

of

 

static

 

and

 

global

 

variables.

 

Before

 

trying

 

to

 

improve

 

run-time

 

performance,

 

compile

 

and

 

benchmark

 

your

 

programs

 

using

 

full

 

optimization.

 

Use

 

performance

 

analysis

 

tools

 

to

 

find

 

out

 

where

 

your

 

performance

 

problems

 

are,

 

and

 

then

 

try

 

and

 

apply

 

different

 

appropriate

 

tips

 

to

 

try

 

and

 

achieve

 

the

 

best

 

performance

 

for

 

your

 

program.

 

This

 

chapter

 

discusses

 

how

 

you

 

might

 

try

 

to

 

improve

 

performance

 

with

 

respect

 

to:

 

v

   

Data

 

types

 

v

   

Classes

 

v

   

Performance

 

measurement

 

v

   

Exception

 

handling

 

v

   

Function

 

call

 

performance

 

v

   

Input

 

and

 

output

 

considerations

 

v

   

Pointers

 

v

   

Shallow

 

copy

 

and

 

deep

 

copy

 

v

   

Space

 

considerations

 

v

   

Activation

 

groups

 

v

   

Compiler

 

options

 

v

   

Run-time

 

limits

Choosing

 

Data

 

Types

 

to

 

Improve

 

Performance

 

There

 

are

 

several

 

ways

 

to

 

improve

 

performance

 

through

 

data

 

types.

 

Replacing

 

bit

 

fields

 

with

 

other

 

data

 

types

 

and

 

minimizing

 

the

 

use

 

of

 

static

 

and

 

global

 

variables

 

are

 

some

 

of

 

the

 

ways.

 

Avoiding

 

Use

 

of

 

the

 

Volatile

 

Qualifier

 

Only

 

use

 

the

 

volatile

 

qualifier

 

when

 

necessary.

 

Volatile

 

specifies

 

that

 

a

 

variable

 

can

 

be

 

changed

 

at

 

any

 

time,

 

possibly

 

by

 

an

 

external

 

program,

 

and

 

therefore

 

it

 

is

 

not

 

a

 

candidate

 

for

 

optimization.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

67



Replacing

 

Bit

 

Fields

 

with

 

Other

 

Data

 

Types

 

Avoid

 

using

 

bit

 

fields

 

because

 

it

 

takes

 

more

 

time

 

to

 

access

 

bit-fields

 

than

 

other

 

data

 

types

 

such

 

as

 

short

 

and

 

int.

 

Whenever

 

possible,

 

replace

 

bit

 

fields

 

with

 

other

 

data

 

types.

 

If

 

a

 

bit

 

field

 

takes

 

16

 

bits

 

and

 

aligns

 

on

 

2-byte

 

boundary,

 

you

 

can

 

replace

 

it

 

with

 

the

 

short

 

data

 

type.

 

Note:

  

You

 

can

 

still

 

obtain

 

a

 

run-time

 

improvement

 

if

 

the

 

bit-field

 

is

 

smaller

 

than

 

the

 

integral

 

type.

 

The

 

extra

 

time

 

required

 

for

 

bit-field

 

manipulation

 

code

 

offsets

 

the

 

performance

 

gain

 

due

 

to

 

space

 

saved

 

in

 

data.

 

Minimizing

 

the

 

Use

 

of

 

Static

 

and

 

Global

 

Variables

 

Minimize

 

the

 

use

 

of

 

static

 

and

 

global

 

variables,

 

if

 

possible.

 

These

 

are

 

initializedwhether

 

or

 

not

 

you

 

explicitly

 

initialize

 

them.

 

By

 

not

 

using

 

static

 

and

 

global

 

variables,

 

the

 

performance

 

improvement

 

is

 

obtained

 

at

 

activation

 

group

 

startup.

 

Using

 

the

 

Register

 

Storage

 

Class

 

Use

 

the

 

Register

 

Storage

 

classfor

 

a

 

variable

 

that

 

is

 

frequently

 

used.

 

Do

 

not

 

overuse

 

the

 

Register

 

Storage

 

class,

 

so

 

that

 

the

 

optimizer

 

can

 

place

 

the

 

most

 

frequently

 

used

 

variables

 

into

 

the

 

available

 

hardware

 

registers.

 

If

 

you

 

use

 

the

 

Register

 

Storage

 

class,

 

you

 

cannot

 

rely

 

on

 

the

 

value

 

displayed

 

from

 

within

 

the

 

debugger

 

because

 

you

 

may

 

be

 

referencing

 

an

 

older

 

value

 

that

 

is

 

still

 

in

 

storage.

 

Creating

 

Classes

 

to

 

Improve

 

Performance

    

When

 

you

 

use

 

class

 

libraries

 

to

 

create

 

classes,

 

use

 

a

 

high

 

level

 

of

 

abstraction.

 

After

 

you

 

establish

 

the

 

type

 

of

 

access

 

to

 

your

 

class,

 

you

 

can

 

create

 

more

 

specific

 

implementations.

 

This

 

can

 

result

 

in

 

improved

 

performance

 

with

 

minimal

 

code

 

changes.

 

When

 

you

 

define

 

structures

 

or

 

data

 

members

 

within

 

a

 

class,

 

define

 

the

 

largest

 

data

 

types

 

first

 

to

 

align

 

them

 

on

 

the

 

largest

 

natural

 

boundary.

 

Define

 

pointers

 

first

 

to

 

reduce

 

the

 

padding

 

necessary

 

to

 

align

 

them

 

on

 

quadword

 

(16-byte)

 

boundaries.

 

Follow

 

them,

 

in

 

order,

 

with

 

the

 

double-word,

 

and

 

half-word

 

items

 

to

 

avoid

 

padding

 

or

 

improve

 

load/store

 

time.

 

Enabling

 

Performance

 

Measurement

 

You

 

can

 

use

 

a

 

native

 

compiler

 

option

 

to

 

include

 

performance

 

hooks

 

in

 

your

 

generated

 

code.

 

Using

 

a

 

Compiler

 

Option

 

to

 

Enable

 

Performance

 

Measurement

 

The

 

performance-measurement

 

compiler

 

option

 

ENBPFRCOL()

 

allows

 

you

 

to

 

specify

 

whether

 

or

 

not

 

the

 

compiler

 

should

 

generate

 

code

 

(sometimes

 

called

 

performance

 

hooks)

 

into

 

your

 

compiled

 

program

 

or

 

module.

 

The

 

performance

 

hooks

 

enable

 

the

 

Performance

 

Explorer

 

to

 

analyze

 

your

 

programs.

 

The

 

default

 

for

 

this

 

option

 

specifies

 

that

 

program

 

entry

 

procedure

 

level

 

performance-measurement

 

code

 

is

 

generated

 

for

 

your

 

compiled

 

module

 

or

 

program.

   

68

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Compiling

 

performance

 

collection

 

code

 

into

 

the

 

module

 

or

 

program

 

allows

 

performance

 

data

 

to

 

be

 

gathered

 

and

 

analyzed.

 

The

 

insertion

 

of

 

the

 

additional

 

collection

 

code

 

results

 

in

 

slightly

 

larger

 

module

 

or

 

program

 

objects

 

and

 

may

 

affect

 

performance

 

to

 

a

 

small

 

degree.

 

Types

 

of

 

performance

 

data

 

collected

 

include:

 

v

   

Pre-call

 

and

 

post-call

 

information

  

This

 

information

 

is

 

gathered

 

immediately

 

before

 

and

 

after

 

calling

 

any

 

given

 

functions.

 

It

 

provides

 

a

 

record

 

of

 

where

 

a

 

call

 

was

 

made,

 

and

 

information

 

on

 

the

 

performance

 

of

 

the

 

operation

 

called.

 

v

   

Procedure

 

entry

 

and

 

exit

 

information

  

This

 

information

 

is

 

gathered

 

immediately

 

upon

 

entry

 

into

 

a

 

procedure

 

and

 

exit

 

from

 

that

 

procedure.

 

A

 

snapshot

 

is

 

taken

 

of

 

the

 

current

 

performance

 

statistics

 

when

 

entering

 

a

 

procedure,

 

and

 

a

 

calculation

 

is

 

made

 

of

 

the

 

differences

 

in

 

those

 

statistics

 

when

 

exiting

 

that

 

procedure.

When

 

performance

 

collection

 

code

 

is

 

generated

 

into

 

a

 

leaf

 

procedure,

 

the

 

procedure

 

is

 

changed

 

so

 

that

 

it

 

is

 

no

 

longer

 

a

 

leaf

 

procedure.

 

(A

 

leaf

 

procedure

 

is

 

one

 

that

 

does

 

not

 

call

 

any

 

other

 

procedures.)

 

This

 

is

 

because

 

the

 

leaf

 

procedure

 

now

 

contains

 

hooks

 

to

 

call

 

the

 

performance

 

collection

 

routines.

 

This

 

can

 

be

 

a

 

time-consuming

 

process.

 

See

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference

 

for

 

information

 

on

 

these

 

options.

 

Minimizing

 

Exception

 

Handling

 

To

 

minimize

 

exception

 

handling,

 

you

 

can

 

try:

 

v

   

Turning

 

on

 

return

 

codes

 

during

 

record

 

I/O

 

v

   

Turning

 

off

 

C2M

 

messages

 

during

 

record

 

I/O

 

v

   

Using

 

direct

 

monitor

 

handlers

 

v

   

Minimizing

 

percolation

 

of

 

exceptions

See

 

Chapter

 

21,

 

“Handling

 

Exceptions

 

in

 

a

 

Program,”

 

on

 

page

 

311

 

for

 

information

 

on

 

handling

 

exceptions.

 

Turning

 

on

 

Return

 

Codes

 

during

 

Record

 

I/O

 

Exceptions

 

are

 

expensive

 

to

 

process.

 

If

 

you

 

use

 

record

 

I/O,

 

you

 

can

 

minimize

 

exceptions

 

by

 

using

 

the

 

rtncode=y

 

option

 

on

 

_Ropen().

 

Exceptions

 

are

 

not

 

generated

 

for

 

the

 

following

 

conditions:

 

v

   

"Record

 

not

 

found"

 

(CPF5006)

 

v

   

"End-of-File"

 

(CPF5001)

When

 

these

 

conditions

 

occur,

 

the

 

num_bytes

 

field

 

of

 

the

 

_RIOFB_T

 

structure

 

is

 

updated

 

and

 

errno

 

is

 

set,

 

but

 

no

 

exceptions

 

are

 

generated.

 

For

 

the

 

"Record

 

not

 

found"

 

condition,

 

the

 

num_bytes

 

field

 

is

 

set

 

to

 

zero.

 

For

 

the

 

"End-of-File"

 

condition,

 

the

 

num_bytes

 

field

 

is

 

set

 

to

 

EOF.

 

Turning

 

Off

 

C2M

 

Messages

 

during

 

Record

 

Input

 

and

 

Output

 

To

 

turn

 

off

 

C2M

 

messages

 

during

 

record

 

I/O,

 

set

 

the

 

variable

 

_C2M_MSG

 

(in

 

<recio.h>)

 

to

 

zero.

 

If

 

_C2M_MSG

 

is

 

set

 

to

 

a

 

different

 

value,

 

record

 

I/O

 

sends

 

C2M

   

Chapter

 

6.

 

Improving

 

Run-Time

 

Performance

 

69



messages

 

to

 

your

 

program

 

when

 

it

 

detects

 

any

 

of

 

the

 

following

 

errors:

 

C2M3003,

 

C2M3004,

 

C2M3005,

 

C2M3009,

 

C2M3014,

 

C2M3015,

 

C2M3040,

 

C2M3041,

 

C2M3042

 

and

 

C2M3044.

 

Note:

  

Removing

 

data

 

truncation

 

messages

 

with

 

signal

 

handlers

 

or

 

message

 

handlers

 

is

 

no

 

longer

 

necessary

 

when

 

the

 

C2M

 

messages

 

are

 

turned

 

off

 

during

 

record

 

I/O.

 

Using

 

a

 

Direct

 

Monitor

 

Handler

 

When

 

an

 

exception

 

occurs,

 

the

 

compiler

 

first

 

attempts

 

to

 

use

 

any

 

direct

 

monitor

 

handler.

 

If

 

there

 

is

 

no

 

direct

 

monitor

 

handler,

 

the

 

exception

 

is

 

mapped

 

to

 

a

 

signal

 

at

 

run

 

time,

 

and

 

the

 

corresponding

 

signal

 

handler

 

is

 

called.

 

By

 

using

 

the

 

#pragma

 

exception_handler

 

directive

 

to

 

enable

 

a

 

direct

 

monitor

 

handler,

 

you

 

avoid

 

the

 

process

 

for

 

both

 

the

 

signal

 

mapping

 

and

 

search

 

for

 

a

 

signal

 

handler.

 

For

 

all

 

exceptions

 

specified

 

by

 

the

 

#pragma

 

exception_handler

 

directive,

 

the

 

direct

 

monitor

 

handler

 

marks

 

each

 

exception

 

as

 

handled;

 

otherwise

 

the

 

exception

 

is

 

percolated

 

again.

 

For

 

information

 

about

 

#pragma

 

exception_handler,

 

see

 

the

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference.

 

For

 

more

 

information

 

about

 

using

 

direct

 

monitor

 

handlers,

 

seeWebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference.

 

Minimizing

 

Percolation

 

of

 

Exceptions

 

Try

 

to

 

handle

 

an

 

exception

 

in

 

the

 

place

 

it

 

occurs.

 

There

 

is

 

some

 

processing

 

overhead

 

incurred

 

with

 

exception

 

percolation.

 

Example

 

of

 

Exception

 

Percolation

 

for

 

a

 

Sample

 

ILE

 

C

 

Source

 

Code

 

The

 

following

 

figure

 

shows

 

an

 

example

 

of

 

ILE

 

C

 

source

 

code

 

for

 

handling

 

exceptions.

 

Below

 

the

 

figure

 

is

 

an

 

example

 

of

 

an

 

exception

 

that

 

can

 

occur

 

and

 

the

 

steps

 

the

 

code

 

takes

 

to

 

handle

 

the

 

exception.

    

70

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

sequence

 

of

 

exceptions

 

and

 

handling

 

actions

 

that

 

occur

 

when

 

the

 

source

 

code

 

in

 

Figure

 

39

 

is

 

run

 

is:

  

1.

   

An

 

escape

 

exception

 

occurs

 

in

 

function

 

fred().

  

2.

   

handler1

 

gets

 

control

 

because

 

it

 

is

 

monitoring

 

for

 

an

 

escape

 

message,

 

it

 

is

 

the

 

closest

 

nested

 

monitor

 

to

 

the

 

exception,

 

and

 

it

 

has

 

highest

 

priority

 

because

 

it

 

is

 

a

 

direct

 

handler.

  

3.

   

handler2

 

gets

 

control

 

because

 

it

 

is

 

monitoring

 

for

 

an

 

escape

 

message,

 

and

 

has

 

a

 

higher

 

priority

 

than

 

a

 

CEEHDLR.

  

4.

   

handler3

 

gets

 

control

 

(from

 

CEEHDLR).

  

5.

   

signal

 

handler

 

gets

 

control.

 

Even

 

though

 

it

 

is

 

registered

 

in

 

main,

 

signal

 

is

 

scoped

 

to

 

the

 

activation

 

group

 

and

 

therefore

 

will

 

get

 

control.

 

It

 

gets

 

control

 

after

 

handler1,

 

handler2,

 

and

 

handler3

 

because

 

it

 

has

 

a

 

lower

 

priority

 

than

 

either

 

direct

 

handlers

 

or

 

CEEHDLRs.

 

Because

 

the

 

action

 

is

 

SIG_DFL,

 

the

 

exception

 

is

 

not

 

handled.

  

6.

   

The

 

exception

 

is

 

percolated

 

to

 

main().

  

7.

   

handler4

 

gets

 

control.

  

8.

   

The

 

exception

 

is

 

still

 

not

 

handled.

 

Thus,

 

when

 

it

 

hits

 

the

 

control

 

boundary

 

(the

 

PEP

 

for

 

main()),

 

it

 

is

 

turned

 

into

 

a

 

function

 

check

 

and

 

is

 

re-driven.

 

#include

 

<stdio.h>

 

#include

 

<except.h>

 

#include

 

<signal.h>

 

#include

 

<lecond.h>

 

void

 

handler1(_INTRPT_Hndlr_Parms_T

 

*

 

__ptr128

 

parms)

 

{

   

printf("In

 

handler1:

 

will

 

not

 

handle

 

the

 

exception\n");

 

}

 

void

 

handler2(_INTRPT_Hndlr_Parms_T

 

*

 

__ptr128

 

parms)

 

{

   

printf("In

 

handler2:

 

will

 

not

 

handle

 

the

 

exception\n");

 

}

 

void

 

handler3(_FEEDBACK

 

*condition,

 

_POINTER

 

*token,

 

_INT4

 

*result_code,

               

_FEEDBACK

 

*new_condition)

 

{

   

printf("In

 

handler3:

 

will

 

not

 

handle

 

the

 

exception\n");

 

}

 

void

 

handler4(_INTRPT_Hndlr_Parms_T

 

*

 

__ptr

 

128

 

parms)

 

{

   

printf("In

 

handler4:

 

will

 

not

 

handle

 

the

 

exception\n");

 

}

 

void

 

fred(void)

 

{

   

_HDLR_ENTRY

  

hdlr

 

=

 

handler3;

   

char

        

*p

    

=

 

NULL;

   

#pragma

 

exception_handler(handler2,

 

0,

 

0,

                        

\

                             

_C2_MH_ESCAPE

 

|

 

_C2_MH_FUNCTION_CHECK)

   

CEEHDLR(&hdlr,

 

NULL,

 

NULL);

   

#pragma

 

exception_handler(handler1,

 

0,

 

0,

 

_C2_MH_ESCAPE)

   

*p

 

=

 

’x’;

     

/*

 

exception

 

*/

 

}

 

int

 

main(void)

 

{

   

signal(SIGSEGV,

 

SIG_DFL);

   

#pragma

 

exception_handler(handler4,

 

0,

 

0,

                        

\

                             

_C2_MH_ESCAPE

 

|

 

_C2_MH_FUNCTION_CHECK)

   

fred();

 

}

 

Figure

 

39.

 

T1520XH7

 

—

 

ILE

 

C

 

Source

 

for

 

Exception

 

Handling

  

Chapter

 

6.

 

Improving

 

Run-Time

 

Performance

 

71



9.

   

handler1

 

does

 

NOT

 

get

 

control,

 

because

 

it

 

is

 

not

 

monitoring

 

for

 

a

 

function

 

check.

 

10.

   

handler2

 

gets

 

control

 

because

 

it

 

is

 

monitoring

 

for

 

function

 

check.

 

11.

   

handler3

 

gets

 

control

 

because

 

CEEHDLRs

 

get

 

control

 

for

 

all

 

*ESCAPE,

 

*STATUS,

 

*NOTIFY,

 

and

 

Function

 

Check

 

messages.

 

12.

   

signal

 

handler

 

does

 

NOT

 

get

 

control

 

because

 

signal

 

does

 

not

 

recognize

 

function

 

checks.

 

13.

   

The

 

function

 

check

 

is

 

percolated

 

to

 

main().

 

14.

   

handler4

 

gets

 

control

 

because

 

it

 

is

 

monitoring

 

for

 

function

 

check.

 

15.

   

The

 

function

 

check

 

percolates

 

to

 

the

 

control

 

boundary

 

and

 

causes

 

the

 

ending.

 

16.

   

(CEE9901)

 

*ESCAPE

 

is

 

sent

 

to

 

the

 

caller

 

of

 

main().

Reducing

 

the

 

Number

 

of

 

Function

 

Calls

 

and

 

Arguments

 

Extra

 

processing

 

is

 

involved

 

in

 

accessing

 

the

 

return

 

value

 

of

 

a

 

program

 

call.

 

You

 

can

 

reduce

 

the

 

number

 

of

 

function

 

calls

 

and

 

arguments

 

by:

 

v

   

Inlining

 

function

 

calls

 

v

   

Using

 

static

 

class

 

members

 

or

 

global

 

variables

 

v

   

Passing

 

arguments

 

in

 

registers

 

v

   

Using

 

prototypes

 

to

 

minimize

 

function

 

call

 

processing

Inlining

 

Function

 

Calls

 

When

 

a

 

function

 

is

 

called

 

in

 

a

 

few

 

places

 

but

 

executed

 

many

 

times,

 

changing

 

the

 

function

 

to

 

an

 

inline

 

function

 

typically

 

saves

 

many

 

function

 

calls

 

and

 

results

 

in

 

performance

 

improvement.

 

You

 

might

 

be

 

able

 

to

 

improve

 

performance

 

by

 

changing

 

function

 

calls

 

to

 

inline

 

functions

 

or

 

macro

 

expressions,

 

provided

 

such

 

a

 

change

 

does

 

not

 

increase

 

the

 

size

 

of

 

the

 

program

 

object

 

and

 

cause

 

enough

 

page

 

faults

 

to

 

slow

 

the

 

program

 

down.

 

To

 

optimize

 

performance,

 

strike

 

a

 

balance

 

between

 

program

 

size

 

and

 

inlining

 

or

 

macro

 

expressions.

 

See

 

Table

 

6

 

on

 

page

 

87.

Note:

     

In

 

C++,

 

macro

 

expressions

 

are

 

not

 

recommended.

 

Instead,

 

use

 

the

 

inline

 

keyword

 

and

 

turn

 

on

 

inlining.

 

The

 

INLINE

 

compile-time

 

option

 

allows

 

you

 

to

 

request

 

that

 

the

 

compiler

 

replace

 

a

 

function

 

call

 

with

 

that

 

function’s

 

code

 

in

 

place

 

of

 

the

 

function

 

call.

 

If

 

the

 

compiler

 

allows

 

the

 

inlining

 

to

 

take

 

place,

 

the

 

function

 

call

 

is

 

replaced

 

by

 

the

 

machine

 

code

 

that

 

represents

 

the

 

source

 

code

 

in

 

the

 

function

 

definition.

 

Inlining

 

is

 

a

 

method

 

that

 

allows

 

you

 

to

 

improve

 

the

 

run-time

 

performance

 

of

 

a

 

C

 

or

 

C++

 

program

 

by

 

eliminating

 

the

 

function

 

call

 

overhead.

 

Inlining

 

allows

 

for

 

an

 

expanded

 

view

 

of

 

the

 

program

 

for

 

optimization.

 

Exposing

 

constants

 

and

 

flow

 

constructs

 

on

 

a

 

global

 

scale

 

allows

 

the

 

compiler

 

to

 

make

 

better

 

choices

 

during

 

optimization.

 

For

 

information

 

about

 

inlining

 

and

 

expanding

 

macros,

 

see:

 

v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference

 

v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference

Using

 

Static

 

Class

 

Member

 

Functions

 

or

 

Global

 

Variables

   

You

 

might

 

be

 

able

 

to

 

improve

 

run-time

 

performance

 

of

 

a

 

C++

 

program

 

by

 

using

 

static

 

class

 

members

 

to

 

pass

 

an

 

argument

 

to

 

a

 

function.

   

72

 

ILE

 

C/C++

 

Programmer’s

 

Guide



In

 

a

 

C

 

or

 

C++

 

program,

 

an

 

alternative

 

to

 

passing

 

an

 

argument

 

to

 

a

 

function

 

is

 

to

 

have

 

the

 

variable

 

defined

 

as

 

being

 

global

 

and

 

to

 

have

 

the

 

function

 

use

 

the

 

global

 

variable.

 

Note:

  

Using

 

more

 

global

 

variables

 

increases

 

the

 

amount

 

of

 

work

 

that

 

has

 

to

 

be

 

done

 

at

 

activation

 

group

 

startup

 

to

 

allocate

 

and

 

initialize

 

the

 

global

 

variables,

 

which

 

can

 

inhibit

 

optimization.

 

For

 

information

 

about

 

class

 

member

 

functions

 

and

 

global

 

variables,

 

see:

 

v

   

“Minimizing

 

the

 

Use

 

of

 

Static

 

and

 

Global

 

Variables”

 

on

 

page

 

68

 

v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference

 

v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference

Passing

 

Arguments

 

in

 

Registers

 

Function

 

call

 

performance

 

can

 

be

 

improved

 

if

 

the

 

system

 

has

 

all

 

of

 

the

 

arguments

 

passed

 

in

 

registers.

 

Because

 

there

 

are

 

only

 

a

 

limited

 

number

 

of

 

registers,

 

in

 

order

 

to

 

increase

 

the

 

chance

 

of

 

having

 

all

 

arguments

 

passed

 

in

 

registers,

 

combine

 

several

 

arguments

 

into

 

a

 

class

 

and

 

pass

 

the

 

address

 

of

 

the

 

class

 

to

 

the

 

function.

 

Because

 

an

 

address

 

is

 

being

 

passed,

 

pass-by-reference

 

semantics

 

are

 

used,

 

which

 

may

 

not

 

have

 

been

 

the

 

case

 

when

 

the

 

arguments

 

were

 

being

 

passed

 

as

 

individual

 

variables.

 

For

 

more

 

information

 

about

 

passing

 

arguments

 

in

 

registers,

 

see:

 

v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference

 

v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference

For

 

more

 

information

 

about

 

storage

 

classes,

 

see:

 

v

   

“Using

 

the

 

Register

 

Storage

 

Class”

 

on

 

page

 

68

 

v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference

Using

 

Prototypes

 

to

 

Minimize

 

Function

 

Call

 

Processing

 

A

 

function

 

prototype

 

consists

 

of

 

the

 

function

 

return

 

type,

 

the

 

name

 

of

 

the

 

function,

 

and

 

the

 

parameter

 

list.

 

An

 

un-prototyped

 

function

 

has

 

its

 

signature

 

inferred

 

by

 

the

 

data

 

model

 

in

 

effect

 

at

 

the

 

time

 

of

 

its

 

first

 

reference.

Note:

  

C++

 

requires

 

full

 

prototype

 

declarations.

 

ISO

 

C

 

allows

 

non-prototyped

 

functions.

   

When

 

calling

 

a

 

program

 

dynamically

 

from

 

a

 

C++

 

program

 

using

 

extern

 

OS

 

linkage,

 

prototype

 

the

 

program

 

to

 

return

 

void

 

rather

 

than

 

int.

 

Extra

 

processing

 

is

 

involved

 

in

 

accessing

 

the

 

return

 

value

 

of

 

a

 

program

 

call.

 

Passing

 

the

 

address

 

of

 

storage

 

that

 

can

 

hold

 

a

 

return

 

value

 

in

 

the

 

call’s

 

argument

 

list

 

is

 

better

 

from

 

a

 

performance

 

viewpoint.

 

For

 

information

 

about

 

function

 

prototypes,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference.

 

Choosing

 

Input

 

and

 

Output

 

Functions

 

to

 

Improve

 

Performance

 

This

 

section

 

covers

 

some

 

Input

 

and

 

Output

 

issues.

   

Chapter

 

6.

 

Improving

 

Run-Time

 

Performance

 

73



Using

 

Record

 

Input

 

and

 

Output

 

Functions

 

Using

 

record

 

I/O

 

functions

 

instead

 

of

 

stream

 

I/O

 

functions

 

can

 

greatly

 

improve

 

I/O

 

performance.

 

Instead

 

of

 

accessing

 

one

 

byte

 

at

 

a

 

time,

 

record

 

I/O

 

functions

 

access

 

one

 

record

 

at

 

a

 

time.

 

The

 

two

 

types

 

of

 

record

 

I/O

 

supported

 

by

 

the

 

ILE

 

C/C++

 

run-time

 

libraries

 

are

 

ISO

 

C

 

record

 

I/O

 

and

 

ILE

 

C

 

record

 

I/O.

 

ISO

 

C

 

Record

 

I/O

 

If

 

you

 

use

 

an

 

ISO

 

C

 

record

 

I/O

 

in

 

your

 

program,

 

you

 

must

 

specify

 

type

 

=

 

record

 

in

 

the

 

open

 

mode

 

parameter

 

of

 

fopen()

 

when

 

you

 

open

 

a

 

file,

 

and

 

you

 

must

 

use

 

the

 

FILE

 

data

 

type.

 

The

 

following

 

figure

 

provides

 

an

 

example.

    

ILE

 

C

 

Record

 

I/O

 

If

 

you

 

use

 

ILE

 

C

 

record

 

I/O

 

in

 

your

 

program,

 

you

 

must:

 

v

   

Use

 

the

 

ILE

 

C

 

record

 

I/O

 

functions

 

(for

 

example,

 

functions

 

that

 

begin

 

with

 

_R)

 

v

   

Use

 

the

 

_RFILE

 

data

 

type.

The

 

example

 

in

 

Figure

 

40

 

can

 

be

 

rewritten

 

as

 

follows:

  

#include

 

<stdio.h>

 

#define

 

MAX_LEN

 

80

 

int

 

main(void)

 

{

   

FILE

 

*fp;

   

int

 

len;

   

char

 

buf[MAX_LEN

 

+

 

1];

   

fp

 

=

 

fopen("MY_LIB/MY_FILE",

 

"rb,

 

type

 

=

 

record");

   

while

 

((len

 

=

 

fread(buf,

 

1,

 

MAX_LEN,

 

fp))

 

!=

 

0)

   

{

     

buf[len]

 

=

 

’\0’;

     

printf("%s\n",

 

buf);

   

}

   

fclose(fp);

   

return

 

0;

 

}

 

Figure

 

40.

 

Example:

 

Using

 

ISO

 

C

 

Record

 

I/O

  

74

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Using

 

Input

 

and

 

Output

 

Feedback

 

Information

 

_RIOFB_T

 

is

 

a

 

structure

 

that

 

contains

 

I/O

 

feedback

 

information

 

from

 

ILE

 

C

 

record

 

functions,

 

for

 

example,

 

the

 

number

 

of

 

bytes

 

that

 

are

 

read

 

or

 

are

 

written.

 

By

 

default,

 

the

 

ILE

 

C

 

record

 

I/O

 

functions

 

update

 

the

 

fields

 

in

 

_RIOFB_T

 

after

 

a

 

record

 

I/O

 

operation

 

is

 

performed.

 

If

 

your

 

program

 

does

 

not

 

use

 

all

 

these

 

values,

 

you

 

can

 

improve

 

your

 

application's

 

performance

 

by

 

opening

 

a

 

file

 

as

 

shown

 

in

 

the

 

following

 

figure:

   

By

 

specifying

 

riofb

 

=

 

N,

 

only

 

the

 

num_bytes

 

field

 

(the

 

number

 

of

 

bytes

 

read

 

or

 

written

 

in

 

the

 

_RIOFB_T

 

structure)

 

is

 

updated.

 

If

 

you

 

specify

 

riofb

 

=

 

Y,

 

all

 

fields

 

in

 

the

 

_RIOFB_T

 

structure

 

are

 

updated.

 

Blocking

 

Records

 

You

 

can

 

improve

 

record

 

I/O

 

performance

 

by

 

blocking

 

records.

 

When

 

blocking

 

is

 

specified,

 

the

 

first

 

read

 

causes

 

a

 

whole

 

block

 

of

 

records

 

to

 

be

 

placed

 

into

 

a

 

buffer.

 

Subsequent

 

read

 

operations

 

return

 

a

 

record

 

from

 

the

 

buffer

 

until

 

the

 

buffer

 

is

 

empty.

 

At

 

that

 

time,

 

the

 

next

 

block

 

is

 

fetched.

 

If

 

you

 

wish

 

to

 

block

 

records

 

when

 

the

 

FILE

 

data

 

type

 

is

 

used,

 

open

 

the

 

file

 

with

 

blksize=value

 

specified,

 

where

 

value

 

indicates

 

the

 

block

 

size.

 

If

 

blksize

 

isspecified

 

with

 

a

 

value

 

of

 

0,

 

a

 

block

 

size

 

is

 

calculated

 

for

 

you

 

when

 

you

 

open

 

a

 

file.

 

If

 

you

 

wish

 

to

 

block

 

records

 

when

 

the

 

_RFILE

 

data

 

type

 

is

 

used,

 

specify

 

blkrcd

 

=

 

Y

 

when

 

you

 

open

 

the

 

file.

 

Similar

 

rules

 

apply

 

when

 

blocking

 

records

 

for

 

write

 

operations.

 

#include

 

<stdio.h>

 

#include

 

<recio.h>

 

#define

 

MAX_LEN

 

80

 

int

 

main(void)

 

{

   

_RFILE

 

*fp;

   

_RIOFB_T

 

*iofb;

   

char

 

buf[MAX_LEN

 

+

 

1];

   

fp

 

=

 

_Ropen("MY_LIB/MY_FILE",

 

"rr");

   

iofb

 

=_Rreadn(fp,

 

buf,

 

MAX_LEN,

 

__DFT);

   

while

 

(

 

iofb->num_bytes

 

!=

 

EOF

 

)

   

{

     

buf[iofb->num_bytes]

 

=

 

’\0’;

     

printf("%s\n",

 

buf);

     

iofb

 

=_Rreadn(fp,

 

buf,

 

MAX_LEN,

 

__DFT);

   

}

   

_Rclose(fp);

   

return

 

0;

 

}

 

Figure

 

41.

 

Example:

 

Using

 

ILE

 

C

 

Record

 

I/O

fp

 

=

 

_Ropen("MY_LIB/MY_FILE",

 

"rr,

 

riofb

 

=

 

N");

 

Figure

 

42.

 

I/O

 

Feedback

 

Information

  

Chapter

 

6.

 

Improving

 

Run-Time

 

Performance

 

75



Manipulating

 

the

 

System

 

Buffer

 

You

 

can

 

improve

 

I/O

 

performance

 

of

 

your

 

ILE

 

C/C++

 

programs

 

by

 

performing

 

read

 

and

 

write

 

operations

 

directly

 

to

 

and

 

from

 

the

 

system

 

buffer,

 

without

 

the

 

need

 

for

 

an

 

application-defined

 

buffer.

 

This

 

system

 

access

 

is

 

referred

 

to

 

as

 

locate

 

mode.

 

The

 

following

 

illustrates

 

how

 

to

 

directly

 

manipulate

 

the

 

system

 

buffer

 

when

 

reading

 

a

 

source

 

physical

 

file.

   

The

 

example

 

code

 

above

 

prints

 

up

 

to

 

75

 

characters

 

of

 

each

 

record

 

that

 

is

 

contained

 

in

 

the

 

file.

 

The

 

second

 

parameter

 

for

 

the

 

_Rreadn()

 

,

 

NULL,

 

allows

 

you

 

to

 

manipulate

 

the

 

record

 

in

 

the

 

system

 

buffer.

 

An

 

_RFILE

 

structure

 

contains

 

the

 

in_buf

 

and

 

out_buf

 

fields,

 

which

 

point

 

to

 

the

 

system

 

input

 

buffer

 

and

 

system

 

output

 

buffer,

 

respectively.

 

The

 

example

 

above

 

prints

 

each

 

record

 

by

 

accessing

 

the

 

system's

 

input

 

buffer.

 

Directly

 

manipulating

 

the

 

system

 

buffer

 

provides

 

a

 

performance

 

improvement

 

when

 

you

 

process

 

very

 

long

 

records.

 

It

 

also

 

provides

 

a

 

significant

 

performance

 

improvement

 

when

 

you

 

use

 

Intersystem

 

Communications

 

Function

 

(ICF)

 

files.

 

Usually,

 

you

 

only

 

need

 

to

 

access

 

the

 

last

 

several

 

bytes

 

in

 

an

 

ICF

 

file

 

and

 

not

 

all

 

the

 

other

 

data

 

in

 

the

 

record.

 

By

 

using

 

the

 

system

 

buffer

 

directly,

 

the

 

data

 

that

 

you

 

do

 

not

 

use

 

for

 

ICF

 

files

 

need

 

not

 

be

 

copied.

 

The

 

system

 

buffer

 

should

 

always

 

be

 

accessed

 

through

 

the

 

in_buf

 

and

 

out_buf

 

pointers

 

in

 

the

 

_RFILE

 

structure

 

that

 

is

 

located

 

in

 

the

 

<recio.h>

 

header

 

file.

 

Unpredictable

 

results

 

can

 

occur

 

if

 

the

 

system

 

buffer

 

is

 

not

 

accessed

 

through

 

the

 

in_buf

 

and

 

out_buf

 

pointers.

 

Opening

 

Files

 

Once

 

for

 

Both

 

Input

 

and

 

Output

 

If

 

your

 

application

 

writes

 

data

 

into

 

a

 

file

 

and

 

then

 

reads

 

the

 

data

 

back,

 

you

 

can

 

improve

 

performance

 

by

 

opening

 

the

 

file

 

only

 

once,

 

instead

 

of

 

the

 

usual

 

two

 

times

 

to

 

complete

 

both

 

input

 

and

 

output.

 

The

 

following

 

illustrates

 

how

 

a

 

file

 

is

 

opened

 

twice

 

and

 

closed

 

twice:

  

fp

 

=

 

_Ropen("MY_LIB/MY_FILE",

 

"rr,

 

blkrcd

 

=

 

Y,

 

riofb

 

=

 

N");

   

while

 

(

 

(_Rreadn(fp,

 

NULL,

 

92,

 

__DFT))->num_bytes

 

!=

 

EOF

 

)

 

{

   

printf("%75.75s\n",

 

((char

 

*)

 

(*(fp->in_buf)))

 

+

 

12);

   

}

   

_Rclose(fp);

 

Figure

 

43.

 

Using

 

the

 

System

 

Buffer

fp

 

=

 

_Ropen("MY_LIB/MY_FILE",

 

"wr");

   

/*

 

Output

 

only.*/

                                        

/*

 

Code

 

to

 

write

 

data

 

to

 

MY_FILE

 

*/

 

_Rclose(fp);

                                        

/*

 

Other

 

code

 

in

 

your

 

application.

 

*/

 

fp

 

=

 

_Ropen("MY_LIB/MY_FILE",

 

"rr");

   

/*

 

Input

 

only.*/

                                        

/*

 

Code

 

to

 

read

 

data

 

from

 

MY_FILE.

  

*/

 

_Rclose(fp);

 

Figure

 

44.

 

Example:

 

Opening

 

a

 

File

 

Twice

  

76

 

ILE

 

C/C++

 

Programmer’s

 

Guide



By

 

changing

 

this

 

example

 

to

 

the

 

following,

 

one

 

call

 

to

 

_Ropen,

 

and

 

one

 

call

 

to

 

_Rclose

 

is

 

saved:

   

Minimizing

 

the

 

Use

 

of

 

Shared

 

Files

 

You

 

can

 

improve

 

performance

 

by

 

not

 

opening

 

the

 

same

 

file

 

more

 

than

 

once

 

in

 

an

 

application.

 

You

 

can

 

allocate

 

the

 

file

 

pointers

 

as

 

global

 

(external)

 

variables,

 

opening

 

the

 

files

 

once,

 

and

 

not

 

closing

 

the

 

file

 

until

 

the

 

end

 

of

 

the

 

application.

 

Minimizing

 

the

 

Number

 

of

 

File

 

Opens

 

and

 

Closes

 

Open

 

and

 

close

 

are

 

very

 

expensive

 

operations.

 

You

 

can

 

improve

 

performance

 

by

 

opening

 

and

 

closing

 

files

 

only

 

as

 

often

 

as

 

necessary.

 

You

 

can

 

use

 

a

 

class

 

to

 

encapsulate

 

I/O

 

operations

 

such

 

as

 

opening

 

the

 

files

 

once,

 

and

 

not

 

closing

 

the

 

file

 

until

 

the

 

end

 

of

 

the

 

program.

 

Defining

 

Tape

 

Files

 

to

 

Improve

 

Performance

 

You

 

can

 

improve

 

the

 

performance

 

of

 

programs

 

that

 

use

 

tape

 

files

 

by

 

using

 

fixed-length

 

record

 

tape

 

files

 

instead

 

of

 

variable-length

 

tape

 

files.

 

Improving

 

Performance

 

when

 

Using

 

Stream

 

Input

 

and

 

Output

 

Functions

 

Although

 

using

 

ILE

 

C

 

record

 

I/O

 

functions

 

improves

 

performance

 

more

 

effectively

 

than

 

stream

 

I/O

 

functions,

 

there

 

are

 

still

 

ways

 

to

 

improve

 

performance

 

when

 

using

 

stream

 

I/O.

 

You

 

can

 

use

 

IFS

 

stream

 

files,

 

with

 

performance

 

similar

 

to

 

record

 

I/O

 

functions,

 

by

 

specifying

 

SYSIFCOPT(*IFSIO)

 

on

 

the

 

CRTCMOD

 

or

 

CRTBNDC

 

commands.

 

You

 

should

 

use

 

the

 

macro

 

version

 

of

 

getc

 

instead

 

of

 

fgetc()

 

to

 

read

 

characters

 

from

 

a

 

file.

 

See

 

“Using

 

Static

 

Class

 

Member

 

Functions

 

or

 

Global

 

Variables”

 

on

 

page

 

72.

 

The

 

macro

 

version

 

of

 

getc()

 

reads

 

all

 

the

 

characters

 

in

 

the

 

buffer

 

until

 

the

 

buffer

 

is

 

empty.

 

At

 

this

 

point,

 

getc()

 

calls

 

fgetc()

 

to

 

get

 

the

 

next

 

record.

 

For

 

the

 

same

 

reason,

 

you

 

should

 

use

 

putc()

 

instead

 

of

 

fputc().

 

The

 

macro

 

version

 

of

 

putc()

 

writes

 

all

 

the

 

characters

 

to

 

the

 

buffer

 

until

 

the

 

buffer

 

is

 

full.

 

At

 

this

 

point,

 

putc()

 

calls

 

fputc()

 

to

 

write

 

the

 

record

 

into

 

the

 

file.

 

Because

 

stream

 

I/O

 

functions

 

cause

 

many

 

function

 

calls;

 

reducing

 

their

 

use

 

in

 

your

 

application

 

improves

 

performance.

 

The

 

following

 

illustrates

 

calls

 

to

 

printf():

 

fp

 

=

 

_Ropen("MY_LIB/MY_FILE",

 

"ar+");

 

/*

 

Input

 

and

 

output.*/

                                       

/*

 

Code

 

to

 

write

 

data

 

to

 

MY_FILE.

 

*/

                                       

/*

 

Other

 

code

 

in

 

your

 

application.

 

*/

                                       

/*

 

Code

 

to

 

read

 

data

 

from

 

MY_FILE.

 

*/

                                       

/*

 

Use

 

either

 

_Rreadf

 

or

 

_Rlocate

 

with

 

the

 

option

 

__FIRST.

 

*

 

_Rclose(fp);

 

Figure

 

45.

 

Example:

 

Opening

 

a

 

File

 

Once

printf("Enter

 

next

 

item.\n");

 

printf("When

 

done,

 

enter

 

’done’.\n");

 

Figure

 

46.

 

Using

 

printf()

  

Chapter

 

6.

 

Improving

 

Run-Time

 

Performance

 

77



The

 

two

 

calls

 

to

 

printf()

 

can

 

be

 

combined

 

into

 

a

 

single

 

call

 

so

 

that

 

one

 

call

 

is

 

saved

 

as

 

follows:

    

Using

 

C++

 

Input

 

and

 

Output

 

Stream

 

Classes

    

Use

 

overloaded

 

shift

 

<<

 

>>operators

 

on

 

the

 

standard

 

streams,

 

instead

 

of

 

their

 

C

 

equivalents.

 

Using

 

Physical

 

Files

 

Instead

 

of

 

Source

 

Physical

 

Files

 

To

 

improve

 

performance,

 

use

 

physical

 

files

 

instead

 

of

 

source

 

physical

 

files

 

for

 

your

 

data.

 

When

 

a

 

source

 

physical

 

file

 

is

 

used

 

for

 

stream

 

I/O,

 

the

 

first

 

12

 

bytes

 

of

 

each

 

record

 

are

 

not

 

visible

 

to

 

your

 

application.

 

They

 

are

 

used

 

to

 

store

 

the

 

record

 

number

 

and

 

update

 

time.

 

These

 

12

 

bytes

 

are

 

an

 

extra

 

load

 

that

 

the

 

ILE

 

C

 

stream

 

I/O

 

functions

 

must

 

manipulate.

 

For

 

example:

 

v

   

When

 

performing

 

output,

 

these

 

12

 

bytes

 

must

 

be

 

initialized

 

to

 

zero.

 

v

   

When

 

performing

 

input,

 

these

 

12

 

bytes

 

must

 

be

 

fetched

 

even

 

though

 

they

 

are

 

not

 

passed

 

to

 

your

 

application.

Because

 

the

 

ILE

 

C

 

stream

 

I/O

 

functions

 

dynamically

 

create

 

a

 

source

 

physical

 

file

 

when

 

opening

 

a

 

text

 

file

 

that

 

does

 

not

 

already

 

exist

 

for

 

output,

 

create

 

the

 

file

 

as

 

a

 

physical

 

file

 

before

 

you

 

start

 

your

 

application.

 

Specifying

 

Library

 

Names

 

You

 

should

 

specify

 

the

 

name

 

of

 

the

 

library

 

in

 

which

 

the

 

file

 

resides.

 

If

 

you

 

do

 

not

 

specify

 

a

 

library

 

name

 

when

 

processing

 

a

 

file,

 

the

 

library

 

list

 

is

 

searched

 

for

 

the

 

file.

 

The

 

search

 

time

 

can

 

be

 

lengthy,

 

depending

 

on

 

the

 

number

 

of

 

libraries

 

and

 

the

 

objects

 

that

 

they

 

contain.

 

Using

 

Pointers

 

to

 

Improve

 

Performance

 

Using

 

and

 

comparing

 

pointers

 

can

 

impact

 

performance.

 

Avoiding

 

Use

 

of

 

Open

 

Pointers

 

Avoid

 

using

 

open

 

pointers.

 

Open

 

pointers

 

inhibit

 

optimization.

 

Note

 

that

 

pointers

 

to

 

void

 

(void*)

 

are

 

open

 

pointers

 

in

 

ILE

 

C/C++.

 

Avoiding

 

Pointer

 

Comparisons

 

Because

 

pointers

 

take

 

up

 

16

 

bytes

 

of

 

space,

 

pointer

 

comparisons

 

are

 

less

 

efficient

 

than

 

comparisons

 

using

 

other

 

data

 

types.

 

You

 

might

 

want

 

to

 

replace

 

pointer

 

comparisons

 

with

 

comparisons

 

using

 

other

 

data

 

types,

 

such

 

as

 

int.

 

The

 

following

 

figure

 

shows

 

a

 

program

 

that

 

constructs

 

a

 

linked

 

list,

 

processes

 

all

 

the

 

elements

 

in

 

the

 

list,

 

and

 

then

 

frees

 

the

 

linked

 

list:

  

printf("Enter

 

next

 

item.\n"

        

"When

 

done,

 

enter

 

’done’.\n");

 

Figure

 

47.

 

Using

 

printf()

 

to

 

Reduce

 

Function

 

Calls

  

78

 

ILE

 

C/C++

 

Programmer’s

 

Guide



#include

 

<string.h>

 

#include

 

<stdlib.h>

 

#include

 

<recio.h>

   

#define

 

MAX_LEN

 

80

   

struct

 

link

 

{

   

struct

 

link

 

*next;

   

char

 

record[MAX_LEN];

 

};

   

int

 

main(void)

 

{

   

struct

 

link

 

*start,

 

*ptr;

   

_RFILE

 

*fp;

   

return

 

0;

 

int

 

i;

   

//

 

Construct

 

the

 

linked

 

list

 

and

 

read

 

in

 

records.

   

fp

 

=

 

_Ropen("MY_LIB/MY_FILE",

 

"rr,

 

blkrcd

 

=

 

Y");

 

start

 

=

 

(struct

 

link

 

*)

 

malloc(sizeof(struct

 

link));

 

start->next

 

=

 

NULL;

 

ptr

 

=

 

start;

 

for

 

(

 

i

 

=

 

(_Ropnfbk(fp))->num_records;

 

i

 

>

 

0;

 

--i

 

)

   

{

    

_Rreadn

 

(fp,

 

NULL,

 

MAX_LEN,

 

__DFT);

    

ptr

 

=

 

ptr->next

 

=

 

(struct

 

link

 

*)

 

malloc(sizeof(struct

 

link));

    

memcpy(ptr->record,(void

 

const

 

*)

 

*(fp->in_buf),

 

MAX_LEN);

    

ptr->next

 

=

 

NULL;

   

}

 

ptr

 

=

 

start->next;

 

free(start);

 

start

 

=

 

ptr;

 

_Rclose(fp);

 

return

 

0;

   

Figure

 

48.

 

Example

 

of

 

a

 

Program

 

that

 

Uses

 

Linked

 

Lists

 

(Part

 

1

 

of

 

2)

  

Chapter

 

6.

 

Improving

 

Run-Time

 

Performance

 

79



Each

 

element

 

in

 

the

 

link

 

list

 

holds

 

one

 

record

 

from

 

a

 

file:

 

In

 

the

 

preceding

 

program,

 

pointer

 

comparisons

 

are

 

used

 

when

 

processing

 

elements

 

and

 

freeing

 

the

 

linked

 

list.

 

The

 

program

 

can

 

be

 

rewritten

 

using

 

a

 

short

 

type

 

member

 

to

 

indicate

 

the

 

end

 

of

 

the

 

link

 

list.

 

As

 

a

 

result,

 

you

 

change

 

pointer

 

comparisons

 

to

 

integer

 

comparisons,

 

as

 

shown

 

in

 

the

 

following

 

figure:

     

//

 

Process

 

all

 

records.

    

for

 

(

 

ptr

 

=

 

start;

 

ptr

 

!=

 

NULL;

 

ptr

 

=

 

ptr->next

 

)

  

{

    

//

 

Code

 

to

 

process

 

the

 

element

 

pointed

 

to

 

by

 

ptr.

    

}

    

//

 

Free

 

space

 

allocated

 

for

 

the

 

linked

 

list.

    

while

 

(

 

start

 

!=

 

NULL

 

)

  

{

         

ptr

 

=

 

start->next;

         

free(start);

         

start

 

=

 

ptr;

  

}

 

}

 

Figure

 

48.

 

Example

 

of

 

a

 

Program

 

that

 

Uses

 

Linked

 

Lists

 

(Part

 

2

 

of

 

2)

#include

 

<string.h>

 

#include

 

<stdlib.h>

 

#include

 

<recio.h>

   

#define

 

MAX_LEN

 

80

 

int

 

i;

   

struct

 

link

  

{

   

struct

 

link

 

*next;

   

short

 

last;

   

char

 

record[MAX_LEN];

  

};

   

int

 

main(void)

    

{

    

struct

 

link

 

*start,

 

*ptr;

    

_RFILE

 

*fp;

    

return

 

0;

   

Figure

 

49.

 

Example

 

of

 

Source

 

Code

 

that

 

Uses

 

a

 

short

 

Type

 

Member

 

to

 

End

 

a

 

Linked

 

List

 

(Part

 

1

 

of

 

3)

  

80

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Reducing

 

Indirect

 

Access

 

through

 

Pointers

 

You

 

can

 

improve

 

performance

 

by

 

reducing

 

indirect

 

access

 

through

 

pointers.

 

Each

 

level

 

of

 

indirection

 

adds

 

some

 

overhead:

  

for

 

(

 

i

 

=

 

0;

 

i

 

<

 

n;

 

i++

 

)

  

{

     

x->y->z[i]

 

=

 

i;

  

}

 

Performance

 

in

 

the

 

above

 

example

 

improves

 

if

 

it

 

is

 

rewritten

 

as:

     

//

 

Construct

 

the

 

linked

 

list

 

and

 

read

 

in

 

records.

      

fp

 

=

 

_Ropen("

 

MY_LIB/MY_FILE",

 

"rr,

 

blkrcd

 

=

 

Y");

    

start

 

=

 

(struct

 

link

 

*)

 

malloc(sizeof(struct

 

link));

    

start->next

 

=

 

NULL;

    

ptr

 

=

 

start;

    

for

 

(

 

i

 

=

 

(_Ropnfbk(fp))->num_records;

 

i

 

>

 

0;

 

--i

 

)

    

{

      

_Rreadn(fp,

 

NULL,

 

MAX_LEN,

 

__DFT);

        

(struct

 

link

 

*)

 

malloc(sizeof(struct

 

link));

        

memcpy(ptr->record,

 

(void

 

const

 

*)

 

*(fp->in_buf),

 

MAX_LEN);

        

ptr->last

 

=

 

0;

      

}

      

ptr->last

 

=

 

1;

      

ptr

 

=

 

start->next;

      

free(start);

      

start

 

=

 

ptr;

      

_Rclose(fp);

   

Figure

 

49.

 

Example

 

of

 

Source

 

Code

 

that

 

Uses

 

a

 

short

 

Type

 

Member

 

to

 

End

 

a

 

Linked

 

List

 

(Part

 

2

 

of

 

3)

//

  

Process

 

all

 

records.

   

if

 

(

 

start

 

!=

 

NULL

 

)

   

{

     

for

 

(

 

ptr

 

=

 

start;

 

!ptr->last;

 

ptr

 

=

 

ptr->next

 

)

   

{

 

//

 

Code

 

to

 

process

 

the

 

element

 

pointed

 

to

 

by

    

}

 

//

 

code

 

to

 

process

 

the

 

element

 

//(last

 

element)

 

pointed.

 

//

 

Free

 

space

 

allocated

 

for

 

the

 

linked

 

list.

   

while

 

(

 

!start->last

 

)

   

{

     

ptr

 

=

 

start->next;

     

free(start);

     

start

 

=

 

ptr;

    

}

 

free(start);

 

}

  

}

 

Figure

 

49.

 

Example

 

of

 

Source

 

Code

 

that

 

Uses

 

a

 

short

 

Type

 

Member

 

to

 

End

 

a

 

Linked

 

List

 

(Part

 

3

 

of

 

3)

  

Chapter

 

6.

 

Improving

 

Run-Time

 

Performance

 

81



temp

 

=

 

x->y;

 

for

 

(

 

i

 

=

 

0;

 

i

 

<

 

n;

 

i++

 

)

 

{

   

temp->z[i]

 

=

 

i;

 

}

 

Using

 

Shallow

 

Copy

 

instead

 

of

 

Deep

 

Copy

 

Avoid

 

performing

 

a

 

deep

 

copy

 

if

 

a

 

shallow

 

copy

 

is

 

all

 

you

 

require.

 

For

 

an

 

object

 

that

 

contains

 

pointers

 

to

 

other

 

objects,

 

a

 

shallow

 

copy

 

copies

 

only

 

the

 

pointers

 

and

 

not

 

the

 

objects

 

to

 

which

 

they

 

point.

 

The

 

result

 

is

 

two

 

objects

 

that

 

point

 

to

 

the

 

same

 

contained

 

object.

 

A

 

deep

 

copy

 

copies

 

the

 

pointers

 

and

 

the

 

objects

 

they

 

point

 

to,

 

as

 

well

 

as

 

any

 

pointers

 

or

 

objects

 

contained

 

within

 

that

 

object,

 

and

 

so

 

on.

 

Note:

  

If

 

a

 

program

 

points

 

to

 

an

 

object

 

more

 

than

 

once,

 

you

 

must

 

use

 

deep

 

copy.

 

Objects

 

that

 

use

 

shallow

 

copy

 

can

 

destroy

 

objects

 

pointed

 

to

 

more

 

than

 

once.

 

Minimizing

 

Space

 

Requirements

 

You

 

can

 

improve

 

the

 

performance

 

of

 

a

 

program

 

by

 

reducing

 

the

 

space

 

it

 

requires.

 

Reducing

 

the

 

space

 

requirement

 

helps

 

reduce

 

page

 

faults,

 

segment

 

faults,

 

and

 

effective

 

address

 

overflows.

 

Choosing

 

Appropriate

 

Data

 

Types

 

Choosing

 

the

 

appropriate

 

data

 

type

 

can

 

reduce

 

program

 

space

 

requirements

 

and

 

help

 

improve

 

program

 

performance.

 

When

 

choosing

 

data

 

types,

 

consider

 

all

 

the

 

platforms

 

that

 

your

 

code

 

must

 

support.

 

You

 

may

 

not

 

know

 

all

 

the

 

data

 

types

 

and

 

sizes

 

at

 

the

 

beginning

 

of

 

your

 

code

 

design.

 

Because

 

the

 

data

 

types

 

can

 

hold

 

the

 

same

 

size

 

data

 

on

 

various

 

platforms,

 

you

 

can

 

use

 

typedefs,

 

enums,

 

or

 

classes

 

depending

 

on

 

the

 

use

 

of

 

the

 

data

 

type.

 

If

 

possible

 

use

 

short

 

instead

 

of

 

int,

 

and

 

float

 

instead

 

of

 

double.

 

The

 

compiler

 

uses

 

2

 

bytes

 

for

 

short,

 

4

 

bytes

 

for

 

int,

 

and

 

8

 

bytes

 

for

 

double.

 

Minimizing

 

Dynamic

 

Memory

 

Allocation

 

Calls

 

You

 

can

 

improve

 

performance

 

by

 

reducing

 

the

 

number

 

of

 

times

 

you

 

dynamically

 

allocate

 

memory.

 

Every

 

time

 

you

 

call

 

the

 

new

 

operator

 

a

 

certain

 

amount

 

of

 

space

 

is

 

allocated

 

from

 

the

 

heap.

 

This

 

space

 

is

 

always

 

aligned

 

at

 

16

 

bytes,

 

which

 

is

 

suitable

 

for

 

storage

 

of

 

any

 

object

 

type.

 

In

 

addition,

 

32

 

extra

 

bytes

 

are

 

taken

 

from

 

the

 

dynamic

 

heap

 

for

 

bookkeeping.

 

This

 

means

 

that

 

even

 

if

 

you

 

only

 

want

 

one

 

byte,

 

48

 

bytes

 

are

 

allocated

 

from

 

the

 

dynamic

 

heap,

 

32

 

bytes

 

for

 

bookkeeping

 

and

 

15

 

bytes

 

for

 

padding.

 

When

 

the

 

current

 

space

 

allocation

 

in

 

the

 

heap

 

is

 

used

 

up,

 

storage

 

allocation

 

is

 

slower:

 

ptr1

 

=

 

new

 

char[12];

 

ptr2

 

=

 

new

 

char[4];

 

In

 

the

 

code

 

above,

 

96

 

bytes

 

are

 

taken

 

from

 

the

 

heap

 

(including

 

64

 

bytes

 

for

 

bookkeeping

 

and

 

16

 

bytes

 

for

 

padding)

 

and

 

new

 

is

 

used

 

twice.

 

This

 

code

 

can

 

be

 

rewritten

 

as:

 

ptr1

 

=

 

new

 

char[16];

 

ptr2

 

=

 

ptr1

 

+

 

12;

 

Only

 

48

 

bytes

 

are

 

taken

 

from

 

the

 

heap

 

and

 

the

 

new

 

operator

 

is

 

only

 

used

 

once.

 

Because

 

you

 

reduce

 

the

 

dynamic

 

space

 

allocation

 

requirement,

 

less

 

storage

 

is

 

taken

 

from

 

the

 

heap.

 

You

 

may

 

gain

 

other

 

benefits

 

such

 

as

 

a

 

reduction

 

in

 

page

 

faults.

 

Because

 

there

 

are

 

fewer

 

calls

 

to

 

the

 

new

 

operator,

 

function

 

call

 

overhead

 

is

 

reduced

 

as

 

well.

   

82

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Note:

  

If

 

you

 

allocate

 

space

 

by

 

incrementing

 

pointers,

 

you

 

must

 

guarantee

 

the

 

proper

 

alignment

 

when

 

you

 

allocate

 

pointers

 

(or

 

aggregates

 

which

 

can

 

contain

 

pointers)

 

because

 

pointers

 

require

 

16–byte

 

alignments.

 

There

 

is

 

a

 

performance

 

degradation

 

for

 

data

 

types

 

such

 

as

 

float

 

if

 

they

 

are

 

not

 

allocated

 

on

 

their

 

natural

 

boundaries

 

because

 

these

 

data

 

types

 

have

 

a

 

natural

 

alignment

 

of

 

word

 

or

 

doubleword.

 

Arranging

 

Variables

 

to

 

Reduce

 

Padding

 

Reducing

 

space

 

wasted

 

on

 

padding

 

by

 

rearranging

 

variables

 

is

 

another

 

way

 

to

 

reduce

 

your

 

program’s

 

space

 

requirement.

 

With

 

the

 

exception

 

of

 

packed

 

decimal

 

data

 

types,

 

variables

 

are

 

padded

 

the

 

same

 

in

 

both

 

C

 

and

 

C++:

 

v

   

A

 

char

 

type

 

variable

 

takes

 

one

 

byte

 

v

   

A

 

short

 

type

 

variable

 

takes

 

2

 

bytes

 

v

   

An

 

int

 

type

 

variable

 

takes

 

4

 

bytes

 

v

   

A

 

long

 

type

 

variable

 

takes

 

4

 

bytes

 

v

   

A

 

longlong

 

type

 

variable

 

takes

 

8

 

bytes

 

v

   

A

 

float

 

type

 

variable

 

takes

 

4

 

bytes

 

v

   

A

 

double

 

type

 

variable

 

takes

 

8

 

bytes

 

v

   

A

 

pointer

 

takes

 

16

 

bytes

 

v

   

A

 

_DecimalT

 

template

 

class

 

object

 

takes

 

1

 

to

 

16

 

bytes

  

A

 

C

 

packed

 

decimal

 

type

 

variable

 

can

 

be

 

1–32

 

bytes

 

in

 

size.

   

A

 

C++

 

packed

 

decimal

 

type

 

variable

 

can

 

be

 

1–16

 

bytes

 

in

 

size.

 

By

 

rearranging

 

variables,

 

wasted

 

space

 

created

 

by

 

padding

 

can

 

be

 

minimized,

 

as

 

shown

 

in

 

Figure

 

50

 

on

 

page

 

84.

    

Chapter

 

6.

 

Improving

 

Run-Time

 

Performance

 

83



As

 

a

 

general

 

rule,

 

the

 

space

 

used

 

for

 

padding

 

can

 

be

 

minimized

 

if

 

16–byte

 

variables

 

are

 

declared

 

first,

 

8–byte

 

variables

 

are

 

declared

 

second,

 

4

 

byte

 

variables

 

are

 

declared

 

third,

 

2–byte

 

variables

 

are

 

declared

 

fourth,

 

and

 

1–byte

 

variables

 

are

 

declared

 

fifth.

 

_DecimalT

 

template

 

class

 

objects

 

should

 

be

 

declared

 

last,

 

after

 

all

 

other

 

variables

 

have

 

been

 

declared.

 

The

 

same

 

rule

 

can

 

be

 

applied

 

to

 

structure

 

or

 

class

 

definitions.

 

To

 

show

 

the

 

layout

 

(including

 

padding)

 

of

 

module

 

structures,

 

in

 

both

 

packed

 

and

 

normal

 

alignment,

 

use

 

either

 

the

 

*AGR

 

or

 

the

 

*STRUCREF

 

compiler

 

option.

class

 

OrderT

 

{

          

float

 

value;

    

//

 

Four

 

bytes.

          

char

 

flag1;

     

//

 

One

 

byte

 

plus

 

one

 

byte.

          

short

 

num;

      

//

 

Two

 

bytes.

          

char

 

flag2;

     

//

 

One

 

byte

 

plus

 

three

 

bytes.

 

}

 

orderT;

 

class

 

ItemT

 

{

          

char

 

*name;

                  

//

  

16

 

bytes.

          

int

 

number;

                  

//

   

4

 

bytes

 

plus

 

12

 

bytes.

          

char

 

*address;

               

//

  

16

 

bytes.

          

double

 

value;

                

//

   

8

 

bytes

 

plus

 

8

 

bytes.

          

char

 

*next;

                  

//

  

16

 

bytes.

          

short

 

rating;

                

//

   

2

 

bytes

 

plus

 

14

 

bytes.

          

char

 

*previous;

              

//

  

16

 

bytes.

          

_DecimalT<25,5>

 

tot_order;

   

//

  

13

 

bytes

 

plus

 

3

 

bytes.

          

int

 

quantity;

                

//

  

4

 

bytes.

          

_DecimalT<12,5>

 

unit_price;

  

//

  

7

 

bytes

 

plus

 

5

 

bytes.

          

char

 

*title;

                 

//

  

16

 

bytes.

          

char

 

flag;

                   

//

   

1

 

byte

  

plus

 

15

 

bytes.

 

}

       

itemT;

 

Note:

  

The

 

structure

 

of

 

the

 

ItemT

 

class

 

takes

 

176

 

bytes,

 

of

 

which

 

57

 

bytes

 

are

 

used

 

for

 

padding.

 

The

 

ItemT

 

class

 

can

 

be

 

rearranged

 

as:

 

class

 

ItemT

 

{

          

char

 

*name;

                 

//

  

16

 

bytes

          

char

 

*address;

              

//

  

16

 

bytes

          

char

 

*next;

                 

//

  

16

 

bytes

          

char

 

*previous;

             

//

  

16

 

bytes

          

char

 

*title;

                

//

  

16

 

bytes

          

double

 

value;

               

//

   

8

 

bytes

          

int

 

quantity;

               

//

   

4

 

bytes

          

int

 

number;

                 

//

   

4

 

bytes

          

short

 

rating;

               

//

   

2

 

bytes

          

char

 

flag;

                  

//

   

1

 

byte

          

_DecimalT<25,5>

 

tot_order;

  

//

  

13

 

bytes

          

_DecimalT<12,5>

 

unit_price;

 

//

   

7

 

bytes

 

plus

 

9

 

bytes

 

}

          

itemT;

 

Note:

  

After

 

rearrangement,

 

the

 

ItemTclass

 

takes

 

only

 

128

 

bytes,

 

with

 

9

 

bytes

 

for

 

padding.

 

The

 

saving

 

of

 

space

 

is

 

even

 

more

 

substantial

 

when

 

you

 

are

 

rearranging

 

arrays

 

of

 

similar

 

structure

 

type.

 

Figure

 

50.

 

Example

 

of

 

Minimizing

 

Padding

 

by

 

Rearranging

 

Variables

  

84

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Note:

  

*AGR,

 

which

 

gives

 

a

 

map

 

of

 

all

 

structures,

 

overrides

 

*STRUCREF,

 

which

 

gives

 

a

 

map

 

of

 

referenced

 

structures.

 

Removing

 

Observability

 

A

 

module

 

has

 

observability

 

when

 

it

 

contains

 

data

 

that

 

allows

 

it

 

to

 

be

 

changed

 

without

 

being

 

compiled

 

again.

 

Two

 

types

 

of

 

data

 

can

 

make

 

a

 

module

 

observable:

 

Create

 

Data

 

This

 

data

 

is

 

necessary

 

to

 

translate

 

the

 

code

 

into

 

machine

 

instructions.

 

The

 

object

 

must

 

have

 

this

 

data

 

before

 

you

 

can

 

change

 

the

 

optimization

 

level.

 

It

 

is

 

represented

 

by

 

the

 

*CRTDTA

 

value

 

on

 

the

 

RMVOBS

 

parameter

 

of

 

the

 

Change

 

Program

 

(CHGPGM)

 

command.

 

Debug

 

Data

 

This

 

data

 

enables

 

an

 

object

 

to

 

be

 

debugged.

 

It

 

is

 

represented

 

by

 

the

 

*DBGDTA

 

value

 

on

 

the

 

RMVOBS

 

parameter

 

of

 

the

 

CHGPGM

 

command.

The

 

addition

 

of

 

these

 

types

 

of

 

data

 

increases

 

the

 

size

 

of

 

the

 

object.

 

Consequently,

 

you

 

may

 

at

 

some

 

point

 

want

 

to

 

remove

 

the

 

data

 

in

 

order

 

to

 

reduce

 

object

 

size.

 

However,

 

once

 

the

 

data

 

is

 

removed,

 

so

 

is

 

the

 

object’s

 

observability.

 

To

 

regain

 

it,

 

you

 

must

 

recompile

 

the

 

source

 

and

 

re-create

 

the

 

program.

 

To

 

remove

 

either

 

kind

 

of

 

data

 

from

 

a

 

program

 

or

 

module,

 

use

 

the

 

CHGMOD

 

or

 

the

 

CHGPGM

 

command.

 

Again,

 

once

 

you

 

have

 

removed

 

the

 

data,

 

it

 

is

 

not

 

possible

 

to

 

change

 

the

 

object

 

in

 

any

 

way

 

unless

 

you

 

re-create

 

it.

 

Therefore,

 

ensure

 

that

 

you

 

have

 

access

 

to

 

all

 

source

 

required

 

to

 

create

 

the

 

program,

 

or

 

that

 

you

 

have

 

a

 

comparable

 

program

 

object

 

with

 

create

 

data.

 

Compressing

 

Objects

 

The

 

Create

 

Data

 

(*CRTDTA)

 

value

 

associated

 

with

 

an

 

ILE

 

program

 

or

 

module

 

may

 

make

 

up

 

more

 

than

 

half

 

of

 

the

 

object’s

 

size.

 

By

 

removing

 

or

 

compressing

 

this

 

data,

 

you

 

reduce

 

the

 

secondary

 

storage

 

requirements

 

for

 

your

 

programs

 

significantly.

 

An

 

alternative

 

is

 

to

 

compress

 

the

 

object

 

through

 

using

 

the

 

Compress

 

Object

 

(CPROBJ)

 

command.

 

A

 

compressed

 

object

 

takes

 

up

 

less

 

system

 

storage

 

than

 

an

 

uncompressed

 

one.

 

When

 

the

 

compressed

 

program

 

is

 

called,

 

the

 

part

 

of

 

the

 

object

 

containing

 

the

 

executable

 

code

 

is

 

automatically

 

decompressed.

 

You

 

can

 

also

 

decompress

 

an

 

object

 

by

 

using

 

the

 

Decompress

 

Object

 

(DCPOBJ)

 

command.

 

Optimizing

 

Use

 

of

 

Activation

 

Groups

 

Using

 

activation

 

groups

 

can

 

impact

 

performance.

 

Calling

 

Functions

 

in

 

Other

 

Activation

 

Groups

 

Within

 

the

 

same

 

job,

 

calling

 

a

 

function

 

that

 

runs

 

in

 

a

 

different

 

activation

 

group

 

degrades

 

the

 

performance

 

of

 

the

 

call

 

significantly

 

(the

 

call

 

takes

 

approximately

 

twice

 

as

 

long).

 

If

 

a

 

service

 

program

 

was

 

created

 

to

 

run

 

in

 

a

 

named

 

activation

 

group

 

(using

 

the

 

ACTGRP(name)

 

parameter

 

of

 

the

 

CRTSRVPGM

 

command)

 

then

 

any

 

calls

 

to

 

that

 

function

 

from

 

a

 

program

 

or

 

service

 

program

 

would

 

be

 

calling

 

across

 

an

 

activation

 

group

 

and

 

would

 

therefore

 

be

 

slower.

 

Sometimes

 

it

 

makes

 

sense

 

to

 

run

 

programs

 

or

 

service

 

programs

 

in

 

other

 

activations

 

groups

 

(for

 

storage

 

isolation,

 

exception

 

handling)

 

but

 

it

 

should

 

be

 

noted

 

that

 

call-performance

 

suffers

 

in

 

that

 

arrangement.

   

Chapter

 

6.

 

Improving

 

Run-Time

 

Performance

 

85



Reducing

 

Program

 

Startup

 

Time

 

When

 

a

 

new

 

ILE

 

program

 

is

 

first

 

called,

 

the

 

system

 

needs

 

to

 

perform

 

some

 

initialization

 

to

 

prepare

 

the

 

program

 

to

 

run.

 

Part

 

of

 

this

 

initialization

 

requires

 

creating

 

an

 

activation

 

group

 

for

 

all

 

of

 

the

 

program

 

storage,

 

resolving

 

all

 

service

 

programs

 

bound

 

to

 

the

 

program,

 

getting

 

program

 

arguments

 

and

 

so

 

on.

 

Several

 

recommendations

 

for

 

improving

 

start-up

 

time

 

can

 

be

 

drawn

 

from

 

these

 

initialization

 

steps:

 

v

   

Reduce

 

the

 

use

 

of

 

global

 

variables.

 

v

   

Reduce

 

the

 

number

 

of

 

service

 

programs

 

bound

 

to

 

the

 

program.

 

The

 

more

 

service

 

programs

 

used

 

by

 

an

 

ILE

 

program,

 

the

 

more

 

time

 

is

 

required

 

to

 

start

 

up

 

the

 

program.

 

It

 

is

 

often

 

better

 

to

 

have

 

a

 

few

 

large

 

service

 

programs

 

than

 

many

 

small

 

ones.

 

For

 

example,

 

the

 

C

 

run-time

 

libraries

 

comprise

 

a

 

small

 

number

 

of

 

service

 

programs.

Minimizing

 

Use

 

of

 

Virtual

 

Functions

    

There

 

is

 

a

 

performance

 

impact

 

if

 

you

 

use

 

virtual

 

functions

 

because

 

virtual

 

functions

 

are

 

compiled

 

to

 

be

 

indirect

 

calls,

 

which

 

are

 

slower

 

than

 

direct

 

calls.

 

You

 

may

 

be

 

able

 

to

 

minimize

 

this

 

performance

 

impact

 

depending

 

on

 

your

 

program

 

design

 

by

 

using

 

a

 

minimum

 

number

 

of

 

parameters

 

on

 

the

 

virtual

 

functions.

 

Choosing

 

Compiler

 

Options

 

to

 

Optimize

 

for

 

Speed

 

or

 

Size

 

There

 

are

 

several

 

ways

 

to

 

improve

 

compile-time

 

performance.

 

These

 

include

 

both

 

front

 

end

 

and

 

back

 

end

 

compile-time

 

activities.

 

Table

 

6

 

on

 

page

 

87

 

describes

 

different

 

compiler

 

options

 

to

 

make

 

your

 

program

 

run

 

faster,

 

and

 

to

 

make

 

your

 

compiled

 

program

 

smaller.

 

Note

 

that

 

sometimes

 

you

 

have

 

to

 

decide

 

which

 

is

 

more

 

important

 

to

 

you,

 

program

 

size

 

or

 

program

 

speed.

 

In

 

some

 

cases

 

optimizing

 

for

 

one

 

aspect

 

means

 

the

 

other

 

suffers.

 

Optimization

 

is

 

the

 

process

 

through

 

which

 

the

 

system

 

looks

 

for

 

processing

 

shortcuts

 

that

 

reduce

 

the

 

amount

 

of

 

system

 

resources

 

necessary

 

to

 

produce

 

output.

 

Processing

 

shortcuts

 

are

 

translated

 

into

 

machine

 

code,

 

allowing

 

the

 

procedures

 

in

 

a

 

module

 

to

 

run

 

more

 

efficiently.

 

A

 

highly

 

optimized

 

program

 

or

 

service

 

program

 

should

 

run

 

faster

 

than

 

it

 

would

 

without

 

optimization.

 

To

 

control

 

the

 

level

 

of

 

optimization,

 

use

 

the

 

OPTIMIZE

 

option

 

on

 

the

 

Create

 

Module

 

and

 

Create

 

Bound

 

Program

 

commands.

 

Changing

 

the

 

desired

 

optimization

 

level

 

requires

 

recompiling

 

your

 

source

 

code.

 

Changing

 

the

 

optimization

 

of

 

a

 

module

 

can

 

also

 

be

 

accomplished

 

through

 

a

 

Change

 

Module

 

(CHGMOD)

 

command.

 

Note:

  

You

 

cannot

 

use

 

the

 

Change

 

Module

 

(CHGMOD)

 

command

 

to

 

change

 

the

 

optimization

 

level

 

without

 

recompiling

 

your

 

source

 

code.

 

You

 

should

 

be

 

aware

 

of

 

the

 

following

 

limitations

 

when

 

working

 

with

 

optimized

 

code:

 

v

   

In

 

general,

 

the

 

higher

 

the

 

optimizing

 

request,

 

the

 

longer

 

it

 

takes

 

to

 

create

 

an

 

object.

 

v

   

At

 

higher

 

levels

 

of

 

optimization,

 

the

 

values

 

of

 

fields

 

may

 

not

 

be

 

accurate

 

when

 

they

 

are

 

displayed

 

in

 

a

 

debug

 

session,

 

or

 

after

 

the

 

program

 

recovers

 

from

 

an

 

exception.

   

86

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

Optimized

 

code

 

may

 

have

 

altered

 

breakpoints

 

and

 

step

 

locations

 

used

 

by

 

the

 

source

 

debugger

 

because

 

the

 

optimization

 

changes

 

may

 

rearrange

 

or

 

eliminate

 

some

 

statements.

  

To

 

circumvent

 

this

 

restriction

 

while

 

debugging,

 

you

 

can

 

lower

 

the

 

optimization

 

level

 

of

 

a

 

module

 

to

 

display

 

fields

 

accurately

 

as

 

you

 

debug

 

a

 

program,

 

and

 

then

 

raise

 

the

 

level

 

again

 

afterwards,

 

to

 

improve

 

the

 

program

 

efficiency

 

as

 

you

 

get

 

the

 

program

 

ready

 

for

 

production.

Use

 

the

 

guidelines

 

in

 

Table

 

6,

 

except

 

where

 

they

 

are

 

contradicted.

 

Intrinsic

 

functions

 

may

 

improve

 

performance,

 

but

 

they

 

increase

 

the

 

size

 

of

 

your

 

module.

  

Table

 

6.

 

Compiler

 

Options

 

for

 

Performance

 

Option

 

Optimize

 

for

 

Speed

 

Optimize

 

for

 

Size

 

OPTIMIZE

 

10

 

//Default

 

value

 

OPTIMIZE

 

20

 

OPTIMIZE

 

30

 

OPTIMIZE

 

40

 

Turns

 

on

 

optimization.

 

Yes

 

Yes

 

INLINE(*OFF)

 

Turns

 

off

 

inlining.

 

May

 

reduce

 

module

 

size,

 

especially

 

if

 

the

 

inlined

 

functions

 

consist

 

of

 

small

 

pieces

 

of

 

code.

 

No

 

Yes

 

INLINE(*ON)

 

Turns

 

on

 

inlining.

 

Saves

 

many

 

function

 

calls

 

when

 

a

 

function

 

is

 

called

 

in

 

a

 

few

 

places

 

but

 

executed

 

many

 

times.

 

Yes

 

No

 

DBGVIEW(*NONE)

 

Does

 

not

 

generate

 

debug

 

information,

 

which

 

would

 

increase

 

module

 

size.

 

No

 

Yes

   

Setting

 

Run-Time

 

Limits

 

v

   

The

 

maximum

 

amount

 

of

 

storage

 

of

 

any

 

single

 

variable

 

(such

 

as

 

a

 

string

 

or

 

array)

 

is

 

16

 

773

 

104

 

bytes

 

v

   

The

 

maximum

 

length

 

of

 

a

 

command

 

passed

 

to

 

the

 

system

 

function

 

is

 

32

 

702

 

bytes

 

v

   

The

 

maximum

 

size

 

of

 

dynamic

 

heap

 

storage

 

is

 

4

 

gigabytes

  

A

 

very

 

large

 

memory

 

allocation

 

may

 

cause

 

a

 

system

 

crash

 

if

 

there

 

is

 

insufficient

 

auxiliary

 

storage

 

on

 

your

 

system.

 

A

 

4–gigabtye

 

memory

 

allocation

 

requires

 

more

 

than

 

4

 

gigabytes

 

of

 

available

 

DASD.

 

The

 

iSeries

 

Work

 

System

 

Status

 

(WRKSYSSTS)

 

command

 

shows

 

auxiliary

 

storage

 

usage.

 

v

   

The

 

maximum

 

size

 

of

 

a

 

single

 

heap

 

allocation

 

is

 

16

 

711

 

568

 

bytes

 

v

   

The

 

maximum

 

auto

 

storage

 

is

 

16

 

MB

 

and

 

there

 

is

 

a

 

recursion

 

limit

 

of

 

approximately

 

21743

 

levels

 

deep

  

Chapter

 

6.

 

Improving

 

Run-Time

 

Performance

 

87



88

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

7.

 

Example:

 

Creating

 

an

 

ILE

 

C

 

Application

 

The

 

example

 

in

 

this

 

section

 

demonstrates

 

some

 

typical

 

steps

 

in

 

creating

 

a

 

sample

 

ILE

 

C

 

application.

 

The

 

application

 

is

 

a

 

small

 

transaction-processing

 

program

 

that

 

takes

 

item

 

names,

 

price,

 

and

 

quantity

 

as

 

input.

 

As

 

output,

 

the

 

application

 

displays

 

the

 

total

 

cost

 

of

 

the

 

items

 

on

 

the

 

screen

 

and

 

updates

 

an

 

audit

 

trail

 

of

 

the

 

transaction.

 

This

 

chapter

 

describes,

 

for

 

the

 

sample

 

application,

 

the

 

following:

 

v

   

Process

 

flow

 

v

   

ILE

 

activation

 

group

 

v

   

Resource

 

requirements

 

v

   

Task

 

summary

 

v

   

Step-by-step

 

instructions

 

v

   

Source

 

code

Process

 

Flow

   

Figure

 

51

 

shows:

   

Figure

 

51.

 

Sample

 

Application:

 

High-Level

 

Input/Processing/Output

 

Flow

 

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

89



Session

 

input

 

Data

 

entered

 

during

 

a

 

terminal

 

session:

 

v

   

Name

 

of

 

the

 

item

 

being

 

ordered

 

v

   

Price

 

per

 

unit

 

v

   

Quantity

 

of

 

units

 

being

 

ordered

CL

 

CMD

 

Program

 

T1520CM1

 

A

 

developer-created

 

CL

 

command

 

that

 

accepts

 

user

 

input

 

and

 

passes

 

it

 

to

 

CL

 

Program

 

T1520CL1.

 

CL

 

Program

 

T1520CL1

 

A

 

CL

 

program

 

that

 

processes

 

the

 

input,

 

and

 

passes

 

it

 

to

 

ILE

 

C/400

 

Program

 

T1520PG1.

 

ILE

 

C/400

 

Program

 

T1520PG1

 

An

 

ILE

 

C

 

program

 

that

 

processes

 

the

 

input

 

and

 

directs

 

output

 

to

 

the

 

user’s

 

terminal

 

and

 

to

 

an

 

externally

 

described

 

file.

 

The

 

ILE

 

C

 

program

 

consists

 

of

 

two

 

modules:

 

T1520IC1

 

and

 

T1520IC2,

 

as

 

shown

 

in

 

Figure

 

52

 

on

 

page

 

91.

 

Module

 

T1520IC1

 

provides

 

the

 

user

 

entry

 

procedure

 

main(),

 

which

 

calls

 

the

 

calc_and_format()

 

procedure.

 

Service

 

Program

 

T1520SP1

 

An

 

ILE

 

service

 

program

 

that

 

makes

 

the

 

write_audit_trail()

 

procedure

 

available

 

for

 

a

 

program

 

to

 

import,

 

as

 

shown

 

in

 

Figure

 

52

 

on

 

page

 

91.

 

Service

 

Program

 

T1520SP2

 

An

 

ILE

 

service

 

program

 

that

 

makes

 

the

 

tax

 

rate

 

data

 

item

 

available

 

for

 

a

 

program

 

to

 

import,

 

as

 

shown

 

in

 

Figure

 

52

 

on

 

page

 

91.

 

Session

 

Output

 

The

 

following

 

appears

 

on

 

the

 

screen:

 

v

   

A

 

statement:

 

"(Quantity

 

of

 

units

 

being

 

ordered)

 

(Name

 

of

 

item

 

being

 

ordered)

 

plus

 

tax

 

=

 

(Calculated

 

cost

 

to

 

user)"

 

v

   

A

 

prompt:

 

"Press

 

ENTER

 

to

 

end

 

terminal

 

session."

Audit

 

File

 

T1520DD1

 

A

 

log

 

that

 

is

 

updated

 

with

 

each

 

transaction.

 

The

 

DDS

 

source,

 

shown

 

in

 

Figure

 

53

 

on

 

page

 

97,

 

defines

 

the

 

data

 

fields

 

and

 

relationships

 

(that

 

is,

 

layout)

 

of

 

the

 

audit

 

file.

   

90

 

ILE

 

C/C++

 

Programmer’s

 

Guide



ILE

 

Activation

 

Group

  

When

 

the

 

CL

 

Command

 

program

 

calls

 

the

 

CL

 

program,

 

all

 

the

 

resources

 

necessary

 

to

 

run

 

these

 

programs

 

are

 

allocated

 

in

 

the

 

default

 

activation

 

group.

 

When

 

the

 

CL

 

program

 

calls

 

the

 

ILE

 

C

 

program,

 

a

 

new

 

activation

 

group

 

is

 

started,

 

as

 

shown

 

in

 

Figure

 

52,

 

because

 

the

 

ILE

 

C

 

program

 

is

 

created

 

with

 

the

 

ACTGRP(*NEW)

 

parameter.

 

The

 

ILE

 

C

 

service

 

programs

 

are

 

also

 

activated

 

in

 

this

 

new

 

activation

 

group

 

because

 

they

 

are

 

created

 

with

 

the

 

ACTGRP(*CALLER)

 

parameter.

 

In

 

other

 

words,

 

the

 

ILE

 

C

 

program

 

and

 

ILE

 

C

 

service

 

programs

 

are

 

activated

 

within

 

one

 

activation

 

group

 

because

 

the

 

programs

 

are

 

developed

 

as

 

one

 

cooperative

 

application.

 

Note:

  

To

 

isolate

 

programs

 

from

 

other

 

programs

 

running

 

in

 

the

 

same

 

job

 

you

 

can

 

select

 

different

 

activation

 

groups.

 

For

 

example,

 

a

 

complete

 

customer

 

solution

 

may

 

be

 

provided

 

by

 

integrating

 

software

 

packages

 

from

 

four

 

different

 

vendors.

 

Different

 

activation

 

groups

 

ease

 

the

 

integration

 

by

 

isolating

 

the

 

resources

 

associated

 

with

 

each

 

vendor

 

package.

  

Activation Group

Program T1520PG1

Service Program T1520SP1

Module T1520IC3

write_audit_trail()

Service Program T1520SP2

Module T1520IC4

taxrate

Module T1520IC2Module T1520IC1

calc_and_format()main()

  

Figure

 

52.

 

ILE

 

Activation

 

Group

 

of

 

the

 

Sample

 

Application

  

Chapter

 

7.

 

Example:

 

Creating

 

an

 

ILE

 

C

 

Application

 

91



Resource

 

Requirements

 

To

 

create

 

the

 

sample

 

application,

 

you

 

need

 

to

 

create

 

the

 

following

 

resources:

 

v

   

A

 

binding

 

directory

 

for

 

the

 

ILE

 

C

 

application

 

modules

 

and

 

service

 

programs

 

v

   

Source

 

code

 

for:

 

–

   

Data

 

Description

 

Specification

 

(DDS)

 

T1520DD1

 

for

 

the

 

output

 

file.

 

–

   

CL

 

Program

 

T1520CL1

 

–

   

CL

 

CMD

 

Program

 

T1520CM1

 

–

   

ILE

 

C/400

 

Program

 

T1520PG1

 

modules

 

T15201C1

 

and

 

T15201C2

 

–

   

Service

 

program

 

T1520SP1

 

module

 

T15201C3

 

and

 

its

 

binder

 

language

 

QSRVSRC

 

–

   

Service

 

program

 

T1520SP2

 

module

 

T15201C4

 

and

 

its

 

binder

 

language

 

QASRVSRC

Note:

  

This

 

example

 

is

 

for

 

illustration

 

purposes.

 

It

 

is

 

not

 

necessary

 

to

 

create

 

a

 

binding

 

directory

 

for

 

an

 

ILE

 

C

 

program

 

of

 

this

 

size.

 

You

 

might

 

not

 

want

 

to

 

break

 

up

 

ILE

 

C

 

service

 

programs

 

by

 

data

 

and

 

function

 

as

 

shown.

 

Task

 

Summary

 

Table

 

7

 

lists

 

the

 

tasks

 

you

 

must

 

perform

 

to

 

create

 

the

 

sample

 

ILE

 

application.

 

Each

 

task

 

number

 

is

 

linked

 

to

 

the

 

corresponding

 

procedure

 

step.

 

Each

 

component

 

name

 

is

 

linked

 

to

 

the

 

figure

 

that

 

contains

 

its

 

source

 

code.

  

Table

 

7.

 

Summary

 

of

 

Tasks

 

Required

 

to

 

Create

 

Sample

 

ILE

 

Application

 

Task

 

Component

 

1

 

Create

 

the

 

physical

 

file

 

to

 

contain

 

the

 

audit

 

log.

 

The

 

DDS

 

source

 

defines

 

the

 

fields

 

for

 

the

 

audit

 

file.

 

T1520DD1

 

2

 

Create

 

the

 

CL

 

program

 

that

 

passes

 

required

 

parameters

 

to

 

the

 

ILE

 

C

 

program

 

T1520PG1.

 

T1520CL1

 

3

 

Create

 

the

 

CL

 

command

 

prompt

 

that

 

collects

 

data

 

from

 

the

 

user’s

 

terminal

 

session.

 

T1520CM1

 

4

 

Create

 

the

 

module

 

that

 

provides

 

the

 

UEP

 

(main()

 

function),

 

which:

 

v

   

Receives

 

the

 

user

 

input

 

from

 

the

 

CL

 

program

 

T1520CL1

 

v

   

Calls

 

calc_and_format()function

 

in

 

module

 

T1520IC2,

 

which:

 

–

   

Calculates

 

an

 

item’s

 

total

 

cost

 

–

   

Calls

 

the

 

write_audit_trail()

 

function

 

in

 

module

 

T1520IC3

 

T1520IC1

 

5

 

Create

 

the

 

module

 

that

 

provides

 

the

 

called

 

function

 

calc_and_format(),

 

which

 

completes

 

the

 

tax

 

calculation

 

by:

 

v

   

Receiving

 

arguments

 

from

 

module

 

T1520IC1

 

v

   

Importing

 

the

 

tax

 

rate

 

data

 

item

 

from

 

an

 

ILE

 

C

 

service

 

program

Note:

 

The

 

function

 

calc_and_format()

 

also

 

formats

 

the

 

total

 

cost.

 

T1520IC2

 

6

 

Create

 

the

 

module

 

that

 

provides

 

the

 

write_audit_trail()

 

function.

 

This

 

module

 

creates

 

the

 

ILE

 

C

 

service

 

program

 

T1520SP1.

 

T1520IC3

 

7

 

Create

 

the

 

module

 

that

 

exports

 

the

 

tax

 

rate

 

data.

 

This

 

module

 

creates

 

the

 

ILE

 

C

 

service

 

program

 

T1520SP2.

 

T1520IC4

   

92

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Table

 

7.

 

Summary

 

of

 

Tasks

 

Required

 

to

 

Create

 

Sample

 

ILE

 

Application

 

(continued)

 

Task

 

Component

 

8

 

Create

 

a

 

source

 

physical

 

file

 

QSRVSRC

 

that

 

contains

 

the

 

binder

 

language

 

to

 

export

 

the

 

procedure

 

write_audit_trail

 

from

 

ILE

 

Service

 

Program

 

T1520SP1.

 

QSRVSRC

 

9

 

Create

 

the

 

source

 

physical

 

file

 

QASRVSRC

 

that

 

contains

 

the

 

binder

 

language

 

to

 

export

 

the

 

data

 

item

 

taxratefrom

 

ILE

 

service

 

program

 

T1520SP2.

 

QASRVSRC

 

10

 

Create

 

the

 

binding

 

directory

 

that

 

contains

 

the

 

service

 

programs

 

T1520SP1

 

and

 

T1520SP2

 

and

 

add

 

the

 

service

 

program

 

names

 

to

 

the

 

directory.

 

T1520BD1

 

11

 

Create

 

the

 

ILE

 

C

 

service

 

program

 

T1520SP1

 

from:

 

v

   

Module

 

T1520IC3,

 

which

 

exports

 

the

 

tax

 

rate

 

data

 

v

   

The

 

physical

 

file

 

(QSRVSRC),

 

which

 

contains

 

the

 

binder

 

language

 

source�1�

 

T1520IC3
QSRVSRC

 

12

 

Create

 

the

 

ILE

 

C

 

service

 

program

 

T1520SP2

 

from:

 

v

   

Module

 

T1520IC4,

 

which

 

exports

 

the

 

procedure

 

write_audit_trail.

 

v

   

The

 

physical

 

file

 

(QASRVSRC),

 

which

 

contains

 

the

 

binder

 

language

 

source�1�

 

T1520IC4
QSRVSRC

 

13

 

Create

 

the

 

ILE

 

C

 

program

 

T1520PG1

 

from

 

the

 

following

 

components:

 

v

   

T1520IC1

 

v

   

T1520IC2

 

T1520IC1
TC1520IC2

 

14

 

Test

 

the

 

program

 

by

 

running

 

it.

 

Notes:

  

1.

   

A

 

tool

 

is

 

provided

 

in

 

the

 

QUSRTOOL

 

library

 

to

 

help

 

generate

 

the

 

binder

 

language

 

for

 

one

 

or

 

more

 

modules.

 

See

 

member

 

TBNINFO

 

in

 

the

 

file

 

QUSRTOOL/QATTINFO.

   

Instructions

 

to

 

Create

 

the

 

Sample

 

Application

 

1.

   

Create

 

the

 

physical

 

file

 

T1520DD1,

 

which

 

contains

 

the

 

audit

 

log

 

entries,

 

by

 

entering

 

the

 

following

 

command:

 

CRTPF

 

FILE(MYLIB/T1520DD1)

 

SRCFILE(QCPPLE/QADDSSRC)

 

MAXMBRS(*NOMAX)

 

Note:

  

Figure

 

53

 

on

 

page

 

97

 

shows

 

the

 

source

 

code

 

in

 

T1520DD1.

 

2.

   

Create

 

the

 

CL

 

program

 

T1520CL1,

 

which

 

passes

 

parameters

 

to

 

the

 

ILE

 

C

 

program

 

T1520PG1

 

by

 

entering

 

the

 

following

 

command:

 

CRTCLPGM

 

PGM(MYLIB/T1520CL1)

 

SRCFILE(QCPPLE/QACLSRC)

 

Note:

  

Figure

 

54

 

on

 

page

 

97

 

shows

 

the

 

source

 

code

 

in

 

T1520CL1.

 

3.

   

Create

 

the

 

CL

 

command

 

prompt

 

T1520CM1,

 

which

 

collects

 

data

 

for

 

item

 

name,

 

price,

 

and

 

quantity

 

by

 

entering

 

the

 

following

 

command:

 

CRTCMD

 

CMD(MYLIB/T1520CM1)

 

PGM(MYLIB/T1520CL1)

 

SRCFILE(QCPPLE/QACMDSRC)

 

Note:

  

Figure

 

55

 

on

 

page

 

98

 

shows

 

the

 

source

 

code

 

in

 

T1520CM1.

 

4.

   

Create

 

the

 

module

 

T1520IC1,

 

which

 

provides

 

the

 

main()

 

function

 

by

 

entering

 

the

 

following

 

command:

 

CRTCMOD

 

MODULE(MYLIB/T1520IC1)

 

SRCFILE(QCPPLE/Q

 

CSRC)

 

OUTPUT(*PRINT)

 

DBGVIEW(*ALL)

   

Chapter

 

7.

 

Example:

 

Creating

 

an

 

ILE

 

C

 

Application

 

93



Notes:

 

v

   

Figure

 

56

 

on

 

page

 

99

 

shows

 

the

 

source

 

code

 

in

 

T1520IC1.

 

v

   

OUTPUT(*PRINT)

 

specifies

 

that

 

you

 

want

 

a

 

compiler

 

listing.

 

v

   

The

 

parameter

 

DBGVIEW(*ALL)

 

specifies

 

that

 

you

 

want

 

a

 

root

 

source

 

view

 

and

 

a

 

listing

 

view,

 

along

 

with

 

debug

 

data,

 

to

 

debug

 

this

 

module.

 

See

 

Chapter

 

10,

 

“Working

 

with

 

Source

 

Debug

 

Sessions,”

 

on

 

page

 

125

 

for

 

information

 

on

 

debug

 

views

 

and

 

debug

 

data.
5.

   

Create

 

the

 

module

 

T1520IC2,

 

which

 

calculates

 

the

 

tax

 

and

 

formats

 

the

 

total

 

cost

 

for

 

output,

 

by

 

entering

 

the

 

following

 

command:

 

CRTCMOD

 

MODULE(MYLIB/T1520IC2)

 

SRCFILE(QCPPLE/QACSRC)

 

OUTPUT(*PRINT)

   

DBGVIEW(*ALL)

 

Notes:

 

v

   

Figure

 

57

 

on

 

page

 

101

 

shows

 

the

 

source

 

code

 

in

 

T1520IC2.

 

v

   

DBGVIEW(*ALL)

 

specifies

 

that

 

you

 

want

 

a

 

root

 

source

 

view

 

and

 

a

 

listing

 

view,

 

along

 

with

 

debug

 

data

 

to

 

debug

 

this

 

module.
6.

   

Create

 

the

 

module

 

T1520IC3,

 

which

 

updates

 

the

 

audit

 

trail

 

in

 

audit

 

file

 

T1520DD1,

 

by

 

entering

 

the

 

following

 

command:

 

CRTCMOD

 

MODULE(MYLIB/T1520IC3)

 

SRCFILE(QCPPLE/QACSRC)

   

OUTPUT(*PRINT)

 

DBGVIEW(*SOURCE)

 

OPTION(*SHOWUSR)

 

Notes:

 

v

   

Figure

 

58

 

on

 

page

 

102

 

shows

 

the

 

source

 

code

 

in

 

T1520IC3.

 

v

   

The

 

DBGVIEW(*SOURCE)

 

OPTION(*SHOWUSR)

 

parameters

 

specifies

 

that

 

you

 

want

 

an

 

include

 

view

 

containing

 

the

 

root

 

source

 

member,

 

user

 

include

 

files,

 

and

 

debug

 

data

 

to

 

debug

 

this

 

module.

 

v

   

The

 

OPTION(*SHOWUSR)

 

parameter

 

expands

 

the

 

type

 

definitions

 

generated

 

by

 

the

 

compiler

 

from

 

the

 

DDS

 

source

 

file

 

MYLIB/T1520DD1,

 

as

 

specified

 

on

 

the

 

#pragma

 

mapinc

 

directive,

 

into

 

the

 

compiler

 

listing

 

and

 

the

 

include

 

debug

 

view.
7.

   

Create

 

the

 

module

 

T1520IC4,

 

which

 

exports

 

the

 

tax

 

rate

 

data,

 

by

 

entering

 

the

 

following

 

command:

 

CRTCMOD

 

MODULE(MYLIB/T1520IC4)

 

SRCFILE(QCPPLE/QACSRC)

 

OUTPUT(*PRINT)

   

OPTION(*XREF)

 

DBGVIEW(*SOURCE)

 

Notes:

 

v

   

Figure

 

59

 

on

 

page

 

103

 

shows

 

the

 

source

 

code

 

in

 

T1520IC4.

 

v

   

The

 

OPTION(*XREF)

 

parameter

 

generates

 

a

 

cross

 

reference

 

table

 

containing

 

the

 

list

 

of

 

identifiers

 

in

 

the

 

source

 

code

 

with

 

the

 

numbers

 

of

 

the

 

lines

 

in

 

which

 

they

 

appear.

 

The

 

table

 

provides

 

the

 

class,

 

length

 

and

 

type

 

of

 

the

 

variable

 

taxrate.

 

The

 

class

 

is

 

an

 

external

 

definition.

 

The

 

length

 

is

 

2.

 

The

 

type

 

is

 

a

 

constant

 

decimal(2,2).

 

The

 

use

 

of

 

this

 

option

 

in

 

this

 

example

 

is

 

for

 

illustrative

 

purposes.

 

Typically

 

you

 

use

 

this

 

option

 

when

 

there

 

are

 

several

 

variable

 

references

 

or

 

executable

 

statements.

 

v

   

The

 

DBGVIEW(*SOURCE)

 

parameter

 

creates

 

a

 

root

 

source

 

view

 

and

 

debug

 

data

 

to

 

debug

 

this

 

module.

 

If

 

you

 

do

 

not

 

specify

 

DBGVIEW(*SOURCE),

 

you

 

can

 

debug

 

the

 

modules

 

that

 

reference

 

taxrate,

 

but

 

you

 

cannot

 

display

 

taxrate

 

during

 

that

 

debug

 

session

 

nor

 

can

 

you

 

debug

 

this

 

module

 

that

 

defines

 

taxrate.
8.

   

Create

 

a

 

source

 

physical

 

file

 

QSRVSRC,

 

which

 

contains

 

the

 

binder

 

language

 

to

 

export

 

the

 

procedure

 

write_audit_trail()

 

from

 

ILE

 

Service

 

Program

 

T1520SP1,

 

by

 

entering

 

the

 

following

 

command

 

:

   

94

 

ILE

 

C/C++

 

Programmer’s

 

Guide



CRTSRCPF

 

FILE(MYLIB/QSRVSRC)

 

MBR(T1520SP1)

 

Note:

  

Figure

 

60

 

on

 

page

 

104

 

shows

 

the

 

source

 

code

 

in

 

MYLIB/QSRVSRC.

 

9.

   

Create

 

the

 

source

 

physical

 

file

 

QASRVSRC,

 

which

 

contains

 

the

 

binder

 

language

 

to

 

export

 

the

 

data

 

item

 

taxrate,

 

from

 

ILE

 

service

 

program

 

T1520SP2,

 

by

 

entering

 

the

 

following

 

command:

 

CRTSRCPF

 

FILE(MYLIB/QASRVSRC)

 

MBR(T1520SP2)

 

Note:

  

Figure

 

61

 

on

 

page

 

104

 

shows

 

the

 

source

 

code

 

in

 

MYLIB/QASRVSRC.

 

10.

   

Create

 

the

 

binding

 

directory

 

T1520BD1

 

in

 

library

 

MYLIB

 

and

 

add

 

the

 

two

 

service

 

program

 

names

 

(T1520SP1

 

and

 

T1520SP2)

 

to

 

it.

 

a.

   

To

 

create

 

the

 

binding

 

directory,

 

enter

 

the

 

following

 

command:

 

CRTBNDDIR

 

BNDDIR(MYLIB/T1520BD1)

 

b.

   

To

 

add

 

the

 

service

 

program

 

names,

 

enter

 

the

 

following

 

commands:

 

ADDBNDDIRE

 

BNDDIR(MYLIB/T1520BD1)

 

OBJ((MYLIB/T1520SP1

 

*SRVPGM))

 

ADDBNDDIRE

 

BNDDIR(MYLIB/T1520BD1)

 

OBJ((MYLIB/T1520SP2

 

*SRVPGM))

 

Note:

  

The

 

service

 

program

 

names

 

T1520SP1

 

and

 

T1520SP2

 

can

 

be

 

added

 

even

 

though

 

the

 

service

 

program

 

objects

 

do

 

not

 

yet

 

exist.

Note:

  

These

 

instructions

 

assume

 

that

 

the

 

library

 

MYLIB

 

already

 

exists.

 

11.

   

Create

 

the

 

ILE

 

C

 

service

 

program

 

T1520SP1

 

from

 

module

 

T1520IC3

 

and

 

the

 

binder

 

source

 

language

 

in

 

QSRVSRC

 

by

 

entering

 

the

 

following

 

command:

 

CRTSRVPGM

 

SRVPGM(MYLIB/T1520SP1)

 

MODULE(MYLIB/T1520IC3

 

MYLIB/T1520IC4)

   

SRCFILE(MYLIB/QSRVSRC)

 

SRCMBR(*SRVPGM)

 

BNDDIR(MYLIB/T1520BD1)

 

DETAIL(*FULL)

 

Notes:

 

v

   

Figure

 

58

 

on

 

page

 

102

 

shows

 

the

 

source

 

code

 

in

 

T1520IC3

 

and

 

Figure

 

59

 

on

 

page

 

103

 

shows

 

the

 

source

 

code

 

in

 

T1520IC4.

 

v

   

Service

 

program

 

T1520SP1

 

needs

 

both

 

module

 

T1520IC3

 

and

 

module

 

T1520IC4

 

because

 

it

 

exports

 

the

 

procedure

 

write_audit_trail

 

to

 

satisfy

 

an

 

import

 

request

 

for

 

function

 

write_audit_trail

 

in

 

module

 

T1520IC1,

 

and

 

the

 

write_audit_trail

 

procedure

 

uses

 

the

 

data

 

item

 

taxrate,

 

which

 

is

 

defined

 

in

 

module

 

T1520IC4.
12.

   

Create

 

the

 

ILE

 

C

 

service

 

program

 

T1520SP2

 

from

 

module

 

T1520IC4

 

and

 

the

 

binder

 

source

 

language

 

in

 

QASRVSRC

 

by

 

entering

 

the

 

following

 

command:

 

CRTSRVPGM

 

SRVPGM(MYLIB/T1520SP2)

 

MODULE(MYLIB/T1520IC4)

 

SRCFILE(MYLIB/QASRVSRC)

   

SRCMBR(*SRVPGM)

 

BNDDIR(MYLIB/T1520BD1)

 

DETAIL(*FULL)

 

Note:

  

Service

 

program

 

T1520SP2

 

exports

 

the

 

data

 

item

 

taxrate

 

to

 

satisfy

 

an

 

import

 

request

 

for

 

variable

 

taxrate

 

in

 

module

 

T1520IC2.

 

13.

   

Create

 

the

 

ILE

 

C

 

program

 

T1520PG1

 

from

 

components

 

T1520IC1

 

and

 

T1520IC2

 

by

 

entering

 

the

 

following

 

command:

 

CRTPGM

 

PGM(MYLIB/T1520PG1)

 

MODULE(MYLIB/T1520IC1

 

MYLIB/T1520IC2)

 

ENTMOD(*ONLY)

   

BNDDIR(MYLIB/T1520BD1)

 

DETAIL(*FULL)

 

Notes:

 

v

   

Figure

 

56

 

on

 

page

 

99

 

shows

 

the

 

source

 

code

 

in

 

T1520IC1

 

and

 

Figure

 

57

 

on

 

page

 

101

 

shows

 

the

 

source

 

code

 

in

 

T1520IC2.

 

v

   

Module

 

T1520IC1

 

contains

 

an

 

import

 

procedure

 

request

 

named

 

write_audit_trail,

 

which

 

matches

 

an

 

export

 

request

 

in

 

T1520SP1,

 

using

 

symbol

 

write_audit_trail.

 

The

 

binder

 

matches:

   

Chapter

 

7.

 

Example:

 

Creating

 

an

 

ILE

 

C

 

Application

 

95



–

   

The

 

import

 

request

 

from

 

T1520IC1

 

for

 

the

 

procedure

 

write_audit_trail

 

with

 

the

 

corresponding

 

export

 

from

 

T1520SP1

 

–

   

The

 

import

 

request

 

from

 

T1520IC2

 

for

 

the

 

data

 

item

 

taxrate

 

with

 

the

 

corresponding

 

export

 

from

 

T1520SP2

v

   

The

 

ENTMOD(*ONLY)

 

parameter

 

specifies

 

that

 

only

 

one

 

module

 

from

 

the

 

list

 

of

 

modules

 

can

 

have

 

a

 

PEP.

 

An

 

error

 

is

 

issued

 

if

 

more

 

than

 

one

 

module

 

is

 

found

 

to

 

have

 

a

 

PEP.

 

If

 

the

 

ENTMOD(*FIRST)

 

parameter

 

is

 

used,

 

the

 

first

 

module

 

found

 

from

 

a

 

list

 

of

 

modules

 

that

 

has

 

a

 

PEP

 

is

 

selected

 

as

 

the

 

PEP.

 

All

 

other

 

modules

 

with

 

PEPs

 

are

 

ignored.

 

v

   

The

 

default

 

ACTGRP(*NEW)

 

parameter

 

is

 

used

 

to

 

define

 

a

 

new

 

activation

 

group.

 

The

 

program

 

T1520PG1

 

is

 

associated

 

with

 

a

 

new

 

activation

 

group.

 

Service

 

programs

 

T1520SP1

 

and

 

T1520SP2

 

were

 

created

 

with

 

activation

 

group

 

*CALLER.

 

These

 

service

 

programs

 

become

 

part

 

of

 

the

 

callers

 

activation

 

group

 

using

 

the

 

resources

 

of

 

one

 

activation

 

group

 

for

 

the

 

purposes

 

of

 

developing

 

one

 

cooperative

 

program.

 

Service

 

program

 

T1520SP1

 

and

 

T1520SP2

 

are

 

bound

 

to

 

the

 

program

 

being

 

activated.

 

These

 

service

 

programs

 

are

 

also

 

activated

 

as

 

part

 

of

 

the

 

dynamic

 

call

 

processing.
14.

   

Run

 

the

 

program

 

T1520PG1:

Note:

  

Ensure

 

that

 

the

 

library

 

MYLIB

 

is

 

on

 

the

 

LIBL

 

library

 

list.

 

a.

   

Enter

 

the

 

command

 

T1520CM1

 

and

 

press

 

F4

 

(Prompt).

 

b.

   

As

 

you

 

are

 

prompted

 

by

 

T1520CM,

 

type

 

the

 

following

 

data:

 

Hammers

 

1.98

 

5000

 

Nails

 

0.25

 

2000

 

The

 

output

 

is:

   

5000

 

HAMMERS

 

plus

 

tax

 

=

            

$11,385.00

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

>

   

2000

 

NAILS

 

plus

 

tax

 

=

               

$575.00

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

The

 

physical

 

file

 

T1520DD1

 

is

 

updated

 

with

 

the

 

following

 

data:

 

SMITHE

  

HAMMERS

               

0000000198500015

          

$11,385.00072893

 

SMITHE

  

NAILS

                 

0000000025200015

             

$575.00072893

 

Note:

  

Each

 

entry

 

is

 

identified

 

with

 

the

 

user’s

 

ID.

 

In

 

this

 

case,

 

SMITHE

 

was

 

the

 

user.

Source

 

Code

 

Samples

 

The

 

figures

 

in

 

this

 

section

 

contain

 

the

 

source

 

code

 

used

 

to

 

create

 

the

 

ILE

 

sample

 

application.

 

Source

 

Code

 

for

 

an

 

Audit

 

Log

 

File

 

Audit

 

file

 

T1520DD1

 

is

 

shown

 

in

 

Figure

 

51

 

on

 

page

 

89.

 

The

 

DDS

 

source

 

defines

 

the

 

fields

 

for

 

the

 

audit

 

file.

    

96

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Source

 

Code

 

Pass

 

Terminal

 

Session

 

Input

 

to

 

an

 

ILE

 

Program

 

CL

 

program

 

T1520CL1

 

is

 

shown

 

in

 

Figure

 

51

 

on

 

page

 

89.

 

It

 

passes

 

required

 

parameters

 

to

 

the

 

ILE

 

C

 

program

 

T1520PG1.

 

Notes:

  

1.

   

This

 

program

 

passes

 

(by

 

reference)

 

the

 

CL

 

variables

 

for

 

item

 

name,

 

price,

 

quantity,

 

and

 

user

 

ID

 

to

 

an

 

ILE

 

C

 

program

 

T1520PG1.

 

Variables

 

in

 

a

 

CL

 

program

 

are

 

passed

 

by

 

reference

 

to

 

allow

 

an

 

ILE

 

C

 

program

 

to

 

change

 

the

 

contents

 

in

 

the

 

CL

 

program.

 

2.

   

The

 

variable

 

ITEMOUT

 

is

 

null-terminated

 

in

 

the

 

CL

 

program

 

T1520CL1.

 

Passing

 

CL

 

variables

 

passed

 

from

 

CL

 

to

 

ILE

 

C

 

are

 

not

 

automatically

 

null-terminated

 

on

 

a

 

compiled

 

CL

 

call.

 

See

 

Chapter

 

23,

 

“Using

 

ILE

 

C/C++

 

Call

 

Conventions,”

 

on

 

page

 

363

 

for

 

information

 

about

 

null-terminated

 

strings

 

for

 

compiled

 

CL

 

calls

 

and

 

command

 

line

 

CL

 

calls.

 

3.

   

The

 

Retrieve

 

Job

 

Attributes

 

(RTVJOBA)

 

command

 

obtains

 

the

 

user

 

ID

 

for

 

the

 

audit

 

trail.

Source

 

Code

 

to

 

Define

 

a

 

CL

 

Command

 

to

 

Collect

 

Session

 

Data

 

CL

 

CMD

 

program

 

T1520CM1

 

is

 

shown

 

in

 

Figure

 

51

 

on

 

page

 

89.

 

This

 

developer-defined

 

command:

        

R

  

T1520DD1R

           

USER

          

10

          

COLHDG(’User’)

           

ITEM

          

20

          

COLHDG(’Item

 

name’)

           

PRICE

         

10S

 

2

       

COLHDG(’Unit

 

price’)

           

QTY

            

4S

         

COLHDG(’Number

 

of

 

items’)

           

TXRATE

         

2S

 

2

       

COLHDG(’Current

 

tax

 

rate’)

           

TOTAL

         

21

          

COLHDG(’Total

 

cost’)

           

DATE

           

6

          

COLHDG(’Transaction

 

date’)

        

K

  

USER

 

Figure

 

53.

 

DDS

 

Source

 

for

 

Audit

 

File

 

T1520DD1

          

PGM

        

PARM(&ITEMIN

 

&PRICE

 

&QUANTITY)�1�

               

DCL

        

VAR(&USER)

      

TYPE(*CHAR)

 

LEN(10)

               

DCL

        

VAR(&ITEMIN)

    

TYPE(*CHAR)

 

LEN(20)

               

DCL

        

VAR(&ITEMOUT)

   

TYPE(*CHAR)

 

LEN(21)

               

DCL

        

VAR(&PRICE)

     

TYPE(*DEC)

  

LEN(10

 

2)

               

DCL

        

VAR(&QUANTITY)

  

TYPE(*DEC)

  

LEN(2

 

0)

               

DCL

        

VAR(&NULL)

      

TYPE(*CHAR)

 

LEN(1)

 

VALUE(X’00’)

               

/*

 

ADD

 

NULL

 

TERMINATOR

 

FOR

 

THE

 

ILE

 

C

 

PROGRAM

             

*/�2�

               

CHGVAR

     

VAR(&ITEMOUT)

 

VALUE(&ITEMIN

 

*TCAT

 

&NULL)

               

/*

 

GET

 

THE

 

USERID

 

FOR

 

THE

 

AUDIT

 

TRAIL

                        

*/�3�

               

RTVJOBA

    

USER(&USER)

               

/*

 

ENSURE

 

AUDIT

 

RECORDS

 

WRITTEN

 

TO

 

CORRECT

 

AUDIT

 

FILE

 

MEMBER

 

*/

               

OVRDBF

     

FILE(T1520DD1)

 

TOFILE(*LIBL/T1520DD1)

 

+

                          

MBR(T1520DD1)

 

OVRSCOPE(*CALLLVL)

 

SHARE(*NO)

               

CALL

       

PGM(T1520PG1)

 

PARM(&ITEMOUT

 

&PRICE

 

&QUANTITY

 

+

                             

&USER)

               

DLTOVR

     

FILE(*ALL)

           

ENDPGM

 

Figure

 

54.

 

T1520CL1

 

—

 

CL

 

Source

 

to

 

Pass

 

Variables

 

to

 

an

 

ILE

 

C

 

Program

  

Chapter

 

7.

 

Example:

 

Creating

 

an

 

ILE

 

C

 

Application

 

97



v

   

Prompts

 

the

 

user

 

to

 

enter,

 

in

 

the

 

following

 

order:

 

Item

 

name,

 

Unit

 

price,

 

and

 

Number

 

of

 

items

 

v

   

Stores

 

the

 

input

 

data

 

in

 

the

 

following

 

keyword

 

parameters:

 

ITEM,

 

PRICE,

 

and

 

QUANTITY.

 

Note:

  

These

 

keyword

 

parameters

 

were

 

defined

 

in

 

the

 

DDS

 

file

 

T1520DD1.

   

Source

 

Code

 

for

 

a

 

User

 

Entry

 

Procedure

 

(UEP)

 

In

 

the

 

source

 

code

 

for

 

T1520IC1,

 

the

 

main()

 

function:

 

v

   

Receives

 

the

 

user

 

ID,

 

item

 

name,

 

quantity,

 

and

 

price

 

from

 

a

 

CL

 

program

 

v

   

Calls

 

calc_and_format()function

 

in

 

module

 

T1520IC2,

 

which:

 

–

   

Calculates

 

an

 

item’s

 

total

 

cost

 

–

   

Calls

 

the

 

write_audit_trail()

 

function

 

from

 

module

 

T1520IC2,

 

which

 

writes

 

the

 

transaction

 

to

 

an

 

audit

 

file

           

CMD

        

PROMPT(’CALCULATE

 

TOTAL

 

COST’)

           

PARM

       

KWD(ITEM)

 

TYPE(*CHAR)

 

LEN(20)

 

RSTD(*NO)

 

+

                                

MIN(1)

 

ALWUNPRT(*NO)

 

PROMPT(’Item

 

name’

 

1)

           

PARM

       

KWD(PRICE)

 

TYPE(*DEC)

 

LEN(10

 

2)

 

RSTD(*NO)

 

+

                                

RANGE(0.01

 

99999999.99)

 

MIN(1)

 

+

                                

ALWUNPRT(*YES)

 

PROMPT(’Unit

 

price’

 

2)

           

PARM

       

KWD(QUANTITY)

 

TYPE(*INT2)

 

RSTD(*NO)

 

RANGE(1

 

+

                                

9999)

 

MIN(1)

 

ALWUNPRT(*YES)

 

+

                                

PROMPT(’Number

 

of

 

items’

 

3)

 

Figure

 

55.

 

T1520CM1

 

—

 

CL

 

Command

 

Source

 

to

 

Receive

 

Input

 

Data

  

98

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Notes:

  

1.

   

The

 

main()

 

function

 

in

 

this

 

module

 

is

 

the

 

user

 

entry

 

procedure

 

(UEP),

 

which

 

is

 

the

 

target

 

of

 

a

 

dynamic

 

program

 

call

 

from

 

the

 

CL

 

program

 

T1520CL1.

 

The

 

UEP

 

receives

 

control

 

from

 

the

 

program

 

entry

 

procedure

 

(PEP).

 

This

 

module

 

has

 

a

 

PEP

 

that

 

is

 

generated

 

by

 

the

 

ILE

 

C

 

compiler

 

during

 

compilation.

 

The

 

PEP

 

is

 

an

 

entry

 

point

 

for

 

the

 

ILE

 

C/C++

 

program

 

on

 

a

 

dynamic

 

program

 

call

 

from

 

the

 

CL

 

program

 

T1520CL1.

 

The

 

PEP

 

is

 

shown

 

in

 

the

 

call

 

stack

 

as

 

_C_pep.

 

2.

   

The

 

main()

 

function

 

in

 

this

 

module

 

receives

 

the

 

incoming

 

arguments

 

from

 

the

 

CL

 

program

 

T1520CL1

 

that

 

are

 

verified

 

by

 

the

 

CL

 

command

 

prompt

 

T1520CM1.

           

/*

 

This

 

program

 

demonstrates

 

how

 

to

 

use

 

multiple

 

modules,

 

service

     

*/

           

/*

 

programs

 

and

 

a

 

binding

 

directory.

  

This

 

program

 

accepts

 

a

 

user

 

ID,

 

*/

           

/*

 

item

 

name,

 

quantity,

 

and

 

price,

 

calculates

 

the

 

total

 

cost,

 

and

     

*/

           

/*

 

writes

 

an

 

audit

 

trail

 

of

 

the

 

transaction.

                          

*/

           

#include

 

<stdio.h>

           

#include

 

<stdlib.h>

           

#include

 

<string.h.>

           

#include

 

<decimal.h>

           

int

 

calc_and_format

 

(decimal(10,2),

                                

short

 

int,

                                

char[]);

           

void

 

write_audit_trail

 

(char[],

                                   

char[],

                                   

decimal(10,2),

                                   

short

 

int,

                                   

char[]);

           

int

 

main(int

 

argc,

 

char

 

*argv[])

             

�1�

           

{

            

/*

 

Incoming

 

arguments

 

from

 

a

 

CL

 

program

 

have

 

been

 

verified

 

by

      

*/

            

/*

 

the

 

*CMD

 

and

 

null

 

ended

 

within

 

the

 

CL

 

program.

        

*/�2�

              

char

             

*user_id;

              

char

             

*item_name;

              

short

 

int

        

*quantity;

              

decimal

 

(10,2)

  

*price;

              

char

             

formatted_cost[22];

            

/*

 

Incoming

 

arguments

 

are

 

all

 

pointers.

                  

*/�3�

              

item_name

 

=

                      

argv[1];

              

price

     

=

 

(decimal

 

(10,

 

2)

 

*)

  

argv[2];

              

quantity

  

=

 

(short

 

*)

            

argv[3];

              

user_id

   

=

                      

argv[4];

            

/*

 

Call

 

an

 

ILE

 

C

 

function

 

that

 

returns

 

a

 

formatted

 

cost.

 

*/�4�

            

/*

 

Function

 

calc_and_format

 

returns

 

true

 

if

 

successful.

  

*/

              

if

 

(calc_and_format

 

(*price,

 

*quantity,

 

formatted_cost))

              

{

                

write_audit_trail

 

(user_id,

             

�5�

                                   

item_name,

                                   

*price,

                                   

*quantity,

                                   

formatted_cost);

                

printf("\n%d

 

%s

 

plus

 

tax

 

=

 

%-s\n",

 

*quantity,

                                                   

item_name,

                                                   

formatted_cost);

              

}

              

else

              

{

                

printf("Calculation

 

failed\n");

              

}

              

return

 

0;

            

}

 

Figure

 

56.

 

ILE

 

C

 

Source

 

to

 

Call

 

Functions

 

in

 

Other

 

Modules

  

Chapter

 

7.

 

Example:

 

Creating

 

an

 

ILE

 

C

 

Application

 

99



3.

   

All

 

the

 

incoming

 

arguments

 

are

 

pointers.

 

The

 

variable

 

item_name

 

is

 

null

 

terminated

 

within

 

the

 

CL

 

program

 

T1520CL1.

 

4.

   

The

 

main()

 

function

 

in

 

this

 

module

 

calls

 

calc_and_format

 

in

 

module

 

T1520IC2

 

to

 

return

 

a

 

formatted

 

cost.

 

If

 

the

 

calc_and_format

 

returns

 

successful

 

a

 

record

 

is

 

written

 

to

 

the

 

audit

 

trail

 

by

 

write_audit_trail

 

in

 

the

 

service

 

program

 

T1520SP1.

 

5.

   

The

 

function

 

write_audit_trail

 

is

 

not

 

defined

 

in

 

this

 

module

 

(T1520IC1),

 

so

 

it

 

must

 

be

 

imported.

Source

 

Code

 

to

 

Calculate

 

Tax

 

and

 

Format

 

Cost

 

for

 

Output

 

Module

 

T1520IC2

 

is

 

shown

 

in

 

Figure

 

52

 

on

 

page

 

91.

 

It

 

provides

 

the

 

calc_and_format()

 

function.

   

100

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Notes:

  

1.

   

The

 

function

 

calc_and_format

 

in

 

this

 

module

 

calculates

 

and

 

formats

 

the

 

total

 

cost.

 

To

 

do

 

the

 

calculation,

 

the

 

data

 

item

 

taxrate

 

is

 

imported

 

from

 

service

 

program

 

T1520SP2.

 

This

 

data

 

item

 

must

 

be

 

imported

 

because

 

it

 

is

 

not

 

defined

 

in

 

this

 

module

 

(T1520IC2).

          

/*

 

This

 

function

 

calculates

 

the

 

tax

 

and

 

formats

 

the

 

total

 

cost.

 

The

      

*/

           

/*

 

function

 

calc_and_format()

 

returns

 

1

 

if

 

successful

 

and

 

0

 

if

 

it

 

fails.

 

*/

           

#include

 

<stdio.h>

           

#include

 

<string.h>

           

#include

 

<decimal.h>

           

/*

 

Tax

 

rate

 

is

 

imported

 

from

 

the

 

service

 

program

 

T1520SP2.

        

*/�1�

           

const

 

extern

  

decimal

 

(2,2)

   

taxrate;

           

int

 

calc_and_format

 

(decimal

 

(10,2)

  

price,

                                

short

 

int

       

quantity,

                                

char

            

formatted_cost[22])

           

{

             

decimal

 

(17,4)

 

hold_result;

             

char

           

hold_formatted_cost[22];

             

int

            

i,j;

             

memset(formatted_cost,

 

’

 

’,

 

21);

             

hold_result

 

=

 

(decimal(4,0))quantity

 

*

             

price

 

*

 

(1.00D+taxrate);

         

/*

 

Calculate

 

the

 

total

 

cost.

 

*/

             

if

 

(hold_result

 

<

 

0.01D

 

||

 

hold_result

 

>

 

1989800999801.02D)

             

{

               

printf("calc

 

out

 

of

 

range:%17.4D(17,4)\n",

 

hold_result);

               

return(0);

             

}

            

/*

 

Format

 

the

 

total

 

cost.

    

*/

               

sprintf(hold_formatted_cost,

 

"%21.2D(17,4)",

 

hold_result);

               

j

 

=

 

0;

               

for

 

(i=0;

 

i<22;

 

++i)

                 

{

                   

if

 

(hold_formatted_cost[i]

 

!=

 

’

 

’

 

&

                       

hold_formatted_cost[i]

 

!=

 

’0’)

                 

{

                       

hold_formatted_cost[j]

 

=

 

’$’;

                       

break;

                 

}

                 

j

 

=

 

i;

               

}

               

for

 

(i=j=21;

 

i>=0;

 

--i)

               

{

                 

if

 

(j

 

<

 

0)

 

return(0);

                 

if

 

(hold_formatted_cost[i]

 

==

 

’$’)

                 

{

                   

formatted_cost[j]

 

=

 

hold_formatted_cost[i];

                   

break;

                 

}

                   

if

 

(i<16

 

&

 

!((i-2)%3))

                 

{

                   

formatted_cost[j]

 

=

 

’,’;

                   

--j;

                 

}

                 

formatted_cost[j]

 

=

 

hold_formatted_cost[i];

                 

--j;

               

}

            

/*

 

End

 

of

 

for

 

loop,

 

21->0.

 

*/

                 

return(1);

            

}

 

Figure

 

57.

 

Sample

 

ILE

 

C

 

Source

 

to

 

Calculate

 

Tax

 

and

 

Format

 

Cost

 

for

 

Output

  

Chapter

 

7.

 

Example:

 

Creating

 

an

 

ILE

 

C

 

Application

 

101



Source

 

Code

 

to

 

Write

 

an

 

Audit

 

Trail

 

The

 

function

 

write_audit_trail

 

in

 

module

 

T1520IC3

 

writes

 

the

 

audit

 

trail

 

for

 

the

 

ILE

 

C

 

program

 

T1520PG1.

 

Module

 

T1520IC3

 

is

 

used

 

to

 

create

 

service

 

program

 

T1520SP1,

 

shown

 

in

 

Figure

 

52

 

on

 

page

 

91.

 

Use

 

the

 

following

 

source:

             

/*

 

This

 

function

 

writes

 

an

 

audit

 

trail.

 

To

 

write

 

the

 

audit

 

trail

 

the

  

*/

           

/*

 

file

 

field

 

structure

 

is

 

retrieved

 

from

 

the

 

DDS

 

file

 

T1520DD1

 

and

   

*/

           

/*

 

the

 

taxrate

 

data

 

item

 

is

 

imported

 

from

 

service

 

program

 

T1520SP2.

   

*/

           

/*

 

Retrieves

 

the

 

file

 

field

 

structure.

                                

*/

           

#pragma

 

mapinc("myinc",

 

"MYLIB/T1520DD1(*all)",

 

"both",

 

"p

 

z","")

           

#include

 

<stdio.h>

           

#include

 

<stdlib.h>

           

#include

 

<string.h>

           

#include

 

<time.h>

           

#include

 

<decimal.h>

           

#include

 

<recio.h>

           

#include

 

<xxcvt.h>

             

/*

 

These

 

includes

 

are

 

for

 

the

 

call

 

to

 

QWCCVTDT

 

API

 

to

 

get

 

the

 

system

  

*/�1�

           

/*

 

date

 

to

 

be

 

used

 

in

 

the

 

audit

 

trail.

                                

*/

           

#include

 

<QSYSINC/H/QWCCVTDT>

           

#include

 

<QSYSINC/H/QUSEC>

           

/*

 

DDS

 

mapping

 

of

 

the

 

audit

 

file,

 

T1520DD1.

                           

*/�2�

           

#include

 

"myinc"

           

/*

 

Tax

 

rate

 

is

 

imported

 

from

 

service

 

program

 

T1520SP2.

                

*/�3�

           

const

 

extern

 

decimal

 

(2,2)

 

taxrate;

           

void

 

write_audit_trail

 

(char

             

user_id[10],

                                   

char

             

item_name[],

                                   

decimal

 

(10,2)

   

price,

                                   

short

 

int

        

quantity,

                                   

char

             

formatted_cost[22])

           

{

               

char

  

char_item_name[21];

               

char

  

char_price[11];

               

char

  

temp_char_price[11];

               

char

  

char_quantity[4];

               

char

  

char_date[6];

               

char

  

char_taxrate[2];

            

/*

 

Qus_EC_t

 

is

 

defined

 

in

 

QUSEC.

                                      

*/

               

Qus_EC_t

 

errcode;

               

char

    

get_date[16];

               

int

     

i;

               

double

  

d;

            

/*

 

File

 

field

 

structure

 

is

 

generated

 

by

 

the

 

#pragma

 

mapinc

 

directive.

 

*/

               

MYLIB_T1520DD1_T1520DD1R_both_t

 

buf1;

               

_RFILE

 

*fp;

            

/*

 

Get

 

the

 

current

 

date.

                                              

*/

               

errcode.Bytes_Provided

 

=

 

0;

               

QWCCVTDT

 

("*CURRENT

  

",

 

"",

 

"*MDY

      

",

 

get_date,

 

&errcode);

               

memcpy

 

(char_date,

 

&(get_date[1]),

 

6);

 

Figure

 

58.

 

ILE

 

C

 

Source

 

to

 

Write

 

an

 

Audit

 

Trail

 

(Part

 

1

 

of

 

2)

  

102

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Notes:

  

1.

   

This

 

source

 

requires

 

two

 

members,

 

QUSEC

 

and

 

QWCCVTDT,

 

that

 

are

 

in

 

the

 

QSYSINC/H

 

file.

 

The

 

QSYSINC

 

library

 

is

 

automatically

 

searched

 

for

 

system

 

include

 

files

 

as

 

long

 

as

 

the

 

OPTION(*STDINC)

 

parameter

 

(the

 

default)

 

is

 

specified

 

on

 

the

 

CRTBNDC

 

or

 

CRTCMOD

 

command.

 

2.

   

The

 

include

 

name

 

myinc

 

is

 

associated

 

with

 

the

 

temporary

 

source

 

member

 

created

 

by

 

the

 

compiler

 

when

 

it

 

generates

 

the

 

type

 

definitions

 

for

 

the

 

#pragma

 

mapinc

 

directive.

 

See

 

Chapter

 

18,

 

“Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program,”

 

on

 

page

 

225

 

for

 

information

 

on

 

how

 

to

 

use

 

the

 

#pragma

 

mapinc

 

directive.

 

3.

   

To

 

write

 

the

 

audit

 

trail,

 

the

 

tax

 

rate

 

is

 

imported

 

from

 

the

 

service

 

program

 

T1520SP2.

Source

 

Code

 

to

 

Export

 

Tax

 

Rate

 

Data

 

Module

 

T1520IC4

 

is

 

used

 

to

 

create

 

service

 

program

 

T1520SP2.

  

Note:

  

Because

 

it

 

is

 

coded

 

in

 

a

 

separate

 

module,

 

the

 

data

 

item

 

taxrate

 

can

 

be

 

imported

 

by

 

both

 

or

 

either

 

of

 

the

 

following:

 

v

   

The

 

calc_and_format

 

function

 

in

 

service

 

program

 

T1520IC2

 

v

   

The

 

write_audit_trail

 

in

 

T1520IC3.

           

/*

 

Loop

 

through

 

the

 

item_name

 

and

 

remove

 

the

 

null

 

terminator.

         

*/

               

for

 

(i=0;

 

i<=20;

 

i++)

               

{

                 

if

 

(item_name[i]

 

==

 

’\0’)

 

char_item_name[i]

 

=

 

’

 

’;

                 

else

 

char_item_name[i]

 

=

 

item_name[i];

               

}

            

/*

 

Convert

 

packed

 

to

 

zoned

 

for

 

audit

 

file.

                            

*/

               

d

 

=

 

price;

               

QXXDTOZ

 

(char_price,

 

10,

 

2,

 

d);

               

QXXITOZ

 

(char_quantity,

 

4,

 

0,

 

quantity);

               

d

 

=

 

taxrate;

               

QXXDTOZ

 

(char_taxrate,

 

2,

 

2,

 

d);

            

/*

 

Set

 

up

 

buffer

 

for

 

write.

                                           

*/

               

memset(&buf1,

 

’

 

’,

  

sizeof(buf1));

               

memcpy(buf1.USER,

   

user_id,

 

10);

               

memcpy(buf1.ITEM,

   

char_item_name,

 

20);

               

memcpy(buf1.PRICE,

  

char_price,

 

11);

               

memcpy(buf1.QTY,

    

char_quantity,

 

4);

               

memcpy(buf1.TXRATE,

 

char_taxrate,

 

2);

               

memcpy(buf1.TOTAL,

  

formatted_cost,

 

21);

               

memcpy(buf1.DATE,

   

char_date,

 

6);

               

if

 

((fp

 

=

 

_Ropen("MYLIB/T1520DD1",

 

"ar+"))

 

==

 

NULL)

               

{

                 

printf("Cannot

 

open

 

audit

 

file\n");

               

}

                 

_Rwrite(fp,

 

(void

 

*)&buf1,

 

sizeof(buf1));

                 

_Rclose(fp);

               

}

 

Figure

 

58.

 

ILE

 

C

 

Source

 

to

 

Write

 

an

 

Audit

 

Trail

 

(Part

 

2

 

of

 

2)

          

/*

 

Export

 

the

 

tax

 

rate

 

data.

                                          

*/

           

#include

 

<decimal.h>

           

const

 

decimal

 

(2,2)

   

taxrate

 

=

 

.15D;

 

Figure

 

59.

 

T1520IC4

 

—

 

ILE

 

C

 

Source

 

to

 

Export

 

Tax

 

Rate

 

Data

  

Chapter

 

7.

 

Example:

 

Creating

 

an

 

ILE

 

C

 

Application

 

103



Binder

 

Language

 

to

 

Export

 

Tax

 

Rate

 

Data

  

Notes:

  

1.

   

The

 

Start

 

Program

 

Export

 

(STRPGMEXP)

 

command

 

identifies

 

the

 

beginning

 

of

 

a

 

list

 

of

 

exports

 

from

 

the

 

service

 

program

 

T1520SP1.

 

2.

   

The

 

Export

 

Symbol

 

(EXPORT)

 

command

 

identifies

 

the

 

symbol

 

name

 

taxrate

 

to

 

be

 

exported

 

from

 

the

 

service

 

program

 

T1520SP1.

 

3.

   

The

 

symbol

 

name

 

taxrate,

 

identified

 

between

 

the

 

STRPGMEXP

 

PGMLVL(*CURRENT)

 

and

 

ENDPGMEXP

 

pair,

 

defines

 

the

 

public

 

interface

 

to

 

the

 

service

 

program

 

T1520SP2.

 

Only

 

those

 

procedures

 

and

 

data

 

items

 

exported

 

from

 

the

 

module

 

objects

 

making

 

up

 

the

 

ILE

 

C

 

service

 

program

 

can

 

be

 

exported

 

from

 

this

 

service

 

program.

 

4.

   

The

 

symbol

 

name

 

taxrate

 

is

 

enclosed

 

in

 

apostrophes

 

to

 

maintain

 

its

 

lowercase

 

format.

 

Without

 

apostrophes

 

it

 

is

 

converted

 

to

 

uppercase

 

characters.

 

(The

 

binder

 

would

 

search

 

for

 

TAXRATE,

 

which

 

it

 

would

 

not

 

find.)

 

5.

   

The

 

symbol

 

name

 

taxrate

 

is

 

also

 

used

 

to

 

create

 

a

 

signature.

 

The

 

signature

 

validates

 

the

 

public

 

interface

 

to

 

the

 

service

 

program

 

T1520SP2

 

at

 

activation.

 

This

 

ensures

 

that

 

the

 

ILE

 

C

 

service

 

program

 

T1520SP1

 

and

 

the

 

ILE

 

C

 

program

 

T1520PG1

 

can

 

use

 

service

 

program

 

T1520SP2

 

without

 

being

 

re-created.

Binder

 

Language

 

to

 

Export

 

the

 

write-audit-trail

 

Procedure

  

Notes:

  

1.

   

The

 

Start

 

Program

 

Export

 

(STRPGMEXP)

 

command

 

identifies

 

the

 

beginning

 

of

 

a

 

list

 

of

 

exports

 

from

 

the

 

service

 

program

 

T1520SP2.

 

2.

   

The

 

Export

 

Symbol

 

(EXPORT)

 

command

 

identifies

 

the

 

symbol

 

name

 

write_audit_trail

 

to

 

be

 

exported

 

from

 

the

 

service

 

program

 

T1520SP2.

 

3.

   

The

 

symbol

 

name

 

write_audit_trail,

 

identified

 

between

 

the

 

STRPGMEXP

 

PGMLVL(*CURRENT)

 

and

 

ENDPGMEXP

 

pair,

 

defines

 

the

 

public

 

interface

 

to

 

the

 

service

 

program

 

T1520SP2.

 

Only

 

those

 

procedures

 

and

 

data

 

items

 

exported

 

from

 

the

 

module

 

objects

 

making

 

up

 

the

 

ILE

 

C

 

service

 

program

 

can

 

be

 

exported

 

from

 

this

 

service

 

program.

 

If

 

you

 

cannot

 

control

 

the

 

public

 

interface,

 

run-time

 

or

 

activation

 

errors

 

may

 

occur.

 

4.

   

The

 

symbol

 

name

 

write_audit_trail

 

is

 

enclosed

 

in

 

apostrophes

 

to

 

maintain

 

its

 

lowercase

 

format.

 

Without

 

apostrophes

 

it

 

is

 

converted

 

to

 

uppercase

 

characters.

 

(The

 

binder

 

would

 

search

 

for

 

WRITE_AUDIT_TRAIL,

 

which

 

it

 

would

 

not

 

find.)

 

5.

   

The

 

symbol

 

name

 

write_audit_trail

 

is

 

also

 

used

 

to

 

create

 

a

 

signature.

 

The

 

signature

 

validates

 

the

 

public

 

interface

 

to

 

the

 

service

 

program

 

T1520SP2

 

at

 

activation.

 

This

 

ensures

 

that

 

the

 

ILE

 

C

 

service

 

program

 

T1520SP1

 

and

 

the

 

ILE

 

C

 

program

 

T1520PG1

 

can

 

use

 

service

 

program

 

T1520SP2

 

without

 

being

 

re-created.

          

STRPGMEXP

 

PGMLVL(*CURRENT)

 

EXPORT

 

SYMBOL(’taxrate’)

            

ENDPGMEXP

 

Figure

 

60.

 

Binder

 

Language

 

Source

 

to

 

Export

 

Tax

 

Rate

 

Data

          

STRPGMEXP

  

PGMLVL(*CURRENT)

 

EXPORT

 

SYMBOL(’write_audit_trail’)

           

ENDPGMEXP

 

Figure

 

61.

 

Binder

 

Language

 

Source

 

to

 

Export

 

write_audit_trail

 

Procedure

  

104

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Part

 

3.

 

Debugging

 

Programs

 

This

 

part

 

describes

 

how

 

to:

 

v

   

Use

 

the

 

ILE

 

source

 

debugger

 

(its

 

options,

 

language

 

syntax,

 

and

 

commands)

 

v

   

Bind

 

a

 

module

 

with

 

debug

 

data

 

into

 

a

 

program

 

and

 

create

 

a

 

listing

 

view

 

for

 

debugging

 

v

   

Prepare

 

and

 

compile

 

your

 

program

 

to

 

include

 

debugging

 

data

 

v

   

Use

 

debugging

 

sessions

 

v

   

Use

 

breakpoints

 

to

 

aid

 

debugging

 

v

   

Use

 

watches

 

to

 

aid

 

debugging

 

v

   

Step

 

through

 

a

 

program

 

v

   

Debug

 

variables

 

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

105



106

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

8.

 

The

 

ILE

 

Source

 

Debugger

 

The

 

ILE

 

source

 

debugger

 

helps

 

you

 

locate

 

programming

 

errors

 

in

 

ILE

 

C/C++

 

programs

 

and

 

service

 

programs.

 

Before

 

you

 

can

 

use

 

the

 

ILE

 

source

 

debugger,

 

you

 

must

 

use

 

one

 

of

 

the

 

non-default

 

debug

 

options

 

(DBGVIEW)

 

when

 

you

 

compile

 

a

 

source

 

file.

 

Once

 

you

 

set

 

breakpoints

 

or

 

other

 

ILE

 

source

 

debugger

 

options,

 

you

 

can

 

start

 

your

 

debug

 

session

 

and

 

call

 

the

 

program.

 

This

 

chapter

 

describes:

 

v

   

Debug

 

data

 

options

 

v

   

Debug

 

language

 

syntax

 

and

 

its

 

limitations

 

v

   

Debug

 

commands

 

v

   

Examples

 

of

 

data

 

definitions

 

to

 

illustrate

 

what

 

can

 

be

 

done

 

with

 

the

 

ILE

 

source

 

debugger

 

and

 

ILE

 

C

 

applications

Debug

 

Data

 

Options

 

The

 

type

 

of

 

debug

 

data

 

that

 

can

 

be

 

associated

 

with

 

a

 

module

 

is

 

referred

 

to

 

as

 

a

 

debug

 

view.

 

The

 

storage

 

requirements

 

for

 

a

 

module

 

or

 

program

 

vary

 

somewhat,

 

depending

 

on

 

the

 

type

 

of

 

debug

 

data

 

included.

 

The

 

debug

 

options

 

are

 

listed

 

below.

 

Secondary

 

storage

 

requirements

 

increase

 

as

 

you

 

work

 

down

 

the

 

list:

 

1.

   

DBGVIEW(*NONE)

 

(No

 

debug

 

data)

 

2.

   

DBGVIEW(*STMT)

 

(Statement

 

view)

 

3.

   

DBGVIEW(*SOURCE)

 

(Source

 

view)

 

4.

   

DBGVIEW(*LIST)

 

(Listing

 

view)

 

5.

   

DBGVIEW(*ALL)

 

(All

 

views)

Debug

 

Language

 

Syntax

 

Limitations

 

of

 

the

 

C

 

debug

 

expression

 

grammar

 

include:

 

v

   

Type

 

casts:

 

Array

 

and

 

function

 

designator

 

type

 

casts

 

are

 

prohibited.

 

v

   

Function

 

calls:

 

Function

 

calls

 

cannot

 

be

 

used

 

in

 

debug

 

expressions.

 

v

   

Decimal

 

types:

 

Decimal

 

types

 

are

 

supported

 

for

 

display

 

only.

 

They

 

cannot

 

be

 

used

 

in

 

debug

 

expressions.

Precedence

 

of

 

operators

 

and

 

type

 

conversion

 

of

 

mixed

 

types

 

conforms

 

to

 

the

 

ISO

 

C

 

standard.

 

For

 

more

 

information,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference.

 

Limitations

 

of

 

the

 

Debug

 

Language

 

Syntax

 

The

 

ILE

 

source

 

debugger

 

has

 

the

 

following

 

limitations:

 

v

   

Function

 

calls

 

cannot

 

be

 

used

 

in

 

debug

 

expressions.

 

This

 

is

 

a

 

limitation

 

of

 

the

 

debug

 

expression

 

grammar.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

107



v

   

Precedence

 

of

 

operators

 

and

 

type

 

conversion

 

of

 

mixed

 

types

 

conform

 

to

 

the

 

C

 

and

 

C++

 

language

 

standards.

 

v

   

The

 

maximum

 

size

 

of

 

variables

 

that

 

can

 

be

 

displayed

 

is

 

65535

 

characters:

 

–

   

With

 

the

 

:c

 

and

 

:x

 

formatting

 

overrides,

 

if

 

no

 

count

 

is

 

entered,

 

the

 

command

 

stops

 

after

 

one

 

byte.

 

–

   

With

 

the

 

:s

 

formatting

 

override,

 

if

 

no

 

count

 

is

 

entered,

 

the

 

command

 

stops

 

after

 

30

 

bytes

 

or

 

a

 

NULL,

 

whichever

 

is

 

encountered

 

first.

 

–

   

With

 

the

 

:f

 

formatting

 

override,

 

if

 

no

 

count

 

is

 

entered,

 

the

 

command

 

stops

 

after

 

1024

 

bytes

 

or

 

a

 

NULL,

 

whichever

 

is

 

encountered

 

first.
v

   

The

 

maximum

 

number

 

of

 

classes

 

that

 

can

 

be

 

inherited

 

as

 

virtual

 

base

 

classes

 

in

 

a

 

single

 

compilation

 

unit

 

is

 

512.

Debug

 

Commands

 

Many

 

debug

 

commands

 

are

 

available

 

for

 

use

 

with

 

the

 

ILE

 

source

 

debugger.

 

For

 

example,

 

if

 

you

 

enter

 

break

 

10

 

on

 

the

 

debug

 

command

 

line

 

(and

 

line

 

10

 

is

 

a

 

debuggable

 

statement),

 

the

 

debugger

 

adds

 

an

 

unconditional

 

breakpoint

 

to

 

line

 

10

 

of

 

your

 

source.

 

Notes:

  

1.

   

If

 

line

 

10

 

is

 

a

 

blank

 

line

 

or

 

a

 

comment

 

statement,

 

the

 

debugger

 

will

 

give

 

an

 

error.

 

2.

   

If

 

line

 

10

 

is

 

not

 

a

 

debuggable

 

statement,

 

such

 

as

 

a

 

typedef

 

statement,

 

it

 

will

 

set

 

the

 

break

 

point

 

to

 

the

 

very

 

next

 

debuggable

 

statement.

 

3.

   

Pressing

 

the

 

F6

 

key

 

(while

 

the

 

cursor

 

is

 

on

 

a

 

debuggable

 

command

 

line)

 

sets

 

or

 

clears

 

a

 

break

 

point.

Debug

 

data

 

is

 

created

 

when

 

you

 

compile

 

a

 

module

 

with

 

one

 

of

 

the

 

following

 

debug

 

options:

 

v

   

*STMT

 

v

   

*SOURCE

 

v

   

*LIST

 

v

   

*ALL

The

 

debug

 

commands

 

and

 

their

 

parameters

 

are

 

entered

 

on

 

the

 

Debug

 

command

 

line

 

shown

 

at

 

the

 

bottom

 

of

 

the

 

Display

 

Module

 

Source

 

display

 

or

 

the

 

Evaluate

 

Expression

 

display.

 

They

 

can

 

be

 

entered

 

in

 

uppercase,

 

lowercase,

 

or

 

mixed

 

case.

 

The

 

online

 

information

 

describes

 

the

 

debug

 

commands,

 

and

 

shows

 

their

 

allowed

 

abbreviations.

 

The

 

debug

 

commands

 

are

 

as

 

follows:

 

ATTR

 

Displays

 

the

 

attributes

 

of

 

variables.

 

The

 

attributes

 

are

 

the

 

size

 

and

 

type

 

of

 

the

 

variable

 

as

 

recorded

 

in

 

the

 

Debug

 

Symbol

 

table.

 

BREAK

 

Permits

 

you

 

to

 

enter

 

either

 

an

 

unconditional

 

or

 

conditional

 

job

 

breakpoint

 

at

 

a

 

position

 

in

 

the

 

program

 

being

 

tested.

 

To

 

enter

 

a

 

conditional

 

job

 

breakpoint,

 

enter

 

BREAK

 

line-number

 

WHEN

 

expression.

 

CLEAR

 

Removes

 

conditional

 

and

 

unconditional

 

breakpoints;

 

removes

 

one

 

or

 

all

 

active

 

watch

 

conditions.

   

108

 

ILE

 

C/C++

 

Programmer’s

 

Guide



DISPLAY

 

Displays

 

the

 

names

 

and

 

definitions

 

assigned

 

by

 

using

 

the

 

Equate

 

command.

 

It

 

also

 

allows

 

you

 

to

 

display

 

a

 

different

 

source

 

module

 

than

 

the

 

one

 

that

 

is

 

currently

 

shown

 

on

 

the

 

Display

 

Module

 

Source

 

display.

 

The

 

module

 

object

 

must

 

exist

 

in

 

the

 

current

 

program

 

object.

 

EQUATE

 

Assigns

 

an

 

expression,

 

variable,

 

or

 

debug

 

command

 

to

 

a

 

name

 

for

 

shorthand

 

use.

 

EVAL

 

Displays

 

or

 

changes

 

the

 

value

 

of

 

a

 

variable;

 

displays

 

the

 

value

 

of

 

expressions,

 

records,

 

structures,

 

or

 

arrays.

 

QUAL

 

Defines

 

the

 

scope

 

of

 

variables

 

that

 

appear

 

in

 

subsequent

 

EVAL

 

or

 

WATCH

 

commands.

 

SET

 

Changes

 

debug

 

options,

 

such

 

as

 

the

 

ability

 

to

 

update

 

production

 

files;

 

specifies

 

whether

 

find

 

operations

 

are

 

to

 

be

 

case

 

sensitive;

 

enables

 

OPM

 

source

 

debug

 

support.

 

STEP

 

Runs

 

one

 

or

 

more

 

statements

 

of

 

the

 

procedure

 

that

 

is

 

being

 

debugged.

 

TBREAK

 

Permits

 

you

 

to

 

enter

 

either

 

an

 

unconditional

 

or

 

conditional

 

breakpoint

 

in

 

the

 

current

 

thread

 

in

 

a

 

position,

 

in

 

the

 

program

 

being

 

tested.

 

THREAD

 

Allows

 

you

 

to

 

either

 

open

 

the

 

Work

 

with

 

Debugged

 

Threads

 

display

 

or

 

change

 

the

 

current

 

thread.

 

WATCH

 

Requests

 

a

 

breakpoint

 

when

 

the

 

contents

 

of

 

a

 

specified

 

storage

 

location

 

is

 

changed

 

from

 

its

 

current

 

value.

 

FIND

 

Searches

 

in

 

the

 

module

 

that

 

is

 

currently

 

displayed

 

for

 

a

 

specified

 

line

 

number

 

or

 

string

 

of

 

text.

 

The

 

text

 

search

 

can

 

be

 

specified

 

in

 

a

 

forward

 

or

 

backward

 

direction

 

from

 

the

 

position

 

of

 

the

 

cursor

 

on

 

the

 

displayed

 

view

 

text.

 

If

 

the

 

cursor

 

is

 

not

 

on

 

the

 

view

 

text,

 

the

 

search

 

starts

 

at

 

the

 

first

 

position

 

of

 

the

 

top

 

line

 

of

 

text

 

on

 

the

 

current

 

screen.

 

When

 

the

 

string

 

is

 

successfully

 

found,

 

the

 

cursor

 

will

 

be

 

positioned

 

on

 

the

 

first

 

character

 

of

 

the

 

found

 

string.

  

The

 

last

 

Find

 

command

 

that

 

is

 

entered

 

can

 

be

 

repeated

 

by

 

using

 

the

 

F16

 

Repeat

 

Find

 

key.

 

UP

 

Moves

 

the

 

displayed

 

window

 

of

 

source

 

towards

 

the

 

beginning

 

of

 

the

 

view

 

by

 

the

 

number

 

of

 

lines

 

entered.

 

DOWN

 

Moves

 

the

 

displayed

 

window

 

of

 

source

 

towards

 

the

 

end

 

of

 

the

 

view

 

by

 

the

 

number

 

of

 

lines

 

entered.

 

LEFT

 

Moves

 

the

 

displayed

 

window

 

of

 

source

 

to

 

the

 

left

 

by

 

the

 

number

 

of

 

characters

 

that

 

are

 

entered.

 

RIGHT

 

Moves

 

the

 

displayed

 

window

 

of

 

source

 

to

 

the

 

right

 

by

 

the

 

number

 

of

 

characters

 

that

 

are

 

entered.

 

TOP

 

Positions

 

the

 

view

 

to

 

show

 

the

 

first

 

line.

 

BOTTOM

 

Positions

 

the

 

view

 

to

 

show

 

the

 

last

 

line.

 

NEXT

 

Positions

 

the

 

view

 

to

 

the

 

next

 

breakpoint

 

in

 

the

 

source

 

that

 

is

 

currently

 

displayed.

 

PREVIOUS

 

Positions

 

the

 

view

 

to

 

the

 

previous

 

breakpoint

 

in

 

the

 

source

 

that

 

is

 

currently

 

displayed.

   

Chapter

 

8.

 

The

 

ILE

 

Source

 

Debugger

 

109



HELP

 

Shows

 

the

 

online

 

help

 

information

 

for

 

the

 

available

 

source

 

debugger

 

commands.

Examples

 

of

 

Using

 

Debug

 

Expressions

 

in

 

ILE

 

C

 

Programs

 

This

 

chapter

 

provides

 

examples

 

of

 

ILE

 

C

 

source

 

code

 

and

 

the

 

ILE

 

debug

 

expressions

 

that

 

can

 

be

 

used

 

to

 

diagnose

 

and

 

correct

 

programming

 

errors.

 

In

 

the

 

examples

 

in

 

this

 

chapter:

 

v

   

The

 

ILE

 

C

 

source

 

code

 

to

 

be

 

evaluated

 

is

 

presented

 

in

 

figures.

 

v

   

Information

 

shown

 

in

 

an

 

ILE

 

Source

 

Debugger

 

session

 

is

 

presented

 

in

 

screen

 

figures.

 

Each

 

screen

 

shows

 

the

 

EVAL

 

debug

 

command

 

and

 

the

 

information

 

it

 

retrieves

 

and

 

displays.

Examples

 

of

 

Program

 

Definitions

 

and

 

Corresponding

 

Debug

 

Expressions

 

The

 

ILE

 

C

 

source

 

code

 

in

 

Figure

 

62

 

on

 

page

 

111

 

includes

 

data

 

definitions

 

of

 

pointers,

 

simple

 

variables,

 

structures,

 

unions,

 

and

 

enumerations.

 

To

 

illustrate

 

what

 

can

 

be

 

done

 

with

 

the

 

ILE

 

source

 

debugger

 

and

 

ILE

 

C

 

applications,

 

the

 

corresponding

 

debug

 

expressions

 

and

 

information

 

are

 

shown

 

in

 

the

 

following

 

sections:

 

v

   

“Evaluating

 

Pointers

 

to

 

Find

 

and

 

Correct

 

Errors”

 

on

 

page

 

113

 

v

   

“Evaluating

 

Simple

 

Expression

 

to

 

Find

 

and

 

Correct

 

Errors”

 

on

 

page

 

115

 

v

   

“Evaluating

 

Bit

 

Fields

 

to

 

Find

 

and

 

Correct

 

Errors”

 

on

 

page

 

116

 

v

   

“Evaluating

 

Structures

 

and

 

Unions

 

to

 

Find

 

and

 

Correct

 

Errors”

 

on

 

page

 

117

 

v

   

“Evaluating

 

Enumerations

 

to

 

Find

 

and

 

Correct

 

Errors”

 

on

 

page

 

118

    

110

 

ILE

 

C/C++

 

Programmer’s

 

Guide



#include

 

<stdio.h>

 

#include

 

<decimal.h>

 

#include

 

<pointer.h>

 

/**

 

POINTERS

 

**/

 

_SYSPTR

 

pSys;

             

/*

 

System

 

pointer

   

*/

 

_SPCPTR

 

pSpace;

           

/*

 

Space

 

pointer

    

*/

 

int

 

(*fncptr)(void);

      

/*

 

Function

 

pointer

 

*/

 

char

 

*pc1;

                

/*

 

Character

 

pointer*/

 

char

 

*pc2;

                

/*

 

Character

 

pointer*/

 

int

  

*pi1;

                

/*

 

Integer

 

pointer

  

*/

 

char

 

arr1[]

 

=

 

"ABC";

      

/*

 

Array

            

*/

 

/**

 

SIMPLE

 

VARIABLES

 

**/

 

int

 

i1;

                   

/*

 

Integer

          

*/

 

unsigned

 

u1;

              

/*

 

Unsigned

 

Integer

 

*/

 

char

 

c1;

                  

/*

 

Character

        

*/

 

float

 

f1;

                 

/*

 

Float

            

*/

 

_Decimal(3,1)

 

dec1;

       

/*

 

Decimal

          

*/

 

/**

 

STRUCTURES

  

**/

 

struct

 

{

                  

/*

 

Bit

 

fields

       

*/

   

int

 

b1

 

:

 

1;

   

int

 

b4

 

:

 

4;

 

}

 

bits;

 

struct

 

x{

                 

/*

 

Tagged

 

structure

 

*/

    

int

 

x;

    

char

 

*p;

 

};

 

struct

 

y{

                 

/*

 

Structure

 

with

   

*/

    

int

 

y;

                 

/*

 

structure

 

member

 

*/

    

struct

 

x

 

x;

 

};

 

typedef

 

struct

 

z

 

{

        

/*

 

Structure

 

typedef*/

    

int

 

z;

    

char

 

*p;

 

}

 

z;

 

z

 

zz;

                     

/*

 

Structure

 

using

 

typedef

 

*/

 

z

 

*pZZ;

                  

/*

 

Same

                    

*/

 

typedef

 

struct

 

c

 

{

        

/*

 

Structure

 

typedef

 

*/

    

unsigned

 

a;

    

char

 

*b;

 

}

 

c;

 

c

 

d;

                      

/*

 

Structure

 

using

 

typedef

 

*/

 

Figure

 

62.

 

Example

 

of

 

ILE

 

C

 

Source

 

Data

 

Definitions

 

(Part

 

1

 

of

 

2)

  

Chapter

 

8.

 

The

 

ILE

 

Source

 

Debugger

 

111



/**

 

UNIONS

 

**/

 

union

 

u{

                  

/*

 

Union

 

*/

    

int

 

x;

    

unsigned

 

y;

 

};

 

union

 

u

 

u;

                

/*

 

Variable

 

using

 

union

    

*/

 

union

 

u

 

*pU;

              

/*

 

Same

 

*/

 

/**

 

ENUMERATIONS

 

**/

 

enum

 

number

 

{one,

 

two,

 

three};

 

enum

 

color

 

{red,yellow,blue};

 

enum

 

number

 

number

 

=

 

one;

 

enum

 

color

 

color

 

=

 

blue;

 

/**

 

FUNCTION

 

**/

 

int

 

ret100(void)

 

{

 

return

 

100;}

 

main(){

  

struct

 

y

 

y,

 

*pY;

  

bits.b1

 

=

 

1;

  

bits.b4

 

=

 

2;

  

i1

 

=

 

ret100();

  

c1

 

=

 

’C’;

  

f1

 

=

 

100e2;

  

dec1

 

=

 

12.3;

  

pc1

 

=

 

&c1;

  

pi1

 

=

 

&i1;

  

d.a

 

=

 

1;

  

pZZ

 

=

 

&zz;

  

pZZ->z=1;

  

pY

 

=

 

&y;

  

pY->x.p=(char*)&y;

  

pU

 

=

 

&u;

  

pU->x=255;

  

number=color;

  

fncptr

 

=

 

&ret100;

  

pY->x.x=1;

                   

/*

 

Set

 

breakpoint

 

here

 

*/

 

}

 

int

 

main(void)

 

{

 

...

 

.

 

.

 

.

 

return(0);

 

}

 

Figure

 

62.

 

Example

 

of

 

ILE

 

C

 

Source

 

Data

 

Definitions

 

(Part

 

2

 

of

 

2)

  

112

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Evaluating

 

Pointers

 

to

 

Find

 

and

 

Correct

 

Errors

 

A

 

pointer

 

type

 

variable

 

holds

 

the

 

address

 

of

 

a

 

data

 

object

 

or

 

a

 

function.

 

A

 

pointer

 

can

 

refer

 

to

 

an

 

object

 

of

 

any

 

one

 

data

 

type

 

(except

 

a

 

bit

 

field

 

or

 

a

 

reference).

 

A

 

pointer

 

is

 

classified

 

as

 

a

 

scalar

 

type,

 

which

 

means

 

that

 

it

 

can

 

hold

 

only

 

one

 

value

 

at

 

a

 

time.

 

For

 

information

 

about

 

using

 

pointers

 

in

 

your

 

programs,

 

see:

 

v

   

Chapter

 

22,

 

“Using

 

OS/400

 

pointers

 

in

 

a

 

Program,”

 

on

 

page

 

353

 

v

   

“Using

 

Pointers

 

to

 

Improve

 

Performance”

 

on

 

page

 

78

 

v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference

.

 

Use

 

the

 

EVAL

 

debug

 

command

 

to

 

display

 

or

 

change

 

the

 

value

 

of

 

a

 

pointer

 

variable

 

or

 

array.

 

Messages

 

with

 

multiple

 

line

 

responses

 

launch

 

the

 

Evaluate

 

Expression

 

display,

 

which

 

also

 

shows

 

a

 

history

 

of

 

the

 

debug

 

commands

 

entered

 

and

 

the

 

results

 

from

 

these

 

commands.

 

To

 

return

 

to

 

the

 

Display

 

Module

 

Source

 

display,

 

press

 

the

 

Enter

 

key.

 

You

 

can

 

use

 

the

 

Enter

 

key

 

as

 

a

 

toggle

 

switch

 

between

 

displays.

 

Note:

  

Single-line

 

responses

 

are

 

shown

 

on

 

the

 

Display

 

Module

 

Source

 

message

 

line.

 

The

 

following

 

figures

 

show

 

examples

 

of

 

debug

 

expressions

 

for

 

pointers.

                                 

Evaluate

 

Expression

  

Previous

 

debug

 

expressions

 

>eval

 

pc1

  

pc1

 

=

 

SPP:C0260900107C0000

          

Displaying

 

pointers

 

>eval

 

pc2=pc1

  

pc2=pc1

 

=

 

SPP:C0260900107C0000

      

Assigning

 

pointers

 

>eval

 

*pc1

  

*pc1

 

=

 

’C’

                          

Dereferencing

 

pointers

 

>eval

 

&pc1

  

&pc1

 

=

 

SPP:C026090010400000

         

Taking

 

an

 

address

 

>eval

 

*&pc1

  

*&pc1

 

=

 

SPP:C0260900107C0000

        

Can

 

build

 

expressions

 

with

                                      

normal

 

C

 

precedence

 

>eval

 

*(short

 

*)pc1

  

*(short

 

*)pc1

 

=

 

-15616

              

Casting

                                                                          

Bottom

  

Debug

 

.

 

.

 

.

   

_________________________________________________________________

 

_______________________________________________________________________________

  

F3=Exit

  

F9=Retrieve

  

F12=Cancel

  

F18=Command

 

entry

  

F19=Left

  

F20=Right

  

Figure

 

63.

 

Examples

 

of

 

Using

 

Pointers

 

in

 

Debug

 

Sessions,

 

Screen

 

1

  

Chapter

 

8.

 

The

 

ILE

 

Source

 

Debugger

 

113



Evaluate

 

Expression

  

Previous

 

debug

 

expressions

 

>eval

 

arr1

  

arr1

 

=

 

SPP:C026090010700000

         

Unqualified

 

arrays

 

are

 

treated

                                      

as

 

pointers

 

>eval

 

*arr1

  

*arr1

 

=

 

’A’

                         

Dereferencing

 

applies

 

the

 

array

 

type

                                      

(character

 

in

 

this

 

example)

 

>eval

 

*arr1:s

  

*arr1:s

 

=

 

"ABC"

                     

If

 

the

 

expression

 

is

 

an

 

lvalue

                                      

you

 

can

 

override

 

the

 

formatting

 

>eval

 

pc1=0

  

pc1=0

 

=

 

SYP:*NULL

                   

Setting

 

a

 

pointer

 

to

 

null

 

by

 

assigning

 

0

 

>eval

 

fncptr

  

fncptr

 

=

 

PRP:A0CD0004F0100000

       

Function

 

pointers

 

>eval

 

*pY->x.p

  

*pY->x.p

 

=

 

’

 

’

                      

Using

 

the

 

arrow

 

operator

                                                                          

Bottom

  

Debug

 

.

 

.

 

.

   

_________________________________________________________________

 

_______________________________________________________________________________

  

F3=Exit

  

F9=Retrieve

  

F12=Cancel

  

F18=Command

 

entry

  

F19=Left

  

F20=Right

 

Figure

 

64.

 

Examples

 

of

 

Using

 

Pointers

 

in

 

Debug

 

Sessions,

 

Screen

 

2

  

114

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Evaluating

 

Simple

 

Expression

 

to

 

Find

 

and

 

Correct

 

Errors

 

Expressions

 

are

 

sequences

 

of

 

operators,

 

operands,

 

and

 

punctuators

 

that

 

specify

 

a

 

computation.

 

The

 

evaluation

 

of

 

expressions

 

is

 

based

 

on

 

the

 

operators

 

that

 

the

 

expressions

 

contain

 

and

 

the

 

context

 

in

 

which

 

they

 

are

 

used.

 

For

 

information

 

about

 

using

 

expressions

 

and

 

operators

 

in

 

your

 

programs,

 

see:

 

v

   

Chapter

 

22,

 

“Using

 

OS/400

 

pointers

 

in

 

a

 

Program,”

 

on

 

page

 

353

 

v

   

“Using

 

BCD

 

Macros

 

to

 

Port

 

Coded

 

Decimal

 

Objects

 

to

 

ILE

 

C++”

 

on

 

page

 

383

 

v

   

Chapter

 

26,

 

“Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C

 

Program,”

 

on

 

page

 

451

 

v

   

Chapter

 

27,

 

“Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C++

 

Program,”

 

on

 

page

 

465

 

v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference

.

 

Use

 

the

 

EVAL

 

debug

 

command

 

to

 

display

 

or

 

change

 

the

 

value

 

of

 

a

 

simple

 

expression

 

or

 

operator.

 

Messages

 

with

 

multiple

 

line

 

responses

 

launch

 

the

 

Evaluate

 

Expression

 

display,

 

which

 

also

 

shows

 

a

 

history

 

of

 

the

 

debug

 

commands

 

entered

 

and

 

the

 

results

 

from

 

these

 

commands.

 

To

 

return

 

to

 

the

 

Display

 

Module

 

Source

 

display,

 

press

 

the

 

Enter

 

key.

 

You

 

can

 

use

 

the

 

Enter

 

key

 

as

 

a

 

toggle

 

switch

 

between

 

displays.

 

Note:

  

Single-line

 

responses

 

are

 

shown

 

on

 

the

 

Display

 

Module

 

Source

 

message

 

line.

 

This

 

following

 

figure

 

shows

 

examples

 

of

 

debug

 

expressions

 

for

 

simple

 

operations

 

(for

 

example,

 

assignment,

 

arithmetic,

 

or

 

relational

 

operations).

                                  

Evaluate

 

Expression

  

Previous

 

debug

 

expressions

 

>eval

 

i1==u1

 

||

 

i1<u1

  

i1==u1

 

||

 

i1<u1

 

=

 

0

                

Logical

 

operations

 

>eval

 

i1++

  

i1++

 

=

 

100

                         

Unary

 

operators

 

occur

 

in

 

proper

 

order

 

>eval

 

i1

  

i1

 

=

 

101

                           

Increment

 

has

 

happened

 

after

 

i1

 

was

 

used

 

>eval

 

++i1

  

++i1

 

=

 

102

                         

Increment

 

has

 

happened

 

before

 

i1

 

was

 

used

 

>eval

 

u1

 

=

 

-10

  

u1

 

=

 

-10

 

=

 

4294967286

              

Implicit

 

conversions

 

happen

 

>eval

 

(int)u1

  

(int)u1

 

=

 

-10

 

>eval

 

dec1

                          

Decimal

 

types

 

are

 

displayed

 

but

 

cannot

  

dec1

 

=

 

12.3

                        

be

 

used

 

in

 

expressions

                                                                          

Bottom

  

Debug

 

.

 

.

 

.

   

_________________________________________________________________

 

_______________________________________________________________________________

  

F3=Exit

  

F9=Retrieve

  

F12=Cancel

  

F18=Command

 

entry

  

F19=Left

  

F20=Right

 

Figure

 

65.

 

Examples

 

of

 

Simple

 

Operations

 

Used

 

in

 

Debug

 

Expressions

  

Chapter

 

8.

 

The

 

ILE

 

Source

 

Debugger

 

115



Evaluating

 

Bit

 

Fields

 

to

 

Find

 

and

 

Correct

 

Errors

 

Both

 

C

 

and

 

C++

 

allow

 

integer

 

members

 

to

 

be

 

stored

 

into

 

memory

 

spaces

 

smaller

 

than

 

the

 

compiler

 

would

 

ordinarily

 

allow.

 

These

 

space-saving

 

structure

 

members

 

are

 

called

 

bit

 

fields,

 

and

 

their

 

width

 

in

 

bits

 

can

 

be

 

explicitly

 

declared.

 

Bit

 

fields

 

are

 

used

 

in

 

programs

 

that

 

must

 

force

 

a

 

data

 

structure

 

to

 

correspond

 

to

 

a

 

fixed

 

hardware

 

representation

 

and

 

are

 

unlikely

 

to

 

be

 

portable.

 

For

 

information

 

about

 

using

 

bit

 

fields,

 

see:

 

v

   

“Choosing

 

Data

 

Types

 

to

 

Improve

 

Performance”

 

on

 

page

 

67

 

v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference

.

 

Use

 

the

 

EVAL

 

debug

 

command

 

to

 

display

 

or

 

change

 

the

 

value

 

of

 

a

 

bit

 

field.

 

Messages

 

with

 

multiple

 

line

 

responses

 

launch

 

the

 

Evaluate

 

Expression

 

display,

 

which

 

also

 

shows

 

a

 

history

 

of

 

the

 

debug

 

commands

 

entered

 

and

 

the

 

results

 

from

 

these

 

commands.

 

To

 

return

 

to

 

the

 

Display

 

Module

 

Source

 

display,

 

press

 

the

 

Enter

 

key.

 

You

 

can

 

use

 

the

 

Enter

 

key

 

as

 

a

 

toggle

 

switch

 

between

 

displays.

 

Note:

  

Single-line

 

responses

 

are

 

shown

 

on

 

the

 

Display

 

Module

 

Source

 

message

 

line.

 

The

 

following

 

figure

 

shows

 

examples

 

of

 

debug

 

expressions

 

for

 

bit

 

fields.

                                  

Evaluate

 

Expression

    

Previous

 

debug

 

expressions

   

>eval

 

bits

                          

You

 

can

 

display

 

an

 

entire

 

structure

  

bits.b1

 

=

 

1

  

bits.b4

 

=

 

2

 

>eval

 

bits.b4

 

=

 

bits.b1

             

You

 

can

 

work

 

with

 

a

 

single

 

member

  

bits.b4

 

=

 

bits.b1

 

=

 

1

 

>eval

 

bits.b1

 

<<

 

2

                  

Bit

 

fields

 

are

 

fully

 

supported

  

bits.b1

 

<<

 

2

 

=

 

4

 

>eval

 

bits.b1

 

=

 

bits.b1

 

<<

 

2

        

You

 

can

 

overflow,

 

but

 

no

 

warning

 

is

  

bits.b1

 

=

 

bits.b1

 

<<

 

2

 

=

 

4

         

generated

 

>eval

 

bits.b1

  

bits.b1

 

=

 

0

                                                                                  

Bottom

  

Debug

 

.

 

.

 

.

   

_________________________________________________________________

 

_______________________________________________________________________________

  

F3=Exit

  

F9=Retrieve

  

F12=Cancel

  

F18=Command

 

entry

  

F19=Left

  

F20=Right

  

Figure

 

66.

 

Examples

 

of

 

Using

 

Bit

 

Fields

 

in

 

Debug

 

Expressions

  

116

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Evaluating

 

Structures

 

and

 

Unions

 

to

 

Find

 

and

 

Correct

 

Errors

 

A

 

structure

 

is

 

a

 

class

 

declared

 

with

 

the

 

class_key

 

struct.

 

The

 

members

 

and

 

base

 

classes

 

of

 

a

 

structure

 

are

 

public

 

by

 

default.

 

A

 

union

 

is

 

a

 

class

 

declared

 

with

 

the

 

class_key

 

union.

 

The

 

members

 

of

 

a

 

union

 

are

 

public

 

by

 

default;

 

a

 

union

 

holds

 

only

 

one

 

data

 

member

 

at

 

a

 

time.

 

No

 

conversions

 

between

 

structure

 

or

 

union

 

types

 

are

 

allowed,

 

except

 

for

 

the

 

following:

   

In

 

C,

 

an

 

assignment

 

conversion

 

between

 

compatible

 

structure

 

or

 

union

 

types

 

is

 

allowed

 

if

 

the

 

right

 

operand

 

is

 

of

 

a

 

type

 

compatible

 

with

 

that

 

of

 

the

 

left

 

operand.

 

For

 

information

 

about

 

using

 

structures

 

and

 

unions

 

in

 

your

 

programs,

 

see:

 

v

   

Chapter

 

24,

 

“Porting

 

Programs

 

from

 

Another

 

Platform

 

to

 

ILE,”

 

on

 

page

 

379

 

v

   

“Using

 

BCD

 

Macros

 

to

 

Port

 

Coded

 

Decimal

 

Objects

 

to

 

ILE

 

C++”

 

on

 

page

 

383

 

v

   

Chapter

 

18,

 

“Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program,”

 

on

 

page

 

225

 

v

   

Appendix

 

B,

 

“Interlanguage

 

Data-Type

 

Compatibilities,”

 

on

 

page

 

543

 

v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference

Use

 

the

 

EVAL

 

debug

 

command

 

to

 

display

 

or

 

change

 

the

 

value

 

of

 

a

 

structure

 

or

 

union.

 

Messages

 

with

 

multiple

 

line

 

responses

 

launch

 

the

 

Evaluate

 

Expression

 

display,

 

which

 

also

 

shows

 

a

 

history

 

of

 

the

 

debug

 

commands

 

entered

 

and

 

the

 

results

 

from

 

these

 

commands.

 

To

 

return

 

to

 

the

 

Display

 

Module

 

Source

 

display,

 

press

 

the

 

Enter

 

key.

 

You

 

can

 

use

 

the

 

Enter

 

key

 

as

 

a

 

toggle

 

switch

 

between

 

displays.

 

Note:

  

Single-line

 

responses

 

are

 

shown

 

on

 

the

 

Display

 

Module

 

Source

 

message

 

line.

 

The

 

following

 

shows

 

examples

 

of

 

debug

 

expressions

 

for

 

structures

 

and

 

unions.

                                  

Evaluate

 

Expression

    

Previous

 

debug

 

expressions

   

>eval

 

(struct

 

z

 

*)&zz

  

(struct

 

z

 

*)&zz

 

=

 

SPP:C005AA0010D00000

 

You

 

can

 

cast

 

with

 

typedefs

 

>eval

 

*(c

 

*)&zz

  

*(c

 

*)&zz.a

 

=

 

1

                     

You

 

can

 

cast

 

with

 

tags

  

*(c

 

*)&zz.b

 

=

 

SYP:*NULL

   

>eval

 

u.x

 

=

 

-10

  

u.x

 

=

 

-10

 

=

 

-10

                    

You

 

can

 

assign

 

union

 

members

 

>eval

 

u

  

u.y

 

=

 

4294967286

                   

You

 

can

 

display

 

and

 

the

 

union

 

will

 

be

  

u.x

 

=

 

-10

                          

formatted

 

for

 

each

 

definition

                                                                                  

Bottom

  

Debug

 

.

 

.

 

.

   

_________________________________________________________________

 

_______________________________________________________________________________

  

F3=Exit

  

F9=Retrieve

  

F12=Cancel

  

F18=Command

 

entry

  

F19=Left

  

F20=Right

  

Figure

 

67.

 

Examples

 

of

 

Using

 

Structures

 

and

 

Unions

 

in

 

Debug

 

Expressions

  

Chapter

 

8.

 

The

 

ILE

 

Source

 

Debugger

 

117



Evaluating

 

Enumerations

 

to

 

Find

 

and

 

Correct

 

Errors

 

An

 

enumeration

 

is

 

a

 

data

 

type

 

consisting

 

of

 

a

 

set

 

of

 

values

 

that

 

are

 

named

 

integral

 

constants.

 

It

 

is

 

also

 

referred

 

to

 

as

 

an

 

enumerated

 

type

 

because

 

you

 

must

 

list

 

(enumerate)

 

each

 

of

 

the

 

values

 

in

 

creating

 

a

 

name

 

for

 

each

 

of

 

them.

 

A

 

named

 

value

 

in

 

an

 

enumeration

 

is

 

called

 

an

 

enumeration

 

constant.

 

In

 

addition

 

to

 

providing

 

a

 

way

 

of

 

defining

 

and

 

grouping

 

sets

 

of

 

integral

 

constants,

 

enumerations

 

are

 

useful

 

for

 

variables

 

that

 

have

 

a

 

small

 

number

 

of

 

possible

 

values.

 

For

 

information

 

about

 

using

 

enumerations

 

in

 

your

 

programs,

 

see:

 

v

   

Appendix

 

B,

 

“Interlanguage

 

Data-Type

 

Compatibilities,”

 

on

 

page

 

543

 

v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference

The

 

following

 

figure

 

shows

 

debug

 

expressions

 

for

 

enumerations.

                                 

Evaluate

 

Expression

      

Previous

 

debug

 

expressions

   

>eval

 

color

  

color

 

=

 

blue

 

(2)

                   

Both

 

the

 

enumeration

 

and

 

its

 

value

 

are

 

>eval

 

number

                        

displayed

  

number

 

=

 

three

 

(2)

 

>eval

 

(enum

 

color)number

            

Casting

 

to

 

a

 

different

 

enumeration

  

(enum

 

color)number

 

=

 

blue

 

(2)

 

>eval

 

number

 

=

 

1

                    

Assigning

 

by

 

number

  

number

 

=

 

1

 

=

 

two

 

(1)

 

>eval

 

number

 

=

 

three

                

Assigning

 

by

 

enumeration

  

number

 

=

 

three

 

=

 

three

 

(2)

 

>eval

 

arr1[one]

                     

Using

 

in

 

an

 

expression

  

arr1[one]

 

=

 

’A’

                                                                                

Bottom

  

Debug

 

.

 

.

 

.

   

_________________________________________________________________

 

_______________________________________________________________________________

  

F3=Exit

  

F9=Retrieve

  

F12=Cancel

  

F18=Command

 

entry

  

F19=Left

  

F20=Right

  

Figure

 

68.

 

Examples

 

of

 

Using

 

Enumerations

 

in

 

Debug

 

Expressions

  

118

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Examples

 

of

 

Displaying

 

System

 

and

 

Space

 

Pointers

 

in

 

the

 

ILE

 

Source

 

Debugger

 

The

 

ILE

 

C

 

source

 

code

 

in

 

Figure

 

69

 

sets

 

up

 

system

 

and

 

space

 

pointers

 

for

 

an

 

example

 

of

 

how

 

they

 

can

 

be

 

displayed

 

with

 

the

 

debugger.

 

The

 

corresponding

 

debug

 

expressions

 

and

 

information

 

are

 

shown

 

in

 

Figure

 

70

 

on

 

page

 

121

    

#include

 

<stdio.h>

 

#include

 

<mispace.h>

 

#include

 

<pointer.h>

 

#include

 

<mispcobj.h>

 

#include

 

<except.h>

 

#include

 

<lecond.h>

 

#include

 

<leenv.h>

 

#include

 

<qtedbgs.h>

      

/*

 

From

 

qsysinc

 

*/

 

/*

 

Link

 

up

 

the

 

Create

 

User

 

Space

 

API

 

*/

 

#pragma

 

linkage(CreateUserSpace,OS)

 

#pragma

 

map(CreateUserSpace,"QUSCRTUS")

 

void

 

CreateUserSpace(char[20],

                      

char[10],

                      

long

 

int,

                      

char,

                      

char[10],

                      

char[50],

                      

char[10],

                      

_TE_ERROR_CODE_T

 

*

                      

);

 

/*

 

Link

 

up

 

the

 

Delete

 

User

 

Space

 

API

 

*/

 

#pragma

 

linkage(DeleteUserSpace,OS)

 

#pragma

 

map(DeleteUserSpace,"QUSDLTUS")

 

void

 

DeleteUserSpace(char[20],

                      

_TE_ERROR_CODE_T

 

*

                      

);

 

Figure

 

69.

 

System

 

and

 

Space

 

Pointers

 

in

 

ILE

 

C

 

Source

 

Code

 

(Part

 

1

 

of

 

2)

  

Chapter

 

8.

 

The

 

ILE

 

Source

 

Debugger

 

119



/*

 

Link

 

up

 

the

 

Retrieve

 

Pointer

 

to

 

User

 

Space

 

API

 

*/

 

#pragma

 

linkage(RetrievePointerToUserSpace,OS)

 

#pragma

 

map(RetrievePointerToUserSpace,"QUSPTRUS")

 

void

 

RetrievePointerToUserSpace(char[20],

                                 

char

 

**,

                                 

_TE_ERROR_CODE_T

 

*

                                 

);

 

int

 

main

 

(int

 

argc,

 

char

 

*argv[])

 

{

     

char

 

*pBuffer;

     

_SYSPTR

 

pSYSptr;

     

_TE_ERROR_CODE_T

 

errorCode;

     

errorCode.BytesProvided

 

=

 

0;

     

CreateUserSpace("QTEUSERSPCQTEMP

     

",

                     

"QTESSPC

   

",

                     

10,

                     

0,

                     

"*ALL

      

",

                     

"

                                                  

",

                     

"*YES

      

",

                     

&errorCode

                     

);

       

/*!

 

call

 

RetrievePointerToUserSpace

 

-

 

Retrieve

 

Pointer

 

to

 

User

 

Space

 

*/

     

/*!!

 

(pass:

 

Name

 

and

 

library

 

of

 

user

 

space,

 

pointer

 

variable

    

*/

     

/*!!

 

return:

 

nothing

 

(pointer

 

variable

 

is

 

left

 

pointing

 

to

 

start*/

     

/*!!

         

of

 

user

 

space)

                                     

*/

     

RetrievePointerToUserSpace("QTEUSERSPCQTEMP

     

",

                                

&pBuffer,

                                

&errorCode);

           

/*

 

convert

 

the

 

space

 

pointer

 

to

 

a

 

system

 

pointer

 

*/

     

pSYSptr

 

=

 

_SETSPFP(pBuffer);

       

printf("Space

 

pointer:

 

%p\n",pBuffer);

     

printf("System

 

pointer:

 

%p\n",pSYSptr);

       

return

 

0;

 

}

 

Figure

 

69.

 

System

 

and

 

Space

 

Pointers

 

in

 

ILE

 

C

 

Source

 

Code

 

(Part

 

2

 

of

 

2)

  

120

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

following

 

figure

 

illustrates

 

how

 

the

 

debugger

 

displays

 

system

 

and

 

space

 

pointers.

                                  

Evaluate

 

Expression

  

Previous

 

debug

 

expressions

 

>eval

 

pSYSptr

                        

System

 

pointers

 

are

 

formatted

  

pSYSptr

 

=

            

SYP:QTEUSERSPC

                         

:1934:QTEMP

     

:111111110

            

0011100

 

>eval

 

pBuffer

  

pBuffer

 

=

 

SPP:071ECD0002000000

      

Space

 

pointers

 

return

 

6

 

bytes

 

that

 

can

                                      

be

 

used

 

in

 

System

 

Service

 

Tools

                                                                          

Bottom

  

Debug

 

.

 

.

 

.

   

_________________________________________________________________

 

_______________________________________________________________________________

  

F3=Exit

  

F9=Retrieve

  

F12=Cancel

  

F18=Command

 

entry

  

F19=Left

  

F20=Right

 

Figure

 

70.

 

Example

 

of

 

System

 

and

 

Space

 

Pointer

 

Display

  

Chapter

 

8.

 

The

 

ILE

 

Source

 

Debugger

 

121



122

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

9.

 

Preparing

 

a

 

Program

 

for

 

Debugging

 

This

 

chapter

 

describes

 

how

 

to:

 

v

   

Set

 

up

 

a

 

test

 

library

 

to

 

avoid

 

modification

 

of

 

production

 

files.

 

v

   

Bind

 

a

 

module

 

with

 

debug

 

data

 

into

 

a

 

program

 

and

 

create

 

a

 

listing

 

view

 

for

 

debugging.

Before

 

you

 

can

 

use

 

the

 

ILE

 

source

 

debugger,

 

the

 

program

 

has

 

to

 

contain

 

debug

 

data.

 

Then

 

you

 

can

 

start

 

your

 

debug

 

session.

 

After

 

you

 

set

 

breakpoints

 

or

 

other

 

ILE

 

source

 

debugger

 

options,

 

you

 

can

 

call

 

the

 

program.

 

Note:

  

For

 

information

 

about

 

setting

 

breakpoints

 

and

 

other

 

ILE

 

source

 

debugger

 

options,

 

see

 

Chapter

 

11,

 

“Using

 

Breakpoints

 

to

 

Aid

 

Debugging,”

 

on

 

page

 

133.

 

Setting

 

Up

 

a

 

Test

 

Library

 

Attention:

  

While

 

debugging

 

and

 

testing

 

your

 

programs,

 

ensure

 

that

 

your

 

library

 

list

 

is

 

changed

 

to

 

direct

 

the

 

programs

 

to

 

a

 

test

 

library

 

containing

 

test

 

objects

 

so

 

that

 

any

 

existing

 

production

 

data

 

is

 

not

 

affected.

 

To

 

prevent

 

production

 

libraries

 

from

 

being

 

modified

 

unintentionally,

 

do

 

one

 

of

 

the

 

following:

 

v

   

Use

 

Start

 

Debug

 

(STRDBG)

 

with

 

the

 

UPDPROD

 

parameter

 

set

 

to

 

*NO

 

(the

 

default).

 

v

   

Use

 

Change

 

Debug

 

(CHGDBG)

 

with

 

the

 

UPDPROD

 

parameter

 

set

 

to

 

*NO

 

(the

 

default).

 

v

   

Specify

 

SET

 

UPDPROD

 

NO

 

in

 

the

 

Display

 

Module

 

Source

 

display.

Note:

  

If

 

you

 

start

 

a

 

debug

 

session

 

with

 

the

 

UPDPROD

 

parameter

 

set

 

to

 

(*YES),

 

the

 

debug

 

session

 

will

 

be

 

able

 

to

 

access

 

objects

 

in

 

production

 

libraries.

 

Creating

 

a

 

Listing

 

View

 

for

 

Debugging

 

A

 

listing

 

view

 

contains

 

text

 

similar

 

to

 

the

 

text

 

in

 

the

 

compiler

 

listing

 

produced

 

by

 

the

 

compiler.

 

To

 

create

 

a

 

listing

 

view

 

for

 

debugging,

 

use

 

the

 

DBGVIEW(*LIST)

 

option

 

when

 

you

 

create

 

the

 

module

 

or

 

program.

Notes:

  

1.

     

The

 

ILE

 

C

 

compiler

 

creates

 

the

 

listing

 

view

 

by

 

copying

 

the

 

lines

 

in

 

a

 

section

 

of

 

the

 

listing

 

into

 

the

 

module.

 

2.

     

The

 

ILE

 

C++

 

compiler

 

creates

 

the

 

listing

 

view

 

by

 

copying

 

the

 

text

 

of

 

the

 

appropriate

 

source

 

files

 

into

 

the

 

module.

The

 

listing

 

view

 

is

 

not

 

linked

 

to

 

the

 

source

 

files

 

upon

 

which

 

it

 

is

 

based.

 

For

 

example,

 

to

 

create

 

a

 

listing

 

view

 

to

 

debug

 

a

 

program

 

created

 

from

 

the

 

source

 

file

 

myfile.cpp,

 

enter:

 

CRTBNDCPP

 

MYFILE

 

SRCSTMF(’/home/myfile.cpp’)

 

DBGVIEW(*LIST)

 

Note:

  

The

 

maximum

 

line

 

length

 

for

 

a

 

listing

 

view

 

is

 

255

 

characters.

 

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

123



124

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

10.

 

Working

 

with

 

Source

 

Debug

 

Sessions

 

Use

 

the

 

ILE

 

source

 

debugger

 

to

 

locate

 

programming

 

errors

 

in

 

ILE

 

C/C++

 

programs

 

and

 

service

 

programs.

 

Before

 

you

 

can

 

use

 

the

 

ILE

 

source

 

debugger,

 

you

 

must

 

use

 

one

 

of

 

the

 

non-default

 

debug

 

options

 

(DBGVIEW)

 

when

 

you

 

compile

 

a

 

source

 

file.

 

Next,

 

you

 

can

 

start

 

your

 

debug

 

session.

 

Once

 

you

 

set

 

breakpoints

 

or

 

other

 

ILE

 

source

 

debugger

 

options,

 

you

 

can

 

call

 

the

 

program.

 

This

 

chapter

 

describes

 

how

 

to:

 

v

   

Start

 

a

 

debug

 

session

 

v

   

Add

 

and

 

remove

 

programs

 

from

 

a

 

debug

 

session

 

v

   

Set

 

and

 

change

 

debug

 

options

 

v

   

View

 

the

 

program

 

source

 

from

 

a

 

debug

 

session

Starting

 

a

 

Source

 

Debug

 

Session

 

You

 

use

 

the

 

Start

 

Debug

 

(STRDBG)

 

command

 

to

 

start

 

the

 

ILE

 

source

 

debugger.

 

Once

 

the

 

debugger

 

is

 

started,

 

it

 

remains

 

active

 

until

 

you

 

enter

 

the

 

End

 

Debug

 

(ENDDBG)

 

command.

 

Note:

  

You

 

must

 

have

 

*USE

 

object

 

authority

 

to

 

use

 

the

 

STRDBG

 

command

 

and

 

*CHANGE

 

authority

 

for

 

the

 

objects

 

that

 

are

 

to

 

be

 

debugged.

 

Initially

 

you

 

can

 

add

 

as

 

many

 

as

 

20

 

programs

 

to

 

a

 

debug

 

session

 

by

 

using

 

the

 

Program

 

(PGM)

 

parameter

 

on

 

the

 

STRDBG

 

command.

 

You

 

can

 

add

 

any

 

combination

 

of

 

OPM

 

or

 

ILE

 

programs.

 

Whether

 

you

 

can

 

use

 

the

 

ILE

 

source

 

debugger

 

to

 

debug

 

all

 

of

 

them

 

depends

 

on

 

v

   

how

 

the

 

OPM

 

programs

 

were

 

compiled

 

v

   

the

 

debug

 

environment

 

settings

You

 

can

 

also

 

add

 

as

 

many

 

as

 

20

 

service

 

programs

 

to

 

a

 

debug

 

session

 

by

 

using

 

the

 

Service

 

Program

 

(SRVPGM)

 

parameter

 

on

 

the

 

STRDBG

 

command.

 

Before

 

you

 

can

 

use

 

the

 

ILE

 

source

 

debugger

 

to

 

debug

 

an

 

ILE

 

C/C++

 

program

 

or

 

service

 

program,

 

a

 

valid

 

debug

 

view

 

must

 

be

 

specified

 

when

 

the

 

module

 

or

 

program

 

is

 

created.

 

Valid

 

debug

 

views

 

include:

 

*SOURCE,

 

*LIST,

 

*STMT,

 

or

 

*ALL.

 

You

 

can

 

create

 

several

 

views

 

for

 

each

 

module

 

that

 

you

 

want

 

to

 

debug.

 

They

 

are:

 

v

   

Root

 

source

 

view

  

A

 

root

 

source

 

view

 

contains

 

text

 

from

 

the

 

root

 

source

 

file.

 

This

 

view

 

does

 

not

 

contain

 

any

 

include

 

file

 

expansions.

  

You

 

can

 

create

 

a

 

root

 

source

 

view

 

by

 

using

 

the

 

*SOURCE

 

or

 

*ALL

 

options

 

on

 

the

 

DBGVIEW

 

parameter

 

for

 

either

 

the

 

CRTCMOD/CRTCPPMOD

 

or

 

CRTBNDC/CRTBNDCPP

 

command

 

when

 

you

 

create

 

the

 

module

 

or

 

the

 

program,

 

respectively.

  

The

 

ILE

 

C/C++

 

compiler

 

creates

 

the

 

root

 

source

 

view

 

while

 

the

 

module

 

object

 

(*MODULE)

 

is

 

being

 

compiled.

 

The

 

root

 

source

 

view

 

is

 

created

 

using

 

references

 

to

 

locations

 

of

 

text

 

in

 

the

 

root

 

source

 

file

 

rather

 

than

 

copying

 

the

 

text

 

of

 

the

 

file

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

125



into

 

the

 

view.

 

For

 

this

 

reason,

 

do

 

not

 

modify,

 

rename,

 

or

 

move

 

root

 

source

 

files

 

between

 

the

 

module

 

creation

 

of

 

these

 

files

 

and

 

the

 

debugging

 

of

 

the

 

module

 

created

 

from

 

these

 

files.

 

v

   

Statement

 

view.

 

This

 

is

 

the

 

view

 

obtained

 

when

 

the

 

source

 

is

 

compiled

 

with

 

*STMF

 

option

 

on

 

the

 

DBGVIEW

 

parameter

 

on

 

either

 

C

 

or

 

C++

 

comand.

 

This

 

will

 

allow

 

to

 

debug

 

programs

 

with

 

statement

 

numbers

 

and

 

symbolic

 

identifiers

 

which

 

can

 

be

 

referenced

 

in

 

the

 

listing.

  

You

 

can

 

create

 

a

 

statement

 

view

 

by

 

using

 

the

 

*STMF

 

option

 

on

 

the

 

DBGVIEW

 

parameter

 

on

 

either

 

the

 

CRTCMOD/CRTCPPMOD

 

or

 

CRTBNDC/CRTBNDCPP

 

command

 

when

 

you

 

create

 

the

 

module

 

or

 

the

 

program,

 

respectively.

 

v

   

Include

 

source

 

view

  

An

 

include

 

source

 

view

 

contains

 

text

 

from

 

the

 

root

 

source

 

file,

 

as

 

well

 

as

 

the

 

text

 

of

 

all

 

included

 

files

 

that

 

are

 

expanded

 

into

 

the

 

text

 

of

 

the

 

source.

 

This

 

view

 

does

 

not

 

contain

 

any

 

macro

 

expansion.

 

When

 

you

 

use

 

this

 

view,

 

you

 

can

 

debug

 

the

 

root

 

source

 

file

 

and

 

all

 

included

 

files.

  

You

 

can

 

create

 

an

 

include

 

source

 

view

 

to

 

debug

 

a

 

module

 

by

 

using

 

the

 

*SOURCE

 

or

 

*ALL

 

option

 

on

 

the

 

DBGVIEW

 

parameter,

 

and

 

*SHOWINC

 

on

 

the

 

OPTION

 

parameter.

 

v

   

Listing

 

view

  

A

 

listing

 

view

 

contains

 

text

 

similar

 

to

 

the

 

compiler

 

listing

 

produced

 

by

 

the

 

ILE

 

C/C++

 

compiler

 

specified

 

in

 

the

 

OUTPUT()

 

command

 

parameter.

  

You

 

can

 

create

 

a

 

listing

 

view

 

to

 

debug

 

a

 

module

 

by

 

using

 

the

 

*LIST

 

or

 

*ALL

 

options

 

when

 

you

 

compile

 

the

 

module.

 

You

 

can

 

also

 

specify

 

at

 

least

 

one

 

of

 

*SHOWINC,

 

*SHOWUSR,

 

*SHOWSYS,

 

and

 

*SHOWSKP

 

on

 

the

 

OPTION

 

parameter,

 

depending

 

on

 

the

 

listing

 

view

 

that

 

you

 

want

 

to

 

see.

Note:

    

*SHOWSKP

 

is

 

valid

 

for

 

ILE

 

C

 

only.

The

 

first

 

program

 

specified

 

on

 

the

 

STRDBG

 

command

 

is

 

shown

 

when

 

it

 

has

 

debug

 

data.

 

In

 

the

 

case

 

of

 

ILE

 

program,

 

the

 

entry

 

module

 

is

 

shown

 

when

 

it

 

has

 

debug

 

data;

 

otherwise,

 

the

 

first

 

module

 

bound

 

to

 

the

 

ILE

 

program

 

with

 

debug

 

data

 

is

 

shown.

 

To

 

debug

 

an

 

OPM

 

program

 

with

 

ILE

 

source

 

debugger,

 

the

 

following

 

conditions

 

must

 

be

 

met:

 

v

   

If

 

the

 

program

 

is

 

an

 

OPM

 

RPG

 

or

 

COBOL

 

program,

 

it

 

was

 

compiled

 

with

 

OPTION(*LSTDBG).

 

v

   

If

 

the

 

program

 

is

 

an

 

OPM

 

CL

 

program,

 

it

 

was

 

compiled

 

with

 

OPTION(*SRCDBG).

 

v

   

The

 

ILE

 

debug

 

environment

 

is

 

set

 

to

 

accept

 

OPM

 

programs.

 

You

 

can

 

do

 

this

 

by

 

specifying

 

OPMSRC(*YES)

 

on

 

the

 

STRDBG

 

command.

 

(The

 

system

 

default

 

is

 

OPMSRC(*NO).)

If

 

these

 

two

 

conditions

 

are

 

not

 

met,

 

then

 

debug

 

the

 

OPM

 

program

 

with

 

the

 

OPM

 

system

 

debugger.

 

To

 

start

 

a

 

debug

 

session

 

for

 

the

 

sample

 

debug

 

program

 

DEBUGEX

 

which

 

calls

 

the

 

OPM

 

program

 

RPGPGM,

 

enter:

 

STRDBG

 

PGM(MYLIB/DEBUGEX

 

MYLIB/RPGPGM)

 

OPMSRC(*YES)

 

DBGVIEW(*NONE)

 

is

 

the

 

default

 

DBGVIEW

 

option.

 

No

 

debug

 

data

 

is

 

created

 

when

 

the

 

module

 

is

 

created.

 

Once

 

you

 

have

 

created

 

a

 

module

 

with

 

debug

 

data

 

or

 

debug

 

views,

 

and

 

bound

 

it

 

into

 

a

 

program

 

object

 

(*PGM),

 

you

 

can

 

start

 

to

 

debug

 

your

 

program.

   

126

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Example:

 

This

 

example

 

shows

 

you

 

how

 

to

 

create

 

three

 

modules

 

with

 

debug

 

views

 

and

 

start

 

a

 

debug

 

session.

 

1.

   

To

 

create

 

module

 

T1520IC1

 

with

 

a

 

root

 

source

 

view,

 

enter:

 

CRTCMOD

 

MODULE(MYLIB/T1520IC1)

 

SRCFILE(QCPPLE/QACSRC)

 

DBGVIEW(*SOURCE)

 

A

 

root

 

source

 

view

 

and

 

debug

 

data

 

is

 

created

 

to

 

debug

 

module

 

T1520IC1.

 

2.

   

To

 

create

 

module

 

T1520IC2

 

with

 

all

 

three

 

views,

 

enter:

 

CRTCMOD

 

MODULE(MYLIB/T1520IC2)

 

SRCFILE(QCPPLE/QACSRC)

 

DBGVIEW(*ALL)

 

OPTION(*SHOWINC)

 

All

 

views

 

and

 

debug

 

data

 

are

 

created

 

to

 

debug

 

module

 

T1520IC2.

 

3.

   

To

 

create

 

module

 

T1520IC3

 

with

 

both

 

root

 

source

 

and

 

include

 

view,

 

enter:

 

CRTCMOD

 

MODULE(MYLIB/T1520IC3)

 

SRCFILE(QCPPLE/QACSRC)

 

DBGVIEW(*SOURCE)

 

OPTION(*SHOWINC)

 

An

 

include

 

view

 

containing

 

the

 

root

 

source

 

file,

 

user

 

include

 

files,

 

and

 

debug

 

data

 

is

 

created

 

to

 

debug

 

module

 

T1520IC3.

 

4.

   

To

 

create

 

program

 

T1520PG1,

 

enter:

 

CRTPGM

 

PGM(MYLIB/T1520PG1)

 

MODULE(MYLIB/T1520IC1

 

MYLIB/T1520IC2)

 

ENTMOD(*ONLY)

 

BNDDIR(MYLIB/T1520BD1)

 

DETAIL(*FULL)

 

Note:

  

The

 

creation

 

of

 

this

 

program

 

requires

 

modules,

 

service

 

programs,

 

and

 

a

 

binding

 

directory.

 

See

 

“Creating

 

a

 

Program

 

in

 

Two

 

Steps”

 

on

 

page

 

14.

 

5.

   

To

 

start

 

a

 

debug

 

session

 

for

 

program

 

T1520PG1,

 

enter:

 

STRDBG

 

PGM(MYLIB/T1520PG1)

 

The

 

Display

 

Module

 

Source

 

display

 

appears

 

as

 

shown:

                               

Display

 

Module

 

Source

  

Program:

   

T1520PG1

       

Library:

   

MYLIB

          

Module:

   

T1520IC1

       

1

  

/*

 

This

 

program

 

demonstrates

 

how

 

to

 

use

 

multiple

 

modules,

 

service

   

*/

       

2

  

/*

 

programs

 

and

 

a

 

binding

 

directory.

  

This

 

program

 

accepts

 

user

 

ID,

 

*/

       

3

  

/*

 

item

 

name,

 

quantity

 

and

 

price,

 

calculates

 

the

 

total

 

cost

 

and

     

*/

       

4

  

/*

 

writes

 

an

 

audit

 

trail

 

of

 

the

 

transaction.

                        

*/

       

5

       

6

  

#include

 

<stdio.h>

       

7

  

#include

 

<stdlib.h>

       

8

  

#include

 

<string.h>

       

9

  

#include

 

<decimal.h>

      

10

     

11

  

int

  

calc_and_format

 

(decimal(10,2),

      

12

                        

short

 

int,

      

13

                        

char[];

      

14

      

15

  

void

 

write_audit_trail

 

(char[],

    

Debug

 

.

 

.

 

.

  

___________________________________________________________

  

________________________________________________________________________

  

F3=End

 

program

   

F6=Add/Clear

 

breakpoint

   

F10=Step

   

F11=Display

 

variable

  

F12=Resume

       

F17=Watch

 

variable

   

F18=Work

 

with

 

watch

  

F24=More

 

keys

 

The

 

module

 

T1520IC1

 

is

 

shown.

 

It

 

is

 

the

 

module

 

with

 

the

 

main()

 

function.

  

You

 

can

 

start

 

a

 

debug

 

session

 

for

 

OPM

 

programs

 

or

 

a

 

combination

 

of

 

ILE

 

and

 

OPM

 

programs

 

by

 

typing:

 

STRDBG

 

PGM(MYLIB/T1520RP1

 

MYLIB/T1520CB1

 

MYLIB/T1520IC5)

 

DSPMODSRC(*YES)

   

Chapter

 

10.

 

Working

 

with

 

Source

 

Debug

 

Sessions

 

127



The

 

parameter

 

DSPMODSRC(*YES)

 

specifies

 

that

 

you

 

want

 

the

 

ILE

 

source

 

debug

 

program

 

display

 

panel

 

to

 

be

 

shown

 

at

 

start

 

debug

 

time.

 

The

 

DSPMODSRC

 

parameter

 

accepts

 

the

 

*PGMDEP

 

value

 

as

 

a

 

default.

 

This

 

value

 

indicates

 

that

 

if

 

any

 

program

 

in

 

the

 

STRDBG

 

PGM

 

list

 

is

 

an

 

ILE

 

program,

 

the

 

source

 

display

 

panel

 

is

 

shown.

Adding

 

and

 

Removing

 

Programs

 

from

 

a

 

Debug

 

Session

 

If

 

you

 

have

 

*CHANGE

 

authority,

 

you

 

can

 

add

 

programs

 

and

 

service

 

programs

 

to

 

a

 

debug

 

session,

 

or

 

remove

 

them

 

from

 

a

 

current

 

debug

 

session.

 

For

 

ILE

 

programs,

 

use

 

option

 

1

 

(Add

 

program)

 

on

 

the

 

Work

 

with

 

Module

 

List

 

display

 

(F14)

 

of

 

the

 

DSPMODSRC

 

command.

 

To

 

remove

 

an

 

ILE

 

program

 

or

 

service

 

program,

 

use

 

option

 

4

 

(Remove

 

program)

 

on

 

the

 

same

 

display.

 

When

 

an

 

ILE

 

program

 

or

 

service

 

program

 

is

 

removed,

 

all

 

breakpoints

 

for

 

that

 

program

 

are

 

removed.

 

There

 

is

 

no

 

limit

 

to

 

the

 

number

 

of

 

ILE

 

programs

 

or

 

service

 

programs

 

that

 

can

 

be

 

included

 

in

 

a

 

debug

 

session

 

at

 

one

 

time.

 

For

 

OPM

 

programs,

 

you

 

have

 

two

 

choices

 

depending

 

on

 

the

 

value

 

specified

 

for

 

OPMSRC.

 

If

 

you

 

specified

 

OPMSRC(*YES),

 

by

 

using

 

either

 

STRDBG,

 

the

 

SET

 

debug

 

command,

 

or

 

Change

 

Debug

 

(CHGDBG)

 

options,

 

then

 

you

 

add

 

or

 

remove

 

an

 

OPM

 

program

 

using

 

the

 

Work

 

with

 

Module

 

Display.

 

(Note

 

that

 

there

 

will

 

not

 

be

 

a

 

module

 

name

 

listed

 

for

 

an

 

OPM

 

program.)

 

There

 

is

 

no

 

limit

 

to

 

the

 

number

 

of

 

OPM

 

programs

 

that

 

can

 

be

 

included

 

in

 

a

 

debug

 

session

 

when

 

OPMSRC(*YES)

 

is

 

specified.

 

If

 

you

 

specified

 

OPMSRC(*NO),

 

then

 

you

 

must

 

use

 

the

 

Add

 

Program

 

(ADDPGM)

 

command

 

or

 

the

 

Remove

 

Program

 

(RMVPGM)

 

command.

 

Only

 

20

 

OPM

 

programs

 

can

 

be

 

in

 

a

 

debug

 

session

 

at

 

one

 

time

 

when

 

OPMSRC(*NO)

 

is

 

specified.

 

Note:

  

You

 

cannot

 

debug

 

an

 

OPM

 

program

 

with

 

debug

 

data

 

from

 

both

 

an

 

ILE

 

and

 

an

 

OPM

 

debug

 

session.

 

If

 

OPM

 

program

 

is

 

already

 

in

 

an

 

OPM

 

debug

 

session,

 

you

 

must

 

first

 

remove

 

it

 

from

 

that

 

session

 

before

 

adding

 

it

 

to

 

the

 

ILE

 

debug

 

session

 

or

 

stepping

 

into

 

it

 

from

 

a

 

call

 

statement.

 

Similarly,

 

if

 

you

 

want

 

to

 

debug

 

it

 

from

 

an

 

OPM

 

debug

 

session,

 

you

 

must

 

first

 

remove

 

it

 

from

 

an

 

ILE

 

debug

 

session.

 

Example:

 

This

 

example

 

shows

 

you

 

how

 

to

 

add

 

an

 

ILE

 

C

 

service

 

program

 

to,

 

and

 

remove

 

an

 

ILE

 

C

 

program

 

from

 

a

 

debug

 

session.

 

Note:

  

Assume

 

the

 

ILE

 

C

 

program

 

T1520ALP

 

is

 

part

 

of

 

this

 

debug

 

session,

 

and

 

the

 

program

 

has

 

been

 

debugged.

 

It

 

can

 

be

 

removed

 

from

 

this

 

debug

 

session.

 

1.

   

To

 

add

 

programs

 

to

 

or

 

remove

 

programs

 

from

 

a

 

debug

 

session

 

type:

 

DSPMODSRC

 

and

 

press

 

Enter.

 

The

 

Display

 

Module

 

Source

 

display

 

appears.

 

2.

   

Press

 

F14

 

(Work

 

with

 

module

 

list)

 

to

 

show

 

the

 

Work

 

with

 

Module

 

List

 

display.

 

3.

   

On

 

this

 

display

 

type

 

1

 

(Add

 

program)

 

on

 

the

 

first

 

line

 

of

 

the

 

list

 

to

 

add

 

programs

 

and

 

service

 

programs

 

to

 

a

 

debug

 

session.

 

To

 

add

 

service

 

program

 

T1520SP1,

 

type

 

T1520SP1

 

for

 

the

 

Program/module

 

field,

 

MYLIB

 

for

 

the

 

Library

 

field,

 

change

 

the

 

default

 

program

 

type

 

from

 

*PGM

 

to

 

*SRVPGM

 

and

 

press

 

Enter.

   

128

 

ILE

 

C/C++

 

Programmer’s

 

Guide



4.

   

On

 

this

 

display

 

type

 

4

 

(Remove

 

program)

 

on

 

the

 

line

 

next

 

to

 

each

 

program

 

or

 

service

 

program

 

that

 

you

 

want

 

to

 

remove

 

from

 

the

 

debug

 

session.

 

5.

   

To

 

remove

 

program

 

T1520ALP,

 

type

 

4

 

next

 

to

 

T1520ALP,

 

and

 

press

 

Enter.

 

6.

   

Press

 

F12

 

(Cancel)

 

to

 

return

 

to

 

the

 

Display

 

Module

 

Source

 

display.

  

If

 

an

 

ILE

 

C/C++

 

program

 

with

 

debug

 

data

 

is

 

in

 

a

 

debug

 

session,

 

the

 

module

 

with

 

the

 

main()

 

function

 

is

 

shown

 

(if

 

it

 

has

 

a

 

debug

 

view).

 

Otherwise,

 

the

 

first

 

module

 

bound

 

to

 

the

 

ILE

 

C/C++

 

program

 

with

 

debug

 

data

 

is

 

shown.

Setting

 

or

 

Changing

 

Debug

 

Options

 

During

 

a

 

Session

 

After

 

you

 

start

 

a

 

debug

 

session,

 

you

 

can

 

set

 

or

 

change

 

the

 

following

 

debug

 

options:

 

v

   

Whether

 

database

 

files

 

can

 

be

 

updated

 

while

 

debugging

 

your

 

program.

 

(This

 

option

 

corresponds

 

to

 

the

 

UPDPROD

 

parameter

 

of

 

the

 

STRDBG

 

command.)

 

v

   

Whether

 

text

 

searches

 

using

 

FIND

 

are

 

case

 

sensitive.

 

v

   

Whether

 

OPM

 

programs

 

are

 

to

 

be

 

debugged

 

using

 

the

 

ILE

 

source

 

debugger.

 

(This

 

corresponds

 

to

 

the

 

OPMSRC

 

parameter.)

Changing

 

the

 

debug

 

options

 

by

 

using

 

the

 

SET

 

debug

 

command

 

affects

 

the

 

value

 

for

 

the

 

corresponding

 

parameter,

 

if

 

any,

 

specified

 

on

 

the

 

STRDBG

 

command.

 

You

 

can

 

also

 

use

 

the

 

Change

 

Debug

 

(CHGDBG)

 

command

 

to

 

set

 

debug

 

options.

 

Example:

 

Adding

 

an

 

OPM

 

Program

 

to

 

an

 

ILE

 

Debug

 

Session

 

This

 

example

 

shows

 

you

 

how

 

to

 

allow

 

the

 

ILE

 

source

 

debugger

 

to

 

add

 

an

 

OPM

 

program

 

to

 

an

 

ILE

 

debug

 

session.

 

Suppose

 

you

 

are

 

in

 

a

 

debug

 

session

 

working

 

with

 

an

 

ILE

 

program

 

and

 

you

 

decide

 

you

 

should

 

also

 

debug

 

an

 

OPM

 

program

 

that

 

has

 

debug

 

data

 

available.

 

To

 

enable

 

the

 

ILE

 

source

 

debugger

 

to

 

accept

 

OPM

 

programs,

 

follow

 

these

 

steps:

 

1.

   

If,

 

after

 

you

 

enter

 

STRDBG,

 

the

 

current

 

display

 

is

 

not

 

the

 

Display

 

Module

 

Source

 

display,

 

enter:

 

DSPMODSRC

 

The

 

Display

 

Module

 

Source

 

display

 

appears

 

2.

   

Enter

 

SET

 

3.

   

When

 

the

 

Set

 

Debug

 

Options

 

display

 

appears,

 

type

 

Y

 

(Yes)

 

for

 

the

 

OPM

 

source

 

debug

 

support

 

field,

 

and

 

press

 

Enter

 

to

 

return

 

to

 

the

 

Display

 

Module

 

Source

 

display.

You

 

can

 

now

 

add

 

the

 

OPM

 

program,

 

either

 

by

 

using

 

the

 

Work

 

with

 

Module

 

display,

 

or

 

by

 

processing

 

a

 

call

 

statement

 

to

 

that

 

program.

 

Example:

 

Setting

 

Debug

 

Options

 

during

 

a

 

Debug

 

Session

 

This

 

example

 

shows

 

how

 

to

 

set

 

the

 

Update

 

production

 

files

 

debug

 

option

 

during

 

a

 

debug

 

session.

 

1.

   

To

 

set

 

debug

 

options

 

from

 

a

 

debug

 

session,

 

enter:

 

DSPMODSRC

 

2.

   

When

 

the

 

Display

 

Module

 

Source

 

display

 

appears,

 

enter

 

SET

   

Chapter

 

10.

 

Working

 

with

 

Source

 

Debug

 

Sessions

 

129



3.

    

When

 

the

 

Set

 

Debug

 

Options

 

display

 

appears,

 

type

 

Y

 

(Yes)

 

for

 

the

 

Update

 

production

 

files

 

field,

 

and

 

press

 

Enter

 

to

 

return

 

to

 

the

 

Display

 

Module

 

Source

 

display.

 

The

 

database

 

files

 

in

 

production

 

libraries

 

are

 

updated

 

while

 

the

 

job

 

is

 

in

 

debug

 

mode.

Viewing

 

the

 

Program

 

Source

 

The

 

Display

 

Module

 

Source

 

display

 

shows

 

the

 

source

 

of

 

an

 

ILE

 

program

 

object

 

one

 

module

 

at

 

a

 

time.

 

The

 

source

 

of

 

an

 

ILE

 

module

 

object

 

can

 

be

 

shown

 

if

 

the

 

module

 

object

 

was

 

compiled

 

using

 

one

 

of

 

the

 

following

 

debug

 

view

 

options:

 

v

   

DBGVIEW(*SOURCE)

 

v

   

DBGVIEW(*COPY)

 

-

 

ILE

 

RPG

 

only

 

v

   

DBGVIEW(*LIST)

 

v

   

DBGVIEW(*ALL)

The

 

source

 

of

 

an

 

OPM

 

program

 

can

 

be

 

shown

 

if

 

the

 

following

 

conditions

 

are

 

met:

 

1.

   

The

 

OPM

 

program

 

was

 

compiled

 

with

 

OPTION(*LSTDBG).

 

2.

   

The

 

ILE

 

debug

 

environment

 

is

 

set

 

to

 

accept

 

OPM

 

programs;

 

that

 

is

 

the

 

value

 

of

 

OPMSRC

 

is

 

*YES.

 

(The

 

system

 

default

 

is

 

OPMSRC(*NO).)

Once

 

you

 

have

 

displayed

 

a

 

view

 

of

 

a

 

module,

 

you

 

may

 

want

 

to

 

display

 

a

 

different

 

module

 

or

 

see

 

a

 

different

 

view

 

of

 

the

 

same

 

module

 

(if

 

you

 

created

 

the

 

module

 

with

 

several

 

different

 

views).

 

The

 

ILE

 

source

 

debugger

 

remembers

 

the

 

last

 

position

 

in

 

which

 

the

 

module

 

is

 

displayed,

 

and

 

displays

 

it

 

in

 

the

 

same

 

position

 

when

 

a

 

module

 

is

 

redisplayed.

 

Lines

 

that

 

have

 

breakpoints

 

set

 

are

 

highlighted.

 

When

 

a

 

breakpoint,

 

step,

 

or

 

message

 

causes

 

the

 

program

 

to

 

stop

 

and

 

the

 

display

 

to

 

be

 

shown,

 

the

 

statement

 

where

 

the

 

breakpoint

 

occurred

 

is

 

highlighted.

 

Displaying

 

Other

 

Modules

 

in

 

Your

 

Program

 

You

 

may

 

want

 

to

 

set

 

some

 

debug

 

options

 

in

 

other

 

modules

 

of

 

your

 

program.

 

You

 

can

 

do

 

this

 

by

 

changing

 

the

 

module

 

that

 

is

 

shown

 

on

 

the

 

Display

 

Module

 

Source

 

display

 

to

 

specify

 

the

 

preferred

 

module.

 

You

 

can

 

change

 

the

 

module

 

that

 

is

 

shown

 

on

 

the

 

Display

 

Module

 

Source

 

display

 

by

 

using:

 

v

   

The

 

Work

 

with

 

Module

 

list

 

display

 

v

   

The

 

Display

 

Module

 

debug

 

command

 

If

 

you

 

use

 

the

 

Display

 

Module

 

debug

 

command

 

with

 

an

 

ILE

 

program

 

object,

 

the

 

entry

 

module

 

with

 

a

 

root

 

source,

 

COPY,

 

or

 

listing

 

view

 

is

 

shown

 

(if

 

it

 

exists).

 

Otherwise

 

the

 

first

 

module

 

object

 

bound

 

to

 

the

 

program

 

object

 

with

 

debug

 

data

 

is

 

shown.

 

If

 

you

 

use

 

this

 

option

 

with

 

an

 

OPM

 

program

 

object,

 

then

 

the

 

source

 

or

 

listing

 

view

 

is

 

shown

 

(if

 

available).

 

Example:

 

Changing

 

the

 

Module

 

Displayed

 

in

 

a

 

Session

 

This

 

example

 

shows

 

you

 

how

 

to

 

change

 

from

 

the

 

module

 

shown

 

on

 

the

 

Display

 

Module

 

Source

 

display

 

to

 

another

 

module

 

in

 

the

 

same

 

program

 

using

 

Display

 

Module

 

debug

 

command.

 

1.

   

While

 

in

 

a

 

debug

 

session,

 

enter

 

DSPMODSRC.

 

The

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

 

2.

   

On

 

the

 

debug

 

command

 

line,

 

enter:

 

display

 

module

 

T1520IC2

  

The

 

module

 

T1520IC2

 

is

 

displayed.

  

130

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Displaying

 

a

 

Different

 

View

 

Of

 

a

 

Module

 

Several

 

different

 

views

 

of

 

a

 

module

 

are

 

available

 

depending

 

on

 

the

 

values

 

you

 

specify

 

when

 

you

 

create

 

the

 

module.

 

They

 

are:

 

v

   

Root

 

source

 

view

 

v

   

Include

 

source

 

view

 

v

   

Listing

 

view

Example:

 

This

 

example

 

shows

 

you

 

how

 

to

 

change

 

the

 

view

 

of

 

the

 

module

 

shown

 

on

 

the

 

Display

 

Module

 

Source

 

display.

 

1.

   

To

 

change

 

the

 

view

 

of

 

the

 

module

 

on

 

the

 

Display

 

Module

 

Source

 

display

 

type

 

DSPMODSRC,

 

and

 

press

 

Enter.

 

The

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

 

2.

   

Press

 

F15

 

(Select

 

view).

 

The

 

Select

 

View

 

window

 

is

 

as

 

shown:

                               

Display

 

Module

 

Source

  

..............................................................................

  

:

                                

Select

 

View

                                 

:

  

:

                                                                            

:

  

:

  

Current

 

View

 

.

 

.

 

.

 

:

   

ILE

 

C

 

root

 

source

 

view

                         

:

  

:

                                                                            

:

  

:

  

Type

 

option,

 

press

 

Enter.

                                                 

:

  

:

    

1=Select

                                                                

:

  

:

                                                                            

:

  

:

  

Opt

     

View

                                                              

:

  

:

  

_

        

ILE

 

C

 

root

 

source

 

view

                                       

:

  

:

  

1

        

ILE

 

C

 

include

 

view

                                           

:

  

:

                                                                            

:

  

:

                                                                    

Bottom

  

:

  

:

  

F12=Cancel

                                                                

:

  

:

                                                                            

:

  

:............................................................................:

                                                                             

More...

  

Debug

 

.

 

.

 

.

  

___________________________________________________________

  

________________________________________________________________________

  

F3=End

 

program

   

F6=Add/Clear

 

breakpoint

   

F10=Step

   

F11=Display

 

variable

  

F12=Resume

       

F17=Watch

 

variable

   

F18=Work

 

with

 

watch

  

F24=More

 

keys

 

The

 

current

 

view

 

is

 

listed

 

at

 

the

 

top

 

of

 

the

 

window,

 

and

 

the

 

other

 

views

 

that

 

are

 

available

 

are

 

shown

 

below.

 

Each

 

module

 

in

 

a

 

program

 

can

 

have

 

a

 

different

 

set

 

of

 

views

 

available,

 

depending

 

on

 

the

 

debug

 

options

 

used

 

to

 

create

 

it.

 

3.

   

Enter

 

1

 

next

 

to

 

the

 

ILE

 

C

 

Include

 

view.

 

The

 

Display

 

Module

 

Source

 

display

 

appears

 

showing

 

the

 

module

 

with

 

an

 

include

 

source

 

view.

 

The

 

source

 

of

 

the

 

include

 

view

 

will

 

be

 

shown

 

at

 

a

 

statement

 

position

 

that

 

is

 

equivalent

 

to

 

the

 

statement

 

position

 

in

 

the

 

current

 

view.

  

Chapter

 

10.

 

Working

 

with

 

Source

 

Debug

 

Sessions

 

131



132

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

11.

 

Using

 

Breakpoints

 

to

 

Aid

 

Debugging

 

The

 

flow

 

of

 

a

 

program

 

can

 

be

 

controlled

 

with

 

breakpoints.

 

When

 

a

 

breakpoint

 

stops

 

the

 

program,

 

the

 

Display

 

Module

 

Source

 

display

 

appears.

 

Use

 

this

 

display

 

to

 

evaluate

 

variables,

 

set

 

more

 

breakpoints,

 

and

 

run

 

any

 

of

 

the

 

source

 

debugger

 

commands.

 

The

 

appropriate

 

module

 

is

 

shown

 

with

 

the

 

source

 

positioned

 

to

 

the

 

line

 

where

 

the

 

condition

 

occurred.

 

The

 

cursor

 

will

 

be

 

positioned

 

on

 

the

 

line

 

where

 

the

 

breakpoint

 

occurred

 

if

 

the

 

cursor

 

was

 

in

 

the

 

text

 

area

 

of

 

the

 

display

 

the

 

last

 

time

 

the

 

source

 

was

 

displayed.

 

Otherwise,

 

it

 

is

 

positioned

 

on

 

the

 

debug

 

command

 

line.

 

If

 

you

 

change

 

the

 

view

 

of

 

the

 

module

 

after

 

setting

 

breakpoints,

 

then

 

the

 

line

 

numbers

 

of

 

the

 

breakpoints

 

are

 

mapped

 

to

 

the

 

new

 

view

 

by

 

the

 

source

 

debugger.

 

This

 

chapter

 

describes:

 

v

   

Breakpoint

 

types

 

v

   

How

 

to

 

set

 

conditional

 

and

 

unconditional

 

breakpoints

 

in

 

an

 

unthreaded

 

program

 

v

   

How

 

to

 

set

 

conditional

 

thread

 

breakpoints

 

v

   

How

 

to

 

test

 

breakpoints

 

v

   

How

 

to

 

remove

 

all

 

breakpoints

Types

 

Of

 

Breakpoints

 

The

 

type

 

of

 

breakpoint

 

determines

 

the

 

scope

 

of

 

the

 

flow

 

that

 

it

 

controls.

 

Job

 

and

 

Thread

 

Breakpoints

 

There

 

are

 

two

 

types

 

of

 

breakpoints:

 

job

 

and

 

thread.

 

v

   

Typically,

 

you

 

use

 

breakpoints

 

to

 

halt

 

processing

 

of

 

a

 

program,

 

or

 

job.

 

v

   

Each

 

thread

 

in

 

a

 

threaded

 

application

 

may

 

have

 

it’s

 

own

 

thread

 

breakpoint.

Both

 

job

 

and

 

thread

 

breakpoints

 

can

 

be

 

either

 

unconditional

 

or

 

conditional.

 

In

 

general,

 

there

 

is

 

one

 

set

 

of

 

debug

 

commands

 

and

 

function

 

keys

 

for

 

job

 

breakpoints

 

and

 

another

 

for

 

thread

 

breakpoints.

 

For

 

the

 

rest

 

of

 

this

 

section

 

on

 

breakpoints,

 

the

 

term

 

breakpoint

 

refers

 

to

 

both

 

job

 

and

 

thread,

 

unless

 

specifically

 

mentioned

 

otherwise.

 

Conditional

 

and

 

Unconditional

 

Breakpoints

 

You

 

can

 

set

 

unconditional

 

and

 

conditional

 

breakpoints.

 

An

 

unconditional

 

breakpoint

 

stops

 

the

 

program

 

at

 

a

 

specific

 

statement.

 

A

 

conditional

 

breakpoint

 

stops

 

the

 

program

 

when

 

a

 

specific

 

condition

 

at

 

a

 

specific

 

statement

 

is

 

met.

 

Setting

 

Breakpoints

 

To

 

work

 

with

 

a

 

module

 

you

 

can:

 

use

 

either

 

of

 

the

 

following:

 

v

   

F13

 

(Work

 

with

 

module

 

breakpoints)

 

v

   

F6

 

(Add/Clear

 

breakpoint)

 

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

133



You

 

can

 

set

 

conditional

 

and

 

unconditional

 

breakpoints

 

by

 

using

 

the

 

BREAK

 

debug

 

command.

Note:

  

You

 

can

 

also

 

add

 

breakpoints

 

with

 

the

 

BREAK

 

or

 

TBREAK

 

debug

 

commands.

 

For

 

information

 

on

 

using

 

the

 

BREAK

 

command,

 

see

 

“Setting

 

Unconditional

 

Breakpoints

 

from

 

the

 

Command

 

Line”

 

on

 

page

 

135.

 

For

 

information

 

on

 

using

 

the

 

TBREAK

 

command,

 

see

 

“Setting

 

Conditional

 

Thread

 

Breakpoints”

 

on

 

page

 

136.

 

You

 

can

 

remove

 

conditional

 

and

 

unconditional

 

breakpoints

 

by

 

using

 

the

 

CLEAR

 

debug

 

command.

 

Setting

 

Unconditional

 

Breakpoints

 

from

 

the

 

Display

 

Module

 

Source

 

Display

 

Example:

 

This

 

example

 

shows

 

you

 

how

 

to

 

set

 

an

 

unconditional

 

breakpoint

 

using

 

F6

 

(Add/clear

 

breakpoints).

 

1.

   

Enter

 

DSPMODSRC.

 

The

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

 

2.

   

To

 

display

 

the

 

module

 

source

 

that

 

you

 

want

 

to

 

modify,

 

type

 

display

 

module

 

name,

 

where

 

name

 

is

 

the

 

file

 

name

 

of

 

the

 

module

 

you

 

want

 

to

 

modify,

 

and

 

press

 

Enter.

 

3.

   

For

 

each

 

unconditional

 

breakpoint

 

you

 

want

 

to

 

set:

 

a.

   

Place

 

the

 

cursor

 

on

 

the

 

line

 

that

 

should

 

follow

 

the

 

new

 

breakpoint.

 

b.

   

Press

 

F6

 

(Add/Clear

 

breakpoint).

 

Note:

  

If

 

there

 

is

 

no

 

breakpoint

 

on

 

the

 

line

 

you

 

specify,

 

an

 

unconditional

 

breakpoint

 

is

 

set

 

on

 

that

 

line.

 

If

 

there

 

is

 

a

 

breakpoint

 

on

 

the

 

line

 

you

 

specify,

 

it

 

is

 

removed

 

(even

 

if

 

it

 

is

 

a

 

conditional

 

breakpoint).
The

 

following

 

example

 

shows

 

an

 

unconditional

 

breakpoint

 

set

 

at

 

line

 

50

 

of

 

module

 

T1520PG1:

                               

Display

 

Module

 

Source

  

Program:

   

T1520PG1

       

Library:

   

MYLIB

          

Module:

   

T1520IC2

      

46

    

{

      

47

      

if

 

(j<0)

 

return(0);

      

48

      

if

 

(hold_formatted_cost[i]

 

==

 

’$’)

      

49

      

{

      

50

        

formatted_cost[j]

 

=

 

hold_formatted_cost[i];

      

51

        

break;

      

52

      

}

      

53

      

if

 

(i<16

 

&&;

 

!((i-2)%3))

      

54

      

{

      

55

        

formatted_cost[j]

 

=

 

’,’;

      

56

        

--j;

      

57

      

}

      

58

      

formatted_cost[j]

 

=

 

hold_formatted_cost[i];

      

59

      

--j;

      

60

    

}

  

Debug

 

.

 

.

 

.

  

___________________________________________________________

  

________________________________________________________________________

  

F3=End

 

program

   

F6=Add/Clear

 

breakpoint

   

F10=Step

   

F11=Display

 

variable

  

F12=Resume

       

F17=Watch

 

variable

   

F18=Work

 

with

 

watch

  

F24=More

 

keys

  

Breakpoint

 

added

 

to

 

line

 

50

 

Note:

  

To

 

remove

 

a

 

breakpoint,

 

use

 

the

 

CLEAR

 

command.

 

For

 

example,

 

clear

 

50

 

removes

 

the

 

breakpoint

 

at

 

line

 

50.
4.

   

After

 

all

 

breakpoints

 

are

 

set:

   

134

 

ILE

 

C/C++

 

Programmer’s

 

Guide



a.

   

Press

 

F12

 

(Cancel)

 

to

 

leave

 

the

 

Work

 

with

 

Module

 

Breakpoints

 

display.

 

b.

   

Press

 

F3

 

(End

 

Program)

 

to

 

leave

 

the

 

ILE

 

source

 

debugger.

 

Your

 

breakpoints

 

are

 

not

 

removed.

Setting

 

Unconditional

 

Breakpoints

 

from

 

the

 

Command

 

Line

 

To

 

set

 

an

 

unconditional

 

breakpoint

 

using

 

the

 

BREAK

 

debug

 

command,

 

enter

 

BREAK

 

line-number

 

on

 

the

 

debug

 

command

 

line.

 

The

 

variable

 

line-number

 

is

 

the

 

line

 

number

 

in

 

the

 

currently

 

displayed

 

view

 

of

 

the

 

module

 

on

 

which

 

you

 

want

 

to

 

set

 

a

 

breakpoint.

Note:

  

To

 

remove

 

an

 

unconditional

 

breakpoint

 

using

 

the

 

CLEAR

 

debug

 

command,

 

enter:

 

CLEAR

 

line-number

 

on

 

the

 

debug

 

command

 

line.

 

Setting

 

Conditional

 

Breakpoints

 

for

 

a

 

Macro

 

To

 

set

 

a

 

breakpoint

 

on

 

the

 

first

 

statement

 

of

 

a

 

multi-statement

 

macro,

 

position

 

the

 

cursor

 

on

 

the

 

line

 

containing

 

the

 

macro

 

invocation,

 

not

 

the

 

macro

 

expansion.

 

Example:

 

This

 

example

 

shows

 

you

 

how

 

to

 

set

 

a

 

conditional

 

breakpoint

 

using

 

F13

 

(Work

 

with

 

module

 

breakpoints).

 

1.

   

To

 

work

 

with

 

a

 

module,

 

enter

 

DSPMODSRC.

 

The

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

 

2.

   

To

 

display

 

the

 

module

 

source

 

that

 

you

 

want

 

to

 

modify,

 

type

 

display

 

module

 

name,

 

where

 

name

 

is

 

the

 

file

 

name

 

of

 

the

 

module

 

you

 

want

 

to

 

modify,

 

and

 

press

 

Enter.

 

3.

   

For

 

each

 

conditional

 

breakpoint

 

you

 

want

 

to

 

set:

 

a.

   

Place

 

the

 

cursor

 

on

 

the

 

line

 

that

 

should

 

follow

 

the

 

new

 

breakpoint.

 

b.

   

Press

 

F13

 

(Work

 

with

 

module

 

breakpoints).

 

The

 

Work

 

with

 

Module

 

Breakpoints

 

display

 

appears.

 

c.

   

Place

 

the

 

cursor

 

on

 

the

 

first

 

line

 

of

 

the

 

list,

 

type

 

1

 

(Add),

 

and

 

press

 

Enter.
For

 

example,

 

to

 

set

 

a

 

conditional

 

breakpoint

 

at

 

line

 

35

 

when

 

i

 

is

 

equal

 

to

 

21:

 

1)

   

In

 

the

 

Line

 

type,

 

enter

 

35.

 

2)

   

In

 

the

 

Condition

 

field,

 

type

 

i==21.

 

3)

   

Press

 

Enter

Note:

  

If

 

you

 

do

 

not

 

want

 

to

 

switch

 

panels,

 

you

 

can

 

set

 

the

 

same

 

breakpoint

 

from

 

the

 

Display

 

Module

 

Source

 

command

 

line

 

by

 

typing:

 

break

 

35

 

when

 

i==21

  

A

 

conditional

 

breakpoint

 

is

 

set

 

on

 

line

 

35.

                           

Work

 

with

 

Module

 

Breakpoints

                                                              

System:

   

TORASD80

  

Program

  

.

 

.

 

.

 

:

   

T1520PG1

              

Library

  

.

 

.

 

.

 

:

   

MYLIB

    

Module

 

.

 

.

 

.

 

:

     

T1520IC2

            

Type

 

.

 

.

 

.

 

.

 

.

 

:

   

*PGM

  

Type

 

options,

 

press

 

Enter.

    

1=Add

   

4=Clear

  

Opt

     

Line

       

Condition

   

1

      

35

     

i==21

   

_

      

50

       

Note:

  

An

 

existing

 

breakpoint

 

is

 

always

 

replaced

 

by

 

a

 

new

 

breakpoint

 

entered

 

at

 

the

 

same

 

location.

  

Chapter

 

11.

 

Using

 

Breakpoints

 

to

 

Aid

 

Debugging

 

135



4.

   

After

 

all

 

breakpoints

 

are

 

set:

 

a.

   

Press

 

F12

 

(Cancel)

 

to

 

leave

 

the

 

Work

 

with

 

Module

 

Breakpoints

 

display.

 

b.

   

Press

 

F3

 

(End

 

Program)

 

to

 

leave

 

the

 

ILE

 

source

 

debugger.

 

Your

 

breakpoints

 

are

 

not

 

removed.

Setting

 

Conditional

 

Breakpoints

 

for

 

a

 

Statement

 

You

 

can

 

set

 

a

 

conditional

 

breakpoint

 

to

 

a

 

statement.

 

For

 

example,

 

if

 

you

 

have

 

a

 

compiler

 

listing

 

that

 

contains

 

line

 

numbers

 

and

 

statement

 

numbers,

 

you

 

can

 

use

 

the

 

statement

 

syntax

 

to

 

set

 

a

 

breakpoint

 

on

 

a

 

specific

 

statement

 

when

 

there

 

are

 

several

 

statements

 

on

 

a

 

single

 

line.

 

Line

   

Stmt

      

Source

 

33

      

24

       

i=j;

 

j=0;

 

34

      

26

       

array[i]

 

=

 

cost;

 

Break

 

myfunction/25

 

sets

 

a

 

breakpoint

 

on

 

the

 

statement

 

j=0

 

assuming

 

this

 

is

 

in

 

myfunction.

 

If

 

you

 

then

 

enter

 

Break

 

33,

 

a

 

breakpoint

 

is

 

set

 

at

 

statement

 

24,

 

i=j.

 

To

 

set

 

a

 

breakpoint

 

on

 

the

 

first

 

statement

 

of

 

a

 

multi-statement

 

macro,

 

position

 

the

 

cursor

 

on

 

the

 

line

 

containing

 

the

 

macro

 

invocation,

 

not

 

the

 

macro

 

expansion.

 

Setting

 

Conditional

 

Thread

 

Breakpoints

 

You

 

can

 

set

 

or

 

remove

 

a

 

conditional

 

thread

 

breakpoint

 

by

 

using:

 

v

   

The

 

Work

 

with

 

Module

 

Breakpoints

 

display

 

v

   

The

 

TBREAK

 

debug

 

command

 

to

 

set

 

a

 

conditional

 

thread

 

breakpoint

 

in

 

the

 

current

 

thread

 

v

   

The

 

CLEAR

 

debug

 

command

 

to

 

remove

 

a

 

conditional

 

thread

 

breakpoint

Setting

 

a

 

Conditional

 

Thread

 

Breakpoint

 

from

 

the

 

Work

 

with

 

Module

 

Breakpoints

 

Display

 

To

 

set

 

a

 

conditional

 

thread

 

breakpoint

 

using

 

the

 

Work

 

with

 

Module

 

Breakpoints

 

display:

 

1.

   

Press

 

F13

 

to

 

display

 

Work

 

with

 

Module

 

Breakpoints

 

and

 

press

 

Enter.

 

2.

   

Type

 

1

 

(Add)

 

in

 

the

 

Opt

 

field

 

and

 

press

 

Enter.

 

3.

   

Fill

 

in

 

the

 

remaining

 

fields

 

as

 

if

 

it

 

were

 

a

 

conditional

 

job

 

breakpoint.

To

 

remove

 

a

 

conditional

 

thread

 

breakpoint

 

using

 

the

 

Work

 

with

 

Module

 

Breakpoints

 

display:

 

Type

 

4

 

(Clear)

 

in

 

the

 

Opt

 

field

 

next

 

to

 

the

 

breakpoint

 

you

 

want

 

to

 

remove

 

and

 

Press

 

Enter.

 

Setting

 

a

 

Conditional

 

Thread

 

Breakpoint

 

from

 

the

 

Command

 

Line

 

You

 

use

 

the

 

same

 

syntax

 

for

 

the

 

TBREAK

 

debug

 

command

 

as

 

you

 

would

 

for

 

the

 

BREAK

 

debug

 

command.

 

The

 

difference

 

between

 

these

 

commands

 

is

 

that

 

the

 

BREAK

 

debug

 

command

 

sets

 

a

 

conditional

 

job

 

breakpoint

 

at

 

the

 

same

 

position

 

in

 

all

 

threads,

 

while

 

the

 

TBREAK

 

debug

 

command

 

sets

 

a

 

conditional

 

thread

 

breakpoint

 

in

 

the

 

current

 

thread.

Note:

  

To

 

remove

 

a

 

conditional

 

thread

 

breakpoint,

 

use

 

the

 

CLEAR

 

debug

 

command.

 

When

 

a

 

conditional

 

thread

 

breakpoint

 

is

 

removed,

 

it

 

is

 

removed

 

for

 

the

 

current

 

thread

 

only.

  

136

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Testing

 

Breakpoints

 

1.

   

Call

 

the

 

program.

 

2.

   

When

 

an

 

unconditional

 

breakpoint

 

is

 

reached,

 

the

 

program

 

stops

 

and

 

the

 

Display

 

Module

 

Source

 

display

 

is

 

shown

 

again.

 

3.

   

When

 

a

 

conditional

 

breakpoint

 

is

 

reached,

 

the

 

expression

 

is

 

evaluated

 

before

 

the

 

statement

 

is

 

run.

 

v

   

If

 

the

 

result

 

is

 

true

 

(in

 

the

 

example,

 

if

 

i

 

is

 

equal

 

to

 

21),

 

the

 

program

 

stops,

 

and

 

the

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

 

v

   

If

 

the

 

result

 

is

 

false,

 

the

 

program

 

continues

 

to

 

run.

Removing

 

All

 

Breakpoints

 

You

 

can

 

remove

 

all

 

breakpoints,

 

conditional

 

and

 

unconditional,

 

from

 

a

 

program

 

that

 

has

 

a

 

module

 

shown

 

on

 

the

 

Display

 

Module

 

Source

 

display

 

by

 

using

 

the

 

CLEAR

 

PGM

 

debug

 

command.

 

To

 

use

 

the

 

debug

 

command,

 

type

 

CLEAR

 

PGM

 

on

 

the

 

debug

 

command

 

line

 

and

 

press

 

Enter.

 

The

 

breakpoints

 

are

 

removed

 

from

 

all

 

of

 

the

 

modules

 

bound

 

to

 

the

 

program.

   

Chapter

 

11.

 

Using

 

Breakpoints

 

to

 

Aid

 

Debugging

 

137



138

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

12.

 

Using

 

Watches

 

to

 

Aid

 

Debugging

 

Use

 

a

 

watch

 

condition

 

to

 

monitor

 

changes

 

in

 

the

 

current

 

value

 

of

 

a

 

variable

 

or

 

an

 

expression

 

which

 

determines

 

the

 

address

 

of

 

a

 

storage

 

location.

 

Setting

 

watch

 

conditions

 

is

 

similar

 

to

 

setting

 

conditional

 

breakpoints,

 

with

 

one

 

important

 

difference:

 

v

   

Watch

 

conditions

 

stop

 

the

 

program

 

as

 

soon

 

as

 

the

 

value

 

of

 

a

 

variable

 

changes

 

from

 

its

 

current

 

value.

 

v

   

Conditional

 

breakpoints

 

stop

 

the

 

program

 

only

 

if

 

the

 

condition

 

stated

 

in

 

the

 

associated

 

expression

 

is

 

satisfied

 

when

 

the

 

statement

 

is

 

executed.

The

 

debugger

 

watches

 

a

 

variable

 

through

 

the

 

content

 

of

 

a

 

storage

 

address,

 

computed

 

at

 

the

 

time

 

the

 

watch

 

condition

 

is

 

set.

 

When

 

the

 

content

 

at

 

the

 

storage

 

address

 

is

 

changed

 

from

 

the

 

value

 

it

 

had

 

when

 

the

 

watch

 

condition

 

was

 

set

 

or

 

when

 

the

 

last

 

watch

 

condition

 

occurred,

 

a

 

breakpoint

 

is

 

set,

 

and

 

the

 

program

 

stops.

 

Note:

  

After

 

a

 

watch

 

condition

 

has

 

been

 

registered,

 

the

 

new

 

content

 

at

 

the

 

watched

 

storage

 

location

 

is

 

saved

 

as

 

the

 

new

 

current

 

value

 

of

 

the

 

corresponding

 

variable.

 

The

 

next

 

watch

 

condition

 

will

 

be

 

registered

 

if

 

the

 

new

 

content

 

at

 

the

 

watched

 

storage

 

location

 

changes

 

subsequently.

 

This

 

chapter

 

describes:

 

v

   

Characteristics

 

of

 

watches

 

v

   

How

 

to

 

set

 

and

 

remove

 

watch

 

conditions

 

v

   

An

 

example

 

of

 

setting

 

a

 

watch

 

condition

 

on

 

a

 

variable

 

v

   

How

 

to

 

display

 

active

 

watches

Characteristics

 

and

 

Limitations

 

Of

 

Watches

 

When

 

using

 

watches,

 

keep

 

the

 

following

 

watch

 

characteristics

 

in

 

mind:

 

v

   

Watches

 

are

 

monitored

 

on

 

a

 

system-wide

 

basis,

 

with

 

a

 

maximum

 

number

 

of

 

256

 

watches

 

that

 

can

 

be

 

active

 

simultaneously.

 

This

 

number

 

includes

 

watches

 

set

 

by

 

the

 

system.

  

Depending

 

on

 

overall

 

system

 

use,

 

you

 

may

 

be

 

limited

 

in

 

the

 

number

 

of

 

watch

 

conditions

 

you

 

can

 

set

 

at

 

a

 

given

 

time.

 

If

 

you

 

try

 

to

 

set

 

a

 

watch

 

condition

 

while

 

the

 

maximum

 

number

 

of

 

active

 

watches

 

across

 

the

 

system

 

is

 

exceeded,

 

you

 

will

 

receive

 

an

 

error

 

message

 

and

 

the

 

watch

 

condition

 

is

 

not

 

set.

 

Note:

  

If

 

a

 

variable

 

crosses

 

a

 

page

 

boundary,

 

two

 

watches

 

are

 

used

 

internally

 

to

 

monitor

 

the

 

storage

 

locations.

 

Therefore,

 

the

 

maximum

 

number

 

of

 

variables

 

that

 

can

 

be

 

watched

 

simultaneously

 

on

 

a

 

system-wide

 

basis

 

ranges

 

from

 

128

 

to

 

256.

 

v

   

Watch

 

conditions

 

can

 

be

 

set

 

only

 

when

 

a

 

program

 

is

 

stopped

 

under

 

debug,

 

and

 

the

 

variable

 

to

 

be

 

watched

 

is

 

in

 

scope.

 

If

 

this

 

is

 

not

 

the

 

case,

 

an

 

error

 

message

 

is

 

issued

 

when

 

a

 

watch

 

is

 

requested,

 

indicating

 

that

 

the

 

corresponding

 

call

 

stack

 

entry

 

does

 

not

 

exist.

 

v

   

Once

 

the

 

watch

 

condition

 

is

 

set,

 

the

 

address

 

of

 

a

 

storage

 

location

 

that

 

is

 

watched

 

does

 

not

 

change.

 

Therefore,

 

if

 

a

 

watch

 

is

 

set

 

on

 

a

 

temporary

 

location,

 

it

 

could

 

result

 

in

 

spurious

 

watch-condition

 

notifications.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

139



An

 

example

 

of

 

this

 

is

 

the

 

automatic

 

storage

 

of

 

an

 

ILE

 

C/C++

 

procedure,

 

which

 

can

 

be

 

reused

 

after

 

the

 

procedure

 

ends.

  

A

 

watch

 

condition

 

may

 

be

 

triggered

 

even

 

though

 

the

 

watched

 

variable

 

is

 

no

 

longer

 

in

 

scope.

 

You

 

must

 

not

 

assume

 

that

 

a

 

variable

 

is

 

in

 

scope

 

just

 

because

 

a

 

watch

 

condition

 

has

 

been

 

reported.

 

v

   

Two

 

watch

 

locations

 

in

 

the

 

same

 

job

 

must

 

not

 

overlay

 

in

 

any

 

way.

 

Two

 

watch

 

locations

 

in

 

different

 

jobs

 

must

 

not

 

start

 

at

 

the

 

same

 

storage

 

address;

 

otherwise,

 

overlap

 

is

 

allowed.

 

If

 

these

 

restrictions

 

are

 

violated,

 

an

 

error

 

message

 

is

 

issued.

 

Note:

  

Changes

 

that

 

are

 

made

 

to

 

a

 

watched

 

storage

 

location

 

are

 

ignored

 

if

 

they

 

are

 

made

 

by

 

a

 

job

 

other

 

than

 

the

 

one

 

that

 

set

 

the

 

watch

 

condition.

 

v

   

Eligible

 

programs

 

are

 

automatically

 

added

 

to

 

the

 

debug

 

session

 

if

 

they

 

cause

 

the

 

watch-stop

 

condition.

 

v

   

When

 

multiple

 

watch

 

conditions

 

are

 

hit

 

on

 

the

 

same

 

program

 

statement,

 

only

 

the

 

first

 

one

 

will

 

be

 

reported.

 

v

   

You

 

can

 

set

 

watch

 

conditions

 

when

 

you

 

are

 

using

 

service

 

jobs

 

for

 

debugging,

 

that

 

is

 

when

 

you

 

debug

 

one

 

job

 

from

 

another

 

job.

 

v

   

If

 

a

 

program

 

in

 

your

 

session

 

changes

 

the

 

content

 

of

 

a

 

watched

 

storage

 

location

 

and

 

a

 

watch

 

command

 

is

 

successfully

 

run,

 

your

 

application

 

is

 

stopped

 

and

 

the

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

  

If

 

the

 

program

 

has

 

debug

 

data

 

and

 

a

 

debug

 

view

 

is

 

available,

 

the

 

debug

 

data

 

is

 

shown.

 

The

 

source

 

line

 

highlighted

 

is

 

the

 

next

 

statement

 

to

 

run

 

(after

 

the

 

statement

 

that

 

changed

 

the

 

storage

 

location).

 

A

 

message

 

indicates

 

which

 

watch

 

condition

 

was

 

satisfied.

 

Note:

  

If

 

the

 

program

 

cannot

 

be

 

debugged,

 

the

 

text

 

area

 

of

 

the

 

display

 

is

 

blank.

Setting

 

and

 

Removing

 

Watch

 

Conditions

 

Your

 

program

 

must

 

be

 

stopped

 

under

 

debug,

 

and

 

the

 

variable

 

you

 

want

 

to

 

watch

 

must

 

be

 

in

 

scope

 

before

 

you

 

can

 

set

 

a

 

watch

 

condition:

 

v

   

To

 

watch

 

a

 

global

 

variable,

 

you

 

must

 

ensure

 

that

 

the

 

program

 

in

 

which

 

the

 

variable

 

is

 

defined

 

is

 

active

 

before

 

setting

 

the

 

watch

 

condition.

 

v

   

To

 

watch

 

a

 

local

 

variable,

 

you

 

must

 

step

 

into

 

the

 

function

 

in

 

which

 

the

 

variable

 

is

 

defined

 

before

 

setting

 

the

 

watch

 

condition.

Setting

 

watch

 

conditions

 

You

 

can

 

set

 

a

 

watch

 

condition

 

by

 

using:

 

v

   

F17

 

(watch

 

variable)

 

to

 

set

 

a

 

watch

 

condition

 

for

 

the

 

variable

 

under

 

the

 

cursor.

 

v

   

The

 

WATCH

 

debug

 

command

 

with

 

or

 

without

 

its

 

parameters.

Using

 

the

 

WATCH

 

Debug

 

Command

 

If

 

you

 

use

 

the

 

WATCH

 

command,

 

it

 

must

 

be

 

entered

 

as

 

a

 

single

 

command;

 

no

 

other

 

debug

 

commands

 

are

 

allowed

 

on

 

the

 

same

 

command

 

line.

 

v

   

To

 

access

 

the

 

Work

 

with

 

Watch

 

display

 

shown

 

below,

 

enter

 

WATCHwithout

 

any

 

parameters.

   

140

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Work

 

with

 

Watch

                                                     

System:

  

DEBUGGER

   

Type

 

options,

 

press

 

Enter.

     

4=Clear

 

5=Display

   

Opt

    

Num

      

Variable

                  

Address

            

Length

    

-

     

1

        

salary

                    

080090506F027004

   

4

                                                                               

Bottom

  

Command

  

===>____________________________________________________________________

  

F3=Exit

  

F4=Prompt

  

F5=Refresh

   

F9=Retrieve

   

F12=Cancel

 

The

 

Work

 

with

 

Watch

 

display

 

shows

 

all

 

watches

 

currently

 

active

 

in

 

the

 

debug

 

session.

 

You

 

can

 

clear,

 

and

 

display

 

watches

 

from

 

this

 

display.

 

When

 

you

 

select

 

5=Display,

 

the

 

Display

 

Watch

 

window

 

that

 

is

 

shown

 

below

 

displays

 

information

 

about

 

the

 

currently

 

active

 

watch.

                            

Work

 

with

 

Watch

  

..........................................................

  

:

                     

Display

 

Watch

                      

:

  

DEBUGGER

  

:

                                                        

:

  

:

  

Watch

 

Number

 

....:

   

1

                                

:

  

:

  

Address

 

.........:

   

080090506F027004

                 

:

  

:

  

Length

 

..........:

   

4

                                

:

  

:

  

Number

 

of

 

Hits

 

..:

   

0

                                

:

  

:

                                                        

:

  

:

  

Scope

 

when

 

watch

 

was

 

set:

                             

:

  

:

    

Program/Library/Type:

    

PAYROLL

     

ABC

    

*PGM

    

:

  

:

                                                        

:

  

:

    

Module...:

    

PAYROLL

                               

:

  

:

    

Procedure:

    

main

                                  

:

  

:

    

Variable.:

    

salary

                                

:

  

:

                                                        

:

  

:

  

F12=Cancel

                                            

:

  

:

                                                        

:

  

..........................................................

                                                                 

Bottom

  

Command

  

===>____________________________________________________________________

  

F3=Exit

  

F4=Prompt

  

F5=Refresh

   

F9=Retrieve

   

F12=Cancel

 

v

   

To

 

specify

 

a

 

variable

 

to

 

be

 

watched,

 

enter

 

the

 

following

 

debug

 

command:

 

WATCH

 

variable

 

This

 

command

 

requests

 

a

 

breakpoint

 

to

 

be

 

set

 

if

 

the

 

value

 

of

 

variable

 

is

 

changed

 

from

 

its

 

current

 

value.

 

For

 

example,

 

watch

 

V,

 

where

 

V

 

is

 

a

 

variable.

 

v

   

To

 

specify

 

an

 

expression

 

to

 

be

 

watched,

 

enter

 

the

 

following

 

debug

 

command:

 

WATCH

 

expression

 

This

 

command

 

requests

 

a

 

breakpoint

 

to

 

be

 

set

 

if

 

the

 

value

 

of

 

expression

 

is

 

changed

 

from

 

its

 

current

 

value.

  

Note:

  

expression

 

is

 

used

 

to

 

determine

 

the

 

address

 

of

 

the

 

storage

 

location

 

to

 

watch

 

and

 

must

 

resolve

 

to

 

a

 

location

 

that

 

can

 

be

 

assigned

 

to,

 

for

 

example:

 

watch

 

(p+2),

 

where

 

p

 

is

 

a

 

pointer.

  

Chapter

 

12.

 

Using

 

Watches

 

to

 

Aid

 

Debugging

 

141



The

 

scope

 

of

 

the

 

expression

 

variables

 

in

 

a

 

watch

 

is

 

defined

 

by

 

the

 

most

 

recently

 

issued

 

QUAL

 

command.

 

v

   

To

 

set

 

a

 

watch

 

condition

 

and

 

specify

 

a

 

watch

 

length,

 

enter

 

WATCH

 

expression

 

:

 

watch-length.

  

Each

 

watch

 

allows

 

you

 

to

 

monitor

 

and

 

compare

 

a

 

maximum

 

of

 

128

 

bytes

 

of

 

contiguous

 

storage.

 

If

 

the

 

maximum

 

length

 

of

 

128

 

bytes

 

is

 

exceeded,

 

the

 

watch

 

condition

 

will

 

not

 

be

 

set,

 

and

 

the

 

debugger

 

issues

 

an

 

error

 

message.

  

By

 

default,

 

the

 

length

 

of

 

the

 

expression

 

type

 

is

 

also

 

the

 

length

 

of

 

the

 

watch-comparison

 

operation.

 

The

 

watch-length

 

parameter

 

overrides

 

this

 

default.

 

It

 

determines

 

the

 

number

 

of

 

bytes

 

of

 

an

 

expression

 

that

 

should

 

be

 

compared

 

to

 

determine

 

if

 

a

 

change

 

in

 

value

 

has

 

occurred.

  

For

 

example,

 

if

 

a

 

4-byte

 

binary

 

integer

 

is

 

specified

 

as

 

the

 

variable,

 

without

 

the

 

watch-length

 

parameter,

 

the

 

comparison

 

length

 

is

 

four

 

bytes.

 

However,

 

if

 

the

 

watch-length

 

parameter

 

is

 

specified,

 

it

 

overrides

 

the

 

length

 

of

 

the

 

expression

 

in

 

determining

 

the

 

watch

 

length.

Removing

 

Watch

 

Conditions

 

Watches

 

can

 

be

 

removed

 

in

 

the

 

following

 

ways:

 

v

   

The

 

CLEAR

 

command

 

that

 

is

 

used

 

with

 

the

 

WATCH

 

keyword

 

selectively

 

ends

 

one

 

or

 

all

 

watches.

 

For

 

example,

 

to

 

clear

 

the

 

watch

 

that

 

is

 

identified

 

by

 

watch-number,

 

enter:

 

CLEAR

 

WATCH

 

watch-number

 

The

 

watch

 

number

 

can

 

be

 

obtained

 

from

 

the

 

Work

 

with

 

Watches

 

display.

  

To

 

clear

 

all

 

watches

 

for

 

your

 

session,

 

enter:

 

CLEAR

 

WATCH

 

ALL

 

Note:

  

While

 

the

 

CLEAR

 

PGM

 

command

 

removes

 

all

 

breakpoints

 

in

 

the

 

program

 

that

 

contains

 

the

 

module

 

being

 

displayed,

 

it

 

has

 

no

 

effect

 

on

 

watches.

 

You

 

must

 

explicitly

 

use

 

the

 

WATCH

 

keyword

 

with

 

the

 

CLEAR

 

command

 

to

 

remove

 

watch

 

conditions.

Automatic

 

Removal

 

Of

 

Watch

 

Conditions

 

Watches

 

are

 

also

 

removed

 

in

 

the

 

following

 

ways:

 

v

   

The

 

CL

 

End

 

Debug

 

(ENDDBG)

 

command

 

removes

 

watches

 

that

 

are

 

set

 

in

 

the

 

local

 

job

 

or

 

in

 

a

 

service

 

job.

 

Note:

  

ENDDBG

 

will

 

be

 

called

 

automatically

 

in

 

abnormal

 

situations

 

to

 

ensure

 

that

 

all

 

affected

 

watches

 

are

 

removed.

 

v

   

The

 

initial

 

program

 

load

 

(IPL)

 

of

 

your

 

iSeries

 

system

 

removes

 

all

 

watch

 

conditions

 

system-wide.

Example

 

Of

 

Setting

 

a

 

Watch

 

Condition

 

In

 

this

 

example,

 

you

 

watch

 

a

 

variable

 

salary

 

in

 

program

 

MYLIB/PAYROLL.

 

To

 

set

 

the

 

watch

 

condition,

 

type

 

WATCH

 

salary

 

on

 

a

 

debug

 

line,

 

accepting

 

the

 

default

 

value

 

for

 

the

 

watch-length.

 

If

 

the

 

value

 

of

 

the

 

variable

 

salary

 

changes

 

subsequently,

 

the

 

application

 

stops,

 

and

 

the

 

Display

 

Module

 

Source

 

display

 

is

 

as

 

shown:

   

142

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Display

 

Module

 

Source

    

Program:

   

PAYROL

           

Library:

   

MYLIB

       

Module:

  

PAYROLL

      

52

  

for

  

(cnt=0;

      

53

        

cnt<EMPMAX

 

&&

      

54

          

scanf("%s%s%f%d%d",

 

payptr->first,

 

payptr->last,

      

55

                 

&(payptr->wage),

 

&eflag,

 

&(payptr->hrs))!=EOF;

      

56

        

cnt++,

 

payptr++)

      

57

  

{

      

58

     

payptr->exempt=eflag;

      

59

  

}

      

60

  

empsort(payfile,

 

cnt);

      

61

  

for

  

(index=1,

 

payptr=payfile;

 

index<=cnt;

 

index++,payptr++)

 

{

      

62

    

if

  

(payptr->exempt==1)

 

{

      

63

        

salary

 

=

 

40*(payptr->wage);

      

64

        

numexempt++;

  

}

      

65

    

else

      

66

        

salary

 

=

 

(payptr->hours)*(payptr->wage);

                                                                   

More...

  

Debug

 

.

 

.

 

.

  

___________________________________________________________

  

________________________________________________________________________

  

F3=End

 

program

  

F6=Add/Clear

 

breakpoint

  

F10=Step

  

F11=Display

 

variable

  

F12=Resume

       

F17=Watch

 

variable

   

F18=Work

 

with

 

watch

  

F24=More

 

keys

  

Watch

 

number

  

1

 

at

 

line

  

64,

 

variable:

 

salary

 

v

   

The

 

line

 

number

 

of

 

the

 

statement

 

where

 

the

 

change

 

to

 

the

 

watch

 

variable

 

was

 

detected

 

is

 

highlighted.

 

This

 

is

 

typically

 

the

 

first

 

executable

 

line

 

following

 

the

 

statement

 

that

 

changed

 

the

 

variable.

 

v

   

A

 

message

 

indicates

 

that

 

the

 

watch

 

condition

 

was

 

satisfied.

If

 

a

 

text

 

view

 

is

 

not

 

available,

 

a

 

blank

 

Display

 

Module

 

Source

 

display

 

is

 

shown,

 

with

 

the

 

same

 

message

 

as

 

above

 

in

 

the

 

message

 

area.

                                 

Display

 

Module

 

Source

  

(Source

 

not

 

available)

      

F3=End

 

program

  

F12=Resume

  

F14=Work

 

with

 

module

 

list

  

F18

 

Work

 

with

 

watch

  

F21=Command

 

entry

  

F22=Step

 

into

  

F23=Display

 

output

  

Watch

 

number

  

1

 

at

 

instruction

 

18,

  

variable:

 

salary

 

The

 

following

 

programs

 

cannot

 

be

 

added

 

to

 

the

 

ILE

 

debug

 

environment:

 

v

   

ILE

 

programs

 

without

 

debug

 

data

 

v

   

OPM

 

programs

 

with

 

non-source

 

debug

 

data

 

only

 

v

   

OPM

 

programs

 

without

 

debug

 

data

In

 

the

 

first

 

two

 

cases,

 

the

 

stopped

 

statement

 

number

 

is

 

passed.

 

In

 

the

 

third

 

case,

 

the

 

stopped

 

MI

 

instruction

 

is

 

passed.

 

The

 

information

 

is

 

displayed

 

at

 

the

 

bottom

 

of

 

a

 

blank

 

Display

 

Module

 

Source

 

display

 

as

 

shown

 

above.

 

Instead

 

of

 

the

 

line

 

number,

 

the

 

statement

 

or

 

the

 

instruction

 

number

 

is

 

given.

   

Chapter

 

12.

 

Using

 

Watches

 

to

 

Aid

 

Debugging

 

143



Displaying

 

Active

 

Watches

 

To

 

display

 

a

 

system-wide

 

list

 

of

 

active

 

watches

 

and

 

show

 

which

 

job

 

set

 

them,

 

type

 

DSPDBGWCH

 

on

 

the

 

command

 

line.

 

This

 

command

 

brings

 

up

 

the

 

Display

 

Debug

 

Watches

 

display

 

that

 

is

 

shown

 

below.

                               

Display

 

Debug

 

Watches

                                                               

System:

  

DEBUGGER

   

------------Job---------------

        

NUM

     

LENGTH

     

ADDRESS

   

MYJOBNAME1

  

MYUSERPRF1

  

123456

          

1

          

4

     

080090506F027004

   

JOB4567890

  

PRF4567890

  

222222

          

1

          

4

     

09849403845A2C32

   

JOB4567890

  

PRF4567890

  

222222

          

2

          

4

     

098494038456AA00

   

JOB

         

PROFILE

     

333333

         

14

          

4

     

040689578309AF09

   

SOMEJOB

     

SOMEPROFIL

  

444444

          

3

          

4

     

005498348048242A

 

Bottom

  

Press

 

Enter

 

to

 

continue

  

F3=Exit

  

F5=Refresh

   

F12=Cancel

 

Note:

  

This

 

display

 

does

 

not

 

show

 

watch

 

conditions

 

that

 

are

 

set

 

by

 

the

 

system.

  

144

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

13.

 

Stepping

 

Through

 

Programs

 

The

 

STEP

 

command

 

of

 

the

 

ILE

 

source

 

debugger

 

allows

 

you

 

to

 

run

 

a

 

specified

 

number

 

of

 

statements

 

of

 

a

 

program,

 

and

 

then

 

return

 

to

 

the

 

Display

 

Module

 

Source

 

display

 

at

 

the

 

position

 

of

 

the

 

next

 

statement

 

to

 

be

 

run.

 

The

 

cursor

 

is

 

positioned

 

on

 

this

 

statement

 

if

 

the

 

cursor

 

was

 

in

 

the

 

text

 

area

 

of

 

the

 

display

 

the

 

last

 

time

 

the

 

source

 

was

 

displayed.

 

Otherwise,

 

it

 

is

 

positioned

 

on

 

the

 

debug

 

command

 

line.

 

The

 

program

 

begins

 

at

 

the

 

statement

 

where

 

the

 

program

 

stopped.

 

Setting

 

a

 

breakpoint

 

causes

 

the

 

program

 

to

 

stop

 

before

 

the

 

statement

 

is

 

run.

 

The

 

default

 

number

 

of

 

statements

 

to

 

run

 

is

 

one.

 

This

 

chapter

 

describes

 

how

 

to:

 

v

   

Step

 

over

 

programs

 

v

   

Step

 

into

 

programs

 

v

   

Step

 

over

 

procedures

 

v

   

Step

 

into

 

procedures

Stepping

 

Over

 

Programs

 

You

 

can

 

step

 

over

 

programs

 

by

 

using:

 

v

   

F10

 

(Step)

 

on

 

the

 

Display

 

Module

 

Source

 

display

 

v

   

Step

 

Over

 

debug

 

command

Using

 

F10

 

to

 

Step

 

Over

 

Programs

 

Use

 

F10

 

(Step)

 

on

 

the

 

Display

 

Module

 

Source

 

display

 

to

 

step

 

over

 

a

 

called

 

program

 

in

 

a

 

debug

 

session.

 

If

 

the

 

next

 

statement

 

to

 

be

 

run

 

is

 

a

 

CALL

 

statement

 

to

 

another

 

program,

 

pressing

 

F10

 

(Step)

 

causes

 

the

 

called

 

program

 

to

 

run

 

to

 

completion

 

before

 

the

 

calling

 

program

 

is

 

stopped

 

again.

 

Using

 

the

 

STEP

 

OVER

 

Debug

 

Command

 

Use

 

the

 

Step

 

Over

 

debug

 

command

 

to

 

step

 

over

 

a

 

called

 

program

 

in

 

a

 

debug

 

session.

 

To

 

use

 

the

 

Step

 

Over

 

debug

 

command,

 

enter

 

STEP

 

number-of-statements

 

OVER.

 

The

 

variable

 

number-of-statements

 

is

 

the

 

number

 

of

 

statements

 

of

 

the

 

program

 

that

 

you

 

want

 

to

 

run

 

in

 

the

 

next

 

step

 

before

 

the

 

program

 

is

 

halted

 

again.

 

If

 

this

 

variable

 

is

 

omitted,

 

the

 

default

 

is

 

1.

 

If

 

one

 

of

 

the

 

statements

 

that

 

are

 

run

 

contains

 

a

 

call

 

to

 

another

 

program,

 

the

 

ILE

 

source

 

debugger

 

steps

 

over

 

the

 

called

 

program.

 

Stepping

 

into

 

Programs

 

Step

 

into

 

programs

 

by

 

using:

 

v

   

F22

 

(Step

 

into)

 

on

 

the

 

Display

 

Module

 

Source

 

display

 

v

   

The

 

STEP

 

INTO

 

debug

 

command.

Using

 

F22

 

to

 

Step

 

into

 

Programs

 

Use

 

F22

 

(Step

 

into)

 

on

 

the

 

Display

 

Module

 

Source

 

display

 

to

 

step

 

into

 

a

 

called

 

program

 

in

 

a

 

debug

 

session.

 

If

 

the

 

next

 

statement

 

to

 

be

 

run

 

is

 

a

 

Call

 

(CALL)

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

145



statement

 

to

 

another

 

program,

 

pressing

 

F22

 

causes

 

the

 

first

 

executable

 

statement

 

in

 

the

 

called

 

program

 

to

 

be

 

run.

 

The

 

called

 

program

 

is

 

then

 

shown

 

in

 

the

 

Display

 

Module

 

Source

 

display.

 

Note:

  

The

 

called

 

program

 

must

 

have

 

debug

 

data

 

associated

 

with

 

it

 

in

 

order

 

for

 

it

 

to

 

be

 

shown

 

in

 

the

 

Display

 

Module

 

Source

 

display.

 

Using

 

the

 

STEP

 

INTO

 

Debug

 

Command

 

Use

 

the

 

STEP

 

INTO

 

debug

 

command

 

to

 

step

 

into

 

a

 

called

 

program

 

in

 

a

 

debug

 

session.

 

To

 

use

 

the

 

STEP

 

INTO

 

debug

 

command,

 

enter:

 

STEP

 

number-of-statements

 

INTO

 

The

 

variable

 

number-of-statements

 

is

 

the

 

number

 

of

 

statements

 

of

 

the

 

program

 

that

 

you

 

want

 

to

 

run

 

in

 

the

 

next

 

step

 

before

 

the

 

program

 

is

 

halted

 

again.

 

If

 

this

 

variable

 

is

 

omitted,

 

the

 

default

 

is

 

1.

 

Stepping

 

into

 

Called

 

Programs

 

If

 

one

 

of

 

the

 

statements

 

being

 

run

 

contains

 

a

 

Call

 

(CALL)

 

statement

 

to

 

another

 

program,

 

the

 

source

 

debugger

 

steps

 

into

 

the

 

called

 

program.

 

Each

 

statement

 

in

 

the

 

called

 

program

 

is

 

counted

 

in

 

the

 

step.

 

If

 

the

 

step

 

ends

 

in

 

the

 

called

 

program,

 

the

 

called

 

program

 

is

 

shown

 

in

 

the

 

Display

 

Module

 

Source

 

display.

 

For

 

example,

 

if

 

you

 

enter

 

STEP

 

5

 

INTO,

 

the

 

next

 

five

 

statements

 

of

 

the

 

program

 

are

 

run.

 

If

 

the

 

third

 

statement

 

is

 

a

 

Call

 

(CALL)

 

statement

 

to

 

another

 

program,

 

two

 

statements

 

of

 

the

 

calling

 

program

 

are

 

run

 

and

 

the

 

first

 

two

 

statements

 

of

 

the

 

called

 

program

 

are

 

run.

Note:

  

The

 

step

 

is

 

counted

 

as

 

a

 

statement.

 

The

 

STEP

 

INTO

 

command

 

works

 

with

 

the

 

Call

 

(CALL)

 

command

 

as

 

well.

 

You

 

can

 

take

 

advantage

 

of

 

this

 

to

 

step

 

through

 

your

 

program

 

after

 

calling

 

it.

 

After

 

starting

 

the

 

source

 

debugger,

 

from

 

the

 

initial

 

Display

 

Module

 

Source

 

display,

 

enter

 

STEP

 

1

 

INTO

 

and

 

press

 

the

 

Enter

 

key.

 

This

 

sets

 

the

 

step

 

count

 

to

 

1.

 

Example

 

of

 

Stepping

 

into

 

a

 

Program

 

Using

 

F22

 

Use

 

F22

 

(Step

 

Into)

 

to

 

step

 

into

 

program

 

CPGM

 

from

 

the

 

program

 

DEBUGEX.

 

1.

   

Assume

 

that

 

the

 

Display

 

Module

 

Source

 

display

 

shows

 

the

 

source

 

for

 

DEBUGEX.

 

2.

   

To

 

set

 

an

 

unconditional

 

breakpoint

 

at

 

line

 

92,

 

which

 

is

 

the

 

last

 

executable

 

statement

 

before

 

the

 

call

 

to

 

function

 

CalcTax()

 

in

 

program

 

CPPPGM,

 

type

 

Break

 

92

 

and

 

press

 

Enter.

 

3.

   

Press

 

F3

 

(End

 

Program)

 

to

 

leave

 

the

 

Display

 

Module

 

Source

 

display.

 

4.

   

Call

 

the

 

program.

 

The

 

program

 

stops

 

at

 

breakpoint

 

92,

 

as

 

shown

 

in

 

Figure

 

71

 

on

 

page

 

147.

    

146

 

ILE

 

C/C++

 

Programmer’s

 

Guide



5.

   

Press

 

F22

 

(Step

 

into).

 

One

 

statement

 

of

 

the

 

program

 

is

 

run,

 

and

 

then

 

the

 

Display

 

Module

 

Source

 

display

 

of

 

CPGM

 

is

 

shown.

  

The

 

program

 

stops

 

at

 

the

 

first

 

executable

 

statement

 

of

 

CPGM

 

(line

 

13).

 

Note:

  

You

 

cannot

 

specify

 

the

 

number

 

of

 

statements

 

to

 

step

 

through

 

when

 

you

 

use

 

F22.

 

Pressing

 

F22

 

performs

 

a

 

single

 

step.

  

If

 

there

 

is

 

no

 

debug

 

data

 

available,

 

you

 

see

 

a

 

blank

 

Display

 

Module

 

Source

 

display

 

with

 

a

 

message

 

indicating

 

that

 

the

 

source

 

is

 

not

 

available.

 

DEBUGEX

 

Before

 

Stepping

 

Into

 

CPGM

                              

Display

 

Module

 

Source

  

Program:

   

DEBUGEX

        

Library:

   

MYLIB

          

Module:

   

DEBUGEX

      

88

          

cout

 

<<

 

"Please

 

enter

 

amount"

 

<<

 

endl;

      

89

          

cin

 

>>

 

input;

      

90

          

if

 

(input

 

>

 

MINIMUM)

 

{

      

91

          

//

 

call

 

function

 

CalcTax

 

in

 

separate

 

program

 

CPPPGM

      

92

             

retval1

 

=

 

CalcTax(input);

      

93

             

if

 

(retval1

 

>

 

LIMIT)

      

94

                

retval2

 

=

 

CalcSurtax(input)

      

95

          

}

      

96

          

cout

 

<<

 

"Total

 

tax

 

is

 

"

 

<<

 

retval1

 

=

 

retval2

 

<<

 

endl;

      

97

       

}

      

98

      

99

     

100

     

101

     

102

                                                                        

More...

  

Debug

 

.

 

.

 

.

    

__________________________________________________________________

  

_________________________________________________________________________________

  

F3=End

 

program

   

F6=Add/Clear

 

breakpoint

   

F10=Step

   

F11=Display

 

variable

  

F12=Resume

       

F17=Watch

 

variable

    

F18=Work

 

with

 

watch

   

F24=More

 

keys

  

Breakpoint

 

at

 

line

 

90

 

Figure

 

71.

 

Module

 

Source

 

Display

 

for

 

DEBUGEX

                             

Display

 

Module

 

Source

  

Program:

   

CPGM

         

Library:

   

MYLIB

       

1

        

*===============================================================

       

2

        

*

  

CPGM

 

-

 

Program

 

called

 

by

 

DEBUGEX

 

to

 

illustrate

 

the

       

3

        

*

           

STEP

 

functions

 

of

 

the

 

ILE

 

source

       

4

        

*debugger

       

5

        

*

  

This

 

program

 

receives

 

a

 

parameter

 

input

 

from

 

DEBUGEX,

       

6

        

*

  

calculates

 

a

 

tax

 

amount,

 

and

 

then

 

returns

       

7

        

*===============================================================

       

8

       

9

        

double

 

CalcTax(double

 

input)

      

10{

      

11

             

double

 

tax;

      

12

      

13

        

tax=

 

input

 

*

 

TAXRATE

                             

14

             

return

 

taxrate;

                                                                          

Bottom

  

Debug

 

.

 

.

 

.______________________________________________________________________

  

_________________________________________________________________________________

    

F3=End

 

program

   

F6=Add/Clear

 

breakpoint

   

F10=Step

   

F11=Display

 

variable

  

F12=Resume

       

F17=Watch

 

variable

   

F18=Work

 

with

 

watch

   

F24=More

 

keys

  

Step

 

completed

 

at

 

line

 

13.

 

Figure

 

72.

 

Module

 

Source

 

Display

 

After

 

Stepping

 

into

 

CPGM

  

Chapter

 

13.

 

Stepping

 

Through

 

Programs

 

147



Stepping

 

into

 

an

 

OPM

 

Program

 

When

 

calls

 

to

 

other

 

functions

 

are

 

encountered,

 

you

 

can

 

step

 

into

 

an

 

OPM

 

program

 

if

 

it

 

has

 

debug

 

data

 

available

 

and

 

if

 

the

 

debug

 

session

 

accepts

 

OPM

 

programs

 

for

 

debugging.

 

If

 

the

 

ILE

 

source

 

debugger

 

is

 

not

 

set

 

to

 

accept

 

OPM

 

programs,

 

or

 

if

 

there

 

is

 

no

 

debug

 

data

 

available,

 

then

 

you

 

see

 

a

 

blank

 

Display

 

Module

 

Source

 

display

 

with

 

a

 

message

 

indicating

 

that

 

the

 

source

 

is

 

not

 

available.

 

An

 

OPM

 

program

 

has

 

debug

 

data

 

if

 

it

 

was

 

compiled

 

with

 

OPTION(*LSTDBG).

 

The

 

default

 

step

 

mode

 

is

 

step

 

over.

 

Stepping

 

Over

 

Procedures

 

If

 

you

 

specify

 

over

 

on

 

the

 

STEP

 

debug

 

command,

 

calls

 

to

 

procedures

 

and

 

functions

 

count

 

as

 

single

 

statements.

 

This

 

is

 

the

 

default

 

STEP

 

mode.

 

Stepping

 

through

 

four

 

statements

 

of

 

a

 

program

 

could

 

result

 

in

 

running

 

20

 

statements

 

if

 

one

 

of

 

the

 

four

 

is

 

a

 

call

 

to

 

a

 

procedure

 

with

 

16

 

statements.

 

You

 

can

 

start

 

the

 

step-over

 

function

 

by

 

using:

 

v

   

The

 

STEP

 

OVER

 

debug

 

command

 

v

   

F10

 

(Step)

Example:

 

This

 

example

 

shows

 

you

 

how

 

to

 

use

 

F10

 

(Step)

 

to

 

step

 

over

 

one

 

statement

 

at

 

a

 

time

 

in

 

your

 

program.

 

1.

   

To

 

work

 

with

 

a

 

module

 

type

 

DSPMODSRC

 

and

 

press

 

Enter.

 

The

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

 

2.

   

Enter

 

display

 

module

 

T1520IC2.

 

3.

   

To

 

set

 

an

 

unconditional

 

breakpoint

 

at

 

line

 

50,

 

enter

 

Break

 

50

 

on

 

the

 

debug

 

command

 

line.

 

4.

   

To

 

set

 

a

 

conditional

 

breakpoint

 

at

 

line

 

35,

 

enter

 

Break

 

35

 

when

 

i==21

 

on

 

the

 

debug

 

command

 

line.

 

5.

   

Press

 

F12

 

(Resume)

 

to

 

leave

 

the

 

Display

 

Module

 

Source

 

display.

 

6.

   

Call

 

the

 

program.

 

The

 

program

 

stops

 

at

 

breakpoint

 

35

 

if

 

i

 

is

 

equal

 

to

 

21,

 

or

 

at

 

line

 

50

 

whichever

 

comes

 

first.

 

7.

   

To

 

step

 

over

 

a

 

statement,

 

press

 

F10

 

(Step).

 

One

 

statement

 

of

 

the

 

program

 

runs,

 

and

 

then

 

the

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

 

If

 

the

 

statement

 

is

 

a

 

function

 

call,

 

the

 

function

 

runs

 

to

 

completion.

 

If

 

the

 

called

 

function

 

has

 

a

 

breakpoint

 

set,

 

however,

 

the

 

breakpoint

 

will

 

be

 

hit.

 

At

 

this

 

point

 

you

 

are

 

in

 

the

 

function

 

and

 

the

 

next

 

step

 

will

 

take

 

you

 

to

 

the

 

next

 

statement

 

inside

 

the

 

function.

 

Note:

  

You

 

cannot

 

specify

 

the

 

number

 

of

 

statements

 

to

 

step

 

through

 

when

 

you

 

use

 

F10.

 

Pressing

 

F10

 

performs

 

a

 

single

 

step.

  

148

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Display

 

Module

 

Source

  

Program:

   

T1520PG1

       

Library:

   

MYLIB

          

Module:

   

T1520IC2

      

47

      

if

 

(j<0)

 

return(0);

      

48

      

if

 

(hold_formatted_cost[i]

 

==

 

’$’)

      

49

      

{

      

50

        

formatted_cost[j]

 

=

 

hold_formatted_cost[i];

      

51

        

break;

      

52

      

}

      

53

      

if

 

(i<16

 

&&;

 

!((i-2)%3))

      

54

      

{

      

55

        

formatted_cost[j]

 

=

 

’,’;

      

56

        

--j;

      

57

      

}

      

58

      

formatted_cost[j]

 

=

 

hold_formatted_cost[i];

      

59

      

--j;

      

60

    

}

      

61

  

Debug

 

.

 

.

 

.

  

___________________________________________________________

  

________________________________________________________________________

  

F3=End

 

program

   

F6=Add/Clear

 

breakpoint

   

F10=Step

   

F11=Display

 

variable

  

F12=Resume

       

F17=Watch

 

variable

   

F18=Work

 

with

 

watch

  

F24=More

 

keys

  

Breakpoint

 

at

 

line

 

50.

 

8.

   

To

 

step

 

over

 

5

 

statements,

 

enter

 

step

 

5

 

over

 

on

 

the

 

debug

 

command

 

line.

 

The

 

next

 

five

 

statements

 

of

 

your

 

program

 

run,

 

and

 

then

 

the

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

  

If

 

the

 

third

 

statement

 

is

 

a

 

call

 

to

 

a

 

function,

 

the

 

first

 

two

 

statements

 

run,

 

the

 

function

 

is

 

called

 

and

 

returns,

 

and

 

the

 

last

 

two

 

statements

 

run.

 

9.

   

To

 

step

 

over

 

11

 

statements,

 

enter

 

step

 

11

 

over

 

on

 

the

 

debug

 

command

 

liner.

 

The

 

next

 

11

 

statements

 

of

 

your

 

program

 

runs.

 

The

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

Stepping

 

into

 

Procedures

 

There

 

is

 

an

 

automatic

 

feature

 

for

 

stepping.

 

This

 

feature

 

automatically

 

puts

 

a

 

service

 

program

 

into

 

debug.

 

This

 

happens

 

if

 

the

 

service

 

program

 

that

 

is

 

stepped

 

into

 

from

 

another

 

program

 

in

 

debug:

 

v

   

Has

 

debug

 

data

 

v

   

Is

 

not

 

in

 

debug

 

v

   

Contains

 

a

 

procedure

The

 

service

 

program

 

is

 

added

 

to

 

debug

 

for

 

the

 

user,

 

and

 

the

 

DSPMODSRC

 

panel

 

shows

 

the

 

procedure

 

in

 

the

 

service

 

program.

 

From

 

this

 

point,

 

modules

 

in

 

the

 

service

 

program

 

can

 

be

 

accessed

 

using

 

the

 

Work

 

with

 

Modules

 

display

 

just

 

like

 

modules

 

in

 

programs

 

the

 

user

 

added

 

to

 

debug.

 

If

 

you

 

specify

 

INTO

 

on

 

the

 

STEP

 

debug

 

command,

 

each

 

statement

 

in

 

a

 

procedure

 

or

 

function

 

that

 

is

 

called

 

counts

 

as

 

a

 

single

 

statement.

 

You

 

can

 

start

 

the

 

step

 

into

 

function

 

by

 

using:

 

v

   

The

 

STEP

 

INTO

 

debug

 

command

 

v

   

F22

 

(Step

 

into)

Example:

 

This

 

example

 

shows

 

you

 

how

 

to

 

use

 

F22

 

(Step

 

Into)

 

to

 

step

 

into

 

one

 

procedure.

 

1.

   

Enter

 

DSPMODSRC.

 

The

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

 

2.

   

To

 

set

 

an

 

unconditional

 

breakpoint

 

at

 

line

 

50,

 

enter

 

Break

 

50

 

on

 

the

 

debug

 

command

 

line.

   

Chapter

 

13.

 

Stepping

 

Through

 

Programs

 

149



3.

   

To

 

set

 

a

 

conditional

 

breakpoint

 

at

 

line

 

35,

 

enter

 

Break

 

35

 

when

 

i==21

 

on

 

the

 

debug

 

command

 

line.

 

4.

   

Press

 

F12

 

(Resume)

 

to

 

leave

 

the

 

Display

 

Module

 

Source

 

display.

 

5.

   

Call

 

the

 

program.

 

The

 

program

 

stops

 

at

 

breakpoint

 

35

 

if

 

i

 

is

 

equal

 

to

 

21

 

or

 

at

 

line

 

50

 

whichever

 

comes

 

first.

                               

Display

 

Module

 

Source

  

Program:

   

T1520PG1

       

Library:

   

MYLIB

          

Module:

   

T1520IC2

      

47

      

if

 

(j<0)

 

return(0);

      

48

      

if

 

(hold_formatted_cost[i]

 

==

 

’$’)

      

49

      

{

      

50

        

formatted_cost[j]

 

=

 

hold_formatted_cost[i];

      

51

        

break;

      

52

      

}

      

53

      

if

 

(i<16

 

&&;

 

!((i-2)%3))

      

54

      

{

      

55

        

formatted_cost[j]

 

=

 

’,’;

      

56

        

--j;

      

57

      

}

      

58

      

formatted_cost[j]

 

=

 

hold_formatted_cost[i];

      

59

      

--j;

      

60

    

}

      

61

  

Debug

 

.

 

.

 

.

  

___________________________________________________________

  

________________________________________________________________________

  

F3=End

 

program

   

F6=Add/Clear

 

breakpoint

   

F10=Step

   

F11=Display

 

variable

  

F12=Resume

       

F17=Watch

 

variable

   

F18=Work

 

with

 

watch

  

F24=More

 

keys

  

Breakpoint

 

at

 

line

 

50.

 

6.

   

Press

 

F22

 

(Step

 

into).

 

One

 

statement

 

of

 

the

 

program

 

runs,

 

and

 

then

 

the

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

 

If

 

the

 

statement

 

is

 

a

 

procedure

 

or

 

function

 

call,

 

the

 

program

 

stops

 

at

 

the

 

first

 

statement

 

of

 

the

 

procedure

 

or

 

function.

 

Note:

  

You

 

cannot

 

specify

 

the

 

number

 

of

 

statements

 

to

 

step

 

through

 

when

 

you

 

use

 

F22.

 

Pressing

 

F22

 

performs

 

a

 

single

 

step.

 

7.

   

To

 

step

 

into

 

5

 

statements,

 

enter

 

step

 

5

 

into

 

on

 

the

 

debug

 

command

 

line.

  

The

 

next

 

five

 

statements

 

of

 

your

 

program

 

are

 

run,

 

and

 

then

 

the

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

 

If

 

the

 

third

 

statement

 

is

 

a

 

call

 

to

 

a

 

function,

 

the

 

first

 

two

 

statements

 

of

 

the

 

calling

 

procedure

 

run,

 

and

 

the

 

first

 

two

 

statements

 

of

 

the

 

function

 

run.

Note:

  

The

 

step

 

is

 

counted

 

as

 

a

 

statement.

 

8.

   

To

 

step

 

into

 

11

 

statements,

 

enter

 

step

 

11

 

into

 

on

 

the

 

debug

 

command

 

line.

 

The

 

next

 

11

 

statements

 

of

 

your

 

program

 

runs.

 

The

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

  

150

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

14.

 

Debugging

 

Variables

 

You

 

can

 

display

 

the

 

value

 

of

 

scalar

 

variables,

 

expressions,

 

structures,

 

arrays,

 

or

 

errno

 

and

 

change

 

the

 

value

 

of

 

scalar

 

variables

 

or

 

errno

 

using

 

the

 

EVAL

 

debug

 

command.

 

This

 

chapter

 

describes

 

how

 

to:

 

v

   

Display

 

values

 

of

 

scalar

 

variables,

 

expressions,

 

structures,

 

arrays,

 

or

 

errno

 

during

 

a

 

debug

 

session

 

v

   

Change

 

the

 

value

 

of

 

a

 

variable

 

by

 

using

 

the

 

EVAL

 

debug

 

command

 

v

   

Change

 

the

 

value

 

of

 

scalar

 

variables

 

or

 

errno

 

during

 

a

 

debug

 

session

 

v

   

Equate

 

a

 

shorthand

 

name

 

with

 

a

 

variable,

 

expression,

 

or

 

command

 

during

 

a

 

debug

 

session

This

 

chapter

 

also

 

includes

 

sample

 

source

 

that

 

illustrates

 

uses

 

of

 

the

 

EVAL

 

debug

 

command.

 

Displaying

 

the

 

Value

 

Of

 

a

 

Variable

 

To

 

display

 

or

 

chaqnge

 

the

 

value

 

of

 

a

 

variable:

 

v

   

The

 

module

 

that

 

is

 

shown

 

on

 

the

 

Display

 

Module

 

Source

 

display

 

must

 

be

 

bound

 

to

 

a

 

program

 

that

 

is

 

in

 

a

 

debug

 

session.

 

v

    

The

 

program

 

must

 

be

 

called

 

and

 

stopped

 

at

 

a

 

breakpoint

 

or

 

step

 

location.

The

 

scope

 

of

 

the

 

variables

 

used

 

in

 

the

 

EVAL

 

debug

 

command

 

is

 

defined

 

by

 

using

 

the

 

QUAL

 

debug

 

command.

 

v

   

The

 

EVAL

 

debug

 

command

 

v

   

F11

 

(Display

 

variable)

You

 

can

 

use

 

the

 

Enter

 

key

 

as

 

a

 

toggle

 

switch

 

between

 

displays.

Note:

  

You

 

can

 

change

 

variables

 

by

 

using

 

the

 

EVAL

 

debug

 

command

 

with

 

assignment.

 

Using

 

F11

 

to

 

Display

 

Variables

 

The

 

easiest

 

way

 

to

 

display

 

data

 

or

 

an

 

expression

 

is

 

to

 

use

 

F11

 

(Display

 

variable)

 

on

 

the

 

Display

 

Module

 

Source

 

display.

 

Place

 

your

 

cursor

 

on

 

the

 

variable

 

that

 

you

 

want

 

to

 

display

 

and

 

press

 

F11.

 

The

 

current

 

value

 

of

 

the

 

variable

 

is

 

shown

 

on

 

the

 

message

 

line

 

at

 

the

 

bottom

 

of

 

the

 

Display

 

Module

 

Source

 

display.

 

In

 

cases

 

where

 

you

 

are

 

evaluating

 

structures,

 

records,

 

classes,

 

arrays,

 

pointers,

 

enumerations,

 

bit

 

fields,

 

unions

 

or

 

functions,

 

the

 

message

 

returned

 

when

 

you

 

press

 

F11

 

(Display

 

variable)

 

may

 

span

 

several

 

lines.

 

Messages

 

that

 

span

 

several

 

lines

 

are

 

shown

 

on

 

the

 

Evaluate

 

Expression

 

display

 

to

 

show

 

the

 

entire

 

text

 

of

 

the

 

message.

 

Once

 

you

 

have

 

finished

 

viewing

 

the

 

message

 

on

 

the

 

Evaluate

 

Expression

 

display,

 

press

 

Enter

 

to

 

return

 

to

 

the

 

Display

 

Module

 

Source

 

display.

 

The

 

Evaluate

 

Expression

 

display

 

also

 

shows

 

all

 

the

 

past

 

debug

 

commands

 

that

 

you

 

entered

 

and

 

the

 

results

 

from

 

these

 

commands.

 

You

 

can

 

search

 

forward

 

or

 

backward

 

on

 

the

 

Evaluate

 

Expression

 

display

 

for

 

a

 

specified

 

string,

 

or

 

text

 

and

 

retrieve

 

or

 

re-issue

 

debug

 

commands.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

151



Example:

 

This

 

example

 

shows

 

you

 

how

 

to

 

use

 

the

 

F11

 

(Display

 

variable)

 

to

 

display

 

a

 

variable.

 

1.

   

Enter

 

DSPMODSRC.

 

The

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

 

2.

   

Enter

 

display

 

module

 

T1520IC2.

 

3.

   

Place

 

the

 

cursor

 

on

 

the

 

variable

 

hold_formatted_cost

 

on

 

line

 

50

 

and

 

press

 

F11

 

(Display

 

variable).

 

A

 

pointer

 

to

 

the

 

array

 

is

 

shown

 

on

 

the

 

message

 

line

 

in

 

the

 

following.

                               

Display

 

Module

 

Source

  

Program:

   

T1520PG1

       

Library:

   

MYLIB

          

Module:

   

T1520IC2

      

47

      

if

 

(j<0)

 

return(0);

      

48

      

if

 

(hold_formatted_cost[i]

 

==

 

’$’)

      

49

      

{

      

50

        

formatted_cost[j]

 

=

 

hold_formatted_cost[i];

      

51

        

break;

      

52

      

}

      

53

      

if

 

(i<16

 

&&;

 

!((i-2)%3))

      

54

      

{

      

55

        

formatted_cost[j]

 

=

 

’,’;

      

56

        

--j;

      

57

      

}

      

58

      

formatted_cost[j]

 

=

 

hold_formatted_cost[i];

      

59

      

--j;

      

60

    

}

      

61

                                                                        

More...

  

Debug

 

.

 

.

 

.

  

___________________________________________________________

  

________________________________________________________________________

  

F3=End

 

program

   

F6=Add/Clear

 

breakpoint

   

F10=Step

   

F11=Display

 

variable

  

F12=Resume

       

F17=Watch

 

variable

   

F18=Work

 

with

 

watch

  

F24=More

 

keys

  

hold_formatted_cost

 

=

 

SPP:C048BD0003F0

 

Messages

 

with

 

multiple

 

line

 

responses

 

will

 

cause

 

the

 

Evaluate

 

Expression

 

display

 

to

 

be

 

shown.

 

This

 

display

 

will

 

show

 

all

 

response

 

lines.

 

It

 

also

 

shows

 

a

 

history

 

of

 

the

 

debug

 

commands

 

entered

 

and

 

the

 

results

 

from

 

these

 

commands.

 

To

 

return

 

to

 

the

 

Display

 

Module

 

Source

 

display,

 

press

 

the

 

Enter

 

key.

 

You

 

can

 

use

 

the

 

Enter

 

key

 

as

 

a

 

toggle

 

switch

 

between

 

displays.

 

Single-line

 

responses

 

will

 

be

 

shown

 

on

 

the

 

Display

 

Module

 

Source

 

message

 

line.

  

You

 

can

 

also

 

use

 

the

 

EVAL

 

debug

 

command

 

to

 

determine

 

the

 

value

 

of

 

an

 

expression.

 

For

 

example,

 

if

 

j

 

has

 

a

 

value

 

of

 

1024,

 

enter

 

eval

 

(j

 

*

 

j)/512

 

on

 

the

 

debug

 

command

 

line.

 

You

 

use

 

the

 

QUAL

 

debug

 

command

 

to

 

determine

 

the

 

line

 

or

 

statement

 

number

 

within

 

the

 

function

 

that

 

you

 

want

 

the

 

variables

 

scoped

 

to

 

for

 

the

 

EVAL

 

debug

 

command.

 

The

 

Evaluate

 

Expression

 

display

 

shows

 

(j

 

*

 

j)/512

 

=

 

2048.

Changing

 

the

 

Value

 

of

 

a

 

Variable

 

You

 

can

 

change

 

variables

 

by

 

using

 

the

 

EVAL

 

debug

 

command

 

with

 

assignment.

 

To

 

specify

 

the

 

scope

 

of

 

the

 

EVAL

 

command,

 

use

 

a

 

QUAL

 

command.

 

Example:

 

This

 

example

 

shows

 

you

 

how

 

to

 

use

 

the

 

EVAL

 

debug

 

command

 

to

 

assign

 

an

 

expression

 

to

 

a

 

variable.

 

1.

   

Enter

 

DSPMODSRCr.

 

The

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

 

2.

   

Enter

 

display

 

module

 

T1520IC2.

   

152

 

ILE

 

C/C++

 

Programmer’s

 

Guide



3.

   

To

 

specify

 

the

 

scope

 

of

 

the

 

EVAL

 

command

 

you

 

can

 

use

 

a

 

QUAL

 

command.

 

For

 

example,

 

QUAL

 

48.

 

will

 

qualify

 

the

 

EVAL

 

command

 

to

 

the

 

scope

 

that

 

line

 

48

 

is

 

located

 

at.

 

Line

 

48

 

is

 

the

 

number

 

within

 

the

 

function

 

to

 

which

 

you

 

want

 

the

 

variables

 

scoped

 

for

 

the

 

following

 

EVAL

 

debug

 

command.

 

Note:

  

You

 

do

 

not

 

always

 

have

 

to

 

use

 

the

 

QUAL

 

debug

 

command

 

before

 

the

 

EVAL

 

debug

 

command.

 

An

 

automatic

 

QUAL

 

is

 

done

 

when

 

a

 

breakpoint

 

is

 

encountered

 

or

 

a

 

step

 

is

 

done.

 

This

 

establishes

 

the

 

default

 

for

 

the

 

scoping

 

rules

 

to

 

be

 

the

 

current

 

stop

 

location.

 

4.

   

To

 

change

 

an

 

expression

 

in

 

the

 

module

 

shown

 

enter:

 

EVAL

 

x=<expr>,

 

where

 

x

 

is

 

the

 

variable

 

name

 

and

 

<expra>

 

is

 

the

 

expression

 

you

 

want

 

to

 

assign

 

to

 

variable

 

x.

  

For

 

example,

 

″EVAL

 

hold_formatted_cost

 

[1]

 

=

 

’#’″

 

changes

 

the

 

array

 

element

 

at

 

1

 

from

 

$

 

to

 

#

 

and

 

shows

 

″hold_formatted_cost[1]=

 

’#’

 

=

 

’#’:″

 

on

 

the

 

Display

 

Module

 

Source

 

display

 

as

 

shown:

                               

Display

 

Module

 

Source

    

Program:

   

T1520PG1

       

Library:

   

MYLIB

          

Module:

   

T1520IC2

      

47

      

if

 

(j<0)

 

return(0);

      

48

      

if

 

(hold_formatted_cost[i]

 

==

 

’$’)

      

49

      

{

      

50

        

formatted_cost[j]

 

=

 

hold_formatted_cost[i];

      

51

        

break;

      

52

      

}

      

53

      

if

 

(i<16

 

&&;

 

!((i-2)%3))

      

54

      

{

      

55

        

formatted_cost[j]

 

=

 

’,’;

      

56

        

--j;

      

57

      

}

      

58

      

formatted_cost[j]

 

=

 

hold_formatted_cost[i];

      

59

      

--j;

      

60

    

}

      

61

    

Debug

 

.

 

.

 

.

  

___________________________________________________________

  

________________________________________________________________________

  

F3=End

 

program

   

F6=Add/Clear

 

breakpoint

   

F10=Step

   

F11=Display

 

variable

  

F12=Resume

       

F17=Watch

 

variable

   

F18=Work

 

with

 

watch

 

F24=More

 

keys

  

hold_formatted_cost[1]=

 

’#’

 

=

 

’#’

 

Changing

 

the

 

Value

 

of

 

a

 

Scalar

 

Variable

 

Change

 

the

 

value

 

of

 

scalar

 

variables

 

using

 

the

 

EVAL

 

debug

 

command

 

with

 

an

 

assignment

 

operator

 

(=).

 

The

 

program

 

must

 

be

 

called

 

and

 

stopped

 

at

 

a

 

breakpoint

 

or

 

step

 

location

 

to

 

change

 

the

 

value.

 

To

 

change

 

the

 

value

 

of

 

a

 

variable,

 

enter:

 

EVAL

 

variable-name

 

=

 

value

 

where

 

variable-name

 

is

 

the

 

name

 

of

 

the

 

variable

 

that

 

you

 

want

 

to

 

change

 

and

 

value

 

is

 

an

 

identifier,

 

literal,

 

or

 

constant

 

value

 

that

 

you

 

want

 

to

 

assign

 

to

 

variable

 

variable-name.

 

Example:

 

EVAL

 

COUNTER=3

 

changes

 

the

 

value

 

of

 

COUNTER

 

to

 

3

 

and

 

shows

 

COUNTER=3

 

=

 

3

 

on

 

the

 

message

 

line

 

of

 

the

 

Display

 

Module

 

Source

 

display.

   

Chapter

 

14.

 

Debugging

 

Variables

 

153



When

 

you

 

assign

 

values

 

to

 

a

 

character

 

variable,

 

the

 

following

 

rules

 

apply:

 

v

   

If

 

the

 

length

 

of

 

the

 

source

 

expression

 

is

 

less

 

than

 

the

 

length

 

of

 

the

 

target

 

expression,

 

the

 

data

 

is

 

left

 

justified

 

in

 

the

 

target

 

expression

 

and

 

the

 

remaining

 

positions

 

are

 

filled

 

with

 

blanks.

 

v

   

If

 

the

 

length

 

of

 

the

 

source

 

expression

 

is

 

greater

 

than

 

the

 

length

 

of

 

the

 

target

 

expression,

 

the

 

data

 

is

 

left

 

justified

 

in

 

the

 

target

 

expression

 

and

 

truncated

 

to

 

the

 

length

 

of

 

the

 

target

 

expression.

The

 

scope

 

of

 

the

 

variables

 

used

 

in

 

the

 

EVAL

 

debug

 

command

 

is

 

defined

 

by

 

using

 

the

 

QUAL

 

debug

 

command.

 

To

 

change

 

a

 

variable

 

at

 

line

 

48,

 

enter

 

QUAL

 

48.

 

Line

 

48

 

is

 

the

 

number

 

within

 

a

 

function

 

to

 

which

 

you

 

want

 

the

 

variables

 

scoped

 

for

 

the

 

EVAL

 

debug

 

command.

 

Note:

  

You

 

do

 

not

 

always

 

have

 

to

 

use

 

the

 

QUAL

 

debug

 

command

 

before

 

the

 

EVAL

 

debug

 

command.

 

An

 

automatic

 

QUAL

 

is

 

done

 

when

 

a

 

breakpoint

 

is

 

encountered

 

or

 

a

 

step

 

is

 

done.

 

This

 

establishes

 

the

 

default

 

for

 

the

 

scoping

 

rules

 

to

 

be

 

the

 

current

 

stop

 

location.

 

The

 

example

 

below

 

shows

 

the

 

results

 

of

 

changing

 

the

 

array

 

element

 

at

 

1

 

from

 

$

 

to

 

#.

    

Equating

 

a

 

Name

 

with

 

a

 

Variable,

 

Expression,

 

or

 

Debug

 

Command

 

You

 

can

 

equate

 

a

 

name

 

with

 

a

 

variable,

 

expression,

 

or

 

debug

 

command

 

for

 

shorthand

 

use.

 

You

 

can

 

then

 

use

 

that

 

name

 

alone

 

or

 

within

 

another

 

expression.

 

If

 

you

 

use

 

it

 

within

 

another

 

expression,

 

the

 

value

 

of

 

the

 

name

 

is

 

determined

 

before

 

the

 

expression

 

is

 

evaluated.

 

Equates

 

stay

 

active

 

until

 

a

 

debug

 

session

 

ends

 

or

 

a

 

name

 

is

 

removed.

 

Example:

 

This

 

example

 

shows

 

you

 

how

 

to

 

use

 

the

 

Equate

 

debug

 

command

 

with

 

a

 

variable

 

name.

 

1.

   

Enter

 

DSPMODSRC.

 

The

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

 

2.

   

To

 

equate

 

an

 

expression,

 

enter

 

equate

 

<name>

 

<definition>

 

where

 

<name>

 

is

 

a

 

character

 

string

 

that

 

contains

 

no

 

blanks

 

and

 

<definition>

 

is

 

a

 

character

 

string

      

EVAL

 

hold_formatted_cost

 

[1]

 

=

 

’#’

         

hold_formatted_cost[1]=

 

’#’

 

=

 

’#’:

        

//Code

 

evaluated

 

before

 

statement

 

51

 

where

 

a

 

breakpoint

 

is

 

set

      

47

      

if

 

(j<0)

 

return(0);

      

48

      

if

 

(hold_formatted_cost[i]

 

==

 

’$’)

      

49

      

{

      

50

        

formatted_cost[j]

 

=

 

hold_formatted_cost[i];

      

51

        

break;

      

52

      

}

      

53

      

if

 

(i<16

 

&&

 

!((i-2)%3))

      

54

      

{

      

55

        

formatted_cost[j]

 

=

 

’,’;

      

56

        

--j;

      

57

      

}

      

58

      

formatted_cost[j]

 

=

 

hold_formatted_cost[i];

      

59

      

--j;

      

60

    

}

      

61

 

Figure

 

73.

 

Using

 

EVAL

 

to

 

Change

 

a

 

Variable

  

154

 

ILE

 

C/C++

 

Programmer’s

 

Guide



separated

 

from

 

<name>

 

by

 

at

 

least

 

one

 

blank.

 

The

 

character

 

strings

 

can

 

be

 

in

 

uppercase,

 

lowercase,

 

or

 

mixed

 

case.

 

The

 

length

 

of

 

the

 

character

 

strings

 

combined

 

is

 

limited

 

to

 

144

 

characters,

 

which

 

is

 

the

 

length

 

of

 

the

 

command

 

line.

 

After

 

any

 

Equates

 

have

 

been

 

expanded,

 

the

 

length

 

is

 

limited

 

to

 

150

 

characters,

 

which

 

is

 

the

 

maximum

 

command

 

length.

 

For

 

example,

 

enter

 

equate

 

dv

 

display

 

variable

 

.

If

 

a

 

definition

 

is

 

not

 

supplied,

 

and

 

a

 

previous

 

Equate

 

debug

 

command

 

has

 

defined

 

the

 

name,

 

the

 

previous

 

definition

 

is

 

removed.

 

If

 

the

 

name

 

was

 

not

 

previously

 

defined,

 

an

 

error

 

message

 

is

 

shown.

 

To

 

see

 

the

 

Equates

 

that

 

are

 

defined

 

for

 

this

 

debug

 

session,

 

enter:

 

display

 

equate.

 

A

 

list

 

of

 

the

 

active

 

Equates

 

is

 

shown

 

on

 

the

 

Evaluate

 

Expression

 

display.

 

Displaying

 

a

 

Structure

 

The

 

following

 

example

 

shows

 

a

 

structure

 

with

 

two

 

elements

 

being

 

displayed.

 

Each

 

element

 

of

 

the

 

structure

 

is

 

formatted

 

according

 

to

 

its

 

type

 

and

 

displayed.

 

1.

   

Enter

 

DSPMODSRCr.

 

The

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

 

2.

   

Set

 

a

 

breakpoint

 

at

 

line

 

9.

 

3.

   

Press

 

F12

 

(Resume)

 

to

 

leave

 

the

 

Display

 

Module

 

Source

 

display.

 

4.

   

Call

 

the

 

program.

 

The

 

program

 

stops

 

at

 

the

 

breakpoint

 

at

 

line

 

9.

 

5.

   

Enter

 

eval

 

test

 

on

 

the

 

debug

 

command

 

line,

 

as

 

shown:

                               

Display

 

Module

 

Source

  

Program:

   

TEST1

          

Library:

   

DEBUG

          

Module:

   

MAIN

       

1

  

struct

 

{

       

2

    

char

 

charValue;

       

3

    

unsigned

 

long

 

intValue;

       

4

  

}

 

test;

       

5

       

6

  

int

 

main(){

       

7

    

test.intValue

 

=

 

10;

       

8

    

test.charValue

 

=

 

’c’;

       

9

    

test.charValue

 

=

 

11;

      

10

    

return

 

0;

      

11

  

}

                                                                      

Bottom

  

Debug

 

.

 

.

 

.

  

eval

 

test__________________________________________________

  

________________________________________________________________________

  

F3=Exit

 

program

   

F6=Add/Clear

 

breakpoint

   

F10=Step

   

F11=Display

 

variable

  

F12=Resume

       

F17=Watch

 

variable

   

F18=Work

 

with

 

watch

 

F24=More

 

keys

 

6.

   

Press

 

Enter

 

to

 

go

 

to

 

the

 

next

 

display.

 

The

 

Evaluate

 

Expression

 

Display

 

shows

 

the

 

entire

 

structure

 

as

 

shown:

                               

Evaluate

 

Expression

  

Previous

 

debug

 

expressions

  

>

 

BREAK

 

9

  

>

 

EVAL

 

test

    

test.charValue

 

=

 

’c’

    

test.intValue

 

=

 

10

 

7.

   

Press

 

Enter

 

from

 

the

 

Evaluate

 

Expression

 

Display

 

to

 

return

 

to

 

the

 

Display

 

Module

 

Source

 

screen.

Displaying

 

Variables

 

As

 

Hexadecimal

 

Values

 

The

 

following

 

example

 

shows

 

the

 

steps

 

and

 

syntax

 

used

 

to

 

dump

 

hexadecimal

 

variables.

 

1.

   

Enter

 

DSPMODSRC.

 

The

 

Display

 

Module

 

Source

 

display

 

appears,

 

as

 

shown

 

below.

   

Chapter

 

14.

 

Debugging

 

Variables

 

155



2.

   

Set

 

a

 

breakpoint

 

at

 

line

 

9.

 

3.

   

Press

 

F12

 

(Resume)

 

to

 

leave

 

the

 

Display

 

Module

 

Source

 

display.

 

4.

   

Call

 

the

 

program.

 

The

 

program

 

stops

 

at

 

the

 

breakpoint

 

at

 

line

 

9.

 

5.

   

Enter

 

eval

 

test:

 

x

 

32

 

on

 

the

 

debug

 

command

 

line,

 

as

 

shown

 

below.

                               

Display

 

Module

 

Source

  

Program:

   

TEST1

          

Library:

   

DEBUG

          

Module:

   

MAIN

       

1

  

struct

 

{

       

2

    

char

 

charValue;

       

3

    

unsigned

 

long

 

intValue;

       

4

  

}

 

test;

       

5

       

6

  

int

 

main(){

       

7

    

test.intValue

 

=

 

10;

       

8

    

test.charValue

 

=

 

’c’;

       

9

    

test.charValue

 

=

 

11;

      

10

    

return

 

0;

      

11

  

}

                                                                      

Bottom

  

Debug

 

.

 

.

 

.

  

eval

 

test:

 

x

 

32____________________________________________

  

________________________________________________________________________

  

F3=Exit

 

program

   

F6=Add/Clear

 

breakpoint

   

F10=Step

   

F11=Display

 

variable

  

F12=Resume

       

F17=Watch

 

variable

   

F18=Work

 

with

 

watch

  

F24=More

 

keys

 

6.

   

The

 

Evaluate

 

Expression

 

display

 

appears.

 

As

 

requested,

 

32

 

bytes

 

are

 

shown,

 

but

 

only

 

the

 

first

 

8

 

bytes

 

are

 

meaningful.

 

The

 

left

 

column

 

is

 

an

 

offset

 

in

 

hex

 

from

 

the

 

start

 

of

 

the

 

variable.

 

The

 

right

 

column

 

is

 

an

 

EBCDIC

 

character

 

representation

 

of

 

the

 

data.

 

If

 

no

 

length

 

is

 

specified

 

after

 

the

 

’x’,

 

the

 

size

 

of

 

the

 

variable

 

is

 

used

 

as

 

the

 

length.

 

A

 

minimum

 

of

 

16

 

bytes

 

is

 

displayed.

 

Press

 

the

 

Enter

 

key

 

to

 

return

 

to

 

the

 

Display

 

Module

 

Source

 

display.

                               

Evaluate

 

Expression

    

Previous

 

debug

 

expressions

    

>

 

BREAK

 

9

  

>

 

EVAL

 

test:

 

x

 

32

       

00000

     

83000000

 

0000000A

 

00000000

 

00000000

  

-

 

c..............

       

00010

     

00000000

 

00000000

 

00000000

 

00000000

  

-

 

...............

 

Displaying

 

Null-Ended

 

Character

 

Arrays

 

The

 

following

 

example

 

shows

 

the

 

display

 

of

 

a

 

character

 

string.

 

The

 

array

 

must

 

be

 

dereferenced

 

by

 

the

 

’*’

 

operator.

 

If

 

the

 

*

 

operator

 

is

 

not

 

entered,

 

the

 

array

 

is

 

displayed

 

as

 

a

 

space

 

pointer.

 

If

 

the

 

dereferencing

 

operator

 

is

 

used,

 

but

 

the

 

’:s’

 

is

 

not

 

appended

 

to

 

the

 

expression,

 

only

 

the

 

first

 

array

 

element

 

is

 

displayed.

 

1.

   

While

 

in

 

a

 

debug

 

session,

 

enter

 

DSPMODSRCr.

 

The

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

 

2.

   

Set

 

a

 

breakpoint

 

at

 

line

 

6.

 

3.

   

Press

 

F12(Resume)

 

to

 

leave

 

the

 

Display

 

Module

 

Source

 

Display.

 

4.

   

Call

 

the

 

program.

 

The

 

program

 

stops

 

at

 

the

 

breakpoint

 

at

 

line

 

6.

 

5.

   

Enter

 

eval

 

*array1:

 

s

 

on

 

the

 

debug

 

command

 

line,

 

as

 

shown:

   

156

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Display

 

Module

 

Source

  

Program:

   

TEST3

          

Library:

   

DEBUG

          

Module:

   

MAIN

       

1

  

#include

 

<string.h>

       

2

  

char

 

array1

 

[11];

       

3

  

int

 

i;

       

4

  

int

 

main(){

       

5

    

strcpy(array1,"0123456789");

       

6

    

i

 

=

 

0;

       

7

    

return

 

0;

       

8

  

}

                                                                      

Bottom

  

Debug

 

.

 

.

 

.

  

eval

 

*array1:

 

s____________________________________________

  

________________________________________________________________________

  

F3=Exit

 

program

   

F6=Add/Clear

 

breakpoint

   

F10=Step

   

F11=Display

 

variable

  

F12=Resume

       

F17=Watch

 

variable

   

F18=Work

 

with

 

watch

  

F24=More

 

keys

 

The

 

following

 

shows

 

the

 

value

 

of

 

the

 

array.

 

A

 

string

 

length

 

of

 

up

 

to

 

65535

 

can

 

follow

 

the

 

s

 

character.

 

Formatting

 

will

 

stop

 

at

 

the

 

first

 

null

 

character

 

encountered.

 

If

 

no

 

length

 

is

 

specified,

 

formatting

 

will

 

stop

 

after

 

30

 

characters

 

or

 

the

 

first

 

null,

 

whichever

 

is

 

less.

                               

Display

 

Module

 

Source

  

Program:

   

TEST3

          

Library:

   

DEBUG

          

Module:

   

MAIN

       

1

  

#include

 

<string.h>

       

2

  

char

 

array1

 

[11];

       

3

  

int

 

i;

       

4

  

int

 

main(){

       

5

    

strcpy(array1,"0123456789");

       

6

    

i

 

=

 

0;

       

7

    

return

 

0;

       

8

  

}

                                                                      

Bottom

  

Debug

 

.

 

.

 

.

  

___________________________________________________________

  

________________________________________________________________________

  

F3=Exit

 

program

   

F6=Add/Clear

 

breakpoint

   

F10=Step

   

F11=Display

 

variable

  

F12=Resume

       

F17=Watch

 

variable

   

F18=Work

 

with

 

watch

  

F24=More

 

keys

 

*array1:

 

s

 

=

 

"0123456789"

                                                  

...

 

The

 

following

 

example

 

shows

 

the

 

usage

 

of

 

the

 

:f

 

syntax

 

to

 

specify

 

that

 

the

 

newline

 

character

 

(x’15’)

 

should

 

be

 

scanned

 

for

 

while

 

displaying

 

string

 

output.

 

If

 

the

 

end

 

of

 

the

 

display

 

line

 

occurs,

 

the

 

output

 

is

 

wrapped

 

to

 

the

 

next

 

display

 

line.

 

When

 

the

 

:f

 

formatting

 

code

 

is

 

used,

 

the

 

text

 

string

 

will

 

display

 

on

 

the

 

current

 

line

 

until

 

a

 

newline

 

is

 

encountered.

 

If

 

no

 

newline

 

character

 

is

 

encountered

 

before

 

the

 

end

 

of

 

the

 

display

 

screen

 

line,

 

the

 

output

 

is

 

wrapped

 

until

 

a

 

newline

 

is

 

found.

 

DBCS

 

SO/SI

 

characters

 

are

 

added

 

as

 

necessary

 

to

 

make

 

sure

 

they

 

are

 

matched.

 

An

 

example

 

of

 

:f

 

format

 

code

 

usage

 

is

 

shown:

   

This

 

program

 

will

 

result

 

in

 

the

 

following

 

screen

 

output:

  

int

 

main()

  

{

    

char

 

testc[]={"This

 

is

 

the

 

first

 

line.\nThis

 

is

 

the

 

second

 

line."

                  

"\nThis

 

is

 

the

 

third

 

line."};

    

int

 

i;

    

i

 

=

 

1;

  

}

   

Chapter

 

14.

 

Debugging

 

Variables

 

157



>

 

EVAL

 

*testc:s

 

100

         

*testc:s

 

100

 

=

    

"This

 

is

 

the

 

first

 

line.

 

This

 

is

 

the

 

second

 

line.

 

This

 

is

 

the"

    

"third

 

line."

 

>

 

EVAL

 

*testc:f

 

100

         

*testc:f

 

100

 

=

         

This

 

is

 

the

 

first

 

line.

         

This

 

is

 

the

 

second

 

line.

         

This

 

is

 

the

 

third

 

line.

 

Displaying

 

Character

 

Arrays

 

The

 

following

 

example

 

shows

 

the

 

usage

 

of

 

the

 

’:c’

 

syntax

 

to

 

format

 

an

 

expression

 

as

 

characters.

 

The

 

array

 

must

 

be

 

dereferenced

 

by

 

the

 

’*’

 

operator.

 

If

 

the

 

*

 

operator

 

is

 

not

 

entered,

 

the

 

array

 

will

 

be

 

displayed

 

as

 

a

 

space

 

pointer.

 

If

 

the

 

dereferencing

 

operator

 

is

 

used,

 

but

 

the

 

’:c’

 

is

 

not

 

appended

 

to

 

the

 

expression,

 

only

 

the

 

first

 

array

 

element

 

is

 

displayed.

 

The

 

default

 

length

 

of

 

the

 

display

 

is

 

1.

 

1.

   

While

 

in

 

a

 

debug

 

session,

 

type

 

DSPMODSRC.

 

The

 

Display

 

Module

 

Source

 

display

 

is

 

shown.

 

2.

   

Set

 

a

 

breakpoint

 

at

 

line

 

6.

 

3.

   

Press

 

F12(Resume)

 

to

 

leave

 

the

 

Display

 

Module

 

Source

 

Display.

 

4.

   

Call

 

the

 

program.

 

The

 

program

 

stops

 

at

 

the

 

breakpoint

 

at

 

line

 

6.

 

5.

   

Enter

 

eval

 

*array1:

 

c

 

11

 

on

 

the

 

debug

 

command

 

line,

 

as

 

shown:

                               

Display

 

Module

 

Source

  

Program:

   

TEST3

          

Library:

   

DEBUG

          

Module:

   

MAIN

       

1

  

#include

 

<string.h>

       

2

  

char

 

array1

 

[11];

       

3

  

int

 

i;

       

4

  

int

 

main(){

       

5

    

strcpy(array1,"0123456789");

       

6

    

i

 

=

 

0;

       

7

    

return

 

0;

       

8

  

}

                                                                      

Bottom

  

Debug

 

.

 

.

 

.

  

eval

 

*array1:

 

c

 

11________________________________________

  

________________________________________________________________________

  

F3=Exit

 

program

   

F6=Add/Clear

 

breakpoint

   

F10=Step

   

F11=Display

 

variable

  

F12=Resume

       

F17=Watch

 

variable

   

F18=Work

 

with

 

watch

  

F24=More

 

keys

 

The

 

following

 

illustrates

 

displaying

 

11

 

characters,

 

including

 

a

 

null

 

character.

 

The

 

null

 

character

 

appears

 

as

 

a

 

blank.

                               

Display

 

Module

 

Source

  

Program:

   

TEST3

          

Library:

   

DEBUG

          

Module:

   

MAIN

       

1

  

#include

 

<string.h>

       

2

  

char

 

array1

 

[11];

       

3

  

int

 

i;

       

4

  

int

 

main(){

       

5

    

strcpy(array1,"0123456789");

       

6

     

i

 

=

 

0;

       

7

    

return

 

0;

       

8

  

}

                                                                      

Bottom

  

Debug

 

.

 

.

 

.

  

___________________________________________________________

  

________________________________________________________________________

  

F3=Exit

 

program

   

F6=Add/Clear

 

breakpoint

   

F10=Step

   

F11=Display

 

variable

  

F12=Resume

       

F17=Watch

 

variable

   

F18=Work

 

with

 

watch

  

F24=More

 

keys

  

*array1:

 

c

 

11

 

=

 

’0123456789

 

’

                                            

...

   

158

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Sample

 

EVAL

 

Commands

 

for

 

Pointers,

 

Variables,

 

and

 

Bit

 

Fields

 

Figure

 

74

 

shows

 

the

 

use

 

of

 

the

 

EVAL

 

command

 

with

 

pointers,

 

variables,

 

and

 

bit

 

fields.

 

The

 

pointers,

 

variables,

 

and

 

bit

 

fields

 

are

 

based

 

on

 

the

 

source

 

in

 

“Source

 

for

 

Sample

 

EVAL

 

Commands”

 

on

 

page

 

163.

     

Pointers

 

//

 

Display

 

a

 

pointer

 

>eval

 

pc1

  

pc1

 

=

 

SPP:0000C0260900107C

   

//

 

Assign

 

a

 

value

 

to

 

a

 

pointer

 

>eval

 

pc2=pc1

  

pc2=pc1

 

=

 

SPP:0000C0260900107C

   

//

 

Dereference

 

a

 

pointer

 

>eval

 

*pc1

  

*pc1

 

=

 

’C’

   

//

 

Take

 

the

 

address

 

of

 

a

 

pointer

 

>eval

 

&pc1

  

&pc1

 

=

 

SPP:0000C02609001040

   

//

 

Build

 

an

 

expression

 

with

 

normal

 

C

 

precedence

 

>eval

 

*&pc1

  

*&pc1

 

=

 

SPP:0000C0260900107C

   

//

 

Casting

 

a

 

pointer

 

>eval

 

*(short

 

*)pc1

  

*(short

 

*)pc1

 

=

 

-15616

   

//

 

Treat

 

an

 

unqualified

 

array

 

as

 

a

 

pointer

 

>eval

 

arr1

  

arr1

 

=

 

SPP:0000C02609001070

   

//

 

Apply

 

the

 

array

 

type

 

through

 

dereferencing

 

//

 

(character

 

in

 

this

 

example)

 

>eval

 

*arr1

  

*arr1

 

=

 

’A’

   

//

 

Override

 

the

 

formatting

 

of

 

an

 

expression

 

that

 

is

 

an

 

lvalue

 

>eval

 

*arr1:s

  

*arr1:s

 

=

 

"ABC"

   

//

 

Set

 

a

 

pointer

 

to

 

null

 

by

 

assigning

 

0

 

>eval

 

pc1=0

  

pc1=0

 

=

 

SYP:*NULL

   

//

 

Evaluate

 

a

 

function

 

pointer

 

>eval

 

fncptr

  

fncptr

 

=

 

PRP:0000A0CD0004F010

   

//

 

Use

 

the

 

arrow

 

operator

 

>eval

 

*pY->x.p

  

*pY->x.p

 

=

 

’

 

’

   

Simple

 

Variables

 

//

 

Perform

 

logical

 

operations

 

>eval

 

i1==u1

 

||

 

i1<u1

  

i1==u1

 

||

 

i1<u1

 

=

 

0

 

Figure

 

74.

 

Sample

 

EVAL

 

Commands

 

for

 

Pointers,

 

Variables,

 

and

 

Bit

 

Fields

 

(Part

 

1

 

of

 

2)

  

Chapter

 

14.

 

Debugging

 

Variables

 

159



The

 

examples

 

below

 

show

 

the

 

use

 

of

 

the

 

EVAL

 

command

 

with

 

structures,

 

unions,

 

and

 

enumerations.

 

The

 

structures,

 

unions,

 

and

 

enumerations

 

are

 

based

 

on

 

the

 

source

 

in

 

“Source

 

for

 

Sample

 

EVAL

 

Commands”

 

on

 

page

 

163.

 

Note:

  

For

 

C++,

 

the

 

structures

 

are

 

simple

 

structures,

 

not

 

Classes.

    

//

 

Unary

 

operators

 

occur

 

in

 

proper

 

order

 

>eval

 

i1++

  

i1++

 

=

 

100

   

//

 

i1

 

is

 

incremented

 

after

 

being

 

used

 

>eval

 

i1

  

i1

 

=

 

101

   

//

 

i1

 

is

 

incremented

 

before

 

being

 

used

 

>eval

 

++i1

  

++i1

 

=

 

102

   

//

 

Implicit

 

conversion

 

>eval

 

u1

 

=

 

-10

  

u1

 

=

 

-10

 

=

 

4294967286

   

//

 

Implicit

 

conversion

 

>eval

 

(int)u1

  

(int)u1

 

=

 

-10

   

Bit

 

Fields

 

//

 

Display

 

an

 

entire

 

structure

 

>eval

 

bits

  

bits.b1

 

=

 

1

  

bits.b4

 

=

 

2

   

//

 

Work

 

with

 

a

 

single

 

member

 

of

 

a

 

structure

 

>eval

 

bits.b4

 

=

 

bits.b1

  

bits.b4

 

=

 

bits.b1

 

=

 

1

   

//

 

Bit

 

fields

 

are

 

fully

 

supported

 

>eval

 

bits.b1

 

<<

 

2

  

bits.b1

 

<<

 

2

 

=

 

4

   

//

 

You

 

can

 

overflow

 

bit

 

fields,

 

but

 

no

 

warning

 

is

 

generated

 

>eval

 

bits.b1

 

=

 

bits.b1

 

<<

 

2

  

bits.b1

 

=

 

bits.b1

 

<<

 

2

 

=

 

4

 

>eval

 

bits.b1

  

bits.b1

 

=

 

0

 

Figure

 

74.

 

Sample

 

EVAL

 

Commands

 

for

 

Pointers,

 

Variables,

 

and

 

Bit

 

Fields

 

(Part

 

2

 

of

 

2)

 

Structures

 

and

 

Unions

 

//

 

Cast

 

with

 

typedefs

 

>eval

 

(struct

 

z

 

*)&zz

  

(struct

 

z

 

*)&zz

 

=

 

SPP:0000C005AA0010D0

   

//

 

Cast

 

with

 

tags

 

>eval

 

*(c

 

*)&zz

  

(*(c

 

*)&zz).a

 

=

 

1

  

(*(c

 

*)&zz).b

 

=

 

SYP:*NULL

 

Figure

 

75.

 

Sample

 

EVAL

 

Commands

 

for

 

C

 

Structures,

 

Unions

 

and

 

Enumerations

 

(Part

 

1

 

of

 

2)

  

160

 

ILE

 

C/C++

 

Programmer’s

 

Guide



EVAL

 

Commands

 

for

 

System

 

and

 

Space

 

Pointers

 

The

 

example

 

below

 

shows

 

the

 

use

 

of

 

the

 

EVAL

 

command

 

with

 

system

 

and

 

space

 

pointers.

 

The

 

system

 

and

 

space

 

pointers

 

are

 

based

 

on

 

the

 

source

 

in

 

“Source

 

for

 

Sample

 

EVAL

 

Commands

 

for

 

Displaying

 

System

 

and

 

Space

 

Pointers”

 

on

 

page

 

165.

   

You

 

can

 

use

 

the

 

EVAL

 

command

 

on

 

C

 

and

 

C++

 

language

 

features

 

and

 

constructs.

 

The

 

ILE

 

source

 

debugger

 

can

 

display

 

a

 

full

 

class

 

or

 

structure

 

but

 

only

 

with

 

those

 

fields

 

defined

 

in

 

the

 

derived

 

class.

 

You

 

can

 

display

 

a

 

base

 

class

 

in

 

full

 

by

 

casting

 

the

 

derived

 

class

 

to

 

the

 

particular

 

base

 

class.

 

The

 

example

 

below

 

shows

 

the

 

use

 

of

 

the

 

EVAL

 

command

 

with

 

C++

 

language

 

constructs.

 

The

 

C++

 

language

 

constructs

 

are

 

based

 

on

 

the

 

source

 

in

 

“Source

 

for

  

Structures

 

and

 

Unions//

 

Assign

 

union

 

members

 

>eval

 

u.x

 

=

 

-10

  

u.x

 

=

 

-10

 

=

 

-10

   

//

 

Display

 

a

 

union.

 

The

 

union

 

is

 

formatted

 

for

 

each

 

definition

 

>eval

 

u

  

u.y

 

=

 

4294967286

  

u.x

 

=

 

-10

  

Enumerations

 

//

 

Display

 

both

 

the

 

enumeration

 

and

 

its

 

value

 

>eval

 

Color

  

Color

 

=

 

blue

 

(2)

 

>eval

 

Number

  

Number

 

=

 

three

 

(2)

   

//

 

Cast

 

to

 

a

 

different

 

enumeration

 

>eval

 

(enum

 

color)Number

  

(enum

 

color)Number

 

=

 

blue

 

(2)

   

//

 

Assign

 

by

 

number

 

>eval

 

Number

 

=

 

1

  

Number

 

=

 

1

 

=

 

two

 

(1)

   

//

 

Assign

 

by

 

enumeration

 

>eval

 

Number

 

=

 

three

  

Number

 

=

 

three

 

=

 

three

 

(2)

   

//

 

Use

 

enums

 

in

 

an

 

expression

 

>eval

 

arr1[one]

  

arr1[one]

 

=

 

’A’

 

Figure

 

75.

 

Sample

 

EVAL

 

Commands

 

for

 

C

 

Structures,

 

Unions

 

and

 

Enumerations

 

(Part

 

2

 

of

 

2)

 

System

 

and

 

Space

 

Pointers

 

//

 

System

 

pointers

 

are

 

formatted

 

//

 

:1934:QTEMP

     

:111111110

 

>eval

 

pSYSptr

  

pSYSptr

 

=

            

SYP:QTEUSERSPC

            

0011100

 

//

 

Space

 

pointers

 

return

 

8

 

bytes

 

that

 

can

 

be

 

used

 

in

 

//

 

System

 

Service

 

Tools

 

>eval

 

pBuffer

  

pBuffer

 

=

 

SPP:0000071ECD000200

 

Figure

 

76.

 

Sample

 

EVAL

 

Commands

 

for

 

System

 

and

 

Space

 

Pointers

  

Chapter

 

14.

 

Debugging

 

Variables

 

161



Sample

 

EVAL

 

Commands

 

for

 

Displaying

 

C++

 

Constructs”

 

on

 

page

 

167.

 

Additional

 

C++

 

examples

 

are

 

provided

 

in

 

the

 

source

 

debugger

 

online

 

help.

    

Displaying

 

a

 

Class

 

Template

 

and

 

a

 

Function

 

Template

 

To

 

display

 

a

 

class

 

template

 

or

 

a

 

function

 

template,

 

enter

 

EVAL

 

template-name

 

on

 

the

 

debug

 

command

 

line.

 

The

 

variable

 

template-name

 

is

 

the

 

name

 

of

 

the

 

class

 

template

 

or

 

function

 

template

 

you

 

want

 

to

 

display.

 

The

 

example

 

below

 

shows

 

the

 

results

 

of

 

evaluating

 

a

 

class

 

template.

 

You

 

must

 

enter

 

a

 

template

 

name

 

that

 

matches

 

the

 

demangled

 

template

 

name.

 

Type

 

definition

 

//

 

Follow

 

the

 

class

 

hierarchy

 

(specifying

 

class

 

D

 

is

 

optional)

 

>

 

EVAL

 

*(class

 

D

 

*)this

   

(*(class

 

D

 

*)this).__vbp1B

 

=

 

SPP:C40F5E3D7F000490

   

(*(class

 

D

 

*)this).__vbp1D

 

=

 

SPP:C40F5E3D7F000440

   

(*(class

 

D

 

*)this).d

 

=

 

4

   

//

 

Follow

 

the

 

class

 

hierarchy

 

(without

 

specifying

 

class

 

D)

 

>

 

EVAL

 

*(D

 

*)this

   

(*(D

 

*)this).__vbp1B

 

=

 

SPP:C40F5E3D7F000490

   

(*(D

 

*)this).__vbp1D

 

=

 

SPP:C40F5E3D7F000440

   

(*(D

 

*)this).d

 

=

 

4

   

//

 

Look

 

at

 

a

 

local

 

variable

 

>

 

EVAL

 

VAR

   

VAR

 

=

 

1

   

//

 

Look

 

at

 

a

 

global

 

variable

 

>

 

EVAL

 

::VAR

   

::VAR

 

=

 

2

   

//

 

Look

 

at

 

a

 

class

 

member

 

(specifying

 

this->

 

is

 

optional)

 

>

 

EVAL

 

this->f

   

this->f

 

=

 

6

   

//

 

Look

 

at

 

a

 

class

 

member

 

(without

 

specifying

 

this->)

 

>

 

EVAL

 

f

   

f

 

=

 

6

   

//

 

Disambiguate

 

variable

 

ac

 

>

 

EVAL

 

A::ac

   

A::ac

 

=

 

12

   

//

 

Scope

 

operator

 

with

 

template

 

>

 

EVAL

 

E<int>::ac

   

E<int>::ac

 

=

 

12

   

//

 

Cast

 

with

 

template:

 

>

 

EVAL

 

*(E<int>

 

*)this

   

(*(E<int>

 

*)this).__vbp1B

 

=

 

SPP:C40F5E3D7F000490

   

(*(E<int>

 

*)this).__vbp1EXTi_

 

=

 

SPP:C40F5E3D7F000400

   

(*(E<int>

 

*)this).e

 

=

 

5

   

//

 

Assign

 

a

 

value

 

to

 

a

 

variable

 

>

 

EVAL

 

f=23

   

f=23

 

=

 

23

   

//

 

See

 

all

 

local

 

variables

 

in

 

a

 

single

 

EVAL

 

statement

 

>

 

EVAL

 

%LOCALVARS

   

local

 

=

 

828

   

this

 

=

 

SPP:C40F5E3D7F000400

   

VAR

 

=

 

1

 

Figure

 

77.

 

Sample

 

EVAL

 

Commands

 

for

 

C++

 

Expressions

  

162

 

ILE

 

C/C++

 

Programmer’s

 

Guide



names

 

are

 

not

 

valid

 

because

 

the

 

typedef

 

information

 

is

 

removed

 

when

 

the

 

template

 

name

 

is

 

mangled.

   

The

 

example

 

below

 

shows

 

the

 

results

 

of

 

evaluating

 

a

 

function

 

template.

    

Source

 

for

 

Sample

 

EVAL

 

Commands

 

The

 

sample

 

EVAL

 

commands

 

presented

 

in

 

Figure

 

74

 

on

 

page

 

159

 

and

 

Figure

 

75

 

on

 

page

 

160

 

are

 

based

 

on

 

the

 

source

 

shown

 

in

 

the

 

following

 

figure:

           

>

 

EVAL

 

XX<int>::a

         

XX<int>::=

 

’1

 

’

       

>

 

EVAL

 

XX<inttype>::a

         

Identifier

 

not

 

found

       

1

  

template

 

<

 

class

 

A

 

>

        

//Code

 

evaluated

 

at

 

line

 

8

       

2

  

class

 

XX

 

{

                  

//where

 

a

 

breakpoint

 

was

 

set

       

3

     

static

 

A

 

a;

       

4

     

static

 

B

 

b;

       

5

  

};

       

6

  

XX<int>

 

x;

       

7

  

typedef

 

int

 

inttype;

       

8

  

int

 

XX<int>::a

 

=1;

          

//mangled

 

name

 

a__2XXXTi_

       

9

  

int

 

XX<inttype>::b

 

=

 

2;

     

//mangled

 

name

 

b__2XXXTi_

 

Figure

 

78.

 

Using

 

EVAL

 

with

 

a

 

Class

 

Template

      

>

 

EVAL

 

XX<int,12>::sxa

         

XX<int,12>::sxa

 

=

 

’1

 

’

       

>

 

EVAL

 

xxobj.xca[0]

         

xxobj.xca[0]

 

=

 

’2

 

’

       

1

  

template

 

<

 

class

 

A,

 

int

 

B>

  

//Code

 

evaluated

 

at

 

lines

 

8

 

and

 

9

       

2

  

class

 

XX

 

{

                  

//where

 

breakpoints

 

were

 

set

       

3

     

static

 

A

 

sxa;

       

4

     

char

     

xca[B];

       

5

  

public:

       

6

    

XX(void)

 

{

 

xca[0]

 

=

 

2;

 

}

       

7

  

};

       

8

  

XX<int,12>

 

xxobj;

       

9

  

int

 

XX<int,2*6>::sxa

 

=1;

                                      

//same

 

as

 

intXX<int,12>::sxa

                                      

//mangled

 

name

 

sxa__2XXXTiSP12_

 

Figure

 

79.

 

Using

 

EVAL

 

with

 

a

 

Function

 

Template

#include

 

<iostream.h>

 

#include

 

<pointer.h>

   

/**

 

POINTERS

 

**/

 

_SYSPTR

 

pSys;

             

//System

 

pointer

 

_SPCPTR

 

pSpace;

           

//Space

 

pointer

 

int

 

(*fncptr)(void);

      

//Function

 

pointer

 

char

 

*pc1;

                

//Character

 

pointer

 

char

 

*pc2;

                

//Character

 

pointer

 

int

  

*pi1;

                

//Integer

 

pointer

 

char

 

arr1[]

 

=

 

"ABC";

      

//Array

   

Figure

 

80.

 

Source

 

for

 

Sample

 

EVAL

 

Commands

 

(Part

 

1

 

of

 

3)

  

Chapter

 

14.

 

Debugging

 

Variables

 

163



/**

 

SIMPLE

 

VARIABLES

 

**/

 

int

 

i1;

                   

//Integer

 

unsigned

 

u1;

              

//Unsigned

 

Integer

 

char

 

c1;

                  

//Character

 

float

 

f1;

                 

//Float

   

/**

 

STRUCTURES

  

**/

 

struct

 

{

             

//Bit

 

fields

   

int

 

b1

 

:

 

1;

   

int

 

b4

 

:

 

4;

  

}bits;

 

struct

 

x{

                 

//

 

Tagged

 

structure

    

int

 

x;

    

char

 

*p;

 

};

 

struct

 

y{

                 

//

 

Structure

 

with

    

int

 

y;

                      

//

 

structure

 

member

    

struct

 

x

 

x;

 

};

 

typedef

 

struct

 

z

 

{

        

//

 

Structure

 

typedef

    

int

 

z;

    

char

 

*p;

 

}

 

z;

 

z

 

zz;

                     

//

 

Structure

 

using

 

typedef

 

z

 

*pZZ;

                   

//

 

Same

 

typedef

 

struct

 

c

 

{

        

//

 

Structure

 

typedef

    

unsigned

 

a;

    

char

 

*b;

 

}

 

c;

 

c

 

d;

                           

//

 

Structure

 

using

 

typedef

   

/**

 

UNIONS

 

**/

 

union

 

u{

                  

//

 

Union

    

int

 

x;

    

unsigned

 

y;

 

};

 

union

 

u

 

u;

                    

//

 

Variable

 

using

 

union

 

union

 

u

 

*pU;

                  

//

 

Same

   

/**

 

ENUMERATIONS

 

**/

 

enum

 

number

 

{one,

 

two,

 

three};

 

enum

 

color

 

{red,yellow,blue};

 

enum

 

number

 

Number

 

=

 

one;

 

enum

 

color

 

Color

 

=

 

blue;

   

Figure

 

80.

 

Source

 

for

 

Sample

 

EVAL

 

Commands

 

(Part

 

2

 

of

 

3)

  

164

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Source

 

for

 

Sample

 

EVAL

 

Commands

 

for

 

Displaying

 

System

 

and

 

Space

 

Pointers

    

The

 

sample

 

EVAL

 

command

 

for

 

displaying

 

system

 

and

 

space

 

pointers

 

presented

 

in

 

Figure

 

76

 

on

 

page

 

161

 

is

 

based

 

on

 

the

 

source

 

shown

 

in

 

the

 

following

 

figure:

     

/**

 

FUNCTION

 

**/

 

int

 

ret100(void)

 

{

 

return

 

100;}

 

int

 

main()

 

{

    

float

 

dec1;

    

struct

 

y

 

y,

 

*pY;

    

bits.b1

 

=

 

1;

    

bits.b4

 

=

 

2;

    

i1

 

=

 

ret100();

    

c1

 

=

 

’C’;

    

f1

 

=

 

100e2;

    

dec1

 

=

 

12.3;

    

pc1

 

=

 

&c1;

    

pi1

 

=

 

&i1;

    

d.a

 

=

 

1;

    

pZZ

 

=

 

&zz;

    

pZZ->z=1;

    

pY

 

=

 

&y;

    

pY->x.p=(char*)&y;

    

pU=&u;

    

pU->x=255;

    

Number=(number)Color;

    

fncptr

 

=

 

&ret100;

    

pY->x.x=1;

                   

//

 

Set

 

breakpoint

 

here

    

return

 

0;

  

}

 

Figure

 

80.

 

Source

 

for

 

Sample

 

EVAL

 

Commands

 

(Part

 

3

 

of

 

3)

  

Chapter

 

14.

 

Debugging

 

Variables

 

165



#include

 

<iostream.h>

 

#include

 

<mispace.h>

 

#include

 

<pointer.h>

 

#include

 

<mispcobj.h>

 

#include

 

<except.h>

 

#include

 

<lecond.h>

 

#include

 

<leenv.h>

 

#include

 

<qtedbgs.h>

      

//

 

From

 

qsysinc

   

//

 

Link

 

up

 

the

 

Create

 

User

 

Space

 

API

 

#pragma

 

linkage(CreateUserSpace,OS)

 

#pragma

 

map(CreateUserSpace,"QUSCRTUS")

 

void

 

CreateUserSpace(char[20],

                      

char[10],

                      

long

 

int,

                      

char,

                      

char[10],

                      

char[50],

                      

char[10],

                      

_TE_ERROR_CODE_T

 

*

                      

);

   

//

 

Link

 

up

 

the

 

Delete

 

User

 

Space

 

API

 

#pragma

 

linkage(DeleteUserSpace,OS)

 

#pragma

 

map(DeleteUserSpace,"QUSDLTUS")

 

void

 

DeleteUserSpace(char[20],

                      

_TE_ERROR_CODE_T

 

*

                      

);

   

//

 

Link

 

up

 

the

 

Retrieve

 

Pointer

 

to

 

User

 

Space

 

API

 

#pragma

 

linkage(RetrievePointerToUserSpace,OS)

 

#pragma

 

map(RetrievePointerToUserSpace,"QUSPTRUS")

 

void

 

RetrievePointerToUserSpace(char[20],

                                 

char

 

**,

                                 

_TE_ERROR_CODE_T

 

*

                                 

);

 

Figure

 

81.

 

Source

 

for

 

Sample

 

EVAL

 

Commands

 

for

 

Displaying

 

System

 

and

 

Space

 

Pointers

 

(Part

 

1

 

of

 

2)

  

166

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Source

 

for

 

Sample

 

EVAL

 

Commands

 

for

 

Displaying

 

C++

 

Constructs

    

The

 

sample

 

EVAL

 

command

 

for

 

displaying

 

C++

 

constructs

 

presented

 

in

 

Figure

 

77

 

on

 

page

 

162

 

is

 

based

 

on

 

the

 

source

 

shown

 

in

 

the

 

following

 

figure:

  

int

 

main

 

(int

 

argc,

 

char

 

*argv[])

 

{

     

char

 

*pBuffer;

     

_SYSPTR

 

pSYSptr;

     

_TE_ERROR_CODE_T

 

errorCode;

     

errorCode.BytesProvided

 

=

 

0;

     

CreateUserSpace("QTEUSERSPCQTEMP

     

",

                     

"QTESSPC

   

",

                     

10,

                     

0,

                     

"*ALL

      

",

                     

"

                                                  

",

                     

"*YES

      

",

                     

&errorCode

                     

);

       

//!

 

call

 

RetrievePointerToUserSpace

 

-

 

Retrieve

 

Pointer

 

to

 

User

 

Space

     

//!!

 

(pass:

 

Name

 

and

 

library

 

of

 

user

 

space,

 

pointer

 

variable

     

//!!

 

return:

 

nothing

 

(pointer

 

variable

 

is

 

left

 

pointing

 

to

 

start

     

//!!

         

of

 

user

 

space)

     

RetrievePointerToUserSpace("QTEUSERSPCQTEMP

     

",

                                

&pBuffer,

                                

&errorCode);

       

//

 

convert

 

the

 

space

 

pointer

 

to

 

a

 

system

 

pointer

     

pSYSptr

 

=

 

_SETSPFP(pBuffer);

     

cout

 

<<

 

"Space

 

pointer:

 

"

 

<<

 

pBuffer

 

<<

 

endl;

     

cout

 

<<

 

"System

 

pointer:

 

"

 

<<

 

pSYSptr

 

<<

 

endl;

     

return

 

0;

 

}

 

Figure

 

81.

 

Source

 

for

 

Sample

 

EVAL

 

Commands

 

for

 

Displaying

 

System

 

and

 

Space

 

Pointers

 

(Part

 

2

 

of

 

2)

  

Chapter

 

14.

 

Debugging

 

Variables

 

167



//

 

Program

 

demonstrates

 

the

 

EVAL

 

debug

 

command

      

class

 

A

 

{

        

public:

           

union

 

{

             

int

 

a;

             

int

 

ua;

           

};

        

int

 

ac;

        

int

 

amb;

        

int

 

not_amb;

        

};

        

class

 

B

 

{

        

public:

           

int

 

b;

      

};

        

class

 

C

 

{

        

public:

           

int

 

ac;

           

static

 

int

 

c;

           

int

 

amb;

           

int

 

not_amb;

      

};

        

int

 

C::c

 

=

 

45;

      

template

 

<class

 

T>

 

class

 

E

 

:

 

public

 

A,

 

public

 

virtual

 

B

 

{

        

public:

           

T

 

e;

     

};

       

class

 

D

 

:

 

public

 

C,

 

public

 

virtual

 

B

 

{

        

public:

           

int

 

d;

     

};

       

class

 

outter

 

{

        

public:

           

static

 

int

 

static_i;

           

class

 

F

 

:

 

public

 

E<int>,

 

public

 

D

 

{

              

public:

                 

int

 

f;

                 

int

 

not_amb;

                 

void

 

funct();

            

}

 

inobj;

      

};

   

Figure

 

82.

 

Source

 

for

 

Sample

 

EVAL

 

Commands

 

for

 

Displaying

 

C++

 

Constructs

 

(Part

 

1

 

of

 

3)

  

168

 

ILE

 

C/C++

 

Programmer’s

 

Guide



int

 

outter

 

::

 

static_i

 

=

 

45;

        

int

 

VAR

 

=

 

2;

        

void

 

outter::F::funct()

      

{

          

int

 

local;

          

a=1;

              

//EVAL

 

VAR

  

:

 

Is

 

VAR

 

in

 

global

 

scope

          

b=2;

          

c=3;

          

d=4;

          

e=5;

          

f=6;

            

local

 

=

 

828;

          

int

 

VAR;

            

VAR=1;

          

static_i=10;

          

A::ac=12;

          

C::ac=13;

          

not_amb=32;

            

not_amb=13;

          

//

 

Stop

 

here

 

and

 

show:

          

//

 

EVAL

 

VAR

          

:

 

is

 

VAR

 

in

 

local

 

scope

          

//

 

EVAL

 

::VAR

        

:

 

is

 

VAR

 

in

 

global

 

scope

          

//

 

EVAL

 

%LOCALVARS

   

:

 

see

 

all

 

local

 

vars

          

//

 

EVAL

 

*this

        

:

 

fields

 

of

 

derived

 

class

          

//

 

EVAL

 

this->f

      

:

 

show

 

member

 

f

          

//

 

EVAL

 

f

            

:

 

in

 

derived

 

class

          

//

 

EVAL

 

a

            

:

 

in

 

base

 

class

          

//

 

EVAL

 

b

            

:

 

in

 

Virtual

 

Base

 

class

          

//

 

EVAL

 

c

            

:

 

static

 

member

          

//

 

EVAL

 

static_i

     

:

 

static

 

var

 

made

 

visible

                                                 

:

 

by

 

middle-end

          

//

 

EVAL

 

au

           

:

 

anonymous

 

union

 

members

          

//

 

EVAL

 

a=49

         

:

          

//

 

EVAL

 

au

          

//

 

EVAL

 

ac

           

:

 

show

 

ambigous

 

var

          

//

 

EVAL

 

A::ac

        

:

 

disambig

 

with

 

scope

 

op

          

//

 

EVAL

 

B::ac

        

:

 

Scope

 

op

          

//

 

EVAL

 

E<int>::ac

   

:

 

Scope

 

op

          

//

 

EVAL

 

this

         

:

 

notice

 

pointer

 

values

          

//

 

EVAL

 

(E<int>*)this

      

:

 

change

          

//

 

EVAL

 

(class

 

D

 

*)this

    

:

 

class

 

is

 

optional

          

//

 

EVAL

 

*(E<int>

 

*)this

    

:

 

show

 

fields

          

//

 

EVAL

 

*(D

 

*)

 

this

       

:

 

show

 

fields

      

}

 

Figure

 

82.

 

Source

 

for

 

Sample

 

EVAL

 

Commands

 

for

 

Displaying

 

C++

 

Constructs

 

(Part

 

2

 

of

 

3)

  

Chapter

 

14.

 

Debugging

 

Variables

 

169



int

 

main()

      

{

         

outter

 

obj;

         

int

 

outter::F::*mptr

 

=

 

&outter::F::b;

         

int

 

i;

         

int&

 

r

 

=

 

i;

         

obj.inobj.funct();

         

i

 

=

 

777;

           

obj.static_i

 

=

 

2;

         

//

 

Stop

 

here

         

//

 

EVAL

 

obj.inobj.*mptr

  

:

 

member

 

ptr

         

//

 

EVAL

 

obj.inobj.b

         

//

 

EVAL

 

i

         

//

 

EVAL

 

r

         

//

 

EVAL

 

r=1

         

//

 

EVAL

 

i

         

//

 

EVAL

 

(A

 

&)

 

(obj.inobj)

  

:

 

reference

 

cast

         

//

 

EVAL

      

}

 

Figure

 

82.

 

Source

 

for

 

Sample

 

EVAL

 

Commands

 

for

 

Displaying

 

C++

 

Constructs

 

(Part

 

3

 

of

 

3)

  

170

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

15.

 

Changing

 

Module

 

Optimization

 

and

 

Observability

 

After

 

a

 

program

 

is

 

created,

 

it

 

might

 

need

 

to

 

be

 

changed

 

to

 

address

 

problems

 

or

 

revised

 

user

 

requirements.

 

When

 

a

 

program

 

is

 

in

 

production,

 

it

 

is

 

optimized

 

for

 

performance

 

and

 

reduced

 

to

 

its

 

minimum

 

size.

 

When

 

you

 

debug

 

a

 

program,

 

you

 

need

 

to

 

be

 

able

 

to:

 

v

   

Observe

 

the

 

behavior

 

of

 

the

 

program

 

as

 

it

 

processes

 

data

 

v

   

See

 

variable

 

values

 

that

 

might

 

not

 

be

 

visible

 

at

 

higher

 

levels

 

of

 

optimization

When

 

you

 

create

 

a

 

listing

 

view,

 

you

 

add

 

the

 

data

 

required

 

to

 

observe

 

the

 

behavior

 

of

 

the

 

program.

 

See

 

“Creating

 

a

 

Listing

 

View

 

for

 

Debugging”

 

on

 

page

 

123.

 

During

 

a

 

debug

 

session,

 

you

 

can

 

lower

 

the

 

optimization

 

level

 

of

 

a

 

module

 

to

 

display

 

variables

 

accurately

 

as

 

you

 

debug

 

the

 

program,

 

and

 

then

 

raise

 

the

 

level

 

again

 

afterwards

 

to

 

improve

 

the

 

program

 

efficiency

 

as

 

you

 

get

 

the

 

program

 

ready

 

for

 

production.

 

After

 

a

 

debug

 

session,

 

you

 

can

 

remove

 

module

 

observability

 

to

 

reduce

 

the

 

size

 

of

 

the

 

module.

 

This

 

chapter

 

describes

 

how

 

to:

 

v

   

Change

 

optimization

 

levels

 

during

 

a

 

debug

 

session.

 

v

   

Remove

 

module

 

observability.

Changing

 

Optimization

 

Levels

 

Optimizing

 

an

 

object

 

means

 

looking

 

at

 

the

 

compiled

 

code,

 

determining

 

what

 

can

 

be

 

done

 

to

 

make

 

the

 

run-time

 

performance

 

as

 

fast

 

as

 

possible,

 

and

 

making

 

the

 

necessary

 

changes.

 

In

 

general,

 

the

 

higher

 

the

 

optimizing

 

request,

 

the

 

longer

 

it

 

takes

 

to

 

create

 

an

 

object.

 

At

 

run

 

time,

 

the

 

highly

 

optimized

 

program

 

or

 

service

 

program

 

should

 

run

 

faster

 

than

 

the

 

corresponding

 

non-optimized

 

program

 

or

 

service

 

program.

 

Example:

 

This

 

example

 

shows

 

you

 

how

 

to

 

change

 

the

 

optimization

 

level

 

of

 

module

 

T1520IC4

 

from

 

*FULL

 

to

 

*NONE

 

to

 

allow

 

variables

 

to

 

be

 

displayed

 

and

 

changed

 

when

 

the

 

program

 

is

 

in

 

debug

 

mode.

 

Once

 

debug

 

is

 

complete,

 

you

 

can

 

change

 

the

 

optimization

 

level

 

back

 

to

 

*FULL

 

for

 

improved

 

run-time

 

performance.

 

1.

   

Enter

 

WRKMOD

 

MODULE(T1520IC1).

 

The

 

Work

 

with

 

Modules

 

display

 

is

 

shown.

 

2.

   

Select

 

option

 

5

 

(Display)

 

to

 

see

 

the

 

attribute

 

values

 

that

 

need

 

to

 

be

 

changed.

 

The

 

Display

 

Module

 

Information

 

display

 

is

 

shown:

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

171



Display

 

Module

 

Information

  

Module

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

T1520IC1

    

Library

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

     

MYLIB

  

Detail

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*BASIC

  

Module

 

attribute

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

CLE

  

Module

 

information:

     

Module

 

creation

 

date/time

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

93/09/93

  

12:00:00

     

Source

 

file

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

QACSRC

       

Library

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

     

MYLIB

     

Source

 

member

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

T1520IC1

     

Source

 

file

 

change

 

date/time

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

93/08/18

  

13:31:40

     

Owner

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

SMITH

     

Coded

 

character

 

set

 

identifier

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

65535

     

Text

 

description

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

     

Creation

 

data

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*YES

     

Intermediate

 

language

 

data

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*NO

                                                                       

More...

  

Press

 

Enter

 

to

 

continue.

  

F3=Exit

   

F12=Cancel

 

Note:

  

In

 

the

 

display

 

shown

 

above,

 

the

 

Creation

 

data

 

value

 

is

 

*YES.

 

This

 

means

 

that

 

the

 

module

 

can

 

be

 

translated

 

again

 

once

 

the

 

optimization

 

level

 

value

 

is

 

changed.

 

If

 

the

 

value

 

is

 

*NO,

 

you

 

must

 

compile

 

the

 

module

 

again

 

in

 

order

 

to

 

change

 

the

 

optimization

 

level.

 

3.

   

Press

 

the

 

Roll

 

Down

 

key

 

to

 

see

 

more

 

information

 

for

 

the

 

module

 

as

 

shown:

                               

Display

 

Module

 

Information

  

Module

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

T1520IC4

    

Library

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

     

MYLIB

  

Detail

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*BASIC

  

Module

 

attribute

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

CLE

     

Sort

 

sequence

 

table

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*HEX

     

Language

 

identifier

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*JOBRUN

     

Optimization

 

level

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*NONE

     

Maximum

 

optimization

 

level

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*FULL

     

Debug

 

data

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*YES

     

Compressed

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*NO

     

Program

 

entry

 

procedure

 

name

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

_C_pep

     

Number

 

of

 

parameters

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

0

       

255

     

Module

 

state

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*USER

     

Module

 

domain

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

*SYSTEM

     

Number

 

of

 

exported

 

defined

 

symbols

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

1

     

Number

 

of

 

imported

 

(unresolved)

 

symbols

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

10

     

Press

 

Enter

 

to

 

continue.

                                                                       

More...

  

F3=Exit

   

F12=Cancel

 

4.

   

Check

 

the

 

Maximum

 

Optimization

 

Level

 

value.

 

It

 

may

 

already

 

be

 

at

 

the

 

level

 

you

 

desire.

 

If

 

the

 

module

 

has

 

the

 

creation

 

data,

 

and

 

you

 

want

 

to

 

change

 

the

 

optimization

 

level,

 

press

 

F12

 

(Cancel).

 

The

 

Work

 

with

 

Modules

 

display

 

is

 

shown.

 

5.

   

Select

 

option

 

2

 

(Change)

 

for

 

the

 

module

 

whose

 

optimization

 

level

 

you

 

want

 

to

 

change.

 

The

 

CHGMOD

 

command

 

prompt

 

is

 

shown.

 

6.

   

Type

 

over

 

the

 

value

 

specified

 

for

 

the

 

field

 

Optimize

 

Module.

 

Changing

 

the

 

module

 

to

 

a

 

lower

 

level

 

of

 

optimization

 

allows

 

you

 

to

 

display,

 

and

 

possibly

 

change,

 

the

 

value

 

of

 

variables

 

while

 

debugging.

 

The

 

following

 

command

 

can

 

be

 

used

 

to

 

lower

 

the

 

optimization

 

level

 

to

 

*NONE

 

on

 

the

 

command

 

prompt

 

but

 

it

 

will

 

NOT

 

be

 

put

 

in

 

the

 

job

 

log.

 

CHGMOD

 

MODULE(MYLIB/T1520IC4)

 

OPTIMIZE(*NONE)

   

172

 

ILE

 

C/C++

 

Programmer’s

 

Guide



7.

   

Do

 

steps

 

2

 

through

 

6

 

again

 

for

 

any

 

additional

 

modules

 

you

 

may

 

want

 

to

 

change.

 

Whether

 

you

 

are

 

changing

 

one

 

module

 

or

 

several

 

in

 

the

 

same

 

ILE

 

program,

 

the

 

program

 

creation

 

time

 

is

 

the

 

same

 

because

 

all

 

imports

 

are

 

resolved

 

when

 

the

 

system

 

encounters

 

them.

 

Note:

  

Imports

 

can

 

be

 

left

 

unresolved

 

using

 

the

 

*UNRSLVREF

 

parameter

 

of

 

the

 

CRTPGM

 

command.

 

8.

   

Create

 

the

 

program

 

again

 

using

 

the

 

CRTPGM

 

command.

Removing

 

Module

 

Observability

 

Before

 

you

 

can

 

observe

 

a

 

module,

 

two

 

types

 

of

 

data

 

must

 

be

 

stored

 

with

 

the

 

module.

 

The

 

two

 

types

 

of

 

data

 

are:

 

Create

 

Data

 

Represented

 

by

 

the

 

*CRTDTA

 

value.

 

This

 

data

 

is

 

necessary

 

to

 

translate

 

the

 

code

 

to

 

machine

 

instructions.

 

The

 

module

 

must

 

have

 

this

 

data

 

before

 

you

 

can

 

change

 

the

 

module

 

optimization

 

level.

 

Debug

 

Data

 

Represented

 

by

 

the

 

*DBGDTA

 

value.

Both

 

*CRTDTA

 

and

 

*DBGDTA

 

are

 

necessary

 

for

 

a

 

module

 

to

 

be

 

debugged.

 

You

 

can

 

change

 

the

 

module

 

without

 

re-compiling

 

it

 

only

 

if

 

these

 

two

 

data

 

types

 

are

 

stored

 

with

 

it.

 

After

 

the

 

module

 

is

 

re-compiled,

 

only

 

this

 

data

 

can

 

be

 

removed.

 

After

 

this

 

data

 

is

 

removed,

 

its

 

observability

 

is

 

also

 

removed,

 

and

 

you

 

must

 

recompile

 

the

 

module

 

to

 

replace

 

the

 

data.

 

Removing

 

all

 

observability

 

reduces

 

the

 

module

 

to

 

its

 

minimum

 

size

 

(with

 

compression).

 

It

 

is

 

not

 

possible

 

to

 

change

 

the

 

module

 

in

 

any

 

way

 

unless

 

you

 

compile

 

the

 

module

 

again.

 

To

 

compile

 

it

 

again,

 

you

 

must

 

have

 

authorization

 

to

 

access

 

the

 

source

 

code.

 

You

 

can

 

use

 

the

 

CHGMOD

 

command

 

to

 

remove

 

either

 

kind

 

of

 

data

 

from

 

the

 

module.

 

Example:

 

Use

 

the

 

following

 

procedure

 

to

 

remove

 

observability

 

from

 

the

 

T1520IC4

 

program:

 

1.

   

Enter

 

WRKMOD.

 

The

 

Work

 

with

 

Modules

 

display

 

is

 

shown.

 

2.

   

Select

 

option

 

5

 

(Display)

 

to

 

see

 

the

 

attribute

 

values

 

that

 

need

 

to

 

be

 

changed.

 

The

 

Display

 

Module

 

Information

 

display

 

is

 

shown.

  

Check

 

the

 

value

 

of

 

the

 

field

 

Creation

 

data.

 

If

 

it

 

is

 

*YES,

 

the

 

Create

 

Data

 

exists,

 

and

 

can

 

be

 

removed.

 

If

 

this

 

value

 

is

 

*NO,

 

there

 

is

 

no

 

Create

 

Data

 

to

 

remove.

 

The

 

module

 

cannot

 

be

 

translated

 

again

 

unless

 

you

 

re-create

 

it.

 

3.

   

Press

 

the

 

Roll

 

Down

 

key

 

to

 

see

 

more

 

information

 

for

 

the

 

module.

 

Check

 

the

 

value

 

of

 

the

 

field

 

Debug

 

Data.

 

If

 

it

 

is

 

*YES,

 

the

 

module

 

can

 

be

 

debugged.

 

If

 

it

 

is

 

*NO,

 

the

 

module

 

cannot

 

be

 

debugged

 

unless

 

you

 

compile

 

it

 

again,

 

and

 

include

 

the

 

debug

 

data.

 

Then

 

press

 

F3

 

to

 

get

 

back

 

to

 

Work

 

with

 

Modules

 

display.

 

4.

   

Select

 

option

 

2

 

(Change)

 

for

 

the

 

module

 

whose

 

observability

 

you

 

want

 

to

 

change.

 

The

 

CHGMOD

 

command

 

prompt

 

is

 

shown.

 

5.

   

Type

 

over

 

the

 

value

 

specified

 

for

 

the

 

Remove

 

Observable

 

Info

 

prompt.

 

The

 

following

 

command

 

appears

 

in

 

the

 

job

 

log

 

for

 

the

 

Change

 

Module

 

command

 

after

 

the

 

Enter

 

key

 

is

 

pressed.

   

Chapter

 

15.

 

Changing

 

Module

 

Optimization

 

and

 

Observability

 

173



CHGMOD

 

MODULE(MYLIB/T1520IC4)

 

RMVOBS(*ALL)

 

6.

   

You

 

can

 

ensure

 

that

 

the

 

module

 

is

 

created

 

again

 

by

 

changing

 

the

 

value

 

of

 

the

 

Force

 

Module

 

Recreation

 

parameter

 

to

 

*YES.

 

Note:

  

This

 

parameter

 

is

 

not

 

required

 

simply

 

because

 

the

 

optimization

 

level

 

is

 

changed.

 

A

 

change

 

in

 

the

 

optimization

 

level

 

typically

 

results

 

in

 

module

 

re-creation

 

unless

 

the

 

Create

 

Data

 

has

 

been

 

removed.

 

If

 

you

 

want

 

the

 

program

 

to

 

be

 

translated

 

again

 

after

 

removing

 

the

 

debug

 

data,

 

without

 

changing

 

the

 

optimization

 

level,

 

you

 

must

 

use

 

the

 

Force

 

Module

 

Recreation

 

parameter.

 

7.

   

Do

 

steps

 

2

 

through

 

5

 

again

 

for

 

any

 

additional

 

modules

 

you

 

want

 

to

 

change.

 

Whether

 

you

 

are

 

changing

 

one

 

module

 

or

 

several

 

in

 

the

 

same

 

ILE

 

program,

 

the

 

program

 

creation

 

time

 

is

 

the

 

same

 

because

 

all

 

imports

 

are

 

resolved

 

when

 

the

 

system

 

encounters

 

them.

 

Note:

  

Imports

 

can

 

be

 

left

 

unresolved

 

using

 

the

 

*UNRSLVREF

 

parameter

 

of

 

the

 

CRTPGM

 

command.

 

Program

 

creation

 

time

 

is

 

the

 

same.

 

8.

   

Create

 

the

 

ILE

 

program

 

again

 

by

 

using

 

the

 

CRTPGM

 

command.

  

174

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Part

 

4.

 

Performing

 

I/O

 

Operations

 

This

 

part

 

describes

 

how

 

to:

 

v

   

Use

 

ILE

 

C/C++

 

stream

 

and

 

record

 

I/O

 

functions

 

with

 

iSeries

 

data

 

management

 

files

 

v

   

Use

 

ILE

 

C/C++

 

stream

 

I/O

 

functions

 

with

 

the

 

iSeries

 

Integrated

 

File

 

System

 

(IFS)

 

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

175



176

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

16.

 

Using

 

ILE

 

C/C++

 

Stream

 

and

 

Record

 

I/O

 

Functions

 

with

 

iSeries

 

Data

 

Management

 

files

 

The

 

ILE

 

C/C++

 

compiler

 

allows

 

your

 

program

 

to

 

process

 

stream

 

files

 

as

 

text

 

stream

 

files

 

or

 

as

 

binary

 

stream

 

files.

 

See

 

“File

 

Control

 

Structure

 

of

 

Text

 

Streams

 

and

 

Binary

 

Streams”

 

on

 

page

 

182.

 

This

 

chapter

 

describes:

 

v

   

ILE

 

C

 

Record

 

I/O

 

Functions

 

v

   

iSeries

 

Data

 

Management

 

files

 

v

   

File

 

control

 

structure

 

of

 

text

 

streams

 

and

 

binary

 

streams

 

v

   

I/O

 

processes

 

for

 

text

 

stream

 

files

 

v

   

I/O

 

processes

 

for

 

binary

 

stream

 

files

 

v

   

Open

 

feedback

 

area

 

v

   

I/O

 

feedback

 

area

 

v

   

How

 

to

 

use

 

Session

 

Manager

ILE

 

C

 

Record

 

I/O

 

Functions

    

The

 

ILE

 

C

 

library

 

provides

 

a

 

set

 

of

 

extensions

 

to

 

the

 

ISO

 

C

 

definition

 

for

 

I/O.

 

This

 

set

 

of

 

extensions,

 

referred

 

to

 

as

 

record

 

I/O,

 

allows

 

your

 

program

 

to

 

perform

 

I/O

 

operations

 

one

 

record

 

at

 

a

 

time.

 

The

 

ILE

 

C

 

record

 

I/O

 

functions

 

work

 

with

 

all

 

the

 

file

 

types

 

that

 

are

 

supported

 

on

 

the

 

iSeries

 

system.

 

Each

 

file

 

that

 

is

 

opened

 

with

 

_Ropen()

 

has

 

an

 

associated

 

structure

 

of

 

type

 

_RFILE.

 

The

 

<recio.h>

 

header

 

file

 

defines

 

this

 

structure.

  

Attention:

  

Unpredictable

 

results

 

may

 

occur

 

if

 

you

 

attempt

 

to

 

change

 

this

 

structure.

 

Different

 

open

 

modes

 

and

 

keyword

 

parameters

 

apply

 

to

 

the

 

different

 

iSeries

 

Data

 

Management

 

file

 

types.

 

For

 

information

 

about

 

each

 

file

 

type

 

and

 

how

 

to

 

open

 

a

 

record

 

file

 

using

 

_Ropen(),

 

see:

 

v

   

Chapter

 

18,

 

“Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program,”

 

on

 

page

 

225

 

v

   

Chapter

 

19,

 

“Using

 

Database

 

Files

 

and

 

Distributed

 

Data

 

Management

 

Files

 

in

 

a

 

Program,”

 

on

 

page

 

249

 

v

   

Chapter

 

20,

 

“Using

 

Device

 

Files

 

in

 

a

 

Program,”

 

on

 

page

 

269

Note:

  

There

 

is

 

no

 

equivalent

 

function

 

provided

 

by

 

the

 

C++

 

run-time

 

library.

 

Stream

 

Buffering

    

Three

 

buffering

 

schemes

 

are

 

defined

 

for

 

ISO

 

standard

 

C

 

streams.

 

They

 

are:

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

177



v

   

Unbuffered

 

-

 

characters

 

are

 

intended

 

to

 

appear

 

from

 

the

 

source

 

or

 

at

 

the

 

destination,

 

as

 

soon

 

as

 

possible.

 

The

 

ILE

 

C

 

compiler

 

does

 

not

 

support

 

unbuffered

 

streams.

 

v

   

Fully

 

buffered

 

-

 

characters

 

are

 

transmitted

 

to

 

and

 

from

 

a

 

file

 

one

 

block

 

at

 

time,

 

after

 

the

 

buffer

 

is

 

full.

 

The

 

ILE

 

C

 

compiler

 

treats

 

a

 

block

 

as

 

the

 

size

 

of

 

the

 

system

 

file’s

 

record.

 

v

   

Line

 

buffered

 

-

 

characters

 

are

 

transmitted

 

to

 

and

 

from

 

a

 

file,

 

as

 

a

 

block,

 

when

 

a

 

new-line

 

control

 

character

 

(\n)

 

is

 

encountered.

The

 

ILE

 

C

 

compiler

 

supports

 

fully-buffered

 

and

 

line-buffered

 

streams

 

in

 

the

 

same

 

manner,

 

because

 

a

 

block

 

and

 

a

 

line

 

are

 

equal

 

to

 

the

 

record

 

length

 

of

 

the

 

opened

 

file.

 

Note:

  

The

 

setbuf()

 

and

 

setvbuf()

 

functions

 

do

 

not

 

allow

 

you

 

to

 

control

 

buffering

 

and

 

buffer

 

size

 

when

 

using

 

the

 

data

 

management

 

system.

 

Dynamic

 

Stream

 

File

 

Creation

 

Dynamic

 

file

 

creation

 

for

 

text

 

stream

 

files

 

is

 

the

 

same

 

as

 

specifying:

 

CRTSRCPF

 

FILE(filename)

 

RCDLEN(recln)

 

Dynamic

 

file

 

creation

 

for

 

binary

 

stream

 

files

 

is

 

the

 

same

 

as

 

specifying:

 

CRTPF

 

FILE(filename)

 

RCDLEN(recln)

 

The

 

length

 

that

 

is

 

specified

 

on

 

the

 

lrecl

 

parameter

 

of

 

fopen()

 

is

 

used

 

for

 

the

 

record

 

length

 

of

 

the

 

file

 

that

 

is

 

created,

 

with

 

the

 

following

 

exceptions:

 

v

   

If

 

you

 

do

 

not

 

specify

 

a

 

record

 

length

 

when

 

you

 

open

 

a

 

text

 

file,

 

then

 

a

 

source

 

physical

 

file

 

with

 

a

 

record

 

length

 

of

 

266

 

is

 

created.

 

v

   

If

 

you

 

do

 

not

 

specify

 

a

 

record

 

length

 

when

 

you

 

open

 

a

 

binary

 

or

 

record

 

file,

 

then

 

a

 

physical

 

file

 

with

 

a

 

record

 

length

 

of

 

80

 

is

 

created.

 

v

   

If

 

you

 

specify

 

a

 

record

 

length

 

of

 

zero

 

(lrecl=0)

 

when

 

you

 

open

 

a

 

text

 

file,

 

then

 

a

 

source

 

physical

 

file

 

with

 

a

 

record

 

length

 

of

 

266

 

is

 

created.

 

v

   

If

 

you

 

specify

 

a

 

record

 

length

 

of

 

zero

 

(lrecl=0)

 

when

 

you

 

open

 

a

 

binary

 

file,

 

then

 

a

 

physical

 

file

 

with

 

a

 

record

 

length

 

of

 

80

 

is

 

created.

 

v

   

If

 

the

 

lrecl

 

parameter

 

is

 

not

 

specified

 

for

 

program-described

 

files,

 

then

 

the

 

record

 

length

 

that

 

is

 

specified

 

on

 

the

 

CRTPRTG,

 

or

 

CRTPRTF

 

is

 

used.

 

This

 

length

 

has

 

a

 

default

 

value

 

of

 

132,

 

and

 

if

 

specified

 

must

 

be

 

a

 

minimum

 

of

 

1.

Note:

  

To

 

use

 

the

 

source

 

entry

 

utility

 

(SEU)

 

to

 

edit

 

source

 

files,

 

specify

 

an

 

lrecl

 

value

 

of

 

240

 

characters

 

or

 

less

 

on

 

fopen().

 

Open

 

Modes

 

for

 

Dynamically

 

Created

 

Stream

 

Files

 

If

 

you

 

specify

 

the

 

mode

 

when

 

opening

 

a

 

file,

 

and

 

if

 

the

 

file

 

you

 

specified

 

does

 

not

 

already

 

exist,

 

the

 

iSeries

 

Data

 

Management

 

system

 

automatically

 

creates

 

the

 

file.

 

v

   

If

 

you

 

are

 

using

 

binary

 

mode,

 

a

 

physical

 

database

 

file

 

is

 

created.

 

v

   

If

 

you

 

are

 

using

 

text

 

mode,

 

a

 

source

 

physical

 

file

 

is

 

created.

If

 

the

 

file

 

exists,

 

but

 

the

 

member

 

does

 

not,

 

the

 

iSeries

 

system

 

adds

 

the

 

member

 

to

 

the

 

file.

 

If

 

you

 

do

 

not

 

specify

 

a

 

library

 

name

 

when

 

you

 

open

 

the

 

file,

 

the

 

database

 

file

 

is

 

dynamically

 

created

 

in

 

library

 

QTEMP.

 

If

 

you

 

do

 

not

 

specify

 

a

 

member

 

name,

 

a

 

member

 

is

 

created

 

with

 

the

 

same

 

name

 

as

 

the

 

file.

   

178

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Standard

 

I/O

 

Text

 

Stream

 

Files

 

(<stdio.h>)

 

When

 

a

 

program

 

that

 

includes

 

the

 

<stdio.h>

 

file

 

starts,

 

three

 

text

 

streams

 

are

 

defined:

 

v

   

Standard

 

input

 

(stdin)

 

reads

 

input

 

from

 

the

 

terminal.

 

v

   

Standard

 

output

 

(stdout)

 

writes

 

output

 

to

 

the

 

terminal.

 

v

   

Standard

 

error

 

(stderr)

 

writes

 

diagnostic

 

output

 

to

 

the

 

terminal.

Streams

 

stdin,

 

stdout,

 

and

 

stderr

 

are

 

implicitly

 

opened

 

the

 

first

 

time

 

they

 

are

 

used.

 

v

   

Stream

 

stdin

 

is

 

opened

 

with

 

fopen("stdin",

 

"r").

 

v

   

Stream

 

stdout

 

is

 

opened

 

with

 

fopen("stdout",

 

"w").

 

v

   

Stream

 

stderr

 

is

 

opened

 

with

 

fopen("stderr",

 

"w").

Note:

  

These

 

streams

 

are

 

not

 

real

 

iSeries

 

Data

 

Management

 

files,

 

but

 

are

 

simulated

 

as

 

files

 

by

 

the

 

ILE

 

C

 

library

 

routines.

 

By

 

default,

 

they

 

are

 

directed

 

to

 

the

 

terminal

 

session.

 

Overriding

 

Standard

 

Output

 

to

 

the

 

Terminal

 

The

 

stdin,

 

stdout,

 

and

 

stderr

 

streams

 

can

 

be

 

associated

 

with

 

other

 

devices

 

using

 

the

 

OS/400

 

override

 

commands

 

on

 

the

 

files

 

stdin,

 

stdout,

 

and

 

stderr

 

respectively.

 

If

 

stdin,

 

stdout,

 

and

 

stderr

 

are

 

used,

 

and

 

a

 

file

 

override

 

is

 

present

 

on

 

any

 

of

 

these

 

streams

 

prior

 

to

 

opening

 

the

 

stream,

 

then

 

the

 

override

 

takes

 

effect,

 

and

 

the

 

I/O

 

operation

 

may

 

not

 

go

 

to

 

the

 

terminal.

 

If

 

stdout

 

or

 

stderr

 

are

 

used

 

in

 

a

 

non-interactive

 

job,

 

and

 

if

 

there

 

are

 

no

 

file

 

overrides

 

for

 

the

 

stream,

 

then

 

the

 

ILE

 

C

 

compiler

 

overrides

 

the

 

stream

 

to

 

the

 

printer

 

file

 

QPRINT.

 

Output

 

prints

 

or

 

spools

 

for

 

printing

 

instead

 

of

 

displaying

 

at

 

your

 

workstation.

 

Allowing

 

a

 

Program

 

to

 

Re-Read

 

an

 

Input

 

File

 

with

 

QINLINE

 

Specified

 

If

 

stdin

 

is

 

specified

 

(or

 

the

 

default

 

accepted)

 

for

 

an

 

input

 

file

 

that

 

is

 

not

 

part

 

of

 

an

 

interactive

 

job,

 

then

 

the

 

QINLINE

 

file

 

is

 

used.

 

You

 

cannot

 

re-read

 

a

 

file

 

with

 

QINLINE

 

specified,

 

because

 

the

 

database

 

reader

 

will

 

treat

 

it

 

as

 

an

 

unnamed

 

file,

 

and

 

therefore

 

it

 

cannot

 

be

 

read

 

twice.

 

You

 

can

 

avoid

 

this

 

by

 

issuing

 

an

 

override.

 

If

 

you

 

are

 

reading

 

characters

 

from

 

stdin,

 

pressing

 

F4

 

triggers

 

the

 

run

 

time

 

to

 

end

 

any

 

pending

 

input

 

and

 

to

 

set

 

the

 

EOF

 

indicator

 

on.

 

Pressing

 

F3

 

is

 

the

 

same

 

as

 

calling

 

exit()

 

from

 

your

 

ILE

 

C/C++

 

program.

 

If

 

stdin

 

is

 

specified

 

in

 

batch

 

and

 

has

 

no

 

overrides

 

associated

 

with

 

it,

 

then

 

QINLINE

 

will

 

be

 

used.

 

If

 

stdin

 

has

 

overrides

 

associated

 

with

 

it,

 

then

 

the

 

override

 

is

 

used

 

instead

 

of

 

QINLINE.

 

Note:

  

You

 

can

 

also

 

use

 

freopen()

 

to

 

reopen

 

text

 

streams.

 

The

 

stdout

 

and

 

stderr

 

streams

 

can

 

be

 

reopened

 

for

 

printer

 

and

 

database

 

files.

 

The

 

stdin

 

stream

 

can

 

be

 

overridden

 

only

 

with

 

database

 

files.

 

Using

 

freopen()

 

to

 

redirect

 

stdin/stdout/stderr

 

from/to

 

an

 

IFS

 

stream

 

file

 

is

 

not

 

supported

 

on

 

iSeries.

 

iSeries

 

Data

 

Management

 

Files

 

An

 

ILE

 

C

 

stream

 

file

 

or

 

record

 

file

 

is

 

the

 

same

 

as

 

an

 

iSeries

 

Data

 

Management

 

file.

 

System

 

files

 

are

 

also

 

called

 

file

 

objects.

 

Each

 

iSeries

 

Data

 

Management

 

file

 

or

 

file

 

object

 

is

 

differentiated

 

and

 

categorized

 

by

 

information

 

that

 

is

 

stored

 

within

 

it.

 

Each

 

file

 

has

 

its

 

own

 

set

 

of

 

unique

 

characteristics,

 

which

 

determine

 

how

 

the

 

file

 

can

 

be

 

used

 

and

 

what

 

capabilities

 

it

 

provides.

 

This

 

information

 

is

 

called

 

the

 

file

 

description.

   

Chapter

 

16.

 

Using

 

ILE

 

C/C++

 

Stream

 

and

 

Record

 

I/O

 

Functions

 

with

 

iSeries

 

Data

 

Management

 

files

 

179



The

 

file

 

description

 

also

 

contains

 

the

 

file’s

 

characteristics,

 

details

 

on

 

how

 

the

 

data

 

associated

 

with

 

the

 

file

 

is

 

organized

 

into

 

records,

 

and

 

how

 

the

 

fields

 

are

 

organized

 

within

 

these

 

records.

 

Whenever

 

a

 

file

 

is

 

processed,

 

the

 

operating

 

system

 

uses

 

the

 

file

 

description.

 

Data

 

is

 

created

 

and

 

accessed

 

on

 

the

 

system

 

through

 

file

 

objects.

 

iSeries

 

Data

 

Management

 

File

 

Types

 

The

 

iSeries

 

Data

 

Management

 

files

 

are

 

listed:

 

v

   

Database

 

files

 

store

 

data

 

on

 

the

 

iSeries

 

Data

 

Management

 

system.

 

v

   

Device

 

files

 

provide

 

access

 

to

 

externally

 

attached

 

devices

 

such

 

as:

 

displays,

 

printers,

 

tapes,

 

and

 

diskettes.

 

v

   

Intersystem

 

communications

 

function

 

(ICF)

 

files

 

define

 

the

 

layout

 

of

 

the

 

data

 

sent

 

and

 

received

 

between

 

two

 

application

 

programs

 

on

 

different

 

systems.

 

This

 

file

 

links

 

the

 

configuration

 

objects

 

that

 

are

 

used

 

to

 

communicate

 

with

 

the

 

remote

 

system

 

v

   

Save

 

files

 

save

 

data

 

in

 

a

 

format

 

that

 

is

 

used

 

for

 

backup

 

and

 

recovery

 

purposes.

 

v

   

Distributed

 

Data

 

Management

 

(DDM)

 

files

 

access

 

data

 

on

 

remote

 

systems.

Data

 

Management

 

Stream

 

Files

 

and

 

ILE

 

C

 

I/O

 

Operations

   

The

 

C

 

International

 

Standard

 

defines

 

a

 

C

 

language

 

stream

 

file

 

as

 

a

 

sequence

 

of

 

data

 

that

 

is

 

read

 

and

 

written

 

one

 

character

 

at

 

a

 

time.

 

All

 

I/O

 

operations

 

in

 

ISO

 

C

 

are

 

stream

 

operations.

 

On

 

the

 

iSeries

 

Data

 

Management

 

system:

 

v

   

A

 

stream

 

is

 

a

 

continuous

 

string

 

of

 

characters.

 

v

   

All

 

files

 

are

 

made

 

up

 

of

 

records.

 

v

   

All

 

I/O

 

operations

 

at

 

the

 

operating

 

system

 

level

 

are

 

carried

 

out

 

a

 

record

 

at

 

a

 

time,

 

using

 

data

 

management

 

operations.

The

 

ILE

 

C/C++

 

run-time

 

library

 

allows

 

your

 

program

 

to

 

process

 

stream

 

files

 

as

 

text

 

stream

 

files

 

or

 

as

 

binary

 

stream

 

files.

 

Text

 

stream

 

files

 

process

 

one

 

character

 

at

 

a

 

time.

 

Binary

 

stream

 

files

 

process

 

either

 

one

 

character

 

at

 

a

 

time

 

or

 

one

 

record

 

at

 

a

 

time.

 

Because

 

the

 

iSeries

 

Data

 

Management

 

system

 

carries

 

out

 

I/O

 

operations

 

one

 

record

 

at

 

a

 

time,

 

the

 

ILE

 

C/C++

 

library

 

simulates

 

stream

 

file

 

processing

 

with

 

OS/400

 

records.

 

Although

 

the

 

ILE

 

C/C++

 

library

 

logically

 

handles

 

I/O

 

one

 

character

 

at

 

a

 

time,

 

the

 

actual

 

I/O

 

that

 

is

 

performed

 

by

 

the

 

operating

 

system

 

is

 

done

 

one

 

record

 

at

 

a

 

time.

 

Avoiding

 

Positioning

 

Problems

 

in

 

the

 

File

 

Because

 

the

 

iSeries

 

Data

 

Management

 

system

 

carries

 

out

 

I/O

 

operations

 

one

 

record

 

at

 

a

 

time,

 

using

 

system

 

commands

 

such

 

as

 

OPNQRYF

 

together

 

with

 

stream

 

I/O

 

operations

 

on

 

the

 

same

 

file

 

may

 

cause

 

positioning

 

problems

 

in

 

the

 

file

 

your

 

program

 

is

 

processing.

 

Caution:

 

v

   

Do

 

not

 

mix

 

the

 

use

 

of

 

ILE

 

C/C++

 

extensions

 

for

 

record

 

I/O

 

and

 

stream

 

file

 

functions

 

on

 

the

 

same

 

file

 

as

 

unpredictable

 

results

 

can

 

occur.

 

v

   

Avoid

 

using

 

system

 

commands

 

that

 

logically

 

work

 

with

 

records

 

instead

 

of

 

characters

 

in

 

programs

 

that

 

contain

 

stream

 

I/O

 

operations.

Using

 

the

 

fopen()

 

Function

 

The

 

format

 

of

 

fopen()

 

is:

   

180

 

ILE

 

C/C++

 

Programmer’s

 

Guide



#include

 

<stdio.h>

 

FILE

 

*fopen(const

 

char

 

*filename,

 

const

 

char

 

*mode);

 

The

 

mode

 

variable

 

is

 

a

 

character

 

string

 

that

 

consists

 

of

 

an

 

open

 

mode

 

which

 

may

 

be

 

followed

 

by

 

keyword

 

parameters.

 

The

 

open

 

mode

 

and

 

keyword

 

parameters

 

must

 

be

 

separated

 

by

 

a

 

comma

 

or

 

one

 

or

 

more

 

blank

 

characters.

Note:

  

For

 

information

 

about

 

the

 

recln

 

parameter,

 

see

 

“Dynamic

 

Stream

 

File

 

Creation”

 

on

 

page

 

178.

 

Using

 

the

 

open()

 

member

 

Function

    

Create

 

an

 

input,

 

output,

 

or

 

input/output

 

file

 

stream

 

and

 

then

 

link

 

to

 

a

 

file.

 

Use

 

the

 

open()

 

member

 

function

 

of

 

the

 

file

 

stream

 

class

 

to

 

link

 

a

 

file

 

stream

 

with

 

a

 

file.

 

The

 

format

 

of

 

the

 

open()

 

member

 

function

 

is:

 

void

 

ifstream::open(const

 

char

 

*filename,

 

openmode

 

mode=ios::in);

 

void

 

ofstream::open(const

 

char

 

*filename,

 

openmode

 

mode=ios::out|ios:trunc);

 

void

 

fstream::open(const

 

char

 

*filename,

 

openmode

 

mode);

 

iSeries

 

Data

 

Management

 

File

 

Naming

 

Conventions

 

The

 

_Ropen()

 

and

 

fopen()

 

functions

 

that

 

refer

 

to

 

iSeries

 

system

 

files

 

require

 

a

 

file

 

name.

 

This

 

file

 

name

 

must

 

be

 

a

 

null-ended

 

string.

 

The

 

syntax

 

of

 

an

 

iSeries

 

data

 

management

 

filename

 

is:

  

library-name

 

Enter

 

the

 

name

 

of

 

the

 

library

 

that

 

contains

 

the

 

file.

 

If

 

you

 

do

 

not

 

specify

 

a

 

library,

 

the

 

system

 

searches

 

the

 

job’s

 

library

 

list

 

for

 

the

 

file.

 

filename

 

Enter

 

the

 

name

 

of

 

the

 

file.

 

This

 

is

 

a

 

required

 

parameter.

 

member-name

 

Enter

 

the

 

name

 

of

 

the

 

file

 

member.

 

If

 

you

 

do

 

not

 

specify

 

a

 

member

 

name,

 

the

 

first

 

member

 

(*FIRST)

 

is

 

used.

 

Note:

  

If

 

you

 

specify

 

*ALL

 

for

 

member-name

 

when

 

using

 

fopen()

 

and

 

_Ropen(),

 

multi-member

 

processing

 

occurs.

 

All

 

characters

 

specified

 

for

 

library-name,

 

filename,

 

or

 

member-name

 

are

 

folded

 

to

 

uppercase

 

unless

 

you

 

surround

 

the

 

string

 

by

 

the

 

back

 

slash

 

and

 

quotation

 

mark

 

(\″)

 

control

 

sequence.

 

This

 

allows

 

you

 

to

 

specify

 

the

 

OS/400

 

quoted

 

names.

 

For

 

example:

 

"\"tstlib\"/tstfile(tstmbr)"

   

Library

 

is:

    

"tstlib"

 

File

 

is:

       

TSTFILE

 

Member

 

is:

     

TSTMBR

 

��

 

library-name/

 

file-name

 

file-name

 

(member-name)

 

��

   

Chapter

 

16.

 

Using

 

ILE

 

C/C++

 

Stream

 

and

 

Record

 

I/O

 

Functions

 

with

 

iSeries

 

Data

 

Management

 

files

 

181



If

 

you

 

surround

 

the

 

filename,

 

library

 

name,

 

or

 

member

 

name

 

in

 

double

 

quotation

 

marks

 

and

 

the

 

name

 

is

 

a

 

normal

 

name,

 

the

 

double

 

quotation

 

marks

 

are

 

discarded

 

by

 

the

 

ILE

 

C\C++

 

compiler.

 

A

 

normal

 

name

 

is

 

any

 

file,

 

library,

 

or

 

member

 

name

 

with

 

the

 

following

 

characters:

 

v

   

Uppercase

 

characters

 

v

   

Numeric

 

values

 

v

   

$

 

(hexadecimal

 

value

 

0x5B)

 

v

   

@

 

(hexadecimal

 

value

 

0x7C)

 

v

   

#

 

(hexadecimal

 

value

 

0x7B)

 

v

   

_

 

(hexadecimal

 

value

 

0x6D)

 

v

   

.

 

(hexadecimal

 

value

 

0x4B)

The

 

following

 

characters

 

cannot

 

appear

 

anywhere

 

in

 

your

 

filenames,

 

library

 

names,

 

or

 

member

 

names:

 

Incorrect

 

Character

 

Hexadecimal

 

Representation

 

(

 

0x4D

 

*

 

0x5C

 

)

 

0x5D

 

/

 

0x6I

 

?

 

0x6F

 

’

 

0x7D

 

″

 

0x7F

 

(blank)

 

0x40

Note:

  

″(

 

)

 

/

 

″

 

can

 

be

 

used

 

in

 

quoted

 

filenames.

 

File

 

Control

 

Structure

 

of

 

Text

 

Streams

 

and

 

Binary

 

Streams

 

Both

 

text

 

streams

 

and

 

binary

 

streams

 

map

 

to

 

records

 

in

 

iSeries

 

Data

 

Management

 

files.

 

They

 

can

 

be

 

processed

 

one

 

character

 

at

 

a

 

time

 

or

 

one

 

record

 

at

 

a

 

time.

   

Each

 

text

 

stream

 

file

 

and

 

each

 

binary

 

stream

 

file

 

is

 

represented

 

by

 

a

 

file

 

control

 

structure

 

of

 

type

 

FILE.

 

This

 

structure

 

is

 

defined

 

in

 

the

 

<stdio.h>

 

header

 

file.

  

Attention:

   

Unpredictable

 

results

 

may

 

occur

 

if

 

you

 

attempt

 

to

 

change

 

the

 

file

 

control

 

structure.

  

Figure

 

83.

 

iSeries

 

Data

 

Management

 

Records

 

Mapping

 

to

 

an

 

ILE

 

C

 

Stream

 

File

  

182

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Table

 

8.

 

Comparison

 

of

 

iSeries

 

Data

 

Management

 

Text

 

Streams

 

and

 

Binary

 

Stream

 

File

 

Processing

 

Text

 

Streams

 

Binary

 

Streams

 

Definition

 

An

 

ordered

 

sequence

 

of

 

characters

 

that

 

are

 

composed

 

of

 

lines.

 

Each

 

line

 

consists

 

of

 

zero

 

or

 

more

 

characters

 

and

 

ends

 

with

 

a

 

new-line

 

character.

 

A

 

sequence

 

of

 

characters

 

that

 

has

 

a

 

one-to-one

 

correspondence

 

with

 

the

 

characters

 

stored

 

in

 

the

 

associated

 

iSeries

 

Data

 

Management

 

file.

 

On

 

the

 

iSeries

 

system,

 

the

 

length

 

of

 

a

 

binary

 

stream

 

file

 

is

 

a

 

multiple

 

of

 

the

 

record

 

length.

 

Impact

 

of

 

I/O

 

Processing

 

The

 

iSeries

 

Data

 

Management

 

system

 

may

 

add,

 

alter,

 

or

 

delete

 

some

 

special

 

characters

 

during

 

input

 

or

 

output.

 

Therefore,

 

there

 

may

 

not

 

be

 

a

 

one-to-one

 

correspondence

 

between

 

the

 

characters

 

written

 

to

 

a

 

text

 

stream

 

and

 

characters

 

read

 

from

 

the

 

same

 

text

 

stream.

 

Data

 

read

 

from

 

a

 

text

 

stream

 

is

 

equal

 

to

 

data

 

written

 

to

 

the

 

text

 

stream

 

if

 

all

 

of

 

the

 

following

 

are

 

true:

 

v

   

The

 

data

 

consists

 

of

 

printable

 

characters,

 

horizontal

 

tab,

 

vertical

 

tab,

 

new-line

 

character,

 

or

 

form-feed

 

control

 

characters.

 

v

   

No

 

new-line

 

character

 

is

 

immediately

 

preceded

 

by

 

a

 

space

 

(blank)

 

character.

 

v

   

The

 

last

 

character

 

in

 

a

 

stream

 

is

 

a

 

new-line

 

character.

 

v

   

The

 

lines

 

that

 

are

 

written

 

to

 

a

 

file

 

do

 

not

 

exceed

 

the

 

record

 

length

 

of

 

the

 

file.

 

Character

 

translation

 

is

 

not

 

performed

 

on

 

binary

 

streams.

 

When

 

data

 

is

 

written

 

to

 

a

 

binary

 

stream,

 

it

 

is

 

the

 

same

 

when

 

it

 

is

 

read

 

back

 

later.

 

Note:

 

New-line

 

characters

 

have

 

no

 

special

 

significance

 

in

 

a

 

binary

 

stream.

 

End-of-File

 

Processing

 

When

 

a

 

file

 

is

 

closed,

 

an

 

implicit

 

new-line

 

character

 

is

 

appended

 

to

 

the

 

end

 

of

 

the

 

file

 

unless

 

a

 

new-line

 

character

 

is

 

already

 

specified.

 

When

 

a

 

file

 

is

 

closed,

 

the

 

last

 

record

 

in

 

the

 

file

 

is

 

padded

 

with

 

nulls

 

(hexadecimal

 

value

 

0x00)

 

to

 

the

 

end

 

of

 

the

 

record.

   

I/O

 

Processes

 

for

 

Text

 

Stream

 

Files

 

This

 

section

 

describes

 

how

 

to:

 

v

   

open

 

text

 

stream

 

files

 

v

   

write

 

text

 

stream

 

files

 

v

   

read

 

text

 

stream

 

files

 

v

   

update

 

text

 

stream

 

files

Opening

 

Text

 

Stream

 

Files

 

To

 

open

 

an

 

iSeries

 

system

 

file

 

as

 

a

 

text

 

stream

 

file,

 

use

 

fopen()

 

with

 

one

 

of

 

the

 

following

 

modes:

 

v

   

r

   

Chapter

 

16.

 

Using

 

ILE

 

C/C++

 

Stream

 

and

 

Record

 

I/O

 

Functions

 

with

 

iSeries

 

Data

 

Management

 

files

 

183



v

    

r+

 

v

   

w

 

v

   

w+

 

v

   

a

 

v

   

a+

Notes:

  

1.

   

The

 

number

 

of

 

files

 

that

 

can

 

be

 

simultaneously

 

opened

 

by

 

fopen()

 

depends

 

on

 

the

 

amount

 

of

 

the

 

system

 

storage

 

available.

 

2.

   

The

 

fopen()

 

function

 

open

 

modes

 

also

 

apply

 

to

 

the

 

freopen()

 

function.

 

3.

   

If

 

the

 

text

 

stream

 

file

 

contains

 

deleted

 

records,

 

the

 

deleted

 

records

 

are

 

skipped

 

by

 

the

 

text

 

stream

 

I/O

 

functions.

The

 

valid

 

keyword

 

parameters

 

are:

 

v

   

lrecl

 

v

   

ccsid

 

v

   

recfm

 

(F,

 

FA,

 

and

 

FB

 

only)

If

 

you

 

specify

 

a

 

mode

 

or

 

keyword

 

parameter

 

that

 

is

 

not

 

valid

 

on

 

fopen(),

 

errno

 

is

 

set

 

to

 

EBADMODE,

 

and

 

NULL

 

is

 

returned.

 

Example:

 

The

 

following

 

example

 

illustrates

 

how

 

to

 

open

 

a

 

text

 

stream

 

file.

 

Library

 

MYLIB

 

must

 

exist.

 

The

 

file

 

TEST

 

is

 

created

 

for

 

you

 

if

 

it

 

does

 

not

 

exist.

 

The

 

mode

 

w+

 

indicates

 

that

 

if

 

MBR

 

does

 

not

 

exist,

 

it

 

is

 

created

 

for

 

update.

 

If

 

it

 

does

 

exist,

 

it

 

is

 

cleared.

  

Note:

  

You

 

can

 

read,

 

write

 

to,

 

or

 

update

 

any

 

text

 

stream

 

file

 

that

 

is

 

open

 

for

 

processing.

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

int

 

main(void)

 

{

     

FILE

 

*fp;

     

/*

 

Open

 

a

 

text

 

stream

 

file.

                                     

*/

     

/*

 

Check

 

to

 

see

 

if

 

it

 

opened

 

successfully

                       

*/

     

if

 

((

 

fp

 

=

 

fopen

 

(

 

"MYLIB/TEST(MBR)",

 

"w+")

 

)

 

==

 

NULL

 

)

     

{

         

printf

 

(

 

"Cannot

 

open

 

MYLIB/TEST(MBR)\n"

 

);

         

exit

 

(

 

1

 

);

     

}

       

printf

 

(

 

"Opened

 

the

 

file

 

successfully\n"

 

);

       

/*

 

Perform

 

some

 

I/O

 

operations.

                                 

*/

       

fclose

 

(

 

fp

 

);

     

return

 

0;

 

}

 

Figure

 

84.

 

ILE

 

C

 

Source

 

to

 

Open

 

an

 

ILE

 

C

 

Text

 

Stream

 

File

  

184

 

ILE

 

C/C++

 

Programmer’s

 

Guide



To

 

open

 

an

 

iSeries

 

system

 

file

 

as

 

a

 

text

 

stream

 

file,

 

use

 

the

 

open()

 

member

 

function

 

with

 

the

 

following

 

modes:

 

v

   

ios::app

 

v

   

ios::ate

 

v

   

ios::in

 

v

   

ios::out

 

v

   

ios::trunc

Writing

 

Text

 

Stream

 

Files

 

During

 

a

 

write

 

operation,

 

a

 

new-line

 

character

 

in

 

the

 

buffer

 

causes

 

the

 

remainder

 

of

 

the

 

record

 

written

 

to

 

the

 

text

 

stream

 

file

 

to

 

be

 

padded

 

with

 

blank

 

characters

 

(hexadecimal

 

value

 

0x40).

 

The

 

new-line

 

character

 

itself

 

is

 

discarded.

   

If

 

the

 

number

 

of

 

characters

 

being

 

written

 

in

 

the

 

buffer

 

exceeds

 

the

 

record

 

length

 

of

 

the

 

file,

 

the

 

data

 

written

 

to

 

the

 

file

 

is

 

truncated,

 

and

 

errno

 

is

 

set

 

to

 

ETRUNC.

 

Example:

 

The

 

following

 

example

 

illustrates

 

how

 

to

 

write

 

to

 

a

 

text

 

stream

 

file.

    

Figure

 

85.

 

Writing

 

to

 

a

 

Text

 

Stream

 

File

  

Chapter

 

16.

 

Using

 

ILE

 

C/C++

 

Stream

 

and

 

Record

 

I/O

 

Functions

 

with

 

iSeries

 

Data

 

Management

 

files

 

185



Reading

 

Text

 

Stream

 

Files

 

During

 

a

 

read

 

operation

 

from

 

a

 

text

 

stream

 

file,

 

all

 

the

 

trailing

 

blank

 

characters

 

(hexadecimal

 

value

 

0x40)

 

in

 

the

 

record

 

that

 

are

 

read

 

from

 

the

 

file

 

into

 

a

 

buffer

 

are

 

ignored.

 

A

 

new-line

 

character

 

is

 

inserted

 

after

 

the

 

last

 

non-blank.

   

Example:

 

The

 

following

 

example

 

illustrates

 

how

 

to

 

read

 

from

 

a

 

text

 

stream

 

file.

  

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

int

 

main(void)

 

{

     

char

 

buf[12]

 

=

 

"abcd\nefghi\n";

     

FILE

 

*fp;

     

/*

 

Open

 

a

 

text

 

file

 

for

 

writing.

    

*/

     

if

 

((

 

fp

 

=

 

fopen

 

(

 

"MYLIB/TEST(MBR)",

 

"w"

 

)

 

)

 

==

 

NULL

 

)

     

{

          

printf

 

(

 

"Cannot

 

open

 

file\n"

 

);

          

exit

 

(

 

1

 

);

     

}

     

/*

 

Write

 

characters

 

to

 

the

 

file.

    

*/

       

fputs

 

(

 

buf,

 

fp

 

);

       

/*

 

Close

 

the

 

text

 

file.

             

*/

       

fclose

 

(

 

fp

 

);

     

return

 

0;

  

}

 

Figure

 

86.

 

ILE

 

C

 

Source

 

to

 

Write

 

Characters

 

to

 

a

 

Text

 

Stream

 

File

  

Figure

 

87.

 

Reading

 

from

 

a

 

Text

 

Stream

 

File

  

186

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Updating

 

Text

 

Stream

 

Files

 

During

 

an

 

update

 

operation

 

to

 

a

 

text

 

stream

 

file,

 

if

 

the

 

number

 

of

 

characters

 

being

 

written

 

to

 

the

 

file

 

exceeds

 

the

 

record

 

length

 

of

 

the

 

file,

 

trailing

 

characters

 

in

 

the

 

record

 

are

 

truncated

 

and

 

errno

 

is

 

set

 

to

 

ETRUNC.

 

If

 

the

 

data

 

being

 

written

 

to

 

the

 

text

 

stream

 

file

 

is

 

shorter

 

than

 

the

 

record

 

length

 

being

 

updated,

 

and

 

the

 

last

 

character

 

of

 

the

 

data

 

being

 

written

 

is

 

a

 

new-line

 

character,

 

then

 

the

 

record

 

is

 

updated

 

and

 

the

 

remainder

 

of

 

the

 

record

 

is

 

filled

 

with

 

blank

 

characters.

 

If

 

the

 

last

 

character

 

of

 

the

 

data

 

being

 

written

 

is

 

not

 

a

 

new-line

 

character,

 

the

 

record

 

is

 

updated

 

and

 

the

 

remainder

 

of

 

the

 

record

 

remains

 

unchanged.

 

I/O

 

Process

 

for

 

Binary

 

Stream

 

Files

 

This

 

section

 

describes

 

how

 

to:

 

v

   

Open

 

binary

 

stream

 

files,

 

one

 

character

 

at

 

a

 

time

 

v

   

Write

 

binary

 

stream

 

files,

 

one

 

character

 

at

 

a

 

time

 

v

   

Read

 

binary

 

stream

 

files,

 

one

 

character

 

at

 

a

 

time

 

v

   

Update

 

binary

 

stream

 

files,

 

one

 

character

 

at

 

a

 

time

 

v

   

Open

 

binary

 

stream

 

files,

 

one

 

record

 

at

 

a

 

time

 

v

   

Write

 

binary

 

stream

 

files,

 

one

 

record

 

at

 

a

 

time

 

v

   

Read

 

binary

 

stream

 

files,

 

one

 

record

 

at

 

a

 

time

Opening

 

Binary

 

Stream

 

Files

 

(character

 

at

 

a

 

time)

 

To

 

open

 

an

 

iSeries

 

Data

 

Management

 

file

 

as

 

a

 

binary

 

stream

 

file

 

for

 

character-at-a-time

 

processing,

 

use

 

fopen()

 

with

 

any

 

of

 

the

 

following

 

modes:

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

int

 

main(void)

 

{

    

char

 

buf[12];

    

char

 

*result;

    

FILE

 

*fp;

    

/*

 

Open

 

an

 

existing

 

text

 

file

 

for

 

reading.

   

*/

    

if

 

((

 

fp

 

=

 

fopen

 

(

 

"MYLIB/TEST(MBR)",

 

"r")

 

)

 

==

 

NULL

 

)

    

{

        

printf

 

(

 

"Cannot

 

open

 

file\n"

 

);

        

exit

 

(

 

1

 

);

    

}

     

/*

 

Read

 

characters

 

into

 

the

 

buffer.

         

*/

       

result

 

=

 

fgets

 

(

 

buf,

 

sizeof(buf),

 

fp

 

);

     

printf("%10s",

 

result);

     

result

 

=

 

fgets

 

(

 

buf+5,

 

sizeof(buf),

 

fp

 

);

     

printf("%10s",

 

result);

       

fclose

 

(

 

fp

 

);

     

return

 

0;

  

}

 

Figure

 

88.

 

ILE

 

C

 

Source

 

to

 

Read

 

Characters

 

from

 

a

 

Text

 

Stream

 

File

  

Chapter

 

16.

 

Using

 

ILE

 

C/C++

 

Stream

 

and

 

Record

 

I/O

 

Functions

 

with

 

iSeries

 

Data

 

Management

 

files

 

187



v

   

rb

 

v

   

r+b

 

v

   

rb+

 

v

   

wb

 

v

   

w+b

 

v

   

wb+

 

v

   

ab

 

v

   

a+b

 

v

   

ab+

Notes:

  

1.

   

The

 

number

 

of

 

files

 

that

 

can

 

be

 

simultaneously

 

opened

 

by

 

fopen()

 

depends

 

on

 

the

 

size

 

of

 

the

 

system

 

storage

 

available.

 

2.

   

The

 

fopen()

 

function

 

open

 

modes

 

also

 

apply

 

to

 

the

 

freopen()

 

function.

 

3.

   

If

 

the

 

binary

 

stream

 

file

 

contains

 

deleted

 

records,

 

the

 

deleted

 

records

 

are

 

skipped

 

by

 

the

 

binary

 

stream

 

I/O

 

functions.

The

 

valid

 

keyword

 

parameters

 

are:

 

v

   

blksize

 

v

   

lrecl

 

v

   

recfm

 

v

   

type

 

v

   

commit

 

v

   

ccsid

 

v

   

arrseq

 

v

   

indicators

If

 

you

 

specify

 

the

 

type

 

parameter

 

the

 

value

 

must

 

be

 

memory

 

for

 

binary

 

stream

 

character-at-a-time

 

processing.

 

Note:

  

The

 

memory

 

parameter

 

identifies

 

this

 

file

 

as

 

a

 

memory

 

file

 

that

 

is

 

accessible

 

only

 

from

 

C

 

programs.

 

This

 

parameter

 

is

 

the

 

default

 

and

 

is

 

ignored.

 

If

 

you

 

specify

 

a

 

mode

 

or

 

keyword

 

parameter

 

that

 

is

 

not

 

valid

 

on

 

fopen(),

 

errno

 

is

 

set

 

to

 

EBADMODE.

 

Example:

 

The

 

following

 

example

 

illustrates

 

how

 

to

 

open

 

a

 

binary

 

stream

 

file.

    

188

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Note:

  

You

 

can

 

read,

 

write

 

to,

 

or

 

update

 

any

 

binary

 

stream

 

files

 

that

 

are

 

open

 

for

 

character-at-a

 

time

 

processing.

    

To

 

open

 

an

 

iSeries

 

Data

 

Management

 

file

 

as

 

a

 

binary

 

stream

 

file

 

for

 

character-at-a-time

 

processing,

 

use

 

the

 

open()

 

member

 

function

 

with

 

ios::binary

 

as

 

well

 

as

 

any

 

of

 

the

 

following

 

modes:

 

v

   

ios::app

 

v

   

ios::ate

 

v

   

ios::in

 

v

   

ios::out

 

v

   

ios::trunc

Writing

 

Binary

 

Stream

 

Files

 

(character

 

at

 

a

 

time)

 

If

 

you

 

write

 

data

 

to

 

a

 

binary

 

stream

 

processed

 

one

 

character

 

at

 

a

 

time,

 

and

 

the

 

size

 

of

 

the

 

data

 

is

 

greater

 

than

 

the

 

current

 

record

 

length,

 

then

 

the

 

excess

 

data

 

is

 

written

 

to

 

the

 

current

 

record

 

up

 

to

 

its

 

record

 

size

 

and

 

the

 

remaining

 

data

 

is

 

written

 

to

 

the

 

next

 

record

 

in

 

the

 

file.

  

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

int

 

main(void)

 

{

     

FILE

 

*fp;

     

/*

 

Open

 

an

 

existing

 

binary

 

file.

                   

*/

     

if

 

((

 

fp

 

=

 

fopen

 

(

 

"MYLIB/TEST(MBR)",

 

"wb+"

 

)

 

)

 

==

 

NULL

 

)

     

{

         

printf

 

(

 

"Cannot

 

open

 

file\n"

 

);

         

exit

 

(

 

1

 

);

     

}

     

printf

 

("Opened

 

the

 

file

 

successfully\n");

       

/*

 

Perform

 

some

 

I/O

 

operations.

                    

*/

       

fprintf

 

(fp,

 

"Hello,

 

world");

       

fclose

 

(

 

fp

 

);

     

return

 

0;

 

}

 

Figure

 

89.

 

ILE

 

C

 

Source

 

to

 

Open

 

a

 

Binary

 

Stream

 

File

  

Figure

 

90.

 

Writing

 

to

 

a

 

Binary

 

Stream

 

File

 

One

 

Character

 

at

 

a

 

Time

  

Chapter

 

16.

 

Using

 

ILE

 

C/C++

 

Stream

 

and

 

Record

 

I/O

 

Functions

 

with

 

iSeries

 

Data

 

Management

 

files

 

189



Example:

 

The

 

following

 

example

 

illustrates

 

how

 

to

 

write

 

to

 

a

 

binary

 

stream

 

by

 

character.

    

Reading

 

Binary

 

Stream

 

Files

 

(character

 

at

 

a

 

time)

 

During

 

a

 

read

 

operation

 

from

 

a

 

binary

 

stream

 

that

 

is

 

processed

 

a

 

character

 

at

 

a

 

time,

 

if

 

the

 

length

 

of

 

the

 

data

 

being

 

read

 

is

 

greater

 

than

 

the

 

record

 

length

 

of

 

the

 

file,

 

then

 

data

 

is

 

read

 

from

 

the

 

next

 

record

 

in

 

the

 

file.

   

Example:

 

The

 

following

 

illustrates

 

how

 

to

 

read

 

from

 

a

 

binary

 

stream

 

file

 

by

 

character.

  

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

int

 

main(void)

 

{

     

FILE

 

*fp;

     

char

 

buf[5]

 

=

 

{’a’,

 

’b’,

 

’c’,

 

’d’,

  

’e’};

     

/*

 

Open

 

an

 

existing

 

binary

 

file

 

for

 

writing.

       

*/

     

if

 

((

 

fp

 

=

 

fopen

 

(

 

"MYLIB/TEST(MBR)",

 

"wb"

 

)

 

)

 

==

 

NULL

 

)

     

{

         

printf

 

(

 

"Cannot

 

open

 

file\n"

 

);

         

exit

 

(

 

1

 

);

     

}

     

/*

 

Write

 

5

 

characters

 

from

 

the

 

buffer

 

to

 

the

 

file.

 

*/

       

fwrite

 

(

 

buf,

 

1,

 

sizeof(buf),

 

fp

 

);

       

fclose

 

(

 

fp

 

);

     

return

 

0;

 

}

 

Figure

 

91.

 

ILE

 

C

 

Source

 

to

 

Write

 

Characters

 

to

 

a

 

Binary

 

Stream

 

File

  

Figure

 

92.

 

Reading

 

from

 

a

 

Binary

 

Stream

 

File

 

One

 

Character

 

at

 

a

 

Time

  

190

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Updating

 

Binary

 

Stream

 

Files

 

(character

 

at

 

a

 

time)

 

If

 

the

 

amount

 

of

 

data

 

being

 

updated

 

exceeds

 

the

 

current

 

record

 

length,

 

then

 

the

 

excess

 

data

 

updates

 

the

 

next

 

record.

 

If

 

the

 

current

 

record

 

is

 

the

 

last

 

record

 

in

 

the

 

file,

 

a

 

new

 

record

 

is

 

created.

   

Example:

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

int

 

main(void)

 

{

     

FILE

 

*fp;

     

char

 

buf[6];

     

/*

 

Open

 

an

 

existing

 

binary

 

file

 

for

 

reading.

      

*/

     

if

 

((

 

fp

 

=

 

fopen

 

(

 

"MYLIB/TEST(MBR)",

 

"rb"

 

)

 

)

 

==

 

NULL

 

)

     

{

         

printf

 

(

 

"Cannot

 

open

 

file\n"

 

);

         

exit

 

(

 

1

 

);

     

}

     

/*

 

Read

 

characters

 

from

 

the

 

file

 

to

 

the

 

buffer.

   

*/

       

fread

 

(

 

buf,

 

1,

 

sizeof(buf),

 

fp

 

);

     

printf

 

(

 

"%6s\n",

 

buf

 

);

       

fclose

 

(

 

fp

 

);

     

return

 

0;

 

}

 

Figure

 

93.

 

ILE

 

C

 

Source

 

to

 

Read

 

Characters

 

from

 

a

 

Binary

 

Stream

 

File

  

Figure

 

94.

 

Updating

 

a

 

Binary

 

Stream

 

File

 

with

 

Data

 

Longer

 

than

 

Record

 

Length

  

Chapter

 

16.

 

Using

 

ILE

 

C/C++

 

Stream

 

and

 

Record

 

I/O

 

Functions

 

with

 

iSeries

 

Data

 

Management

 

files

 

191



The

 

following

 

example

 

illustrates

 

updating

 

a

 

binary

 

stream

 

file

 

with

 

data

 

that

 

is

 

longer

 

than

 

the

 

record

 

length.

  

If

 

the

 

amount

 

of

 

data

 

being

 

updated

 

is

 

shorter

 

than

 

the

 

current

 

record

 

length,

 

then

 

the

 

record

 

is

 

partially

 

updated

 

and

 

the

 

remainder

 

is

 

unchanged.

   

Example:

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

int

 

main(void)

 

{

     

FILE

 

*fp;

     

char

 

buf[5]

 

=

 

"12345";

     

/*

 

Open

 

an

 

existing

 

binary

 

file

 

for

 

updating.

      

*/

     

if

 

((

 

fp

 

=

 

fopen

 

(

 

"QTEMP/TEST(MBR)",

 

"rb+"

 

)

 

)

 

==

 

NULL

 

)

     

{

          

printf

 

(

 

"Cannot

 

open

 

file\n"

 

);

          

exit

 

(

 

1

 

);

     

}

     

/*

 

Write

 

5

 

characters

 

from

 

the

 

buffer

 

to

 

the

 

file.

 

*/

       

fwrite

 

(

 

buf,

 

1,

 

sizeof(buf),

 

fp

 

);

       

fclose

 

(

 

fp

 

);

     

return

 

0;

 

}

 

Figure

 

95.

 

ILE

 

C

 

Source

 

to

 

Update

 

a

 

Binary

 

Stream

 

File

 

with

 

Data

 

Longer

 

than

 

the

 

Record

 

Length

  

Figure

 

96.

 

Updating

 

a

 

Binary

 

Stream

 

File

 

with

 

Data

 

Shorter

 

than

 

Record

 

Length

  

192

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

following

 

example

 

illustrates

 

updating

 

a

 

binary

 

stream

 

file

 

with

 

data

 

that

 

is

 

shorter

 

than

 

the

 

record

 

length.

    

Opening

 

Binary

 

Stream

 

Files

 

(record

 

at

 

a

 

time)

 

To

 

open

 

an

 

iSeries

 

Data

 

Management

 

file

 

as

 

a

 

binary

 

stream

 

file

 

for

 

record-at-a-time

 

processing,

 

use

 

fopen()

 

with

 

any

 

of

 

the

 

following

 

modes:

 

v

   

rb

 

v

   

r+b

 

v

   

rb+

 

v

   

wb

 

v

   

w+b

 

v

   

wb+

 

v

   

ab

 

v

   

a+b

 

v

   

ab+

Notes:

  

1.

   

The

 

number

 

of

 

files

 

that

 

can

 

be

 

simultaneously

 

opened

 

by

 

fopen()

 

depends

 

on

 

the

 

size

 

of

 

the

 

system

 

storage

 

available.

 

2.

   

The

 

fopen()

 

open

 

modes

 

also

 

apply

 

to

 

freopen().

 

3.

   

If

 

the

 

binary

 

stream

 

file

 

contains

 

deleted

 

records,

 

the

 

deleted

 

records

 

are

 

skipped

 

by

 

the

 

binary

 

stream

 

I/O

 

functions.

 

4.

   

The

 

file

 

must

 

be

 

opened

 

with

 

the

 

type

 

set

 

to

 

record.

The

 

valid

 

keyword

 

parameters

 

are:

 

v

   

blksize

 

v

   

recfm

 

v

   

commit

 

v

   

arrseq

 

v

   

lrecl

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

int

 

main(void)

 

{

     

FILE

 

*fp;

     

char

 

buf[2]

 

=

 

"12";

     

/*

 

Open

 

an

 

existing

 

binary

 

file

 

for

 

updating.

      

*/

     

if

 

((

 

fp

 

=

 

fopen

 

(

 

"QTEMP/TEST(MBR)",

 

"rb+"

 

)

 

)

 

==

 

NULL

 

)

     

{

          

printf

 

(

 

"Cannot

 

open

 

file\n"

 

);

          

exit

 

(

 

1

 

);

     

}

     

/*

 

Write

 

2

 

characters

 

from

 

the

 

buffer

 

to

 

the

 

file.

 

*/

       

fwrite

 

(

 

buf,

 

1,

 

sizeof(buf),

 

fp

 

);

       

fclose

 

(

 

fp

 

);

 

}

 

Figure

 

97.

 

ILE

 

C

 

Source

 

to

 

Update

 

a

 

Binary

 

Stream

 

File

 

with

 

Data

 

Shorter

 

than

 

the

 

Record

 

Length

  

Chapter

 

16.

 

Using

 

ILE

 

C/C++

 

Stream

 

and

 

Record

 

I/O

 

Functions

 

with

 

iSeries

 

Data

 

Management

 

files

 

193



v

   

type

 

v

   

ccsid

 

v

   

indicator

If

 

you

 

specify

 

a

 

mode

 

or

 

keyword

 

parameter

 

that

 

is

 

not

 

valid

 

on

 

fopen()

 

function,

 

errno

 

is

 

set

 

to

 

EBADMODE.

 

Only

 

fread()

 

and

 

fwrite()

 

can

 

be

 

used

 

for

 

binary

 

stream

 

files

 

opened

 

for

 

record-at-a-time

 

processing.

    

To

 

open

 

an

 

iSeries

 

Data

 

Management

 

file

 

as

 

a

 

binary

 

stream

 

file

 

for

 

record-at-a-time

 

processing,

 

use

 

theopen()

 

function

 

with

 

ios::binaryas

 

well

 

as

 

any

 

of

 

the

 

following

 

modes:

 

v

   

ios::app

 

v

   

ios::ate

 

v

   

ios::in

 

v

   

ios::out

 

v

   

ios::trunc

Writing

 

Binary

 

Stream

 

Files

 

(record

 

at

 

a

 

time)

 

If

 

you

 

write

 

data

 

to

 

a

 

binary

 

stream

 

processed

 

one

 

record

 

at

 

a

 

time,

 

and

 

the

 

product

 

of

 

size

 

and

 

count

 

(parameters

 

of

 

fwrite())

 

is

 

greater

 

than

 

the

 

record

 

length,

 

then

 

only

 

the

 

data

 

that

 

fits

 

in

 

the

 

current

 

record

 

is

 

written

 

and

 

errno

 

is

 

set

 

to

 

ETRUNC.

 

If

 

the

 

product

 

of

 

size

 

and

 

count

 

is

 

less

 

than

 

the

 

actual

 

record

 

length,

 

the

 

current

 

record

 

is

 

padded

 

with

 

blank

 

characters

 

and

 

errno

 

is

 

set

 

to

 

EPAD.

   

Only

 

fwrite()

 

is

 

valid

 

for

 

writing

 

to

 

binary

 

stream

 

files

 

opened

 

for

 

record-at-a-time

 

processing.

 

All

 

other

 

output

 

and

 

positioning

 

functions

 

fail,

 

and

 

errno

 

is

 

set

 

to

 

ERECIO.

 

Example:

 

The

 

following

 

example

 

illustrates

 

how

 

to

 

write

 

to

 

a

 

binary

 

stream

 

file

 

by

 

record.

    

Figure

 

98.

 

Writing

 

to

 

a

 

Binary

 

Stream

 

File

 

One

 

Record

 

at

 

a

 

Time

  

194

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Reading

 

Binary

 

Stream

 

Files

 

(record

 

at

 

a

 

time)

 

If

 

you

 

read

 

data

 

from

 

a

 

binary

 

stream

 

processed

 

one

 

record

 

at

 

a

 

time,

 

and

 

the

 

product

 

of

 

size

 

and

 

count

 

(parameters

 

of

 

fread())

 

is

 

greater

 

than

 

the

 

record

 

length,

 

then

 

only

 

the

 

data

 

in

 

the

 

current

 

record

 

is

 

read

 

into

 

the

 

buffer.

 

The

 

fread()

 

function

 

returns

 

a

 

value

 

indicating

 

that

 

there

 

is

 

less

 

data

 

in

 

the

 

buffer

 

than

 

was

 

specified.

 

If

 

the

 

product

 

of

 

size

 

and

 

count

 

is

 

less

 

than

 

the

 

actual

 

record

 

length,

 

errno

 

is

 

set

 

to

 

ETRUNC

 

to

 

indicate

 

that

 

there

 

is

 

data

 

in

 

the

 

record

 

that

 

was

 

not

 

copied

 

into

 

the

 

buffer.

 

This

 

figure

 

illustrates

 

how

 

only

 

the

 

current

 

record

 

is

 

read

 

into

 

the

 

buffer,

 

when

 

the

 

product

 

of

 

size

 

and

 

count

 

is

 

greater

 

than

 

the

 

record

 

length.

   

Only

 

fread()

 

function

 

is

 

valid

 

for

 

reading

 

binary

 

stream

 

files

 

opened

 

for

 

record-at-a-time

 

processing.

 

All

 

other

 

input

 

and

 

positioning

 

functions

 

fail,

 

and

 

errno

 

is

 

set

 

to

 

ERECIO.

 

Example:

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

int

 

main(void)

 

{

     

FILE

 

*fp;

     

char

 

buf[5]

 

=

 

{’a’,

 

’b’,

 

’c’,

 

’d’,

 

’e’};

     

/*

 

Open

 

an

 

existing

 

binary

 

file

 

for

 

writing.

          

*/

     

if

 

((fp

 

=

 

fopen

 

(

 

"MYLIB/TEST(MBR)",

 

"wb,type=record,lrecl=3"

 

))==NULL)

     

{

          

printf

 

(

 

"Cannot

 

open

 

file\n"

 

);

          

exit

 

(

 

1

 

);

     

}

    

/*

 

Write

 

3

 

characters

 

from

 

the

 

buffer

 

to

 

the

 

file.

     

*/

       

fwrite

 

(

 

buf,

 

1,

 

sizeof(buf),

 

fp

 

);

       

fclose

 

(

 

fp

 

);

     

return

 

0;

 

}

 

Figure

 

99.

 

ILE

 

C

 

Source

 

to

 

Write

 

to

 

a

 

Binary

 

Stream

 

File

 

by

 

Record

  

Figure

 

100.

 

Reading

 

from

 

a

 

Binary

 

Stream

 

File

 

a

 

Record

 

at

 

a

 

Time

  

Chapter

 

16.

 

Using

 

ILE

 

C/C++

 

Stream

 

and

 

Record

 

I/O

 

Functions

 

with

 

iSeries

 

Data

 

Management

 

files

 

195



The

 

following

 

example

 

illustrates

 

how

 

to

 

read

 

a

 

binary

 

stream

 

a

 

record

 

at

 

a

 

time.

    

Open

 

Feedback

 

Area

 

The

 

open

 

feedback

 

area

 

is

 

part

 

of

 

the

 

open

 

data

 

path

 

that

 

contains

 

information

 

about

 

the

 

open

 

file

 

that

 

is

 

associated

 

with

 

that

 

open

 

data

 

path.

 

You

 

can

 

assign

 

a

 

pointer

 

to

 

this

 

information

 

by

 

using

 

the

 

_Ropnfbk()

 

function.

 

The

 

structure

 

that

 

maps

 

to

 

the

 

open

 

feedback

 

area

 

can

 

be

 

that

 

is

 

found

 

in

 

the

 

<xxfdbk.h>

 

header

 

file.

 

I/O

 

Feedback

 

Area

 

The

 

I/O

 

feedback

 

area

 

is

 

a

 

part

 

of

 

the

 

open

 

data

 

path

 

for

 

the

 

file

 

that

 

is

 

updated

 

after

 

each

 

successful

 

non-blocked

 

I/O

 

operation.

 

If

 

record

 

blocking

 

is

 

taking

 

place,

 

the

 

I/O

 

feedback

 

is

 

updated

 

after

 

each

 

block

 

of

 

records

 

is

 

transferred

 

between

 

your

 

program

 

and

 

the

 

Data

 

Management

 

system.

 

The

 

I/O

 

feedback

 

consists

 

of

 

two

 

parts:

 

one

 

part

 

that

 

is

 

common

 

to

 

all

 

file

 

types,

 

and

 

one

 

part

 

that

 

is

 

specific

 

to

 

the

 

type

 

of

 

file.

 

To

 

assign

 

a

 

pointer

 

to

 

the

 

common

 

part

 

of

 

the

 

I/O

 

feedback

 

area,

 

use

 

the

 

_Riofbk()

 

function.

 

To

 

assign

 

a

 

pointer

 

to

 

the

 

part

 

of

 

the

 

I/O

 

feedback

 

area

 

that

 

is

 

specific

 

to

 

the

 

type

 

of

 

file,

 

add

 

the

 

offset

 

contained

 

in

 

the

 

file_dep_fb_offset

 

field

 

of

 

the

 

common

 

part

 

to

 

a

 

pointer

 

to

 

the

 

common

 

part.

 

Note:

  

The

 

offset

 

is

 

in

 

bytes,

 

so

 

you

 

need

 

to

 

cast

 

the

 

pointer

 

(char

 

*)

 

to

 

the

 

common

 

part

 

to

 

a

 

pointer

 

to

 

character

 

when

 

performing

 

the

 

pointer

 

arithmetic.

 

The

 

structures

 

that

 

map

 

to

 

the

 

I/O

 

feedback

 

areas

 

are

 

the

 

structures

 

contained

 

in

 

the

 

<xxfdbk.h>

 

header

 

file.

 

Using

 

Session

 

Manager

 

ILE

 

C

 

stream

 

I/O

 

functions

 

that

 

output

 

information

 

to

 

the

 

display

 

are

 

defined

 

through

 

the

 

Dynamic

 

Screen

 

Manager

 

(DSM)

 

session

 

manager

 

APIs.

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

int

 

main(void)

 

{

     

FILE

 

*fp;

     

char

 

buf[6];

     

/*

 

Open

 

an

 

existing

 

binary

 

file

 

for

 

reading

 

a

 

record

 

at

 

a

 

time.

 

*/

     

if

 

((

 

fp

 

=

 

fopen

 

(

 

"MYLIB/TEST(MBR)",

 

"rb,

 

type=record"

 

)

 

)

 

==

 

NULL

 

)

     

{

         

printf

 

(

 

"Cannot

 

open

 

file\n"

 

);

         

exit

 

(

 

1

 

);

     

}

     

/*

 

Read

 

characters

 

from

 

the

 

file

 

to

 

the

 

buffer.

                 

*/

       

fread

 

(

 

buf,

 

sizeof(buf),

 

1,

 

fp

 

);

     

printf

 

(

 

"%6s\n",

 

buf

 

);

       

fclose

 

(

 

fp

 

);

     

return

 

0;

 

}

 

Figure

 

101.

 

ILE

 

C

 

Source

 

to

 

Read

 

from

 

a

 

Binary

 

Stream

 

File

 

by

 

Record

  

196

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Obtaining

 

the

 

Session

 

Handle

 

You

 

can

 

obtain

 

the

 

session

 

handle

 

for

 

the

 

C/C++

 

session

 

and

 

then

 

use

 

the

 

DSM

 

APIs

 

to

 

manipulate

 

that

 

session.

 

The

 

session

 

handle

 

is

 

supplied

 

through

 

_C_Get_Ssn_Handle()

 

in

 

<stdio.h>.

 

You

 

can

 

write

 

a

 

simple

 

C

 

program

 

to

 

clear

 

the

 

C

 

session

 

using

 

the

 

DSM

 

QsnClrScl

 

API,

 

as

 

shown

 

in

 

the

 

following

 

example:

    

Using

 

Session

 

Manager

 

APIs

 

You

 

can

 

use

 

the

 

DSM

 

APIs

 

to

 

perform

 

any

 

operation

 

that

 

is

 

valid

 

with

 

a

 

session

 

handle,

 

which

 

includes

 

the

 

window

 

services

 

APIs

 

and

 

many

 

of

 

the

 

low-level

 

services.

 

For

 

example:

 

v

   

You

 

can

 

display

 

the

 

session

 

using

 

a

 

combination

 

of

 

the

 

QsnStrWin,

 

QsnDspSsnBot,

 

and

 

QsnReadSsnDta

 

APIs,

 

but

 

it

 

is

 

simpler

 

in

 

this

 

case

 

to

 

simply

 

write

 

a

 

program

 

that

 

contains

 

a

 

getc().

 

v

   

You

 

can

 

use

 

the

 

QsnRtvWinD

 

and

 

QsnChgWin

 

APIs

 

to

 

change

 

the

 

C/C++

 

session

 

from

 

the

 

default

 

full-screen

 

window

 

to

 

a

 

smaller

 

window.

Example:

 

Using

 

an

 

ILE

 

Bindable

 

API

 

to

 

Display

 

a

 

DSM

 

Session

 

The

 

following

 

example

 

shows

 

you

 

how

 

to

 

call

 

a

 

Dynamic

 

Screen

 

Manager

 

(DSM)

 

ILE

 

bindable

 

API

 

to

 

display

 

a

 

DSM

 

session.

 

This

 

DSM

 

session

 

echoes

 

back

 

data

 

that

 

you

 

enter

 

during

 

the

 

DSM

 

session.

 

Instructions

 

1.

   

To

 

create

 

module

 

T1520API

 

using

 

the

 

source

 

shown

 

in

 

Figure

 

103

 

on

 

page

 

198,

 

enter:

 

CRTCMOD

 

MODULE(MYLIB/T1520API)

 

SRCFILE(QCPPLE/QACSRC)

 

OUTPUT(*PRINT)

 

2.

   

To

 

create

 

program

 

T1520API,

 

enter:

 

CRTPGM

 

PGM(MYLIB/T1520API)

 

MODULE(MYLIB/T1520API)

 

BNDDIR(QSNAPI)

 

The

 

CRTPGM

 

command

 

creates

 

the

 

program

 

T1520API

 

in

 

library

 

MYLIB.

 

3.

   

To

 

run

 

the

 

program

 

T1520API,

 

enter:

 

CALL

 

PGM(MYLIB/T1520API)

 

The

 

output

 

is

 

as

 

follows:

 

#include

 

<stdio.h>

 

#include

 

"qsnapi.h"

 

void

 

main

 

(void)

 

{

     

QsnClrScl(_C_Get_Ssn_Handle(),

 

’0’,

 

NULL);

 

}

 

Figure

 

102.

 

Simple

 

C

 

Program

 

to

 

Clear

 

a

 

C

 

Session

  

Chapter

 

16.

 

Using

 

ILE

 

C/C++

 

Stream

 

and

 

Record

 

I/O

 

Functions

 

with

 

iSeries

 

Data

 

Management

 

files

 

197



AS

 

for

 

iSeries

 

400

 

Programming

 

Development

 

Manager

 

(PDM)

  

.................................................

  

:

  

>

 

abc

                                        

:

  

:

  

>

 

def

                                        

:

  

:

                                               

:

  

:

                                               

:

  

:

                                               

:

  

:

                                               

:

  

:

                                               

:

  

:

                                               

:

  

:

                                               

:

  

:

                                               

:

  

:

  

===>

                                         

:

  

:

  

Echo

 

lines

 

until:

   

PF3

 

-

 

exit

               

:

  

:

                                               

:

  

:...............................................:

 

Selection

 

or

 

command

 

===>

 

call

 

pgm(mylib/t1520api)

 

F3=Exit

       

F4=Prompt

       

F9=Retreive

        

F10=Command

 

entry

 

F12=Cancel

    

F18=Change

 

Defaults

 

Code

 

Samples

     

/*

 

This

 

program

 

uses

 

Dynamic

 

Screen

 

Manager

 

API

 

calls

 

to

              

*/

 

/*

 

create

 

a

 

window

 

and

 

echo

 

whatever

 

is

 

entered.

  

This

 

is

 

an

          

*/

 

/*

 

example

 

of

 

bound

 

API

 

calls.

  

Note

 

the

 

use

 

of

 

#pragma

 

argument

      

*/

 

/*

 

in

 

the

 

<qsnsess.h>

 

header

 

file.

 

OS,

 

nowiden

 

ensures

 

that

 

a

 

pointer

 

*/

 

/*

 

to

 

an

 

unwidened

 

copy

 

of

 

the

 

argument

 

is

 

passed

 

to

 

the

 

API.

         

*/

 

/*

                                                                    

*/

 

/*

 

Use

 

BNDDIR(QSNAPI)

 

on

 

the

 

CRTPGM

 

command

 

to

 

build

 

this

             

*/

 

/*

 

example.

                                                           

*/

 

#include

 

<stddef.h>

 

#include

 

<string.h>

 

#include

 

<stdio.h>

 

#include

 

"QSYSINC/H/QSNAPI"

   

/*

 

QSNSESS

 

nests

 

QSNWIN

 

and

 

QSNLL

 

include

 

files.

  

To

 

get

 

these

 

3

      

*/

 

/*

 

include

 

files,

 

do

 

the

 

following:

                                   

*/

 

/*

 

1)

 

If

 

you

 

do

 

not

 

have

 

a

 

SRCPF

 

called

 

H

 

in

 

your

 

Library

 

(MYLIB),

    

*/

 

/*

    

create

 

one.

                                                     

*/

 

/*

 

2)

 

Copy

 

QUSRTOOL/QATTSYSC/OPSN3API

 

to

 

MYLIB/H/QSNSESS

              

*/

 

/*

 

3)

 

Copy

 

QUSRTOOL/QATTSYSC/OPSN2API

 

to

 

MYLIB/H/QSNWIN

               

*/

 

/*

 

4)

 

Copy

 

QUSRTOOL/QATTSYSC/OPSN1API

 

to

 

MYLIB/H/QSNLL

                

*/

   

#define

 

BOTLINE

 

"

 

Echo

 

lines

 

until:

   

PF3

 

-

 

exit"

   

/*

 

DSM

 

Session

 

Descriptor

 

Structure.

                                  

*/

   

typedef

 

struct{

    

Qsn_Ssn_Desc_T

 

sess_desc;

    

char

           

buffer[300];

 

}storage_t;

   

void

 

F3Exit(const

 

Qsn_Ssn_T

 

*Ssn,

 

const

 

Qsn_Inp_Buf_T

 

*Buf,

 

char

 

*action)

 

{

   

*action

 

=

 

’1’;

  

}

   

Figure

 

103.

 

T1520API

 

—

 

ILE

 

C

 

Source

 

to

 

Call

 

an

 

ILE

 

C

 

Procedure

 

(Part

 

1

 

of

 

3)

  

198

 

ILE

 

C/C++

 

Programmer’s

 

Guide



int

 

main(void)

 

{

      

int

 

i;

    

storage_t

    

storage;

   

/*

 

Declarators

 

for

 

declaring

 

windows.

 

Types

 

are

 

from

 

the

 

<qsnsess.h>

  

*/

 

/*

 

header

 

file.

                                                       

*/

      

Qsn_Inp_Buf_T

   

input_buffer

 

=

 

0;

    

Q_Bin4

          

input_buffer_size

 

=

 

50;

    

char

            

char_buffer[100];

    

Q_Bin4

          

char_buffer_size;

      

Qsn_Ssn_T

       

session1;

    

Qsn_Ssn_Desc_T

  

*sess_desc

 

=

 

(Qsn_Ssn_Desc_T

 

*)

 

&storage;

    

Qsn_Win_Desc_T

  

win_desc;

    

Q_Bin4

          

win_desc_length

 

=

 

sizeof(Qsn_Win_Desc_T);

    

char

           

*botline

 

=

 

BOTLINE;

    

Q_Bin4

          

botline_len

 

=

 

sizeof(BOTLINE)

 

-

 

1;

    

Q_Bin4

          

sess_desc_length

 

=

 

sizeof(Qsn_Ssn_Desc_T)

 

+

                                       

botline_len;

    

Q_Bin4

          

bytes_read;

   

/*

 

Initialize

 

Session

 

Descriptor

 

API.

                                 

*/

      

QsnInzSsnD(

 

sess_desc,

 

sess_desc_length,

 

NULL);

    

/*

 

Initialize

 

Window

 

Descriptor

 

API.

                                  

*/

      

QsnInzWinD(

 

&win_desc,

 

win_desc_length,

 

NULL);

      

sess_desc->cmd_key_desc_line_1_offset

 

=

 

sizeof(Qsn_Ssn_Desc_T);

    

sess_desc->cmd_key_desc_line_1_len

 

=

 

botline_len;

    

memcpy(

 

storage.buffer,

 

botline,

 

botline_len

 

);

      

sess_desc->cmd_key_desc_line_2_offset

 

=

 

sizeof(Qsn_Ssn_Desc_T)

 

+

                                           

botline_len;

   

/*

 

Set

 

up

 

the

 

session

 

type.

                                           

*/

      

sess_desc->EBCDIC_dsp_cc

 

=

 

’1’;

    

sess_desc->scl_line_dsp

  

=

 

’1’;

    

sess_desc->num_input_line_rows

 

=

 

1;

    

sess_desc->wrap

 

=

 

’1’;

 

Figure

 

103.

 

T1520API

 

—

 

ILE

 

C

 

Source

 

to

 

Call

 

an

 

ILE

 

C

 

Procedure

 

(Part

 

2

 

of

 

3)

  

Chapter

 

16.

 

Using

 

ILE

 

C/C++

 

Stream

 

and

 

Record

 

I/O

 

Functions

 

with

 

iSeries

 

Data

 

Management

 

files

 

199



Notes:

  

1.

   

The

 

prototypes

 

for

 

the

 

DSM

 

APIs

 

are

 

in

 

the

 

<qsnsess.h>

 

header

 

file.

 

2.

   

The

 

#pragma

 

argument

 

(API,

 

OS,

 

nowiden)

 

directive

 

is

 

specified

 

for

 

each

 

API.

 

This

 

ensures

 

that

 

any

 

value

 

argument

 

is

 

passed

 

by

 

value

 

indirectly.

  

/*

 

Set

 

up

 

the

 

window

 

size.

                                            

*/

      

win_desc.top_row

     

=

 

3;

    

win_desc.left_col

    

=

 

3;

    

win_desc.num_rows

 

=

 

13;

    

win_desc.num_cols

 

=

 

45;

   

/*

 

Create

 

a

 

window

 

session.

                                           

*/

      

sess_desc->cmd_key_action[2]

 

=

 

F3Exit;

    

session1

 

=

 

QsnCrtSsn(

 

sess_desc,

 

sess_desc_length,

                          

NULL,

 

0,

                          

’1’,

                          

&win_desc,

 

win_desc_length,

                          

NULL,

 

0,

                          

NULL,

 

NULL);

    

if(input_buffer

 

==

 

0)

    

{

      

input_buffer

 

=

 

QsnCrtInpBuf(100,

 

50,

 

0,

 

NULL,

 

NULL);

    

}

    

for

 

(;;)

    

{

   

/*

 

Echo

 

lines

 

until

 

F3

 

is

 

pressed.

                                    

*/

        

QsnReadSsnDta(session1,

 

input_buffer,

 

NULL,

 

NULL);

      

if

 

(QsnRtvReadAID(input_buffer,

 

NULL,

 

NULL)

 

==

 

QSN_F3)

      

{

        

break;

      

}

    

}

 

}

 

Figure

 

103.

 

T1520API

 

—

 

ILE

 

C

 

Source

 

to

 

Call

 

an

 

ILE

 

C

 

Procedure

 

(Part

 

3

 

of

 

3)

  

200

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

17.

 

Using

 

ILE

 

C/C++

 

Stream

 

Functions

 

with

 

the

 

iSeries

 

Integrated

 

File

 

System

 

This

 

chapter

 

describes

 

how

 

to

 

open,

 

write,

 

read,

 

and

 

update

 

text

 

and

 

binary

 

stream

 

files

 

through

 

the

 

iSeries

 

Integrated

 

File

 

System

 

(IFS).

 

IFS

 

provides

 

a

 

common

 

interface

 

to

 

store

 

and

 

operate

 

on

 

information

 

in

 

stream

 

files.

 

Examples

 

of

 

stream

 

files

 

are

 

PC

 

files,

 

files

 

in

 

UNIX®

 

systems,

 

LAN

 

server

 

files,

 

iSeries

 

files,

 

and

 

folders.

Note:

  

The

 

ILE

 

C/C++

 

IFS-enabled

 

stream

 

I/O

 

functions

 

are

 

defined

 

through

 

the

 

integrated

 

file

 

system.

 

You

 

need

 

to

 

be

 

familiar

 

with

 

the

 

integrated

 

file

 

system

 

to

 

use

 

the

 

ILE

 

C/C++

 

stream

 

I/O

 

function.

 

Seven

 

file

 

systems

 

comprise

 

the

 

integrated

 

file

 

system.

 

Depending

 

on

 

your

 

application

 

and

 

environment,

 

you

 

may

 

use

 

several

 

of

 

the

 

file

 

systems.

 

If

 

you

 

have

 

existing

 

applications

 

that

 

use

 

iSeries

 

system

 

files,

 

you

 

need

 

to

 

understand

 

the

 

limitations

 

of

 

the

 

QSYS.LIB

 

file

 

system.

 

If

 

you

 

have

 

new

 

applications,

 

you

 

can

 

use

 

the

 

other

 

file

 

systems

 

which

 

do

 

not

 

have

 

the

 

QSYS.LIB

 

file

 

handling

 

restrictions.

 

See

 

“The

 

Integrated

 

File

 

System

 

(IFS)”

 

section

 

for

 

information

 

on

 

each

 

file

 

system.

 

This

 

chapter

 

describes:

 

v

   

The

 

Integrated

 

File

 

System

 

(IFS)

 

components

 

v

   

How

 

to

 

enable

 

IFS

 

stream

 

I/O

 

v

   

Stream

 

files,

 

text

 

streams,

 

and

 

binary

 

streams

 

v

   

How

 

to

 

open

 

text

 

stream

 

and

 

binary

 

stream

 

files

 

v

   

How

 

to

 

store

 

data

 

as

 

a

 

text

 

stream

 

or

 

binary

 

stream

 

v

   

Useful

 

information

 

for

 

using

 

IFS

 

files

The

 

Integrated

 

File

 

System

 

(IFS)

 

A

 

file

 

system

 

provides

 

the

 

support

 

that

 

allows

 

applications

 

to

 

access

 

specific

 

segments

 

of

 

storage

 

that

 

are

 

organized

 

as

 

logical

 

units.

 

These

 

logical

 

units

 

are

 

files,

 

directories,

 

libraries,

 

and

 

objects.

 

There

 

are

 

seven

 

file

 

systems

 

in

 

the

 

Integrated

 

File

 

System:

 

v

   

root

 

(/)

 

v

   

Open

 

Systems

 

(QOpenSys)

 

v

   

Library

 

(QSYS.LIB)

 

v

   

Document

 

Library

 

Services

 

(QDLS)

 

v

   

LAN

 

Server/400

 

(QLANSrv)

 

v

   

Optical

 

Support

 

(QOPT)

 

v

   

File

 

Server

 

(QFileSvr.400)

Figure

 

104

 

on

 

page

 

202

 

illustrates

 

these

 

file

 

systems.

 

Users

 

and

 

application

 

programs

 

can

 

interact

 

with

 

any

 

of

 

the

 

file

 

systems

 

through

 

a

 

common

 

Integrated

 

File

 

System

 

(IFS)

 

interface.

 

This

 

interface

 

is

 

optimized

 

for

 

input/output

 

of

 

stream

 

data,

 

in

 

contrast

 

to

 

the

 

record

 

input/output

 

that

 

is

 

provided

 

through

 

the

 

data

 

management

 

interfaces.

 

The

 

common

 

integrated

 

file

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

201



system

 

interface

 

includes

 

a

 

set

 

of

 

user

 

interfaces

 

(commands,

 

menus,

 

and

 

displays)

 

and

 

application

 

program

 

interfaces

 

(APIs).

    

root(/)

 

File

 

System

 

The

 

root

 

(/)

 

file

 

system

 

is

 

designed

 

to

 

take

 

full

 

advantage

 

of

 

the

 

stream

 

file

 

support

 

and

 

hierarchical

 

directory

 

structure

 

of

 

the

 

integrated

 

file

 

system.

 

It

 

has

 

the

 

characteristics

 

of

 

the

 

DOS

 

and

 

OS/2

 

file

 

systems.

 

User

 

Access

 

The

 

root

 

(/)

 

file

 

system

 

can

 

be

 

accessed

 

only

 

through

 

the

 

integrated

 

file

 

system

 

interface.

 

You

 

work

 

with

 

the

 

root

 

(/)

 

file

 

system

 

using

 

integrated

 

file

 

system

 

commands,

 

user

 

displays,

 

or

 

ISO

 

stream

 

I/O

 

functions

 

and

 

system

 

APIs.

 

Path

 

Names

 

This

 

file

 

system

 

preserves

 

the

 

same

 

uppercase

 

and

 

lowercase

 

form

 

in

 

which

 

object

 

names

 

are

 

entered,

 

but

 

no

 

distinction

 

is

 

made

 

between

 

uppercase

 

and

 

lowercase

 

when

 

the

 

system

 

searches

 

for

 

names.

 

v

   

Path

 

names

 

have

 

the

 

following

 

form:

 

Directory/Directory/

 

.

 

.

 

.

 

/Object

 

v

   

Each

 

component

 

of

 

the

 

path

 

name

 

can

 

be

 

up

 

to

 

255

 

characters

 

long.

 

The

 

path

 

can

 

be

 

up

 

to

 

16

 

megabytes.

 

v

   

There

 

is

 

no

 

limit

 

on

 

the

 

depth

 

of

 

the

 

directory

 

hierarchy

 

other

 

than

 

program

 

and

 

space

 

limits.

 

v

   

The

 

characters

 

in

 

names

 

are

 

converted

 

to

 

Universal

 

Character

 

Set

 

2

 

(UCS2)

 

Level

 

1

 

form

 

when

 

the

 

names

 

are

 

stored.

  

Figure

 

104.

 

The

 

Integrated

 

File

 

System

 

Interface

  

202

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Open

 

Systems

 

(QOpenSys)

 

File

 

System

 

The

 

Open

 

Systems

 

(QOpenSys)

 

file

 

system

 

is

 

designed

 

to

 

be

 

compatible

 

with

 

UNIX-based

 

open

 

system

 

standards,

 

such

 

as

 

POSIX

 

and

 

XPG.

 

Like

 

the

 

root

 

(/)

 

file

 

system,

 

it

 

takes

 

advantage

 

of

 

the

 

stream

 

file

 

and

 

directory

 

support

 

provided

 

by

 

the

 

integrated

 

file

 

system.

 

In

 

addition,

 

it

 

supports

 

case-sensitive

 

object

 

names.

 

User

 

Access

 

QOpenSys

 

can

 

be

 

accessed

 

only

 

through

 

the

 

integrated

 

file

 

system

 

interface.

 

You

 

work

 

with

 

QOpenSys

 

using

 

integrated

 

file

 

system

 

commands,

 

user

 

displays,

 

or

 

ISO

 

stream

 

I/O

 

functions

 

and

 

system

 

APIs.

 

Path

 

Names

 

Unlike

 

the

 

QSYS.LIB,

 

QDLS,

 

QLANSrv,

 

and

 

root

 

(/)

 

file

 

systems,

 

the

 

QOpenSys

 

file

 

system

 

distinguishes

 

between

 

uppercase

 

and

 

lowercase

 

characters

 

when

 

searching

 

object

 

names.

 

The

 

path

 

names,

 

link

 

support,

 

commands,

 

displays

 

and

 

ISO

 

stream

 

I/O

 

functions

 

and

 

system

 

APIs

 

are

 

the

 

same

 

as

 

defined

 

under

 

the

 

root

 

(/)

 

file

 

system.

 

Library

 

(QSYS.LIB)

 

File

 

System

 

The

 

library

 

(QSYS.LIB)

 

file

 

system

 

supports

 

the

 

iSeries

 

library

 

structure.

 

It

 

provides

 

access

 

to

 

database

 

files

 

and

 

all

 

of

 

the

 

other

 

iSeries

 

object

 

types

 

that

 

are

 

managed

 

by

 

the

 

library

 

support.

 

The

 

QSYS.LIB

 

file

 

system

 

maps

 

to

 

the

 

iSeries

 

file

 

system.

 

For

 

example,

 

the

 

path

 

/qsys.lib/qsysinc.lib/h.file/stdio.mbr

 

refers

 

to

 

the

 

data

 

management

 

file

 

member

 

STDIO,

 

in

 

the

 

file

 

H,

 

in

 

library

 

QSYSINC,

 

within

 

the

 

root

 

library

 

QSYS.

 

File

 

Handling

 

Restrictions

 

There

 

are

 

some

 

limitations

 

in

 

using

 

the

 

integrated

 

file

 

system

 

facilities:

 

v

   

Logical

 

files

 

are

 

not

 

supported.

 

v

   

The

 

only

 

types

 

of

 

physical

 

files

 

that

 

are

 

supported

 

are

 

program-described

 

files

 

that

 

contain

 

a

 

single

 

field,

 

and

 

source

 

physical

 

files

 

that

 

contain

 

a

 

single

 

text

 

field.

 

v

   

Byte-range

 

locking

 

is

 

not

 

supported.

 

v

   

If

 

any

 

job

 

has

 

a

 

database

 

file

 

member

 

open,

 

only

 

one

 

job

 

is

 

given

 

write

 

access

 

to

 

that

 

file

 

at

 

any

 

time;

 

other

 

jobs

 

are

 

allowed

 

only

 

read

 

access.

Path

 

Names

 

In

 

general,

 

the

 

QSYS.LIB

 

file

 

system

 

does

 

not

 

distinguish

 

between

 

uppercase

 

and

 

lowercase

 

names

 

of

 

objects.

 

A

 

search

 

for

 

object

 

names

 

achieves

 

the

 

same

 

result

 

regardless

 

of

 

whether

 

characters

 

in

 

the

 

names

 

are

 

uppercase

 

or

 

lowercase.

 

However,

 

if

 

the

 

name

 

is

 

enclosed

 

in

 

quotation

 

marks,

 

the

 

case

 

of

 

each

 

character

 

in

 

the

 

name

 

is

 

preserved.

 

The

 

search

 

is

 

sensitive

 

to

 

the

 

case

 

of

 

characters

 

in

 

quoted

 

names.

 

Each

 

component

 

of

 

the

 

path

 

name

 

must

 

contain

 

the

 

object

 

name

 

followed

 

by

 

the

 

object

 

type.

 

For

 

example:

 

/QSYS.LIB/QGPL.LIB/PRT1.OUTQ

 

/QSYS.LIB/PAYROLL.LIB/PAY.FILE/TAX.MBR

 

The

 

object

 

name

 

and

 

object

 

type

 

are

 

separated

 

by

 

a

 

period

 

(.).

 

Objects

 

in

 

a

 

library

 

can

 

have

 

the

 

same

 

name

 

if

 

they

 

are

 

different

 

object

 

types,

 

so

 

the

 

object

 

type

 

must

 

be

 

specified

 

to

 

uniquely

 

identify

 

the

 

object.

   

Chapter

 

17.

 

Using

 

ILE

 

C/C++

 

Stream

 

Functions

 

with

 

the

 

iSeries

 

Integrated

 

File

 

System

 

203



The

 

object

 

name

 

in

 

each

 

component

 

can

 

be

 

up

 

to

 

10

 

characters

 

long,

 

and

 

the

 

object

 

type

 

can

 

be

 

up

 

to

 

6

 

characters

 

long.

 

The

 

directory

 

hierarchy

 

within

 

QSYS.LIB

 

can

 

be

 

either

 

two

 

or

 

three

 

levels

 

deep

 

(two

 

or

 

three

 

components

 

in

 

the

 

path

 

name),

 

depending

 

on

 

the

 

type

 

of

 

the

 

object

 

being

 

accessed.

 

If

 

the

 

object

 

is

 

a

 

database

 

file,

 

the

 

hierarchy

 

can

 

contain

 

three

 

levels

 

(library,

 

file,

 

member);

 

otherwise,

 

there

 

can

 

be

 

only

 

two

 

levels

 

(library,

 

object).

 

The

 

combination

 

of

 

the

 

length

 

of

 

each

 

component

 

name

 

and

 

the

 

number

 

of

 

directory

 

levels

 

determines

 

the

 

maximum

 

length

 

of

 

the

 

path

 

name.

 

If

 

root

 

(/)

 

and

 

QSYS.LIB

 

are

 

included

 

as

 

the

 

first

 

two

 

levels,

 

the

 

directory

 

hierarchy

 

for

 

QSYS.LIB

 

can

 

be

 

four

 

or

 

five

 

levels

 

deep.

 

The

 

characters

 

in

 

names

 

are

 

converted

 

to

 

code

 

page

 

37

 

when

 

the

 

names

 

are

 

stored.

 

Quoted

 

names

 

are

 

stored

 

using

 

the

 

code

 

page

 

of

 

the

 

job.

 

Document

 

Library

 

Services

 

(QDLS)

 

File

 

System

 

The

 

Document

 

Library

 

Services

 

(QDLS)

 

file

 

system

 

supports

 

the

 

folder

 

objects.

 

It

 

provides

 

access

 

to

 

documents

 

and

 

folders.

 

User

 

Access

 

To

 

work

 

with

 

the

 

QDLS

 

file

 

system

 

through

 

the

 

integrated

 

file

 

system

 

interface,

 

use

 

the

 

integrated

 

file

 

system

 

commands,

 

user

 

displays,

 

or

 

ISO

 

stream

 

I/O

 

functions

 

and

 

system

 

APIs.

 

All

 

users

 

working

 

with

 

objects

 

in

 

QDLS

 

must

 

be

 

enrolled

 

in

 

the

 

system

 

distribution

 

directory.

 

Path

 

Names

 

QDLS

 

does

 

not

 

distinguish

 

between

 

uppercase

 

and

 

lowercase

 

in

 

the

 

names

 

containing

 

only

 

the

 

alphabetic

 

characters

 

a

 

to

 

z.

 

A

 

search

 

for

 

object

 

names

 

achieves

 

the

 

same

 

result

 

regardless

 

of

 

whether

 

characters

 

in

 

the

 

names

 

are

 

uppercase

 

or

 

lowercase.

 

Other

 

characters

 

are

 

case

 

sensitive

 

and

 

are

 

used

 

as

 

is.

 

Each

 

component

 

of

 

the

 

path

 

name

 

can

 

consist

 

of

 

just

 

a

 

name,

 

such

 

as:

 

/QDLS/FLR1/DOC1

 

or

 

a

 

name

 

plus

 

an

 

extension,

 

such

 

as:

 

/QDLS/FLR1/DOC1.TXT

 

The

 

name

 

in

 

each

 

component

 

can

 

be

 

up

 

to

 

8

 

characters

 

long,

 

and

 

the

 

extension

 

can

 

be

 

up

 

to

 

3

 

characters

 

long.

 

The

 

maximum

 

length

 

of

 

the

 

path

 

name

 

is

 

82

 

characters.

 

The

 

directory

 

hierarchy

 

below

 

/QDLS/

 

can

 

be

 

32

 

levels

 

deep.

 

The

 

characters

 

in

 

names

 

are

 

converted

 

to

 

code

 

page

 

500

 

when

 

the

 

names

 

are

 

stored.

 

A

 

name

 

may

 

be

 

rejected

 

if

 

it

 

cannot

 

be

 

converted

 

to

 

code

 

page

 

500.

 

LAN

 

Server/400

 

(QLANSrv)

 

File

 

System

 

The

 

LAN

 

Server/400

 

(QLANSrv)

 

file

 

system

 

provides

 

access

 

to

 

the

 

same

 

directories

 

and

 

files

 

that

 

are

 

accessed

 

through

 

the

 

LAN

 

Server/400

 

licensed

 

program.

 

It

 

allows

 

users

 

of

 

the

 

OS/400

 

file

 

server

 

and

 

iSeries

 

applications

 

to

 

use

 

the

 

same

 

data

 

as

 

LAN

 

Server/400

 

clients.

   

204

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Files

 

and

 

directories

 

in

 

the

 

QLANSrv

 

file

 

system

 

are

 

stored

 

and

 

managed

 

by

 

a

 

LAN

 

server

 

that

 

is

 

based

 

on

 

the

 

OS/2

 

LAN

 

server.

 

This

 

LAN

 

server

 

does

 

not

 

support

 

the

 

concept

 

of

 

a

 

file

 

or

 

directory

 

owner

 

or

 

owning

 

group.

 

File

 

ownership

 

cannot

 

be

 

changed

 

using

 

a

 

command

 

or

 

an

 

ISO

 

stream

 

I/O

 

function

 

and

 

system

 

API.

 

Access

 

is

 

controlled

 

through

 

access

 

control

 

lists.

 

You

 

can

 

change

 

these

 

lists

 

by

 

using

 

the

 

WRKAUT

 

and

 

CHGAUT

 

commands.

 

User

 

Access

 

To

 

work

 

with

 

the

 

QLANSrv

 

file

 

system

 

through

 

the

 

integrated

 

file

 

system

 

interface,

 

use

 

the

 

integrated

 

file

 

system

 

commands,

 

user

 

displays,

 

or

 

ISO

 

stream

 

I/O

 

functions

 

and

 

system

 

APIs.

 

Path

 

Names

 

The

 

file

 

system

 

preserves

 

the

 

same

 

uppercase

 

and

 

lowercase

 

form

 

in

 

which

 

object

 

names

 

are

 

entered.

 

No

 

distinction

 

is

 

made

 

between

 

uppercase

 

and

 

lowercase

 

when

 

the

 

system

 

searches

 

for

 

names.

 

A

 

search

 

for

 

object

 

names

 

achieves

 

the

 

same

 

result

 

regardless

 

of

 

whether

 

characters

 

in

 

the

 

names

 

are

 

uppercase

 

or

 

lowercase.

 

v

   

Path

 

names

 

have

 

the

 

following

 

form:

 

Directory/Directory/

 

.

 

.

 

.

 

/Object

 

v

   

Each

 

component

 

of

 

the

 

path

 

name

 

can

 

be

 

up

 

to

 

255

 

characters

 

long.

 

v

   

The

 

directory

 

hierarchy

 

within

 

QLANSrv

 

can

 

be

 

127

 

levels

 

deep.

 

If

 

all

 

components

 

of

 

a

 

path

 

are

 

included

 

as

 

hierarchy

 

levels,

 

the

 

directory

 

hierarchy

 

can

 

be

 

132

 

levels

 

deep.

 

v

   

Names

 

are

 

stored

 

in

 

the

 

code

 

page

 

that

 

is

 

defined

 

for

 

the

 

File

 

Server.

Optical

 

Support

 

(QOPT)

 

File

 

System

 

The

 

Optical

 

Support

 

(QOPT)

 

file

 

system

 

can

 

be

 

accessed

 

through

 

the

 

integrated

 

file

 

system

 

interface.

 

This

 

is

 

done

 

using

 

either

 

the

 

OS/400

 

file

 

server

 

or

 

the

 

integrated

 

file

 

system

 

commands,

 

user

 

displays,

 

and

 

ISO

 

stream

 

I/O

 

functions,

 

and

 

system

 

APIs.

 

Path

 

Names

 

QOPT

 

converts

 

the

 

lowercase

 

English

 

alphabetic

 

characters

 

a

 

to

 

z

 

to

 

uppercase

 

when

 

used

 

in

 

object

 

names.

 

Therefore,

 

a

 

search

 

for

 

object

 

names

 

that

 

uses

 

only

 

those

 

characters

 

is

 

not

 

case-sensitive.

 

v

   

The

 

path

 

name

 

must

 

begin

 

with

 

a

 

slash

 

(/)

 

and

 

contain

 

no

 

more

 

than

 

294

 

characters.

 

The

 

path

 

is

 

made

 

up

 

of

 

the

 

file

 

system

 

name,

 

the

 

volume

 

name,

 

the

 

directory

 

and

 

subdirectory

 

names,

 

and

 

the

 

file

 

name.

 

For

 

example:

 

/QOPT/VOLUMENAME/DIRECTORYNAME/SUBDIRECTORYNAME/FILENAME

 

v

   

The

 

file

 

system

 

name,

 

QOPT,

 

is

 

required.

 

v

   

The

 

volume

 

name

 

is

 

required

 

and

 

can

 

be

 

up

 

to

 

32

 

characters

 

long.

 

v

   

One

 

or

 

more

 

directories

 

or

 

subdirectories

 

can

 

be

 

included

 

in

 

the

 

path

 

name,

 

but

 

none

 

are

 

required.

 

The

 

total

 

number

 

of

 

characters

 

in

 

all

 

directory

 

and

 

subdirectory

 

names,

 

including

 

the

 

leading

 

slash,

 

cannot

 

exceed

 

63

 

characters.

 

Directory

 

and

 

file

 

names

 

allow

 

any

 

character

 

except

 

0x00

 

through

 

0x3F,

 

0xFF,

 

0x80,

 

lowercase-alphabetic

 

characters,

 

and

 

the

 

following

 

characters:

 

–

   

Asterisk

 

(*)

 

–

   

Hyphen

 

(-)

 

–

   

Question

 

mark

 

(?)

 

–

   

Quotation

 

mark

 

(")

 

–

   

Greater

 

than

 

(>)

 

–

   

Less

 

than

 

(<)

  

Chapter

 

17.

 

Using

 

ILE

 

C/C++

 

Stream

 

Functions

 

with

 

the

 

iSeries

 

Integrated

 

File

 

System

 

205



v

   

The

 

file

 

name

 

is

 

the

 

last

 

element

 

in

 

the

 

path

 

name.

 

The

 

file

 

name

 

length

 

is

 

limited

 

by

 

the

 

directory

 

name

 

length

 

in

 

the

 

path.

 

The

 

directory

 

name

 

and

 

file

 

name

 

that

 

are

 

combined

 

cannot

 

exceed

 

256

 

characters,

 

including

 

the

 

leading

 

slash.

 

v

   

The

 

characters

 

in

 

names

 

are

 

converted

 

to

 

code

 

page

 

500

 

within

 

the

 

QOPT

 

file

 

system.

 

A

 

name

 

may

 

be

 

rejected

 

if

 

it

 

cannot

 

be

 

converted

 

to

 

code

 

page

 

500.

 

Names

 

are

 

written

 

to

 

the

 

optical

 

media

 

in

 

the

 

code

 

page

 

that

 

is

 

specified

 

when

 

the

 

volume

 

was

 

initialized.

File

 

Server

 

(QFileSvr.400)

 

File

 

System

 

The

 

File

 

Server

 

(QFileSvr.400)

 

file

 

system

 

can

 

be

 

accessed

 

through

 

the

 

integrated

 

file

 

system

 

(IFS)

 

interface.

 

This

 

is

 

done

 

by

 

using

 

either

 

the

 

OS/400

 

file

 

server

 

or

 

the

 

integrated

 

file

 

system

 

commands,

 

user

 

displays,

 

and

 

ISO

 

stream

 

I/O

 

functions

 

and

 

system

 

APIs.

 

Note:

  

The

 

characteristics

 

of

 

the

 

QFileSvr.400

 

file

 

system

 

are

 

determined

 

by

 

the

 

characteristics

 

of

 

the

 

file

 

system

 

that

 

are

 

being

 

accessed

 

on

 

the

 

target

 

system.

 

Path

 

Names

 

For

 

a

 

first-level

 

directory,

 

which

 

actually

 

represents

 

the

 

root

 

(/)

 

directory

 

of

 

the

 

target

 

system,

 

the

 

QFileSvr.400

 

file

 

system

 

preserves

 

the

 

same

 

uppercase

 

and

 

lowercase

 

form

 

in

 

which

 

object

 

names

 

are

 

entered.

 

However,

 

no

 

distinction

 

is

 

made

 

between

 

uppercase

 

and

 

lowercase

 

when

 

QFileSvr.400

 

searches

 

for

 

names.

 

For

 

all

 

other

 

directories,

 

case-sensitivity

 

is

 

dependent

 

on

 

the

 

specific

 

file

 

system

 

being

 

accessed.

 

QFileSvr.400

 

preserves

 

the

 

same

 

uppercase

 

and

 

lowercase

 

form

 

in

 

which

 

object

 

names

 

are

 

entered

 

when

 

file

 

requests

 

are

 

sent

 

to

 

the

 

OS/400

 

file

 

server.

 

v

   

Path

 

names

 

have

 

the

 

following

 

form:

 

/QFileSvr.400/RemoteLocationName/Directory/Directory

 

.

 

.

 

.

 

/Object

 

The

 

first-level

 

directory

 

(that

 

is,

 

RemoteLocationName

 

in

 

the

 

example

 

shown

 

above)

 

represents

 

both

 

of

 

the

 

following:

 

–

   

The

 

name

 

of

 

the

 

target

 

system

 

that

 

will

 

be

 

used

 

to

 

establish

 

a

 

communications

 

connection.

 

The

 

target

 

system

 

name

 

can

 

be

 

either

 

of

 

the

 

following:

 

-

   

A

 

TCP/IP

 

host

 

name

 

(for

 

example,

 

beowulf.newyork.corp.com

 

)

 

-

   

An

 

SNA

 

LU

 

6.2

 

name

 

(for

 

example,

 

appn.newyork

 

).
–

   

The

 

root

 

(/)

 

directory

 

of

 

the

 

target

 

system

 

Therefore,

 

when

 

a

 

first-level

 

directory

 

is

 

created

 

using

 

an

 

integrated

 

file

 

system

 

interface,

 

any

 

specified

 

attributes

 

are

 

ignored.

 

Note:

  

First-level

 

directories

 

are

 

not

 

persistent

 

across

 

initial

 

program

 

loads

 

(IPLs).

 

That

 

is,

 

the

 

first-level

 

directories

 

must

 

be

 

created

 

again

 

after

 

each

 

IPL.

 

v

   

Each

 

component

 

of

 

the

 

path

 

name

 

can

 

be

 

up

 

to

 

255

 

characters

 

long.

 

The

 

absolute

 

path

 

name

 

can

 

be

 

up

 

to

 

16

 

megabytes

 

long.

 

Note:

  

The

 

file

 

system

 

in

 

which

 

the

 

object

 

resides

 

may

 

restrict

 

the

 

component

 

length

 

and

 

path

 

name

 

length

 

to

 

less

 

than

 

the

 

maximum

 

allowed

 

by

 

QFileSvr.400.

 

v

   

There

 

is

 

no

 

limit

 

to

 

the

 

depth

 

of

 

the

 

directory

 

hierarchy,

 

other

 

than

 

program

 

and

 

system

 

limits,

 

and

 

any

 

limits

 

that

 

are

 

imposed

 

by

 

the

 

file

 

system

 

being

 

accessed.

   

206

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

The

 

characters

 

in

 

names

 

are

 

converted

 

to

 

UCS2

 

Level

 

1

 

form

 

when

 

the

 

names

 

are

 

stored.

Enabling

 

Integrated

 

File

 

System

 

Stream

 

I/O

 

You

 

can

 

enable

 

ILE

 

C/C++

 

stream

 

I/O

 

for

 

files

 

up

 

to

 

two

 

gigabytes

 

in

 

size

 

by

 

specifying

 

the

 

*IFSIO

 

option

 

on

 

the

 

system

 

interface

 

keyword

 

(SYSIFCOPT)

 

on

 

the

 

Create

 

Module

 

or

 

Create

 

Bound

 

Program

 

command

 

prompt.

 

For

 

example:

 

CRTCMOD

 

MODULE(QTEMP/IFSIO)

 

SRCFILE(QCPPLE/QACSRC)

 

SYSIFCOPT(*IFSIO)

 

CRTBNDC

 

PGM(QTEMP/IFSIO)

 

SRCFILE(QCPPLE/QACSRC)

 

SYSIFCOPT(*IFSIO)

 

Using

 

Stream

 

I/O

 

with

 

Large

 

Files

 

The

 

64–bit

 

version

 

of

 

the

 

Integrated

 

File

 

System

 

interface

 

lets

 

you

 

use

 

ILE

 

C/C++

 

Stream

 

I/O

 

with

 

files

 

greater

 

than

 

two

 

gigabytes

 

in

 

size.

 

Use

 

any

 

of

 

the

 

methods

 

listed

 

below

 

to

 

enable

 

this

 

interface.

 

v

   

Specify

 

the

 

*IFS64IO

 

option

 

with

 

the

 

SYSIFCOPT

 

keyword

 

on

 

the

 

Create

 

Module

 

or

 

Create

 

Bound

 

Program

 

command

 

prompt.

 

When

 

this

 

keyword

 

is

 

specified,

 

the

 

compiler

 

defines

 

the

 

__IFS64_IO__

 

macro,

 

which

 

in

 

turn

 

causes

 

the

 

_LARGE_FILES

 

and

 

_LARGE_FILE_API

 

macros

 

to

 

be

 

defined

 

in

 

the

 

IBM-supplied

 

header

 

files.

 

For

 

example:

 

CRTCPPMOD

 

MODULE(QTEMP/IFSIO)

 

SRCFILE(QCPPLE/QACSRC)

 

SYSIFCOPT(*IFS64IO)

 

v

   

Define

 

the

 

_LARGE_FILES

 

macro

 

in

 

the

 

program

 

source.

 

Alternately,

 

specify

 

DEFINE(’_LARGE_FILES’)

 

on

 

a

 

Create

 

Module

 

or

 

Create

 

Bound

 

Program

 

command

 

line.

 

Integrated

 

File

 

System

 

APIs

 

and

 

relevant

 

data

 

types

 

are

 

automatically

 

mapped

 

or

 

redefined

 

to

 

their

 

64–bit

 

Integrated

 

File

 

System

 

counterparts.

 

For

 

example:

 

CRTCPPMOD

 

MODULE(QTEMP/IFSIO)

 

SRCFILE(QCPPLE/QACSRC)

                 

SYSIFCOPT(*IFSIO)

 

DEFINE(’_LARGE_FILES’)

 

v

   

Define

 

the

 

_LARGE_FILE_API

 

macro

 

in

 

the

 

program

 

source.

 

Alternately,

 

specify

 

DEFINE(’_LARGE_FILE_API’)

 

on

 

a

 

Create

 

Module

 

or

 

Create

 

Bound

 

Program

 

command

 

line.

 

This

 

makes

 

64–bit

 

Integrated

 

File

 

System

 

APIs

 

and

 

corresponding

 

data

 

types

 

visible,

 

but

 

applications

 

must

 

explicitly

 

specify

 

which

 

Integrated

 

File

 

System

 

APIs

 

(regular

 

or

 

64–bit)

 

to

 

use.

 

For

 

example:

 

CRTCMOD

 

MODULE(QTEMP/IFSIO)

 

SRCFILE(QCPPLE/QACSRC)

                 

SYSIFCOPT(*IFSIO)

 

DEFINE(’_LARGE_FILE_API’)

 

Note:

  

The

 

__IFS64_IO__,

 

_LARGE_FILES,

 

and

 

_LARGE_FILE_API

 

macros

 

are

 

not

 

mutually

 

exclusive.

 

For

 

example,

 

you

 

might

 

specify

 

SYSIFCOPT(*IFS64IO)

 

on

 

the

 

command

 

line,

 

and

 

define

 

either

 

or

 

both

 

of

 

the

 

_LARGE_FILES

 

and

 

_LARGE_FILE_API

 

macros

 

in

 

your

 

program

 

source.

 

Stream

 

Files

 

The

 

ILE

 

C/C++

 

compiler

 

allows

 

your

 

program

 

to

 

process

 

stream

 

files

 

as

 

true

 

text

 

or

 

binary

 

stream

 

files

 

(using

 

the

 

integrated

 

file

 

system

 

enabled

 

stream

 

I/O)

 

or

 

as

 

simulated

 

text

 

and

 

binary

 

stream

 

files

 

(using

 

the

 

default

 

data

 

management

 

stream

 

I/O).

 

When

 

writing

 

an

 

application

 

that

 

uses

 

stream

 

files,

 

for

 

better

 

performance,

 

it

 

is

 

recommended

 

that

 

the

 

integrated

 

file

 

system

 

be

 

used

 

instead

 

of

 

the

 

default

 

C

 

stream

 

I/O

 

which

 

is

 

mapped

 

on

 

top

 

of

 

the

 

data

 

management

 

record

 

I/O.

   

Chapter

 

17.

 

Using

 

ILE

 

C/C++

 

Stream

 

Functions

 

with

 

the

 

iSeries

 

Integrated

 

File

 

System

 

207



Stream

 

Files

 

Versus

 

Database

 

Files

 

To

 

better

 

understand

 

stream

 

files,

 

it

 

is

 

useful

 

to

 

compare

 

them

 

with

 

iSeries

 

database

 

files.

 

On

 

the

 

integrated

 

file

 

system,

 

a

 

stream

 

is

 

simply

 

a

 

continuous

 

string

 

of

 

characters.

 

A

 

database

 

file

 

is

 

record

 

arranged;

 

It

 

has

 

predefined

 

subdivisions

 

consisting

 

of

 

one

 

or

 

more

 

fields

 

that

 

have

 

specific

 

characteristics,

 

such

 

as

 

length

 

and

 

data

 

type.

   

Default

 

C/C++

 

stream

 

I/O

 

on

 

the

 

iSeries

 

systems

 

is

 

simulated

 

on

 

top

 

of

 

an

 

iSeries

 

database

 

file.

 

Figure

 

106

 

illustrates

 

how

 

an

 

iSeries

 

record

 

is

 

mapped

 

to

 

a

 

C/C++

 

stream.

 

This

 

is

 

simulated

 

stream

 

file

 

processing

 

with

 

iSeries

 

records.

   

The

 

differences

 

in

 

structure

 

of

 

stream

 

files

 

and

 

record-oriented

 

files

 

affect

 

how

 

an

 

application

 

is

 

written

 

to

 

interact

 

with

 

them

 

and

 

which

 

type

 

of

 

file

 

is

 

best

 

suited

 

to

 

an

 

application.

 

v

   

A

 

record-arranged

 

file

 

is

 

well

 

suited

 

for

 

storing

 

customer

 

information,

 

such

 

as

 

name,

 

address,

 

and

 

account

 

balance.

 

These

 

fields

 

can

 

be

 

individually

 

accessed

 

and

 

manipulated

 

using

 

the

 

extensive

 

programming

 

functions

 

of

 

the

 

iSeries

 

system.

 

v

   

A

 

stream

 

file

 

is

 

better

 

suited

 

for

 

storing

 

information

 

such

 

as

 

a

 

customer’s

 

picture,

 

which

 

is

 

composed

 

of

 

a

 

continuous

 

string

 

of

 

bits

 

representing

 

variations

 

in

 

color.

 

Stream

 

files

 

are

 

particularly

 

well

 

suited

 

for

 

storing

 

strings

 

of

 

data

 

such

 

as

 

the

 

text

 

of

 

a

 

document,

 

images,

 

audio,

 

and

 

video.

.........................................

.........................................

.........................................

..............................    .......

..............................    .......

..............................    .......

Stream File

Record 1

Record 2

Record n

Record-oriented Database File

Field 1 Field 2             Field 3                  Field n
RV3N081-0

  

Figure

 

105.

 

Comparison

 

of

 

a

 

Stream

 

File

 

and

 

a

 

Record-Oriented

 

File

  

Figure

 

106.

 

iSeries

 

Records

 

Mapping

 

to

 

a

 

C/C++

 

Stream

 

File

  

208

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Text

 

Streams

 

Text

 

streams

 

contain

 

printable

 

characters

 

and

 

control

 

characters

 

that

 

are

 

organized

 

into

 

lines.

 

Each

 

line

 

consists

 

of

 

zero

 

or

 

more

 

characters

 

and

 

ends

 

with

 

a

 

new-line

 

character

 

(\n).

 

A

 

new-line

 

character

 

is

 

not

 

automatically

 

appended

 

to

 

the

 

end

 

of

 

file.

 

The

 

ILE

 

C/C++

 

run-time

 

environment

 

may

 

add,

 

alter,

 

or

 

ignore

 

some

 

special

 

characters

 

during

 

input

 

or

 

output

 

so

 

as

 

to

 

conform

 

to

 

the

 

conventions

 

for

 

representing

 

text

 

in

 

the

 

iSeries

 

environment.

 

Thus,

 

there

 

may

 

not

 

be

 

a

 

one-to-one

 

correspondence

 

between

 

characters

 

written

 

to

 

a

 

file

 

and

 

characters

 

read

 

back

 

from

 

the

 

same

 

file.

 

Data

 

read

 

from

 

an

 

integrated

 

file

 

system

 

text

 

stream

 

is

 

equal

 

to

 

the

 

data

 

which

 

was

 

written

 

if

 

the

 

data

 

consists

 

only

 

of

 

printable

 

characters

 

and

 

the

 

horizontal

 

tab,

 

new-line,

 

vertical

 

tab,

 

and

 

form-feed

 

control

 

characters.

 

For

 

most

 

integrated

 

file

 

system

 

stream

 

files,

 

a

 

line

 

consists

 

of

 

zero

 

or

 

more

 

characters,

 

and

 

ends

 

with

 

the

 

following

 

character

 

combination:

 

a

 

carriage

 

return

 

plus

 

a

 

new-line

 

character.

 

However,

 

the

 

integrated

 

file

 

system

 

can

 

have

 

logical

 

links

 

to

 

files

 

on

 

different

 

systems

 

that

 

may

 

use

 

a

 

single

 

line-feed

 

as

 

a

 

line

 

terminator.

 

A

 

good

 

example

 

of

 

this

 

are

 

the

 

files

 

on

 

most

 

UNIX

 

systems.

 

On

 

input,

 

the

 

default

 

in

 

text

 

mode

 

is

 

to

 

strip

 

all

 

carriage-returns

 

from

 

new-line

 

carriage-return

 

character

 

combination

 

line

 

delimiters.

 

On

 

output,

 

each

 

line-feed

 

character

 

is

 

translated

 

to

 

a

 

carriage-return

 

character

 

that

 

is

 

followed

 

by

 

a

 

line-feed

 

character.

 

The

 

line

 

terminator

 

character

 

sequence

 

can

 

be

 

changed

 

with

 

the

 

CRLN

 

option

 

on

 

fopen().

 

Note:

  

The

 

*IFSIO

 

option

 

also

 

changes

 

the

 

value

 

for

 

the

 

’\n’

 

escape

 

character

 

value

 

to

 

the

 

0x25

 

line

 

feed

 

character.

 

If

 

*NOIFSIO

 

is

 

specified,

 

the

 

’\n’

 

escape

 

character

 

has

 

a

 

value

 

of

 

0x15.

 

When

 

a

 

file

 

is

 

opened

 

in

 

text

 

mode,

 

there

 

may

 

be

 

code-page

 

conversions

 

on

 

data

 

that

 

is

 

processed

 

to

 

and

 

from

 

that

 

file.

 

When

 

the

 

data

 

is

 

read

 

from

 

the

 

file,

 

it

 

is

 

converted

 

from

 

the

 

code

 

page

 

of

 

the

 

file

 

to

 

the

 

code

 

page

 

of

 

the

 

application,

 

job,

 

or

 

system

 

receiving

 

the

 

data.

 

When

 

data

 

is

 

written

 

to

 

an

 

iSeries

 

file,

 

it

 

is

 

converted

 

from

 

the

 

code

 

page

 

of

 

the

 

application,

 

job,

 

or

 

system

 

to

 

the

 

code

 

page

 

of

 

the

 

file.

 

For

 

true

 

stream

 

files,

 

any

 

line-formatting

 

characters

 

(such

 

as

 

carriage

 

return,

 

tab,

 

and

 

end-of-file)

 

are

 

converted

 

from

 

one

 

code

 

page

 

to

 

another.

 

When

 

reading

 

from

 

QSYS.LIB

 

files

 

end-of-line

 

characters

 

(carriage

 

return

 

and

 

line

 

feed)

 

are

 

appended

 

to

 

the

 

end

 

of

 

the

 

data

 

that

 

is

 

returned

 

in

 

the

 

buffer.

 

The

 

code-page

 

conversion

 

that

 

is

 

done

 

when

 

a

 

text

 

file

 

is

 

processed

 

can

 

be

 

changed

 

by

 

specifying

 

the

 

code-page

 

or

 

CCSID

 

option

 

on

 

fopen().

 

The

 

default

 

is

 

to

 

convert

 

all

 

data

 

read

 

from

 

a

 

file

 

to

 

the

 

job’s

 

CCSID

 

or

 

code

 

page.

 

Binary

 

Streams

 

A

 

binary

 

stream

 

is

 

a

 

sequence

 

of

 

characters

 

that

 

has

 

a

 

one-to-one

 

correspondence

 

with

 

the

 

characters

 

stored

 

in

 

the

 

associated

 

iSeries

 

system

 

file.

 

The

 

data

 

is

 

not

 

altered

 

on

 

input

 

or

 

output,

 

so

 

the

 

data

 

that

 

is

 

read

 

from

 

a

 

binary

 

stream

 

is

 

equal

 

to

 

the

 

data

 

that

 

was

 

written.

 

New-line

 

characters

 

have

 

no

 

special

 

significance

 

in

 

a

   

Chapter

 

17.

 

Using

 

ILE

 

C/C++

 

Stream

 

Functions

 

with

 

the

 

iSeries

 

Integrated

 

File

 

System

 

209



binary

 

stream.

 

The

 

application

 

is

 

responsible

 

for

 

knowing

 

how

 

to

 

handle

 

the

 

data.

 

The

 

fgets()

 

function

 

handles

 

new-line

 

characters.

 

Binary

 

files

 

are

 

always

 

created

 

with

 

the

 

CCSID

 

of

 

the

 

job.

 

Opening

 

Text

 

Stream

 

and

 

Binary

 

Stream

 

Files

 

Each

 

text

 

stream

 

file

 

and

 

each

 

binary

 

stream

 

file

 

is

 

represented

 

by

 

a

 

file

 

control

 

structure

 

of

 

type

 

file.

 

This

 

structure

 

is

 

initialized

 

depending

 

on

 

the

 

mode

 

in

 

which

 

the

 

file

 

was

 

opened.

 

Unpredictable

 

results

 

might

 

occur

 

if

 

you

 

attempt

 

to

 

change

 

the

 

file

 

control

 

structure.

 

The

 

format

 

of

 

fopen()

 

is:

 

#include

 

<stdio.h>

 

FILE

 

*fopen(const

 

char

 

*filename,

 

const

 

char

 

*mode);

 

The

 

mode

 

variable

 

is

 

a

 

character

 

string

 

that

 

consists

 

of

 

an

 

open

 

mode

 

which

 

may

 

be

 

followed

 

by

 

keyword

 

parameters.

 

The

 

open

 

mode

 

and

 

keyword

 

parameters

 

must

 

be

 

separated

 

by

 

a

 

comma

 

or

 

one

 

or

 

more

 

blank

 

characters.

 

To

 

open

 

a

 

text

 

stream

 

file,

 

use

 

fopen()

 

with

 

one

 

of

 

the

 

following

 

modes:

 

v

   

r

 

or

 

r+

 

v

   

w

 

or

 

w+

 

v

   

a

 

or

 

a+

To

 

open

 

a

 

binary

 

stream

 

file,

 

use

 

fopen()

 

with

 

one

 

of

 

the

 

following

 

modes:

 

v

   

rb,

 

v

   

rb+

 

,

 

or

 

r+b

 

v

   

wb,

 

v

   

wb+

 

or

 

w+b

 

v

   

ab,

 

v

   

awb+

 

or

 

a+b

   

To

 

open

 

a

 

binary

 

stream

 

file,

 

use

 

theopen()

 

member

 

function

 

with

 

ios::binary,

 

or

 

any

 

of

 

the

 

following

 

modes:

 

v

   

ios::app

 

v

   

ios::ate

 

v

   

ios::in

 

v

   

ios::out

 

v

   

ios::trunc

Storing

 

Data

 

as

 

a

 

Text

 

Stream

 

or

 

as

 

a

 

Binary

 

Stream

 

If

 

two

 

streams

 

are

 

opened,

 

one

 

as

 

a

 

binary

 

stream

 

and

 

the

 

other

 

as

 

text

 

stream,

 

and

 

the

 

same

 

information

 

is

 

written

 

to

 

both,

 

the

 

contents

 

of

 

the

 

stream

 

may

 

differ.

 

The

 

following

 

illustrates

 

two

 

streams

 

of

 

different

 

types.

 

The

 

hexadecimal

 

values

 

of

 

the

 

resulting

 

files

 

(which

 

show

 

how

 

the

 

data

 

is

 

actually

 

stored)

 

are

 

not

 

the

 

same.

    

210

 

ILE

 

C/C++

 

Programmer’s

 

Guide



As

 

the

 

hexadecimal

 

values

 

of

 

the

 

file

 

contents

 

shows

 

in

 

the

 

binary

 

stream

 

(script.bin),

 

the

 

new-line

 

character

 

is

 

converted

 

to

 

a

 

line-feed

 

hexadecimal

 

value

 

(0x25).

 

While

 

in

 

the

 

text

 

stream

 

(script.txt),

 

the

 

new-line

 

is

 

converted

 

to

 

a

 

carriage-return

 

line-feed

 

hexadecimal

 

value

 

(0x0d25).

 

Using

 

the

 

Integrated

 

File

 

System

 

(IFS)

 

ILE

 

C/C++

 

primarily

 

supports

 

the

 

iSeries

 

root

 

file

 

system.

 

The

 

root

 

file

 

system

 

is

 

one

 

of

 

the

 

many

 

file

 

systems

 

accessible

 

through

 

the

 

Integrated

 

File

 

System

 

interface.

 

It

 

uses

 

notation

 

similar

 

to

 

that

 

used

 

to

 

access

 

files

 

and

 

directories

 

on

 

UNIX

 

systems,

 

allowing

 

you

 

to

 

access

 

information

 

across

 

multiple

 

platforms

 

in

 

a

 

uniform

 

way.

 

Take

 

care

 

when

 

transferring

 

files

 

to

 

and

 

from

 

various

 

platforms.

 

Use

 

of

 

a

 

download

 

and

 

upload

 

utility

 

like

 

FTP

 

allows

 

you

 

to

 

specify

 

the

 

correct

 

mapping

 

of

 

characters

 

so

 

your

 

streamed

 

source

 

remains

 

valid

 

on

 

the

 

iSeries

 

platform,

 

even

 

if

 

it

 

has

 

been

 

stored

 

temporarily

 

on

 

other

 

platforms.

 

See

 

“Pitfalls

 

to

 

Avoid”

 

on

 

page

 

219

 

for

 

more

 

tips.

 

/*

 

Use

 

CRTBNDC

 

SYSIFCOPT(*IFSIO)

                          

*/

 

#include

 

<stdio.h>

 

int

 

main(void)

 

{

     

FILE

 

*fp1,

 

*fp2;

     

char

 

lineBin[15],

 

lineTxt[15];

     

int

 

x;

     

fp1

 

=

 

fopen("script.bin","wb");

     

fprintf(fp1,"hello

 

world\n");

     

fp2

 

=

 

fopen("script.txt","w");

     

fprintf(fp2,"hello

 

world\n");

     

fclose(fp1);

     

fclose(fp2);

     

fp1

 

=

 

fopen("script.bin","rb");

     

/*

 

opening

 

the

 

text

 

file

 

as

 

binary

 

to

 

suppress

     

the

 

conversion

 

of

 

internal

 

data

  

*/

     

fp2

 

=

 

fopen("script.txt","rb");

     

fgets(lineBin,

 

15,

 

fp1);

     

fgets(lineTxt,

 

15,

 

fp2);

     

printf("Hex

 

value

 

of

 

binary

 

file

 

=

 

");

     

for

 

(x=0;

 

lineBin[x];

 

x++)

         

printf("%.2x",

 

(int)(lineBin[x]));

     

printf("\nHex

 

value

 

of

 

text

 

file

   

=

 

");

     

for

 

(x=0;

 

lineTxt[x];

 

x++)

         

printf("%.2x",

 

(int)(lineTxt[x]));

     

printf("\n");

     

fclose(fp1);

     

fclose(fp2);

       

/*

 

The

 

expected

 

output

 

is:

                                

*/

     

/*

                                                        

*/

     

/*

 

Hex

 

value

 

of

 

binary

 

file

 

=

 

888593939640a69699938425

    

*/

     

/*

 

Hex

 

value

 

of

 

text

 

file

   

=

 

888593939640a6969993840d25

  

*/

 

}

 

Figure

 

107.

 

Comparison

 

of

 

Text

 

Stream

 

and

 

Binary

 

Stream

 

Contents

  

Chapter

 

17.

 

Using

 

ILE

 

C/C++

 

Stream

 

Functions

 

with

 

the

 

iSeries

 

Integrated

 

File

 

System

 

211



Copying

 

Source

 

Files

 

into

 

the

 

IFS

 

You

 

can

 

copy

 

your

 

main

 

source

 

physical

 

file

 

to

 

an

 

Integrated

 

File

 

System

 

(IFS)

 

file.

 

Assuming

 

that

 

you

 

used

 

a

 

standard

 

name

 

for

 

your

 

source

 

physical

 

file,

 

use

 

the

 

following

 

command:

 

CPYTOSTMF

 

FROMMBR(’/QSYS.LIB/MYLIB.LIB/QCSRC.FILE/QCSRC.MBR’)

 

TOSTMF(’/home/qcsrc.c’)

 

Editing

 

Stream

 

Files

 

You

 

can

 

edit

 

stream

 

files

 

directly

 

with

 

the

 

Edit

 

File

 

(EDTF)

 

command.

 

There

 

are

 

also

 

three

 

ways

 

that

 

you

 

can

 

edit

 

files

 

to

 

be

 

used

 

with

 

stream

 

files:

 

v

   

Use

 

Client

 

Access

 

to

 

map

 

the

 

Integrated

 

File

 

System

 

directory

 

as

 

a

 

PC

 

network

 

drive

 

and

 

then

 

use

 

a

 

PC-based

 

editor

 

to

 

edit

 

files

 

in

 

that

 

path

 

as

 

if

 

they

 

were

 

local

 

PC

 

files.

 

v

   

Edit

 

with

 

SEU

 

and

 

then

 

use

 

the

 

Copy

 

to

 

Stream

 

File

 

(CPYTOSTMF)

 

command

 

to

 

move

 

that

 

file

 

from

 

the

 

traditional

 

QSYS

 

file

 

system

 

to

 

a

 

root

 

file

 

system

 

path.

 

v

   

Place

 

the

 

source

 

in

 

a

 

Source

 

Physical

 

File

 

(SRCPF)

 

with

 

Integrated

 

File

 

System

 

links.

 

(The

 

actual

 

source

 

resides

 

in

 

a

 

QSYS

 

member,

 

but

 

there

 

is

 

a

 

root

 

file

 

system

 

link

 

that

 

points

 

to

 

the

 

member.)

 

Use

 

the

 

Add

 

Link

 

(ADDLNK)

 

command

 

to

 

create

 

the

 

link,

 

and

 

thereafter

 

edit

 

the

 

member

 

with

 

SEU,

 

but

 

use

 

the

 

root

 

file

 

system

 

pathname

 

link

 

when

 

you

 

compile.

The

 

SRCSTMF

 

Parameter

 

The

 

SRCSTMF

 

parameter

 

identifies

 

a

 

source

 

stream

 

file

 

as

 

a

 

path

 

name.

 

Specify

 

the

 

path

 

name

 

of

 

the

 

stream

 

file

 

that

 

contains

 

the

 

ILE

 

C

 

source

 

code

 

that

 

you

 

want

 

to

 

compile.

 

The

 

path

 

name

 

can

 

be

 

either

 

absolutely

 

qualified

 

or

 

relatively

 

qualified.

 

For

 

file

 

systems

 

that

 

are

 

case

 

sensitive,

 

the

 

path

 

name

 

may

 

be

 

case

 

sensitive.

 

An

 

absolutely

 

qualified

 

name

 

starts

 

with

 

/

 

or

 

\.

 

A

 

/

 

or

 

\

 

character

 

at

 

the

 

beginning

 

of

 

a

 

path

 

name

 

means

 

that

 

the

 

path

 

begins

 

at

 

the

 

topmost

 

directory,

 

the

 

root

 

(/)

 

directory.

 

For

 

example:

 

/Dir1/Dir2/Dir3/UsrFile

 

If

 

the

 

path

 

name

 

does

 

not

 

begin

 

with

 

a

 

/

 

or

 

\

 

character,

 

the

 

path

 

is

 

assumed

 

to

 

begin

 

at

 

your

 

current

 

directory.

 

For

 

example:

 

MyDir/MyFile

 

is

 

equivalent

 

to

 

/CurrentDir/MyDir/MyFile

 

where

 

MyDir

 

is

 

a

 

subdirectory

 

of

 

your

 

current

 

directory.

 

There

 

is

 

no

 

support

 

for

 

the

 

tilde

 

(~)

 

character

 

or

 

wildcards

 

(*

 

or

 

?).

 

SRCSTMF

 

is

 

mutually

 

exclusive

 

with

 

SRCMBR

 

and

 

SRCFILE.

 

Also,

 

if

 

you

 

specify

 

SRCSTMF,

 

then

 

the

 

compiler

 

ignores

 

TEXT(*SRCMBRTXT).

 

Other

 

values

 

for

 

TEXT

 

are

 

valid.

 

Header

 

File

 

Search

 

The

 

compiler

 

uses

 

different

 

search

 

techniques

 

when

 

entering

 

your

 

source

 

file

 

using

 

the

 

source

 

stream

 

file

 

parameters.

 

The

 

compiler

 

no

 

longer

 

uses

 

the

 

library

 

list

 

search

 

method.

   

212

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Include

 

File

 

Links

 

ILE

 

C/C++

 

headers,

 

along

 

with

 

system

 

headers,

 

are

 

located

 

in

 

QSYSINC/H.

 

The

 

links

 

are

 

in

 

the

 

directory

 

/QIBM/include.

 

For

 

example,

 

the

 

links

 

are

 

as

 

follows

 

for

 

assert.h:

 

v

   

Display

 

Symbolic

 

Link

 

Object

 

link:

 

/QIBM/include/assert.h

 

v

   

Content

 

of

 

Link:

 

/qsys.lib/qsysinc.lib/h.file/assert.mbr

Include

 

Directive

 

Syntax

 

The

 

#include

 

directive

 

syntax

 

depends

 

on

 

the

 

file

 

system

 

specified

 

for

 

the

 

root

 

source

 

file:

 

Integrated

 

File

 

System

 

(IFS)

 

or

 

Data

 

Management

 

(DM)

 

file

 

system.

 

Integrated

 

File

 

System

 

(IFS)

 

compilations:

   

IFS

 

is

 

a

 

hierarchical

 

file

 

system

 

similar

 

to

 

that

 

found

 

on

 

AIX.

 

When

 

an

 

IFS

 

file

 

specification

 

is

 

used

 

for

 

the

 

root

 

source

 

file

 

(that

 

is,

 

when

 

the

 

SRCSTRMF

 

option

 

is

 

used),

 

all

 

#include

 

directives

 

within

 

that

 

compilation

 

are

 

similarly

 

resolved

 

to

 

the

 

IFS

 

file

 

system.

 

The

 

syntactical

 

variations

 

are:

  

Table

 

9.

 

Integrated

 

File

 

System

 

Compilations

 

#include

 

specification

 

enclosed

 

in

 

<

 

>

 

enclosed

 

in

 

″

 

″

 

filename

 

(e.g.,

 

<cstdio>)

 

resolves

 

to

 

[syssearchpath]/filename

 

resolves

 

to

 

[usrsearchpath]/filename

 

dir/filename

 

(e.g.,

 

<sys/limits.h>)

 

resolves

 

to

 

[syssearchpath]/dir/filename

 

resolves

 

to

 

[usrsearchpath]/dir/filename

 

/dir/filename

 

(e.g.,

 

″/home/header.h″)

 

resolves

 

to

 

/dir/filename

 

resolves

 

to

 

/dir/filename

   

Data

 

Management

 

File

 

System

 

(DM)

 

compilations:

   

DM

 

is

 

the

 

traditional

 

iSeries

 

monolithic

 

(fixed-depth)

 

file

 

system.

 

It

 

is

 

composed

 

of

 

a

 

number

 

of

 

libraries,

 

which

 

contain

 

objects.

 

There

 

are

 

a

 

fixed

 

set

 

of

 

object

 

types

 

-

 

source

 

files

 

are

 

found

 

within

 

*FILE

 

object

 

types,

 

in

 

sub-objects

 

called

 

members.

 

All

 

native

 

iSeries

 

processes

 

have

 

an

 

ordered

 

library

 

list

 

(*LIBL)

 

and,

 

in

 

general,

 

iSeries

 

objects

 

are

 

resolved

 

by

 

searching

 

through

 

this

 

library

 

list.

 

The

 

library

 

list

 

has

 

three

 

components,

 

ordered

 

as

 

follows:

 

v

   

The

 

System

 

Library

 

List

 

(*SYSLIBL):

 

A

 

set

 

of

 

libraries

 

which

 

comprises

 

the

 

operating

 

system.

 

v

   

The

 

Product

 

Library

 

List

 

(*PRDLIBL):

 

Officially

 

licensed

 

programs

 

typically

 

add

 

themselves

 

to

 

the

 

product

 

library

 

list

 

when

 

run.

 

For

 

example,

 

the

 

C

 

and

 

C++

 

compilers

 

add

 

their

 

product

 

library

 

QCPPLE

 

to

 

the

 

library

 

list

 

when

 

run.

 

v

   

The

 

User

 

Library

 

List

 

(*URSLIBL):

 

Libraries

 

that

 

you

 

can

 

configure

 

or

 

order.

When

 

a

 

DM

 

file

 

specification

 

is

 

used

 

for

 

the

 

root

 

source

 

file

 

(that

 

is,

 

when

 

the

 

SRCFILE/SRCMBR

 

options

 

are

 

used),

 

all

 

#include

 

directives

 

within

 

that

 

compilation

 

are

 

similarly

 

resolved

 

to

 

the

 

DM

 

filesystem.

 

The

 

syntactical

 

variations

 

are:

  

Table

 

10.

 

Data

 

Management

 

File

 

System

 

Compilations

 

#include

 

specification

 

library

 

file

 

member

 

mbr

 

default

 

search1

 

default

 

file2

 

mbr

 

mbr.file

 

default

 

search1

 

file

 

mbr

   

Chapter

 

17.

 

Using

 

ILE

 

C/C++

 

Stream

 

Functions

 

with

 

the

 

iSeries

 

Integrated

 

File

 

System

 

213



Table

 

10.

 

Data

 

Management

 

File

 

System

 

Compilations

 

(continued)

 

#include

 

specification

 

library

 

file

 

member

 

file/mbr

 

default

 

search1

 

file

 

mbr

 

file(mbr)

 

default

 

search1

 

file

 

mbr

 

file/mbr.ext3

 

default

 

search1

 

file

 

mbr

 

or

 

mbr.ext3

 

lib/file/mbr

 

lib

 

file

 

mbr

 

lib/file(mbr)

 

lib

 

file

 

mbr

   

Notes:

  

1.

   

For

 

default

 

library

 

search

 

paths:

 

Note:

  

When

 

the

 

*SYSINCPATH

 

option

 

is

 

specified,

 

the

 

compiler

 

treats

 

user

 

includes

 

(″

 

″)

 

the

 

same

 

as

 

system

 

includes

 

(<

 

>).

 

v

   

When

 

the

 

library

 

is

 

not

 

specified,

 

and:

 

–

   

the

 

#include

 

specification

 

is

 

enclosed

 

in

 

<

 

>:

 

Search

 

the

 

*LIBL.

 

–

   

the

 

#include

 

specification

 

is

 

enclosed

 

in

 

″

 

″:

 

Check

 

the

 

library

 

containing

 

the

 

root

 

source

 

file;

 

if

 

not

 

found

 

there,

 

then

 

search

 

the

 

*USRLIBL;

 

if

 

still

 

not

 

found,

 

search

 

the

 

*LIBL.
v

   

When

 

the

 

library

 

is

 

specified,

 

and:

 

–

   

the

 

#include

 

specification

 

is

 

enclosed

 

in

 

<

 

>:

 

Search

 

the

 

lib/file/mbr

 

only.

 

–

   

the

 

#include

 

specification

 

is

 

enclosed

 

in

 

″

 

″:

 

Search

 

for

 

the

 

member

 

in

 

the

 

library/file

 

specified.
2.

   

For

 

the

 

Default

 

file:

 

v

   

When

 

includes

 

have

 

the

 

form

 

#include

 

<mbr>:

 

–

     

C:

 

default

 

file

 

is

 

H.

 

–

     

:

 

the

 

default

 

file

 

is

 

STD.
v

   

When

 

includes

 

have

 

the

 

form

 

#include

 

"mbr":

 

the

 

default

 

file

 

is

 

the

 

root

 

source

 

file.
3.

   

For

 

mbr.ext:

 

v

   

When

 

the

 

#include

 

specification

 

is

 

enclosed

 

in

 

<

 

>,

 

and:

 

–

   

the

 

member

 

name

 

has

 

the

 

h

 

extension:

 

<file/mbr.h>

 

format

 

resolves

 

to

 

member

 

mbr

 

in

 

file

 

file.

 

This

 

rule

 

is

 

for

 

POSIX

 

support

 

(for

 

example,

 

to

 

be

 

able

 

to

 

include

 

specifications

 

like

 

<sys/limits.h>).

 

The

 

only

 

member

 

names

 

which

 

activate

 

POSIX

 

support

 

are

 

extensions

 

of

 

h

 

or

 

H.

 

–

   

Otherwise,

 

<file/mbr.ext>

 

resolves

 

to

 

file

 

file,

 

and

 

member

 

mbr.ext

v

   

When

 

the

 

#include

 

specification

 

is

 

enclosed

 

in

 

″

 

″:

 

″file/mbr.ext″

 

resolves

 

to

 

file

 

file,

 

and

 

member

 

mbr.ext

Include

 

Search

 

Path

 

Rules

 

This

 

section

 

lists

 

rules

 

governing

 

search

 

paths

 

for

 

the

 

following:

 

v

   

INCDIR

 

(Include

 

Directory)

 

command

 

parameter

 

v

   

INCLUDE

 

environment

 

variable

 

v

   

*STDINC/*NOSTDINC

 

command

 

options

 

v

   

*SYSINCPATH/*NOSYSINCPATH

 

command

 

options

INCDIR

 

(Include

 

Directory)

 

Command

 

Parameter:

   

The

 

Include

 

Directory

 

parameter

 

(INCDIR)

 

works

 

with

 

the

 

Create

 

Module

 

and

 

Create

 

Bound

 

Program

 

compiler

 

commands,

 

allowing

 

you

 

to

 

redefine

 

the

 

path

 

used

 

to

 

locate

 

include

   

214

 

ILE

 

C/C++

 

Programmer’s

 

Guide



header

 

files

 

(with

 

the

 

#include

 

directive)

 

when

 

compiling

 

a

 

source

 

stream

 

file

 

only.

 

The

 

parameter

 

is

 

ignored

 

if

 

the

 

source

 

file’s

 

location

 

is

 

not

 

defined

 

as

 

an

 

IFS

 

path

 

via

 

the

 

Source

 

Stream

 

File

 

(SRCSTMF)

 

parameter,

 

or

 

if

 

the

 

full

 

(absolute)

 

path

 

name

 

is

 

specified

 

on

 

the

 

#include

 

directive.

 

The

 

parameter

 

accepts

 

a

 

list

 

of

 

IFS

 

directories.

 

These

 

directories

 

are

 

inserted

 

into

 

the

 

include

 

search

 

path

 

in

 

the

 

order

 

they

 

are

 

entered.

 

The

 

include

 

files

 

search

 

path

 

adheres

 

to

 

the

 

following

 

directory

 

search

 

order

 

to

 

locate

 

the

 

file:

  

Table

 

11.

 

INCDIR

 

Command

 

Parameter

 

#include

 

type

 

Directory

 

Search

 

Order

 

#include

 

<file_name>

 

1.

   

If

 

you

 

specify

 

a

 

directory

 

in

 

the

 

INCDIR

 

parameter,

 

the

 

compiler

 

searches

 

for

 

file_name

 

in

 

that

 

directory

 

first.

 

2.

   

If

 

more

 

than

 

one

 

directory

 

is

 

specified,

 

the

 

compiler

 

searches

 

the

 

directories

 

in

 

the

 

order

 

that

 

they

 

appear

 

on

 

the

 

command

 

line.

 

3.

   

Searches

 

the

 

directory

 

/QIBM/include.

 

#include

 

″file_name″

 

1.

   

Searches

 

the

 

directory

 

where

 

your

 

current

 

source

 

file

 

resides.

 

The

 

current

 

source

 

file

 

is

 

the

 

file

 

that

 

contains

 

the

 

#include

 

″file_name″

 

directive.

 

2.

   

If

 

you

 

specify

 

a

 

directory

 

in

 

the

 

INCDIR

 

parameter,

 

the

 

compiler

 

searches

 

for

 

file_name

 

in

 

that

 

directory.

 

3.

   

If

 

more

 

than

 

one

 

directory

 

is

 

specified,

 

the

 

compiler

 

searches

 

the

 

directories

 

in

 

the

 

order

 

that

 

they

 

appear

 

on

 

the

 

command

 

line.

 

4.

   

Searches

 

the

 

directory

 

/QIBM/include.

   

For

 

example,

 

if

 

you

 

enter

 

the

 

following

 

value

 

for

 

the

 

INCDIR

 

parameter:

 

Include

 

directory

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

INCDIR

         

’/tmp/dir1’

                           

+

 

for

 

more

 

values

     

’./dir2’

 

and

 

with

 

your

 

source

 

stream

 

file

 

you

 

include

 

the

 

following

 

header

 

files:

 

#include

 

"foo.h"

 

#include

 

<stdio.h>

 

The

 

compiler

 

first

 

searches

 

for

 

a

 

file

 

″foo.h″

 

in

 

the

 

directory

 

where

 

the

 

root

 

source

 

file

 

resides.

 

If

 

the

 

file

 

is

 

found,

 

it

 

is

 

included

 

and

 

the

 

search

 

ends.

 

Otherwise,

 

the

 

compiler

 

searches

 

the

 

directories

 

entered

 

INCDIR,

 

starting

 

with

 

″/tmp/dir1″.

 

If

 

the

 

file

 

is

 

found,

 

this

 

file

 

is

 

included.

 

If

 

the

 

directory

 

does

 

not

 

exist,

 

or

 

if

 

the

 

file

 

does

 

not

 

exist

 

within

 

that

 

directory,

 

the

 

compiler

 

continues

 

to

 

search

 

in

 

the

 

subdirectory

 

″dir2″

 

within

 

the

 

current

 

working

 

directory

 

(symbolized

 

by

 

″.″).

 

Again,

 

if

 

the

 

file

 

is

 

found,

 

this

 

file

 

is

 

included,

 

otherwise,

 

because

 

the

 

directories

 

in

 

INCDIR

 

path

 

have

 

now

 

been

 

exhausted,

 

the

 

default

 

user

 

include

 

path

 

(/QIBM/include)

 

is

 

used

 

to

 

find

 

the

 

header.

 

As

 

for

 

<stdio.h>,

 

the

 

same

 

logic

 

is

 

followed

 

in

 

the

 

same

 

order,

 

except

 

the

 

initial

 

search

 

in

 

the

 

root

 

source

 

directory

 

is

 

bypassed.

 

INCLUDE

 

Environment

 

Variable:

   

The

 

INCLUDE

 

environment

 

variable

 

value:

 

v

   

Contains

 

a

 

path

 

of

 

directories

 

delimited

 

by

 

colons

 

(:)

   

Chapter

 

17.

 

Using

 

ILE

 

C/C++

 

Stream

 

Functions

 

with

 

the

 

iSeries

 

Integrated

 

File

 

System

 

215



v

   

Does

 

not

 

override

 

the

 

order

 

v

   

Has

 

higher

 

priority

 

in

 

the

 

search

 

order

 

than

 

the

 

default

 

include

 

path

 

v

   

Has

 

a

 

lower

 

priority

 

in

 

the

 

search

 

order

 

than

 

INCDIR

 

and

 

the

 

root

 

source’s

 

directory

 

(for

 

a

 

user-defined

 

include

 

search)

.

 

If

 

the

 

include

 

search

 

contains

 

a

 

defined

 

INCLUDE

 

environment

 

variable

 

for

 

both

 

C

 

and

 

C++

 

compilers,

 

the

 

resulting

 

include

 

search

 

order

 

including

 

is

 

as

 

shown

 

in

 

the

 

following

 

table:

  

Table

 

12.

 

Include

 

Search

 

Order

 

#include

 

type

 

Directory

 

Search

 

Order

 

#include

 

<file_name>

 

1.

   

If

 

you

 

specify

 

a

 

directory

 

in

 

the

 

INCDIR

 

parameter,

 

the

 

compiler

 

searches

 

for

 

file_name

 

in

 

that

 

directory

 

first.

 

2.

   

If

 

more

 

than

 

one

 

directory

 

is

 

specified,

 

the

 

compiler

 

searches

 

the

 

directories

 

in

 

the

 

order

 

that

 

they

 

appear

 

on

 

the

 

command

 

line.

 

3.

   

If

 

the

 

INCLUDE

 

environment

 

variable

 

is

 

defined,

 

the

 

compiler

 

searches

 

the

 

directories

 

in

 

the

 

order

 

they

 

appear

 

in

 

the

 

INCLUDE

 

path.

 

4.

   

Searches

 

the

 

directory

 

/QIBM/include.

 

#include

 

″file_name″

 

1.

   

Searches

 

the

 

directory

 

where

 

your

 

current

 

source

 

file

 

resides.

 

The

 

current

 

source

 

file

 

is

 

the

 

one

 

that

 

contains

 

the

 

directive

 

#include

 

"file_name".

 

2.

   

If

 

you

 

specify

 

a

 

directory

 

in

 

the

 

INCDIR

 

parameter,

 

the

 

compiler

 

searches

 

for

 

file_name

 

in

 

that

 

directory.

 

3.

   

If

 

more

 

than

 

one

 

directory

 

is

 

specified,

 

the

 

compiler

 

searches

 

the

 

directories

 

in

 

the

 

order

 

that

 

they

 

appear

 

on

 

the

 

command

 

line.

 

4.

   

If

 

the

 

INCLUDE

 

environment

 

variable

 

is

 

defined,

 

the

 

compiler

 

searches

 

the

 

directories

 

in

 

the

 

order

 

they

 

appear

 

in

 

the

 

INCLUDE

 

environment

 

variable.

 

5.

   

Searches

 

the

 

directory

 

/QIBM/include.

   

Note:

  

This

 

feature

 

is

 

only

 

available

 

for

 

source

 

stream

 

file

 

compiles.

 

*STDINC/*NOSTDINC

 

Command

 

Options:

   

The

 

*STDINC/*NOSTDINC

 

command

 

options

 

have

 

been

 

added

 

to

 

the

 

OPTION

 

parameter

 

of

 

the

 

CRTCMOD/CRTCPPMOD

 

and

 

CRTBNDC/CRTBNDCPP

 

commands.

 

The

 

*STDINC

 

and

 

*NOSTDINC

 

command

 

options

 

work

 

on

 

the

 

CRTCMOD/CRTCPPMOD

 

and

 

CRTBNDC/CRTBNDCPP

 

commands.

 

The

 

*NOSTDINC

 

option

 

allows

 

you

 

to

 

remove

 

the

 

default

 

include

 

path

 

(/QIBM/include

 

for

 

IFS

 

source

 

stream

 

files;

 

QSYSINC

 

for

 

data

 

management

 

source

 

file

 

members)

 

from

 

the

 

search

 

order,

 

while

 

the

 

*STDINC

 

option

 

retains

 

the

 

default

 

include

 

path

 

at

 

the

 

end

 

of

 

the

 

order.

 

*STDINC

 

is

 

the

 

default.

 

The

 

*STDINC

 

option

 

works

 

as

 

did

 

the

 

former

 

SYSINC

 

parameter

 

for

 

data

 

management

 

source

 

file

 

members.

 

The

 

options

 

relate

 

to

 

the

 

old

 

parameter

 

values

 

as

 

follows:

   

216

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Table

 

13.

 

Parameter

 

Values

 

SYSINC

 

values

 

Equivalent

 

New

 

Command

 

Option

 

*YES

 

*STDINC

 

*NO

 

*NOSTDINC

   

*INCDIRFIRST/*NOINCDIRFIRST

 

Command

 

Options:

 

The

 

*INCDIRFIRST

 

option

 

allows

 

you

 

to

 

process

 

the

 

directories

 

listed

 

via

 

the

 

INCDIR

 

parameter

 

first

 

in

 

the

 

search

 

order

 

(that

 

is,

 

before

 

the

 

root

 

source

 

file

 

directory)

 

in

 

a

 

user

 

include

 

search,

 

while

 

the

 

*NOINCDIRFIRST

 

option

 

retains

 

INCDIR

 

directories

 

to

 

their

 

default

 

position

 

in

 

the

 

user

 

include

 

search

 

order

 

as

 

described

 

above.

Note:

  

These

 

options

 

are

 

valid

 

only

 

for

 

source

 

stream

 

file

 

compiles.

 

If

 

*INCDIRFIRST

 

is

 

selected,

 

the

 

following

 

changes

 

occur

 

to

 

the

 

user

 

include

 

search

 

order:

  

Table

 

14.

 

INCDIRFIRST

 

Command

 

Options

 

#include

 

type

 

Directory

 

Search

 

Order

 

#include

 

″file_name″

 

1.

   

If

 

you

 

specify

 

a

 

directory

 

in

 

the

 

INCDIR

 

parameter,

 

the

 

compiler

 

searches

 

for

 

file_name

 

in

 

that

 

directory.

 

2.

   

If

 

more

 

than

 

one

 

directory

 

is

 

specified,

 

the

 

compiler

 

searches

 

the

 

directories

 

in

 

the

 

order

 

that

 

they

 

appear

 

on

 

the

 

command

 

line.

 

3.

   

Searches

 

the

 

directory

 

where

 

your

 

current

 

root

 

source

 

file

 

resides.

 

4.

   

If

 

the

 

INCLUDE

 

environment

 

variable

 

is

 

defined,

 

the

 

compiler

 

searches

 

the

 

directories

 

in

 

the

 

order

 

they

 

appear

 

in

 

the

 

INCLUDE

 

path.

 

5.

   

If

 

the

 

*NOSTDINC

 

compiler

 

option

 

is

 

not

 

chosen,

 

search

 

the

 

default

 

include

 

directory

 

/QIBM/include.

   

*SYSINCPATH/*NOSYSINCPATH

 

Command

 

Options:

   

The

 

*SYSINCPATH/*NOSYSINCPATH

 

command

 

options

 

work

 

on

 

the

 

Create

 

Module

 

and

 

Create

 

Bound

 

Program

 

commands.

 

The

 

*SYSINCPATH

 

option

 

changes

 

the

 

search

 

path

 

of

 

user

 

includes

 

to

 

the

 

system

 

include

 

search

 

path.

 

It

 

is

 

equivalent

 

to

 

changing

 

the

 

double-qoutes

 

in

 

the

 

user

 

#include

 

directive

 

(#include

 

"file_name")

 

to

 

angle

 

brackets

 

(#include

 

<file_name>).

 

*NOSYSINCPATH

 

is

 

the

 

default

 

value.

 

Considerations

 

for

 

Specifying

 

Source

 

Stream

 

Files

 

When

 

you

 

specify

 

the

 

SRCSTMF

 

parameter

 

during

 

program

 

or

 

module

 

creation,

 

the

 

*MODULE

 

object

 

contains

 

no

 

source

 

file

 

attribute

 

information.

 

If

 

the

 

source

 

is

 

specified

 

via

 

the

 

SRCFILE/SRCMBR

 

parameters,

 

the

 

INCDIR

 

parameter

 

and

 

the

 

INCLUDE

 

environment

 

variable

 

are

 

ignored.

 

When

 

the

 

source

 

resides

 

in

 

the

 

Data

 

Management

 

file

 

system,

 

the

 

library

 

list

 

is

 

used

 

to

 

search

 

for

 

include

 

files.

 

The

 

library

 

list

 

(*LIBL)

 

has

 

no

 

concept

 

of

 

the

 

directory

 

file

 

structure.

   

Chapter

 

17.

 

Using

 

ILE

 

C/C++

 

Stream

 

Functions

 

with

 

the

 

iSeries

 

Integrated

 

File

 

System

 

217



If

 

the

 

source

 

file

 

is

 

not

 

specified

 

via

 

the

 

SRCSTMF

 

parameter,

 

the

 

job’s

 

*LIBL

 

is

 

used

 

to

 

find

 

the

 

include

 

files.

 

Restrictions

 

on

 

the

 

Absolute

 

Include

 

Path

 

Name

 

If

 

you

 

specify

 

an

 

absolute

 

(full)

 

path

 

name

 

on

 

the

 

#include

 

directive,

 

the

 

INCDIR

 

parameter

 

and

 

the

 

INCLUDE

 

environment

 

variable

 

have

 

no

 

effect.

 

Example:

 

Assume

 

the

 

following:

 

v

   

There

 

is

 

a

 

statement

 

like

 

#include

 

"myinc.h"

 

in

 

a

 

C/C++

 

source

 

file

 

v

   

You

 

are

 

compiling

 

a

 

source

 

member

 

from

 

the

 

QSYS

 

file

 

system

 

through

 

the

 

SRCSTMF

 

parameter

 

in

 

the

 

following

 

command:

 

CRTCMOD

 

MODULE(MYSOURCE)

 

SRCSTMF(’/qsys.lib/goodness.lib/qcppsrc.file/mysource.mbr’)

 

ILE

 

C/C++

 

tries

 

to

 

find

 

something

 

called

 

/qsys.lib/goodness.lib/qcppsrc.file/myinc.h,

 

which

 

is

 

an

 

invalid

 

Integrated

 

File

 

System

 

filename

 

because

 

.h

 

is

 

not

 

a

 

valid

 

object

 

type

 

in

 

the

 

QSYS

 

file

 

system.

 

If

 

you

 

want

 

to

 

use

 

a

 

header

 

file

 

that

 

is

 

in

 

the

 

QSYS

 

file

 

system,

 

you

 

must

 

do

 

either

 

of

 

the

 

following:

 

v

   

Specify

 

the

 

path

 

in

 

the

 

source

 

code,

 

as

 

shown

 

below:

 

#include

 

"/qsys.lib/goodness.lib/h.file/myinc.mbr"

 

v

   

Set

 

the

 

search

 

path

 

appropriately,

 

as

 

shown

 

in

 

“Examples

 

of

 

Using

 

Integrated

 

File

 

System

 

Source”

 

on

 

page

 

220.

 

Then

 

you

 

can

 

leave

 

the

 

path

 

out

 

of

 

the

 

include

 

statement,

 

as

 

shown

 

below:

 

#include

 

"myinc.mbr"

 

Recommendation

 

for

 

Source

 

and

 

Header

 

Files

 

If

 

you

 

are

 

porting

 

from

 

other

 

platforms

 

which

 

have

 

hierarchical

 

file

 

systems

 

(such

 

as

 

the

 

Microsoft®

 

Windows®,

 

UNIX,

 

or

 

OS/2

 

operating

 

systems),

 

consider

 

that

 

the

 

Integrated

 

File

 

System

 

(IFS)

 

is

 

more

 

compatible

 

with

 

those

 

file

 

systems.

 

To

 

avoid

 

changing

 

your

 

current

 

C/C++

 

source

 

code,

 

put

 

source

 

and

 

header

 

files

 

into

 

IFS.

 

Preprocessor

 

Output

 

If

 

you

 

specify

 

SRCSTMF

 

with

 

OPTION(*PPONLY),

 

then

 

the

 

preprocessor

 

writes

 

a

 

stream

 

file

 

to

 

the

 

current

 

directory

 

with

 

the

 

new

 

extension

 

.i.

 

For

 

example,

 

if

 

you

 

specify

 

SRCSTMF(’/home/MOE/mainprogram.c’)

 

with

 

OPTION(*PPONLY),

 

then

 

the

 

preprocessor

 

writes

 

output

 

to

 

the

 

current

 

directory

 

as

 

a

 

stream

 

file

 

called

 

mainprogram.i.

 

For

 

this

 

to

 

happen,

 

you

 

need

 

*RW

 

authority

 

to

 

the

 

current

 

directory.

 

Listing

 

Output

 

The

 

compiler

 

can

 

send

 

the

 

listing

 

output

 

to

 

a

 

user-specified

 

IFS

 

file,

 

as

 

well

 

as

 

to

 

a

 

spool

 

file.

 

The

 

prolog

 

identifies

 

the

 

source

 

file

 

from

 

a

 

path

 

name:

 

Module

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

   

TEST

   

Library

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

:

     

MOE

 

Source

 

stream

 

file

  

.

 

.

 

.

 

.

 

.

 

.

 

:

   

/home/MOE/src/mainprogram.c

 

Note:

  

The

 

source

 

stream

 

file

 

is

 

not

 

included

 

in

 

the

 

prolog

 

when

 

SRCFILE()

 

and

 

SRCSTMF()

 

are

 

specified.

 

The

 

listing

 

also

 

identifies

 

the

 

include

 

files

 

from

 

their

 

path

 

names:

   

218

 

ILE

 

C/C++

 

Programmer’s

 

Guide



****

 

FILE

 

TABLE

 

SECTION

 

****

      

0

 

=

 

hello.cpp

      

1

 

=

 

/QIBM/include/iostream.h

      

2

 

=

 

/QIBM/include/string.h

 

The

 

listing

 

includes:

 

v

    

The

 

files

 

specified

 

in

 

any

 

#include

 

directive

 

v

   

The

 

file

 

specified

 

or

 

implied

 

in

 

the

 

SRCSTMF()

 

or

 

SRCFILE()/SRCMBR()

 

options

Note:

  

This

 

happens

 

for

 

either

 

a

 

database

 

file

 

or

 

a

 

stream

 

file

 

source.

 

The

 

format

 

of

 

the

 

OUTPUT

 

option

 

is:

 

OUTPUT(*NONE

 

|

 

*PRINT

 

|

 

filename),

 

where

 

*PRINT

 

causes

 

the

 

compiler

 

to

 

send

 

it

 

to

 

a

 

spool

 

file,

 

and

 

filename

 

causes

 

the

 

compiler

 

to

 

send

 

it

 

to

 

a

 

user-specified

 

IFS

 

file.

 

Code

 

Pages

 

and

 

CCSIDs

 

For

 

source

 

physical

 

files,

 

the

 

compiler

 

respects

 

the

 

CCSID

 

of

 

ILE

 

C

 

source.

 

A

 

similar

 

scheme

 

exists

 

for

 

stream

 

file

 

compilation.

 

Stream

 

files

 

have

 

a

 

code

 

page

 

attribute.

 

The

 

compiler

 

converts

 

source

 

files,

 

translating

 

code

 

pages

 

to

 

the

 

root

 

source.

 

The

 

source

 

stream

 

file

 

may

 

have

 

been

 

entered

 

through

 

a

 

mounted

 

file

 

on

 

an

 

ASCII

 

system.

 

In

 

such

 

a

 

case,

 

the

 

compiler

 

translates

 

from

 

the

 

ASCII

 

codepage

 

that

 

is

 

associated

 

with

 

the

 

stream

 

file

 

(for

 

example,

 

437)

 

to

 

EBCDIC

 

(for

 

example,

 

37).

 

Support

 

for

 

Unicode

 

wide-character

 

literals

 

can

 

be

 

enabled

 

when

 

building

 

your

 

program

 

by

 

specifying

 

LOCALETYPE(*LOCALEUCS2)

 

on

 

the

 

compile

 

command.

 

See

 

Chapter

 

32,

 

“International

 

Locale

 

Support,”

 

on

 

page

 

529

 

for

 

more

 

information..

 

You

 

can

 

configure

 

most

 

file

 

transfer

 

utilities

 

to

 

automatically

 

do

 

the

 

conversion

 

to

 

enable

 

ASCII-based

 

file

 

systems

 

to

 

work

 

for

 

producing

 

stream

 

file

 

source.

 

Pitfalls

 

to

 

Avoid

 

Any

 

source

 

file

 

created

 

on

 

the

 

workstation

 

with

 

an

 

ASCII

 

editor

 

that

 

deposits

 

an

 

EOF

 

marker

 

at

 

the

 

end

 

of

 

a

 

text

 

file

 

will

 

generate

 

an

 

invalid

 

character

 

warning

 

message

 

when

 

it

 

is

 

compiled

 

with

 

the

 

ILE

 

C/C++

 

compiler.

 

This

 

includes

 

your

 

main

 

source

 

file.

 

The

 

problem

 

arises

 

when

 

the

 

source

 

file

 

is

 

copied

 

to,

 

or

 

saved

 

in,

 

the

 

root(/)

 

file

 

system

 

on

 

the

 

iSeries

 

.

 

This

 

is

 

because

 

of

 

the

 

translation

 

between

 

ASCII

 

and

 

EBCDIC

 

codepoints.

 

If

 

you

 

receive

 

an

 

invalid

 

character

 

message

 

referring

 

to

 

the

 

last

 

character

 

of

 

a

 

file,

 

it

 

is

 

likely

 

that

 

you

 

have

 

an

 

EOF

 

marker

 

in

 

the

 

file.

 

One

 

way

 

to

 

avoid

 

this

 

problem

 

is

 

to

 

use

 

an

 

editor

 

which

 

does

 

not

 

add

 

the

 

EOF

 

marker.

 

Alternatively

 

you

 

can

 

use

 

a

 

File

 

Transfer

 

Protocol

 

(FTP)

 

utility.

 

FTP

 

will

 

result

 

in

 

a

 

root(/)

 

file

 

system

 

file

 

with

 

either

 

codepage

 

819

 

or

 

37.

 

Any

 

of

 

these

 

FTP

 

commands

 

issued

 

to

 

the

 

target

 

iSeries

 

system

 

prior

 

to

 

the

 

put

 

command

 

will

 

result

 

in

 

a

 

file

 

of

 

codepage

 

819:

 

v

   

ascii

 

v

   

quote

 

type

 

a

If

 

you

 

issue

 

the

 

following

 

command

 

to

 

the

 

target

 

iSeries

 

system

 

prior

 

to

 

the

 

put

 

command,

 

put

 

results

 

in

 

a

 

file

 

with

 

codepage

 

37

 

(EBCDIC):

 

quote

 

type

 

e.

 

When

 

the

 

file

 

is

 

transferred

 

using

 

FTP

 

to

 

the

 

Root

 

file

 

system,

 

the

 

file

 

is

 

created

 

with

   

Chapter

 

17.

 

Using

 

ILE

 

C/C++

 

Stream

 

Functions

 

with

 

the

 

iSeries

 

Integrated

 

File

 

System

 

219



either

 

codepage

 

819

 

or

 

codepage

 

37

 

(depending

 

on

 

the

 

previous

 

commands

 

as

 

outlined

 

above)

 

whether

 

the

 

file

 

exists

 

prior

 

to

 

the

 

transfer

 

or

 

not.

 

Files

 

transferred

 

to

 

an

 

Integrated

 

File

 

System

 

with

 

codepage

 

37,

 

fail

 

to

 

compile.

 

Examples

 

of

 

Using

 

Integrated

 

File

 

System

 

Source

 

The

 

most

 

basic

 

entry

 

of

 

an

 

Integrated

 

File

 

System

 

name

 

does

 

not

 

specify

 

any

 

path

 

information.

                           

Create

 

C++

 

Module

 

(CRTCPPMOD)

    

Type

 

choices,

 

press

 

Enter.

    

Module

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

>

 

TEST

          

Name

    

Library

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

     

*CURLIB

     

Name,

 

*CURLIB

  

Source

 

file

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

   

QCPPSRC

       

Name

    

Library

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

     

*CURLIB

     

Name,

 

*CURLIB

  

Source

 

member

  

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

.

   

*MODULE

       

Name,

 

*MODULE

  

Source

 

stream

 

file

 

.

 

.

 

.

 

.

 

.

 

.

 

.

 

>

 

test.cpp

    

Text

 

’description’

 

.

 

.

 

.

 

.

 

.

 

.

 

.

   

*BLANK

                                                                                          

Bottom

  

F3=Exit

   

F4=Prompt

   

F5=Refresh

   

F10=Additional

 

parameters

   

F12=Cancel

  

F13=How

 

to

 

use

 

this

 

display

        

F24=More

 

keys

 

Without

 

a

 

pathname,

 

the

 

system

 

assumes

 

that

 

your

 

source

 

is

 

located

 

in

 

the

 

current

 

directory.

 

The

 

default

 

current

 

directory

 

is

 

the

 

base

 

(/)

 

directory

 

of

 

the

 

root

 

file

 

system,

 

but

 

your

 

individual

 

user

 

profile

 

may

 

change

 

this

 

default

 

to

 

a

 

different

 

directory.

 

You

 

can

 

change

 

the

 

current

 

directory

 

with

 

the

 

Change

 

Current

 

Directory

 

(CHGCURDIR)

 

command.

 

Note:

  

The

 

current

 

directory

 

and

 

the

 

current

 

library

 

are

 

separate

 

and

 

distinct

 

entities.

 

Although

 

you

 

can

 

set

 

the

 

current

 

library

 

and

 

the

 

current

 

directory

 

to

 

be

 

the

 

same

 

name,

 

a

 

change

 

in

 

one

 

will

 

not

 

affect

 

the

 

other.

 

The

 

header

 

files

 

specified

 

in

 

any

 

#include

 

statements

 

in

 

your

 

source

 

will

 

be

 

searched

 

for

 

in

 

the

 

source

 

directory

 

first

 

and

 

then

 

the

 

specified

 

INCDIR

 

directory.

 

For

 

example,

 

if

 

you

 

compile

 

the

 

following

 

source

 

in

 

file

 

/goodness/mysource.cpp:

 

#include

 

"special/mystuff.h"

   

class

 

test

 

:

 

public

 

base

 

{

 

...

with

 

the

 

INCDIR

 

value

 

set

 

to

 

/mydir,

 

your

 

included

 

header

 

file

 

is

 

first

 

searched

 

for

 

as

 

/goodness/special/mystuff.h

 

and

 

then

 

/mydir/special/mystuff.h.

 

Using

 

Stream

 

I/O

 

The

 

following

 

sections

 

describe

 

stream

 

I/O

 

requirements

 

for

 

using:

 

v

   

Large

 

files

 

v

   

Open

 

mode

 

v

   

Line-end

 

characters

  

220

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Large

 

Files

 

Within

 

the

 

C

 

or

 

C++

 

run-time

 

environment,

 

stream

 

I/O

 

for

 

files

 

up

 

to

 

two

 

GB

 

in

 

size

 

is

 

enabled

 

by

 

specifying

 

the

 

*IFSIO

 

option

 

on

 

the

 

system

 

interface

 

keyword

 

(SYSIFCOPT)

 

on

 

the

 

Create

 

Module

 

or

 

Create

 

Bound

 

Program

 

command

 

prompt.

 

When

 

using

 

the

 

SYSIFCOPT

 

keyword

 

with

 

either

 

command,

 

follow

 

this

 

format:

 

CRTCPPMOD

 

MODULE(QTEMP/IFSIO)

 

SRCFILE(QCPPLE/QACSRC)

 

SYSIFCOPT(*IFSIO)

 

CRTBNDCPP

 

PGM(QTEMP/IFSIO)

 

SRCFILE(QCPPLE/QACSRC)

 

SYSIFCOPT(*IFSIO)

 

When

 

the

 

*IFSIO

 

option

 

is

 

specified,

 

the

 

compiler

 

defines

 

the

 

__IFS_IO__

 

macro.

 

When

 

__IFS_IO__

 

is

 

defined,

 

prototypes

 

associated

 

with

 

stream

 

I/O

 

in

 

<stdio.h>

 

are

 

no

 

longer

 

defined.

 

The

 

header

 

file

 

<ifs.h>

 

is

 

included

 

by

 

<stdio.h>,

 

which

 

declares

 

all

 

structure

 

and

 

prototypes

 

associated

 

with

 

the

 

integrated

 

file

 

system

 

enabled

 

C

 

stream

 

I/O.

   

The

 

64–bit

 

version

 

of

 

the

 

Integrated

 

File

 

System

 

interface

 

lets

 

you

 

use

 

ILE

 

C

 

stream

 

I/O

 

with

 

files

 

up

 

to

 

and

 

greater

 

than

 

two

 

gigabytes

 

in

 

size.

 

(C++

 

stream

 

I/O

 

for

 

files

 

greater

 

than

 

two

 

gigabytes

 

is

 

not

 

supported.)

 

To

 

enable

 

the

 

64-bit

 

interface,

 

specify

 

the

 

*IFS64IO

 

option

 

with

 

the

 

SYSIFCOPT

 

keyword

 

on

 

the

 

CRTCPPMOD

 

or

 

CRTBNDCPP

 

command

 

prompt.

 

When

 

this

 

option

 

is

 

specified,

 

the

 

compiler

 

defines

 

the

 

__IFS64_IO__

 

macro

 

which,

 

for

 

example,

 

remaps

 

the

 

open()

 

function

 

to

 

an

 

open64()

 

function

 

to

 

allow

 

64-bit

 

indexing..

 

Open

 

Mode

    

The

 

fstream(),

 

ifstream(),

 

and

 

ofstream()

 

classes

 

have

 

a

 

new

 

open

 

mode

 

ios::text,

 

which

 

opens

 

the

 

file

 

in

 

text

 

mode.

 

By

 

default,

 

I/O

 

streams

 

are

 

opened

 

in

 

binary

 

mode

 

(not

 

in

 

text

 

mode,

 

as

 

stated

 

in

 

the

 

Version

 

3

 

Release

 

7

 

books).

 

Line-End

 

Characters

 

v

   

If

 

the

 

input

 

or

 

output

 

is

 

unformatted

 

(for

 

example,

 

via

 

the

 

read()

 

or

 

write()

 

method),

 

newline

 

(\n)

 

characters

 

are

 

not

 

expanded

 

to

 

\r\n

 

on

 

output

 

and

 

\r

 

characters

 

are

 

not

 

stripped

 

out

 

on

 

input.

 

v

     

If

 

the

 

input

 

or

 

output

 

is

 

formatted

 

(via

 

the

 

>>

 

or

 

<<

 

operator),

 

newline

 

(\n)

 

characters

 

are

 

not

 

expanded

 

to

 

\r\n

 

on

 

output

 

but

 

any

 

\r

 

characters

 

are

 

stripped

 

out

 

on

 

input

 

If

 

you

 

want

 

to

 

add

 

carriage

 

return

 

(\r)

 

characters,

 

use

 

the

 

fopen()

 

function

 

with

 

crln=Y

 

(the

 

default).

   

Chapter

 

17.

 

Using

 

ILE

 

C/C++

 

Stream

 

Functions

 

with

 

the

 

iSeries

 

Integrated

 

File

 

System

 

221



222

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Part

 

5.

 

Working

 

with

 

iSeries

 

File

 

Systems

 

and

 

Devices

 

This

 

part

 

describes

 

how

 

to:

 

v

   

Retrieve

 

external

 

file

 

descriptions

 

v

   

Work

 

in

 

disconnected

 

mode

 

v

   

Include

 

externally

 

described

 

physical

 

and

 

logical

 

database

 

files

 

v

   

Use

 

physical

 

and

 

logical

 

database

 

files

 

and

 

distributed

 

data

 

v

   

Use

 

commitment

 

control

 

v

   

Use

 

display

 

files,

 

printer

 

files,

 

ICF

 

files,

 

tape

 

files,

 

diskette

 

files,

 

and

 

save

 

files

 

v

   

Use

 

the

 

device

 

attributes

 

feedback

 

area

 

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

223



224

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

18.

 

Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program

 

This

 

chapter

 

describes

 

how

 

to:

 

v

   

Create

 

externally

 

described

 

files

 

v

   

Use

 

level

 

checking

 

to

 

verify

 

that

 

the

 

descriptions

 

with

 

which

 

the

 

program

 

was

 

compiled

 

are

 

still

 

functional

 

v

   

Avoid

 

field

 

alignment

 

problems

 

in

 

C/C++

 

structures

 

v

   

Including

 

external

 

field

 

definitions

 

in

 

a

 

program

 

v

   

Define

 

and

 

use

 

indicators

 

v

   

Include

 

physical

 

and

 

logical

 

database

 

files

 

in

 

a

 

program

 

v

   

Include

 

device

 

files

 

in

 

a

 

program

 

v

   

Include

 

multiple

 

record

 

formats

 

in

 

a

 

program

 

v

   

Include

 

packed

 

decimal

 

data

 

in

 

a

 

program

Creating

 

Externally

 

Described

 

Database

 

Files

 

Externally

 

described

 

files

 

are

 

files

 

that

 

have

 

their

 

field

 

descriptions

 

stored

 

as

 

part

 

of

 

the

 

file.

 

The

 

description

 

includes

 

information

 

about

 

the

 

type

 

of

 

file

 

(such

 

as

 

data

 

or

 

device),

 

record

 

formats,

 

and

 

a

 

description

 

of

 

each

 

field

 

and

 

its

 

attributes.

 

You

 

can

 

create

 

an

 

externally

 

described

 

database

 

file

 

using

 

any

 

of

 

the

 

following:

 

v

   

SQL/400

 

database

 

v

   

Interactive

 

Data

 

Definition

 

Utility

 

(IDDU)

 

using

 

DDS

 

for

 

externally

 

described

 

files

 

v

   

Data

 

Description

 

Specifications

 

(DDS)

  

The

 

ILE

 

C

 

preprocessor

 

automatically

 

creates

 

C

 

structure

 

type

 

definitions

 

from

 

external

 

file

 

descriptions

 

when

 

you

 

use

 

the

 

#pragma

 

mapinc

 

directive

 

with

 

the

 

#include

 

directive.

Note:

  

You

 

cannot

 

use

 

the

 

#pragma

 

mapinc

 

directive

 

if

 

you

 

are

 

compiling

 

IFS

 

files.

 

For

 

more

 

information

 

about

 

including

 

IFS

 

files

 

in

 

a

 

program,

 

see

 

Appendix

 

A,

 

“The

 

GENCSRC

 

Utility

 

and

 

the

 

#pragma

 

mapinc

 

Directive,”

 

on

 

page

 

541.

 

The

 

#pragma

 

mapinc

 

directive

 

identifies

 

only

 

those

 

file

 

formats

 

and

 

fields

 

to

 

the

 

compiler;

 

it

 

does

 

not

 

include

 

the

 

file

 

description

 

in

 

the

 

ILE

 

C

 

program.

 

To

 

include

 

a

 

file

 

description,

 

the

 

#include

 

directive

 

must

 

be

 

coded

 

in

 

the

 

ILE

 

C

 

program.

 

You

 

refer

 

to

 

the

 

include-name

 

parameter

 

of

 

the

 

#pragma

 

mapinc

 

directive

 

on

 

the

 

#include.

 

The

 

#include

 

directive

 

must

 

be

 

coded

 

after

 

the

 

#pragma

 

mapinc

 

directive

 

in

 

your

 

source

 

program.

 

For

 

example,

 

to

 

include

 

a

 

type

 

definition

 

of

 

the

 

input

 

fields

 

for

 

the

 

record

 

format

 

FMT

 

from

 

the

 

file

 

EXAMPLE/TEST,

 

the

 

following

 

statements

 

must

 

appear

 

in

 

your

 

program

 

in

 

the

 

order

 

shown

 

below:

 

#pragma

 

mapinc("tempname","EXAMPLE/TEST(FMT)","input","d",,"")

 

#include

 

"tempname"

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

225



Creating

 

Type

 

Definitions

 

To

 

create

 

the

 

type

 

definition

 

structure

 

to

 

be

 

included

 

in

 

your

 

ILE

 

C

 

program,

 

use

 

the

 

options

 

parameter.

 

A

 

header

 

description

 

is

 

also

 

created.

 

This

 

header

 

description

 

contains

 

information

 

about

 

the

 

external

 

file.

   

C++

 

users

 

must

 

use

 

the

 

GENCSRC

 

utility

 

for

 

creating

 

type

 

definitions.

   

C

 

users

 

can

 

use

 

either

 

the

 

GENCSRC

 

utility

 

or

 

the

 

#pragma

 

mapinc

 

directive

 

for

 

creating

 

type

 

definitions.

 

Note:

  

For

 

more

 

information

 

on

 

the

 

differences

 

between

 

the

 

GENCSRC

 

utility

 

and

 

the

 

#pragma

 

mapinc

 

directive,

 

see

 

Appendix

 

A,

 

“The

 

GENCSRC

 

Utility

 

and

 

the

 

#pragma

 

mapinc

 

Directive,”

 

on

 

page

 

541.

 

To

 

see

 

the

 

type

 

definitions

 

in

 

your

 

compiler

 

listing,

 

specify

 

OPTION(*SHOWUSR).

 

Note:

  

OPTION(*SHOWINC)

 

expands

 

any

 

include

 

file

 

created

 

by

 

GENCSRC

 

or

 

#pragma

 

mapinc,

 

but

 

it

 

also

 

expands

 

the

 

system

 

includes.

 

Creating

 

Header

 

Descriptions

 

The

 

header

 

description

 

for

 

each

 

format

 

contains

 

the

 

following

 

information:

 

v

   

File

 

and

 

library

 

name

 

of

 

the

 

external

 

file

 

v

   

File

 

type

 

(physical,

 

logical,

 

device)

 

v

   

Date

 

the

 

file

 

was

 

created

 

v

   

Record

 

format

 

name

 

v

   

Record

 

format

 

level

 

ID

 

(level

 

checking

 

information)

   

For

 

example,

 

the

 

following

 

directives

 

are

 

used

 

to

 

create

 

the

 

header

 

shown

 

below:

 

#pragma

 

mapinc("payroll","example/test(fmt1)","input","")

 

#include

 

"payroll"

  

The

 

following

 

is

 

an

 

example

 

of

 

a

 

type

 

definition

 

of

 

type

 

structure:

 

typedef

 

struct

 

{

         

.

         

.

         

.

 

}

 

LIBRARY_FILE_FORMAT_tag_t;

   

Parameters

 

of

 

the

 

#pragma

 

mapinc

 

directive

 

are

 

used

 

to

 

create

 

the

 

name

 

of

 

the

 

created

 

type.

 

LIBRARY,

 

FILE,

 

and

 

FORMAT

 

are

 

the

 

library-name,

 

file-name,

 

and

 

format-name

 

specified

 

on

 

the

 

#pragma

 

mapinc

 

directive.

 

These

 

names

 

are

 

/*

 

------------------------------------------------------------------

 

*/

 

/*

 

PHYSICAL

 

FILE:

 

EXAMPLE/TEST

                                        

*/

 

/*

 

FILE

 

CREATION

 

DATE:

 

93/09/01

                                       

*/

 

/*

 

RECORD

 

FORMAT:

 

FMT1

                                                

*/

 

/*

 

FORMAT

 

LEVEL

 

IDENTIFIER:

 

371E00A681EA7

                             

*/

 

/*

 

------------------------------------------------------------------

 

*/

 

Figure

 

108.

 

Header

 

Description

  

226

 

ILE

 

C/C++

 

Programmer’s

 

Guide



folded

 

to

 

uppercase

 

unless

 

quoted

 

names

 

are

 

used.

 

The

 

library

 

and

 

file

 

names

 

can

 

be

 

replaced

 

with

 

your

 

own

 

prefix-name

 

as

 

specified

 

on

 

the

 

#pragma

 

mapinc

 

directive.

   

Any

 

characters

 

that

 

are

 

not

 

recognized

 

as

 

valid

 

by

 

the

 

C

 

language

 

that

 

appear

 

in

 

library

 

and

 

file

 

names

 

are

 

translated

 

to

 

the

 

underscore

 

(_)

 

character.

 

Note:

  

Do

 

not

 

use

 

the

 

special

 

characters

 

#,

 

@,

 

or

 

$

 

in

 

library

 

and

 

file

 

names.

 

If

 

these

 

characters

 

are

 

used

 

in

 

library

 

and

 

file

 

names,

 

they

 

are

 

also

 

translated

 

to

 

the

 

underscore

 

(_)

 

character.

 

The

 

tag

 

on

 

the

 

structure

 

name

 

indicates

 

the

 

type

 

of

 

fields

 

that

 

are

 

included

 

in

 

the

 

structure

 

definition.

 

The

 

possible

 

values

 

for

 

tag

 

are:

  

Field

 

Type

 

Tag

 

input

 

i

 

output

 

o

 

both

 

both

 

Field

 

Type

 

Tag

 

key

 

key

 

indicators

 

indic

 

nullflds

 

nmap/nkmap

   

Unlike

 

the

 

naming

 

convention

 

used

 

for

 

other

 

listed

 

field

 

types,

 

if

 

field

 

type

 

lvlchk

 

is

 

specified,

 

the

 

name

 

of

 

the

 

array

 

of

 

structure

 

type

 

created

 

is

 

_LVLCHK_T.

   

To

 

include

 

external

 

file

 

descriptions

 

for

 

more

 

than

 

one

 

format,

 

specify

 

more

 

than

 

one

 

format

 

name

 

(format1

 

format2)

 

or

 

(*ALL)

 

on

 

the

 

#pragma

 

mapinc

 

directive.

 

A

 

header

 

description

 

and

 

type

 

definitions

 

are

 

created

 

for

 

each

 

format.

 

When

 

the

 

lname

 

option

 

is

 

specified

 

and

 

the

 

filename

 

in

 

the

 

#pragma

 

mapinc

 

directive

 

is

 

greater

 

than

 

10

 

characters

 

in

 

length,

 

a

 

system-generated

 

10-character

 

name

 

will

 

be

 

used

 

in

 

the

 

type

 

definitions

 

generated

 

by

 

the

 

compiler.

 

Specifying

 

the

 

Record

 

Format

 

Name

   

A

 

record

 

format

 

describes

 

all

 

the

 

fields

 

and

 

the

 

arrangement

 

of

 

these

 

fields

 

within

 

a

 

record.

 

You

 

can

 

include

 

a

 

record

 

format

 

from

 

an

 

externally

 

described

 

file

 

in

 

your

 

ILE

 

program

 

by

 

providing

 

its

 

name

 

on

 

the

 

#pragma

 

mapinc

 

directive.

 

You

 

can

 

provide

 

more

 

than

 

one

 

format

 

name,

 

or

 

you

 

can

 

specify

 

the

 

special

 

value

 

*ALL

 

to

 

include

 

all

 

record

 

formats

 

from

 

the

 

file.

 

If

 

the

 

file

 

you

 

are

 

working

 

with

 

contains

 

more

 

than

 

one

 

record

 

format,

 

set

 

the

 

format

 

for

 

subsequent

 

I/O

 

operations

 

with

 

the

 

_Rformat()

 

function.

 

Record

 

format

 

functions

 

are

 

useful

 

when

 

working

 

with

 

display,

 

ICF,

 

and

 

printer

 

files.

 

Logical

 

files

 

can

 

also

 

contain

 

more

 

than

 

one

 

record

 

format.

 

The

 

record

 

format

 

name

 

for

 

a

 

device

 

file

 

defaults

 

to

 

blank

 

unless

 

you

 

explicitly

 

set

 

it

 

to

 

a

 

name

 

with

 

_Rformat().

 

You

 

can

 

reset

 

the

 

format

 

name

 

to

 

blank

 

by

 

passing

 

a

 

blank

 

name

 

to

 

_Rformat().

   

If

 

the

 

record

 

format

 

does

 

not

 

contain

 

fields

 

that

 

match

 

the

 

option

 

specified

 

(input,

 

output,

 

both,

 

key,

 

indicators

 

or

 

nullflds)

 

on

 

the

 

#pragma

 

mapinc

 

directive,

 

the

 

following

 

comment

 

appears

 

after

 

the

 

header

 

description:

   

/*

 

FORMAT

 

HAS

 

NO

 

FIELDS

 

OF

 

REQUIRED

 

TYPE

                              

*/

   

Chapter

 

18.

 

Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program

 

227



Note:

  

Do

 

not

 

use

 

#,

 

@,

 

or

 

$

 

in

 

record

 

format

 

names.

 

These

 

characters

 

are

 

not

 

allowed

 

in

 

ILE

 

identifiers

 

and

 

cannot

 

appear

 

in

 

a

 

type

 

definition

 

name.

 

If

 

you

 

have

 

record

 

format

 

names

 

that

 

contain

 

#,

 

@

 

or

 

$,

 

these

 

characters

 

are

 

translated

 

to

 

the

 

lowercase

 

characters

 

p,

 

a,

 

and

 

d,

 

respectively.

 

Specifying

 

Record

 

Field

 

Names

 

When

 

you

 

specify

 

record

 

field

 

names,

 

consider

 

the

 

following:

 

v

   

All

 

DDS

 

keywords

 

are

 

supported

 

by

 

the

 

ILE

 

library

 

and

 

compiler.

 

The

 

actual

 

comment

 

that

 

is

 

associated

 

with

 

the

 

TEXT

 

keyword

 

is

 

translated

 

to

 

uppercase

 

in

 

the

 

type

 

definition

 

that

 

is

 

generated.

 

The

 

ALIAS

 

keyword

 

is

 

supported

 

and

 

brings

 

the

 

alias

 

field

 

name

 

into

 

the

 

type

 

definition

 

that

 

is

 

generated.

 

v

   

Some

 

of

 

the

 

special

 

characters

 

that

 

are

 

supported

 

in

 

DDS

 

variable

 

names

 

are

 

not

 

supported

 

by

 

the

 

ILE

 

compiler

 

and

 

library.

 

If

 

you

 

use

 

the

 

special

 

characters

 

(@,

 

#,

 

or

 

$)

 

in

 

a

 

field

 

name,

 

those

 

characters

 

are

 

changed

 

to

 

lowercase

 

a,

 

p

 

and

 

d

 

in

 

the

 

type

 

definition

 

that

 

is

 

generated.

 

Note:

    

If

 

the

 

format

 

names

 

contain

 

C

 

characters

 

that

 

are

 

not

 

valid,

 

they

 

are

 

translated

 

to

 

the

 

underscore

 

(_)

 

character.

Including

 

Database

 

Files

 

in

 

the

 

Type

 

Definition

 

Input

 

and

 

output

 

buffers

 

for

 

database

 

files

 

have

 

the

 

same

 

format.

 

When

 

you

 

specify

 

input,

 

the

 

fields

 

that

 

are

 

defined

 

as

 

either

 

INPUT

 

or

 

BOTH

 

in

 

the

 

externally

 

described

 

database

 

file

 

are

 

included

 

in

 

the

 

type

 

definition.

 

When

 

you

 

specify

 

both,

 

the

 

fields

 

that

 

are

 

defined

 

as

 

either

 

INPUT,

 

OUTPUT,

 

or

 

BOTH

 

are

 

included

 

in

 

the

 

type

 

definition.

 

If

 

all

 

the

 

fields

 

are

 

defined

 

as

 

BOTH

 

or

 

INPUT,

 

only

 

one

 

type

 

definition

 

structure

 

is

 

generated

 

in

 

the

 

type

 

definition.

 

Defining

 

the

 

Structure

 

Type

 

(KEY

 

Field)

 

To

 

include

 

a

 

separate

 

structure

 

type

 

definition

 

for

 

the

 

KEY

 

fields

 

in

 

a

 

format,

 

specify

 

the

 

KEY

 

option

 

on

 

the

 

#pragma

 

mapinc

 

directive.

 

Comments

 

are

 

listed

 

beside

 

the

 

fields

 

in

 

the

 

structure

 

definition

 

to

 

indicate

 

how

 

the

 

key

 

fields

 

are

 

defined

 

in

 

the

 

externally

 

described

 

file.

   

C++

 

users

 

must

 

use

 

the

 

GENCSRC

 

utility

 

for

 

structure

 

type

 

definition.

   

C

 

users

 

can

 

use

 

either

 

the

 

GENCSRC

 

utility

 

or

 

the

 

#pragma

 

mapinc

 

directive

 

for

 

structure

 

type

 

definition.

 

Note:

  

For

 

more

 

information

 

on

 

the

 

differences

 

between

 

the

 

GENCSRC

 

utility

 

and

 

the

 

#pragma

 

mapinc

 

directive,

 

see

 

Appendix

 

A,

 

“The

 

GENCSRC

 

Utility

 

and

 

the

 

#pragma

 

mapinc

 

Directive,”

 

on

 

page

 

541.

 

Example:

 

The

 

following

 

ILE

 

C

 

program

 

contains

 

the

 

#pragma

 

mapinc

 

directive

 

to

 

include

 

the

 

externally

 

described

 

database

 

file

 

CUSMSTL:

   

#pragma

 

mapinc("custmf","example/cusmstl(cusrec)","both

 

key","d")

 

#include

 

"custmf"

   

228

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

following

 

example

 

contains

 

the

 

DDS

 

for

 

the

 

file

 

T1520DD8

 

in

 

the

 

library

 

MYLIB.

  

Program

 

T1520EDF

 

uses

 

the

 

#pragma

 

mapinc

 

directive

 

to

 

generate

 

the

 

file

 

field

 

structure

 

that

 

is

 

defined

 

in

 

T1520DD8.

  

A*

 

CUSTOMER

 

MASTER

 

FILE

 

--

 

T1520DD8

      

A

          

R

 

CUSREC

                    

TEXT(’Customer

 

master

 

record’)

      

A

            

CUST

           

5

          

TEXT(’Customer

 

number’)

      

A

            

NAME

          

20

          

TEXT(’Customer

 

name’)

      

A

            

ADDR

          

20

          

TEXT(’Customer

 

address’)

      

A

            

CITY

          

20

          

TEXT(’Customer

 

city’)

      

A

            

STATE

          

2

          

TEXT(’State

 

abbreviation’)

      

A

            

ZIP

            

5

  

0

       

TEXT(’Zip

 

code’)

      

A

            

ARBAL

         

10

  

2

       

TEXT(’Accounts

 

receivable

 

balance’)

      

A

          

K

 

CUST

      

A*

      

A*

 

Figure

 

109.

 

T1520DD8

 

—

 

DDS

 

Source

 

for

 

Customer

 

Records

  

Chapter

 

18.

 

Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program

 

229



The

 

type

 

definitions

 

are

 

created

 

in

 

your

 

ILE

 

C

 

source

 

listing

 

that

 

is

 

based

 

on

 

the

 

#pragma

 

directive

 

that

 

is

 

specified

 

in

 

the

 

ILE

 

C

 

source

 

program.

 

The

 

output

 

is

 

as

 

follows:

    

Please

 

type

 

in

 

the

 

customer

 

name

 

(max

 

20

 

char).

  

>

 

James

 

Smith

    

Please

 

type

 

in

 

the

 

customer

 

balance.

  

>

 

250.58

    

James

 

Smith

 

has

 

a

 

balance

 

less

 

than

 

$1000!

    

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

The

 

DDS

 

part

 

of

 

the

 

program

 

listing

 

is

 

as

 

follows:

  

/*

 

This

 

program

 

contains

 

the

 

#pragma

 

mapinc

 

directive

 

to

              

*/

 

/*

 

include

 

the

 

externally

 

described

 

database

 

file

 

T1520DD8.

           

*/

 

/*

 

This

 

program

 

reads

 

customer

 

information

 

from

 

a

 

terminal

 

and

 

issues

 

*/

 

/*

 

a

 

warning

 

message

 

if

 

the

 

customer’s

 

balance

 

is

 

less

 

than

 

$1000.

    

*/

   

#include

 

<stdio.h>

 

#include

 

<recio.h>

 

#include

 

<stdlib.h>

 

#include

 

<string.h>

 

#include

 

<decimal.h>

   

#pragma

 

mapinc("custmf","QGPL/T1520DD8(cusrec)","both

 

key","_P")

 

#include

 

"custmf"

     

int

 

main(void)

 

{

    

/*

 

Declare

 

x

 

of

 

data

 

structure

 

type

 

QGPL_T1520DD8_CUSREC_both_t.

     

*/

  

/*

 

The

 

data

 

structure

 

type

 

was

 

defined

 

from

 

the

 

DDS

 

specified.

       

*/

    

QGPL_T1520DD8_CUSREC_both_t

 

x;

    

/*

 

Get

 

information

 

from

 

entry.

                                       

*/

    

printf("Please

 

type

 

in

 

the

 

customer

 

name

 

(max

 

20

 

char).\n");

  

gets(x.NAME);

  

printf("Please

 

type

 

in

 

the

 

customer

 

balance.\n");

  

scanf("%D(10,2)",&x.ARBAL);

    

/*

 

Prints

 

out

 

warning

 

message

 

if

 

x.ARBAL<1000.

                       

*/

    

if

 

(x.ARBAL<1000)

    

{

   

printf("%s

 

has

 

a

 

balance

 

less

 

than

 

$1000!\n",

 

x.NAME);

  

}

   

}

 

Figure

 

110.

 

T1520EDF

 

—

 

ILE

 

C

 

Source

 

to

 

Include

 

an

 

Externally

 

Described

 

Database

 

File

  

230

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Using

 

Long

 

Names

 

for

 

Files

 

The

 

#pragma

 

mapinc

 

directive

 

supports

 

file

 

names

 

up

 

to

 

128

 

characters

 

long

 

and

 

record

 

field

 

names

 

up

 

to

 

30

 

characters

 

long.

 

The

 

LNAME

 

option

 

was

 

added

 

to

 

#pragma

 

mapinc

 

to

 

support

 

SQL

 

long

 

name

 

formats.

 

SQL

 

long

 

names

 

map

 

to

 

a

 

10–character

 

short

 

file

 

name,

 

which

 

consists

 

of

 

the

 

first

 

5

 

characters

 

of

 

the

 

name

 

followed

 

by

 

a

 

5–digit

 

unique

 

number.

 

For

 

example,

 

the

 

system

 

short

 

name

 

for

 

LONGSQLTABLENAME

 

is

 

LONGS00001.

 

Long

 

record

 

field

 

names

 

are

 

not

 

mapped

 

to

 

a

 

10–character

 

short

 

name.

 

When

 

the

 

LNAME

 

option

 

is

 

specified

 

it

 

is

 

assumed

 

that

 

the

 

long

 

name

 

format

 

for

 

the

 

file

 

name

 

is

 

being

 

used.

 

If

 

the

 

file

 

name

 

has

 

more

 

than

 

10

 

characters,

 

this

 

name

 

is

 

converted

 

to

 

the

 

associated

 

short

 

name

 

internally.

 

This

 

short

 

name

 

is

 

used

 

to

 

extract

 

the

 

external

 

file

 

definition.

 

When

 

a

 

regular

 

short

 

name

 

of

 

10

 

characters

 

or

 

less

 

is

 

specified,

 

no

 

conversion

 

occurs.

   

The

 

#pragma

 

mapinc

 

directive

 

uses

 

the

 

30

 

character

 

record

 

field

 

names

 

in

 

the

 

type

 

definitions

 

that

 

are

 

generated,

 

with

 

or

 

without

 

the

 

LNAME

 

option

 

that

 

is

 

specified.

 

For

 

the

 

filenames

 

that

 

are

 

specified

 

using

 

a

 

long

 

name

 

format,

 

the

 

type

 

definitions

 

that

 

are

 

generated

 

use

 

the

 

associated

 

regular

 

10–character

 

short

 

filename.

   

C++

 

users

 

must

 

use

 

the

 

GENCSRC

 

utility

 

to

 

create

 

type

 

definitions

 

from

 

an

 

external

 

file.

   

C

 

users

 

can

 

use

 

either

 

the

 

GENCSRC

 

utility

 

or

 

the

 

#pragma

 

mapinc

 

directive

 

to

 

create

 

type

 

definitions

 

from

 

an

 

external

 

file.

 

/*

 

------------------------------------------------------------------------*/

 

/*

 

PHYSICAL

 

FILE:

 

QGPL/T1520DD8

                                           

*/

 

/*

 

FILE

 

CREATION

 

DATE:

 

93/08/14

                                            

*/

 

/*

 

RECORD

 

FORMAT:

 

CUSREC

                                                   

*/

 

/*

 

FORMAT

 

LEVEL

 

IDENTIFIER:

 

4E9D9ACA60E00

                                  

*/

 

/*

 

------------------------------------------------------------------------*/

 

typedef

 

_Packed

 

struct

 

{

    

char

 

CUST[5];

                     

/*

  

Customer

 

number

   

*/

    

char

 

NAME[20];

                    

/*

  

Customer

 

name

     

*/

    

char

 

ADDR[20];

                    

/*

  

Customer

 

address

  

*/

    

char

 

CITY[20];

                    

/*

  

Customer

 

city

     

*/

    

char

 

STATE[2];

                    

/*

  

State

 

abbreviation*/

    

decimal(5,0)

 

ZIP;

                   

/*

  

Zip

 

code

                 

*/

                                        

/*

  

PACKED

 

SPECIFIED

 

IN

 

DDS

    

*/

    

decimal(10,2)

 

ARBAL;

                

/*

  

Accounts

 

receivable

 

balance*/

                                        

/*

  

PACKED

 

SPECIFIED

 

IN

 

DDS

   

*/

 

}QGPL_T1520DD8_CUSREC_both_t;

 

typedef

 

_Packed

 

struct

 

{

    

char

 

CUST[5];

                                         

/*

  

DDS

 

-

 

ASCENDING*/

                                         

/*

  

STRING

 

KEY

 

FIELD*/

 

}QGPL_T1520DD8_CUSREC_key_t;

 

Figure

 

111.

 

Ouput

 

Listing

 

from

 

Program

 

T1520EDF

 

—

 

Customer

 

Master

 

Record

  

Chapter

 

18.

 

Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program

 

231



Note:

  

For

 

more

 

information

 

on

 

the

 

differences

 

between

 

the

 

GENCSRC

 

utility

 

and

 

the

 

#pragma

 

mapinc

 

directive,

 

see

 

Appendix

 

A,

 

“The

 

GENCSRC

 

Utility

 

and

 

the

 

#pragma

 

mapinc

 

Directive,”

 

on

 

page

 

541.

 

Level

 

Checking

 

to

 

Verify

 

Descriptions

 

When

 

an

 

ILE

 

C/C++

 

program

 

that

 

uses

 

externally

 

described

 

files

 

is

 

compiled,

 

the

 

compiler

 

extracts

 

the

 

record-level

 

and

 

field-level

 

descriptions

 

for

 

the

 

files

 

referred

 

to

 

in

 

the

 

program

 

and

 

makes

 

those

 

descriptions

 

part

 

of

 

the

 

compiled

 

program.

 

When

 

you

 

run

 

the

 

program,

 

you

 

can

 

verify

 

that

 

the

 

descriptions

 

with

 

which

 

the

 

program

 

was

 

compiled

 

are

 

the

 

current

 

descriptions.

 

This

 

process

 

is

 

referred

 

to

 

as

 

level

 

checking.

 

When

 

it

 

creates

 

the

 

associated

 

header

 

file,

 

the

 

server

 

assigns

 

a

 

unique

 

level

 

identifier

 

for

 

each

 

record

 

format.

 

The

 

following

 

information

 

determines

 

the

 

level

 

identifier:

 

v

   

Record

 

format

 

name

 

v

   

Field

 

name

 

v

   

Total

 

length

 

of

 

the

 

record

 

format

 

v

   

Number

 

of

 

fields

 

in

 

the

 

record

 

format

 

v

   

Field

 

attributes

 

(for

 

example,

 

length

 

and

 

decimal

 

positions)

 

v

   

Order

 

of

 

the

 

field

 

in

 

the

 

record

 

format

Note:

  

It

 

is

 

possible

 

for

 

files

 

with

 

large

 

record

 

formats

 

(many

 

fields)

 

to

 

have

 

the

 

same

 

format

 

level

 

identifiers

 

even

 

though

 

their

 

formats

 

may

 

be

 

slightly

 

different.

 

Problems

 

can

 

occur

 

when

 

copying

 

these

 

files

 

if

 

the

 

record

 

format

 

names

 

of

 

the

 

from-file

 

and

 

the

 

to-file

 

are

 

the

 

same.

 

If

 

you

 

change

 

any

 

of

 

the

 

data

 

description

 

specification

 

(DDS)

 

items

 

in

 

the

 

preceding

 

list,

 

the

 

level

 

identifier

 

changes.

 

When

 

you

 

create

 

or

 

change

 

files,

 

and

 

you

 

specify

 

that

 

you

 

want

 

level

 

checking:

 

v

   

The

 

system

 

checks

 

the

 

level

 

identifier

 

to

 

determine

 

whether

 

the

 

description

 

of

 

the

 

record

 

format

 

you

 

are

 

using

 

was

 

changed

 

since

 

the

 

program

 

was

 

compiled.

 

v

   

If

 

that

 

information

 

has

 

changed

 

so

 

much

 

that

 

your

 

program

 

cannot

 

process

 

the

 

file,

 

the

 

system

 

notifies

 

your

 

program

 

of

 

this

 

condition.

If

 

the

 

changes

 

affect

 

a

 

field

 

that

 

your

 

program

 

uses,

 

you

 

must

 

compile

 

the

 

program

 

again

 

for

 

it

 

to

 

run

 

properly.

   

C++

 

users

 

must

 

use

 

the

 

GENCSRC

 

utility

 

for

 

level

 

checking.

   

C

 

users

 

can

 

use

 

either

 

the

 

GENCSRC

 

utility

 

or

 

the

 

#pragma

 

mapinc

 

directive

 

for

 

level

 

checking.

 

Note:

  

For

 

more

 

information

 

on

 

the

 

differences

 

between

 

the

 

GENCSRC

 

utility

 

and

 

the

 

#pragma

 

mapinc

 

directive,

 

see

 

Appendix

 

A,

 

“The

 

GENCSRC

 

Utility

 

and

 

the

 

#pragma

 

mapinc

 

Directive,”

 

on

 

page

 

541.

 

If

 

you

 

make

 

changes

 

that

 

do

 

not

 

affect

 

the

 

fields

 

that

 

your

 

program

 

uses,

 

you

 

can

 

run

 

the

 

program

 

without

 

compiling

 

again

 

by

 

entering

 

an

 

override

 

command

 

for

 

the

 

file

 

and

 

specifying

 

LVLCHK(*NO).

 

For

 

example,

 

suppose

 

that

 

you

 

add

 

a

 

field

 

to

 

the

 

end

 

of

 

a

 

record

 

format

 

in

 

a

 

database

 

file,

 

but

 

the

 

program

 

does

 

not

 

use

 

the

   

232

 

ILE

 

C/C++

 

Programmer’s

 

Guide



new

 

field.

 

You

 

can

 

use

 

the

 

Override

 

with

 

Database

 

File

 

(OVRDBF)

 

command

 

with

 

LVLCHK(*NO)

 

to

 

enable

 

the

 

program

 

to

 

run

 

without

 

compiling

 

again.

Note:

  

The

 

Override

 

with

 

Database

 

File

 

(OVRDBF)

 

command

 

can

 

be

 

used

 

with

 

DDM

 

to

 

override

 

a

 

local

 

database

 

file

 

named

 

in

 

the

 

program

 

with

 

a

 

DDM

 

file.

 

The

 

DDM

 

file

 

causes

 

the

 

associated

 

remote

 

file

 

to

 

be

 

used

 

by

 

the

 

program

 

instead

 

of

 

the

 

local

 

database

 

file.

 

The

 

use

 

of

 

level

 

checking

 

ensures

 

file

 

integrity.

 

It

 

alerts

 

you

 

to

 

the

 

possibility

 

of

 

unpredictable

 

results.

 

An

 

alternative

 

to

 

level

 

checking

 

is

 

to

 

display

 

and

 

analyze

 

the

 

file

 

description

 

to

 

determine

 

if

 

the

 

changes

 

affect

 

your

 

program.

 

You

 

can

 

use

 

the

 

Display

 

File

 

Field

 

Description

 

(DSPFFD)

 

command

 

to

 

display

 

the

 

description

 

or,

 

if

 

you

 

have

 

the

 

source

 

entry

 

utility

 

(SEU),

 

you

 

can

 

display

 

the

 

source

 

file

 

containing

 

the

 

DDS

 

for

 

the

 

file.

 

To

 

display

 

the

 

format

 

level

 

identifier

 

defined

 

in

 

the

 

file,

 

use

 

the

 

Display

 

File

 

Description

 

(DSPFD)

 

command.

 

Note:

  

When

 

you

 

are

 

displaying

 

the

 

level

 

identifier,

 

remember

 

that

 

the

 

record

 

format

 

identifier

 

is

 

compared,

 

rather

 

than

 

the

 

file

 

identifier.

 

Using

 

the

 

GENCSRC

 

Utility

 

for

 

Level

 

Checking

 

Use

 

the

 

GENCSRC

 

utility

 

to

 

retrieve

 

externally

 

described

 

file

 

information

 

for

 

use

 

in

 

a

 

C/C++

 

program.

 

The

 

utility:

 

v

   

Creates

 

a

 

C/C++

 

header

 

file

 

which

 

contains

 

the

 

type

 

definition

 

structure

 

for

 

the

 

include

 

file.

 

v

   

Supports

 

creation

 

of

 

C/C++

 

include

 

files.

Use

 

the

 

SLTFLD

 

keyword

 

to

 

turn

 

on

 

level

 

checking.

 

Note:

  

For

 

a

 

list

 

of

 

options

 

for

 

the

 

SLTFLD

 

keyword,

 

see

 

Appendix

 

A,

 

“The

 

GENCSRC

 

Utility

 

and

 

the

 

#pragma

 

mapinc

 

Directive,”

 

on

 

page

 

541.

 

If

 

you

 

specify

 

the

 

keyword

 

SLTFLD

 

with

 

value

 

*LVLCHK

 

on

 

the

 

GENCSRC

 

command,

 

in

 

addition

 

to

 

generating

 

the

 

type

 

_LVLCHK_T

 

(array

 

of

 

structures),

 

a

 

variable

 

of

 

type

 

_LVLCHK_T

 

is

 

also

 

generated.

 

The

 

name

 

of

 

this

 

variable

 

of

 

type

 

_LVLCHK_T

 

is

 

based

 

on

 

some

 

or

 

all

 

of

 

the

 

following:

 

v

   

File

 

name

 

specified

 

for

 

the

 

OBJ

 

keyword

 

(see

 

Figure

 

112

 

on

 

page

 

234)

 

v

   

Member

 

name

 

(see

 

Figure

 

113

 

on

 

page

 

234)

 

v

   

Value

 

of

 

the

 

TYPEDEFPFX

 

keyword

 

(see

 

Figure

 

114

 

on

 

page

 

235)

 

v

   

Include

 

name

Note:

  

In

 

each

 

of

 

the

 

following

 

figures,

 

the

 

include

 

name

 

is

 

actually

 

the

 

include

 

file

 

(that

 

is,

 

the

 

SRCFILE/SRCMBR

 

or

 

SRCSTMF

 

keywords).

In

 

the

 

case

 

when

 

SLTFLD(*LVLCHK)

 

is

 

specified

 

with

 

the

 

default

 

TYPEDEFPFX(*OBJ),

 

the

 

name

 

of

 

the

 

level

 

check

 

structure

 

is

 

based

 

on

 

the

 

file

 

name

 

as

 

specified

 

in

 

the

 

OBJ

 

keyword

 

and

 

the

 

include

 

name

 

(see

 

Table

 

36

 

on

 

page

 

541).

 

The

 

GENCSRC

 

command

 

generates

 

the

 

level

 

check

 

structure

 

named

 

mylib_myfile_mymbr_lvlchk,

 

as

 

shown

 

in

 

the

 

following

 

examples:

    

Chapter

 

18.

 

Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program

 

233



In

 

the

 

case

 

when

 

SLTFLD(*LVLCHK)

 

is

 

specified

 

with

 

TYPEDEFPFX(*NONE),

 

the

 

name

 

of

 

the

 

level

 

check

 

structure

 

is

 

based

 

on

 

the

 

member

 

name,

 

and

 

the

 

commands

 

in

 

Figure

 

113

 

generate

 

a

 

level

 

check

 

structure

 

named

 

mymbr_lvlchk.

  

In

 

the

 

case

 

when

 

SLTFLD(*LVLCHK)

 

is

 

specified

 

with

 

TYPEDEFPFX(prefix_name),

 

the

 

name

 

of

 

the

 

level

 

check

 

structure

 

is

 

the

 

prefix_name

 

followed

 

by

 

the

 

file

 

name

 

based

 

on

 

the

 

OBJ

 

keyword

 

and

 

the

 

SRCFILE/SRCMBR

 

or

 

SRCSTMF

 

keywords

 

(the

 

include

 

file).

 

The

 

commands

 

in

 

Figure

 

114

 

on

 

page

 

235

 

give

 

the

 

level

 

check

 

structure

 

named

 

MYPREFIX_mylib_myfile_mymbr_lvlchk.

  

GENCSRC

 

OBJ(’/QSYS.LIB/MYLIB.LIB/MYFILE.FILE’)

 

SRCFILE(INCLIB/H)

 

SRCMBR(MYMBR)

 

SLTFLD(*LVLCHK)

 

TYPEDEFPFX(*OBJ)

 

or

 

GENCSRC

 

OBJ(’/QSYS.LIB/MYLIB.LIB/MYFILE.FILE’)

 

SRCSTMF(’incdir/mymbr.h)

 

SLTFLD(*LVLCHK)

 

TYPEDEFPFX(*OBJ)

 

/*

 

-------------------------------------------------------

 

*/

 

//

 

PHYSICAL

 

FILE

 

:

 

MYLIB/MYFILE

 

//

 

FILE

 

LAST

 

CHANGE

 

DATE

 

:

 

2001/09/13

 

//

 

RECORD

 

FORMAT

 

:

 

FORMAT1

 

//

 

FORMAT

 

LEVEL

 

IDENTIFIER

 

:

 

38A624C5F3B51

 

/*

 

-------------------------------------------------------

 

*/

   

_LVLCHK_T

  

mylib_myfile_mymbr_lvlchk

 

=

 

{

      

.

      

.

 

};

      

.

 

Note:

  

The

 

level

 

check

 

name

 

depends

 

on

 

your

 

source

 

location

 

(library,

 

file,

 

member).

Figure

 

112.

 

Example

 

of

 

SLTFLD(*LVLCHK)

 

with

 

the

 

Default

 

TYPEDEFPFX(*OBJ)

GENCSRC

 

OBJ(’/QSYS.LIB/MYLIB.LIB/MYFILE.FILE’)

 

SRCFILE(INCLIB/H)

 

SRCMBR(MYMBR)

 

SLTFLD(*LVLCHK)

 

TYPEDEFPFX(*NONE)

 

or

 

GENCSRC

 

OBJ(’/QSYS.LIB/MYLIB.LIB/MYFILE.FILE’)

 

SRCSTMF(’incdir/mymbr.h)

 

SLTFLD(*LVLCHK)

 

TYPEDEFPFX(*NONE)

 

/*

 

-------------------------------------------------------

 

*/

  

//

 

PHYSICAL

 

FILE

 

:

 

MYLIB/MYFILE

 

//

 

FILE

 

LAST

 

CHANGE

 

DATE

 

:

 

2001/09/13

 

//

 

RECORD

 

FORMAT

 

:

 

FORMAT1

 

//

 

FORMAT

 

LEVEL

 

IDENTIFIER

 

:

 

38A624C5F3B51

 

/*

 

-------------------------------------------------------

 

*/

   

_LVLCHK_T

  

mymbr_lvlchk

 

=

 

{

      

.

      

.

 

};

 

Note:

  

The

 

level

 

check

 

name

 

depends

 

on

 

your

 

source

 

location

 

(library,

 

file,

 

member).

 

Figure

 

113.

 

Example

 

of

 

SLTFLD(*LVLCHK)

 

with

 

the

 

Default

 

TYPEDEFPFX(*NONE)

  

234

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Using

 

the

 

#pragma

 

mapinc

 

Directive

 

for

 

Level

 

Checking

    

The

 

#pragma

 

mapinc

 

directive

 

provides

 

the

 

opportunity

 

to

 

convert

 

DDS

 

files

 

to

 

include

 

files

 

directly.

 

If

 

you

 

specify

 

the

 

LVLCHK

 

option

 

on

 

the

 

#pragma

 

mapinc

 

directive,

 

the

 

following

 

are

 

generated:

 

v

   

An

 

array

 

of

 

structures

 

of

 

type

 

_LVLCHK_T

 

v

   

A

 

variable

 

of

 

type

 

_LVLCHK_T

The

 

array

 

is

 

initialized

 

so

 

that

 

each

 

array

 

element

 

contains

 

the

 

level

 

check

 

information

 

for

 

the

 

corresponding

 

formats

 

specified

 

on

 

the

 

#pragma

 

mapinc

 

directive.

 

The

 

last

 

two

 

array

 

elements

 

are

 

always

 

empty

 

strings,

 

one

 

for

 

each

 

field

 

of

 

the

 

structure.

 

The

 

name

 

of

 

the

 

variable

 

is

 

LIBRARY_FILE_INCLUDE_lvlchk,

 

where

 

LIBRARY,

 

FILE,

 

and

 

INCLUDE

 

are

 

the

 

library_name,

 

file_name

 

and

 

include_name,

 

respectively.

 

If

 

you

 

specify

 

the

 

lvlchk

 

keyword

 

on

 

the

 

_Ropen

 

varparm

 

parameter

 

and

 

the

 

composition

 

of

 

the

 

file

 

is

 

changed,

 

the

 

file

 

pointer

 

on

 

the

 

_Ropen

 

returns

 

NULL

 

and

 

the

 

CPF4131

 

message

 

is

 

issued.

 

Note:

  

For

 

more

 

information

 

about

 

using

 

the

 

LVLCHK

 

option

 

of

 

the

 

#pragma

 

mapinc

 

directive,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference.

 

The

 

following

 

figure

 

shows

 

the

 

#pragma

 

mapinc

 

directive

 

and

 

the

 

LVLCHK

 

option

 

to

 

perform

 

a

 

level

 

check

 

on

 

a

 

file

 

when

 

it

 

is

 

opened.

   

GENCSRC

 

OBJ(’/QSYS.LIB/MYLIB.LIB/MYFILE.FILE’)

 

SRCFILE(INCLIB/H)

 

SRCMBR(MYMBR)

 

SLTFLD(*LVLCHK)

 

TYPEDEFPFX(MYPREFIX)

 

or

 

GENCSRC

 

OBJ(’/QSYS.LIB/MYLIB.LIB/MYFILE.FILE’)

 

SRCSTMF(’incdir/mymbr.h)

 

SLTFLD(*LVLCHK)

 

TYPEDEFPFX(MYPREFIX)

 

/*

 

-------------------------------------------------------

 

*/

  

//

 

PHYSICAL

 

FILE

 

:

 

MYLIB/MYFILE

 

//

 

FILE

 

LAST

 

CHANGE

 

DATE

 

:

 

2001/09/13

 

//

 

RECORD

 

FORMAT

 

:

 

FORMAT1

 

//

 

FORMAT

 

LEVEL

 

IDENTIFIER

 

:

 

38A624C5F3B5

 

/*

 

-------------------------------------------------------

 

*/

   

_LVLCHK_T

  

MYPREFIX_mylib_myfile_mymbr_lvlchk

 

=

 

{

      

.

      

.

 

};

 

Note:

  

The

 

level

 

check

 

name

 

depends

 

on

 

your

 

source

 

location

 

(library,

 

file,

 

member).

 

Figure

 

114.

 

Example

 

of

 

SLTFLD(*LVLCHK)

 

with

 

the

 

Default

 

TYPEDEFPFX

 

value

 

*MYPREFIX

  

Chapter

 

18.

 

Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program

 

235



The

 

following

 

example

 

contains

 

the

 

DDS

 

in

 

the

 

file

 

T1520DD3

 

in

 

the

 

library

 

MYLIB.

  

The

 

DDS

 

part

 

of

 

the

 

program

 

listing

 

is

 

as

 

follows:

  

/*

 

This

 

program

 

illustrates

 

how

 

to

 

use

 

level

 

check

 

information.

       

*/

 

/*

 

This

 

example

 

uses

 

ILE

 

C

 

record

 

I/O.

 

See

 

the

 

ILE

 

C

          

*/

 

/*

 

Programmer’s

 

Reference

 

for

 

descriptions

 

of

 

the

 

record

 

I/O

          

*/

 

/*

 

functions.

                                                         

*/

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<recio.h>

 

#pragma

 

mapinc("DD3FILE","MYLIB/T1520DD3(purchase)","key

 

lvlchk","_P")

 

#include

 

"DD3FILE"

 

int

 

main(void)

 

{

     

_RFILE

   

*in;

     

char

     

new_purchase[21]

 

=

 

"PEAR

      

1002022244";

   

/*

 

Open

 

the

 

file

 

for

 

processing

 

in

 

keyed

 

sequence.

 

File

 

is

 

created

    

*/

 

/*

 

with

 

the

 

default

 

access

 

path.

                                      

*/

 

Figure

 

115.

 

ILE

 

C

 

Source

 

Using

 

the

 

#pragma

 

mapinc

 

lvlchk

 

Option

 

(Part

 

1

 

of

 

2)

    

if

 

(

 

(in

 

=

 

_Ropen("MYLIB/T1520DD3",

 

"rr+

 

varparm

 

=

 

(lvlchk)",

           

&amp;MYLIB_T1520DD3_DD3FILE_lvlchk))

 

==

 

NULL)

     

{

         

printf("Open

 

failed\n");

         

exit(1);

     

}

   

/*

 

Update

 

the

 

first

 

record

 

in

 

the

 

keyed

 

sequence.

  

The

 

function

       

*/

 

/*

 

_Rlocate

 

locks

 

the

 

record.

                                         

*/

     

_Rlocate(in,

 

NULL,

 

0,

 

__FIRST);

     

_Rupdate(in,

 

new_purchase,

 

20);

 

/*

 

Force

 

the

 

end

 

of

 

data.

                                             

*/

     

_Rfeod(in);

     

_Rclose(in);

 

}

 

Figure

 

115.

 

ILE

 

C

 

Source

 

Using

 

the

 

#pragma

 

mapinc

 

lvlchk

 

Option

 

(Part

 

2

 

of

 

2)

     

A

          

R

 

PURCHASE

      

A

            

ITEMNAME

      

10

      

A

            

SERIALNUM

     

10

      

A

          

K

 

SERIALNUM

 

Figure

 

116.

 

T1520DD3

 

—

 

DDS

 

Source

 

for

 

Program

  

236

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Avoiding

 

Field

 

Alignment

 

Problems

 

in

 

C/C++

 

Structures

 

All

 

fields

 

defined

 

in

 

ILE

 

C/C++

 

structures

 

are

 

aligned

 

on

 

their

 

natural

 

boundaries.

 

For

 

example,

 

int

 

fields

 

are

 

four

 

bytes

 

long

 

and

 

are

 

stored

 

on

 

four-byte

 

boundaries.

 

If

 

you

 

create

 

a

 

file

 

that

 

is

 

externally

 

described,

 

the

 

system

 

does

 

not

 

enforce

 

boundary

 

alignment

 

of

 

the

 

externally

 

described

 

data.

 

The

 

structure

 

may

 

need

 

to

 

be

 

packed

 

because

 

packed

 

structures

 

match

 

the

 

alignment

 

of

 

the

 

externally

 

described

 

data.

 

If

 

the

 

fields

 

defined

 

in

 

the

 

DDS

 

are

 

aligned

 

(for

 

example,

 

all

 

are

 

character

 

fields),

 

you

 

can

 

use

 

the

 

type

 

definition

 

that

 

is

 

generated

 

without

 

packing

 

the

 

structure.

 

To

 

avoid

 

an

 

alignment

 

problem,

 

specify

 

the

 

_P

 

option

 

to

 

generate

 

a

 

packed

 

structure.

 

For

 

example,

 

to

 

include

 

a

 

packed

 

type

 

definition

 

structure

 

of

 

input

 

and

 

key

 

fields

 

for

 

the

 

record

 

format

 

custrec

 

from

 

the

 

file

 

EXAMPLE/CUSTMSTL,

 

the

 

following

 

statements

 

must

 

appear

 

in

 

your

 

program

 

in

 

the

 

order

 

shown

 

below:

    

#pragma

 

mapinc("custmf","EXAMPLE/CUSTMSTL(custrec)","input

 

key","_P")

    

...

    

#include

 

"custmf"

 

Including

 

External

 

Field

 

Definitions

 

in

 

a

 

Program

 

Response

 

indicators

 

are

 

included

 

when

 

the

 

DDS

 

keyword

 

INDARA

 

is

 

not

 

specified.

 

When

 

this

 

is

 

the

 

case,

 

use

 

the

 

INPUT,

 

OUTPUT,

 

or

 

BOTH

 

option.

   

C++

 

users

 

must

 

use

 

the

 

GENCSRC

 

utility

 

to

 

create

 

external

 

file

 

definitions.

   

C

 

users

 

can

 

use

 

either

 

the

 

GENCSRC

 

utility

 

or

 

the

 

#pragma

 

mapinc

 

directive

 

to

 

create

 

external

 

file

 

definitions.

 

Note:

  

For

 

more

 

information

 

on

 

the

 

differences

 

between

 

the

 

GENCSRC

 

utility

 

and

 

the

 

#pragma

 

mapinc

 

directive,

 

see

 

Appendix

 

A,

 

“The

 

GENCSRC

 

Utility

 

and

 

the

 

#pragma

 

mapinc

 

Directive,”

 

on

 

page

 

541.

/*

 

------------------------------------------------------------------------*/

 

/*

 

PHYSICAL

 

FILE:

 

MYLIB/T1520DD3

                                           

*/

 

/*

 

FILE

 

CREATION

 

DATE:

 

93/09/02

                                            

*/

 

/*

 

RECORD

 

FORMAT:

 

PURCHASE

                                                 

*/

 

/*

 

FORMAT

 

LEVEL

 

IDENTIFIER:

 

322C4B361172D

                                  

*/

 

/*

 

------------------------------------------------------------------------*/

 

typedef

 

_Packed

 

struct

 

{

    

char

 

SERIALNUM[10];

                                         

/*

  

DDS

 

-

 

ASCENDING*/

                                         

/*

  

STRING

 

KEY

 

FIELD*/

 

}MYLIB_T1520DD3_PURCHASE_key_t;

 

typedef

 

_Packed

 

struct

 

{

    

unsigned

 

char

 

format_name[10];

    

unsigned

 

char

 

sequence_no[13];

 

}

 

_LVLCHK_T[];

 

_LVLCHK_T

 

MYLIB_T1520DD3_DD3FILE_lvlchk

 

=

 

{

    

"PURCHASE

  

",

 

"322C4B361172D",

    

"",

 

""

 

};

 

Figure

 

117.

 

Ouput

 

Listing

 

from

 

the

 

Program

  

Chapter

 

18.

 

Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program

 

237



When

 

the

 

DDS

 

shown

 

in

 

Figure

 

118

 

is

 

included

 

in

 

your

 

ILE

 

C

 

program,

 

the

 

structure

 

definition

 

shown

 

in

 

Figure

 

119

 

is

 

generated.

     

The

 

INPUT

 

Option

 

Specify

 

the

 

INPUT

 

option

 

when

 

you

 

want

 

to

 

include

 

the

 

fields

 

that

 

are

 

defined

 

as

 

INPUT

 

or

 

BOTH

 

in

 

the

 

externally

 

described

 

device

 

file.

 

Note:

  

Option

 

and

 

response

 

indicators

 

are

 

included

 

in

 

the

 

type

 

definition

 

structures

 

only

 

if

 

the

 

DDS

 

keyword

 

INDARA

 

is

 

not

 

specified

 

in

 

the

 

external

 

file

 

description.

 

The

 

OUTPUT

 

Option

 

Specify

 

the

 

OUTPUT

 

option

 

when

 

you

 

want

 

to

 

include

 

fields

 

that

 

are

 

defined

 

as

 

OUTPUT

 

or

 

BOTH

 

in

 

the

 

externally

 

described

 

device

 

file.

 

Note:

  

Option

 

and

 

response

 

indicators

 

are

 

included

 

in

 

the

 

type

 

definition

 

structures

 

only

 

if

 

the

 

DDS

 

keyword

 

INDARA

 

is

 

not

 

specified

 

in

 

the

 

external

 

file

 

description.

 

The

 

BOTH

 

Option

 

When

 

you

 

specify

 

BOTH,

 

two

 

type

 

definition

 

structures

 

are

 

generated:

 

#pragma

 

mapinc("test","example/phonelist(phone)","input","")

 

#include

 

"test"

      

A

          

R

 

PHONE

      

A

                                      

CF03(03

 

’EXIT’)

      

A

                                  

1

 

35’PHONE

 

BOOK’

      

A

                                      

DSPATR(HI)

      

A

                                  

7

 

28’Name:’

      

A

            

NAME

          

11A

  

I

  

7

 

34

      

A

                                  

9

 

25’Address:’

      

A

            

ADDRESS

       

20A

  

I

  

9

 

34

      

A

                                 

11

 

25’Phone

 

#:’

      

A

            

PHONE_NUM

      

8A

  

I

 

11

 

34

      

A

                                 

23

 

34’F3

 

-

 

EXIT’

      

A

                                      

DSPATR(HI)

 

Figure

 

118.

 

DDS

 

Source

 

for

 

a

 

Display

 

File

/*

 

--------------------------------------------------------*/

 

/*

 

DEVICE

 

FILE:

 

EXAMPLE/PHONELIST

                          

*/

 

/*

 

FILE

 

CREATION

 

DATE:

 

93/09/01

                            

*/

 

/*

 

RECORD

 

FORMAT:

 

PHONE

                                    

*/

 

/*

 

FORMAT

 

LEVEL

 

IDENTIFIER:

 

10D2D0DB2BEE8

                  

*/

 

/*

 

--------------------------------------------------------*/

  

typedef

 

struct

 

{

     

char

 

IN03;

                         

/*

 

EXIT

             

*/

     

char

 

NAME[11];

     

char

 

ADDRESS[20];

     

char

 

PHONE_NUM[8];

  

}EXAMPLE_PHONELIST_PHONE_i_t;

 

Figure

 

119.

 

Structure

 

Definition

 

for

 

a

 

Display

 

File

  

238

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

One

 

type

 

definition

 

contains

 

all

 

fields

 

defined

 

as

 

INPUT

 

or

 

BOTH;

 

the

 

other

 

contains

 

all

 

fields

 

defined

 

as

 

OUTPUT,

 

or

 

BOTH.

 

v

   

One

 

type

 

definition

 

structure

 

is

 

generated

 

for

 

each

 

format

 

that

 

is

 

specified

 

when

 

all

 

fields

 

are

 

defined

 

as

 

BOTH,

 

and

 

a

 

separate

 

indicator

 

area

 

is

 

not

 

specified.

Note:

  

Option

 

and

 

response

 

indicators

 

are

 

included

 

in

 

the

 

type

 

definition

 

structures

 

only

 

if

 

the

 

DDS

 

keyword

 

INDARA

 

is

 

not

 

specified

 

in

 

the

 

external

 

file

 

description.

 

If

 

you

 

are

 

including

 

the

 

external

 

file

 

description

 

for

 

only

 

one

 

record

 

format,

 

a

 

type

 

definition

 

union

 

is

 

automatically

 

created

 

containing

 

the

 

two

 

type

 

definitions.

 

The

 

name

 

of

 

this

 

type

 

definition

 

union

 

is

 

LIBRARY_FILE_FMT_both_t.

 

If

 

you

 

specify

 

a

 

union-type-name

 

on

 

the

 

#pragma

 

mapinc

 

directive,

 

the

 

name

 

that

 

is

 

generated

 

is

 

union-type-name_t.

   

C++

 

users

 

must

 

use

 

the

 

GENCSRC

 

utility

 

for

 

type

 

definitions.

   

C

 

users

 

can

 

use

 

either

 

the

 

GENCSRC

 

utility

 

or

 

the

 

#pragma

 

mapinc

 

directive

 

for

 

type

 

definitions.

 

Note:

  

For

 

more

 

information

 

on

 

the

 

differences

 

between

 

the

 

GENCSRC

 

utility

 

and

 

the

 

#pragma

 

mapinc

 

directive,

 

see

 

Appendix

 

A,

 

“The

 

GENCSRC

 

Utility

 

and

 

the

 

#pragma

 

mapinc

 

Directive,”

 

on

 

page

 

541.

    

When

 

the

 

DDS

 

shown

 

above

 

is

 

included

 

in

 

your

 

ILE

 

C

 

program,

 

the

 

following

 

structure

 

is

 

generated:

 

#pragma

 

mapinc("example/screen1","example/test(fmt)","both","d")

 

#include

 

"example/screen1"

        

A

                                      

INDARA

       

A

          

R

 

FMT

       

A

                                      

CF01(50)

       

A

                                      

CF02(51)

       

A

                                      

CF03(99

 

’EXIT’)

       

A

                                  

1

 

35’PHONE

 

BOOK’

       

A

                                      

DSPATR(HI)

       

A

                                  

7

 

28’Name:’

       

A

            

NAME

          

11A

  

I

  

7

 

34

       

A

                                  

9

 

25’Address:’

       

A

            

ADDRESS

       

20A

  

O

  

9

 

34

       

A

                                 

11

 

25’Phone

 

#:’

       

A

            

PHONE_NUM

      

8A

  

O

 

11

 

34

       

A

                                 

23

 

34’F3

 

-

 

EXIT’

 

Figure

 

120.

 

DDS

 

Source

 

for

 

a

 

Device

 

File

  

Chapter

 

18.

 

Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program

 

239



This

 

shows

 

the

 

structure

 

definitions

 

that

 

are

 

created

 

when

 

the

 

format

 

FMT

 

in

 

the

 

device

 

file

 

EXAMPLE/TEST

 

is

 

included

 

in

 

your

 

program.

 

The

 

external

 

file

 

description

 

contains

 

three

 

indicators

 

IN50,

 

IN51,

 

and

 

IN99,

 

and

 

the

 

DDS

 

keyword

 

INDARA.

 

The

 

indicators

 

will

 

appear

 

as

 

comments

 

and

 

will

 

not

 

be

 

included

 

in

 

the

 

structure

 

because

 

the

 

option

 

INDICATOR

 

was

 

not

 

specified

 

in

 

the

 

#pragma

 

mapinc

 

directive.

 

Defining

 

and

 

Using

 

Indicators

 

Indicators

 

for

 

a

 

record

 

format

 

are

 

allowed

 

only

 

for

 

device

 

files,

 

and

 

can

 

be

 

defined

 

as

 

a

 

separate

 

indicator

 

structure

 

or

 

as

 

a

 

member

 

in

 

the

 

record

 

format

 

structure.

   

C++

 

users

 

must

 

use

 

the

 

GENCSRC

 

utility

 

for

 

structure

 

definitions.

   

C

 

users

 

can

 

use

 

either

 

the

 

GENCSRC

 

utility

 

or

 

the

 

#pragma

 

mapinc

 

directive

 

for

 

structure

 

definitions.

 

Note:

  

For

 

more

 

information

 

on

 

the

 

differences

 

between

 

the

 

GENCSRC

 

utility

 

and

 

the

 

#pragma

 

mapinc

 

directive,

 

see

 

Appendix

 

A,

 

“The

 

GENCSRC

 

Utility

 

and

 

the

 

#pragma

 

mapinc

 

Directive,”

 

on

 

page

 

541.

 

Creation

 

of

 

Indicators

 

in

 

the

 

File

 

Buffer

 

If

 

you

 

do

 

not

 

specify

 

the

 

keyword

 

INDARA

 

in

 

DDS,

 

the

 

indicators

 

are

 

created

 

as

 

part

 

of

 

the

 

file

 

buffer

 

being

 

read

 

or

 

written.

 

Only

 

those

 

indicators

 

that

 

are

 

used

 

are

 

declared

 

in

 

the

 

type

 

definition

 

of

 

the

 

structure.

 

They

 

are

 

declared

 

as

 

char,

 

and

 

created

 

when

 

the

 

INPUT,

 

OUTPUT,

 

or

 

BOTH

 

option

 

is

 

specified

 

on

 

the

 

#pragma

 

mapinc

 

directive.

 

Creating

 

a

 

Separate

 

Indicator

 

Area

 

To

 

use

 

indicators

 

as

 

a

 

separate

 

structure

 

you

 

must

 

specify:

 

v

   

the

 

DDS

 

keyword

 

INDARA

 

in

 

the

 

external

 

description

 

of

 

the

 

file

 

/*

 

-----------------------------------------------------------------

 

/*

 

DEVICE

 

FILE:

 

EXAMPLE/TEST

 

/*

 

FILE

 

CREATION

 

DATE:

 

93/09/01

 

/*

 

RECORD

 

FORMAT:

 

FMT

 

/*

 

FORMAT

 

LEVEL

 

IDENTIFIER:

 

371E00A681EA7

 

/*

 

-----------------------------------------------------------------

 

/*

 

INDICATORS

 

FOR

 

FORMAT

 

FMT

 

/*

   

INDICATOR

   

50

 

/*

   

INDICATOR

   

51

 

/*

   

INDICATOR

   

99

 

/*

 

-----------------------------------------------------------------

 

typedef

 

struct

 

{

    

char

 

NAME[11];

 

}EXAMPLE_TEST_FMT_i_t;

 

typedef

 

struct

 

{

    

char

 

ADDRESS[20];

    

char

 

PHONE_NUM[8];

 

}EXAMPLE_TEST_FMT_o_t;

 

typedef

 

union

 

{

    

EXAMPLE_TEST_FMT_i_t

    

EXAMPLE_TEST_FMT_i;

    

EXAMPLE_TEST_FMT_o_t

    

EXAMPLE_TEST_FMT_o;

 

}EXAMPLE_TEST_FMT_both_t;

 

Figure

 

121.

 

Structure

 

Definitions

 

for

 

a

 

Device

 

File

  

240

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

the

 

INDICATORS

 

option

 

on

 

the

 

#pragma

 

mapinc

 

directive

 

or

 

the

 

GENCSRC

 

command.

 

v

   

use

 

indicators=y

 

when

 

opening

 

the

 

file

 

You

 

must

 

also

 

set

 

the

 

address

 

of

 

the

 

separate

 

indicator

 

area

 

by

 

using

 

the

 

_Rindara()

 

function

 

for

 

record

 

files,

 

before

 

performing

 

I/O

 

operations.

 

Note:

  

If

 

you

 

specify

 

indicators

 

on

 

the

 

#pragma

 

mapinc

 

directive

 

and

 

do

 

not

 

use

 

the

 

DDS

 

keyword

 

INDARA

 

in

 

your

 

external

 

file

 

description,

 

you

 

will

 

receive

 

a

 

warning

 

message

 

at

 

compile

 

time.

 

If

 

indicators

 

are

 

requested,

 

and

 

exist

 

in

 

the

 

format,

 

a

 

99-byte

 

structure

 

definition

 

is

 

created.

 

The

 

structure

 

definition

 

contains

 

a

 

field

 

declaration

 

for

 

each

 

indicator

 

defined

 

in

 

the

 

DDS.

 

The

 

name

 

of

 

each

 

field

 

is

 

INXX,

 

where

 

XX

 

is

 

the

 

DDS

 

indicator

 

number.

 

The

 

sequence

 

of

 

bytes

 

between

 

indicators

 

is

 

defined

 

as

 

INXX_INYY,

 

where

 

XX

 

is

 

the

 

first

 

undefined

 

byte

 

and

 

YY

 

is

 

the

 

last

 

undefined

 

byte

 

in

 

a

 

sequence.

  

#pragma

 

mapinc("example/temp","exindic/test(fmt)","indicators","")

 

#include

 

"example/temp"

 

When

 

this

 

DDS

 

is

 

included

 

in

 

your

 

ILE

 

C/C++

 

program,

 

the

 

following

 

structure

 

is

 

generated:

        

A

                                      

INDARA

       

A

          

R

 

FMT

       

A

                                      

CF01(50)

       

A

                                      

CF02(51)

       

A

                                      

CF03(99

 

’EXIT’)

       

A

                                  

1

 

35’PHONE

 

BOOK’

       

A

                                      

DSPATR(HI)

       

A

                                  

7

 

28’Name:’

       

A

            

NAME

          

11A

  

I

  

7

 

34

       

A

                                  

9

 

25’Address:’

       

A

            

ADDRESS

       

20A

  

O

  

9

 

34

       

A

                                 

11

 

25’Phone

 

#:’

       

A

            

PHONE_NUM

      

8A

  

O

 

11

 

34

       

A

                                 

23

 

34’F3

 

-

 

EXIT’

 

Figure

 

122.

 

DDS

 

Source

 

for

 

Indicators

  

Chapter

 

18.

 

Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program

 

241



This

 

shows

 

a

 

type

 

definition

 

of

 

a

 

structure

 

for

 

the

 

indicators

 

in

 

the

 

format

 

FMT

 

of

 

the

 

file

 

EXINDIC/TEST.

 

The

 

external

 

file

 

description

 

contains

 

three

 

indicators:

 

IN50,

 

IN51,

 

and

 

IN99.

 

The

 

DDS

 

keyword

 

INDARA

 

is

 

also

 

specified

 

in

 

the

 

DDS

 

for

 

the

 

file.

 

If

 

indicators

 

are

 

defined

 

for

 

a

 

record

 

format

 

and

 

the

 

INDICATOR

 

option

 

is

 

not

 

specified

 

on

 

the

 

#pragma

 

mapinc

 

directive

 

or

 

GENCSRC

 

command,

 

a

 

list

 

of

 

the

 

indicators

 

in

 

the

 

DDS

 

is

 

included

 

as

 

a

 

comment

 

in

 

the

 

header

 

description.

   

The

 

following

 

shows

 

the

 

header

 

description

 

created

 

when

 

the

 

file

 

description

 

for

 

the

 

file

 

EXINDIC/TEST

 

is

 

included

 

in

 

your

 

program

 

and

 

the

 

indicators

 

option

 

is

 

not

 

specified

 

on

 

the

 

#pragma

 

mapinc

 

directive.

    

Including

 

Physical

 

and

 

Logical

 

Database

 

Files

 

in

 

a

 

Program

 

To

 

include

 

external

 

database

 

file

 

descriptions,

 

use

 

the

 

INPUT,

 

BOTH,

 

KEY,

 

NULLFLDS,

 

or

 

LVLCHK

 

option

 

on

 

the

 

#pragma

 

mapinc

 

directive.

 

If

 

you

 

specify

 

either

 

the

 

OUTPUT

 

or

 

INDICATOR

 

option,

 

an

 

error

 

message

 

is

 

generated.

 

/*

 

------------------------------------------------------------------

 

*/

 

/*

 

DEVICE

 

FILE:

 

EXINDIC/TEST

                                          

*/

 

/*

 

FILE

 

CREATION

 

DATE:

 

93/09/01

                                       

*/

 

/*

 

RECORD

 

FORMAT:

 

FMT

                                                 

*/

 

/*

 

FORMAT

 

LEVEL

 

IDENTIFIER:

 

371E00A681EA7

                             

*/

 

/*

 

------------------------------------------------------------------

 

*/

 

/*

 

INDICATORS

 

FOR

 

FORMAT

 

FMT

                                          

*/

 

/*

   

INDICATOR

   

50

                                                   

*/

 

/*

   

INDICATOR

   

51

                                                   

*/

 

/*

   

INDICATOR

   

99

                                                   

*/

 

/*

 

------------------------------------------------------------------

 

*/

 

typedef

 

struct

 

{

    

char

 

IN01_IN49[49];

              

/*

 

UNUSED

 

INDICATOR(S)

  

*/

    

char

 

IN50;

    

char

 

IN51;

    

char

 

IN52_IN98[47];

              

/*

 

UNUSED

 

INDICATOR(S)

  

*/

    

char

 

IN99;

 

}EXINDIC_TEST_FMT_indic_t;

 

Figure

 

123.

 

Structure

 

Definition

 

for

 

Indicators

/*

 

------------------------------------------------------------------

 

*/

 

/*

 

DEVICE

 

FILE:

 

EXINDIC/TEST

                                          

*/

 

/*

 

CREATION

 

DATE:

 

93/09/01

                                            

*/

 

/*

 

RECORD

 

FORMAT:

 

FMT

                                                 

*/

 

/*

 

FORMAT

 

LEVEL

 

IDENTIFIER:

 

371E00A681EA7

                             

*/

 

/*

 

------------------------------------------------------------------

 

*/

 

/*

 

INDICATORS

 

FOR

 

RECORD

 

FORMAT

 

FMT

                                   

*/

 

/*

   

INDICATOR

   

50

                                                   

*/

 

/*

   

INDICATOR

   

51

                                                   

*/

 

/*

   

INDICATOR

   

99

                                                   

*/

 

/*

 

------------------------------------------------------------------

 

*/

 

Figure

 

124.

 

Header

 

Description

 

Showing

 

Comments

 

for

 

Indicators

  

242

 

ILE

 

C/C++

 

Programmer’s

 

Guide



You

 

can

 

include

 

external

 

file

 

descriptions

 

for

 

Distributed

 

Data

 

Management

 

(DDM)

 

files

 

using

 

the

 

same

 

method

 

described

 

for

 

database

 

files

 

if

 

you

 

specify

 

either

 

the

 

INPUT,

 

KEY,

 

or

 

BOTH

 

option.

 

If

 

you

 

specify

 

OUTPUT

 

or

 

INDICATOR,

 

an

 

error

 

message

 

is

 

issued.

   

C++

 

users

 

must

 

use

 

the

 

GENCSRC

 

utility

 

for

 

level

 

checking

 

and

 

including

 

external

 

file

 

descriptions.

   

C

 

users

 

can

 

use

 

either

 

the

 

GENCSRC

 

utility

 

or

 

the

 

#pragma

 

mapinc

 

directive

 

for

 

level

 

checking

 

and

 

external

 

file

 

descriptions.

 

Note:

  

For

 

more

 

information

 

on

 

the

 

differences

 

between

 

the

 

GENCSRC

 

utility

 

and

 

the

 

#pragma

 

mapinc

 

directive,

 

see

 

Appendix

 

A,

 

“The

 

GENCSRC

 

Utility

 

and

 

the

 

#pragma

 

mapinc

 

Directive,”

 

on

 

page

 

541.

 

Including

 

Device

 

Files

 

in

 

a

 

Program

 

To

 

include

 

external

 

device

 

file

 

descriptions,

 

use

 

the

 

INPUT,

 

OUTPUT,

 

BOTH,

 

and/or

 

INDICATOR

 

options

 

on

 

the

 

#pragma

 

mapinc

 

directive.

 

Device

 

files

 

do

 

not

 

contain

 

KEY

 

fields.

 

Therefore,

 

you

 

cannot

 

specify

 

the

 

KEY

 

option

 

with

 

device

 

files.

    

C

 

users

 

may

 

use

 

the

 

GENCSRC

 

utility

 

to

 

create

 

type

 

definitions

 

from

 

an

 

external

 

file.

    

C++

 

users

 

must

 

use

 

the

 

GENCSRC

 

utility

 

to

 

create

 

type

 

definitions

 

from

 

an

 

external

 

file.

 

Note:

  

For

 

more

 

information

 

on

 

the

 

differences

 

between

 

the

 

GENCSRC

 

utility

 

and

 

the

 

#pragma

 

mapinc

 

directive,

 

see

 

Appendix

 

A,

 

“The

 

GENCSRC

 

Utility

 

and

 

the

 

#pragma

 

mapinc

 

Directive,”

 

on

 

page

 

541.

 

Including

 

Externally

 

Described

 

Multiple

 

Record

 

Formats

 

in

 

a

 

Logical

 

File

 

To

 

include

 

multiple

 

formats

 

in

 

a

 

logical

 

file,

 

specify

 

more

 

than

 

one

 

record

 

format

 

name

 

or

 

(*ALL)

 

on

 

the

 

#pragma

 

mapinc

 

directive.

 

If

 

you

 

specify

 

multiple

 

formats,

 

a

 

header

 

description

 

and

 

type

 

definition

 

is

 

created

 

for

 

each

 

format.

 

If

 

you

 

specify

 

a

 

union-

 

type-name,

 

a

 

union

 

type

 

definition

 

is

 

created.

   

C++

 

users

 

must

 

use

 

the

 

GENCSRC

 

utility

 

to

 

create

 

type

 

definitions

 

from

 

an

 

external

 

file.

   

C

 

users

 

can

 

use

 

either

 

the

 

GENCSRC

 

utility

 

or

 

the

 

#pragma

 

mapinc

 

directive

 

to

 

create

 

type

 

definitions

 

from

 

an

 

external

 

file.

 

Note:

  

For

 

more

 

information

 

on

 

the

 

differences

 

between

 

the

 

GENCSRC

 

utility

 

and

 

the

 

#pragma

 

mapinc

 

directive,

 

see

 

Appendix

 

A,

 

“The

 

GENCSRC

 

Utility

 

and

 

the

 

#pragma

 

mapinc

 

Directive,”

 

on

 

page

 

541.

 

The

 

typedef

 

union

 

contains

 

structure

 

definitions

 

created

 

for

 

each

 

format.

 

Structure

 

definitions

 

that

 

are

 

created

 

for

 

key

 

fields

 

when

 

the

 

key

 

option

 

is

 

specified

 

are

 

not

 

included

 

in

 

the

 

union

 

definition.

 

The

 

name

 

of

 

the

 

union

 

definition

 

is

 

union-type-name_t.

 

The

 

name

 

you

 

provide

 

for

 

the

 

union-type-name

 

is

 

not

 

folded

 

to

 

uppercase.

   

Chapter

 

18.

 

Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program

 

243



The

 

following

 

shows

 

the

 

type

 

definitions

 

created

 

for

 

a

 

logical

 

file

 

with

 

two

 

record

 

formats

 

with

 

the

 

BOTH

 

and

 

KEY

 

options

 

specified.

 

A

 

typedef

 

union

 

with

 

the

 

tag

 

buffer_t

 

is

 

also

 

generated.

    

#pragma

 

mapinc("pay","lib1/pay(fmt1

 

fmt2)","both

 

key","","buffer","Pay")

 

#include

 

"pay"

  

Note:

  

A

 

typedef

 

union

 

is

 

not

 

created

 

for

 

the

 

key

 

fields.

 

If

 

you

 

specify

 

*ALL,

 

or

 

more

 

than

 

one

 

record

 

format

 

on

 

the

 

format-name

 

parameter,

 

structure

 

definitions

 

for

 

multiple

 

formats

 

are

 

created.

 

If

 

you

 

specify

 

multiple

 

formats,

 

and

 

the

 

input,

 

or

 

output

 

option,

 

one

 

structure

 

is

 

created

 

for

 

each

 

format.

 

The

 

following

 

shows

 

the

 

structure

 

definitions

 

that

 

are

 

created

 

when

 

you

 

include

 

the

 

following

 

statements

 

in

 

your

 

program.

 

The

 

device

 

/*

 

--------------------------------------------------------*/

 

/*

 

LOGICAL

 

FILE:

 

PAY

                                       

*/

 

/*

 

FILE

 

CREATION

 

DATE:

 

93/09/01

                            

*/

 

/*

 

RECORD

 

FORMAT:

 

FMT1

                                     

*/

 

/*

 

FORMAT

 

LEVEL

 

IDENTIFIER:

 

371E00A681EA7

                  

*/

 

/*

 

--------------------------------------------------------*/

  

typedef

 

struct

 

{

          

.

          

.

          

.

  

}Pay_FMT1_both_t;

    

typedef

 

struct

 

{

          

.

          

.

          

.

  

}Pay_FMT1_key_t;

   

/*

 

--------------------------------------------------------*/

 

/*

 

LOGICAL

 

FILE:

 

PAY

                                       

*/

 

/*

 

FILE

 

CREATION

 

DATE:

 

93/09/01

                            

*/

 

/*

 

RECORD

 

FORMAT:

 

FMT2

                                     

*/

 

/*

 

FORMAT

 

LEVEL

 

IDENTIFIER:

 

371E00A681EA7

                  

*/

 

/*

 

--------------------------------------------------------*/

  

typedef

 

struct

 

{

          

.

          

.

          

.

  

}Pay_FMT2_both_t;

    

typedef

 

struct

 

{

          

.

          

.

          

.

  

}Pay_FMT2_key_t;

    

typedef

 

union

 

{

     

Pay_FMT1_both_t;

                

Pay_FMT1_both;

     

Pay_FMT2_both_t;

                

Pay_FMT2_both;

  

}buffer_t;

 

Figure

 

125.

 

Structure

 

Definition

 

for

 

Multiple

 

Formats

  

244

 

ILE

 

C/C++

 

Programmer’s

 

Guide



file

 

TESTLIB/FILE

 

contains

 

two

 

record

 

formats,

 

FMT1,

 

and

 

FMT2.

 

Each

 

record

 

format

 

has

 

fields

 

defined

 

as

 

OUTPUT

 

in

 

its

 

file

 

description.

    

#pragma

 

mapinc("example","testlib/file(fmt1

 

fmt2)","output","z","unionex")

 

#include

 

"example"

  

When

 

both

 

are

 

specified

 

as

 

an

 

option,

 

two

 

structure

 

definitions

 

are

 

created

 

for

 

each

 

format.

 

The

 

following

 

shows

 

the

 

structure

 

definitions

 

created

 

when

 

you

 

include

 

two

 

formats,

 

FMT1

 

and

 

FMT2,

 

for

 

the

 

device

 

file

 

EXAMPLE/TEST

 

and

 

specify

 

the

 

both

 

option:

    

#pragma

 

mapinc("test","example/test(fmt1

 

fmt2)","both","z","unionex")

 

#include

 

"test"

 

If

 

all

 

the

 

fields

 

are

 

defined

 

as

 

BOTH

 

and

 

there

 

are

 

to

 

be

 

no

 

indicators

 

in

 

the

 

typedef

 

struct,

 

only

 

one

 

typedef

 

struct

 

is

 

generated

 

for

 

each

 

format

 

specified.

 

The

 

following

 

shows

 

a

 

separate

 

typedef

 

structure

 

for

 

input

 

and

 

output

 

fields.

  

/*

 

------------------------------------------------------------------

 

*/

 

/*

 

DEVICE

 

FILE:

 

TESTLIB/FILE

                                          

*/

 

/*

 

FILE

 

CREATION

 

DATE:

 

93/09/01

                                       

*/

 

/*

 

RECORD

 

FORMAT:

 

FMT1

                                                

*/

 

/*

 

FORMAT

 

LEVEL

 

IDENTIFIER:

 

371E00A681EA7

                             

*/

 

/*

 

------------------------------------------------------------------

 

*/

    

typedef

 

struct

 

{

            

.

            

.

            

.

    

}TESTLIB_FILE_FMT1_o_t;

   

/*

 

------------------------------------------------------------------

 

*/

 

/*

 

DEVICE

 

FILE:

 

TESTLIB/FILE

                                          

*/

 

/*

 

CREATION

 

DATE:

 

93/09/01

                                            

*/

 

/*

 

RECORD

 

FORMAT:

 

FMT2

                                                

*/

 

/*

 

FORMAT

 

LEVEL

 

IDENTIFIER:

 

371E00A681EA8

                             

*/

 

/*

 

------------------------------------------------------------------

 

*/

    

typedef

 

struct

 

{

            

.

            

.

            

.

    

}TESTLIB_FILE_FMT2_o_t;

      

typedef

 

union

 

{

       

TESTLIB_FILE_FMT1_o_t

      

TESTLIB_FILE_FMT1_o;

       

TESTLIB_FILE_FMT2_o_t

      

TESTLIB_FILE_FMT2_o;

    

}unionex_t;

 

Figure

 

126.

 

Structure

 

Definitions

 

for

 

a

 

Device

 

File

  

Chapter

 

18.

 

Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program

 

245



Using

 

Externally

 

Described

 

Packed

 

Decimal

 

Data

 

in

 

a

 

Program

 

The

 

ILE

 

C/C++

 

compiler

 

and

 

library

 

supports

 

packed

 

decimal

 

data.

 

The

 

d

 

option

 

of

 

the

 

#pragma

 

mapinc

 

directive

 

causes

 

the

 

compiler

 

to

 

generate

 

packed

 

decimal

 

variables

 

for

 

any

 

packed

 

decimal

 

fields

 

defined

 

in

 

the

 

DDS

 

file.

 

If

 

you

 

use

 

the

 

p

 

option

 

of

 

the

 

#pragma

 

mapinc

 

directive

 

or

 

the

 

PKDDECFLD

 

parameter

 

of

 

the

 

GENCSRC

 

command,

 

character

 

arrays

 

are

 

generated

 

to

 

store

 

the

 

packed

 

decimal

 

values.

   

C++

 

users

 

must

 

use

 

the

 

GENCSRC

 

utility

 

to

 

create

 

type

 

definitions

 

from

 

an

 

external

 

file.

   

C

 

users

 

can

 

use

 

either

 

the

 

GENCSRC

 

utility

 

or

 

the

 

#pragma

 

mapinc

 

directive

 

to

 

create

 

type

 

definitions

 

from

 

an

 

external

 

file.

 

/*

 

------------------------------------------------------------------

 

*/

 

/*

 

DEVICE

 

FILE:

 

EXAMPLE/TEST

                                          

*/

 

/*

 

CREATION

 

DATE:

 

93/09/01

                                            

*/

 

/*

 

RECORD

 

FORMAT:

 

FMT1

                                                

*/

 

/*

 

FORMAT

 

LEVEL

 

IDENTIFIER:

 

371E00A681EA7

                             

*/

 

/*

 

------------------------------------------------------------------

 

*/

    

typedef

 

struct

 

{

            

.

            

.

            

.

    

}EXAMPLE_TEST_FMT1_i_t;

    

typedef

 

struct

 

{

            

.

            

.

            

.

    

}EXAMPLE_TEST_FMT1_o_t;

 

/*

 

------------------------------------------------------------------

 

*/

 

/*

 

DEVICE

 

FILE:

 

EXAMPLE/TEST

                                          

*/

 

/*

 

CREATION

 

DATE:

 

93/09/01

                                            

*/

 

/*

 

RECORD

 

FORMAT:

 

FMT2

                                                

*/

 

/*

 

FORMAT

 

LEVEL

 

IDENTIFIER:

 

371E00A681EA8

                             

*/

 

/*

 

------------------------------------------------------------------

 

*/

    

typedef

 

struct

 

{

            

.

            

.

            

.

    

}EXAMPLE_TEST_FMT2_i_t;

    

typedef

 

struct

 

{

            

.

            

.

            

.

    

}EXAMPLE_TEST_FMT2_o_t;

    

typedef

 

union{

       

EXAMPLE_TEST_FMT1_i_t

      

EXAMPLE_TEST_FMT1_i;

       

EXAMPLE_TEST_FMT1_o_t

      

EXAMPLE_TEST_FMT1_o;

       

EXAMPLE_TEST_FMT2_i_t

      

EXAMPLE_TEST_FMT2_i;

       

EXAMPLE_TEST_FMT2_o_t

      

EXAMPLE_TEST_FMT2_o;

    

}unionex_t;

 

Figure

 

127.

 

Structure

 

Definitions

 

for

 

BOTH

 

Option

  

246

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Note:

  

For

 

more

 

information

 

on

 

the

 

differences

 

between

 

the

 

GENCSRC

 

utility

 

and

 

the

 

#pragma

 

mapinc

 

directive,

 

see

 

Appendix

 

A,

 

“The

 

GENCSRC

 

Utility

 

and

 

the

 

#pragma

 

mapinc

 

Directive,”

 

on

 

page

 

541.

 

These

 

character

 

arrays

 

then

 

need

 

to

 

be

 

converted

 

to

 

an

 

ILE

 

C/C++

 

numeric

 

data

 

type

 

to

 

be

 

used

 

in

 

the

 

ILE

 

C/C++

 

program.

 

If

 

neither

 

the

 

d

 

or

 

p

 

option

 

is

 

specified,

 

the

 

d

 

option

 

is

 

the

 

default.

 

See

 

Chapter

 

26,

 

“Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C

 

Program,”

 

on

 

page

 

451

 

or

 

Chapter

 

27,

 

“Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C++

 

Program,”

 

on

 

page

 

465

 

for

 

examples

 

in

 

using

 

packed

 

decimal

 

data

 

types.

 

Note:

  

If

 

you

 

have

 

a

 

DDS

 

file

 

with

 

packed

 

decimal

 

fields

 

defined

 

in

 

your

 

program,

 

your

 

source

 

code

 

must:

 

v

     

Include

 

the

 

<decimal.h>

 

header

 

file

 

v

     

Include

 

the

 

<bcd.h>

 

header

 

file

Note:

  

If

 

<decimal.h>

 

is

 

included

 

in

 

a

 

source

 

that

 

is

 

compiled

 

with

 

the

 

C++

 

compiler,

 

<bcd.h>

 

is

 

included

 

anyway.

Use

 

either

 

the

 

#pragma

 

mapinc

 

d

 

option

 

or

 

the

 

GENCSRC

 

PKDDECFLD

 

parameter

 

in

 

your

 

ILE

 

C/C++

 

source

 

code.

Note:

  

The

 

ILE

 

C/C++

 

compiler

 

and

 

library

 

do

 

not

 

support

 

zoned

 

decimal

 

data.

 

If

 

there

 

are

 

zoned

 

fields,

 

#pragma

 

mapinc

 

and

 

GENCSRC

 

convert

 

them

 

into

 

*CHAR

 

type.

 

To

 

convert

 

packed

 

decimal

 

data

 

that

 

is

 

stored

 

in

 

character

 

arrays

 

to

 

integer

 

or

 

floating

 

point

 

(double)

 

and

 

vice

 

versa,

 

the

 

functions

 

QXXDTOP(),

 

QXXITOP(),

 

QXXPTOD(),

 

QXXPTOI()

 

can

 

be

 

used.

 

To

 

convert

 

zoned

 

decimal

 

data

 

that

 

is

 

stored

 

in

 

character

 

arrays

 

to

 

integer

 

or

 

floating

 

point

 

(double)

 

and

 

vice

 

versa,

 

the

 

functions

 

QXXDTOZ(),

 

QXXITOZ(),

 

QXXZTOD,()

 

and

 

QXXZTOI()

 

can

 

be

 

used.

 

The

 

MI

 

cpynv()

 

function

 

can

 

also

 

be

 

used

 

to

 

convert

 

packed

 

or

 

zoned

 

decimal

 

data

 

to

 

an

 

ILE

 

C/C++

 

numeric

 

data

 

type.

 

It

 

can

 

be

 

used

 

to

 

convert

 

an

 

ILE

 

C/C++

 

numeric

 

data

 

type

 

to

 

packed

 

or

 

zoned

 

decimal

 

data.

 

The

 

conversion

 

functions

 

are

 

included

 

with

 

the

 

ILE

 

C/C++

 

compiler

 

so

 

that

 

EPM

 

C

 

code

 

that

 

uses

 

these

 

functions

 

can

 

be

 

maintained.

 

If

 

you

 

are

 

doing

 

database

 

I/O

 

operations,

 

you

 

can

 

use

 

a

 

logical

 

file

 

with

 

integer

 

or

 

floating

 

point

 

fields

 

to

 

redefine

 

packed

 

and

 

zoned

 

fields

 

in

 

your

 

physical

 

file.

 

When

 

you

 

perform

 

an

 

input,

 

or

 

output

 

operation

 

through

 

the

 

logical

 

file,

 

the

 

iSeries

 

400

 

system

 

converts

 

the

 

data

 

for

 

you

 

automatically.

   

Chapter

 

18.

 

Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program

 

247



248

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

19.

 

Using

 

Database

 

Files

 

and

 

Distributed

 

Data

 

Management

 

Files

 

in

 

a

 

Program

 

This

 

chapter

 

describes

 

how

 

to:

 

v

   

Copy

 

data

 

from

 

one

 

file

 

to

 

another

 

using

 

an

 

arrival

 

sequence

 

access

 

path

 

v

   

Update

 

data

 

in

 

a

 

record

 

file

 

by

 

using

 

a

 

keyed

 

sequence

 

access

 

path

 

v

   

Read

 

and

 

print

 

records

 

from

 

a

 

data

 

file

 

v

   

Specify

 

commitment

 

control

 

conditions

Database

 

Files

 

and

 

Distributed

 

Data

 

Management

 

Files

 

A

 

database

 

file

 

contains

 

data

 

that

 

is

 

stored

 

permanently

 

on

 

the

 

system.

 

The

 

object

 

type

 

is

 

*FILE.

 

Database

 

files

 

can

 

be

 

created

 

and

 

used

 

as

 

either

 

physical

 

files

 

or

 

logical

 

files.

 

Database

 

files

 

can

 

contain

 

either

 

data

 

or

 

source

 

statements.

 

ILE

 

C/C++

 

programs

 

access

 

files

 

on

 

remote

 

systems

 

through

 

distributed

 

data

 

management

 

(DDM).

 

DDM

 

allows

 

application

 

programs

 

on

 

one

 

system

 

to

 

use

 

files

 

that

 

are

 

stored

 

on

 

a

 

remote

 

system

 

as

 

database

 

files.

 

No

 

special

 

statements

 

are

 

required

 

in

 

ILE

 

C/C++

 

programs

 

to

 

support

 

DDM

 

files.

 

A

 

DDM

 

file

 

is

 

created

 

by

 

a

 

user

 

or

 

program

 

on

 

a

 

local

 

(source)

 

system.

 

This

 

file

 

(with

 

object

 

type

 

*FILE)

 

identifies

 

a

 

file

 

that

 

is

 

kept

 

on

 

a

 

remote

 

(target)

 

system.

 

The

 

DDM

 

file

 

provides

 

the

 

information

 

that

 

is

 

needed

 

for

 

a

 

local

 

iSeries

 

400

 

to

 

locate

 

a

 

remote

 

iSeries

 

400

 

and

 

to

 

access

 

the

 

data

 

in

 

the

 

target

 

file.

 

Physical

 

Files

 

and

 

Logical

 

Files

 

Physical

 

files

 

contain

 

the

 

actual

 

data

 

that

 

is

 

stored

 

on

 

an

 

iSeries

 

system,

 

and

 

a

 

description

 

of

 

how

 

data

 

is

 

to

 

be

 

presented

 

to

 

or

 

received

 

from

 

a

 

program.

 

They

 

contain

 

only

 

one

 

record

 

format,

 

and

 

one

 

or

 

more

 

members.

 

A

 

physical

 

file

 

can

 

have

 

a

 

keyed

 

sequence

 

access

 

path.

 

This

 

means

 

that

 

data

 

is

 

presented

 

to

 

an

 

ILE

 

C/C++

 

program

 

in

 

a

 

sequence

 

that

 

is

 

based

 

on

 

one

 

or

 

more

 

key

 

fields

 

in

 

the

 

file.

 

Logical

 

files

 

do

 

not

 

contain

 

data.

 

They

 

contain

 

a

 

description

 

of

 

records

 

that

 

are

 

found

 

in

 

one

 

or

 

more

 

physical

 

files.

 

A

 

logical

 

file

 

is

 

a

 

view

 

or

 

representation

 

of

 

one

 

or

 

more

 

physical

 

files.

 

Logical

 

files

 

that

 

contain

 

more

 

than

 

one

 

format

 

are

 

referred

 

to

 

as

 

multi-format

 

logical

 

files.

 

If

 

your

 

program

 

processes

 

a

 

logical

 

file

 

which

 

contains

 

more

 

than

 

one

 

record

 

format,

 

you

 

can

 

use

 

the

 

_Rformat()

 

function

 

to

 

set

 

the

 

format

 

you

 

wish

 

to

 

use.

 

Some

 

operations

 

cannot

 

be

 

performed

 

on

 

logical

 

files.

 

If

 

you

 

open

 

a

 

logical

 

file

 

for

 

stream

 

file

 

processing

 

with

 

open

 

modes

 

w,

 

w+,

 

wb,

 

or

 

wb+,

 

the

 

file

 

is

 

opened

 

but

 

not

 

cleared.

 

If

 

you

 

open

 

a

 

logical

 

file

 

for

 

record

 

file

 

processing

 

with

 

open

 

modes

 

wr

 

or

 

wr+,

 

the

 

file

 

is

 

opened

 

but

 

not

 

cleared.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

249



Describing

 

Records

 

in

 

Database

 

Files

 

Records

 

in

 

database

 

files

 

can

 

be

 

described

 

using

 

either

 

a

 

field

 

level

 

description

 

or

 

record

 

level

 

description.

 

A

 

field

 

level

 

description

 

includes

 

a

 

description

 

of

 

all

 

fields

 

and

 

their

 

arrangement

 

in

 

this

 

record.

 

because

 

the

 

description

 

of

 

the

 

fields

 

and

 

their

 

arrangement

 

is

 

kept

 

within

 

a

 

database

 

file

 

and

 

not

 

in

 

your

 

ILE

 

C/C++

 

program,

 

database

 

files

 

created

 

with

 

a

 

field

 

level

 

description

 

are

 

referred

 

to

 

as

 

externally

 

described

 

files.

 

See

 

Chapter

 

18,

 

“Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program,”

 

on

 

page

 

225.

 

A

 

record

 

level

 

description

 

describes

 

only

 

the

 

length

 

of

 

the

 

record,

 

and

 

not

 

the

 

contents

 

of

 

the

 

record.

 

Database

 

files

 

that

 

are

 

created

 

with

 

record

 

level

 

descriptions

 

are

 

referred

 

to

 

as

 

program-described

 

files.

 

This

 

means

 

that

 

your

 

ILE

 

C/C++

 

program

 

must

 

describe

 

the

 

fields

 

in

 

the

 

record.

 

Defining

 

Externally

 

Described

 

Files

 

An

 

ILE

 

C/C++

 

program

 

can

 

use

 

either

 

externally

 

described

 

or

 

program-described

 

files.

 

If

 

it

 

uses

 

an

 

externally

 

described

 

file,

 

the

 

ILE

 

C/C++

 

compiler

 

can

 

extract

 

information

 

from

 

the

 

externally

 

described

 

file,

 

and

 

automatically

 

include

 

field

 

information

 

in

 

your

 

program.

 

Your

 

program

 

does

 

not

 

need

 

to

 

define

 

the

 

field

 

information.

 

For

 

further

 

information

 

see

 

Chapter

 

18,

 

“Using

 

Externally

 

Described

 

Files

 

in

 

a

 

Program,”

 

on

 

page

 

225.

 

To

 

define

 

externally

 

described

 

database

 

files,

 

use

 

one

 

of

 

the

 

following:

 

v

   

DB2®

 

database

 

v

   

Interactive

 

Data

 

Definition

 

Utility

 

(IDDU)

 

v

   

Data

 

Descriptive

 

Specifications

 

(DDS)

 

source

A

 

data

 

description

 

specification

 

is

 

a

 

description

 

of

 

a

 

database

 

file

 

that

 

is

 

entered

 

into

 

the

 

system

 

in

 

a

 

fixed

 

form,

 

and

 

is

 

used

 

to

 

create

 

files.

 

This

 

description

 

is

 

composed

 

of

 

one

 

or

 

more

 

record

 

formats

 

that

 

define

 

the

 

fields

 

that

 

make

 

up

 

the

 

record.

 

It

 

can

 

also

 

include

 

access

 

path

 

information

 

that

 

determines

 

the

 

order

 

in

 

which

 

records

 

are

 

retrieved

 

from

 

the

 

file.

 

Data

 

Files

 

and

 

Source

 

Files

 

A

 

data

 

file

 

contains

 

actual

 

data.

 

Records

 

in

 

data

 

files

 

are

 

grouped

 

into

 

members.

 

All

 

the

 

records

 

in

 

a

 

file

 

can

 

be

 

in

 

one

 

member,

 

or

 

they

 

can

 

be

 

grouped

 

into

 

different

 

members.

 

Most

 

database

 

commands

 

and

 

operations

 

by

 

default

 

assume

 

that

 

database

 

files

 

which

 

contain

 

data

 

have

 

only

 

one

 

member.

 

This

 

means

 

that

 

when

 

your

 

ILE

 

C/C++

 

program

 

works

 

with

 

database

 

files

 

containing

 

data

 

you

 

do

 

not

 

need

 

to

 

specify

 

the

 

member

 

name

 

for

 

the

 

file

 

unless

 

your

 

file

 

contains

 

more

 

than

 

one

 

member.

 

Usually,

 

database

 

files

 

that

 

contain

 

source

 

programs

 

are

 

made

 

up

 

of

 

more

 

than

 

one

 

member.

 

Organizing

 

source

 

programs

 

into

 

members

 

within

 

database

 

files

 

allows

 

you

 

to

 

better

 

manage

 

your

 

programs.

 

These

 

source

 

members

 

contain

 

source

 

statements

 

that

 

the

 

iSeries

 

system

 

uses

 

to

 

create

 

iSeries

 

objects.

 

For

 

example,

 

a

 

source

 

member

 

which

 

contains

 

C++

 

statements

 

is

 

used

 

to

 

create

 

a

 

program

 

object.

 

Access

 

Paths

 

Access

 

paths

 

describe

 

the

 

logical

 

order

 

of

 

records

 

in

 

a

 

file.

 

There

 

are

 

two

 

types

 

of

 

access

 

paths:

 

arrival

 

sequence

 

and

 

keyed

 

sequence.

   

250

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Records

 

that

 

are

 

retrieved

 

using

 

an

 

arrival

 

sequence

 

access

 

path

 

will

 

be

 

retrieved

 

in

 

the

 

same

 

order

 

in

 

which

 

they

 

were

 

added

 

to

 

the

 

file.

 

This

 

is

 

similar

 

to

 

processing

 

sequential

 

files.

 

New

 

records

 

are

 

physically

 

stored

 

at

 

the

 

end

 

of

 

the

 

file.

 

An

 

arrival

 

sequence

 

access

 

path

 

is

 

valid

 

for

 

both

 

physical

 

and

 

logical

 

files.

 

Records

 

that

 

are

 

retrieved

 

using

 

a

 

keyed

 

sequence

 

access

 

path

 

are

 

retrieved

 

based

 

on

 

the

 

contents

 

of

 

one

 

or

 

more

 

key

 

fields

 

in

 

the

 

record.

 

This

 

is

 

similar

 

to

 

processing

 

indexed

 

or

 

keyed

 

files

 

on

 

other

 

systems.

 

A

 

keyed

 

sequence

 

access

 

path

 

is

 

updated

 

whenever

 

records

 

are

 

added,

 

deleted,

 

or

 

updated,

 

or

 

when

 

the

 

contents

 

of

 

the

 

key

 

field

 

are

 

changed.

 

This

 

access

 

path

 

is

 

valid

 

for

 

both

 

physical

 

and

 

logical

 

files.

 

If

 

a

 

file

 

defines

 

more

 

than

 

one

 

record

 

format,

 

each

 

record

 

format

 

may

 

have

 

different

 

key

 

fields.

 

The

 

default

 

key

 

for

 

the

 

file

 

(for

 

example,

 

if

 

no

 

format

 

is

 

specified)

 

will

 

be

 

the

 

key

 

fields

 

that

 

all

 

record

 

formats

 

have

 

in

 

common.

 

If

 

there

 

is

 

no

 

default

 

key

 

(for

 

example,

 

no

 

common

 

key

 

fields),

 

the

 

first

 

record

 

in

 

the

 

file

 

will

 

always

 

be

 

returned

 

on

 

an

 

input

 

operation

 

that

 

does

 

not

 

specify

 

the

 

format.

 

Note:

  

When

 

your

 

ILE

 

C/C++

 

program

 

opens

 

a

 

file,

 

the

 

default

 

is

 

to

 

process

 

the

 

file

 

with

 

the

 

access

 

path

 

that

 

is

 

used

 

to

 

create

 

the

 

file.

 

If

 

you

 

specify

 

arrseq=N

 

(the

 

default),

 

the

 

file

 

is

 

processed

 

the

 

way

 

it

 

was

 

created.

 

This

 

means

 

that

 

if

 

the

 

file

 

was

 

created

 

using

 

a

 

keyed

 

sequence

 

access

 

path,

 

your

 

ILE

 

C/C++

 

program

 

processes

 

the

 

file

 

by

 

using

 

a

 

keyed

 

sequence

 

access

 

path.

 

If

 

you

 

specify

 

arrseq=Y,

 

the

 

file

 

is

 

processed

 

using

 

arrival

 

sequence.

 

This

 

means

 

that

 

even

 

though

 

the

 

file

 

was

 

created

 

using

 

a

 

keyed

 

sequence

 

access

 

path,

 

your

 

ILE

 

C/C++

 

program

 

processes

 

the

 

file

 

by

 

using

 

an

 

arrival

 

sequence

 

access

 

path.

 

Arranging

 

Key

 

Fields

 

Keyed

 

sequence

 

access

 

paths

 

can

 

be

 

ordered

 

in

 

ascending

 

or

 

descending

 

sequence.

 

When

 

you

 

describe

 

a

 

key

 

field,

 

the

 

default

 

is

 

ascending

 

sequence.

 

If

 

you

 

are

 

using

 

Data

 

Description

 

Specifications

 

(DDS)

 

to

 

create

 

a

 

keyed

 

sequence

 

file,

 

the

 

DESCEND

 

DDS

 

keyword

 

can

 

be

 

used

 

to

 

specify

 

that

 

the

 

key

 

fields

 

are

 

to

 

be

 

arranged

 

in

 

descending

 

sequence.

 

Duplicate

 

Key

 

Values

 

When

 

a

 

record

 

has

 

key

 

fields

 

whose

 

contents

 

are

 

the

 

same

 

as

 

another

 

record’s

 

key

 

fields

 

in

 

the

 

same

 

file,

 

the

 

file

 

has

 

records

 

with

 

duplicate

 

key

 

values.

 

For

 

example,

 

if

 

the

 

record

 

has

 

two

 

key

 

fields

 

num

 

and

 

date,

 

duplicate

 

key

 

values

 

occur

 

when

 

the

 

contents

 

of

 

both

 

num

 

and

 

date

 

are

 

the

 

same

 

in

 

two

 

or

 

more

 

records.

 

If

 

you

 

want

 

an

 

indication

 

that

 

your

 

program

 

is

 

processing

 

a

 

record

 

that

 

contains

 

a

 

duplicate

 

key

 

value,

 

specify

 

dupkey=y

 

on

 

the

 

call

 

to

 

_Ropen()

 

that

 

opens

 

the

 

file.

 

If

 

an

 

I/O

 

operation

 

on

 

a

 

record

 

is

 

successful

 

and

 

a

 

duplicate

 

key

 

value

 

is

 

found

 

in

 

that

 

record,

 

the

 

dup_key

 

flag

 

in

 

the

 

_RIOFB_T

 

structure

 

is

 

set.

 

(The

 

_Rreadd()

 

function

 

does

 

not

 

update

 

this

 

flag.)

 

Note:

  

Using

 

the

 

dupkey=y

 

option

 

on

 

the

 

call

 

to

 

the

 

_Ropen()

 

function

 

may

 

cause

 

your

 

I/O

 

operations

 

to

 

be

 

slower.

 

You

 

can

 

avoid

 

duplicate

 

key

 

values

 

by

 

specifying

 

the

 

keyword

 

UNIQUE

 

in

 

the

 

DDS

 

file.

   

Chapter

 

19.

 

Using

 

Database

 

Files

 

and

 

Distributed

 

Data

 

Management

 

Files

 

in

 

a

 

Program

 

251



Deleted

 

Records

 

When

 

a

 

database

 

record

 

is

 

deleted,

 

the

 

physical

 

record

 

is

 

marked

 

as

 

deleted

 

but

 

remains

 

in

 

the

 

file.

 

Deleted

 

records

 

can

 

be

 

overwritten

 

by

 

using

 

the

 

_Rwrite()

 

function.

 

Deleted

 

records

 

can

 

be

 

removed

 

from

 

a

 

file

 

by

 

using

 

the

 

RGZPFM

 

(Reorganize

 

Physical

 

File

 

Member)

 

command.

 

They

 

can

 

also

 

be

 

reused

 

on

 

write

 

operations

 

by

 

specifying

 

the

 

REUSEDLT(*YES)

 

parameter

 

on

 

the

 

CRTPF

 

command.

 

Deleted

 

records

 

can

 

occur

 

in

 

a

 

file

 

if

 

the

 

file

 

has

 

been

 

initialized

 

with

 

deleted

 

records

 

using

 

the

 

Initialize

 

Physical

 

File

 

Member

 

(INZPFM)

 

command.

 

Once

 

a

 

record

 

is

 

deleted,

 

it

 

cannot

 

be

 

read.

 

Locking

 

The

 

iSeries

 

database

 

has

 

built-in

 

record

 

integrity.

 

The

 

system

 

determines

 

the

 

lock

 

conditions

 

that

 

are

 

based

 

on

 

how

 

your

 

ILE

 

C/C++

 

program

 

opens

 

the

 

file.

 

This

 

table

 

shows

 

the

 

valid

 

open

 

modes

 

and

 

the

 

lock

 

states

 

that

 

are

 

associated

 

with

 

them:

  

Table

 

15.

 

Lock

 

States

 

for

 

Open

 

Modes

 

Open

 

Mode

 

Lock

 

State

 

r

 

or

 

rb

 

shared

 

for

 

read

 

(*SHRRD)

 

a,

 

w,

 

ab,

 

wb,

 

a+,

 

r+,

 

w+,

 

ab+,

 

rb+,

 

wb+

 

shared

 

for

 

update

 

(*SHRUPD)

    

You

 

can

 

change

 

the

 

lock

 

state

 

for

 

a

 

file

 

by

 

using

 

the

 

Override

 

Database

 

File

 

(OVRDBF)

 

command

 

or

 

the

 

Allocate

 

Object

 

(ALCOBJ)

 

command

 

before

 

you

 

open

 

the

 

file.

 

For

 

example,

 

your

 

ILE

 

C

 

program

 

can

 

use

 

the

 

system()

 

function

 

to

 

call

 

the

 

ALCOBJ

 

command:

   

system("ALCOBJ

 

OBJ((FILEA

 

*FILE

 

*EXCLRD))");

 

If

 

a

 

file

 

is

 

opened

 

for

 

update,

 

the

 

database

 

locks

 

any

 

record

 

read

 

or

 

positioned

 

to

 

provided

 

the

 

__NO_LOCK

 

option

 

is

 

not

 

specified.

 

This

 

means

 

that

 

the

 

locked

 

record

 

cannot

 

be

 

locked

 

to

 

any

 

other

 

open

 

data

 

path,

 

whether

 

that

 

open

 

data

 

path

 

is

 

opened

 

by

 

another

 

program

 

or

 

even

 

by

 

the

 

same

 

program

 

through

 

another

 

file

 

pointer.

 

Successfully

 

reading

 

and

 

locking

 

another

 

record

 

releases

 

the

 

lock

 

on

 

a

 

previously

 

locked

 

record.

 

If

 

the

 

__NO_LOCK

 

option

 

is

 

specified

 

on

 

any

 

read

 

then

 

the

 

lock

 

on

 

the

 

previously

 

locked

 

record

 

is

 

not

 

released.

 

You

 

can

 

also

 

release

 

a

 

lock

 

on

 

a

 

record

 

by

 

using

 

the

 

_Rrlslck()

 

function.

 

Sharing

 

If

 

your

 

application

 

consists

 

only

 

of

 

C

 

and

 

C++

 

modules,

 

the

 

preferred

 

way

 

to

 

share

 

a

 

file

 

is

 

by

 

opening

 

the

 

file

 

in

 

one

 

program

 

and

 

passing

 

the

 

file

 

pointer

 

to

 

the

 

other

 

programs.

 

This

 

eliminates

 

the

 

need

 

to

 

open

 

the

 

file

 

more

 

than

 

once.

 

Sharing

 

a

 

file

 

in

 

the

 

same

 

job

 

allows

 

programs

 

in

 

that

 

job

 

to

 

share

 

the

 

file’s

 

status,

 

record

 

position,

 

and

 

buffer.

 

To

 

allow

 

an

 

Open

 

Data

 

Path

 

(ODP)

 

to

 

be

 

shared

 

between

 

two

 

or

 

more

 

programs

 

running

 

in

 

the

 

same

 

job,

 

use

 

the

 

SHARE(*YES)

 

parameter

 

on

 

commands

 

that

 

create,

 

change,

 

or

 

override

 

files

 

.

 

An

 

open

 

data

 

path

 

is

 

the

 

path

 

through

 

which

 

all

 

I/O

 

operations

 

for

 

a

 

file

 

are

 

performed.

   

252

 

ILE

 

C/C++

 

Programmer’s

 

Guide



You

 

can

 

share

 

open

 

data

 

paths

 

for

 

streams

 

processed

 

a

 

record

 

at

 

a

 

time.

 

You

 

can

 

also

 

share

 

open

 

data

 

paths

 

for

 

record

 

files.

 

You

 

should

 

not

 

share

 

the

 

open

 

data

 

path

 

for

 

streams

 

processed

 

a

 

character

 

at

 

a

 

time,

 

because

 

unpredictable

 

results

 

can

 

occur

 

when

 

you

 

perform

 

I/O

 

operations.

 

If

 

you

 

want

 

to

 

share

 

a

 

file

 

between

 

your

 

C/C++

 

programs

 

and

 

programs

 

that

 

are

 

written

 

in

 

other

 

languages,

 

you

 

can

 

do

 

this

 

by

 

sharing

 

an

 

open

 

data

 

path.

 

The

 

first

 

open

 

of

 

a

 

shared

 

file

 

determines

 

the

 

open

 

mode

 

for

 

the

 

file

 

(for

 

example,

 

whether

 

it

 

is

 

open

 

for

 

INPUT,

 

OUTPUT,

 

UPDATE,

 

and

 

DELETE).

 

If

 

a

 

subsequent

 

open

 

specifies

 

an

 

open

 

mode

 

that

 

was

 

not

 

specified

 

by

 

the

 

first

 

open,

 

the

 

file

 

will

 

be

 

opened

 

the

 

second

 

time

 

but

 

the

 

open

 

mode

 

will

 

be

 

ignored.

 

For

 

example,

 

if

 

the

 

first

 

open

 

specifies

 

an

 

open

 

mode

 

of

 

IO

 

and

 

the

 

second

 

open

 

specifies

 

IOUD,

 

the

 

file

 

will

 

be

 

opened

 

the

 

second

 

time

 

with

 

a

 

mode

 

of

 

IO.

 

Null-Capable

 

Fields

 

The

 

ILE

 

C

 

compiler

 

allows

 

you

 

to

 

process

 

files

 

with

 

records

 

that

 

may

 

contain

 

fields

 

that

 

are

 

considered

 

to

 

be

 

null.

 

You

 

must

 

specify

 

nullcap=Y

 

on

 

the

 

_Ropen()

 

function.

 

If

 

a

 

null-capable

 

field

 

is

 

set

 

to

 

null,

 

any

 

data

 

that

 

is

 

written

 

into

 

that

 

field

 

is

 

not

 

valid.

 

If

 

a

 

file

 

is

 

opened

 

with

 

nullcap=Y,

 

the

 

database

 

provides

 

input

 

and

 

output

 

null

 

maps

 

and,

 

if

 

the

 

file

 

is

 

keyed,

 

a

 

key

 

null

 

map.

 

The

 

input

 

and

 

output

 

null

 

maps

 

consist

 

of

 

one

 

byte

 

for

 

each

 

field

 

in

 

the

 

current

 

record

 

format

 

of

 

the

 

file.

 

These

 

null

 

field

 

maps

 

are

 

used

 

to

 

communicate

 

between

 

the

 

database

 

and

 

your

 

program

 

to

 

indicate

 

which

 

specific

 

fields

 

should

 

be

 

considered

 

null.

 

The

 

_RFILE

 

structure

 

defined

 

in

 

the

 

<recio.h>

 

file

 

contains

 

pointers

 

to

 

the

 

input,

 

output

 

and

 

key

 

null

 

field

 

maps,

 

and

 

the

 

lengths

 

of

 

these

 

maps

 

(null_map_len

 

and

 

null_key_map_len).

 

When

 

you

 

write

 

to

 

a

 

database

 

file,

 

you

 

specify

 

which

 

fields

 

are

 

null

 

with

 

a

 

character

 

’1’.

 

If

 

a

 

field

 

is

 

not

 

null

 

you

 

specify

 

the

 

character

 

’0’.

 

This

 

is

 

specified

 

in

 

the

 

null

 

field

 

map

 

pointed

 

to

 

by

 

the

 

out_null_map

 

pointer.

 

If

 

the

 

file

 

does

 

not

 

contain

 

any

 

null-capable

 

fields,

 

but

 

has

 

been

 

opened

 

with

 

nullcap=Y,

 

your

 

program

 

must

 

set

 

each

 

field

 

in

 

the

 

null

 

field

 

map

 

to

 

the

 

character

 

’0’.

 

This

 

must

 

be

 

done

 

prior

 

to

 

writing

 

any

 

data

 

to

 

the

 

file.

 

When

 

you

 

read

 

from

 

a

 

database

 

file,

 

the

 

corresponding

 

byte

 

in

 

the

 

null

 

field

 

map

 

is

 

indicated

 

with

 

a

 

character

 

’1’

 

if

 

the

 

field

 

is

 

considered

 

null.

 

This

 

is

 

specified

 

in

 

the

 

null

 

field

 

map

 

pointed

 

to

 

by

 

the

 

in_null_map

 

pointer.

 

The

 

null

 

key

 

field

 

map

 

consists

 

of

 

one

 

byte

 

for

 

each

 

field

 

in

 

the

 

key

 

for

 

the

 

current

 

record

 

format.

 

If

 

you

 

are

 

reading

 

a

 

database

 

file

 

by

 

key

 

which

 

has

 

null

 

fields,

 

you

 

must

 

first

 

indicate

 

in

 

the

 

null

 

key

 

map

 

pointed

 

to

 

by

 

null_key_map

 

which

 

fields

 

contain

 

null.

 

Specify

 

character

 

’1’

 

for

 

any

 

field

 

to

 

be

 

considered

 

null,

 

and

 

character

 

’0’

 

for

 

the

 

other

 

fields.

 

When

 

the

 

_Rupdate()

 

function

 

is

 

called

 

to

 

update

 

a

 

file

 

which

 

has

 

been

 

opened

 

to

 

allow

 

null

 

field

 

processing,

 

the

 

system

 

input

 

buffer

 

is

 

used.

 

As

 

a

 

result,

 

the

 

database

 

requires

 

that

 

an

 

input

 

null

 

field

 

map

 

be

 

provided

 

through

 

the

 

in_null_map

 

pointer.

 

Prior

 

to

 

calling

 

_Rupdate(),

 

the

 

user

 

must

 

clear

 

and

 

then

 

set

 

the

 

input

 

null

 

field

 

map

 

(using

 

the

 

in_null_map

 

pointer)

 

according

 

to

 

the

 

data

 

which

 

will

 

be

 

used

 

to

 

update

 

the

 

record.

   

Chapter

 

19.

 

Using

 

Database

 

Files

 

and

 

Distributed

 

Data

 

Management

 

Files

 

in

 

a

 

Program

 

253



You

 

can

 

use

 

the

 

#pragma

 

mapinc

 

directive

 

to

 

generate

 

typedefs

 

that

 

correspond

 

to

 

the

 

null

 

field

 

maps.

 

You

 

can

 

cast

 

the

 

null

 

field

 

map

 

pointers

 

in

 

the

 

_RFILE

 

structures

 

to

 

these

 

types

 

to

 

manipulate

 

these

 

maps.

 

Null

 

field

 

macros

 

have

 

also

 

been

 

provided

 

in

 

the

 

<recio.h>

 

file

 

to

 

assist

 

users

 

in

 

clearing

 

and

 

setting

 

the

 

null

 

field

 

maps

 

in

 

their

 

programs.

 

Opening

 

Database

 

and

 

DDM

 

Files

 

as

 

Record

 

Files

 

To

 

open

 

an

 

iSeries

 

database

 

file

 

as

 

a

 

record

 

file,

 

use

 

the

 

_Ropen()

 

function

 

with

 

one

 

of

 

the

 

following

 

modes:

 

v

   

rr

 

or

 

rr+

 

v

   

wr

 

or

 

wr+

 

v

   

ar

 

or

 

ar+

The

 

valid

 

keyword

 

parameters

 

for

 

database

 

and

 

DDM

 

files

 

are:

 

v

   

arrseq

 

v

   

blkrcd

 

v

   

commit

 

v

   

ccsid

 

v

   

dupkey

 

v

   

riofb

 

v

   

secure

 

v

   

varparm

 

v

   

vlr

 

v

   

rtncode

Record

 

Functions

 

for

 

Database

 

and

 

DDM

 

Files

 

Use

 

the

 

following

 

record

 

functions

 

to

 

process

 

database

 

and

 

DDM

 

files:

 

v

   

_Rclose()

 

v

   

_Rcommit()

 

v

   

_Rdelete()

 

v

   

_Rfeod()

 

v

   

_Rformat()

 

(multi-format

 

logical

 

files)

 

v

   

_Riofbk()

 

v

   

_Rlocate()

 

v

   

_Ropen()

 

v

   

_Ropnfbk()

 

v

   

_Rreadd()

 

v

   

_Rreadf()

 

v

   

_Rreadk()

 

v

   

_Rreadl()

 

v

   

_Rreadn()

 

v

   

_Rreadp()

 

v

   

_Rrlslck()

 

v

   

_Rrollbck()

 

v

   

_Rupfb()

 

v

   

_Rupdate()

   

254

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

_Rwrit()

 

v

   

_Rwrited()

I/O

 

Considerations

 

for

 

DDM

 

Files

 

DDM

 

files

 

may

 

be

 

accessed

 

as

 

program-described

 

files

 

(specify

 

the

 

remote

 

file

 

name

 

on

 

the

 

RMTFILE

 

parameter

 

of

 

the

 

CRTDDMF

 

command),

 

or

 

as

 

externally

 

described

 

files

 

(specify

 

the

 

remote

 

DDS

 

file

 

name

 

on

 

the

 

RMTFILE

 

parameter

 

of

 

the

 

CRTDDMF

 

command).

 

Opening

 

Database

 

and

 

DDM

 

Files

 

as

 

Binary

 

Stream

 

Files

 

To

 

open

 

an

 

iSeries

 

database

 

file

 

as

 

a

 

binary

 

stream

 

file

 

for

 

record-at-a-time

 

processing,

 

use

 

the

 

fopen()

 

function

 

with

 

one

 

of

 

the

 

following

 

modes:

 

v

   

rb

 

v

   

wb

 

v

   

ab

The

 

valid

 

keyword

 

parameters

 

for

 

database

 

and

 

DDM

 

files

 

are:

 

v

   

blksize

 

v

   

lrecl

 

v

   

type

 

v

   

commit

 

v

   

arrseq

 

v

   

ccsid

If

 

you

 

specify

 

a

 

database

 

or

 

a

 

DDM

 

file,

 

the

 

parameter

 

type

 

must

 

be

 

record.

 

Note:

  

The

 

physical

 

database

 

files

 

that

 

are

 

created

 

when

 

the

 

database

 

file

 

does

 

not

 

exist

 

(that

 

is,

 

where

 

the

 

open

 

mode

 

is

 

wb

 

or

 

ab)

 

are

 

equivalent

 

to

 

specifying

 

the

 

following

 

CL

 

command:

    

CRTPF

 

FILE(filename)

 

RCDLEN(lrecl)

 

Records

 

in

 

this

 

file

 

are

 

created

 

with

 

a

 

record

 

length

 

that

 

is

 

based

 

on

 

the

 

keyword

 

parameter

 

lrecl.

 

The

 

only

 

way

 

to

 

create

 

a

 

DDM

 

file

 

is

 

to

 

use

 

the

 

Create

 

DDM

 

File

 

(CRTDDMF)

 

command.

 

If

 

you

 

use

 

the

 

fopen()

 

function

 

with

 

a

 

mode

 

of

 

wb

 

or

 

ab,

 

and

 

the

 

DDM

 

file

 

exists

 

on

 

the

 

source

 

system

 

but

 

the

 

database

 

file

 

does

 

not

 

exist

 

on

 

the

 

remote

 

system,

 

a

 

physical

 

database

 

file

 

is

 

created

 

on

 

the

 

remote

 

system.

 

If

 

the

 

DDM

 

file

 

does

 

not

 

exist

 

on

 

the

 

source

 

system,

 

a

 

physical

 

database

 

file

 

is

 

created

 

on

 

the

 

source

 

system.

 

I/O

 

Considerations

 

for

 

Binary

 

Stream

 

Database

 

and

 

DDM

 

Files

 

If

 

the

 

database

 

file

 

contains

 

deleted

 

records,

 

the

 

deleted

 

records

 

are

 

skipped

 

by

 

all

 

binary

 

stream

 

I/O

 

functions.

 

Binary

 

stream

 

record-at-a-time

 

files

 

cannot

 

be

 

processed

 

by

 

key.

 

As

 

well,

 

they

 

can

 

only

 

be

 

opened

 

with

 

the

 

rb,

 

wb,

 

and

 

ab

 

modes.

 

Binary

 

Stream

 

Functions

 

for

 

Database

 

and

 

DDM

 

Files

 

Use

 

one

 

of

 

the

 

following

 

binary

 

stream

 

functions

 

to

 

process

 

database

 

files

 

and

 

DDM

 

files

 

one

 

record

 

at

 

time:

   

Chapter

 

19.

 

Using

 

Database

 

Files

 

and

 

Distributed

 

Data

 

Management

 

Files

 

in

 

a

 

Program

 

255



v

   

fclose()

 

v

   

fopen()

 

v

   

fread()

 

v

   

freopen()

 

v

   

fwrite()

Processing

 

a

 

Database

 

Record

 

File

 

in

 

Arrival

 

Sequence

 

You

 

can

 

copy

 

data

 

from

 

one

 

file

 

to

 

another

 

file

 

by

 

using

 

an

 

arrival

 

sequence

 

access

 

path.

 

The

 

records

 

are

 

accessed

 

in

 

the

 

file

 

in

 

the

 

same

 

order

 

in

 

which

 

they

 

are

 

added

 

to

 

the

 

file.

 

Instructions

 

The

 

following

 

example

 

copies

 

data

 

from

 

the

 

input

 

file

 

T1520ASI

 

to

 

the

 

output

 

file

 

T1520ASO

 

by

 

using

 

the

 

same

 

order

 

in

 

which

 

they

 

are

 

added

 

to

 

the

 

file

 

T1520ASI.

 

The

 

_Rreadn()

 

and

 

_Rwrite()

 

functions

 

are

 

used.

 

1.

   

To

 

create

 

an

 

input

 

file,

 

enter:

 

CRTPF

 

FILE(MYLIB/T1520ASI)

 

RCDLEN(300)

 

This

 

creates

 

a

 

physical

 

file

 

T1520ASI.

 

2.

   

Type

 

the

 

following

 

sample

 

data

 

into

 

T1520ASI:

 

joe

   

5

 

fred

  

6

 

wilma

 

7

 

3.

   

To

 

create

 

an

 

output

 

file,

 

enter:

 

CRTPF

 

FILE(MYLIB/T1520ASO)

 

RCDLEN(300)

 

This

 

creates

 

a

 

physical

 

file

 

T1520ASO.

 

4.

   

To

 

create

 

the

 

program,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520ASP)

 

SCRFILE(QCPPLE/QACSRC)

 

This

 

creates

 

the

 

program

 

T1520ASP

 

that

 

uses

 

the

 

source

 

code

 

in

 

Figure

 

128

 

on

 

page

 

257.

 

5.

   

To

 

run

 

the

 

program,

 

enter:

 

CALL

 

PGM(MYLIB/T1520ASP)

 

The

 

physical

 

file

 

T1520ASO

 

contains

 

the

 

following

 

data:

 

joe

   

5

 

fred

  

6

 

wilma

 

7

 

Source

 

Code

 

Sample

    

256

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Notes:

  

1.

   

This

 

program

 

uses

 

the

 

_Ropen()

 

function

 

to

 

open

 

the

 

input

 

file

 

T1520ASI

 

to

 

access

 

the

 

records

 

in

 

the

 

same

 

order

 

that

 

they

 

are

 

added.

 

2.

   

The

 

_Ropen()

 

function

 

also

 

opens

 

the

 

output

 

file

 

T1520ASO.

 

3.

   

The

 

_Rread()

 

function

 

reads

 

the

 

records

 

in

 

the

 

file

 

T1520ASI.

 

4.

   

The

 

_Rwrite()

 

function

 

writes

 

them

 

to

 

the

 

file

 

T1520ASO.

Processing

 

a

 

Database

 

Record

 

File

 

in

 

Keyed

 

Sequence

 

You

 

can

 

update

 

a

 

record

 

file

 

by

 

using

 

a

 

keyed

 

sequence

 

access

 

path.

 

The

 

records

 

are

 

arranged

 

based

 

on

 

the

 

contents

 

of

 

one

 

or

 

more

 

key

 

fields

 

in

 

the

 

record.

 

Example:

 

The

 

following

 

example

 

updates

 

data

 

in

 

the

 

record

 

file

 

T1520DD3

 

by

 

using

 

the

 

key

 

field

 

SERIALNUM.

 

The

 

_Rupdate()

 

function

 

is

 

used.

 

/*

 

This

 

program

 

illustrates

 

how

 

to

 

copy

 

records

 

from

 

one

 

file

 

to

    

*/

 

/*

 

another

 

file,

 

using

 

the

 

_Rreadn(),

 

and

 

_Rwrite()

 

functions.

      

*/

   

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<recio.h>

   

#define

 

_RCDLEN

 

300

   

int

 

main(void)

 

{

     

_RFILE

   

*in;

     

_RFILE

   

*out;

     

_RIOFB_T

 

*fb;

     

char

     

record[_RCDLEN];

   

/*

 

Open

 

the

 

input

 

file

 

for

 

processing

 

in

 

arrival

 

sequence.

         

*/�1�

       

if

 

(

 

(in

 

=

 

_Ropen("*LIBL/T1520ASI",

 

"rr,

 

arrseq=Y"))

 

==

 

NULL

 

)

     

{

         

printf("Open

 

failed

 

for

 

input

 

file\n");

         

exit(1);

     

};

 

/*

 

Open

 

the

 

output

 

file.

                                           

*/2�

 

�

    

if

 

(

 

(out

 

=

 

_Ropen("*LIBL/T1520ASO",

 

"wr"))

 

==

 

NULL

 

)

     

{

         

printf("Open

 

failed

 

for

 

output

 

file\n");

         

exit(2);

     

};

   

/*

 

Copy

 

the

 

file

 

until

 

the

 

end-of-file

 

condition

 

occurs.

           

*/

       

fb

 

=

 

_Rreadn(in,

 

record,

 

_RCDLEN,

 

__DFT);�3�

     

while

 

(

 

fb->num_bytes

 

!=

 

EOF

 

)

     

{

         

_Rwrite(out,

 

record,

 

_RCDLEN);�4�

         

fb

 

=

 

_Rreadn(in,

 

record,

 

_RCDLEN,

 

__DFT);

     

};

       

_Rclose(in);

     

_Rclose(out);

 

}

 

Figure

 

128.

 

T1520ASP

 

—

 

ILE

 

C

 

Source

 

to

 

Process

 

a

 

Database

 

Record

 

File

 

in

 

Arrival

 

Sequence

  

Chapter

 

19.

 

Using

 

Database

 

Files

 

and

 

Distributed

 

Data

 

Management

 

Files

 

in

 

a

 

Program

 

257



1.

   

On

 

the

 

command

 

line,

 

enter:

 

CRTPF

 

FILE(MYLIB/T1520DD3)

 

SRCFILE(QCPPLE/QADDSSRC)

 

To

 

create

 

the

 

physical

 

file

 

T1520DD3

 

that

 

uses

 

the

 

following

 

DDS

 

source:

  

2.

   

Enter

 

the

 

following

 

sample

 

data

 

into

 

T1520DD3:

 

orange

    

1000222200

 

grape

     

1000222010

 

apple

     

1000222030

 

cherry

    

1000222020

 

Although

 

you

 

enter

 

the

 

data

 

as

 

shown,

 

the

 

file

 

T1520DD3

 

is

 

accessed

 

by

 

the

 

program

 

T1520KSP

 

in

 

keyed

 

sequence.

 

Therefore

 

the

 

program

 

T1520KSP

 

reads

 

the

 

file

 

T1520DD3

 

in

 

the

 

following

 

sequence:

 

grape

     

1000222010

 

cherry

    

1000222020

 

apple

     

1000222030

 

orange

    

1000222200

 

3.

   

On

 

the

 

command

 

line,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520KSP)

 

SRCFILE(QCPPLE/QACSRC)

 

This

 

creates

 

the

 

program

 

T1520KSP,

 

using

 

the

 

following

 

source:

       

A

          

R

 

PURCHASE

      

A

            

ITEMNAME

      

10

      

A

            

SERIALNUM

     

10

      

A

          

K

 

SERIALNUM

 

Figure

 

129.

 

T1520DD3

 

—

 

DDS

 

Source

 

for

 

Database

 

Records

  

258

 

ILE

 

C/C++

 

Programmer’s

 

Guide



This

 

program

 

uses

 

the

 

_Ropen()

 

function

 

to

 

open

 

the

 

record

 

file

 

T1520DD3.

 

The

 

default

 

access

 

path

 

which

 

is

 

the

 

keyed

 

sequence

 

access

 

path

 

is

 

used

 

to

 

create

 

the

 

file

 

T1520DD3.

 

The

 

_Rlocate()

 

function

 

locks

 

the

 

first

 

record

 

in

 

the

 

keyed

 

sequence.

 

The

 

_Rupdate()

 

function

 

updates

 

the

 

record

 

that

 

is

 

locked

 

by

 

_Rlocate()

 

to

 

PEAR

 

1002022244.

 

(The

 

first

 

record

 

becomes

 

the

 

second

 

record

 

in

 

the

 

keyed

 

sequence

 

access

 

path

 

because

 

the

 

key

 

has

 

changed.)

 

4.

   

To

 

run

 

the

 

program

 

T1520KSP,

 

enter:

 

CALL

 

PGM(MYLIB/T1520KSP)

 

because

 

grape

 

is

 

the

 

first

 

record

 

in

 

the

 

keyed

 

sequence,

 

it

 

is

 

updated,

 

and

 

the

 

data

 

file

 

T1520DD3

 

is

 

as

 

follows:

 

orange

    

1000222200

 

PEAR

      

1002022244

 

apple

     

1000222030

 

cherry

    

1000222020

 

Processing

 

a

 

Database

 

Record

 

File

 

Using

 

Record

 

Input

 

and

 

Output

 

Functions

 

You

 

can

 

read

 

and

 

print

 

records

 

from

 

a

 

data

 

file.

 

Example:

 

/*

 

This

 

program

 

illustrates

 

how

 

to

 

update

 

a

 

record

 

in

 

a

 

file

 

using

    

*/

 

/*

 

the

 

_Rupdate()

 

function.

                                           

*/

   

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<recio.h>

   

int

 

main(void)

 

{

     

_RFILE

   

*in;

     

char

     

new_purchase[21]

 

=

 

"PEAR

      

1002022244";

   

/*

 

Open

 

the

 

file

 

for

 

processing

 

in

 

keyed

 

sequence.

 

File

 

is

 

created

    

*/

 

/*

 

with

 

the

 

default

 

access

 

path.

                                      

*/

       

if

 

(

 

(in

 

=

 

_Ropen("*LIBL/T1520DD3",

 

"rr+"))

 

==

 

NULL

 

)

     

{

         

printf("Open

 

failed\n");

         

exit(1);

     

};

 

/*

 

Update

 

the

 

first

 

record

 

in

 

the

 

keyed

 

sequence.

  

The

 

function

       

*/

 

/*

 

_Rlocate

 

locks

 

the

 

record.

                                         

*/

       

_Rlocate(in,

 

NULL,

 

0,

 

__FIRST);

     

_Rupdate(in,

 

new_purchase,

 

20);

 

/*

 

Force

 

the

 

end

 

of

 

data.

                                             

*/

       

_Rfeod(in);

       

_Rclose(in);

 

}

 

Figure

 

130.

 

T1520KSP

 

—

 

ILE

 

C

 

Source

 

to

 

Process

 

a

 

Database

 

Record

 

File

 

in

 

Keyed

 

Sequence

  

Chapter

 

19.

 

Using

 

Database

 

Files

 

and

 

Distributed

 

Data

 

Management

 

Files

 

in

 

a

 

Program

 

259



The

 

following

 

example

 

uses

 

the

 

_Ropen(),

 

_Rreadl(),

 

_Rreadp(),

 

_Rreads(),

 

_Rreadd(),

 

_Rreadf(),

 

_Rrlslck(),

 

_Rdelete(),

 

_Ropnfbk(),

 

and

 

_Rclose()

 

record

 

I/O

 

functions.

 

The

 

program

 

T1520REC

 

reads

 

and

 

prints

 

records

 

from

 

the

 

data

 

file

 

T1520DD4.

 

1.

   

On

 

the

 

command

 

line,

 

enter:

 

CRTPF

 

FILE(MYLIB/T1520DD4)

 

SRCFILE(QCPPLE/QADDSSRC)

 

This

 

creates

 

the

 

physical

 

file

 

T1520DD4

 

that

 

uses

 

the

 

following

 

DDS:

  

2.

   

Enter

 

the

 

following

 

sample

 

data

 

into

 

T1520DD4:

 

orange

    

1000222200

 

grape

     

1000222010

 

apple

     

1000222030

 

cherry

    

1000222020

 

3.

   

On

 

the

 

command

 

line,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520REC)

 

SRCFILE(QCPPLE/QACSRC).

 

This

 

creates

 

the

 

program

 

T1520REC

 

that

 

uses

 

the

 

following

 

source:

         

A

          

R

 

PURCHASE

      

A

            

ITEMNAME

      

10

      

A

            

SERIALNUM

     

10

      

A

          

K

 

SERIALNUM

 

Figure

 

131.

 

T1520DD4

 

—

 

DDS

 

Source

 

for

 

Database

 

Records

/*

 

This

 

program

 

illustrates

 

how

 

to

 

use

 

the

 

_Rreadp(),

 

_Rreads(),

      

*/

 

/*

 

_Rreadd(),

 

_Rreadf(),

 

_Rreadn(),

 

/*

 

_Ropnfbk(),

 

_Rdelete,

 

and

 

_Rrlslck()

 

functions.

                    

*/

   

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<recio.h>

   

int

 

main(void)

 

{

     

char

        

buf[21];

     

_RFILE

      

*fp;

     

_XXOPFB_T

    

*opfb;

 

/*

 

Open

 

the

 

file

 

for

 

processing

 

in

 

arrival

 

sequence.

                  

*/

       

if

 

((

 

fp

 

=

 

_Ropen

 

(

 

"*LIBL/T1520DD4",

 

"rr+,

 

arrseq=Y"

 

))

 

==

 

NULL

 

)

     

{

         

printf

 

(

 

"Open

 

failed\n"

 

);

         

exit

 

(

 

1

 

);

     

};

 

/*

 

Get

 

the

 

library

 

and

 

file

 

names

 

of

 

the

 

file

 

opened.

                 

*/

       

opfb

 

=

 

_Ropnfbk

 

(

 

fp

 

);

     

printf

 

(

 

"Library:

 

%10.10s\nFile:

    

%10.10s\n",

               

opfb->library_name,

               

opfb->file_name);

 

Figure

 

132.

 

T1520REC

 

—

 

ILE

 

C

 

Source

 

to

 

Process

 

a

 

Database

 

File

 

Using

 

Record

 

I/O

 

Functions

 

(Part

 

1

 

of

 

2)

  

260

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

_Ropen()

 

function

 

opens

 

the

 

file

 

T1520DD4.

 

The

 

_Ropnfbk()

 

function

 

gets

 

the

 

library

 

name

 

MYLIB

 

and

 

file

 

name

 

T1520DD4.

 

The

 

_Rreadl()

 

function

 

reads

 

the

 

fourth

 

record

 

"cherry

 

1000222020".

 

The

 

_Rreadp()

 

function

 

reads

 

the

 

third

 

record

 

"

 

apple

 

1000222030".

 

The

 

_Rrlslck()

 

function

 

releases

 

the

 

lock

 

on

 

this

 

record

 

so

 

that

 

_Rreads()

 

can

 

read

 

it

 

again.

 

The

 

_Rreadd()

 

function

 

reads

 

the

 

second

 

record

 

"grape

 

1000222010"

 

without

 

locking

 

it.

 

The

 

_Rreadf()

 

function

 

reads

 

the

 

first

 

record

 

"orange

 

1000222200".

 

The

 

_Rdelete()

 

function

 

deletes

 

the

 

second

 

record.

 

All

 

records

 

are

 

then

 

read

 

and

 

printed.

 

4.

   

Run

 

the

 

program

 

T1520REC.

 

On

 

the

 

command

 

line,

 

enter:

 

CALL

 

PGM(MYLIB/T1520REC)

 

/*

 

Get

 

the

 

last

 

record.

                                               

*/

       

_Rreadl

 

(

 

fp,

 

NULL,

 

20,

 

__DFT

 

);

     

printf

 

(

 

"Fourth

 

record:

 

%10.10s\n",

 

*(fp->in_buf)

 

);

   

/*

 

Get

 

the

 

third

 

record.

                                              

*/

       

_Rreadp

 

(

 

fp,

 

NULL,

 

20,

 

__DFT

 

);

     

printf

 

(

 

"Third

 

record:

  

%10.10s\n",

 

*(fp->in_buf)

 

);

   

/*

 

Release

 

lock

 

on

 

the

 

record

 

so

 

another

 

function

 

can

 

access

 

it.

     

*/

       

_Rrlslck

 

(

 

fp

 

);

 

/*

 

Read

 

the

 

same

 

record.

                                              

*/

       

_Rreads

 

(

 

fp,

 

NULL,

 

20,

 

__DFT

 

);

     

printf

 

(

 

"Same

 

record:

  

%10.10s\n",

 

*(fp->in_buf)

 

);

   

/*

 

Get

 

the

 

second

 

record

 

without

 

locking

 

it.

                          

*/

       

_Rreadd

 

(

 

fp,

 

NULL,

 

20,

 

__NO_LOCK,

 

2

 

);

     

printf

 

(

 

"Second

 

record:

 

%10.10s\n",

 

*(fp->in_buf)

 

);

   

/*

 

Get

 

the

 

first

 

record.

                                              

*/

       

_Rreadf

 

(

 

fp,

 

NULL,

 

20,

 

__DFT

 

);

     

printf

 

(

 

"First

 

record:

  

%10.10s\n",

 

*(fp->in_buf)

 

);

   

/*

 

Delete

 

the

 

second

 

record.

                                          

*/

       

_Rreadn

 

(

 

fp,

 

NULL,

 

20,

 

__DFT

 

);

     

_Rdelete

 

(

 

fp

 

);

   

/*

 

Read

 

all

 

records

 

after

 

deletion.

                                   

*/

       

_Rreadf

 

(

 

fp,

 

NULL,

 

20,

 

__DFT

 

);

     

printf

 

(

 

"First

 

record

 

after

 

deletion:

 

%10.10s\n",

 

*(fp->in_buf));

     

_Rreadn

 

(

 

fp,

 

NULL,

 

20,

 

__DFT

 

);

     

printf

 

(

 

"Second

 

record

 

after

 

deletion:

 

%10.10s\n",

 

*(fp->in_buf));

     

_Rreadn

 

(

 

fp,

 

NULL,

 

20,

 

__DFT

 

);

     

printf

 

(

 

"Third

 

record

 

after

 

deletion:

  

%10.10s\n",

 

*(fp->in_buf));

       

_Rclose

 

(

 

fp

 

);

 

}

 

Figure

 

132.

 

T1520REC

 

—

 

ILE

 

C

 

Source

 

to

 

Process

 

a

 

Database

 

File

 

Using

 

Record

 

I/O

 

Functions

 

(Part

 

2

 

of

 

2)

  

Chapter

 

19.

 

Using

 

Database

 

Files

 

and

 

Distributed

 

Data

 

Management

 

Files

 

in

 

a

 

Program

 

261



The

 

screen

 

output

 

is

 

as

 

follows:

   

Library:

 

MYLIB

   

File:

    

T1520DD4

   

Fourth

 

record:

 

cherry

   

Third

 

record:

  

apple

   

Same

 

record:

  

apple

   

Second

 

record:

 

grape

   

First

 

record:

  

orange

   

First

 

record

 

after

 

deletion:

 

orange

   

Second

 

record

 

after

 

deletion:

 

apple

   

Third

 

record

 

after

 

deletion:

  

cherry

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

The

 

physical

 

file

 

T1520DD4

 

contains

 

the

 

following

 

data:

 

ORANGE

    

1000222200

 

APPLE

     

1000222030

 

CHERRY

    

1000222020

 

Synchronizing

 

Database

 

File

 

Changes

 

in

 

a

 

Single

 

Job

 

Commitment

 

control

 

is

 

a

 

means

 

of

 

grouping

 

file

 

operations

 

as

 

a

 

single

 

unit

 

so

 

that

 

you

 

can

 

synchronize

 

changes

 

to

 

database

 

files

 

in

 

a

 

single

 

job.

 

Before

 

you

 

can

 

start

 

commitment

 

control,

 

you

 

must

 

ensure

 

that

 

all

 

the

 

database

 

files

 

you

 

want

 

processed

 

as

 

one

 

unit

 

are

 

in

 

a

 

singlecommitment

 

control

 

environment.

 

All

 

the

 

files

 

within

 

this

 

environment

 

must

 

be

 

journaled

 

to

 

the

 

same

 

journal.

 

Use

 

the

 

CL

 

commands

 

Create

 

Journal

 

Receiver

 

(CRTJRNRCV),

 

Create

 

Journal

 

(CRTJRN)

 

and

 

Start

 

Journal

 

Physical

 

File

 

(STRJRNPF)

 

to

 

prepare

 

for

 

the

 

journaling

 

environment.

 

Once

 

the

 

journaling

 

environment

 

is

 

established,

 

you

 

can

 

use

 

the

 

following

 

commands:

 

v

   

Start

 

Commitment

 

Control

 

(STRCMTCTL)

 

v

   

CALL

 

program-name

 

v

   

End

 

Commitment

 

Control

 

(ENDCMTCTL)

You

 

can

 

use

 

commitment

 

control

 

to

 

define

 

and

 

process

 

several

 

changes

 

to

 

database

 

files

 

as

 

a

 

single

 

transaction.

 

Example:

 

The

 

following

 

example

 

uses

 

commitment

 

control.

 

Purchase

 

orders

 

are

 

entered

 

and

 

logged

 

in

 

two

 

files,

 

T1520DD5

 

for

 

daily

 

transactions,

 

and

 

T1520DD6

 

for

 

monthly

 

transactions.

 

Journal

 

entries

 

that

 

reflect

 

the

 

changes

 

that

 

are

 

made

 

to

 

T1520DD5

 

and

 

T1520DD6

 

are

 

kept

 

in

 

the

 

journal

 

JRN.

 

1.

   

Prepare

 

the

 

journaling

 

environment:

 

a.

   

On

 

the

 

command

 

line,

 

enter:

 

CRTPF

 

FILE(QTEMP/T1520DD5)

 

SRCFILE(QCPPLE/QADDSSRC)

 

This

 

creates

 

the

 

physical

 

file

 

T1520DD5

 

using

 

the

 

DDS

 

source

 

shown

 

below:

    

262

 

ILE

 

C/C++

 

Programmer’s

 

Guide



b.

   

On

 

the

 

command

 

line

 

enter:

 

CRTPF

 

FILE(QTEMP/T1520DD6)

 

SRCFILE(QCPPLE/QADDSSRC)

 

This

 

creates

 

the

 

physical

 

file

 

T1520DD6

 

using

 

the

 

DDS

 

source

 

shown

 

below:

 

type:

 

c.

   

On

 

the

 

command

 

line,

 

enter:

 

CRTPF

 

FILE(MYLIB/NFTOBJ)

 

RCDLEN(19)

 

This

 

creates

 

the

 

physical

 

file

 

NFTOBJ

 

for

 

notification

 

text.

Note:

  

Notification

 

text

 

is

 

sent

 

to

 

the

 

file

 

NFTOBJ

 

when

 

the

 

ILE

 

C

 

program

 

T1520COM

 

that

 

uses

 

commitment

 

control

 

is

 

run.

 

d.

   

On

 

the

 

command

 

line,

 

enter:

 

CRTDSPF

 

FILE(QTEMP/T1520DD7)

 

SRCFILE(QCPPLE/QADDSSRC)

 

This

 

creates

 

the

 

display

 

file

 

T1520DD7

 

using

 

the

 

DDS

 

source

 

shown

 

below:

 

e.

   

On

 

the

 

command

 

line,

 

enter:

      

A

          

R

 

PURCHASE

      

A

            

ITEMNAME

      

30

      

A

            

SERIALNUM

     

10

 

Figure

 

133.

 

T1520DD5

 

—

 

DDS

 

Source

 

for

 

Daily

 

Transactions

     

A

          

R

 

PURCHASE

      

A

            

ITEMNAME

      

30

      

A

            

SERIALNUM

     

10

 

Figure

 

134.

 

T1520DD6

 

—

 

DDS

 

Source

 

for

 

Monthly

 

Transactions

     

A

                                      

DSPSIZ(24

 

80

 

*DS3)

      

A

                                      

REF(QTEMP/T1520DD5)

      

A

                                      

INDARA

      

A

                                      

CF03(03

 

’EXIT

 

ORDER

 

ENTRY’)

      

A

          

R

 

PURCHASE

      

A

                                  

3

 

32’PURCHASE

 

ORDER

 

FORM’

      

A

                                      

DSPATR(UL)

      

A

                                      

DSPATR(HI)

      

A

                                 

10

 

20’ITEM

 

NAME

     

:’

      

A

                                      

DSPATR(HI)

      

A

                                 

12

 

20’SERIAL

 

NUMBER

 

:’

      

A

                                      

DSPATR(HI)

      

A

            

ITEMNAME

  

R

        

I

 

10

 

37

      

A

            

SERIALNUM

 

R

        

I

 

12

 

37

      

A

                                 

23

 

34’F3

 

-

 

Exit’

      

A

                                      

DSPATR(HI)

      

A

          

R

 

ERROR

      

A

                                  

6

 

28’ERROR:

  

Write

 

failed’

      

A

                                      

DSPATR(BL)

      

A

                                      

DSPATR(UL)

      

A

                                      

DSPATR(HI)

      

A

                                 

10

 

26’Purchase

 

order

 

entry

 

ended’

 

Figure

 

135.

 

T1520DD7

 

—

 

DDS

 

Source

 

for

 

a

 

Purchase

 

Order

 

Display

  

Chapter

 

19.

 

Using

 

Database

 

Files

 

and

 

Distributed

 

Data

 

Management

 

Files

 

in

 

a

 

Program

 

263



CRTJRNRCV

 

JRNRCV(MYLIB/JRNRCV)

 

This

 

creates

 

the

 

journal

 

receiver

 

JRNRCV.

Note:

  

Journal

 

entries

 

are

 

placed

 

in

 

JRNRCV

 

when

 

the

 

application

 

is

 

run.

 

f.

   

On

 

the

 

command

 

line,

 

enter:

 

CRTJRN

 

JRN(MYLIB/JRN)

 

JRNRCV(MYLIB/JRNRCV)

 

This

 

creates

 

the

 

journal

 

JRN

 

and

 

attaches

 

the

 

journal

 

receiver

 

JRNRCV

 

to

 

it.

 

g.

   

On

 

the

 

command

 

line,

 

enter:

 

STRJRNPF

 

FILE(QTEMP/T1520DD5

 

QTEMP/T1520DD6)

 

JRN(MYLIB/JRN)

 

IMAGES(*BOTH)

 

This

 

starts

 

journaling

 

the

 

changes

 

that

 

are

 

made

 

to

 

T1520DD5

 

and

 

T1520DD6

 

in

 

the

 

journal

 

JRN.

 

h.

   

On

 

the

 

command

 

line,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520COM)

 

SRCFILE(QCPPLE/QACSRC)

 

This

 

creates

 

the

 

program

 

T1520COM

 

using

 

the

 

program

 

source

 

shown

 

below:

    

264

 

ILE

 

C/C++

 

Programmer’s

 

Guide



/*

 

This

 

program

 

illustrates

 

how

 

to

 

use

 

commitment

 

control

 

using

 

the

   

*/

 

/*

 

_Rcommit()

 

function

 

and

 

to

 

rollback

 

a

 

transaction

 

using

 

the

        

*/

 

/*

 

_Rollbck()

 

function.

                                               

*/

   

#include

 

<stdio.h>

 

#include

 

<recio.h>

 

#include

 

<stdlib.h>

 

#include

 

<string.h>

   

#define

  

PF03

     

2

 

#define

  

IND_OFF

 

’0’

 

#define

  

IND_ON

  

’1’

 

int

 

main(void)

 

{

   

char

       

buf[40];

   

int

        

rc

 

=

 

1;

   

_SYSindara

 

ind_area;

   

_RFILE

     

*purf;

   

_RFILE

     

*dailyf;

   

_RFILE

     

*monthlyf;

   

/*

 

Open

 

purchase

 

display

 

file,

 

daily

 

transaction

 

file

 

and

 

monthly

     

*/

 

/*

 

transaction

 

file.

                                                  

*/

    

if

 

(

 

(

 

purf

 

=

 

_Ropen

 

(

 

"*LIBL/T1520DD7",

 

"ar+,indicators=y"

 

))

 

==

 

NULL

 

)

   

{

       

printf

 

(

 

"Display

 

file

 

did

 

not

 

open.\n"

 

);

       

exit

 

(

 

1

 

);

   

}

   

if

 

(

 

(

 

dailyf

 

=

 

_Ropen

 

(

 

"*LIBL/T1520DD5",

 

"wr,commit=y")

 

)

 

==

 

NULL

 

)

   

{

       

printf

 

(

 

"Daily

 

transaction

 

file

 

did

 

not

 

open.\n"

 

);

       

exit

 

(

 

2

 

);

   

}

     

if

 

(

 

(

 

monthlyf

 

=

 

_Ropen

 

(

 

"*LIBL/T1520DD6","ar,commit=y")

 

)

 

==

 

NULL

 

)

   

{

       

printf

 

(

 

"Monthly

 

transaction

 

file

 

did

 

not

 

open.\n"

 

);

       

exit

 

(

 

3

 

);

   

}

   

/*

 

The

 

associate

 

separate

 

indicator

 

area

 

with

 

the

 

purchase

 

file.

      

*/

   

_Rindara

 

(

 

purf,

 

ind_area

 

);

   

/*

 

Select

 

the

 

purchase

 

record

 

format.

                                 

*/

   

_Rformat

 

(

 

purf,

 

"PURCHASE"

 

);

   

/*

 

Invite

 

the

 

user

 

to

 

enter

 

a

 

purchase

 

transaction.

                   

*/

 

/*

 

The

 

_Rwrite

 

function

 

writes

 

the

 

purchase

 

display.

                  

*/

     

_Rwrite

 

(

 

purf,

 

"",

 

0

 

);

   

_Rreadn

 

(

 

purf,

 

buf,

 

sizeof(buf),

 

__DFT

 

);

 

/*

 

While

 

the

 

user

 

is

 

entering

 

transactions,

 

update

 

daily

 

and

          

*/

 

/*

 

monthly

 

transaction

 

files.

                                         

*/

 

Figure

 

136.

 

T1520COM

 

—

 

ILE

 

C

 

Source

 

to

 

Group

 

File

 

Operations

 

Using

 

Commitment

 

Control

 

(Part

 

1

 

of

 

2)

  

Chapter

 

19.

 

Using

 

Database

 

Files

 

and

 

Distributed

 

Data

 

Management

 

Files

 

in

 

a

 

Program

 

265



The

 

_Ropen()

 

function

 

opens

 

the

 

purchase

 

display

 

file,

 

the

 

daily

 

transaction

 

file,

 

and

 

the

 

monthly

 

transaction

 

file.

 

The

 

_Rindara()

 

function

 

identifies

 

a

 

separate

 

indicator

 

area

 

for

 

the

 

purchase

 

file.

 

The

 

_Rformat()

 

function

 

selects

 

the

 

purchase

 

record

 

format

 

defined

 

in

 

T1520DD7.

 

The

 

_Rwrite()

 

function

 

writes

 

the

 

purchase

 

order

 

display.

 

Data

 

that

 

is

 

entered

 

updates

 

the

 

daily

 

and

 

monthly

 

transaction

 

files

 

T1520DD5

 

and

 

T1520DD6.

 

The

 

transactions

 

are

 

committed

 

to

 

these

 

database

 

files

 

that

 

use

 

the

 

_Rcommit()

 

function.
2.

   

Run

 

program

 

T1520COM

 

under

 

commitment

 

control.

 

On

 

the

 

command

 

line,

 

enter:

 

STRCMTCTL

 

LCKLVL(*CHG)

 

NFYOBJ(MYLIB/NFTOBJ

 

(*FILE))

 

CMTSCOPE(*JOB)

 

CALL

 

PGM(MYLIB/T1520COM)

 

The

 

display

 

appears

 

as

 

follows:

                                

PURCHASE

 

ORDER

 

FORM

                                

ITEM

 

NAME

     

:

                      

SERIAL

 

NUMBER

 

:

                                                      

F3

 

-

 

Exit

    

while

 

(

 

rc

 

&&

 

ind_area[PF03]

 

==

 

IND_OFF

 

)

   

{

       

rc

 

=

 

((

 

_Rwrite

 

(

 

dailyf,

 

buf,

 

sizeof(buf)

 

))->num_bytes

 

);

       

rc

 

=

 

rc

 

&&

 

(

 

_Rwrite

 

(

 

monthlyf,

 

buf,

 

sizeof(buf)

 

))->num_bytes;

       

/*

 

If

 

the

 

databases

 

were

 

updated,

 

then

 

commit

 

transaction.

            

*/

     

/*

 

Otherwise,

 

rollback

 

the

 

transaction

 

and

 

indicate

 

to

 

the

            

*/

     

/*

 

user

 

that

 

an

 

error

 

has

 

occurred

 

and

 

end

 

the

 

application.

           

*/

       

if

 

(

 

rc

 

)

     

{

         

_Rcommit

 

(

 

"Transaction

 

complete"

 

);

     

}

     

else

     

{

         

_Rrollbck

 

(

 

);

         

_Rformat

 

(

 

purf,

 

"ERROR"

 

);

     

}

     

_Rwrite

 

(

 

purf,

 

"",

 

0

 

);

     

_Rreadn

 

(

 

purf,

 

buf,

 

sizeof(buf),

 

__DFT

 

);

   

}

 

}

 

Figure

 

136.

 

T1520COM

 

—

 

ILE

 

C

 

Source

 

to

 

Group

 

File

 

Operations

 

Using

 

Commitment

 

Control

 

(Part

 

2

 

of

 

2)

  

266

 

ILE

 

C/C++

 

Programmer’s

 

Guide



3.

   

Fill

 

out

 

the

 

online

 

Purchase

 

Order

 

Form,

 

using

 

the

 

following

 

sample

 

data:

 

TABLE

                         

12345

 

BENCH

                         

43623

 

CHAIR

                         

62513

 

After

 

an

 

item

 

and

 

serial

 

number

 

are

 

entered,

 

T1520DD5

 

and

 

T1520DD6

 

files

 

are

 

updated.

 

The

 

daily

 

transaction

 

file

 

T1520DD5

 

file

 

contains

 

the

 

sample

 

data

 

after

 

all

 

three

 

purchase

 

order

 

items

 

are

 

entered.

 

4.

   

End

 

commitment

 

control.

 

On

 

the

 

command

 

line,

 

enter:

 

ENDCMTCTL

 

The

 

journal

 

JRN

 

contains

 

entries

 

that

 

correspond

 

to

 

changes

 

that

 

are

 

made

 

to

 

T1520DD5

 

and

 

T1520DD6.

Blocking

 

Records

 

You

 

can

 

use

 

record

 

blocking

 

to

 

improve

 

the

 

performance

 

of

 

I/O

 

operations

 

on

 

files

 

that

 

are

 

opened

 

for

 

input

 

or

 

output

 

only.

 

Specify

 

the

 

blksize=value

 

parameter

 

on

 

a

 

call

 

to

 

the

 

fopen()

 

function

 

or

 

the

 

blkrcd=y

 

on

 

a

 

call

 

to

 

the

 

_Ropen()

 

function

 

to

 

turn

 

on

 

record

 

blocking.

 

In

 

some

 

situations,

 

the

 

operating

 

system

 

will

 

return

 

only

 

one

 

record

 

in

 

the

 

block

 

when

 

processing

 

a

 

file.

 

In

 

these

 

cases

 

there

 

is

 

no

 

performance

 

gain.

 

You

 

can

 

turn

 

off

 

record

 

blocking

 

without

 

changing

 

your

 

program

 

by

 

specifying

 

SEQONLY(*YES)

 

on

 

the

 

OVRDBF

 

command.

 

Note:

  

When

 

record

 

blocking

 

is

 

in

 

effect,

 

the

 

I/O

 

feedback

 

structure

 

is

 

updated

 

only

 

when

 

a

 

block

 

of

 

records

 

is

 

transferred

 

between

 

your

 

program

 

and

 

the

 

system.

  

Chapter

 

19.

 

Using

 

Database

 

Files

 

and

 

Distributed

 

Data

 

Management

 

Files

 

in

 

a

 

Program

 

267



268

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

This

 

chapter

 

describes

 

how

 

to:

 

v

   

Use

 

OS/400

 

feedback

 

areas

 

for

 

all

 

device

 

files.

 

v

   

Use

 

indicators

 

to

 

transfer

 

information

 

between

 

a

 

program

 

and

 

the

 

system.

 

v

   

Establish

 

a

 

default

 

program

 

device.

 

v

   

Change

 

a

 

default

 

program

 

device.

 

v

   

Obtain

 

feedback

 

information.

 

v

   

Use

 

display

 

files

 

and

 

subfiles.

 

v

   

Use

 

Intersystem

 

Communication

 

Files.

 

v

   

Use

 

printer

 

files.

 

v

   

Write

 

source

 

statements

 

to

 

a

 

tape

 

file.

 

v

   

Write

 

source

 

statements

 

to

 

a

 

diskette

 

file.

 

v

   

Use

 

save

 

files.

Using

 

OS/400

 

Feedback

 

Areas

 

for

 

all

 

Device

 

Files

 

To

 

access

 

the

 

device

 

attributes

 

feedback

 

area,

 

use

 

the

 

_Rdevatr()

 

function.

 

To

 

use

 

stream

 

files

 

(type=record)

 

with

 

record

 

I/O

 

functions,

 

you

 

must

 

cast

 

the

 

FILE

 

pointer

 

to

 

an

 

_RFILE

 

pointer.

 

Using

 

Indicators

 

to

 

Transfer

 

Information

 

Indicators

 

allow

 

information

 

to

 

be

 

passed

 

from

 

a

 

program

 

to

 

the

 

system

 

or

 

from

 

the

 

system

 

to

 

a

 

program.

 

Display,

 

ICF,

 

and

 

printer

 

files

 

can

 

make

 

use

 

of

 

indicators.

 

Indicators

 

are

 

boolean

 

data

 

items

 

that

 

can

 

contain

 

a

 

character

 

value

 

of

 

either

 

1

 

or

 

0.

 

This

 

section

 

describes:

 

v

   

Types

 

of

 

indicators

 

v

   

Separate

 

indicator

 

areas

 

v

   

Major

 

and

 

minor

 

return

 

codes

 

v

   

Returning

 

indicators

 

to

 

the

 

file

 

buffer

For

 

records

 

that

 

are

 

either

 

read

 

or

 

written

 

by

 

a

 

program,

 

you

 

can

 

specify

 

indicators:

 

v

   

As

 

part

 

of

 

the

 

file

 

buffer

 

v

   

In

 

a

 

separate

 

indicator

 

area

Types

 

of

 

Indicators

 

There

 

are

 

two

 

types

 

of

 

indicators:

 

Option

 

indicators

 

pass

 

information

 

from

 

a

 

program

 

to

 

the

 

system.

 

For

 

example,

 

they

 

can

 

control

 

which

 

fields

 

in

 

a

 

record

 

can

 

be

 

displayed.

 

Response

 

indicators

 

pass

 

information

 

from

 

the

 

system

 

to

 

an

 

application

 

when

 

an

 

input

 

request

 

finishes.

 

For

 

example,

 

they

 

can

 

be

 

used

 

to

 

inform

 

the

 

program

 

which

 

function

 

keys

 

were

 

pressed

 

by

 

the

 

workstation

 

user.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

269



To

 

use

 

indicators,

 

the

 

display,

 

ICF,

 

and

 

printer

 

files

 

must

 

be

 

defined

 

as

 

an

 

externally

 

described

 

file.

 

The

 

data

 

description

 

specification

 

(DDS)

 

for

 

the

 

externally

 

described

 

display

 

file

 

must

 

contain

 

a

 

one-character

 

INDICATOR

 

field

 

for

 

each

 

indicator.

 

Indicators

 

are

 

either

 

in

 

the

 

records

 

read

 

or

 

written

 

by

 

the

 

program

 

(the

 

indicators

 

are

 

in

 

the

 

file

 

buffer)

 

or

 

in

 

a

 

separate

 

indicator

 

area.

 

Separate

 

Indicator

 

Areas

 

An

 

indicator

 

area

 

is

 

a

 

99-element

 

character

 

array

 

with

 

indices

 

from

 

0-98.

 

If

 

you

 

specify

 

the

 

INDARA

 

keyword

 

(indicators=y)

 

in

 

the

 

DDS,

 

the

 

indicators

 

for

 

the

 

display,

 

ICF,

 

and

 

printer

 

files

 

are

 

returned

 

in

 

a

 

separate

 

indicator

 

area.

 

Use

 

the

 

_Rindara()

 

function

 

to

 

identify

 

the

 

separate

 

indicator

 

buffer

 

associated

 

with

 

the

 

file.

 

If

 

you

 

do

 

not

 

specify

 

the

 

INDARA

 

keyword

 

in

 

the

 

DDS,

 

the

 

indicators

 

for

 

the

 

display,

 

ICF,

 

or

 

printer

 

file

 

will

 

be

 

specified

 

in

 

the

 

record

 

buffer.

 

The

 

number

 

and

 

order

 

of

 

the

 

indicators

 

that

 

are

 

defined

 

in

 

the

 

DDS

 

determine

 

the

 

number

 

and

 

order

 

of

 

the

 

indicators

 

in

 

the

 

record

 

buffer.

 

Indicators

 

are

 

always

 

positioned

 

first

 

in

 

the

 

record

 

buffer.

 

The

 

in_buf

 

and

 

out_buf

 

pointers

 

in

 

the

 

_RFILE

 

structure

 

point

 

to

 

the

 

input

 

and

 

output

 

record

 

buffers

 

for

 

a

 

file.

 

Major

 

and

 

Minor

 

Return

 

Codes

 

Major

 

and

 

minor

 

return

 

codes

 

are

 

used

 

to

 

report

 

certain

 

status

 

information

 

for

 

display,

 

ICF,

 

and

 

printer

 

files.

 

If

 

the

 

major

 

return

 

code

 

is

 

00,

 

the

 

operation

 

completed

 

successfully.

 

If

 

an

 

error

 

occurs

 

with

 

a

 

display,

 

ICF,

 

or

 

printer

 

file

 

your

 

program

 

should

 

handle

 

it

 

as

 

it

 

occurs.

 

After

 

a

 

read

 

(_Rreadindv()

 

or

 

_Rreadn())

 

or

 

write

 

(_Rwrite())

 

operation,

 

the

 

sysparm

 

field

 

in

 

the

 

_RIOFB_T

 

structure

 

points

 

to

 

the

 

major/minor

 

return

 

code

 

for

 

the

 

display,

 

ICF

 

or

 

printer

 

files.

 

The

 

header

 

file

 

<recio.h>

 

declares

 

the

 

_RIOFB_T

 

structure.

 

Your

 

program

 

should

 

test

 

the

 

return

 

code

 

after

 

each

 

I/O

 

operation

 

and

 

define

 

any

 

error

 

handling

 

operations

 

that

 

are

 

based

 

on

 

the

 

major/minor

 

return

 

code.

 

The

 

Application

 

Display

 

Programming

 

manual

 

describes

 

major

 

and

 

minor

 

return

 

codes

 

and

 

their

 

meanings

 

for

 

display

 

files.

 

The

 

Printer

 

Device

 

Programming

 

manual

 

describes

 

major

 

and

 

minor

 

return

 

codes

 

and

 

their

 

meanings

 

for

 

printer

 

files.

 

Example:

 

Returning

 

Indicators

 

to

 

a

 

Separate

 

Indicator

 

Area

 

You

 

can

 

specify

 

indicators

 

in

 

records

 

to

 

be

 

read

 

or

 

written

 

by

 

a

 

program

 

in

 

a

 

separate

 

indicator

 

area

 

using

 

the

 

INDARA

 

keyword

 

in

 

DDS.

 

The

 

following

 

example

 

illustrates

 

how

 

indicators

 

are

 

returned

 

in

 

a

 

separate

 

indicator

 

area.

 

The

 

INDARA

 

keyword

 

that

 

is

 

specified

 

in

 

the

 

DDS

 

means

 

that

 

the

 

indicator

 

for

 

the

 

display

 

is

 

returned

 

to

 

a

 

separate

 

indicator

 

area.

 

Instructions

 

1.

   

To

 

create

 

the

 

display

 

file

 

T1520DD0

 

using

 

the

 

DDS

 

source

 

shown

 

below,

 

enter:

 

CRTDSPF

 

FILE(MYLIB/T1520DD0)

 

SRCFILE(QCPPLE/QADDSSRC)

 

Figure

 

137

 

on

 

page

 

271

 

shows

 

the

 

DDS

 

source.

 

2.

   

To

 

create

 

the

 

program

 

T1520ID2,

 

using

 

the

 

source

 

shown

 

in

 

Figure

 

138

 

on

 

page

 

272,

 

enter:

   

270

 

ILE

 

C/C++

 

Programmer’s

 

Guide



CRTBNDC

 

PGM(MYLIB/T1520ID2)

 

SRCFILE(QCPPLE/QACSRC)

 

3.

   

To

 

run

 

the

 

program

 

T1520ID2,

 

enter:

 

CALL

 

PGM(MYLIB/T1520ID2)

 

The

 

output

 

is

 

as

 

follows:

                                     

PHONE

 

BOOK

                            

Name:

                         

Address:

                         

Phone

 

#:

                                            

F3

 

-

 

EXIT

 

Source

 

Code

 

Samples

        

A

                                      

INDARA

      

A

          

R

 

PHONE

      

A

                                      

CF03(03

 

’EXIT’)

      

A

                                  

1

 

35’PHONE

 

BOOK’

      

A

                                      

DSPATR(HI)

      

A

                                  

7

 

28’Name:’

      

A

            

NAME

          

11A

  

I

  

7

 

34

      

A

                                  

9

 

25’Address:’

      

A

            

ADDRESS

       

20A

  

I

  

9

 

34

      

A

                                 

11

 

25’Phone

 

#:’

      

A

            

PHONE_NUM

      

8A

  

I

 

11

 

34

      

A

                                 

23

 

34’F3

 

-

 

EXIT’

                                             

DSPATR(HI)

 

Figure

 

137.

 

T1520DD0

 

—

 

DDS

 

Source

 

for

 

a

 

Phone

 

Book

 

Display

  

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

271



Note:

  

This

 

program

 

uses

 

response

 

indicators

 

IND_ON

 

’1’

 

and

 

F3

 

2

 

to

 

inform

 

the

 

ILE

 

C

 

program

 

T1520ID2

 

that

 

a

 

user

 

pressed

 

F3.

 

The

 

_Rindara()

 

function

 

accesses

 

the

 

separate

 

indicator

 

buffer

 

indicator_area

 

associated

 

with

 

the

 

externally

 

described

 

file

 

T1520DD0.

 

The

 

display

 

file

 

T1520DD0

 

is

 

opened

 

with

 

the

 

keyword

 

indicators=yes

 

to

 

return

 

the

 

indicator

 

to

 

a

 

separate

 

area.

 

Example:

 

Returning

 

Indicators

 

to

 

the

 

File

 

Buffer

 

The

 

following

 

example

 

shows

 

how

 

to

 

specify

 

an

 

indicator

 

in

 

a

 

record

 

that

 

is

 

read

 

by

 

program

 

T1520ID1.

 

The

 

indicator

 

is

 

placed

 

in

 

the

 

file

 

buffer

 

of

 

an

 

externally

 

described

 

file.

 

The

 

DDS

 

for

 

the

 

externally

 

described

 

file

 

contains

 

one

 

character

 

indicator

 

field.

 

Instructions

 

1.

   

To

 

create

 

the

 

display

 

file

 

T1520DD9,

 

enter:

 

CRTDSPF

 

FILE(MYLIB/T1520DD9)

 

SRCFILE(QCPPLE/QADDSSRC)

 

Figure

 

139

 

on

 

page

 

273

 

shows

 

the

 

DDS

 

source.

 

/*

  

This

 

program

 

uses

 

response

 

indicators

 

to

 

inform

 

the

 

program

 

that

  

*/

 

/*

  

F3

 

was

 

pressed

 

by

 

a

 

user

 

to

 

indicate

 

that

 

an

 

input

 

request

        

*/

 

/*

  

finished.

 

The

 

response

 

indicators

 

are

 

returned

 

in

 

a

 

separate

      

*/

 

/*

  

indicator

 

area.

                                                   

*/

 

#include

 

<stdio.h>

 

#include

 

<recio.h>

 

#include

 

<stdlib.h>

 

typedef

 

struct{

                

char

 

name[11];

                

char

 

address[20];

                

char

 

phone_num[8];

               

}info;

 

#define

 

IND_ON

 

’1’

 

#define

 

F3

      

2

   

int

 

main(void)

 

{

    

_RFILE

     

*fp;

    

_RIOFB_T

   

*rfb;

    

info

       

phone_list;

    

_SYSindara

 

indicator_area;

     

if

 

((

 

fp

 

=

 

_Ropen

 

(

 

"*LIBL/T1520DD0",

 

"ar+

 

indicators=y"

 

))

 

==

 

NULL

 

)

     

{

         

printf

 

(

 

"display

 

file

 

open

 

failed\n"

 

);

         

exit

 

(

 

1

 

);

     

}

     

_Rindara

 

(

 

fp,

 

indicator_area

 

);

     

_Rformat

 

(

 

fp,

 

"PHONE"

 

);

     

rfb

 

=

 

_Rwrite

 

(

 

fp,

 

"",

 

0

 

);

     

rfb

 

=

 

_Rreadn

 

(

 

fp,

 

&phone_list,

 

sizeof(phone_list),

 

__DFT

 

);

     

if

 

(

 

indicator_area[F3]

 

==

 

IND_ON

 

)

     

{

         

printf

 

(

 

"user

 

pressed

 

F3\n"

 

);

     

}

     

_Rclose

 

(

 

fp

 

);

 

}

 

Figure

 

138.

 

T1520ID2

 

—

 

ILE

 

C

 

Source

 

to

 

Specify

 

Indicators

 

in

 

a

 

Separate

 

Indicator

 

Area

  

272

 

ILE

 

C/C++

 

Programmer’s

 

Guide



2.

   

To

 

create

 

the

 

program

 

T1520ID1

 

using

 

the

 

program

 

source

 

shown

 

in

 

Figure

 

140,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520ID1)

 

SRCFILE(QCPPLE/QACSRC)

 

3.

   

To

 

run

 

the

 

program

 

T1520ID1,

 

enter:

 

CALL

 

PGM(MYLIB/T1520ID1)

 

The

 

output

 

is

 

as

 

follows:

                                   

PHONE

 

BOOK

                            

Name:

                         

Address:

                         

Phone

 

#:

                                  

F3

 

-

 

EXIT

 

Code

 

Samples

          

A

          

R

 

PHONE

      

A

                                      

CF03(03

 

’EXIT’)

      

A

                                  

1

 

35’PHONE

 

BOOK’

      

A

                                      

DSPATR(HI)

      

A

                                  

7

 

28’Name:’

      

A

            

NAME

          

11A

  

I

  

7

 

34

      

A

                                  

9

 

25’Address:’

      

A

            

ADDRESS

       

20A

  

I

  

9

 

34

      

A

                                 

11

 

25’Phone

 

#:’

      

A

            

PHONE_NUM

      

8A

  

I

 

11

 

34

      

A

                                 

23

 

34’F3

 

-

 

EXIT’

      

A

                                      

DSPATR(HI)

 

Figure

 

139.

 

T1520DD9

 

—

 

DDS

 

Source

 

for

 

a

 

Phone

 

Book

 

Display

/*

  

This

 

program

 

uses

 

a

 

response

 

indicator

 

to

 

inform

 

the

 

program

      

*/

 

/*

  

that

 

F3

 

was

 

pressed

 

by

 

a

 

user.

 

The

 

response

 

indicator

 

is

 

returned

 

*/

 

/*

  

in

 

part

 

of

 

the

 

file

 

buffer.

                                       

*/

 

#include

 

<stdio.h>

 

#include

 

<recio.h>

 

#include

 

<stdlib.h>

   

typedef

 

struct{

     

char

 

in03;

     

char

 

name[11];

     

char

 

address[20];

     

char

 

phone_num[8];

 

}info;

   

#define

 

IND_ON

 

’1’

 

Figure

 

140.

 

T1520ID1

 

—

 

ILE

 

C

 

Source

 

to

 

Specify

 

Indicators

 

as

 

Part

 

of

 

the

 

File

 

Buffer

 

(Part

 

1

 

of

 

2)

  

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

273



Note:

  

This

 

program

 

uses

 

a

 

response

 

indicator

 

IND_ON

 

’1’

 

to

 

inform

 

the

 

ILE

 

C

 

program

 

T1520ID1

 

that

 

a

 

user

 

pressed

 

F3.

 

Establishing

 

the

 

Default

 

Program

 

Device

 

You

 

can

 

establish

 

the

 

default

 

device

 

for

 

display

 

and

 

ICF

 

files.

 

Example:

 

The

 

following

 

example

 

illustrates

 

how

 

to

 

explicitly

 

establish

 

a

 

default

 

program

 

device

 

for

 

a

 

display

 

file

 

using

 

the

 

_Racquire()

 

function.

 

Note:

  

To

 

run

 

this

 

example

 

you

 

must

 

use

 

a

 

display

 

device

 

that

 

is

 

defined

 

on

 

your

 

system

 

in

 

place

 

of

 

DEVICE2.

 

1.

   

To

 

create

 

the

 

display

 

file

 

T1520DDD

 

using

 

the

 

DDS

 

shown

 

below,

 

enter:

 

CRTDSPF

 

FILE(MYLIB/T1520DDD)

 

SRCFILE(QCPPLE/QADDSSRC)

 

MAXDEV(2)

  

2.

   

To

 

override

 

the

 

file

 

STDOUT

 

with

 

the

 

printer

 

file

 

QPRINT,

 

enter:

 

OVRPRTF

 

FILE(STDOUT)

 

TOFILE(QPRINT)

 

3.

   

To

 

create

 

the

 

program

 

T1520DEV

 

using

 

the

 

source

 

shown

 

below,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520DEV)

 

SRCFILE(QCPPLE/QACSRC)

 

int

 

main(void)

 

{

     

_RFILE

   

*fp;

     

_RIOFB_T

 

*rfb;

     

info

     

phone_list;

       

if

 

((

 

fp

 

=

 

_Ropen

 

(

 

"*LIBL/T1520DD9",

 

"ar+"

 

))

 

==

 

NULL

 

)

     

{

         

printf

 

(

 

"display

 

file

 

open

 

failed\n"

 

);

         

exit

 

(

 

1

 

);

     

}

       

_Rformat

 

(

 

fp,

 

"PHONE"

 

);

     

rfb

 

=

 

_Rwrite

 

(

 

fp,

 

"",

 

0);

     

rfb

 

=

 

_Rreadn

 

(

 

fp,

 

&phone_list,

 

sizeof(phone_list),

 

__DFT

 

);

     

if

 

(

 

phone_list.in03

 

==

 

IND_ON

 

)

     

{

         

printf

 

(

 

"user

 

pressed

 

F3\n"

 

);

     

}

     

_Rclose

 

(

 

fp

 

);

 

}

 

Figure

 

140.

 

T1520ID1

 

—

 

ILE

 

C

 

Source

 

to

 

Specify

 

Indicators

 

as

 

Part

 

of

 

the

 

File

 

Buffer

 

(Part

 

2

 

of

 

2)

     

A

                                      

DSPSIZ(24

 

80

 

*DS3)

      

A

          

R

 

EXAMPLE

      

A

            

OUTPUT

         

5A

  

O

  

5

 

20

      

A

            

INPUT

         

20A

  

I

  

7

 

20

      

A

                                  

5

 

10’OUTPUT:’

      

A

                                  

7

 

10’INPUT:’

 

Figure

 

141.

 

T1520DDD

 

—

 

DDS

 

Source

 

for

 

an

 

I/O

 

Display

  

274

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

_Racquire()

 

function

 

explicitly

 

acquires

 

the

 

program

 

device

 

DEVICE2.

 

DEVICE2

 

is

 

the

 

current

 

program

 

device.

 

The

 

_Rformat()

 

function

 

selects

 

the

 

record

 

format

 

EXAMPLE.

 

The

 

_Rwrite()

 

function

 

writes

 

data

 

to

 

the

 

default

 

device.

 

The

 

_Rreadn()

 

function

 

reads

 

the

 

string

 

from

 

the

 

current

 

program

 

device

 

DEVICE2.

 

4.

   

To

 

run

 

the

 

program

 

T1520DEV,

 

enter:

 

/*

 

This

 

program

 

establishes

 

a

 

default

 

device

 

using

 

the

 

_Racquire

      

*/

 

/*

 

function.

                                                          

*/

   

#include

 

<stdio.h>

 

#include

 

<recio.h>

 

#include

 

<signal.h>

 

#include

 

<stdlib.h>

   

void

 

handler

 

(

 

int

 

);

   

int

 

main(void)

 

{

     

_RFILE

   

*fp;

     

_RIOFB_T

 

*rfb;

     

char

     

buf[21];

       

signal

 

(SIGALL,

 

handler

 

);

       

if

 

((

 

fp

 

=

 

_Ropen

 

(

 

"*LIBL/T1520DDD","ar+"

 

))

 

==

 

NULL

 

)

     

{

         

printf

 

(

 

"Could

 

not

 

open

 

the

 

display

 

file\n"

 

);

         

exit

 

(

 

1

 

);

     

}

     

_Racquire

 

(

 

fp,"DEVICE2"

 

);

            

/*

 

Acquire

 

the

 

device.

     

*/

                                            

/*

 

DEVICE2

 

is

 

now

 

the

      

*/

                                            

/*

 

default

 

program

 

device.

 

*/

     

_Rformat

 

(

 

fp,"EXAMPLE"

 

);

             

/*

 

Select

 

the

 

record

       

*/

                                            

/*

 

format.

                 

*/

     

_Rwrite

 

(

 

fp,

 

"Hello",

 

5

 

);

            

/*

 

Write

 

to

 

the

 

default

    

*/

                                            

/*

 

program

 

device.

         

*/

       

rfb

 

=

 

_Rreadn

 

(

 

fp,

 

buf,

 

20,

 

__DFT

 

);

  

/*

 

Read

 

from

 

the

 

default

   

*/

                                            

/*

 

program

 

device.

         

*/

       

buf[rfb

 

->

 

num_bytes]

 

=

 

’\0’;

       

printf

 

(

 

"Response

 

from

 

device

 

:

 

%s\n",

 

buf

 

);

       

_Rrelease

 

(

 

fp,

 

"DEVICE2"

 

);

     

_Rclose

 

(

 

fp

 

);

 

}

   

void

 

handler

 

(

 

int

 

sig

 

)

 

{

      

printf

 

(

 

"message

 

=

 

%7.7s\n",

 

_EXCP_MSGID

 

);

    

printf

 

(

 

"program

 

continues

 

\n"

 

);

    

signal

 

(

 

SIGALL,

 

handler

 

);

 

}

 

Figure

 

142.

 

T1520DEV

 

—

 

ILE

 

C

 

Source

 

to

 

Establish

 

a

 

Default

 

Device

  

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

275



CALL

 

PGM(MYLIB/T1520DEV)

 

The

 

output

 

is

 

as

 

follows:

               

OUTPUT:

   

Hello

            

INPUT:

      

__________________

        

5.

   

Type

 

GOOD

 

MORNING

 

on

 

the

 

input

 

line

 

and

 

press

 

Enter.

  

The

 

file

 

QPRINT

 

contains:

 

Response

 

from

 

device

 

:

 

GOOD

 

MORNING

 

Changing

 

the

 

Default

 

Program

 

Device

 

You

 

can

 

change

 

the

 

default

 

device

 

for

 

a

 

device

 

file.

 

Example:

 

The

 

following

 

example

 

illustrates

 

how

 

to

 

change

 

the

 

default

 

program

 

device

 

using

 

the

 

_Rpgmdev()

 

function.

 

Note:

  

To

 

run

 

this

 

example

 

you

 

must

 

use

 

two

 

display

 

devices

 

that

 

are

 

defined

 

on

 

your

 

system

 

in

 

place

 

of

 

DEVICE1

 

and

 

DEVICE2.

 

1.

   

To

 

create

 

the

 

display

 

file

 

T1520DDE

 

using

 

the

 

DDS

 

shown

 

below,

 

enter:

 

CRTDSPF

 

FILE(MYLIB/T1520DDE)

 

SRCFILE(QCPPLE/QADDSSRC)

 

MAXDEV(2)

  

2.

   

To

 

override

 

the

 

file

 

STDOUT

 

with

 

the

 

printer

 

file

 

QPRINT,

 

enter:

 

OVRPRTF

 

FILE(STDOUT)

 

TOFILE(QPRINT)

 

3.

   

To

 

create

 

the

 

program

 

T1520CDV

 

using

 

the

 

source

 

shown

 

below,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520CDV)

 

SRCFILE(QCPPLE/QACSRC)

        

A

                                      

DSPSIZ(24

 

80

 

*DS3)

      

A

                                      

INVITE

      

A

          

R

 

FORMAT1

      

A

                                  

9

 

13’Name:’

      

A

            

NAME

          

20A

  

I

  

9

 

20

      

A

                                 

11

 

10’Address:’

      

A

            

ADDRESS

       

25A

  

I

 

11

 

20

      

A

          

R

 

FORMAT2

      

A

                                  

9

 

13’Name:’

      

A

            

NAME

           

8A

  

I

  

9

 

20

      

A

                                 

11

 

10’Password:’

      

A

            

PASSWORD

      

10A

  

I

 

11

 

20

 

Figure

 

143.

 

T1520DDE

 

—

 

DDS

 

Source

 

for

 

Name

 

and

 

Password

 

Display

  

276

 

ILE

 

C/C++

 

Programmer’s

 

Guide



/*

 

This

 

program

 

illustrates

 

how

 

to

 

change

 

a

 

default

 

program

 

device.

   

*/

 

/*

 

using

 

the

 

_Racquire(),

 

_Rpgmdev(),

 

_Rreadindv()

 

and

 

_Rrelease()

    

*/

 

/*

 

functions.

                                                         

*/

   

#include

 

<stdio.h>

 

#include

 

<recio.h>

 

#include

 

<string.h>

 

#include

 

<stdlib.h>

   

typedef

 

struct{

     

char

 

name[20];

     

char

 

address[25];

 

}format1;

 

typedef

 

struct{

     

char

 

name[8];

     

char

 

password[10];

 

}format2

 

;

   

typedef

 

union{

     

format1

 

fmt1;

     

format2

 

fmt2;

 

}formats

 

;

   

void

 

io_error_check(

 

_RIOFB_T

 

*rfb

 

)

 

{

     

if

 

(

 

memcmp(rfb->sysparm->_Maj_Min.major_rc,"00",2

 

)

 

||

          

memcmp

 

(

 

rfb->sysparm->_Maj_Min.minor_rc,"00",2

 

))

     

{

         

printf

 

(

 

"I/O

 

error

 

occurred,

 

program

 

ends.\n"

 

);

         

exit

 

(

 

1

 

);

     

}

 

}

 

int

 

main(void)

 

{

     

_RFILE

   

*fp;

     

_RIOFB_T

 

*rfb;

     

_XXIOFB_T

 

*iofb;

     

int

      

size;

     

formats

  

buf;

   

/*

 

Open

 

the

 

device

 

file.

                                              

*/

       

if

 

((

 

fp

 

=

 

_Ropen

 

(

 

"*LIBL/T1520DDE",

 

"ar+"

 

))

 

==

 

NULL

 

)

     

{

         

printf

 

(

 

"Could

 

not

 

open

 

file\n"

 

);

         

exit

 

(

 

1

 

);

     

}

 

Figure

 

144.

 

T1520CDV

 

—

 

ILE

 

C

 

Source

 

to

 

Change

 

the

 

Default

 

Device

 

(Part

 

1

 

of

 

2)

  

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

277



The

 

ILE

 

C

 

program

 

T1520CDV

 

uses

 

the

 

_Racquire()

 

function

 

to

 

explicitly

 

acquire

 

another

 

device

 

that

 

is

 

named

 

DEVICE1.

 

DEVICE1

 

becomes

 

the

 

current

 

program

 

device.

 

The

 

_Rpgmdev()

 

function

 

changes

 

the

 

current

 

device

 

that

 

is

 

named

 

DEVICE1

 

to

 

DEVICE2.

 

The

 

_Rreadindv()

 

function

 

reads

 

records

 

from

 

DEVICE1.

 

The

 

_Release()

 

function

 

releases

 

DEVICE1

 

and

 

DEVICE2.

 

4.

   

To

 

run

 

the

 

program

 

T1520CDV,

 

enter:

 

CALL

 

PGM(MYLIB/T1520CDV)

 

The

 

output

 

is

 

as

 

follows:

     

_Racquire

 

(

 

fp,"DEVICE1"

 

);

    

/*

 

Acquire

 

another

 

device.

         

*/

                                    

/*

 

Replace

 

with

 

the

 

actual

         

*/

                                    

/*

 

device

 

name.

                    

*/

       

_Rformat

 

(

 

fp,"FORMAT1"

 

);

     

/*

 

Set

 

the

 

record

 

format

 

for

 

the

   

*/

                                    

/*

 

display

 

file.

                   

*/

       

rfb

 

=

 

_Rwrite

 

(

 

fp,

 

"",

 

0

 

);

   

/*

 

Set

 

up

 

the

 

display.

             

*/

       

io_error_check(rfb);

       

_Racquire

 

(

 

fp,"DEVICE2"

 

);

    

/*

 

Acquire

 

another

 

device.

         

*/

       

_Rpgmdev

 

(

 

fp,"DEVICE2"

 

);

     

/*

 

Change

 

the

 

default

 

program

      

*/

                                    

/*

 

device.

 

Replace

 

with

 

the

        

*/

                                    

/*

 

actual

 

device

 

name.

             

*/

                                    

/*

 

Device2

 

implicitly

 

acquired

 

at

  

*/

                                    

/*

 

open.

                           

*/

       

_Rformat

 

(

 

fp,"FORMAT2"

 

);

     

/*

 

Set

 

the

 

record

 

format

 

for

 

the

   

*/

                                    

/*

 

the

 

display

 

file.

               

*/

       

rfb

 

=

 

_Rwrite

 

(

 

fp,

 

"",

 

0

 

);

   

/*

 

Set

 

up

 

the

 

display.

             

*/

     

io_error_check

 

(

 

rfb

 

);

       

_Rreadindv

 

(

 

fp,

 

&buf,

 

sizeof(buf),

 

__DFT

 

);

                                   

/*

 

Read

 

from

 

the

 

first

 

device

 

that

  

*/

                                   

/*

 

enters

 

data.

 

The

 

device

 

becomes

  

*/

                                   

/*

 

the

 

default

 

program

 

device.

      

*/

     

io_error_check

 

(

 

rfb

 

);

   

/*

 

Determine

 

which

 

terminal

 

responded

 

first.

                          

*/

       

iofb

 

=

 

_Riofbk

 

(

 

fp

 

);

     

if

 

(

 

!strncmp

 

(

 

"FORMAT1

  

",

 

iofb

 

->

 

rec_format,

 

10

 

))

     

{

         

_Rrelease

 

(

 

fp,

 

"DEVICE1"

 

);

     

}

     

else

     

{

         

_Rrelease(fp,

 

"DEVICE2"

 

);

     

}

     

return(0);

 

}

 

Figure

 

144.

 

T1520CDV

 

—

 

ILE

 

C

 

Source

 

to

 

Change

 

the

 

Default

 

Device

 

(Part

 

2

 

of

 

2)

  

278

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Name:

          

Password:

                          

When

 

the

 

application

 

is

 

run,

 

a

 

different

 

display

 

appears

 

on

 

each

 

device.

 

Data

 

may

 

be

 

entered

 

on

 

both

 

displays,

 

but

 

the

 

data

 

that

 

is

 

first

 

entered

 

is

 

returned

 

to

 

the

 

program.

 

The

 

output

 

from

 

the

 

program

 

is

 

in

 

QPRINT.

 

For

 

example,

 

if

 

the

 

name

 

SMITH

 

and

 

the

 

address

 

10

 

MAIN

 

ST

 

is

 

entered

 

on

 

DEVICE1

 

before

 

any

 

data

 

is

 

entered

 

on

 

DEVICE2,

 

then

 

the

 

file

 

QPRINT

 

contains:

 

Data

 

displayed

 

on

 

DEVICE1

 

is

 

SMITH

   

10

 

MAIN

 

ST

 

Note:

  

There

 

are

 

two

 

record

 

formats

 

that

 

are

 

created

 

in

 

the

 

above

 

example.

 

One

 

has

 

a

 

size

 

of

 

45

 

characters

 

(fmt1),

 

and

 

the

 

other

 

a

 

size

 

of

 

18

 

characters

 

(fmt2).

 

The

 

union

 

buf

 

contains

 

two

 

record

 

format

 

declarations.

 

Obtaining

 

Feedback

 

Information

 

You

 

can

 

obtain

 

additional

 

information

 

about

 

the

 

program

 

devices

 

associated

 

with

 

your

 

application

 

by

 

using

 

OS/400

 

system

 

feedback

 

areas.

 

Example:

 

The

 

following

 

example

 

uses

 

the

 

_Riofbk()

 

function.

 

1.

   

To

 

create

 

the

 

display

 

file

 

T1520DDF

 

using

 

the

 

DDS

 

source

 

shown

 

below,

 

enter:

 

CRTDSPF

 

FILE(MYLIB/T1520DDF)

 

SRCFILE(QCPPLE/QADDSSRC)

 

MAXDEV(2)

  

2.

   

To

 

override

 

the

 

file

 

STDOUT

 

with

 

the

 

printer

 

file

 

QPRINT,

 

enter:

 

OVRPRTF

 

FILE(STDOUT)

 

TOFILE(QPRINT)

 

3.

   

To

 

create

 

the

 

program

 

T1520FBK

 

using

 

the

 

source

 

shown

 

below,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520FBK)

 

SRCFILE(QCPPLE/QACSRC)

      

A

                                      

DSPSIZ(24

 

80

 

*DS3)

      

A

          

R

 

EXAMPLE

      

A

            

OUTPUT

         

5A

  

O

  

5

 

20

      

A

            

INPUT

         

20A

  

I

  

7

 

20

      

A

                                  

5

 

10’OUTPUT:’

      

A

                                  

7

 

10’INPUT:’

 

Figure

 

145.

 

T1520DDF

 

—

 

DDS

 

Source

 

for

 

a

 

Feedback

 

Display

  

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

279



/*

 

This

 

program

 

illustrates

 

how

 

to

 

use

 

the

 

_Riofbk

 

function

 

to

 

access

 

*/

 

/*

 

the

 

I/O

 

feedback

 

area.

                                             

*/

 

#include

 

<stdio.h>

 

#include

 

<recio.h>

 

#include

 

<signal.h>

 

#include

 

<xxfdbk.h>

 

#include

 

<stdlib.h>

 

#include

 

<string.h>

 

static

 

void

 

handler

 

(int);

   

_RFILE

 

*fp;/*

 

Signal

 

handler

 

for

 

_Racquire

 

exceptions

                            

*/

   

static

 

void

 

handler

 

(int

 

sig)

 

{

     

_XXIOFB_T

         

*io_feedbk;

     

_XXIOFB_DSP_ICF_T

 

*dsp_io_feedbk;

       

signal

 

(

 

SIGIO,

 

handler

 

);

       

io_feedbk

 

=

 

_Riofbk

 

(

 

fp

 

);

     

dsp_io_feedbk

 

=

 

(_XXIOFB_DSP_ICF_T

 

*)(

 

(char

 

*)(io_feedbk)

 

+

                     

io_feedbk->file_dep_fb_offset

 

);

     

printf

 

(

 

"Acquire

 

failed\n"

 

);

     

printf

 

(

 

"Major

 

code:

 

%2.2s\tMinor

 

code:

 

%2.2s\n",

              

dsp_io_feedbk->major_ret_code,dsp_io_feedbk->minor_ret_code

 

);

     

exit

 

(

 

1

 

);

 

}

 

int

 

main(void)

 

{

     

char

     

buf[20];

     

_RIOFB_T

 

*rfb;

     

if

 

((

 

fp

 

=

 

_Ropen

 

(

 

"*LIBL/T1520DDF",

 

"ar+")

 

)

 

==

 

NULL

 

)

     

{

       

printf

 

(

 

"Could

 

not

 

open

 

the

 

display

 

file\n"

 

);

       

exit

 

(

 

2

 

);

     

}

     

signal

 

(

 

SIGIO,

 

handler

 

);

       

_Racquire

 

(

 

fp,

 

"DEVICE1"

 

);/*Acquire

 

the

 

device.

  

DEVICE1

 

is

     

*/

                                 

/*

 

now

 

the

 

default

 

program

 

device.

    

*/

                                 

/*

 

NOTE

 

:

 

If

 

the

 

device

 

is

 

not

        

*/

                                 

/*

 

acquired,

 

exceptions

 

are

 

issued.

   

*/

     

_Rformat

 

(

 

fp,

 

"EXAMPLE"

 

);

 

/*

 

Select

 

the

 

record

 

format.

          

*/

     

_Rwrite

 

(

 

fp,

 

"Hello",

 

5

 

);

 

/*

 

Write

 

to

 

default

 

program

 

device.

   

*/

                                   

/*

 

Read

 

from

 

default

 

program

 

device.

  

*/

     

rfb

 

=

 

_Rreadn

 

(

 

fp,

 

buf,

 

21,

 

__DFT

 

);

       

printf

 

(

 

"user

 

entered:

 

%20.20s\n",

 

buf

 

);

       

_Rclose

 

(

 

fp

 

);

     

return(0);

 

}

 

Figure

 

146.

 

T1520FBK

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

Feedback

 

Information

  

280

 

ILE

 

C/C++

 

Programmer’s

 

Guide



This

 

program

 

uses

 

two

 

typedefs

 

_XXIOFB_T

 

for

 

common

 

I/O

 

feedback,

 

and

 

_XXIOFB_DSP_ICF_T

 

for

 

display

 

file

 

specific

 

I/O

 

feedback.

 

A

 

pointer

 

to

 

the

 

I/O

 

feedback

 

is

 

returned

 

by

 

_Riofbk

 

(fp).

 

4.

   

To

 

run

 

the

 

program

 

T1520FBK,

 

enter:

 

CALL

 

PGM(MYLIB/T1520FBK)

 

The

 

output

 

is

 

as

 

follows:

               

OUTPUT:

   

Hello

           

INPUT:

                    

The

 

signal()

 

function

 

is

 

called

 

before

 

an

 

error

 

to

 

establish

 

a

 

signal

 

handler.

 

If

 

an

 

exception

 

occurs

 

during

 

the

 

acquire

 

operation,

 

the

 

signal

 

handler

 

is

 

called

 

to

 

write

 

the

 

major/minor

 

return

 

code

 

to

 

stdout.

 

Acquire

 

failed

 

Major

 

code:

 

82

 

Minor

 

code:

 

AA

 

Using

 

Display

 

Files

 

and

 

Subfiles

 

Display

 

Files

 

and

 

Subfiles

 

A

 

display

 

file

 

is

 

used

 

to

 

define

 

the

 

format

 

of

 

the

 

information

 

that

 

you

 

wish

 

to

 

present

 

on

 

a

 

display.

 

It

 

is

 

also

 

defines

 

how

 

that

 

information

 

is

 

processed

 

by

 

the

 

system

 

on

 

its

 

way

 

to

 

and

 

from

 

the

 

display.

 

A

 

subfile

 

is

 

a

 

display

 

file

 

that

 

contains

 

a

 

group

 

of

 

records

 

with

 

the

 

same

 

record

 

format

 

that

 

can

 

be

 

accessed

 

by

 

relative

 

record

 

number.

 

The

 

records

 

of

 

a

 

subfile

 

can

 

be

 

displayed

 

on

 

a

 

display

 

station.

 

The

 

system

 

sends

 

the

 

entire

 

group

 

of

 

records

 

to

 

the

 

display

 

in

 

a

 

single

 

operation

 

and

 

receives

 

the

 

group

 

from

 

the

 

display

 

in

 

another

 

operation.

 

The

 

object

 

type

 

for

 

both

 

is

 

*FILE.

 

To

 

work

 

with

 

externally

 

described

 

display

 

files

 

use

 

one

 

of

 

the

 

following:

 

v

   

DDS

 

through

 

the

 

Code/400

 

editor

 

or

 

the

 

SEU.

 

v

   

Screen

 

Design

 

Aid

 

(SDA)

 

or

 

DSU

 

What-You-See-Is-What-You-Get

 

(WYSIWYG)

 

tools.

I/O

 

Considerations

 

for

 

Display

 

Files

 

v

   

An

 

ILE

 

C/C++

 

program

 

can

 

process

 

display

 

files

 

as

 

program

 

described

 

files

 

or

 

as

 

externally

 

described

 

files:

 

–

   

For

 

program-described

 

display

 

files,

 

specify

 

all

 

formatting

 

and

 

control

 

information

 

in

 

the

 

ILE

 

C/C++

 

program

 

that

 

uses

 

the

 

file.

 

To

 

create

 

a

 

program-described

 

display

 

file,

 

specify

 

SRCFILE(*NONE)

 

on

 

the

 

CRTDSPF

 

command.

   

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

281



–

   

For

 

externally

 

described

 

display

 

files,

 

specify

 

all

 

formatting

 

and

 

control

 

information

 

using

 

DDS

 

to

 

describe

 

the

 

layout

 

of

 

the

 

display.

 

To

 

create

 

an

 

externally

 

described

 

display

 

file,

 

specify

 

the

 

name

 

of

 

the

 

member

 

that

 

contains

 

the

 

DDS

 

source

 

on

 

the

 

SRCFILE

 

parameter

 

of

 

the

 

CRTDSPF

 

command.
v

   

If

 

you

 

are

 

using

 

a

 

user-defined

 

data

 

stream

 

(UDDS),

 

hexadecimal

 

3F

 

(X’3F’)

 

blanks

 

the

 

display

 

until

 

the

 

next

 

display

 

attribute.

 

If

 

any

 

CCSID

 

conversion

 

takes

 

place

 

and

 

a

 

character

 

cannot

 

be

 

mapped

 

to

 

the

 

corresponding

 

character

 

in

 

another

 

code

 

page,

 

the

 

character

 

is

 

mapped

 

to

 

hexadecimal

 

3F.

 

This

 

will

 

blank

 

the

 

screen

 

until

 

the

 

next

 

display

 

attribute.

 

See

 

Chapter

 

31,

 

“Internationalizing

 

a

 

Program,”

 

on

 

page

 

521

 

for

 

information

 

on

 

CCSIDs.

 

v

   

The

 

concept

 

of

 

clearing

 

a

 

file

 

or

 

opening

 

a

 

file

 

using

 

append

 

mode

 

does

 

not

 

apply

 

to

 

display

 

files.

I/O

 

Considerations

 

for

 

Subfiles

 

v

   

The

 

input

 

typedef

 

for

 

record

 

format

 

subfiles

 

will

 

contain

 

fields

 

with

 

the

 

usage

 

of

 

I,

 

O,

 

B,

 

and

 

H.

 

Input

 

typedef

 

for

 

control

 

record

 

format

 

subfiles

 

will

 

contain

 

fields

 

with

 

the

 

usage

 

of

 

I,

 

B,

 

and

 

H.

 

v

   

To

 

use

 

a

 

subfile,

 

you

 

initialize

 

it,

 

for

 

example,

 

by

 

reading

 

records

 

from

 

a

 

database

 

file

 

and

 

writing

 

them

 

to

 

a

 

subfile.

 

You

 

must

 

write

 

them

 

using

 

_Rwrited.

Using

 

Subfiles

 

to

 

Minimize

 

I/O

 

Operations

 

You

 

can

 

use

 

subfiles

 

to

 

read

 

or

 

write

 

a

 

number

 

of

 

records

 

to

 

and

 

from

 

a

 

display

 

in

 

one

 

operation.

 

Example:

 

The

 

following

 

subfile

 

example

 

uses

 

DDS

 

from

 

T1520DDG

 

and

 

T1520DDH

 

to

 

display

 

a

 

list

 

of

 

names

 

and

 

telephone

 

numbers.

 

1.

   

To

 

create

 

the

 

display

 

file

 

T1520DDG

 

using

 

the

 

DDS

 

source

 

shown

 

below,

 

enter:

 

CRTDSPF

 

FILE(MYLIB/T1520DDG)

 

SRCFILE(QCPPLE/QADDSSRC)

  

2.

   

To

 

create

 

the

 

physical

 

file

 

T1520DDH

 

using

 

the

 

DDS

 

source

 

shown

 

below,

 

enter:

 

CRTPF

 

FILE(MYLIB/T1520DDH)

 

SRCFILE(QCPPLE/QADDSSRC)

                 

R

 

ENTRY

                   

NAME

          

10A

                   

PHONE

         

10A

 

3.

   

Type

 

the

 

following

 

data

 

into

 

T1520DDH:

      

A

                                      

DSPSIZ(24

 

80

 

*DS3)

      

A

          

R

 

SFL

                       

SFL

      

A

            

NAME

          

10A

  

B

 

10

 

25

      

A

            

PHONE

         

10A

  

B

    

+5

      

A

          

R

 

SFLCTL

                    

SFLCTL(SFL)

      

A

                                      

SFLPAG(5)

      

A

                                      

SFLSIZ(26)

      

A

                                      

SFLDSP

      

A

                                      

SFLDSPCTL

      

A

                                 

22

 

25’<PAGE

 

DOWN>

 

FOR

 

NEXT

 

PAGE’

      

A

                                 

23

 

25’<PAGE

 

UP>

 

FOR

 

PREVIOUS

 

PAGE’

 

Figure

 

147.

 

T1520DDG

 

—

 

DDS

 

Source

 

for

 

a

 

Subfile

 

Display

  

282

 

ILE

 

C/C++

 

Programmer’s

 

Guide



David

     

435-5634

 

Florence

  

343-4537

 

Irene

     

255-5235

 

Carrie

    

747-5347

 

Michele

   

634-4557

 

4.

   

To

 

create

 

the

 

program

 

T1520SUB

 

using

 

the

 

source

 

shown

 

below,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520SUB)

 

SRCFILE(QCPPLE/QACSRC)

    

/*

 

This

 

program

 

illustrates

 

how

 

to

 

use

 

subfiles.

                      

*/

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<recio.h>

 

#define

 

LEN

          

10

 

#define

 

NUM_RECS

     

20

 

#define

 

SUBFILENAME

  

"*LIBL/T1520DDG"

 

#define

 

PFILENAME

    

"*LIBL/T1520DDH"

   

typedef

 

struct{

     

char

 

name[LEN];

     

char

 

phone[LEN];

 

}pf_t;

 

#define

 

RECLEN

 

sizeof(pf_t)

   

void

 

init_subfile(_RFILE

 

*,

 

_RFILE

 

*);

   

int

 

main(void)

 

{

     

_RFILE

           

*pf;

     

_RFILE

           

*subf;

 

/*

 

Open

 

the

 

subfile

 

and

 

the

 

physical

 

file.

                            

*/

     

if

 

((pf

 

=

 

_Ropen(PFILENAME,

 

"rr"))

 

==

 

NULL)

     

{

         

printf("can’t

 

open

 

file

 

%s\n",

 

PFILENAME);

         

exit(1);

     

}

     

if

 

((subf

 

=

 

_Ropen(SUBFILENAME,

 

"ar+"))

 

==

 

NULL)

     

{

         

printf("can’t

 

open

 

file

 

%s\n",

 

SUBFILENAME);

         

exit(2);

     

}

 

/*

 

Initialize

 

the

 

subfile

 

with

 

records

 

from

 

the

 

physical

 

file.

        

*/

     

init_subfile(pf,

 

subf);

 

Figure

 

148.

 

T1520SUB

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

Subfiles

 

(Part

 

1

 

of

 

2)

  

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

283



This

 

program

 

uses

 

_Ropen()

 

to

 

open

 

subfile

 

T1520DDG

 

and

 

physical

 

file

 

T1520DDH.

 

The

 

subfile

 

is

 

then

 

initialized

 

with

 

records

 

from

 

the

 

physical

 

file.

 

Subfile

 

records

 

are

 

written

 

to

 

the

 

display

 

using

 

the

 

_Rwrited()

 

function.

 

5.

   

To

 

run

 

the

 

program

 

T1520SUB

 

and

 

see

 

the

 

output,

 

enter:

 

CALL

 

PGM(MYLIB/T1520SUB)

                   

David

     

435-5634

               

Florence

     

343-4537

               

Irene

     

255-5235

               

Carrie

     

747-5347

               

Michele

     

643-4557

                       

<PAGE

 

DOWN>

 

FOR

 

NEXT

 

PAGE

               

<PAGE

 

UP>

 

FOR

 

PREVIOUS

 

PAGE

     

Opening

 

Display

 

Files

 

and

 

Subfiles

 

as

 

Binary

 

Stream

 

Files

 

To

 

open

 

an

 

iSeries

 

display

 

file

 

or

 

subfile

 

as

 

a

 

binary

 

stream

 

file

 

for

 

record-at-a-time

 

processing,

 

use

 

the

 

fopen()

 

function

 

with

 

one

 

of

 

the

 

following

 

modes:

  

/*

 

Write

 

the

 

subfile

 

to

 

the

 

display

 

by

 

writing

 

a

 

record

 

to

 

the

        

*/

 

/*

 

subfile

 

control

 

format.

                                            

*/

      

_Rformat(subf,

 

"SFLCTL");

      

_Rwrite(subf,

 

"",

 

0);

      

_Rreadn(subf,

 

"",

 

0,

 

__DFT);

   

/*

 

Close

 

the

 

physical

 

file

 

and

 

the

 

subfile.

                           

*/

      

_Rclose(pf);

      

_Rclose(subf);

 

}

 

void

 

init_subfile(_RFILE

 

*pf,

 

_RFILE

 

*subf)

   

{

         

_RIOFB_T

      

*fb;

         

int

           

i;

         

pf_t

          

record;

   

/*

 

Select

 

the

 

subfile

 

record

 

format.

                                  

*/

         

_Rformat(subf,

 

"SFL");

         

for

 

(i

 

=

 

1;

 

i

 

<=

 

NUM_RECS;

 

i++)

         

{

                

fb

 

=

 

_Rreadn(pf,

 

&record,

 

RECLEN,

 

__DFT);

                

if

 

(fb->num_bytes

 

!=

 

EOF)

                

{

                  

fb

 

=

 

_Rwrited(subf,

 

&record,

 

RECLEN,

 

i);

                  

if

 

(fb->num_bytes

 

!=

 

RECLEN)

                  

{

                    

printf("error

 

occurred

 

during

 

write\n");

                    

exit(3);

                  

}

                

}

         

}

     

}

 

Figure

 

148.

 

T1520SUB

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

Subfiles

 

(Part

 

2

 

of

 

2)

  

284

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

rb

 

v

   

ab+

 

v

   

wb

 

v

   

ab

The

 

CRTDSPF

 

command

 

is

 

the

 

only

 

way

 

to

 

create

 

a

 

display

 

file.

 

If

 

you

 

use

 

the

 

fopen()

 

function

 

and

 

the

 

display

 

file

 

does

 

not

 

exist,

 

a

 

physical

 

database

 

file

 

is

 

created.

 

The

 

valid

 

keyword

 

parameters

 

are:

 

v

   

type

 

v

   

lrecl

 

v

   

indicators

I/O

 

Considerations

 

for

 

Binary

 

Stream

 

Subfiles

 

Only

 

message

 

subfiles

 

are

 

supported

 

for

 

binary

 

stream

 

subfiles.

 

Program

 

Devices

 

for

 

Binary

 

Stream

 

Display

 

Files

 

The

 

program

 

device

 

that

 

is

 

associated

 

with

 

display

 

files

 

is

 

a

 

workstation.

 

You

 

establish

 

the

 

default

 

device

 

by

 

implicitly

 

acquiring

 

it

 

using

 

the

 

fopen()

 

function.

 

Binary

 

Stream

 

Functions

 

for

 

Display

 

Files

 

and

 

Subfiles

 

Use

 

the

 

following

 

binary

 

stream

 

functions

 

to

 

process

 

display

 

files

 

and

 

subfiles:

 

v

   

fclose()

 

v

   

fopen()

 

v

   

fread()

 

v

   

freopen()

 

v

   

fwrite()

Opening

 

Display

 

Files

 

as

 

Record

 

Files

 

To

 

open

 

an

 

iSeries

 

display

 

file

 

or

 

subfile

 

as

 

a

 

record

 

file,

 

use

 

the

 

_Ropen()

 

function

 

with

 

one

 

of

 

the

 

following

 

modes:

 

v

   

rr

 

v

   

wr

 

v

   

ar

 

v

   

ar+

 

v

   

rr+

 

v

   

wr+

The

 

valid

 

keyword

 

parameters

 

are:

 

v

   

lrecl

 

v

   

indicators

 

v

   

secure

 

v

   

riofb

I/O

 

Considerations

 

for

 

Record

 

Display

 

Files

 

The

 

program

 

device

 

that

 

is

 

associated

 

with

 

display

 

files

 

is

 

a

 

workstation.

 

You

 

establish

 

the

 

default

 

device

 

by

 

implicitly

 

acquiring

 

it

 

using

 

the

 

_Ropen()

 

function.

 

The

 

implicitly

 

acquired

 

program

 

device

 

is

 

determined

 

by

 

the

 

DEV

 

parameter

 

on

 

the

 

CRTDSPF,

 

CHGDSPF,

 

or

 

OVRDSPF

 

commands.

 

If

 

*REQUESTER

 

is

 

specified

 

on

   

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

285



the

 

DEV

 

parameter,

 

then

 

the

 

program

 

device

 

from

 

which

 

the

 

program

 

was

 

called

 

is

 

implicitly

 

acquired.

 

It

 

becomes

 

the

 

default

 

program

 

device

 

for

 

I/O

 

operations

 

to

 

the

 

display

 

file.

 

If

 

*NONE

 

is

 

specified

 

on

 

the

 

DEV

 

parameter

 

of

 

the

 

CRTDSPF,

 

CHGDSPF,

 

or

 

OVRDSPF

 

commands,

 

you

 

must

 

explicitly

 

acquire

 

the

 

program

 

device

 

with

 

the

 

_Racquire()

 

function.

 

The

 

explicitly

 

acquired

 

program

 

device

 

now

 

becomes

 

the

 

default

 

device

 

for

 

subsequent

 

I/O

 

operations

 

to

 

the

 

device

 

file.

 

You

 

can

 

change

 

the

 

default

 

program

 

device

 

in

 

the

 

following

 

ways:

 

v

   

Use

 

the

 

Racquire()

 

function

 

to

 

explicitly

 

acquire

 

another

 

program

 

device.

 

The

 

device

 

that

 

is

 

just

 

acquired

 

becomes

 

the

 

current

 

program

 

device.

 

v

   

Use

 

the

 

_Rpgmdev()

 

function

 

to

 

change

 

the

 

current

 

program

 

device

 

that

 

is

 

associated

 

with

 

a

 

file

 

to

 

a

 

previously-acquired

 

device.

 

This

 

program

 

device

 

can

 

be

 

used

 

for

 

subsequent

 

input

 

and

 

output

 

operations

 

to

 

the

 

file.

 

v

   

The

 

actual

 

program

 

device

 

that

 

is

 

read

 

becomes

 

the

 

default

 

device

 

if

 

you

 

read

 

from

 

an

 

invited

 

device

 

using

 

the

 

_Rreadindv()

 

function.

 

v

   

Use

 

the

 

_Rrelease()

 

function

 

to

 

release

 

a

 

device

 

from

 

the

 

file.

 

When

 

you

 

release

 

the

 

device,

 

it

 

is

 

no

 

longer

 

available

 

for

 

I/O

 

operations.

I/O

 

Considerations

 

for

 

Record

 

Subfiles

 

I/O

 

operations

 

to

 

the

 

subfile

 

record

 

format

 

do

 

not

 

cause

 

data

 

to

 

appear

 

on

 

the

 

display.

 

You

 

must

 

read

 

or

 

write

 

the

 

subfile

 

control

 

record

 

format

 

to

 

transfer

 

data

 

to

 

or

 

from

 

the

 

display.

 

Use

 

the

 

_Rformat()

 

function

 

to

 

distinguish

 

between

 

subfile

 

record

 

formats

 

and

 

subfile

 

control

 

formats.

 

If

 

the

 

format

 

you

 

specify

 

with

 

the

 

_Rformat()

 

function

 

refers

 

to

 

a

 

subfile

 

record

 

format,

 

no

 

data

 

is

 

transferred

 

to

 

or

 

from

 

the

 

display.

 

To

 

read

 

the

 

next

 

changed

 

subfile

 

record,

 

use

 

the

 

_Rreadnc()

 

function.

 

This

 

function

 

searches

 

for

 

the

 

next

 

changed

 

record

 

from

 

the

 

current

 

position

 

in

 

the

 

file.

 

If

 

this

 

is

 

the

 

first

 

read

 

operation,

 

the

 

first

 

changed

 

record

 

in

 

the

 

subfile

 

is

 

read.

 

If

 

the

 

end-of-file

 

is

 

reached

 

before

 

finding

 

a

 

changed

 

record,

 

EOF

 

is

 

returned

 

in

 

the

 

num_bytes

 

field

 

of

 

the

 

_RIOFB_T

 

structure.

 

Record

 

Functions

 

for

 

Display

 

Files

 

and

 

Subfiles

 

Use

 

the

 

following

 

record

 

functions

 

to

 

process

 

display

 

files

 

and

 

subfiles:

 

v

   

_Racquire()

 

v

   

_Rclose()

 

v

   

_Rdevatr()

 

v

   

_Rfeod()

 

v

   

_Rformat()

 

v

   

_Rindara()

 

v

   

_Riofbk()

 

v

   

_Ropen()

 

v

   

_Ropnfbk()

 

v

   

_Rpgmdev()

 

v

   

_Rreadd()

 

(subfiles)

 

v

   

_Rreadindv()

 

v

   

_Rreadn()

 

v

   

_Rreadnc()

 

(subfiles)

 

v

   

_Rrelease()

   

286

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

_Rupdate()

 

(subfiles)

 

v

   

_Rupfb()

 

v

   

_Rwrite()

 

v

   

_Rwrited()

 

(subfiles)

 

v

   

_Rwriterd()

 

v

   

_Rwrread()

Using

 

Intersystem

 

Communication

 

Function

 

Files

 

An

 

Intersystem

 

Communications

 

Function

 

(ICF)

 

file

 

defines

 

the

 

layout

 

of

 

the

 

data

 

sent

 

and

 

received

 

between

 

two

 

programs

 

on

 

different

 

systems

 

and

 

links

 

you

 

to

 

the

 

configuration

 

objects

 

that

 

are

 

used

 

to

 

communicate

 

with

 

a

 

remote

 

system.

 

The

 

ICF

 

Programming

 

manual

 

contains

 

information

 

about

 

ICF

 

files.

 

I/O

 

Considerations

 

for

 

Intersystem

 

Communication

 

Function

 

Files

 

v

   

An

 

ILE

 

C/C++

 

program

 

can

 

process

 

ICF

 

files

 

as

 

program

 

described

 

files

 

or

 

as

 

externally

 

described

 

files

 

(the

 

system

 

file

 

QSYS/QICDMF

 

contains

 

a

 

system-supplied

 

record

 

format).

 

v

   

The

 

concept

 

of

 

clearing

 

or

 

opening

 

a

 

file

 

using

 

append

 

mode

 

does

 

not

 

apply

 

to

 

ICF

 

files.

 

If

 

you

 

open

 

an

 

ICF

 

file

 

using

 

append

 

mode

 

(ar+

 

or

 

ab+),

 

the

 

file

 

is

 

opened

 

for

 

input

 

and

 

output.

 

v

   

If

 

you

 

want

 

to

 

write

 

a

 

variable

 

length

 

of

 

data,

 

you

 

must

 

use

 

the

 

keyword

 

VARLEN

 

in

 

the

 

DDS.

 

v

   

ICF

 

locale

 

mode

 

can

 

be

 

disabled

 

at

 

the

 

application

 

level

 

by

 

setting

 

the

 

maximum

 

program

 

devices

 

number

 

to

 

2

 

or

 

greater

 

for

 

all

 

ICF

 

files

 

on

 

the

 

CRTICFF

 

command.

Opening

 

ICF

 

Files

 

as

 

Binary

 

Stream

 

Files

 

To

 

open

 

an

 

iSeries

 

ICF

 

file

 

as

 

a

 

binary

 

stream

 

file

 

for

 

record-at-a-time

 

processing,

 

use

 

the

 

fopen()

 

function

 

with

 

one

 

of

 

the

 

following

 

modes:

 

v

   

rb

 

v

   

wb

 

v

   

ab

 

v

   

ab+

Note:

  

The

 

only

 

way

 

to

 

create

 

an

 

ICF

 

file

 

is

 

to

 

use

 

the

 

CRTICFF

 

command.

 

If

 

you

 

use

 

the

 

fopen()

 

function

 

and

 

the

 

ICF

 

file

 

does

 

not

 

exist,

 

a

 

physical

 

database

 

file

 

is

 

created.

 

The

 

valid

 

keyword

 

parameters

 

are:

 

v

   

type

 

v

   

indicators

I/O

 

Considerations

 

for

 

Binary

 

Stream

 

ICF

 

Files

 

The

 

fwrite()

 

function

 

returns

 

the

 

number

 

of

 

elements

 

that

 

are

 

successfully

 

written.

 

When

 

you

 

use

 

PDATA,

 

the

 

value

 

returned

 

by

 

the

 

fwrite()

 

function

 

does

 

not

 

take

 

PDATA

 

into

 

consideration.

 

When

 

using

 

PDATA,

 

errno

 

is

 

set

 

to

 

ETRUNC

 

even

 

though

 

all

 

the

 

data

 

was

 

successfully

 

written.

   

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

287



Program

 

Devices

 

for

 

Binary

 

Stream

 

ICF

 

Files

 

The

 

program

 

device

 

that

 

is

 

associated

 

with

 

ICF

 

files

 

is

 

a

 

communications

 

session.

 

You

 

establish

 

the

 

default

 

device

 

by

 

implicitly

 

acquiring

 

it

 

using

 

the

 

fopen()

 

function.

 

Binary

 

Stream

 

Functions

 

for

 

ICF

 

Files

 

Use

 

the

 

following

 

binary

 

stream

 

functions

 

to

 

process

 

ICF

 

files:

 

v

   

fclose()

 

v

   

fopen()

 

v

   

fread()

 

v

   

freopen()

 

v

   

fwrite()

Opening

 

ICF

 

Files

 

as

 

Record

 

Files

 

To

 

open

 

an

 

iSeries

 

ICF

 

file

 

as

 

a

 

record

 

file,

 

use

 

the

 

_Ropen()

 

function

 

with

 

one

 

of

 

the

 

following

 

modes:

 

v

   

rr

 

v

   

rr+

 

v

    

wr+

 

v

   

ar+

 

v

   

wr

 

v

   

ar

The

 

valid

 

keyword

 

parameters

 

are:

 

v

   

indicators

 

v

   

riofb

 

v

   

secure

I/O

 

Considerations

 

for

 

Record

 

ICF

 

Files

 

The

 

_Rwrite()

 

function

 

returns

 

the

 

number

 

of

 

characters

 

that

 

are

 

successfully

 

transferred

 

across

 

a

 

communication

 

line.

 

When

 

you

 

use

 

PDATA,

 

unlike

 

the

 

_fwrite()

 

function,

 

the

 

value

 

that

 

is

 

returned

 

by

 

the

 

_Rwrite()

 

function

 

(num_bytes)

 

includes

 

PDATA.

 

Program

 

Devices

 

for

 

Record

 

ICF

 

Files

 

The

 

program

 

device

 

that

 

is

 

associated

 

with

 

ICF

 

files

 

is

 

a

 

communications

 

session.

 

You

 

establish

 

the

 

default

 

device

 

by

 

implicitly

 

acquiring

 

it

 

using

 

the

 

_Ropen()

 

function.

 

The

 

implicitly

 

acquired

 

program

 

device

 

is

 

determined

 

by

 

the

 

ACQPGMDEV

 

parameter

 

on

 

the

 

CRTICFF,

 

OVRICFF,

 

or

 

CHGICFF

 

commands.

 

If

 

the

 

program

 

device

 

name

 

is

 

specified

 

on

 

the

 

ACQPGMDEV

 

parameter

 

the

 

program

 

device

 

must

 

be

 

defined

 

to

 

the

 

device

 

file

 

before

 

it

 

is

 

opened.

 

This

 

is

 

done

 

by

 

specifying

 

the

 

name

 

on

 

the

 

PGMDEV

 

parameter

 

of

 

the

 

ADDICFDEVE

 

or

 

OVRICFDEVE

 

commands.

 

If

 

*NONE

 

is

 

specified

 

for

 

the

 

ACQPGMDEV

 

parameter

 

of

 

the

 

CRTICFF,

 

OVRICFF,

 

or

 

CHGICFF

 

commands,

 

you

 

must

 

explicitly

 

acquire

 

the

 

program

 

device

 

using

 

the

 

_Racquire()

 

function.

 

You

 

can

 

change

 

the

 

default

 

program

 

device

 

in

 

the

 

following

 

ways:

 

v

   

Use

 

the

 

_Racquire()

 

function

 

to

 

explicitly

 

acquire

 

another

 

program

 

device.

 

The

 

device

 

that

 

is

 

just

 

acquired

 

becomes

 

the

 

current

 

program

 

device.

   

288

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

Use

 

the

 

_Rpgmdev()

 

function

 

to

 

change

 

the

 

current

 

program

 

device

 

associated

 

with

 

a

 

file

 

to

 

a

 

previously-acquired

 

device.

 

This

 

program

 

device

 

can

 

be

 

used

 

for

 

subsequent

 

input

 

and

 

output

 

operations

 

to

 

the

 

file.

 

v

   

The

 

actual

 

program

 

device

 

read

 

becomes

 

the

 

default

 

device

 

if

 

you

 

read

 

from

 

an

 

invited

 

device

 

using

 

the

 

_Rreadindv()

 

function.

 

v

   

Use

 

the

 

_Rrelease()

 

function

 

to

 

release

 

a

 

device

 

from

 

the

 

file.

 

When

 

you

 

release

 

the

 

device,

 

it

 

is

 

no

 

longer

 

available

 

for

 

I/O

 

operations.

To

 

release

 

a

 

program

 

device,

 

use

 

the

 

_Rrelease()

 

function

 

(the

 

program

 

device

 

must

 

have

 

been

 

previously

 

acquired).

 

This

 

detaches

 

the

 

device

 

from

 

an

 

open

 

file;

 

I/O

 

operations

 

can

 

no

 

longer

 

be

 

performed

 

for

 

this

 

device.

 

If

 

you

 

wish

 

to

 

use

 

the

 

device

 

after

 

releasing

 

it,

 

it

 

must

 

be

 

acquired

 

again.

 

All

 

program

 

devices

 

are

 

implicitly

 

released

 

when

 

you

 

close

 

the

 

file.

 

If

 

the

 

device

 

file

 

has

 

a

 

shared

 

open

 

data

 

path,

 

the

 

last

 

close

 

operation

 

releases

 

the

 

program

 

device.

 

Record

 

Functions

 

for

 

ICF

 

Files

 

Use

 

the

 

following

 

record

 

functions

 

to

 

process

 

ICF

 

files:

 

v

   

_Racquire()

 

v

   

_Rclose()

 

v

   

_Rdevatr()

 

v

   

_Rfeod()

 

v

   

_Rformat()

 

v

   

_Rindara()

 

v

   

_Riofbk()

 

v

   

_Ropen()

 

v

   

_Ropnfbk()

 

v

   

_Rpgmdev()

 

v

   

_Rreadindv()

 

v

   

_Rreadn()

 

v

   

_Rrelease()

 

v

   

_Rupfb()

 

v

   

_Rwrite()

 

v

   

_Rwriterd()

 

v

   

_Rwrread()

Example:

 

The

 

following

 

example

 

gets

 

a

 

user

 

ID

 

and

 

password

 

from

 

a

 

source

 

program

 

and

 

sends

 

it

 

to

 

a

 

target

 

program.

 

The

 

target

 

program

 

checks

 

the

 

user

 

ID

 

and

 

password

 

for

 

errors

 

and

 

sends

 

a

 

response

 

to

 

the

 

source

 

program.

 

Note:

  

To

 

run

 

this

 

example

 

the

 

target

 

program

 

T1520TGT

 

must

 

exist

 

on

 

a

 

remote

 

system.

 

A

 

communications

 

line

 

between

 

the

 

source

 

system

 

with

 

program

 

T1520ICF

 

and

 

the

 

target

 

system

 

with

 

program

 

T1520TGT

 

must

 

be

 

active.

 

You

 

also

 

need

 

Advanced

 

Program

 

to

 

Program

 

Communications

 

(APPC).

  

1.

   

To

 

create

 

the

 

physical

 

file

 

T1520DDA,

 

enter:

 

CRTPF

 

FILE(MYLIB/T1520DDA)

 

SRCFILE(QCPPLE/QADDSSRC)

   

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

289



2.

   

To

 

create

 

the

 

ICF

 

file

 

T1520DDB

 

using

 

the

 

DDS

 

source

 

shown

 

below:,

 

enter:

 

CRTICFF

 

FILE(MYLIB/T1520DDB)

 

SRCFILE(QCPPLE/QADDSSRC)

 

ACQPGMDEV(CAPPC2)

   

3.

   

To

 

create

 

the

 

ICF

 

file

 

T1520DDC

 

using

 

the

 

DDS

 

source

 

shown

 

below,

 

enter:

 

CRTICFF

 

FILE(MYLIB/T1520DDC)

 

SRCFILE(QCPPLE/QADDSSRC)

 

ACQPGMDEV(CAPPC1)

   

4.

   

Create

 

an

 

intrasystem

 

device

 

INTRAC.

 

From

 

the

 

command

 

line,

 

enter:

 

CRTDEVINTR

 

DEVD(INTRAC)

 

RMTLOCNAME(INTRAC)

 

ONLINE(*NO)

  

5.

   

Vary

 

on

 

the

 

intrasystem

 

device

 

INTRAC.

 

From

 

the

 

command

 

line,

 

enter:

 

VRYCFG

 

CFGOBJ(INTRAC)

 

CFGTYPE(*DEV)

 

STATUS(*ON)

 

RANGE(*OBJ)

  

6.

   

To

 

add

 

a

 

program

 

device

 

entry

 

for

 

ICF

 

file

 

T1520DDB,

 

enter:

 

ADDICFDEVE

 

FILE(MYLIB/T1520DDB)

 

PGMDEV(CAPPC2)

 

RMTLOCNAME(

 

CAPPC1)

 

MODE(CAPPCMOD)

  

7.

   

To

 

add

 

a

 

program

 

device

 

entry

 

for

 

ICF

 

file

 

T1520DDC,

 

enter:

 

ADDICFDEVE

 

FILE(MYLIB/T1520DDC)

 

PGMDEV(CAPPC1)

 

RMTLOCNAME(*REQUESTER)

 

MODE(CAPPCMOD)

  

8.

   

To

 

create

 

the

 

program

 

T1520ICF

 

using

 

the

 

source

 

shown

 

below,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520ICF)

 

SRCFILE(QCPPLE/QACSRC)

        

A

                                      

UNIQUE

      

A

          

R

 

PASSWRDF

      

A

            

USERID

         

8A

      

A

            

PASSWRD

       

10A

      

A

          

K

 

USERID

 

Figure

 

149.

 

T1520DDA

 

—

 

DDS

 

Source

 

for

 

Password

 

and

 

User

 

ID

     

A

          

R

 

SNDPASS

      

A

            

FLD1

          

18A

      

A

          

R

 

CHKPASS

      

A

            

FLD1

           

1A

      

A

          

R

 

EVOKPGM

      

A

                                      

EVOKE(MYLIB/T1520TGT)

      

A

                                      

SECURITY(2

 

’PASSWRD’

 

+

      

A

                                               

3

 

’USRID’)

 

Figure

 

150.

 

T1520DDB

 

—

 

DDS

 

Source

 

to

 

Send

 

Password

 

and

 

User

 

ID

     

A

          

R

 

RCVPASS

      

A

            

UID

            

8A

      

A

            

PWD

           

10A

      

A

          

R

 

VRYPASS

      

A

            

CHKPASS

        

1A

 

Figure

 

151.

 

T1520DDC

 

—

 

DDS

 

Source

 

to

 

Receive

 

Password

 

and

 

User

 

ID

  

290

 

ILE

 

C/C++

 

Programmer’s

 

Guide



/*

 

This

 

program

 

sends

 

a

 

userid

 

and

 

password

 

to

 

a

 

target

 

program

       

*/

 

/*

 

on

 

another

 

system.

 

The

 

target

 

program

 

returns

 

the

 

userid

 

and

       

*/

 

/*

 

password.

 

This

 

program

 

verifies

 

the

 

returned

 

values.

               

*/

  

#include

 

<stdio.h>

 

#include

 

<recio.h>

 

#include

 

<stdlib.h>

 

#include

 

<string.h>

 

#define

 

ID_SIZE

     

8

 

#define

 

PASSWD_SIZE

 

10

 

#define

 

RCD_SIZE

    

ID_SIZE

 

+

 

PASSWD_SIZE

 

#define

 

ERROR

       

’2’

 

#define

 

VALID

       

’1’

   

_RFILE

 

*fp;

 

void

 

ioCheck(char

 

*majorRc)

 

{

      

if

 

(

 

memcmp(majorRc,

 

"00",

 

2)

 

!=

 

0

 

)

      

{

          

printf("Fatal

 

I/O

 

error

 

occurred,

 

program

 

ends\n");

          

_Rclose(fp);

          

exit(1);

      

}

 

}

 

int

 

main(void)

 

{

     

_RIOFB_T

 

*fb;

     

char

     

idPass[RCD_SIZE];

     

char

     

buf[RCD_SIZE

 

+

 

1];

     

char

     

passwordCheck=ERROR;

 

Figure

 

152.

 

T1520ICF

 

—

 

ILE

 

C

 

Source

 

to

 

Send

 

and

 

Receive

 

Data

 

(Part

 

1

 

of

 

2)

  

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

291



The

 

_Ropen()

 

function

 

opens

 

the

 

record

 

file

 

T1520DDB.

 

The

 

_Rformat()

 

function

 

accesses

 

the

 

record

 

format

 

EVOKPGM

 

in

 

the

 

file

 

T1520DDB.

 

The

 

EVOKE

 

statement

 

in

 

T1520DDB

 

calls

 

the

 

target

 

program

 

T1520TGT.

 

The

 

_Rformat()

 

function

 

accesses

 

the

 

record

 

format

 

SNDPASS

 

in

 

the

 

file

 

T1520DDB.

 

The

 

user

 

ID

 

and

 

password

 

is

 

sent

 

to

 

the

 

target

 

program

 

/*

 

Open

 

the

 

source

 

file

 

T1520DDB.

                                     

*/

     

if

 

(

 

(fp

 

=

 

_Ropen("*LIBL/T1520DDB",

 

"ar+"))

 

==

 

NULL

 

)

     

{

         

printf("Could

 

not

 

open

 

SOURCE

 

ICF

 

file\n");

         

exit(2);

     

}

   

/*

 

Start

 

the

 

target

 

program

 

T1520TGT.

                                 

*/

     

_Racquire(fp,

 

"DEV1");

                   

/*

 

acquire

 

device

        

*/

     

_Rformat(fp,

 

"EVOKPGM");

     

fb

 

=

 

_Rwrite(fp,

 

"",

 

0);

     

ioCheck(fb->sysparm->_Maj_Min.major_rc);

   

/*

 

Get

 

the

 

user-id

 

and

 

password.

                                      

*/

     

memset(idPass,

 

’

 

’,

 

RCD_SIZE);

     

printf("Enter

 

user-id

 

(maximum

 

8

 

characters):\n");

     

scanf("%s",

 

buf);

     

memcpy(idPass,

 

buf,

 

strlen(buf));

     

printf("Enter

 

password

 

(maximum

 

10

 

characters):\n");

     

scanf("%s",

 

buf);

     

memcpy(idPass

 

+

 

ID_SIZE,

 

buf,

 

strlen(buf));

   

/*

 

Send

 

data

 

to

 

the

 

TARGET

 

program

 

T1520TGT.

                          

*/

     

_Rformat(fp,

 

"SNDPASS");

     

fb

 

=

 

_Rwrite(fp,

 

idPass,

 

RCD_SIZE);

     

ioCheck(fb->sysparm->_Maj_Min.major_rc);

   

/*

 

Receive

 

data

 

from

 

TARGET

 

program

 

T1520TGT.

                         

*/

     

_Rformat(fp,

 

"CHKPASS");

     

fb

 

=

 

_Rreadn(fp,

 

&passwordCheck,

 

1,

 

__DFT);

     

ioCheck(fb->sysparm->_Maj_Min.major_rc);

   

/*

 

If

 

a

 

problem,

 

such

 

as

 

a

 

communications

 

line

 

is

 

down,

 

occurs

 

in

 

the

 

*/

 

/*

 

TARGET

 

program,

 

then

 

end

 

the

 

program.

                              

*/

 

/*

 

Otherwise,

 

print

 

the

 

password

 

verification.

                        

*/

       

if

 

(

 

passwordCheck

 

==

 

ERROR

 

)

     

{

         

_Rclose(fp);

         

exit(3);

     

}

     

else

 

if

 

(

 

passwordCheck

 

==

 

VALID

 

)

     

{

         

printf("Password

 

valid\n");

     

}

     

else

     

{

         

printf("Password

 

invalid\n");

     

}

     

_Rclose(fp);

     

return(0);

 

}

 

Figure

 

152.

 

T1520ICF

 

—

 

ILE

 

C

 

Source

 

to

 

Send

 

and

 

Receive

 

Data

 

(Part

 

2

 

of

 

2)

  

292

 

ILE

 

C/C++

 

Programmer’s

 

Guide



T1520TGT.

 

The

 

_Rformat()

 

function

 

accesses

 

the

 

record

 

format

 

CHKPASS

 

in

 

the

 

file

 

T1520DDB.

 

The

 

received

 

password

 

and

 

user

 

ID

 

is

 

then

 

verified.

  

9.

   

To

 

create

 

the

 

program

 

T1520TGT

 

using

 

the

 

following

 

source,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520TGT)

 

SRCFILE(QCPPLE/QACSRC)

    

/*

 

This

 

program

 

checks

 

the

 

userid

 

and

 

password.

                       

*/

   

#include

 

<stdio.h>

 

#include

 

<recio.h>

 

#include

 

<string.h>

 

#include

 

<stdlib.h>

   

#define

 

ID_SIZE

     

8

 

#define

 

PASSWD_SIZE

 

10

 

#define

 

RCD_SIZE

    

ID_SIZE

 

+

 

PASSWD_SIZE

 

#define

 

ERROR

       

’2’

 

#define

 

VALID

       

’1’

 

#define

 

INVALID

     

’0’

   

int

 

main(void)

 

{

     

_RFILE

    

*icff;

     

_RFILE

    

*pswd;

     

_RIOFB_T

  

*fb;

       

char

      

rcv[RCD_SIZE];

     

char

      

pwrd[RCD_SIZE];

     

char

      

vry;

   

/*

 

Open

 

the

 

TARGET

 

file

 

T1529DDC.

                                     

*/

       

if

 

(

 

(icff

 

=

 

_Ropen("QGPL/T1520DDC",

 

"ar+"))

 

==

 

NULL

 

)

     

{

         

printf("Could

 

not

 

open

 

TARGET

 

icf

 

file

 

T1520DDC\n");

         

exit(1);

     

}

 

/*

 

Open

 

the

 

PASSWORD

 

file

 

T1520DDA.

                                   

*/

       

if

 

(

 

(pswd

 

=

 

_Ropen("QGPL/T1520DDA",

 

"rr"))

 

==

 

NULL

 

)

     

{

         

printf("Could

 

not

 

open

 

PASSWORD

 

file

 

T1520DDA\n");

         

exit(2);

     

}

 

/*

 

Read

 

the

 

information

 

from

 

the

 

SOURCE

 

program

 

T1520ICF.

             

*/

       

_Racquire(icff,

 

"DEV1");

     

_Rformat(icff,

 

"RCVPASS");

     

fb

 

=

 

_Rreadn(icff,

 

&rcv,

 

RCD_SIZE,

 

__DFT);

 

Figure

 

153.

 

T1520TGT

 

—

 

ILE

 

C

 

Source

 

to

 

Check

 

Data

 

is

 

Sent

 

and

 

Returned

 

(Part

 

1

 

of

 

2)

  

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

293



The

 

_Ropen()

 

function

 

opens

 

the

 

file

 

T1520DDC.

 

The

 

_Ropen()

 

function

 

opens

 

the

 

password

 

file

 

T1520DDA.

 

The

 

_Rformat()

 

function

 

accesses

 

the

 

record

 

format

 

RCVPASS

 

in

 

the

 

file

 

T1520DDC.

 

The

 

_Rreadn()

 

function

 

reads

 

the

 

password

 

and

 

user

 

ID

 

from

 

the

 

source

 

program

 

T1520ICF.

 

Errors

 

are

 

checked,

 

and

 

a

 

response

 

is

 

sent

 

to

 

the

 

source

 

program

 

T1520ICF.

 

10.

   

To

 

run

 

the

 

program

 

T1520ICF,

 

enter:

 

CALL

 

PGM(MYLIB/T1520ICF)

 

After

 

calling

 

the

 

program,

 

you

 

may

 

enter

 

a

 

user

 

ID

 

and

 

password.

 

If

 

the

 

password

 

is

 

correct,

 

Password

 

valid

 

appears

 

on

 

the

 

display;

 

if

 

it

 

is

 

incorrect,

 

Password

 

invalid

 

appears.

  

The

 

output

 

is

 

as

 

follows:

   

Password

 

valid

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

Using

 

Printer

 

Files

 

A

 

printer

 

device

 

file

 

can

 

be

 

accessed

 

with

 

a

 

program-described

 

file

 

(specify

 

SRCFILE(*NONE)

 

on

 

the

 

CRTPRTF

 

command)

 

or

 

with

 

an

 

externally

 

described

 

file.

 

The

 

object

 

type

 

is

 

*FILE.

 

The

 

ADTS/400:

 

Advanced

 

Printer

 

Function

 

manual

 

contains

 

information

 

on

 

printer

 

files.

 

Program-described

 

files

 

allow

 

First

 

Character

 

Forms

 

Control

 

(FCFC).

 

To

 

use

 

this,

 

include

 

the

 

First

 

Character

 

Forms

 

Control

 

code

 

in

 

the

 

first

 

position

 

of

 

each

 

data

 

record

 

in

 

the

 

printer

 

file.

 

You

 

must

 

use

 

a

 

printer

 

stream

 

file

 

and

 

the

 

fwrite()

 

function.

 

/*

 

Check

 

for

 

errors

 

and

 

send

 

response

 

to

 

SOURCE

 

program.

              

*/

       

if

 

(

 

memcmp(fb->sysparm->_Maj_Min.major_rc,

 

"00",

 

2)

 

!=

 

0

 

)

     

{

         

vry

 

=

 

ERROR;

     

}

     

else

     

{

         

fb

 

=

 

_Rreadk(pswd,

 

&pwrd,

 

RCD_SIZE,

 

__DFT,

 

&rcv,

 

ID_SIZE);

           

if

 

(

 

fb->num_bytes

 

==

 

RCD_SIZE

 

&&

              

memcmp(pwrd

 

+

 

ID_SIZE,

 

rcv

 

+

 

ID_SIZE,

 

PASSWD_SIZE)

 

==

 

0

 

)

         

{

             

vry

 

=

 

VALID;

         

}

         

else

         

{

             

vry

 

=

 

INVALID;

         

}

     

}

     

_Rformat(icff,

 

"VRYPASS");

     

_Rwrite(icff,

 

&vry,

 

1);

     

_Rclose(icff);

     

_Rclose(pswd);

     

return(0);

 

}

 

Figure

 

153.

 

T1520TGT

 

—

 

ILE

 

C

 

Source

 

to

 

Check

 

Data

 

is

 

Sent

 

and

 

Returned

 

(Part

 

2

 

of

 

2)

  

294

 

ILE

 

C/C++

 

Programmer’s

 

Guide



To

 

work

 

with

 

externally

 

described

 

printer

 

files,

 

use

 

one

 

of:

 

v

   

DDS

 

through

 

the

 

SEU

 

or

 

CODE/400

 

editor.

 

v

   

Report

 

Layout

 

Utility(RLU)

 

or

 

DSU

 

WYSIWYG

 

tools.

I/O

 

Considerations

 

for

 

Printer

 

Files

 

If

 

you

 

wish

 

to

 

use

 

First

 

Character

 

Forms

 

Control,

 

you

 

must

 

use

 

program

 

described

 

printer

 

files.

 

Opening

 

Printer

 

Files

 

as

 

Binary

 

Stream

 

Files

 

To

 

open

 

an

 

iSeries

 

printer

 

file

 

as

 

a

 

binary

 

stream

 

file

 

for

 

record-at-a-time

 

processing,

 

use

 

the

 

fopen()

 

function

 

with

 

one

 

of

 

the

 

following

 

modes:

 

v

   

wb

 

v

   

ab

Note:

  

The

 

only

 

way

 

to

 

create

 

a

 

printer

 

file

 

is

 

to

 

use

 

the

 

CRTPRTF

 

command.

 

If

 

you

 

use

 

the

 

fopen()

 

function

 

and

 

the

 

printer

 

file

 

does

 

not

 

exist,

 

a

 

physical

 

database

 

file

 

is

 

created.

 

The

 

valid

 

keyword

 

parameters

 

are:

 

v

   

type

 

v

   

lrecl

 

v

   

indicators

 

v

   

recfm

Binary

 

Stream

 

Functions

 

for

 

Printer

 

Files

 

Use

 

the

 

following

 

binary

 

stream

 

functions

 

to

 

process

 

printer

 

files:

 

v

   

fclose()

 

v

   

fopen()

 

v

   

freopen()

 

v

   

fwrite()

Opening

 

Printer

 

Files

 

as

 

Record

 

Files

 

To

 

open

 

an

 

iSeries

 

printer

 

file

 

as

 

a

 

record

 

file,

 

use

 

the

 

_Ropen()

 

function

 

with

 

one

 

of

 

the

 

following

 

modes:

 

v

   

wr

 

v

   

ar

The

 

valid

 

keyword

 

parameters

 

are:

 

v

   

lrecl

 

v

   

indicators

 

v

   

riofb

 

v

   

secure

Record

 

Functions

 

for

 

Printer

 

Files

 

Use

 

the

 

following

 

record

 

functions

 

to

 

process

 

printer

 

files:

 

v

   

_Rclose()

 

v

   

_Rfeod()

 

v

   

_Rformat()

 

v

   

_Rindara()

   

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

295



v

   

_Riofbk()

 

v

   

_Ropen()

 

v

   

_Ropnfbk()

 

v

   

_Rupfb()

 

v

   

_Rwrite()

Example:

 

The

 

following

 

example

 

uses

 

First

 

Character

 

Forms

 

Control

 

in

 

a

 

program

 

described

 

printer

 

file.

 

Employees’

 

names

 

and

 

serial

 

numbers

 

are

 

read

 

from

 

a

 

physical

 

file

 

and

 

written

 

to

 

the

 

printer

 

file.

 

1.

   

To

 

create

 

the

 

printer

 

file

 

T1520FCP,

 

enter:

 

CRTPRTF

 

FILE(MYLIB/T1520FCP)

 

CTLCHAR(*FCFC)

  

CHLVAL((1

 

(13)))

 

2.

   

To

 

create

 

the

 

physical

 

file

 

T1520FCI,

 

enter:

 

CRTPF

 

FILE(MYLIB/T1520FCI)

 

RCDLEN(30)

 

3.

   

Type

 

the

 

names

 

and

 

serial

 

numbers

 

as

 

follows

 

into

 

T1520FCI:

 

Jim

 

Roberts

          

1234567890

 

Karen

 

Smith

          

2314563567

 

John

 

Doe

             

5646357324

 

4.

   

To

 

create

 

the

 

program

 

T1520FCF

 

using

 

the

 

source

 

shown

 

below,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520FCF)

 

SRCFILE(QCPPLE/QACSRC)

     

296

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

fopen()

 

function

 

opens

 

the

 

printer

 

stream

 

file

 

T1520FCP

 

using

 

record

 

at

 

a

 

time

 

processing.

 

The

 

fopen()

 

function

 

also

 

opens

 

the

 

physical

 

file

 

T1520FCI

 

for

 

/*

 

This

 

program

 

illustrates

 

how

 

to

 

use

 

a

 

printer

 

stream

 

file,

 

the

   

*/

 

/*

 

_fwrite()

 

function

 

and

 

the

 

first

 

character

 

forms

 

control.

        

*/

 

#include

 

<stdio.h>

 

#include

 

<string.h>

 

#define

  

BUF_SIZE

   

53

 

#define

  

BUF_OFFSET

 

20

   

int

 

main(void)

 

{

     

FILE

        

*dbf;

     

FILE

        

*prtf;

     

char

 

buf

    

[BUF_SIZE];

     

char

 

tmpbuf

 

[BUF_SIZE];

   

/*

 

Open

 

the

 

printer

 

file

 

using

 

the

 

first

 

character

 

forms

 

control.

     

*/

 

/*

 

recfm

 

and

 

lrecl

 

are

 

required.

                                      

*/

     

prtf

 

=

 

fopen

 

("*LIBL/T1520FCP",

 

"wb

 

type=record

 

recfm=fa

 

lrecl=53"

 

);

     

dbf

  

=

 

fopen

 

("*LIBL/T1520FCI",

  

"rb

 

type=record

 

blksize=0"

 

);

   

/*

 

Print

 

out

 

the

 

header

 

information.

                                  

*/

     

memset

 

(

 

buf,

 

’

 

’,

 

BUF_SIZE

 

);

   

/*

 

Use

 

channel

 

value

 

1.

                                               

*/

     

strncpy

 

(

 

buf,

 

"1

                         

EMPLOYEE

 

INFORMATION",47

 

);

     

fwrite

 

(

 

buf,

 

1,

 

BUF_SIZE,

 

prtf

 

);

   

/*

 

Use

 

single

 

spacing.

                                                

*/

     

strncpy

 

(

 

buf,"

                          

--------------------",47

 

);

     

fwrite

 

(

 

buf,

 

1,

 

BUF_SIZE,

 

prtf

 

);

 

/*

 

Use

 

triple

 

spacing.

                                                

*/

     

strncpy

 

(

 

buf,"-

                   

NAME

                

SERIAL

 

NUMBER"

              

,BUF_SIZE

 

);

     

fwrite

 

(

 

buf,

 

1,

 

BUF_SIZE,

 

prtf

 

);

     

strncpy

 

(

 

buf,"

                    

----

                

-------------"

              

,BUF_SIZE

 

);

     

fwrite

 

(

 

buf,

 

1,

 

BUF_SIZE,

 

prtf

 

);

 

Figure

 

154.

 

T1520FCF

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

First

 

Character

 

Forms

 

Control

 

(Part

 

1

 

of

 

2)

/*

 

Print

 

out

 

the

 

employee

 

information.

                                

*/

     

while

 

(

 

fread

 

(

 

tmpbuf,

 

1,

 

BUF_SIZE,

 

dbf

 

))

     

{

       

memset

 

(

 

buf,

 

’

 

’,

 

BUF_SIZE

 

);

   

/*

 

Use

 

double

 

spacing.

                                                

*/

       

buf[0]

 

=

 

’0’;

       

strncpy

 

(

 

buf

 

+

 

BUF_OFFSET,

 

tmpbuf,

 

strlen(tmpbuf)

 

);

       

fwrite

 

(

 

buf,

 

1,

 

BUF_SIZE,

 

prtf

 

);

     

}

     

fclose

 

(

 

prtf

 

);

     

fclose

 

(

 

dbf

 

);

 

}

 

Figure

 

154.

 

T1520FCF

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

First

 

Character

 

Forms

 

Control

 

(Part

 

2

 

of

 

2)

  

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

297



record

 

at

 

a

 

time

 

processing.

 

The

 

strncpy()

 

function

 

copies

 

the

 

records

 

into

 

the

 

print

 

buffer.

 

The

 

fwrite()

 

function

 

prints

 

out

 

the

 

employee

 

records.

 

5.

   

To

 

run

 

the

 

program

 

T1520FCF,

 

enter:

 

CALL

 

PGM(MYLIB/T1520FCF)

 

The

 

output

 

file

 

is

 

as

 

follows:

                            

EMPLOYEE

 

INFORMATION

                          

--------------------

                    

NAME

                

SERIAL

 

NUMBER

                    

----

                

-------------

                    

Jim

 

Roberts

         

1234567890

                    

Karen

 

Smith

         

2314563567

                    

John

 

Doe

            

5646357324

 

The

 

printed

 

output

 

file

 

is

 

as

 

follows:

    

Writing

 

to

 

a

 

Tape

 

File

 

You

 

can

 

write

 

records

 

to

 

a

 

tape

 

file.

 

A

 

tape

 

file

 

is

 

a

 

device

 

file

 

that

 

is

 

used

 

for

 

tape

 

units.

 

The

 

object

 

type

 

is

 

*FILE.

 

I/O

 

Considerations

 

for

 

Tape

 

Files

 

An

 

ILE

 

C/C++

 

program

 

can

 

only

 

process

 

tape

 

files

 

sequentially.

 

An

 

ILE

 

C/C++

 

program

 

can

 

only

 

process

 

tape

 

files

 

as

 

program

 

described

 

files.

 

Opening

 

Tape

 

Files

 

as

 

Binary

 

Stream

 

Files

 

To

 

open

 

an

 

iSeries

 

tape

 

file

 

as

 

a

 

binary

 

stream

 

file

 

for

 

record-at-a-time

 

processing,

 

use

 

the

 

fopen()

 

function

 

with

 

one

 

of

 

the

 

following

 

modes:

 

v

   

rb

 

v

   

wb

 

v

   

ab

Note:

  

The

 

only

 

way

 

to

 

create

 

a

 

tape

 

file

 

is

 

to

 

use

 

the

 

CRTTAPF

 

command.

 

If

 

you

 

use

 

the

 

fopen()

 

function

 

and

 

the

 

tape

 

file

 

does

 

not

 

exist,

 

a

 

physical

 

database

 

file

 

is

 

created.

 

The

 

valid

 

keyword

 

parameters

 

are:

 

v

   

type

 

v

   

lrecl

 

v

   

recfm

                          

EMPLOYEE

 

INFORMATION

                          

--------------------

                        

NAME

                

SERIAL

 

NUMBER

                    

----

                

-------------

                      

Jim

 

Roberts

         

1234567890

                      

Karen

 

Smith

         

2314563567

                      

John

 

Doe

            

5646357324

   

298

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

blksize

I/O

 

Considerations

 

for

 

Binary

 

Stream

 

Tape

 

Files

 

Blocking

 

Binary

 

Stream

 

Tape

 

Files:

   

If

 

your

 

program

 

processes

 

tape

 

files,

 

performance

 

can

 

be

 

improved

 

if

 

records

 

are

 

blocked.

 

Note:

  

The

 

value

 

you

 

specify

 

on

 

the

 

blksize

 

parameter

 

for

 

the

 

fopen()

 

function

 

overrides

 

the

 

one

 

you

 

specified

 

on

 

the

 

CRTTAPF

 

or

 

CHGTAPF

 

commands.

 

You

 

can

 

still

 

override

 

the

 

BLKLEN

 

parameter

 

with

 

the

 

OVRTAPF

 

command.

 

If

 

you

 

specify

 

0

 

on

 

either

 

BLKLEN

 

or

 

blksize

 

the

 

system

 

calculates

 

a

 

block

 

size

 

for

 

you.

 

You

 

can

 

specify

 

a

 

value

 

on

 

either

 

parameter

 

of

 

between

 

0

 

and

 

32

 

767

 

characters.

 

Binary

 

Stream

 

Functions

 

for

 

Tape

 

Files

 

Use

 

the

 

following

 

binary

 

stream

 

functions

 

to

 

process

 

tape

 

files:

 

v

   

fclose()

 

v

   

fopen()

 

v

   

fread()

 

v

   

freopen()

 

v

   

fwrite()

Opening

 

Tape

 

Files

 

as

 

Record

 

Files

 

To

 

open

 

an

 

iSeries

 

tape

 

file

 

as

 

a

 

record

 

file,

 

use

 

the

 

_Ropen()

 

function

 

with

 

one

 

of

 

the

 

following

 

modes:

 

v

   

rr

 

v

   

wr

 

v

   

ar

The

 

valid

 

keyword

 

parameters

 

are:

 

v

   

blkrcd

 

v

   

lrecl

 

v

   

secure

 

v

   

riofb

I/O

 

Considerations

 

for

 

Record

 

Tape

 

Files

 

Using

 

_Rfeod:

   

The

 

_Rfeod()

 

function

 

is

 

valid

 

for

 

files

 

opened

 

for

 

input

 

and

 

output

 

operations

 

with

 

tape

 

record

 

files.

 

For

 

input

 

operations,

 

it

 

returns

 

end-of-file

 

and

 

positions

 

the

 

tape

 

at

 

the

 

last

 

volume

 

in

 

the

 

file.

 

For

 

output

 

operations,

 

it

 

forces

 

all

 

unbuffered

 

data

 

to

 

be

 

written

 

to

 

the

 

tape.

 

Using

 

_Rfeov:

   

The

 

_Rfeov()

 

function

 

is

 

valid

 

for

 

tape

 

record

 

files

 

opened

 

for

 

input

 

and

 

output

 

operations.

 

For

 

input

 

operations,

 

it

 

signals

 

the

 

end-of-file

 

and

 

positions

 

the

 

tape

 

at

 

the

 

next

 

volume.

 

For

 

output

 

operations,

 

any

 

unwritten

 

data

 

is

 

forced

 

to

 

the

 

tape.

 

An

 

end-of-volume

 

trailer

 

is

 

written

 

to

 

the

 

tape

 

which

 

means

 

that

 

no

 

data

 

can

 

be

 

written

 

after

 

this

 

trailer.

 

Any

 

write

 

operations

 

that

 

take

 

place

 

after

 

the

 

_Rfeov()

 

function

 

occur

 

on

 

a

 

new

 

volume.

 

Blocking

 

Record

 

Tape

 

Files:

   

If

 

your

 

program

 

processes

 

tape

 

files,

 

performance

 

can

 

be

 

improved

 

if

 

I/O

 

operations

 

are

 

blocked.

 

To

 

block

 

records,

 

use

 

the

 

blkrcd=Y

 

keyword

 

on

 

the

 

_Ropen()

 

function.

   

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

299



Record

 

Functions

 

for

 

Tape

 

Files

 

Use

 

the

 

following

 

record

 

functions

 

to

 

process

 

tape

 

files:

 

v

   

_Rclose()

 

v

   

_Rfeod()

 

v

   

_Rfeov()

 

v

   

_Riofbk()

 

v

   

_Ropen()

 

v

   

_Ropfbk()

 

v

   

_Rreadn()

 

v

   

_Rupfb()

 

v

   

_Rwrite()

Example:

 

The

 

following

 

example

 

illustrates

 

how

 

to

 

write

 

to

 

a

 

tape

 

file.

 

1.

   

To

 

create

 

the

 

tape

 

file

 

T1520TPF,

 

enter:

 

CRTTAPF

 

FILE(MYLIB/T1520TPF)

 

DEV(TAP01)

 

SEQNBR(*END)

 

LABEL(CSOURCE)

 

FILETYPE(*SRC)

 

2.

   

To

 

create

 

the

 

source

 

physical

 

file

 

QCSRC

 

with

 

the

 

member

 

CSOURCE,

 

enter:

 

CRTSRCPF

 

FILE(MYLIB/QCSRC)

 

MBR(CSOURCE)

 

The

 

CRTSRCPF

 

command

 

creates

 

the

 

physical

 

file

 

QCSRC

 

with

 

member

 

CSOURCE

 

in

 

MYLIB.

 

The

 

following

 

statements

 

are

 

copied

 

to

 

the

 

tape

 

file:

 

3.

   

To

 

create

 

the

 

program

 

T1520TAP

 

using

 

the

 

source

 

shown

 

below,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520TAP)

 

SRCFILE(QCPPLE/QACSRC)

   

/*

 

This

 

program

 

SQITF

 

is

 

called

 

by

 

the

 

command

 

SQUARE.

 

This

          

*/

 

/*

 

program

 

then

 

calls

 

another

 

ILE

 

C

 

program

 

SQ

 

to

 

perform

        

*/

 

/*

 

calculations

 

and

 

return

 

a

 

value.

                                  

*/

 

#include

 

<stdio.h>

 

#include

 

<decimal.h>

 

#pragma

 

linkage(SQ,

 

OS)

      

/*

 

Tell

 

compiler

 

this

 

is

 

external

 

call,

 

*/

                              

/*

 

do

 

not

 

pass

 

by

 

value.

                

*/

 

int

 

SQ(int);

 

int

 

main(int

 

argc,

 

char

 

*argv[])

 

{

  

int

  

*x;

  

int

  

result;

  

x

 

=

 

(int

 

*)

 

argv[1];

  

result

 

=

 

SQ(*x);

  

/*

 

Note

 

that

 

although

 

the

 

argument

 

is

 

passed

 

by

 

value,

 

the

 

compiler

 

*/

  

/*

 

copies

 

the

 

argument

 

to

 

a

 

temporary

 

variable,

 

and

 

the

 

pointer

 

to

  

*/

  

/*

 

the

 

temporary

 

variable

 

is

 

passed

 

to

 

the

 

called

 

program

 

SQ.

       

*/

  

printf("The

 

SQUARE

 

of

 

%d

 

is

 

%d\n",

 

*x,

 

result);

 

}

 

Figure

 

155.

 

Sample

 

Source

 

Statements

 

for

 

Program

 

T1520TAP

  

300

 

ILE

 

C/C++

 

Programmer’s

 

Guide



This

 

program

 

opens

 

the

 

source

 

physical

 

file

 

T1520TPF.

 

The

 

_Ropen()

 

function

 

file

 

QCSRC

 

contains

 

the

 

member

 

CSOURCE

 

with

 

the

 

source

 

statements.

 

The

 

_Ropen()

 

function

 

opens

 

the

 

tape

 

file

 

T1520TPF

 

to

 

receive

 

the

 

C

 

source

 

statements.

 

The

 

_Rreadn()

 

function

 

reads

 

the

 

C

 

source

 

statements,

 

finds

 

their

 

sizes,

 

and

 

adds

 

them

 

to

 

the

 

tape

 

file

 

T1520TPF.

 

4.

   

To

 

run

 

the

 

program

 

T1520TAP,

 

enter:

 

CALL

 

PGM(MYLIB/T1520TAP)

 

/*

 

This

 

program

 

illustrates

 

how

 

to

 

write

 

to

 

a

 

tape

 

file.

              

*/

   

#include

 

<stdio.h>

 

#include

 

<string.h>

 

#include

 

<recio.h>

 

#include

 

<stdlib.h>

 

#define

  

RECLEN

 

80

   

int

 

main(void)

 

{

     

_RFILE

 

*tape;

     

_RFILE

 

*fp;

     

char

   

buf

 

[92];

     

int

    

i;

   

/*

 

Open

 

the

 

source

 

physical

 

file

 

containing

 

the

 

C

 

source.

             

*/

 

Figure

 

156.

 

T1520TAP

 

—

 

ILE

 

C

 

Source

 

to

 

Write

 

to

 

a

 

Tape

 

File

 

(Part

 

1

 

of

 

2)

    

if

 

((

 

fp

 

=

 

_Ropen

 

(

 

"*LIBL/QCSRC(CSOURCE)",

 

"rr

 

blkrcd=y"

 

))

 

==

 

NULL

 

)

     

{

         

printf

 

(

 

"could

 

not

 

open

 

C

 

source

 

file\n"

 

);

         

exit

 

(

 

1

 

);

     

}

 

/*

 

Open

 

the

 

tape

 

file

 

to

 

receive

 

the

 

C

 

source

 

statements

              

*/

       

if

 

((

 

tape

 

=

 

_Ropen

 

(

 

"*LIBL/T1520TPF",

 

"wr

 

lrecl=92

 

blkrcd=y"

 

))

 

==

 

NULL

 

)

     

{

         

printf

 

(

 

"could

 

not

 

open

 

tape

 

file\n"

 

);

         

exit

 

(

 

2

 

);

     

}

   

/*

 

Read

 

the

 

C

 

source

 

statements,

 

find

 

their

 

sizes

                     

*/

 

/*

 

and

 

add

 

them

 

to

 

the

 

tape

 

file.

                                     

*/

       

while

 

((

 

_Rreadn

 

(

 

fp,

 

buf,

 

sizeof(buf),

 

__DFT

 

))

 

->

 

num_bytes

 

!=

 

EOF

 

)

     

{

         

memmove

 

(

 

buf,

 

buf+12,

 

RECLEN

 

);

         

_Rwrite

 

(

 

tape,

 

buf,

 

RECLEN

 

);

     

}

       

_Rclose

 

(

 

fp

 

);

     

_Rclose

 

(

 

tape

 

);

     

return(0);

 

}

 

Figure

 

156.

 

T1520TAP

 

—

 

ILE

 

C

 

Source

 

to

 

Write

 

to

 

a

 

Tape

 

File

 

(Part

 

2

 

of

 

2)

  

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

301



After

 

you

 

run

 

the

 

program,

 

the

 

tape

 

file

 

contains

 

the

 

source

 

statements

 

from

 

CSOURCE.

Writing

 

to

 

a

 

Diskette

 

File

 

You

 

can

 

write

 

records

 

to

 

a

 

diskette

 

file.

 

A

 

diskette

 

file

 

is

 

a

 

device

 

file

 

that

 

is

 

used

 

for

 

a

 

diskette

 

unit.

 

The

 

object

 

type

 

is

 

*FILE.

 

I/O

 

Considerations

 

for

 

Diskette

 

Files

 

A

 

diskette

 

unit

 

can

 

only

 

be

 

accessed

 

with

 

a

 

program

 

described

 

file.

 

An

 

ILE

 

C/C++

 

program

 

can

 

only

 

process

 

a

 

diskette

 

file

 

sequentially.

 

The

 

concept

 

of

 

clearing

 

a

 

file

 

or

 

opening

 

a

 

file

 

using

 

append

 

mode

 

does

 

not

 

apply

 

to

 

diskette

 

files.

 

The

 

diskette

 

file

 

label

 

name

 

is

 

required

 

when

 

the

 

file

 

is

 

opened.

 

You

 

specify

 

this

 

label

 

name

 

using

 

the

 

Override

 

Diskette

 

File

 

(OVRDKTF)

 

command.

 

If

 

the

 

diskette

 

file

 

is

 

opened

 

for

 

input

 

and:

 

v

   

if

 

the

 

lrecl

 

parameter

 

is

 

not

 

specified

 

or

 

is

 

specified

 

as

 

zero,

 

the

 

record

 

length

 

in

 

the

 

data

 

file

 

label

 

on

 

the

 

name

 

on

 

the

 

diskette

 

is

 

used

 

to

 

determine

 

the

 

length

 

of

 

the

 

records

 

to

 

read.

 

v

   

if

 

the

 

lrecl

 

parameter

 

is

 

greater

 

than

 

the

 

length

 

of

 

the

 

records

 

on

 

the

 

diskette

 

file,

 

the

 

records

 

that

 

are

 

read

 

are

 

padded

 

with

 

blanks.

 

v

   

if

 

the

 

lrecl

 

parameter

 

is

 

less

 

than

 

the

 

length

 

of

 

the

 

records

 

on

 

the

 

diskette

 

file,

 

the

 

records

 

that

 

are

 

read

 

are

 

truncated.

 

v

   

if

 

the

 

file

 

type

 

in

 

the

 

diskette

 

file

 

is

 

a

 

source

 

file,

 

a

 

date

 

and

 

sequence

 

number

 

is

 

appended

 

at

 

the

 

beginning

 

of

 

each

 

record.

 

You

 

must

 

remove

 

these

 

when

 

writing

 

the

 

record

 

and

 

add

 

12

 

bytes

 

to

 

the

 

lrecl

 

parameter

 

on

 

the

 

open

 

statement.

Note:

  

Output

 

may

 

not

 

always

 

result

 

in

 

an

 

I/O

 

operation

 

to

 

a

 

diskette

 

file.

 

The

 

I/O

 

buffer

 

must

 

contain

 

enough

 

data

 

to

 

fill

 

an

 

entire

 

track

 

on

 

a

 

diskette.

 

When

 

opening

 

a

 

diskette

 

file

 

for

 

output,

 

any

 

files

 

existing

 

on

 

the

 

diskette

 

are

 

deleted

 

if

 

the

 

data

 

file

 

expiration

 

date

 

is

 

less

 

than

 

or

 

equal

 

to

 

the

 

system

 

date.

 

Opening

 

Diskette

 

Files

 

as

 

Binary

 

Stream

 

Files

 

To

 

open

 

an

 

iSeries

 

diskette

 

file

 

as

 

a

 

binary

 

stream

 

file

 

for

 

record-at-a-time

 

processing,

 

use

 

the

 

fopen()

 

function

 

with

 

one

 

of

 

the

 

following

 

modes:

 

v

   

rb

 

v

   

wb

Note:

  

The

 

only

 

way

 

to

 

create

 

a

 

diskette

 

file

 

is

 

to

 

use

 

the

 

CRTDKTF

 

command.

 

If

 

you

 

use

 

fopen()

 

and

 

the

 

diskette

 

file

 

does

 

not

 

exist,

 

a

 

physical

 

database

 

file

 

is

 

created.

 

The

 

valid

 

keyword

 

parameters

 

are:

 

v

   

type

 

v

   

lrecl

 

v

   

blksize

  

302

 

ILE

 

C/C++

 

Programmer’s

 

Guide



I/O

 

Considerations

 

for

 

Binary

 

Stream

 

Diskette

 

Files

 

Blocking

 

Binary

 

Stream

 

Diskette

 

Files:

   

If

 

your

 

program

 

processes

 

diskette

 

files,

 

performance

 

can

 

be

 

improved

 

if

 

I/O

 

operations

 

are

 

blocked.

 

If

 

you

 

do

 

not

 

specify

 

a

 

value

 

for

 

the

 

blksize

 

parameter

 

or

 

if

 

you

 

specify

 

blksize=0

 

on

 

fopen(),

 

the

 

system

 

calculates

 

a

 

number

 

of

 

records

 

to

 

be

 

transferred

 

as

 

a

 

block

 

to

 

your

 

program.

 

Binary

 

Stream

 

Functions

 

for

 

Diskette

 

Files

 

Use

 

the

 

following

 

binary

 

stream

 

functions

 

to

 

process

 

diskette

 

files:

 

v

   

fclose()

 

v

   

fopen()

 

v

   

fread()

 

v

   

freopen()

 

v

   

fwrite()

Opening

 

Diskette

 

Files

 

as

 

Record

 

Files

 

To

 

open

 

an

 

iSeries

 

diskette

 

file

 

as

 

a

 

record

 

file,

 

use

 

the

 

_Ropen()

 

function

 

with

 

one

 

of

 

the

 

following

 

modes:

 

v

   

rr

 

v

   

wr

The

 

valid

 

keyword

 

parameters

 

are:

 

v

   

blkrcd

 

v

   

lrecl

 

v

   

secure

 

v

   

riofb

I/O

 

Considerations

 

for

 

Record

 

Diskette

 

Files

 

The

 

_Rfeod()

 

function

 

is

 

valid

 

for

 

diskette

 

record

 

files

 

opened

 

for

 

input

 

and

 

output

 

operations.

 

It

 

signals

 

the

 

end-of-file.

 

For

 

output

 

operations,

 

it

 

does

 

not

 

write

 

any

 

data.

 

Read

 

and

 

Write

 

Record

 

Diskette

 

Files:

   

If

 

you

 

read

 

from

 

a

 

diskette

 

file,

 

the

 

next

 

sequential

 

record

 

in

 

the

 

diskette

 

file

 

is

 

processed.

 

Use

 

the

 

_Rreadn()

 

function

 

for

 

reading

 

diskette

 

files

 

and

 

the

 

_Rwrite()

 

function

 

for

 

writing

 

to

 

diskette

 

files.

 

Blocking

 

Record

 

Diskette

 

Files:

   

If

 

your

 

program

 

processes

 

diskette

 

files,

 

performance

 

can

 

be

 

improved

 

if

 

records

 

are

 

blocked.

 

If

 

you

 

specify

 

blkrcd=Y

 

on

 

_Ropen(),

 

the

 

system

 

calculates

 

a

 

number

 

of

 

records

 

to

 

be

 

transferred

 

as

 

a

 

block

 

to

 

your

 

program.

 

Record

 

Functions

 

for

 

Diskette

 

Files

 

Use

 

the

 

following

 

record

 

functions

 

to

 

process

 

diskette

 

files:

 

v

   

_Rclose()

 

v

   

_Rfeod()

 

v

   

_Riofbk()

 

v

   

_Ropen()

 

v

   

_Ropfbk()

 

v

   

_Rreadn()

   

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

303



v

   

_Rupfb()

 

v

   

_Rwrite()

Example:

 

The

 

following

 

example

 

shows

 

how

 

to

 

write

 

to

 

a

 

diskette

 

file.

 

1.

   

To

 

create

 

the

 

diskette

 

file

 

T1520DKF,

 

enter:

 

CRTDKTF

 

FILE(MYLIB/T1520DKF)

 

DEV(DKT02)

 

LABEL(FILE1)

 

EXCHTYPE(*I)

 

SPOOL(*NO)

 

2.

   

Enter:

 

CRTPF

 

FILE(MYLIB/T1520DDI)

 

SRCFILE(QCPPLE/QADDSSRC)

 

SHARE(*YES)

 

To

 

create

 

the

 

physical

 

file

 

T1520DDI

 

using

 

the

 

following

 

DDS

 

source:

  

3.

   

Type

 

the

 

following

 

records

 

into

 

the

 

database

 

file

 

T1520DDI:

 

4.

   

To

 

select

 

only

 

records

 

that

 

have

 

a

 

value

 

greater

 

than

 

400

 

in

 

the

 

DENTAL

 

field,

 

enter:

 

OPNQRYF

 

FILE((MYLIB/T1520DDI))

 

QRYSLT(’DENTAL

 

*GT

 

400’)

 

OPNSCOPE(*JOB)

 

5.

   

To

 

create

 

the

 

program

 

T1520DSK

 

using

 

the

 

source

 

shown

 

below,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520DSK)

 

SRCFILE(QCPPLE/QACSRC)

        

A

          

R

 

CUST

      

A

            

NAME

          

20A

      

A

            

AGE

            

3B

      

A

            

DENTAL

         

6B

 

Dave

 

Bolt

           

35

 

350

 

Mary

 

Smith

          

54

 

444

 

Mike

 

Tomas

          

25

 

545

 

Alex

 

Michaels

       

32

 

512

   

304

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

_Ropen()

 

function

 

opens

 

the

 

diskette

 

file

 

T1520DKF

 

and

 

the

 

database

 

file

 

T1520DDI.

 

The

 

_Rreadn()

 

function

 

reads

 

all

 

database

 

records.

 

The

 

_Rwrite()

 

function

 

copies

 

all

 

database

 

records

 

that

 

have

 

a

 

value

 

>

 

400

 

in

 

the

 

DENTAL

 

field

 

to

 

the

 

diskette

 

file

 

T1520DKF.

 

6.

   

To

 

run

 

the

 

program

 

T1520DSK,

 

enter:

 

CALL

 

PGM(MYLIB/T1520DSK)

 

The

 

output

 

to

 

the

 

diskette

 

file

 

is

 

as

 

follows:

  

/*

 

This

 

program

 

illustrates

 

how

 

to

 

write

 

to

 

a

 

diskette

 

file.

          

*/

   

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<recio.h>

   

#define

  

BUF_SIZE

 

30

   

int

 

main(void)

 

{

     

_RFILE

 

*dktf;

     

_RFILE

 

*dbf;

     

char

   

buf

 

[BUF_SIZE];

   

/*

 

Open

 

the

 

diskette

 

file

                                             

*/

       

if

 

((

 

dktf

 

=

 

_Ropen

 

(

 

"*LIBL/T1520DKF",

 

"wr

 

blkrcd=y

 

lrecl=100"

 

))

 

==

 

NULL

 

)

     

{

         

printf

 

(

 

"DISKETTE

 

file

 

did

 

not

 

open

 

\n"

 

);

         

exit

 

(

 

1

 

);

     

}

 

Figure

 

157.

 

T1520DSK

 

—

 

ILE

 

C

 

Source

 

to

 

Write

 

Records

 

to

 

a

 

Diskette

 

File

 

(Part

 

1

 

of

 

2)

/*

 

Open

 

the

 

database

 

file.

                                            

*/

       

if

 

(

 

(

 

dbf

  

=

 

_Ropen

 

(

 

"*LIBL/T1520DDI",

 

"rr")

 

)

 

==

 

NULL)

     

{

         

printf

 

(

 

"DATABASE

 

file

 

did

 

not

 

open\n"

 

);

         

exit

 

(

 

2

 

);

     

}

   

/*

 

Copy

 

all

 

the

 

database

 

records

 

meeting

 

the

 

OPNQRYF

 

selection

        

*/

 

/*

 

criteria

 

to

 

the

 

diskette

 

file.

                                     

*/

       

while

 

((

 

_Rreadn

 

(

 

dbf,

 

buf,

 

BUF_SIZE,__DFT)

 

)

 

->

 

num_bytes

 

!=

 

EOF

 

)

     

{

         

_Rwrite

 

(

 

dktf,

 

buf,

 

BUF_SIZE

 

);

     

}

     

_Rclose

 

(

 

dktf

 

);

     

_Rclose

 

(

 

dbf

 

);

 

}

 

Figure

 

157.

 

T1520DSK

 

—

 

ILE

 

C

 

Source

 

to

 

Write

 

Records

 

to

 

a

 

Diskette

 

File

 

(Part

 

2

 

of

 

2)

  

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

305



After

 

you

 

run

 

the

 

program,

 

the

 

diskette

 

file

 

contains

 

only

 

the

 

records

 

that

 

satisfied

 

the

 

selection

 

criteria.

Using

 

Save

 

Files

 

A

 

save

 

file

 

is

 

a

 

file

 

allocated

 

in

 

auxiliary

 

storage

 

that

 

can

 

be

 

used

 

to

 

store

 

saved

 

data

 

on

 

disk

 

(without

 

requiring

 

diskettes

 

or

 

tapes),

 

or

 

to

 

receive

 

objects

 

sent

 

through

 

the

 

network.

 

The

 

object

 

type

 

is

 

*FILE.

 

The

 

Backup

 

and

 

Recovery

 

manual

 

contains

 

information

 

on

 

save

 

files.

 

I/O

 

Considerations

 

for

 

Save

 

Files

 

An

 

ILE

 

C/C++

 

program

 

can

 

only

 

process

 

save

 

files

 

sequentially.

 

All

 

records

 

that

 

are

 

read

 

or

 

are

 

written

 

must

 

be

 

528

 

characters

 

in

 

length.

 

Any

 

records

 

that

 

are

 

written

 

to

 

another

 

save

 

file

 

cannot

 

be

 

changed

 

by

 

the

 

ILE

 

C/C++

 

program.

 

Opening

 

Save

 

Files

 

as

 

Binary

 

Stream

 

Files

 

To

 

open

 

an

 

iSeries

 

save

 

file

 

as

 

a

 

binary

 

stream

 

file

 

for

 

record-at-a-time

 

processing,

 

use

 

the

 

fopen()

 

function

 

with

 

one

 

of

 

the

 

following

 

modes:

 

v

   

rb

 

v

   

wb

 

v

   

ab

Note:

  

The

 

only

 

way

 

to

 

create

 

a

 

save

 

file

 

is

 

to

 

use

 

the

 

CRTSAVF

 

command.

 

If

 

you

 

use

 

the

 

fopen()

 

function

 

with

 

a

 

mode

 

of

 

wb

 

or

 

ab

 

and

 

the

 

save

 

file

 

does

 

not

 

exist,

 

a

 

physical

 

database

 

file

 

is

 

created.

 

The

 

valid

 

keyword

 

parameters

 

are:

 

v

   

lrecl

 

v

   

type

I/O

 

Considerations

 

for

 

Binary

 

Stream

 

Save

 

Files

 

There

 

are

 

no

 

special

 

considerations

 

for

 

binary

 

stream

 

save

 

files.

 

Binary

 

Stream

 

Functions

 

for

 

Save

 

Files

 

Use

 

the

 

following

 

binary

 

stream

 

functions

 

to

 

process

 

save

 

files:

 

v

   

fclose()

 

v

   

fopen()

 

v

   

fread()

 

v

   

freopen()

 

v

   

fwrite()

Opening

 

Save

 

Files

 

as

 

Record

 

Files

 

To

 

open

 

an

 

iSeries

 

save

 

file

 

as

 

a

 

record

 

file,

 

use

 

the

 

_Ropen()

 

function

 

with

 

one

 

of

 

the

 

following

 

modes:

 

v

   

rr

 

v

   

wr

  

Mary

 

Smith

         

444

  

Mike

 

Tomas

         

545

  

Alex

 

Michaels

      

512

   

306

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

ar

The

 

valid

 

keyword

 

parameters

 

are:

 

v

   

lrecl

 

v

   

riofb

 

v

   

secure

I/O

 

Considerations

 

for

 

Record

 

Save

 

Files

 

If

 

a

 

save

 

file

 

is

 

opened

 

for

 

input,

 

the

 

_Rfeod()

 

function

 

returns

 

an

 

end-of-file

 

to

 

your

 

program.

 

If

 

a

 

save

 

file

 

is

 

opened

 

for

 

output,

 

the

 

_Rfeod()

 

function

 

ensures

 

that

 

any

 

data

 

that

 

is

 

written

 

to

 

the

 

file

 

is

 

forced

 

to

 

auxiliary

 

storage.

 

If

 

you

 

want

 

to

 

continue

 

reading

 

from

 

or

 

writing

 

to

 

the

 

save

 

file

 

after

 

calling

 

this

 

function,

 

you

 

must

 

close

 

the

 

file

 

and

 

open

 

it

 

again.

 

Record

 

Functions

 

for

 

Save

 

Files

 

The

 

following

 

record

 

functions

 

can

 

be

 

used

 

to

 

process

 

save

 

files:

 

v

   

_Rclose()

 

v

   

_Rfeod()

 

v

   

_Riofbk()

 

v

   

_Ropen()

 

v

   

_Ropnfbk()

 

v

   

_Rreadn()

 

v

   

_Rupfb()

 

v

   

_Rwrite()

  

Chapter

 

20.

 

Using

 

Device

 

Files

 

in

 

a

 

Program

 

307



308

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Part

 

6.

 

Working

 

with

 

iSeries

 

Features

 

This

 

part

 

describes

 

how

 

to:

 

v

   

Understand

 

the

 

ILE

 

control

 

boundary

 

and

 

exception

 

handling

 

v

   

Use

 

iSeries

 

pointers

 

in

 

a

 

program

 

v

   

Use

 

ILE

 

C/C++

 

calling

 

conventions

 

v

   

Port

 

programs

 

from

 

ILE

 

C

 

to

 

ILE

 

C++

 

v

   

Call

 

programs

 

and

 

procedures

 

in

 

a

 

multi-language

 

environment

 

v

   

Use

 

packed

 

decimal

 

data

 

types

 

in

 

C

 

programs

 

v

   

Use

 

packed

 

decimal

 

data

 

types

 

in

 

C++

 

programs

 

v

   

Use

 

templates

 

in

 

C++

 

programs

 

v

   

Use

 

teraspace

 

storage

 

v

   

Cast

 

with

 

run-time

 

type

 

information

 

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

309



310

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

This

 

chapter

 

describes:

 

v

   

ILE

 

language-specific

 

error

 

handling

 

v

   

Exception

 

messages

 

v

   

How

 

the

 

system

 

processes

 

exceptions

 

v

   

Detecting

 

stream

 

file

 

and

 

record

 

file

 

errors

 

v

   

Using

 

ILE

 

exception

 

handlers:

 

–

   

Direct

 

monitor

 

handlers

 

–

   

ILE

 

condition

 

handlers
v

   

Using

 

the

 

C/C++

 

signal

 

handler

 

v

   

Using

 

both

 

signal

 

handlers

 

and

 

ILE

 

exception

 

handlers

 

v

   

Handling

 

nested

 

exceptions

 

v

   

Using

 

cancel

 

handlers

 

v

   

Example

 

of

 

ILE

 

C

 

source

 

code

 

that

 

uses

 

a

 

variety

 

of

 

exception

 

handling

 

methods

ILE

 

Language-Specific

 

Error

 

Handling

 

Figure

 

158

 

illustrates

 

the

 

complexity

 

of

 

ILE

 

C/C++

 

language-specific

 

error

 

handling

 

in

 

comparison

 

to

 

OPM

 

language-specific

 

error

 

handling.

   

For

 

OPM

 

programs,

 

language-specific

 

error

 

handling

 

provides

 

one

 

or

 

more

 

handling

 

routines

 

for

 

each

 

call

 

stack

 

entry.

 

The

 

system

 

calls

 

the

 

appropriate

 

routine

 

when

 

an

 

exception

 

is

 

sent

 

to

 

an

 

OPM

 

program.

 

For

 

ILE

 

C/C++

 

programs,

 

language-specific

 

error

 

handling

 

provides

 

the

 

same

 

capabilities,

 

plus

 

additional

 

types

 

of

 

exception

 

handlers.

 

These

 

additional

 

types

 

of

 

handlers

 

allow

 

you

 

to

 

v

   

Change

 

the

 

exception

 

message

 

to

 

indicate

 

that

 

the

 

exception

 

is

 

handled

 

C

Original Program Model
(OPM)

Integrated Language
Environment (ILE)

RPG CL RPGCL COBOL

RV3W101-0

HLL - Specific
Handlers

HLL - Specific
Handlers

Unhandled Exception
Default Actions

Exception Message Architecture

Unhandled Exception
Default Actions

Direct 
Monitors

ILE 
Conditions

  

Figure

 

158.

 

Error

 

Handling

 

for

 

OPM

 

and

 

ILE

 

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

311



v

   

Bypass

 

the

 

language-specific

 

error

 

handling

The

 

additional

 

types

 

of

 

handlers

 

for

 

ILE

 

C/C++

 

are:

 

v

   

Direct

 

monitor

 

handler

 

v

   

ILE

 

condition

 

handler

Exception

 

Messages

 

The

 

following

 

are

 

the

 

only

 

types

 

of

 

messages

 

that

 

are

 

considered

 

to

 

be

 

exception

 

messages:

 

(*ESCAPE)

 

Indicates

 

an

 

error

 

that

 

caused

 

a

 

program

 

to

 

end

 

abnormally.

 

If

 

the

 

message

 

type

 

is

 

*ESCAPE

 

then

 

a

 

function

 

check

 

is

 

sent

 

to

 

the

 

call

 

stack

 

entry

 

that

 

is

 

pointed

 

to

 

by

 

the

 

resume

 

cursor.

 

(*STATUS)

 

Describes

 

the

 

status

 

of

 

work

 

that

 

the

 

program

 

is

 

in

 

the

 

process

 

of

 

doing.

 

If

 

the

 

message

 

type

 

is

 

*STATUS,

 

the

 

program

 

resumes

 

without

 

logging

 

the

 

exception.

 

(*NOTIFY)

 

Describes

 

a

 

condition

 

that

 

requires

 

corrective

 

action

 

or

 

reply

 

from

 

calling

 

program.

 

If

 

the

 

message

 

type

 

is

 

*NOTIFY,

 

the

 

default

 

reply

 

is

 

sent.

 

Function

 

Check

 

Describes

 

an

 

ending

 

condition

 

that

 

the

 

program

 

has

 

not

 

expected.

 

If

 

the

 

message

 

is

 

a

 

function

 

check,

 

the

 

call

 

stack

 

is

 

cancelled

 

to

 

the

 

control

 

boundary

 

and

 

CEE9901

 

is

 

sent

 

to

 

the

 

caller

 

of

 

the

 

control

 

boundary

For

 

more

 

information

 

about

 

exception

 

messages

 

and

 

how

 

they

 

are

 

sent,

 

see

 

ILE

 

Concepts.

 

How

 

the

 

System

 

Processes

 

Exceptions

 

The

 

exception

 

message

 

architecture

 

of

 

the

 

OS/400

 

is

 

used

 

to

 

implement

 

both

 

exception

 

handling

 

and

 

condition

 

handling.

 

There

 

are

 

cases

 

in

 

which

 

exception

 

handling

 

and

 

condition

 

handling

 

interact.

 

For

 

example,

 

an

 

ILE

 

condition

 

handler

 

registered

 

with

 

the

 

Register

 

a

 

User-Written

 

Condition

 

Handler

 

(CEEHDLR)

 

bindable

 

API

 

is

 

used

 

to

 

handle

 

an

 

exception

 

message

 

sent

 

with

 

the

 

Send

 

Program

 

Message

 

(QMHSNDPM)

 

API.

 

The

 

term

 

exception

 

handler

 

is

 

used

 

in

 

this

 

chapter

 

to

 

mean

 

either

 

an

 

OS/400

 

exception

 

handler

 

or

 

an

 

ILE

 

condition

 

handler.

Note:

  

See

 

ILE

 

Concepts

 

for

 

more

 

information

 

about:

 

v

   

Exception

 

and

 

condition

 

handling

 

v

   

Exception

 

recovery

How

 

the

 

Call

 

Message

 

Queue

 

Handles

 

ILE

 

Procedures

 

and

 

Functions

 

A

 

message

 

queue

 

exists

 

for

 

every

 

call

 

stack

 

entry

 

within

 

each

 

iSeries

 

job.

 

This

 

is

 

known

 

as

 

a

 

call

 

message

 

queue.

 

As

 

soon

 

as

 

a

 

new

 

entry

 

appears

 

in

 

the

 

call

 

stack,

 

the

 

system

 

creates

 

a

 

new

 

call

 

message

 

queue.

 

In

 

ILE

 

C/C++,

 

the

 

name

 

of

 

the

 

procedure

 

identifies

 

the

 

call

 

message

 

queue.

 

If

 

the

 

procedure

 

names

 

are

 

not

   

312

 

ILE

 

C/C++

 

Programmer’s

 

Guide



unique,

 

you

 

can

 

specify

 

the

 

module

 

name,

 

program

 

name,

 

or

 

service

 

program

 

as

 

well.

 

If

 

you

 

determine

 

that

 

your

 

handler

 

does

 

not

 

recognize

 

an

 

exception

 

message,

 

the

 

exception

 

message

 

can

 

be

 

percolated

 

to

 

the

 

next

 

handler.

 

How

 

Control

 

Boundaries

 

Affect

 

Exception

 

Handling

 

in

 

ILE

 

Whenever

 

an

 

unhandled

 

function

 

check

 

occurs

 

or

 

an

 

HLL

 

end

 

verb

 

is

 

used,

 

control

 

is

 

transferred

 

to

 

the

 

caller

 

of

 

the

 

call

 

stack

 

entry

 

that

 

represents

 

a

 

boundary

 

for

 

your

 

application.

 

This

 

call

 

stack

 

entry

 

is

 

known

 

as

 

a

 

control

 

boundary.

 

A

 

control

 

boundary

 

can

 

be

 

either

 

of

 

the

 

following:

 

v

   

Any

 

ILE

 

call

 

stack

 

entry

 

for

 

which

 

the

 

immediately

 

preceding

 

call

 

stack

 

entry

 

is

 

in

 

a

 

different

 

non-default

 

activation

 

group

 

v

   

Any

 

ILE

 

call

 

stack

 

entry

 

for

 

which

 

the

 

immediately

 

preceding

 

call

 

stack

 

entry

 

is

 

an

 

OPM

 

program.

For

 

detailed

 

information

 

about

 

control

 

boundaries,

 

see

 

ILE

 

Concepts.

 

Unmonitored

 

Exceptions

 

and

 

Unhandled

 

Exceptions

 

When

 

an

 

unmonitored

 

exception

 

occurs,

 

the

 

program

 

that

 

is

 

running

 

issues

 

a

 

function

 

check

 

and

 

sends

 

a

 

message

 

to

 

the

 

job

 

log.

 

If

 

you

 

are

 

in

 

debug

 

mode

 

and

 

the

 

modules

 

of

 

the

 

program

 

were

 

created

 

with

 

debug

 

data,

 

the

 

ILE

 

source

 

debugger

 

displays

 

the

 

appropriate

 

module

 

and,

 

if

 

necessary,

 

the

 

program

 

is

 

added

 

to

 

debug

 

mode.

 

When

 

an

 

unhandled

 

function

 

check

 

occurs,

 

ILE

 

transfers

 

control

 

to

 

the

 

caller

 

of

 

the

 

call

 

stack

 

entry

 

that

 

represents

 

a

 

boundary

 

for

 

the

 

application.

 

This

 

call

 

stack

 

entry

 

is

 

known

 

as

 

a

 

control

 

boundary.

 

For

 

more

 

information

 

about

 

control

 

boundaries,

 

see:

 

v

   

“How

 

Control

 

Boundaries

 

Affect

 

Exception

 

Handling

 

in

 

ILE”

 

v

   

ILE

 

Concepts

For

 

detailed

 

information

 

about

 

the

 

default

 

treatment

 

for

 

unhandled

 

exceptions,

 

see

 

ILE

 

Concepts.

 

Example

 

of

 

ILE

 

C

 

Source

 

Code

 

with

 

an

 

Unhandled

 

Exception

 

Figure

 

159

 

shows

 

ILE

 

C

 

source

 

code

 

with

 

an

 

unhandled

 

*ESCAPE

 

exception.

  

In

 

Figure

 

159:

 

1.

   

An

 

exception

 

is

 

sent

 

to

 

the

 

fred()

 

function.

 

2.

   

The

 

main()

 

function

 

is

 

the

 

control

 

boundary.

 

void

 

fred(void)

 

{

    

char

 

*p

 

=

 

NULL;

    

*p

 

=

 

’x’;

     

/*

 

*ESCAPE

 

exception

 

*/

 

}

 

int

 

main(void)

 

{

    

fred();

 

}

 

Figure

 

159.

 

ILE

 

C

 

Source

 

Code

 

with

 

Unhandled

 

Exceptions

  

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

313



Note:

  

For

 

illustration,

 

many

 

of

 

the

 

examples

 

refer

 

to

 

the

 

main()

 

function

 

as

 

a

 

control

 

boundary.

 

If

 

a

 

program

 

is

 

running

 

in

 

a

 

*NEW

 

activation

 

group,

 

the

 

program

 

entry

 

procedure

 

(PEP)

 

is

 

the

 

control

 

boundary

 

for

 

the

 

program.

 

3.

   

The

 

fred()

 

function

 

has

 

no

 

exception

 

handlers

 

therefore

 

the

 

exception

 

is

 

percolated

 

to

 

main().

 

4.

   

Because

 

the

 

main()

 

function

 

has

 

no

 

exception

 

handlers

 

and

 

main()

 

is

 

a

 

control

 

boundary,

 

the

 

system

 

takes

 

the

 

default

 

action.

 

5.

    

Because

 

the

 

exception

 

is

 

of

 

type

 

*ESCAPE,

 

a

 

function

 

check

 

is

 

sent

 

to

 

the

 

fred()

 

function.

 

Note:

  

For

 

information

 

about

 

actions

 

taken

 

for

 

other

 

types

 

of

 

exceptions,

 

see

 

“Exception

 

Messages”

 

on

 

page

 

312.

 

6.

   

The

 

function

 

check

 

percolates

 

to

 

function

 

main(),

 

and

 

again

 

the

 

default

 

is

 

taken.

 

7.

   

Because

 

the

 

exception

 

is

 

of

 

type

 

function

 

check,

 

the

 

call

 

stack

 

entries

 

of

 

the

 

main()

 

and

 

fred()

 

functions

 

are

 

cancelled

 

and

 

the

 

CEE9901

 

exception

 

is

 

sent

 

to

 

the

 

caller

 

of

 

function

 

main().

Nested

 

Exceptions

 

A

 

nested

 

exception

 

is

 

an

 

exception

 

that

 

occurs

 

while

 

another

 

exception

 

is

 

being

 

handled.

 

When

 

this

 

happens:

 

v

   

Processing

 

of

 

the

 

first

 

exception

 

is

 

temporarily

 

suspended.

 

v

   

The

 

system

 

saves

 

all

 

of

 

the

 

associated

 

information

 

such

 

as

 

the

 

locations

 

of

 

the

 

handle

 

cursor

 

and

 

resume

 

cursor.

 

v

   

Exception

 

handling

 

begins

 

again

 

with

 

the

 

most

 

recently

 

generated

 

exception.

 

v

   

New

 

locations

 

for

 

the

 

handle

 

cursor

 

and

 

resume

 

cursor

 

are

 

set

 

by

 

the

 

system.

 

v

   

Once

 

the

 

new

 

exception

 

has

 

been

 

properly

 

handled,

 

handling

 

activities

 

for

 

the

 

original

 

exception

 

normally

 

resume.

When

 

a

 

nested

 

exception

 

occurs,

 

both

 

of

 

the

 

following

 

are

 

still

 

on

 

the

 

call

 

stack:

 

v

   

The

 

call

 

stack

 

entry

 

associated

 

with

 

the

 

original

 

exception

 

v

   

The

 

call

 

stack

 

entry

 

associated

 

with

 

the

 

original

 

exception

 

handler

To

 

reduce

 

the

 

possibility

 

of

 

exception

 

handling

 

loops,

 

the

 

system

 

stops

 

the

 

percolation

 

of

 

a

 

nested

 

exception

 

at

 

the

 

original

 

exception

 

handler

 

call

 

stack

 

entry.

 

Then

 

the

 

system

 

promotes

 

the

 

nested

 

exception

 

to

 

a

 

function

 

check

 

message

 

and

 

percolates

 

the

 

function

 

check

 

message

 

to

 

the

 

same

 

call

 

stack

 

entry.

 

If

 

the

 

nested

 

exception

 

or

 

the

 

function

 

check

 

message

 

is

 

not

 

handled,

 

the

 

application

 

comes

 

to

 

an

 

abnormal

 

end.

 

In

 

this

 

case,

 

message

 

CEE9901

 

is

 

sent

 

to

 

the

 

caller

 

of

 

the

 

control

 

boundary.

 

If

 

you

 

move

 

the

 

resume

 

cursor

 

while

 

processing

 

the

 

nested

 

exception,

 

you

 

can

 

implicitly

 

modify

 

the

 

original

 

exception.

 

To

 

cause

 

this

 

to

 

occur,

 

do

 

the

 

following:

 

1.

   

Move

 

the

 

resume

 

cursor

 

to

 

a

 

call

 

stack

 

entry

 

that

 

was

 

promoted

 

earlier

 

than

 

the

 

call

 

stack

 

entry

 

that

 

incurred

 

the

 

original

 

exception.

 

2.

   

Resume

 

processing

 

by

 

returning

 

from

 

your

 

handler.

  

314

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Detecting

 

Stream

 

File

 

and

 

Record

 

File

 

Errors

 

To

 

detect

 

stream

 

file

 

errors,

 

check:

 

v

   

The

 

return

 

value

 

of

 

a

 

function

 

v

   

The

 

errno

 

value

 

v

   

The

 

major/minor

 

return

 

code

 

(for

 

system

 

exceptions)

To

 

detect

 

record

 

file

 

errors,

 

check

 

the

 

values

 

in

 

the

 

_RIOFB_T

 

structure.

 

Note:

  

For

 

a

 

list

 

of

 

exception

 

messages

 

generated

 

by

 

the

 

ILE

 

C/C++

 

record

 

I/O

 

functions,

 

see

 

the

 

Record

 

Input

 

and

 

Output

 

Error

 

Macro

 

to

 

Exception

 

Mapping

 

table

 

in

 

the

 

ILE

 

C/C++

 

Run-Time

 

Library

 

Functions.

 

To

 

detect

 

stream

 

file

 

or

 

record

 

file

 

errors,

 

check

 

the

 

Global

 

Variable

 

_EXCP_MSGID.

 

Checking

 

the

 

Return

 

Value

 

of

 

a

 

Function

 

Many

 

C

 

and

 

C++

 

run-time

 

library

 

functions

 

have

 

a

 

return

 

value

 

associated

 

with

 

them

 

for

 

error-checking

 

purposes.

 

For

 

example:

 

v

   

The

 

_Rfeov()

 

function

 

returns

 

1

 

if

 

the

 

file

 

has

 

moved

 

from

 

one

 

volume

 

to

 

the

 

next.

 

v

   

The

 

fopen()

 

function

 

returns

 

NULL

 

if

 

a

 

file

 

is

 

not

 

opened

 

successfully.

For

 

information

 

about

 

the

 

ILE

 

C/C++

 

function

 

return

 

values,

 

see

 

ILE

 

C/C++

 

Run-Time

 

Library

 

Functions.

 

To

 

verify

 

that

 

each

 

run-time

 

library

 

function

 

has

 

completed

 

successfully,

 

a

 

program

 

should

 

check

 

the

 

function

 

return

 

values.

 

Example:

 

The

 

following

 

figure

 

shows

 

how

 

to

 

check

 

the

 

return

 

value

 

of

 

the

 

fopen()

 

function.

    

Checking

 

the

 

Errno

 

Value

 

The

 

<errno.h>

 

header

 

file

 

contains

 

declarations

 

for

 

defined

 

error

 

conditions.

 

Many

 

C

 

functions

 

set

 

errno

 

to

 

specific

 

values,

 

depending

 

on

 

the

 

type

 

of

 

error.

 

These

 

values

 

are

 

also

 

defined

 

in

 

the

 

<errno.h>

 

header

 

file.

 

The

 

implementation

 

of

 

errno

 

contains

 

a

 

function

 

call.

 

The

 

following

 

errno

 

macros

 

indicate

 

an

 

OS/400

 

system

 

exception:

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

int

 

main(void)

 

{

     

FILE

 

*fp;

     

if

 

((

 

fp

 

=

 

fopen

 

(

 

"MYLIB/QCSRC(TEST)",

 

"ab"

 

))

 

==

 

NULL

 

)

     

{

         

printf

 

("Cannot

 

open

 

file

 

QCSRC(TEST)\n");

         

exit

 

(99);

     

}

 

}

 

Figure

 

160.

 

ILE

 

C

 

Source

 

to

 

Check

 

for

 

the

 

Return

 

Value

 

of

 

fopen()

  

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

315



v

   

EIOERROR:

 

a

 

nonrecoverable

 

I/O

 

error

 

has

 

occurred.

 

v

   

EIORECERR:

 

a

 

recoverable

 

I/O

 

error

 

has

 

occurred.

For

 

a

 

list

 

of

 

errno

 

macro

 

values,

 

see

 

ILE

 

C/C++

 

Run-Time

 

Library

 

Functions.

 

Initializing

 

Errno

 

Your

 

program

 

should

 

always

 

initialize

 

errno

 

to

 

0

 

(zero)

 

before

 

calling

 

a

 

function

 

because

 

errno

 

is

 

not

 

reset

 

by

 

any

 

library

 

functions.

 

Check

 

for

 

the

 

value

 

of

 

errno

 

immediately

 

after

 

calling

 

the

 

function

 

that

 

you

 

want

 

to

 

check.

 

You

 

should

 

also

 

initialize

 

errno

 

to

 

zero

 

after

 

an

 

error

 

has

 

occurred.

 

Viewing

 

and

 

Printing

 

the

 

Errno

 

Value

 

Your

 

program

 

can

 

use

 

the

 

strerror()

 

and

 

perror()

 

functions

 

to

 

print

 

the

 

value

 

of

 

errno.

 

The

 

strerror()

 

function

 

returns

 

a

 

pointer

 

to

 

an

 

error

 

message

 

string

 

that

 

is

 

associated

 

with

 

errno.

 

The

 

perror()

 

function

 

prints

 

a

 

message

 

to

 

stderr.

 

The

 

perror()

 

and

 

strerror()

 

functions

 

should

 

be

 

used

 

immediately

 

after

 

a

 

function

 

is

 

called

 

because

 

subsequent

 

calls

 

might

 

alter

 

the

 

errno

 

value.

 

Example:

 

Checking

 

the

 

errno

 

Value

 

for

 

the

 

fopen()

 

Function

 

The

 

following

 

figure

 

shows

 

how

 

to

 

check

 

the

 

errno

 

value

 

for

 

the

 

fopen()

 

function.

    

Checking

 

the

 

Major/Minor

 

Return

 

Code

 

If

 

your

 

program

 

processes

 

display,

 

ICF,

 

or

 

printer

 

files

 

as

 

stream

 

files,

 

you

 

can

 

check

 

the

 

external

 

variable

 

_C_Maj_Min_rc,

 

which

 

is

 

defined

 

in

 

<stdio.h>.

 

The

 

following

 

figure

 

shows

 

the

 

definition

 

of

 

this

 

structure.

    

Checking

 

the

 

System

 

Exceptions

 

for

 

Record

 

Files

 

To

 

detect

 

record

 

file

 

errors,

 

you

 

can

 

check

 

some

 

values

 

in

 

the

 

_RIOFB_T

 

structure,

 

which

 

is

 

defined

 

in

 

<recio.h>.

 

Both

 

the

 

num_bytes

 

field

 

and

 

the

 

sysparm

 

field

 

contain

 

information

 

regarding

 

record

 

file

 

I/O

 

errors.

 

#include

 

<errno.h>

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

void

 

main(void)

 

{

    

FILE

 

*fp;

    

errno

 

=

 

0;

    

fp

 

=

 

fopen("Nofile",

 

"r");

    

if

 

(

 

errno

 

!=

 

0

 

)

    

{

      

perror("Error

 

occurred

 

while

 

opening

 

file.\n");

      

exit(1);

    

}

 

}

 

Figure

 

161.

 

ILE

 

C

 

Source

 

to

 

Check

 

the

 

errno

 

Value

 

for

 

fopen()

typedef

 

struct

 

_Major_Minor_rc

 

{

     

char

 

major_rc[2];

     

char

 

minor_rc[2];

 

}

  

_Major_Minor_rc;

 

extern

 

_Major_Minor_rc

 

_C_Maj_Min_rc;

 

Figure

 

162.

 

_C_Maj_Min_rc

 

Type

 

Definition

  

316

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

following

 

figure

 

shows

 

the

 

type

 

definition

 

of

 

the

 

_RIOFB_T

 

structure:

 

Notes:

  

1.

   

If

 

your

 

program

 

processes

 

display,

 

ICF,

 

or

 

printer

 

files

 

as

 

record

 

files,

 

you

 

can

 

check

 

the

 

values

 

in

 

the

 

num_bytes

 

field

 

in

 

the

 

_RIOFB_T

 

structure

 

and

 

the

 

major/minor

 

return

 

code

 

fields

 

in

 

the

 

sysparm

 

area

 

of

 

the

 

_RIOFB_T

 

structure.

 

The

 

num_bytes

 

field

 

indicates

 

if

 

the

 

I/O

 

operation

 

was

 

successful.

 

2.

   

If

 

your

 

program

 

processes

 

database

 

files

 

as

 

stream

 

files,

 

you

 

can

 

check

 

the

 

values

 

in

 

some

 

fields

 

of

 

the

 

_RIOFB_T

 

structure.

 

3.

   

The

 

sysparm

 

field

 

points

 

to

 

a

 

structure

 

that

 

contains

 

the

 

major/minor

 

return

 

code

 

for

 

display,

 

ICF,

 

or

 

printer

 

files.

 

The

 

definition

 

of

 

_Sys_Struct_T

 

structure

 

is

 

shown

 

below:

 

The

 

following

 

figure

 

shows

 

the

 

definition

 

of

 

the

 

_Maj_Min_rc_T

 

structure:

    

Checking

 

the

 

Global

 

Variable

 

_EXCP_MSGID

 

The

 

global

 

variable

 

_EXCP_MSGID

 

is

 

set

 

whenever

 

a

 

stream

 

or

 

record

 

I/O

 

function

 

gets

 

an

 

exception.

 

The

 

global

 

variable

 

_EXCP_MSGID,

 

declared

 

in

 

the

 

<stddef.h>

 

header

 

file,

 

contains

 

the

 

exception

 

message

 

ID.

 

See

 

the

 

Record

 

Input

 

and

 

Output

 

Error

 

Macro

 

to

 

Exception

 

Mapping

 

table

 

in

 

the

 

Run-Time

 

Considerations

 

chapter

 

of

 

the

 

ILE

 

C/C++

 

Run-Time

 

Library

 

Functions

 

for

 

information

 

about

 

the

 

_EXCP_MSGID

 

setting

 

after

 

an

 

OS/400

 

exception.

 

typedef

 

struct

 

{

   

unsigned

 

char

   

*key;

   

_Sys_Struct_T

   

*sysparm;�1�,

 

�3�

   

unsigned

 

long

   

rrn;

   

long

            

num_bytes;�1�

   

short

           

blk_count;

   

char

            

blk_filled_by;

   

int

             

dup_key

   

:

 

1;

   

int

             

icf_locate:

 

1;

   

int

             

reserved1

 

:

 

6;

   

char

            

reserved2[20];

 

}

 

_RIOFB_T;

 

Figure

 

163.

 

_RIOFB_T

 

Type

 

Definition

typedef

 

struct

 

{

         

/*

 

System

 

specific

 

information

  

*/

   

void

          

*sysparm_ext;

   

_Maj_Min_rc_T

  

_Maj_Min;

   

char

           

reserved1[12];

 

}

 

_Sys_Struct_T;

 

Figure

 

164.

 

_Sys_Struct_T

 

Type

 

Definition

typedef

 

struct

 

{

     

char

 

major_rc[2];

     

char

 

minor_rc[2];

 

}

  

_Maj_Min_rc_T;

 

Figure

 

165.

 

_Maj_Min_rc_T

 

Type

 

Definition

  

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

317



Using

 

ILE

 

Exception

 

Handlers

 

Types

 

of

 

Exception

 

Handlers

 

The

 

types

 

of

 

exception

 

handlers

 

that

 

you

 

can

 

use

 

in

 

ILE

 

are:

 

v

   

Direct

 

monitor

 

handlers,

 

which

 

are

 

enabled

 

with

 

the

 

#pragma

 

exception_handler

 

directive

 

v

   

ILE

 

condition

 

handlers

 

that

 

allow

 

you

 

to

 

register

 

a

 

condition

 

handler

 

at

 

run

 

time

 

by

 

using

 

the

 

bindable

 

API

 

CEEHDLR

 

v

   

the

 

C/C++

 

signal()

 

function

Using

 

ILE

 

Direct

 

Monitor

 

Handlers

 

Direct

 

monitor

 

handlers

 

monitor

 

for

 

exceptions

 

that

 

are

 

based

 

on

 

exception

 

classes

 

and

 

message

 

identifiers.

 

They

 

let

 

you

 

directly

 

register

 

an

 

exception

 

monitor

 

for

 

a

 

limited

 

number

 

of

 

C/C++

 

source

 

statements.

 

Direct

 

monitors

 

are

 

usually

 

the

 

fastest

 

handlers.

 

Using

 

the

 

pragma

 

Directives

 

In

 

ILE

 

C/C++,

 

the

 

#pragma

 

exception_handler

 

and

 

#pragma

 

disable_handler

 

directives

 

enable

 

direct

 

monitor

 

handlers.

 

The

 

#pragma

 

exception_handler

 

enables

 

a

 

direct

 

monitor

 

handler

 

from

 

#pragma

 

exception_handler

 

to

 

#pragma

 

disable_handler

 

without

 

considering

 

program

 

logic

 

in

 

between.

 

When

 

using

 

these

 

directives,

 

you

 

must

 

include

 

the

 

<except.h>

 

header

 

file

 

in

 

your

 

source

 

code

 

.

 

Note:

  

The

 

#pragma

 

exception_handler

 

directive

 

can

 

monitor

 

only

 

those

 

exception

 

message

 

types

 

listed

 

in

 

the

 

“exception

 

messages

 

list”

 

on

 

page

 

312.

 

A

 

direct

 

monitor

 

handler

 

may

 

be

 

either

 

of

 

the

 

following:

 

v

   

Code

 

following

 

a

 

label

 

defined

 

within

 

the

 

function

 

containing

 

the

 

#pragma

 

exception_handler

 

v

   

A

 

function

 

defined

 

in

 

the

 

<except.h>

 

file.

Using

 

Communications

 

Area

 

Variables

 

A

 

communications

 

area

 

variable

 

may

 

be

 

specified

 

on

 

the

 

#pragma

 

exception_handler.

 

The

 

use

 

of

 

this

 

variable

 

depends

 

on

 

whether

 

the

 

handler

 

is

 

a

 

label

 

or

 

a

 

function.

 

If

 

the

 

handler

 

is

 

a

 

label

 

then

 

the

 

communications

 

area

 

is

 

used

 

as

 

storage

 

for

 

the

 

standard

 

exception

 

handler

 

parameter

 

block

 

of

 

type

 

_INTRPT_Hndlr_Parms_T

 

(defined

 

in

 

<except.h>).

 

The

 

definition

 

of

 

the

 

structure

 

_INTRPT_Hndlr_Parms_T

 

is:

    

318

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

system

 

fills

 

in

 

the

 

structure

 

prior

 

to

 

giving

 

control

 

to

 

the

 

label.

 

If

 

the

 

storage

 

that

 

is

 

required

 

for

 

the

 

exception

 

handler

 

parameter

 

block

 

exceeds

 

the

 

storage

 

that

 

is

 

defined

 

by

 

com_area,

 

the

 

remaining

 

bytes

 

are

 

truncated.

 

If

 

the

 

handler

 

is

 

a

 

function,

 

the

 

system

 

passes

 

a

 

pointer

 

to

 

a

 

structure

 

of

 

type

 

_INTRPT_Hndlr_Parms_T

 

to

 

the

 

function.

 

A

 

pointer

 

to

 

the

 

communications

 

area

 

is

 

available

 

inside

 

the

 

structure.

 

Scoping

 

Direct

 

Monitor

 

Handles

 

The

 

direct

 

monitor

 

handlers

 

are

 

scoped

 

at

 

compile

 

time

 

to

 

the

 

code

 

between

 

the

 

#pragma

 

exception_handler

 

directive

 

and

 

the

 

#pragma

 

disable_handler

 

directive.

 

For

 

example,

 

the

 

#pragma

 

exception_handler

 

directive

 

is

 

scoped

 

to

 

a

 

block

 

of

 

code

 

independent

 

of

 

the

 

program

 

logic.

 

The

 

following

 

figure

 

provides

 

an

 

example.

  

In

 

Figure

 

167:

 

v

   

The

 

#pragma

 

exception_handler

 

directive

 

is

 

enabled

 

around

 

the

 

call

 

to

 

the

 

raise()

 

function.

 

typedef

 

_Packed

 

struct

 

{

   

unsigned

 

int

    

Block_Size;

       

/*

 

Size

 

of

 

the

 

parameter

 

block

   

*/

   

_INVFLAGS_T

     

Tgt_Flags;

        

/*

 

Target

 

invocation

 

flags

       

*/

   

char

            

reserved[8];

      

/*

 

reserved

                      

*/

   

_INVPTR

         

Target;

           

/*

 

Current

 

target

 

invocation

     

*/

   

_INVPTR

         

Source;

           

/*

 

Source

 

invocation

             

*/

   

_SPCPTR

         

Com_Area;

         

/*

 

Communications

 

area

           

*/

   

char

            

Compare_Data[32];

 

/*

 

Compare

 

Data

                  

*/

   

char

            

Msg_Id[7];

        

/*

 

Message

 

ID

                    

*/

   

char

            

reserved1;

        

/*

 

1

 

byte

 

pad

                    

*/

   

_INTRPT_Mask_T

  

Mask;

             

/*

 

Interrupt

 

class

 

mask

          

*/

   

unsigned

 

int

    

Msg_Ref_Key;

      

/*

 

Message

 

reference

 

key

         

*/

   

unsigned

 

short

  

Exception_Id;

     

/*

 

Exception

 

ID

                  

*/

   

unsigned

 

short

  

Compare_Data_Len;

 

/*

 

Length

 

of

 

Compare

 

Data

        

*/

   

char

            

Signal_Class;

     

/*

 

Internal

 

signal

 

class

         

*/

   

char

            

Priority;

         

/*

 

Handler

 

priority

              

*/

   

short

           

Severity;

         

/*

 

Message

 

severity

              

*/

   

char

            

reserved3[4];

   

int

             

Msg_Data_Len;

     

/*

 

Length

 

of

 

available

 

message

 

data

 

*/

   

char

            

Mch_Dep_Data[10];

 

/*

 

Machine

 

dependent

 

data

        

*/

   

char

            

Tgt_Inv_Type;

     

/*Invocation

 

type

 

(in

 

MIMCHOBS.H)*/

   

_SUSPENDPTR

     

Tgt_Suspend;

      

/*

 

Suspend

 

pointer

 

of

 

target

     

*/

   

char

            

Ex_Data[48];

      

/*

 

First

 

48

 

bytes

 

of

 

exception

 

data

  

*/

 

}

 

_INTRPT_Hndlr_Parms_T;

 

Figure

 

166.

 

Definition

 

of

 

Structure

 

_INTRPT_Hndlr_Parms_T

volatile

 

int

 

ca=0;

 

if

 

(ca

 

!=

 

0){

   

#pragma

 

exception_handler(my_handler,

 

ca,0,_C2_MH_ESCAPE)

 

}

 

else

 

{

   

raise(SIGINT);/*

 

Signal

 

will

 

be

 

caught

 

by

 

my_handler

  

*/

 

}

 

#pragma

 

disable_handler

 

Figure

 

167.

 

ILE

 

C

 

Source

 

to

 

Scope

 

Direct

 

Monitor

 

Handlers

  

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

319



v

   

The

 

conditional

 

expression

 

if

 

(ca

 

!=

 

0)

 

has

 

no

 

effect

 

on

 

enabling

 

the

 

direct

 

monitor

 

handler.

 

The

 

logic

 

path

 

for

 

the

 

conditional

 

expression

 

if

 

(ca

 

!=

 

0)

 

is

 

never

 

taken.

 

Instead,

 

my_handler

 

is

 

enabled.

Using

 

Exception

 

Classes

 

Note:

  

The

 

#pragma

 

exception_handler

 

directive

 

can

 

monitor

 

only

 

those

 

exception

 

message

 

types

 

listed

 

in

 

the

 

“exception

 

messages

 

list”

 

on

 

page

 

312.

 

Exception

 

classes

 

indicate

 

the

 

type

 

of

 

exception

 

(for

 

example,

 

*ESCAPE,

 

*NOTIFY,

 

*STATUS,

 

function

 

check)

 

and,

 

for

 

machine

 

exceptions,

 

the

 

low

 

level

 

type

 

(for

 

example,

 

pointer-not-valid

 

or

 

divide-by-zero).

 

The

 

handler

 

gains

 

control

 

if

 

the

 

exception

 

falls

 

into

 

one

 

or

 

more

 

of

 

the

 

exception

 

classes

 

that

 

are

 

specified

 

on

 

the

 

#pragma

 

exception_handler

 

directive.

Note:

  

The

 

Run-Time

 

Considerations

 

section

 

of

 

the

 

ILE

 

C/C++

 

Run-Time

 

Library

 

Functions

 

contains

 

a

 

table

 

of

 

exception

 

classes.

 

The

 

following

 

figure

 

provides

 

an

 

example.

  

Notes:

  

1.

   

Macros

 

for

 

the

 

iSeries

 

machine

 

exception

 

classes

 

are

 

defined

 

in

 

the

 

ILE

 

C/C++

 

include

 

file

 

<except.h>.

 

2.

   

To

 

monitor

 

for

 

machine

 

exceptions,

 

you

 

can

 

specify

 

the

 

machine

 

exception

 

class

 

or

 

you

 

can

 

specify

 

all

 

*ESCAPE

 

exceptions.

 

In

 

Figure

 

168,

 

all

 

machine

 

exceptions

 

are

 

mapped

 

to

 

the

 

*ESCAPE

 

type

 

exception.

 

If

 

the

 

message

 

type

 

is

 

*ESCAPE,

 

a

 

function

 

check

 

is

 

sent

 

to

 

the

 

call

 

stack

 

entry

 

that

 

is

 

pointed

 

to

 

by

 

the

 

resume

 

cursor.

 

3.

   

You

 

can

 

monitor

 

for

 

the

 

exception

 

class

 

values

 

for

 

class1

 

and

 

class2.

 

The

 

value

 

of

 

class2

 

must

 

be

 

only

 

one

 

of

 

the

 

following

 

exception

 

classes:

 

v

   

_C2_MH_ESCAPE

 

v

   

_C2_MH_STATUS

 

v

   

_C2_MH_NOTIFY

 

v

   

_C2_MH_FUNCTION_CHECK

Specifying

 

Control

 

Actions

 

The

 

#pragma

 

exception_handler

 

directive

 

allows

 

you

 

to

 

specify

 

a

 

control

 

action

 

that

 

is

 

to

 

be

 

taken

 

during

 

exception

 

processing.

 

#include

 

<except.h>�1�

   

/*

 

Just

 

monitor

 

for

 

pointer

 

not

 

valid

 

exceptions

 

*/

   

#pragma

 

exception_handler(eh,

 

0,

 

_C1_POINTER_NOT_VALID,

 

0)

   

/*

 

Monitor

 

for

  

all

 

*ESCAPE

 

messages

 

*/

   

#pragma

 

exception_handler(eh,

 

0,

 

0,

 

_C2_MH_ESCAPE)�2�

   

/*

 

Although

 

the

 

following

 

is

 

valid,

 

there

 

is

 

no

 

need

 

to

 

specify

  

*/

   

/*

 

_C1_POINTER_NOT_VALID

 

because

 

it

 

is

 

covered

 

by

 

_C2_MH_ESCAPE

  

*/

   

#pragma

 

exception_handler(eh,

 

0,

 

_C1_POINTER_NOT_VALID,

 

_C2_MH_ESCAPE)�2�

   

/*

 

To

 

monitor

 

for

 

only

 

specific

 

messages,

 

use

 

the

 

extended

 

form

 

of

  

*/

   

/*

 

pragma

 

exception_handler.

                                        

*/

   

/*

 

The

 

following

 

#pragma

 

will

 

only

 

monitor

 

for

 

MCH3601

 

*ESCAPE

 

msg.

 

*/

   

#pragma

 

exception_handler

 

(eh,

 

0,

 

0,

 

_C2_MH_ESCAPE,

 

_CTLA_HANDLE,

 

"MCH3601")�2�

 

Figure

 

168.

 

ILE

 

C

 

Source

 

to

 

Use

 

Exception

 

Classes

  

320

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

five

 

control

 

actions

 

that

 

can

 

be

 

specified,

 

as

 

defined

 

in

 

the

 

<except.h>

 

header

 

file,

 

are:

 

_CTLA_INVOKE

 

This

 

control

 

action

 

will

 

cause

 

the

 

function

 

that

 

is

 

named

 

on

 

the

 

directive

 

to

 

be

 

called

 

and

 

will

 

not

 

handle

 

the

 

exception.

 

The

 

exception

 

will

 

remain

 

active

 

and

 

must

 

be

 

handled

 

by

 

using

 

QMHCHGEM

 

or

 

one

 

of

 

the

 

ILE

 

condition-handling

 

APIs.

 

_CTLA_HANDLE

 

This

 

control

 

action

 

will

 

cause

 

the

 

function

 

or

 

label

 

that

 

is

 

named

 

on

 

the

 

directive

 

to

 

get

 

control

 

and

 

it

 

will

 

handle

 

and

 

log

 

the

 

exception

 

implicitly.

 

The

 

exception

 

will

 

no

 

longer

 

be

 

active

 

when

 

the

 

handler

 

gets

 

control.

 

_CTLA_HANDLE_NO_MSG

 

This

 

control

 

action

 

is

 

the

 

same

 

as

 

_CTLA_HANDLE

 

except

 

that

 

the

 

exception

 

is

 

NOT

 

logged.

 

The

 

message

 

reference

 

key

 

in

 

the

 

parameter

 

block

 

that

 

is

 

passed

 

to

 

the

 

handler

 

will

 

be

 

zero.

 

_CTLA_IGNORE

 

This

 

control

 

action

 

will

 

handle

 

and

 

log

 

the

 

exception

 

implicitly

 

and

 

will

 

not

 

pass

 

control

 

to

 

the

 

handler

 

function

 

named

 

on

 

the

 

directive;

 

that

 

is,

 

the

 

function

 

named

 

will

 

be

 

ignored.

 

The

 

exception

 

will

 

no

 

longer

 

be

 

active,

 

and

 

processing

 

will

 

resume

 

at

 

the

 

instruction

 

immediately

 

following

 

the

 

instruction

 

that

 

caused

 

the

 

exception.

 

_CTLA_IGNORE_NO_MSG

 

This

 

control

 

action

 

is

 

the

 

same

 

as

 

_CTLA_IGNORE

 

except

 

that

 

*NOTIFY

 

messages

 

will

 

be

 

logged.

Example:

 

The

 

following

 

figure

 

shows

 

how

 

the

 

control

 

action

 

parameter

 

can

 

be

 

specified

 

on

 

the

 

#pragma

 

exception_handler

 

directive.

  

Notes:

  

1.

   

The

 

control

 

action

 

_CTLA_IGNORE

 

will

 

cause

 

the

 

exception

 

to

 

be

 

handled

 

without

 

calling

 

the

 

handler

 

function.

 

2.

   

The

 

output

 

of

 

this

 

code

 

is

 

the

 

message

 

Passed

 

the

 

exception.,

 

followed

 

by

 

the

 

exception

 

message.

 

This

 

code

 

will

 

generate

 

the

 

exception

 

message

 

MCH3601

 

(Pointer

 

not

 

set).

#include

 

<except.h>

 

#include

 

<stdio.h>

 

void

 

myhandler(void)

 

{

   

printf("In

 

handler

 

-

 

something’s

 

wrong!\n");

   

return;

 

}

 

int

 

main(void)

 

{

   

int

 

*ip;

   

volatile

 

int

 

com_area;

   

#pragma

 

exception_handler(myhandler,

 

com_area,

 

0,

 

_C2_ALL,

 

\

                             

_CTLA_IGNORE)�1�

   

*ip

 

=

 

5;

   

printf("Passed

 

the

 

exception.\n");�2�

 

}

 

Figure

 

169.

 

ILE

 

C

 

Source

 

to

 

Handle

 

Exceptions

  

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

321



Specifying

 

Message

 

Identifiers

 

The

 

#pragma

 

exception_handler

 

directive

 

can

 

specify

 

one

 

or

 

more

 

specific

 

or

 

generic

 

message

 

identifiers

 

on

 

the

 

directive.

 

When

 

one

 

or

 

more

 

identifiers

 

are

 

specified

 

on

 

the

 

directive,

 

the

 

direct

 

monitor

 

handler

 

will

 

take

 

effect

 

only

 

when

 

an

 

exception

 

occurs

 

whose

 

identifier

 

matches

 

one

 

of

 

the

 

identifiers

 

on

 

the

 

directive.

 

To

 

specify

 

message

 

identifiers

 

on

 

the

 

directive,

 

you

 

must

 

specify

 

a

 

control

 

action

 

to

 

be

 

taken.

 

The

 

class

 

of

 

the

 

exception

 

must

 

be

 

in

 

one

 

of

 

the

 

classes

 

specified

 

on

 

the

 

directive.

 

Example:

 

The

 

following

 

example

 

shows

 

a

 

#pragma

 

exception_handler

 

directive

 

that

 

enables

 

a

 

monitor

 

for

 

a

 

single

 

specific

 

message,

 

MCH3601:

 

#pragma

 

exception_handler

 

(myhandler,

 

com_area,

 

0,

 

_C2_ALL,

 

\

          

_CTLA_HANDLE,

 

"MCH3601")

 

Example:

 

The

 

following

 

is

 

an

 

example

 

of

 

a

 

#pragma

 

exception_handler

 

directive

 

that

 

enables

 

a

 

monitor

 

for

 

several

 

floating-point

 

exceptions:

 

#pragma

 

exception_handler

 

(myhandler,

 

com_area,

 

_C1_ALL,

 

_C2_ALL,

 

\

          

_CTLA_IGNORE,

 

"MCH1206

 

MCH1207

 

MCH1209

 

MCH1213")

 

Note:

  

The

 

ability

 

to

 

specify

 

generic

 

message

 

identifiers

 

can

 

be

 

used

 

to

 

simplify

 

the

 

directive.

 

Example:

 

In

 

the

 

following

 

example,

 

a

 

monitor

 

is

 

enabled

 

for

 

any

 

exception

 

whose

 

identifier

 

begins

 

with

 

MCH12:

 

#pragma

 

exception_handler

 

(myhandler,

 

com_area,

 

_C1_ALL,

 

_C2_ALL,

 

\

          

_CTLA_IGNORE,

 

"MCH1200")

 

Example

 

of

 

Source

 

Code

 

that

 

Uses

 

a

 

Direct

 

Monitor

 

Handler

 

The

 

following

 

figure

 

shows

 

the

 

source

 

for

 

a

 

program

 

MYPGM:

  

/*

 

MYPGM

 

*PGM

 

*/

 

#include

 

<except.h>

 

#include

 

<stdio.h>

 

void

 

my_handler(_INTRPT_Hndlr_Parms_T

 

*

 

__ptr128

 

parms);

 

void

 

main_handler(_INTRPT_Hndlr_Parms_T

 

*

 

__ptr128

 

parms);

 

void

 

fred(void)

 

{

    

char

 

*p

 

=

 

NULL;

    

#pragma

 

exception_handler(my_handler,

 

0,0,_C2_MH_ESCAPE)

    

*p

 

=

 

’x’;

     

/*

 

exception

 

*/

    

#pragma

 

disable_handler

 

}

 

int

 

main(void)

 

{

    

#pragma

 

exception_handler(main_handler,

 

0,0,_C2_MH_ESCAPE)

    

fred();

 

}

 

Figure

 

170.

 

T1520XH1

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

Direct

 

Monitor

 

Handlers

 

—

 

main()

  

322

 

ILE

 

C/C++

 

Programmer’s

 

Guide



In

 

Figure

 

170

 

on

 

page

 

322:

 

v

   

The

 

procedure

 

main()

 

registers

 

the

 

direct

 

monitor

 

handler

 

main_handler

 

v

   

The

 

procedure

 

main()

 

calls

 

fred(),

 

which

 

registers

 

the

 

direct

 

monitor

 

handler

 

my_handler.

 

v

   

The

 

fred()

 

function

 

gets

 

an

 

exception

 

which

 

causes

 

my_handler

 

to

 

get

 

control,

 

followed

 

by

 

main_handler.

 

The

 

main()

 

function

 

is

 

a

 

control

 

boundary.

 

v

   

The

 

exception

 

is

 

considered

 

unhandled

 

so

 

a

 

function

 

check

 

is

 

sent

 

to

 

fred().

 

v

   

The

 

handlers

 

my_handler

 

and

 

main_handler

 

handle

 

*ESCAPE

 

messages

 

only,

 

so

 

neither

 

is

 

called

 

again.

 

v

   

The

 

function

 

check

 

goes

 

unhandled

 

at

 

main()

 

so

 

the

 

program

 

ends

 

abnormally

 

and

 

CEE9901

 

is

 

sent

 

to

 

the

 

caller

 

of

 

main().

Example

 

of

 

Source

 

that

 

Illustrates

 

How

 

to

 

Use

 

Direct

 

Monitor

 

Handlers

     

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

323



/*

 

This

 

program

 

illustrates

 

how

 

to

 

use

 

direct

 

monitor

 

handlers.

       

*/

 

#include

 

<stdio.h>

 

#include

 

<signal.h>

 

#include

 

<recio.h>

 

#include

 

<stdlib.h>

 

#include

 

<string.h>

 

#include

 

<except.h>

  

/*

 

Include

 

except.h

 

even

 

though

 

it

 

is

 

included

   

*/

                      

/*

 

in

 

the

 

signal.h

 

header

 

file.

                  

*/

 

#define

 

FILE_NAME

   

"QTEMP/MY_FILE"

 

#define

 

RCD_LEN

     

80

 

#define

 

NUM_RCD

     

5

 

#pragma

 

datamodel(p128)

 

typedef

 

struct

 

error_code{

     

int

      

byte_provided;

     

int

      

byte_available;

     

char

     

exception_id[7];

     

char

     

reserve;

     

char

     

exception_data[1];

 

}error_code_t;

 

static

 

int

 

handle_flag;

 

#pragma

 

linkage(QMHCHGEM,

 

OS)

 

void

 

QMHCHGEM(_INVPTR

 

*,

 

int,

 

unsigned

 

int,

 

char

 

*,

               

char

 

*,

 

int,

 

error_code_t

 

*);

 

/*

 

The

 

signal

 

handler.

                                                

*/

 

pragma

 

datamodel(pop)

 

static

 

void

 

sig_handler(int

 

sig)

 

{

     

printf("In

 

signal

 

handler\n");

     

printf("Exception

 

message

 

ID

 

is

 

%7.7s\n",

 

_EXCP_MSGID);

 

}

 

/*

 

The

 

direct

 

monitor

 

handler.

                                        

*/

 

static

 

void

 

exp_handler(_INTRPT_Hndlr_Parms_T

 

*

 

__ptr128

 

exp_info)

 

{

     

error_code_t

          

error_code;

     

printf("In

 

direct

 

monitor

 

handler\n");

     

printf("Exception

 

message

 

ID

 

is

 

%3.3s%04x\n",

            

exp_info->Compare_Data,

            

(unsigned)

 

exp_info->Exception_Id);

 

/*

 

Call

 

QMHCHGEM

 

API

 

to

 

handle

 

the

 

exception.

                         

*/

     

if

 

(

 

handle_flag

 

)

     

{

         

error_code.byte_provided

 

=

 

8;

         

QMHCHGEM(&(exp_info->Target),;

 

0,

 

exp_info->Msg_Ref_Key,

                  

"*HANDLE

   

",

 

"",

 

0,

 

&error_code);

     

}

 

}

 

/*

 

The

 

function

 

to

 

read

 

a

 

file.

                                       

*/

 

static

 

void

 

read_file(_RFILE

 

*fp)

 

{

     

int

 

i

 

=

 

1;

     

while

 

(

 

_Rreadn(fp,

 

NULL,

 

RCD_LEN,

 

__DFT)->num_bytes

 

!=

 

EOF

 

)

     

{

         

printf("Read

 

record

 

%d\n",

 

i++);

     

}

 

}

 

Figure

 

171.

 

T1520ICA

 

—

 

ILE

 

C

 

Source

 

that

 

Uses

 

Direct

 

Monitor

 

Handlers

 

(Part

 

1

 

of

 

4)

  

324

 

ILE

 

C/C++

 

Programmer’s

 

Guide



int

 

main(void)

 

{

     

_RFILE

       

*fp;

     

int

           

i;

     

volatile

 

int

  

com;

     

char

          

buf[RCD_LEN];

     

char

          

cmd[100];

 

/*

 

Create

 

a

 

file.

                                                     

*/

     

sprintf(cmd,

 

"CRTPF

 

FILE(%s)

 

RCDLEN(%d)",

 

FILE_NAME,

 

RCD_LEN);

     

system(cmd);

 

/*

 

Open

 

the

 

file

 

for

 

write.

                                           

*/

     

if

 

(

 

(fp

 

=

 

_Ropen(FILE_NAME,

 

"wr"))

 

==

 

NULL

 

)

     

{

         

printf("Open

 

for

 

write

 

fails\n");

         

exit(1);

     

}

 

/*

 

Write

 

some

 

data

 

into

 

the

 

file.

                                     

*/

     

memset(buf,

 

’1’,

 

RCD_LEN);

     

for

 

(

 

i

 

=

 

0;

 

i

 

<

 

NUM_RCD;

 

i++

 

)

     

{

         

_Rwrite(fp,

 

buf,

 

RCD_LEN);

     

}

     

_Rclose(fp);

 

/*

 

Open

 

the

 

file

 

for

 

the

 

first

 

read.

                                  

*/

     

if

 

(

 

(fp

 

=

 

_Ropen(FILE_NAME,

 

"rr"))

 

==

 

NULL

 

)

     

{

         

printf("Open

 

for

 

the

 

first

 

read

 

fails\n");

         

exit(2);

     

}

 

/*

 

Read

 

until

 

end-of-file.

                                            

*/

 

/*

 

Since

 

no

 

signal

 

handler

 

or

 

direct

 

monitor

 

handler

 

is

 

set

 

up,

       

*/

 

/*

 

the

 

EOF

 

exception

 

is

 

ignored.

 

The

 

default

 

value

 

for

 

SIGIO

 

is

       

*/

 

/*

 

SIG_IGN.

                                                           

*/

     

i

 

=

 

1;

     

printf("The

 

first

 

read

 

starts\n");

     

while

 

(

 

_Rreadn(fp,

 

buf,

 

RCD_LEN,

 

__DFT)->num_bytes

 

!=

 

EOF

 

)

     

{

         

printf("Read

 

record

 

%d\n",

 

i++);

     

}

     

_Rclose(fp);

     

printf("The

 

first

 

read

 

finishes\n");

   

/*

 

Set

 

up

 

a

 

direct

 

monitor

 

handler

 

and

 

a

 

signal

 

handler.

              

*/

 

/*

 

Tell

 

the

 

direct

 

monitor

 

handler

 

to

 

handle

 

the

 

exception.

           

*/

 

/*

 

The

 

direct

 

monitor

 

handler

 

(exp_handler)

 

calls

 

the

 

message

         

*/

 

/*

 

handler

 

API

 

QMHCHGEM

 

with

 

the

 

parameter

 

*HANDLE.

 

This

 

marks

 

the

    

*/

 

/*

 

exception

 

as

 

handled.

                                              

*/

 

/*

 

Use

 

exception

 

classes

 

to

 

handle

 

machine

 

exceptions.

                

*/

     

handle_flag

 

=

 

1;

     

#pragma

 

exception_handler(exp_handler,

 

com,

 

0,

                      

\

                 

_C2_MH_ESCAPE

 

|

 

_C2_MH_NOTIFY

 

|

 

_C2_MH_STATUS)

     

signal(SIGIO,

 

sig_handler);

     

/*

 

Open

 

the

 

file

 

for

 

the

 

second

 

read.

                             

*/

     

if

 

(

 

(fp

 

=

 

_Ropen(FILE_NAME,

 

"rr"))

 

==

 

NULL

 

)

     

{

         

printf("Open

 

for

 

the

 

second

 

read

 

fails\n");

         

exit(3);

     

}

 

Figure

 

171.

 

T1520ICA

 

—

 

ILE

 

C

 

Source

 

that

 

Uses

 

Direct

 

Monitor

 

Handlers

 

(Part

 

2

 

of

 

4)

  

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

325



/*

 

Read

 

until

 

end

 

of

 

file.

                                            

*/

 

/*

 

When

 

the

 

EOF

 

exception

 

is

 

generated,

 

the

 

direct

 

monitor

 

handler

    

*/

 

/*

 

is

 

called

 

first.

 

Since

 

it

 

marks

 

the

 

exception

 

as

 

handled,

          

*/

 

/*

 

the

 

signal

 

handler

 

is

 

not

 

called.

                                  

*/

     

i

 

=

 

1;

     

printf("The

 

second

 

read

 

starts\n");

     

while

 

(

 

_Rreadn(fp,

 

buf,

 

RCD_LEN,

 

__DFT)->num_bytes

 

!=

 

EOF

 

)

     

{

         

printf("Read

 

record

 

%d\n",

 

i++);

     

}

     

_Rclose(fp);

     

printf("The

 

second

 

read

 

finishes\n");

 

/*

 

Disable

 

the

 

direct

 

monitor

 

handler.

                                

*/

     

#pragma

 

disable_handler

 

/*

 

Set

 

up

 

a

 

direct

 

monitor

 

handler

 

and

 

a

 

signal

 

handler.

              

*/

 

/*

 

Set

 

the

 

global

 

variable

 

handle_flag

 

to

 

zero

 

so

 

that

 

the

            

*/

 

/*

 

direct

 

monitor

 

will

 

not

 

handle

 

the

 

exception.

                      

*/

     

handle_flag

 

=

 

0;

     

#pragma

 

exception_handler(exp_handler,

 

com,

 

0,

                      

\

                 

_C2_MH_ESCAPE

 

|

 

_C2_MH_NOTIFY

 

|

 

_C2_MH_STATUS)

     

signal(SIGALL,

 

sig_handler);

 

/*

 

Open

 

the

 

file

 

for

 

the

 

third

 

read.

                                  

*/

     

if

 

(

 

(fp

 

=

 

_Ropen(FILE_NAME,

 

"rr"))

 

==

 

NULL

 

)

     

{

         

printf("Open

 

for

 

the

 

third

 

read

 

fails\n");

         

exit(4);

     

}

 

/*

 

Read

 

until

 

end-of-file.

                                            

*/

 

/*

 

When

 

the

 

EOF

 

exception

 

is

 

generated,

 

the

 

direct

 

monitor

 

handler

    

*/

 

/*

 

is

 

called

 

first.

 

Since

 

the

 

exception

 

is

 

not

 

marked

 

as

              

*/

 

/*

 

handled,

 

the

 

signal

 

handler

 

is

 

then

 

called.

                        

*/

     

i

 

=

 

1;

     

printf("The

 

third

 

read

 

starts\n");

     

while

 

(

 

_Rreadn(fp,

 

buf,

 

RCD_LEN,

 

__DFT)->num_bytes

 

!=

 

EOF

 

)

     

{

         

printf("Read

 

record

 

%d\n",

 

i++);

     

}

     

_Rclose(fp);

     

printf("The

 

third

 

read

 

finishes\n");

   

/*

 

Disable

 

the

 

direct

 

monitor

 

handler.

                                

*/

     

#pragma

 

disable_handler

 

/*

 

Set

 

up

 

a

 

direct

 

monitor

 

handler

 

and

 

a

 

signal

 

handler.

              

*/

     

#pragma

 

exception_handler(exp_handler,

 

com,

 

0,

                      

\

                 

_C2_MH_ESCAPE

 

|

 

_C2_MH_NOTIFY

 

|

 

_C2_MH_STATUS)

     

signal(SIGIO,

 

sig_handler);

     

/*

 

Open

 

the

 

file

 

for

 

the

 

fourth

 

read.

                             

*/

     

if

 

(

 

(fp

 

=

 

_Ropen(FILE_NAME,

 

"rr"))

 

==

 

NULL

 

)

     

{

         

printf("Open

 

for

 

the

 

fourth

 

read

 

fails\n");

         

exit(5);

     

}

 

/*

 

Read

 

until

 

end-of-file.

                                            

*/

 

/*

 

The

 

EOF

 

exception

 

is

 

generated

 

in

 

function

 

read_file.

 

Since

        

*/

 

/*

 

there

 

is

 

no

 

direct

 

monitor

 

handler

 

for

 

the

 

read_file

 

function,

     

*/

 

/*

 

the

 

signal

 

handler

 

is

 

called.

                                      

*/

 

Figure

 

171.

 

T1520ICA

 

—

 

ILE

 

C

 

Source

 

that

 

Uses

 

Direct

 

Monitor

 

Handlers

 

(Part

 

3

 

of

 

4)

  

326

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Example

 

of

 

a

 

Service

 

Program

 

that

 

Provides

 

Direct

 

Monitor

 

Handle

 

The

 

following

 

figure

 

shows

 

the

 

source

 

for

 

the

 

service

 

program

 

HANDLERS:

    

Example

 

that

 

Uses

 

Labels

 

instead

 

of

 

Functions

 

as

 

Handlers

 

The

 

following

 

example

 

illustrates

 

direct

 

monitor

 

handlers

 

using

 

labels

 

instead

 

of

 

functions

 

as

 

the

 

handlers:

 

/*

 

The

 

direct

 

monitor

 

handler

 

in

 

main()

 

is

 

not

 

called

 

because

 

the

     

*/

 

/*

 

exception

 

was

 

mapped

 

to

 

SIGIO

 

and

 

the

 

signal

 

handler

 

gets

 

called

   

*/

 

/*

 

at

 

function

 

read_file.

                                          

*/

     

printf("The

 

fourth

 

read

 

starts\n");

     

read_file(fp);

     

_Rclose(fp);

     

printf("The

 

fourth

 

read

 

finishes\n");

 

/*

 

Disable

 

the

 

direct

 

monitor

 

handler.

                                

*/

     

#pragma

 

disable_handler

 

}

 

Figure

 

171.

 

T1520ICA

 

—

 

ILE

 

C

 

Source

 

that

 

Uses

 

Direct

 

Monitor

 

Handlers

 

(Part

 

4

 

of

 

4)

#include

 

<signal.h>

 

#include

 

<stdio.h>

 

/*

 

HANDLERS

 

*SRVPGM

 

(created

 

with

 

activation

 

group

 

*CALLER)

 

*/

 

void

 

my_handler(_INTRPT_Hndlr_Parms_T

 

*

 

__ptr128

 

parms)

 

{

  

return;

 

}

 

void

 

main_handler(_INTRPT_Hndlr_Parms_T

 

*

 

__ptr128

 

parms)

 

{

  

printf("In

 

main_handler\n");

 

}

 

Figure

 

172.

 

T1520XH2

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

Direct

 

Monitor

 

Handlers

 

—

 

Service

 

Program

  

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

327



The

 

output

 

is:

 

The

 

MCH1211

 

exception

 

was

 

handled

 

The

 

MCH3601

 

exception

 

was

 

handled

 

Using

 

ILE

 

Condition

 

Handlers

 

ILE

 

condition

 

handlers

 

allow

 

you

 

to

 

register

 

one

 

or

 

more

 

condition

 

handlers

 

at

 

run

 

time.

 

To

 

register

 

an

 

ILE

 

condition

 

handler,

 

use

 

the

 

Register

 

ILE

 

Condition

 

Handler

 

(CEEHDLR)

 

bindable

 

API.

 

Include

 

the

 

<lecond.h>

 

header

 

file

 

in

 

your

 

source

 

code

 

when

 

using

 

these

 

APIs.

 

ILE

 

condition

 

handlers

 

may

 

be

 

unregistered

 

by

 

calling

 

the

 

Unregister

 

ILE

 

Condition

 

Handler

 

(CEEHDLU)

 

bindable

 

API.

  

#include

 

<except.h>

  

#include

 

<signal.h>

  

#include

 

<stdlib.h>

  

#include

 

<stdio.h>

   

void

 

sig_hndlr(int);

   

void

 

sig_hndlr(int

 

sig){

      

printf("Signal

 

handler

 

should

 

not

 

have

 

been

 

called\n");

  

}

  

int

 

main(void)

  

{

    

int

 

a=0;

    

char

 

*p=NULL;

    

volatile

 

_INTRPT_Hndlr_Parms_T

 

ca;

  

/*

 

Set

 

up

 

signal

 

handler

 

for

 

SIGFPE.

 

The

 

signal

 

handler

 

function

 

*/

  

/*

 

should

 

never

 

be

 

invoked,

 

since

 

the

 

exception

 

will

 

be

 

handled

  

*/

  

/*

 

by

 

the

 

direct

 

monitor

 

handlers.

                               

*/

    

if(

 

signal(SIGFPE,sig_hndlr)

 

==

 

SIG_ERR

 

)

       

{

          

printf("Could

 

not

 

set

 

up

 

signal

 

handler

 

for

 

SIGFPE\n");

       

}

  

/*

  

The

 

following

 

direct

 

monitor

 

will

                            

*/

  

/*

  

trap

 

and

 

handle

 

any

 

*ESCAPE

 

exceptions.

                      

*/

   

#pragma

 

exception_handler(LABEL_1,

 

ca,

 

0,

 

_C2_MH_ESCAPE,

 

\

                                             

_CTLA_HANDLE)

  

/*

 

Generate

 

exception(divide

 

by

 

zero).

 

The

 

CTL_ACTION

 

specified

 

*/

  

/*

 

should

 

take

 

effect

 

(exception

 

handled

 

and

 

logged),

 

execution

 

*/

  

/*

 

resumes

 

at

 

LABEL_1.

                                          

*/

    

a/=a;

    

printf

 

("We

 

should

 

never

 

reach

 

this

 

point\n");

    

LABEL_1:

 

printf("The

 

MCH1211

 

exception

 

was

 

handled\n");

    

#pragma

 

disable_handler

  

/*

  

The

 

following

 

direct

 

monitor

 

will

                           

*/

  

/*

  

only

 

trap

 

and

 

handle

 

MCH3601

 

exceptions

                     

*/

    

#pragma

 

exception_handler(LABEL_2,

 

ca,

 

0,

 

_C2_MH_ESCAPE,

 

\

                              

_CTLA_HANDLE,

 

"MCH3601")

 

/*

 

Generate

 

MCH3601(*ESCAPE

 

message).

 

The

 

CTL_ACTION

 

specified

  

*/

 

/*

 

should

 

take

 

effect

 

(exception

 

handled

 

and

 

logged),

 

execution

 

*/

 

/*

 

resumes

 

at

 

LABEL_2.

                                          

*/

    

*p=’X’;

    

printf

 

("We

 

should

 

never

 

reach

 

this

 

point\n");

    

LABEL_2:

 

printf("The

 

MCH3601

 

exception

 

was

 

handled\n");

 

}

 

Figure

 

173.

 

T1520XH3

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

Direct

 

Monitors

 

with

 

Labels

 

as

 

Handlers

  

328

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Condition

 

handlers

 

are

 

exception

 

handlers

 

that

 

are

 

registered

 

at

 

run

 

time

 

by

 

using

 

the

 

Register

 

ILE

 

Condition

 

Handler

 

(CEEHDLR)

 

bindable

 

API.

 

They

 

are

 

used

 

to

 

handle,

 

percolate

 

or

 

promote

 

exceptions.

 

The

 

exceptions

 

are

 

presented

 

to

 

the

 

condition

 

handlers

 

in

 

the

 

form

 

of

 

an

 

ILE

 

condition.

 

When

 

to

 

Use

 

an

 

ILE

 

Condition

 

Handler

 

If

 

you

 

want

 

to

 

have

 

a

 

consistent

 

mechanism

 

of

 

condition

 

handling

 

across

 

several

 

ILE

 

languages

 

(or

 

for

 

scoping

 

exception

 

handling

 

to

 

a

 

call

 

stack

 

entry),

 

use

 

the

 

ILE

 

bindable

 

API

 

CEEHDLR.

 

Unlike

 

the

 

signal

 

handler

 

,which

 

is

 

scoped

 

to

 

the

 

activation

 

group,

 

CEEHDLR

 

is

 

scoped

 

to

 

the

 

function

 

that

 

calls

 

it.

 

The

 

ILE

 

condition

 

handler

 

uses

 

ILE

 

conditions

 

to

 

allow

 

greater

 

cross-system

 

consistency.

 

An

 

ILE

 

condition

 

is

 

a

 

system-independent

 

representation

 

of

 

an

 

error

 

condition

 

in

 

an

 

HLL.

 

Example

 

of

 

ILE

 

Source

 

that

 

Uses

 

Condition

 

Handlers

 

The

 

following

 

example

 

shows

 

the

 

source

 

for

 

a

 

program

 

MYPGM:

  

In

 

the

 

example

 

MYPGM:

 

v

   

The

 

procedure

 

main()

 

registers

 

the

 

condition

 

handler

 

main_handler.

 

v

   

The

 

procedure

 

main()

 

calls

 

the

 

function

 

fred()

 

which

 

registers

 

the

 

condition

 

handler

 

my_handler.

 

v

   

Function

 

fred()

 

gets

 

an

 

exception

 

causing

 

my_handler

 

to

 

get

 

control,

 

followed

 

by

 

main_handler.

The

 

main()

 

function

 

is

 

a

 

control

 

boundary.

 

The

 

exception

 

is

 

considered

 

unhandled,

 

so

 

a

 

function

 

check

 

is

 

sent

 

to

 

function

 

fred().

 

Handlers

 

my_handler

 

and

 

main_handler

 

are

 

called

 

again,

 

this

 

time

 

for

 

the

 

function

 

check.

 

Neither

 

of

 

them

 

handle

 

the

 

function

 

check,

 

so

 

the

 

program

 

ends

 

abnormally

 

and

 

a

 

CEE9901

 

message

 

is

 

sent

 

to

 

the

 

caller

 

of

 

the

 

main()

 

function.

 

Example

 

of

 

a

 

Service

 

Program

 

that

 

Provides

 

ILE

 

Condition

 

Handlers

 

The

 

following

 

example

 

shows

 

the

 

source

 

for

 

the

 

service

 

program

 

HANDLERS:

  

#include

 

<lecond.h>

 

#include

 

<stdio.h>

 

void

 

my_handler(_FEEDBACK

 

*cond,

 

_POINTER

 

*token,

 

_INT4

 

*rc,

 

_FEEDBACK

 

*new

 

);

 

void

 

main_handler(_FEEDBACK

 

*cond,

 

_POINTER

 

*token,

 

_INT4

 

*rc,

 

_FEEDBACK

 

*new

 

);

 

void

 

fred(void)

 

{

    

_HDLR_ENTRY

 

hdlr=my_handler;

    

char

 

*p

 

=

 

NULL;

    

CEEHDLR(&hdlr,

 

NULL,NULL);

    

*p

 

=

 

’x’;

     

/*

 

exception

 

*/

    

CEEHDLU(&hdlr,NULL);

 

}

 

int

 

main(void)

 

{

    

_HDLR_ENTRY

 

hdlr=main_handler;

    

CEEHDLR(&hdlr,NULL,NULL);

    

fred();

 

}

 

Figure

 

174.

 

T1520XH5

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

ILE

 

Condition

 

Handlers

 

—

 

main()

  

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

329



Examples

 

of

 

Handling

 

an

 

Exception

 

The

 

following

 

example

 

shows

 

how

 

to

 

use

 

a

 

condition

 

handler

 

to

 

handle

 

an

 

exception.

 

In

 

the

 

example:

 

v

   

ILE

 

condition

 

handler

 

cond_hdlr

 

is

 

registered

 

in

 

the

 

main()

 

function

 

using

 

CEEHDLR.

 

v

   

An

 

MCH1211

 

(divide-by-zero)

 

exception

 

then

 

occurs.

 

Handler

 

cond_hdlr

 

is

 

called

 

and

 

it

 

indicates

 

that

 

the

 

exception

 

should

 

be

 

handled.

 

v

   

Control

 

then

 

resumes

 

in

 

the

 

main()

 

function.

The

 

following

 

steps

 

create

 

and

 

run

 

the

 

source

 

in

 

Figure

 

176

 

on

 

page

 

331.

 

1.

   

To

 

create

 

the

 

program

 

T1520IC6,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520IC6)

 

SRCFILE(QCPPLE/QACSRC)

 

2.

   

To

 

run

 

the

 

program

 

T1520IC6,

 

enter:

 

CALL

 

PGM(MYLIB/T1520IC6)

 

The

 

output

 

is:

    

condition

 

was

 

raised:

 

Facility_ID

 

=

 

MCH,

 

MsgNo

 

=

 

0x1211

   

The

 

condition

 

was

 

handled.

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

  

#include

 

<signal.h>

 

#include

 

<stdio.h>

 

#include

 

<lecond.h>

 

/*

 

HANDLERS

 

*SRVPGM

 

(*CALLER)

 

*/

 

void

 

my_handler(_FEEDBACK

 

*cond,

 

_POINTER

 

*token,

 

_INT4

 

*rc,

 

_FEEDBACK

 

*new)

 

{

  

return;

 

}

 

void

 

main_handler(_FEEDBACK

 

*cond,

 

_POINTER

 

*token,

 

_INT4

 

*rc,

 

_FEEDBACK

 

*new)

 

{

  

printf("In

 

main_handler\n");

 

}

 

Figure

 

175.

 

T1520XH6

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

ILE

 

Condition

 

Handlers

 

—

 

Service

 

Program

  

330

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Example

 

of

 

Handling

 

a

 

Divide-By-Zero

 

Exception

 

In

 

this

 

example:

 

v

   

The

 

bindable

 

API

 

CEEHDLR

 

registers

 

the

 

main_hdlr

 

in

 

function

 

main().

 

v

   

The

 

bindable

 

API

 

CEEHDLR

 

registers

 

the

 

fred_hdlr

 

in

 

function

 

fred().

 

v

   

An

 

MCH1211

 

(divide-by-zero)

 

exception

 

occurs.

 

v

   

Handler

 

fred_hdlr

 

is

 

called

 

to

 

test

 

if

 

the

 

exception

 

is

 

an

 

MCH1211.

 

v

   

The

 

result

 

code

 

in

 

the

 

condition

 

handler

 

is

 

set

 

to

 

percolate

 

to

 

the

 

next

 

condition

 

handler.

 

v

   

Handler

 

fred_hdlr

 

returns

 

without

 

handling

 

the

 

exception,

 

causing

 

main_hdlr

 

to

 

be

 

called.

 

v

   

The

 

user-supplied

 

token

 

is

 

updated

 

to

 

the

 

value

 

’1’

 

and

 

the

 

result

 

code

 

is

 

set

 

to

 

handle

 

the

 

exception.

 

v

   

Handler

 

main_hdlr

 

returns,

 

and

 

the

 

exception

 

is

 

handled.

 

v

   

Control

 

resumes

 

in

 

fred()

 

following

 

the

 

statement

 

that

 

caused

 

the

 

divide-by-zero.

This

 

example

 

uses

 

the

 

source

 

shown

 

in

 

Figure

 

177

 

on

 

page

 

333.

 

1.

   

To

 

create

 

the

 

program

 

T1520IC7,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520IC7)

 

SRCFILE(QCPPLE/QACSRC)

 

2.

   

To

 

run

 

the

 

program

 

T1520IC7,

 

enter:

 

/*

 

This

 

program

 

uses

 

the

 

ILE

 

bindable

 

API

 

CEEHDLR

 

to

 

handle

 

a

         

*/

 

/*

 

condition.

                                                         

*/

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<leawi.h>

 

/*

 

A

 

condition

 

handler

 

registered

 

by

 

a

 

call

 

to

 

CEEHDLR

 

in

 

main().

     

*/

 

void

 

cond_hdlr(

 

_FEEDBACK

 

*cond,

 

_POINTER

 

*token,

 

_INT4

 

*rc,

 

_FEEDBACK

 

*new

 

)

 

{

   

*rc

 

=

 

CEE_HDLR_RESUME;

  

/*

 

handle

 

the

 

condition

 

*/

   

printf("condition

 

was

 

raised:

 

Facility_ID

 

=

 

%.3s,

 

MsgNo

 

=

 

0x%4.4x\n",

          

cond->Facility_ID,

 

cond->MsgNo);

 

}

 

int

 

main(void)

 

{

   

_HDLR_ENTRY

 

hdlr

 

=

 

cond_hdlr;

   

_FEEDBACK

 

fc;

   

int

 

x,y;

   

int

 

zero

 

=

 

0;

 

/*

 

Register

 

the

 

condition

 

handler.

                                    

*/

   

CEEHDLR(&hdlr,

 

NULL,

 

&fc);

   

if

 

(fc.MsgNo

 

!=

 

CEE0000)

   

{

     

printf("Failed

 

to

 

register

 

the

 

condition

 

handler\n");

     

exit(88);

   

}

 

/*

 

Cause

 

a

 

divide

 

by

 

zero

 

condition.

                                  

*/

   

x

 

=

 

y

 

/

 

zero;

 

/*

 

The

 

code

 

resumes

 

here

 

after

 

the

 

condition

 

has

 

been

 

handled.

        

*/

   

printf("The

 

condition

 

was

 

handled.\n");

 

}

 

Figure

 

176.

 

T1520IC6

 

—

 

ILE

 

C

 

Source

 

to

 

Use

 

ILE

 

Condition

 

Handlers

  

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

331



CALL

 

PGM(MYLIB/T1520IC7)

 

The

 

output

 

is:

  

in

 

fred_hdlr,

 

percolate

 

exception.

 

in

 

main

 

hdlr:

 

Facility_ID

 

=

 

MCH,

 

MsgNo

 

=

 

0x1211

 

Resume

 

here

 

because

 

resume

 

cursor

 

not

 

moved

 

and

 

main_hdlr

 

handled

 

the

 

exception.

 

A

 

condition

 

was

 

percolated

 

from

 

fred()

 

to

 

main()

 

and

 

was

 

then

 

handled.

 

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

     

332

 

ILE

 

C/C++

 

Programmer’s

 

Guide



/*

 

This

 

program

 

uses

 

the

 

ILE

 

bindable

 

API

 

CEEHDLR

 

to

 

enable

 

handlers

  

*/

 

/*

 

that

 

percolate

 

and

 

handle

 

a

 

condition.

                             

*/

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<string.h>

 

#include

 

<leawi.h>

 

/*

 

A

 

condition

 

handler

 

registered

 

by

 

a

 

call

 

to

 

CEEHDLR

 

in

 

fred().

     

*/

 

void

 

fred_hdlr(

 

_FEEDBACK

 

*cond,

 

_POINTER

 

*token,

 

_INT4

 

*rc,

 

_FEEDBACK

 

*new

 

)

 

{

   

if

 

(!memcmp(cond->Facility_ID,

 

"MCH",

 

3)

 

&&

 

cond->MsgNo

 

==

 

0x1211)

   

{

     

*rc

 

=

 

CEE_HDLR_PERC;

  

/*

 

...

 

let

 

it

 

percolate

 

to

 

main

 

...

         

*/

     

printf("in

 

fred_hdlr,

 

percolate

 

exception.\n");

   

}

   

else

   

{

     

*rc

 

=

 

CEE_HDLR_RESUME;

  

/*

 

...

 

otherwise

 

handle

 

it.

               

*/

     

printf("in

 

fred_hdlr,

 

handle

 

exception.\n");

   

}

 

}

 

/*

 

A

 

condition

 

handler

 

registered

 

by

 

a

 

call

 

to

 

CEEHDLR

 

in

 

main().

     

*/

 

void

 

main_hdlr(

 

_FEEDBACK

 

*cond,

 

_POINTER

 

*token,

 

_INT4

 

*rc,

 

_FEEDBACK

 

*new

 

)

 

{

   

printf("in

 

main

 

hdlr:

 

Facility_ID

 

=

 

%.3s,

 

MsgNo

 

=

 

0x%4.4x\n",

          

cond->Facility_ID,

 

cond->MsgNo);

   

**(_INT4

 

**)token

 

=

 

1;

   

/*

 

Update

 

the

 

user’s

 

token.

                

*/

   

*rc

 

=

 

CEE_HDLR_RESUME;

    

/*

 

Handle

 

the

 

condition

                   

*/

 

}

 

int

 

fred(void)

 

{

   

_HDLR_ENTRY

 

hdlr

 

=

 

fred_hdlr;

   

_FEEDBACK

 

fc;

   

int

 

x,y,

 

zero

 

=

 

0;

 

/*

 

Register

 

the

 

handler

 

without

 

a

 

token.

                              

*/

   

CEEHDLR(&hdlr,

 

NULL,

 

&fc);

   

if

 

(fc.MsgNo

 

!=

 

CEE0000)

   

{

     

printf("Failed

 

to

 

register

 

the

 

condition

 

handler\n");

     

exit(88);

   

}

 

/*

 

Cause

 

a

 

divide

 

by

 

zero

 

condition.

                                  

*/

     

x

 

=

 

y

 

/

 

zero;

     

printf("Resume

 

here

 

because

 

resume

 

cursor

 

not

 

moved

 

and

 

main_hdlr"

            

"

 

handled

 

the

 

exception\n");

 

}

   

int

 

main(void)

 

{

   

_HDLR_ENTRY

 

hdlr

 

=

 

main_hdlr;

   

_FEEDBACK

 

fc;

   

volatile

 

_INT4

 

token=0,

 

*tokenp

 

=

 

&token;

 

/*

 

Register

 

the

 

handler

 

with

 

a

 

token

 

of

 

type

 

_INT4.

                   

*/

   

CEEHDLR(&hdlr,

 

(_POINTER

 

*)&tokenp,

 

&fc);

 

Figure

 

177.

 

T1520IC7

 

—

 

ILE

 

C

 

Source

 

to

 

Percolate

 

a

 

Message

 

to

 

Handle

 

a

 

Condition

 

(Part

 

1

 

of

 

2)

  

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

333



Example

 

of

 

Promoting

 

an

 

Exception

 

In

 

the

 

following

 

example:

 

v

   

In

 

main(),

 

the

 

bindable

 

API

 

CEEHDLR

 

registers

 

the

 

main_hdlr.

 

v

   

In

 

fred(),

 

the

 

bindable

 

API

 

CEEHDLR

 

registers

 

the

 

fred_hdlr.

 

v

   

An

 

MCH1211

 

(divide-by-zero)

 

exception

 

occurs

 

and

 

the

 

handler

 

fred_hdlr

 

is

 

called.

 

v

   

The

 

handler

 

fred_hdlr

 

moves

 

the

 

resume

 

cursor

 

to

 

the

 

resume

 

point

 

in

 

the

 

main()

 

function

 

using

 

the

 

bindable

 

API

 

CEEMRCR.

 

v

   

The

 

handler

 

fred_hdlr

 

builds

 

a

 

condition

 

token

 

for

 

CEE9902,

 

and

 

the

 

result

 

code

 

is

 

set

 

to

 

promote.

 

v

   

The

 

handler

 

fred_hdlr

 

returns,

 

and

 

the

 

original

 

MCH1211

 

is

 

promoted

 

to

 

a

 

CEE9902.

 

v

   

The

 

handler

 

main_hdlr

 

is

 

called

 

because

 

of

 

the

 

CEE9902

 

exception

 

and

 

the

 

result

 

code

 

is

 

set

 

to

 

handle

 

the

 

condition.

 

v

   

The

 

handler

 

main_hdlr

 

returns,

 

and

 

the

 

CEE9902

 

is

 

handled.

 

v

   

Control

 

resumes

 

in

 

the

 

statement

 

following

 

the

 

call

 

to

 

fred()

 

in

 

main()

The

 

source

 

code

 

in

 

program

 

T1520IC8

 

is

 

shown

 

in

 

Figure

 

178

 

on

 

page

 

335.

 

1.

   

To

 

create

 

the

 

program

 

T1520IC8,

 

,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520IC8)

 

SRCFILE(QCPPLE/QACSRC)

 

2.

   

To

 

run

 

the

 

program

 

T1520IC8,

 

enter:

 

CALL

 

PGM(MYLIB/T1520IC8)

 

The

 

output

 

is

 

status

 

information

 

messages:

  

in

 

fred_hdlr:

 

moving

 

resumes.

 

Facility_ID

 

=

 

MCH,

 

MsgNo

 

=

 

0x1211

 

promoting

 

condition....

 

A

 

condition

 

was

 

promoted

 

from

 

MCH1211

 

to

 

CEE9902

 

by

 

fred()

 

and

 

was

 

handled

 

by

  

the

 

condition

 

handler

 

enabled

 

in

 

main().

 

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

     

if

 

(fc.MsgNo

 

!=

 

CEE0000)

   

{

     

printf("Failed

 

to

 

register

 

the

 

condition

 

handler\n");

     

exit(99);

   

}

   

fred();

 

/*

 

See

 

if

 

the

 

condition

 

handler

 

for

 

main()

 

updated

 

the

 

token.

         

*/

   

if

 

(*tokenp

 

==

 

1)

     

printf("A

 

condition

 

was

 

percolated

 

from

 

fred()

 

to

 

main()

 

and"

            

"

 

was

 

then

 

handled.\n");

 

}

 

Figure

 

177.

 

T1520IC7

 

—

 

ILE

 

C

 

Source

 

to

 

Percolate

 

a

 

Message

 

to

 

Handle

 

a

 

Condition

 

(Part

 

2

 

of

 

2)

  

334

 

ILE

 

C/C++

 

Programmer’s

 

Guide



/*

 

This

 

program

 

uses

 

the

 

ILE

 

bindable

 

API

 

CEEHDLR

 

to

 

promote

 

a

         

*/

 

/*

 

divide

 

by

 

zero

 

condition

 

to

 

a

 

CEE9902.

                              

*/

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<string.h>

 

#include

 

<leawi.h>

 

Figure

 

178.

 

T1520IC8

 

—

 

ILE

 

C

 

Source

 

to

 

Promote

 

a

 

Message

 

to

 

Handle

 

a

 

Condition

 

(Part

 

1

 

of

 

3)

  

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

335



/*

 

A

 

condition

 

handler

 

registered

 

by

 

a

 

call

 

to

 

CEEHDLR

 

in

 

fred().

      

*/

 

void

 

fred_hdlr(

 

_FEEDBACK

 

*cond,

 

_POINTER

 

*token,

 

_INT4

 

*rc,

 

_FEEDBACK

 

*new

 

)

 

{

   

_INT4

 

type=1;

   

CEEMRCR(&type,NULL);

 

/*

 

Move

 

the

 

resume

 

cursor

 

to

 

the

 

resume

 

point

  

*/

                         

/*

 

in

 

main().

                                  

*/

   

/*

 

If

 

its

 

a

 

divide

 

by

 

zero

 

error

 

...

                                 

*/

   

printf("in

 

fred_hdlr:

 

moving

 

resumes.

 

");

   

printf("Facility_ID

 

=

 

%.3s,

 

MsgNo

 

=

 

0x%4.4x\n",

          

cond->Facility_ID,

 

cond->MsgNo);

   

if

 

(!memcmp(cond->Facility_ID,

 

"MCH",

 

3)

 

&&

 

cond->MsgNo

 

==

 

0x1211)

   

{

     

*rc

 

=

 

CEE_HDLR_PROM;

 

/*...

 

Promote

 

the

 

condition

 

to

 

unexpected

 

error.*/

     

*new

 

=

 

*cond;

     

memcpy(new->Facility_ID,

 

"CEE",

 

3);

     

new->MsgNo

 

=

 

9902;

     

printf("promoting

 

condition....\n");

   

}

   

else

   

{

     

*rc

 

=

 

CEE_HDLR_PERC;

 

/*...Otherwise,Percolate

 

to

 

the

 

next

 

handler.

 

*/

     

printf("percolating

 

condition....\n");

   

}

 

}

 

/*

 

A

 

condition

 

handler

 

registered

 

by

 

a

 

call

 

to

 

CEEHDLR

 

in

 

main().

      

*/

 

void

 

main_hdlr(

 

_FEEDBACK

 

*cond,

 

_POINTER

 

*token,

 

_INT4

 

*rc,

 

_FEEDBACK

 

*new

 

)

 

{

   

if

 

(!memcmp(cond->Facility_ID,"CEE",3)

 

&&

 

cond->MsgNo

 

==

 

9902;)

     

**(_INT4

 

**)token

 

=

 

1;

   

/*

 

Got

 

the

 

promoted

 

CEE9902.

              

*/

   

else

     

**(_INT4

 

**)token

 

=

 

2;

   

/*

 

It

 

is

 

not

 

a

 

CEE9902.

                   

*/

   

*rc

 

=

 

CEE_HDLR_RESUME;

                  

/*

 

Handle

 

the

 

condition.

     

*/

 

}

 

int

 

fred(void)

 

{

   

_HDLR_ENTRY

 

hdlr

 

=

 

fred_hdlr;

   

_FEEDBACK

 

fc;

   

int

 

x,y,

 

zero

 

=

 

0;

 

/*

 

Register

 

the

 

handler

 

without

 

a

 

token.

                               

*/

   

CEEHDLR(&hdlr,

 

NULL,

 

&fc);

   

if

 

(fc.MsgNo

 

!=

 

CEE0000)

   

{

     

printf("Failed

 

to

 

register

 

the

 

condition

 

handler\n");

     

exit(88);

   

}

   

/*

 

Cause

 

a

 

divide

 

by

 

zero

 

condition.

                                   

*/

   

x

 

=

 

y

 

/

 

zero;

 

/*

 

This

 

is

 

not

 

the

 

resume

 

point

 

because

 

of

 

the

 

call

 

to

 

CEEMRCR

 

in

      

*/

 

/*

 

fred_hdlr.

                                                          

*/

   

{

     

printf("This

 

is

 

not

 

the

 

resume

 

point:

 

should

 

not

 

get

 

here\n");

   

}

 

}

 

Figure

 

178.

 

T1520IC8

 

—

 

ILE

 

C

 

Source

 

to

 

Promote

 

a

 

Message

 

to

 

Handle

 

a

 

Condition

 

(Part

 

2

 

of

 

3)

  

336

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Using

 

the

 

C/C++

 

Signal

 

Handler

 

HLL-specific

 

handlers

 

are

 

the

 

language

 

features

 

that

 

are

 

defined

 

for

 

handling

 

errors.

 

The

 

ILE

 

C/C++

 

signal()

 

function

 

can

 

be

 

used

 

to

 

handle

 

exception

 

messages.

 

iSeries

 

system

 

exceptions

 

are

 

mapped

 

to

 

C

 

and

 

C++

 

signals

 

by

 

the

 

ILE

 

C/C++

 

run-time

 

environment.

 

A

 

signal

 

handler

 

determines

 

the

 

course

 

of

 

action

 

for

 

a

 

signal.

 

You

 

cannot

 

register

 

a

 

signal

 

handler

 

in

 

an

 

activation

 

group

 

that

 

is

 

different

 

from

 

the

 

one

 

you

 

wish

 

to

 

call

 

it

 

from.

 

If

 

a

 

signal

 

handler

 

is

 

in

 

a

 

different

 

activation

 

group

 

from

 

the

 

occurrence

 

of

 

the

 

signal

 

it

 

is

 

handling,

 

the

 

behavior

 

is

 

undefined.

 

When

 

to

 

Use

 

the

 

Signal

 

Handler

 

For

 

portable

 

code

 

across

 

multiple

 

platforms,

 

use

 

only

 

the

 

signal()

 

function

 

to

 

handle

 

exception.

 

ILE

 

condition

 

handlers

 

should

 

be

 

used

 

if

 

a

 

consistent

 

mechanism

 

for

 

handling

 

exceptions

 

across

 

ILE

 

enabled

 

languages

 

is

 

required.

 

If

 

portability

 

across

 

ILE-enabled

 

platforms

 

is

 

a

 

concern,

 

then

 

ILE

 

condition

 

handlers

 

and

 

the

 

signal()

 

function

 

can

 

be

 

used.

 

Otherwise,

 

all

 

three

 

types

 

of

 

handlers

 

may

 

be

 

used.

 

See

 

Using

 

Both

 

C/C++

 

Signal

 

and

 

ILE

 

Exception

 

Handlers.

Note:

  

Stream

 

I/O

 

functions

 

trap

 

the

 

SIGIO

 

signal,

 

which

 

is

 

sent

 

when

 

normal

 

data,

 

OOB

 

data,

 

error

 

conditions,

 

or

 

just

 

about

 

anything

 

happens

 

on

 

any

 

type

 

of

 

socket.

 

Signal

 

handlers

 

that

 

are

 

registered

 

for

 

SIGIO

 

are

 

not

 

called

 

for

 

exceptions

 

that

 

are

 

generated

 

when

 

processing

 

stream

 

files.

 

Using

 

the

 

signal()

 

function

 

will

 

always

 

handle

 

the

 

exception

 

implicitly

 

(unless

 

the

 

signal

 

action

 

is

 

SIG_DFL,

 

in

 

which

 

case

 

it

 

would

 

percolate

 

the

 

exception);

 

with

 

direct

 

monitor

 

handlers

 

you

 

either

 

have

 

to

 

specify

 

a

 

control

 

action

 

that

 

will

 

implicitly

 

handle

 

the

 

exception

 

(_CTLA_HANDLE,

 

_CTLA_HANDLE_NO_MSG,

 

_CTLA

 

_IGNORE,

 

or

 

_CTLA_IGNORE_NO_MSG),

 

or

 

you

 

have

 

to

 

handle

 

the

 

int

 

main(void)

 

{

   

_HDLR_ENTRY

 

hdlr

 

=

 

main_hdlr;

   

_FEEDBACK

 

fc;

   

volatile

 

_INT4

 

token=0,

 

*tokenp

 

=

 

&token;

 

/*

 

Register

 

the

 

handler

 

with

 

a

 

token

 

of

 

type

 

_INT4.

                    

*/

   

CEEHDLR(&hdlr,

 

(_POINTER

 

*)&tokenp,

 

&fc);

   

if

 

(fc.MsgNo

 

!=

 

CEE0000)

   

{

     

printf("Failed

 

to

 

register

 

the

 

condition

 

handler\n");

     

exit(99);

   

}

   

fred();

 

/*

 

See

 

if

 

the

 

condition

 

handler

 

for

 

main()

 

received

 

the

 

promoted

       

*/

 

/*

 

condition.

                                                          

*/

   

if

 

(*tokenp

 

==

 

1)

     

printf("A

 

condition

 

was

 

promoted

 

from

 

MCH1211

 

to

 

CEE9902

 

by

 

"

            

"fred()

 

and

 

was

 

handled

 

by

 

the

 

condition

 

handler

 

enabled

 

"

            

"in

 

main().\n");

 

}

 

Figure

 

178.

 

T1520IC8

 

—

 

ILE

 

C

 

Source

 

to

 

Promote

 

a

 

Message

 

to

 

Handle

 

a

 

Condition

 

(Part

 

3

 

of

 

3)

  

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

337



exception

 

explicitly

 

within

 

the

 

handler

 

function

 

(when

 

the

 

control

 

action

 

_CTLA_INVOKE

 

is

 

specified),

 

using

 

either

 

QMHCHGEM

 

or

 

an

 

ILE

 

condition

 

handling

 

API.

 

Note:

  

Direct

 

monitors

 

are

 

usually

 

the

 

fastest

 

handlers.

 

The

 

HLL-specific

 

handler,

 

which

 

is

 

the

 

signal

 

handler

 

in

 

ILE

 

C,

 

is

 

global.

 

It

 

is

 

enabled

 

for

 

all

 

function

 

calls

 

in

 

the

 

activation

 

group

 

the

 

signal()

 

function

 

is

 

called.

 

In

 

ILE,

 

condition

 

handlers

 

and

 

direct

 

monitor

 

handlers

 

are

 

scoped

 

to

 

the

 

function

 

that

 

enables

 

them

 

or

 

until

 

they

 

are

 

disabled

 

in

 

that

 

function.

 

The

 

following

 

example

 

illustrates

 

that

 

if

 

you

 

do

 

not

 

want

 

to

 

change

 

the

 

state

 

of

 

a

 

signal

 

handler

 

when

 

the

 

signal

 

function

 

returns,

 

then

 

you

 

must

 

manage

 

the

 

state

 

of

 

the

 

signal

 

handler

 

explicitly.

  

ILE

 

condition

 

handlers

 

and

 

direct

 

monitor

 

handlers

 

do

 

not

 

have

 

this

 

requirement

 

because

 

they

 

are

 

not

 

global

 

handlers.

 

Raising

 

Signals

 

Signals

 

are

 

raised

 

implicitly

 

or

 

explicitly.

 

To

 

explicitly

 

raise

 

a

 

signal,

 

use

 

the

 

raise()

 

function.

 

Signals

 

are

 

implicitly

 

raised

 

by

 

the

 

iSeries

 

system

 

when

 

an

 

exception

 

occurs.

 

For

 

example,

 

if

 

you

 

call

 

a

 

program

 

that

 

does

 

not

 

exist,

 

an

 

implicit

 

signal

 

is

 

raised

 

indicating

 

that

 

the

 

program

 

object

 

could

 

not

 

be

 

found.

 

Signal

 

Handling

 

Function

 

Prototypes

 

The

 

header

 

file

 

<signal.h>

 

contains

 

a

 

number

 

of

 

function

 

prototypes

 

that

 

are

 

associated

 

with

 

signal

 

handling.

 

The

 

following

 

functions

 

can

 

be

 

used

 

with

 

signal

 

handling

 

in

 

your

 

program:

 

v

   

raise()

 

v

   

signal()

 

v

   

_GetExcData()

The

 

_GetExcData()

 

function

 

is

 

an

 

ILE

 

C/C++

 

extension

 

that

 

allows

 

you

 

to

 

obtain

 

information

 

about

 

the

 

exception

 

message

 

associated

 

with

 

the

 

signal

 

and

 

returns

 

a

 

structure

 

containing

 

information

 

about

 

the

 

exception

 

message.

 

The

 

_GetExcData()

 

function

 

returns

 

the

 

same

 

structure

 

that

 

is

 

passed

 

to

 

the

 

#pragma

 

exception_handler

 

directive.

 

The

 

signal()

 

function

 

specifies

 

the

 

action

 

that

 

is

 

performed

 

when

 

a

 

signal

 

is

 

raised.

 

There

 

are

 

ten

 

signals

 

that

 

are

 

represented

 

as

 

macros

 

in

 

the

 

<signal.h>

 

#include

 

<signal.h>

 

void

 

f(void)

 

{

   

void

 

(*old_state)(int);

   

/*

 

Save

 

old

 

state

 

of

 

signal

 

action

 

*/

   

old_state

 

=

 

signal(SIGALL,handlr);

   

/*

 

Other

 

code

 

in

 

your

 

application

 

*/

   

/*

 

Reset

 

state

 

of

 

signal

           

*/

   

signal(SIGALL,old_state);

 

}

 

Figure

 

179.

 

ILE

 

C

 

Source

 

to

 

Manage

 

the

 

State

 

of

 

a

 

Signal

 

Handler

  

338

 

ILE

 

C/C++

 

Programmer’s

 

Guide



header

 

file.

 

In

 

addition,

 

the

 

macro

 

SIGALL

 

has

 

the

 

semantics

 

of

 

a

 

signal

 

but

 

with

 

some

 

unique

 

characteristics.

 

The

 

ten

 

signals

 

are

 

as

 

follows:

 

SIGABRT

 

Abnormal

 

program

 

end.

 

SIGFPE

 

Arithmetic

 

operation

 

error,

 

such

 

as

 

dividing

 

by

 

zero.

 

SIGILL

 

An

 

instruction

 

that

 

is

 

not

 

allowed.

 

SIGINT

 

System

 

interrupt,

 

such

 

as

 

receiving

 

an

 

interactive

 

attention

 

signal.

 

SIGIO

 

Record

 

file

 

error

 

condition.

 

SIGOTHER

 

All

 

other

 

*ESCAPE

 

and

 

*STATUS

 

messages

 

that

 

do

 

not

 

map

 

to

 

any

 

other

 

signals.

 

SIGSEGV

 

The

 

access

 

to

 

storage

 

is

 

not

 

valid.

 

SIGTERM

 

A

 

end

 

request

 

is

 

sent

 

to

 

the

 

program.

 

SIGUSR1

 

Reserved

 

for

 

user-defined

 

signal

 

handler.

 

SIGUSR2

 

Reserved

 

for

 

user-defined

 

signal

 

handler.

SIG_IGN

 

and

 

SIG_DFL

 

are

 

signal

 

actions

 

that

 

are

 

also

 

included

 

in

 

the

 

<signal.h>

 

header

 

file.

 

SIG_IGN

 

Ignore

 

the

 

signal.

 

SIG_DFL

 

Default

 

action

 

for

 

the

 

signal.

SIGALL

 

is

 

an

 

ILE

 

C/C++

 

extension

 

that

 

allows

 

you

 

to

 

register

 

your

 

own

 

default-handling

 

function

 

for

 

all

 

signals

 

whose

 

action

 

is

 

SIG_DFL.

 

This

 

default-handling

 

function

 

can

 

be

 

registered

 

by

 

using

 

the

 

signal()

 

function

 

with

 

SIGALL,

 

as

 

shown

 

in

 

the

 

example

 

section.

 

A

 

function

 

check

 

is

 

not

 

a

 

signal

 

and

 

cannot

 

be

 

monitored

 

for

 

by

 

the

 

signal

 

function.

 

SIGALL

 

cannot

 

be

 

signaled

 

by

 

the

 

raise()

 

function.

 

How

 

the

 

ILE

 

C/C++

 

Run-Time

 

Environment

 

Handles

 

Signals

 

When

 

a

 

signal

 

is

 

received,

 

the

 

ILE

 

C/C++

 

run-time

 

environment

 

handles

 

the

 

signal

 

in

 

one

 

of

 

three

 

ways:

 

v

   

If

 

the

 

value

 

of

 

the

 

function

 

is

 

SIG_IGN,

 

then

 

the

 

signal

 

is

 

ignored

 

because

 

the

 

exception

 

is

 

handled

 

by

 

the

 

run-time

 

environment

 

and

 

no

 

signal

 

handler

 

is

 

called.

 

If

 

the

 

message

 

that

 

is

 

mapped

 

to

 

the

 

signal

 

is

 

an

 

*ESCAPE

 

or

 

*NOTIFY

 

message,

 

then

 

it

 

is

 

placed

 

in

 

the

 

job

 

log.

 

v

   

If

 

the

 

value

 

of

 

the

 

function

 

is

 

a

 

pointer

 

to

 

a

 

function,

 

then

 

the

 

function

 

that

 

is

 

addressed

 

by

 

the

 

pointer

 

is

 

called.

 

v

   

If

 

the

 

value

 

of

 

the

 

function

 

is

 

SIG_DFL,

 

then

 

the

 

system

 

uses

 

the

 

value

 

registered

 

for

 

SIGALL

 

(choosing

 

one

 

of

 

the

 

three

 

ways

 

described

 

here).

 

If

 

the

 

value

 

of

 

the

 

function

 

for

 

SIGALL

 

is

 

SIG_DFL

 

then

 

the

 

exception

 

is

 

percolated.

Note:

  

The

 

value

 

of

 

the

 

function

 

is

 

the

 

function

 

argument

 

on

 

the

 

call

 

to

 

the

 

signal()

 

function.

 

Resetting

 

the

 

Signal

 

Action

 

A

 

signal

 

handling

 

function

 

is

 

called

 

when

 

an

 

exception

 

occurs

 

or

 

when

 

a

 

signal

 

is

 

raised.

 

A

 

handler

 

is

 

defined

 

with

 

the

 

signal()

 

function.

 

The

 

value

 

you

 

assign

 

on

 

the

 

sig

 

parameter

 

is

 

associated

 

with

 

the

 

function

 

referred

 

to

 

on

 

the

 

funct

 

parameter.

   

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

339



When

 

a

 

signal

 

handler

 

is

 

called

 

in

 

a

 

C

 

program,

 

its

 

corresponding

 

signal

 

action

 

is

 

set

 

to

 

SIG_DFL.

 

You

 

must

 

reset

 

the

 

signal

 

action

 

if

 

you

 

want

 

to

 

handle

 

the

 

same

 

signal

 

again.

 

If

 

you

 

do

 

not,

 

the

 

default

 

action

 

is

 

taken

 

on

 

subsequent

 

exceptions.

 

The

 

handling

 

of

 

the

 

signal

 

can

 

be

 

reset

 

from

 

inside

 

or

 

outside

 

the

 

handler

 

by

 

calling

 

signal().

 

Example:

 

The

 

following

 

figure

 

shows

 

source

 

code

 

that

 

resets

 

signal

 

handlers.

 

In

 

Figure

 

180:

 

v

   

The

 

default

 

can

 

be

 

reset

 

to

 

SIG_IGN,

 

another

 

handler,

 

or

 

the

 

same

 

handler.

 

You

 

can

 

recursively

 

call

 

the

 

signal

 

handler.

 

Once

 

stacked,

 

multiple

 

signal

 

handler

 

calls

 

behave

 

like

 

any

 

other

 

calls.

 

For

 

example,

 

if

 

the

 

action

 

signal

 

to

 

the

 

previous

 

caller

 

is

 

chosen,

 

the

 

control

 

will

 

not

 

be

 

returned

 

to

 

the

 

preceding

 

caller

 

(even

 

if

 

that

 

call

 

is

 

another

 

signal

 

handler)

 

but

 

goes

 

back

 

to

 

the

 

previous

 

caller.

 

v

   

The

 

signal()

 

function

 

returns

 

the

 

address

 

of

 

the

 

previous

 

signal

 

handler

 

for

 

the

 

specified

 

signal,

 

and

 

sets

 

the

 

address

 

of

 

the

 

new

 

signal

 

handler.

Stacking

 

Signal

 

Handlers

 

You

 

can

 

stack

 

the

 

signal

 

handlers

 

yourself

 

using

 

the

 

value

 

returned

 

by

 

signal(),

 

as

 

shown

 

in

 

the

 

following

 

figure.

   

Example:

 

Setting

 

Up

 

a

 

Signal

 

Handler

 

The

 

following

 

example

 

shows

 

how

 

to

 

set

 

up

 

a

 

signal

 

handler.

 

The

 

example

 

illustrates

 

that

 

when

 

there

 

is

 

no

 

signal

 

handler

 

set

 

up

 

the

 

default

 

action

 

for

 

SIGIO

 

is

 

SIG_IGN.

 

The

 

exception

 

is

 

ignored.

 

When

 

a

 

signal

 

handler

 

is

 

set

 

up

 

for

 

SIGIO,

 

the

 

signal

 

handler

 

is

 

called.

 

Instructions

 

1.

   

To

 

create

 

the

 

program

 

T1520SIG,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520SIG)

 

SRCFILE(QCPPLE/QACSRC)

 

Figure

 

182

 

on

 

page

 

342

 

shows

 

the

 

source

 

code.

 

signal

 

(

 

SIGINT,

 

&myhandler

 

);

 

raise

 

(

 

SIGINT

 

);

             

/*

 

signal

 

is

 

handled

 

by

 

myhandler.

      

*/

 

...

 

raise

 

(

 

SIGINT

 

);

             

/*

 

signal

 

is

 

handled

 

by

 

SIG_DFL.

        

*/

 

...

 

signal

 

(

 

SIGINT,

 

&myhandler

 

);/*

 

reset

 

signal

 

handler

 

to

 

myhandler.

   

*/

 

raise

 

(

 

SIGINT

 

);

             

/*

 

signal

 

is

 

handled

 

by

 

myhandler.

      

*/

 

Figure

 

180.

 

Resetting

 

Signal

 

Handlers

void

 

(*func1)

 

();

 

void

 

(*func2)

 

();

 

func1

 

=

 

signal

 

(

 

SIGINT,

 

&handler2

 

);

 

/*func1

 

contains

 

the

 

address

 

of

  

*/

                                       

/*a

 

previous

 

signal

 

handler

 

or

   

*/

                                       

/*SIG_DFL

 

if

 

no

 

handler

 

has

 

been

 

*/

                                       

/*defined.

                       

*/

 

func2

 

=

 

signal

 

(

 

SIGINT,

 

func1);

      

/*func2

 

contains

 

the

 

address

 

of

  

*/

                                       

/*handler2.

                      

*/

 

Figure

 

181.

 

Stacking

 

Signal

 

Handlers

  

340

 

ILE

 

C/C++

 

Programmer’s

 

Guide



2.

   

To

 

run

 

program

 

T1520SIG,

 

enter:

 

CALL

 

PGM(MYLIB/T1520SIG)

 

The

 

output

 

appears

 

in

 

a

 

series

 

of

 

screens:

   

The

 

first

 

read

 

starts

   

Read

 

record

 

1

   

Read

 

record

 

2

   

Read

 

record

 

3

   

Read

 

record

 

4

   

Read

 

record

 

5

   

The

 

first

 

read

 

finishes

   

The

 

second

 

read

 

starts

   

Read

 

record

 

1

   

Read

 

record

 

2

   

Read

 

record

 

3

   

Read

 

record

 

4

   

Read

 

record

 

5

   

In

 

SIGIO

 

handler

   

Exception

 

message

 

ID

 

is

 

CPF5001

   

Signal

 

raised

 

is

 

9

   

The

 

second

 

read

 

finishes

   

The

 

third

 

read

 

starts

   

Read

 

record

 

1

   

Read

 

record

 

2

   

Read

 

record

 

3

   

Read

 

record

 

4

   

Read

 

record

 

5

   

In

 

SIGALL

 

handler

   

Exception

 

message

 

ID

 

is

 

CPF5001

   

Signal

 

raised

 

is

 

9

   

The

 

third

 

read

 

finishes

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

  

===>

  

F3=Exit

 

F4=End

 

of

 

File

 

F6=Print

 

F9=Retrieve

 

F17=Top

  

F18=Bottom

  

F19=Left

   

F20=Right

 

F21=User

 

Window

 

Source

 

Code

 

Sample

 

that

 

Sets

 

Up

 

Signal

 

Handlers

     

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

341



#include

 

<stdio.h>

 

#include

 

<signal.h>

 

#include

 

<recio.h>

 

#include

 

<stdlib.h>

 

#include

 

<string.h>

 

#define

 

FILE_NAME

 

"QTEMP/MY_FILE"

 

#define

 

RCD_LEN

   

80

 

#define

 

NUM_RCD

   

5

 

/*

 

The

 

signal

 

handler

 

for

 

SIGIO.

                                      

*/

 

static

 

void

 

handler_SIGIO(int

 

sig)

 

{

     

printf("In

 

SIGIO

 

handler\n");

     

printf("Exception

 

message

 

ID

 

is

 

%7.7s\n",

 

_EXCP_MSGID);

     

printf("Signal

 

raised

 

is

 

%d\n",

 

sig);

 

}

 

/*

 

The

 

signal

 

handler

 

for

 

SIGALL.

                                     

*/

 

static

 

void

 

handler_SIGALL(int

 

sig)

 

{

     

_INTRPT_Hndlr_Parms_T

 

data;

     

_GetExcData(&data);

     

printf("In

 

SIGALL

 

handler\n");

     

printf("Exception

 

message

 

ID

 

is

 

%7.7s\n",

 

data.Msg_Id);

     

printf("Signal

 

raised

 

is

 

%d\n",

 

sig);

 

}

 

int

 

main(void)

 

{

     

_RFILE

 

*fp;

     

int

     

i;

     

char

    

buf[RCD_LEN];

     

char

    

cmd[100];

 

/*

 

Create

 

a

 

file.

                                                     

*/

     

sprintf(cmd,

 

"CRTPF

 

FILE(%s)

 

RCDLEN(%d)",

 

FILE_NAME,

 

RCD_LEN);

     

system(cmd);

 

/*

 

Open

 

the

 

file

 

for

 

write.

                                           

*/

     

if

 

(

 

(fp

 

=

 

_Ropen(FILE_NAME,

 

"wr"))

 

==

 

NULL

 

)

     

{

         

printf("Open

 

for

 

write

 

fails\n");

         

exit(1);

     

}

 

/*

 

Write

 

some

 

data

 

into

 

the

 

file.

                                     

*/

     

memset(buf,

 

’1’,

 

RCD_LEN);

     

for

 

(

 

i

 

=

 

0;

 

i

 

<

 

NUM_RCD;

 

i++

 

)

     

{

         

_Rwrite(fp,

 

buf,

 

RCD_LEN);

     

}

     

_Rclose(fp);

 

/*

 

Open

 

the

 

file

 

for

 

the

 

first

 

read.

                                  

*/

     

if

 

(

 

(fp

 

=

 

_Ropen(FILE_NAME,

 

"rr"))

 

==

 

NULL

 

)

     

{

         

printf("Open

 

for

 

the

 

first

 

read

 

fails\n");

         

exit(2);

     

}

 

/*

 

Read

 

until

 

end-of-file.

                                            

*/

 

Figure

 

182.

 

T1520SIG

 

—

 

ILE

 

C

 

Source

 

that

 

Sets

 

Up

 

Signal

 

Handlers

 

(Part

 

1

 

of

 

2)

  

342

 

ILE

 

C/C++

 

Programmer’s

 

Guide



/*

 

Since

 

there

 

is

 

no

 

signal

 

handler

 

set

 

up

 

and

 

the

 

default

            

*/

 

/*

 

action

 

for

 

SIGIO

 

is

 

SIG_IGN,

 

the

 

EOF

 

exception

 

is

 

ignored.

         

*/

     

i

 

=

 

1;

     

printf("The

 

first

 

read

 

starts\n");

     

while

 

(

 

_Rreadn(fp,

 

buf,

 

RCD_LEN,

 

__DFT)->num_bytes

 

!=

 

EOF

 

)

     

{

         

printf("Read

 

record

 

%d\n",

 

i++);

     

}

     

_Rclose(fp);

     

printf("The

 

first

 

read

 

finishes\n");

 

/*

 

Set

 

up

 

a

 

signal

 

handler

 

for

 

SIGIO.

                                 

*/

     

signal(SIGIO,

 

handler_SIGIO);

 

/*

 

Open

 

the

 

file

 

for

 

the

 

second

 

read.

                                 

*/

     

if

 

(

 

(fp

 

=

 

_Ropen(FILE_NAME,

 

"rr"))

 

==

 

NULL

 

)

     

{

         

printf("Open

 

for

 

the

 

second

 

read

 

fails\n");

         

exit(3);

     

}

 

/*

 

Read

 

until

 

end

 

of

 

file.

                                            

*/

 

/*

 

Since

 

a

 

signal

 

handler

 

is

 

set

 

up

 

for

 

SIGIO,

 

the

 

signal

             

*/

 

/*

 

handler

 

is

 

called

 

when

 

the

 

EOF

 

exception

 

is

 

generated.

             

*/

     

i

 

=

 

1;

     

printf("The

 

second

 

read

 

starts\n");

     

while

 

(

 

_Rreadn(fp,

 

buf,

 

RCD_LEN,

 

__DFT)->num_bytes

 

!=

 

EOF

 

)

     

{

         

printf("Read

 

record

 

%d\n",

 

i++);

     

}

     

_Rclose(fp);

     

printf("The

 

second

 

read

 

finishes\n");

 

/*

 

Set

 

up

 

a

 

signal

 

handler

 

for

 

SIGALL.

                                

*/

     

signal(SIGALL,

 

handler_SIGALL);

 

/*

 

Open

 

the

 

file

 

for

 

the

 

third

 

read.

                                  

*/

     

if

 

(

 

(fp

 

=

 

_Ropen(FILE_NAME,

 

"rr"))

 

==

 

NULL

 

)

     

{

         

printf("Open

 

for

 

the

 

third

 

read

 

fails\n");

         

exit(4);

     

}

 

/*

 

Read

 

until

 

end

 

of

 

file.

                                            

*/

 

/*

 

Since

 

there

 

is

 

no

 

signal

 

handler

 

for

 

SIGIO

 

but

 

there

 

is

 

a

          

*/

 

/*

 

signal

 

handler

 

for

 

SIGALL,

 

the

 

signal

 

handler

 

for

 

SIGALL

           

*/

 

/*

 

is

 

called

 

when

 

the

 

EOF

 

exception

 

is

 

generated.

 

But

                 

*/

 

/*

 

the

 

signal

 

ID

 

passed

 

to

 

the

 

SIGALL

 

signal

 

handler

 

is

 

still

         

*/

 

/*

 

equal

 

to

 

SIGIO.

                                                    

*/

     

i

 

=

 

1;

     

printf("The

 

third

 

read

 

starts\n");

     

while

 

(

 

_Rreadn(fp,

 

buf,

 

RCD_LEN,

 

__DFT)->num_bytes

 

!=

 

EOF

 

)

     

{

         

printf("Read

 

record

 

%d\n",

 

i++);

     

}

     

_Rclose(fp);

     

printf("The

 

third

 

read

 

finishes\n");

 

}

 

Figure

 

182.

 

T1520SIG

 

—

 

ILE

 

C

 

Source

 

that

 

Sets

 

Up

 

Signal

 

Handlers

 

(Part

 

2

 

of

 

2)

  

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

343



Using

 

Both

 

C/C++

 

Signal

 

and

 

ILE

 

Exception

 

Handlers

 

Exception

 

handler

 

priority

 

becomes

 

important

 

if

 

you

 

use

 

both

 

language-specific

 

error

 

handling

 

(C

 

signal)

 

and

 

additional

 

ILE

 

exception

 

handler

 

types.

 

Order

 

of

 

Priority

 

For

 

the

 

call

 

stack

 

entry

 

that

 

incurred

 

the

 

exception,

 

the

 

system

 

calls

 

handlers

 

in

 

the

 

following

 

prioritized

 

order:

 

1.

   

Direct

 

monitors

 

2.

   

ILE

 

condition

 

handlers

 

3.

   

signal()

   

Example

 

of

 

Using

 

a

 

Direct

 

Monitor

 

Handler

 

and

 

Signal

 

Handler

 

Together

 

The

 

following

 

example

 

shows

 

you

 

how

 

to

 

use

 

the

 

#pragma

 

exception_handler

 

directive

 

and

 

the

 

signal()

 

function

 

together.

 

This

 

example

 

also

 

shows

 

how

 

an

 

exception

 

is

 

handled

 

using

 

SIGIO.

 

An

 

end-of-file

 

message

 

is

 

mapped

 

to

 

SIGIO.

 

The

 

default

 

for

 

SIGIO

 

is

 

SIG_IGN.

 

It

 

also

 

shows

 

that

 

when

 

both

 

a

 

HLL-specific

 

handler

 

and

 

direct

 

monitor

 

handler

 

are

 

defined,

 

the

 

direct

 

monitor

 

handler

 

is

 

called

 

first.

 

This

 

example

 

uses

 

the

 

source

 

shown

 

in

 

Figure

 

171

 

on

 

page

 

324.

 

Call Stack

RV2W1041-3

Procedure P1

ILE

ILE

ILE

ILE

ILE

ILE

ILE

Procedure P3

Standard Language
Default

Direct Monitor 
Handler 

Procedure P4

ILE Condition 
Handler

Procedure P5

Last in
First out

ILE Condition
Handler

Procedure P6

HLL - Specific
Handler

Procedure P7

Procedure P2

Exception Occurs

Exception Handler
Priority

.

.

.

  

Figure

 

183.

 

Exception

 

Handler

 

Priority

  

344

 

ILE

 

C/C++

 

Programmer’s

 

Guide



1.

   

To

 

create

 

the

 

program

 

T1520ICA,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520ICA)

 

SRCFILE(QCPPLE/QACSRC)

 

2.

   

To

 

run

 

the

 

program

 

T1520ICA,

 

enter:

 

CALL

 

PGM(MYLIB/T1520ICA)

 

The

 

first

 

screen

 

of

 

output

 

is

 

shown

 

below:

   

The

 

first

 

read

 

starts

   

Read

 

record

 

1

   

Read

 

record

 

2

   

Read

 

record

 

3

   

Read

 

record

 

4

   

Read

 

record

 

5

   

The

 

first

 

read

 

finishes

   

The

 

second

 

read

 

starts

   

Read

 

record

 

1

   

Read

 

record

 

2

   

Read

 

record

 

3

   

Read

 

record

 

4

   

Read

 

record

 

5

   

In

 

direct

 

monitor

 

handler

   

Exception

 

message

 

ID

 

is

 

CPF5001

   

The

 

second

 

read

 

finishes

   

The

 

third

 

read

 

starts

   

Read

 

record

 

1

 

The

 

second

 

screen

 

of

 

output

 

follows:

   

Read

 

record

 

2

   

Read

 

record

 

3

   

Read

 

record

 

4

   

Read

 

record

 

5

   

In

 

direct

 

monitor

 

handler

   

Exception

 

message

 

ID

 

is

 

CPF5001

   

In

 

signal

 

handler

   

Exception

 

message

 

ID

 

is

 

CPF5001

   

The

 

third

 

read

 

finishes

   

The

 

fourth

 

read

 

starts

   

Read

 

record

 

1

   

Read

 

record

 

2

   

Read

 

record

 

3

   

Read

 

record

 

4

   

Read

 

record

 

5

   

In

 

signal

 

handler

   

Exception

 

message

 

ID

 

is

 

CPF5001

   

The

 

fourth

 

read

 

finishes

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

  

===>

  

F3=Exit

 

F4=End

 

of

 

File

 

F6=Print

 

F9=Retrieve

 

F17=Top

  

F18=Bottom

  

F19=Left

   

F20=Right

 

F21=User

 

Window

 

Handling

 

Nested

 

Exceptions

 

Exceptions

 

can

 

be

 

nested.

 

A

 

nested

 

exception

 

is

 

an

 

exception

 

that

 

occurs

 

while

 

another

 

exception

 

is

 

being

 

handled.

 

When

 

this

 

happens,

 

the

 

processing

 

of

 

the

 

first

 

exception

 

is

 

temporarily

 

suspended.

 

Exception

 

handling

 

begins

 

again

 

with

 

the

 

most

 

recently

 

generated

 

exception.

 

Note:

  

If

 

a

 

nested

 

exception

 

causes

 

the

 

program

 

to

 

end,

 

the

 

exception

 

handler

 

for

 

the

 

first

 

exception

 

may

 

not

 

complete.

 

Example:

   

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

345



The

 

following

 

example

 

shows

 

a

 

nested

 

exception.

  

In

 

this

 

example,

 

the

 

main()

 

function

 

generates

 

an

 

exception

 

which

 

causes

 

main_hdlr

 

to

 

get

 

control.

 

The

 

handler

 

main_hdlr

 

generates

 

another

 

exception

 

which

 

causes

 

hdlr_hdlr

 

to

 

get

 

control.

 

The

 

handler

 

hdlr_hdlr

 

handles

 

the

 

exception.

 

Control

 

resumes

 

in

 

main_hdlr,

 

and

 

it

 

handles

 

the

 

original

 

exception.

 

As

 

this

 

example

 

illustrates,

 

you

 

can

 

get

 

an

 

exception

 

within

 

an

 

exception

 

handler.

 

To

 

prevent

 

exception

 

recursion,

 

exception

 

handler

 

call

 

stack

 

entries

 

act

 

like

 

control

 

boundaries

 

with

 

regards

 

to

 

exception

 

percolation.

 

Therefore

 

it

 

is

 

recommended

 

that

 

you

 

monitor

 

for

 

exceptions

 

within

 

your

 

exception

 

handlers.

 

Using

 

Cancel

 

Handlers

    

Cancel

 

handlers

 

are

 

used

 

by

 

C++

 

to

 

call

 

destructors

 

during

 

stack

 

unwinding.

 

It

 

is

 

recommended

 

that

 

you

 

use

 

the

 

C++

 

try-catch-throw

 

feature

 

to

 

ensure

 

objects

 

are

 

destructed

 

properly.

Note:

  

For

 

information

 

about

 

using

 

the

 

try-catch-throw

 

feature,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference.

 

A

 

cancel

 

handler

 

may

 

be

 

enabled

 

around

 

a

 

body

 

of

 

code

 

inside

 

a

 

function.

 

When

 

a

 

cancel

 

handler

 

is

 

enabled

 

it

 

only

 

gets

 

control

 

if

 

the

 

suspend

 

point

 

of

 

the

 

call

 

stack

 

entry

 

is

 

inside

 

that

 

code

 

(within

 

the

 

#pragma

 

cancel_handler

 

and

 

#pragma

 

disable_handler

 

directives),

 

and

 

the

 

call

 

stack

 

entry

 

is

 

cancelled.

 

The

 

#pragma

 

cancel_handler

 

directive

 

provides

 

a

 

way

 

to

 

statically

 

register

 

a

 

cancel

 

handler

 

within

 

a

 

call

 

stack

 

entry

 

(or

 

suspend

 

point

 

within

 

a

 

call

 

stack

 

entry).

 

The

 

Register

 

Call

 

Stack

 

Entry

 

Termination

 

User

 

Exit

 

Procedure

 

(CEERTX)

 

and

 

the

 

Unregister

 

Call

 

Stack

 

Entry

 

Termination

 

User

 

Exit

 

Procedure

 

(CEETUTX)

 

ILE

 

bindable

 

APIs

 

provide

 

a

 

way

 

of

 

dynamically

 

registering

 

a

 

user-defined

 

routine

 

to

 

be

 

executed

 

when

 

the

 

call

 

stack

 

entry

 

for

 

which

 

it

 

is

 

registered

 

is

 

cancelled.

 

Cancel

 

handlers

 

provide

 

an

 

important

 

function

 

by

 

allowing

 

you

 

to

 

get

 

control

 

for

 

clean-up

 

and

 

recovery

 

actions

 

when

 

call

 

stack

 

entries

 

are

 

ended

 

by

 

something

 

other

 

than

 

a

 

normal

 

return.

 

#include

 

<signal.h>

 

void

 

hdlr_hdlr(_INTRPT_Hndlr_Parms_T

 

*

 

__ptr128

 

parms)

 

{

    

/*

 

Handle

 

exception

 

2

 

using

 

QMHCHGEM.

 

*/

 

}

 

void

 

main_hdlr(_INTRPT_Hndlr_Parms_T

 

*

 

__ptr128

 

parms)

 

{

 

#pragma

 

exception_handler(hdlr_hdlr,0,0,_C2_MH_ESCAPE)

    

/*

 

Generate

 

exception

 

2.

              

*/

    

/*

 

Handle

 

exception

 

1

 

using

 

QMHCHGEM.

 

*/

 

}

 

int

 

main(void)

 

{

 

#pragma

 

exception_handler(main_hdlr,0,0,_C2_MH_ESCAPE)

    

/*

 

Generate

 

exception

 

1.

              

*/

 

}

 

Figure

 

184.

 

ILE

 

C

 

Source

 

to

 

Nest

 

Exceptions

  

346

 

ILE

 

C/C++

 

Programmer’s

 

Guide



On

 

the

 

#pragma

 

cancel_handler

 

directive,

 

the

 

name

 

of

 

the

 

cancel

 

handler

 

routine

 

(a

 

bound

 

ILE

 

procedure)

 

is

 

specified,

 

along

 

with

 

a

 

user-defined

 

communications

 

area.

 

It

 

is

 

through

 

the

 

communications

 

area

 

that

 

information

 

is

 

passed

 

from

 

the

 

application

 

to

 

the

 

handler

 

function.

 

When

 

the

 

cancel

 

handler

 

function

 

is

 

called,

 

it

 

is

 

passed

 

a

 

pointer

 

to

 

a

 

structure

 

of

 

type

 

_CNL_Hndlr_Parms_T

 

which

 

is

 

defined

 

in

 

the

 

<except.h>

 

header

 

file.

 

This

 

structure

 

contains

 

a

 

pointer

 

to

 

the

 

communications

 

area

 

in

 

addition

 

to

 

some

 

other

 

useful

 

information

 

that

 

is

 

passed

 

by

 

the

 

system.

 

This

 

additional

 

information

 

includes

 

the

 

reason

 

why

 

the

 

call

 

was

 

cancelled.

 

Example:

 

The

 

following

 

simple

 

example

 

illustrates

 

the

 

use

 

of

 

the

 

ILE

 

Cancel

 

Handler

 

mechanism.

 

This

 

capability

 

allows

 

an

 

application

 

the

 

opportunity

 

to

 

have

 

a

 

user-provided

 

function

 

called

 

to

 

perform

 

things

 

such

 

as

 

error

 

reporting

 

and

 

logging,

 

closing

 

of

 

files,

 

etc.

 

when

 

a

 

particular

 

function

 

invocation

 

is

 

cancelled.

 

The

 

usual

 

ways

 

that

 

cause

 

cancelation

 

to

 

occur

 

are:

 

using

 

the

 

exit()

 

function

 

or

 

the

 

abort()

 

function,

 

using

 

the

 

longjmp()

 

function

 

to

 

jump

 

to

 

an

 

earlier

 

call

 

and

 

having

 

a

 

CEE9901

 

Function

 

Check

 

generated

 

from

 

an

 

unhandled

 

exception.

     

#include

 

<stdlib.h>

 

#include

 

<stdio.h>

 

#include

 

<string.h>

 

#include

 

<except.h>

 

/*-------------------------------------------------------------------*/

 

/*

 

The

 

following

 

function

 

is

 

called

 

a

 

"cancel

 

handler".

  

It

 

is

       

*/

 

/*

 

registered

 

for

 

a

 

particular

 

invocation

 

(function)

 

with

 

the

        

*/

 

/*

 

#pragma

 

cancel_handler

 

directive.

  

The

 

variable

 

identified

        

*/

 

/*

 

on

 

this

 

directive

 

as

 

the

 

"communications

 

area"

 

can

 

be

 

accessed

    

*/

 

/*

 

using

 

the

 

’Com_Area’

 

member

 

of

 

the

 

_CNL_Hndlr_Parms_T

 

structure.

  

*/

 

/*

                                                                   

*/

 

/*-------------------------------------------------------------------*/

 

void

 

CancelHandlerForReport(

 

_CNL_Hndlr_Parms_T

 

*cancel_info

 

)

 

{

    

printf("In

 

Cancel

 

Handler

 

for

 

function

 

’Report’

 

...\n");

    

/*

 

Changing

 

the

 

value

 

in

 

the

 

communications

 

area

 

will

 

update

 

the

 

*/

    

/*

 

’return_code’

 

variable

 

in

 

the

 

invocation

 

being

 

cancelled

      

*/

    

/*

 

(in

 

function

 

’Report’

 

in

 

this

 

example).

  

Note

 

that

 

the

        

*/

    

/*

 

ILE

 

C

 

compiler

 

will

 

issue

 

a

 

warning

 

for

 

the

 

following

     

*/

    

/*

 

statement

 

since

 

it

 

uses

 

a

 

non-ISO

 

C

 

compliant

 

technique.

     

*/

    

/*

 

However,

 

this

 

will

 

not

 

affect

 

the

 

expected

 

run-time

 

behavior.

 

*/

    

/*

 

Set

 

"return_code"

 

in

 

Report

 

to

 

an

 

arbitrary

 

number.

           

*/

    

*(

 

(volatile

 

unsigned

 

*)cancel_info->Com_Area

 

)

  

=

 

500;

    

printf("Communication

 

Area

 

now

 

has

 

the

 

value:

 

%d

 

\n",

            

*(

 

(volatile

 

unsigned

 

*)cancel_info->Com_Area)

 

);

    

printf("Leaving

 

Cancel

 

Handler

 

for

 

function

 

’Report’...\n");

 

}

 

Figure

 

185.

 

T1520XH4

 

—

 

ILE

 

C

 

Source

 

that

 

Uses

 

Cancel

 

Handlers

 

(Part

 

1

 

of

 

3)

  

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

347



/*-------------------------------------------------------------------*/

 

/*

 

The

 

following

 

function

 

is

 

also

 

called

 

a

 

cancel

 

handler

 

but

 

has

    

*/

 

/*

 

been

 

registered

 

for

 

the

 

’main’

 

function.

  

That

 

is,

 

when

 

the

       

*/

 

/*

 

’main’

 

function

 

is

 

cancelled,

 

this

 

function

 

will

 

automatically

    

*/

 

/*

 

be

 

called

 

by

 

the

 

system.

                                          

*/

 

/*

                                                                   

*/

 

/*-------------------------------------------------------------------*/

 

void

 

CancelHandlerForMain(

 

_CNL_Hndlr_Parms_T

 

*cancel_info

 

)

 

{

    

printf("In

 

Cancel

 

Handler

 

for

 

function

 

’main’

 

...\n");

    

/*

 

Changing

 

the

 

value

 

in

 

the

 

communications

 

area

 

will

 

update

 

the

 

*/

    

/*

 

’return_code’

 

variable

 

in

 

the

 

invocation

 

being

 

cancelled

      

*/

    

/*

 

(in

 

function

 

’main’

 

in

 

this

 

example).

  

Note

 

that

 

the

          

*/

    

/*

 

ILE

 

C

 

compiler

 

will

 

issue

 

a

 

warning

 

for

 

the

 

following

     

*/

    

/*

 

statement

 

since

 

it

 

uses

 

a

 

non-ISO

 

C

 

compliant

 

technique.

     

*/

    

/*

 

However,

 

this

 

will

 

not

 

affect

 

the

 

expected

 

run-time

 

behavior.

 

*/

    

/*

 

Set

 

"return_code"

 

in

 

main

 

to

 

an

 

arbitrary

 

number.

             

*/

    

*(

 

(volatile

 

unsigned

 

*)cancel_info->Com_Area

 

)

 

=

 

999;

    

printf("Communication

 

Area

 

now

 

has

 

the

 

value:

 

%d

 

\n",

            

*(

 

(volatile

 

unsigned

 

*)cancel_info->Com_Area)

 

);

    

printf("Leaving

 

Cancel

 

Handler

 

for

 

function

 

’main’...\n");

 

}

 

/*-------------------------------------------------------------------*/

 

/*

 

The

 

following

 

is

 

simple

 

function

 

that

 

registers

 

another

 

function

  

*/

 

/*

 

(named

 

’CancelHandlerForReport’

 

in

 

this

 

example)

 

as

 

its

 

"cancel

   

*/

 

/*

 

handler".

  

When

 

’exit()’

 

is

 

used

 

from

 

this

 

function,

 

then

 

this

    

*/

 

/*

 

invocation

 

and

 

all

 

prior

 

invocations

 

are

 

cancelled

 

by

 

the

 

system

  

*/

 

/*

 

and

 

any

 

registered

 

cancel

 

handlers

 

functions

 

are

 

automatically

    

*/

 

/*

 

called.

                                                           

*/

 

/*-------------------------------------------------------------------*/

 

void

 

Report(

 

void

 

)

 

{

 

volatile

 

unsigned

 

return_code;

                

/*

 

communications

 

area

 

*/

  

#pragma

 

cancel_handler(

 

CancelHandlerForReport,

 

return_code

 

)

   

printf("in

 

function

 

Report()...about

 

to

 

call

 

’exit’...\n");

   

/*

 

Using

 

the

 

exit

 

function

 

will

 

cause

 

this

 

function

 

invocation

  

*/

   

/*

 

and

 

all

 

function

 

invocations

 

within

 

this

 

program

 

to

 

be

       

*/

   

/*

 

cancelled.

  

If

 

any

 

of

 

the

 

functions

 

being

 

cancelled

 

have

     

*/

   

/*

 

cancel

 

handlers

 

enabled,

 

then

 

those

 

cancel

 

handler

 

functions

 

*/

   

/*

 

will

 

be

 

called

 

by

 

the

 

system

 

after

 

each

 

cancellation.

        

*/

    

exit(

 

99

 

);

                    

/*

 

exit

 

with

 

an

 

arbitrary

 

value

 

*/

   

printf("in

 

function

 

Report()

 

just

 

after

 

calling

 

’exit’...

 

\n");

  

#pragma

 

disable_handler

 

}

 

/*-------------------------------------------------------------------*/

 

/*

 

In

 

the

 

’main()’

 

function

 

a

 

cancel

 

handler

 

is

 

registered

 

so

 

that

   

*/

 

/*

 

the

 

function

 

’CancelHandlerForMain()’

 

is

 

called

 

if

 

’main()’

 

is

    

*/

 

/*

 

cancelled.

                                                        

*/

 

/*-------------------------------------------------------------------*/

 

int

 

main(

 

void

 

)

 

{

 

volatile

 

unsigned

 

return_code;

                

/*

 

communications

 

area

 

*/

  

#pragma

 

cancel_handler(

 

CancelHandlerForMain,

 

return_code

 

)

    

return_code

 

=

 

0;

         

/*

 

initialize

 

return

 

code

 

which

 

will

       

*/

                             

/*

 

eventually

 

be

 

set

 

in

 

the

 

cancel

 

handler

 

*/

    

printf("In

 

main()

 

about

 

to

 

call

 

Report()...\n");

      

Report();

    

printf("...back

 

from

 

calling

 

Report().

 

\n");

    

printf("return_code

 

=

 

%d

 

\n",

 

return_code

 

);

  

#pragma

 

disable_handler

 

}

 

Figure

 

185.

 

T1520XH4

 

—

 

ILE

 

C

 

Source

 

that

 

Uses

 

Cancel

 

Handlers

 

(Part

 

2

 

of

 

3)

  

348

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Example:

 

Using

 

a

 

Variety

 

of

 

Ways

 

to

 

Detect

 

Errors

 

and

 

Handle

 

Exceptions

 

The

 

following

 

example

 

shows

 

a

 

number

 

of

 

ways

 

to

 

handle

 

errors,

 

including:

 

v

   

Checking

 

the

 

major/minor

 

return

 

code

 

v

   

Checking

 

errno

 

v

   

Getting

 

error

 

information

 

from

 

the

 

_EXCP_MSGID

 

global

 

variabl

 

v

   

Signal

 

handling

 

with

 

signal

Instructions

 

1.

   

To

 

create

 

the

 

display

 

file

 

T1520DDJ

 

using

 

the

 

DDS

 

source

 

shown

 

in

 

Figure

 

186

 

on

 

page

 

350,

 

type:

 

CRTDSPF

 

FILE(MYLIB/T1520DDJ)

 

SRCFILE(QCPPLE/QADDSSRC)

 

2.

   

To

 

create

 

the

 

program

 

T1520EHD

 

using

 

the

 

source

 

shown

 

below,

 

type:

 

CRTBNDC

 

PGM(MYLIB/T1520EHD)

 

SRCFILE(QCPPLE/QACSRC)

 

Note:

  

Program

 

T1520EHD

 

uses

 

signal()

 

function

 

to

 

raise

 

a

 

SIGIO

 

signal,

 

which

 

is

 

sent

 

when

 

normal

 

data,

 

OOB

 

data,

 

error

 

conditions,

 

or

 

just

 

about

 

anything

 

happens

 

on

 

any

 

type

 

of

 

socket.

 

3.

   

If

 

you

 

need

 

to

 

add

 

library

 

MYLIB

 

to

 

the

 

library

 

list,

 

enter:

 

ADDLIBLE

 

LIB(MYLIB)

 

4.

   

To

 

run

 

the

 

program

 

T1520EHD,

 

enter:

 

CALL

 

PGM(MYLIB/T1520EHD)

 

The

 

output

 

is:

                                   

PHONE

 

BOOK

                            

Name:

 

Smith,

 

John

                         

Address:

 

2711

 

Westsyde

 

Rd.

                         

Phone

 

#:

 

721-9729

                   

<ENTER>

 

:

  

Saves

 

changes

                     

f3

    

:

  

Exits

 

with

 

changes

 

saved

                     

f5

    

:

  

Brings

 

back

 

original

 

field

 

values

 

Source

 

Code

 

Samples

 

The

 

figures

 

in

 

this

 

section

 

show

 

the

 

source

 

code

 

used

 

in

 

“Instructions.”

 

/*-------------------------------------------------------------------*/

 

/*

  

This

 

program

 

will

 

result

 

in

 

the

 

following

 

screen

 

output:

         

*/

 

/*

                                                                   

*/

 

/*

     

In

 

main()

 

about

 

to

 

call

 

Report()...

                           

*/

 

/*

     

in

 

function

 

Report()...about

 

to

 

call

 

’exit’...

                

*/

 

/*

     

In

 

Cancel

 

Handler

 

for

 

function

 

’Report’

 

...

                   

*/

 

/*

     

Communication

 

Area

 

now

 

has

 

the

 

value:

 

500

                     

*/

 

/*

     

Leaving

 

Cancel

 

Handler

 

for

 

function

 

’Report’...

               

*/

 

/*

     

In

 

Cancel

 

Handler

 

for

 

function

 

’main’

 

...

                     

*/

 

/*

     

Communication

 

Area

 

now

 

has

 

the

 

value:

 

999

                     

*/

 

/*

     

Leaving

 

Cancel

 

Handler

 

for

 

function

 

’main’...

                 

*/

 

/*-------------------------------------------------------------------*/

 

Figure

 

185.

 

T1520XH4

 

—

 

ILE

 

C

 

Source

 

that

 

Uses

 

Cancel

 

Handlers

 

(Part

 

3

 

of

 

3)

  

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

349



A

                                      

DSPSIZ(24

 

80

 

*DS3)

      

A

                                      

INDARA

      

A

          

R

 

PHONE

      

A

                                      

CF03(03

 

’EXIT’)

      

A

                                      

CF05(05

 

’REFRESH’)

      

A

                                  

7

 

28’Name:’

      

A

            

NAME

          

11A

  

B

  

7

 

34

      

A

                                  

9

 

25’Address:’

      

A

            

ADDRESS

       

20A

  

B

  

9

 

34

      

A

                                 

11

 

25’Phone

 

#:’

      

A

            

PHONE_NUM

      

8A

  

B

 

11

 

34

      

A

                                  

1

 

35’PHONE

 

BOOK’

      

A

                                      

DSPATR(HI)

      

A

                                 

16

 

19’<ENTER>

 

:

  

Saves

 

changes’

      

A

                                 

17

 

21’f3

    

:

  

Exits

 

with

 

changes

 

saved’

      

A

                                 

18

 

21’f5

    

:

  

Brings

 

back

 

original

 

fiel-

      

A

                                      

d

 

values’

      

A

  

05

                             

21

 

32’Screen

 

refreshed’

      

A

  

05

                                  

DSPATR(HI)

 

Figure

 

186.

 

T1520DDJ

 

—

 

DDS

 

Source

 

for

 

a

 

Phone

 

Book

 

Display

  

350

 

ILE

 

C/C++

 

Programmer’s

 

Guide



/*

 

This

 

program

 

illustrates

 

how

 

to:

                                   

*/

 

/*

                

-

 

check

 

the

 

major/minor

 

return

 

code

                 

*/

 

/*

                

-

 

check

 

the

 

errno

 

global

 

variable

                   

*/

 

/*

                

-

 

get

 

error

 

information

 

from

 

the

                    

*/

 

/*

                  

_EXCP_MSGID

 

global

 

variable

                       

*/

 

/*

                

-

 

use

 

the

 

signal

 

function.

                          

*/

   

#include

 

<stdio.h>

 

#include

 

<string.h>

 

#include

 

<stdlib.h>

 

#include

 

<stddef.h>

 

#include

 

<errno.h>

 

#include

 

<signal.h>

 

#include

 

<recio.h>

   

#define

 

IND_ON

  

’1’

 

#define

 

IND_OFF

 

’0’

 

#define

 

HELP

    

0

 

#define

 

EXIT

    

2

 

#define

 

REFRESH

 

4

 

#define

 

FALSE

   

0

 

#define

 

TRUE

    

1

   

typedef

 

struct

 

PHONE_LIST_T{

     

char

 

name[11];

     

char

 

address[20];

     

char

 

phone[8];

 

}PHONE_LIST_T;

 

void

 

error_check(void);

 

/*

 

The

 

error

 

checking

 

routine.

                                        

*/

 

void

 

error_check(void)

 

{

    

if

 

(errno

 

==

 

EIOERROR

 

||

 

errno

 

==

 

EIORECERR)

      

printf("id:%7.7s\n",

  

_EXCP_MSGID);

    

if

 

(strncmp(_Maj_Min_rc.major_rc,"00",2)

 

||

        

strncmp(_Maj_Min_rc.major_rc,"00",2))

          

printf("Major

 

:

 

%2.2s\tMinor

 

:

 

%2.2s\n",

               

_Maj_Min_rc.major_rc,_Maj_Min_rc.minor_rc);

    

errno

 

=

 

0;

 

}

 

/*

 

The

 

signal

 

handler

 

routine.

                                        

*/

   

void

 

sighd(int

 

sig)

 

{

    

signal(SIGIO,&sighd);

 

}

   

/*

  

M

 

A

 

I

 

N

   

L

 

I

 

N

 

E

                                                 

*/

   

int

 

main(void)

 

{

    

FILE

 

*dspf;

    

PHONE_LIST_T

 

phone_inp_rec,

                 

phone_out_rec

 

=

 

{

 

"Smith,

 

John",

                                   

"2711

 

Westsyde

 

Rd.

   

",

                                   

"721-9729"

 

};

 

Figure

 

187.

 

T1520EHD

 

—

 

ILE

 

C

 

Source

 

to

 

Handle

 

Exceptions

 

(Part

 

1

 

of

 

2)

  

Chapter

 

21.

 

Handling

 

Exceptions

 

in

 

a

 

Program

 

351



_SYSindara

 

indicator_area;

    

int

 

ret_code;

      

errno

 

=

 

0;

      

signal(SIGIO,&sighd);

  

/*

 

Register

 

sighd

 

as

 

a

 

handler

 

for

 

I/O

 

exceptions

 

*/

      

if

 

((dspf

 

=

 

fopen("*LIBL/T1520DDJ",

 

"ab+

 

type=record

 

indicators=y"))

            

==

 

NULL)

    

{

      

printf("Display

 

file

 

could

 

not

 

be

 

opened");

      

exit(1);

    

}

    

_Rindara((_RFILE

 

*)

 

dspf,indicator_area);

    

_Rformat((_RFILE

 

*)

 

dspf,"PHONE");

      

memset(indicator_area,IND_OFF,sizeof(indicator_area));

    

do

    

{

      

ret_code

 

=

 

fwrite(&phone_out_rec,1,sizeof(phone_out_rec),dspf);

      

error_check();

   

/*

 

Write

 

the

 

records

 

to

 

the

 

display

 

file.

       

*/

      

ret_code

 

=

 

fread(&phone_inp_rec,1,sizeof(phone_inp_rec),dspf);

      

error_check();

   

/*

 

Read

 

the

 

records

 

from

 

the

 

display

 

file.

      

*/

      

if

 

(indicator_area[EXIT]

 

==

 

IND_ON)

        

phone_inp_rec

 

=

 

phone_out_rec;

    

}

    

while

 

(indicator_area[REFRESH]

 

==

 

IND_ON);

      

_Rclose((_RFILE

 

*)dspf);

 

}

 

Figure

 

187.

 

T1520EHD

 

—

 

ILE

 

C

 

Source

 

to

 

Handle

 

Exceptions

 

(Part

 

2

 

of

 

2)

  

352

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

22.

 

Using

 

OS/400

 

pointers

 

in

 

a

 

Program

 

In

 

ISO

 

C,

 

a

 

pointer

 

type

 

is

 

derived

 

from

 

a

 

function

 

type,

 

a

 

data

 

object

 

type,

 

or

 

an

 

incomplete

 

type.

 

On

 

the

 

iSeries

 

system,

 

pointer

 

types

 

can

 

also

 

be

 

derived

 

from

 

other

 

iSeries

 

entities

 

such

 

as

 

system

 

objects

 

(for

 

example,

 

programs),

 

code

 

labels,

 

and

 

process

 

objects.

 

These

 

pointer

 

types

 

are

 

usually

 

referred

 

to

 

as

 

OS/400

 

pointers

 

and

 

they

 

are

 

used

 

extensively

 

in

 

the

 

ILE

 

C

 

Machine

 

Interface

 

Library

 

and

 

in

 

the

 

ILE

 

C/C++

 

exception

 

handling

 

structures

 

and

 

functions.

 

Note:

  

The

 

ILE

 

C/C++

 

for

 

AS/400

 

MI

 

Library

 

Reference

 

contains

 

information

 

on

 

ILE

 

C

 

Machine

 

Interface

 

Library

 

Functions.

 

This

 

chapter

 

describes:

 

v

   

OS/400

 

pointer

 

types

 

v

   

Using

 

an

 

open

 

pointer

 

v

   

Using

 

other

 

pointers

 

v

   

Declaring

 

pointer

 

variables

 

v

   

Pointer

 

casting

OS/400

 

pointer

 

Types

 

The

 

OS/400

 

pointer

 

types

 

are:

 

Open

 

Pointers

 

that

 

can

 

hold

 

any

 

of

 

the

 

other

 

pointer

 

types

 

Space

 

Generic

 

pointers

 

to

 

data

 

objects.

 

Function

 

System

 

pointers

 

to

 

*PGM

 

objects

 

or

 

procedure

 

pointers

 

to

 

bound

 

ILE

 

procedures.

 

System

 

Pointers

 

to

 

system

 

objects

 

such

 

as

 

queues,

 

indexes,

 

libraries,

 

and

 

*PGM

 

objects.

 

Label

 

Pointers

 

to

 

fixed

 

locations

 

within

 

the

 

executable

 

code

 

of

 

a

 

procedure

 

or

 

function.

 

Invocation

 

Pointers

 

to

 

process

 

objects

 

for

 

procedure

 

(function)

 

calls

 

under

 

ILE,

 

or

 

program

 

calls

 

under

 

EPM

 

or

 

OPM.

 

Suspend

 

Pointer

 

to

 

the

 

location

 

in

 

a

 

procedure

 

where

 

control

 

has

 

been

 

suspended.

These

 

pointer

 

types,

 

as

 

well

 

as

 

pointers

 

to

 

data

 

objects

 

and

 

incomplete

 

types,

 

are

 

not

 

data-type

 

compatible

 

with

 

each

 

other.

 

For

 

example,

 

a

 

variable

 

declared

 

as

 

a

 

pointer

 

to

 

a

 

data

 

object

 

cannot

 

be

 

assigned

 

the

 

value

 

of

 

a

 

function

 

pointer

 

or

 

system

 

pointer.

 

A

 

system

 

pointer

 

cannot

 

be

 

compared

 

for

 

equality

 

with

 

an

 

invocation

 

pointer

 

or

 

pointer

 

to

 

a

 

data

 

object.

 

The

 

above

 

is

 

not

 

true

 

for

 

open

 

pointers.

 

Note:

  

v

   

Label

 

pointers

 

are

 

only

 

used

 

by

 

the

 

setjmp

 

macro.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

353



v

   

An

 

open

 

pointer

 

is

 

a

 

pseudo-pointer

 

type.

 

It

 

may

 

contain

 

any

 

other

 

pointer

 

type,

 

but

 

it

 

is

 

not

 

a

 

pointer

 

type

 

unto

 

itself.

Using

 

Open

 

Pointers

 

Open

 

pointers

 

inhibit

 

optimization.

 

Use

 

them

 

only

 

when

 

absolutely

 

necessary.

 

Before

 

using

 

open

 

pointers

 

in

 

an

 

ILE

 

C/C++

 

program,

 

consider

 

the

 

following

 

characteristics

 

and

 

constraints:

 

v

   

An

 

open

 

pointer

 

maps

 

to

 

a

 

void

 

pointer.

 

v

   

An

 

open

 

(void)

 

pointer

 

can

 

hold

 

any

 

type

 

of

 

pointer.

 

It

 

is

 

data-type

 

compatible

 

with

 

all

 

pointer

 

types

 

on

 

the

 

system.

 

No

 

compile-time

 

error

 

occurs

 

when

 

you

 

cast

 

an

 

open

 

pointer

 

to

 

other

 

pointer

 

types,

 

or

 

when

 

you

 

cast

 

other

 

pointer

 

types

 

to

 

an

 

open

 

pointer.

 

Note:

  

You

 

may

 

receive

 

a

 

run-time

 

exception

 

if

 

the

 

pointer

 

contains

 

a

 

value

 

unsuitable

 

for

 

the

 

context

 

(for

 

example,

 

a

 

system

 

pointer

 

in

 

a

 

pointer

 

addition

 

expression).

 

v

   

An

 

open

 

pointer

 

can

 

be

 

assigned

 

to

 

any

 

type

 

of

 

pointer.

 

Note:

  

You

 

may

 

receive

 

a

 

run-time

 

exception

 

if

 

the

 

type

 

of

 

pointer

 

held

 

in

 

the

 

open

 

pointer

 

is

 

not

 

data-type

 

compatible

 

with

 

the

 

target

 

of

 

the

 

assignment.

 

v

   

An

 

open

 

pointer

 

can

 

be

 

compared

 

for

 

equality

 

(==,

 

!=)

 

to

 

any

 

pointer

 

type.

 

v

   

An

 

open

 

pointer

 

can

 

be

 

compared

 

in

 

a

 

relational

 

operation

 

(<,

 

>,

 

<=,

 

>=)

 

to

 

another

 

open

 

pointer

 

or

 

to

 

a

 

data

 

object

 

pointer

 

expression

 

other

 

than

 

the

 

NULL

 

pointer.

 

Note:

  

You

 

may

 

receive

 

a

 

run-time

 

exception

 

if

 

the

 

type

 

of

 

pointer

 

that

 

is

 

held

 

in

 

the

 

open

 

pointer

 

is

 

not

 

a

 

pointer

 

to

 

a

 

data

 

object.

Using

 

Pointers

 

Other

 

than

 

Open

 

Pointers

 

Before

 

you

 

use

 

pointers

 

in

 

an

 

ILE

 

C/C++

 

program,

 

consider

 

the

 

following

 

characteristics

 

and

 

constraints:

 

v

   

In

 

an

 

equality

 

operation

 

(==,!=):

 

–

   

A

 

NULL

 

pointer

 

can

 

be

 

assigned

 

to

 

and

 

compared

 

for

 

equality

 

(==,

 

!=)

 

with

 

a

 

pointer

 

of

 

any

 

type.

 

–

   

A

 

pointer

 

can

 

be

 

assigned

 

to

 

and

 

compared

 

for

 

equality

 

(==,

 

!=)

 

only

 

with

 

a

 

pointer

 

of

 

the

 

same

 

type

 

or

 

an

 

open

 

pointer;

 

otherwise

 

a

 

compile-time

 

error

 

occurs.

 

–

   

The

 

conditional

 

expression

 

if

 

(!ptr)

 

is

 

equivalent

 

to

 

the

 

expression

 

if

 

(ptr

 

==

 

NULL).
v

   

In

 

a

 

relational

 

operation

 

(<,

 

>,

 

<=,

 

>=):

 

–

   

A

 

NULL

 

pointer

 

cannot

 

be

 

used

 

with

 

any

 

pointer

 

type.

 

–

   

Only

 

pointers

 

to

 

data

 

objects

 

or

 

open

 

pointers

 

that

 

contain

 

pointers

 

to

 

data

 

objects

 

can

 

be

 

used,

 

otherwise

 

a

 

compile-time

 

error

 

or

 

run-time

 

exception

 

might

 

occur.
v

   

In

 

arithmetic

 

operations

 

(+,−,

 

++,

 

−−,

 

only

 

pointers

 

to

 

data

 

objects

 

can

 

be

 

used,

 

otherwise

 

a

 

compile-time

 

error

 

will

 

occur.

  

354

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Declaring

 

Pointer

 

Variables

 

You

 

can

 

use

 

ILE

 

C/C++

 

to

 

declare

 

v

   

Pointers

 

to

 

data

 

v

   

Function

 

pointers

 

(pointers

 

to

 

bound

 

ILE

 

procedures)

Declaring

 

OS/400

 

pointer

 

Variables

 

in

 

C

 

and

 

C++

 

Pointers

 

to

 

*PGM

 

objects

 

(programs)

 

can

 

be

 

declared

 

in

 

either

 

of

 

the

 

following

 

ways:

 

v

   

By

 

declaring

 

a

 

pointer

 

to

 

a

 

typedef

 

that

 

has

 

been

 

specified

 

to

 

have

 

OS-linkage

 

with

 

the

 

#pragma

 

linkage

 

directive

 

or

 

extern

 

OS

 

linkage.

 

Note:

   

v

   

By

 

declaring

 

a

 

system

 

pointer

 

(_SYSPTR).

You

 

can

 

declare

 

variables

 

of

 

the

 

other

 

iSeries

 

400

 

pointer

 

types

 

by

 

using

 

the

 

type

 

definitions

 

(typedefs)

 

that

 

are

 

provided

 

by

 

the

 

ILE

 

C

 

<pointer.h>

 

header

 

file.

 

Figure

 

188

 

shows

 

iSeries

 

C

 

pointer

 

declarations.

 

Figure

 

189

 

shows

 

iSeries

 

C++

 

pointer

 

declarations.

     

Declaring

 

a

 

Function

 

Pointer

 

to

 

a

 

Bound

 

Procedure

 

in

 

ILE

 

C

 

A

 

function

 

pointer

 

is

 

a

 

pointer

 

that

 

points

 

to

 

either

 

a

 

bound

 

procedure

 

(function)

 

within

 

an

 

ILE

 

program

 

object,

 

or

 

an

 

OS-linkage

 

program

 

object

 

(system

 

pointer)

 

in

 

the

 

system.

 

#include

 

<pointer.h>

   

/*

 

The

 

pointer

 

header

 

file.

                  

*/

 

_SYSPTR

 

sysp;

          

/*

 

A

 

system

 

pointer.

                         

*/

 

_SPCPTR

 

spcp;

          

/*

 

A

 

space

 

pointer.

                          

*/

 

_INVPTR

 

invp;

          

/*

 

An

 

invocation

 

pointer.

                    

*/

 

_OPENPTR

 

opnp;

         

/*

 

An

 

open

 

pointer.

                          

*/

 

_LBLPTR

 

lblp;

          

/*

 

A

 

label

 

pointer.

                          

*/

 

void

 

(*fp)

 

(int);

      

/*

 

A

 

function

 

pointer.

                       

*/

 

#pragma

 

datamodel

 

(p128)

 

#pragma

 

linkage

 

(OS_FN_T,

 

OS)

 

#pragma

 

datamodel(pop)

 

typedef

 

void

 

(OS_FN_T)

 

(int);

  

/*

 

Typedef

 

of

 

an

 

OS-linkage

 

function.*/

 

OS_FN_T

 

*

 

os_fn_p;

             

/*

 

An

 

OS-linkage

 

function

 

pointer.

   

*/

 

int

 

*

 

ip;

                      

/*

 

A

 

pointer

 

to

 

a

 

data

 

object.

       

*/

 

Figure

 

188.

 

ILE

 

C

 

Source

 

to

 

Declare

 

Pointer

 

Variables

#include

 

<pointer.h>

   

/*

 

The

 

pointer

 

header

 

file.

                  

*/

 

_SYSPTR

 

sysp;

          

/*

 

A

 

system

 

pointer.

                         

*/

 

_SPCPTR

 

spcp;

          

/*

 

A

 

space

 

pointer.

                          

*/

 

_INVPTR

 

invp;

          

/*

 

An

 

invocation

 

pointer.

                    

*/

 

_OPENPTR

 

opnp;

         

/*

 

An

 

open

 

pointer.

                          

*/

 

_LBLPTR

 

lblp;

          

/*

 

A

 

label

 

pointer.

                          

*/

 

void

 

(*fp)

 

(int);

      

/*

 

A

 

function

 

pointer.

                       

*/

 

#pragma

 

datamodel

 

(p128)

 

/*

 

Typedef

 

of

 

an

 

OS-linkage

 

function.

                               

*/

 

extern

 

"OS"

 

typedef

 

void

 

(OS_FN_T)

 

(int);

 

#pragma

 

datamodel(pop)

 

int

 

*

 

ip;

                      

/*

 

A

 

pointer

 

to

 

a

 

data

 

object.

       

*/

 

Figure

 

189.

 

ILE

 

C++

 

Source

 

to

 

Declare

 

Pointer

 

Variables

  

Chapter

 

22.

 

Using

 

OS/400

 

pointers

 

in

 

a

 

Program

 

355



Figure

 

190

 

shows

 

you

 

how

 

to

 

declare

 

a

 

pointer

 

to

 

a

 

bound

 

procedure

 

(a

 

function

 

that

 

is

 

defined

 

within

 

the

 

same

 

ILE

 

program

 

object):

    

Declaring

 

a

 

Function

 

Pointer

 

with

 

OS-Linkage

 

in

 

ILE

 

C

 

and

 

ILE

 

C++

 

Pointers

 

to

 

OS-linkage

 

functions

 

(programs)

 

and

 

system

 

pointers

 

(_SYSPTR)

 

are

 

data-type

 

compatible.

 

You

 

can

 

use

 

a

 

system

 

pointer

 

to

 

hold

 

the

 

address

 

of

 

a

 

program

 

and

 

then

 

call

 

that

 

program

 

through

 

the

 

system

 

pointer.

 

Note:

  

A

 

call

 

through

 

a

 

system

 

pointer

 

that

 

contains

 

the

 

address

 

of

 

a

 

system

 

object

 

that

 

is

 

not

 

a

 

program

 

results

 

in

 

undefined

 

behavior.

 

To

 

force

 

the

 

ILE

 

C

 

compiler

 

to

 

associate

 

system

 

pointer

 

types

 

with

 

the

 

OS/400

 

pointer

 

types,

 

do

 

both

 

of

 

the

 

following

 

tasks:

 

v

   

Define

 

system

 

pointer

 

types

 

as

 

pointers

 

to

 

void

 

(void

 

*).

 

v

   

Define

 

the

 

#pragma

 

pointer

 

directives

 

in

 

the

 

header

 

file.

Figure

 

191

 

on

 

page

 

357

 

shows

 

you

 

how

 

to

 

declare

 

a

 

pointer

 

to

 

an

 

iSeries

 

OS/400

 

program

 

as

 

a

 

function

 

pointer

 

with

 

OS-linkage

 

in

 

ILE

 

C.

 

Figure

 

192

 

on

 

page

 

357

 

shows

 

you

 

how

 

to

 

declare

 

a

 

pointer

 

to

 

an

 

iSeries

 

OS/400

 

program

 

as

 

a

 

function

 

pointer

 

with

 

OS-linkage

 

in

 

ILE

 

C++.

Note:

  

If

 

the

 

#pragma

 

linkage

 

OS

 

directive

 

is

 

omitted

 

from

 

the

 

code,

 

the

 

ILE

 

C

 

compiler

 

assumes

 

that

 

os_fct_ptr

 

is

 

a

 

pointer

 

to

 

a

 

bound

 

C

 

function

 

returning

 

void,

 

and

 

will

 

issue

 

a

 

compilation

 

error

 

for

 

incompatible

 

pointer

 

types

 

between

 

os_fct_ptr

 

and

 

the

 

system

 

pointer

 

returned

 

by

 

rslvsp().

  

int

 

fct1(

 

void

 

)

 

{....}

 

int

 

fct2(

 

void

 

)

 

{....}

 

int

 

(*fct_ptr)(void)

 

=

 

fct1;

 

int

 

main()

 

{

   

fct_ptr();

            

/*

 

Call

 

fct1()

 

using

 

fct_ptr.

      

*/

   

fct_ptr

 

=

 

fct2;

       

/*

 

Dynamically

 

set

 

fct_ptr

 

to

 

fct2.*/

   

fct_ptr();

            

/*

 

Call

 

fct2()

 

using

 

fct_ptr.

      

*/

 

}

 

Figure

 

190.

 

ILE

 

C

 

Source

 

to

 

Declare

 

a

 

Pointer

 

to

 

a

 

Bound

 

Procedure

  

356

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Casting

 

Pointers

 

In

 

the

 

C

 

language,

 

casting

 

is

 

a

 

construct

 

to

 

view

 

a

 

data

 

object

 

temporarily

 

as

 

another

 

data

 

type.

 

When

 

you

 

cast

 

pointers,

 

especially

 

for

 

non-data

 

object

 

pointers,

 

consider

 

the

 

following

 

characteristics

 

and

 

constraints:

 

v

   

You

 

can

 

cast

 

a

 

pointer

 

to

 

another

 

pointer

 

of

 

the

 

same

 

OS/400

 

pointer

 

type.

 

Note:

  

If

 

the

 

ILE

 

C

 

compiler

 

detects

 

a

 

type

 

mismatch

 

in

 

an

 

expression,

 

a

 

compile-time

 

error

 

occurs.

 

v

   

An

 

open

 

(void)

 

pointer

 

can

 

hold

 

a

 

pointer

 

of

 

any

 

type.

 

Casting

 

an

 

open

 

pointer

 

to

 

other

 

pointer

 

types

 

and

 

casting

 

other

 

pointer

 

types

 

to

 

an

 

open

 

pointer

 

does

 

not

 

result

 

in

 

a

 

compile-time

 

error.

 

#include

 

<miptrnam.h>

 

#include

 

<stdio.h>

 

#pragma

 

datamodel(p128)

 

typedef

 

void

 

(OS_fct_t)

 

(

 

void

 

);

 

#pragma

 

linkage(OS_fct_t,OS)

 

#pragma

 

datamodel(pop)

 

int

 

main

 

(

 

void

 

)

 

{

    

OS_fct_t

 

*os_fct_ptr;

   

char

     

pgm_name[10];

    

printf("Enter

 

the

 

program

 

name

 

:

 

\n");

    

scanf("%s",

 

pgm_name);

    

/*

 

Dynamic

 

assignment

 

of

 

a

 

system

 

pointer

 

to

 

program

 

"MYPGM"

 

*/

    

/*

 

in

 

*LIBL.

 

The

 

rslvsp

 

MI

 

library

 

function

 

will

 

resolve

 

to

  

*/

    

/*

 

this

 

program

 

at

 

runtime

 

and

 

return

 

a

 

system

 

pointer

 

to

    

*/

    

/*

 

the

 

program

 

object.

                                       

*/

    

os_fct_ptr

 

=

 

rslvsp(_Program,

 

pgm_name,

 

"*LIBL",

 

_AUTH_OBJ_MGMT);

    

os_fct_ptr();

             

/*

 

OS-linkage

 

*PGM

 

call

 

using

 

a

    

*/

                         

/*

 

pointer.

                        

*/

  

}

 

Figure

 

191.

 

ILE

 

C

 

Source

 

to

 

Declare

 

a

 

Pointer

 

to

 

an

 

iSeries

 

Program

 

as

 

a

 

Function

 

Pointer

#include

 

<miptrnam.h>

 

#include

 

<stdio.h>

 

extern

 

"OS"

 

typedef

 

void

 

(OS_fct_t)

 

(void);

 

int

 

main

 

(

 

void

 

)

  

{

    

OS_fct_t

 

*os_fct_ptr;

    

char

     

pgm_name[10];

    

printf("Enter

 

the

 

program

 

name

 

:

 

\n");

    

scanf("%s",

 

pgm_name);

    

/*

 

Dynamic

 

assignment

 

of

 

a

 

system

 

pointer

 

to

 

program

 

"MYPGM"

 

*/

    

/*

 

in

 

*LIBL.

 

The

 

rslvsp

 

MI

 

library

 

function

 

will

 

resolve

 

to

  

*/

    

/*

 

this

 

program

 

at

 

runtime

 

and

 

return

 

a

 

system

 

pointer

 

to

    

*/

    

/*

 

the

 

program

 

object.

                                       

*/

    

os_fct_ptr

 

=

 

(OS_fct_t*)

 

rslvsp(_Program,

 

pgm_name,

 

"*LIBL",

 

_AUTH_OBJ_MGMT);

    

os_fct_ptr();

             

/*

 

OS-linkage

 

*PGM

 

call

 

using

 

a

 

pointer

  

*/

  

}

 

Figure

 

192.

 

ILE

 

C++

 

Source

 

to

 

Declare

 

a

 

Pointer

 

to

 

an

 

iSeries

 

Program

 

as

 

a

 

Function

 

Pointer

  

Chapter

 

22.

 

Using

 

OS/400

 

pointers

 

in

 

a

 

Program

 

357



Note:

  

You

 

might

 

receive

 

a

 

run-time

 

exception

 

if

 

the

 

pointer

 

contains

 

a

 

value

 

unsuitable

 

for

 

the

 

context.

 

v

   

When

 

you

 

convert

 

a

 

valid

 

data

 

object

 

pointer

 

to

 

a

 

signed

 

or

 

unsigned

 

integer

 

type,

 

the

 

return

 

value

 

is

 

the

 

offset

 

of

 

the

 

pointer.

 

If

 

the

 

pointer

 

is

 

NULL,

 

the

 

conversion

 

returns

 

a

 

value

 

of

 

zero

 

(0).

 

Note:

  

It

 

is

 

not

 

possible

 

to

 

determine

 

whether

 

the

 

conversion

 

originated

 

from

 

a

 

NULL

 

pointer

 

or

 

a

 

valid

 

pointer

 

with

 

an

 

offset

 

0.

 

v

   

When

 

you

 

convert

 

a

 

valid

 

function

 

(procedure)

 

pointer,

 

system

 

pointer,

 

invocation

 

pointer,

 

label

 

pointer,

 

or

 

suspend

 

pointer

 

to

 

a

 

signed

 

or

 

unsigned

 

integer

 

type,

 

the

 

result

 

is

 

always

 

zero.

 

v

   

When

 

you

 

convert

 

an

 

open

 

pointer

 

that

 

contains

 

a

 

valid

 

space

 

address,

 

the

 

return

 

value

 

is

 

the

 

offset

 

that

 

is

 

contained

 

in

 

the

 

address.

 

v

   

You

 

can

 

convert

 

an

 

integer

 

to

 

pointer,

 

but

 

the

 

resulting

 

pointer

 

value

 

cannot

 

be

 

dereferenced.

 

The

 

right

 

four

 

bytes

 

of

 

such

 

a

 

pointer

 

will

 

contain

 

the

 

original

 

integer

 

value,

 

and

 

this

 

value

 

can

 

be

 

recovered

 

by

 

converting

 

the

 

pointer

 

back

 

to

 

an

 

integer.

 

Note:

  

This

 

marks

 

a

 

change

 

from

 

behavior

 

exhibited

 

in

 

earlier

 

versions

 

of

 

ILE

 

C,

 

where

 

integer

 

to

 

pointer

 

conversions

 

always

 

resulted

 

in

 

a

 

NULL

 

pointer

 

value.

Example:

 

Figure

 

193

 

shows

 

OS/400

 

pointer

 

casting:

   

#include

 

<pointer.h>

 

#pragma

 

datamodel(p128)

 

#pragma

 

linkage(TESTPTR,

 

OS)

 

#pragma

 

datamodel(pop)

 

void

 

TESTPTR(void);

      

/*

 

System

 

pointer

 

to

 

this

 

program

      

*/

 

_SYSPTR

 

sysp;

            

/*

 

System

 

pointer

                      

*/

 

_OPENPTR

 

opnp;

           

/*

 

open

 

pointer

                        

*/

 

void

 

(*fp)(void);

        

/*

 

function

 

pointer

                    

*/

 

int

 

i

 

=

 

1;

               

/*

 

integer

                             

*/

 

int

 

*ip

 

=

 

&i;

            

/*

 

Space

 

pointer

                       

*/

 

void

 

main

 

(void)

 

{

   

fp

 

=

 

&main;

            

/*

 

initialize

 

function

 

pointer

         

*/

   

sysp

 

=

 

&TESTPTR;

       

/*

 

initialize

 

system

 

pointer

           

*/

     

i

 

=

 

(int)

 

ip;

          

/*

 

segment

 

offset

 

stored

 

in

 

i

          

*/

   

ip

 

=

 

(int

 

*)

 

i;

        

/*

 

address

 

stored

 

is

 

invalid

           

*/

   

i

 

=

 

(int)

 

fp;

          

/*

 

zero

 

is

 

stored

 

in

 

i

                 

*/

   

i

 

=

 

2;

   

fp

 

=

 

(void

 

(*)())

 

i;

   

/*

 

address

 

stored

 

is

 

invalid

           

*/

   

i

 

=

 

3;

   

sysp

 

=

 

(_SYSPTR)

 

i;

    

/*

 

address

 

stored

 

is

 

invalid

           

*/

   

opnp

 

=

 

&i;

             

/*

 

address

 

of

 

i

 

stored

 

in

 

open

 

pointer

 

*/

   

i

 

=

 

(int)

 

opnp;

        

/*

 

offset

 

of

 

space

 

pointer

 

contained

   

*/

                          

/*

 

in

 

open

 

pointer

 

is

 

stored

 

in

 

i

      

*/

   

i

 

=

 

4;

   

opnp

 

=

 

(_OPENPTR)

 

i;

   

/*

 

address

 

stored

 

is

 

invalid

           

*/

   

i

 

=

 

(int)

 

opnp;

        

/*

 

i

 

is

 

set

 

to

 

integer

 

value

 

stored

 

(4)*/

 

}

 

Figure

 

193.

 

ILE

 

C

 

Source

 

to

 

Show

 

OS/400

 

pointer

 

casting

  

358

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Example:

 

Passing

 

OS/400

 

pointers

 

as

 

Arguments

 

on

 

a

 

Dynamic

 

Program

 

Call

 

to

 

Another

 

ILE

 

C

 

Program

 

The

 

following

 

example

 

demonstrates

 

how

 

to

 

pass

 

OS/400

 

pointers

 

as

 

arguments

 

on

 

a

 

dynamic

 

program

 

(OS-linkage)

 

call

 

to

 

another

 

ILE

 

C

 

program.

 

The

 

example

 

consists

 

of

 

2

 

ILE

 

C

 

programs.

 

Program

 

T1520DL8

 

passes

 

several

 

types

 

of

 

OS/400

 

pointers

 

as

 

arguments

 

to

 

Program

 

T1520DL9.

 

Program

 

T1520DL9

 

receives

 

the

 

arguments

 

and

 

checks

 

them

 

to

 

make

 

sure

 

that

 

they

 

were

 

passed

 

correctly.

 

Instructions

 

1.

   

To

 

create

 

the

 

MYLIB

 

library,

 

enter:

 

ADDLIBLE

 

LIB(MYLIB)

 

2.

   

To

 

create

 

the

 

program

 

T1520DL8

 

using

 

the

 

source

 

shown

 

in

 

Figure

 

194,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520DL8)

 

SRCFILE(QCPPLE/QACSRC)

 

3.

   

To

 

create

 

the

 

program

 

T1520DL9

 

using

 

the

 

source

 

shown

 

in

 

Figure

 

195

 

on

 

page

 

360,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520DL9)

 

SRCFILE(QCPPLE/QACSRC)

 

4.

   

To

 

run

 

the

 

program

 

T1520DL8,

 

enter:

 

CALL

 

PGM(MYLIB/T1520DL8)

 

The

 

output

 

is

 

as

 

follows:

 

Pointers

 

passed

 

correctly.

 

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

Source

 

Code

 

Samples

    

/*

 

This

 

program

 

passes

 

several

 

types

 

of

 

OS/400

 

pointers

 

as

 

arguments

  

*/

 

/*

 

to

 

another

 

ILE

 

C

 

program

 

T1520DL9.

                          

*/

 

#include

 

<stdio.h>

 

#include

 

<pointer.h>

 

#pragma(p128)

 

typedef

 

struct

 

{

                 

_SPCPTR

 

spcptr;

     

/*

 

A

 

space

 

pointer.

               

*/

                 

_SYSPTR

 

sysptr;

     

/*

 

A

 

system

 

pointer.

              

*/

                 

void

 

(*fnptr)();

    

/*

 

A

 

function

 

pointer.

            

*/

                

}

 

PtrStructure;

 

#pragma

 

linkage

 

(T1520DL9,

 

OS)

 

Figure

 

194.

 

T1520DL8

 

—

 

ILE

 

C

 

Source

 

that

 

Uses

 

OS/400

 

pointers

 

(Part

 

1

 

of

 

2)

  

Chapter

 

22.

 

Using

 

OS/400

 

pointers

 

in

 

a

 

Program

 

359



#pragma

 

datamodel(pop)

 

void

 

T1520DL9

 

(PtrStructure

 

*,

 

_SPCPTR,

 

_SYSPTR,

 

void

 

(*)());

 

void

 

function1(void)

    

/*

 

A

 

function

 

definition.

                     

*/

 

{

    

printf("Hello!\n");

 

}

   

int

 

main(void)

 

{

     

int

           

i

 

=

 

4;

     

PtrStructure

  

ptr_struct;

     

/*

 

Make

 

assignments

 

to

 

the

 

fields

 

of

 

ptr_struct.

                  

*/

     

ptr_struct.spcptr

 

=

 

(_SPCPTR)&i;

       

/*

 

A

 

space

 

pointer.

        

*/

     

ptr_struct.sysptr

 

=

 

(_SYSPTR)T1520DL9;

 

/*

 

A

 

system

 

pointer.

       

*/

     

ptr_struct.fnptr

  

=

 

&function1;

        

/*

 

A

 

function

 

pointer.

     

*/

       

/*

 

Call

 

T1520DL9,

 

passing

 

the

 

address

 

of

 

ptr_struct

 

and

 

other

     

*/

     

/*

 

valid

 

OS/400

 

pointer

 

arguments.

                                

*/

       

T1520DL9(&ptr_struct,

 

(_SPCPTR)&i,

 

(_SYSPTR)T1520DL9,

 

&function1);

 

}

 

Figure

 

194.

 

T1520DL8

 

—

 

ILE

 

C

 

Source

 

that

 

Uses

 

OS/400

 

pointers

 

(Part

 

2

 

of

 

2)

/*

 

This

 

program

 

receives

 

the

 

arguments

 

from

 

T1520DL8

 

and

 

checks

 

them

  

*/

 

/*

 

to

 

make

 

sure

 

they

 

were

 

passed

 

correctly.

                           

*/

 

#include

 

<stdio.h>

 

#include

 

<pointer.h>

 

typedef

 

struct

 

{

                 

_SPCPTR

 

spcptr;

     

/*

 

A

 

space

 

pointer.

               

*/

                 

_SYSPTR

 

sysptr;

     

/*

 

A

 

system

 

pointer.

              

*/

                 

void

 

(*fnptr)();

    

/*

 

A

 

function

 

pointer.

            

*/

                

}

 

PtrStructure;

 

int

 

main(

 

int

 

argc,

 

char

 

**argv)

 

{

     

_OPENPTR

      

openptr;

          

/*

 

An

 

open

 

pointer.

               

*/

     

_SPCPTR

       

spcptr;

           

/*

 

A

 

space

 

pointer.

               

*/

     

_SYSPTR

       

sysptr;

           

/*

 

A

 

system

 

pointer.

              

*/

     

void

          

(*fnptr)();

       

/*

 

A

 

function

 

pointer.

            

*/

     

PtrStructure

  

*ptr_struct_ptr;

     

int

           

error_count

 

=

 

0;

     

/*

 

Receive

 

the

 

structure

 

pointer

 

passed

 

into

 

a

 

local

 

variable.

    

*/

     

ptr_struct_ptr

 

=

 

(PtrStructure

 

*)argv[1];

   

Figure

 

195.

 

T1520DL9

 

—

 

ILE

 

C

 

Source

 

that

 

Uses

 

OS/400

 

pointers

 

(Part

 

1

 

of

 

2)

  

360

 

ILE

 

C/C++

 

Programmer’s

 

Guide



/*

 

Receive

 

the

 

OS/400

 

pointers

 

passed

 

into

 

an

 

open

 

pointer,

       

*/

     

/*

 

then

 

assign

 

them

 

to

 

pointers

 

of

 

their

 

own

 

type.

                

*/

     

openptr

 

=

 

(_OPENPTR)argv[2];

     

spcptr

  

=

 

openptr;

                     

/*

 

A

 

space

 

pointer.

        

*/

       

openptr

 

=

 

(_OPENPTR)argv[3];

     

sysptr

  

=

 

openptr;

                     

/*

 

A

 

system

 

pointer.

       

*/

       

openptr

 

=

 

(_OPENPTR)argv[4];

     

fnptr

   

=

 

openptr;

                     

/*

 

A

 

function

 

pointer.

     

*/

       

/*

 

Test

 

the

 

pointers

 

passed

 

with

 

the

 

pointers

 

in

 

ptr_struct_ptr.

  

*/

       

if

 

(spcptr

 

!=

 

ptr_struct_ptr->spcptr)

        

++error_count;

     

if

 

(sysptr

 

!=

 

ptr_struct_ptr->sysptr)

        

++error_count;

     

if

 

(fnptr

 

!=

 

ptr_struct_ptr->fnptr)

        

++error_count;

       

if

 

(error_count

 

>

 

0)

        

printf("Pointers

 

not

 

passed

 

correctly.\n");

     

else

        

printf("Pointers

 

passed

 

correctly.\n");

     

return;

 

}

 

Figure

 

195.

 

T1520DL9

 

—

 

ILE

 

C

 

Source

 

that

 

Uses

 

OS/400

 

pointers

 

(Part

 

2

 

of

 

2)

  

Chapter

 

22.

 

Using

 

OS/400

 

pointers

 

in

 

a

 

Program

 

361



362

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

23.

 

Using

 

ILE

 

C/C++

 

Call

 

Conventions

 

This

 

chapter

 

discusses

 

ILE

 

calling

 

conventions

 

as

 

they

 

apply

 

to

 

programs

 

compiled

 

with

 

the

 

ILE

 

C/C++

 

compiler.

 

For

 

information

 

about

 

calling

 

conventions

 

that

 

apply

 

to

 

multi-language

 

applications,

 

see

 

Chapter

 

25,

 

“Working

 

with

 

Multi-Language

 

Applications,”

 

on

 

page

 

397.

 

This

 

chapter

 

describes:

 

v

   

Program

 

and

 

procedure

 

calls

 

v

   

Renaming

 

programs

 

and

 

procedures

 

v

   

Calling

 

programs

 

that

 

have

 

library

 

qualification

 

(using

 

bindable

 

APIs)

 

v

   

Calling

 

an

 

ILE

 

C++

 

program

 

from

 

ILE

 

C

 

v

   

Accessing

 

C++

 

classes

 

from

 

ILE

 

C

Note:

  

The

 

terms

 

parameter

 

and

 

argument

 

are

 

used

 

interchangeably.

 

Program

 

and

 

Procedure

 

Calls

 

In

 

ILE,

 

program

 

processing

 

occurs

 

at

 

the

 

procedure

 

level.

 

ILE

 

programs

 

consist

 

of

 

one

 

or

 

more

 

modules

 

which

 

consist

 

of

 

one

 

or

 

more

 

procedures.

 

In

 

ILE,

 

you

 

can

 

call

 

either

 

a

 

program

 

(*PGM)

 

or

 

an

 

ILE

 

procedure.

 

The

 

calling

 

program

 

must

 

identify

 

whether

 

the

 

target

 

of

 

the

 

call

 

statement

 

is

 

a

 

program

 

or

 

an

 

ILE

 

procedure.

 

C/C++

 

ILE

 

conventions

 

differ

 

for

 

calling

 

programs

 

and

 

for

 

calling

 

ILE

 

procedures.

 

ILE

 

C

 

and

 

C++

 

modules

 

can

 

contain

 

only

 

one

 

main()

 

procedure,

 

but

 

can

 

contain

 

many

 

subordinate

 

procedures

 

(functions).

 

Certain

 

other

 

ILE

 

languages

 

allow

 

only

 

one

 

procedure.

 

For

 

more

 

information

 

about

 

the

 

calls

 

to

 

programs

 

and

 

procedures,

 

see

 

ILE

 

Concepts.

 

Using

 

Dynamic

 

Program

 

Calls

 

You

 

can

 

use

 

dynamic

 

program

 

calls

 

to

 

call

 

OPM,

 

EPM

 

or

 

ILE

 

programs.

 

Unlike

 

OPM

 

and

 

EPM

 

programs,

 

ILE

 

programs

 

are

 

not

 

limited

 

to

 

using

 

dynamic

 

program

 

calls.

 

ILE

 

programs

 

can

 

use

 

static

 

procedure

 

calls

 

or

 

procedure

 

pointer

 

calls

 

to

 

call

 

other

 

procedures.

 

A

 

dynamic

 

program

 

call

 

is

 

a

 

special

 

form

 

of

 

procedure

 

call;

 

it

 

is

 

a

 

call

 

to

 

the

 

program

 

entry

 

procedure.

 

A

 

program

 

entry

 

procedure

 

is

 

the

 

procedure

 

designated

 

at

 

program

 

creation

 

time

 

to

 

receive

 

control

 

when

 

a

 

program

 

is

 

called.

 

In

 

other

 

words,

 

calling

 

a

 

program

 

entry

 

procedure

 

is

 

the

 

same

 

as

 

calling

 

another

 

program’s

 

main()

 

function.

 

When

 

dynamic

 

program

 

calls

 

are

 

executed,

 

the

 

called

 

program’s

 

name

 

is

 

resolved

 

to

 

an

 

address

 

at

 

run

 

time,

 

just

 

before

 

the

 

calling

 

program

 

passes

 

control

 

to

 

the

 

called

 

program

 

for

 

the

 

first

 

time.

 

Dynamic

 

program

 

calls

 

include

 

calls

 

to:

 

v

   

ILE

 

programs

 

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

363



Note:

  

When

 

an

 

ILE

 

program

 

is

 

called,

 

the

 

program

 

entry

 

procedure

 

receives

 

the

 

program

 

parameters

 

and

 

is

 

given

 

initial

 

control

 

for

 

the

 

program.

 

All

 

procedures

 

within

 

the

 

program

 

become

 

available

 

for

 

procedure

 

calls.

 

v

   

EPM

 

programs

 

v

   

OPM

 

programs

 

v

   

Non-bindable

 

APIs

How

 

the

 

ILE

 

Call

 

Stack

 

Is

 

Used

 

to

 

Control

 

Program

 

Flow

 

The

 

call

 

stack

 

is

 

a

 

list

 

of

 

call

 

stack

 

entries,

 

in

 

a

 

last-in-first-out

 

(LIFO)

 

order.

 

A

 

call

 

stack

 

entry

 

is

 

a

 

call

 

to

 

a

 

program

 

or

 

procedure.

 

There

 

is

 

one

 

call

 

stack

 

per

 

job.

 

When

 

an

 

ILE

 

program

 

is

 

called,

 

the

 

program

 

entry

 

procedure

 

is

 

first

 

added

 

to

 

the

 

call

 

stack.

 

After

 

the

 

program

 

entry

 

procedure

 

is

 

called,

 

control

 

is

 

given

 

to

 

the

 

main

 

entry

 

point

 

in

 

the

 

program

 

(main()

 

for

 

C

 

or

 

C++)

 

which

 

is

 

pushed

 

onto

 

the

 

stack.

 

Figure

 

196

 

shows

 

a

 

call

 

stack

 

for

 

an

 

program

 

consisting

 

of

 

an

 

OPM

 

program

 

which

 

calls

 

an

 

ILE

 

program

 

consisting

 

of

 

two

 

modules:

 

a

 

C++

 

module

 

containing

 

the

 

program

 

entry

 

procedure

 

and

 

the

 

associated

 

user

 

entry

 

procedure,

 

and

 

a

 

C

 

module

 

containing

 

a

 

regular

 

procedure.

 

The

 

most

 

recent

 

entry

 

is

 

at

 

the

 

bottom

 

of

 

the

 

stack.

  

Note:

  

In

 

a

 

dynamic

 

program

 

call,

 

the

 

calls

 

to

 

the

 

program

 

entry

 

procedure

 

and

 

the

 

user

 

entry

 

procedure

 

(UEP)

 

occur

 

together,

 

because

 

the

 

call

 

to

 

the

 

UEP

 

is

 

automatic.

 

In

 

later

 

diagrams

 

involving

 

the

 

call

 

stack,

 

the

 

two

 

steps

 

of

 

a

 

dynamic

 

program

 

call

 

are

 

combined.

 

For

 

more

 

information

 

about

 

the

 

call

 

stack,

 

see

 

ILE

 

Concepts.

 

Renaming

 

Programs

 

and

 

Procedures

 

You

 

might

 

want

 

to

 

rename

 

a

 

program

 

or

 

procedure

 

(function)

 

for

 

the

 

following

 

reasons:

 

v

   

To

 

give

 

an

 

ILE

 

procedure

 

a

 

more

 

descriptive

 

name,

 

to

 

make

 

it

 

easy

 

to

 

identify

 

for

 

maintenance

 

purposes.

 

For

 

example,

 

an

 

ILE

 

procedure

 

name

 

QRZ1233

 

could

 

be

 

renamed

 

to

 

checkmod.

 

ILE

Program Entry
Procedure

Program A

Program Call

CALL STACK

Procedure Call
(by system)

Procedure Call

User Entry
Procedure

PEP

Procedure

UEP

Procedure

C ++ Module

OPMOPM

C Module ILE

ILE

ILE

  

Figure

 

196.

 

Program

 

and

 

Procedure

 

Calls

 

on

 

the

 

Call

 

Stack

  

364

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

To

 

change

 

the

 

name

 

of

 

a

 

program

 

that

 

contains

 

an

 

illegal

 

character.

 

For

 

example,A-B

 

is

 

not

 

a

 

valid

 

name

 

in

 

a

 

C++

 

program.

You

 

can

 

use

 

the

 

#pragma

 

map

 

directive

 

to

 

map

 

an

 

internal

 

identifier

 

to

 

an

 

OS/400-compliant

 

name

 

(10

 

characters

 

or

 

less

 

for

 

program

 

names

 

and

 

one

 

or

 

more

 

characters

 

for

 

ILE

 

procedure

 

names)

 

in

 

your

 

program.

 

Note:

  

For

 

the

 

syntax

 

and

 

description,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference.

 

The

 

#pragma

 

map

 

directive

 

can

 

appear

 

anywhere

 

in

 

the

 

source

 

file

 

within

 

a

 

single

 

compilation

 

unit.

 

It

 

can

 

appear

 

before

 

any

 

declaration

 

or

 

definition

 

of

 

the

 

named

 

object,

 

function

 

or

 

operator.

 

The

 

identifiers

 

appearing

 

in

 

the

 

directive,

 

including

 

any

 

type

 

names

 

used

 

in

 

the

 

prototype

 

argument

 

list,

 

are

 

resolved

 

as

 

though

 

the

 

directive

 

had

 

appeared

 

at

 

file

 

scope,

 

independent

 

of

 

its

 

actual

 

point

 

of

 

occurrence.

 

As

 

an

 

example,

 

see

 

Figure

 

197.

 

In

 

this

 

code,

 

there

 

are

 

two

 

functions

 

named

 

func().

 

One

 

is

 

a

 

regular

 

function,

 

prototyped

 

int

 

func(int)

 

and

 

the

 

other

 

is

 

a

 

class

 

member

 

function

 

void

 

func(void).

 

To

 

avoid

 

confusion,

 

they

 

are

 

renamed

 

funcname1,

 

and

 

funcname2

 

using

 

the

 

#pragma

 

map

 

directive.

 

Note:

  

Mapping

 

can

 

be

 

based

 

on

 

parameter

 

type

 

as

 

well

 

as

 

scope.

 

For

 

example,

 

void

 

func(int);

 

void

 

func(char);

 

#pragma

 

map(func(int),″intFunc″)

 

#pragma

 

map(func(char),

 

″charFunc″).

 

This

 

does

 

not

 

work

 

with

 

the

 

*PRV

 

option.

 

Calling

 

Programs

 

that

 

Have

 

Library

 

Qualification

 

You

 

can

 

call

 

a

 

program

 

with

 

a

 

library

 

qualification

 

by

 

using

 

bindable

 

APIs

 

with

 

library

 

qualification.

 

Example:

 

The

 

program

 

T2123API

 

uses

 

DSM

 

ILE

 

bindable

 

API

 

calls

 

to

 

create

 

a

 

window

 

and

 

echo

 

whatever

 

is

 

entered.

 

The

 

System

 

API

 

Reference

 

contains

 

information

 

on

 

the

 

ILE

 

bindable

 

APIs.

 

The

 

prototypes

 

for

 

the

 

DSM

 

APIs

 

are

 

in

 

the

 

<qsnsess.h>

 

header

 

file.

 

The

 

extern

 

"OS

 

nowiden"

 

return

 

type

 

API(arg_list);

 

is

 

specified

 

for

 

each

 

API

 

where

 

return

 

type

 

is

 

void

 

or

 

whatever

 

type

 

is

 

returned

 

by

 

the

 

API,

 

and

 

arg_list

 

is

 

the

 

list

 

of

 

parameters

 

taken

 

by

 

the

 

API.

 

This

 

ensures

 

any

 

value

 

argument

 

is

 

passed

 

by

 

value

 

indirectly.

 

//

 

This

 

program

 

uses

 

Dynamic

 

Screen

 

Manager

 

API

 

calls

 

to

 

//

 

create

 

a

 

window

 

and

 

echo

 

whatever

 

is

 

entered.

  

This

 

is

 

an

 

//

 

example

 

of

 

bound

 

API

 

calls.

  

Note

 

the

 

use

 

of

 

extern

 

linkage

 

//

 

in

 

the

 

<qsnsess.h>

 

header

 

file.

 

OS,

 

nowiden

 

ensures

 

that

 

a

 

//

 

pointer

 

to

 

an

 

unwidened

 

copy

 

of

 

the

 

argument

 

is

 

passed

 

to

 

the

 

//

 

API.

int

 

func(int);

   

class

 

X

 

{

 

public:

       

void

 

func(void);

 

#pragma

 

map(func,

 

"funcname1")

     

//maps

 

::func

 

#pragma

 

map(X::func,

 

"funcname2")

  

//maps

 

X::func

 

};

 

Figure

 

197.

 

Example

 

of

 

Using

 

the

 

#pragma

 

map

 

Directive

 

to

 

Rename

 

Functions.

   

Chapter

 

23.

 

Using

 

ILE

 

C/C++

 

Call

 

Conventions

 

365



//

 

Use

 

BNDDIR(QSNAPI)

 

on

 

the

 

CRTPGM

 

command

 

to

 

build

 

this

 

//

 

example.

   

#include

 

<stddef.h>

 

#include

 

<string.h>

 

#include

 

<iostream.h>

 

#include

 

<qsnapi.h>

   

#define

 

BOTLINE

 

"

 

Echo

 

lines

 

until:

   

PF3

 

-

 

exit"

   

//

 

DSM

 

Session

 

Descriptor

 

Structure.

   

typedef

 

struct{

     

Qsn_Ssn_Desc_T

 

sess_desc;

    

char

           

buffer[300];

 

}storage_t;

   

void

 

F3Exit(const

 

Qsn_Ssn_T

 

*Ssn,

 

const

 

Qsn_Inp_Buf_T

 

*Buf,

 

char

 

*action)

 

{

   

*action

 

=

 

’1’;

 

}

   

int

 

main(void)

 

{

    

int

 

i;

    

storage_t

    

storage;

   

//

 

Declarators

 

for

 

declaring

 

windows.

 

Types

 

are

 

from

 

the

 

<qsnsess.h>

 

//

 

header

 

file.

      

Qsn_Inp_Buf_T

   

input_buffer

 

=

 

0;

    

Q_Bin4

          

input_buffer_size

 

=

 

50;

    

char

            

char_buffer[100];

    

Q_Bin4

          

char_buffer_size;

      

Qsn_Ssn_T

       

session1;

    

Qsn_Ssn_Desc_T

  

*sess_desc

 

=

 

(Qsn_Ssn_Desc_T

 

*)

 

&storage;

    

Qsn_Win_Desc_T

  

win_desc;

    

Q_Bin4

          

win_desc_length

 

=

 

sizeof(Qsn_Win_Desc_T);

    

char

           

*botline

 

=

 

BOTLINE;

    

Q_Bin4

          

botline_len

 

=

 

sizeof(BOTLINE)

 

-

 

1;

    

Q_Bin4

          

sess_desc_length

 

=

 

sizeof(Qsn_Ssn_Desc_T)

 

+

                                       

botline_len;

      

Q_Bin4

          

bytes_read;

   

//

 

Initialize

 

Session

 

Descriptor

 

DSM

 

API.

      

QsnInzSsnD(

 

sess_desc,

 

sess_desc_length,

 

NULL);

    

//

 

Initialize

 

Window

 

Descriptor

 

DSM

 

API.

       

QsnInzWinD(

 

&win_desc,

 

win_desc_length,

 

NULL);

       

sess_desc->cmd_key_desc_line_1_offset

 

=

 

sizeof(Qsn_Ssn_Desc_T);

     

sess_desc->cmd_key_desc_line_1_len

 

=

 

botline_len;

     

memcpy(

 

storage.buffer,

 

botline,

 

botline_len

 

);

       

sess_desc->cmd_key_desc_line_2_offset

 

=

 

sizeof(Qsn_Ssn_Desc_T)

 

+

                                             

botline_len;

    

//

 

Set

 

up

 

the

 

session

 

type.

       

sess_desc->EBCDIC_dsp_cc

 

=

 

’1’;

     

sess_desc->scl_line_dsp

  

=

 

’1’;

     

sess_desc->num_input_line_rows

 

=

 

1;

     

sess_desc->wrap

 

=

 

’1’;

  

366

 

ILE

 

C/C++

 

Programmer’s

 

Guide



//

 

Set

 

up

 

the

 

window

 

size.

       

win_desc.top_row

     

=

 

3;

     

win_desc.left_col

    

=

 

3;

     

win_desc.num_rows

 

=

 

13;

     

win_desc.num_cols

 

=

 

45;

    

//

 

Create

 

a

 

window

 

session.

    

sess_desc->cmd_key_action[2]

 

=

 

F3Exit;

  

session1

 

=

 

QsnCrtSsn(

 

sess_desc,

 

sess_desc_length,

                        

NULL,

 

0,

                        

’1’,

                         

&win_desc,

 

win_desc_length,

                         

NULL,

 

0,

                         

NULL,

 

NULL);

    

if(input_buffer

 

==

 

0)

  

{

    

input_buffer

 

=

 

QsnCrtInpBuf(100,

 

50,

 

0,

 

NULL,

 

NULL);

  

}

  

for

 

(;;)

         

{

   

//

 

Echo

 

lines

 

until

 

F3

 

is

 

pressed.

        

QsnReadSsnDta(session1,

 

input_buffer,

 

NULL,

 

NULL);

      

if

 

(QsnRtvReadAID(input_buffer,

 

NULL,

 

NULL)

 

==

 

QSN_F3)

      

{

        

break;

      

}

    

}

 

}

 

The

 

output

 

is:

                   

iSeries

 

Programming

 

Develoment

 

Manager

 

(PDM)

  

.................................................

  

:

  

>

 

abc

                                        

:

  

:

  

>

 

def

                                        

:

  

:

                                               

:

  

:

                                               

:

  

:

                                               

:

  

:

                                               

:

  

:

                                               

:

  

:

                                               

:

  

:

                                               

:

  

:

                                               

:

  

:

  

===>

                                         

:

  

:

  

Echo

 

lines

 

until:

   

PF3

 

-

 

exit

               

:

  

:

                                               

:

  

:...............................................:

 

Selection

 

or

 

command

 

===>

 

call

 

pgm(mylib/t2123api)

 

F3=Exit

       

F4=Prompt

       

F9=Retreive

        

F10=Command

 

entry

 

F12=Cancel

    

F18=Change

 

Defaults

 

Calling

 

C++

 

Programs

 

and

 

Procedures

 

from

 

ILE

 

C

 

Just

 

as

 

you

 

can

 

call

 

other

 

ILE

 

languages

 

from

 

ILE

 

C,

 

you

 

can

 

call

 

C++

 

programs

 

and

 

functions

 

as

 

well.

 

You

 

must

 

make

 

sure

 

that

 

you:

 

v

   

Declare

 

any

 

C++

 

functions

 

that

 

you

 

want

 

to

 

call

 

as

 

external.

 

v

   

Specify

 

the

 

linkage

 

convention

 

for

 

the

 

call.

  

Chapter

 

23.

 

Using

 

ILE

 

C/C++

 

Call

 

Conventions

 

367



Specifying

 

the

 

Linkage

 

Convention

 

Use

 

the

 

#pragma

 

linkage

 

and

 

#pragma

 

argument

 

directives

 

to

 

specify

 

the

 

linkage

 

convention.

 

See

 

Table

 

19

 

on

 

page

 

399

 

and

 

“Accessing

 

ILE

 

C

 

Procedures

 

from

 

Any

 

ILE

 

Program”

 

on

 

page

 

420

 

for

 

more

 

information

 

on

 

using

 

these

 

directives.

 

When

 

specifying

 

linkage

 

conventions,

 

consider

 

the

 

following

 

C++

 

characteristics:

 

v

   

A

 

C++

 

program

 

uses

 

the

 

standard

 

OS

 

linkage

 

calling

 

convention.

 

Use

 

the

 

#pragma

 

linkage

 

directive

 

to

 

flag

 

the

 

function

 

call

 

as

 

an

 

external

 

program

 

call.

 

v

   

When

 

you

 

call

 

C++

 

functions,

 

you

 

must

 

make

 

sure

 

that

 

the

 

sender

 

and

 

receiver

 

both

 

agree

 

on

 

the

 

type

 

of

 

parameter

 

being

 

passed,

 

whether

 

it

 

is

 

by

 

pointer

 

or

 

by

 

value,

 

and

 

whether

 

parameters

 

are

 

widened.

 

For

 

example,

 

if

 

the

 

function

 

you

 

are

 

calling

 

was

 

declared

 

as

 

extern

 

"C

 

nowiden",

 

you

 

must

 

use

 

the

 

#pragma

 

argument(func,

 

nowiden)

 

directive

 

in

 

the

 

function

 

declaration

 

in

 

ILE

 

C.

 

v

   

You

 

can

 

declare

 

a

 

C++

 

function

 

as

 

external

 

by

 

explicitly

 

declaring

 

the

 

function

 

within

 

the

 

C++

 

code

 

using

 

either

 

extern

 

"C"

 

or

 

extern

 

"C

 

nowiden".

 

You

 

can

 

add

 

#ifdef

 

statements

 

to

 

the

 

function

 

declarations

 

in

 

the

 

header

 

files

 

used

 

by

 

both

 

C

 

and

 

C++

 

modules,

 

as

 

shown

 

in

 

Figure

 

198.

 

Note:

  

These

 

statements

 

are

 

declared

 

with

 

C

 

linkage.

 

Example:

 

An

 

ILE

 

C

 

Program

 

that

 

Uses

 

C++

 

Objects

 

This

 

program

 

shows

 

how

 

you

 

can

 

access

 

the

 

data

 

members

 

in

 

C++

 

classes

 

from

 

source

 

code

 

written

 

in

 

C.

 

Program

 

Structure

 

The

 

program

 

consists

 

of

 

these

 

files:

 

v

   

A

 

C++

 

source

 

file

 

hourclas.cpp

 

which

 

contains:

 

–

   

Definitions

 

of

 

one

 

base

 

class,

 

HourMin,

 

and

 

two

 

derived

 

classes,

 

HourMinSec1

 

and

 

HourMinSec2

 

–

   

Three

 

function

 

prototypes

 

with

 

extern

 

"C"

 

linkage:

 

-

   

extern

 

"C"

 

void

 

CSetHour(HourMin

 

*)

 

-

   

extern

 

"C"

 

void

 

CSetSec(HourMin

 

*)

 

-

   

extern

 

"C"

 

void

 

CSafeSetHour(HourMin

 

*)

–

   

The

 

definition

 

of

 

a

 

function

 

with

 

extern

 

"C"

 

linkage,

 

extern

 

"C"

 

void

 

CXXSetHour(HourMin

 

*

 

x)

 

–

   

A

 

main()

 

function

 

containing

 

the

 

program

 

logic

See

 

Figure

 

199

 

on

 

page

 

369.

 

v

   

A

 

C

 

source

 

file

 

hour.c

 

which

 

contains:

 

–

   

A

 

structure

 

CHourMin

 

that

 

maps

 

to

 

the

 

C++

 

class

 

HourMin

 

in

 

file

 

hourclas.cpp

 

#ifdef

 

__cplusplus

  

extern

 

"C"

 

{

    

#endif

    

function

 

declarations

    

#ifdef

 

__cplusplus

        

}

    

#endif

 

Figure

 

198.

 

An

 

ILE

 

C++

 

Function

 

Declared

 

As

 

an

 

External

 

Function

  

368

 

ILE

 

C/C++

 

Programmer’s

 

Guide



–

   

Definitions

 

of

 

the

 

three

 

functions

 

with

 

extern

 

"C"

 

linkage

 

declared

 

in

 

hourclas.cpp

 

–

   

The

 

definition

 

of

 

a

 

function

 

CSafeSetHour()

   

#include

 

<iostream.h>

   

class

 

HourMin

 

{

        

//

 

base

 

class

   

protected:

     

int

 

h;

     

int

 

m;

     

public:

     

void

 

set_hour(int

 

hour)

 

{

 

h

 

=

 

hour

 

%

 

24;

 

}

  

//

 

keep

 

it

 

in

 

range

     

int

  

get_hour()

         

{

 

return

 

h;

 

}

     

void

 

set_min(int

 

min)

   

{

 

m

 

=

  

min

 

%

 

60;

 

}

 

//

 

keep

 

it

 

in

 

range

     

int

  

get_min()

          

{

 

return

 

m;

 

}

     

HourMin():

 

h(0),

 

m(0)

 

{}

     

void

 

display()

 

{

 

cout

 

<<

 

h

 

<<

 

’:’

 

<<

 

m

 

<<

 

endl;

 

}

 

};

   

//

 

derived

 

from

 

class

 

HourMin

 

class

 

HourMinSec1

 

:

 

public

 

HourMin

 

{

   

public:

     

int

 

s;

     

void

 

set_sec(int

 

sec)

 

{

 

s

 

=

 

sec

 

%

 

60;

 

}

  

//

 

keep

 

it

 

in

 

range

     

int

  

get_sec()

        

{

 

return

 

s;

 

}

     

HourMinSec1()

 

{

 

s

 

=

 

0;

 

}

     

void

 

display()

 

{

 

cout

 

<<

 

h

 

<<

 

’:’

 

<<

 

m

 

<<

 

’:’

 

<<

 

s

 

<<

 

endl;

 

}

 

};

   

//

 

has

 

an

 

HourMin

 

contained

 

inside

 

class

 

HourMinSec2

 

{

   

private:

     

HourMin

 

a;

     

int

 

s;

     

public:

     

void

 

set_sec(int

 

sec)

 

{

 

s

 

=

 

sec

 

%

 

60;

 

}

  

//

 

keep

 

it

 

in

 

range

     

int

  

get_sec()

        

{

 

return

 

s;

 

}

     

HourMinSec2()

         

{

 

s

 

=

 

0;

 

}

     

void

 

display()

 

{

        

cout

 

<<

 

a.get_hour()

 

<<

 

’:’

 

<<

 

a.get_min()

 

<<

 

’:’

 

<<

 

s

 

<<

 

endl;

 

}

 

};

   

extern

 

"C"

 

void

 

CSetHour(HourMin

 

*);

     

//

 

defined

 

in

 

C

 

extern

 

"C"

 

void

 

CSetSec(HourMin

 

*);

      

//

 

defined

 

in

 

C

 

extern

 

"C"

 

void

 

CSafeSetHour(HourMin

 

*);

 

//

 

defined

 

in

 

C

   

//

 

wrapper

 

function

 

to

 

be

 

called

 

from

 

C

 

code

 

*/

 

extern

 

"C"

 

void

 

CXXSetHour(HourMin

 

*

 

x)

 

{

   

x->set_hour(99);

  

//

 

much

 

like

 

the

 

C

 

version

 

but

 

the

 

C++

                     

//

 

member

 

functions

 

provide

 

some

 

protection

                     

//

 

expect

 

99

 

%

 

24,

 

or

 

3

 

to

 

be

 

the

 

result

 

}

   

Figure

 

199.

 

C++

 

Source

 

File

 

hourclas.cpp

 

Definitions

 

Used

 

by

 

C

 

Source

 

File

 

hour.c

 

(Part

 

1

 

of

 

2)

  

Chapter

 

23.

 

Using

 

ILE

 

C/C++

 

Call

 

Conventions

 

369



//

 

other

 

wrappers

 

may

 

be

 

written

 

to

 

access

 

other

 

member

 

functions

 

//

 

or

 

operators

 

...

   

main()

 

{

     

HourMin

 

hm;

   

hm.set_hour(18);

  

//

 

supper

 

time;

   

CSetHour(&hm);

    

//

 

pass

 

address

 

of

 

object

 

to

 

C

 

function

   

hm.display();

     

//

 

hour

 

is

 

out

 

of

 

range

     

HourMinSec1

 

hms1;

   

CSetSec((HourMin

 

*)

 

&hms1)

   

hms1.display();

     

HourMinSec2

 

hms2;

   

CSetSec(&hms2);

   

hms2.display();

     

CSafeSetHour(&hm);

 

//

 

pass

 

address

 

to

 

a

 

safer

 

C

 

function

   

hm.display();

     

//

 

hour

 

is

 

not

 

out

 

of

 

range

 

}

 

Figure

 

199.

 

C++

 

Source

 

File

 

hourclas.cpp

 

Definitions

 

Used

 

by

 

C

 

Source

 

File

 

hour.c

 

(Part

 

2

 

of

 

2)

  

370

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Program

 

Flow

 

As

 

shown

 

in

 

Figure

 

199

 

on

 

page

 

369,

 

the

 

main()

 

C++

 

function:

  

1.

   

Instantiates

 

an

 

object

 

hm

 

of

 

the

 

base

 

class

 

HourMin

  

2.

   

Assigns

 

a

 

value

 

to

 

the

 

h

 

variable

 

(hour)

 

in

 

the

 

base

 

class

  

3.

   

Passes

 

the

 

address

 

of

 

the

 

base

 

class

 

to

 

the

 

function

 

CSetHour()

 

defined

 

in

 

the

 

C

 

source

 

file

 

hour.c

 

(see

 

Figure

 

200),

 

which

 

assigns

 

a

 

new

 

value

 

to

 

h

 

in

 

the

 

base

 

class

  

4.

   

Displays

 

the

 

value

 

of

 

h

 

in

 

the

 

base

 

class

  

5.

   

Instantiates

 

an

 

object

 

hms1

 

of

 

the

 

derived

 

class

 

HourMinSec1

  

6.

   

Passes

 

the

 

address

 

of

 

this

 

object

 

class

 

to

 

the

 

function

 

CSetSec()

 

defined

 

in

 

the

 

C

 

source

 

file

 

hour.c

 

(see

 

Figure

 

200),

 

which

 

assigns

 

a

 

value

 

to

 

s

 

in

 

the

 

object

  

7.

   

Displays

 

the

 

value

 

of

 

s

 

in

 

the

 

object

  

8.

   

Instantiates

 

an

 

object

 

hms2

 

of

 

the

 

class

 

HourMinSec2

 

which

 

contains

 

the

 

class

 

HourMin

  

9.

   

Passes

 

the

 

address

 

of

 

this

 

new

 

object

 

to

 

the

 

function

 

CSetSec()

 

defined

 

in

 

the

 

C

 

source

 

file

 

hour.c

 

(see

 

Figure

 

200),

 

which

 

assigns

 

a

 

value

 

to

 

s

 

in

 

the

 

object

 

/*

 

C

 

code

  

hour.c

 

*/

   

struct

 

CHourMin

 

{

   

int

 

hour;

   

int

 

min;

 

};

   

void

 

CSetHour(void

 

*

 

v)

 

{

   

struct

 

CHourMin

 

*

 

p;

   

p

 

=

 

(struct

 

CHourMin

 

*)

 

v;

 

//

 

force

 

it

 

to

 

the

 

type

 

we

 

want

   

p->hour

 

=

 

99;

             

//

 

with

 

power

 

comes

 

responsibility

 

(oops!)

 

}

   

struct

 

CHourMinSec

 

{

   

struct

 

CHourMin

 

hourMin;

   

int

 

sec;

 

};

   

//

 

handles

 

both

 

HourMinSec1,

 

and

 

HourMinSec2

 

classes

   

void

 

CSetSec(void

 

*v)

 

{

   

struct

 

CHourMinSec

 

*

 

p;

   

p

 

=

 

(struct

 

CHourMinSec

 

*)

 

v;

 

//

 

force

 

it

 

to

 

the

 

type

 

we

 

want

   

p->sec

 

=

 

45;

 

}

   

void

 

CSafeSetHour(void

 

*v)

 

{

   

struct

 

CHourMin

 

*

 

p;

   

p

 

=

 

(struct

 

CHourMin

 

*)

 

v;

 

//

 

force

 

it

 

to

 

the

 

type

 

we

 

want

     

//

 

...

  

do

 

things

 

with

 

p,

 

but

 

be

 

careful

   

//

 

...

   

//

 

use

 

a

 

C++

 

wrapper

 

function

 

to

 

access

 

C++

 

function

 

members

     

CXXSetHour(p);

    

//

 

almost

 

the

 

same

 

as

 

p->hour

 

=

 

99

 

}

 

Figure

 

200.

 

C

 

Source

 

file

 

hour.c

 

that

 

Uses

 

Definitions

 

from

 

C++

 

Source

 

File

 

hourclas.cpp

  

Chapter

 

23.

 

Using

 

ILE

 

C/C++

 

Call

 

Conventions

 

371



10.

   

Displays

 

the

 

value

 

of

 

s

 

in

 

the

 

object

 

11.

   

Passes

 

the

 

address

 

of

 

the

 

base

 

class

 

object

 

to

 

function

 

SafeSetHour()

 

defined

 

in

 

the

 

C

 

source

 

file

 

hour()

 

which

 

passes

 

the

 

address

 

back

 

to

 

a

 

function

 

CXXSetHour()

 

defined

 

in

 

the

 

C++

 

source

 

file

 

hourclas.cpp

 

(see

 

Figure

 

199

 

on

 

page

 

369)

Program

 

Output

 

The

 

program

 

output

 

is:

 

99:0

 

0

 

-:0

 

:45

 

0

 

-:0

 

:45

 

3

 

-:0

 

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

Accessing

 

C++

 

Classes

 

from

 

ILE

 

C

 

You

 

can

 

access

 

existing

 

C++

 

classes

 

from

 

other

 

languages

 

(such

 

as

 

ILE

 

C),

 

but

 

you

 

need

 

to

 

write

 

your

 

own

 

functions

 

to

 

display

 

and

 

manipulate

 

the

 

data

 

members

 

of

 

these

 

classes.

 

A

 

shared

 

C/C++

 

header

 

for

 

class

 

MyClass

 

might

 

look

 

like

 

the

 

following:

   

Mapping

 

a

 

C++

 

Class

 

to

 

a

 

C

 

Structure

 

A

 

C++

 

class

 

without

 

virtual

 

functions

 

can

 

be

 

mapped

 

to

 

a

 

corresponding

 

C

 

structure,

 

but

 

there

 

are

 

fundamental

 

differences

 

between

 

both

 

data

 

types.

 

The

 

C++

 

class

 

contains

 

data

 

members

 

and

 

member

 

functions

 

to

 

access

 

and

 

manipulate

 

these

 

data

 

members.

 

The

 

corresponding

 

C

 

structure

 

contains

 

only

 

the

 

data

 

members,

 

but

 

not

 

the

 

member

 

functions

 

contained

 

in

 

the

 

C++

 

class.

   

/*

 

myclass.h

 

*/

   

#ifdef

 

__cplusplus

   

class

 

MyClass

 

{

   

public:

   

MyClass()

   

{

   

n

 

=

 

new

 

int[100];

   

}

   

~MyClass()

   

{

   

delete

 

[]

 

n;

   

}

   

int

 

&operator[]

 

(int

 

i)

   

{

   

return

 

n[i];

   

}

   

private:

   

int

 

*n;

   

};

   

#else

   

struct

 

MyClass;

   

MyClass

 

*createMyClass();

   

void

 

destroyMyClass(MyClass*);

   

int

 

*MyClassIndex(int);

   

#endif

 

Figure

 

201.

 

Example

 

of

 

a

 

Shared

 

C/C++

 

Header

 

File

  

372

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Figure

 

202

 

shows

 

the

 

C++

 

class

 

Class1

 

and

 

Figure

 

203

 

shows

 

the

 

corresponding

 

C

 

structure.

   

To

 

access

 

a

 

C++

 

class

 

from

 

a

 

C

 

program

 

you

 

need

 

to

 

write

 

your

 

own

 

functions

 

to

 

inspect

 

and

 

manipulate

 

the

 

class

 

data

 

members

 

directly.

 

Note:

  

While

 

data

 

members

 

in

 

the

 

C++

 

class

 

can

 

be

 

public,

 

protected,

 

or

 

private,

 

the

 

variables

 

in

 

the

 

corresponding

 

C

 

structure

 

are

 

always

 

publicly

 

accessible.

 

You

 

might

 

eliminate

 

the

 

safeguards

 

built

 

into

 

the

 

C++

 

language.

 

You

 

can

 

use

 

C++

 

operators

 

on

 

this

 

class

 

if

 

you

 

supply

 

your

 

own

 

definitions

 

of

 

these

 

operators

 

in

 

the

 

form

 

of

 

member

 

functions.

 

When

 

you

 

write

 

your

 

own

 

C++

 

classes

 

that

 

you

 

want

 

to

 

access

 

from

 

other

 

languages:

 

v

   

Do

 

not

 

use

 

static

 

data

 

members

 

in

 

your

 

class,

 

because

 

they

 

are

 

not

 

part

 

of

 

the

 

C++

 

object

 

that

 

is

 

passed

 

to

 

the

 

other

 

language.

 

v

   

Do

 

not

 

use

 

virtual

 

functions

 

in

 

your

 

class,

 

because

 

you

 

cannot

 

access

 

the

 

data

 

members

 

because

 

the

 

alignment

 

of

 

the

 

data

 

members

 

between

 

the

 

class

 

and

 

the

 

C

 

structure

 

is

 

different.

Note:

  

By

 

making

 

all

 

data

 

members

 

of

 

a

 

class

 

publicly

 

accessible

 

to

 

programs

 

written

 

in

 

other

 

languages,

 

you

 

might

 

be

 

breaking

 

data

 

encapsulation.

Example:

 

An

 

ILE

 

C

 

Program

 

that

 

Uses

 

C++

 

Objects

 

This

 

program

 

shows

 

how

 

you

 

can

 

access

 

the

 

data

 

members

 

in

 

C++

 

classes

 

from

 

source

 

code

 

written

 

in

 

C.

 

Program

 

Files

 

and

 

Structures

 

The

 

program

 

consists

 

of

 

these

 

files:

 

v

   

A

 

C++

 

source

 

file

 

hourclas.cpp

 

which

 

contains:

 

class

 

Class1

 

{

  

public:

       

int

 

m1;

       

int

 

m2;

       

int

 

m3;

       

f1();

       

f2();

       

f3();

 

};

 

Figure

 

202.

 

Example

 

of

 

C++

 

Class

 

without

 

Virtual

 

Functions.

 

struct

 

Class1

 

{

     

int

 

m1;

     

int

 

m2;

     

int

 

m3;

 

};

 

Figure

 

203.

 

Example

 

of

 

C

 

Structure

 

that

 

Corresponds

 

to

 

C++

 

Class

 

without

 

Virtual

 

Functions.

   

Chapter

 

23.

 

Using

 

ILE

 

C/C++

 

Call

 

Conventions

 

373



–

   

Definitions

 

of

 

one

 

base

 

class,

 

HourMin,

 

and

 

two

 

derived

 

classes,

 

HourMinSec1

 

and

 

HourMinSec2

 

–

   

Three

 

function

 

prototypes

 

with

 

extern

 

"C"

 

linkage:

 

-

   

extern

 

"C"

 

void

 

CSetHour(HourMin

 

*)

 

-

   

extern

 

"C"

 

void

 

CSetSec(HourMin

 

*)

 

-

   

extern

 

"C"

 

void

 

CSafeSetHour(HourMin

 

*)

–

   

The

 

definition

 

of

 

a

 

function

 

with

 

extern

 

"C"

 

linkage,

 

extern

 

"C"

 

void

 

CXXSetHour(HourMin

 

*

 

x)

 

–

   

A

 

main()

 

function

 

containing

 

the

 

program

 

logic

Note:

  

See

 

Figure

 

204

 

on

 

page

 

375.

 

v

   

A

 

C

 

source

 

file

 

hour.c

 

which

 

contains:

 

–

   

A

 

structure

 

CHourMin

 

that

 

maps

 

to

 

the

 

C++

 

class

 

HourMin

 

in

 

file

 

hourclas.cpp

 

–

   

Definitions

 

of

 

the

 

three

 

functions

 

with

 

extern

 

"C"

 

linkage

 

declared

 

in

 

hourclas.cpp

 

–

   

The

 

definition

 

of

 

a

 

function

 

CSafeSetHour()

Note:

  

See

 

Figure

 

205

 

on

 

page

 

377.

Program

 

Description

 

As

 

shown

 

in

 

Figure

 

204

 

on

 

page

 

375,

 

the

 

main()

 

function

 

of

 

the

 

hourclas.cpp

 

program:

 

v

   

Instantiates

 

an

 

object

 

hm

 

of

 

the

 

base

 

class

 

HourMin

 

v

   

Assigns

 

a

 

value

 

to

 

the

 

h

 

variable

 

(hour)

 

in

 

the

 

base

 

class

 

v

   

Passes

 

the

 

address

 

of

 

the

 

base

 

class

 

to

 

the

 

function

 

CSetHour()

 

defined

 

in

 

the

 

C

 

source

 

file

 

hour.c,

 

which

 

assigns

 

a

 

new

 

value

 

to

 

h

 

in

 

the

 

base

 

class

Note:

  

Figure

 

205

 

on

 

page

 

377

 

shows

 

the

 

source

 

code

 

in

 

hour.c.

 

v

   

Displays

 

the

 

value

 

of

 

h

 

in

 

the

 

base

 

class

 

v

   

Instantiates

 

an

 

object

 

hms1

 

of

 

the

 

derived

 

class

 

HourMinSec1

 

v

   

Passes

 

the

 

address

 

of

 

this

 

object

 

class

 

to

 

the

 

function

 

CSetSec()

 

defined

 

in

 

the

 

C

 

source

 

file

 

hour.c,

 

which

 

assigns

 

a

 

value

 

to

 

s

 

in

 

the

 

object

 

v

   

Displays

 

the

 

value

 

of

 

s

 

in

 

the

 

object

 

v

   

Instantiates

 

an

 

object

 

hms2

 

of

 

the

 

class

 

HourMinSec2

 

which

 

contains

 

the

 

class

 

HourMin

 

v

   

Passes

 

the

 

address

 

of

 

this

 

new

 

object

 

to

 

the

 

function

 

CSetSec()

 

defined

 

in

 

the

 

C

 

source

 

file

 

hour.c,

 

which

 

assigns

 

a

 

value

 

to

 

s

 

in

 

the

 

object

 

v

   

Displays

 

the

 

value

 

of

 

s

 

in

 

the

 

object

 

v

   

Passes

 

the

 

address

 

of

 

the

 

base

 

class

 

object

 

to

 

function

 

SafeSetHour().

 

Note:

  

The

 

function

 

SafeSetHour()

 

is

 

defined

 

in

 

the

 

C

 

source

 

file

 

hour()

 

which

 

passes

 

the

 

address

 

back

 

to

 

a

 

function

 

CXXSetHour()

 

defined

 

in

 

hourclas.cpp

    

374

 

ILE

 

C/C++

 

Programmer’s

 

Guide



#include

 

<iostream.h>

   

class

 

HourMin

 

{

        

//

 

base

 

class

   

protected:

     

int

 

h;

     

int

 

m;

     

public:

     

void

 

set_hour(int

 

hour)

 

{

 

h

 

=

 

hour

 

%

 

24;

 

}

  

//

 

keep

 

it

 

in

 

range

     

int

  

get_hour()

         

{

 

return

 

h;

 

}

     

void

 

set_min(int

 

min)

   

{

 

m

 

=

  

min

 

%

 

60;

 

}

 

//

 

keep

 

it

 

in

 

range

     

int

  

get_min()

          

{

 

return

 

m;

 

}

     

HourMin():

 

h(0),

 

m(0)

 

{}

     

void

 

display()

 

{

 

cout

 

<<

 

h

 

<<

 

’:’

 

<<

 

m

 

<<

 

endl;

 

}

 

};

   

//

 

derived

 

from

 

class

 

HourMin

 

class

 

HourMinSec1

 

:

 

public

 

HourMin

 

{

   

public:

     

int

 

s;

     

void

 

set_sec(int

 

sec)

 

{

 

s

 

=

 

sec

 

%

 

60;

 

}

  

//

 

keep

 

it

 

in

 

range

     

int

  

get_sec()

        

{

 

return

 

s;

 

}

     

HourMinSec1()

 

{

 

s

 

=

 

0;

 

}

     

void

 

display()

 

{

 

cout

 

<<

 

h

 

<<

 

’:’

 

<<

 

m

 

<<

 

’:’

 

<<

 

s

 

<<

 

endl;

 

}

 

};

 

Figure

 

204.

 

C++

 

Source

 

File

 

hourclas.cpp

 

that

 

Contains

 

Classes

 

Used

 

by

 

C

 

Source

 

File

 

hour.c

 

(Part

 

1

 

of

 

2)

  

Chapter

 

23.

 

Using

 

ILE

 

C/C++

 

Call

 

Conventions

 

375



//

 

has

 

an

 

HourMin

 

contained

 

inside

 

class

 

HourMinSec2

 

{

   

private:

     

HourMin

 

a;

     

int

 

s;

     

public:

     

void

 

set_sec(int

 

sec)

 

{

 

s

 

=

 

sec

 

%

 

60;

 

}

  

//

 

keep

 

it

 

in

 

range

     

int

  

get_sec()

        

{

 

return

 

s;

 

}

     

HourMinSec2()

         

{

 

s

 

=

 

0;

 

}

     

void

 

display()

 

{

        

cout

 

<<

 

a.get_hour()

 

<<

 

’:’

 

<<

 

a.get_min()

 

<<

 

’:’

 

<<

 

s

 

<<

 

endl;

 

}

 

};

   

extern

 

"C"

 

void

 

CSetHour(HourMin

 

*);

     

//

 

defined

 

in

 

C

 

extern

 

"C"

 

void

 

CSetSec(HourMin

 

*);

      

//

 

defined

 

in

 

C

 

extern

 

"C"

 

void

 

CSafeSetHour(HourMin

 

*);

 

//

 

defined

 

in

 

C

   

//

 

wrapper

 

function

 

to

 

be

 

called

 

from

 

C

 

code

 

*/

 

extern

 

"C"

 

void

 

CXXSetHour(HourMin

 

*

 

x)

 

{

   

x->set_hour(99);

  

//

 

much

 

like

 

the

 

C

 

version

 

but

 

the

 

C++

                     

//

 

member

 

functions

 

provide

 

some

 

protection

                     

//

 

expect

 

99

 

%

 

24,

 

or

 

3

 

to

 

be

 

the

 

result

 

}

   

//

 

other

 

wrappers

 

may

 

be

 

written

 

to

 

access

 

other

 

member

 

functions

 

//

 

or

 

operators

 

...

   

main()

 

{

     

HourMin

 

hm;

   

hm.set_hour(18);

  

//

 

supper

 

time;

   

CSetHour(&hm);

    

//

 

pass

 

address

 

of

 

object

 

to

 

C

 

function

   

hm.display();

     

//

 

hour

 

is

 

out

 

of

 

range

     

HourMinSec1

 

hms1;

   

CSetSec((HourMin

 

*)

 

&hms1)

   

hms1.display();

     

HourMinSec2

 

hms2;

   

CSetSec(&hms2);

   

hms2.display();

     

CSafeSetHour(&hm);

 

//

 

pass

 

address

 

to

 

a

 

safer

 

C

 

function

   

hm.display();

     

//

 

hour

 

is

 

not

 

out

 

of

 

range

 

}

 

Figure

 

204.

 

C++

 

Source

 

File

 

hourclas.cpp

 

that

 

Contains

 

Classes

 

Used

 

by

 

C

 

Source

 

File

 

hour.c

 

(Part

 

2

 

of

 

2)

  

376

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Program

 

Output

 

The

 

program

 

output

 

is:

 

99:0

 

0

 

-:0

 

:45

 

0

 

-:0

 

:45

 

3

 

-:0

 

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

/*

 

C

 

code

  

hour.c

 

*/

   

struct

 

CHourMin

 

{

   

int

 

hour;

   

int

 

min;

 

};

   

void

 

CSetHour(void

 

*

 

v)

 

{

   

struct

 

CHourMin

 

*

 

p;

   

p

 

=

 

(struct

 

CHourMin

 

*)

 

v;

 

//

 

force

 

it

 

to

 

the

 

type

 

we

 

want

   

p->hour

 

=

 

99;

             

//

 

with

 

power

 

comes

 

responsibility

 

(oops!)

 

}

   

struct

 

CHourMinSec

 

{

   

struct

 

CHourMin

 

hourMin;

   

int

 

sec;

 

};

   

//

 

handles

 

both

 

HourMinSec1,

 

and

 

HourMinSec2

 

classes

   

void

 

CSetSec(void

 

*v)

 

{

   

struct

 

CHourMinSec

 

*

 

p;

   

p

 

=

 

(struct

 

CHourMinSec

 

*)

 

v;

 

//

 

force

 

it

 

to

 

the

 

type

 

we

 

want

   

p->sec

 

=

 

45;

 

}

   

void

 

CSafeSetHour(void

 

*v)

 

{

   

struct

 

CHourMin

 

*

 

p;

   

p

 

=

 

(struct

 

CHourMin

 

*)

 

v;

 

//

 

force

 

it

 

to

 

the

 

type

 

we

 

want

     

//

 

...

  

do

 

things

 

with

 

p,

 

but

 

be

 

careful

   

//

 

...

   

//

 

use

 

a

 

C++

 

wrapper

 

function

 

to

 

access

 

C++

 

function

 

members

     

CXXSetHour(p);

    

//

 

almost

 

the

 

same

 

as

 

p->hour

 

=

 

99

 

}

 

Figure

 

205.

 

C

 

Source

 

File

 

hour.c

 

that

 

Uses

 

C++

 

Classes

 

Defined

 

in

 

Source

 

File

 

hourclas.cpp.

   

Chapter

 

23.

 

Using

 

ILE

 

C/C++

 

Call

 

Conventions

 

377



378

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

24.

 

Porting

 

Programs

 

from

 

Another

 

Platform

 

to

 

ILE

 

If

 

you

 

are

 

developing

 

new

 

code,

 

follow

 

the

 

ISO

 

guidelines

 

as

 

much

 

as

 

possible

 

and

 

avoid

 

platform-specific

 

extensions.

 

In

 

general,

 

your

 

code

 

should

 

be

 

portable.

 

This

 

section

 

describes:

 

v

   

Limitations

 

to

 

porting

 

code

 

from

 

C

 

to

 

ILE

 

C++

 

v

   

Modifying

 

calls

 

of

 

ILE

 

C++

 

objects

 

v

   

Using

 

BCD

 

macros

 

to

 

port

 

coded

 

decimal

 

objects

 

to

 

ILE

 

C++

 

v

   

Header

 

files

 

that

 

work

 

with

 

both

 

C

 

and

 

C++

 

v

   

Handling

 

the

 

stricter

 

C++

 

type

 

checking

 

v

   

Declaring

 

unsigned

 

char

 

pointers

 

as

 

unsigned

 

char

 

variables

 

v

   

Initializing

 

character

 

arrays

 

in

 

C++

 

v

   

Specifying

 

access

 

to

 

string

 

literals

 

v

   

Avoiding

 

uncaught

 

C++

 

exceptions

 

by

 

scoping

 

to

 

a

 

single

 

activation

 

group

Limitations

 

to

 

Porting

 

Code

 

to

 

ILE

 

C

 

or

 

C++

 

This

 

section

 

describes

 

some

 

limitations

 

to

 

porting

 

code

 

to

 

ILE

 

C

 

and

 

C++.

 

File

 

Inclusions

   

In

 

ILE

 

C++:

 

v

   

The

 

include

 

file

 

name

 

must

 

be

 

a

 

valid

 

workstation

 

file

 

name,

 

for

 

example

 

"file_name"

 

or

 

<file_name>.

 

v

   

Include

 

files

 

cannot

 

reference

 

*LIBL

 

or

 

*CURLIB

 

values.

  

You

 

can

 

use

 

these

 

values

 

in

 

ILE

 

C

 

include

 

names.

 

For

 

example,

 

("*LIBL/ABC",

 

*LIBL/ABC/*All)"...).

 

Platform-Specific

 

Extensions

 

Platform

 

specific

 

extensions,

 

for

 

example,

 

_Far16

 

and

 

_Pascal16

 

are

 

platform-specific

 

pointers

 

that

 

are

 

not

 

portable.

 

Members

 

of

 

a

 

Union

   

Because

 

an

 

object

 

of

 

a

 

class

 

with

 

a

 

constructor

 

cannot

 

be

 

a

 

member

 

of

 

a

 

union,

 

the

 

_DecimalT

 

class

 

template

 

in

 

ILE

 

C++

 

cannot

 

be

 

used

 

as

 

a

 

member

 

of

 

a

 

union.

 

Members

 

of

 

a

 

Structure

   

In

 

ILE

 

C++,

 

if

 

a

 

_DecimalT

 

class

 

template

 

is

 

a

 

member

 

of

 

a

 

struct,

 

that

 

struct

 

cannot

 

be

 

initialized

 

with

 

an

 

initializer

 

list.

   

The

 

structure

 

in

 

ILE

 

C

 

is

 

shown

 

in

 

the

 

following

 

figure:

   

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

379



In

 

ILE

 

C++

 

you

 

need

 

to

 

rewrite

 

the

 

code

 

as

 

shown

 

in

 

the

 

following

 

figure:

    

Decimal

 

Constants

   

The

 

decimal

 

constant

 

defined

 

using

 

the

 

suffix

 

D

 

or

 

d

 

is

 

not

 

supported

 

by

 

the

 

C++

 

_DecimalT

 

class

 

template.

 

Instead,

 

a

 

string

 

literal

 

embraced

 

by

 

__D

 

is

 

used

 

to

 

represent

 

a

 

packed

 

decimal

 

constant.

 

The

 

decimal

 

constant

 

123.456D

 

defined

 

in

 

ILE

 

C

 

is

 

equivalent

 

to

 

__D("123.456")

 

in

 

ILE

 

C++.

 

Decimal

 

Constants

 

and

 

Case

 

Statements

 

The

 

__D

 

macro

 

is

 

used

 

to

 

simplify

 

code

 

that

 

requires

 

the

 

frequent

 

use

 

of

 

the

 

_ConvertDecimal

 

constructor.

 

Because

 

the

 

__D

 

macro

 

is

 

equivalent

 

to

 

the

 

_ConvertDecimal

 

constructor,

 

the

 

__D

 

macro

 

cannot

 

used

 

be

 

with

 

a

 

case

 

statement.

 

A

 

valid

 

case

 

statement

 

uses

 

an

 

integral

 

constant

 

expression.

 

This

 

code

 

shown

 

in

 

the

 

following

 

figure

 

results

 

in

 

a

 

compiler

 

error:

  

Note:

  

The

 

compiler

 

flags

 

the

 

case

 

statement

 

indicating

 

that

 

the

 

case

 

expression

 

is

 

not

 

an

 

integral

 

constant

 

expression.

 

Library

 

QSYS.LIB

 

under

 

IFS

   

The

 

integrated

 

file

 

system

 

provides

 

a

 

common

 

interface

 

to

 

store

 

and

 

operate

 

on

 

information

 

in

 

stream

 

files.

 

The

 

C

 

stream

 

I/O

 

functions

 

and

 

the

 

C++

 

stream

 

I/O

 

classes

 

are

 

implemented

 

through

 

the

 

integrated

 

file

 

system.

 

There

 

are

 

seven

 

file

 

systems

 

in

 

the

 

integrated

 

file

 

system.

 

The

 

library

 

(QSYS.LIB)

 

file

 

system

 

maps

 

to

 

the

 

iSeries

 

file

 

system

 

but

 

using

 

this

 

system

 

under

 

the

 

integrated

 

file

 

system

 

presents

 

some

 

limitations:

 

v

   

Logical

 

files

 

are

 

not

 

supported

 

typedef

 

struct

 

{

   

char

          

s1;

   

decimal(5,3)

  

s2;

 

}s_type;

   

s_type

 

s

 

={’+’,

 

12.345d};

 

Figure

 

206.

 

Example

 

of

 

ILE

 

C

 

Structure

 

Definition

 

that

 

Cannot

 

Be

 

Ported

 

to

 

ILE

 

C++

struct

 

s_type

 

{

    

char

 

s1;

    

decimal(5,3)

 

s2;

    

s_type

 

(char

  

c,

 

decimal(5,3)

 

d

 

)

 

:

 

s1(c),

 

s2(d)

 

{}

 

};

 

s_type

 

s

 

(’+’,

 

__D("12.345"))

 

;

 

Figure

 

207.

  

decimal(4,3)

 

op;

    

switch

 

int(op)

 

{

      

case

 

int(__D("1.3")):

         

.....

         

break;

  

}

 

Figure

 

208.

 

Example

 

of

 

Code

 

with

 

Decimal

 

Constants

 

and

 

a

 

Case

 

Statement

 

that

 

Are

 

Incompatible

  

380

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

The

 

only

 

types

 

of

 

physical

 

files

 

supported

 

are

 

program-described

 

files

 

containing

 

a

 

single

 

field

 

and

 

source

 

physical

 

files

 

containing

 

a

 

single

 

text

 

field

 

v

   

Byte-range

 

locking

 

is

 

not

 

supported;

 

see

 

the

 

System

 

API

 

Reference

 

v

   

If

 

any

 

job

 

has

 

a

 

database

 

file

 

member

 

open,

 

only

 

one

 

job

 

is

 

given

 

write

 

access

 

to

 

that

 

file

 

at

 

any

 

time;

 

other

 

jobs

 

are

 

allowed

 

read

 

access

 

only

Stream

 

I/O

 

for

 

programs

 

compiled

 

with

 

the

 

ILE

 

C++

 

compiler

 

defaults

 

to

 

using

 

the

 

integrated

 

file

 

system.

 

The

 

ILE

 

C

 

compiler

 

defaults

 

to

 

C

 

data

 

management

 

stream

 

I/O.

 

If

 

you

 

have

 

programs

 

that

 

use

 

database

 

or

 

DDM

 

files,

 

your

 

best

 

choice

 

is

 

to

 

use

 

the

 

SYSIFCOPT(*NOIFSIO)

 

compiler

 

option.

 

This

 

ensures

 

that

 

you

 

compile

 

your

 

existing

 

programs

 

using

 

the

 

iSeries

 

data

 

management

 

file

 

system

 

and

 

not

 

the

 

integrated

 

file

 

system.

 

Compiling

 

programs

 

that

 

use

 

restricted

 

database

 

or

 

DDM

 

files

 

under

 

the

 

integrated

 

file

 

system

 

results

 

in

 

a

 

run-time

 

error.

 

Teraspace

 

Considerations

 

See

 

“Binary

 

Compatibility

 

Considerations

 

When

 

Porting

 

Code

 

in

 

a

 

Teraspace

 

Environment”

 

on

 

page

 

505.

 

Modifying

 

Calls

 

of

 

ILE

 

C++

 

Objects

 

ILE

 

C

 

source

 

code

 

that

 

calls

 

C++

 

objects

 

must

 

be

 

modified

 

to

 

run

 

under

 

ILE

 

C++.

 

For

 

example:

 

v

   

The

 

extern

 

linkage

 

specification

 

with

 

the

 

function

 

definition

 

or

 

declaration

 

must

 

be

 

used

 

instead

 

of

 

the

 

#pragma

 

linkage

 

or

 

#pragma

 

argument

 

directives.

 

v

   

The

 

#pragma

 

map

 

directive

 

has

 

some

 

semantic

 

differences.

 

v

   

There

 

is

 

a

 

difference

 

in

 

the

 

way

 

the

 

#pragma

 

argument

 

directive

 

and

 

the

 

extern

 

linkage

 

specification

 

handle

 

function

 

definitions.

 

Both

 

generate

 

the

 

same

 

code

 

when

 

processing

 

a

 

function

 

call

 

but

 

the

 

#pragma

 

argument

 

directive

 

does

 

not

 

affect

 

parameters

 

within

 

the

 

function

 

definition.

 

The

 

extern

 

linkage

 

specification

 

does

 

affect

 

parameters

 

within

 

the

 

function

 

definition.

Differences

 

in

 

Header

 

Files

   

In

 

ILE

 

C,

 

the

 

header

 

file

 

<decimal.h>

 

must

 

be

 

included

 

in

 

the

 

source

 

prior

 

any

 

usage

 

of

 

the

 

packed

 

decimal

 

data

 

type.

   

In

 

ILE

 

C++

 

<bcd.h>

 

must

 

be

 

included

 

instead.

 

Differences

 

in

 

Linkage

 

Specification

 

The

 

figures

 

in

 

this

 

section

 

illustrate

 

differences

 

in

 

linkage

 

specification

 

in

 

ILE

 

C

 

and

 

ILE

 

C++.

 

The

 

same

 

function

 

is

 

performed

 

in

 

the

 

source

 

code

 

found

 

in

 

Figure

 

209

 

on

 

page

 

382,

 

Figure

 

210

 

on

 

page

 

382,

 

and

 

Figure

 

211

 

on

 

page

 

382.

      

Chapter

 

24.

 

Porting

 

Programs

 

from

 

Another

 

Platform

 

to

 

ILE

 

381



Differences

 

in

 

Function

 

Definitions

   

This

 

code

 

shows

 

how

 

extern

 

"OS"

 

with

 

a

 

function

 

definition

 

is

 

used

 

to

 

replace

 

the

 

#pragma

 

linkage

 

directive.

 

See

 

Chapter

 

23,

 

“Using

 

ILE

 

C/C++

 

Call

 

Conventions,”

 

on

 

page

 

363

 

for

 

additional

 

information.

  

Do

 

not

 

use

 

this:

 

Use

 

this:

 

#pragma

 

datamodel

 

(p128)

 

typedef

 

void

 

(FUNC)(int);

 

#pragma

 

linkage

 

(FUNC,

 

OS)

 

#pragma

 

datamodel(pop)

 

extern

 

"OS"

 

typedef

 

void

 

(FUNC)

 

(int);

 

typedef

 

void

 

(FUNC)(int)

 

extern

 

"OS"

 

FUNC;

          

//error

  

Module1.c

   

extern

 

void

 

foo

 

(int

 

*i,

 

char

 

**s)

 

{

     

*s

 

=

 

*i

 

?

 

"Not

 

Zero"

 

:

 

"Zero";

 

}

 

Figure

 

209.

 

Example

 

of

 

ILE

 

C

 

Source

 

Code

 

Using

 

the

 

extern

 

Linkage

 

Specification

Module2.c

   

extern

 

void

 

foo

 

(int,

 

char

 

*);

   

#pragma

 

argument

 

(foo,

 

VREF)

   

int

 

main()

   

{

     

char

 

*s;

     

foo

 

(1,

 

s);

 

}

 

Figure

 

210.

 

Example

 

of

 

ILE

 

C

 

Source

 

Code

 

Using

 

the

 

#pragma

 

argument

 

Linkage

 

Specification

Module3.C

   

extern

 

"VREF"

 

void

 

foo

 

(int

 

i,

 

char

 

*s)

 

{

     

s

 

=

 

i

 

?

 

"Not

 

Zero"

 

:

 

"Zero";

 

}

   

int

 

main()

 

{

     

char

 

*s;

     

foo

 

(1,

 

s);

 

}

 

Figure

 

211.

 

Example

 

of

 

ILE

 

C++

 

Source

 

Code

 

Using

 

the

 

extern

 

Linkage

 

Specification

  

382

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Using

 

BCD

 

Macros

 

to

 

Port

 

Coded

 

Decimal

 

Objects

 

to

 

ILE

 

C++

 

The

 

Binary

 

Coded

 

Decimal

 

Class

 

Library

 

for

 

OS/400

 

is

 

provided

 

so

 

that

 

you

 

can

 

create

 

binary

 

coded

 

decimal

 

objects

 

that

 

are

 

compatible

 

with

 

the

 

ILE

 

packed

 

decimal

 

data

 

types.

 

The

 

macros

 

shown

 

in

 

the

 

following

 

figure

 

are

 

used

 

by

 

the

 

_DecimalT

 

class

 

template

 

to

 

maintain

 

compatibility

 

with

 

ILE

 

C:

    

Examples

 

The

 

following

 

figures

 

show

 

the

 

source

 

to

 

code

 

a

 

packed

 

decimal

 

data

 

type

 

in

 

ILE

 

C

 

and

 

ILE

 

C++:

    

The

 

following

 

figure

 

shows

 

you

 

that

 

by

 

using

 

the

 

macros

 

defined

 

in

 

<bcd.h>,

 

you

 

can

 

use

 

the

 

same

 

ILE

 

C

 

shown

 

in

 

the

 

first

 

program:

  

#define

 

decimal

     

_Decimal

 

#define

 

digitsof

    

__digitsof

 

#define

 

precisionof

 

__precisionof

 

#define

 

_Decimal(n,p)

 

_DecimalT<n,p>

 

#define

 

__digitsof(DecName)

 

(DecName).DigitsOf()

 

#define

 

__precisionof(DecName)

 

(DecName).PrecisionOf()

 

Figure

 

212.

 

BCD

 

Macros

 

that

 

Port

 

Code

 

from

 

ILE

 

C

 

to

 

ILE

 

C++

//

 

ILE

 

C

 

program

   

#include

 

<decimal.h>

   

void

 

main()

 

{

    

int

 

dig,

 

prec;

    

decimal(9,3)

 

d93;

    

dig

 

=

 

digitsof(d93);

    

prec

 

=

 

precisionof(d93);

 

}

 

Figure

 

213.

 

ILE

 

C

 

Source

 

Code

 

to

 

Port

 

Code

 

to

 

a

 

Packed

 

Decimal

 

Data

 

Type

//

 

C++

 

program

   

#include

 

<bcd.h>

   

void

 

main()

 

{

    

int

 

dig,

 

prec;

    

_DecimalT<9,3>

 

d93;

    

dig

 

=

 

d93.DigitsOf();

    

prec

 

=

 

d93.PrecisionOf();

 

}

 

Figure

 

214.

 

ILE

 

C++

 

Source

 

Code

 

to

 

Port

 

Code

 

a

 

Packed

 

Decimal

 

Data

 

Type

  

Chapter

 

24.

 

Porting

 

Programs

 

from

 

Another

 

Platform

 

to

 

ILE

 

383



Note:

  

The

 

<decimal.h>

 

header

 

file

 

is

 

specified

 

because

 

<decimal.h>

 

includes

 

the

 

<bcd.h>

 

header

 

file.

 

Mapping

 

Class

 

Template

 

Instantiations

 

to

 

ILE

 

C

 

Syntax

 

To

 

map

 

the

 

class

 

template

 

instantiation

 

to

 

the

 

desired

 

ILE

 

C

 

syntax,

 

C++

 

uses

 

the

 

macros

 

shown

 

in

 

the

 

following

 

figure:

 

Note:

  

ILE

 

C

 

code

 

using

 

the

 

decimal(n,p)

 

specifier

 

can

 

be

 

ported

 

to

 

C++

 

without

 

any

 

modification.

 

The

 

_DecimalT<n,p>

 

specifier

 

supported

 

by

 

ILE

 

C

 

is

 

not

 

supported

 

by

 

the

 

C++

 

compiler

 

To

 

use

 

the

 

_DecimalT<n,p>

 

specifier,

 

you

 

need

 

to

 

insert

 

a

 

zero

 

explicitly

 

at

 

the

 

type

 

specifier.

 

For

 

example,

 

you

 

must

 

change

 

decimal(10)

 

to

 

decimal(10,0).

 

Handling

 

Extra

 

Precision

 

for

 

Multiplication

 

and

 

Division

 

The

 

_DecimalT

 

class

 

template

 

allows

 

a

 

maximum

 

of

 

62

 

and

 

93

 

digits

 

as

 

the

 

internal

 

results

 

for

 

the

 

multiplication

 

and

 

division

 

operations

 

respectively.

 

This

 

is

 

different

 

from

 

the

 

ILE

 

C

 

packed

 

decimal

 

data

 

type

 

in

 

which

 

a

 

maximum

 

of

 

31

 

digits

 

is

 

used

 

for

 

both

 

operations.

 

Note:

  

This

 

internal

 

result

 

is

 

different

 

from

 

the

 

intermediate

 

result.

 

The

 

internal

 

result

 

is

 

designated

 

to

 

store

 

the

 

temporary

 

result

 

during

 

the

 

operation.

 

After

 

the

 

operation

 

is

 

completed,

 

the

 

internal

 

result

 

is

 

converted

 

to

 

the

 

intermediate

 

result

 

and

 

returned

 

to

 

the

 

caller.

 

Determining

 

the

 

Number

 

of

 

Digits

 

in

 

an

 

Object

   

In

 

ILE

 

C,

 

when

 

you

 

use

 

the

 

__digitsof

 

operator

 

with

 

a

 

packed

 

decimal

 

data

 

type

 

the

 

result

 

is

 

an

 

integer

 

constant.

 

The

 

__digitsof

 

operator

 

can

 

be

 

applied

 

to

 

a

 

packed

 

decimal

 

data

 

type

 

or

 

a

 

packed

 

decimal

 

constant

 

expression.

 

The

 

__digitsof

 

operator

 

returns

 

the

 

total

 

number

 

of

 

digits

 

n

 

in

 

a

 

packed

 

decimal

 

data

 

type.

 

To

 

determine

 

the

 

number

 

of

 

digits

 

n

 

in

 

a

 

packed

 

decimal

 

data

 

type,

 

follow

 

the

 

example

 

shown

 

in

 

Figure

 

217

 

on

 

page

 

385:

 

//

 

C++

 

program

 

using

 

the

 

macro

   

#include

 

<decimal.h>

   

void

 

main()

 

{

    

int

 

dig,

 

prec;

    

decimal(9,3)

 

d93;

    

dig

 

=

 

digitsof(d93);

    

prec

 

=

 

precisionof(d93);

 

}

 

Figure

 

215.

 

Example

 

of

 

Using

 

BCD

 

Macros

 

to

 

Port

 

Code

 

to

 

ILE

 

C++

#define

 

decimal

     

_Decimal

 

#define

 

_Decimal(n,p)

 

_DecimalT<n,p>

 

Figure

 

216.

 

BCD

 

Macros

 

that

 

Map

 

C++

 

Class

 

Template

 

Instantiations

 

to

 

ILE

 

C

 

Syntax

  

384

 

ILE

 

C/C++

 

Programmer’s

 

Guide



In

 

ILE

 

C++,

 

when

 

you

 

use

 

the

 

member

 

function

 

DigitsOf()

 

with

 

a

 

_DecimalT

 

class

 

template

 

the

 

result

 

is

 

an

 

integer

 

constant.

 

The

 

member

 

function

 

DigitsOf()

 

can

 

be

 

applied

 

to

 

a

 

_DecimalT

 

class

 

template

 

object.

 

The

 

member

 

function

 

DigitsOf()

 

returns

 

the

 

total

 

number

 

of

 

digits

 

n

 

in

 

a

 

_DecimalT

 

class

 

template

 

object.

 

To

 

determine

 

the

 

number

 

of

 

digits

 

n

 

in

 

a

 

_DecimalT

 

class

 

template

 

object,

 

follow

 

the

 

example

 

shown

 

in

 

Figure

 

218:

    

Determining

 

the

 

Number

 

of

 

Digits

 

in

 

an

 

Internal

 

Packed

 

Decimal

 

Data

 

Object

   

In

 

ILE

 

C,

 

when

 

you

 

use

 

the

 

__precisionof

 

operator

 

with

 

a

 

packed

 

decimal

 

data

 

type

 

the

 

result

 

is

 

an

 

integer

 

constant.

 

The

 

__precisionof

 

operator

 

can

 

be

 

applied

 

to

 

a

 

packed

 

decimal

 

data

 

type

 

or

 

a

 

packed

 

decimal

 

constant

 

expression.

 

The

 

__precisionof

 

operator

 

tells

 

you

 

the

 

number

 

of

 

decimal

 

digits

 

p

 

of

 

the

 

packed

 

decimal

 

data

 

type.

 

To

 

determine

 

the

 

number

 

of

 

decimal

 

digits

 

p

 

of

 

the

 

packed

 

decimal

 

data,

 

follow

 

the

 

example

 

shown

 

in

 

Figure

 

219:

   

In

 

ILE

 

C++,

 

when

 

you

 

use

 

the

 

member

 

function

 

PrecisionOf()

 

with

 

a

 

_DecimalT

 

class

 

template

 

the

 

result

 

is

 

an

 

integer

 

constant.

 

The

 

member

 

function

 

PrecisionOf()

 

can

 

be

 

applied

 

to

 

a

 

_DecimalT

 

class

 

template

 

object.

 

The

 

member

 

function

 

PrecisionOf()

 

tells

 

you

 

the

 

number

 

of

 

decimal

 

digits

 

p

 

of

 

the

 

_DecimalT

 

class

 

template

 

object.

 

#include

 

<decimal.h>

   

int

 

n,n1;

 

decimal

 

(5,

 

2)

 

x;

   

n

 

=

 

__digitsof(x);

           

/*

 

the

 

result

 

is

 

n=5

  

*/

 

n1

 

=

 

__digitsof(1234.567d);

  

/*

 

the

 

result

 

is

 

n1=7

 

*/

 

Figure

 

217.

 

Example

 

of

 

Code

 

that

 

Determines

 

the

 

Number

 

of

 

Digits

 

in

 

a

 

Packed

 

Decimal

 

Data

 

Type.

#include

 

<bcd.h>

   

int

 

n,n1;

 

_DecimalT

 

<5,

 

2>

 

x;

   

n

 

=

 

x.DigitsOf();

                  

//

 

the

 

result

 

is

 

n=5

 

Figure

 

218.

 

Example

 

of

 

Code

 

that

 

Determines

 

the

 

Number

 

of

 

Digits

 

in

 

a

 

_DecimalT

 

Class

 

Template

 

Object

#include

 

<decimal.h>

   

int

 

p,p1;

 

decimal

 

(5,

 

2)

 

x;

   

p=__precisionof(x);

               

/*

 

The

 

result

 

is

 

p=2

  

*/

 

p1=__precisionof(123.456d);

       

/*

 

The

 

result

 

is

 

p1=3

 

*/

 

Figure

 

219.

 

Example

 

of

 

Code

 

that

 

Determines

 

the

 

Number

 

of

 

Decimal

 

Digits

 

in

 

an

 

Internal

 

Packed

 

Decimal

 

Data

 

Object

  

Chapter

 

24.

 

Porting

 

Programs

 

from

 

Another

 

Platform

 

to

 

ILE

 

385



To

 

determine

 

the

 

number

 

of

 

decimal

 

digits

 

p

 

of

 

the

 

_DecimalT

 

class

 

template

 

object,

 

follow

 

the

 

example

 

shown

 

in

 

:

   

Formatting

 

the

 

Value

 

of

 

a

 

Formatted

 

C

 

Input

 

or

 

Output

 

Function

 

The

 

behavior

 

of

 

the

 

fprintf(),

 

sprintf(),

 

vfprintf(),

 

vprintf()

 

and

 

vsprintf()

 

functions

 

is

 

the

 

same

 

as

 

the

 

printf()

 

function.

 

The

 

behavior

 

of

 

the

 

fscanf()

 

and

 

sscanf()

 

functions

 

is

 

the

 

same

 

as

 

the

 

scanf()

 

function.

 

To

 

control

 

the

 

format

 

of

 

the

 

output

 

use

 

the

 

flags,

 

width

 

and

 

precision

 

fields

 

of

 

the

 

printf()

 

function.

 

To

 

control

 

the

 

format

 

of

 

the

 

scanf()

 

function

 

use

 

the

 

*

 

and

 

width

 

fields

 

of

 

the

 

scanf()

 

function.

 

See

 

the

 

VisualAge

 

for

 

C++

 

for

 

AS/400

 

C

 

Library

 

Reference

 

for

 

information

 

on

 

these

 

fields.

 

Print

 

Function

 

Flags

 

Table

 

16

 

describes

 

the

 

flag

 

characters

 

and

 

their

 

meanings

 

for

 

D(n,p)

 

conversions.

  

Table

 

16.

 

Flag

 

Meanings

 

for

 

Printing

 

the

 

Value

 

of

 

a

 

_DecimalT

 

Class

 

Template

 

Object

 

Flag

 

Meaning

 

#

 

The

 

result

 

always

 

contains

 

a

 

decimal-point

 

character,

 

even

 

if

 

no

 

digits

 

follow

 

it.

 

0

 

Leading

 

zeros

 

(following

 

any

 

indication

 

of

 

sign

 

or

 

base)

 

are

 

used

 

to

 

pad

 

to

 

the

 

field

 

width;

 

no

 

space

 

padding

 

is

 

performed.

 

-

 

The

 

result

 

is

 

always

 

left-justified

 

within

 

the

 

field.

 

+

 

The

 

result

 

always

 

begins

 

with

 

a

 

plus

 

or

 

minus

 

sign.

 

space

 

The

 

result

 

is

 

always

 

prefixed

 

with

 

a

 

space

 

where

 

the

 

result

 

of

 

a

 

signed

 

conversion

 

is

 

no

 

sign

 

or

 

the

 

signed

 

conversion

 

results

 

in

 

no

 

characters.

   

Print

 

Function

 

Field

 

Width

 

The

 

optional

 

minimum

 

field

 

width

 

for

 

the

 

printf()

 

function

 

indicates

 

the

 

minimum

 

number

 

of

 

digits

 

to

 

appear

 

in

 

the

 

integral

 

part,

 

fractional

 

part

 

or

 

both

 

parts

 

of

 

a

 

_DecimalT

 

class

 

template

 

object.

 

If

 

there

 

are

 

fewer

 

characters

 

than

 

the

 

field

 

width,

 

then

 

the

 

field

 

is

 

padded

 

with

 

spaces.

 

The

 

field

 

width

 

can

 

be

 

an

 

*.

 

If

 

n

 

is

 

an

 

*,

 

the

 

value

 

of

 

n

 

is

 

derived

 

from

 

the

 

corresponding

 

position

 

in

 

the

 

parameter

 

list.

 

Print

 

Function

 

Field

 

Precision

 

The

 

optional

 

precision

 

for

 

the

 

printf()

 

function

 

indicates

 

the

 

number

 

of

 

digits

 

to

 

appear

 

in

 

the

 

fractional

 

part

 

of

 

a

 

_DecimalT

 

class

 

template

 

object.

 

The

 

default

 

precision

 

is

 

p.

 

If

 

precision

 

is

 

greater

 

than

 

p,

 

extra

 

zeros

 

are

 

padded.

 

If

 

precision

 

is

 

less

 

than

 

p,

 

rounding

 

is

 

performed.

 

The

 

field

 

precision

 

can

 

be

 

an

 

*.

 

If

 

p

 

is

 

an

 

*,

 

the

 

value

 

of

 

p

 

is

 

derived

 

from

 

the

 

corresponding

 

position

 

in

 

the

 

parameter

 

list.

 

#include

 

<bcd.h>

   

int

 

p,p1;

 

_DecimalT

 

<5,

 

2>

 

x;

   

p=x.PrecisionOf();

                  

//

 

The

 

result

 

is

 

p=2

 

Figure

 

220.

 

Example

 

of

 

Code

 

that

 

Determines

 

the

 

Number

 

of

 

Decimal

 

Digits

 

in

 

an

 

Internal

 

_DecimalT

 

Class

 

Object

  

386

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Conversion

 

Specifiers

 

The

 

conversion

 

specifier

 

for

 

the

 

printf()

 

function

 

is:

 

D(n,p)

 

The

 

_DecimalT

 

class

 

template

 

object

 

is

 

converted

 

in

 

the

 

style

 

[

 

-

 

]

 

ddd.ddd

 

where

 

the

 

number

 

of

 

digits

 

after

 

the

 

decimal-point

 

character

 

is

 

equal

 

to

 

the

 

precision

 

of

 

the

 

specification.

 

If

 

the

 

precision

 

is

 

missing,

 

it

 

is

 

taken

 

as

 

0;

 

if

 

the

 

precision

 

is

 

zero

 

and

 

the

 

#flag

 

is

 

not

 

specified,

 

no

 

decimal-point

 

character

 

appears.

 

If

 

a

 

decimal-point

 

character

 

appears,

 

at

 

least

 

one

 

digit

 

appears

 

before

 

it.

 

The

 

value

 

is

 

truncated

 

to

 

the

 

appropriate

 

number

 

of

 

digits.

 

The

 

(n,p)

 

descriptor

 

is

 

used

 

to

 

describe

 

the

 

characteristic

 

of

 

the

 

_DecimalT

 

class

 

template

 

object.

 

Both

 

n

 

and

 

p

 

have

 

to

 

be

 

in

 

the

 

form

 

of

 

decimal

 

integers.

 

If

 

p

 

is

 

missing,

 

a

 

default

 

value

 

of

 

zero

 

is

 

assumed.

 

If

 

the

 

specifier

 

is

 

in

 

another

 

form

 

not

 

stated

 

above,

 

the

 

behavior

 

is

 

undefined.

If

 

n

 

and

 

p

 

of

 

the

 

variable

 

to

 

be

 

printed

 

do

 

not

 

match

 

with

 

the

 

n

 

and

 

p

 

in

 

the

 

conversion

 

specifier

 

%D(n,p),

 

the

 

behavior

 

is

 

undefined.

 

Use

 

the

 

unary

 

operators

 

__digitsof

 

(expression)

 

and

 

__precisionof

 

(expression)

 

in

 

the

 

argument

 

list

 

to

 

replace

 

the

 

*

 

in

 

D(*,*)

 

whenever

 

the

 

size

 

of

 

the

 

resulting

 

class

 

of

 

a

 

_DecimalT

 

class

 

template

 

object

 

expression

 

is

 

not

 

known.

 

The

 

conversion

 

specifier

 

for

 

the

 

scanf()

 

function

 

is

 

as

 

follows:

 

D(n,p)

 

Matches

 

a

 

decimal

 

number,

 

the

 

expected

 

form

 

of

 

the

 

subject

 

sequence

 

is

 

an

 

optional

 

plus

 

or

 

minus

 

sign,

 

then

 

a

 

non-empty

 

sequence

 

of

 

digits

 

optionally

 

containing

 

a

 

decimal

 

point.

 

The

 

subject

 

sequence

 

is

 

defined

 

as

 

the

 

longest

 

initial

 

subsequence

 

of

 

the

 

input

 

string,

 

starting

 

with

 

the

 

first

 

non-white-space

 

character,

 

that

 

is

 

of

 

the

 

expected

 

form.

 

The

 

subject

 

sequence

 

contains

 

no

 

characters

 

if

 

the

 

input

 

string

 

is

 

empty

 

or

 

consists

 

entirely

 

of

 

white

 

space,

 

or

 

if

 

the

 

first

 

non-white-space

 

character

 

is

 

other

 

than

 

a

 

sign,

 

a

 

digit,

 

or

 

a

 

decimal-point

 

character.

Porting

 

Conditional

 

Operators

 

to

 

ILE

 

C

 

or

 

C++

   

In

 

ILE

 

C,

 

if

 

both

 

the

 

second

 

and

 

third

 

operands

 

have

 

an

 

arithmetic

 

type,

 

the

 

usual

 

arithmetic

 

conversions

 

are

 

performed

 

to

 

bring

 

them

 

to

 

a

 

common

 

type.

   

In

 

C++,

 

both

 

the

 

second

 

and

 

third

 

expressions

 

must

 

be

 

of

 

the

 

same

 

class.

 

If

 

either

 

expression

 

has

 

a

 

different

 

class,

 

then

 

you

 

must

 

cast

 

the

 

second

 

or

 

third

 

expression

 

so

 

that

 

it

 

has

 

the

 

same

 

class.

 

The

 

following

 

figure

 

illustrates

 

an

 

example

 

where

 

the

 

conditional

 

expression

 

fails

 

because

 

the

 

second

 

and

 

third

 

expressions

 

are

 

not

 

of

 

the

 

same

 

class.

  

To

 

use

 

the

 

conditional

 

operator

 

with

 

the

 

_DecimalT

 

class

 

template

 

you

 

can

 

do

 

either

 

of

 

the

 

following:

 

#include

 

<bcd.h>

   

main()

 

{

 

int

 

var_1;

 

decimal(4,2)

  

op_1_1

 

=

 

__D("12.34");

 

decimal(10,2)

 

op_1_2

 

=

 

__D("123.45");

 

var_1

 

=

 

(op_1_1

 

<

 

op_1_2)

 

?

 

(op_1_1

 

+

 

3)

 

:

 

op_1_2;

 

}

 

Figure

 

221.

 

Example

 

of

 

a

 

Conditional

 

Expression

 

that

 

Fails

 

because

 

of

 

Class

 

Differences

  

Chapter

 

24.

 

Porting

 

Programs

 

from

 

Another

 

Platform

 

to

 

ILE

 

387



v

   

Use

 

an

 

explicit

 

cast

 

on

 

the

 

second

 

expression

 

so

 

that

 

it

 

has

 

the

 

same

 

type

 

as

 

the

 

third

 

expression

 

v

   

Use

 

the

 

same

 

type

 

of

 

variables

Example

 

of

 

an

 

Explicit

 

Cast

 

that

 

Resolves

 

Class

 

Differences

 

between

 

Expression

 

The

 

following

 

figure

 

shows

 

an

 

explicit

 

cast

 

on

 

the

 

second

 

expression

 

so

 

that

 

it

 

has

 

the

 

same

 

class

 

as

 

the

 

third

 

expression:

   

Example

 

of

 

Use

 

of

 

a

 

Consistent

 

Variable

 

Type

 

The

 

following

 

figure

 

shows

 

how

 

to

 

use

 

the

 

same

 

type

 

of

 

variables:

  

Note:

  

The

 

+

 

3

 

was

 

removed

 

from

 

the

 

second

 

expression

 

because

 

(op_1_1

 

+

 

3)

 

results

 

in

 

_Decimal<13,2>.

 

Porting

 

ILE

 

C

 

Packed

 

Decimal

 

Data

 

Types

 

to

 

the

 

_DecimalT

 

Class

 

Template

 

In

 

the

 

class

 

template

 

_DecimalT,

 

neither

 

the

 

constructor

 

nor

 

the

 

assignment

 

operator

 

are

 

overloaded

 

to

 

take

 

any

 

of

 

the

 

class

 

template

 

instantiations

 

from

 

_DecimalT.

 

For

 

this

 

reason,

 

explicit

 

type

 

casting

 

that

 

involves

 

conversion

 

from

 

one

 

_DecimalT

 

class

 

template

 

object

 

to

 

another

 

cannot

 

be

 

done

 

directly.

 

Instead,

 

the

 

macro

 

__D

 

must

 

be

 

used

 

to

 

embrace

 

the

 

expression

 

that

 

requires

 

explicit

 

type

 

casting.

 

This

 

program

 

in

 

the

 

following

 

figure

 

is

 

written

 

in

 

ILE

 

C:

  

#include

 

<bcd.h>

   

main()

 

{

 

int

           

var_1;

 

decimal(4,2)

  

op_1_1

 

=

 

__D("12.34");

 

decimal(10,2)

 

op_1_2

 

=

 

__D("123.45");

 

var_1

 

=

 

(op_1_1

 

<

 

op_1_2)

 

?

 

(_DecimalT<10,2>)__D(op_1_1

 

+

 

3)

 

:

 

op_1_2;

 

}

 

Figure

 

222.

 

Example

 

of

 

an

 

Explicit

 

Cast

 

that

 

Resolves

 

Class

 

Differences

 

between

 

Expressions

#include

 

<bcd.h>

   

main()

 

{

 

int

 

var_1;

 

decimal(10,2)

  

op_1_1

 

=

 

__D("12.34");

 

decimal(10,2)

 

op_1_2

 

=

 

__D("123.45");

 

var_1

 

=

 

(op_1_1

 

<

 

op_1_2)

 

?

 

op_1_1

 

:

 

op_1_2;

 

}

 

Figure

 

223.

 

Example

 

of

 

Use

 

of

 

a

 

Consistent

 

Variable

 

Type

  

388

 

ILE

 

C/C++

 

Programmer’s

 

Guide



This

 

source

 

needs

 

to

 

be

 

rewritten

 

in

 

ILE

 

C++

 

as

 

shown

 

in

 

the

 

following

 

figure:

   

Differences

 

in

 

Using

 

Packed

 

Structures

 

The

 

_Packed

 

keyword

 

tells

 

the

 

compiler

 

to

 

ignore

 

the

 

padding

 

and

 

pack

 

the

 

structure

 

as

 

much

 

as

 

possible.

   

In

 

ILE

 

C

 

this

 

keyword

 

can

 

be

 

used

 

in

 

a

 

structure

 

definition

 

and

 

type

 

definition.

 

#include

 

<decimal.h>

   

void

 

main

 

()

 

{

 

decimal(4,0)

 

d40

 

=

 

123D;

 

decimal(6,0)

 

d60

 

=

 

d40;

 

d60

 

=

  

d40;

 

decimal(8,0)

 

d80

 

=

 

(decimal(7,0))1;

 

decimal(9,0)

 

d90;

 

d60

 

=

 

(decimal(7,0))12D;

 

d60

 

=

 

(decimal(4,0))d80;

 

d60

 

=

 

(decimal(4,0))(d80

 

+

 

1);

 

d60

 

=

 

(decimal(4,0))(d80

 

+

 

(float)4.500);

 

}

 

Figure

 

224.

 

ILE

 

C

 

Code

 

that

 

Uses

 

Packed

 

Decimal

 

Data

 

Types

#include

 

int

 

main

 

(

 

void

 

)

 

{

  

_DecimalT<4,0>

 

d40

 

=

 

__D("123");

             

//

 

OK

    

_DecimalT<6,0>

 

d60

 

=

 

__D(d40);

               

//

 

Because

 

no

 

constructor

                                                 

//

 

exists

 

that

 

can

 

convert

 

d40

 

to

 

d60.

                                                 

//

 

macro

 

__D

 

is

 

needed

 

to

 

convert

 

d40

                                                 

//

 

into

 

an

 

intermediate

 

type

 

first.

    

_DecimalT<8,0>

 

d80

 

=

 

(_DecimalT<8,0>)1;

      

//

 

OK

                                                 

//

 

Type

 

casting

 

an

 

int,not

 

a

 

decimal(n,p)

    

d60

 

=

 

d40;

                                   

//

 

OK.

 

This

 

is

 

different

 

from

 

the

                                                 

//

 

second

 

statement

 

in

 

which

                                                 

//

 

the

 

constructor

 

was

 

called.

                                                 

//

 

In

 

this

 

case,

 

the

 

assignment

                                                 

//

 

operator

 

is

 

called

 

and

 

the

                                                 

//

 

compiler

 

converts

 

d40

 

into

 

the

                                                 

//

 

intermediate

 

type

 

automatically.

    

_DecimalT<9,0>

 

d90;

                          

//

 

OK

    

d60

 

=

 

(_DecimalT<7,0>)__D("12");

             

//

 

OK

    

d60

 

=

 

(_DecimalT<4,0>)__D(d80);

    

d60

 

=

 

(_DecimalT<4,0>)__D(d80

 

+

 

1);

    

d60

 

=

 

(_DecimalT<4,0>)__D(d80

 

+

 

(float)4.500);//

 

In

 

these

 

three

 

cases,

 

the

 

resultant

                                                  

//

 

classes

 

of

 

the

 

expressions

 

are

                                                  

//

 

_DecimalT<n,p>.

 

macro

 

__D

 

is

 

needed

 

to

                                                  

//

 

convert

 

them

 

to

 

an

 

intermediate

 

type

                                                  

//

 

first.

 

}

 

Figure

 

225.

 

ILE

 

C++

 

Code

 

that

 

Uses

 

the

 

_DecimalT

 

Class

 

Template

 

Instead

 

of

 

the

 

C

 

Packed

 

Decimal

 

Data

 

Types

  

Chapter

 

24.

 

Porting

 

Programs

 

from

 

Another

 

Platform

 

to

 

ILE

 

389



In

 

ILE

 

C++,

 

the

 

same

 

keyword

 

can

 

be

 

used

 

only

 

in

 

a

 

type

 

definition.

  

Table

 

17.

 

Comparing

 

Packed

 

Structures

   

ILE

 

C/400

 

ILE

 

C/C++

 

typedef

 

_Packed

 

struct

 

{

    

.

    

.

 

}ps_t;

 

ok

 

ok

 

_Packed

 

struct

 

{

    

.

    

.

 

}ps_v;

 

ok

 

error

    

Therefore,

 

you

 

must

 

make

 

sure

 

the

 

_Packed

 

keyword

 

is

 

used

 

only

 

in

 

type

 

definitions

 

located

 

in

 

the

 

header

 

file.

   

In

 

the

 

ILE

 

C/C++

 

compiler,

 

the

 

#pragma

 

pack

 

directive

 

applies

 

only

 

to

 

C

 

programs.

 

The

 

ILE

 

C

 

#pragma

 

pack

 

directive

 

is

 

not

 

compatible

 

with

 

the

 

Windows®

 

#pragma

 

pack

 

directive.

 

Differences

 

in

 

Error

 

Checking

 

This

 

section

 

describes

 

error

 

checking

 

for:

 

v

   

Invalid

 

decimal

 

format

 

v

   

Mathematical

 

operators

Invalid

 

Decimal

 

Format

   

In

 

ILE

 

C,

 

packed

 

decimal

 

is

 

implemented

 

as

 

a

 

native

 

data

 

type.

 

This

 

allows

 

an

 

error

 

such

 

as

 

invalid

 

decimal

 

format

 

to

 

be

 

detected

 

at

 

compile

 

time.

   

In

 

C++,

 

detection

 

of

 

a

 

similar

 

error

 

is

 

deferred

 

until

 

run

 

time,

 

as

 

shown

 

in

 

the

 

following

 

examples:

 

#define

 

_DEBUG

 

1

   

#include

 

<bcd.h>

   

int

 

main

 

(

 

void

 

)

 

{

  

_DecimalT<10,20>

 

b=

 

__D("ABC");

 

//

 

Run-time

 

exception

 

is

 

raised

 

}

 

and

 

#define

 

_DEBUG

 

1

   

#include

 

<bcd.h>

   

int

 

main

 

(

 

void

 

)

 

{

   

_DecimalT<33,2>

 

a;

            

//

 

Max.

 

dig.

 

allow

 

is

 

31.

 

Again,

                                

//

 

run-time

 

exception

 

is

 

raised

 

}

 

Note:

  

Some

 

errors

 

can

 

be

 

detected

 

at

 

compile

 

time,

 

for

 

example:

 

n<1,

 

(_Decimal<-33,2>).

 

Mathematical

 

Operators

   

ILE

 

C

 

provides

 

additional

 

error

 

checking

 

on

 

the

 

sign

 

or

 

the

 

digit

 

codes

 

of

 

the

 

packed

 

decimal

 

operand.

 

Valid

 

signs

 

are

 

hex

 

A-F.

 

Valid

 

digit

 

range

 

is

 

hex

 

0-9.

   

390

 

ILE

 

C/C++

 

Programmer’s

 

Guide



If

 

the

 

decimal

 

operand

 

is

 

in

 

error,

 

ILE

 

C

 

generates

 

an

 

error

 

message.

 

This

 

additional

 

checking

 

is

 

not

 

present

 

in

 

the

 

_DecimalT

 

class

 

template.

   

The

 

following

 

code

 

results

 

in

 

an

 

error

 

message

 

in

 

ILE

 

C

 

but

 

not

 

in

 

ILE

 

C++:

 

#include

 

<decimal.h>

   

int

 

main

 

(

 

void

 

)

 

{

    

decimal(10,2)

 

a,

 

b;

    

int

 

c;

    

c

 

=

 

a

 

>

  

b;

   

//

 

a

 

and

 

b

 

are

 

not

 

valid

 

packed

 

decimals

 

because

                  

//

 

a

 

and

 

b

 

are

 

not

 

initialized

 

}

 

Header

 

Files

 

that

 

Work

 

with

 

Both

 

C

 

and

 

C++

 

C

 

header

 

files

 

are

 

not

 

generally

 

usable

 

by

 

C++.

 

Structures,

 

unions

 

and

 

type

 

definitions

 

may

 

be

 

all

 

right

 

as

 

well

 

as

 

variables.

 

Care

 

must

 

be

 

used

 

in

 

function

 

prototypes

 

and

 

pragmas.

 

Using

 

Dual

 

Function

 

Prototypes

 

To

 

allow

 

your

 

header

 

files

 

to

 

be

 

used

 

by

 

ILE

 

C

 

and

 

ILE

 

C++

 

compilers,

 

all

 

functions

 

with

 

"OS"

 

linkage

 

type

 

require

 

dual

 

prototypes,

 

as

 

shown

 

in

 

the

 

following

 

figure:

 

If

 

you

 

have

 

a

 

list

 

of

 

functions

 

that

 

need

 

dual

 

prototypes,

 

you

 

can

 

use

 

the

 

syntax

 

shown

 

in

 

the

 

following

 

figure:

   

#ifdef

 

__cplusplus

    

extern

 

"linkage-type"

  

//linkage

 

type

 

"OS"

 

#else

    

#pragma

 

linkage(function_name,linkage_type)

 

#endif

 

void

 

function_name(...);

 

Figure

 

226.

 

Example

 

of

 

a

 

Single

 

Set

 

of

 

Dual

 

Prototypes

 

that

 

Allow

 

a

 

Header

 

File

 

to

 

be

 

Used

 

by

 

Both

 

ILE

 

C

 

and

 

ILE

 

C++

#ifdef

 

__cplusplus

    

extern

 

"linkage-type"

  

{

  

//linkage

 

type

 

"OS"

 

#else

    

#pragma

 

linkage(function_name1,

 

linkage_type)

    

.

    

.

    

#pragma

 

linkage(function_nameN,

 

linkage_type)

 

#endif

 

void

 

function_name1(...);

    

.

    

.

 

void

 

function_nameN(...);

 

#ifdef

 

__cplusplus

 

}

 

#endif

 

Figure

 

227.

 

Example

 

of

 

Multiple

 

Sets

 

of

 

Dual

 

Prototypes

 

that

 

Allow

 

a

 

Header

 

File

 

to

 

be

 

Used

 

by

 

Both

 

ILE

 

C

 

and

 

ILE

 

C++

  

Chapter

 

24.

 

Porting

 

Programs

 

from

 

Another

 

Platform

 

to

 

ILE

 

391



Permitting

 

ILE

 

C

 

Programs

 

to

 

Access

 

C++

 

Linkage

 

Functions

    

Wrap

 

your

 

header

 

files

 

in

 

the

 

construct

 

shown

 

in

 

the

 

following

 

figure:

 

Notes:

  

1.

   

The

 

linkage

 

specification

 

extern

 

"C"

 

informs

 

the

 

compiler

 

that

 

all

 

functions

 

prototyped

 

will

 

have

 

C

 

linkage.

 

C++

 

linkage

 

functions

 

cannot

 

be

 

called

 

from

 

C

 

using

 

the

 

C++

 

internal

 

name.

 

See

 

Chapter

 

23,

 

“Using

 

ILE

 

C/C++

 

Call

 

Conventions,”

 

on

 

page

 

363

 

for

 

information

 

on

 

calling

 

functions

 

from

 

other

 

languages.

 

2.

   

The

 

macro

 

__ILEC400__

 

can

 

replace

 

__cplusplus

 

but

 

__cplusplus

 

is

 

preferred

 

because

 

it

 

is

 

portable

 

to

 

other

 

implementations.

Including

 

QSYSINC

 

Header

 

Files

   

To

 

use

 

the

 

QSYSINC

 

header

 

files

 

in

 

ILE

 

C++

 

you

 

need

 

to

 

use

 

the

 

following

 

convention

 

#include

 

<file/header.h>.

 

For

 

example,

 

to

 

include

 

QSYSINC/MIH/SYSEPT

 

you

 

can

 

use#include

 

<mih/sysept.h>.

 

Note:

  

This

 

form

 

also

 

works

 

for

 

ILE

 

C.

 

Handling

 

the

 

Stricter

 

C++

 

Type

 

Checking

 

Type

 

checking

 

is

 

stricter

 

in

 

C++

 

than

 

it

 

is

 

in

 

C.

 

This

 

section

 

describes

 

how

 

to:

 

v

   

Resolve

 

integer

 

data

 

type

 

size

 

issues

 

by

 

using

 

the

 

#pragma

 

enum

 

directive

 

v

   

Resolve

 

incompatible

 

pointer

 

types

 

for

 

various

 

scenarios

Resolving

 

Integer

 

Data

 

Type

 

Size

 

Issues

   

In

 

ILE

 

C++,

 

the

 

enum

 

size

 

is

 

always

 

the

 

size

 

of

 

an

 

integer

 

unless

 

the

 

#pragma

 

enum

 

directive

 

is

 

used.

   

.

   

.

   

.

 

#ifdef

 

__cplusplus

    

extern

 

"C"

 

{�1�

    

#pragma

 

info(none)

 

#else

                                   

//only

 

if

 

you

 

have

 

#pragma

    

#pragma

 

nomargins

 

nosequence

   

//nomargin

 

and

 

#pragma

 

checkout

 

in

 

the

    

#pragma

 

checkout(suspend)

      

//header

 

file

 

#endif

    

.

    

.

    

.

 

#ifdef

 

__cplusplus�2�

    

#pragma

 

info(restore)

    

}

 

#else

    

#pragma

 

checkout(resume)

 

#endif

 

}

 

Figure

 

228.

 

Example

 

of

 

Construct

 

that

 

Permits

 

ILE

 

C

 

Programs

 

to

 

Access

 

C++

 

LInkage

 

Functions

  

392

 

ILE

 

C/C++

 

Programmer’s

 

Guide



To

 

resolve

 

any

 

problem

 

with

 

the

 

enum

 

type

 

size,

 

use

 

the

 

#pragma

 

enum

 

directive,

 

as

 

shown

 

in

 

the

 

following

 

figure:

   

Resolving

 

Incompatible

 

Pointer

 

Types

      

In

 

ISO

 

C,

 

a

 

pointer

 

to

 

void

 

can

 

be

 

assigned

 

to

 

a

 

pointer

 

of

 

any

 

other

 

type.

 

You

 

do

 

not

 

need

 

to

 

cast

 

the

 

pointer

 

explicitly.

 

C++

 

allows

 

void

 

pointers

 

to

 

be

 

assigned

 

only

 

to

 

other

 

void

 

pointers.

 

If

 

you

 

use

 

C

 

memory

 

functions

 

that

 

return

 

void

 

pointers

 

(such

 

as

 

malloc(),

 

calloc(),

 

realloc()),

 

each

 

void

 

pointer

 

must

 

be

 

cast

 

to

 

an

 

appropriate

 

pointer

 

type

 

before

 

the

 

code

 

is

 

compiled.

 

Note:

 

You

 

can

 

use

 

the

 

new

 

and

 

delete

 

operators

 

instead

 

of

 

malloc()

 

and

 

free().

 

The

 

C

 

compiler

 

compiles

 

source

 

code

 

that

 

uses

 

memcmp()

 

to

 

compare

 

a

 

constant

 

char

 

array

 

to

 

a

 

volatile

 

char

 

array.

 

When

 

attempting

 

to

 

compile

 

source

 

code

 

that

 

uses

 

memcmp()

 

to

 

compare

 

a

 

constant

 

char

 

array

 

to

 

a

 

volatile

 

char

 

array,

 

the

 

C++

 

compiler

 

generates

 

an

 

error

 

message

 

(for

 

example,

 

volatile

 

unsigned

 

char

 

cannot

 

be

 

converted

 

to

 

a

 

const

 

void

 

pointer).

 

You

 

cannot

 

use

 

a

 

constant

 

pointer

 

where

 

a

 

volatile

 

pointer

 

is

 

expected

 

unless

 

you

 

cast

 

a

 

void

 

pointer

 

to

 

the

 

appropriate

 

pointer

 

type

 

before

 

compiling

 

the

 

code.

 

Note:

 

You

 

can

 

use

 

the

 

new

 

and

 

delete

 

operators

 

instead

 

of

 

malloc()

 

and

 

free().

 

Note:

 

See

 

the

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference

 

for

 

more

 

detailed

 

information

 

on

 

compatibility.

   

Disabling

 

Name

 

Mangling

 

to

 

Avoid

 

Undefined

 

Name

 

Errors

   

All

 

C++

 

function

 

names

 

are

 

mangled

 

to

 

enable

 

function

 

overloading.

 

You

 

receive

 

an

 

undefined

 

names

 

error

 

when

 

you

 

bind

 

ILE

 

C/C++

 

functions

 

with

 

mangled

 

names,

 

for

 

example,

 

LocateSpaces__FPc.

   

In

 

ILE

 

C,

 

the

 

service

 

program

 

relationship

 

is

 

LocateSpaces__FPc

 

==

 

LocateSpaces

 

or

 

LocateSpace__FPc

 

==

 

LocateSpace.

 

If

 

you

 

are

 

porting

 

ILE

 

C

 

code

 

and

 

you

 

want

 

to

 

disable

 

function

 

name

 

mangling,

 

use

 

extern

 

"C"

 

around

 

the

 

function

 

name.

   

.

   

.

 

#pragma

 

enum

 

(2)

   

enum

 

{

 

a=0xffff}

 

A;

 

//sizeof(A)=2;

 

#pragma

 

enum

 

()

   

.

   

.

 

Figure

 

229.

 

Example

 

of

 

#pragma

 

enum

 

Directive

 

that

 

Resolves

 

Data

 

Type

 

Size

 

Issues

  

Chapter

 

24.

 

Porting

 

Programs

 

from

 

Another

 

Platform

 

to

 

ILE

 

393



Resolving

 

Type

 

Mismatches

 

with

 

the

 

C++

 

Function

 

Prototype

    

ILE

 

C++

 

requires:

 

v

   

Full

 

prototype

 

declarations

 

v

   

All

 

declarations

 

of

 

a

 

function

 

must

 

match

 

the

 

unique

 

definition

 

of

 

a

 

function

 

v

   

The

 

type

 

defined

 

in

 

a

 

pointer

 

declaration

 

must

 

match

 

the

 

type

 

defined

 

in

 

the

 

function

 

prototype

Note:

  

ISO

 

C

 

has

 

no

 

such

 

restrictions.

 

Example

 

of

 

Function

 

Prototype

 

Mismatch

  

Notes:

  

1.

   

Because

 

of

 

the

 

type

 

mismatch

 

between

 

the

 

type

 

defined

 

in

 

function

 

pointer

 

prototype

 

("void(*)

 

()")

 

and

 

the

 

type

 

definition

 

in

 

the

 

function

 

prototype

 

(void

 

(*)

 

(int)),

 

the

 

example

 

generates

 

the

 

following

 

error:

 

CZP0257(30)

 

An

 

object

 

or

 

reference

 

of

 

type

 

"void

 

(*)()"

 

cannot

 

be

   

initialized

 

with

 

an

 

expression

 

of

 

type

 

"extern

 

"C"

 

void

 

(*)(int)"

 

2.

   

The

 

int

 

parameter

 

does

 

not

 

exist

 

in

 

the

 

type

 

definition

 

SIG_T.

Handling

 

the

 

Function

 

Prototype

 

Mismatch

 

To

 

handle

 

the

 

type

 

mismatch,

 

you

 

can:

 

v

   

Assign

 

the

 

pointer

 

to

 

a

 

variable

 

of

 

a

 

different

 

type

 

by

 

using

 

a

 

cast

 

expression

 

v

   

Use

 

the

 

DFTCHAR

 

compiler

 

option

 

when

 

you

 

compile

 

the

 

C++

 

source

 

to

 

set

 

the

 

default

 

char

 

type.

Note:

  

For

 

more

 

information

 

on

 

these

 

option,

 

see

 

the

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference.

 

Declaring

 

unsigned

 

char

 

Pointers

 

as

 

unsigned

 

char

 

Variables

    

QXX

 

functions

 

return

 

unsigned

 

char

 

pointers.

 

ILE

 

C

 

allows

 

you

 

to

 

assign

 

a

 

signed

 

char

 

to

 

an

 

unsigned

 

char

 

pointer.

 

This

 

is

 

not

 

valid

 

in

 

C++.

 

unsigned

 

char

 

pointers

 

must

 

be

 

declared

 

as

 

unsigned

 

char

 

variables

 

in

 

the

 

source

 

code

 

as

 

shown

 

in

 

the

 

following

 

figure:

  

#include

 

<signal.h>

 

void

 

(*sig_handler)(int);�1�

 

typedef

 

void

 

(*SIG_T)();

      

//

 

function

 

pointer

 

typedef

 

of

 

type

 

void

 

(*)

 

()�2�

   

extern

 

"C"

 

void

 

(*signal

 

(int,

 

void(*)

 

(int)))

 

(int);

 

//

 

function

 

pointer

 

prototype

                                                       

//

 

with

 

return

 

type

 

void(*)

 

(int)�1�

 

SIG_T

 

oldsig

 

=

 

signal

 

(SIGALL,

 

sig_handler);

     

//

 

function

 

pointer

 

definition

 

of

 

type

 

SIG_T

 

Figure

 

230.

 

Example

 

of

 

Type

 

Mismatch

  

394

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Initializing

 

Character

 

Arrays

   

In

 

C++,

 

when

 

you

 

initialize

 

character

 

arrays,

 

a

 

trailing

 

’\0’

 

(zero

 

of

 

type

 

char)

 

is

 

appended

 

to

 

the

 

string

 

initializer.

 

You

 

cannot

 

initialize

 

a

 

character

 

array

 

with

 

more

 

initializers

 

than

 

there

 

are

 

array

 

elements.

   

In

 

ISO

 

C,

 

space

 

for

 

the

 

trailing

 

’\0’

 

can

 

be

 

omitted

 

in

 

this

 

type

 

of

 

information.

 

For

 

example,

 

the

 

following

 

initialization

 

is

 

not

 

valid

 

in

 

C++:

 

char

 

v[3]

 

=

 

"asd";

 

//not

 

valid

 

in

 

C++,

 

valid

 

in

 

ISO

 

C

                              

//because

 

four

 

elements

 

are

 

required

 

This

 

initialization

 

produces

 

an

 

error

 

because

 

there

 

is

 

no

 

space

 

for

 

the

 

implied

 

trailing

 

’\0’

 

(zero

 

of

 

type

 

char).

 

The

 

following

 

initialization,

 

for

 

instance,

 

is

 

valid

 

in

 

C++:

 

char

 

v[4]

 

=

 

"asd";

 

//valid

 

in

 

C++

 

Note:

  

For

 

more

 

detailed

 

information

 

on

 

compatibility,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference.

 

Specifying

 

Access

 

to

 

String

 

Literals

 

To

 

place

 

strings

 

into

 

read/write

 

memory,

 

you

 

must

 

place

 

the

 

#pragma

 

strings

 

directive

 

before

 

any

 

C

 

or

 

C++

 

code

 

in

 

a

 

file.

 

If

 

you

 

use

 

the

 

READONLY

 

option,

 

you

 

specify

 

that

 

the

 

compiler

 

may

 

place

 

strings

 

into

 

read-only

 

memory.

 

If

 

you

 

use

 

the

 

WRITEABLE

 

option,

 

you

 

specify

 

that

 

the

 

compiler

 

must

 

place

 

strings

 

into

 

writeable

 

memory.

 

Strings

 

are

 

writeable

 

by

 

default.

   

C

 

strings

 

are

 

read/write

 

by

 

default.

   

C++

 

strings

 

are

 

read

 

only

 

by

 

default.

 

Note:

  

This

 

pragma

 

will

 

override

 

the

 

*STRDONLY

 

option

 

on

 

the

 

Create

 

Module

 

or

 

Create

 

Bound

 

Program

 

commands.

#include

 

<xxcvt.h>

 

//void(QXXITOP(unsigned

 

char

 

*pptr,

 

int

 

digits,

 

int

                    

//fraction,

 

int

 

value);

   

#include

 

<stdio.h>

     

int

 

main(void)

     

{

      

unsigned

 

char

 

pptr[10];

      

int

 

digits

 

=

 

3,

 

fraction

 

=

 

0;

      

int

 

value

 

=

 

116;

      

QXXITOP

 

(pptr,

 

digits,

 

fraction,

 

value);

      

}

 

Figure

 

231.

 

Code

 

that

 

Declares

 

an

 

unsigned

 

char

 

Pointer

 

as

 

an

 

unsigned

 

char

 

Variable

  

Chapter

 

24.

 

Porting

 

Programs

 

from

 

Another

 

Platform

 

to

 

ILE

 

395



For

 

the

 

syntax

 

of

 

the

 

#pragma

 

strings

 

directive,

 

see

 

the

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference.

 

Avoiding

 

Uncaught

 

Exceptions

 

by

 

Scoping

 

to

 

a

 

Single

 

Activation

 

Group

   

In

 

ILE,

 

the

 

effect

 

of

 

the

 

set_terminate()

 

function

 

is

 

scoped

 

to

 

an

 

activation

 

group.

 

The

 

following

 

figure

 

provides

 

an

 

example

 

of

 

how

 

this

 

can

 

affect

 

the

 

compilation

 

of

 

code

 

that

 

is

 

ported

 

from

 

a

 

non-ILE

 

platform.

  

In

 

Figure

 

232:

 

1.

   

Both

 

my_terminate()

 

and

 

a()

 

reside

 

in

 

a

 

service

 

program,

 

which

 

runs,

 

by

 

default,

 

in

 

a

 

single

 

activation

 

group

 

(for

 

example,

 

″B″).

 

2.

   

The

 

main()

 

procedure

 

runs,

 

by

 

default,

 

in

 

another

 

activation

 

group

 

(for

 

example,

 

″A″).

 

3.

   

In

 

this

 

scenario,

 

the

 

exception

 

thrown

 

by

 

a()

 

cannot

 

percolate

 

up

 

to

 

main()

 

because

 

the

 

activation

 

group

 

in

 

which

 

set_terminate

 

is

 

executed

 

is

 

terminated

 

before

 

my_terminate()

 

can

 

be

 

invoked,

 

unless

 

the

 

default

 

activation

 

treatment

 

is

 

overridden.

As

 

a

 

result,

 

a

 

CEE9901

 

error

 

message

 

is

 

sent

 

to

 

main().

 

When

 

you

 

port

 

code

 

from

 

another

 

platform

 

to

 

ILE,

 

you

 

need

 

to

 

ensure

 

that

 

the

 

following

 

functions

 

run

 

in

 

the

 

same

 

activation

 

group:

 

v

   

Your

 

exception

 

handler

 

(my_terminate(),

 

in

 

this

 

example)

 

v

   

The

 

function

 

that

 

throws

 

the

 

exception

 

(a(),

 

in

 

this

 

example)

//

 

File

 

main.c

     

#include

 

<stdio.h>

   

#include

 

<stdlib.h>

   

#include

 

<iostream.h>

   

#include

 

<terminat.h>

      

void

 

a();

    

void

 

my_terminate();

      

int

 

main()

 

{�2�

       

set_terminate(my_terminate);

       

try

 

{

           

a();

       

}

       

catch(...)

 

cout

 

<<

 

"failed"

 

<<

 

endl;

    

}

   

//

 

File

 

term.c�1�

    

#include

 

<stdio.h>

  

#include

 

<stdlib.h>

  

#include

 

<iostream.h>

  

void

 

my_terminate()

 

{

     

cout

 

<<

 

"failed"

 

<<

 

endl;

  

}

  

void

 

a()

 

{

 

throw

 

7;

 

}�3�

 

Figure

 

232.

 

Example

 

of

 

Code

 

Ported

 

to

 

ILE

 

that

 

Results

 

in

 

an

 

Uncaught

 

Exception

  

396

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

This

 

chapter

 

discusses

 

ILE

 

calling

 

conventions

 

as

 

they

 

apply

 

to

 

multi-language

 

applications.

 

For

 

information

 

about

 

calling

 

conventions

 

that

 

apply

 

to

 

programs

 

compiled

 

with

 

the

 

ILE

 

C/C++

 

compiler,

 

see

 

Chapter

 

23,

 

“Using

 

ILE

 

C/C++

 

Call

 

Conventions,”

 

on

 

page

 

363.

 

You

 

can

 

call

 

OPM,

 

EPM

 

or

 

ILE

 

programs

 

using

 

dynamic

 

program

 

calls.

 

A

 

dynamic

 

program

 

call

 

is

 

a

 

call

 

made

 

to

 

a

 

program

 

object

 

(*PGM).

 

Unlike

 

OPM

 

and

 

EPM

 

programs,

 

ILE

 

programs

 

are

 

not

 

limited

 

to

 

using

 

dynamic

 

program

 

calls.

 

ILE

 

programs

 

can

 

use

 

static

 

procedure

 

calls

 

or

 

procedure

 

pointer

 

calls

 

to

 

call

 

other

 

procedures.

 

This

 

chapter

 

describes:

 

v

   

Inter-language

 

procedure

 

calls

 

v

   

ILE

 

conventions

 

for

 

calling

 

any

 

program

 

(*PGM)

 

v

   

Calling

 

any

 

program

 

from

 

ILE

 

C/C++

 

v

   

Passing

 

arguments

 

from

 

a

 

CL

 

program

 

to

 

an

 

ILE

 

C++

 

program

 

v

   

Accessing

 

ILE

 

C

 

procedures

 

from

 

any

 

ILE

 

program

 

v

   

Using

 

a

 

linkage

 

specification

 

in

 

an

 

ILE

 

C++

 

dynamic

 

program

 

call

Note:

  

The

 

terms

 

parameter

 

and

 

argument

 

are

 

used

 

interchangeably.

 

Inter-Language

 

Procedure

 

Calls

 

ILE

 

C

 

allows

 

arguments

 

to

 

be

 

passed

 

between

 

procedures

 

that

 

are

 

written

 

in

 

different

 

ILE

 

high-level

 

languages

 

(HLLs).

 

The

 

calling

 

function

 

must

 

ensure

 

that

 

the

 

arguments

 

are

 

the

 

size

 

and

 

type

 

that

 

are

 

expected

 

by

 

the

 

called

 

function.

Note:

  

For

 

inter-language

 

static

 

procedure

 

calls,

 

operational

 

descriptors

 

can

 

be

 

used

 

to

 

resolve

 

the

 

differences

 

in

 

the

 

representation

 

of

 

character

 

strings,

 

if:

 

v

   

The

 

static

 

call

 

is

 

to

 

a

 

procedure

 

written

 

in

 

a

 

language

 

other

 

than

 

C

 

or

 

C++.

 

v

   

Values

 

of

 

this

 

data

 

type

 

are

 

passed

 

as

 

arguments.

ILE

 

C

 

provides

 

a

 

#pragma

 

argument

 

directive

 

to

 

simplify

 

calls

 

to

 

bound

 

procedures

 

in

 

languages

 

such

 

as

 

ILE

 

COBOL

 

and

 

ILE

 

RPG.

 

The

 

#pragma

 

argument

 

directive

 

allows

 

arguments

 

to

 

be

 

passed

 

by

 

mechanisms

 

other

 

than

 

the

 

standard

 

C

 

mechanism.

 

By

 

default,

 

ILE

 

C

 

procedures

 

pass

 

and

 

accept

 

arguments

 

by

 

value,

 

which

 

means

 

that

 

the

 

value

 

of

 

the

 

data

 

object

 

is

 

placed

 

directly

 

into

 

the

 

argument

 

list.

 

Passing

 

arguments

 

by

 

value

 

allows

 

you

 

to

 

widen

 

integers

 

and

 

floating

 

point

 

values.

 

ILE

 

RPG

 

passes

 

and

 

accepts

 

arguments

 

by

 

reference,

 

which

 

means

 

that

 

a

 

pointer

 

to

 

the

 

data

 

object

 

is

 

placed

 

into

 

the

 

argument

 

list.

 

Changes

 

that

 

are

 

made

 

by

 

the

 

called

 

procedure

 

to

 

the

 

argument

 

are

 

reflected

 

in

 

the

 

calling

 

procedure.

 

Additionally,

 

ILE

 

RPG

 

can

 

pass

 

arguments

 

by

 

value.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

397



ILE

 

COBOL

 

passes

 

arguments

 

both

 

by

 

reference

 

and

 

by

 

content,

 

which

 

means

 

that

 

the

 

value

 

of

 

the

 

data

 

object

 

is

 

copied

 

to

 

a

 

temporary

 

location.

 

The

 

address

 

of

 

the

 

copy,

 

a

 

pointer,

 

is

 

placed

 

into

 

the

 

argument

 

list.

 

Additionally,

 

ILE

 

COBOL

 

can

 

pass

 

arguments

 

by

 

value.

 

Note:

  

EPM

 

C

 

and

 

Pascal

 

procedures

 

or

 

functions

 

cannot

 

call

 

ILE

 

C

 

procedures.

 

OPM

 

programs

 

cannot

 

call

 

any

 

ILE

 

procedures

 

(including

 

ILE

 

C

 

procedures).

 

Table

 

18

 

shows

 

the

 

default

 

argument

 

that

 

passes

 

methods

 

on

 

procedure

 

calls.

  

Table

 

18.

 

Argument

 

Passing

 

for

 

ILE

 

Procedures

 

ILE

 

HLL

 

Pass

 

Argument

 

Receive

 

Argument

 

ILE

 

C

 

default

 

By

 

value

 

By

 

value

 

ILE

 

C

 

with

 

#pragma

 

argument

 

OS

 

By

 

reference

 

By

 

reference

 

ILE

 

C

 

with

 

#pragma

 

linkage

 

OS

 

directive

 

Use

 

OS-linkage

 

when

 

calling

 

external

 

programs.

 

By

 

reference

 

ILE

 

COBOL

 

default

 

By

 

reference

 

By

 

reference

 

ILE

 

CL

 

By

 

reference

 

By

 

reference

 

ILE

 

RPG

 

default

 

By

 

reference

 

By

 

reference

   

ILE

 

Conventions

 

for

 

Calling

 

Any

 

Program

 

(*PGM)

 

If

 

you

 

have

 

an

 

ILE

 

C/C++

 

program

 

calling

 

a

 

program

 

(*PGM),

 

use

 

the

 

OS

 

calling

 

convention

 

for

 

ILE

 

C/C++

 

in

 

your

 

ILE

 

C/C++

 

source

 

to

 

tell

 

the

 

compiler

 

that

 

PGMNAME

 

is

 

an

 

external

 

program,

 

not

 

a

 

bound

 

ILE

 

procedure.

 

Note:

  

The

 

OS

 

calling

 

convention

 

for

 

ILE

 

C

 

is

 

the

 

#pragma

 

linkage

 

(PGMNAME,

 

OS)

 

directive.

 

The

 

OS

 

calling

 

convention

 

for

 

ILE

 

C++

 

is

 

extern

 

"OS".

 

This

 

section

 

provides

 

examples

 

that

 

illustrate

 

dynamic

 

program

 

call

 

conventions

 

for

 

ILE

 

C/C++

 

programs

 

that

 

call

 

any

 

external

 

program.

 

As

 

shown

 

in

 

Table

 

19

 

on

 

page

 

399,

 

ILE

 

C

 

uses

 

the

 

same

 

convention

 

when

 

calling

 

all

 

external

 

programs

 

other

 

than

 

an

 

EPM

 

entry

 

point.

   

398

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Table

 

19.

 

Dynamic

 

Program

 

Calling

 

Conventions

 

Action

 

Program

 

Call

 

Convention

 

ILE

 

C

 

calling

 

*PGM

 

where

 

*PGM

 

is

 

v

   

ILE

 

C

 

v

   

OPM

 

COBOL

 

for

 

iSeries

 

v

   

OPM

 

RPG

 

for

 

iSeries

 

v

   

OPM

 

CL

 

v

   

OPM

 

BASIC

 

v

   

OPM

 

PL/1

 

v

   

EPM

 

C

 

v

   

EPM

 

PASCAL

 

v

   

EPM

 

FORTRAN/400®

 

v

   

ILE

 

COBOL

 

for

 

iSeries

 

v

   

ILE

 

RPG

 

for

 

iSeries

 

v

   

ILE

 

CL

 

v

   

C++

 

#pragma

 

linkage

 

(PGMNAME,

 

OS)

 

For

 

example,

 

void

 

PGMNAME(void);

 

#pragma

 

linkage

 

(PGMNAME,

 

OS)

  

/*

 

Other

 

code

                      

*/

  

/*

 

Dynamic

 

call

 

to

 

program

 

PGMNAME

 

*/

 

PGMNAME();

 

ILE

 

C

 

calling

 

an

 

EPM

 

entry

 

point

 

#pragma

 

linkage

 

(QPXXCALL,

 

OS)

 

For

 

example,

 

#include

 

<xxenv.h>

  

/*

 

The

 

xxenv.h

 

header

 

file

 

holds

                   

*/

  

/*

 

the

 

prototype

 

for

 

QPXXCALL

                      

*/

  

/*

 

The

 

#pragma

 

linkage

 

(QPXXCALL,

 

OS)

              

*/

  

/*

 

is

 

in

 

this

 

header

 

file.

                         

*/

  

/*

 

Other

 

code.

                                     

*/

  

/*

 

Dynamic

 

call

 

to

 

program

 

QPXXCALL.

               

*/

  

/*

 

Dynamic

 

call

 

to

 

EPM

 

entry

 

point

 

using

 

QPXXCALL:

 

*/

  

/*

 

the

 

name

 

of

 

the

 

entry

 

point

 

is

 

entname,

 

envid

   

*/

  

/*

 

names

 

the

 

user-controlled

 

environment,

 

the

      

*/

  

/*

 

program

 

and

 

library

 

name

 

is

 

given

 

by

 

envpgm,

    

*/

  

/*

 

parm1

 

and

 

parm2

 

are

 

arguments

 

passed

 

to

 

entname.

 

*/

 

QPXXCALL(entname,

 

envid,

 

&envpgm,

 

parm1,

 

parm1);

   

Mixing

 

Recursive

 

and

 

Non-Recursive

 

Calls

 

Extra

 

care

 

is

 

required

 

when

 

one

 

language

 

uses

 

recursive

 

calls

 

and

 

another

 

uses

 

non-recursive

 

calls.

 

For

 

example:

 

v

   

An

 

active

 

ILE

 

C++

 

procedure

 

(that

 

is,

 

one

 

which

 

is

 

on

 

the

 

call

 

stack)

 

can

 

be

 

called

 

recursively

 

(that

 

is,

 

before

 

it

 

returns

 

control

 

to

 

its

 

caller).

 

v

   

An

 

ILE

 

COBOL

 

procedure

 

must

 

be

 

called

 

with

 

a

 

non-recursive

 

call.

 

In

 

other

 

words,

 

an

 

ILE

 

COBOL

 

procedure

 

which

 

is

 

on

 

the

 

call

 

stack

 

cannot

 

be

 

called

 

until

 

it

 

returns

 

control

 

to

 

its

 

caller

 

and

 

is

 

removed

 

from

 

the

 

stack.

Do

 

not

 

use

 

an

 

ILE

 

C++

 

procedure

 

to

 

call

 

an

 

ILE

 

COBOL

 

procedure

 

that

 

might

 

call

 

another,

 

already

 

active,

 

ILE

 

COBOL

 

procedure.

 

Figure

 

233

 

on

 

page

 

400

 

illustrates

 

that

 

such

 

a

 

call

 

does

 

not

 

work.

 

Assume

 

that

 

procedure

 

A

 

is

 

an

 

ILE

 

C++

 

procedure,

 

procedures

 

B

 

and

 

C

 

are

 

ILE

 

COBOL

 

procedures,

 

and

 

that

 

these

 

procedures

 

are

 

in

 

the

 

same

 

program.

 

If

 

procedure

 

A

 

calls

 

procedure

 

B,

 

then

 

procedure

 

B

 

can

 

call

 

neither

 

procedure

 

A

 

nor

 

B.

 

If

 

procedure

 

B

 

returns

 

control

 

to

 

procedure

 

A,

 

and

 

if

 

procedure

 

A

 

then

 

calls

 

procedure

 

C,

 

procedure

 

C

 

can

 

call

 

procedure

 

B

 

but

 

not

 

procedure

 

A

 

or

 

C.

    

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

399



Similarly,

 

you

 

cannot

 

call

 

OPM

 

COBOL

 

programs

 

that

 

are

 

already

 

on

 

the

 

call

 

stack.

 

Passing

 

Arguments

 

from

 

an

 

ILE

 

Program

 

to

 

a

 

Non-EPM

 

Program

 

When

 

passing

 

arguments

 

to

 

any

 

program

 

other

 

than

 

an

 

EPM

 

entry

 

point,

 

use

 

the

 

following

 

conventions:

 

v

   

The

 

program

 

name

 

that

 

the

 

ILE

 

C/C++

 

program

 

calls

 

must

 

be

 

in

 

uppercase.

 

You

 

can

 

use

 

the

 

#pragma

 

map

 

directive

 

to

 

map

 

an

 

internal

 

identifier

 

longer

 

than

 

10

 

characters

 

to

 

an

 

OS/400-compliant

 

object

 

name

 

(10

 

characters

 

or

 

less)

 

in

 

your

 

program.

 

v

   

The

 

return

 

code

 

for

 

the

 

program

 

call

 

can

 

be

 

retrieved

 

by

 

declaring

 

the

 

program

 

to

 

return

 

an

 

integer.

 

For

 

example:

  

The

 

value

 

that

 

is

 

returned

 

on

 

the

 

call

 

is

 

the

 

return

 

code

 

for

 

the

 

program

 

call.

 

If

 

the

 

program

 

being

 

called

 

is

 

an

 

ILE

 

program,

 

this

 

return

 

code

 

can

 

also

 

be

 

accessed

 

using

 

the

 

_LANGUAGE_RETURN_CODE

 

macro

 

defined

 

in

 

the

 

header

 

file

 

<milib.h>.

 

If

 

the

 

program

 

being

 

called

 

is

 

an

 

EPM

 

or

 

OPM

 

program,

 

use

 

the

 

Retrieve

 

Job

 

Attributes

 

(RTVJOBA)

 

command

 

to

 

access

 

this

 

return

 

code.

 

v

   

If

 

you

 

use

 

the

 

#pragma

 

linkage

 

(PGMNAME,

 

OS)

 

directive,

 

all

 

arguments

 

(except

 

pointers

 

and

 

aggregates)

 

are

 

copied

 

to

 

temporary

 

variables

 

by

 

the

 

compiler.

 

Pointers

 

to

 

the

 

temporary

 

variables

 

are

 

passed

 

to

 

the

 

called

 

program.

 

Non-pointer

 

arguments

 

are

 

passed

 

by

 

value-reference.

  

Value

 

reference

 

(sometimes

 

referred

 

to

 

as

 

by

 

value,

 

indirectly)

 

refers

 

to

 

the

 

parameter

 

passing

 

mechanism

 

where:

 

–

   

A

 

non-pointer

 

value

 

is

 

copied

 

to

 

a

 

temporary

 

variable,

 

and

 

the

 

address

 

of

 

the

 

temporary

 

variable

 

is

 

passed

 

on.

 

The

 

changes

 

that

 

are

 

made

 

to

 

the

 

variable

 

in

 

the

 

called

 

program

 

are

 

not

 

reflected

 

in

 

the

 

calling

 

program.

 

–

   

If

 

the

 

argument

 

you

 

are

 

passing

 

is

 

an

 

aggregate

 

name

 

or

 

a

 

pointer,

 

then

 

the

 

argument

 

is

 

passed

 

directly,

 

and

 

a

 

temporary

 

variable

 

is

 

not

 

created.

 

This

 

means

 

that

 

the

 

data

 

that

 

is

 

refered

 

to

 

by

 

the

 

array

 

or

 

pointer

 

can

 

be

 

changed

 

by

 

the

 

called

 

program.
v

   

If

 

you

 

want

 

to

 

pass

 

arguments

 

by

 

reference,

 

you

 

must

 

use

 

the

 

address

 

of

 

(&)

 

operator.

PROC A PROC A

PROC B PROC C

Call Stack Call Stack

PROC B cannot call PROC A
or PROC B; only PROC C.

PROC C cannot call PROC A
or PROC C; only PROC B.

  

Figure

 

233.

 

ILE

 

C++

 

Procedures

 

Cannot

 

Call

 

Active

 

ILE

 

COBOL

 

Procedures

int

 

PGMNAME(void);

 

#pragma

 

linkage(PGMNAME,

 

OS)

 

Note:

  

The

 

declared

 

function

 

in

 

the

 

ILE

 

source

 

must

 

return

 

either

 

int

 

or

 

void.

 

No

 

other

 

type

 

is

 

allowed.

Figure

 

234.

 

Example

 

of

 

Using

 

the

 

#pragma

 

linkage(PGMNAME,

 

OS)

 

Directive

 

to

 

Retrieve

 

Returned

 

Function

 

Results

  

400

 

ILE

 

C/C++

 

Programmer’s

 

Guide



When

 

passing

 

arguments

 

to

 

an

 

EPM

 

entry

 

point,

 

use

 

the

 

following

 

conventions:

 

v

   

If

 

you

 

have

 

an

 

ILE

 

C

 

program

 

calling

 

an

 

EPM

 

default

 

entry

 

point,

 

then

 

use

 

the

 

#pragma

 

linkage

 

(PGMNAME,

 

OS)

 

directive

 

in

 

your

 

ILE

 

C

 

source

 

to

 

tell

 

the

 

compiler

 

that

 

PGMNAME

 

is

 

an

 

external

 

program,

 

not

 

a

 

bound

 

ILE

 

procedure.

 

v

   

If

 

you

 

have

 

an

 

ILE

 

C

 

program

 

calling

 

an

 

EPM

 

non-default

 

entry

 

point,

 

you

 

must

 

use

 

the

 

EPM

 

API

 

QPXXCALL.

 

QPXXCALL

 

can

 

also

 

be

 

used

 

to

 

call

 

EPM

 

default

 

entry

 

points.

 

Because

 

QPXXCALL

 

is

 

an

 

OPM

 

program,

 

you

 

must

 

use

 

the

 

#pragma

 

linkage

 

(QPXXCALL,

 

OS)

 

directive

 

in

 

your

 

ILE

 

C

 

source.

Passing

 

Arguments

 

from

 

an

 

ILE

 

Program

 

to

 

an

 

EPM

 

Program

 

Typically,

 

an

 

ILE

 

program

 

does

 

not

 

receive

 

any

 

function

 

checks

 

from

 

an

 

EPM

 

program

 

because

 

the

 

ILE

 

program

 

does

 

not

 

monitor

 

for

 

an

 

explicit

 

signal

 

from

 

the

 

raise()

 

function.

 

The

 

EPM

 

environment

 

generates

 

a

 

diagnostic

 

message

 

as

 

a

 

result

 

of

 

the

 

*ESCAPE

 

message

 

generated

 

by

 

the

 

raise()

 

function.

 

When

 

an

 

ILE

 

program

 

calls

 

an

 

EPM

 

C

 

program

 

which

 

implicitly

 

raises

 

a

 

signal

 

(as

 

a

 

result

 

of

 

an

 

*ESCAPE

 

message),

 

the

 

ILE

 

program

 

can

 

monitor

 

for,

 

and

 

handle,

 

the

 

implicit

 

signal

 

raised

 

by

 

the

 

*ESCAPE

 

message.

 

Using

 

a

 

Linkage

 

Specification

 

in

 

a

 

C++

 

Dynamic

 

Program

 

Call

 

You

 

can

 

call

 

OPM,

 

ILE,

 

or

 

EPM

 

programs

 

from

 

a

 

C++

 

program.

 

OPM,

 

ILE

 

or

 

EPM

 

programs

 

can

 

also

 

call

 

a

 

C++

 

program.

    

C++

 

provides

 

a

 

linkage

 

specification

 

to

 

enable

 

dynamic

 

program

 

calls

 

and

 

sharing

 

of

 

data

 

between

 

them.

 

For

 

a

 

syntax

 

diagram

 

and

 

additional

 

information,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference.

 

Valid

 

String

 

Literals

 

The

 

″string-literal″

 

is

 

used

 

to

 

specify

 

the

 

linkage

 

associated

 

with

 

a

 

particular

 

function.

 

The

 

string

 

literals

 

used

 

in

 

linkage

 

specifications

 

are

 

case-insensitive.

 

The

 

valid

 

string

 

literals

 

for

 

the

 

linkage

 

specification

 

to

 

call

 

programs

 

are:

 

"OS"

 

OS

 

linkage

 

call

 

"OS

 

nowiden"

 

OS

 

linkage

 

call

 

without

 

widened

 

parameters.

 

See

 

“Specifying

 

that

 

a

 

Function

 

Has

 

External

 

(OS)

 

Linkage”

 

on

 

page

 

404

 

for

 

details.

Linkage

 

Specification

    

If

 

you

 

want

 

a

 

C++

 

program

 

to

 

call

 

an

 

ILE,

 

OPM,

 

or

 

EPM

 

program

 

(*PGM),

 

use

 

the

 

extern

 

"OS"

 

linkage

 

specification

 

in

 

your

 

C++

 

source

 

to

 

tell

 

the

 

compiler

 

that

 

the

 

called

 

program

 

is

 

an

 

external

 

program,

 

not

 

a

 

bound

 

ILE

 

procedure.

 

For

 

example,

 

if

 

you

 

want

 

a

 

C++

 

program

 

to

 

call

 

an

 

OPM

 

COBOL

 

program

 

(*PGM)

 

this

 

extern

 

"OS"

 

linkage

 

specification

 

in

 

your

 

C++

 

source

 

tells

 

the

 

compiler

 

that

 

COBOL_PGM

 

is

 

an

 

external

 

program,

 

not

 

a

 

bound

 

ILE

 

procedure.

 

extern

 

"OS"

 

void

 

COBOL_PGM(void);

 

If

 

you

 

want

 

an

 

ILE,

 

OPM

 

or

 

EPM

 

program

 

to

 

call

 

a

 

C++

 

program,

 

use

 

the

 

ILE,

 

OPM,

 

or

 

EPM

 

language-specific

 

call

 

statement.

   

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

401



Calling

 

Any

 

ILE

 

Program

 

from

 

ILE

 

C/C++

 

Passing

 

Parameters

 

from

 

ILE

 

C++

 

to

 

a

 

Different

 

High-Level

 

Language

 

To

 

share

 

data

 

between

 

programs

 

(or

 

between

 

procedures),

 

you

 

need

 

to

 

pass

 

parameters

 

which

 

both

 

programs

 

can

 

use

 

to

 

the

 

called

 

program

 

or

 

procedure.

 

In

 

C++,

 

you

 

use

 

the

 

linkage

 

specification

 

to

 

tell

 

the

 

compiler

 

which

 

parameter

 

passing

 

convention

 

to

 

use

 

on

 

the

 

external

 

call.

    

When

 

passing

 

parameters

 

from

 

C++

 

to

 

a

 

different

 

high-level

 

language

 

(HLL)

 

consider:

 

v

   

Parameter

 

passing

 

style

 

of

 

the

 

HLLs

  

Each

 

HLL

 

has

 

its

 

own

 

way

 

of

 

passing

 

parameters.

 

Parameters

 

can

 

be

 

passed

 

as:

 

–

   

A

 

pointer

 

to

 

the

 

value

 

–

   

A

 

pointer

 

to

 

a

 

copy

 

of

 

the

 

value

 

–

   

The

 

value

 

itself

C++

 

passes

 

parameters

 

in

 

all

 

three

 

ways.

 

For

 

information

 

on

 

these

 

styles,

 

see

 

“Using

 

Default

 

Parameter

 

Passing

 

Styles”

 

on

 

page

 

406.

 

v

   

Interlanguage

 

data

 

compatibility

  

Different

 

HLLs

 

support

 

different

 

ways

 

of

 

representing

 

data.

 

Pass

 

only

 

parameters

 

which

 

have

 

a

 

data

 

type

 

common

 

to

 

the

 

calling

 

and

 

called

 

program

 

or

 

procedure.

 

If

 

you

 

are

 

not

 

sure

 

of

 

the

 

exact

 

format

 

of

 

the

 

data

 

that

 

is

 

passed

 

to

 

your

 

program,

 

you

 

may

 

specify

 

to

 

the

 

users

 

of

 

your

 

procedure

 

that

 

an

 

operational

 

descriptor

 

can

 

be

 

passed

 

to

 

provide

 

additional

 

information

 

regarding

 

the

 

format

 

of

 

the

 

passed

 

parameters.

 

For

 

more

 

information,

 

see

 

and

 

“Using

 

Operational

 

Descriptors

 

to

 

Pass

 

Parameters

 

of

 

Unknown

 

Data

 

Type”

 

on

 

page

 

407.

Using

 

Different

 

Linkage

 

Specifications

 

Table

 

20

 

shows

 

the

 

effect

 

of

 

using

 

different

 

linkage

 

types

 

when

 

passing

 

parameters:

  

Table

 

20.

 

Effects

 

of

 

Various

 

Linkage

 

Specifications

 

Linkage

 

Name

 

Mangled

 

Parameter

 

Passing

 

Parameter

 

Widening

 

Comments

 

"C++"

 

Yes

 

C++

 

No

 

This

 

is

 

the

 

default.

 

"C"

 

No

 

C++

 

Yes

 

Used

 

to

 

call

 

a

 

function

 

(procedure)

 

written

 

in

 

ILE

 

C.

 

"C

 

nowiden"

 

No

 

C++

 

No

 

Used

 

to

 

call

 

a

 

function

 

(procedure)

 

written

 

in

 

ILE

 

C.

 

"OS"

 

No

 

OS

 

Yes

 

Used

 

to

 

call

 

an

 

external

 

program

 

written

 

in

 

any

 

OPM/EPM/ILE

 

language.

 

"OS

 

nowiden"

 

No

 

OS

 

No

 

Used

 

to

 

call

 

an

 

external

 

program

 

written

 

in

 

any

 

OPM/EPM/ILE

 

language.

   

402

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Table

 

20.

 

Effects

 

of

 

Various

 

Linkage

 

Specifications

 

(continued)

 

Linkage

 

Name

 

Mangled

 

Parameter

 

Passing

 

Parameter

 

Widening

 

Comments

 

"RPG"

 

No

 

OS

 

No

 

Used

 

to

 

call

 

a

 

procedure

 

written

 

in

 

ILE

 

RPG.

 

Parameters

 

with

 

address

 

types

 

(pointer

 

or

 

reference)

 

are

 

passed

 

by

 

value

 

directly.

 

All

 

other

 

parameters

 

are

 

passed

 

by

 

value

 

indirectly.

 

"COBOL"

 

No

 

OS

 

No

 

Used

 

to

 

call

 

a

 

procedure

 

written

 

in

 

ILE

 

COBOL.

 

Parameters

 

with

 

address

 

types

 

(pointer

 

or

 

reference)

 

are

 

passed

 

by

 

value

 

directly.

 

All

 

other

 

parameters

 

are

 

passed

 

by

 

value

 

indirectly.

 

"CL"

 

No

 

OS

 

No

 

Used

 

to

 

call

 

a

 

procedure

 

written

 

in

 

ILE

 

CL.

 

Parameters

 

with

 

address

 

types

 

(pointer

 

or

 

reference)

 

are

 

passed

 

by

 

value

 

directly.

 

All

 

other

 

parameters

 

are

 

passed

 

by

 

value

 

indirectly.

 

"ILE"

 

No

 

OS

 

Yes

 

Used

 

to

 

call

 

a

 

procedure

 

written

 

in

 

an

 

ILE

 

language.

 

Identical

 

to

 

RPG,

 

COBOL,

 

and

 

CL

 

specifications.

 

If

 

the

 

particular

 

language

 

in

 

which

 

the

 

function

 

was

 

written

 

is

 

unknown

 

to

 

the

 

programmer,

 

use

 

this

 

linkage.

 

If

 

you

 

have

 

C

 

code

 

that

 

uses

 

the

 

#pragma

 

argument

 

directive

 

and

 

you

 

plan

 

to

 

port

 

this

 

code

 

to

 

C++

 

then

 

use

 

the

 

extern

 

"ILE"

 

linkage

 

specification.

 

"ILE

 

nowiden"

 

No

 

OS

 

No

 

Used

 

to

 

call

 

a

 

procedure

 

written

 

in

 

an

 

ILE

 

language.

 

"VREF"

 

No

 

OS

 

Yes

 

Used

 

to

 

call

 

a

 

procedure

 

written

 

in

 

an

 

ILE

 

language.

 

Parameters

 

are

 

passed

 

by

 

value

 

indirectly.

 

"VREF

 

nowiden"

 

No

 

OS

 

No

 

Used

 

to

 

call

 

a

 

procedure

 

written

 

in

 

an

 

ILE

 

language.

 

Parameters

 

are

 

passed

 

by

 

value

 

indirectly.

   

Specifying

 

that

 

a

 

Function

 

Has

 

ILE

 

Linkage:

   

The

 

extern

 

keyword

 

followed

 

by

 

the

 

string

 

literals

 

"RPG",

 

"COBOL",

 

or

 

"CL"

 

are

 

used

 

to

 

specify

 

that

 

the

 

function

 

has

 

"ILE"

 

linkage.

 

These

 

string

 

literals

 

perform

 

the

 

same

 

function

 

as

 

the

 

#pragma

 

argument

 

directive

 

in

 

ILE

 

C.

 

The

 

"VREF"

 

linkage

 

also

 

performs

 

the

 

same

 

as

 

the

 

VREF

 

parameter

 

on

 

the

 

#pragma

 

argument

 

directive.

Note:

  

For

 

more

 

information

 

on

 

the

 

#pragma

 

argument

 

directive,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference.

 

Specifying

 

ILE,

 

CL,

 

COBOL,

 

and

 

RPG

 

Linkage:

   

Specifying

 

an

 

ILE,

 

CL,

 

COBOL,

 

or

 

RPG

 

linkage

 

for

 

a

 

function

 

tells

 

the

 

compiler:

 

v

   

Arguments

 

passed

 

as

 

values

 

or

 

non-pointer

 

arguments

 

are

 

copied

 

to

 

temporary

 

variables

 

and

 

the

 

addresses

 

of

 

the

 

temporary

 

variables

 

are

 

passed

 

to

 

the

 

called

 

procedure.

   

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

403



v

   

Pointer

 

arguments

 

are

 

passed

 

directly

 

to

 

the

 

called

 

procedure.

 

v

   

If

 

extern

 

"ILE

 

nowiden"

 

is

 

used,

 

then

 

the

 

parameters

 

and

 

return

 

value

 

passed

 

between

 

programs

 

and

 

procedures

 

are

 

not

 

widened;

 

specifying

 

any

 

other

 

ILE

 

linkage

 

widens

 

the

 

parameters.

 

v

   

Function

 

names

 

are

 

not

 

mangled.

Specifying

 

VREF

 

Linkage:

   

Specifying

 

a

 

VREF

 

linkage

 

is

 

identical

 

to

 

specifying

 

an

 

ILE

 

linkage

 

except

 

that

 

pointer

 

parameters

 

are

 

stored

 

in

 

a

 

temporary

 

variable

 

and

 

the

 

address

 

of

 

the

 

temporary

 

variable

 

is

 

passed

 

as

 

the

 

actual

 

argument.

 

Specifying

 

that

 

a

 

Function

 

Has

 

External

 

(OS)

 

Linkage:

   

The

 

extern

 

specifier

 

followed

 

by

 

the

 

string-literal

 

"OS"

 

or

 

the

 

string-literal

 

"OS

 

nowiden"

 

is

 

used

 

to

 

declare

 

external

 

programs.

 

These

 

programs

 

may

 

then

 

be

 

called

 

in

 

the

 

same

 

way

 

as

 

a

 

regular

 

function.

 

When

 

an

 

OS

 

linkage

 

function

 

is

 

called

 

from

 

a

 

C++

 

program,

 

the

 

compiler

 

generates

 

code

 

and

 

performs

 

the

 

following

 

tasks

 

in

 

sequence:

 

1.

   

If

 

extern

 

"OS"

 

is

 

used,

 

then

 

the

 

parameters

 

and

 

return

 

value

 

are

 

widened.

  

If

 

extern

 

"OS

 

nowiden"

 

is

 

used,

 

then

 

the

 

parameters

 

and

 

return

 

value

 

passed

 

between

 

programs

 

are

 

not

 

widened.

 

2.

   

Parameters

 

that

 

are

 

passed

 

by

 

value

 

are

 

copied

 

to

 

temporary

 

variables

 

and

 

the

 

addresses

 

of

 

the

 

temporary

 

variables

 

are

 

passed

 

to

 

the

 

called

 

program.

  

If

 

a

 

temporary

 

variable

 

is

 

created

 

for

 

a

 

structure,

 

the

 

temporary

 

variable

 

has

 

the

 

same

 

structure

 

and

 

information

 

as

 

the

 

struct

 

parameter

 

passed.

 

3.

   

Parameters

 

that

 

were

 

passed

 

by

 

reference

 

are

 

still

 

passed

 

by

 

reference.

 

4.

   

Arrays

 

and

 

pointers

 

are

 

passed

 

by

 

reference.

 

5.

   

If

 

the

 

argument

 

you

 

are

 

passing

 

is

 

an

 

array

 

name

 

or

 

a

 

pointer,

 

then

 

the

 

argument

 

is

 

passed

 

directly,

 

and

 

a

 

temporary

 

variable

 

is

 

not

 

created.

 

The

 

data

 

referenced

 

by

 

the

 

array

 

or

 

pointer

 

can

 

be

 

changed

 

by

 

the

 

called

 

program.

 

6.

   

The

 

function

 

name

 

is

 

not

 

mangled.

The

 

program

 

name

 

that

 

the

 

C++

 

dynamic

 

program

 

calls

 

must

 

be

 

in

 

uppercase.

 

You

 

can

 

use

 

the

 

#pragma

 

map

 

directive

 

to

 

map

 

an

 

internal

 

identifier

 

longer

 

than

 

10

 

characters

 

to

 

an

 

OS/400-compliant

 

object

 

name

 

(10

 

characters

 

or

 

less)

 

in

 

your

 

program.

 

See

 

“Renaming

 

Programs

 

and

 

Procedures”

 

on

 

page

 

364.

 

The

 

return

 

code

 

for

 

the

 

dynamic

 

program

 

call

 

can

 

be

 

retrieved

 

by

 

declaring

 

the

 

program

 

to

 

return

 

an

 

integer:

 

extern

 

"OS"

 

int

 

PGMNAME(void);

 

The

 

value

 

returned

 

on

 

the

 

call

 

is

 

the

 

return

 

code

 

for

 

the

 

dynamic

 

program

 

call.

 

If

 

the

 

program

 

being

 

called

 

is

 

a

 

C++

 

program,

 

this

 

return

 

code

 

can

 

be

 

accessed

 

using

 

the

 

_LANGUAGE_RETURN_CODE

 

macro

 

defined

 

in

 

the

 

header

 

file

 

<milib.h>.

 

A

 

C++

 

program

 

returns

 

four

 

bytes

 

in

 

the

 

_LANGUAGE_RETURN_CODE.

 

If

 

the

 

program

 

being

 

called

 

is

 

an

 

EPM

 

or

 

OPM

 

program,

 

this

 

return

 

code

 

can

 

be

 

accessed

 

using

 

the

 

iSeries

 

Retrieve

 

Job

 

Attributes

 

(RTVJOBA)

 

command.

 

When

 

a

 

function

 

is

 

called

 

from

 

an

 

OS

 

linkage

 

function

 

pointer,

 

the

 

compiler

 

generates

 

the

 

same

 

code

 

sequence

 

it

 

does

 

when

 

calling

 

an

 

OS

 

linkage

 

function.

 

Non-pointer

 

arguments

 

are

 

passed

 

by

 

value

 

reference,

 

and

 

changes

 

made

 

to

 

the

 

variables

 

in

 

the

 

called

 

program

 

are

 

not

 

reflected

 

in

 

the

 

calling

 

C++

 

program.

   

404

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Specifying

 

that

 

a

 

Function

 

Has

 

C

 

Linkage:

   

Specifying

 

C

 

linkage

 

for

 

a

 

function

 

tells

 

the

 

compiler:

 

v

   

Parameters

 

are

 

passed

 

using

 

C++

 

conventions

 

v

   

Parameters

 

for

 

functions

 

declared

 

with

 

extern

 

"C"

 

are

 

widened

 

v

   

The

 

function

 

name

 

is

 

not

 

mangled

The

 

extern

 

keyword

 

followed

 

by

 

the

 

string-literal

 

"C"

 

or

 

the

 

string-literal

 

"C

 

nowiden"

 

is

 

used

 

to

 

specify

 

that

 

the

 

function

 

is

 

declared

 

to

 

have

 

"C"

 

linkage

 

instead

 

of

 

"C++"

 

linkage.

 

Using

 

Different

 

Linkage

 

Specifications

 

(C++

 

Only)

    

When

 

using

 

the

 

extern

 

″literal″

 

statement,

 

consider

 

that:

 

v

   

The

 

string-literal

 

parameter

 

is

 

case-insensitive.

 

For

 

example,

 

extern

 

"OS

 

NOWIDEN",

 

extern

 

"OS

 

nowiden",

 

and

 

extern

 

"os

 

NoWiden",

 

although

 

different

 

in

 

case

 

are

 

all

 

handled

 

in

 

the

 

same

 

way.

 

v

   

The

 

name

 

of

 

the

 

function

 

must

 

follow

 

the

 

naming

 

conventions

 

of

 

the

 

other

 

language.

 

For

 

example,

 

for

 

OS

 

linkage

 

specifications,

 

the

 

program

 

name

 

and

 

all

 

iSeries

 

objects

 

must

 

be

 

uppercase.

 

See

 

“Renaming

 

Programs

 

and

 

Procedures”

 

on

 

page

 

364.

 

v

   

A

 

type

 

definition

 

of

 

a

 

function

 

can

 

be

 

declared

 

to

 

have

 

linkage

 

information.

 

After

 

the

 

type

 

definition

 

is

 

declared,

 

it

 

can

 

be

 

used

 

to

 

declare

 

functions

 

of

 

a

 

particular

 

linkage.

 

The

 

type

 

definition

 

declaration

 

must

 

be

 

enclosed

 

by

 

braces:

 

{}.

 

v

   

A

 

function

 

cannot

 

be

 

assigned

 

directly

 

to

 

a

 

pointer

 

to

 

a

 

function

 

with

 

a

 

different

 

linkage.

 

A

 

type

 

cast

 

may

 

be

 

used

 

to

 

make

 

this

 

assignment

 

possible.

 

Type

 

casting

 

helps

 

you

 

eliminate

 

parameter

 

mismatching

 

problems

 

without

 

excess

 

constraint.

 

See

 

“Type

 

Casting

 

to

 

Override

 

a

 

Function

 

without

 

Overriding

 

Linkage”

 

on

 

page

 

408.

 

v

   

Functions

 

that

 

take

 

function

 

pointers

 

as

 

parameters

 

may

 

not

 

be

 

overloaded

 

based

 

on

 

the

 

linkage

 

of

 

the

 

function

 

pointers,

 

as

 

shown

 

in

 

the

 

following

 

code

 

sample:

 

//

 

Using

 

the

 

typedef

 

declarations

 

above

 

void

 

foo

 

(OS);

 

void

 

foo

 

(CPP);

  

//

 

undefined

 

behavior,

 

foo

 

already

 

declared

 

v

   

Functions

 

that

 

are

 

defined

 

with

 

non-C++

 

linkage

 

specifications

 

accept

 

parameters

 

using

 

the

 

appropriate

 

convention

 

for

 

that

 

linkage.

 

You

 

do

 

not

 

need

 

to

 

widen

 

parameters,

 

as

 

show

 

in

 

the

 

following

 

code

 

sample:

 

extern

 

"C"

 

void

 

foo

 

(char);

  

//

 

chars

 

are

 

widened

 

in

 

C

 

//

 

In

 

another

 

compilation

 

unit

 

we

 

then

 

have

 

extern

 

"C"

 

void

 

foo

 

(char

 

c)

 

//

 

this

 

parameter

 

is

 

correctly

 

widened

 

{

     

//

 

implementation

 

of

 

foo

 

(char);

 

}

 

v

    

Attempting

 

to

 

define

 

a

 

function

 

with

 

either

 

extern

 

"OS",

 

extern

 

"OS

 

nowiden",

 

or

 

extern

 

"builtin"

 

linkage

 

results

 

in

 

undefined

 

behavior,

 

as

 

shown

 

in

 

the

 

following

 

code

 

sample:

 

extern

 

"OS"

 

void

 

FOOPGM

 

(char);

  

//

 

declaration:

 

OK

 

extern

 

"OS"

 

void

 

FOOPGM

 

(char

 

c)

 

//

 

definition:

 

undefined

 

behavior

 

{

     

//

 

implementation

 

of

 

FOOPGM

 

}

 

v

   

The

 

declaration

 

of

 

a

 

function

 

pointer

 

is:

   

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

405



extern

 

"OS"

 

{

   

typedef

 

void

 

(*fp)

 

(char);

 

}

 

fp

 

FOO;

 

Note:

  

Function

 

FOO()

 

is

 

declared

 

to

 

be

 

a

 

function

 

pointer

 

of

 

type

 

fp.

 

v

   

The

 

widening

 

rules

 

for

 

all

 

the

 

linkage

 

specifications

 

shown

 

in

 

Table

 

20

 

on

 

page

 

402

 

are:

 

–

   

Any

 

data

 

type

 

that

 

is

 

smaller

 

than

 

int

 

is

 

widened

 

to

 

int

 

–

   

float

 

is

 

widened

 

to

 

double

 

–

   

Address

 

and

 

Data

 

pointers

 

are

 

not

 

widened

 

–

   

struct

 

has

 

the

 

same

 

structure

 

and

 

information

 

as

 

the

 

struct

 

parameter

 

passed
v

   

Data

 

objects

 

can

 

be

 

declared

 

inside

 

the

 

extern

 

linkage

 

declaration:

 

extern

 

"OS"

 

{

      

int

 

a1;

 

}

 

extern

 

"OS"

 

int

 

a2;

 

Note:

  

Variable

 

a1

 

is

 

defined

 

while

 

variable

 

a2

 

is

 

only

 

declared.

 

v

   

Functions

 

FOO1(),

 

FOO2(),

 

and

 

FOO3()

 

are

 

all

 

declared

 

as

 

OS

 

linkage

 

functions.

 

Functions

 

FOO1()

 

and

 

FOO2()

 

are

 

declared

 

by

 

using

 

the

 

declaration-list

 

syntax.

 

FOO3()

 

is

 

declared

 

by

 

using

 

the

 

simple

 

declaration.

 

extern

 

"OS"

 

{

     

void

 

FOO1

 

(char,

 

char

 

*);

     

void

 

FOO2

 

(int,

 

int

 

*);

 

}

 

extern

 

"OS"

 

int

 

FOO3

 

(double,

 

double

 

*);

 

v

   

In

 

C++

 

linkage

 

specifications,

 

function

 

identifiers

 

are

 

mangled.

 

In

 

all

 

other

 

linkage

 

specifications,

 

all

 

function

 

identifiers

 

are

 

identical

 

to

 

the

 

exported

 

names

 

unless

 

changed

 

by

 

the

 

#pragma

 

map

 

directive.

Note:

  

For

 

the

 

syntax

 

and

 

description,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference.

Using

 

Default

 

Parameter

 

Passing

 

Styles

 

To

 

pass

 

parameters

 

between

 

ILE

 

C/C++

 

and

 

other

 

ILE

 

languages,

 

especially

 

ILE

 

C,

 

ILE

 

RPG,

 

or

 

ILE

 

COBOL,

 

you

 

must

 

ensure

 

that

 

the

 

other

 

procedure

 

is

 

set

 

up

 

to

 

accept

 

data

 

by

 

reference.

 

ILE

 

C++

 

uses

 

the

 

same

 

calling

 

mechanisms

 

for

 

calling

 

any

 

ILE

 

HLL

 

program

 

or

 

procedure:

 

extern

 

linkage

 

specification.

 

ILE

 

C++

 

passes

 

and

 

receives

 

parameters

 

using

 

three

 

passing

 

methods:

 

By

 

value,

 

directly

 

The

 

value

 

of

 

the

 

data

 

object

 

is

 

placed

 

directly

 

into

 

the

 

argument

 

list.

 

By

 

value,

 

indirectly

 

The

 

value

 

of

 

the

 

data

 

object

 

is

 

copied

 

to

 

a

 

temporary

 

location.

 

The

 

address

 

of

 

the

 

copy,

 

a

 

pointer,

 

is

 

placed

 

into

 

the

 

argument

 

list.

 

By

 

reference

 

A

 

pointer

 

to

 

the

 

data

 

object

 

is

 

placed

 

into

 

the

 

argument

 

list.

 

Changes

 

made

 

by

 

the

 

called

 

procedure

 

to

 

the

 

argument

 

are

 

reflected

 

in

 

the

 

calling

 

procedure.

  

406

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Other

 

ILE

 

languages

 

may

 

have

 

different

 

methods

 

of

 

passing

 

data.

 

See

 

Table

 

21.

  

Table

 

21.

 

Default

 

Argument

 

Passing

 

Style

 

for

 

ILE

 

Programs

 

ILE

 

HLL

 

Pass

 

Argument

 

Receive

 

Argument

 

ILE

 

C

 

by

 

value,

 

directly

 

or

 

by

 

reference

 

by

 

value,

 

directly

 

or

 

by

 

reference

 

ILE

 

C++

 

by

 

value,

 

directly

 

or

 

by

 

value,

 

indirectly

 

or

 

by

 

reference

 

by

 

value,

 

directly

 

or

 

by

 

reference

 

ILE

 

COBOL

 

by

 

reference

 

or

 

by

 

value,

 

indirectly

 

by

 

reference

 

or

 

by

 

value,

 

indirectly

 

ILE

 

RPG

 

by

 

reference

 

by

 

reference

 

ILE

 

CL

 

by

 

reference

 

by

 

reference

    

Table

 

22

 

shows

 

the

 

common

 

parameter

 

passing

 

methods

 

for

 

the

 

ILE

 

procedures.

  

Table

 

22.

 

Default

 

Argument

 

Passing

 

Style

 

for

 

ILE

 

Procedures

 

ILE

 

HLL

 

Pass

 

Argument

 

Receive

 

Argument

 

ILE

 

C

 

by

 

value,

 

directly

 

by

 

value,

 

directly

 

ILE

 

C++

 

by

 

value,

 

directly

 

or

 

by

 

value,

 

indirectly

 

or

 

by

 

reference

 

by

 

value,

 

directly

 

or

 

by

 

reference

 

ILE

 

COBOL

 

by

 

reference

 

or

 

by

 

value,

 

indirectly

 

by

 

reference

 

ILE

 

RPG

 

by

 

reference

 

by

 

reference

 

ILE

 

CL

 

by

 

reference

 

by

 

reference

   

Using

 

Operational

 

Descriptors

 

to

 

Pass

 

Parameters

 

of

 

Unknown

 

Data

 

Type

 

To

 

pass

 

a

 

parameter

 

to

 

a

 

procedure

 

even

 

though

 

the

 

data

 

type

 

is

 

not

 

precisely

 

known

 

to

 

the

 

called

 

procedure

 

you

 

can

 

use

 

operational

 

descriptors.

 

Operational

 

descriptors

 

provide

 

descriptive

 

information

 

to

 

the

 

called

 

procedure

 

regarding

 

the

 

form

 

of

 

the

 

argument.

 

This

 

information

 

allows

 

the

 

procedure

 

to

 

properly

 

interpret

 

the

 

passed

 

parameter.

 

Use

 

operational

 

descriptors

 

only

 

when

 

they

 

are

 

expected

 

by

 

the

 

called

 

procedure.

 

Note:

  

For

 

more

 

information

 

on

 

operational

 

descriptors,

 

see:

 

v

   

ILE

 

Concepts

 

v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference

The

 

C++

 

compiler

 

supports

 

operational

 

descriptors

 

for

 

describing

 

null-terminated

 

strings.

 

A

 

character

 

string

 

in

 

C++

 

is

 

defined

 

by:

 

char

 

string_name[n],

 

char

 

*

 

string_name,

 

or

 

string-literal.

 

C++

 

defines

 

a

 

string

 

as

 

a

 

contiguous

 

sequence

 

of

 

characters

 

terminated

 

by

 

and

 

including

 

the

 

first

 

null

 

character.

 

In

 

another

 

language,

 

a

 

string

 

may

 

be

 

defined

 

as

 

consisting

 

of

 

a

 

length

 

specifier

 

and

 

a

 

character

 

sequence.

 

When

 

passing

 

a

 

string

 

from

 

a

 

C++

 

function

 

to

 

a

 

function

 

written

 

in

 

another

 

language,

 

an

 

operational

 

descriptor

 

can

 

be

 

provided

 

with

 

the

 

argument

 

to

 

allow

 

the

 

called

 

function

 

to

 

determine

 

the

 

length

 

and

 

type

 

of

 

the

 

string

 

being

 

passed.

 

To

 

use

 

operational

 

descriptors,

 

you

 

specify

 

a

 

#pragma

 

descriptor

 

directive

 

in

 

your

 

source

 

to

 

identify

 

functions

 

whose

 

arguments

 

have

 

operational

 

descriptors.

 

Operational

 

descriptors

 

are

 

then

 

built

 

by

 

the

 

calling

 

procedure

 

and

 

passed

 

as

 

hidden

 

arguments

 

to

 

the

 

called

 

procedure.

 

For

 

the

 

syntax,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference.

   

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

407



The

 

following

 

examples

 

illustrates

 

the

 

use

 

of

 

operational

 

descriptors

 

in

 

ILE

 

C/C++.

 

They

 

show:

 

v

   

The

 

#pragma

 

descriptor

 

for

 

func1()

 

with

 

a

 

#pragma

 

descriptor

 

directive

 

for

 

the

 

function

 

in

 

a

 

header

 

file

 

oper_desc.h.

 

See

 

Figure

 

251

 

on

 

page

 

422.

 

v

   

An

 

ILE

 

C

 

program

 

that

 

calls

 

func1().

 

See

 

Figure

 

252

 

on

 

page

 

423.

 

v

   

The

 

ILE

 

C

 

source

 

code

 

of

 

func1()

 

that

 

contains

 

an

 

ILE

 

API

 

that

 

is

 

used

 

to

 

get

 

information

 

from

 

the

 

operational

 

descriptor.

 

See

 

Figure

 

235.

Example:

 

Calling

 

a

 

Function

 

with

 

Operational

 

Descriptors

 

The

 

following

 

figure

 

shows

 

an

 

ILE

 

C

 

program

 

that

 

calls

 

func1().

 

When

 

the

 

function

 

func1()

 

is

 

called,

 

the

 

compiler

 

generates

 

operational

 

descriptors

 

for

 

the

 

three

 

arguments

 

that

 

are

 

specified

 

on

 

the

 

call.

    

Type

 

Casting

 

to

 

Override

 

a

 

Function

 

without

 

Overriding

 

Linkage

 

To

 

override

 

a

 

function

 

without

 

overriding

 

extern

 

"OS"

 

use

 

a

 

type

 

cast,

 

as

 

shown

 

in

 

Figure

 

236.

   

Passing

 

Arguments

 

from

 

a

 

CL

 

Program

 

to

 

an

 

ILE

 

C++

 

Program

 

Table

 

23

 

shows

 

how

 

arguments

 

are

 

passed

 

from

 

a

 

command

 

line

 

CL

 

call

 

to

 

an

 

ILE

 

C++

 

program.

  

Table

 

23.

 

Arguments

 

Passed

 

from

 

a

 

Command

 

Line

 

CL

 

Call

 

to

 

an

 

ILE

 

C++

 

Program

 

Command

 

Line

 

Argument

 

Argv

 

Array

 

ILE

 

C++

 

Arguments

 

argv[0]

 

"LIB/PGMNAME"

 

argv[1..255]

 

normal

 

parameters

 

#include

 

"oper_desc.h"

 

...

 

main()

 

{

    

char

  

a[5]

 

=

 

{’s’,

 

’t’,

 

’u’,

 

’v’,

 

’\0’};

    

char

 

*c;

    

c

 

=

 

"EFGH";

    

...

    

func1(a,

 

"ABCD",

 

c);

 

}

 

Figure

 

235.

 

ILE

 

C

 

Source

 

to

 

Call

 

a

 

Function

 

with

 

Operational

 

Descriptors

extern

 

"ILE"

 

{

     

typedef

 

void

 

(*ILE)

 

();

 

}

 

extern

 

"C++"

 

{

     

typedef

 

void

 

(*CPP)

 

();

 

}

 

ILE

 

pILE;

 

CPP

 

pCPP

 

=

 

(CPP)

 

pILE;

 

Figure

 

236.

 

Type

 

Cast

 

to

 

Override

 

a

 

Function

 

without

 

Overriding

 

Linkage.

   

408

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Table

 

23.

 

Arguments

 

Passed

 

from

 

a

 

Command

 

Line

 

CL

 

Call

 

to

 

an

 

ILE

 

C++

 

Program

 

(continued)

 

Command

 

Line

 

Argument

 

Argv

 

Array

 

ILE

 

C++

 

Arguments

 

’123.4’

 

argv[1]

 

"123.4"

 

123.4

 

argv[2]

 

__D("0000000123.40000")

 

’Hi’

 

argv[3]

 

"Hi"

 

Lo

 

argv[4]

 

"LO"

 

’1’

 

argv[5]

 

"1"

    

A

 

CL

 

character

 

array

 

is

 

not

 

null-terminated

 

when

 

it

 

is

 

passed

 

to

 

another

 

program.

   

A

 

C++

 

program

 

that

 

receives

 

such

 

an

 

argument

 

from

 

a

 

CL

 

program

 

should

 

not

 

expect

 

the

 

strings

 

to

 

be

 

null-terminated.

 

You

 

can

 

use

 

the

 

QCAPEXC

 

API

 

to

 

ensure

 

that

 

all

 

the

 

arguments

 

are

 

null-terminated.

 

How

 

CL

 

Constants

 

Are

 

Passed

 

to

 

an

 

ILE

 

C++

 

Program

 

Table

 

24

 

shows

 

how

 

CL

 

constants

 

are

 

passed

 

from

 

a

 

compiled

 

CL

 

program

 

to

 

an

 

ILE

 

C++

 

program.

  

Table

 

24.

 

CL

 

Constants

 

Passed

 

from

 

a

 

Compiled

 

CL

 

Program

 

to

 

an

 

ILE

 

C++

 

Program

 

Compile

 

CL

 

Program

 

Argument

 

Argv

 

Array

 

ILE

 

C++

 

Arguments

 

argv[0]

 

"LIB/PGMNAME"

 

argv[1..255]

 

normal

 

parameters

 

’123.4’

 

argv[1]

 

"123.4"

 

123.4

 

argv[2]

 

__D("0000000123.40000")

 

’Hi’

 

argv[3]

 

"Hi"

 

Lo

 

argv[4]

 

"LO"

 

’1’

 

argv[5]

 

"1"

    

A

 

command

 

processing

 

program

 

(CPP)

 

passes

 

CL

 

constants

 

as

 

defined

 

in

 

Table

 

24.

 

You

 

can

 

create

 

your

 

own

 

CL

 

command

 

with

 

the

 

Create

 

Command

 

(CRTCMD)

 

command

 

and

 

define

 

an

 

ILE

 

C++

 

program

 

as

 

the

 

command

 

processing

 

program.

 

How

 

CL

 

Variables

 

Are

 

Passed

 

to

 

an

 

ILE

 

C++

 

Program

 

Table

 

25

 

shows

 

how

 

CL

 

variables

 

are

 

passed

 

from

 

a

 

compiled

 

CL

 

program

 

to

 

an

 

ILE

 

C++

 

program.

 

All

 

arguments

 

are

 

passed

 

by

 

reference

 

from

 

CL

 

to

 

C++.

  

Table

 

25.

 

CL

 

Variables

 

Passed

 

from

 

a

 

Compiled

 

CL

 

Program

 

to

 

an

 

ILE

 

C++

 

Program

 

CL

 

Variables

 

C++

 

Arguments

 

DCL

 

VAR(&v)

 

TYPE(*CHAR)

 

LEN(10)

 

VALUE(’123.4’)

 

"123.4"

 

DCL

 

VAR(&d)

 

TYPE(*DEC)

 

LEN(10

 

1)

 

VALUE(123.4)

 

__D("0000000123.40000")

 

DCL

 

VAR(&h)

 

TYPE(*CHAR)

 

LEN(10)

 

VALUE(’Hi’)

 

"Hi"

 

DCL

 

VAR(&i)

 

TYPE(*CHAR)

 

LEN(10)

 

VALUE(Lo)

 

"LO"

 

DCL

 

VAR(&j)

 

TYPE(*LGL)

 

LEN(1)

 

VALUE(’1’)

 

"1"

    

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

409



CL

 

variables

 

and

 

numeric

 

literals

 

are

 

not

 

passed

 

to

 

an

 

ILE

 

C++

 

program

 

with

 

null-terminated

 

strings.

 

Character

 

literals

 

and

 

logical

 

literals

 

are

 

passed

 

as

 

null-terminated

 

strings

 

but

 

are

 

not

 

padded

 

with

 

blanks.

 

Numeric

 

literals

 

such

 

as

 

packed

 

decimals

 

are

 

passed

 

as

 

15,5

 

(8

 

bytes).

 

CL

 

Example:

 

a

 

Multi-Language

 

ILE

 

Application

 

This

 

program

 

shows

 

you

 

some

 

typical

 

steps

 

in

 

creating

 

a

 

program

 

that

 

uses

 

several

 

ILE

 

programming

 

languages.

 

Program

 

Description

 

This

 

program

 

is

 

an

 

ILE

 

version

 

of

 

the

 

small

 

transaction-processing

 

program

 

described

 

in

 

the

 

“ILE-OPM

 

CL

 

Example:

 

Calling

 

OPM,

 

COBOL,

 

and

 

RPG

 

Programs

 

from

 

an

 

ILE

 

C++

 

Program”

 

on

 

page

 

442.

 

Program

 

Structure

 

The

 

program

 

consists

 

of

 

the

 

following

 

components:

 

v

   

A

 

CL

 

command

 

T2123CM3

 

that

 

accepts

 

the

 

user

 

input

 

and

 

passes

 

it

 

to

 

an

 

ILE

 

CL

 

program

 

v

   

An

 

ILE

 

CL

 

program

 

T2123CL3

 

that

 

processes

 

the

 

input

 

and

 

passes

 

it

 

to

 

an

 

ILE

 

program

 

v

   

An

 

ILE

 

program

 

T2123ICB

 

in

 

which

 

the

 

main()

 

function

 

of

 

a

 

C++

 

module

 

T2123ICB

 

calls

 

a

 

procedure

 

CalcAndFormat

 

in

 

an

 

ILE

 

COBOL

 

module

 

T2123CB2

 

v

   

A

 

service

 

program

 

T2123SP3,

 

created

 

from

 

a

 

C++

 

source

 

file

 

t2123icc.cpp,

 

that

 

exports

 

the

 

variable

 

TAXRATE

 

v

   

A

 

service

 

program

 

T2123SP4,

 

created

 

from

 

an

 

ILE

 

RPG

 

module

 

object

 

T2123RP2,

 

that

 

writes

 

an

 

audit

 

trail

 

of

 

all

 

transactions

 

to

 

a

 

file

 

v

   

An

 

externally

 

described

 

file

 

T2123DD2

 

that

 

receives

 

the

 

audit

 

trail

 

data

Figure

 

237

 

shows

 

the

 

ILE

 

structure.

    

User Input

Displays
Output

Command
T2123CM3

ILE CL Program
T2123CL3

ILE C++ Program
T2123ICB

Service Program
T2123SP3

Service Program
T2123SP4

Audit File
T2123DD2

  

Figure

 

237.

 

ILE

 

Structure

  

410

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Program

 

Activation

 

The

 

programs

 

T2123CL3

 

and

 

T2123ICB

 

are

 

created

 

with

 

the

 

CRTPGM

 

default

 

for

 

the

 

ACTGRP

 

parameter,

 

ACTGRP(*NEW).

 

When

 

the

 

CL

 

program

 

calls

 

the

 

ILE

 

C++

 

program,

 

a

 

new

 

activation

 

group

 

is

 

started.

   

The

 

service

 

programs

 

are

 

created

 

with

 

the

 

CRTSRVPGM

 

default

 

for

 

the

 

ACTGRP

 

parameter,

 

ACTGRP(*CALLER).

 

When

 

they

 

are

 

called,

 

they

 

are

 

activated

 

within

 

the

 

activation

 

group

 

of

 

the

 

calling

 

program.

 

Figure

 

238

 

shows

 

the

 

basic

 

object

 

structure

 

used

 

in

 

this

 

example.

 

Application

 

Modules

 

and

 

Files

 

This

 

program

 

includes

 

an

 

externally

 

described

 

file,

 

a

 

CL

 

program,

 

a

 

command

 

prompt,

 

two

 

C++

 

source

 

files,

 

and

 

ILE

 

COBOL

 

source

 

file

 

and

 

an

 

ILE

 

RPG

 

source

 

file.

 

C++

 

Program

 

T2123ICB.CPP

 

The

 

source

 

for

 

the

 

ILE

 

C++

 

program

 

T2123ICB

 

is

 

almost

 

identical

 

to

 

the

 

source

 

shown

 

in

 

“C++

 

Source

 

File

 

T2123IC5”

 

on

 

page

 

444.

 

The

 

difference

 

lies

 

in

 

the

 

linkage

 

specifications

 

used

 

for

 

interlanguage

 

calls.

 

See

 

Figure

 

239

 

on

 

page

 

413.

 

C++

 

Source

 

File

 

T2123ICC

 

The

 

source

 

for

 

the

 

ILE

 

C++

 

module

 

T2123ICC

 

shows

 

the

 

variable

 

TAXRATE

 

is

 

exported

 

from

 

this

 

module

 

to

 

be

 

used

 

by

 

ILE

 

COBOL

 

and

 

ILE

 

RPG

 

procedures.

 

See

 

Figure

 

240

 

on

 

page

 

414.

Note:

  

The

 

choice

 

of

 

language

 

for

 

TAXRATE

 

is

 

C++

 

because

 

weak

 

definitions

 

(EXTERNALs

 

from

 

COBOL)

 

cannot

 

be

 

exported

 

out

 

of

 

a

 

service

 

program

 

to

 

a

 

strong

 

definition

 

language

 

like

 

C

 

or

 

C++,

 

while

 

C

 

or

 

C++

 

can

 

export

 

to

 

COBOL.

CL

 

Program

 

T2123CL3

 

The

 

CL

 

program

 

T2123CL3

 

passes

 

the

 

CL

 

variables

 

item_name,

 

price,

 

quantity,

 

and

 

user_id

 

by

 

reference

 

to

 

an

 

ILE

 

C++

 

program

 

T2123IC5.

 

ILE Program T2123CL3

ILE Program T2123ICB

Module T2123CL3

Module T2123ICB

Module T2123CB2

Service Program T2123SP3

Module T2123ICC

TAXRATE

Service Program T2123SP4

T2123RP2
WriteAuditTrail

Module T2123RP2

New Activation Group

main()

T2123CB2
CalcAndFormat

  

Figure

 

238.

 

Basic

 

Object

 

Structure

  

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

411



CL

 

Command

 

Prompt

 

T2123CM3

 

You

 

use

 

the

 

CL

 

command

 

prompt

 

T2123CM3

 

to

 

prompt

 

the

 

user

 

to

 

enter

 

item

 

names,

 

prices,

 

and

 

quantities

 

that

 

will

 

be

 

used

 

by

 

the

 

C++

 

program

 

T2123ICB.

 

ILE

 

COBOL

 

Module

 

T2123CB2

 

The

 

ILE

 

COBOL

 

procedure

 

in

 

T2123CB2

 

receives

 

pointers

 

to

 

the

 

values

 

of

 

the

 

variables

 

price,

 

quantity

 

and

 

taxrate,

 

and

 

pointers

 

to

 

formatted_cost

 

and

 

success_flag.

 

The

 

CalcAndFormat()

 

function

 

calculates

 

and

 

formats

 

the

 

total

 

cost.

 

Parameters

 

are

 

passed

 

from

 

the

 

ILE

 

C++

 

program

 

to

 

the

 

ILE

 

COBOL

 

procedure

 

to

 

do

 

the

 

tax

 

calculation.

 

See

 

Figure

 

241

 

on

 

page

 

415.

 

ILE

 

RPG

 

Module

 

T2123RP2

 

The

 

ILE

 

RPG

 

module

 

T2123RP2

 

contains

 

the

 

WriteAuditTrail()

 

function

 

which

 

writes

 

the

 

audit

 

trail

 

for

 

the

 

program.

 

See

 

Figure

 

242

 

on

 

page

 

416.

 

Service

 

Program

 

T2123SP3

 

Service

 

program

 

T2123SP3

 

is

 

created

 

from

 

the

 

C++

 

module

 

T2123ICC.

 

It

 

exports

 

the

 

variable

 

TAXRATE.

 

Service

 

Program

 

T2123SP4

 

Service

 

program

 

T2123SP4

 

is

 

created

 

from

 

the

 

ILE

 

RPG

 

module

 

T2123RP2.

 

It

 

exports

 

the

 

procedure

 

T2123RP2.

 

Externally

 

Described

 

File

 

T2123DD2

 

The

 

file

 

T2123DD2

 

contains

 

the

 

audit

 

trail

 

for

 

the

 

C++

 

program

 

T2123ICB.

 

The

 

DDS

 

source

 

defines

 

the

 

fields

 

for

 

the

 

audit

 

file.

 

See

 

“Externally

 

Described

 

File

 

T2123DD2”

 

on

 

page

 

443

 

for

 

the

 

DDS

 

source

 

of

 

the

 

audit

 

file

 

T2123DD2.

C++

 

Source

 

File

 

T2123ICB.CPP:

   

:

     

412

 

ILE

 

C/C++

 

Programmer’s

 

Guide



//

 

This

 

program

 

demonstrates

 

the

 

interlanguage

 

call

 

capability

 

//

 

of

 

an

 

ILE

 

C++

 

program.

 

This

 

program

 

is

 

called

 

by

 

a

 

CL

 

//

 

program

 

that

 

passes

 

an

 

item

 

name,

 

price,

 

quantity

 

and

 

user

 

ID.

 

//

 

A

 

COBOL

 

procedure

 

is

 

called

 

to

 

calculate

 

and

 

format

 

total

 

//

 

cost.

 

An

 

RPG

 

procedure

 

is

 

called

 

to

 

write

 

an

 

audit

 

trail.

   

#include

 

<iostream.h>

 

#include

 

<stdlib.h>

 

#include

 

<string.h>

 

#include

 

<bcd.h>

   

//

 

The

 

#pragma

 

map

 

directive

 

maps

 

a

 

function

 

name

 

to

 

the

 

bound

 

//

 

procedure

 

name

 

so

 

that

 

the

 

purpose

 

of

 

the

 

procedure

 

is

 

clear.

 

//

 

Tell

 

the

 

compiler

 

that

 

there

 

are

 

bound

 

procedure

 

calls

 

and

 

//

 

arguments

 

are

 

to

 

be

 

passed

 

by

 

value-reference.

   

extern

 

"COBOL"

 

void

 

CalcAndFormat(_DecimalT

 

<10,2>,

                                   

short

 

int,

 

char[],

                                   

char

 

*);

   

#pragma

 

map(CalcAndFormat,"T2123CB2")

   

extern

 

"RPG"

 

void

 

WriteAuditTrail(char[],

                                          

char[],

                                          

_DecimalT<10,2>,

                                          

short

 

int,

 

char[]);

   

#pragma

 

map(WriteAuditTrail,"T2123RP2")

   

int

 

main(int

 

argc,

 

char

 

*argv[])

 

{

 

//

 

Incoming

 

arguments

 

from

 

a

 

CL

 

program

 

have

 

been

 

verified

 

by

 

//

 

the

 

*CMD

 

and

 

null-terminated

 

within

 

the

 

CL

 

program.

 

//

 

Incoming

 

arguments

 

are

 

passed

 

by

 

reference

 

from

 

a

 

CL

 

program.

     

char

             

*user_id;

   

char

             

*item_name;

   

short

 

int

        

quantity;

   

_DecimalT<10,

 

2>

 

price;

   

char

                 

formatted_cost[22];

   

//

 

Remove

 

null

 

terminator

 

for

 

RPG

 

program.

 

Item

 

name

 

is

 

null

 

//

 

terminated

 

for

 

C++.

     

char

             

rpg_item_name[20];

   

char

             

null_formatted_cost[22];

   

char

             

success_flag

 

=

 

’N’;

   

int

              

i;

   

//Incoming

 

arguments

 

are

 

all

 

pointers.

      

item_name

 

=

                        

argv[1];

      

price

     

=

 

*((_DecimalT<10,

 

2>

 

*)

 

argv[2]);

      

quantity

  

=

 

*((short

 

*)

            

argv[3]);

      

user_id

   

=

                        

argv[4];

   

//

 

Call

 

the

 

COBOL

 

program

 

to

 

do

 

the

 

calculation,

 

and

 

return

 

a

 

//

 

Y/N

 

flag,

 

and

 

a

 

formatted

 

result.

      

CalcAndFormat(price,

 

quantity,

 

formatted_cost,

 

&success_flag);

      

memcpy(null_formatted_cost,formatted_cost,sizeof(formatted_cost));

 

Figure

 

239.

 

Example

 

of

 

the

 

Interlanguage

 

Call

 

Capabilities

 

of

 

an

 

ILE

 

C++

 

Program

 

(Part

 

1

 

of

 

2)

  

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

413



C++

 

Source

 

File

 

T2123ICC:

    

Note:

  

Weak

 

definitions

 

(EXTERNALs

 

from

 

COBOL)

 

cannot

 

be

 

exported

 

out

 

of

 

a

 

service

 

program

 

to

 

a

 

strong

 

definition

 

language

 

like

 

C

 

or

 

C++,

 

while

 

C

 

or

 

C++

 

can

 

export

 

to

 

COBOL.

 

The

 

choice

 

of

 

language

 

for

 

TAXRATE

 

is

 

C++.

 

ILE

 

COBOL

 

Program

 

T2123CB2:

      

//

 

Null

 

terminate

 

the

 

result.

     

formatted_cost[21]

 

=

 

’\0’;

   

if

 

(success_flag

 

==

 

’Y’)

       

{

         

for

 

(i=0;

 

i<20;

 

i++)

         

{

       

//

 

Remove

 

null

 

terminator

 

for

 

the

 

RPG

 

program.

             

if

 

(*(item_name+i)

 

==

 

’\0’)

           

{

             

rpg_item_name[i]

 

=

 

’

 

’;

           

}

           

else

           

{

            

rpg_item_name[i]

 

=

 

*(item_name+i);

           

}

          

}

   

//

 

Call

 

an

 

RPG

 

program

 

to

 

write

 

audit

 

records.

      

WriteAuditTrail(user_id,

 

rpg_item_name,

 

price,

 

quantity,

                    

formatted_cost);

      

cout

 

<<"plus

 

tax

 

="

 

<<

 

quantity

 

<<

 

item_name

 

<<

 

null_formatted_cost

                         

<<endl

 

<<endl;

      

}

      

else

      

{

        

cout

 

<<"Calculation

 

failed"

 

<<endl;

      

}

 

}

 

Figure

 

239.

 

Example

 

of

 

the

 

Interlanguage

 

Call

 

Capabilities

 

of

 

an

 

ILE

 

C++

 

Program

 

(Part

 

2

 

of

 

2)

//

 

Export

 

the

 

tax

 

rate

 

data.

 

#include

 

<bcd.h>

 

const

 

_DecimalT

 

<2,2>

   

TAXRATE

 

=

 

__D(".15");

 

Figure

 

240.

 

C++

 

Source

 

Code

 

T2123ICC

 

that

 

Exports

 

a

 

Variable

 

for

 

Use

 

by

 

ILE

 

COBOL

 

and

 

ILE

 

RPG

 

Procedures.

   

414

 

ILE

 

C/C++

 

Programmer’s

 

Guide



ILE

 

RPG

 

Module

 

T2123RP2:

           

IDENTIFICATION

 

DIVISION.

        

PROGRAM-ID.

 

T1520CB2

 

INITIAL.

       

******************************************************

       

*

 

parameters:

                                        

*

       

*

   

incoming:

  

PRICE,

 

QUANTITY

                       

*

       

*

   

returns

 

:

  

TOTAL-COST

 

(PRICE*QUANTITY*1.TAXRATE)

 

*

       

*

              

SUCCESS-FLAG.

                         

*

       

*

   

TAXRATE

 

:

  

An

 

imported

 

value.

                    

*

       

******************************************************

        

ENVIRONMENT

 

DIVISION.

         

CONFIGURATION

 

SECTION.

          

SOURCE-COMPUTER.

 

IBM-ISERIES.

          

OBJECT-COMPUTER.

 

IBM-ISERIES.

        

DATA

 

DIVISION.

         

WORKING-STORAGE

 

SECTION.

            

01

  

WS-TOTAL-COST

             

PIC

 

S9(13)V99

       

COMP-3.

          

01

  

WS-TAXRATE

                

PIC

 

S9V99

           

COMP-3

                                                            

VALUE

 

1.

          

01

  

TAXRATE

       

EXTERNAL

    

PIC

 

SV99

            

COMP-3.

           

LINKAGE

 

SECTION.

          

01

  

LS-PRICE

                  

PIC

 

S9(8)V9(2)

      

COMP-3.

          

01

  

LS-QUANTITY

               

PIC

 

S9(4)

           

COMP-4.

          

01

  

LS-TOTAL-COST

             

PIC

 

$$,$$$,$$$,$$$,$$$.99

                                                            

DISPLAY.

          

01

  

LS-OPERATION-SUCCESSFUL

   

PIC

 

X

               

DISPLAY.

          

PROCEDURE

 

DIVISION

  

USING

  

LS-PRICE

                                   

LS-QUANTITY

                                   

LS-TOTAL-COST

                                   

LS-OPERATION-SUCCESSFUL.

           

MAINLINE.

            

MOVE

 

"Y"

 

TO

 

LS-OPERATION-SUCCESSFUL.

            

PERFORM

 

CALCULATE-COST.

            

PERFORM

 

FORMAT-COST.

            

EXIT

 

PROGRAM.

           

CALCULATE-COST.

            

ADD

 

TAXRATE

 

TO

 

WS-TAXRATE.

            

COMPUTE

  

WS-TOTAL-COST

 

ROUNDED

 

=

 

LS-QUANTITY

 

*

                                             

LS-PRICE

 

*

                                             

WS-TAXRATE

                

ON

 

SIZE

 

ERROR

                

MOVE

 

"N"

 

TO

 

LS-OPERATION-SUCCESSFUL

            

END-COMPUTE.

           

FORMAT-COST.

            

MOVE

 

WS-TOTAL-COST

 

TO

 

LS-TOTAL-COST.

 

Figure

 

241.

 

T2123CB2.

   

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

415



Invoking

 

the

 

ILE

 

Program

 

T2123ICB

 

is

 

considered

 

the

 

main

 

program.

 

It

 

runs

 

in

 

the

 

new

 

activation

 

group

 

that

 

is

 

created

 

when

 

the

 

CL

 

program

 

T2123CL3

 

is

 

called.

 

To

 

enter

 

data

 

for

 

the

 

program

 

T2123ICB

 

enter

 

the

 

command:

 

T2123CM2

 

and

 

press

 

F4

 

(Prompt).

 

You

 

can

 

enter

 

the

 

sample

 

data

 

in

 

“Invoking

 

the

 

ILE-OPM

 

Program”

 

on

 

page

 

448.

 

The

 

output

 

is

 

the

 

same

 

as

 

for

 

the

 

OPM

 

version

 

of

 

this

 

program.

 

The

 

physical

 

file

 

T2123DD2

 

contains

 

the

 

same

 

data

 

as

 

shown

 

in

 

the

 

OPM

 

version

 

in

 

“Invoking

 

the

 

ILE-OPM

 

Program”

 

on

 

page

 

448.

 

Example:

 

a

 

User-Defined

 

CL

 

Program

 

that

 

Calls

 

an

 

ILE

 

C++

 

Program

 

Figure

 

246

 

on

 

page

 

418

 

shows

 

how

 

to

 

retrieve

 

a

 

return

 

value

 

from

 

main.

 

A

 

CL

 

command

 

called

 

SQUARE

 

calls

 

an

 

ILE

 

C++

 

program

 

SQITF.

 

The

 

program

 

SQITF

 

calls

 

another

 

ILE

 

C++

 

program

 

called

 

SQ.

 

The

 

program

 

SQ

 

returns

 

a

 

value

 

to

 

program

 

SQITF.

 

You

 

use

 

the

 

CL

 

command

 

prompt

 

SQUARE

 

to

 

enter

 

the

 

number

 

you

 

want

 

to

 

determine

 

the

 

square

 

of

 

for

 

the

 

ILE

 

C++

 

program

 

SQITF:

 

CMD

        

PROMPT(’CALCULATE

 

THE

 

SQUARE’)

 

PARM

       

KWD(VALUE)

 

TYPE(*INT4)

 

RSTD(*NO)

 

RANGE(1

 

+

            

9999)

 

MIN(1)

 

ALWUNPRT(*YES)

 

PROMPT(’Value’

 

1)

 

Note:

  

Returning

 

an

 

integer

 

value

 

from

 

an

 

ILE

 

C++

 

program

 

may

 

impact

 

performance.

 

Programming

 

Tasks

 

1.

   

To

 

create

 

a

 

CL

 

command

 

prompt

 

SQUARE

 

using

 

the

 

source

 

shown

 

below,

 

type:

 

CRTCMD

 

CMD(MYLIB/SQUARE)

 

PGM(MYLIB/SQITF)

 

SRCFILE(MYLIB/QCMDSRC)

       

FT1520DD2

  

O

  

A

 

E

             

DISK

      

D

 

TAXRATE

         

S

              

3P

 

2

 

IMPORT

      

D

 

QTYIN

           

DS

      

D

  

QTYBIN

                 

1

      

4B

 

0

      

C

     

*ENTRY

        

PLIST

      

C

                   

PARM

                    

USER

             

10

      

C

                   

PARM

                    

ITEM

             

20

      

C

                   

PARM

                    

PRICE

            

10

 

2

      

C

                   

PARM

                    

QTYIN

      

C

                   

PARM

                    

TOTAL

            

21

      

C

                   

EXSR

      

ADDREC

      

C

                   

SETON

                                            

LR

      

C

     

ADDREC

        

BEGSR

      

C

                   

MOVEL

     

UDATE

         

DATE

      

C

                   

MOVE

      

QTYBIN

        

QTY

      

C

                   

MOVE

      

TAXRATE

       

TXRATE

      

C

                   

WRITE

     

T1520DD2R

      

C

                   

ENDSR

 

Figure

 

242.

 

ILE

 

RPG

 

Module

 

T2123RP2.

   

416

 

ILE

 

C/C++

 

Programmer’s

 

Guide



You

 

use

 

the

 

CL

 

command

 

SQUARE

 

to

 

enter

 

the

 

value

 

for

 

the

 

ILE

 

C

 

program

 

SQITF.

 

2.

   

To

 

create

 

a

 

program

 

SQIFT

 

using

 

the

 

source

 

shown

 

below,

 

type:

 

CRTBNDC

 

PGM(MYLIB/SQIFT)

 

SRCFILE(MYLIB/QCSRC)

  

3.

   

To

 

create

 

the

 

program

 

SQ

 

using

 

the

 

source

 

shown

 

below,

 

type:

 

CRTBNDC

 

PGM(MYLIB/SQ)

 

SRCFILE(MYLIB/QCSRC)

 

OUTPUT(*PRINT)

   

The

 

program

 

SQ

 

calculates

 

an

 

integer

 

value

 

and

 

returns

 

the

 

value

 

to

 

the

 

calling

 

program

 

SQITF.

 

4.

   

To

 

enter

 

data

 

for

 

the

 

program

 

SQITF,

 

type:

 

SQUARE

 

CMD

        

PROMPT(’CALCULATE

 

THE

 

SQUARE’)

              

PARM

       

KWD(VALUE)

 

TYPE(*INT4)

 

RSTD(*NO)

 

RANGE(1

 

+

                           

9999)

 

MIN(1)

 

ALWUNPRT(*YES)

 

PROMPT(’Value’

 

1)

 

Figure

 

243.

 

SQUARE

 

—

 

CL

 

Command

 

Source

 

to

 

Receive

 

Input

 

Data

/*

 

This

 

program

 

SQITF

 

is

 

called

 

by

 

the

 

command

 

SQUARE.

 

This

          

*/

 

/*

 

program

 

then

 

calls

 

another

 

ILE

 

C

 

program

 

SQ

 

to

 

perform

        

*/

 

/*

 

calculations

 

and

 

return

 

a

 

value.

                                  

*/

 

#include

 

<stdio.h>

 

#include

 

<decimal.h>

 

#pragma

 

linkage(SQ,

 

OS)

      

/*

 

Tell

 

compiler

 

this

 

is

 

external

 

call,

 

*/

                              

/*

 

do

 

not

 

pass

 

by

 

value.

                

*/

 

int

 

SQ(int);

 

int

 

main(int

 

argc,

 

char

 

*argv[])

 

{

  

int

  

*x;

  

int

  

result;

  

x

 

=

 

(int

 

*)

 

argv[1];

  

result

 

=

 

SQ(*x);

  

/*

 

Note

 

that

 

although

 

the

 

argument

 

is

 

passed

 

by

 

value,

 

the

 

compiler

 

*/

  

/*

 

copies

 

the

 

argument

 

to

 

a

 

temporary

 

variable,

 

and

 

the

 

pointer

 

to

  

*/

  

/*

 

the

 

temporary

 

variable

 

is

 

passed

 

to

 

the

 

called

 

program

 

SQ.

       

*/

  

printf("The

 

SQUARE

 

of

 

%d

 

is

 

%d\n",

 

*x,

 

result);

 

}

 

Figure

 

244.

 

SQITF

 

—

 

ILE

 

C

 

Source

 

to

 

Pass

 

an

 

Argument

 

by

 

Value

/*

 

This

 

program

 

is

 

called

 

by

 

another

 

ILE

 

C

 

program

 

called

 

SQITF.

 

*/

 

/*

 

It

 

performs

 

the

 

square

 

calculations

 

and

 

returns

 

a

 

value

 

to

 

SQITF.

 

*/

 

#include

 

<stdio.h>

 

#include

 

<decimal.h>

 

int

 

main(int

 

argc,

 

char

 

*argv[])

 

{

  

int

    

*vin;

  

int

    

vout;

  

vin

  

=

 

(int

 

*)

 

argv[1];

  

vout

 

=

 

(*vin)*(*vin);

  

return(vout);

 

}

 

Figure

 

245.

 

SQ

 

—

 

ILE

 

C

 

Source

 

to

 

Perform

 

Calculations

 

and

 

Return

 

a

 

Value

  

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

417



and

 

press

 

F4

 

(Prompt).

 

5.

   

Type

 

10,

 

and

 

press

 

Enter.

 

The

 

output

 

is

 

as

 

follows:

   

The

 

SQUARE

 

of

 

10

 

is

 

100

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

Source

 

Code

    

Using

 

the

 

CL

 

Command

 

SQUARE

 

to

 

Return

 

the

 

Calculated

 

Value

 

To

 

enter

 

data

 

for

 

the

 

program

 

SQITF:

 

1.

   

Enter

 

the

 

command

 

SQUARE

 

and

 

press

 

F4

 

(Prompt).

 

2.

   

Type

 

10,

 

and

 

press

 

Enter.

The

 

output

 

is:

   

The

 

SQUARE

 

of

 

10

 

is

 

100

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

  

//

 

This

 

program

 

SQITF

 

is

 

called

 

by

 

the

 

command

 

SQUARE.

 

This

  

//

 

program

 

then

 

calls

 

another

 

ILE

 

C++

 

program

 

SQ

 

to

 

perform

  

//

 

calculations

 

and

 

return

 

a

 

value.

    

#include

 

<iostream.h>

    

extern

 

"OS"

 

int

 

SQ(int);

 

//

 

Tell

 

compiler

 

this

 

is

 

external

 

call,

                          

//

 

do

 

not

 

pass

 

by

 

value.

    

int

 

main(int

 

argc,

 

char

 

*argv[])

  

{

   

int

  

*x;

   

int

  

result;

     

x

 

=

 

(int

 

*)

 

argv[1];

     

result

 

=

 

SQ(*x);

     

//

 

Note

 

that

 

although

 

the

 

argument

 

is

 

passed

 

by

 

value,

 

the

 

compiler

   

//

 

copies

 

the

 

argument

 

to

 

a

 

temporary

 

variable,

 

and

 

the

 

pointer

 

to

   

//

 

the

 

temporary

 

variable

 

is

 

passed

 

to

 

the

 

called

 

program

 

SQ.

     

cout

 

<<"The

 

SQUARE

 

of"

 

<<x

 

<<"is"

 

<<result

 

<<endl;

 

}

 

The

 

ILE

 

C++

 

program

 

SQ

 

calculates

 

an

 

integer

 

value

 

and

 

returns

 

the

 

value

 

to

 

the

 

calling

 

program

 

SQITF:

 

//

 

This

 

program

 

is

 

called

 

by

 

a

 

ILE

 

C++

 

program

 

called

 

SQITF.

 

//

 

It

 

performs

 

the

 

square

 

calculations

 

and

 

returns

 

a

 

value

 

to

 

SQITF.

   

int

 

main(int

 

argc,

 

char

 

*argv[])

   

{

 

return

 

(*(int

 

*)

 

argv[1])

 

*

 

(*(int

 

*)

 

argv[1]);

 

}

 

Figure

 

246.

 

User-Defined

 

CL

 

Command

 

SQUARE

 

that

 

Calculates

 

the

 

Square

 

of

 

a

 

Specified

 

Number.

   

418

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Example:

 

CL

 

Program

 

that

 

Passes

 

Parameters

 

to

 

an

 

ILE

 

C++

 

Program

 

The

 

CL

 

program

 

CLPROG1

 

passes

 

the

 

parameters

 

v,

 

d,

 

h,

 

i,

 

j

 

to

 

an

 

ILE

 

C++

 

program

 

MYPROG1.

Note:

  

To

 

pass

 

parameters

 

to

 

an

 

ILE

 

program

 

when

 

you

 

run

 

it,

 

use

 

the

 

PARM

 

option

 

of

 

the

 

CL

 

Call

 

(CALL)

 

command.

 

The

 

parameters

 

are

 

null-terminated

 

within

 

the

 

the

 

CL

 

program

 

CLPROG1.

 

They

 

are

 

passed

 

by

 

reference.

 

All

 

incoming

 

arguments

 

to

 

MYPROG1

 

are

 

pointers.

  

The

 

CL

 

program

 

CLPROG1

 

receives

 

its

 

input

 

values

 

from

 

a

 

CL

 

Command

 

Prompt

 

MYCMD1

 

which

 

prompts

 

the

 

user

 

to

 

input

 

the

 

desired

 

values.

 

The

 

source

 

code

 

for

 

MYCMD1

 

is:

  

After

 

the

 

CL

 

program

 

CLPROG1

 

has

 

received

 

the

 

user

 

input

 

from

 

the

 

command

 

prompt

 

MYCMD1,

 

it

 

passes

 

the

 

input

 

values

 

on

 

to

 

a

 

C++

 

program

 

MYPROG1.

 

The

 

source

 

code

 

for

 

this

 

program

 

is

 

contained

 

in

 

myprog1.cpp:

  

/*

 

CLPROG1

  

PGM

        

PARM(&V

 

&D

 

&H

 

&I

 

&J)

       

DCL

        

VAR(&V)

 

TYPE(*CHAR)

 

LEN(10)

       

DCL

        

VAR(&VOUT)

 

TYPE(*CHAR)

 

LEN(11)

       

DCL

        

VAR(&D)

 

TYPE(*DEC)

  

LEN(10

 

1)

       

DCL

        

VAR(&H)

 

TYPE(*CHAR)

 

LEN(10)

       

DCL

        

VAR(&HOUT)

 

TYPE(*CHAR)

 

LEN(11)

       

DCL

        

VAR(&I)

 

TYPE(*CHAR)

 

LEN(10)

       

DCL

        

VAR(&IOUT)

 

TYPE(*CHAR)

 

LEN(11)

       

DCL

        

VAR(&J)

 

TYPE(*LGL)

  

LEN(1)

       

DCL

        

VAR(&JOUT)

 

TYPE(*LGL)

  

LEN(2)

       

DCL

        

VAR(&NULL)

 

TYPE(*CHAR)

 

LEN(1)

  

VALUE(X’00’)

       

/*

 

ADD

 

NULL

 

TERMINATOR

 

FOR

 

THE

 

C++

 

PROGRAM

  

*/

       

CHGVAR

     

VAR(&VOUT)

 

VALUE(&V

 

*TCAT

 

&NULL)

       

CHGVAR

     

VAR(&HOUT)

 

VALUE(&V

 

*TCAT

 

&NULL)

       

CHGVAR

     

VAR(&IOUT)

 

VALUE(&V

 

*TCAT

 

&NULL)

       

CHGVAR

     

VAR(&JOUT)

 

VALUE(&V

 

*TCAT

 

&NULL)

       

CALL

       

PGM(MYPROG1)

 

PARM(&VOUT

 

&D

 

&HOUT

 

&IOUT

 

&JOUT)

  

ENDPGM

 

Figure

 

247.

 

Example

 

of

 

CL

 

Program

 

that

 

Passes

 

Arguments

 

to

 

an

 

ILE

 

C++

 

Program.

  

CMD

        

PROMPT(’ENTER

 

VALUES’)

  

PARM

       

KWD(V)

 

TYPE(*CHAR)

 

LEN(10)

 

+

               

PROMPT(’1ST

 

VALUE’)

  

PARM

       

KWD(D)

 

TYPE(*DEC)

 

LEN(10

 

2)

 

+

               

PROMPT(’2ND

 

VALUE’)

  

PARM

       

KWD(H)

 

TYPE(*CHAR)

 

LEN(10)

 

+

               

PROMPT(’3RD

 

VALUE’)

  

PARM

       

KWD(I)

 

TYPE(*CHAR)

 

LEN(1)

 

+

               

PROMPT(’4TH

 

VALUE’)

  

PARM

       

KWD(J)

 

TYPE(*LGL)

 

LEN(10

 

2)

 

+

               

PROMPT(’5TH

 

VALUE’)

 

Figure

 

248.

 

Example

 

of

 

Generic

 

CL

 

Command

 

Prompt.

   

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

419



If

 

the

 

CL

 

program

 

CLPROG1

 

passes

 

the

 

following

 

parameters

 

to

 

the

 

C++

 

program

 

MYPROG1:

 

’123.4’,

 

123.4,

 

’Hi’,

 

LO,

 

and

 

’1’

 

the

 

output

 

from

 

program

 

MYPROG1

 

is:

 

v=

 

123.4

     

HI

        

LO

        

1

  

d=

 

123.4

  

h=

 

HI

        

LO

        

1

 

i=

 

LO

     

1

  

j=

 

1

 

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

Accessing

 

ILE

 

C

 

Procedures

 

from

 

Any

 

ILE

 

Program

 

ILE

 

C

 

programs

 

are

 

called

 

by

 

dynamic

 

program

 

calls,

 

but

 

the

 

procedures

 

within

 

an

 

activated

 

ILE

 

C

 

program

 

are

 

accessed

 

by

 

means

 

of

 

either

 

of

 

the

 

following:

 

v

   

Static

 

procedure

 

calls

 

v

   

Procedure

 

pointer

 

calls

Note:

  

ILE

 

C

 

programs

 

that

 

have

 

not

 

been

 

activated

 

must

 

be

 

called

 

dynamically.

 

Static

 

Procedure

 

Calls

 

A

 

static

 

procedure

 

call

 

can

 

call

 

any

 

of

 

the

 

following:

 

v

   

A

 

procedure

 

within

 

the

 

same

 

module

 

v

   

A

 

procedure

 

in

 

a

 

separate

 

module

 

within

 

the

 

same

 

ILE

 

C

 

program

 

or

 

service

 

program

 

v

   

A

 

procedure

 

in

 

a

 

separate

 

ILE

 

C

 

service

 

program

//

 

myprog1.cpp

   

#include

 

<iostream.h>

 

#include

 

<stdlib.h>

 

#include

 

<string.h>

 

#include

 

<bcd.h>

   

//

 

Arguments

 

are

 

received

 

by

 

reference

 

from

 

CL

 

program

 

CLPROG1

 

//

 

Incoming

 

arguments

 

are

 

all

 

pointers

   

int

 

main(int

 

argc,

 

char

 

*argv[])

 

{

   

char

               

*v;

   

char

               

*h;

   

char

               

*i;

   

char

               

*j;

   

_DecimalT

 

<10,

 

1>

  

d;

     

v

 

=

  

argv[1];

   

d

 

=

 

*((_DecimalT

 

<10,1>

 

*)

 

argv[2]);

   

h

 

=

  

argv[3];

   

i

 

=

  

argv[4];

   

j

 

=

  

argv[5];

   

cout

 

<<

 

"

  

v=

 

"

 

<<

 

v

        

<<

 

"

  

d=

 

"

 

<<

 

d

        

<<

 

"

  

h=

 

"

 

<<

 

h

        

<<

 

"

  

i=

 

"

 

<<

 

i

        

<<

 

"

  

j=

 

"

 

<<

 

j

        

<<

 

endl;

 

}

 

Figure

 

249.

 

Example

 

of

 

C++

 

Program

 

that

 

Receives

 

Arguments

 

(Pointers)

 

by

 

Reference.

   

420

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Note:

  

The

 

term

 

procedure

 

in

 

ILE

 

is

 

equivalent

 

to

 

the

 

term

 

function

 

in

 

ILE

 

C.

 

Static

 

procedure

 

calls

 

use

 

fewer

 

system

 

resources

 

at

 

run

 

time

 

(specifically,

 

when

 

the

 

program

 

is

 

activated)

 

than

 

dynamic

 

program

 

calls,

 

because

 

static

 

procedure

 

calls

 

are

 

resolved

 

and

 

bound

 

at

 

compile

 

time.

 

Symbols

 

for

 

dynamic

 

program

 

calls

 

are

 

resolved

 

to

 

addresses

 

whenever

 

the

 

call

 

is

 

performed.

 

Note:

  

The

 

term

 

static

 

procedure

 

call

 

does

 

not

 

refer

 

to

 

static

 

storage

 

class

 

but

 

refers

 

to

 

a

 

bound

 

procedure

 

call

 

within

 

a

 

bound

 

module

 

or

 

service

 

program.

 

Operational

 

descriptors

 

can

 

be

 

used

 

to

 

resolve

 

the

 

differences

 

in

 

the

 

representation

 

of

 

character

 

strings,

 

if:

 

v

   

The

 

static

 

call

 

is

 

to

 

a

 

procedure

 

written

 

in

 

a

 

language

 

other

 

that

 

C

 

or

 

C++

 

v

   

Values

 

of

 

this

 

data

 

type

 

are

 

passed

 

as

 

arguments

Procedure

 

Pointer

 

Calls

 

Procedure

 

pointer

 

calls

 

provide

 

a

 

way

 

to

 

call

 

a

 

procedure

 

dynamically.

 

For

 

example,

 

by

 

manipulating

 

arrays

 

or

 

tables

 

of

 

procedure

 

names

 

or

 

addresses,

 

you

 

can

 

dynamically

 

route

 

a

 

procedure

 

call

 

to

 

different

 

procedures.

 

Called

 

Procedures

 

and

 

Operational

 

Descriptors

 

Operational

 

descriptors

 

provide

 

descriptive

 

information

 

to

 

the

 

called

 

procedure

 

in

 

cases

 

where

 

the

 

called

 

procedure

 

cannot

 

precisely

 

anticipate

 

the

 

form

 

of

 

the

 

argument,

 

for

 

example,

 

different

 

types

 

of

 

strings.

 

The

 

additional

 

information

 

allows

 

the

 

procedure

 

to

 

properly

 

interpret

 

the

 

string.

 

You

 

should

 

use

 

operational

 

descriptors

 

only

 

when

 

they

 

are

 

expected

 

by

 

the

 

called

 

procedure,

 

usually

 

an

 

ILE

 

bindable

 

API.

 

Example:

 

Calling

 

an

 

ILE

 

API

 

from

 

ILE

 

C

 

The

 

following

 

figure

 

shows

 

the

 

ILE

 

C

 

source

 

code

 

of

 

func1()

 

that

 

contains

 

the

 

call

 

to

 

the

 

ILE

 

API.

 

The

 

API

 

is

 

used

 

to

 

determine

 

the

 

string

 

type,

 

length,

 

and

 

maximum

 

length

 

of

 

the

 

string

 

arguments

 

declared

 

in

 

func1().

 

The

 

values

 

for

 

typeCharZ

 

and

 

typeCharV2

 

are

 

found

 

in

 

the

 

ILE

 

API

 

header

 

file

 

<leod.h>.

    

#include

 

<string.h>

 

#include

 

<stdio.h>

 

#include

 

<leawi.h>

 

#include

 

<leod.h>

 

#include

 

"oper_desc.h"

 

int

 

func1(char

 

a[5],

 

char

 

b[5],

 

char

 

*c)

 

{

    

int

        

posn

      

=

 

1;

    

int

        

datatype;

    

int

        

currlen;

    

int

        

maxlen;

    

_FEEDBACK

  

fc;

    

char

      

*string1;

    

/*

 

Call

 

to

 

ILE

 

API

 

CEEGSI

 

to

 

determine

 

string

 

type,

 

length

    

*/

    

/*

 

and

 

the

 

maximum

 

length.

                                    

*/

    

CEEGSI(&posn,

 

&datatype,

 

&currlen,

 

&maxlen,

 

&fc);

 

Figure

 

250.

 

ILE

 

C

 

Source

 

to

 

Determine

 

the

 

String

 

Arguments

 

in

 

a

 

Function

 

(Part

 

1

 

of

 

2)

  

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

421



Operational

 

Descriptors

 

and

 

the

 

#pragma

 

descriptor

 

Directive

 

ILE

 

C/C++

 

provides

 

a

 

#pragma

 

descriptor

 

directive

 

to

 

identify

 

functions

 

whose

 

arguments

 

have

 

operational

 

descriptors.

 

You

 

can

 

retrieve

 

the

 

information

 

from

 

an

 

operational

 

descriptor

 

using

 

the

 

ILE

 

bindable

 

APIs

 

Retrieve

 

Operational

 

Descriptor

 

Information

 

(CEEDOD)

 

and

 

Get

 

Descriptive

 

Information

 

About

 

a

 

String

 

Argument

 

(CEESGI).

 

The

 

ILE

 

C/C++

 

supports

 

operational

 

descriptors

 

for

 

string

 

arguments.

Note:

  

The

 

term

 

static

 

procedure

 

call

 

does

 

not

 

refer

 

to

 

static

 

storage

 

class

 

but

 

refers

 

to

 

a

 

bound

 

procedure

 

call

 

within

 

a

 

bound

 

module

 

or

 

service

 

program.

 

Operational

 

descriptors

 

can

 

be

 

used

 

to

 

resolve

 

the

 

differences

 

in

 

the

 

representation

 

of

 

character

 

strings,

 

if:

 

v

   

The

 

static

 

call

 

is

 

to

 

a

 

procedure

 

written

 

in

 

a

 

language

 

other

 

that

 

C

 

or

 

C++

 

v

   

Values

 

of

 

this

 

data

 

type

 

are

 

passed

 

as

 

arguments

Example:

 

Declaring

 

a

 

Function

 

that

 

Requires

 

Use

 

of

 

Operational

 

Descriptors

 

The

 

following

 

figure

 

shows

 

how

 

to

 

declare

 

a

 

function

 

that

 

requires

 

operational

 

descriptors

 

for

 

some

 

of

 

its

 

arguments.

  

A

 

function

 

that

 

is

 

named

 

func()

 

is

 

declared.

 

The

 

#pragma

 

descriptor

 

for

 

func()

 

specifies

 

that

 

the

 

ILE

 

C

 

compiler

 

must

 

generate

 

string

 

operational

 

descriptors

 

for

 

the

 

first

 

and

 

fourth

 

arguments

 

of

 

func()

 

whenever

 

func()

 

is

 

called.

 

Example:

 

Generating

 

Operational

 

Descriptors

 

The

 

following

 

figure

 

shows

 

that

 

the

 

#pragma

 

descriptor

 

for

 

func1

 

with

 

a

 

#pragma

 

descriptor

 

directive

 

for

 

the

 

function

 

in

 

a

 

header

 

file

 

oper_desc.h.

     

switch(datatype)

    

{

      

case

 

typeCharZ:

         

string1

 

=

 

a;

         

break;

      

case

 

typeCharV2:

         

string1

 

=

 

a

 

+

 

2;

         

break;

    

}

    

/*

 

Use

 

string1.

                                               

*/

    

if

 

(!memcmp(string1,

 

"stuv",

 

currlen))

       

printf("First

 

4

 

characters

 

are

 

the

 

same.\n");

    

else

       

printf("First

 

4

 

characters

 

are

 

not

 

the

 

same.\n");

 

}

 

Figure

 

250.

 

ILE

 

C

 

Source

 

to

 

Determine

 

the

 

String

 

Arguments

 

in

 

a

 

Function

 

(Part

 

2

 

of

 

2)

int

 

func

 

(char

 

*,

 

int

 

*,

 

int,

 

char

 

*,

 

...);

  

/*

 

prototype

 

*/

 

#pragma

 

descriptor

 

(void

 

func

 

("",

 

void,

 

void,

 

""))

 

Figure

 

251.

 

ILE

 

C

 

Source

 

that

 

Declares

 

a

 

Function

 

that

 

Requires

 

Operational

 

Descriptors

  

422

 

ILE

 

C/C++

 

Programmer’s

 

Guide



A

 

function

 

that

 

is

 

named

 

func1()

 

is

 

declared.

 

The

 

#pragma

 

descriptor

 

for

 

func1()

 

specifies

 

that

 

the

 

ILE

 

C

 

compiler

 

must

 

generate

 

string

 

operational

 

descriptors

 

for

 

the

 

three

 

arguments.

 

OPM

 

CL

 

Example:

 

Calling

 

OPM,

 

COBOL,

 

and

 

RPG

 

Programs

 

from

 

an

 

ILE

 

C

 

Program

 

This

 

application

 

uses

 

session

 

input

 

to:

 

v

   

Calculate

 

tax

 

v

   

Format

 

output

 

v

   

Write

 

to

 

an

 

audit

 

file

Note:

  

For

 

the

 

ILE

 

version

 

of

 

this

 

example,

 

see

 

“ILE

 

CL

 

Example:

 

Calling

 

OPM,

 

COBOL,

 

and

 

RPG

 

Programs

 

from

 

an

 

ILE

 

C

 

Program”

 

on

 

page

 

433.

 

As

 

shown

 

in

 

Basic

 

Program

 

StructureFigure

 

253

 

on

 

page

 

424,

 

the

 

application

 

is

 

a

 

small

 

transaction

 

processing

 

program

 

that

 

takes

 

name,

 

price,

 

and

 

quantity

 

as

 

input

 

items.

 

As

 

output,

 

the

 

application

 

displays

 

the

 

total

 

cost

 

of

 

the

 

items

 

that

 

are

 

specified

 

on

 

the

 

screen

 

and

 

writes

 

an

 

audit

 

trail

 

of

 

transactions

 

to

 

a

 

file.

 

/*

 

Function

 

prototype

 

in

 

oper_desc.h

                              

*/

 

int

 

func1(

 

char

 

a[5],

 

char

 

b[5],

 

char

 

*c

 

);

 

#pragma

 

descriptor(void

 

func1(

 

"",

 

"",

 

""

 

))

 

Figure

 

252.

 

ILE

 

C

 

Source

 

to

 

Generate

 

Operational

 

Descriptors

  

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

423



Basic

 

Program

 

Structure

   

As

 

shown

 

in

 

Basic

 

Program

 

StructureFigure

 

253,

 

this

 

example

 

consists

 

of:

 

v

   

A

 

CL

 

command

 

(T1520CM2)

 

that

 

accepts

 

the

 

user’s

 

input

 

and

 

passes

 

it

 

to

 

a

 

CL

 

program

 

(T1520CL2).

 

v

   

A

 

CL

 

program

 

(T1520CL2)

 

that

 

processes

 

the

 

input

 

and

 

passes

 

it

 

to

 

an

 

ILE

 

C

 

program

 

(T1520IC5).

 

v

   

An

 

ILE

 

C

 

(T1520IC5)

 

program

 

that

 

calls

 

an

 

OPM

 

COBOL

 

program

 

(T1520CB1)

 

to

 

process

 

the

 

input,

 

and

 

an

 

OPM

 

RPG

 

program

 

(T1520RP1)

 

to

 

write

 

the

 

audit

 

trail

 

to

 

an

 

externally

 

described

 

file.

 

v

   

An

 

OPM

 

COBOL

 

program

 

(T1520CB1)

 

that

 

completes

 

the

 

calculation

 

and

 

formats

 

the

 

cost.

 

v

   

An

 

OPM

 

RPG

 

program

 

(T1520RP1)

 

that

 

updates

 

the

 

audit

 

file

 

(T1520DD2)

 

with

 

each

 

transaction.

Note:

  

In

 

addition

 

to

 

the

 

source

 

for

 

CMD,

 

CL,

 

ILE

 

C,

 

OPM

 

RPG,

 

and

 

OPM

 

COBOL,

 

you

 

need

 

DDS

 

source

 

for

 

the

 

output

 

file.

 

The

 

DDS

 

source

 

defines

 

the

 

fields

 

for

 

the

 

audit

 

file.

 

Program

 

Modules

 

and

 

Activation

 

Groups

 

As

 

shown

 

in

 

Figure

 

254

 

on

 

page

 

425,

 

the

 

CL,

 

COBOL,

 

and

 

RPG

 

programs

 

are

 

activated

 

within

 

the

 

user

 

default

 

activation

 

groups.

 

A

 

new

 

activation

 

group

 

is

 

started

 

when

 

the

 

CL

 

programs

 

call

 

the

 

ILE

 

C

 

program

 

because

 

the

 

ILE

 

C

 

program

 

is

 

created

 

with

 

the

 

CRTPGM

 

default

 

of

 

*NEW

 

for

 

the

 

ACTGRP

 

keyword.

OPM CL CMD
Program

T1520CM2

OPM CL
Program

T1520CL2

ILE C/400
Program

T1520IC5

Displays
Output OPM COBOL/400

Program
T1520CB1

OPM RPG/400
Program

T1520RP1

Audit File
T1520DD2

User Input

  

Figure

 

253.

 

OPM

 

CL

 

Example:

 

Basic

 

Program

 

Structure

  

424

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Note:

  

When

 

a

 

CRTPGM

 

parameter

 

does

 

not

 

appear

 

in

 

the

 

CRTBNDC

 

command,

 

the

 

CRTPGM

 

parameter

 

default

 

is

 

used.

 

These

 

programming

 

steps

 

show

 

you

 

how

 

to:

 

v

   

Create

 

a

 

physical

 

file

 

to

 

contain

 

an

 

audit

 

trail

 

for

 

the

 

ILE

 

C

 

program.

 

v

   

Create

 

a

 

CL

 

program

 

that

 

passes

 

the

 

parameters

 

item

 

name,

 

price,

 

quantity,

 

and

 

user

 

ID

 

to

 

an

 

ILE

 

C

 

program.

 

v

   

Create

 

a

 

CL

 

command

 

prompt

 

to

 

enter

 

data

 

for

 

item

 

name,

 

price,

 

and

 

quantity.

 

The

 

OPM

 

CL

 

command

 

prompt

 

passes

 

the

 

data

 

to

 

the

 

CL

 

program

 

which

 

in

 

turn

 

calls

 

an

 

ILE

 

C

 

program.

 

v

   

Create

 

one

 

program

 

with

 

a

 

main()

 

function

 

that

 

receives

 

incoming

 

arguments

 

from

 

a

 

CL

 

program,

 

calls

 

an

 

OPM

 

COBOL

 

program

 

to

 

complete

 

the

 

tax

 

calculation

 

and

 

format

 

the

 

total

 

cost.

 

It

 

calls

 

an

 

OPM

 

RPG

 

program

 

to

 

write

 

audit

 

records.

 

v

   

Create

 

an

 

OPM

 

COBOL

 

program

 

that

 

completes

 

the

 

tax

 

calculation

 

and

 

formats

 

the

 

total

 

cost.

 

v

   

Create

 

an

 

OPM

 

RPG

 

program

 

that

 

writes

 

the

 

audit

 

trail

 

for

 

the

 

application.

Programming

 

Tasks

 

1.

   

Create

 

the

 

physical

 

file

 

T1520DD2

 

using

 

the

 

source

 

shown

 

in

 

Figure

 

255

 

on

 

page

 

426.

 

On

 

a

 

command

 

line,

 

enter:

 

CRTPF

 

FILE(MYLIB/T1520DD2)

 

SRCFILE(QCPPLE/QADDSSRC)

 

MAXMBRS(*NOMAX)

 

This

 

source

 

file

 

contains

 

the

 

audit

 

trail

 

for

 

the

 

ILE

 

C

 

program

 

T1520IC5.

   

Default Activation Group

OPM Program T1520CB1

write_audit_trail()

OPM Program T1520RP1

calc_and_format()

New Activation Group

ILE Program T1520IC5

Module T1520IC5

taxrate
main()

  

Figure

 

254.

 

Structure

 

of

 

the

 

Program

 

in

 

ILE

 

C

  

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

425



Note:

  

The

 

DDS

 

source

 

defines

 

the

 

fields

 

for

 

the

 

audit

 

file.

 

2.

   

Create

 

the

 

CL

 

program

 

T1520CL2

 

using

 

the

 

source

 

shown

 

in

 

Figure

 

256.

 

On

 

a

 

command

 

line,

 

enter:

 

CRTCLPGM

 

PGM(MYLIB/T1520CL2)

 

SRCFILE(QCPPLE/QACLSRC)

  

Notes:

  

a.

   

CL

 

variables

 

item

 

name,

 

price,

 

quantity,

 

and

 

user

 

ID

 

are

 

passed

 

by

 

reference

 

to

 

the

 

ILE

 

C

 

program

 

T1520IC5.

 

b.

   

The

 

Retrieve

 

Job

 

Attributes

 

(RTVJOBA)

 

command

 

obtains

 

the

 

user

 

ID

 

for

 

the

 

audit

 

trail.

 

c.

   

Arguments

 

are

 

passed

 

by

 

reference.

 

They

 

can

 

be

 

changed

 

by

 

the

 

receiving

 

ILE

 

C

 

program.

 

d.

   

The

 

variable

 

item_name

 

is

 

null-ended

 

in

 

the

 

CL

 

program.

 

e.

   

CL

 

variables

 

and

 

numeric

 

constants

 

are

 

not

 

passed

 

to

 

an

 

ILE

 

C

 

program

 

with

 

null-ended

 

strings.

 

f.

   

Character

 

constants

 

and

 

logical

 

literals

 

are

 

passed

 

as

 

null-ended

 

strings,

 

but

 

are

 

not

 

widened

 

with

 

blanks.

 

g.

   

Numeric

 

constants

 

such

 

as

 

packed

 

decimals

 

are

 

passed

 

as

 

15,5

 

(8

 

bytes).

 

h.

   

Floating

 

point

 

constants

 

are

 

passed

 

as

 

double

 

precision

 

floating

 

point

 

values,

 

for

 

example

 

1.2E+15.

 

R

 

T1520DD2R

                   

USER

          

10

          

COLHDG(’User’)

                   

ITEM

          

20

          

COLHDG(’Item

 

name’)

                   

PRICE

         

10S

 

2

       

COLHDG(’Unit

 

price’)

                   

QTY

            

4S

         

COLHDG(’Number

 

of

 

items’)

                   

TXRATE

         

2S

 

2

       

COLHDG(’Current

 

tax

 

rate’)

                   

TOTAL

         

21

          

COLHDG(’Total

 

cost’)

                   

DATE

           

6

          

COLHDG(’Transaction

 

date’)

                 

K

 

USER

 

Figure

 

255.

 

T1520DD2

 

—

 

DDS

 

Source

 

for

 

an

 

Audit

 

File

PGM

        

PARM(&ITEMIN

 

&PRICE

 

&QUANTITY)

              

DCL

        

VAR(&USER)

 

TYPE(*CHAR)

 

LEN(10)

              

DCL

        

VAR(&ITEMIN)

    

TYPE(*CHAR)

 

LEN(20)

              

DCL

        

VAR(&ITEMOUT)

   

TYPE(*CHAR)

 

LEN(21)

              

DCL

        

VAR(&PRICE)

     

TYPE(*DEC)

  

LEN(10

 

2)

              

DCL

        

VAR(&QUANTITY)

  

TYPE(*DEC)

  

LEN(2

 

0)

              

DCL

        

VAR(&NULL)

      

TYPE(*CHAR)

 

LEN(1)

 

VALUE(X’00’)

           

/*

 

ADD

 

NULL

 

TERMINATOR

 

FOR

 

THE

 

ILE

 

C

 

PROGRAM

             

*/

              

CHGVAR

     

VAR(&ITEMOUT)

 

VALUE(&ITEMIN

 

*TCAT

 

&NULL)

           

/*

 

GET

 

THE

 

USERID

 

FOR

 

THE

 

AUDIT

 

FILE

                        

*/

              

RTVJOBA

    

USER(&USER)

           

/*

 

ENSURE

 

AUDIT

 

RECORDS

 

WRITTEN

 

TO

 

CORRECT

 

AUDIT

 

FILE

 

MEMBER

 

*/

              

OVRDBF

     

FILE(T1520DD2)

 

TOFILE(*LIBL/T1520DD2)

 

+

                           

MBR(T1520DD2)

 

OVRSCOPE(*CALLLVL)

 

SHARE(*NO)

              

CALL

       

PGM(T1520IC5)

 

PARM(&ITEMOUT

 

&PRICE

 

&QUANTITY

 

+

                           

&USER)

              

DLTOVR

     

FILE(*ALL)

         

ENDPGM

 

Figure

 

256.

 

T1520CL2

 

—

 

CL

 

Source

 

to

 

Pass

 

Variables

 

to

 

an

 

ILE

 

C

 

Program

  

426

 

ILE

 

C/C++

 

Programmer’s

 

Guide



i.

   

To

 

pass

 

parameters

 

to

 

an

 

ILE

 

program

 

when

 

you

 

run

 

it,

 

use

 

the

 

PARM

 

option

 

of

 

the

 

CL

 

Call

 

(CALL)

 

command.
3.

   

Create

 

a

 

CL

 

command

 

prompt

 

T1520CM2

 

to

 

enter

 

the

 

item

 

name,

 

price,

 

and

 

quantity

 

for

 

the

 

ILE

 

C

 

program

 

T1520IC5.

 

Use

 

the

 

source

 

shown

 

in

 

Figure

 

257.

 

On

 

a

 

command

 

line,

 

enter:

 

CRTCMD

 

CMD(MYLIB/T1520CM2)

 

PGM(MYLIB/T1520CL2)

 

SRCFILE(QCPPLE/QACMDSRC)

    

4.

   

Create

 

the

 

program

 

T1520IC5

 

using

 

the

 

source

 

shown

 

in

 

Figure

 

258

 

on

 

page

 

428.

 

On

 

a

 

command

 

line,

 

enter:

 

CRTBNDC

 

PGM(MYLIB/T1520IC5)

 

SRCFILE(QCPPLE/QACSRC)

 

OUTPUT(*PRINT)

 

FLAG(30)

     

OPTION(*SHOWINC

 

*NOLOGMSG)

 

MSGLMT(10)

 

CHECKOUT(*PARM)

 

DBGVIEW(*ALL)

   

CMD

        

PROMPT(’CALCULATE

 

TOTAL

 

COST’)

              

PARM

       

KWD(ITEM)

 

TYPE(*CHAR)

 

LEN(20)

 

RSTD(*NO)

 

+

                           

MIN(1)

 

ALWUNPRT(*NO)

 

PROMPT(’Item

 

name’

 

1)

              

PARM

       

KWD(PRICE)

 

TYPE(*DEC)

 

LEN(10

 

2)

 

RSTD(*NO)

 

+

                           

RANGE(0.01

 

99999999.99)

 

MIN(1)

 

+

                           

ALWUNPRT(*YES)

 

PROMPT(’Unit

 

price’

 

2)

              

PARM

       

KWD(QUANTITY)

 

TYPE(*INT2)

 

RSTD(*NO)

 

RANGE(1

 

+

                           

9999)

 

MIN(1)

 

ALWUNPRT(*YES)

 

+

                           

PROMPT(’Number

 

of

 

items’

 

3)

 

Figure

 

257.

 

T1520CM2

 

—

 

CL

 

Command

 

Source

 

to

 

Receive

 

Input

 

Data

  

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

427



/*

 

This

 

program

 

is

 

called

 

by

 

a

 

CL

 

program

 

that

 

passes

 

an

 

item

         

*/

 

/*

 

name,

 

price,

 

quantity

 

and

 

user

 

ID.

                                 

*/

 

/*

 

COBOL

 

for

 

iSeries

 

400

 

is

 

called

 

to

 

calculate

 

and

 

format

 

the

 

total

 

cost.

        

*/

 

/*

 

RPG

 

for

 

iSeries

 

400

 

is

 

called

 

to

 

write

 

an

 

audit

 

trail.

                         

*/

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<string.h>

 

#include

 

<decimal.h>

 

/*

 

The

 

#pragma

 

map

 

directive

 

maps

 

a

 

new

 

program

 

name

 

to

 

the

 

existing

  

*/

 

/*

 

program

 

name

 

so

 

that

 

the

 

purpose

 

of

 

the

 

program

 

is

 

clear.

          

*/

 

#pragma

 

map(calc_and_format,"T1520CB1")

 

#pragma

 

map(write_audit_trail,"T1520RP1")

 

/*

 

Tell

 

the

 

compiler

 

that

 

there

 

are

 

dynamic

 

program

 

calls

 

so

          

*/

 

/*

 

arguments

 

are

 

passed

 

by

 

value-reference.

                           

*/

 

#pragma

 

linkage(calc_and_format,

 

OS,

 

nowiden)

 

#pragma

 

linkage(write_audit_trail,

 

OS)

 

void

 

calc_and_format(decimal

 

(10,2),

                      

short

 

int,

                      

decimal(2,2),

                      

char[],

                      

char

 

*);

 

void

 

write_audit_trail(char[],

                        

char[],

                        

decimal(10,2),

                        

short

 

int,

                        

decimal(2,2),

                        

char[]);

 

int

 

main(int

 

argc,

 

char

 

*argv[])

 

{

 

/*

 

Incoming

 

arguments

 

from

 

a

 

CL

 

program

 

have

 

been

 

verified

 

by

         

*/

 

/*

 

the

 

*CMD

 

and

 

null

 

ende

 

within

 

the

 

CL

 

program.

                            

*/

 

/*

 

Incoming

 

arguments

 

are

 

passed

 

by

 

reference

 

from

 

a

 

CL

 

program.

      

*/

   

char

             

*user_id;

   

char

             

*item_name;

   

short

 

int

        

quantity;

   

decimal

 

(10,

 

2)

  

price;

   

decimal

 

(2,2)

    

taxrate

 

=

 

.15D;

   

char

             

formatted_cost[22];

 

Figure

 

258.

 

T1520IC5

 

—

 

ILE

 

C

 

Source

 

to

 

Call

 

COBOL

 

AND

 

RPG

 

(Part

 

1

 

of

 

2)

  

428

 

ILE

 

C/C++

 

Programmer’s

 

Guide



/*

 

Remove

 

null

 

end

 

for

 

RPG

 

for

 

iSeries

 

400

 

program.

 

Item

 

name

 

is

 

null

      

*/

 

/*

 

ended

 

for

 

C.

                                                                

*/

     

char

             

rpg_item_name[20];

   

char

             

null_formatted_cost[22];

   

char

             

success_flag

 

=

 

’N’;

   

int

              

i;

   

/*

 

Incoming

 

arguments

 

are

 

all

 

pointers.

                               

*/

   

item_name

 

=

                        

argv[1];

   

price

     

=

 

*((decimal

 

(10,

 

2)

 

*)

  

argv[2]);

   

quantity

  

=

 

*((short

 

*)

            

argv[3]);

   

user_id

   

=

                        

argv[4];

   

/*

 

Call

 

the

 

COBOL

 

for

 

iSeries

 

400

 

program

 

to

 

do

 

the

 

calculation,

 

and

 

return

 

a

     

*/

 

/*

 

Y/N

 

flag,

 

and

 

a

 

formatted

 

result.

                                  

*/

     

calc_and_format(price,

                   

quantity,

                   

taxrate,

                   

formatted_cost,

                   

&success_flag);

   

memcpy(null_formatted_cost,formatted_cost,sizeof(formatted_cost));

   

/*

 

Null

 

end

 

the

 

result.

                                         

*/

   

formatted_cost[21]

 

=

 

’\0’;

   

if

 

(success_flag

 

==

 

’Y’)

   

{

     

for

 

(i=0;

 

i<20;

 

i++)

     

{

   

/*

 

Remove

 

null

 

end

 

for

 

the

 

RPG

 

for

 

iSeries

 

400

 

program.

                    

*/

       

if

 

(*(item_name+i)

 

==

 

’\0’)

       

{

         

rpg_item_name[i]

 

=

 

’

 

’;

       

}

       

else

       

{

         

rpg_item_name[i]

 

=

 

*(item_name+i);

       

}

     

}

   

/*

 

Call

 

an

 

RPG

 

program

 

to

 

write

 

audit

 

records.

                    

*/

     

write_audit_trail(user_id,

               

rpg_item_name,

               

price,

               

quantity,

               

taxrate,

               

formatted_cost);

       

printf("\n%d

 

%s

 

plus

 

tax

 

=

 

%-s\n",

 

quantity,

                                        

item_name,

                                        

null_formatted_cost);

   

}

  

else

   

{

     

printf("Calculation

 

failed\n");

   

}

 

}

 

Figure

 

258.

 

T1520IC5

 

—

 

ILE

 

C

 

Source

 

to

 

Call

 

COBOL

 

AND

 

RPG

 

(Part

 

2

 

of

 

2)

  

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

429



Notes:

  

a.

   

The

 

main()

 

function

 

in

 

this

 

program

 

receives

 

incoming

 

arguments

 

from

 

CL

 

program

 

T1520CL2

 

that

 

are

 

verified

 

by

 

CL

 

command

 

prompt

 

T1520CM2

 

and

 

null

 

ended

 

within

 

CL

 

program

 

T1520CL2.

 

All

 

incoming

 

arguments

 

are

 

pointers.

 

b.

   

The

 

main()

 

function

 

also

 

calls

 

calc_and_format(),

 

which

 

is

 

mapped

 

to

 

a

 

COBOL

 

name.

 

It

 

passes

 

by

 

OS-linkage

 

convention

 

the

 

price,

 

quantity,

 

taxrate,

 

formatted

 

cost,

 

and

 

a

 

success

 

flag.

 

c.

   

Because

 

the

 

OPM

 

COBOL

 

program

 

is

 

not

 

expecting

 

widened

 

parameters

 

(the

 

default

 

for

 

ILE

 

C),

 

nowiden

 

is

 

used

 

in

 

the

 

#pragma

 

linkage

 

directive.

 

The

 

formatted

 

cost

 

and

 

the

 

success

 

flag

 

values

 

are

 

updated

 

in

 

program

 

T1520IC5.

 

d.

   

If

 

calc_and_format()

 

returns

 

successfully

 

a

 

record

 

is

 

written

 

to

 

the

 

audit

 

trail

 

by

 

write_audit_trail()

 

in

 

the

 

OPM

 

RPG

 

program.

 

The

 

main()

 

function

 

in

 

this

 

program

 

(T1520IC5)

 

calls

 

write_audit_trail()

 

which

 

is

 

mapped

 

to

 

an

 

RPG

 

for

 

iSeries

 

400

 

program

 

name.

 

It

 

passes

 

by

 

OS-linkage

 

convention

 

the

 

user

 

ID,

 

item

 

name,

 

price,

 

quantity,

 

taxrate,

 

and

 

formatted

 

cost.

 

e.

   

The

 

ILE

 

Compiler

 

by

 

default

 

converts

 

a

 

short

 

integer

 

to

 

an

 

integer

 

unless

 

the

  

nowiden

 

parameter

 

is

 

specified

 

on

 

the

 

#pragma

 

linkage

 

directive.

 

For

 

example,

 

the

 

short

 

integer

 

in

 

the

 

ILE

 

C

 

program

 

is

 

converted

 

to

 

an

 

integer,

 

and

 

then

 

passed

 

to

 

the

 

OPM

 

RPG

 

program.

 

The

 

RPG

 

program

 

is

 

expecting

 

a

 

4–byte

 

integer

 

for

 

the

 

quantity

 

variable.

 

f.

   

OUTPUT(*PRINT)

 

specifies

 

that

 

you

 

want

 

a

 

compiler

 

listing.

 

OPTION(*SHOWINC

 

*NOLOGMSG)

 

specifies

 

that

 

you

 

want

 

to

 

expand

 

include

 

files

 

in

 

a

 

compiler

 

listing,

 

and

 

not

 

log

 

CHECKOUT

 

option

 

messages.

 

g.

   

FLAG(30)

 

specifies

 

that

 

you

 

want

 

severity

 

level

 

30

 

messages

 

to

 

appear

 

in

 

the

 

listing.

 

MSGLMT(10)

 

specifies

 

that

 

you

 

want

 

compilation

 

to

 

stop

 

after

 

10

 

messages

 

at

 

severity

 

level

 

30.

 

CHECKOUT(*PARM)

 

shows

 

a

 

list

 

of

 

function

 

parameters

 

that

 

are

 

not

 

used.

 

DBGVIEW(*ALL)

 

specifies

 

that

 

you

 

want

 

all

 

three

 

views

 

and

 

debug

 

data

 

to

 

debug

 

this

 

program.
5.

   

Create

 

an

 

OPM

 

COBOL

 

program

 

using

 

the

 

source

 

shown

 

in

 

Figure

 

259

 

on

 

page

 

431.

 

On

 

a

 

command

 

line,

 

enter:

 

CRTCBLPGM

 

PGM(MYLIB/T1520CB1)

 

SRCFILE(QCPPLE/QALBLSRC)

    

430

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Notes:

  

a.

   

This

 

program

 

receives

 

pointers

 

to

 

the

 

values

 

of

 

the

 

variables

 

price,

 

quantity,

 

and

 

taxrate,

 

and

 

pointers

 

to

 

formatted_cost

 

and

 

success_flag.

 

b.

   

The

 

calc_and_format()

 

function

 

in

 

program

 

T1520CB1

 

calculates

 

and

 

formats

 

the

 

total

 

cost.

 

Parameters

 

are

 

passed

 

from

 

the

 

ILE

 

C

 

program

 

to

 

the

 

OPM

 

COBOL

 

program

 

to

 

do

 

the

 

tax

 

calculation.

 

c.

   

The

 

COBOL/400

 

User’s

 

Guide

 

(http://publib.boulder.ibm.com/iseries/v5r1/ic2924/books/c0918120.pdf)

 

contains

 

information

 

on

 

how

 

to

 

compile

 

an

 

OPM

 

COBOL

 

program.

IDENTIFICATION

 

DIVISION.

        

PROGRAM-ID.

 

T1520CB1.

       

******************************************************

       

*

 

parameters:

                                        

*

       

*

   

incoming:

  

PRICE,

 

QUANTITY

                       

*

       

*

   

returns

 

:

  

TOTAL-COST

 

(PRICE*QUANTITY*1.TAXRATE)

 

*

       

*

              

SUCCESS-FLAG.

                         

*

       

******************************************************

        

ENVIRONMENT

 

DIVISION.

                                                   

0

         

CONFIGURATION

 

SECTION.

                                                 

0

          

SOURCE-COMPUTER.

 

IBM-ISERIES.

                                              

0

          

OBJECT-COMPUTER.

 

IBM-ISERIES.

                                              

0

        

DATA

 

DIVISION.

                                                          

0

         

WORKING-STORAGE

 

SECTION.

          

01

  

WS-TOTAL-COST

             

PIC

 

S9(13)V99

       

COMP-3.

          

01

  

WS-TAXRATE

                

PIC

 

S9V99

           

COMP-3

 

.

         

LINKAGE

 

SECTION.

          

01

  

LS-PRICE

                  

PIC

 

S9(8)V9(2)

      

COMP-3.

          

01

  

LS-QUANTITY

               

PIC

 

S9(4)

           

COMP-4.

          

01

  

LS-TAXRATE

                

PIC

 

SV99

            

COMP-3.

          

01

  

LS-TOTAL-COST

             

PIC

 

$$,$$$,$$$,$$$,$$$.99

                                                            

DISPLAY.

          

01

  

LS-OPERATION-SUCCESSFUL

   

PIC

 

X

               

DISPLAY.

        

PROCEDURE

 

DIVISION

  

USING

  

LS-PRICE

                                     

0

                                   

LS-QUANTITY

                                   

LS-TAXRATE

                                   

LS-TOTAL-COST

                                   

LS-OPERATION-SUCCESSFUL.

         

MAINLINE.

            

MOVE

 

"Y"

 

TO

 

LS-OPERATION-SUCCESSFUL.

            

PERFORM

 

CALCULATE-COST.

            

PERFORM

 

FORMAT-COST.

            

EXIT

 

PROGRAM.

         

CALCULATE-COST.

            

MOVE

 

LS-TAXRATE

 

TO

 

WS-TAXRATE.

            

ADD

 

1

 

TO

 

WS-TAXRATE.

            

COMPUTE

  

WS-TOTAL-COST

 

ROUNDED

 

=

 

LS-QUANTITY

 

*

                                             

LS-PRICE

 

*

                                             

WS-TAXRATE

              

ON

 

SIZE

 

ERROR

                

MOVE

 

"N"

 

TO

 

LS-OPERATION-SUCCESSFUL

            

END-COMPUTE.

         

FORMAT-COST.

            

MOVE

 

WS-TOTAL-COST

 

TO

 

LS-TOTAL-COST.

 

Figure

 

259.

 

T1520CB1

 

—

 

OPM

 

COBOL

 

Source

 

to

 

Calculate

 

Tax

 

and

 

Format

 

Cost

  

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

431



6.

   

Create

 

an

 

OPM

 

RPG

 

program

 

using

 

the

 

source

 

shown

 

in

 

Figure

 

260.

 

On

 

a

 

command

 

line,

 

enter:

 

CRTRPGPGM

 

PGM(MYLIB/T1520RP1)

 

SRCFILE(QCPPLE/QARPGSRC)

 

OPTION(*SOURCE

 

*SECLVL)

  

Notes:

  

a.

   

The

 

write_audit_trail()

 

function

 

in

 

the

 

program

 

T1520RP1

 

writes

 

the

 

audit

 

trail

 

for

 

the

 

program.

 

b.

   

The

 

RPG/400

 

User’s

 

Guide

 

contains

 

information

 

on

 

how

 

to

 

compile

 

an

 

OPM

 

RPG

 

program.
7.

   

Enter

 

data

 

for

 

the

 

program

 

T1520IC5.

 

a.

   

On

 

a

 

command

 

line,

 

type:

 

T1520CM2

 

and

 

press

 

F4

 

(Prompt).

 

b.

   

Type

 

the

 

following

 

data

 

into

 

T1520CM2:

 

Hammers

 

1.98

 

5000

 

Nails

 

0.25

 

2000

  

The

 

output

 

is

 

as

 

follows:

   

5000

 

HAMMERS

 

plus

 

tax

 

=

            

$11,385.00

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

>

   

2000

 

NAILS

 

plus

 

tax

 

=

               

$575.00

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

The

 

physical

 

file

 

T1520DD2

 

contains

 

the

 

data

 

as

 

follows:

 

SMITHE

  

HAMMERS

               

0000000198500015

          

$11,385.00072893

 

SMITHE

  

NAILS

                 

0000000025200015

             

$575.00072893

 

FT1520DD2O

   

E

                    

DISK

                      

A

      

F

            

T1520DD2R

                         

KRENAMEDD2R

      

IQTYIN

       

DS

      

I

                                    

B

   

1

   

40QTYBIN

      

C

           

*ENTRY

    

PLIST

      

C

                     

PARM

           

USER

   

10

      

C

                     

PARM

           

ITEM

   

20

      

C

                     

PARM

           

PRICE

  

102

      

C

                     

PARM

           

QTYIN

      

C

                     

PARM

           

TXRATE

  

22

      

C

                     

PARM

           

TOTAL

  

21

      

C

                     

EXSR

 

ADDREC

      

C

                     

SETON

                         

LR

      

C

           

ADDREC

    

BEGSR

      

C

                     

MOVELUDATE

     

DATE

      

C

                     

MOVE

 

QTYBIN

    

QTY

      

C

                     

WRITEDD2R

      

C

                     

ENDSR

 

Figure

 

260.

 

T1520RP1

 

—

 

OPM

 

RPG

 

Source

 

to

 

Write

 

the

 

Audit

 

Trail

  

432

 

ILE

 

C/C++

 

Programmer’s

 

Guide



ILE

 

CL

 

Example:

 

Calling

 

OPM,

 

COBOL,

 

and

 

RPG

 

Programs

 

from

 

an

 

ILE

 

C

 

Program

 

This

 

example

 

is

 

an

 

ILE

 

version

 

of

 

the

 

small

 

transaction

 

processing

 

program

 

“OPM

 

CL

 

Example:

 

Calling

 

OPM,

 

COBOL,

 

and

 

RPG

 

Programs

 

from

 

an

 

ILE

 

C

 

Program”

 

on

 

page

 

423.

   

This

 

example

 

consists

 

of:

 

v

   

A

 

CL

 

command

 

that

 

accepts

 

user’s

 

input

 

and

 

passes

 

it

 

to

 

an

 

ILE

 

CL

 

program.

 

v

   

A

 

ILE

 

CL

 

program

 

that

 

processes

 

the

 

input

 

and

 

passes

 

it

 

to

 

an

 

ILE

 

C

 

program.

 

v

   

The

 

ILE

 

C

 

program

 

calls

 

ILE

 

procedures

 

to

 

process

 

the

 

input.

 

Output

 

is

 

then

 

written

 

to

 

the

 

user’s

 

terminal.

 

v

   

An

 

ILE

 

COBOL

 

procedure

 

that

 

completes

 

the

 

calculation

 

and

 

formats

 

the

 

cost.

 

v

   

An

 

ILE

 

RPG

 

procedure

 

that

 

updates

 

the

 

audit

 

file

 

with

 

each

 

transaction.

Note:

  

In

 

addition

 

to

 

the

 

source

 

for

 

CMD,

 

ILE

 

CL,

 

ILE

 

C,

 

ILE

 

RPG

 

and

 

ILE

 

COBOL

 

you

 

need

 

DDS

 

source

 

for

 

the

 

output

 

file,

 

which

 

is

 

the

 

same

 

as

 

the

 

previous

 

example.

 

Program

 

Modules

 

and

 

Activation

 

Groups

 

As

 

shown

 

in

 

Figure

 

262

 

on

 

page

 

434,

 

the

 

CL

 

and

 

C

 

programs

 

are

 

activated

 

within

 

a

 

new

 

activation

 

group.

 

The

 

ILE

 

CL

 

program

 

is

 

created

 

with

 

the

 

CRTPGM

 

default

 

for

 

the

 

ACTGRP

 

parameter,

 

ACTGRP(*NEW).

 

The

 

ILE

 

C

 

program

 

is

 

created

 

with

 

ACTGRP(*CALLER).

    

Figure

 

261.

 

Basic

 

Object

 

Structure

  

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

433



Programming

 

Tasks

 

The

 

following

 

steps

 

show

 

you

 

how

 

to:

 

v

   

Create

 

a

 

physical

 

file

 

to

 

contain

 

an

 

audit

 

trail

 

for

 

the

 

ILE

 

C

 

program.

 

v

   

Create

 

an

 

ILE

 

CL

 

program

 

that

 

passes

 

the

 

parameters

 

item

 

name,

 

price,

 

quantity,

 

and

 

user

 

ID

 

to

 

an

 

ILE

 

C

 

program.

 

v

   

Create

 

a

 

CL

 

command

 

prompt

 

to

 

enter

 

data

 

for

 

item

 

name,

 

price,

 

and

 

quantity.

 

The

 

command

 

passes

 

the

 

data

 

to

 

the

 

ILE

 

CL

 

program

 

which

 

in

 

turn

 

calls

 

an

 

ILE

 

C

 

program.

 

v

   

Create

 

an

 

ILE

 

COBOL

 

module

 

that

 

completes

 

the

 

tax

 

calculation

 

and

 

formats

 

the

 

total

 

cost.

 

v

   

Create

 

an

 

ILE

 

RPG

 

module

 

that

 

writes

 

the

 

audit

 

trail

 

for

 

the

 

application.

 

v

   

Create

 

a

 

service

 

program

 

that

 

exports

 

a

 

data

 

item.

   

Figure

 

262.

 

Integrated

 

Language

 

Environment

 

Structure

  

434

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

Create

 

a

 

service

 

program

 

that

 

exports

 

an

 

RPG

 

procedure.

 

v

   

Create

 

one

 

program

 

with

 

a

 

main()

 

function

 

that

 

receives

 

incoming

 

arguments

 

from

 

a

 

CL

 

program.

 

The

 

program

 

calls

 

an

 

ILE

 

COBOL

 

procedure

 

to

 

complete

 

the

 

tax

 

calculation

 

and

 

format

 

the

 

total

 

cost,

 

and

 

calls

 

an

 

ILE

 

RPG

 

procedure

 

to

 

write

 

audit

 

records.

 

1.

   

To

 

create

 

a

 

physical

 

file

 

T1520DD2

 

using

 

the

 

source

 

shown

 

in

 

Figure

 

263,

 

enter:

 

CRTPF

 

FILE(MYLIB/T1520DD2)

 

SRCFILE(QCPPLE/QADDSSRC)

 

MAXMBRS(*NOMAX)

   

This

 

file

 

contains

 

the

 

audit

 

trail

 

for

 

the

 

ILE

 

C

 

program

 

T1520ICB.

  

2.

   

To

 

create

 

a

 

CL

 

program

 

T1520CL3

 

that

 

the

 

source

 

shown

 

in

 

Figure

 

264,

 

enter:

 

CRTCLMOD

 

MODULE(MYLIB/T1520CL3)

 

SRCFILE(QCPPLE/QACLSRC)

 

CRTPGM

 

PGM(MYLIB/T1520CL3)

 

MODULE(MYLIB/T1520CL3)

 

ACTGRP(*NEW)

   

This

 

program

 

passes

 

the

 

CL

 

variables

 

item

 

name,

 

price,

 

quantity,

 

and

 

user

 

ID

 

by

 

reference

 

to

 

an

 

ILE

 

C

 

program

 

T1520ICB.

 

The

 

Retrieve

 

Job

 

Attributes

 

(RTVJOBA)

 

command

 

obtains

 

the

 

user

 

ID

 

for

 

the

 

audit

 

trail.

 

Arguments

 

are

 

passed

 

by

 

reference.

 

They

 

can

 

be

 

changed

 

by

 

the

 

receiving

 

ILE

 

C

 

program.

 

The

 

variable

 

item_name

 

is

 

null

 

ended

 

in

 

the

 

CL

 

program.

 

R

 

T1520DD2R

                   

USER

          

10

          

COLHDG(’User’)

                   

ITEM

          

20

          

COLHDG(’Item

 

name’)

                   

PRICE

         

10S

 

2

       

COLHDG(’Unit

 

price’)

                   

QTY

            

4S

         

COLHDG(’Number

 

of

 

items’)

                   

TXRATE

         

2S

 

2

       

COLHDG(’Current

 

tax

 

rate’)

                   

TOTAL

         

21

          

COLHDG(’Total

 

cost’)

                   

DATE

           

6

          

COLHDG(’Transaction

 

date’)

                 

K

 

USER

 

Figure

 

263.

 

T1520DD2

 

—

 

Source

 

to

 

Create

 

Physical

 

Files

/*

 

ILE

 

version

 

of

 

T1520CL2

                                   

*/

         

PGM

        

PARM(&ITEMIN

 

&PRICE

 

&QUANTITY)

              

DCL

        

VAR(&USER)

 

TYPE(*CHAR)

 

LEN(10)

              

DCL

        

VAR(&ITEMIN)

    

TYPE(*CHAR)

 

LEN(20)

              

DCL

        

VAR(&ITEMOUT)

   

TYPE(*CHAR)

 

LEN(21)

              

DCL

        

VAR(&PRICE)

     

TYPE(*DEC)

  

LEN(10

 

2)

              

DCL

        

VAR(&QUANTITY)

  

TYPE(*DEC)

  

LEN(2

 

0)

              

DCL

        

VAR(&NULL)

      

TYPE(*CHAR)

 

LEN(1)

 

VALUE(X’00’)

           

/*

 

ADD

 

NULL

 

TERMINATOR

 

FOR

 

THE

 

ILE

 

C

 

PROGRAM

             

*/

              

CHGVAR

     

VAR(&ITEMOUT)

 

VALUE(&ITEMIN

 

*TCAT

 

&NULL)

           

/*

 

GET

 

THE

 

USERID

 

FOR

 

THE

 

AUDIT

 

FILE

                         

*/

              

RTVJOBA

    

USER(&USER)

           

/*

 

ENSURE

 

AUDIT

 

RECORDS

 

WRITTEN

 

TO

 

CORRECT

 

AUDIT

 

FILE

 

MEMBER

 

*/

              

OVRDBF

     

FILE(T1520DD2)

 

TOFILE(*LIBL/T1520DD2)

 

+

                           

MBR(T1520DD2)

 

OVRSCOPE(*CALLLVL)

 

SHARE(*NO)

              

CALL

       

PGM(T1520ICB)

 

PARM(&ITEMOUT

 

&PRICE

 

&QUANTITY

 

+

                           

&USER)

              

DLTOVR

     

FILE(*ALL)

         

ENDPGM

 

Note:

  

To

 

pass

 

parameters

 

to

 

an

 

ILE

 

program

 

when

 

you

 

run

 

it,

 

use

 

the

 

PARM

 

option

 

of

 

the

 

CL

 

Call

 

(CALL)

 

command.

Figure

 

264.

 

T1520CL3

 

—

 

ILE

 

CL

 

Source

 

to

 

Pass

 

Variables

 

to

 

an

 

ILE

 

C

 

Program

  

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

435



3.

   

To

 

create

 

a

 

CL

 

command

 

prompt

 

T1520CM2

 

using

 

the

 

source

 

in

 

Figure

 

265,

 

enter:

 

CRTCMD

 

CMD(MYLIB/T1520CM2)

 

PGM(MYLIB/T1520CL3)

 

SRCFILE(QCPPLE/QACMDSRC)

   

You

 

use

 

this

 

CL

 

command

 

to

 

enter

 

the

 

item

 

name,

 

price,

 

and

 

quantity

 

for

 

the

 

ILE

 

C

 

program

 

T1520ICB.

  

4.

   

To

 

create

 

the

 

module

 

T1520ICB

 

using

 

the

 

source

 

shown

 

in

 

Figure

 

266

 

on

 

page

 

437,

 

enter:

 

CRTCMOD

 

MODULE(MYLIB/T1520ICB)

 

SRCFILE(QCPPLE/QACSRC)

   

CMD

        

PROMPT(’CALCULATE

 

TOTAL

 

COST’)

              

PARM

       

KWD(ITEM)

 

TYPE(*CHAR)

 

LEN(20)

 

RSTD(*NO)

 

+

                           

MIN(1)

 

ALWUNPRT(*NO)

 

PROMPT(’Item

 

name’

 

1)

              

PARM

       

KWD(PRICE)

 

TYPE(*DEC)

 

LEN(10

 

2)

 

RSTD(*NO)

 

+

                           

RANGE(0.01

 

99999999.99)

 

MIN(1)

 

+

                           

ALWUNPRT(*YES)

 

PROMPT(’Unit

 

price’

 

2)

              

PARM

       

KWD(QUANTITY)

 

TYPE(*INT2)

 

RSTD(*NO)

 

RANGE(1

 

+

                           

9999)

 

MIN(1)

 

ALWUNPRT(*YES)

 

+

                           

PROMPT(’Number

 

of

 

items’

 

3)

 

Figure

 

265.

 

T1520CM2

 

—

 

Source

 

to

 

Create

 

a

 

CL

 

Command

 

Prompt

  

436

 

ILE

 

C/C++

 

Programmer’s

 

Guide



/*

 

This

 

program

 

demonstrates

 

the

 

interlanguage

 

call

 

capability

        

*/

 

/*

 

of

 

an

 

ILE

 

C

 

program.

 

This

 

program

 

is

 

called

 

by

 

a

 

CL

            

*/

 

/*

 

program

 

that

 

passes

 

an

 

item

 

name,

 

price,

 

quantity

 

and

 

user

 

ID.

     

*/

 

/*

 

A

 

COBOL

 

procedure

 

is

 

called

 

to

 

calculate

 

and

 

format

 

total

 

cost.*/

 

/*

 

An

 

RPG

 

procedure

 

is

 

called

 

to

 

write

 

an

 

audit

 

trail.

            

*/

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#include

 

<string.h>

 

#include

 

<decimal.h>

 

/*

 

The

 

#pragma

 

map

 

directive

 

maps

 

a

 

function

 

name

 

to

 

the

 

bound

        

*/

 

/*

 

procedure

 

name

 

so

 

that

 

the

 

purpose

 

of

 

the

 

procedure

 

is

 

clear.

      

*/

 

#pragma

 

map(calc_and_format,"T1520CB2")

 

#pragma

 

map(write_audit_trail,"T1520RP2")

 

/*

 

Tell

 

the

 

compiler

 

that

 

there

 

are

 

bound

 

procedure

 

calls

 

and

         

*/

 

/*

 

arguments

 

are

 

to

 

be

 

passed

 

by

 

value-reference.

                     

*/

 

#pragma

 

argument(calc_and_format,

 

OS,

 

nowiden)

 

#pragma

 

argument(write_audit_trail,

 

OS)

 

void

 

calc_and_format(decimal

 

(10,2),

                      

short

 

int,

                      

char[],

                      

char

 

*);

 

void

 

write_audit_trail(char[],

                        

char[],

                        

decimal(10,2),

                        

short

 

int,

                        

char[]);

 

extern

 

decimal

 

(2,2)

 

TAXRATE;

  

/*

 

TAXRATE

 

is

 

in

 

*SRVPGM

 

T1520SP3

 

*/

 

int

 

main(int

 

argc,

 

char

 

*argv[])

 

{

 

/*

 

Incoming

 

arguments

 

from

 

a

 

CL

 

program

 

have

 

been

 

verified

 

by

         

*/

 

/*

 

the

 

*CMD

 

and

 

null

 

ended

 

within

 

the

 

CL

 

program.

                

*/

 

/*

 

Incoming

 

arguments

 

are

 

passed

 

by

 

reference

 

from

 

a

 

CL

 

program.

      

*/

   

char

             

*user_id;

   

char

             

*item_name;

   

short

 

int

        

quantity;

   

decimal

 

(10,

 

2)

  

price;

   

char

                 

formatted_cost[22];

 

/*

 

Remove

 

null

 

terminator

 

for

 

RPG

 

for

 

iSeries

 

400

 

program.

 

Item

 

name

 

is

 

null

      

*/

 

/*

 

ended

 

for

 

C.

                                                  

*/

   

char

             

rpg_item_name[20];

   

char

             

null_formatted_cost[22];

   

char

             

success_flag

 

=

 

’N’;

   

int

              

i;

 

/*

 

Incoming

 

arguments

 

are

 

all

 

pointers.

                               

*/

   

item_name

 

=

                        

argv[1];

   

price

     

=

 

*((decimal

 

(10,

 

2)

 

*)

  

argv[2]);

   

quantity

  

=

 

*((short

 

*)

            

argv[3]);

   

user_id

   

=

                        

argv[4];

 

Figure

 

266.

 

T1520ICB

 

—

 

ILE

 

C

 

Source

 

to

 

Call

 

COBOL

 

and

 

RPG

 

Procedures

 

(Part

 

1

 

of

 

2)

  

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

437



Notes:

  

a.

   

The

 

main()

 

function

 

in

 

this

 

module

 

receives

 

the

 

incoming

 

arguments

 

from

 

the

 

ILE

 

CL

 

program

 

T1520CL3

 

that

 

are

 

verified

 

by

 

the

 

CL

 

command

 

T1520CM2

 

and

 

null

 

ended

 

within

 

the

 

CL

 

program

 

T1520CL3.

 

All

 

the

 

incoming

 

arguments

 

are

 

pointers.

 

b.

   

The

 

main()

 

function

 

in

 

this

 

program

 

calls

 

calc_and_format()

 

which

 

is

 

mapped

 

to

 

a

 

ILE

 

COBOL

 

procedure

 

name.

 

It

 

passes

 

by

 

OS-linkage

 

convention

 

the

 

price,

 

quantity,

 

formatted

 

cost,

 

and

 

a

 

success

 

flag.

 

The

 

ILE

 

OPM

 

COBOL

 

procedure

 

is

 

not

 

expecting

 

widened

 

parameters,

 

the

 

default

 

for

 

ILE

 

C.

 

This

 

is

 

why

 

nowiden

 

is

 

used

 

in

 

the

 

#pragma

 

argument

 

directive.

 

The

 

formatted

 

cost

 

and

 

the

 

success

 

flag

 

values

 

are

 

updated

 

in

 

the

 

procedure

 

T1520CB2.

 

/*

 

Call

 

the

 

COBOL

 

program

 

to

 

do

 

the

 

calculation,

 

and

 

return

 

a

     

*/

 

/*

 

Y/N

 

flag,

 

and

 

a

 

formatted

 

result.

                                  

*/

   

calc_and_format(price,

                   

quantity,

                   

formatted_cost,

                   

&success_flag);

     

memcpy(null_formatted_cost,formatted_cost,sizeof(formatted_cost));

   

/*

 

Null

 

end

 

the

 

result.

                                         

*/

     

formatted_cost[21]

 

=

 

’\0’;

   

if

 

(success_flag

 

==

 

’Y’)

   

{

     

for

 

(i=0;

 

i<20;

 

i++)

     

{

 

/*

 

Remove

 

the

 

null

 

end

 

for

 

the

 

RPG

 

for

 

iSeries

 

400

 

program.

                    

*/

       

if

 

(*(item_name+i)

 

==

 

’\0’)

       

{

         

rpg_item_name[i]

 

=

 

’

 

’;

       

}

       

else

       

{

         

rpg_item_name[i]

 

=

 

*(item_name+i);

       

}

     

}

   

/*

 

Call

 

an

 

RPG

 

program

 

to

 

write

 

audit

 

records.

                    

*/

       

write_audit_trail(user_id,

               

rpg_item_name,

               

price,

               

quantity,

               

formatted_cost);

       

printf("\n%d

 

%s

 

plus

 

tax

 

=

 

%-s\n",

 

quantity,

                                        

item_name,

     

}

   

else

   

{

     

printf("Calculation

 

failed\n");

   

}

 

}

 

Figure

 

266.

 

T1520ICB

 

—

 

ILE

 

C

 

Source

 

to

 

Call

 

COBOL

 

and

 

RPG

 

Procedures

 

(Part

 

2

 

of

 

2)

  

438

 

ILE

 

C/C++

 

Programmer’s

 

Guide



c.

   

If

 

calc_and_format()

 

return

 

successfully

 

the

 

main()

 

function

 

in

 

this

 

program

 

(T1520ICB)

 

calls

 

write_audit_trail()

 

which

 

is

 

mapped

 

to

 

an

 

ILE

 

RPG

 

procedure

 

name.

 

It

 

passes

 

by

 

OS-linkage

 

convention

 

(also

 

called

 

by

 

value-reference)

 

the

 

user

 

ID,

 

item

 

name,

 

price,

 

quantity,

 

and

 

formatted

 

cost.

 

The

 

ILE

 

C

 

compiler

 

by

 

default

 

converts

 

a

 

short

 

integer

 

to

 

an

 

integer

 

unless

 

the

 

nowiden

 

parameter

 

is

 

specified

 

on

 

the

 

#pragma

 

argument

 

directive.

 

For

 

example,

 

the

 

short

 

integer

 

in

 

the

 

ILE

 

C

 

program

 

is

 

converted

 

to

 

an

 

integer,

 

and

 

then

 

passed

 

to

 

the

 

ILE

 

RPG

 

procedure.

 

The

 

RPG

 

procedure

 

is

 

expecting

 

a

 

4

 

byte

 

integer

 

for

 

the

 

quantity

 

variable.

 

5.

   

To

 

create

 

module

 

T1520ICC

 

using

 

the

 

source

 

shown

 

in

 

Figure

 

267,

 

enter:

 

CRTCMOD

 

MODULE(MYLIB/T1520ICC)

 

SRCFILE(QCPPLE/QACSRC)

   

TAXRATE

 

is

 

exported

 

from

 

this

 

module

 

to

 

ILE

 

C,

 

COBOL,

 

and

 

RPG

 

procedures.

 

Note:

  

Weak

 

definitions

 

(EXTERNALs

 

from

 

COBOL)

 

cannot

 

be

 

exported

 

out

 

of

 

a

 

service

 

program

 

to

 

a

 

strong

 

definition

 

language

 

like

 

C.

 

C

 

can

 

export

 

to

 

COBOL,

 

hence

 

the

 

choice

 

of

 

language

 

for

 

TAXRATE.

  

6.

   

To

 

create

 

an

 

ILE

 

COBOL

 

procedure

 

using

 

the

 

source

 

shown

 

in

 

Figure

 

268

 

on

 

page

 

440,

 

enter:

 

CRTCBLMOD

 

MODULE(MYLIB/T1520CB2)

 

SRCFILE(QCPPLE/QALBLSRC)

   

/*

 

Export

 

the

 

tax

 

rate

 

data.

                                          

*/

 

#include

 

<decimal.h>

 

const

 

decimal

 

(2,2)

   

TAXRATE

 

=

 

.15D;

 

Figure

 

267.

 

T1520ICC

 

—

 

Source

 

Code

 

to

 

Export

 

Tax

 

Rate

 

Data

  

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

439



Notes:

  

a.

   

This

 

program

 

receives

 

pointers

 

to

 

the

 

values

 

of

 

the

 

variables

 

price

 

and

 

quantity,

 

and

 

pointers

 

to

 

formatted_cost

 

and

 

success_flag.

 

b.

   

The

 

calc_and_format()

 

function

 

is

 

procedure

 

T1520CB2.

 

It

 

calculates

 

and

 

formats

 

the

 

total

 

cost.

 

c.

   

The

 

WebSphere

 

Development

 

Studio:

 

ILE

 

COBOL

 

Programmer’s

 

Guide

 

contains

 

information

 

on

 

how

 

compile

 

an

 

ILE

 

COBOL

 

source

 

program.

       

IDENTIFICATION

 

DIVISION.

        

PROGRAM-ID.

 

T1520CB2

 

INITIAL.

       

******************************************************

       

*

 

parameters:

                                        

*

       

*

   

incoming:

  

PRICE,

 

QUANTITY

                       

*

       

*

   

returns

 

:

  

TOTAL-COST

 

(PRICE*QUANTITY*1.TAXRATE)

 

*

       

*

              

SUCCESS-FLAG.

                         

*

       

*

   

TAXRATE

 

:

  

An

 

imported

 

value.

                    

*

       

******************************************************

        

ENVIRONMENT

 

DIVISION.

         

CONFIGURATION

 

SECTION.

          

SOURCE-COMPUTER.

 

IBM-ISERIES.

          

OBJECT-COMPUTER.

 

IBM-ISERIES.

        

DATA

 

DIVISION.

         

WORKING-STORAGE

 

SECTION.

          

01

  

WS-TOTAL-COST

             

PIC

 

S9(13)V99

       

COMP-3.

          

01

  

WS-TAXRATE

                

PIC

 

S9V99

           

COMP-3

                                                            

VALUE

 

1.

          

01

  

TAXRATE

       

EXTERNAL

    

PIC

 

SV99

            

COMP-3.

         

LINKAGE

 

SECTION.

          

01

  

LS-PRICE

                  

PIC

 

S9(8)V9(2)

      

COMP-3.

          

01

  

LS-QUANTITY

               

PIC

 

S9(4)

           

COMP-4.

          

01

  

LS-TOTAL-COST

             

PIC

 

$$,$$$,$$$,$$$,$$$.99

                                                            

DISPLAY.

          

01

  

LS-OPERATION-SUCCESSFUL

   

PIC

 

X

               

DISPLAY.

 

Figure

 

268.

 

T1520CB2

 

—

 

ILE

 

COBOL

 

Source

 

to

 

Calculate

 

Tax

 

and

 

Format

 

Cost

 

(Part

 

1

 

of

 

2)

       

PROCEDURE

 

DIVISION

  

USING

  

LS-PRICE

                                   

LS-QUANTITY

                                   

LS-TOTAL-COST

                                   

LS-OPERATION-SUCCESSFUL.

         

MAINLINE.

            

MOVE

 

"Y"

 

TO

 

LS-OPERATION-SUCCESSFUL.

            

PERFORM

 

CALCULATE-COST.

            

PERFORM

 

FORMAT-COST.

            

EXIT

 

PROGRAM.

         

CALCULATE-COST.

            

ADD

 

TAXRATE

 

TO

 

WS-TAXRATE.

            

COMPUTE

  

WS-TOTAL-COST

 

ROUNDED

 

=

 

LS-QUANTITY

 

*

                                             

LS-PRICE

 

*

                                             

WS-TAXRATE

              

ON

 

SIZE

 

ERROR

                

MOVE

 

"N"

 

TO

 

LS-OPERATION-SUCCESSFUL

            

END-COMPUTE.

         

FORMAT-COST.

            

MOVE

 

WS-TOTAL-COST

 

TO

 

LS-TOTAL-COST.

 

Figure

 

268.

 

T1520CB2

 

—

 

ILE

 

COBOL

 

Source

 

to

 

Calculate

 

Tax

 

and

 

Format

 

Cost

 

(Part

 

2

 

of

 

2)

  

440

 

ILE

 

C/C++

 

Programmer’s

 

Guide



7.

   

To

 

create

 

an

 

ILE

 

RPG

 

procedure

 

using

 

the

 

source

 

shown

 

in

 

Figure

 

269,

 

enter:

 

CRTRPGMOD

 

MODULE(MYLIB/T1520RP2)

 

SRCFILE(QCPPLE/QARPGSRC)

  

Notes:

  

a.

   

The

 

write_audit_trail()

 

function

 

is

 

the

 

procedure

 

T1520RP2.

 

It

 

writes

 

the

 

audit

 

trail

 

for

 

the

 

program.

 

b.

   

The

 

WebSphere

 

Development

 

Studio:

 

ILE

 

RPG

 

Programmer’s

 

Guide

 

contains

 

information

 

on

 

how

 

to

 

compile

 

an

 

ILE

 

RPG

 

source

 

program.

 

8.

   

To

 

create

 

the

 

service

 

program

 

T1520SP3

 

from

 

the

 

module

 

T1520ICC,

 

enter:

 

CRTSRVPGM

 

SRVPGM(MYLIB/T1520SP3)

 

MODULE(MYLIB/T1520ICC)

 

+

           

EXPORT(*SRCFILE)

 

SRCFILE(QCPPLE/QASRVSRC)

 

The

 

T1520SP3

 

service

 

program

 

exports

 

taxrate.

 

The

 

export

 

list

 

is

 

specified

 

in

 

T1520SP3

 

in

 

QASRVSRC.

  

9.

   

To

 

create

 

the

 

service

 

program

 

T1520SP4

 

from

 

the

 

module

 

T1520RP2,

 

enter:

 

CRTSRVPGM

 

SRVPGM(MYLIB/T1520SP4)

 

MODULE(MYLIB/T1520RP2)

 

+

           

EXPORT(*SRCFILE)

 

SRCFILE(QCPPLE/QASRVSRC)

 

The

 

T1520SP4

 

service

 

program

 

exports

 

procedure

 

T1520RP2.

 

The

 

export

 

list

 

is

 

specified

 

in

 

T1520SP4

 

in

 

QASRVSRC.

 

10.

   

To

 

create

 

the

 

program

 

T1520ICB

 

enter:

 

CRTPGM

 

PGM(MYLIB/T1520ICB)

 

MODULE(MYLIB/T1520ICB

 

MYLIB/T1520CB2)

 

+

        

BNDSRVPGM(MYLIB/T1520SP3

 

MYLIB/T1520SP4)

 

ACTGRP(*CALLER)

 

T1520ICB

 

is

 

considered

 

the

 

application’s

 

main

 

program.

 

It

 

will

 

run

 

in

 

the

 

new

 

activation

 

group

 

that

 

was

 

created

 

when

 

T1520CL3

 

was

 

called.

 

11.

   

To

 

enter

 

data

 

for

 

the

 

program

 

T1520ICB,

 

type

 

T1520CM2and

 

press

 

F4

 

(Prompt).:

  

Type

 

the

 

following

 

data

 

into

 

T1520CM2:

  

FT1520DD2

  

O

  

A

 

E

             

DISK

      

D

 

TAXRATE

         

S

              

3P

 

2

 

IMPORT

      

D

 

QTYIN

           

DS

      

D

  

QTYBIN

                 

1

      

4B

 

0

      

C

     

*ENTRY

        

PLIST

      

C

                   

PARM

                    

USER

             

10

      

C

                   

PARM

                    

ITEM

             

20

      

C

                   

PARM

                    

PRICE

            

10

 

2

      

C

                   

PARM

                    

QTYIN

      

C

                   

PARM

                    

TOTAL

            

21

      

C

                   

EXSR

      

ADDREC

      

C

                   

SETON

                                            

LR

      

C

     

ADDREC

        

BEGSR

      

C

                   

MOVEL

     

UDATE

         

DATE

      

C

                   

MOVE

      

QTYBIN

        

QTY

      

C

                   

MOVE

      

TAXRATE

       

TXRATE

      

C

                   

WRITE

     

T1520DD2R

      

C

                   

ENDSR

 

Figure

 

269.

 

T1520RP2

 

—

 

ILE

 

RPG

 

Source

 

to

 

Write

 

the

 

Audit

 

Trail

  

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

441



The

 

output

 

is

 

as

 

follows:

   

5000

 

HAMMERS

 

plus

 

tax

 

=

            

$11,385.00

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

>

   

2000

 

NAILS

 

plus

 

tax

 

=

               

$575.00

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

The

 

physical

 

file

 

T1520DD2

 

contains

 

the

 

following

 

data:

 

SMITHE

  

HAMMERS

               

0000000198500015

          

$11,385.00072893

 

SMITHE

  

NAILS

                 

0000000025200015

             

$575.00072893

 

ILE-OPM

 

CL

 

Example:

 

Calling

 

OPM,

 

COBOL,

 

and

 

RPG

 

Programs

 

from

 

an

 

ILE

 

C++

 

Program

 

This

 

program

 

demonstrates

 

some

 

typical

 

steps

 

in

 

creating

 

a

 

program

 

that

 

uses

 

several

 

ILE

 

and

 

OPM

 

programming

 

languages.

 

Program

 

Description

 

The

 

program

 

is

 

a

 

small

 

transaction-processing

 

program

 

that

 

takes

 

as

 

input

 

the

 

item

 

name,

 

price,

 

and

 

quantity

 

for

 

one

 

or

 

more

 

products.

 

As

 

output,

 

the

 

program

 

displays

 

the

 

total

 

cost

 

of

 

the

 

items

 

specified

 

on

 

the

 

display

 

and

 

writes

 

an

 

audit

 

trail

 

of

 

the

 

transactions

 

to

 

a

 

file.

 

Figure

 

270

 

shows

 

the

 

basic

 

flow

 

of

 

the

 

program.

    

Hammers

 

1.98

 

5000

 

Nails

 

0.25

 

2000

 

OPM CL CMD
Program

T2123CM2

OPM CL
Program

T2123CL2

ILE C++
Program

T2123IC5

OPM COBOL/400
Program

T2123CB1

OPM RPG/400
Program

T2123RP1

User Input

Displays
Output

Audit File
T2123DD2

  

Figure

 

270.

 

ILE-OPM

 

CL

 

Example:

 

Basic

 

Program

 

Structure

  

442

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Program

 

Structure

 

The

 

program

 

consists

 

of

 

these

 

components:

 

v

   

A

 

CL

 

command

 

T2123CM2

 

that

 

accepts

 

the

 

users

 

input

 

and

 

passes

 

it

 

to

 

an

 

OPM

 

CL

 

program

 

v

   

An

 

OPM

 

CL

 

program

 

T2123CL2

 

that

 

processes

 

the

 

input

 

and

 

passes

 

it

 

to

 

an

 

ILE

 

C++

 

program

 

v

   

An

 

ILE

 

C++

 

program

 

T2123IC5

 

that

 

calls

 

an

 

OPM

 

COBOL

 

program

 

to

 

process

 

the

 

input,

 

and

 

an

 

OPM

 

RPG

 

program

 

to

 

write

 

the

 

audit

 

trail

 

to

 

an

 

externally

 

described

 

file

 

v

   

An

 

OPM

 

COBOL

 

program

 

T2123CB1

 

that

 

completes

 

the

 

calculation

 

and

 

formats

 

the

 

cost

 

v

   

An

 

OPM

 

RPG

 

program

 

T2123RP1

 

that

 

updates

 

the

 

audit

 

file

 

with

 

each

 

transaction

 

v

   

An

 

externally

 

described

 

file

 

T2123DD2

 

that

 

receives

 

the

 

audit

 

trail

Program

 

Activation

 

The

 

ILE

 

C++

 

program

 

T2123IC5

 

is

 

created

 

with

 

the

 

CRTPGM

 

default

 

for

 

the

 

ACTGRP

 

parameter,

 

ACTGRP(*NEW).

 

When

 

the

 

CL

 

program

 

calls

 

the

 

ILE

 

C++

 

program,

 

a

 

new

 

activation

 

group

 

is

 

started.

 

The

 

OPM

 

CL,

 

COBOL,

 

and

 

RPG

 

programs

 

are

 

activated

 

within

 

the

 

OPM

 

default

 

activation

 

group.

 

Figure

 

271

 

shows

 

the

 

structure

 

of

 

this

 

program

 

in

 

ILE.

    

Program

 

Files

 

The

 

source

 

code

 

for

 

each

 

of

 

the

 

files

 

that

 

compose

 

this

 

program

 

are

 

an

 

externally

 

described

 

file,

 

a

 

CL

 

program,

 

a

 

CL

 

command

 

prompt,

 

a

 

C++

 

source

 

file,

 

and

 

OPM

 

COBOL

 

program

 

and

 

an

 

OPM

 

RPG

 

program.

 

Externally

 

Described

 

File

 

T2123DD2:

   

The

 

file

 

T2123DD2

 

contains

 

the

 

audit

 

trail

 

for

 

the

 

C++

 

program

 

T2123IC5.

 

The

 

DDS

 

source

 

defines

 

the

 

fields

 

for

 

the

 

audit

 

file:

   

R

 

T2123DD2R

     

USER

          

10

          

COLHDG(’User’)

     

ITEM

          

20

          

COLHDG(’Item

 

name’)

     

PRICE

         

10S

 

2

       

COLHDG(’Unit

 

price’)

     

QTY

            

4S

         

COLHDG(’Number

 

of

 

items’)

OPM Program T2123CB1

WriteAuditTrail()

OPM Program T2123RP1

CalcAndFormat()

ILE Program T2123IC5

Module T2123IC5

New Activation Group

OPM Default Activation Group

taxrate
main()

  

Figure

 

271.

 

Structure

 

of

 

the

 

Program

 

in

 

ILE

 

C++

  

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

443



TXRATE

         

2S

 

2

       

COLHDG(’Current

 

tax

 

rate’)

     

TOTAL

         

21

          

COLHDG(’Total

 

cost’)

     

DATE

           

6

          

COLHDG(’Transaction

 

date’)

   

K

 

USER

 

CL

 

Program

 

T2123CL2:

   

The

 

CL

 

program

 

T2123CL2

 

passes

 

the

 

CL

 

variables

 

item_name,

 

price,

 

quantity

 

and

 

user_id

 

by

 

reference

 

to

 

an

 

ILE

 

C++

 

program

 

T2123IC5.

 

PGM

        

PARM(&ITEMIN

 

&PRICE

 

&QUANTITY)

      

DCL

        

VAR(&USER)

 

TYPE(*CHAR)

 

LEN(10)

      

DCL

        

VAR(&USEROUT)

 

TYPE(*CHAR)

 

LEN(11)

      

DCL

        

VAR(&ITEMIN)

    

TYPE(*CHAR)

 

LEN(20)

      

DCL

        

VAR(&ITEMOUT)

   

TYPE(*CHAR)

 

LEN(21)

      

DCL

        

VAR(&PRICE)

     

TYPE(*DEC)

  

LEN(10

 

2)

      

DCL

        

VAR(&QUANTITY)

  

TYPE(*DEC)

  

LEN(2

 

0)

      

DCL

        

VAR(&NULL)

      

TYPE(*CHAR)

 

LEN(1)

 

VALUE(X’00’)

   

/*

 

ADD

 

NULL

 

TERMINATOR

 

FOR

 

THE

 

ILE

 

C

 

PROGRAM

                 

*/

      

CHGVAR

     

VAR(&ITEMOUT)

 

VALUE(&ITEMIN

 

*TCAT

 

&NULL)

      

CHGVAR

     

VAR(&USEROUT)

 

VALUE(&USER

 

*TCAT

 

&NULL)

   

/*

 

GET

 

THE

 

USERID

 

FOR

 

THE

 

AUDIT

 

FILE

                         

*/

      

RTVJOBA

    

USER(&USER)

   

/*

 

ENSURE

 

AUDIT

 

RECORDS

 

WRITTEN

 

TO

 

CORRECT

 

AUDIT

 

FILE

 

MEMBER

 

*/

      

OVRDBF

     

FILE(T2123DD2)

 

TOFILE(*LIBL/T2123DD2)

 

+

                   

MBR(T2123DD2)

 

OVRSCOPE(*CALLLVL)

 

SHARE(*NO)

      

CALL

       

PGM(T2123IC5)

 

PARM(&ITEMOUT

 

&PRICE

 

&QUANTITY

 

+

                   

&USEROUT)

      

DLTOVR

     

FILE(*ALL)

 

ENDPGM

 

The

 

Retrieve

 

Job

 

Attributes

 

(RTVJOBA)

 

command

 

obtains

 

the

 

user

 

ID

 

for

 

the

 

audit

 

trail.

 

Arguments

 

are

 

passed

 

by

 

reference.

 

They

 

can

 

be

 

changed

 

by

 

the

 

receiving

 

ILE

 

C++

 

program.

 

The

 

variables

 

containing

 

the

 

user

 

and

 

item

 

names

 

are

 

explicitly

 

null-terminated

 

in

 

the

 

CL

 

program.

Notes:

  

1.

   

CL

 

variables

 

and

 

numeric

 

literals

 

are

 

not

 

passed

 

to

 

an

 

ILE

 

C++

 

program

 

with

 

null-terminated

 

strings.

 

2.

   

Character

 

literals

 

and

 

logical

 

literals

 

are

 

passed

 

as

 

null-terminated

 

strings

 

but

 

are

 

not

 

widened

 

with

 

blanks.

 

3.

   

Numeric

 

literals

 

such

 

as

 

packed

 

decimals

 

are

 

passed

 

as

 

15,5

 

(8

 

bytes).

 

Floating

 

point

 

constants

 

are

 

passed

 

as

 

double

 

precision

 

floating

 

point

 

values

 

(1.2E+15).

 

4.

   

To

 

pass

 

parameters

 

to

 

an

 

ILE

 

program

 

when

 

you

 

run

 

it,

 

use

 

the

 

PARM

 

option

 

of

 

the

 

CL

 

Call

 

(CALL)

 

command.

CL

 

Command

 

Prompt

 

T2123CM2:

   

You

 

use

 

the

 

CL

 

command

 

prompt

 

T2123CM2

 

to

 

prompt

 

the

 

user

 

to

 

enter

 

item

 

names,

 

prices,

 

and

 

quantities

 

that

 

will

 

be

 

used

 

by

 

the

 

C++

 

program

 

T2123IC5.

 

CMD

        

PROMPT(’CALCULATE

 

TOTAL

 

COST’)

 

PARM

       

KWD(ITEM)

 

TYPE(*CHAR)

 

LEN(20)

 

RSTD(*NO)

 

+

              

MIN(1)

 

ALWUNPRT(*NO)

 

PROMPT(’Item

 

name’

 

1)

 

PARM

       

KWD(PRICE)

 

TYPE(*DEC)

 

LEN(10

 

2)

 

RSTD(*NO)

 

+

              

RANGE(0.01

 

99999999.99)

 

MIN(1)

 

+

              

ALWUNPRT(*YES)

 

PROMPT(’Unit

 

price’

 

2)

 

PARM

       

KWD(QUANTITY)

 

TYPE(*INT2)

 

RSTD(*NO)

 

RANGE(1

 

+

              

9999)

 

MIN(1)

 

ALWUNPRT(*YES)

 

+

              

PROMPT(’Number

 

of

 

items’

 

3)

 

C++

 

Source

 

File

 

T2123IC5:

   

The

 

C++

 

source

 

file

 

T2123IC5

 

contains

 

a

 

main()

 

function

 

which

 

receives

 

the

 

incoming

 

arguments

 

from

 

the

 

CL

 

program

 

T2123CL2.

   

444

 

ILE

 

C/C++

 

Programmer’s

 

Guide



These

 

arguments

 

have

 

been

 

verified

 

by

 

the

 

CL

 

command

 

prompt

 

T2123CM2

 

and

 

null-terminated

 

within

 

the

 

CL

 

program

 

T2123CL2.

 

All

 

the

 

incoming

 

arguments

 

are

 

pointers.

 

The

 

main()

 

function

 

calls

 

the

 

function

 

CalcAndFormat()

 

which

 

is

 

mapped

 

to

 

a

 

COBOL

 

name.

 

It

 

passes

 

the

 

price,

 

quantity,

 

taxrate,

 

formatted_cost,

 

and

 

a

 

success_flag

 

to

 

the

 

OPM

 

COBOL

 

program

 

T2123CB1

 

using

 

the

 

extern

 

"OS

 

nowiden"

 

linkage

 

specification,

 

because

 

the

 

OPM

 

COBOL

 

program

 

is

 

not

 

expecting

 

widened

 

parameters.

 

The

 

formatted_cost

 

and

 

the

 

success_flag

 

values

 

are

 

updated

 

in

 

the

 

C++

 

program

 

T2123IC5.

 

If

 

CalcAndFormat()

 

returns

 

successfully,

 

a

 

record

 

is

 

written

 

to

 

the

 

audit

 

trail

 

by

 

WriteAuditTrail()

 

in

 

the

 

OPM

 

RPG

 

program.

 

The

 

main()

 

function

 

in

 

program

 

T2123IC5

 

calls

 

WriteAuditTrail()

 

which

 

is

 

mapped

 

to

 

an

 

RPG

 

program

 

name,

 

and

 

passes

 

the

 

user_id,

 

item_name,

 

price,

 

quantity,

 

taxrate,

 

and

 

formatted_cost,

 

using

 

the

 

extern

 

"OS"

 

linkage

 

specification.

 

Note:

  

By

 

default,

 

the

 

compiler

 

converts

 

a

 

short

 

integer

 

to

 

an

 

integer

 

unless

 

the

 

nowiden

 

parameter

 

is

 

specified

 

on

 

the

 

extern

 

linkage

 

specification.

 

The

 

short

 

integer

 

in

 

the

 

C++

 

program

 

is

 

converted

 

to

 

an

 

integer,

 

and

 

then

 

passed

 

to

 

the

 

OPM

 

RPG

 

program.

 

The

 

RPG

 

program

 

is

 

expecting

 

a

 

4-byte

 

integer

 

for

 

the

 

quantity

 

variable.

 

See

 

Appendix

 

B,

 

“Interlanguage

 

Data-Type

 

Compatibilities,”

 

on

 

page

 

543

 

for

 

information

 

on

 

data-type

 

compatibility.
//

 

This

 

program

 

is

 

called

 

by

 

a

 

CL

 

program

 

that

 

passes

 

an

 

item

 

//

 

name,

 

price,

 

quantity

 

and

 

user

 

ID.

 

//

 

COBOL

 

is

 

called

 

to

 

calculate

 

and

 

format

 

the

 

total

 

cost.

 

//

 

RPG

 

is

 

called

 

to

 

write

 

an

 

audit

 

trail.

   

#include

 

<iostream.h>

 

#include

 

<stdlib.h>

 

#include

 

<string.h>

 

#include

 

<bcd.h>

   

//

 

The

 

#pragma

 

map

 

directive

 

maps

 

a

 

new

 

program

 

name

 

to

 

the

 

existing

 

//

 

program

 

name

 

so

 

that

 

the

 

purpose

 

of

 

the

 

program

 

is

 

clear.

 

//

 

Tell

 

the

 

compiler

 

that

 

there

 

are

 

dynamic

 

program

 

calls

 

so

 

//

 

arguments

 

are

 

passed

 

by

 

value-reference.

   

extern

 

"OS

 

nowiden"

 

void

 

CalcAndFormat(_DecimalT

 

<10,2>,

                     

short

 

int,

 

_DecimalT<2,2>,

 

char[],

                     

char

 

*);

   

#pragma

 

map(CalcAndFormat,"T2123CB1")

   

extern

 

"OS"

 

void

 

WriteAuditTrail(char[],

 

char[]

      

,

                                  

_DecimalT<10,2>,

 

short

 

int,

                                  

_DecimalT<2,2>,

 

char[]);

   

#pragma

 

map(WriteAuditTrail,"T2123RP1")

   

int

 

main(int

 

argc,

 

char

 

*argv[])

 

{

 

//

 

Incoming

 

arguments

 

from

 

a

 

CL

 

program

 

have

 

been

 

verified

 

by

 

//

 

the

 

*CMD

 

and

 

null-terminated

 

within

 

the

 

CL

 

program.

 

//

 

Incoming

 

arguments

 

are

 

passed

 

by

 

reference

 

from

 

a

 

CL

 

program.

     

char

               

*user_id;

  

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

445



char

               

*item_name;

   

short

 

int

          

quantity;

   

_DecimalT

 

<10,

 

2>

  

price;

   

_DecimalT

 

<2,2>

    

taxrate

 

=

 

__D(".15");

   

char

               

formatted_cost[22];

   

//

 

Remove

 

null

 

terminator

 

for

 

RPG

 

program.

 

Item

 

name

 

is

 

null

 

//

 

terminated

 

for

 

C++.

      

char

             

rpg_item_name[20];

    

char

             

null_formatted_cost[22];

    

char

             

success_flag

 

=

 

’N’;

    

int

              

i;

    

//

 

Incoming

 

arguments

 

are

 

all

 

pointers.

      

item_name

 

=

                        

argv[1];

    

price

     

=

 

*((_DecimalT<10,

 

2>

 

*)

 

argv[2]);

    

quantity

  

=

 

*((short

 

*)

            

argv[3]);

    

user_id

   

=

                        

argv[4];

   

//

 

Call

 

the

 

COBOL

 

program

 

to

 

do

 

the

 

calculation,

 

and

 

return

 

a

 

//

 

Y/N

 

flag,

 

and

 

a

 

formatted

 

result.

     

CalcAndFormat(price,

 

quantity,

 

taxrate,

 

formatted_cost,

                 

&success_flag);

     

memcpy(null_formatted_cost,formatted_cost,sizeof(formatted_cost));

   

//

 

Null

 

terminate

 

the

 

result.

     

formatted_cost[21]

 

=

 

’\0’;

   

if

 

(success_flag

 

==

 

’Y’)

   

{

     

for

 

(i=0;

 

i<20;

 

i++)

     

{

   

//

 

Remove

 

null

 

terminator

 

for

 

the

 

RPG

 

program.

         

if

 

(*(item_name+i)

 

==

 

’\0’)

       

{

         

rpg_item_name[i]

 

=

 

’

 

’;

       

}

       

else

       

{

         

rpg_item_name[i]

 

=

 

*(item_name+i);

       

}

     

}

   

//

 

Call

 

an

 

RPG

 

program

 

to

 

write

 

audit

 

records.

       

WriteAuditTrail(user_id,

 

rpg_item_name,

 

price,

 

quantity,

                       

taxrate,

 

formatted_cost);

       

cout

 

<<quantity

 

<<item_name

 

<<

 

"plus

 

tax

 

="

          

<<null_formatted_cost

 

<<endl;

   

}

   

else

   

{

     

cout

 

<<"Calculation

 

failed"

 

<<endl;

   

}

 

}

 

OPM

 

COBOL

 

Program

 

T2123CB1:

   

The

 

OPM

 

COBOL

 

program

 

T2123CB1

 

receives

 

pointers

 

to

 

the

 

values

 

of

 

the

 

variables

 

price,

 

quantity

 

and

 

taxrate,

 

and

 

pointers

 

to

 

formatted_cost

 

and

 

success_flag.

   

446

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

CalcAndFormat()

 

function

 

in

 

program

 

T2123CB1

 

calculates

 

and

 

formats

 

the

 

total

 

cost.

 

Parameters

 

are

 

passed

 

from

 

the

 

ILE

 

C++

 

program

 

to

 

the

 

OPM

 

COBOL

 

program

 

to

 

do

 

the

 

tax

 

calculation.

  

IDENTIFICATION

 

DIVISION.

  

PROGRAM-ID.

 

T2123CB1.

 

******************************************************

 

*

 

parameters:

                                        

*

 

*

   

incoming:

  

PRICE,

 

QUANTITY

                       

*

 

*

   

returns

 

:

  

TOTAL-COST

 

(PRICE*QUANTITY*1.TAXRATE)

 

*

 

*

              

SUCCESS-FLAG.

                         

*

 

******************************************************

  

ENVIRONMENT

 

DIVISION.

                                                         

0

   

CONFIGURATION

 

SECTION.

                                                       

0

    

SOURCE-COMPUTER.

 

IBM-ISERIES.

                                                    

0

    

OBJECT-COMPUTER.

 

IBM-ISERIES.

                                                    

0

  

DATA

 

DIVISION.

                                                                

0

  

WORKING-STORAGE

 

SECTION.

           

01

  

WS-TOTAL-COST

             

PIC

 

S9(13)V99

       

COMP-3.

         

01

  

WS-TAXRATE

                

PIC

 

S9V99

           

COMP-3.

          

LINKAGE

 

SECTION.

           

01

  

LS-PRICE

                  

PIC

 

S9(8)V9(2)

      

COMP-3.

         

01

  

LS-QUANTITY

               

PIC

 

S9(4)

           

COMP-4.

         

01

  

LS-TAXRATE

                

PIC

 

SV99

            

COMP-3.

         

01

  

LS-TOTAL-COST

             

PIC

 

$$,$$$,$$$,$$$,$$$.99

                                                           

DISPLAY.

         

01

  

LS-OPERATION-SUCCESSFUL

   

PIC

 

X

               

DISPLAY.

   

PROCEDURE

 

DIVISION

  

USING

  

LS-PRICE

                                            

0

                            

LS-QUANTITY

                            

LS-TAXRATE

                            

LS-TOTAL-COST

                            

LS-OPERATION-SUCCESSFUL.

    

MAINLINE.

     

MOVE

 

"Y"

 

TO

 

LS-OPERATION-SUCCESSFUL.

     

PERFORM

 

CALCULATE-COST.

     

PERFORM

 

FORMAT-COST.

     

EXIT

 

PROGRAM.

           

CALCULATE-COST.

            

MOVE

 

LS-TAXRATE

 

TO

 

WS-TAXRATE.

            

ADD

 

1

 

TO

 

WS-TAXRATE.

            

COMPUTE

  

WS-TOTAL-COST

 

ROUNDED

 

=

 

LS-QUANTITY

 

*

                                             

LS-PRICE

 

*

                                             

WS-TAXRATE

              

ON

 

SIZE

 

ERROR

                

MOVE

 

"N"

 

TO

 

LS-OPERATION-SUCCESSFUL

            

END-COMPUTE.

           

FORMAT-COST.

            

MOVE

 

WS-TOTAL-COST

 

TO

 

LS-TOTAL-COST.

 

OPM

 

RPG

 

Program

 

T2123RP1:

   

The

 

OPM

 

RPG

 

program

 

T2123RP1

 

contains

 

the

 

WriteAuditTrail()

 

function

 

which

 

writes

 

the

 

audit

 

trail

 

for

 

the

 

program.

 

FT2123DD2O

   

E

                    

DISK

                      

A

 

F

            

T2123DD2R

                         

KRENAMEDD2R

 

IQTYIN

       

DS

 

I

                                    

B

   

1

   

40QTYBIN

 

C

           

*ENTRY

    

PLIST

 

C

                     

PARM

           

USER

   

10

 

C

                     

PARM

           

ITEM

   

20

 

C

                     

PARM

           

PRICE

  

102

  

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

447



C

                     

PARM

           

QTYIN

 

C

                     

PARM

           

TXRATE

  

22

 

C

                     

PARM

           

TOTAL

  

21

 

C

                     

EXSR

 

ADDREC

 

C

                     

SETON

                         

LR

 

C

           

ADDREC

    

BEGSR

 

C

                     

MOVELUDATE

     

DATE

 

C

                     

MOVE

 

QTYBIN

    

QTY

 

C

                     

WRITEDD2R

 

C

                     

ENDSR

 

Invoking

 

the

 

ILE-OPM

 

Program

 

To

 

enter

 

data

 

for

 

the

 

program

 

T2123IC5

 

enter

 

the

 

command

 

T2123CM2

 

and

 

press

 

F4

 

(Prompt).

 

You

 

can

 

enter

 

this

 

data

 

into

 

T2123CM2:

      

Hammers

      

1.98

      

5000

      

Nails

      

0.25

      

2000

 

The

 

output

 

is:

   

5000

 

HAMMERS

 

plus

 

tax

 

=

            

$11,385.00

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

>

   

2000

 

NAILS

 

plus

 

tax

 

=

               

$575.00

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

The

 

physical

 

file

 

T2123DD2

 

contains

 

this

 

data:

 

SMITHE

  

HAMMERS

               

0000000198500015

          

$11,385.0007

     

2893

 

SMITHE

  

NAILS

                 

0000000025200015

             

$575.0007

     

2893

 

Using

 

a

 

Linkage

 

Specification

 

to

 

Call

 

an

 

ILE

 

Procedure

 

C++

 

provides

 

a

 

linkage

 

specification

 

to

 

enable

 

procedure

 

calls

 

and

 

the

 

sharing

 

of

 

data

 

between

 

the

 

C++

 

caller

 

and

 

the

 

called

 

procedure.

 

See

 

“Using

 

a

 

Linkage

 

Specification

 

in

 

a

 

C++

 

Dynamic

 

Program

 

Call”

 

on

 

page

 

449

 

for

 

the

 

syntax.

 

The

 

valid

 

string

 

literals

 

for

 

the

 

linkage

 

specification

 

to

 

call

 

ILE

 

procedures

 

are:

 

Linkage

 

Specification

 

Type

 

of

 

Procedure

 

Called

 

"C++"

 

ILE

 

C++

 

procedure

 

(default)

 

"C"

 

ILE

 

C

 

procedure

 

"C

 

nowiden"

 

ILE

 

C

 

procedure

 

without

 

widened

 

parameters

 

"RPG"

 

ILE

 

RPG

 

procedure

 

"COBOL"

 

ILE

 

COBOL

 

procedure

 

"CL"

 

ILE

 

CL

 

procedure

 

"ILE"

 

General

 

ILE

 

function

 

call

 

"ILE

 

nowiden"

 

ILE

 

function

 

call

 

without

 

widened

 

parameters

 

"VREF"

 

ILE

 

function

 

call

 

with

 

pointers

 

in

 

temporary

 

storage.

 

(Behaves

 

the

 

same

 

as

 

a

 

regular

 

call

   

448

 

ILE

 

C/C++

 

Programmer’s

 

Guide



although

 

parameters

 

are

 

passed

 

to

 

the

 

function

 

as

 

if

 

they

 

were

 

by

 

reference.)

 

"VREF

 

nowiden"

 

Same

 

as

 

"VREF"

 

without

 

widened

 

parameters

Using

 

a

 

Linkage

 

Specification

 

in

 

a

 

C++

 

Dynamic

 

Program

 

Call

 

You

 

can

 

call

 

OPM,

 

ILE,

 

or

 

EPM

 

programs

 

from

 

a

 

C++

 

program.

 

OPM,

 

ILE

 

or

 

EPM

 

programs

 

can

 

also

 

call

 

a

 

C++

 

program.

    

C++

 

provides

 

a

 

linkage

 

specification

 

to

 

enable

 

dynamic

 

program

 

calls

 

and

 

sharing

 

of

 

data

 

between

 

them.

 

For

 

a

 

syntax

 

diagram

 

and

 

additional

 

information,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference.

 

Valid

 

String

 

Literals

 

The

 

″string-literal″

 

is

 

used

 

to

 

specify

 

the

 

linkage

 

associated

 

with

 

a

 

particular

 

function.

 

The

 

string

 

literals

 

used

 

in

 

linkage

 

specifications

 

are

 

case-insensitive.

 

The

 

valid

 

string

 

literals

 

for

 

the

 

linkage

 

specification

 

to

 

call

 

programs

 

are:

 

"OS"

 

OS

 

linkage

 

call

 

"OS

 

nowiden"

 

OS

 

linkage

 

call

 

without

 

widened

 

parameters.

 

See

 

“Specifying

 

that

 

a

 

Function

 

Has

 

External

 

(OS)

 

Linkage”

 

on

 

page

 

404

 

for

 

details.

Linkage

 

Specification

    

If

 

you

 

want

 

a

 

C++

 

program

 

to

 

call

 

an

 

ILE,

 

OPM,

 

or

 

EPM

 

program

 

(*PGM),

 

use

 

the

 

extern

 

"OS"

 

linkage

 

specification

 

in

 

your

 

C++

 

source

 

to

 

tell

 

the

 

compiler

 

that

 

the

 

called

 

program

 

is

 

an

 

external

 

program,

 

not

 

a

 

bound

 

ILE

 

procedure.

 

For

 

example,

 

if

 

you

 

want

 

a

 

C++

 

program

 

to

 

call

 

an

 

OPM

 

COBOL

 

program

 

(*PGM)

 

this

 

extern

 

"OS"

 

linkage

 

specification

 

in

 

your

 

C++

 

source

 

tells

 

the

 

compiler

 

that

 

COBOL_PGM

 

is

 

an

 

external

 

program,

 

not

 

a

 

bound

 

ILE

 

procedure.

 

extern

 

"OS"

 

void

 

COBOL_PGM(void);

 

If

 

you

 

want

 

an

 

ILE,

 

OPM

 

or

 

EPM

 

program

 

to

 

call

 

a

 

C++

 

program,

 

use

 

the

 

ILE,

 

OPM,

 

or

 

EPM

 

language-specific

 

call

 

statement.

   

Chapter

 

25.

 

Working

 

with

 

Multi-Language

 

Applications

 

449



450

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

26.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C

 

Program

    

This

 

chapter

 

describes

 

how

 

to:

 

v

   

Convert

 

from

 

packed

 

decimal

 

data

 

types

 

v

   

Pass

 

a

 

pointer

 

to

 

packed

 

decimal

 

data

 

to

 

a

 

function

 

v

   

Call

 

another

 

program

 

that

 

contains

 

packed

 

decimal

 

data

 

v

   

Use

 

library

 

functions

 

with

 

packed

 

decimal

 

data

 

v

   

Understand

 

packed

 

decimal

 

data

 

type

 

errors

The

 

packed

 

decimal

 

data

 

type

 

representation

 

includes

 

integral

 

and

 

fractional

 

parts.

 

The

 

ILE

 

C

 

compiler

 

supports

 

the

 

packed

 

decimal

 

data

 

type

 

as

 

an

 

extension

 

to

 

ISO

 

C.

 

Note:

  

This

 

is

 

strictly

 

a

 

C

 

data

 

type.

 

C++

 

decimal

 

support

 

is

 

provided

 

in

 

the

 

bcd

 

class.

 

The

 

header

 

file

 

is

 

bcd.h.

 

For

 

more

 

information,

 

refer

 

to

 

the

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference.

 

You

 

can

 

use

 

the

 

packed

 

decimal

 

data

 

type

 

to:

 

v

   

Represent

 

large

 

numeric

 

quantities

 

accurately,

 

especially

 

in

 

business

 

and

 

commercial

 

applications

 

for

 

financial

 

calculations.

 

For

 

example,

 

the

 

fractional

 

part

 

of

 

a

 

dollar

 

can

 

be

 

represented

 

accurately

 

by

 

two

 

digits

 

that

 

follow

 

the

 

decimal

 

point.

 

Note:

  

You

 

do

 

not

 

have

 

to

 

use

 

floating

 

point

 

arithmetic.

 

Floating

 

point

 

is

 

more

 

suitable

 

for

 

scientific

 

and

 

engineering

 

computations,

 

which

 

often

 

use

 

numbers

 

that:

 

–

   

Are

 

much

 

larger

 

than

 

the

 

largest

 

packed

 

decimal

 

variable

 

can

 

store

 

–

   

Are

 

much

 

smaller

 

than

 

the

 

smallest

 

packed

 

decimal,

 

but

 

do

 

not

 

have

 

enough

 

precision

 

for

 

commercial

 

use
v

   

Declare

 

type

 

definitions,

 

arrays,

 

structures,

 

and

 

unions

 

that

 

have

 

packed

 

decimal

 

members.

 

You

 

can

 

apply

 

operators

 

(unary

 

operators)

 

on

 

packed

 

decimal

 

variables.

 

Bitwise

 

operators

 

do

 

not

 

apply

 

to

 

packed

 

decimal

 

data.

 

The

 

packed

 

decimal

 

data

 

type

 

in

 

ILE

 

C

 

is

 

compatible

 

with

 

packed

 

decimal

 

representations

 

in

 

RPG

 

for

 

iSeries

 

and

 

COBOL

 

for

 

iSeries.

 

You

 

can

 

also

 

define

 

macros

 

and

 

call

 

library

 

functions

 

with

 

packed

 

decimal

 

arguments.

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference

 

contains

 

information

 

on

 

the

 

packed

 

decimal

 

data

 

type.

 

Note:

  

To

 

use

 

the

 

decimal,

 

digitsof,

 

and

 

precisionof

 

macros

 

in

 

your

 

code,

 

you

 

must

 

specify

 

the

 

<decimal.h>

 

header

 

file

 

in

 

your

 

ILE

 

C

 

source.

Converting

 

from

 

Packed

 

Decimal

 

Data

 

Types

 

If

 

the

 

value

 

of

 

the

 

packed

 

decimal

 

type

 

to

 

be

 

converted

 

is

 

within

 

the

 

range

 

of

 

values

 

that

 

can

 

be

 

represented

 

exactly,

 

the

 

value

 

of

 

the

 

packed

 

decimal

 

type

 

is

 

not

 

changed.

 

Packed

 

decimal

 

types

 

are

 

compatible

 

if

 

their

 

types

 

are

 

the

 

same.

 

For

 

example,

 

decimal(n1,

 

p1)

 

and

 

decimal(n2,

 

p2)

 

have

 

compatible

 

types

 

if

 

and

 

only

 

if

 

((n1

 

=

 

n2)

 

and

 

(p1

 

=

 

p2)).

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

451



Converting

 

from

 

a

 

Packed

 

Decimal

 

Type

 

to

 

a

 

Packed

 

Decimal

 

Type

 

The

 

following

 

example

 

illustrates

 

different

 

conversions

 

from

 

packed

 

decimal

 

types

 

to

 

packed

 

decimal

 

types

 

that

 

have

 

different

 

sizes.

 

If

 

the

 

value

 

of

 

the

 

packed

 

decimal

 

type

 

to

 

be

 

converted

 

is

 

not

 

within

 

the

 

range

 

of

 

values

 

that

 

can

 

be

 

represented

 

exactly,

 

the

 

value

 

of

 

the

 

packed

 

decdimal

 

type

 

is

 

truncated.

 

If

 

truncation

 

occurs

 

in

 

the

 

fractional

 

part,

 

the

 

result

 

is

 

truncated,

 

and

 

there

 

is

 

no

 

run-time

 

error.

  

If

 

assignment

 

causes

 

truncation

 

in

 

the

 

integral

 

part,

 

then

 

there

 

is

 

a

 

run-time

 

error.

 

A

 

run-time

 

exception

 

occurs

 

when

 

an

 

integral

 

value

 

is

 

lost

 

during

 

conversion

 

to

 

a

 

different

 

type,

 

regardless

 

of

 

what

 

operation

 

requires

 

the

 

conversion.

 

See

 

“Understanding

 

Packed

 

Decimal

 

Data

 

Type

 

Errors”

 

on

 

page

 

462

 

for

 

an

 

example

 

of

 

run-time

 

exceptions.

 

Examples:

 

There

 

is

 

no

 

warning

 

or

 

error

 

during

 

compilation

 

on

 

assignment

 

to

 

a

 

smaller

 

target.

 

See

 

“Understanding

 

Packed

 

Decimal

 

Data

 

Type

 

Errors”

 

on

 

page

 

462

 

for

 

information

 

on

 

compile-time

 

and

 

run-time

 

errors

 

during

 

conversion.

 

The

 

following

 

example

 

shows

 

conversion

 

from

 

one

 

packed

 

decimal

 

type

 

to

 

another

 

with

 

a

 

smaller

 

precision.

 

Truncation

 

on

 

the

 

fractional

 

part

 

results.

 

The

 

next

 

example

 

shows

 

conversion

 

from

 

one

 

packed

 

decimal

 

type

 

to

 

another

 

with

 

a

 

smaller

 

integral

 

part.

 

Truncation

 

on

 

the

 

integral

 

part

 

results.

 

The

 

#pragma

 

nosigtrunc

 

directive

 

turns

 

off

 

exceptions

 

generated

 

because

 

of

 

overflow.

  

#include

 

<decimal.h>

 

int

 

main

 

(void)

 

{

   

decimal(4,2)

 

targ_1,

 

targ_2;

   

decimal(6,2)

 

op_1=1234.56d,

 

op_2=12.34d;

   

targ_1=op_1;

      

/*

 

A

 

run-time

 

error

 

is

 

generated

 

because

 

the

 

integral

                            

part

 

is

 

truncated;

 

targ_1=34.56d.

                

*/

   

targ_2=op_2;

      

/*

 

No

 

run-time

 

error

 

is

 

generated

 

because

 

neither

 

the

                          

integral

 

nor

 

the

 

fractional

 

part

 

is

 

truncated;

                            

targ_2=12.34d.

                                   

*/

 

}

 

Figure

 

272.

 

ILE

 

C

 

Source

 

to

 

Convert

 

Packed

 

Decimals

#include

 

<decimal.h>

 

int

 

main(void)

 

{

   

decimal(7,4)

 

x

 

=

 

123.4567D;

   

decimal(7,1)

 

y;

   

y

 

=

 

x;

    

/*

 

y

 

=

 

123.4D

 

*/

 

}

 

Figure

 

273.

 

ILE

 

C

 

Source

 

to

 

Convert

 

a

 

Packed

 

Decimal

 

to

 

a

 

Packed

 

Decimal

 

with

 

Smaller

 

Precision

  

452

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

next

 

example

 

shows

 

conversion

 

from

 

one

 

packed

 

decimal

 

type

 

to

 

another

 

with

 

a

 

smaller

 

integral

 

part

 

and

 

smaller

 

precision.

 

Truncation

 

on

 

both

 

integral

 

and

 

fractional

 

parts

 

results.

 

The

 

#pragma

 

nosigtrunc

 

directive

 

turns

 

off

 

exceptions

 

generated

 

because

 

of

 

overflow.

    

Converting

 

from

 

a

 

Packed

 

Decimal

 

Type

 

to

 

an

 

Integer

 

Type

 

When

 

you

 

convert

 

a

 

value

 

of

 

a

 

packed

 

decimal

 

type

 

to

 

an

 

integer

 

type,

 

the

 

value

 

becomes

 

a

 

packed

 

decimal

 

(20,0),

 

which

 

then

 

becomes

 

an

 

integer

 

type.

 

High-order

 

bits

 

will

 

be

 

truncated

 

depending

 

on

 

the

 

size

 

of

 

the

 

integer

 

type.

 

No

 

run-time

 

exception

 

occurs

 

when

 

assigning

 

a

 

packed

 

decimal

 

to

 

an

 

integer

 

type

 

that

 

results

 

in

 

truncation

 

of

 

the

 

integral

 

part.

 

Examples:

 

The

 

following

 

example

 

shows

 

the

 

conversion

 

from

 

a

 

packed

 

decimal

 

type

 

that

 

has

 

a

 

fractional

 

part

 

to

 

an

 

integer

 

type.

  

The

 

following

 

example

 

shows

 

the

 

conversion

 

from

 

a

 

packed

 

decimal

 

type

 

that

 

has

 

less

 

than

 

10

 

digits

 

in

 

the

 

integral

 

part

 

to

 

an

 

integer

 

type.

  

#pragma

 

nosigtrunc

 

#include

 

<decimal.h>

 

int

 

main

 

(void)

 

{

   

decimal(8,2)

 

x

 

=

 

123456.78D;

   

decimal(5,2)

 

y;

   

y

 

=

 

x;

   

/*

 

y

 

=

 

456.78D

 

*/

 

}

 

Figure

 

274.

 

ILE

 

C

 

Source

 

to

 

Convert

 

a

 

Packed

 

Decimal

 

to

 

a

 

Packed

 

Decimal

 

with

 

Smaller

 

Integral

 

Part

#pragma

 

nosigtrunc

 

#include

 

<decimal.h>

 

int

 

main

 

(void)

 

{

   

decimal(8,2)

 

x

 

=

 

123456.78D;

   

decimal(4,1)

 

y;

   

y

 

=

 

x;

  

/*

 

y

 

=

 

456.7D

 

*/

 

}

 

Figure

 

275.

 

ILE

 

C

 

Source

 

to

 

Convert

 

a

 

Packed

 

Decimal

 

to

 

a

 

Packed

 

Decimal

 

with

 

Smaller

 

Integral

 

Part

 

and

 

Smaller

 

Precision

#include

 

<decimal.h>

 

int

 

main

 

(void)

 

{

   

int

 

op;

   

decimal(7,2)

 

op1

 

=

 

12345.67d;

   

op

 

=

 

op1;

                         

/*

 

Truncation

 

on

 

the

 

fractional

 

*/

                                        

/*

 

part.

 

op=12345

               

*/

 

}

 

Figure

 

276.

 

ILE

 

C

 

Source

 

to

 

Convert

 

a

 

Packed

 

Decimal

 

with

 

a

 

Fractional

 

Part

 

to

 

an

 

Integer

  

Chapter

 

26.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C

 

Program

 

453



The

 

following

 

example

 

shows

 

the

 

conversion

 

from

 

a

 

packed

 

decimal

 

type

 

that

 

has

 

more

 

than

 

10

 

digits

 

in

 

the

 

integral

 

part

 

to

 

an

 

integer

 

type.

  

The

 

following

 

example

 

shows

 

conversion

 

from

 

a

 

packed

 

decimal

 

type

 

that

 

has

 

a

 

fractional

 

part,

 

and

 

an

 

integral

 

part

 

having

 

more

 

than

 

10

 

digits

 

to

 

an

 

integer

 

type.

    

Converting

 

from

 

a

 

Packed

 

Decimal

 

Type

 

to

 

a

 

Floating

 

Point

 

Type

 

When

 

a

 

value

 

of

 

packed

 

decimal

 

type

 

is

 

converted

 

to

 

floating

 

type,

 

if

 

the

 

value

 

being

 

converted

 

is

 

outside

 

the

 

range

 

of

 

values

 

that

 

can

 

be

 

represented,

 

then

 

the

 

behavior

 

is

 

undefined.

 

If

 

the

 

value

 

being

 

converted

 

is

 

within

 

the

 

range

 

of

 

values

 

that

 

can

 

be

 

represented,

 

but

 

cannot

 

be

 

represented

 

exactly,

 

the

 

result

 

is

 

truncated.

 

When

 

a

 

float

 

or

 

a

 

double

 

is

 

converted

 

to

 

a

 

packed

 

decimal

 

with

 

smaller

 

precision,

 

the

 

fractional

 

part

 

of

 

the

 

float

 

or

 

the

 

double

 

will

 

be

 

truncated.

 

The

 

following

 

example

 

shows

 

the

 

conversion

 

from

 

a

 

packed

 

decimal

 

type

 

to

 

a

 

floating

 

point

 

type.

  

#include

 

<decimal.h>

 

int

 

main(void)

 

{

   

int

 

op;

   

decimal(3)

 

op2=123d;

   

op

 

=

 

op2;

       

/*

 

No

 

truncation

 

and

 

op=123

  

*/

 

}

 

Figure

 

277.

 

ILE

 

C

 

Source

 

to

 

Convert

 

a

 

Packed

 

Decimal

 

with

 

Less

 

than

 

10

 

Digits

 

in

 

the

 

Integral

 

Part

 

to

 

an

 

Integer

#include

 

<decimal.h>

 

int

 

main

 

(void)

 

{

   

int

 

op2;

   

decimal(12)

 

op3;

   

op3

 

=

 

123456789012d;

   

op2

 

=

 

op3;

                

/*

 

High-order

 

bits

 

will

 

be

 

truncated.*/

                               

/*

 

op2

 

=

 

0xBE991A14

             

*/

 

}

 

Figure

 

278.

 

ILE

 

C

 

Source

 

to

 

Convert

 

a

 

Packed

 

Decimal

 

with

 

More

 

than

 

10

 

Digits

 

in

 

the

 

Integral

 

Part

 

to

 

an

 

Integer

#include

 

<decimal.h>

 

int

 

main

 

(void)

 

{

   

int

 

op;

   

long

 

long

 

op_2;

   

decimal(15,2)

 

op_1

 

=

 

1234567890123.12d;

   

op

 

=

 

op_1;

               

/*

 

High-order

 

bits

 

will

 

be

 

truncated.

    

*/

   

op_2

 

=

 

op_1;

       

/*

 

op_2

 

=

 

1234567890123,

 

op

 

=

 

0x71FB04CB

 

*/

 

}

 

Figure

 

279.

 

ILE

 

C

 

Source

 

to

 

Convert

 

a

 

Packed

 

Decimal

 

with

 

More

 

than

 

10

 

Digits

 

in

 

Both

 

Parts

 

to

 

an

 

Integer

  

454

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

output

 

is

 

as

 

follows:

   

f1=123.449997

   

f2=-123456.125000

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

Overflow

 

Behavior

 

The

 

following

 

table

 

describes

 

the

 

overflow

 

behavior

 

when

 

a

 

packed

 

decimal

 

number

 

is

 

assigned

 

to

 

a

 

smaller

 

target.

 

An

 

exception

 

is

 

not

 

generated

 

when:

 

v

   

A

 

packed

 

decimal

 

is

 

assigned

 

to

 

a

 

smaller

 

target

 

with

 

integral

 

type.

 

v

   

A

 

packed

 

decimal

 

is

 

assigned

 

to

 

a

 

smaller

 

target

 

of

 

floating

 

point

 

type.

An

 

exception

 

is

 

generated

 

when

 

a

 

packed

 

decimal

 

is

 

assigned

 

to

 

a

 

smaller

 

packed

 

decimal

 

target.

 

You

 

can

 

suppress

 

run-time

 

errors

 

by

 

using

 

the

 

#pragma

 

nosigtrunc

 

directive

 

in

 

your

 

ILE

 

C

 

source

 

code.

  

Table

 

26.

 

Handling

 

Overflow

 

from

 

a

 

Packed

 

Decimal

 

to

 

a

 

Smaller

 

Target

 

From

 

Field

 

To

 

Field

 

Run-Time

 

Error

 

Packed

 

Decimal

 

char,

 

int,

 

short,

 

long,

 

long

 

long,

 

bit

 

No

 

Packed

 

Decimal

 

Packed

 

Decimal

 

Yes

 

Packed

 

Decimal

 

Float

 

No2

 

Packed

 

Decimal

 

Double

 

No1,

 

2

 

Notes:

  

1.

   

There

 

is

 

no

 

packed

 

decimal

 

number

 

large

 

enough

 

to

 

cause

 

overflow

 

when

 

the

 

packed

 

decimal

 

is

 

assigned

 

to

 

a

 

double.

 

2.

   

If

 

you

 

use

 

the

 

MI

 

instruction

 

setca

 

to

 

unmask

 

a

 

floating

 

point

 

exception,

 

you

 

receive

 

an

 

error

 

message

 

MCH1213

 

for

 

a

 

floating

 

point

 

inexact

 

result.

   

Passing

 

Packed

 

Decimal

 

Data

 

to

 

a

 

Function

 

There

 

are

 

no

 

default

 

argument

 

promotions

 

on

 

arguments

 

that

 

have

 

packed

 

decimal

 

type

 

when

 

the

 

called

 

function

 

does

 

not

 

include

 

a

 

prototype.

 

This

 

means

 

that

 

any

 

function

 

definition

 

that

 

contains

 

packed

 

decimal

 

arguments

 

has

 

to

 

be

 

prototyped.

 

Otherwise

 

the

 

behavior

 

is

 

undefined.

 

The

 

boundary

 

alignment

 

of

 

an

 

argument

 

with

 

packed

 

decimal

 

type

 

depends

 

on

 

the

 

size

 

of

 

the

 

packed

 

decimal

 

type.

 

To

 

be

 

specific:

 

#include

 

<decimal.h>

 

#include

 

<stdio.h>

 

int

 

main(void)

 

{

   

decimal(5,2)

 

dec_1=123.45d;

   

decimal(11,5)

 

dec_2=-123456.12345d;

   

float

 

f1,f2;

   

f1=dec_1;

   

f2=dec_2;

   

printf("f1=%f\nf2=%f\n\n",f1,f2);

     

/*

 

f1=123.449997

      

*/

                                         

/*

 

f2=-123456.125000

  

*/

 

}

 

Figure

 

280.

 

ILE

 

C

 

Source

 

to

 

Convert

 

a

 

Packed

 

Decimal

 

to

 

a

 

Floating

 

Point

  

Chapter

 

26.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C

 

Program

 

455



v

   

1

 

<=

 

n

 

<=

 

7

 

aligns

 

on

 

a

 

4-byte

 

boundary

 

v

   

8

 

<=

 

n

 

<=

 

15

 

aligns

 

on

 

a

 

8-byte

 

boundary

 

v

   

16

 

<=

 

n

 

<=

 

31

 

aligns

 

on

 

a

 

16-byte

 

boundary

 

v

   

32

 

<=

 

n

 

<=

 

63

 

aligns

 

on

 

a

 

32-byte

 

boundary

The

 

following

 

example

 

shows

 

how

 

to

 

pass

 

packed

 

decimal

 

variables

 

to

 

a

 

function.

    

The

 

output

 

is

 

as

 

follows:

 

x1

 

=

 

33.3

 

x2

 

=

 

55555.55555

 

x3

 

=

 

999.99

 

x4

 

=

 

88888888888888888888888888888

 

Passing

 

a

 

Pointer

 

to

 

a

 

Packed

 

Decimal

 

Variable

 

to

 

a

 

Function

 

The

 

following

 

example

 

shows

 

you

 

how

 

to

 

pass

 

a

 

pointer

 

to

 

a

 

packed

 

decimal

 

variable

 

to

 

a

 

function.

   

#include

 

<decimal.h>

  

#include

 

<stdio.h>

  

decimal(3,1)

   

d1

 

=

 

33.3d;

  

decimal(10,5)

  

d2

 

=

 

55555.55555d;

  

decimal(28)

    

d3

 

=

 

8888888888888888888888888888d;

  

void

 

func1(

 

decimal(3,1),

 

decimal(10,5),

              

decimal(10,5),

 

decimal(28));

 

Figure

 

281.

 

ILE

 

C

 

Source

 

to

 

Pass

 

Packed

 

Decimal

 

Variable

 

to

 

a

 

Function

 

(Part

 

1

 

of

 

2)

int

 

main(void)

 

{

  

func1(d1,

 

d2,

 

999.99d,

 

d3);/*

 

with

 

prototype

 

*/

                             

/*

 

The

 

arguments

 

are

 

passed

 

as

 

followed*/

                             

/*

 

333f0000

 

00000000

 

05555555

 

555f0000

 

*/

                             

/*

 

99999f00

 

00000000

 

00000000

 

00000000

 

*/

                             

/*

 

08888888

 

88888888

 

88888888

 

88888f00

 

*/

  

}

  

/*

 

func1

 

is

 

prototyped

 

*/

  

void

 

func1(decimal(3,1)

 

x1,

 

decimal(10,5)

 

x2,

             

decimal(10,5)

 

x3,

 

decimal(28)

 

x4)

 

{

   

/*

 

no

 

run-time

 

error

 

when

 

referencing

 

x1,

 

x2,

 

x3

 

or

 

x4

 

*/

   

printf("x1

 

=

 

D(3,1)\n",

 

x1);

   

printf("x2

 

=

 

D(10,5)\n",

 

x2);

   

printf("x3

 

=

 

D(10,5)\n",

 

x3);

   

printf("x4

 

=

 

D(28)\n",

 

x4);

  

}

 

Figure

 

281.

 

ILE

 

C

 

Source

 

to

 

Pass

 

Packed

 

Decimal

 

Variable

 

to

 

a

 

Function

 

(Part

 

2

 

of

 

2)

  

456

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

packed

 

decimal

 

argument

 

in

 

the

 

function

 

call

 

has

 

to

 

be

 

the

 

same

 

type

 

as

 

the

 

packed

 

decimal

 

in

 

the

 

function

 

prototype.

 

If

 

overflow

 

occurs

 

in

 

a

 

function

 

call

 

with

 

packed

 

decimal

 

arguments,

 

no

 

error

 

or

 

warning

 

is

 

issued

 

during

 

compilation,

 

and

 

a

 

run-time

 

exception

 

is

 

generated.

 

The

 

output

 

is

 

as

 

follows:

   

The

 

packed

 

decimal

 

number

 

is:

 

123.45

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

Calling

 

Another

 

Program

 

that

 

Contains

 

Packed

 

Decimal

 

Data

 

You

 

can

 

pass

 

packed

 

decimal

 

arguments

 

with

 

interlanguage

 

calls

 

to

 

RPG

 

or

 

COBOL.

 

Example:

 

The

 

following

 

example

 

shows

 

an

 

ILE

 

C

 

program

 

that

 

calls

 

an

 

OPM

 

COBOL

 

program

 

and

 

then

 

passes

 

a

 

packed

 

decimal

 

data.

  

/*

 

This

 

program

 

shows

 

how

 

to

 

pass

 

a

 

pointer

 

to

 

a

 

packed

 

decimal

        

*/

 

/*

 

variable

 

to

 

a

 

function.

                                           

*/

 

#include

 

<decimal.h>

 

#include

 

<stdio.h>

   

decimal(5,2)

 

var=123.45d;

   

decimal(5,2)

 

*p=&var;

   

decimal(5,2)

 

*func_1(decimal(5,2)

 

*);

   

int

 

main(void)

 

{

  

/*

  

Call

 

function

 

with

 

pointer

 

to

 

packed

 

decimal

 

argument.

 

The

       

*/

  

/*

  

value

 

that

 

it

 

returns

 

is

 

also

 

a

 

pointer

 

to

 

a

 

packed

 

decimal.

     

*/

    

if(func_1(p)!=p)

      

{

        

printf("Function

 

call

 

not

 

successful\n\n");

      

}

    

else

      

{

        

printf("The

 

packed

 

decimal

 

number

 

is:

 

%D(5,2)\n",*func_1(p));

      

}

  

}

 

decimal(5,2)

 

*func_1(decimal(5,2)

 

*q)

  

{

    

return

 

q;

  

}

 

Figure

 

282.

 

ILE

 

C

 

Source

 

to

 

Pass

 

a

 

Pointer

 

to

 

a

 

Packed

 

Decimal

 

Value

 

to

 

a

 

Function

  

Chapter

 

26.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C

 

Program

 

457



The

 

following

 

example

 

shows

 

COBOL

 

source

 

for

 

passing

 

a

 

packed

 

decimal

 

variable

 

to

 

an

 

ILE

 

C

 

program.

  

The

 

output

 

is

 

as

 

follows:

   

****

 

PACKED

 

DECIMAL

 

RECEIVED

 

IS:

 

12.1234567

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

   

The

 

COBOL

 

program

 

was

 

called

 

and

 

passed

 

a

 

packed

 

decimal

 

value.

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

#include<stdio.h>

 

#include

 

<decimal.h>

 

void

 

CBLPGM(decimal(9,7));

 

#pragma

 

datamodel(p128)

 

#pragma

 

linkage(CBLPGM,OS)

 

#pragma

 

datamodel(pop)

 

int

 

main(void)

 

{

  

decimal(9,7)

 

arg=12.1234567d;

 

/*

  

Call

 

an

 

OPM

 

COBOL

 

program

 

and

 

pass

 

a

 

packed

               

*/

 

/*

  

decimal

 

argument

 

to

 

it.

                                            

*/

  

CBLPGM(arg);

  

printf("The

 

COBOL

 

program

 

was

 

called

 

and

 

passed

 

a

 

packed

 

decimal

 

value\n");

  

}

 

Figure

 

283.

 

ILE

 

C

 

Source

 

for

 

an

 

ILE

 

C

 

Program

 

that

 

Passes

 

Packed

 

Decimal

 

Data

       

IDENTIFICATION

 

DIVISION.

        

PROGRAM-ID.

 

CBLPGM.

       

*************************************************************************

       

*

   

Packed

 

decimals:

   

This

 

is

 

going

 

to

 

be

 

called

 

by

 

an

 

ILE

 

C

           

*

       

*

   

program

 

to

 

pass

 

packed

 

decimal

 

data.

                                

*

       

*************************************************************************

        

ENVIRONMENT

 

DIVISION.

        

CONFIGURATION

 

SECTION.

        

SOURCE-COMPUTER.

 

IBM-AS400.

        

OBJECT-COMPUTER.

 

IBM-AS400.

        

INPUT-OUTPUT

 

SECTION.

        

FILE-CONTROL.

        

DATA

 

DIVISION.

        

FILE

 

SECTION.

        

WORKING-STORAGE

 

SECTION.

        

77

  

PAC-DATA

                      

PIC

 

X(30)

 

VALUE

 

"PROGRAM

 

START".

        

77

  

PACK-IN-WS

                    

PIC

 

99.9999999.

        

LINKAGE

 

SECTION.

        

01

  

PACK-DATA

                     

PIC

 

9(2)V9(7)

 

PACKED-DECIMAL.

        

PROCEDURE

 

DIVISION

 

USING

 

PACK-DATA.

        

MAIN-LINE

 

SECTION.

            

MOVE

 

PACK-DATA

 

TO

 

PACK-IN-WS.

            

DISPLAY

 

"****

  

PACKED

 

DECIMAL

 

RECEIVED

 

IS:

 

"

 

PACK-IN-WS.

            

GOBACK.

 

Figure

 

284.

 

COBOL

 

Source

 

that

 

Receives

 

Packed

 

Decimal

 

Data

 

from

 

an

 

ILE

 

C

 

Program

  

458

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Using

 

Library

 

Functions

 

with

 

a

 

Packed

 

Decimal

 

Data

 

Type

 

You

 

can

 

use

 

the

 

va_arg

 

macro

 

to

 

accept

 

a

 

packed

 

decimal

 

data

 

of

 

the

 

form

 

(n,p).You

 

can

 

write

 

packed

 

decimal

 

constants

 

to

 

a

 

file,

 

and

 

scan

 

them

 

back.

 

The

 

following

 

figure

 

shows

 

you

 

how

 

to

 

use

 

the

 

va_arg

 

macro

 

to

 

accept

 

a

 

packed

 

decimal

 

data

 

of

 

the

 

form

 

decimal(n,p).

 

The

 

va_arg

 

macro

 

returns

 

the

 

current

 

packed

 

decimal

 

argument.

    

/*

 

This

 

program

 

uses

 

the

 

va_arg

 

macro

 

to

 

accept

 

a

 

static

 

decimal

      

*/

 

/*

 

data

 

type

 

of

 

the

 

form

 

decimal(n,p).

 

The

 

va_arg

 

macro

 

returns

       

*/

 

/*

 

the

 

current

 

packed

 

decimal

 

argument.

                               

*/

 

#include

 

<decimal.h>

 

#include

 

<stdio.h>

 

#include

 

<stdarg.h>

 

#define

 

N1

 

3

 

#define

 

N2

 

6

 

int

 

vargf(FILE

 

*,char

 

*,...);

 

int

 

main(void)

 

{

   

int

 

num1

 

=

 

-1,

 

num2

 

=

 

-1;

   

char

 

fmt_1[]="%D(3,2)%D(3,2)%D(3,2)";

   

char

 

fmt_2[]="%D(3,2)%D(3,2)%D(3,2)%D(3,2)%D(3,2)%D(3,2)";

   

decimal(3,2)

 

arr_1[]={

 

1.11d,

 

-2.22d,

 

3.33d

 

};

   

decimal(3,2)

 

arr_2[]={

 

-1.11d,

 

2.22d,

 

-3.33d,

 

4.44d,

 

-5.55d,

 

6.66d};

   

FILE

 

*stream_1;

   

FILE

 

*stream_2;

   

stream_1=fopen("file_1.dat",

 

"wb+");

   

num1=vargf(stream_1,fmt_1,arr_1[0],

                             

arr_1[1],

                             

arr_1[2]);

   

if

 

(num1<0)

     

{

        

printf("An

 

error

 

occurred

 

when

 

calling

 

function

 

vargf

 

first

 

time\n");

     

}

   

else

     

{

       

printf("Number

 

of

 

char.

 

printed

 

when

 

vargf

 

is

 

called

 

first

 

time

 

is:%d\n",

       

num1);

     

}

   

stream_2=fopen("file_2.dat",

 

"wb+");

     

num2=vargf(stream_2,fmt_2,arr_2[0],

                             

arr_2[1],

                             

arr_2[2],

                             

arr_2[3],

                             

arr_2[4],

                             

arr_2[5]);

 

Figure

 

285.

 

ILE

 

C

 

Source

 

to

 

Use

 

the

 

va_arg

 

Macro

 

with

 

a

 

Packed

 

Decimal

 

Data

 

Type

 

(Part

 

1

 

of

 

2)

  

Chapter

 

26.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C

 

Program

 

459



The

 

output

 

is

 

as

 

follows:

   

Number

 

of

 

char.

 

printed

 

when

 

vargf

 

is

 

called

 

first

 

time

 

is:

 

13

   

Number

 

of

 

char.

 

printed

 

when

 

vargf

 

is

 

called

 

second

 

time

 

is

 

:

 

27

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

The

 

following

 

example

 

shows

 

you

 

how

 

to

 

write

 

packed

 

decimal

 

constants

 

to

 

a

 

file,

 

and

 

how

 

to

 

scan

 

them

 

back.

 

In

 

addition,

 

the

 

example

 

shows

 

you

 

how

 

to

 

pass

 

a

 

packed

 

decimal

 

array

 

to

 

a

 

function.

      

if

 

(num2<0)

     

{

        

printf("An

 

error

 

occurred

 

when

 

calling

 

function

 

vargf

 

second

 

time\n");

     

}

   

else

     

{

        

printf("Number

 

of

 

char.

 

printed

 

when

 

vargf

 

is

 

called

 

a

 

second

 

time

 

is:%d\n",

        

num2);

     

}

   

fclose(stream_1);

   

fclose(stream_2);

  

}

  

int

 

vargf(FILE

 

*str,

 

char

 

*fmt,...)

     

{

          

int

 

result;

          

va_list

 

arg_ptr;

          

va_start(arg_ptr,

 

fmt);

          

result

 

=

 

vfprintf(str,

 

fmt,

 

arg_ptr);

          

va_end(arg_ptr);

          

return

 

result;

     

}

 

Figure

 

285.

 

ILE

 

C

 

Source

 

to

 

Use

 

the

 

va_arg

 

Macro

 

with

 

a

 

Packed

 

Decimal

 

Data

 

Type

 

(Part

 

2

 

of

 

2)

/*

 

This

 

program

 

shows

 

how

 

to

 

write

 

packed

 

decimal

 

constants

 

to

 

a

 

file

  

*/

 

/*

 

and

 

scan

 

them

 

back

 

again.

 

Also

 

shows

 

how

 

to

 

pass

 

a

 

packed

 

decimal

   

*/

 

/*

 

array

 

to

 

a

 

function.

                                                

*/

 

#include

 

<decimal.h>

 

#include

 

<stdio.h>

 

#include

 

<stdlib.h>

 

#define

 

N

    

3

                       

/*

 

Array

 

size

                     

*/

                                      

/*

 

for

 

decimal

 

declaration.

       

*/

 

FILE

 

*stream;

                        

/*

 

File

 

pointer

 

declaration.

      

*/

                                      

/*

 

Declare

 

valid

 

packed

 

decimal

   

*/

                                      

/*

 

array.

                         

*/

 

decimal(4,2)

 

arr_1[]

 

=

 

{12.35d,

 

25.00d,

 

-19.58d};

 

decimal(4,2)

 

arr_2[N];

 

void

 

write_num(decimal(4,2)

 

a[N]);

  

/*Declare

 

function

 

to

    

*/

                                      

/*write

 

to

 

a

 

file.

                

*/

 

void

 

read_num(decimal(4,2)

 

b[N]);

   

/*Declare

 

function

 

to

    

*/

                                      

/*read

 

from

 

a

 

file.

               

*/

   

Figure

 

286.

 

ILE

 

C

 

Source

 

to

 

Write

 

Packed

 

Decimal

 

Constants

 

to

 

a

 

File

 

and

 

Scan

 

Them

 

Back

 

(Part

 

1

 

of

 

2)

  

460

 

ILE

 

C/C++

 

Programmer’s

 

Guide



int

 

main(void)

 

{

    

int

 

reposition=0;

                                        

/*

 

Open

 

the

 

file.

               

*/

    

if

 

((stream

 

=

 

fopen("*CURLIB/OUTFILE","w+"))

 

==

 

NULL)

      

{

         

printf("Can

 

not

 

open

 

file");

         

exit(EXIT_FAILURE);

      

}

    

write_num(arr_1);

                   

/*

 

Call

 

function

 

to

 

write

       

*/

                                        

/*

 

values

 

of

 

packed

 

decimal

     

*/

                                        

/*

 

array

 

to

 

outfile

 

with

 

fprintf*/

                                        

/*

 

library

 

function.

            

*/

    

reposition=fseek(stream,

 

0L,

 

SEEK_SET);

    

if

 

(reposition!=0)

       

{

          

printf("FSEEK

 

failed

 

to

 

position

 

file

 

pointer\n");

          

exit(EXIT_FAILURE);

       

}

    

read_num(arr_2);

                    

/*

 

Call

 

function

 

to

 

read

        

*/

                                        

/*

 

values

 

of

 

packed

 

decimal

     

*/

                                        

/*

 

array

 

from

 

file

 

using

        

*/

                                        

/*

 

fscanf()

 

function.

           

*/

    

fclose(stream);

                     

/*

 

Close

 

the

 

file.

              

*/

 

}

 

/*

 

write_num

 

is

 

passed

 

a

 

packed

 

decimal

 

array.

  

These

 

values

 

are

       

*/

 

/*

 

written

 

to

 

a

 

text

 

file

 

with

 

the

 

fprintf

 

library

 

function.

           

*/

 

/*

 

If

 

the

 

function

 

is

 

successful

 

a

 

0

 

is

 

returned,

 

otherwise

 

a

          

*/

 

/*

 

negative

 

value

 

is

 

returned

 

(indicating

 

an

 

error).

                   

*/

   

void

 

write_num(decimal(4,2)

 

a[N])

 

{

    

int

 

i,

 

j;

      

for

 

(i=0;i

 

<

 

N;i++)

       

{

          

j

 

=

 

fprintf(stream,"%D(4,2)\n",a[i]);

          

if

 

(j

 

<

 

0)

          

printf("Number

 

not

 

written

 

to

 

file

 

%D(4,2)\n",a[i]);

       

}

 

}

 

/*

 

read_num

 

is

 

passed

 

a

 

packed

 

decimal

 

array.

  

The

 

values

 

are

          

*/

 

/*

 

read

 

from

 

a

 

text

 

file

 

with

 

the

 

fscanf

 

library

 

function.

             

*/

 

/*

 

If

 

the

 

function

 

is

 

successful

 

a

 

0

 

is

 

returned,

 

otherwise

 

a

          

*/

 

/*

 

negative

 

value

 

is

 

returned

 

(indicating

 

an

 

error).

                   

*/

 

void

 

read_num(decimal(4,2)

 

b[N])

 

{

    

int

 

i,

 

j;

    

for

 

(i=0;i

 

<

 

sizeof(b)/sizeof(b[0]);i++)

      

{

         

j

 

=

 

fscanf(stream,"%D(4,2)\n",&b[i]);

         

if

 

(j

 

<

 

0)

         

printf("Error

 

when

 

reading

 

from

 

file\n");

      

}

    

printf("b[0]=%D(4,2)\nb[1]=%D(4,2)\n\

            

b[2]=%D(4,2)\n",

 

b[0],

 

b[1],

 

b[2]);

 

}

 

Figure

 

286.

 

ILE

 

C

 

Source

 

to

 

Write

 

Packed

 

Decimal

 

Constants

 

to

 

a

 

File

 

and

 

Scan

 

Them

 

Back

 

(Part

 

2

 

of

 

2)

  

Chapter

 

26.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C

 

Program

 

461



The

 

output

 

is

 

as

 

follows:

   

b[0]=12.35

   

b[1]=25.00

   

b[2]=-19.58

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

The

 

following

 

example

 

shows

 

how

 

to

 

use

 

the

 

%D(*,*)

 

specifier

 

with

 

the

 

printf()

 

function.

 

If

 

n

 

and

 

p

 

of

 

the

 

variable

 

to

 

be

 

printed

 

do

 

not

 

match

 

with

 

the

 

n

 

and

 

p

 

in

 

the

 

conversion

 

specifier

 

%D(n,p),

 

the

 

behavior

 

is

 

undefined.

 

Use

 

the

 

unary

 

operators

 

digitsof

 

(expression)

 

and

 

precisionof

 

(expression)

 

in

 

the

 

argument

 

list

 

to

 

replace

 

the

 

*

 

in

 

D(*,*)

 

whenever

 

the

 

size

 

of

 

the

 

resulting

 

type

 

of

 

a

 

packed

 

decimal

 

expression

 

is

 

not

 

known.

  

The

 

output

 

is

 

as

 

follows:

   

op_1

 

=

 

1234.12

   

op_2

 

=

 

-12345678.12

   

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

Understanding

 

Packed

 

Decimal

 

Data

 

Type

 

Errors

    

All

 

the

 

warning

 

and

 

messages

 

for

 

packed

 

decimal

 

data

 

errors

 

are

 

issued

 

by

 

the

 

ILE

 

C

 

compiler

 

during

 

compilation,

 

unless

 

explicitly

 

stated

 

as

 

occurring

 

at

 

run

 

time.

 

If

 

you

 

receive

 

a

 

warning

 

during

 

compilation

 

for

 

overflow,

 

an

 

exception

 

may

 

be

 

generated

 

at

 

run

 

time;

 

SIGFPE

 

is

 

raised.

 

Run-time

 

errors

 

occur

 

during

 

the

 

following

 

packed

 

decimal

 

operations:

 

v

   

Assignment

 

v

   

Casting

 

v

   

Initialization

 

v

   

Arithmetic

 

operations

 

v

   

Function

 

calls

Note:

  

Some

 

of

 

the

 

overflow

 

situations

 

are

 

signaled

 

during

 

compilation

 

through

 

a

 

warning;

 

loss

 

of

 

digits

 

may

 

occur.

#include

 

<decimal.h>

 

#include

 

<stdio.h>

 

int

 

main(void)

 

{

   

decimal(6,2)

 

op_1=1234.12d;

   

decimal(10,2)

 

op_2=-12345678.12d;

   

printf("op_1

 

=

 

%*.*D(*,*)\n",

 

6,

 

2,

 

digitsof(op_1),

                                       

precisionof(op_1),

 

op_1);

   

printf("op_2

 

=

 

%*.*D(*,*)\n",

 

10,

 

2,

 

digitsof(op_2),

                                        

precisionof(op_2),

 

op_2);

 

}

 

Figure

 

287.

 

ILE

 

C

 

Source

 

to

 

Print

 

Packed

 

Decimal

 

Constants

  

462

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Packed

 

Decimal

 

Warnings

 

and

 

Error

 

Conditions

    

The

 

following

 

figure

 

shows

 

all

 

the

 

warnings

 

and

 

error

 

conditions

 

that

 

are

 

issued

 

by

 

the

 

ILE

 

C

 

compiler

 

for

 

packed

 

decimal

 

expressions.

  

Note:

  

v

   

For

 

assignments

 

to

 

a

 

target

 

field

 

that

 

is

 

to

 

small

 

to

 

hold

 

the

 

packed

 

decimal

 

number,

 

the

 

ILE

 

C

 

compiler

 

issues

 

no

 

warning

 

or

 

error

 

for

 

static,

 

external

 

or

 

automatic

 

initialization.

 

v

   

For

 

expressions

 

requiring

 

decimal

 

point

 

alignment

 

(namely

 

addition,

 

subtraction

 

or

 

comparison),

 

the

 

ILE

 

C

 

compiler

 

issues

 

errors

 

for

 

static,

 

external,

 

and

 

automatic

 

initialization

 

if,

 

during

 

alignment,

 

the

 

maximum

 

number

 

of

 

allowed

 

digits

 

is

 

exceeded.

 

v

   

For

 

multiplication,

 

if

 

the

 

evaluation

 

of

 

the

 

expression

 

results

 

in

 

a

 

value

 

larger

 

than

 

the

 

maximum

 

number

 

of

 

allowed

 

digits:

 

–

   

A

 

compile-time

 

error

 

is

 

issued

 

for

 

static

 

or

 

external

 

initialization;

 

no

 

module

 

is

 

created.

 

–

   

A

 

compile-time

 

warning

 

is

 

issued

 

if

 

the

 

expression

 

is

 

within

 

a

 

function;

 

a

 

run-time

 

exception

 

is

 

generated.

 

–

   

Truncation

 

occurs

 

on

 

the

 

fractional

 

part,

 

preserving

 

as

 

much

 

of

 

the

 

integral

 

part

 

as

 

possible.
v

   

For

 

division,

 

a

 

compile-time

 

error

 

is

 

generated

 

when

 

((n1-

 

p1)

 

+

 

p2)

 

>63.

#include

 

<decimal.h>

 

decimal

 

(999,99)

 

s1

 

=

 

1234.56d;

     

/*

 

Generates

 

a

 

severe

 

error

 

because

 

the

 

decimal

 

*/

         

/*

 

size

 

is

 

greater

 

than

 

63.

     

*/

 

decimal

 

(10,

 

64)

 

s2

 

=

 

1234.56d;

     

/*

 

Generates

 

a

 

sever

 

error

 

because

 

the

 

precision

 

*/

         

/*

 

size

 

exceeds

 

63.

     

*/

 

decimal

 

(1.2,

 

3)

 

s3

 

=

 

1.2d;

     

/*

 

Generates

 

a

 

severe

 

error

 

because

 

the

 

decimal

 

*/

         

/*

 

size

 

is

 

an

 

invalid

 

number.

    

*/

 

decimal

 

(2,1.2)

 

s4

 

=

 

1.3d;

     

/*

 

Generates

 

a

 

severe

 

error

 

because

 

the

 

precision

 

*/

         

/*

 

size

 

is

 

an

 

invalid

 

number.

    

*/

 

decimal

 

(1,3)

 

s5

 

=

 

1.345d;

     

/*

 

Generates

 

a

 

severe

 

error

 

because

 

the

 

precision

 

*/

         

/*

 

size

 

exceeds

 

the

 

decimal

 

size.

    

*/

 

decimal

 

(63,62)

 

s6

 

=123456789012345678901234567890123456789012345678901234567890123456789d;

         

/*

 

Generates

 

a

 

severe

 

error

 

because

 

decimal

   

*/

         

/*

 

constant

 

is

 

out

 

of

 

range

 

of

 

a

 

valid

 

packed

 

decimal

 

*/

         

/*

 

constants.

        

*/

 

decimal(10,2)

 

s7

 

=

 

1234567890123456789012345678901234567890123456789012345678.12345d

 

+

 

12345.12345

         

/*

 

s7

 

=

 

(63,5)

 

+

 

(15,10)

     

*/

         

/*

 

Generates

 

a

 

severe

 

error

 

because

 

of

 

truncation

 

*/

         

/*

 

of

 

precision

 

values

 

in

 

intermediate

 

result.

   

*/

 

decimal

 

(10,2)

 

s8

 

=

 

123456789012345678901234567890.12345d

 

*

 

12345678901234567890123456.12d;

         

/*

 

s8

 

=

 

(35,5)

 

+

 

(28,2)

     

*/

         

/*

 

Generates

 

a

 

severe

 

error

 

because

 

of

 

truncation

 

*/

         

/*

 

of

 

precision

 

values

 

in

 

intermediate

 

result.

   

*/

 

decimal

 

(10,2)

 

s9

 

=

 

1234567890123456789012345678901234567890d

 

/

 

1234567890.12345678901234567890123

         

/*

 

Generates

 

a

 

warning

 

for

 

possible

 

loss

 

of

 

whole-digit

 

*/

         

/*

 

data

 

in

 

intermediate

 

value.

  

Generates

 

a

 

severe

 

error

 

*/

         

/*

 

for

 

loss

 

of

  

whole-digit

 

data

 

loss

 

in

 

result.

       

*/

 

Figure

 

288.

 

Packed

 

Decimal

 

Warnings

 

and

 

Error

 

Conditions

  

Chapter

 

26.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C

 

Program

 

463



The

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference

 

contains

 

information

 

on

 

the

 

multiplication

 

and

 

division

 

operators

 

for

 

packed

 

decimals.

 

Suppressing

 

a

 

Run-Time

 

Overflow

 

Exception

    

You

 

can

 

use

 

the

 

#pragma

 

nosigtrunc

 

directive

 

to

 

suppress

 

a

 

run-time

 

exception

 

that

 

occurs

 

as

 

a

 

result

 

of

 

overflow.

 

The

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference

 

contains

 

information

 

on

 

the#pragma

 

nosigtrunc

 

directive.

 

The

 

following

 

figure

 

shows

 

how

 

to

 

suppress

 

the

 

run-time

 

exception

 

created

 

when

 

a

 

packed

 

decimal

 

variable

 

overflows

 

on

 

assignment,

 

in

 

a

 

function

 

call,

 

and

 

in

 

an

 

arithmetic

 

operation.

  

Note:

  

No

 

run-time

 

exception

 

is

 

logged

 

in

 

the

 

job

 

log.

/*

 

This

 

program

 

shows

 

how

 

to

 

suppress

 

a

 

run-time

 

exception

 

when

 

a

      

*/

 

/*

 

packed

 

decimal

 

variable

 

overflows

 

on

 

assignment,

 

in

 

a

 

function

 

call

 

*/

 

/*

 

and

 

in

 

an

 

arithmetic

 

operation.

                                     

*/

 

#include

 

<decimal.h>

 

#pragma

 

nosigtrunc

                       

/*

 

The

 

directive

 

turns

 

off

    

*/

                                          

/*

 

SIGFPE

 

which

 

is

 

raised

     

*/

                                          

/*

 

in

 

the

 

following

 

overflow

  

*/

                                          

/*

 

situations;

 

no

 

exception

   

*/

                                          

/*

 

occurs

 

at

 

run

 

time.

        

*/

 

void

 

f(decimal(4,2)

 

a)

 

{

 

}

 

int

 

main(void)

 

{

   

decimal(8,4)

  

arg=1234.1234d;

   

decimal(5,2)

  

op_1=1234567.1234567d;

   

/*

 

Overflow

 

in

 

initialization.*/

   

decimal(2)

 

op_2;

   

decimal(20,5)

 

op_3=12.34d;

   

decimal(15,2)

 

op_4=1234567890.12d;

   

decimal(6,2)

  

op_5=1234.12d,

 

cast;

   

decimal(31,2)

 

res;

   

cast=(decimal(2))op_5;

                 

/*

 

Overflow

 

in

 

casting.

       

*/

   

op_2=arg;

                              

/*

 

Overflow

 

in

 

assignment.

    

*/

   

f(arg);

                                

/*

 

Overflow

 

in

 

function

 

call.

 

*/

   

res=op_3*op_4;

                         

/*

 

Overflow

 

in

 

arithmetic

     

*/

                                          

/*

 

operation.

                 

*/

 

}

 

Figure

 

289.

 

ILE

 

C

 

Source

 

to

 

Suppress

 

a

 

Run-Time

 

Exception

  

464

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

27.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C++

 

Program

    

The

 

packed

 

decimal

 

data

 

type

 

representation

 

includes

 

integral

 

and

 

fractional

 

parts.

 

For

 

ILE

 

C++,

 

the

 

largest

 

packed

 

decimal

 

representation

 

is

 

31

 

digits.

 

The

 

ILE

 

C++

 

compiler

 

supports

 

the

 

packed

 

decimal

 

data

 

type

 

in

 

the

 

bcd

 

class.

 

The

 

header

 

file

 

is

 

<bcd.h>.

 

Note:

  

The

 

ILE

 

C

 

compiler

 

supports

 

the

 

packed

 

decimal

 

data

 

type

 

as

 

an

 

extension

 

to

 

ISO

 

C.

 

For

 

more

 

information,

 

refer

 

to

 

Chapter

 

26,

 

“Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C

 

Program,”

 

on

 

page

 

451.

 

You

 

can

 

use

 

the

 

packed

 

decimal

 

data

 

type

 

to:

 

v

   

Represent

 

large

 

numeric

 

quantities

 

accurately,

 

especially

 

in

 

business

 

and

 

commercial

 

applications

 

for

 

financial

 

calculations.

 

Note:

  

You

 

do

 

not

 

have

 

to

 

use

 

floating

 

point

 

arithmetic.

 

Floating

 

point

 

is

 

more

 

suitable

 

for

 

scientific

 

and

 

engineering

 

computations,

 

which

 

often

 

use

 

numbers

 

that:

 

–

   

Are

 

much

 

larger

 

than

 

the

 

largest

 

packed

 

decimal

 

variable

 

can

 

store

 

–

   

Are

 

much

 

smaller

 

than

 

the

 

smallest

 

packed

 

decimal,

 

but

 

do

 

not

 

have

 

enough

 

precision

 

for

 

commercial

 

use
v

   

Declare

 

type

 

definitions,

 

arrays,

 

structures,

 

and

 

unions

 

that

 

have

 

packed

 

decimal

 

members.

 

You

 

can

 

apply

 

unary

 

operators

 

on

 

packed

 

decimal

 

variables.

 

Bitwise

 

operators

 

do

 

not

 

apply

 

to

 

packed

 

decimal

 

data.

 

For

 

more

 

information

 

on

 

the

 

packed

 

decimal

 

data

 

type,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference.

This

 

chapter

 

describes:

 

v

   

The

 

OS/400

 

Binary

 

Coded

 

Decimal

 

(BCD)

 

header

 

file

 

v

   

Using

 

the

 

_DecimalT

 

class

 

template

 

v

   

Conversions

 

to

 

other

 

data

 

types

 

v

   

C++

 

exception

 

handling

 

with

 

the

 

_DecimalT

 

class

 

template

 

v

   

Passing

 

a

 

_DecimalT

 

class

 

template

 

object

 

to

 

a

 

function

 

v

   

Passing

 

a

 

pointer

 

to

 

a

 

_DecimalT

 

class

 

template

 

object

 

v

   

Calling

 

another

 

program

 

containing

 

a

 

_DecimalT

 

class

 

template

 

v

   

Writing

 

_DecimalT

 

class

 

template

 

constants

 

to

 

a

 

file

The

 

OS/400

 

Binary

 

Coded

 

Decimal

 

(BCD)

 

Header

 

File

 

The

 

class

 

and

 

function

 

template

 

definitions

 

for

 

the

 

C++

 

_DecimalT

 

class

 

template

 

and

 

the

 

numerical

 

limits

 

of

 

a

 

_DecimalT

 

class

 

template

 

are

 

defined

 

inside

 

the

 

header

 

file

 

<bcd.h>.

 

See

 

Table

 

27

 

on

 

page

 

466.

 

Any

 

C++

 

source

 

file

 

that

 

uses

 

the

 

_DecimalT

 

class

 

template

 

must

 

include

 

the

 

bcd.h

 

header

 

file.

 

The

 

#include

 

<bcd.h>

 

statement

 

must

 

appear

 

before

 

any

 

use

 

of

 

the

 

_DecimalT

 

class

 

template.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

465



Table

 

27.

 

Constants

 

Defined

 

in

 

bcd.h

 

Constant

 

Name

 

Description

 

DEC_DIG

 

The

 

maximum

 

number

 

of

 

significant

 

digits

 

that

 

the

 

_DecimalT

 

class

 

template

 

can

 

hold.

 

DEC_PRECISION

 

The

 

maximum

 

number

 

of

 

decimal

 

places

 

that

 

the

 

_DecimalT

 

class

 

template

 

can

 

hold.

 

DEC_INT_DIG

 

The

 

number

 

of

 

significant

 

digits

 

of

 

a

 

binary

 

coded

 

decimal

 

object

 

when

 

you

 

convert

 

it

 

to

 

an

 

integer

 

type.

 

The

 

value

 

10

 

is

 

stored

 

in

 

DEC_INT_DIG.

 

DEC_INT_PREC

 

The

 

number

 

of

 

decimal

 

places

 

of

 

a

 

binary

 

coded

 

decimal

 

object

 

when

 

you

 

convert

 

it

 

from

 

an

 

integer

 

type.

 

The

 

value

 

0

 

is

 

stored

 

in

 

DEC_INT_PREC.

   

Using

 

the

 

_DecimalT

 

Class

 

Template

 

When

 

you

 

are

 

working

 

with

 

ILE

 

C++,

 

the

 

_DecimalT

 

class

 

template

 

allows

 

representation

 

of

 

up

 

to

 

31

 

significant

 

digits,

 

including

 

integral

 

and

 

fractional

 

parts.

 

The

 

fractional

 

part

 

of

 

a

 

dollar

 

can

 

be

 

represented

 

accurately

 

by

 

two

 

digits

 

following

 

the

 

decimal

 

point.

 

Note:

  

You

 

do

 

not

 

have

 

to

 

use

 

floating

 

point

 

arithmetic.

 

Floating

 

point

 

is

 

more

 

suitable

 

for

 

scientific

 

and

 

engineering

 

computations,

 

which

 

often

 

use

 

numbers

 

that:

 

v

   

Are

 

much

 

larger

 

than

 

the

 

largest

 

packed

 

decimal

 

variable

 

can

 

store

 

v

   

Are

 

much

 

smaller

 

than

 

the

 

smallest

 

packed

 

decimal,

 

but

 

do

 

not

 

have

 

enough

 

precision

 

for

 

commercial

 

use

The

 

same

 

declarations

 

and

 

operators

 

that

 

you

 

use

 

on

 

other

 

data

 

types,

 

such

 

as

 

float,

 

can

 

be

 

applied

 

to

 

_DecimalT

 

class

 

templates,

 

with

 

the

 

exception

 

of

 

unions

 

and

 

bitwise

 

operators

 

that

 

do

 

not

 

apply

 

to

 

_DecimalT

 

class

 

templates.

 

You

 

can:

 

v

   

Declare

 

type

 

definitions,

 

arrays,

 

and

 

structures

 

that

 

have

 

_DecimalT

 

class

 

templates.

 

v

   

Apply

 

arithmetic,

 

relational,

 

assignment,

 

comma,

 

conditional,

 

equality,

 

logical,

 

and

 

unary

 

operators

 

on

 

the

 

_DecimalT

 

class

 

template.

 

v

   

Pass

 

_DecimalT

 

class

 

templates

 

in

 

function

 

calls.

 

The

 

_DecimalT

 

class

 

template

 

is

 

compatible

 

with

 

packed

 

decimal

 

representations

 

in

 

ILE

 

languages.

 

v

   

Define

 

macros,

 

and

 

call

 

library

 

functions

 

with

 

_DecimalT

 

class

 

templates.

 

v

   

View

 

the

 

_DecimalT

 

class

 

template

 

when

 

you

 

use

 

the

 

ILE

 

system

 

debugger.

 

Note:

  

When

 

you

 

view

 

a

 

_DecimalT

 

class

 

template,

 

none

 

of

 

the

 

operators

 

are

 

accessible

 

from

 

the

 

debugger.

 

For

 

information

 

on

 

the

 

ILE

 

system

 

debugger,

 

see

 

Part

 

3,

 

“Debugging

 

Programs,”

 

on

 

page

 

105.

Declaring

 

_DecimalT

 

Class

 

Template

 

Objects

 

To

 

declare

 

an

 

object

 

as

 

a

 

_DecimalT

 

class

 

template:

 

_DecimalT<10,2>

  

x;

    

466

 

ILE

 

C/C++

 

Programmer’s

 

Guide



_DecimalT<5,0>

   

z;

  

_DecimalT<18,10>

 

*ptr.;

  

_DecimalT<8,2>

   

arr[100];

 

Notes:

  

1.

   

The

 

variable

 

x

 

can

 

have

 

values

 

from

 

__D("-99999999.99")

 

to

 

__D("+99999999.99")

 

2.

   

The

 

variable

 

z

 

can

 

have

 

values

 

from

 

__D("-99999")

 

to

 

__D("+99999")

 

3.

   

ptr

 

is

 

a

 

pointer

 

to

 

an

 

object

 

of

 

type

 

_DecimalT<18,10>

 

4.

   

arr

 

is

 

an

 

array

 

of

 

100

 

elements,

 

where

 

each

 

element

 

is

 

of

 

class

 

_DecimalT<8,2>

 

5.

   

The

 

string

 

must

 

contain

 

only

 

the

 

following

 

characters:

 

0

 

1

 

2

 

3

 

4

 

5

 

6

 

7

 

8

 

9

 

.

 

—

 

+

 

Using

 

the

 

__D

 

Macro

 

to

 

Simplify

 

Code

 

Use

 

the

 

__D

 

macro

 

to

 

simplify

 

code

 

that

 

requires

 

the

 

frequent

 

use

 

of

 

the

 

_ConvertDecimal

 

constructor:

 

_ConvertDecimal(char

 

*);

 

You

 

can

 

initialize

 

a

 

_DecimalT

 

class

 

template

 

with

 

a

 

_ConvertDecimal

 

object:

 

_DecimalT<5,2>

 

x

 

=

 

__D("123.45");

 

_DecimalT<DEC_DIG,

 

DEC_PRECISION>

 

a

 

=__D(".0000000000000000000000000000005");

 

_DecimalT<6,2>

 

b[]

 

={__D("1.2"),

 

__D("2"),

 

__D("1234.56"),

 

_D("-3.3")};

 

_DecimalT<28,20>

 

a

 

=

 

__D("-12.123456789");

 

_DecimalT

 

Class

 

Template

 

Input

 

and

 

Output

 

Both

 

the

 

standard

 

(no

 

extension)

 

and

 

USL

 

(.h

 

extension)

 

headers

 

can

 

be

 

used

 

for

 

input/output

 

of

 

_DecimalT

 

objects.

 

To

 

use

 

the

 

C

 

<stdio>

 

formatted

 

input/output

 

routines,

 

specify

 

the

 

%D(n,p)

 

type

 

format

 

used

 

for

 

the

 

C

 

language

 

internally

 

defined

 

decimal

 

type.

 

Assuming

 

that

 

you

 

are

 

using

 

header

 

files

 

with

 

a

 

.h

 

extension:

 

v

   

Use

 

the

 

cout

 

pre-defined

 

stream

 

to

 

print

 

a

 

_DecimalT

 

class

 

template

 

value.

 

v

   

Use

 

the

 

cin

 

pre-defined

 

stream

 

to

 

read

 

a

 

_DecimalT

 

class

 

template

 

value.

Note:

  

If

 

you

 

are

 

using

 

header

 

files

 

without

 

an

 

extension

 

(such

 

as

 

<stdio>),

 

use

 

the

 

stdout

 

and

 

stdin

 

pre-defined

 

streams.

 

To

 

print

 

the

 

value

 

of

 

a

 

_DecimalT

 

class

 

template,

 

you

 

can

 

use

 

the

 

fprintf(),

 

printf(),

 

sprintf(),

 

vfprintf(),

 

vprintf(),

 

or

 

vsprintf()

 

functions.

 

To

 

read

 

the

 

value

 

of

 

a

 

_DecimalT

 

class

 

template,

 

you

 

can

 

use

 

the

 

fscanf(),

 

scanf(),

 

or

 

sscanf()

 

functions.

 

Using

 

Operators

 

with

 

the

 

_DecimalT

 

Class

 

Template

 

You

 

can

 

use

 

the

 

following

 

operators

 

with

 

the

 

_DecimalT

 

class

 

template:

 

v

   

Arithmetic

 

(see

 

“Using

 

Arithmetic

 

Operators

 

with

 

the

 

_DecimalT

 

Class

 

Template”

 

on

 

page

 

468)

 

v

   

Assignment

 

v

   

Comma

 

v

   

Conditional

 

(see

 

“Using

 

Conditional

 

Expressions

 

with

 

the

 

_DecimalT

 

Class

 

Template”

 

on

 

page

 

469)

   

Chapter

 

27.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C++

 

Program

 

467



v

   

Equality

 

(see

 

“Using

 

Equality

 

Operators

 

with

 

the

 

_DecimalT

 

Class

 

Template”

 

on

 

page

 

470)

 

v

   

Relational

 

(see

 

“Using

 

Relational

 

Operators

 

with

 

the

 

_DecimalT

 

Class

 

Template”

 

on

 

page

 

469)

 

v

   

Unary

 

(see

 

“Using

 

Unary

 

Operators

 

with

 

the

 

_DecimalT

 

Class

 

Template”

 

on

 

page

 

470)

Notes:

  

1.

   

Logical

 

operators

 

are

 

not

 

implemented

 

for

 

_DecimalT

 

class

 

templates.

 

2.

   

For

 

information

 

on

 

run-time

 

exceptions

 

during

 

assignments,

 

see

 

“C++

 

Packed

 

Decimal

 

Data

 

Conversions”

 

on

 

page

 

471.

Using

 

Arithmetic

 

Operators

 

with

 

the

 

_DecimalT

 

Class

 

Template

 

Figure

 

290

 

shows

 

how

 

to:

 

v

   

Define

 

operands

 

and

 

results

 

v

   

Perform

 

arithmetic

 

operations

 

on

 

operands

 

v

   

Direct

 

the

 

output

 

to

 

the

 

standard

 

output

 

stream

 

cout

  

The

 

output

 

is:

  

res_add

 

=11.87655

  

res_sub

 

=0.34

  

res_mul

 

=-1.4814000

  

res_dev

 

=1.12079927338782

 

#include

 

<bcd.h>

            

//

 

bcd

 

Class

 

Header

 

File

 

#include

 

<iostream.h>

   

int

 

main()

 

{

 

_DecimalT<10,2>

 

op_1

 

=

 

__D("12");

 

_DecimalT<5,5>

 

op_2

 

=

 

__D("-.12345");

 

_DecimalT<24,12>

 

op_3

 

=

 

__D("12.34");

 

_DecimalT<20,5>

 

op_4

 

=

 

__D("11.01");

   

_DecimalT<14,5>

 

res_add;

 

_DecimalT<25,2>

 

res_sub;

 

_DecimalT<15,7>

 

res_mul;

 

_DecimalT<31,14>

 

res_div;

   

res_add

 

=

 

op_1

 

+

 

op_2;

 

res_sub

 

=

 

op_3

 

-

 

op_1;

 

res_mul

 

=

 

op_2

 

*

 

op_1;

 

res_div

 

=

 

op_3

 

/

 

op_4;

   

cout

 

<<"res_add

 

="

 

<<res_add

 

<<endl;

 

cout

 

<<"res_sub

 

="

 

<<res_sub

 

<<endl;

 

cout

 

<<"res_mul

 

="

 

<<res_mul

 

<<endl;

 

cout

 

<<"res_div

 

="

 

<<res_div

 

<<endl;

   

}

 

Figure

 

290.

 

Example:

 

Arithmetic

 

Operators

 

for

 

the

 

_DecimalT

 

Class

 

Template.

   

468

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Using

 

Relational

 

Operators

 

with

 

the

 

_DecimalT

 

Class

 

Template

 

When

 

you

 

use

 

relational

 

operators

 

with

 

the

 

_DecimalT

 

class

 

template,

 

consider

 

the

 

following:

 

v

   

You

 

can

 

use

 

the

 

relational

 

expression

 

less

 

than

 

(<)

 

for

 

_DecimalT

 

class

 

templates

 

and

 

compare

 

_DecimalT

 

class

 

templates

 

with

 

other

 

arithmetic

 

types

 

(that

 

is,

 

integer,

 

float,

 

double,

 

and

 

long

 

double).

 

v

   

Implicit

 

conversions

 

are

 

performed

 

using

 

the

 

arithmetic

 

conversion

 

rules.

 

v

   

Leading

 

zeros

 

show

 

the

 

size

 

of

 

the

 

number

 

of

 

digits

 

in

 

the

 

_DecimalT

 

class

 

templates.

 

Note:

  

You

 

do

 

not

 

need

 

to

 

enter

 

leading

 

zeros

 

in

 

your

 

_DecimalT

 

class

 

templates.

Figure

 

291

 

shows

 

how

 

to

 

use

 

relational

 

operators

 

with

 

the

 

_DecimalT

 

class

 

template.

   

The

 

output

 

is:

  

pdval

 

is

 

the

 

smallest

 

!

  

pdval

 

is

 

the

 

smallest

 

!

  

pdval

 

is

 

the

 

smallest

 

!

  

pdval

 

is

 

the

 

smallest

 

!

  

pdval

 

is

 

the

 

smallest

 

!

 

Using

 

Conditional

 

Expressions

 

with

 

the

 

_DecimalT

 

Class

 

Template

 

Figure

 

292

 

on

 

page

 

470

 

shows

 

how

 

to:

 

v

   

Define

 

operands

 

and

 

results

 

v

   

Use

 

the

 

operands

 

to

 

create

 

conditional

 

expressions

 

v

   

Direct

 

the

 

output

 

to

 

the

 

standard

 

output

 

stream

 

cout

 

only

 

if

 

the

 

result

 

satisfies

 

the

 

specified

 

condition

  

#include

 

<bcd.h>

         

#include

 

<iostream.h>

             

_DecimalT<10,3>

 

pdval

 

=

 

__D("0000023.423");

 

//

 

bcd

 

declaration

           

int

 

ival

 

=

 

1233.1;

                        

//

 

Integer

 

declaration

           

float

 

fval

 

=

 

1234.34f;

                     

//

 

Float

 

declaration

           

double

 

dval

 

=

 

251.5832;

                  

//

 

Double

 

declaration

           

long

 

double

 

lval

 

=

 

37486.234;

            

//

 

Long

 

double

 

declaration

             

main(

 

)

           

{

             

_DecimalT<15,6>

 

value

 

=

 

__D("000485860.085999");

             

//

 

Perform

 

relational

 

operation

 

between

 

other

 

data

 

types

 

and

             

//

 

bcd

 

class

               

if

 

(pdval

 

<

 

ival)

 

cout

 

<<"pdval

 

is

 

the

 

smallest

 

!"<<endl;

             

if

 

(pdval

 

<

 

fval)

 

cout

 

<<"pdval

 

is

 

the

 

smallest

 

!"<<endl;

             

if

 

(pdval

 

<

 

dval)

 

cout

 

<<"pdval

 

is

 

the

 

smallest

 

!"<<endl;

             

if

 

(pdval

 

<

 

lval)

 

cout

 

<<"pdval

 

is

 

the

 

smallest

 

!"<<endl;

             

if

 

(pdval

 

<

 

value)

 

cout

 

<<"pdval

 

is

 

the

 

smallest

 

!"<<endl;

           

}

 

Figure

 

291.

 

Example:

 

Relational

 

Operators

 

and

 

the

 

_DecimalT

 

Class

 

Template.

   

Chapter

 

27.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C++

 

Program

 

469



Using

 

Equality

 

Operators

 

with

 

the

 

_DecimalT

 

Class

 

Template

 

Figure

 

293

 

shows

 

how

 

to:

 

v

   

Define

 

operands

 

and

 

results

 

v

   

Perform

 

equality

 

operations

 

on

 

the

 

operands

 

v

   

Direct

 

the

 

output

 

to

 

the

 

standard

 

output

 

stream

 

cout

 

The

 

output

 

is:

   

op_1

 

equals

 

op_2

  

op_3

 

equals

 

op_4

 

Using

 

Unary

 

Operators

 

with

 

the

 

_DecimalT

 

Class

 

Template

 

A

 

unary

 

expression

 

contains

 

one

 

operand

 

and

 

a

 

unary

 

operator.

 

All

 

unary

 

operators

 

have

 

the

 

same

 

precedence

 

and

 

have

 

right-

 

to-left

 

associativity.

 

For

 

information

 

about

 

overloading

 

unary

 

operators,

 

see

 

the

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference.

 

Figure

 

294

 

on

 

page

 

471

 

shows

 

how

 

to:

 

#include

 

<bcd.h>

 

#include

 

<iostream.h>

 

int

 

main

 

()

 

{

  

_DecimalT<10,2>

 

x,

 

y,

 

z;

  

x

 

=

 

__D("1.20");

  

y

 

=

 

__D("01.2");

  

z

 

=

 

(x==y)?

 

__D("9.9"):__D("2.45");

                  

}

 

Figure

 

292.

 

Example:

 

Conditional

 

Operators

 

and

 

the

 

_DecimalT

 

Class

 

Template.

 

#include

 

<bcd.h>

 

#include

 

<iostream.h>

   

_DecimalT<1,

 

0>

    

op_1

 

=

 

__D("+0");

      

//

 

Declare

 

and

 

initialize

 

_DecimalT<1,

 

0>

    

op_2

 

=

 

__D("-0");

      

//

 

valid

 

BCD

 

_DecimalT<9,4>

     

op_3

 

=

 

__D("00012.3400");

 

_DecimalT<4,2>

     

op_4

 

=

 

__D("12.34");

   

int

 

main(void)

                            

//

 

These

 

statements

 

{

                                      

//

 

perform

 

equality

 

<==>

 

test

                                             

//

 

on

 

the

 

above

 

variable

   

if

 

(op_1

 

==

 

op_2)

                  

//

 

declarations

   

{

       

cout

 

<<"op_1

 

equals

 

op_2"<<endl;

   

}

     

if

 

(op_3

 

!=

 

op_4)

   

{

       

cout

 

<<"op_3

 

not

 

equals

 

op_4"<<endl;

   

}

   

else

   

{

       

cout

 

<<"op_3

 

equals

 

op_4"<<endl;

   

}

 

}

 

Figure

 

293.

 

Example:

 

Equality

 

Operators

 

and

 

the

 

_DecimalT

 

Class

 

Template

  

470

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

Define

 

operands

 

v

   

Perform

 

unary

 

operations

 

on

 

the

 

operands

 

v

   

Direct

 

the

 

output

 

to

 

the

 

standard

 

stream

 

cout

 

The

 

resulting

 

output

 

is:

 

op_1++

 

=>

 

12.00

 

op_1

 

after

 

increment

 

=>

 

13.00

 

-op_2

 

=>

 

0.12345

 

--op_3

 

=>

 

11.340000000000

 

+op_4

 

=>

 

11.01000

 

C++

 

Packed

 

Decimal

 

Data

 

Conversions

 

If

 

the

 

value

 

of

 

the

 

packed

 

decimal

 

type

 

to

 

be

 

converted

 

is

 

within

 

the

 

range

 

of

 

values

 

that

 

can

 

be

 

represented

 

exactly,

 

the

 

value

 

of

 

the

 

packed

 

decimal

 

type

 

is

 

not

 

changed.

 

Packed

 

decimal

 

values

 

are

 

compatible

 

if

 

their

 

types

 

are

 

the

 

same.

 

For

 

example,

 

decimal(n1,

 

p1)

 

and

 

decimal(n2,

 

p2)

 

have

 

compatible

 

types

 

if

 

and

 

only

 

if

 

((n1

 

==

 

n2)

 

&&

 

(p1

 

==

 

p2))

 

Converting

 

Values

 

from

 

One

 

_DecimalT

 

Class

 

Template

 

to

 

Another

 

If

 

the

 

value

 

of

 

a

 

_DecimalT

 

class

 

template

 

that

 

is

 

to

 

be

 

converted

 

to

 

another

 

_DecimalT

 

class

 

template

 

is

 

not

 

within

 

the

 

range

 

of

 

values

 

that

 

can

 

be

 

represented

 

exactly,

 

the

 

value

 

of

 

the

 

_DecimalT

 

class

 

template

 

to

 

be

 

converted

 

is

 

truncated,

 

as

 

shown

 

in

 

the

 

following

 

figure.

  

#include

 

<iostream.h>

 

#include

 

<bcd.h>

 

int

 

main()

 

{

 

_DecimalT<10,2>

 

op_1

 

=

 

__D("12");

 

_DecimalT<5,5>

 

op_2

 

=

 

__D("-.12345");

 

_DecimalT<24,12>

 

op_3

 

=

 

__D("12.34");

 

_DecimalT<20,5>

 

op_4

 

=

 

__D("11.01");

 

cout

 

<<

 

"op_1++

 

=>

 

"

 

<<

 

op_1++

 

<<

 

endl;

 

cout

 

<<

 

"op_1

 

after

 

increment

 

=>

 

"

 

<<

 

op_1

 

<<

 

endl;

 

cout

 

<<

 

"-op_2

 

=>

 

"

 

<<

 

-op_2

 

<<

 

endl;

 

cout

 

<<

 

"--op_3

 

=>

 

"

 

<<

 

--op_3

 

<<

 

endl;

 

cout

 

<<

 

"+op_4

 

=>

 

"

 

<<

 

+op_4

 

<<

 

endl;

 

}

 

Figure

 

294.

 

Example:

 

Unary

 

Operators

 

and

 

the

 

_DecimalT

 

Class

 

Template

  

Chapter

 

27.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C++

 

Program

 

471



Notes:

  

1.

   

A

 

run-time

 

exception

 

occurs

 

on

 

assignment

 

to

 

a

 

smaller

 

target

 

only

 

when

 

the

 

integral

 

part

 

is

 

truncated.

 

If

 

assignment

 

causes

 

truncation

 

in

 

the

 

integral

 

part,

 

then

 

there

 

is

 

a

 

run-time

 

exception

 

in

 

which

 

a

 

_DecErrDigTruncated

 

object

 

is

 

thrown.

 

This

 

run-time

 

exception

 

occurs

 

when

 

an

 

integral

 

value

 

is

 

lost

 

during

 

conversion

 

to

 

a

 

different

 

type,

 

regardless

 

of

 

what

 

operation

 

requires

 

the

 

conversion.

 

For

 

information

 

on

 

run-time

 

exceptions

 

during

 

conversions,

 

see

 

“_DecimalT

 

Class

 

Template

 

Run-Time

 

Exceptions”

 

on

 

page

 

476.

 

2.

   

If

 

truncation

 

occurs

 

in

 

the

 

fractional

 

part,

 

there

 

is

 

no

 

run-time

 

exception.

When

 

one_DecimalT

 

class

 

template

 

is

 

assigned

 

to

 

another

 

_DecimalT

 

class

 

template

 

with

 

a

 

smaller

 

precision,

 

the

 

result

 

is

 

truncation

 

of

 

the

 

fractional

 

part,

 

as

 

shown

 

in

 

the

 

following

 

figure.

  

When

 

one

 

_DecimalT

 

class

 

template

 

is

 

assigned

 

to

 

another

 

_DecimalT

 

class

 

template

 

with

 

a

 

smaller

 

integral

 

part,

 

the

 

result

 

is

 

truncation

 

of

 

the

 

integral

 

part,

 

as

 

shown

 

in

 

the

 

following

 

figure.

  

Note:

  

A

 

run-time

 

exception

 

occurs

 

on

 

assignment

 

to

 

a

 

smaller

 

target

 

only

 

when

 

the

 

integral

 

part

 

is

 

truncated.

 

For

 

more

 

information

 

on

 

run-time

 

exceptions

 

during

 

conversions,

 

see

 

“_DecimalT

 

Class

 

Template

 

Run-Time

 

Exceptions”

 

on

 

page

 

476.

 

When

 

one

 

_DecimalT

 

class

 

template

 

is

 

assigned

 

to

 

another

 

_DecimalT

 

class

 

with

 

a

 

smaller

 

integral

 

part,

 

and

 

smaller

 

precision,

 

the

 

result

 

is

 

truncation

 

of

 

the

 

integral,

 

and

 

fractional

 

parts,

 

as

 

shown

 

in

 

the

 

following

 

figure.

  

_DecimalT<4,2>

 

targ_1,

 

targ_2;

 

_DecimalT<6,2>

 

op_1=__D("1234.56"),

 

op_2=__D("12.34");

   

targ_1=op_1;

   

//

 

A

 

run-time

 

exception

 

is

 

generated

 

because

 

the

 

integral

           

//

 

part

 

is

 

truncated;

 

targ_1=__D("34.56").

 

targ_2=op_2;

   

//

 

No

 

run-time

 

exception

 

is

 

generated

 

because

 

neither

 

the

                    

//

 

integral

 

nor

 

the

 

fractional

 

part

 

is

 

truncated;

                    

//

 

targ_2=__D("12.34").

 

Figure

 

295.

 

Example

 

of

 

Converting

 

a

 

Value

 

from

 

One

 

_DecimalT

 

Class

 

Template

 

to

 

Another.

 

_DecimalT<7,4>

 

x

 

=

 

__D("123.4567");

 

_DecimalT<7,1>

 

y;

   

y

 

=

 

x;

    

//

 

y

 

=

 

__D("123.4")

 

Figure

 

296.

 

Example

 

of

 

Conversion

 

from

 

One

 

_DecimalT

 

Class

 

Template

 

to

 

Another

 

with

 

Smaller

 

Precision.

 

_DecimalT<8,2>

 

x

 

=

 

__D("123456.78");

 

_DecimalT<5,2>

 

y;

   

y

 

=

 

x;

   

//

 

y

 

=

 

__D("456.78")

 

Figure

 

297.

 

Example

 

of

 

Conversion

 

from

 

One

 

_DecimalT

 

Class

 

Template

 

to

 

Another

 

with

 

a

 

Smaller

 

Integral

 

Part

  

472

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Note:

  

A

 

run-time

 

exception

 

occurs

 

on

 

assignment

 

to

 

a

 

smaller

 

target

 

only

 

when

 

the

 

integral

 

part

 

is

 

truncated.

 

For

 

more

 

information

 

on

 

run-time

 

exceptions

 

during

 

conversions,

 

see

 

“_DecimalT

 

Class

 

Template

 

Run-Time

 

Exceptions”

 

on

 

page

 

476.

 

Converting

 

Values

 

from

 

a

 

_DecimalT

 

Class

 

Template

 

to

 

an

 

Integer

 

Data

 

Type

 

When

 

a

 

value

 

of

 

a

 

_DecimalT

 

class

 

template

 

is

 

converted

 

to

 

an

 

integer

 

type:

 

v

   

The

 

value

 

is

 

first

 

converted

 

to

 

_DecimalT<10,0>.

 

See

 

Figure

 

299

 

and

 

Figure

 

300.

 

v

   

The

 

corresponding

 

_DecimalT

 

class

 

template

 

is

 

also

 

converted

 

to

 

an

 

integer

 

type.

 

See

 

Figure

 

301

 

and

 

Figure

 

302

 

on

 

page

 

474.

Note:

  

No

 

run-time

 

exception

 

occurs

 

when

 

assigning

 

a

 

_DecimalT

 

class

 

template

 

to

 

an

 

integer

 

type

 

that

 

results

 

in

 

truncation

 

of

 

the

 

integral

 

part.

     

_DecimalT<8,2>

 

x

 

=

 

__D("123456.78");

 

_DecimalT<4,1>

 

y;

   

y

 

=

 

x;

  

//

 

y

 

=

 

__D("456.7")

 

Figure

 

298.

 

Example

 

of

 

Conversion

 

from

 

One

 

_DecimalT

 

Class

 

Template

 

to

 

Another

 

with

 

a

 

Smaller

 

Integral

 

Part

 

and

 

Smaller

 

Precision

 

int

 

op;

          

_DecimalT<7,2>

 

op1

 

=

 

__D("12345.67");

          

op

 

=

 

op1;

                  

//

 

Truncation

 

on

 

the

 

fractional

                                        

//

 

part.

 

op=12345

 

Figure

 

299.

 

Example

 

of

 

Converting

 

an

 

Integer

 

Type

 

to

 

a

 

_DecimalT

 

Class

 

Template

 

with

 

a

 

Fractional

 

Part

  

int

 

op;

          

_DecimalT<3,

 

0>

 

op2

 

=

 

__D("123");

          

op

 

=

 

op2;

       

//

 

No

 

truncation;

 

op=123

 

Figure

 

300.

 

Example

 

of

 

Converting

 

an

 

Integer

 

Type

 

to

 

a

 

_DecimalT

 

Class

 

Template

 

with

 

Less

 

than

 

10

 

Digits

 

in

 

the

 

Integral

 

Part

   

int

 

op2;

           

_DecimalT<12,

 

0>

 

op3;

           

op3

 

=

 

__D("123456789012");

           

op2

 

=

 

op3;

        

//

 

Truncation

 

occurs

 

on

 

the

 

integral

                                

//

 

part.

 

op2=3456789012;

 

no

 

runtime

                                

//

 

exception.

 

Figure

 

301.

 

Example

 

of

 

Converting

 

to

 

an

 

Integer

 

Type

 

from

 

a

 

_DecimalT

 

Class

 

Template

 

with

 

More

 

than

 

10

 

Digits

 

in

 

the

 

Integral

 

Part

  

Chapter

 

27.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C++

 

Program

 

473



Converting

 

Values

 

from

 

a

 

_DecimalT

 

Class

 

Template

 

to

 

a

 

Floating

 

Point

 

Data

 

Type

 

to

 

convert

 

a

 

_DecimalT

 

class

 

template

 

class

 

to

 

a

 

floating

 

point

 

data

 

type,

 

use

 

source

 

code

 

similar

 

to

 

that

 

found

 

in

 

the

 

following

 

figure.

 

The

 

output

 

is

 

shown

 

below.

   

f1=123.45

   

f2=-123456

 

Determining

 

the

 

Size

 

of

 

a

 

_DecimalT

 

Class

 

Template

 

When

 

you

 

use

 

the

 

sizeof

 

operator

 

with

 

_DecimalT,

 

you

 

can

 

find

 

out

 

the

 

total

 

number

 

of

 

bytes

 

occupied

 

by

 

the

 

_DecimalT

 

class

 

template.

Note:

  

Each

 

_DecimalT

 

class

 

template

 

digit

 

occupies

 

half

 

a

 

byte.

 

Half

 

a

 

byte

 

is

 

used

 

for

 

the

 

sign.

 

The

 

number

 

of

 

bytes

 

used

 

by

 

_DecimalT

 

is

 

the

 

smallest

 

whole

 

number

 

greater

 

than

 

or

 

equal

 

to

 

(n

 

+

 

1)/2

 

(for

 

example,

 

sizeof(_DecimalT)

 

=

 

ceil((n

 

+

 

1)/2)).

    

#include

 

<bcd.h>

             

int

 

op;

           

_DecimalT<15,2>

 

op_1

 

=

 

__D("1234567890123.12");

           

op

 

=

 

op_1;

       

//

 

Truncation

 

occurs

 

on

 

the

 

integral

 

and

                               

//

 

fractional

 

parts.

 

op=4567890123;

 

no

                               

//

 

run-time

 

exception.

 

Figure

 

302.

 

Example

 

of

 

Converting

 

to

 

an

 

Integer

 

Type

 

from

 

a

 

_DecimalT

 

Class

 

Template

 

with

 

a

 

Fractional

 

Part,

 

and

 

with

 

an

 

Integral

 

Part

 

that

 

Has

 

More

 

than

 

10

 

Digits

#include

 

<bcd.h>

 

#include

 

<iostream.h>

   

int

 

main(void)

 

{

   

_DecimalT<5,2>

 

dec_1=__D("123.45");

   

_DecimalT<11,5>

 

dec_2=__D("-123456.12345");

     

float

 

f1,f2;

     

f1=dec_1;

   

f2=dec_2;

     

cout

 

<<"f1="

 

<<f1

 

<<endl

  

<<"f2="

 

<<f2

 

<<endl

 

<<endl;//f1=123.45

                                                          

//

 

f2=-123456

 

}

 

Figure

 

303.

 

Example

 

of

 

Converting

 

a

 

_DecimalT

 

Class

 

Template

 

to

 

a

 

Floating

 

Point

 

Data

 

Type

  

474

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Determining

 

the

 

Number

 

of

 

Digits

 

in

 

a

 

_DecimalT

 

Class

 

Template

 

When

 

you

 

use

 

the

 

member

 

function

 

DigitsOf()

 

with

 

a

 

_DecimalT

 

class

 

template,

 

you

 

can

 

find

 

out

 

the

 

total

 

number

 

of

 

digits

 

n

 

in

 

a

 

_DecimalT

 

class

 

template.

    

Determining

 

the

 

Precision

 

of

 

a

 

_DecimalT

 

Class

 

Template

 

When

 

you

 

use

 

the

 

member

 

function

 

PrecisionOf()

 

with

 

a

 

_DecimalT

 

class

 

template,

 

you

 

can

 

determine

 

the

 

number

 

of

 

decimal

 

digits

 

p

 

in

 

a

 

_DecimalT

 

class

 

template,

 

as

 

shown

 

in

 

the

 

following

 

figure.

   

How

 

Overflows

 

Are

 

Handled

 

Table

 

28

 

describes

 

the

 

overflow

 

behavior

 

when

 

a

 

_DecimalT

 

class

 

template

 

is

 

assigned

 

to

 

a

 

smaller

 

target.

 

An

 

exception

 

is

 

generated

 

when

 

a

 

_DecimalT

 

class

 

template

 

is

 

assigned

 

to

 

a

 

_Decimal

 

class

 

template

 

with

 

a

 

smaller

 

target.

 

An

 

exception

 

is

 

not

 

generated

 

when:

 

v

   

A

 

_DecimalT

 

class

 

template

 

is

 

assigned

 

to

 

a

 

char,

 

int,

 

short,

 

long,

 

or

 

bit

 

field

 

with

 

a

 

smaller

 

target

 

v

   

A

 

_DecimalT

 

class

 

template

 

is

 

assigned

 

to

 

a

 

floating

 

point

 

with

 

a

 

smaller

 

target

 

Table

 

28.

 

Handling

 

Overflow

 

from

 

a

 

_DecimalT

 

Class

 

Template

 

to

 

a

 

Smaller

 

Target

 

From

 

Type

 

To

 

Type

 

Run-Time

 

Exception?

 

_DecimalT

 

class

 

template

 

char,

 

int,

 

short,

 

long,

 

bit

 

No

 

_DecimalT

 

class

 

template

 

_DecimalT

 

class

 

template

 

Yes

 

_DecimalT

 

class

 

template

 

float

 

No1

 

int

 

y;

 

_DecimalT

 

<5,

 

2>

 

x;

                    

//

 

This

 

would

 

be

 

calculated

 

to

 

be

 

3

 

bytes

 

y

 

=sizeof(x);

      

//

 

(5+1)/2

 

=

 

3.

 

Figure

 

304.

 

Example

 

of

 

Determining

 

the

 

Total

 

Number

 

of

 

Bytes

 

Occupied

 

by

 

a

 

_DecimalT

 

Class

 

Template

int

 

n,n1;

 

_DecimalT

 

<5,

 

2>

 

x;

 

n

 

=

 

x.DigitsOf();

                  

//

 

the

 

result

 

is

 

n=5

 

Figure

 

305.

 

Example

 

of

 

Determining

 

the

 

Number

 

of

 

Digits

 

in

 

a

 

_DecimalT

 

Class

 

Template

int

 

p,p1;

 

_DecimalT

 

<5,

 

2>

 

x;

 

p=x.PrecisionOf();

                  

//

 

The

 

result

 

is

 

p=2

 

Figure

 

306.

 

Example

 

of

 

Determining

 

the

 

Number

 

of

 

Decimal

 

Digits

 

p

 

of

 

a

 

_DecimalT

 

Class

 

Template

  

Chapter

 

27.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C++

 

Program

 

475



Table

 

28.

 

Handling

 

Overflow

 

from

 

a

 

_DecimalT

 

Class

 

Template

 

to

 

a

 

Smaller

 

Target

 

(continued)

 

From

 

Type

 

To

 

Type

 

Run-Time

 

Exception?

 

Note:

 

1There

 

is

 

no

 

_DecimalT

 

class

 

template

 

large

 

enough

 

to

 

cause

 

overflow

 

when

 

the

 

_DecimalT

 

class

 

template

 

is

 

assigned

 

to

 

a

 

double.

   

Using

 

C++

 

Exception

 

Handling

 

with

 

the

 

_DecimalT

 

Template

 

This

 

section

 

describes

 

run-time

 

exceptions

 

for

 

_DecimalT

 

template

 

classes,

 

error

 

classes,

 

and

 

debug

 

macros

 

when

 

C++

 

exception

 

handling

 

is

 

used

 

with

 

the

 

_DecimalT

 

template

 

class

 

template.

 

If

 

an

 

error

 

is

 

detected

 

during

 

run

 

time,

 

an

 

error

 

object

 

is

 

thrown.

 

This

 

section

 

describes:

 

v

   

_DecimalT

 

class

 

template

 

run-time

 

exceptions

 

v

   

Using

 

a

 

class

 

derived

 

from

 

the

 

_DecErr

 

class

 

v

   

Using

 

debug

 

macros

_DecimalT

 

Class

 

Template

 

Run-Time

 

Exceptions

 

In

 

ILE

 

C,

 

a

 

packed

 

decimal

 

is

 

implemented

 

as

 

a

 

native

 

data

 

type.

 

This

 

approach

 

allows

 

an

 

error,

 

such

 

as

 

a

 

decimal

 

format

 

that

 

is

 

not

 

valid,

 

to

 

be

 

detected

 

at

 

compile

 

time.

 

In

 

ILE

 

C++,

 

detection

 

of

 

a

 

similar

 

error

 

is

 

deferred

 

until

 

run

 

time.

    

When

 

Run-Time

 

Exceptions

 

Occur

 

Run-time

 

exceptions

 

may

 

occur

 

during

 

the

 

following

 

operations:

 

v

   

Arithmetic

 

operations

 

v

   

Assignment

 

v

   

Casting

 

v

   

Function

 

calls

 

v

   

Initialization

Note:

  

Overflow

 

situations

 

that

 

occur

 

during

 

compilation

 

are

 

deferred

 

until

 

runtime;

 

loss

 

of

 

digits

 

may

 

occur.

#include

 

<bcd.h>

 

void

 

main()

 

{

    

_DecimalT<10,20>

 

b

 

=

 

__D("ABC");

 

//

 

Run-time

 

exception

 

is

 

raised

   

}

       

#include

 

<bcd.h>

 

void

 

main()

 

{

    

_DecimalT<33,2>

 

a;

              

//

 

Max.

 

dig.

 

allow

 

is

 

31.

 

Again,

                                              

//

 

run-time

 

exception

 

is

 

raised

 

}

 

Figure

 

307.

 

_DecimalT

 

Class

 

Template

 

Run-Time

 

Exceptions

  

476

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Run-Time

 

Exceptions

 

Issued

 

by

 

the

 

Compiler

 

for

 

_DecimalT

 

Class

 

Templates

 

The

 

run-time

 

exceptions

 

issued

 

by

 

the

 

compiler

 

for

 

_DecimalT

 

class

 

templates

 

are

 

shown

 

in

 

the

 

following

 

figure.

  

Notes:

  

1.

   

For

 

assignments

 

to

 

a

 

target

 

field

 

too

 

small

 

to

 

hold

 

the

 

_DecimalT

 

class

 

template

 

object,

 

there

 

is

 

a

 

run-time

 

exception

 

issued

 

for

 

static,

 

external,

 

or

 

automatic

 

initialization.

 

#include

 

<bcd.h>

   

static

 

_DecimalT<5,2>

   

s1

 

=

   

__D("12345678.0");

   

static

 

_DecimalT<10,2>

  

s2

 

=

   

__D("1234567891234567891234567.12345")

                                                

+

 

__D("12345.1234567891");

                                              

//

 

s2

 

=

 

(31,5)

 

+

 

(15,10)

   

static

 

_DecimalT<10,2>

  

s3

 

=

  

__D("1234567891234562345")

                                                

*

 

__D("1234567891234.12");

                                              

//

 

s3

 

=

 

(19,0)

 

*

 

(15,2)

   

static

 

_DecimalT<10,2>

  

s4

 

=

  

__D("12345678912345678912")

 

/

                                             

__D("12345.123456789123456");

                                              

//

 

s4

 

=

 

(20,0)

 

/

 

(20,15)

   

int

 

main(void)

   

{

     

_DecimalT<5,2>

 

a1

 

=

 

__D("12345678.0");

       

_DecimalT<10,2>

 

a2,

 

a3,

 

a4;

       

_DecimalT<5,2>

 

a5

 

=

 

(_DecimalT<5,2>)

 

__D("123456.78");

             

a2

 

=

 

__D("1234567891234567891234567.12345")

 

+

 

__D("12345.1234567891");

                                              

//

 

a2

 

=

 

(31,5)

 

+

 

(15,10)

       

a3

 

=

 

__D("123456789123456.12345")

 

*

 

__D("1234567891234.12");

                                              

//

 

a3

 

=

 

(20,5)

 

*

 

(15,2)

                                            

//

 

expression.

                                            

//

 

Note:

 

Need

 

(35,7)

 

but

                                            

//

 

use

 

(31,2),

 

for

 

example,

                                            

//

 

keep

 

the

 

integral

 

part.

       

a4

 

=

 

__D("12345678912345678912")

 

/

 

__D("12345.123456789123456");

                                              

//

 

a4

 

=

 

(20,0)

 

/

 

(20,15)

                                            

//

 

Note:

 

Need

 

35

 

digits

 

to

                                            

//

 

calculate

 

integral

 

part

                                            

//

 

and

 

the

 

result

 

becomes

                                            

//

 

(31,0).

 

}

 

Figure

 

308.

 

Run-Time

 

Exceptions

 

Issued

 

by

 

the

 

Compiler

 

for

 

_DecimalT

 

Class

 

Templates

  

Chapter

 

27.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C++

 

Program

 

477



2.

   

For

 

expressions

 

requiring

 

decimal-point

 

alignment,

 

namely

 

addition,

 

subtraction,

 

or

 

comparison,

 

there

 

is

 

a

 

run-time

 

exception

 

issued

 

for

 

static,

 

external,

 

and

 

automatic

 

initialization

 

if,

 

during

 

alignment,

 

the

 

maximum

 

number

 

of

 

allowed

 

digits

 

is

 

exceeded.

 

3.

   

For

 

multiplication,

 

if

 

the

 

evaluation

 

of

 

the

 

expression

 

results

 

in

 

a

 

value

 

larger

 

than

 

the

 

maximum

 

number

 

of

 

allowed

 

digits

 

(DEC_DIG):

 

v

   

A

 

run-time

 

exception

 

is

 

issued

 

either

 

for

 

static

 

or

 

external

 

initialization,

 

or

 

if

 

the

 

expression

 

is

 

within

 

a

 

function.

 

v

   

Truncation

 

occurs

 

on

 

the

 

fractional

 

part,

 

preserving

 

as

 

much

 

of

 

the

 

integral

 

part

 

as

 

possible.
4.

   

For

 

division,

 

a

 

run-time

 

exception

 

is

 

generated

 

when

 

((n[1]-

 

p[1])

 

+

 

p[2])

 

>31.

Defining

 

a

 

C++

 

_DecimalT

 

Class

 

Template

 

Exception

 

Handler

 

An

 

object

 

instantiated

 

from

 

an

 

error

 

class

 

is

 

thrown

 

if

 

an

 

error

 

occurred

 

during

 

run

 

time.

 

You

 

can

 

catch

 

the

 

exception

 

by

 

defining

 

your

 

own

 

exception

 

handler.

 

The

 

following

 

figure

 

illustrates

 

how

 

to

 

use

 

try-catch-throw

 

to

 

handle

 

a

 

_DecimalT

 

class

 

template

 

exception.

    

Using

 

Debug

 

Macros

 

for

 

_DecimalT

 

Class

 

Templates

 

C++

 

exception

 

handling

 

is

 

used

 

in

 

the

 

_DecimalT

 

class

 

template.

 

If

 

an

 

error

 

is

 

detected

 

during

 

run

 

time,

 

an

 

error

 

object

 

is

 

thrown.

 

Table

 

29

 

defines

 

the

 

three

 

macros

 

that

 

you

 

can

 

use

 

to

 

turn

 

assertion-checking

 

on

 

and

 

off.

  

Table

 

29.

 

Debug

 

Macros

 

for

 

_DecimalT

 

Class

 

Templates

 

Macro

 

Meaning

 

_DEBUG

 

Assertion

 

checking

 

is

 

on.

 

_DEBUG_DECIMAL

 

Assertion

 

checking

 

is

 

on

 

for

 

the

 

_DecimalT

 

class

 

template

 

only.

 

_NODEBUG_DECIMAL

 

Default:

 

Assertion

 

checking

 

is

 

off.

 

This

 

macro

 

can

 

override

 

the

 

_DEBUG

 

and

 

_DEBUG_DECIMAL

 

macros.

   

Notes:

  

1.

   

When

 

assertion

 

checking

 

is

 

on,

 

the

 

_DecimalT

 

template-class

 

constant

 

and

 

parameters

 

of

 

the

 

_DecimalT

 

class

 

template

 

are

 

validated.

 

#include

 

<bcd.h>

 

#include

 

<iostream.h>

   

void

 

main()

  

{

       

try

  

{

           

_DecimalT<10,2>

 

=

 

__D("AAA");

       

}

       

catch

 

(_DecErrInvalidConst;

 

Err)

   

{

          

cout

 

<<"Invalid

 

Decimal

 

constant!"<<endl;

       

}

 

}

 

Figure

 

309.

 

Example

 

of

 

Using

 

the

 

C++

 

Try

 

Catch

 

Throw

 

Feature

 

to

 

Handle

 

a

 

_DecimalT

 

Class

 

Template

 

Exception

  

478

 

ILE

 

C/C++

 

Programmer’s

 

Guide



2.

   

Checking

 

for

 

divide-by-zero,

 

overflow,

 

and

 

truncation

 

in

 

the

 

_DecimalT

 

template-class

 

digit

 

is

 

hard-coded

 

in

 

the

 

C++

 

run-time

 

libraries

 

and

 

cannot

 

be

 

turned

 

off

 

by

 

the

 

_NODEBUG_DECIMAL

 

macro.

 

3.

   

You

 

can

 

use

 

the

 

_DEBUG

 

macro

 

to

 

turn

 

assertion

 

checking

 

on

 

for

 

the

 

_DecimalT

 

class

 

template.

 

If

 

you

 

are

 

already

 

using

 

the

 

_DEBUG

 

macro

 

in

 

your

 

source,

 

you

 

can

 

use

 

the

 

_DEBUG_DECIMAL

 

macro

 

to

 

turn

 

on

 

assertion

 

checking,

 

for

 

the

 

_DecimalT

 

class

 

template

 

only.

Enabling

 

and

 

Disabling

 

Error

 

Checking

 

for

 

the

 

_DecimalT

 

Class

 

Template

 

To

 

enable

 

error

 

checking

 

within

 

the

 

_DecimalT

 

class

 

template,

 

you

 

can

 

turn

 

on

 

the

 

debug

 

macro

 

by

 

adding

 

either

 

the

 

DEFINE(_DEBUG_DECIMAL)

 

option

 

or

 

the

 

DEFINE(_DEBUG)

 

option

 

during

 

the

 

invocation

 

of

 

the

 

compiler,

 

as

 

shown

 

in

 

the

 

following

 

figure.

  

Notes:

  

1.

   

The

 

difference

 

between

 

the

 

_D_DEBUG

 

and

 

_D_DEBUG_DECIMAL

 

invocations

 

depends

 

on

 

whether

 

or

 

not

 

the

 

_DEBUG

 

macro

 

is

 

used

 

by

 

other

 

classes

 

to

 

control

 

the

 

error

 

checking.

 

If

 

the

 

_DEBUG

 

macro

 

is

 

used

 

by

 

another

 

class,

 

DEFINE(_DEBUG)

 

affects

 

all

 

classes

 

that

 

use

 

the

 

_DEBUG

 

macro

 

and

 

DEFINE(_DEBUG_DECIMAL)

 

affects

 

only

 

the

 

_DecimalT

 

class

 

template.

 

2.

   

When

 

you

 

turn

 

assertion

 

checking

 

on

 

for

 

a

 

group

 

of

 

files

 

using

 

the

 

_DEBUG

 

macro,

 

use

 

the

 

_NODEBUG_DECIMAL

 

macro

 

to

 

override

 

the

 

_DEBUG

 

macro

 

and

 

turn

 

assertion

 

checking

 

off

 

for

 

the

 

_DecimalT

 

class

 

template.

To

 

disable

 

error

 

checking

 

within

 

the

 

_DecimalT

 

class

 

template,

 

you

 

can

 

use

 

the

 

commands

 

shown

 

in

 

the

 

following

 

figure:

 

Notes:

  

1.

   

You

 

can

 

enable

 

error

 

checking

 

for

 

all

 

classes,

 

except

 

the

 

_DecimalT

 

class

 

template,

 

that

 

use

 

_DEBUG

 

as

 

the

 

control

 

macro

 

by

 

using

 

one

 

of

 

the

 

following

 

commands:

 

CRTCPPMOD

 

DEFINE(’_D_DEBUG_DECIMAL

 

temp.cpp’)

 

CRTBNDCPP

 

DEFINE(’_D_DEBUG_DECIMAL

 

temp.cpp’)

 

2.

   

If

 

you

 

try

 

to

 

use

 

both

 

the

 

_DEBUG_DECIMAL

 

and

 

_NODEBUG_DECIMAL

 

macros

 

on

 

the

 

same

 

invocation,

 

the

 

_NODEBUG_DECIMAL

 

macro

 

takes

 

precedence,

 

and

 

error

 

checking

 

for

 

the

 

_DecimalT

 

class

 

template

 

is

 

disabled.

CRTCPPMOD

 

DEFINE(_DEBUG)

 

CRTBNDCPP

 

DEFINE(_DEBUG)

 

CRTCPPMOD

 

DEFINE(_DEBUG_DECIMAL)

 

CRTBNDCPP

 

DEFINE(_DEBUG_DECIMAL)

 

Figure

 

310.

 

Commands

 

to

 

Enable

 

Error

 

Checking

 

within

 

the

 

_DecimalT

 

Class

 

Template

 

at

 

Compile

 

Time

CRTCPPMOD

 

DEFINE(’_D_DEBUG_DECIMAL

 

temp.cpp’)

 

CRTBNDCPP

 

DEFINE(’_D_DEBUG_DECIMAL

 

temp.cpp’)

   

CRTCPPMOD

 

DEFINE(’_D_NODEBUG_DECIMAL

 

temp.cpp’)

  

//This

 

is

 

the

 

default.

 

CRTBNDCPP

 

DEFINE(’_D_NODEBUG_DECIMAL

 

temp.cpp’)

  

//This

 

is

 

the

 

default.

   

Figure

 

311.

 

Commands

 

to

 

Disable

 

Error

 

Checking

 

within

 

the

 

_DecimalT

 

Class

 

Template

 

at

 

Compile

 

Time

  

Chapter

 

27.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C++

 

Program

 

479



Passing

 

a

 

_DecimalT

 

Class

 

Template

 

Object

 

to

 

a

 

Function

 

There

 

are

 

no

 

default

 

argument

 

promotions

 

on

 

arguments

 

that

 

have

 

_DecimalT

 

class

 

templates

 

when

 

the

 

called

 

function

 

does

 

not

 

include

 

a

 

prototype.

 

Any

 

function

 

definition

 

containing

 

_DecimalT

 

class

 

template

 

arguments

 

must

 

be

 

prototyped;

 

otherwise,

 

the

 

compiler

 

issues

 

an

 

error.

 

The

 

following

 

figure

 

provides

 

an

 

example.

  

The

 

output

 

is:

 

x1

 

=

 

33.3

 

x2

 

=

 

55555.55555

 

x3

 

=

 

999.99000

 

x4

 

=

 

88888888888888888888888888888

 

Passing

 

a

 

Pointer

 

to

 

a

 

_DecimalT

 

Class

 

Template

 

Object

 

When

 

you

 

pass

 

a

 

pointer

 

to

 

a

 

_DecimalT

 

class

 

template

 

object,

 

the

 

_DecimalT

 

template-class

 

argument

 

in

 

the

 

function

 

call

 

must

 

be

 

the

 

same

 

class

 

template

 

as

 

the

 

_DecimalT

 

class

 

template

 

in

 

the

 

function

 

prototype.

 

If

 

overflow

 

occurs

 

in

 

a

 

function

 

call

 

with

 

_DecimalT

 

class

 

template

 

arguments,

 

a

 

run-time

 

exception

 

is

 

generated.

 

The

 

following

 

figure

 

provides

 

an

 

example

 

of

 

passing

 

a

 

pointer

 

to

 

a

 

_DecimalT

 

class

 

template

 

object.

  

#include

 

<bcd.h>

 

#include

 

<iostream.h>

   

_DecimalT<3,1>

   

d1

 

=

 

__D("33.3");

 

_DecimalT<10,5>

  

d2

 

=

 

__D("55555.55555");

 

_DecimalT<28,0>

  

d3

 

=

 

__D("8888888888888888888888888888");

   

void

 

func1(

 

_DecimalT<3,1>,

 

_DecimalT<10,5>,

                       

_DecimalT<10,5>,

 

_DecimalT<28,0>);

   

int

 

main(void)

 

{

 

func1(d1,

 

d2,

 

__D("999.99"),

 

d3);

 

}

 

{

 

//

 

func1

 

is

 

prototyped

 

void

 

func1(_DecimalT<3,1>

 

x1,

 

_DecimalT<10,5>

 

x2,

            

_DecimalT<10,5>

 

x3,

 

_DecimalT<28,0>

 

x4)

 

{

 

//

 

no

 

runtime

 

error

 

when

 

referencing

 

x1,

 

x2,

 

x3

 

or

 

x4

 

cout

 

<<"x1

 

=

 

"

 

<<x1

 

<<endl;

 

cout

 

<<"x2

 

=

 

"

 

<<x2

 

<<endl;

 

cout

 

<<"x3

 

=

 

"

 

<<x3

 

<<endl;

 

cout

 

<<"x4

 

=

 

"

 

<<x4

 

<<endl;

 

}

 

Figure

 

312.

 

Example

 

of

 

Passing

 

a

 

_DecimalT

 

Class

 

Template

 

Object

 

to

 

a

 

Function

  

480

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

output

 

is:

 

The

 

bcd

 

value

 

is

 

123.45

 

Calling

 

Another

 

Program

 

Containing

 

a

 

_DecimalT

 

Class

 

Template

 

You

 

can

 

make

 

interlanguage

 

calls

 

and

 

pass

 

_DecimalT-class

 

arguments

 

to

 

ILE

 

RPG,

 

ILE

 

COBOL,

 

and

 

ILE

 

C

 

programs.

 

The

 

following

 

figure

 

provides

 

an

 

ILE

 

COBOL

 

example.

  

//

 

This

 

program

 

shows

 

how

 

to

 

pass

 

a

 

pointer

 

to

 

a

 

_DecimalT

 

template

 

//

 

class

 

object

 

to

 

a

 

function.

   

#include

 

<bcd.h>

 

#include

 

<iostream.h>

     

_DecimalT<5,2>

 

var=__D("123.45");

   

_DecimalT<5,2>

 

*p=&var;

     

_DecimalT<5,2>

 

*func_1(_DecimalT<5,2>

 

*);

   

int

 

main(void)

 

{

   

//

  

Call

 

function

 

with

 

pointer

 

to

 

_DecimalT

 

class

 

template

 

argument.

 

//

  

The

 

value

 

that

 

it

 

returns

 

is

 

a

 

pointer

 

to

 

a

 

_DecimalT

 

//

  

class

 

template

 

object.

      

_DecimalT<5,2>

 

*tempvar;

    

tempvar

 

=

 

func_1(p);

      

if(tempvar

 

==

 

0)

    

{

       

cout

 

<<"Function

 

call

 

not

 

successful"

 

<<endl

 

<<endl;

    

}

    

else

    

{

       

cout

 

<<"The

 

bcd

 

value

 

is

 

"

 

<<

 

*tempvar

 

<<endl

 

<<endl;

    

}

  

}

 

_DecimalT<5,2>

 

*func_1(_DecimalT<5,2>

 

*q)

  

{

  

return

 

q;

  

}

 

Figure

 

313.

 

Example

 

of

 

Passing

 

a

 

Pointer

 

to

 

a

 

_DecimalT

 

Class

 

Template

 

Object

  

Chapter

 

27.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C++

 

Program

 

481



The

 

output

 

is:

 

The

 

C++

 

program

 

is:

 

//

 

This

 

program

 

calls

 

an

 

ILE

 

COBOL

 

program

 

//

 

and

 

passes

 

a

 

bcd

 

object.

   

#include

 

<iostream.h>

 

#include

 

<bcd.h>

   

extern

 

"COBOL"

 

void

 

CBLPGM(_DecimalT<9,7>);

   

int

 

main(void)

 

{

  

_DecimalT<9,7>

 

arg=__D("12.1234567");

   

//

  

Call

 

an

 

ILE

 

COBOL/400

 

program

 

and

 

pass

 

a

 

bcd

 

object

 

//

  

to

 

it.

    

CBLPGM(arg);

    

cout

 

<<"The

 

COBOL

 

program

 

was

 

called

 

and

 

passed

 

a

 

bcd

 

object"<<endl;

 

}

 

The

 

ILE

 

COBOL

 

program

 

is:

 

IDENTIFICATION

 

DIVISION.

 

PROGRAM-ID.

 

CBLPGM.

 

***********************************************************************

                                                                                                        

*

   

Packed

 

decimals:

   

This

 

is

 

going

 

to

 

be

 

called

 

by

 

a

 

C++

            

*

 

*

   

program

 

to

 

pass

 

packed

 

decimal

 

data.

                              

*

 

*

                                                                     

*

 

***********************************************************************

 

ENVIRONMENT

 

DIVISION.

 

CONFIGURATION

 

SECTION.

   

SOURCE-COMPUTER.

 

IBM-AS400.

 

OBJECT-COMPUTER.

 

IBM-AS400.

   

INPUT-OUTPUT

 

SECTION.

 

FILE-CONTROL.

   

DATA

 

DIVISION.

 

FILE

 

SECTION.

   

WORKING-STORAGE

 

SECTION.

 

77

  

PAC-DATA

                      

PIC

 

X(30)

                                   

VALUE

 

"PROGRAM

 

START".

 

77

  

PACK-IN-WS

                    

PIC

 

99.9999999.

   

LINKAGE

 

SECTION.

 

01

  

PACK-DATA

                     

PIC

 

9(2)V9(7)

 

PACKED-DECIMAL.

   

PROCEDURE

 

DIVISION

 

USING

 

PACK-DATA.

   

MAIN-LINE

 

SECTION.

   

MOVE

 

PACK-DATA

 

TO

 

PACK-IN-WS.

 

DISPLAY

 

"****

  

BCD

 

OBJECT

 

RECEIVED

 

IS:

 

"

 

PACK-IN-WS.

 

GOBACK.

 

Figure

 

314.

 

Example

 

of

 

Calling

 

an

 

ILE

 

COBOL

 

Program

 

from

 

an

 

ILE

 

C++

 

Program

 

and

 

Passing

 

a

 

_DecimalT

 

Class

 

Template

  

482

 

ILE

 

C/C++

 

Programmer’s

 

Guide



****

 

BCD

 

OBJECT

 

RECEIVED

 

IS:

 

12.1234567

 

The

 

COBOL

 

program

 

was

 

called

 

and

 

passed

 

a

 

bcd

 

object

 

Validating

 

_DecimalT

 

Class

 

Template

 

Constants

 

to

 

a

 

File

 

When

 

you

 

write

 

_DecimalT

 

template-class

 

constants

 

to

 

a

 

file,

 

scan

 

them

 

back

 

into

 

a

 

_DecimalT

 

template-class,

 

and

 

then

 

pass

 

the

 

_DecimalT

 

template-class

 

array

 

to

 

a

 

function

 

with

 

printf().

 

If

 

the

 

file

 

cannot

 

be

 

opened,

 

or

 

if

 

the

 

contents

 

of

 

the

 

array

 

are

 

not

 

valid,

 

an

 

error

 

message

 

is

 

generated.

 

The

 

following

 

figure

 

provides

 

an

 

example.

     

Chapter

 

27.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C++

 

Program

 

483



//

 

This

 

program

 

shows

 

how

 

to

 

write

 

_DecimalT

 

class

 

template

 

//

 

constants

 

to

 

a

 

file

 

//

 

and

 

scan

 

them

 

back

 

again.

 

Shows

 

how

 

to

 

pass

 

a

 

_DecimalT

 

//

 

class

 

template

 

array

 

to

 

a

 

function.

   

#include

 

<bcd.h>

 

#include

 

<iostream.h>

 

#include

 

<stdlib.h>

   

#define

 

N

    

3

          

//

 

Array

 

size

 

for

 

decimal

 

declaration.

   

FILE

 

*stream;

                        

//

 

File

 

pointer

 

declaration.

                                        

//

 

Declare

 

valid

 

array.

   

_DecimalT<4,2>

 

arr_1[]

 

=

 

{__D("12.35"),

 

__D("25.00"),

                                               

__D("-19.58")};

 

_DecimalT<4,2>

 

arr_2[N];

   

void

 

write_num(_DecimalT<4,2>

 

a[N]);

 

//Declare

 

function

 

to

                                       

//

 

write

 

to

 

a

 

file.

   

void

 

read_num(_DecimalT<4,2>

 

b[N]);

 

//Declare

 

function

 

to

                                        

//read

 

from

 

a

 

file.

   

int

 

main(void)

 

{

 

int

 

reposition=0;

                                     

//

 

Open

 

the

 

file.

 

Must

 

use

 

fopen()

                                             

//

 

to

 

access

 

a

 

physical

 

file.

 

if

 

((stream

 

=

 

fopen("*CURLIB/OUTFILE","w+"))

 

==

 

NULL)

 

{

    

cout

 

<<"Can

 

not

 

open

 

file";

    

exit(EXIT_FAILURE);

 

}

 

write_num(arr_1);

     

//

 

Call

 

function

 

to

 

write

 

values

 

of

 

the

                         

//

 

array

 

to

 

outfile

 

with

 

fprintf().

   

reposition=fseek(stream,

 

0L,

 

SEEK_SET);

   

if

 

(reposition!=0)

   

{

     

cout

 

<<"FSEEK

 

failed

 

to

 

position

 

file

 

pointer"

 

<<endl;

     

exit(EXIT_FAILURE);

     

}

 

read_num(arr_2);

      

//

 

Call

 

function

 

to

 

read

 

values

 

of

 

the

                          

//

 

array

 

from

 

file

 

using

 

fscanf().

   

fclose(stream);

       

//

 

Close

 

the

 

file.

 

}

 

Figure

 

315.

 

Example

 

of

 

Writing

 

_DecimalT

 

Class

 

Template

 

Constants

 

to

 

a

 

File

 

(Part

 

1

 

of

 

2)

  

484

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

output

 

is:

 

b[0]=12.35

 

b[1]=25.00

 

b[2]=-19.58

 

You

 

can

 

rewrite

 

this

 

program

 

to

 

use

 

the

 

ofstream

 

class,

 

as

 

shown

 

in

 

the

 

following

 

figure:

   

//

 

write_num

 

is

 

passed

 

a

 

the

 

array.

  

These

 

values

 

are

 

written

 

to

 

a

 

//

 

text

 

file

 

with

 

fprintf().

 

If

 

the

 

function

 

is

 

successful

 

a

 

0

 

is

 

//

 

returned,

 

otherwise

 

a

 

negative

 

value

 

is

 

returned

 

(indicating

 

an

 

//

 

error.

   

void

 

write_num(_DecimalT<4,2>

 

a[N])

   

{

      

int

 

i,

 

j;

      

for

 

(i=0;i

 

<

 

N;i++)

       

{

         

j

 

=

 

fprintf(stream,"%D(4,2)\n",a[i]);

         

if

 

(j

 

<

 

0)

         

cout

 

<<"Number

 

not

 

written

 

to

 

file"

 

<<[a]

 

<<endl;

       

}

 

}

 

//

 

read_num

 

is

 

passed

 

a

 

the

 

array.

  

The

 

values

 

are

 

//

 

read

 

from

 

a

 

text

 

file

 

with

 

fscanf().

 

//

 

If

 

the

 

function

 

is

 

successful

 

a

 

0

 

is

 

returned,

 

otherwise

 

a

 

//

 

negative

 

value

 

is

 

returned

 

(indicating

 

an

 

error).

   

void

 

read_num(_DecimalT<4,2>

 

b[N])

 

{

    

int

 

i,

 

j;

      

for

 

(i=0;i

 

<

 

sizeof(b)/sizeof(b[0]);i++)

      

{

        

j

 

=

 

fscanf(stream,"%D(4,2)\n",&b[i]);

        

if

 

(j

 

<

 

0)

        

cout

 

<<"Error

 

when

 

reading

 

from

 

file"

 

<<endl;

      

}

    

cout

 

<<"b[0]="

 

<<endl;

    

cout

 

<<"b[1]="

 

<<endl;

    

cout

 

<<"b[2]="

 

<<endl;

 

}

 

Figure

 

315.

 

Example

 

of

 

Writing

 

_DecimalT

 

Class

 

Template

 

Constants

 

to

 

a

 

File

 

(Part

 

2

 

of

 

2)

  

Chapter

 

27.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C++

 

Program

 

485



//

 

This

 

program

 

shows

 

how

 

to

 

write

 

_DecimalT

 

template

 

//

 

constants

 

to

 

a

 

file

 

//

 

and

 

scan

 

them

 

back

 

again.

 

Shows

 

how

 

to

 

pass

 

a

 

_DecimalT

 

//

 

class

 

template

 

array

 

to

 

a

 

function.

   

#include

 

<bcd.h>

 

#include

 

<iostream.h>

 

#include

 

<stdlib.h>

 

#include

 

<fstream.h>

   

#define

 

N

    

3

                       

//

 

Array

 

size

                                        

//

 

for

 

decimal

 

declaration.

                                        

//

 

Declare

 

valid

                                        

//

 

array.

   

_DecimalT<4,2>

 

arr_1[]

 

=

 

{__D("12.35"),

 

__D("25.00"),

                                               

__D("-19.58")};

 

_DecimalT<4,2>

 

arr_2[N];

   

void

 

write_num(_DecimalT<4,2>

 

a[N]);

 

//Declare

 

function

 

to

                                       

//

 

write

 

to

 

a

 

file.

   

void

 

read_num(_DecimalT<4,2>

 

b[N]);

 

//Declare

 

function

 

to

                                        

//read

 

from

 

a

 

file.

   

int

 

main

 

(

 

void

 

)

 

{

 

write_num(arr_1);

               

//

 

Call

 

function

 

to

 

write

                                     

//

 

values

 

of

 

the

                                     

//

 

array

 

to

 

outf

 

with

 

fprintf

                                     

//

 

library

 

function.

   

read_num(arr_2);

                    

//

 

Call

 

function

 

to

 

read

                                          

//

 

values

 

of

 

the

                                          

//

 

array

 

from

 

file

 

using

                                          

//

 

fscanf()

 

function.

 

}

   

Figure

 

316.

 

Example

 

of

 

Writing

 

_DecimalT

 

Class

 

Template

 

Constants

 

to

 

a

 

File

 

Using

 

the

 

ofstream

 

Class

 

(Part

 

1

 

of

 

2)

  

486

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

output

 

is:

 

b[0]=12.35

 

b[1]=25.00

 

b[2]=-19.58

   

//

 

write_num

 

is

 

passed

 

an

 

array.

  

These

 

values

 

are

 

//

 

written

 

to

 

a

 

text

 

file

 

with

 

the

 

fstream

 

class.

 

//

 

If

 

the

 

function

 

is

 

successful

 

a

 

0

 

is

 

returned,

 

otherwise

 

a

 

//

 

negative

 

value

 

is

 

returned

 

(indicating

 

an

 

error).

   

void

 

write_num(_DecimalT<4,2>

 

a[N])

 

{

   

int

 

i;

    

ofstream

 

outf("data",ios::trunc

 

||

 

ios::out,

                         

filebuf::openprot);

    

if

 

(!outf)

       

{

         

cerr

 

<<

 

"Could

 

not

 

open

 

file

 

’data’

 

"

 

<<endl;

         

exit

 

(EXIT_FAILURE);

       

}

    

for

 

(i=0;

 

i

 

(lt)

 

N;

 

i++)

 

{

      

{

         

outf

 

<<

 

a[i];

      

}

      

outf.close()

 

}

 

//

 

read_num

 

is

 

passed

 

an

 

array.

  

The

 

values

 

are

 

//

 

read

 

from

 

a

 

text

 

file

 

with

 

the

 

fstream

 

class.

 

//

 

If

 

the

 

function

 

is

 

successful

 

a

 

0

 

is

 

returned,

 

otherwise

 

a

 

//

 

negative

 

value

 

is

 

returned

 

(indicating

 

an

 

error).

   

void

 

read_num(_DecimalT<4,2>

 

b[N])

 

{

    

int

 

i;

    

ifstream

 

file("data");

      

if

 

(!file)

       

{

         

cerr

 

<<

 

"Could

 

not

 

open

 

file

 

’data’

 

"

 

<<endl;

         

exit

 

(EXIT_FAILURE);

       

}

 

for

 

(i=0;

 

i<N;

 

i++)

       

{

         

file

 

>>

 

b[i];

         

cout

 

<<

 

"b["<<

 

i

 

<<"]="

 

<<b[i];

 

<<endl;

       

}

    

if

 

(file.eof())

       

{

         

cerr

 

<<

 

"Unexpected

 

EOF!"

 

<<endl;

         

exit

 

(EXIT_FAILURE);

        

}

        

file.close();

 

}

   

Figure

 

316.

 

Example

 

of

 

Writing

 

_DecimalT

 

Class

 

Template

 

Constants

 

to

 

a

 

File

 

Using

 

the

 

ofstream

 

Class

 

(Part

 

2

 

of

 

2)

  

Chapter

 

27.

 

Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C++

 

Program

 

487



488

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

28.

 

Using

 

Templates

 

in

 

C++

 

Programs

    

Templates

 

may

 

be

 

used

 

in

 

C++

 

to

 

declare

 

and

 

define

 

a

 

related

 

set

 

of:

 

v

   

Classes

 

v

   

Functions

 

v

   

Static

 

data

 

members

 

of

 

template

 

classes

The

 

C++

 

language

 

describes

 

the

 

syntax

 

and

 

meaning

 

of

 

each

 

kind

 

of

 

template.

 

Each

 

compiler

 

determines

 

the

 

mechanism

 

that

 

controls

 

when

 

and

 

how

 

often

 

a

 

template

 

is

 

expanded.

 

See

 

the

 

Websphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference

 

for

 

more

 

information.

 

The

 

″Templates″

 

chapter

 

includes

 

descriptions

 

and

 

examples

 

of:

 

v

   

Template

 

parameters

 

v

   

Template

 

instantiations

 

and

 

specializations

 

(both

 

explicit

 

and

 

partial)

 

v

   

Static

 

data

 

members

 

and

 

templates

 

v

   

Class

 

templates

 

and

 

function

 

templates

 

v

   

Overloading

 

function

 

templates

 

v

   

Nested

 

templates

This

 

section

 

includes:

 

v

   

“Managing

 

Template

 

Instantiations”

 

v

   

“Template

 

Instantiation

 

Management

 

Options”

 

on

 

page

 

490

 

v

   

“How

 

the

 

ILE

 

C++

 

Compiler

 

Handles

 

Template

 

Instantiations”

 

on

 

page

 

491

 

v

   

“Example

 

of

 

a

 

Class

 

Template

 

Instantiation”

 

on

 

page

 

492

 

v

   

“Using

 

the

 

Default

 

Template

 

Instantiation

 

Management

 

Option”

 

on

 

page

 

494

 

v

   

“Using

 

the

 

ILE

 

Template

 

Registry

 

Option”

 

on

 

page

 

495

 

v

   

“Using

 

the

 

ILE

 

TEMPINC

 

Option”

 

on

 

page

 

496

Managing

 

Template

 

Instantiations

 

You

 

can

 

have

 

only

 

one

 

explicit

 

specialization

 

of

 

any

 

external

 

linkage

 

template

 

instance.

 

ILE

 

provides

 

several

 

methods

 

for

 

you

 

to

 

handle

 

potential

 

multiple

 

instantiations

 

of

 

templates:

 

v

   

Use

 

the

 

default

 

instantiation

 

option.

 

See

 

“Using

 

the

 

Default

 

Template

 

Instantiation

 

Management

 

Option”

 

on

 

page

 

494

 

and

 

“Manually

 

Structuring

 

Code

 

for

 

Single

 

Instantiations”

 

on

 

page

 

494.

 

v

   

Manage

 

a

 

repository

 

of

 

all

 

instantiations

 

in

 

a

 

template

 

registry.

 

See

 

“Using

 

the

 

ILE

 

Template

 

Registry

 

Option”

 

on

 

page

 

495.

 

v

   

Use

 

the

 

ILE

 

automatic

 

Template

 

Include

 

facility

 

to

 

ensure

 

single

 

instantiations

 

of

 

templates.

 

See

 

“Using

 

the

 

ILE

 

TEMPINC

 

Option”

 

on

 

page

 

496.

 

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

489



Template

 

Instantiation

 

Management

 

Options

 

The

 

best

 

way

 

to

 

instantiate

 

templates

 

depends

 

on

 

the

 

programming

 

environment

 

and

 

the

 

capabilities

 

of

 

the

 

programmer.

 

Table

 

30

 

lists

 

the

 

template

 

instantiation

 

options

 

and

 

describes

 

advantages

 

and

 

disadvantages

 

of

 

each.

Note:

  

Any

 

attempt

 

to

 

use

 

both

 

the

 

TEMPLATE(*TEMPINC)

 

and

 

TMPLREG

 

options

 

of

 

the

 

Create

 

C++

 

Module

 

(CRTCPPMOD)

 

command

 

at

 

the

 

same

 

time

 

halts

 

compilation.

 

Table

 

30.

 

Template

 

Instantiation

 

Management

 

Options

 

CRTCPPMOD

 

Option

 

Advantages

 

Disadvantages

 

ILE

 

C++

 

Default:

 

TEMPLATE(*NONE)

 

TMPLREG(*NONE)

 

You

 

do

 

not

 

need

 

to

 

restructure

 

code

 

or

 

file

 

structure

 

In

 

a

 

network

 

environment,

 

you

 

avoid

 

potential

 

file

 

identification

 

problems

 

associated

 

with

 

the

 

ILE

 

C++

 

TEMPINC

 

option.

 

In

 

a

 

team

 

environment,

 

you

 

avoid

 

file

 

sharing

 

problems

 

associated

 

with

 

the

 

ILE

 

C++

 

TEMPINC

 

option.

 

In

 

a

 

mixed

 

IFS/Data

 

Management

 

environment,

 

you

 

avoid

 

file

 

system

 

dependency

 

problems

 

associated

 

with

 

the

 

ILE

 

C++

 

TEMPINC

 

option.

 

The

 

time

 

required

 

to

 

compile

 

and

 

link

 

an

 

entire

 

application

 

might

 

be

 

dramatically

 

increased

 

because:

 

v

   

The

 

compiler

 

has

 

to

 

instantiate

 

every

 

instance

 

it

 

sees.

 

v

   

Multiple

 

instantiations

 

could

 

be

 

encountered

 

across

 

the

 

application,

 

which

 

forces

 

the

 

linker

 

to

 

throw

 

away

 

all

 

but

 

one.

If

 

you

 

make

 

any

 

change

 

to

 

the

 

implementation

 

of

 

a

 

template,

 

you

 

must

 

recompile

 

every

 

unit

 

that

 

uses

 

the

 

template.

 

To

 

avoid

 

multiple

 

template

 

definitions,

 

you

 

must

 

manually

 

structure

 

the

 

code

 

so

 

that

 

a

 

single

 

definition

 

is

 

generated

 

for

 

each

 

template

 

class

 

function

 

or

 

static

 

data

 

member.

 

To

 

do

 

this:

 

v

   

You

 

must

 

understand

 

how

 

the

 

ILE

 

C++

 

compiler

 

reacts

 

to

 

templates.

 

v

   

You

 

must

 

be

 

aware

 

of

 

all

 

the

 

template

 

instantiations

 

that

 

are

 

required

 

by

 

the

 

program.

 

v

   

You

 

might

 

need

 

to

 

reorganize

 

source

 

files

 

and

 

create

 

new

 

compilation

 

units.

 

ILE

 

C++

 

Template

 

Registry:

 

CRTCPPMOD

 

TEMPLATE(*NONE)

 

TMPLREG(*DFT)

 

or

 

CRTCPPMOD

 

TEMPLATE(*NONE)

 

TMPLREG(’path-name’)

 

One

 

template

 

instantiation

 

per

 

application

 

is

 

guaranteed.

 

You

 

do

 

not

 

need

 

to

 

structure

 

programs

 

for

 

automatic

 

instantiation.

 

Minimal

 

manual

 

intervention

 

is

 

required.

 

You

 

might

 

need

 

to

 

manually

 

recompile

 

dependent

 

files

 

whenever

 

a

 

template

 

insantiation

 

is

 

removed.

   

490

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Table

 

30.

 

Template

 

Instantiation

 

Management

 

Options

 

(continued)

 

CRTCPPMOD

 

Option

 

Advantages

 

Disadvantages

 

ILE

 

C++

 

TEMPINC

 

option:

 

CRTCPPMOD

 

TEMPLATE(*TEMPINC)

 

TMPLREG(*NONE)

 

or

 

CRTCPPMOD

 

TEMPLATE(’path-name’)

 

TMPLREG(*NONE)

 

One

 

template

 

instantiation

 

per

 

application

 

is

 

guaranteed.

 

You

 

avoid

 

the

 

longer

 

compilation

 

times

 

that

 

result

 

from

 

using

 

the

 

default.

 

You

 

do

 

not

 

have

 

to

 

recompile

 

all

 

units

 

that

 

use

 

a

 

template

 

whenever

 

that

 

template

 

implementation

 

is

 

changed.

 

You

 

need

 

to

 

split

 

into

 

separate

 

files

 

implementation

 

of

 

the

 

following:

 

v

   

function

 

templates

 

v

   

member

 

functions

 

v

   

static

 

data

 

members

 

of

 

class

 

templates

This

 

option

 

might

 

not

 

be

 

practical

 

in

 

a

 

team

 

programming

 

environment

 

because:

 

v

   

The

 

compiler

 

might

 

update

 

source

 

files

 

while

 

they

 

are

 

being

 

modified

 

by

 

somebody

 

else.

 

v

   

Source

 

file

 

modifications

 

might

 

not

 

be

 

file-system-independent.

 

For

 

example,

 

header

 

files

 

that

 

are

 

locally

 

available

 

might

 

be

 

included

 

rather

 

than

 

header

 

files

 

that

 

are

 

available

 

on

 

a

 

network.

   

How

 

the

 

ILE

 

C++

 

Compiler

 

Handles

 

Template

 

Instantiations

 

When

 

you

 

use

 

templates

 

in

 

your

 

program,

 

the

 

ILE

 

C++

 

compiler

 

automatically

 

instantiates

 

each

 

C++

 

template

 

that

 

meets

 

all

 

the

 

following

 

conditions:

 

v

   

Referenced

 

in

 

the

 

source

 

code

 

v

   

the

 

definition

 

is

 

visible

 

at

 

the

 

point

 

at

 

which

 

the

 

reference

 

occurs

 

v

   

Not

 

explicitly

 

specialized

 

by

 

the

 

programmer

Generation

 

of

 

Static

 

Member

 

Definitions

 

In

 

compliance

 

with

 

the

 

ISO

 

standard,

 

static

 

members

 

of

 

a

 

template

 

class

 

are

 

weakly

 

defined

 

by

 

default.

 

This

 

means

 

that

 

if

 

a

 

weak

 

static

 

member

 

is

 

defined

 

more

 

than

 

once

 

in

 

a

 

program,

 

that

 

static

 

member

 

is

 

initialized

 

only

 

once.

 

Some

 

programs

 

require

 

strong

 

static

 

data

 

members

 

when

 

they

 

are

 

linked

 

to

 

other

 

modules.

 

To

 

override

 

the

 

default

 

at

 

compilation

 

time,

 

add

 

the

 

WEAKTMPL(*NO)

 

parameter

 

to

 

the

 

CRTCPPMOD

 

command.

 

Note:

  

For

 

detailed

 

information

 

about

 

the

 

WEAKTMPL

 

option,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference.

 

Internal

 

Linkage

 

If

 

a

 

program

 

consists

 

of

 

several

 

units

 

that

 

are

 

compiled

 

separately,

 

a

 

given

 

template

 

may

 

be

 

expanded

 

in

 

two

 

or

 

more

 

of

 

the

 

compilation

 

units.

 

For

 

templates

 

that

 

define

 

classes,

 

inline

 

functions,

 

or

 

static

 

non-member

 

functions,

 

this

 

is

 

the

 

desired

 

behavior.

 

These

 

templates

 

need

 

to

 

be

 

defined

 

in

 

each

 

compilation

 

unit

 

in

 

which

 

they

 

are

 

used.

 

External

 

Linkage

 

For

 

other

 

functions

 

and

 

for

 

static

 

data

 

members

 

that

 

have

 

external

 

linkage,

 

defining

 

them

 

in

 

more

 

than

 

one

 

compilation

 

unit

 

would

 

normally

 

cause

 

an

 

error

 

when

 

the

 

program

 

is

 

bound.

 

ILE

 

C++

 

avoids

 

this

 

problem

 

by

 

giving

 

special

 

treatment

 

to

 

template-generated

 

versions

 

of

 

these

 

objects.

 

At

 

bind

 

time,

 

ILE

 

C++

   

Chapter

 

28.

 

Using

 

Templates

 

in

 

C++

 

Programs

 

491



gathers

 

all

 

template-generated

 

functions

 

and

 

static-member

 

definitions,

 

plus

 

any

 

explicit

 

specializations,

 

and

 

resolves

 

all

 

references

 

to

 

them:

 

v

   

If

 

an

 

explicit

 

specialization

 

of

 

the

 

function

 

or

 

static

 

member

 

exists,

 

it

 

is

 

used

 

for

 

all

 

references.

 

All

 

template-generated

 

definitions

 

of

 

that

 

function

 

or

 

static

 

member

 

are

 

discarded.

 

v

   

If

 

no

 

explicit

 

specialization

 

exists,

 

one

 

of

 

the

 

template-generated

 

definitions

 

is

 

used

 

for

 

all

 

references.

 

Any

 

other

 

template-generated

 

definitions

 

of

 

that

 

function

 

or

 

static

 

member

 

are

 

discarded.

Note:

  

Multiple

 

template-generated

 

definitions

 

of

 

functions

 

or

 

static

 

members

 

result

 

in

 

larger

 

modules

 

and

 

longer

 

compile

 

times.

 

The

 

duplicated

 

code

 

for

 

the

 

templates

 

is

 

eliminated

 

during

 

binding,

 

so

 

that

 

executable

 

programs

 

are

 

not

 

larger.

 

Example

 

of

 

a

 

Class

 

Template

 

Instantiation

 

In

 

the

 

following

 

example,

 

the

 

class

 

template

 

Stack

 

implements

 

a

 

stack

 

of

 

items.

 

The

 

overloaded

 

operators

 

<<

 

and

 

>>

 

are

 

used

 

to

 

push

 

items

 

onto

 

the

 

stack

 

and

 

pop

 

items

 

from

 

the

 

stack.

    

Declarations

 

and

 

Definitions

 

In

 

Figure

 

317,

 

the

 

declaration

 

of

 

the

 

Stack

 

class

 

template

 

is

 

contained

 

in

 

the

 

file

 

stack.h

 

and

 

the

 

function

 

definitions

 

are

 

contained

 

in

 

the

 

file

 

stack.c.

 

v

   

Whenever

 

you

 

use

 

either

 

the

 

default

 

instantiation

 

management

 

option

 

or

 

the

 

Template

 

Registry

 

option,

 

with

 

the

 

Stack

 

template,

 

include

 

both

 

stack.h

 

and

 

stack.c

 

in

 

all

 

compilation

 

units

 

that

 

use

 

an

 

instance

 

of

 

the

 

Stack

 

class.

 

v

   

Whenever

 

you

 

use

 

the

 

TEMPINC

 

option,

 

include

 

only

 

thestack.h

 

file

 

in

 

all

 

compilation

 

units

 

that

 

use

 

an

 

instance

 

of

 

the

 

Stack

 

class.

 

The

 

stack.c

 

file

 

that

 

contains

 

the

 

function

 

template

 

definitions

 

is

 

automatically

 

included

 

in

 

the

 

tempinc

 

file

 

for

 

stack.c.

 

All

 

other

 

compilation

 

units

 

that

 

use

 

an

 

instance

 

of

 

the

 

Stack

 

class

 

contain

 

a

 

reference

 

to

 

the

 

definitions.

 

v

   

You

 

can

 

structure

 

your

 

code

 

to

 

work

 

either

 

with

 

or

 

without

 

the

 

TEMPINC

 

option

 

by

 

conditionally

 

including

 

the

 

implementation

 

file

 

in

 

the

 

template

 

header

 

file

 

using

 

the

 

macro

 

defined

 

by

 

the

 

compiler

 

when

 

the

 

tempinc

 

option

 

is

 

in

 

effect,

 

as

 

shown

 

in

 

the

 

following

 

figure.

   

template

 

<class

 

Item,

 

int

 

size>

 

class

 

Stack

 

{

   

public:

       

int

 

operator

 

<<

 

(Item

 

item);

  

//

 

push

 

operator

       

int

 

operator

 

>>

 

(Item&

 

item);

 

//

 

pop

 

operator

       

Stack()

 

{

 

top

 

=

 

0;

 

}

          

//

 

constructor

 

defined

 

inline

    

private:

       

Item

 

stack[size];

             

//

 

stack

 

of

 

items

       

int

   

top;

                    

//

 

index

 

to

 

top

 

of

 

stack

 

};

 

Figure

 

317.

 

Example

 

of

 

Class

 

Template

 

Instantiation

#ifndef

 

__TEMPINC__

 

#include

 

"stack.c"

 

#endif

 

Figure

 

318.

 

Example

 

of

 

C++

 

Code

 

that

 

Works

 

with

 

or

 

without

 

the

 

TEMPINC

 

Option

  

492

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Linkage

 

As

 

shown

 

in

 

the

 

following

 

figure,

 

the

 

constructor

 

function

 

of

 

the

 

template

 

is

 

defined

 

inline.

 

Assume

 

that

 

the

 

other

 

functions

 

are

 

defined

 

using

 

separate

 

function

 

templates

 

in

 

the

 

file

 

stack.c:

  

Notes:

  

1.

   

The

 

constructor

 

has

 

internal

 

linkage

 

because

 

it

 

is

 

defined

 

inline

 

in

 

the

 

class

 

template

 

declaration.

 

This

 

means

 

that

 

the

 

compiler

 

generates

 

the

 

constructor

 

function

 

body

 

in

 

each

 

compilation

 

unit

 

that

 

uses

 

an

 

instance

 

of

 

the

 

Stack

 

class.

 

In

 

other

 

words,

 

each

 

unit

 

has

 

and

 

uses

 

its

 

own

 

copy

 

of

 

the

 

constructor.

 

2.

   

For

 

the

 

instance

 

of

 

the

 

Stack

 

class

 

in

 

the

 

compilation

 

unit,

 

the

 

compiler

 

generates

 

definitions

 

for

 

the

 

following

 

functions:

 

Stack<item,size>::operator<<(item)

 

Stack<item,size>::operator>>(item&)

 

because

 

there

 

is

 

explicit

 

specialization.

If

 

the

 

class

 

template

 

is

 

instantiated

 

in

 

the

 

source

 

file

 

usrstack.cpp,

 

that

 

C++

 

program

 

contains

 

code

 

similar

 

to

 

that

 

shown

 

in

 

the

 

following

 

figure:

   

template

 

<class

 

Item,

 

int

 

size>

    

int

 

Stack<Item,size>::operator

 

<<

 

(Item

 

item)

 

{

      

if

 

(top

 

>=

 

size)

 

return

 

0;

       

stack[top++]

 

=

 

item;

       

return

 

1;

    

}

 

template

 

<class

 

Item,

 

int

 

size>

     

int

 

Stack<Item,size>::operator

 

>>

 

(Item&

 

item)

    

{

       

if

 

(top

 

<=

 

0)

 

return

 

0;

        

item

 

=

 

stack[--top];

        

return

 

1;

    

}

 

Figure

 

319.

 

Example

 

of

 

a

 

Constructor

 

Function

 

that

 

Is

 

Defined

 

Inline

#include

 

"stack.h"

 

#include

 

"stack.c"

 

void

 

Swap(int

 

i&,

 

Stack<int,20>&

 

s)

 

{

    

int

 

j;

    

s

 

>>

 

j;

    

s

 

<<

 

i;

    

i

 

=

 

j;

 

}

 

Note:

  

The

 

compiler

 

generates

 

the

 

functions

 

Stack<int,20>::operator<<(int)

 

and

 

Stack<int,20>::operator>>(int&)

 

because

 

both

 

those

 

functions

 

are

 

used

 

in

 

the

 

program,

 

their

 

defining

 

templates

 

are

 

visible,

 

and

 

no

 

explicit

 

specializations

 

are

 

seen.

Figure

 

320.

 

Example

 

of

 

a

 

Constructor

 

Function

 

that

 

Is

 

Defined

 

Externally

  

Chapter

 

28.

 

Using

 

Templates

 

in

 

C++

 

Programs

 

493



Using

 

the

 

Default

 

Template

 

Instantiation

 

Management

 

Option

 

Whenever

 

you

 

use

 

the

 

default

 

template

 

instantiation

 

management

 

option,

 

include

 

both

 

the

 

template

 

declaration

 

header

 

(.h

 

file)

 

and

 

the

 

out

 

of

 

line

 

template

 

definitions

 

(.c

 

files)

 

in

 

all

 

compilation

 

units

 

that

 

use

 

an

 

instance

 

of

 

the

 

template

 

class.

 

The

 

compiler

 

generates

 

definitions

 

for

 

each

 

function

 

template.For

 

an

 

example,

 

see

 

“Example

 

of

 

a

 

Class

 

Template

 

Instantiation”

 

on

 

page

 

492.

 

Manually

 

Structuring

 

Code

 

for

 

Single

 

Instantiations

 

If

 

you

 

do

 

not

 

want

 

to

 

use

 

either

 

of

 

the

 

ILE

 

C++

 

automatic

 

instantiation

 

methods

 

of

 

generating

 

template

 

definitions,

 

you

 

can

 

structure

 

your

 

program

 

in

 

such

 

a

 

way

 

that

 

you

 

define

 

templates

 

directly

 

in

 

your

 

compilation

 

units.

 

The

 

advantage

 

of

 

this

 

approach

 

is

 

that

 

modules

 

are

 

smaller

 

and

 

compile

 

times

 

are

 

shorter

 

than

 

they

 

are

 

when

 

you

 

include

 

template

 

definitions

 

everywhere.

 

When

 

you

 

structure

 

your

 

code

 

manually

 

for

 

template

 

instantiation,

 

you

 

avoid

 

the

 

potential

 

problems

 

that

 

are

 

associated

 

with

 

automatic

 

instantiation.

 

See

 

Table

 

30

 

on

 

page

 

490

 

for

 

a

 

list

 

of

 

potential

 

problems.

 

Use

 

either

 

or

 

both

 

of

 

the

 

following

 

methods

 

to

 

structure

 

code

 

for

 

single

 

instantiations:

 

v

   

Use

 

explicit

 

instantiations

 

to

 

force

 

the

 

compiler

 

to

 

generate

 

the

 

necessary

 

definitions

 

for

 

all

 

template

 

classes

 

used

 

in

 

other

 

compilation

 

units.

 

See

 

“Explicit

 

Instantiations.”

 

v

   

Use

 

explicit

 

specializations

 

of

 

non-member

 

function

 

templates

 

to

 

force

 

the

 

compiler

 

to

 

generate

 

them.

 

See

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference.

 

In

 

the

 

index,

 

look

 

up

 

″templates″,

 

″explicit

 

specializations″.

Note:

  

When

 

you

 

use

 

these

 

methods,

 

you

 

must

 

specify

 

the

 

TEMPLATE(*NONE)

 

compiler

 

option

 

to

 

suppress

 

automatic

 

creation

 

of

 

IFS

 

tempinc

 

directories

 

(or

 

Data

 

Management

 

TEMPINC

 

files).

 

For

 

more

 

information

 

about

 

ILE

 

C/C++

 

compiler

 

options,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference.

 

Explicit

 

Instantiations

 

An

 

explicit

 

instantiation

 

of

 

a

 

class

 

forces

 

the

 

definition

 

a

 

class

 

specialization

 

without

 

creating

 

any

 

object

 

of

 

the

 

class.

 

It

 

implies

 

the

 

instantiation

 

of

 

all

 

members

 

of

 

the

 

class

 

that

 

have

 

not

 

already

 

been

 

explicitly

 

specialized.

 

If

 

you

 

do

 

not

 

require

 

all

 

class

 

members

 

in

 

your

 

program,

 

you

 

can

 

explicitly

 

instantiate

 

only

 

those

 

indidvidual

 

members

 

that

 

the

 

program

 

requires.

 

For

 

more

 

information

 

about

 

explicit

 

instantiations,

 

see

 

the

 

Websphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference.

 

In

 

the

 

index,

 

look

 

up

 

″templates″,

 

and

 

then

 

the

 

subheading

 

″instantiations″,

 

″explicit″.

 

In

 

Figure

 

321

 

on

 

page

 

495:

 

v

   

The

 

header

 

file

 

stack.h

 

is

 

included

 

in

 

all

 

compilation

 

units

 

that

 

use

 

an

 

instance

 

of

 

the

 

Stack

 

class.

 

v

   

The

 

template

 

implementation

 

file

 

stack.c

 

is

 

used

 

in

 

only

 

one

 

of

 

the

 

files.

 

v

   

Only

 

two

 

instantiations

 

of

 

the

 

class

 

Stack

 

are

 

used

 

in

 

the

 

program.

 

These

 

have

 

the

 

template

 

arguments

 

<

 

int,

 

20

 

>

 

and

 

<

 

myClass,

 

100

 

>

  

494

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Note:

  

If

 

you

 

know

 

all

 

instances

 

of

 

the

 

Stack

 

class

 

that

 

are

 

used

 

in

 

your

 

program,

 

you

 

can

 

define

 

all

 

of

 

the

 

instances

 

in

 

a

 

single

 

compilation

 

unit.

   

Using

 

the

 

ILE

 

Template

 

Registry

 

Option

 

The

 

ILE

 

Template

 

Registry

 

is

 

available

 

in

 

Version

 

5,

 

Release

 

3,

 

or

 

later.

Note:

  

The

 

ILE

 

compiler

 

handles

 

recompilation

 

options

 

differently

 

than

 

the

 

AIX

 

compiler.

 

The

 

ILE

 

C/C++

 

compiler

 

generates

 

a

 

warning

 

when

 

it

 

is

 

necessary

 

to

 

recompile.

 

Users

 

must

 

have

 

read/write

 

access

 

to

 

the

 

directory

 

where

 

the

 

template

 

registry

 

file

 

is

 

to

 

be

 

generated.

 

Any

 

attempt

 

to

 

access

 

or

 

create

 

a

 

template

 

registry

 

in

 

a

 

directory

 

where

 

the

 

user

 

does

 

not

 

have

 

read/write

 

access

 

will

 

result

 

in

 

a

 

severe

 

error

 

and

 

will

 

halt

 

compilation.

 

Note:

  

If

 

there

 

are

 

no

 

templates

 

in

 

the

 

source

 

file,

 

no

 

error

 

will

 

be

 

generated

 

during

 

compilation.

 

How

 

the

 

ILE

 

Template

 

Registry

 

Option

 

Works

 

The

 

template

 

registry:

 

v

   

Maintains

 

a

 

repository

 

of

 

all

 

template

 

instantiations

 

in

 

a

 

program

 

or

 

service

 

program

 

v

   

Tracks

 

all

 

references

 

to

 

template

 

instantiations

 

v

   

Ensures

 

that

 

only

 

one

 

definition

 

is

 

provided

 

to

 

the

 

linker

The

 

template

 

registry

 

designates

 

a

 

single

 

module

 

to

 

contain

 

the

 

definition

 

of

 

a

 

template

 

instantiation.

 

v

   

If

 

a

 

module

 

that

 

formerly

 

contained

 

a

 

template

 

instantiation

 

is

 

recompiled,

 

the

 

compiler

 

will

 

check

 

to

 

make

 

sure

 

that

 

instantiation

 

is

 

still

 

present.

 

v

   

If

 

there

 

is

 

a

 

dependency

 

on

 

the

 

template

 

instantiation

 

in

 

another

 

module

 

and

 

that

 

definition

 

has

 

been

 

removed,

 

the

 

compiler

 

issues

 

a

 

warning

 

that

 

dependent

 

modules

 

will

 

need

 

to

 

be

 

recompiled

 

to

 

regenerate

 

the

 

missing

 

instantiation.

 

If

 

the

 

dependent

 

modules

 

are

 

not

 

recompiled,

 

the

 

link

 

fails

 

with

 

errors

 

saying

 

that

 

there

 

are

 

missing

 

definitions.

During

 

initial

 

compilation,

 

any

 

template

 

definitions

 

or

 

instantiations

 

that

 

are

 

encountered

 

are

 

expanded

 

and

 

the

 

template

 

registry

 

is

 

updated

 

with

 

the

 

location

 

of

 

the

 

expansion

 

in

 

the

 

module.

 

If

 

a

 

template

 

instantiation

 

is

 

required

 

during

 

subsequent

 

compilations,

 

the

 

compiler

 

checks

 

the

 

template

 

registry

 

to

 

see

 

if

 

an

 

instance

 

already

 

exists

 

in

 

another

 

module.

 

If

 

so,

 

it

 

does

 

not

 

create

 

a

 

new

 

instantiation,

 

but

 

does

 

create

 

a

 

new

 

reference.

 

This

 

ensures

 

that

 

only

 

one

 

definition

 

is

 

provided

 

during

 

the

 

linking

 

phase.

 

#include

 

"stack.h"

 

#include

 

"stack.c"

 

#include

 

"myclass.h"

  

//

 

Definition

 

of

 

"myClass"

 

class

 

template

 

class

 

Stack<int,20>;

 

template

 

class

 

Stack<myClass,100>;

 

Figure

 

321.

 

Example

 

of

 

All

 

Instances

 

of

 

a

 

Class

 

Defined

 

in

 

a

 

Single

 

Compilation

 

Unit

  

Chapter

 

28.

 

Using

 

Templates

 

in

 

C++

 

Programs

 

495



Specifying

 

Values

 

for

 

the

 

TMPLREG

 

Parameter

 

The

 

value

 

of

 

the

 

TMPLREG

 

parameter

 

depends

 

on

 

whether

 

the

 

source

 

file

 

is

 

a

 

stream

 

file

 

or

 

a

 

data

 

member

 

file.

 

v

   

If

 

*DFT

 

is

 

specified,

 

and:

 

–

   

If

 

the

 

source

 

file

 

is

 

a

 

stream

 

file,

 

a

 

’templateregistry’

 

file

 

is

 

created

 

in

 

the

 

source

 

directory.

 

–

   

If

 

the

 

source

 

file

 

is

 

a

 

data

 

member

 

file,

 

a

 

file

 

QTMPLREG

 

with

 

the

 

member

 

QTMPLREG

 

is

 

created

 

in

 

the

 

library

 

where

 

the

 

source

 

resides.
v

   

If

 

a

 

path

 

name

 

is

 

specified,

 

and:

 

–

   

If

 

the

 

source

 

file

 

is

 

a

 

stream

 

file,

 

that

 

file

 

is

 

used

 

as

 

the

 

template

 

registry.

 

Note:

  

If

 

you

 

want

 

to

 

explicitly

 

use

 

a

 

data

 

management

 

file

 

as

 

your

 

template

 

registry,

 

you

 

have

 

to

 

use

 

the

 

″QSYS.LIB...″

 

naming

 

convention.

 

–

   

If

 

the

 

source

 

file

 

is

 

a

 

data

 

member

 

file,

 

a

 

file

 

with

 

the

 

same

 

name

 

as

 

the

 

source

 

file

 

is

 

created

 

in

 

the

 

library

 

where

 

the

 

source

 

resides.

Using

 

the

 

ILE

 

TEMPINC

 

Option

 

Use

 

the

 

ILE

 

TEMPINC

 

option

 

when

 

the

 

code

 

has

 

already

 

been

 

structured

 

for

 

it.

 

To

 

use

 

the

 

ILE

 

TEMPINC

 

option:

 

1.

   

List

 

your

 

templates

 

in

 

one

 

or

 

more

 

header

 

files

 

but

 

do

 

not

 

define

 

any

 

arguments

 

for

 

them.

 

2.

    

Include

 

only

 

the

 

header

 

files

 

in

 

your

 

source

 

code.

Note:

  

For

 

each

 

header

 

file,

 

you

 

can

 

use

 

the

 

#pragma

 

implementation

 

directive

 

instead

 

of

 

a

 

template

 

implementation

 

file

 

to

 

define

 

templates.

 

3.

   

When

 

you

 

bind

 

your

 

modules,

 

use

 

the

 

same

 

compiler

 

options

 

that

 

you

 

used

 

to

 

compile

 

them.

 

For

 

example:

 

CRTPGM

 

PGM

 

(MYLIB/MYPROG)

 

MODULE(MYLIB/MYFILE)

 

This

 

is

 

especially

 

important

 

for

 

options

 

that

 

control

 

libraries,

 

linkage,

 

and

 

code

 

compatibility.

How

 

the

 

ILE

 

TEMPINC

 

Option

 

Works

 

For

 

each

 

header

 

file

 

with

 

function

 

templates

 

that

 

need

 

to

 

be

 

defined,

 

the

 

compiler

 

generates

 

an

 

IFS

 

TEMPINC

 

directory

 

(or

 

a

 

Data

 

Management

 

tempinc

 

file).

 

The

 

IFS

 

TEMPINC

 

directory

 

(or

 

a

 

Data

 

Management

 

tempinc

 

file)

 

generates

 

#include

 

statements

 

for

 

any

 

function

 

templates,

 

class

 

template

 

member

 

functions,

 

or

 

class

 

template

 

static

 

data

 

members

 

that

 

need

 

to

 

be

 

defined.

 

These

 

functions

 

and

 

members

 

are

 

found

 

in:

 

v

   

The

 

header

 

file

 

with

 

the

 

template

 

declaration

 

v

   

The

 

corresponding

 

IFS

 

TEMPINC

 

directory

 

(or

 

a

 

Data

 

Management

 

tempinc

 

file)

 

v

   

Any

 

other

 

header

 

files

 

that

 

declare

 

types

 

used

 

in

 

template

 

parameters

Before

 

it

 

invokes

 

the

 

binder,

 

the

 

compiler

 

compiles

 

the

 

tempinc

 

files

 

and

 

generates

 

the

 

necessary

 

template

 

definitions.

 

Only

 

one

 

definition

 

is

 

generated

 

for

 

each

 

template.

   

496

 

ILE

 

C/C++

 

Programmer’s

 

Guide



The

 

TEMPLATE

 

parameter

 

defaults

 

to

 

*NONE.

 

The

 

other

 

options

 

are

 

*SRCDIR

 

or

 

path-name,

 

where

 

path-name

 

is

 

an

 

IFS

 

directory

 

or

 

Data

 

Management

 

file.

 

The

 

compiler

 

creates

 

the

 

specified

 

IFS

 

TEMPINC

 

directory

 

(or

 

Data

 

Management

 

tempinc

 

file)

 

if

 

it

 

does

 

not

 

already

 

exist.

 

Note:

  

The

 

applicable

 

xlc

 

qshell

 

command

 

option

 

is

 

-qtempinc=dir,

 

where

 

dir

 

is

 

a

 

directory

 

name.

 

You

 

can

 

specify

 

either

 

a

 

fully

 

qualified

 

path

 

name

 

or

 

a

 

path

 

name

 

relative

 

to

 

the

 

current

 

directory.

 

Structuring

 

a

 

Program

 

for

 

TEMPINC-Managed

 

Instantiations

 

When

 

you

 

use

 

the

 

TEMPINC

 

instantiation

 

management

 

option,

 

follow

 

these

 

guidelines

 

as

 

you

 

structure

 

a

 

program:

 

v

   

If

 

you

 

have

 

other

 

declarations

 

that

 

are

 

used

 

inside

 

templates

 

but

 

are

 

not

 

template

 

parameters,

 

you

 

must

 

place

 

or

 

#include

 

them

 

in

 

either

 

one

 

of

 

the

 

included

 

header

 

files

 

or

 

in

 

the

 

tempinc

 

file.

 

v

   

Define

 

any

 

classes

 

that

 

are:

 

–

   

Used

 

in

 

template

 

arguments

 

–

   

Required

 

to

 

generate

 

the

 

function

 

template

 

in

 

the

 

header

 

file

Note:

  

If

 

definitions

 

require

 

other

 

header

 

files,

 

include

 

them

 

with

 

the

 

#include

 

directive.

 

The

 

definitions

 

are

 

then

 

available

 

when

 

the

 

unit

 

is

 

compiled.

 

v

   

The

 

function

 

definitions

 

in

 

your

 

template-implementation

 

file

 

can

 

be

 

explicit

 

specializations,

 

template

 

definitions,

 

or

 

both.

 

Any

 

explicit

 

specializations

 

override

 

the

 

definitions

 

generated

 

by

 

the

 

template.

 

v

   

If

 

you

 

specify

 

a

 

different

 

directory

 

for

 

your

 

tempinc

 

files,

 

ensure

 

that

 

you

 

specify

 

it

 

consistently

 

for

 

all

 

compilations

 

of

 

your

 

program,

 

including

 

the

 

bind

 

step.

 

For

 

example:

 

CRTPGM

 

PGM

 

(MYLIB/MYPROG)

 

MODULE(MYLIB/MYFILE)

 

v

   

If

 

you

 

remove

 

function

 

instantiations

 

or

 

reorganize

 

your

 

program

 

so

 

that

 

the

 

tempinc

 

files

 

become

 

obsolete,

 

delete

 

one

 

or

 

more

 

of

 

these

 

files

 

and

 

recompile

 

your

 

program.

 

If

 

error

 

messages

 

are

 

generated

 

for

 

a

 

file

 

in

 

the

 

IFS

 

TEMPINC

 

directory,

 

you

 

delete

 

the

 

file

 

and

 

recompile.

 

To

 

regenerate

 

all

 

of

 

the

 

tempinc

 

files,

 

delete

 

the

 

TEMPINC

 

directory,

 

the

 

modules,

 

and

 

recompile

 

your

 

program.

 

Notes:

  

1.

   

After

 

the

 

compiler

 

creates

 

an

 

IFS

 

TEMPINC

 

directory

 

or

 

file,

 

it

 

updates

 

the

 

file

 

as

 

each

 

unit

 

is

 

compiled.

 

The

 

compiler

 

never

 

removes

 

information

 

from

 

an

 

individual

 

file.

 

2.

   

If

 

you

 

do

 

not

 

delete

 

the

 

modules,

 

MAKEFILE

 

rules

 

prevent

 

the

 

modules

 

from

 

being

 

recompiled,

 

and

 

the

 

IFS

 

TEMPINC

 

files

 

cannot

 

be

 

updated

 

with

 

all

 

the

 

lines

 

needed

 

for

 

all

 

the

 

compilation

 

units

 

used

 

in

 

the

 

program.

 

The

 

bind

 

fails.
v

   

Do

 

not

 

put

 

the

 

definitions

 

of

 

any

 

classes

 

used

 

in

 

template

 

arguments

 

in

 

your

 

source

 

code.

Note:

  

This

 

example

 

shows

 

what

 

not

 

to

 

do:

   

Chapter

 

28.

 

Using

 

Templates

 

in

 

C++

 

Programs

 

497



One

 

solution

 

is

 

to

 

move

 

the

 

statement

 

#include

 

"foo.h"

 

into

 

the

 

file

 

foo.c.

The

 

Template-Implementation

 

File

 

In

 

the

 

Stack

 

source,

 

the

 

file

 

stack.c

 

is

 

a

 

template-implementation

 

file.

 

To

 

create

 

a

 

program

 

using

 

the

 

Stack

 

class

 

template,

 

both

 

stack.h

 

and

 

stack.c

 

must

 

reside

 

in

 

the

 

same

 

directory.

 

You

 

include

 

stack.h

 

in

 

any

 

source

 

files

 

that

 

use

 

an

 

instance

 

of

 

the

 

class.

 

The

 

stack.c

 

file

 

does

 

not

 

need

 

to

 

be

 

included

 

in

 

any

 

source

 

files.

 

For

 

example:

  

Renaming

 

or

 

Relocating

 

the

 

Template-Implementation

 

file:

   

Use

 

the

 

#pragma

 

implementation

 

directive

 

to

 

change

 

the

 

name

 

of

 

the

 

template-implementation

 

file

 

or

 

place

 

it

 

in

 

a

 

different

 

directory

 

.

 

The

 

syntax

 

is:

 

foo.h

   

template<class

 

T>

 

void

 

foo(T*);

 

hoo.h

   

void

 

hoo(A*);

 

foo.c

   

template<class

 

T>

 

void

 

foo(T*

 

t)

      

{t

 

->

 

goo();

 

hoo(t);}

 

other.h

   

class

 

A

 

{public:

 

void

 

goo()

 

{}

 

};

   

main.cpp

   

#include

 

"foo.h"

   

#include

 

"other.h"

   

#include

 

"hoo.h"

   

int

 

main()

 

{

 

A

 

a;

  

foo(&a);

 

}

 

This

 

requires

 

the

 

expansion

 

of

 

the

 

foo(T*)

 

template

 

with

 

class

 

A

 

as

 

the

 

template

 

type

 

parameter.

 

The

 

compiler

 

creates

 

an

 

IFS

 

tempinc

 

file

 

TEMPINC\foo.cpp.

 

The

 

file

 

contents

 

(simplified

 

below)

 

are:

 

#include

 

"foo.h"

         

//the

 

template

 

declaration

 

header

 

#include

 

"other.h"

       

//file

 

defining

 

template

 

type

 

parameter

 

#include

 

"foo.c"

         

//corresponding

 

template

 

implementation

   

void

 

foo(A*);

            

//triggers

 

template

 

instantiation

 

Note:

  

This

 

example

 

cannot

 

be

 

properly

 

compiled

 

because

 

the

 

header

 

file

 

hoo.h

 

did

 

not

 

satisfy

 

the

 

conditions

 

for

 

inclusion

 

but

 

the

 

header

 

file

 

is

 

required

 

to

 

compile

 

the

 

body

 

of

 

foo(A*).

 

Figure

 

322.

 

Example

 

of

 

Class

 

Definitions

 

Used

 

in

 

Template

 

Arguments

 

Also

 

Contained

 

in

 

Source

 

Code

 

(Does

 

Not

 

Compile

 

Properly)

#include

 

"stack.h"

 

void

 

Swap(int

 

i&,

 

Stack<int,20>&

 

s)

 

{

    

int

 

j;

    

s

 

>>

 

j;

    

s

 

<<

 

i;

    

i

 

=

 

j;

 

}

 

The

 

compiler

 

automatically

 

generates

 

the

 

functions

 

Stack<int,20>::operator<<(int)

 

and

 

Stack<int,20>::operator>>(int&).
Figure

 

323.

 

Example

 

of

 

Template-Implementation

 

File

  

498

 

ILE

 

C/C++

 

Programmer’s

 

Guide



��

 

#pragma

 

implementation

 

″path″

 

��

 

Notes:

  

1.

   

The

 

path

 

is

 

used

 

to

 

specify

 

the

 

path

 

name

 

for

 

the

 

template-implementation

 

file.

 

If

 

it

 

is

 

only

 

a

 

partial

 

path

 

name,

 

it

 

must

 

be

 

relative

 

to

 

the

 

directory

 

containing

 

the

 

header

 

file.

 

2.

   

This

 

path

 

is

 

a

 

quoted

 

string

 

following

 

the

 

normal

 

conventions

 

for

 

writing

 

string

 

literals.

 

Backslashes

 

must

 

be

 

doubled.

Changing

 

the

 

Template-Implementation

 

file:

   

To

 

use

 

the

 

file

 

stack.def

 

as

 

the

 

template-implementation

 

file

 

instead

 

of

 

stack.c,

 

add

 

the

 

line:

 

#pragma

 

implementation("stack.def")

 

anywhere

 

in

 

the

 

stack.h

 

file,

 

in

 

the

 

Stack

 

class.

 

The

 

compiler

 

then

 

looks

 

for

 

the

 

template-implementation

 

file

 

stack.def

 

in

 

the

 

same

 

directory

 

as

 

stack.h.

 

Tempinc

 

Files

 

If

 

you

 

use

 

the

 

TEMPINC

 

template

 

instantiation

 

management

 

option,

 

the

 

tempinc

 

file

 

is

 

generated

 

by

 

the

 

compiler.

 

Note:

  

Do

 

not

 

edit

 

tempinc

 

files.

 

Figure

 

324

 

shows

 

a

 

typical

 

tempinc

 

file

 

generated

 

by

 

the

 

compiler.

  

Notes:

   

1.

   

This

 

pragma

 

ensures

 

that

 

the

 

compiler

 

looks

 

for

 

nested

 

include

 

files

 

in

 

the

 

directory

 

containing

 

the

 

original

 

source

 

file,

 

as

 

required

 

by

 

the

 

ILE

 

C++

 

file

 

inclusion

 

rules.

  

2.

   

The

 

header

 

file

 

that

 

corresponds

 

to

 

the

 

tempinc

 

file.

 

The

 

number

 

in

 

comments

 

at

 

the

 

start

 

of

 

each

 

#include

 

line

 

(for

 

this

 

line

 

/*0698421265*/)

 

is

 

a

 

time

 

stamp

 

for

 

the

 

included

 

file.

 

The

 

compiler

 

uses

 

this

 

number

 

to

 

determine

 

if

 

the

 

tempinc

 

file

 

is

 

current

 

or

 

should

 

be

 

recompiled.

 

A

 

time

 

stamp

 

containing

 

only

 

zeroes

 

(0)

 

as

 

in

 

line

 

3

 

means

 

the

 

compiler

 

is

 

to

 

ignore

 

the

 

time

 

stamp.

  

3.

   

The

 

template-implementation

 

file

 

that

 

corresponds

 

to

 

the

 

header

 

file

 

in

 

line

 

2.

  

4.

   

Another

 

header

 

file

 

that

 

the

 

compiler

 

requires

 

to

 

compile

 

the

 

tempinc

 

file.

 

All

 

other

 

header

 

files

 

that

 

the

 

compiler

 

needs

 

to

 

compile

 

the

 

tempinc

 

file

 

are

 

inserted

 

at

 

this

 

point.

  

5.

   

Another

 

header

 

file

 

required

 

by

 

the

 

compiler.

 

It

 

is

 

referenced

 

in

 

the

 

function

 

declaration

 

in

 

lines

 

6–7.

  

6.

   

The

 

first

 

statement

 

of

 

the

 

explicit

 

instantiation:

 

In

 

this

 

case,

 

the

 

class

 

List<MyType>

 

is

 

to

 

be

 

defined.

  

7.

   

The

 

second

 

statement

 

of

 

the

 

explicit

 

instantiation:

 

In

 

this

 

case,

 

the

 

class

 

List<MyType>

 

member

 

functions

 

are

 

to

 

be

 

generated.

 

1

   

/*0000000000*/

 

#pragma

 

sourcedir("c:\swearsee\src")

 

2

   

/*0698421265*/

 

#include

 

"\swearsee\src\list.h"

 

3

   

/*0000000000*/

 

#include

 

"\swearsee\src\list.c"

 

4

   

/*0698414046*/

 

#include

 

"\swearsee\src\mytype.h"

 

5

   

/*0698414046*/

 

#include

 

"/QIBM/include/iostream.h"

 

6

   

template

 

void

 

List

 

<MyType>::push(MyType);

 

7

   

template

 

MyType

 

List<MyType>::pop();

 

8

   

ostream&

 

operator<<(ostream&,List<MyType>);

 

9

   

#pragma

 

undeclared

 

10

  

int

 

count(List<MyType>);

 

Figure

 

324.

 

A

 

Typical

 

tempinc

 

File

  

Chapter

 

28.

 

Using

 

Templates

 

in

 

C++

 

Programs

 

499



8.

   

The

 

operator<<

 

function

 

is

 

a

 

nonmember

 

function

 

that

 

matched

 

a

 

template

 

declaration

 

in

 

the

 

list.h

 

header

 

file.

 

The

 

compiler

 

inserts

 

this

 

declaration

 

to

 

force

 

the

 

generation

 

of

 

the

 

function

 

definition.

  

9.

   

The

 

#pragma

 

undeclared

 

directive

 

is

 

used

 

only

 

by

 

the

 

compiler

 

and

 

only

 

in

 

tempinc

 

files.

 

All

 

function

 

templates

 

that

 

are

 

explicitly

 

declared

 

in

 

at

 

least

 

one

 

compilation

 

unit

 

appear

 

before

 

this

 

line.

 

All

 

function

 

templates

 

that

 

are

 

called,

 

but

 

never

 

declared,

 

appear

 

after

 

this

 

line.

 

This

 

division

 

is

 

necessary

 

because

 

the

 

C++

 

rules

 

for

 

function

 

overload

 

resolution

 

treat

 

declared

 

and

 

undeclared

 

function

 

templates

 

differently.

 

10.

   

count

 

is

 

a

 

function

 

template

 

that

 

is

 

called

 

but

 

not

 

declared.

 

The

 

template

 

declaration

 

of

 

the

 

function

 

is

 

contained

 

in

 

list.h,

 

but

 

the

 

instance

 

count(List<MyType>)

 

is

 

never

 

declared.

  

500

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

29.

 

Using

 

Teraspace

 

in

 

ILE

 

C

 

and

 

C++

 

Programs

 

Teraspace

 

is

 

an

 

extension

 

of

 

the

 

iSeries

 

storage

 

model

 

and

 

run-time

 

environment.

 

The

 

teraspace

 

storage

 

model:

 

v

   

Supports

 

up

 

to

 

2

 

GB,

 

minus

 

244

 

bytes,

 

of

 

contiguous

 

address

 

ranges

 

so

 

that

 

you

 

can

 

build

 

high

 

performance

 

applications

 

in

 

a

 

smaller

 

run-time

 

environment

 

v

   

Assists

 

porting

 

of

 

applications

 

to

 

the

 

iSeries

 

system

 

v

   

Supports

 

the

 

continuous

 

evolution

 

of

 

existing

 

iSeries

 

and

 

OS/400

 

applications

Note:

  

ILE

 

Concepts

 

describes

 

potential

 

problems

 

and

 

usage

 

tips

 

for

 

using

 

teraspace

 

in

 

ILE

 

programs.

 

Supported

 

Teraspace

 

Environments

 

ILE

 

C/C++

 

provides

 

16–byte

 

pointer

 

libraries.

 

ILE

 

C++

 

also

 

provides

 

8–byte

 

pointer

 

libraries

 

(RTBND).

 

These

 

libraries

 

are

 

not

 

binary-compatible.

 

When

 

using

 

teraspace,

 

ensure

 

that

 

bound

 

modules

 

are

 

binary

 

compatible.

 

See

 

“Binary

 

Compatibility

 

Considerations

 

When

 

Porting

 

Code

 

in

 

a

 

Teraspace

 

Environment”

 

on

 

page

 

505.

 

Note:

  

For

 

a

 

detailed

 

description

 

of

 

teraspace

 

and

 

other

 

storage

 

models,

 

see

 

the

 

chapter

 

on

 

″Teraspace

 

and

 

Single-Level

 

Store″

 

in

 

ILE

 

Concepts.

 

C/C++

 

Pointer

 

Support

 

To

 

enable

 

programs

 

for

 

teraspace,

 

C

 

and

 

C++

 

compilers

 

provide

 

the

 

following

 

pointer

 

support:

 

v

   

Syntax

 

for

 

explicitly

 

declaring

 

8-

 

or

 

16-byte

 

pointers:

 

–

   

Declare

 

a

 

8-byte

 

pointer

 

as

 

char

 

*

 

__ptr64

 

–

   

Declare

 

a

 

16-byte

 

pointer

 

as

 

char

 

*

 

__ptr128
v

   

Syntax

 

for

 

specifying

 

and

 

overriding

 

the

 

data

 

model

 

that

 

is

 

unique

 

to

 

the

 

C/C++

 

programming

 

environment.

 

See

 

“The

 

8–Byte

 

Run-Time

 

Binding

 

(RTBND)

 

Library

 

Extensions”

 

on

 

page

 

503.

C/C++

 

Pointer

 

Conversions

 

IBM

 

C

 

and

 

C++

 

compilers

 

convert

 

pointers

 

with

 

attribute

 

__ptr128

 

to

 

a

 

pointer

 

with

 

attribute

 

__ptr64

 

(and

 

vice

 

versa)

 

as

 

needed,

 

based

 

on

 

function

 

and

 

variable

 

declarations.

 

Consider

 

the

 

following:

 

v

   

A

 

pointer

 

with

 

attribute

 

_ptr128

 

that

 

points

 

to

 

single-level

 

store

 

(SLS)

 

storage

 

is

 

arbitarily

 

converted

 

to

 

a

 

pointer

 

with

 

attribute

 

__ptr64.

 

v

   

Code

 

that

 

is

 

not

 

teraspace-enabled

 

cannot

 

access

 

teraspace.

 

v

   

Interfaces

 

with

 

pointer-to-pointer

 

parameters

 

require

 

special

 

handling.

 

See

 

“Maintaining

 

Consistent

 

Argument

 

Declarations”

 

on

 

page

 

506.

The

 

ILE

 

compilers

 

automatically

 

insert

 

pointer

 

conversions

 

to

 

match

 

pointer

 

lengths.

 

In

 

the

 

case

 

of

 

multiple

 

level

 

pointers,

 

the

 

conversion

 

is

 

performed

 

only

 

on

 

the

 

first

 

level

 

of

 

the

 

pointer.

 

For

 

example,

 

conversions

 

are

 

inserted

 

whenever:

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

501



v

   

The

 

pointer

 

arguments

 

to

 

a

 

function

 

do

 

not

 

match

 

the

 

length

 

of

 

the

 

pointer

 

parameters

 

in

 

the

 

prototype

 

for

 

the

 

function

 

v

   

Pointers

 

of

 

different

 

lengths

 

are

 

compared

Note:

  

You

 

can

 

specify

 

explicit

 

pointer

 

conversions.

 

See

 

“Casting

 

Pointers”

 

on

 

page

 

357.

 

When

 

casting

 

pointers

 

in

 

a

 

teraspace

 

environment,

 

consider

 

the

 

following:

 

v

   

A

 

conversion

 

from

 

a

 

16-byte

 

pointer

 

to

 

an

 

8-byte

 

pointer

 

works

 

only

 

if

 

the

 

16-byte

 

pointer

 

contains

 

a

 

teraspace

 

address

 

or

 

a

 

null

 

pointer

 

value.

 

Otherwise,

 

either

 

a

 

MCH0609

 

exception

 

condition

 

occurs

 

or

 

an

 

arbitrary

 

teraspace

 

offset

 

value

 

is

 

returned.

 

v

   

16-byte

 

pointers

 

cannot

 

have

 

types

 

converted

 

from

 

one

 

to

 

another,

 

but

 

a

 

16-byte

 

Open

 

pointer

 

can

 

contain

 

any

 

pointer

 

type.

 

In

 

contrast,

 

no

 

8-byte

 

Open

 

pointer

 

exists,

 

but

 

8-byte

 

pointers

 

can

 

be

 

logically

 

converted

 

between

 

a

 

space

 

pointer

 

and

 

a

 

procedure

 

pointer.

 

Even

 

so,

 

an

 

8-byte

 

pointer

 

conversion

 

is

 

just

 

a

 

view

 

of

 

the

 

pointer

 

type,

 

so

 

it

 

does

 

not

 

allow

 

a

 

space

 

pointer

 

to

 

actually

 

be

 

used

 

as

 

a

 

procedure

 

pointer

 

unless

 

the

 

space

 

pointer

 

was

 

set

 

to

 

point

 

to

 

a

 

procedure.

Bindable

 

APIs

 

for

 

Using

 

Teraspace

 

IBM

 

provides

 

the

 

following

 

bindable

 

APIs

 

for

 

allocating

 

and

 

discarding

 

teraspace.

 

_C_TS_malloc()

 

Allocates

 

storage

 

within

 

a

 

teraspace.

 

_C_TS_free()

  

Frees

 

one

 

previous

 

allocation

 

of

 

teraspace.

 

_C_TS_realloc()

  

Changes

 

the

 

size

 

of

 

a

 

previous

 

teraspace

 

allocation.

 

_C_TS_calloc()

  

Allocates

 

storage

 

within

 

a

 

teraspace

 

and

 

sets

 

it

 

to

 

0.

  

Note:

  

If

 

a

 

teraspace

 

storage

 

model

 

is

 

not

 

specified,

 

these

 

bindable

 

APIs

 

allocate

 

or

 

deallocate

 

single-level

 

storage

 

or

 

teraspace

 

storage

 

according

 

to

 

the

 

storage

 

model

 

of

 

their

 

calling

 

program.

 

For

 

more

 

information

 

about

 

Interprocess

 

Communication

 

APIs

 

and

 

the

 

shmget()

 

interface,

 

see

 

the

 

UNIX-type

 

APIs

 

topic

 

in

 

the

 

iSeries

 

Information

 

Center

 

(under

 

the

 

Programming

 

category

 

and

 

API

 

subcategory).

 

The

 

16–Byte

 

Run-Time

 

Binding

 

Libraries

 

Unless

 

you

 

use

 

the

 

RTBND

 

compiler

 

option

 

to

 

specify

 

the

 

run-time

 

binding

 

directory,

 

the

 

C++

 

run-time

 

environment

 

uses

 

the

 

neutral

 

storage

 

model.

 

Because

 

it

 

uses

 

16–byte

 

internal

 

pointers,

 

the

 

neutral

 

storage

 

model:

 

v

   

Can

 

be

 

used

 

by

 

programs

 

built

 

with

 

either

 

a

 

single-level

 

storage

 

(SLS)

 

model

 

or

 

a

 

teraspace

 

storage

 

model

 

v

   

Requires

 

more

 

pointer

 

size

 

conversions

 

at

 

run

 

time

Note:

  

System

 

pointers

 

such

 

as

 

_SYSPTR

 

and

 

_INVPTR

 

remain

 

16

 

bytes

 

in

 

size.

 

For

 

service

 

programs

 

to

 

use

 

the

 

16-byte

 

C++

 

run-time

 

libraries,

 

a

 

default

 

value

 

for

 

RTBND

 

option

 

must

 

be

 

in

 

effect.

  

502

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Note:

  

For

 

more

 

detailed

 

information

 

about

 

enabling

 

programs

 

for

 

teraspace

 

and

 

rules

 

for

 

binding

 

service

 

programs,

 

see

 

ILE

 

Concepts.

 

The

 

8–Byte

 

Run-Time

 

Binding

 

(RTBND)

 

Library

 

Extensions

    

To

 

achieve

 

optimal

 

ISO

 

compliance,

 

use

 

the

 

8-byte

 

pointer

 

Standard

 

Library

 

and

 

object

 

model

 

when

 

you:

 

v

   

Want

 

to

 

build

 

teraspace

 

high-performance

 

applications

 

using

 

8-byte

 

pointers

 

v

   

Are

 

not

 

concerned

 

with

 

the

 

binary

 

incompatibilities

 

with

 

previously

 

built

 

service

 

programs

 

or

 

run-time

 

libraries

Note:

  

The

 

ILE

 

C++

 

8-byte

 

run-time

 

libraries

 

are

 

available

 

with

 

Version

 

5.3

 

or

 

higher.

 

The

 

8-byte

 

run-time

 

library

 

extensions

 

include:

 

v

   

Binding

 

directory

 

QYPPLR510T

 

in

 

library

 

QSYS

 

v

   

Service

 

programs

 

QYPPRT510T,

 

QYPPSL510T,

 

and

 

QYPPWL530T

 

(which

 

replace

 

service

 

programs

 

QYPPRT370,

 

QYPPSL510,

 

and

 

QYPPWL530)

 

v

   

Updated

 

C++

 

standard

 

library

 

header

 

files

When

 

RTBND(*LLP64)

 

is

 

in

 

effect:

 

v

   

Binding

 

directory

 

QSYS/QYPPLR510T

 

is

 

used

 

(instead

 

of

 

QSYS/QYPPLR510).

 

v

   

The

 

C++

 

Itanium

 

ABI

 

data

 

layout

 

is

 

used.

 

For

 

documentation

 

of

 

the

 

C++

 

Itanium

 

ABI,

 

see

 

http://www.codesourcery.com/cxx-abi/abi.html.

 

v

   

New

 

POSIX-compliant

 

C

 

signals

 

are

 

available

 

where:

 

–

   

The

 

synchronous

 

signal()

 

function

 

is

 

mapped

 

to

 

the

 

asynchronous

 

sigaction()

 

function

 

–

   

The

 

synchronous

 

raise()

 

function

 

is

 

mapped

 

to

 

the

 

asynchronous

 

kill()

 

function
v

   

Two

 

reserved

 

macros

 

__LLP64_RTBND__

 

and

 

__ASYNC_SIG__

 

are

 

defined

 

to

 

have

 

the

 

value

 

1.

Using

 

RTBND

 

to

 

Optimize

 

Performance

 

of

 

a

 

C++

 

Program

    

Typically,

 

the

 

size

 

of

 

internal

 

run-time

 

pointers

 

is

 

determined

 

by

 

either

 

the

 

DTAMDL

 

compiler

 

option

 

or

 

the

 

#pragma

 

datamodel

 

directive.

 

Requirements

 

To

 

build

 

a

 

C++

 

program

 

that

 

uses

 

the

 

8-byte

 

run-time

 

binding

 

library

 

extensions,

 

use

 

the

 

following

 

compiler

 

options:

 

v

   

Data

 

Model

 

option

 

DTAMDL(*LLP64)

 

v

   

Storage

 

Model

 

option

 

STGMDL(*TERASPACE)

 

v

   

TERASPACE(*YES

 

*TSIFC)

 

v

   

Run-Time

 

Binding

 

option

 

RTBND(*LLP64)

Note:

  

For

 

information

 

specific

 

to

 

using

 

these

 

options,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference.

  

Chapter

 

29.

 

Using

 

Teraspace

 

in

 

ILE

 

C

 

and

 

C++

 

Programs

 

503



Error

 

Conditions

 

If

 

incompatible

 

options

 

are

 

used

 

with

 

the

 

RTBND(*LLP64)

 

option,

 

diagnostic

 

error

 

CZS2121

 

is

 

generated

 

and

 

the

 

compilation

 

is

 

stopped.

 

If

 

the

 

RTBND(*LLP64)

 

option

 

is

 

used

 

with

 

any

 

release

 

prior

 

Version

 

5.3,

 

diagnostic

 

error

 

CZS2120

 

is

 

generated

 

and

 

the

 

compilation

 

is

 

stopped.

 

Limitations

 

When

 

the

 

RTBND(*LLP64)

 

option

 

is

 

in

 

effect:

 

v

   

An

 

8-byte

 

pointer

 

can

 

point

 

to

 

teraspace

 

only.

 

v

   

An

 

8-byte

 

procedure

 

pointer

 

always

 

refers

 

to

 

an

 

active

 

procedure

 

through

 

teraspace.

 

v

   

The

 

only

 

8-byte

 

pointer

 

types

 

are

 

space

 

pointers

 

and

 

procedure

 

pointers.

 

v

   

You

 

cannot

 

specify

 

the

 

*LLP64

 

parameter

 

of

 

the

 

RTBND

 

option

 

if

 

the

 

C++

 

program:

 

–

   

Uses

 

demangling

 

code

 

(8–byte

 

and

 

16–byte

 

pointer

 

names

 

are

 

mangled

 

differently)

 

–

   

Calls

 

objects

 

created

 

with

 

previous

 

versions

 

of

 

the

 

compiler

 

(they

 

are

 

not

 

binary-compatible)

Characteristics

 

of

 

Each

 

Teraspace

 

Storage

 

Model

 

The

 

following

 

table

 

compares

 

characteristics

 

of

 

the

 

two

 

data

 

models.

  

Table

 

31.

 

Characteristics

 

of

 

the

 

Default

 

Teraspace

 

Storage

 

Model

 

Versus

 

the

 

RTBND(LLP64)

 

Teraspace

 

Storage

 

Model

 

When

 

RTBND(*DEFAULT)

 

is

 

in

 

effect:

 

When

 

RTBND(*LLP64)

 

is

 

in

 

effect:

 

Binding

 

directory

 

QSYS/QYPPLR510

 

is

 

used.

 

Binding

 

directory

 

QSYS/QYPPLR510T

 

is

 

used.

 

Service

 

programs

 

QYPPRT370,

 

QYPPSL510,

 

and

 

QYPPWL530

 

are

 

used.

 

Service

 

programs

 

QYPPRT510T,

 

QYPPSL510T,

 

and

 

QYPPWL530T

 

are

 

used.

 

The

 

size

 

of

 

the

 

this

 

pointer

 

depends

 

on

 

the

 

effective

 

data

 

model

 

of

 

the

 

class

 

declaration.

 

The

 

size

 

of

 

this

 

pointer

 

is

 

8

 

bytes,

 

regardless

 

of

 

the

 

data

 

model

 

class

 

declaration.

 

All

 

internal

 

compiler-generated

 

structures

 

are

 

assumed

 

to

 

be

 

8-byte

 

pointers.

 

That

 

is

 

the

 

case

 

even

 

when

 

the

 

class

 

declaration

 

is

 

surrounded

 

by

 

#pragma

 

datamodel(P128).

 

16-byte-compatible

 

sections

 

of

 

C++

 

standard

 

library

 

header

 

files

 

are

 

used.

 

8-byte-compatible

 

sections

 

of

 

C++

 

standard

 

library

 

header

 

files

 

are

 

used.

 

All

 

internal

 

structures

 

(for

 

example

 

virtual

 

function

 

tables)

 

use

 

16-byte

 

pointers.

 

All

 

internal

 

structures

 

(for

 

example

 

virtual

 

function

 

tables)

 

use

 

8-byte

 

pointers.

 

All

 

C++

 

programs

 

and

 

C++

 

service

 

programs

 

can

 

contain

 

only

 

modules

 

that

 

have

 

been

 

built

 

with

 

the

 

RTBND(*DEFAULT)

 

option.

 

All

 

C++

 

programs

 

and

 

C++

 

service

 

programs

 

can

 

contain

 

only

 

modules

 

built

 

that

 

have

 

been

 

built

 

with

 

the

 

RTBND(*LLP64)

 

option.

 

Standard

 

name

 

mangling

 

is

 

in

 

effect.

 

Demangling

 

code

 

written

 

for

 

16-byte

 

library

 

does

 

not

 

work

 

because

 

a

 

new

 

ABI

 

name

 

mangling

 

scheme

 

is

 

used

 

instead.

 

The

 

ABI

 

name

 

mangling

 

scheme

 

prevents

 

binding

 

of

 

modules

 

that

 

were

 

not

 

built

 

with

 

RTBND(*LLP64).

 

Note:

 

If

 

names

 

in

 

one

 

or

 

more

 

modules

 

are

 

explicitly

 

crafted

 

to

 

defeat

 

name

 

mangling,

 

incompatibilities

 

can

 

occur.

 

A

 

derived

 

class

 

must

 

be

 

of

 

the

 

same

 

data

 

model

 

as

 

the

 

base

 

class.

   

504

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Table

 

31.

 

Characteristics

 

of

 

the

 

Default

 

Teraspace

 

Storage

 

Model

 

Versus

 

the

 

RTBND(LLP64)

 

Teraspace

 

Storage

 

Model

 

(continued)

 

When

 

RTBND(*DEFAULT)

 

is

 

in

 

effect:

 

When

 

RTBND(*LLP64)

 

is

 

in

 

effect:

 

Declaration

 

of

 

main()

 

must

 

be

 

consistent

 

with

 

the

 

data

 

model

 

option

 

used

 

when

 

the

 

module

 

is

 

compiled.

 

See

 

“Maintaining

 

Consistent

 

Argument

 

Declarations”

 

on

 

page

 

506.

 

A

 

function

 

declared

 

with

 

a

 

variable

 

argument

 

list

 

is

 

governed

 

by

 

the

 

data

 

model

 

in

 

effect

 

when

 

the

 

argument

 

list

 

is

 

declared.

 

The

 

argument

 

list

 

variables

 

must

 

always

 

be

 

consistent

 

in

 

terms

 

of

 

the

 

size

 

of

 

pointer

 

variables.

 

ILE

 

C/C++

 

compilers

 

provide

 

one

 

level

 

of

 

pointer

 

conversions

 

of

 

pointers

 

in

 

the

 

variable

 

list.

 

A

 

class

 

or

 

structure

 

uses

 

the

 

data

 

model

 

in

 

effect

 

when

 

that

 

class

 

or

 

structure

 

is

 

fully

 

declared.

 

This

 

data

 

model

 

may

 

be

 

different

 

from

 

the

 

data

 

model

 

in

 

effect

 

when

 

that

 

same

 

class

 

or

 

structure

 

is

 

forward-declared.

 

See

 

“Example:

 

Effect

 

of

 

Forward

 

Declarations

 

on

 

the

 

Data

 

Model”

 

on

 

page

 

506.

 

An

 

unprototyped

 

function

 

has

 

its

 

signature

 

inferred

 

by

 

the

 

data

 

model

 

in

 

effect

 

at

 

the

 

time

 

of

 

its

 

first

 

reference.

    

The

 

C

 

run-time

 

functions

 

might

 

produce

 

unpredictable

 

results

 

if

 

the

 

header

 

files

 

are

 

not

 

included.

    

Reference

 

types

 

are

 

8

 

bytes

 

in

 

length

 

only

 

when

 

the

 

data

 

model

 

is

 

LLP64.

    

A

 

template

 

adopts

 

the

 

data

 

model

 

in

 

effect

 

when

 

it

 

is

 

declared,

 

and

 

applies

 

that

 

data

 

model

 

to

 

future

 

instantiations

 

of

 

the

 

template.

 

All

 

derived

 

classes

 

must

 

be

 

of

 

the

 

same

 

data

 

model

 

as

 

the

 

base

 

class.

 

See

 

“Example:

 

How

 

a

 

Template

 

Adopts

 

a

 

Data

 

Model”

 

on

 

page

 

509.

    

A

 

function

 

signature

 

is

 

affected

 

by

 

the

 

data

 

model

 

governing

 

the

 

class/function

 

declaration.

 

See

 

“Examples:

 

Overloading

 

Functions”

 

on

 

page

 

509.

 

The

 

address

 

of

 

(&)

 

operator

 

returns

 

an

 

8–byte

 

result.

 

Intermixing

 

of

 

pointer

 

sizes

 

in

 

source

 

code

 

is

 

allowed

 

to

 

permit

 

use

 

of

 

the

 

many

 

system

 

APIs

 

that

 

still

 

use

 

16-byte

 

pointers

 

in

 

structures

 

and

 

function

 

prototypes.

 

Using

 

an

 

array

 

in

 

pointer

 

context

 

is

 

the

 

same

 

as

 

taking

 

the

 

address

 

of

 

the

 

first

 

element

 

in

 

the

 

array.

 

The

 

size

 

of

 

the

 

address

 

is

 

8–byte

 

if

 

the

 

storage

 

model

 

is

 

teraspace.

 

Note:

 

Arrays

 

are

 

not

 

pointers,

 

so

 

they

 

are

 

not

 

affected

 

by

 

pointer

 

modifiers.

   

Binary

 

Compatibility

 

Considerations

 

When

 

Porting

 

Code

 

in

 

a

 

Teraspace

 

Environment

 

Internal

 

representations

 

of

 

classes

 

in

 

all

 

bound

 

modules

 

must

 

be

 

binary-compatible

 

but

 

there

 

is

 

no

 

explicit

 

mechanism

 

to

 

prevent

 

the

 

binding

 

of

 

modules

 

built

 

with

 

RTBND(*LLP64)

 

and

 

those

 

without.

 

You

 

might

 

experience

 

unexpected

 

run-time

 

behavior

 

whenever:

 

v

   

C++

 

programs

 

built

 

with

 

RTBND(*LLP64)

 

option

 

are

 

bound

 

with

 

C++

 

service

 

programs

 

built

 

without

 

this

 

option

 

v

   

C++

 

programs

 

built

 

without

 

the

 

RTBND(*LLP64)

 

option

 

are

 

bound

 

with

 

service

 

programs

 

that

 

have

 

been

 

built

 

with

 

this

 

option.

Specifying

 

the

 

Teraspace

 

Environment

 

The

 

Storage

 

Model

 

(STGMDL)

 

compiler

 

option

 

determines

 

the

 

teraspace

 

environment

 

for

 

the

 

entire

 

program.

 

The

 

Data

 

Model

 

(DTAMDL)

 

compiler

 

option

 

determines

 

the

 

pointer

 

size

 

declaration

 

for

 

the

 

applicable

 

module.

 

To

 

use

 

the

 

8–byte

 

run-time

 

libraries,

 

specify

 

DTAMDL(*LLP64).

 

To

 

override

 

the

 

effect

 

of

 

the

 

default

 

Data

 

Model

 

(DTAMDL)

 

setting

 

for

 

a

 

section

 

of

 

the

 

source,

 

you

 

can

 

use

 

either

 

DTAMDL(*LLP64)

 

or

 

the

 

#pragma

 

datamodel

   

Chapter

 

29.

 

Using

 

Teraspace

 

in

 

ILE

 

C

 

and

 

C++

 

Programs

 

505



directive.

 

See

 

“Example:

 

Effect

 

of

 

Forward

 

Declarations

 

on

 

the

 

Data

 

Model”

 

and

 

“Example:

 

How

 

a

 

Template

 

Adopts

 

a

 

Data

 

Model”

 

on

 

page

 

509.

Note:

  

The

 

#pragma

 

datamodel

 

directive

 

overrides

 

the

 

DTAMDL

 

option

 

setting.

 

To

 

override

 

the

 

section

 

setting

 

for

 

a

 

specific

 

variable,

 

specify

 

an

 

attribute

 

for

 

the

 

pointer.

 

See

 

“Maintaining

 

Consistent

 

Argument

 

Declarations”

 

and

 

“Examples:

 

Overloading

 

Functions”

 

on

 

page

 

509.

 

Determining

 

the

 

Size

 

of

 

a

 

Specific

 

Pointer

 

To

 

determine

 

the

 

size

 

of

 

a

 

specific

 

pointer:

 

1.

   

Check

 

the

 

pointer

 

attribute.

 

2.

   

If

 

no

 

pointer

 

attribute

 

exists,

 

check

 

the

 

#pragma

 

datamodel

 

setting.

 

3.

   

If

 

a

 

#pragma

 

datamodel

 

directive

 

has

 

not

 

been

 

included

 

in

 

the

 

source

 

section,

 

check

 

the

 

Data

 

Model

 

(DTAMDL)

 

compiler

 

option

 

specified

 

When

 

the

 

C

 

or

 

C++

 

module

 

is

 

created

 

or

 

bound.

Maintaining

 

Consistent

 

Argument

 

Declarations

 

The

 

validity

 

of

 

an

 

argument

 

list

 

declared

 

in

 

main()

 

depends

 

on

 

the

 

data

 

model

 

that

 

is

 

in

 

effect

 

when

 

the

 

module

 

is

 

created

 

or

 

bound.

  

Declaration

 

Valid

 

for

 

Data

 

Models

 

main(int

 

argc,

 

char

 

*

 

*

 

argv)

 

P128,

 

LLP64

 

main(int

 

argc,

 

char

 

*

 

argv[])

 

P128,

 

LLP64

 

main(int

 

argc,

 

char

 

*__ptr128

 

*__ptr128

 

argv)

 

P128,

 

LLP64

 

main(int

 

argc,

 

char

 

*__ptr128

 

argv[])

 

P128

 

main(int

 

argc,

 

char*__ptr128

 

*

 

argv)

 

P128

 

main(int

 

argc,

 

char

 

*__ptr64

 

*__ptr64

 

argv)

 

P128,

 

LLP64

 

main(int

 

argc,

 

char

 

*__ptr64

 

argv[])

 

LLP64

 

main(int

 

argc,

 

char

 

*__ptr64

 

*

 

argv)

 

LLP64

 

main(int

 

argc,

 

char

 

*__ptr64

 

*__ptr128

 

argv)

 

(Invalid

 

for

 

any

 

data

 

model)

 

main(int

 

argc,

 

char

 

*__ptr128

 

*__ptr64

 

argv)

 

(Invalid

 

for

 

any

 

data

 

model)

   

Note:

  

The

 

same

 

rule

 

also

 

applies

 

to

 

the

 

third

 

parameter,

 

envp,

 

in

 

main().

 

Moreover,

 

the

 

resulting

 

pointer

 

sizes

 

of

 

argv

 

and

 

envp

 

must

 

also

 

be

 

the

 

same.

 

Source

 

Code

 

Samples

 

The

 

following

 

source

 

samples

 

illustrate

 

how

 

to

 

code

 

programs

 

when

 

using

 

teraspace.

 

Example:

 

Effect

 

of

 

Forward

 

Declarations

 

on

 

the

 

Data

 

Model

 

In

 

the

 

following

 

figure,

 

struct

 

Foo

 

does

 

not

 

use

 

the

 

P128

 

data

 

model

 

in

 

effect

 

at

 

the

 

time

 

of

 

its

 

forward-declaration.

 

Instead,

 

struct

 

Foo

 

uses

 

the

 

LLP64

 

data

 

model

 

in

 

effect

 

at

 

the

 

time

 

struct

 

Foo

 

is

 

fully

 

declared.

   

506

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Example:

 

Redefining

 

the

 

new

 

or

 

delete

 

Operator

    

To

 

create

 

modules

 

that

 

allocate

 

storage

 

dynamically

 

from

 

teraspace,

 

specify

 

TERASPACE(*YES

 

*TSIFC)

 

on

 

the

 

CRTCPPMOD

 

and

 

CRTBNDCPP

 

commands.

 

This

 

remaps

 

C

 

run-time

 

functions

 

(such

 

as

 

malloc,

 

calloc,

 

and

 

free)

 

to

 

new

 

teraspace

 

equivalents.

 

This

 

does

 

not

 

affect

 

storage

 

dynamically

 

allocated

 

using

 

the

 

new

 

and

 

delete

 

operators.

 

If

 

you

 

want

 

the

 

new

 

and

 

delete

 

operators

 

to

 

allocate

 

storage

 

dynamically

 

from

 

teraspace,

 

you

 

can

 

override

 

these

 

operators.

 

The

 

following

 

code

 

redefines

 

the

 

global

 

new

 

and

 

delete

 

operators

 

to

 

call

 

functions

 

(such

 

as

 

malloc

 

or

 

free)

 

that

 

use

 

teraspace.

 

Note:

  

To

 

find

 

the

 

declaration

 

of

 

_set_mt_new_handler,

 

the

 

following

 

source

 

must

 

be

 

compiled

 

with

 

DEFINE(’__MULTI__’)

 

.

      

#pragma

 

datamodel(P128)

    

struct

 

Foo;

  

//forward

 

declaration

    

#pragma

 

datamodel(LLP64)

    

struct

 

Foo

 

{

       

char*

 

string;

 

//

 

this

 

pointer

 

is

 

8-byte

 

because

 

LLP64

 

datamodel

                     

//

 

was

 

in

 

effect

 

for

 

the

 

struct

 

definition.

    

};

    

#pragma

 

datamodel(pop)

    

#pragma

 

datamodel(pop)

 

Figure

 

325.

 

Example

 

of

 

a

 

Forward

 

Declaration

 

Based

 

on

 

the

 

LLP64

 

Data

 

Model

  

Chapter

 

29.

 

Using

 

Teraspace

 

in

 

ILE

 

C

 

and

 

C++

 

Programs

 

507



#include

 

<stdlib.h>

   

#include

 

<new>

     

using

 

namespace

 

std;

   

void

 

*operator

 

new(size_t

 

size)

 

throw

 

(bad_alloc)

   

{

     

//

 

if

 

size

 

==

 

0,

 

we

 

must

 

return

 

a

 

valid

 

object!

 

(ARM

 

5.3.3)

     

if

 

(size

 

<=

 

0)

         

size

 

=

 

1;

       

void

 

*ret

 

=

 

(malloc)(size);

       

while

 

(ret

 

==

 

NULL)

     

{

           

//

 

The

 

malloc

 

failed.

  

Call

 

the

 

new_handler

 

to

 

try

 

to

 

free

 

more

 

memory

           

void

 

(*temp_new_handler)();

             

//

 

First

 

check

 

to

 

see

 

if

 

a

 

thread

 

local

 

new

 

handler

 

is

 

defined.

           

temp_new_handler

 

=

 

_set_mt_new_handler(0);

           

_set_mt_new_handler(temp_new_handler);

             

//

 

If

 

there

 

is

 

no

 

thread

 

local

 

handler

 

try

 

the

 

global

 

handler.

           

if

 

(temp_new_handler

 

==

 

NULL)

           

{

               

//

 

Note

 

that

 

the

 

following

 

code

 

is

 

not

 

thread

 

safe

               

//

 

If

 

the

 

application

 

is

 

threaded

 

and

 

a

 

new

 

handler

 

is

 

set

 

then

               

//

 

all

 

calls

 

to

 

set_new_handler()

 

in

 

the

 

application

 

must

 

be

               

//

 

blocked.

  

Otherwise

 

for

 

the

 

sake

 

of

 

speed,

 

do

 

not

 

use

 

a

 

locking

               

//

 

mechanism.

                 

temp_new_handler

 

=

 

set_new_handler(0);

               

set_new_handler(temp_new_handler);

           

}

             

if

 

(temp_new_handler

 

!=

 

NULL)

           

{

               

temp_new_handler();

                 

//

 

Try

 

one

 

more

 

time

               

ret

 

=

 

(malloc)(size);

           

}

          

else

               

throw

 

bad_alloc();

       

}

         

//

 

just

 

return

 

the

 

result

 

to

 

the

 

user

       

return

 

ret;

   

}

     

void

 

operator

 

delete(void

 

*ptr)

   

{

       

//

 

delete

 

of

 

NULL

 

is

 

okay

       

if

 

(ptr

 

==

 

NULL)

           

return;

         

(free)(ptr);

   

}

 

Figure

 

326.

 

Example

 

of

 

Source

 

Code

 

that

 

Redefines

 

the

 

Global

 

new

 

and

 

delete

 

Operators.

   

508

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Example:

 

How

 

a

 

Template

 

Adopts

 

a

 

Data

 

Model

 

In

 

the

 

following

 

example:

 

v

   

Any

 

instantiation

 

of

 

FooT

 

uses

 

the

 

P128

 

data

 

model

 

v

   

Any

 

instantiation

 

of

 

FooTZ

 

uses

 

the

 

LLP64

 

data

 

model

   

Examples:

 

Overloading

 

Functions

    

A

 

function

 

signature

 

is

 

affected

 

by

 

the

 

data

 

model

 

governing

 

the

 

class/function

 

declaration.

 

For

 

example,

 

int

 

Bar::foo(const

 

char

 

*)

 

is

 

mangled

 

to:

 

v

   

foo__3BarFPCc

 

when

 

the

 

data

 

model

 

is

 

P128

 

v

   

foo__3BarZFPCc

 

when

 

the

 

data

 

model

 

is

 

LLP64

 

v

   

_ZN3Bar3fooEPKc

 

when

 

the

 

run-time

 

binding

 

is

 

LLP64

It

 

is

 

possible

 

to

 

create

 

overloaded

 

methods

 

which

 

are

 

identical

 

in

 

every

 

way

 

except

 

the

 

size

 

of

 

a

 

pointer

 

argument.

 

Example:

   

class

 

Bar

 

{

      

int

 

foo(const

 

char*

 

__ptr128);

      

int

 

foo(const

 

char*

 

__ptr64);

   

};

     

#pragma

 

datamodel(LLP64)

     

template

 

<class

 

T>

     

class

 

FooTZ

 

{

          

public:

          

T

 

bar(const

 

char

 

*

 

a,

 

T

 

x)

 

{

 

return

 

x;

 

}

     

};

     

#pragma

 

datamodel(pop)

       

#pragma

 

datamodel(P128)

     

template

 

<class

 

T>

     

class

 

FooT

 

{

         

public:

         

T

 

bar(const

 

char

 

*

 

a,

 

T

 

x)

 

{return

 

x;

 

}

     

};

     

#pragma

 

datamodel

 

(pop)

 

Figure

 

327.

 

Example

 

of

 

a

 

Template

 

that

 

Adopts

 

the

 

Data

 

Model

 

in

 

Effect

 

When

 

the

 

Template

 

Is

 

Declared

  

Chapter

 

29.

 

Using

 

Teraspace

 

in

 

ILE

 

C

 

and

 

C++

 

Programs

 

509



510

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

30.

 

Casting

 

with

 

Run-Time

 

Type

 

Information

    

Run-Time

 

Type

 

Information

 

(RTTI)

 

is

 

a

 

major

 

extension

 

to

 

the

 

C++

 

language

 

made

 

by

 

the

 

ISO

 

standard

 

committee.

 

This

 

chapter

 

describes:

 

v

   

The

 

RTTI

 

language

 

extension

 

v

   

Using

 

C++

 

language-defined

 

RTTI

 

v

   

Using

 

RTTI

 

in

 

constructors

 

and

 

destructors

 

v

   

ILE

 

C++

 

extensions

 

to

 

RTTI

The

 

RTTI

 

Language

 

Extension

 

The

 

C++

 

language

 

supports

 

both

 

the

 

re-use

 

of

 

code

 

and

 

the

 

building

 

of

 

programs

 

from

 

parts.

 

There

 

might

 

be

 

incompatibilities

 

between

 

RTTI

 

mechanisms

 

used

 

internally

 

by

 

various

 

C++

 

libraries.

 

The

 

RTTI

 

language

 

extension

 

resolves

 

those

 

incompatibilities.

 

C++

 

language

 

support

 

for

 

RTTI

 

include:

 

dynamic_cast

 

operator

 

This

 

operator

 

combines

 

type-checking

 

and

 

casting

 

in

 

one

 

operation.

 

It

 

checks

 

whether

 

the

 

requested

 

cast

 

is

 

valid,

 

and

 

performs

 

the

 

cast

 

only

 

if

 

it

 

is

 

valid.

 

typeid

 

operator

 

This

 

operator

 

returns

 

the

 

run-time

 

type

 

of

 

an

 

object.

 

If

 

the

 

operand

 

provided

 

to

 

the

 

typeid

 

operator

 

is

 

the

 

name

 

of

 

a

 

type,

 

the

 

operator

 

returns

 

a

 

type_info

 

object

 

that

 

identifies

 

it.

 

If

 

the

 

operand

 

provided

 

is

 

an

 

expression,

 

typeid

 

returns

 

the

 

type

 

of

 

the

 

object

 

that

 

the

 

expression

 

denotes.

 

type_info

 

class

 

This

 

class

 

describes

 

the

 

RTTI

 

available,

 

and

 

is

 

used

 

to

 

define

 

the

 

type

 

returned

 

by

 

the

 

typeid

 

operator.

 

This

 

class

 

provides

 

to

 

users

 

the

 

possibility

 

of

 

shaping

 

and

 

extending

 

RTTI

 

to

 

suit

 

their

 

own

 

needs.

 

This

 

ability

 

is

 

of

 

most

 

interest

 

to

 

implementers

 

of

 

object

 

I/O

 

systems

 

such

 

as

 

debuggers

 

or

 

database

 

systems.

Using

 

C++

 

Language-Defined

 

RTTI

 

To

 

use

 

RTTI

 

you

 

need

 

to

 

be

 

familiar

 

with

 

the

 

dynamic

 

cast

 

and

 

typeid

 

operators.

 

The

 

dynamic_cast

 

Operator

   

A

 

dynamic

 

cast

 

expression

 

is

 

used

 

to

 

cast

 

a

 

base

 

class

 

pointer

 

to

 

a

 

derived

 

class

 

pointer.

 

This

 

is

 

referred

 

to

 

as

 

downcasting.

 

The

 

dynamic_cast

 

operator:

 

v

   

Makes

 

downcasting

 

much

 

safer

 

than

 

conventional

 

static

 

casting

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

511



v

   

Obtains

 

a

 

pointer

 

to

 

an

 

object

 

of

 

a

 

derived

 

class

 

that

 

is

 

given

 

a

 

pointer

 

to

 

a

 

base

 

class

 

of

 

that

 

object

 

v

   

Returns

 

the

 

pointer

 

only

 

if

 

the

 

specific

 

derived

 

class

 

actually

 

exists

Note:

  

If

 

the

 

specified

 

derived

 

class

 

does

 

not

 

exist

 

zero

 

is

 

returned.

Dynamic

 

casts

 

have

 

the

 

form:

 

��

 

dynamic_cast

 

<

 

type_name

 

>

 

(

 

expression

 

)

 

��

 

The

 

operator

 

converts

 

the

 

expression

 

to

 

the

 

desired

 

type

 

type_name.

 

The

 

type_name

 

can

 

be

 

a

 

pointer

 

or

 

a

 

reference

 

to

 

a

 

class

 

type.

 

If

 

the

 

cast

 

to

 

type_name

 

fails,

 

the

 

value

 

of

 

the

 

expression

 

is

 

zero.

 

Dynamic

 

Casts

 

with

 

Pointers

   

A

 

dynamic

 

cast

 

using

 

pointers

 

is

 

used

 

to

 

get

 

a

 

pointer

 

to

 

a

 

derived

 

class

 

in

 

order

 

to

 

use

 

a

 

detail

 

of

 

the

 

derived

 

class

 

that

 

is

 

not

 

otherwise

 

available.

 

For

 

an

 

example,

 

see

 

Figure

 

328:

 

With

 

the

 

class

 

hierarchy

 

used

 

in

 

Figure

 

328,

 

dynamic

 

casts

 

can

 

be

 

used

 

to

 

include

 

the

 

manager::bonus()

 

function

 

in

 

the

 

manager’s

 

salary

 

calculation

 

but

 

not

 

in

 

the

 

calculation

 

for

 

a

 

regular

 

employee.

 

The

 

dynamic_cast

 

operator

 

uses

 

a

 

pointer

 

to

 

the

 

base

 

class

 

employee,

 

and

 

gets

 

a

 

pointer

 

to

 

the

 

derived

 

class

 

manager

 

in

 

order

 

to

 

use

 

the

 

bonus()

 

member

 

function.

 

In

 

Figure

 

329

 

on

 

page

 

513,

 

dynamic

 

casts

 

are

 

needed

 

only

 

if

 

the

 

base

 

class

 

employee

 

and

 

its

 

derived

 

classes

 

are

 

not

 

available

 

to

 

users

 

(as

 

in

 

part

 

of

 

a

 

library

 

where

 

it

 

is

 

undesirable

 

to

 

modify

 

the

 

source

 

code).

 

Otherwise,

 

adding

 

new

 

virtual

 

functions

 

and

 

providing

 

derived

 

classes

 

with

 

specialized

 

definitions

 

for

 

those

 

functions

 

is

 

a

 

better

 

way

 

to

 

solve

 

this

 

problem.

 

class

 

employee

 

{

 

public:

     

virtual

 

int

 

salary();

 

};

   

class

 

manager

 

:

 

public

 

employee

 

{

 

public:

     

int

 

salary();

     

virtual

 

int

 

bonus();

 

};

 

Figure

 

328.

 

ILE

 

Source

 

to

 

Cast

 

a

 

Pointer

 

to

 

a

 

Derived

 

Class

 

to

 

Use

 

a

 

Detail

 

that

 

Is

 

Otherwise

 

Unavailable

  

512

 

ILE

 

C/C++

 

Programmer’s

 

Guide



In

 

Figure

 

329:

 

v

   

If

 

pe

 

actually

 

points

 

to

 

a

 

manager

 

object

 

at

 

run

 

time,

 

the

 

dynamic

 

cast

 

is

 

successful,

 

pm

 

is

 

initialized

 

to

 

a

 

pointer

 

to

 

a

 

manager,

 

and

 

the

 

bonus()

 

function

 

is

 

used.

 

v

   

If

 

pe

 

does

 

not

 

point

 

to

 

a

 

manager

 

object

 

at

 

run

 

time,,

 

pm

 

is

 

initialized

 

to

 

zero

 

and

 

only

 

the

 

functions

 

in

 

the

 

employee

 

base

 

class

 

are

 

used.

Dynamic

 

Casts

 

with

 

References

   

The

 

dynamic_cast

 

operator

 

can

 

be

 

used

 

to

 

cast

 

to

 

reference

 

types.

 

C++

 

reference

 

casts

 

are

 

similar

 

to

 

pointer

 

casts:

 

they

 

can

 

be

 

used

 

to

 

cast

 

from

 

references

 

to

 

base

 

class

 

objects

 

to

 

references

 

to

 

derived

 

class

 

objects.

 

In

 

dynamic

 

casts

 

to

 

reference

 

types,

 

type_name

 

represents

 

a

 

type

 

and

 

expression

 

represents

 

a

 

reference.

 

The

 

operator

 

converts

 

the

 

expression

 

to

 

the

 

desired

 

type

 

type_name&.

 

You

 

cannot

 

verify

 

the

 

success

 

of

 

a

 

dynamic

 

cast

 

using

 

reference

 

types

 

by

 

comparing

 

the

 

result

 

(the

 

reference

 

that

 

results

 

from

 

the

 

dynamic

 

cast)

 

with

 

zero

 

because

 

there

 

is

 

no

 

such

 

thing

 

as

 

a

 

zero

 

reference.

 

A

 

failing

 

dynamic

 

cast

 

to

 

a

 

reference

 

type

 

throws

 

a

 

bad_cast

 

exception.

 

A

 

dynamic

 

cast

 

with

 

a

 

reference

 

is

 

a

 

good

 

way

 

to

 

test

 

for

 

a

 

coding

 

assumption.

 

In

 

Figure

 

330,

 

the

 

example

 

used

 

in

 

Figure

 

328

 

on

 

page

 

512

 

is

 

modified

 

to

 

use

 

reference

 

casts.

 

Note:

  

Figure

 

330

 

is

 

intended

 

only

 

to

 

show

 

the

 

dynamic_cast

 

operator

 

used

 

as

 

a

 

test.

 

This

 

example

 

does

 

not

 

demonstrate

 

good

 

programming

 

style

 

because

 

it

 

uses

 

exceptions

 

to

 

control

 

execution

 

flow.

 

Using

 

dynamic_cast

 

with

 

pointers,

 

as

 

shown

 

in

 

Figure

 

329,

 

is

 

a

 

better

 

way.

   

void

 

payroll::calc

 

(employee

 

*pe)

 

{

    

//

 

employee

 

salary

 

calculation

    

if

 

(manager

 

*pm

 

=

 

dynamic_cast<manager*>(pe))

 

{

          

//

 

use

 

manager::bonus()

    

}

    

else

 

{

          

//

 

use

 

employee’s

 

member

 

functions

    

}

 

}

 

Figure

 

329.

 

ILE

 

Source

 

to

 

Get

 

a

 

Pointer

 

to

 

a

 

Derived

 

Class

 

to

 

Use

 

a

 

Member

 

Function

 

in

 

Specified

 

Calculations

 

Only

void

 

payroll::calc

 

(employee

 

&re)

 

{

    

//

 

employee

 

salary

 

calculation

    

try

 

{

       

manager

 

&rm

 

=

 

dynamic_cast<manager&>(re);

       

//

 

use

 

manager::bonus()

    

}

    

catch

 

(bad_cast)

 

{

       

//

 

use

 

employee’s

 

member

 

functions

    

}

 

}

 

Figure

 

330.

 

ILE

 

Source

 

to

 

Get

 

a

 

Pointer

 

to

 

a

 

Derived

 

Class

 

Using

 

Reference

 

Casts

  

Chapter

 

30.

 

Casting

 

with

 

Run-Time

 

Type

 

Information

 

513



The

 

typeid

 

Operator

 

The

 

typeid

 

operator

 

identifies

 

the

 

exact

 

type

 

of

 

an

 

object

 

that

 

is

 

given

 

a

 

pointer

 

to

 

a

 

base

 

class.

 

It

 

is

 

typically

 

used

 

to

 

gain

 

access

 

to

 

information

 

needed

 

to

 

perform

 

some

 

operation

 

where

 

no

 

common

 

interface

 

can

 

be

 

assumed

 

for

 

every

 

object

 

manipulated

 

by

 

the

 

system.

 

Object

 

I/O

 

and

 

database

 

systems

 

often

 

need

 

to

 

perform

 

services

 

on

 

objects

 

where

 

no

 

virtual

 

function

 

is

 

available

 

to

 

do

 

so.

 

The

 

typeid

 

operator

 

enables

 

this.

 

A

 

typeid

 

operation

 

has

 

this

 

form:

 

��

 

typeid

 

(

 

type_name

 

expression

 

)

 

��

 

Results

 

of

 

typeid

 

Operations

 

The

 

result

 

of

 

a

 

typeid

 

operation

 

has

 

type

 

const

 

type_info&.

 

Table

 

32

 

summarizes

 

the

 

results

 

of

 

various

 

typeid

 

operations.

  

Table

 

32.

 

typeid

 

Operations

 

Operand

 

typeid

 

Returns

 

type_name

 

A

 

reference

 

to

 

a

 

type_info

 

object

 

that

 

represents

 

it.

 

expression

 

A

 

reference

 

to

 

a

 

type_info

 

that

 

represents

 

the

 

type

 

of

 

the

 

expression.

 

Reference

 

to

 

a

 

polymorphic

 

type

 

The

 

type_info

 

for

 

the

 

complete

 

object

 

referred

 

to.

 

Pointer

 

to

 

a

 

polymorphic

 

type

 

The

 

dynamic

 

type

 

of

 

the

 

complete

 

object

 

pointed

 

to.

 

Note:

 

If

 

the

 

pointer

 

is

 

zero,

 

the

 

typeid

 

expression

 

throws

 

bad_typeid

 

exception.

 

Nonpolymorphic

 

type

 

The

 

type_info

 

that

 

represents

 

the

 

static

 

type

 

of

 

the

 

expression.

 

Note:

 

The

 

expression

 

is

 

not

 

evaluated.

   

Using

 

the

 

typeid

 

Operator

 

in

 

Expressions

 

The

 

examples

 

in

 

Figure

 

331

 

use

 

the

 

typeid

 

operator

 

in

 

expressions

 

that

 

compare

 

the

 

run-time

 

type

 

of

 

objects

 

in

 

the

 

employee

 

class

 

hierarchy:

  

//

 

...

 

employee

 

*pe

 

=

 

new

 

manager;

 

employee&

 

re

 

=

 

*pe;

 

//

 

...

    

typeid(pe)

 

==

 

typeid(employee*)

     

//

  

1.

 

True

 

-

 

not

 

a

 

polymorphic

 

type1

    

typeid(&re)

 

==

 

typeid(employee*)

    

//

  

2.

 

True

 

-

 

not

 

a

 

polymorphic

 

type2

    

typeid(*pe)

 

==

 

typeid(manager)

      

//

  

3.

 

True

 

-

 

*pe

 

represents

 

a

 

polymorphic

 

type3

    

typeid(re)

 

==

 

typeid(manager)

       

//

  

4.

 

True

 

-

 

re

 

represents

 

the

 

object

 

manager3

      

typeid(pe)

 

==

 

typeid(manager*)

      

//

  

5.

 

False

 

-

 

static

 

type

 

of

 

pe

 

returned4

    

typeid(pe)

 

==

 

typeid(employee)

      

//

  

6.

 

False

 

-

 

static

 

type

 

of

 

pe

 

returned4

    

typeid(pe)

 

==

 

typeid(manager)

       

//

  

7.

 

False

 

-

 

static

 

type

 

of

 

pe

 

returned4

      

typeid(*pe)

 

==

 

typeid(employee)

     

//

  

8.

 

False

 

-

 

dynamic

 

type

 

of

 

expression

 

is

 

manager

    

typeid(re)

 

==

 

typeid(employee)

      

//

  

9.

 

False

 

-

 

re

 

actually

 

represents

 

manager

    

typeid(&re)

 

==

 

typeid(manager*)

     

//

 

10.

 

False

 

-

 

manager*

 

not

 

the

 

static

 

type

 

of

 

re

 

//

 

...

 

Figure

 

331.

 

Examples

 

of

 

typeid

 

operator

 

in

 

Expressions.

   

514

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Notes:

  

1.

   

In

 

the

 

first

 

comparison,

 

pe

 

is

 

a

 

pointer

 

(that

 

is,

 

not

 

a

 

polymorphic

 

type);

 

therefore,

 

the

 

expression

 

typeid(pe)

 

returns

 

the

 

static

 

type

 

of

 

pe,

 

which

 

is

 

equivalent

 

to

 

employee*.

 

2.

   

In

 

the

 

second

 

expression,

 

re

 

represents

 

the

 

addess

 

of

 

the

 

object

 

referred

 

to

 

(that

 

is,

 

not

 

a

 

polymorphic

 

type);

 

therefore,

 

the

 

expression

 

typeid(re)

 

returns

 

the

 

static

 

type

 

of

 

re,

 

which

 

is

 

a

 

pointer

 

to

 

employee.

 

3.

   

In

 

the

 

third

 

and

 

fourth

 

comparisons,

 

the

 

type

 

returned

 

by

 

typeid

 

represents

 

the

 

dynamic

 

type

 

of

 

the

 

expression

 

only

 

when

 

the

 

expression

 

represents

 

a

 

polymorphic

 

type.

 

4.

   

Comparisons

 

5,

 

6,

 

and

 

7

 

are

 

false

 

because

 

it

 

is

 

the

 

type

 

of

 

the

 

expression

 

(pe)

 

that

 

is

 

examined,

 

not

 

the

 

type

 

of

 

the

 

object

 

pointed

 

to

 

by

 

pe.

These

 

examples

 

do

 

not

 

directly

 

manipulate

 

type_info

 

objects.

 

Using

 

the

 

typeid

 

operator

 

with

 

built-in

 

types

 

requires

 

interaction

 

with

 

type_info

 

objects:

    

The

 

type_info

 

Class

 

To

 

use

 

the

 

typeid

 

operator

 

in

 

Run-Time

 

Type

 

Identification

 

(RTTI)

 

you

 

must

 

include

 

the

 

C++

 

standard

 

header

 

<typeinfo.h>

 

This

 

header

 

defines

 

these

 

classes:

 

type_info

 

Describes

 

the

 

RTTI

 

available

 

to

 

the

 

implementation.

 

It

 

is

 

a

 

polymorphic

 

type

 

that

 

supplies

 

comparison

 

and

 

collation

 

operators,

 

and

 

provides

 

a

 

member

 

function

 

that

 

returns

 

the

 

name

 

of

 

the

 

type

 

represented.

  

The

 

copy

 

constructor

 

and

 

the

 

assignment

 

operator

 

for

 

the

 

class

 

type_info

 

are

 

private;

 

objects

 

of

 

this

 

type

 

cannot

 

be

 

copied.

 

bad_cast

 

Defines

 

the

 

type

 

of

 

objects

 

thrown

 

as

 

exceptions

 

to

 

report

 

dynamic

 

cast

 

expressions

 

that

 

have

 

failed.

 

bad_typeid

 

Defines

 

the

 

type

 

of

 

objects

 

thrown

 

as

 

exceptions

 

to

 

report

 

a

 

null

 

pointer

 

in

 

a

 

typeid

 

expression.

Using

 

RTTI

 

in

 

Constructors

 

and

 

Destructors

 

The

 

typeid

 

and

 

dynamic_cast

 

operators

 

can

 

be

 

used

 

in

 

constructors

 

or

 

destructors,

 

or

 

in

 

functions

 

called

 

from

 

a

 

constructor

 

or

 

a

 

destructor.

 

If

 

the

 

operand

 

of

 

dynamic_cast

 

used

 

refers

 

to

 

an

 

object

 

under

 

construction

 

or

 

destruction,

 

typeid

 

returns

 

the

 

type_info

 

representing

 

the

 

class

 

of

 

the

 

constructor

 

or

 

destructor.

 

If

 

the

 

operand

 

of

 

dynamic_cast

 

refers

 

to

 

an

 

object

 

under

 

construction

 

or

 

destruction,

 

the

 

object

 

is

 

considered

 

to

 

be

 

a

 

complete

 

object

 

that

 

has

 

the

 

type

 

of

 

the

 

constructor’s

 

or

 

destructor’s

 

class.

 

int

 

i;

 

//

 

...

    

typeid(i)

 

==

 

typeid(int)

    

//

 

True

    

typeid(8)

 

==

 

typeid(int)

    

//

 

True

 

//

 

...

 

Figure

 

332.

 

Examples

 

of

 

typeid

 

operators

  

Chapter

 

30.

 

Casting

 

with

 

Run-Time

 

Type

 

Information

 

515



The

 

result

 

of

 

the

 

typeid

 

and

 

dynamic_cast

 

operations

 

is

 

undefined

 

if

 

the

 

operand

 

refers

 

to

 

an

 

object

 

under

 

construction

 

or

 

destruction,

 

and

 

if

 

the

 

static

 

type

 

of

 

the

 

operand

 

is

 

not

 

an

 

object

 

of

 

the

 

constructor’s

 

or

 

destructor’s

 

class

 

or

 

one

 

of

 

its

 

bases.

 

ILE

 

C++

 

Extensions

 

to

 

RTTI

 

The

 

ILE

 

C++

 

extended_type_info

 

class

 

was

 

designed

 

to

 

provide

 

support

 

for

 

implementing

 

a

 

persistent

 

object

 

store.

 

The

 

basic

 

operations

 

that

 

must

 

be

 

supported

 

are:

 

v

   

Allocation

 

of

 

memory

 

of

 

an

 

object

 

v

   

Allocation

 

of

 

memory

 

for

 

an

 

array

 

of

 

objects

 

v

   

Initial

 

construction

 

of

 

an

 

object

 

v

   

Initial

 

construction

 

of

 

an

 

array

 

of

 

objects

 

v

   

Copy

 

construction

 

of

 

an

 

object

 

v

   

Copy

 

constuction

 

of

 

an

 

array

 

of

 

objects

Additional

 

operations

 

for

 

destroy

 

and

 

deallocation

 

of

 

memory

 

are

 

also

 

provided

 

to

 

detect

 

an

 

exception

 

that

 

occurs

 

during

 

construction.

 

These

 

operations

 

are:

 

v

   

Destruction

 

of

 

an

 

object

 

v

   

Destruction

 

of

 

an

 

array

 

of

 

objects

 

v

   

Destruction

 

of

 

memory

 

for

 

an

 

object

 

v

   

Deallocation

 

of

 

memory

 

for

 

an

 

array

 

of

 

objects

The

 

extended_type_info

 

Classes

 

Figure

 

333

 

on

 

page

 

518

 

is

 

a

 

code

 

sample

 

that

 

uses

 

extended_type_info

 

classes.

 

The

 

extended_type_infoclass

 

definitions

 

are:

 

size()

 

Size

 

of

 

the

 

type

 

represented

 

by

 

the

 

extended_type_info

 

object.

 

create(void*)

 

This

 

function

 

is

 

called

 

to

 

create

 

an

 

object

 

of

 

the

 

type

 

represented

 

by

 

the

 

extended_type_info

 

object

 

at

 

the

 

storage

 

location

 

pointed

 

to

 

by

 

at.

 

create(void*,

 

size_t)

 

This

 

function

 

is

 

called

 

to

 

create

 

an

 

array

 

of

 

objects

 

of

 

the

 

type

 

represented

 

by

 

the

 

extended_type_info

 

object

 

at

 

the

 

storage

 

location

 

pointed

 

to

 

by

 

at.

 

If

 

any

 

exceptions

 

are

 

thrown

 

during

 

construction,

 

create()

 

destroys

 

the

 

array

 

elements

 

that

 

were

 

already

 

constructed

 

before

 

rethrowing

 

the

 

exception.

 

copy(void*

 

to,

 

const

 

void*

 

from)

 

This

 

function

 

is

 

called

 

to

 

copy

 

an

 

object

 

of

 

the

 

type

 

represented

 

by

 

the

 

extended_type_info

 

object

 

into

 

the

 

storage

 

location

 

pointed

 

to

 

by

 

to,

 

using

 

the

 

value

 

of

 

the

 

object

 

referred

 

to

 

by

 

from.

 

copy(void*

 

to,

 

const

 

void*

 

from,

 

size_t)

 

This

 

function

 

is

 

called

 

to

 

copy

 

an

 

array

 

of

 

objects

 

of

 

the

 

type

 

represented

 

by

 

the

 

extended_type_info

 

object

 

into

 

the

 

storage

 

location

 

pointed

 

to

 

by

 

to,

 

using

 

the

 

value

 

of

 

the

 

object

 

referred

 

to

 

by

 

from.

 

If

 

any

 

exceptions

 

are

 

thrown

 

during

 

construction,

 

copy()

 

destroys

 

the

 

array

 

elements

 

that

 

were

 

already

 

constructed

 

before

 

rethrowing

 

the

 

exception.

   

516

 

ILE

 

C/C++

 

Programmer’s

 

Guide



destroy(void*)

 

This

 

function

 

is

 

called

 

to

 

destroy

 

an

 

object

 

of

 

the

 

type

 

represented

 

by

 

the

 

extended_type_info

 

object

 

at

 

the

 

storage

 

location

 

pointed

 

to

 

by

 

at.

 

destroy(void*,

 

size_t)

 

This

 

function

 

is

 

called

 

to

 

destroy

 

an

 

array

 

of

 

objects

 

of

 

the

 

type

 

represented

 

by

 

the

 

extended_type_info

 

object

 

at

 

the

 

storage

 

location

 

pointed

 

to

 

by

 

at.

 

If

 

any

 

exceptions

 

are

 

thrown

 

during

 

destruction,

 

destroy()

 

destroys

 

the

 

remaining

 

array

 

elements

 

that

 

were

 

already

 

constructed

 

before

 

rethrowing

 

the

 

exception.

 

If

 

another

 

exception

 

is

 

encountered

 

during

 

the

 

destruction

 

of

 

the

 

remaining

 

elements,

 

destroy()

 

calls

 

terminate().

 

allocObject()

 

This

 

function

 

is

 

called

 

to

 

allocate

 

memory

 

for

 

an

 

object

 

of

 

the

 

type

 

represented

 

by

 

the

 

extended_type_info

 

object.

 

No

 

initialization

 

is

 

performed.

 

The

 

user

 

is

 

expected

 

to

 

use

 

the

 

create(void*)

 

or

 

copy(void*,

 

const

 

void*)

 

function

 

to

 

initialize

 

the

 

new

 

memory.

 

allocArray(size_t)

 

This

 

function

 

is

 

called

 

to

 

allocate

 

memory

 

for

 

an

 

array

 

of

 

objects

 

of

 

the

 

type

 

represented

 

by

 

the

 

extended_type_info

 

object.

 

No

 

initialization

 

is

 

performed.

 

The

 

user

 

is

 

expected

 

to

 

use

 

the

 

create(void*,

 

size_t)

 

or

 

copy(void*,

 

const

 

void*,

 

size_t)

 

function

 

to

 

initialize

 

the

 

new

 

memory.

 

deallocObject(void*)

 

This

 

function

 

is

 

called

 

to

 

deallocate

 

an

 

object

 

of

 

the

 

type

 

represented

 

by

 

the

 

extended_type_info

 

object.

 

No

 

destruction

 

is

 

performed

 

beforehand.

 

The

 

user

 

is

 

expected

 

to

 

use

 

the

 

destroy(void*)

 

to

 

terminate

 

the

 

object

 

before

 

deallocating

 

the

 

memory.

 

deallocArray(void*,

 

size_t)

 

This

 

function

 

is

 

called

 

to

 

deallocate

 

an

 

array

 

of

 

objects

 

of

 

the

 

type

 

represented

 

by

 

the

 

extended_type_info

 

object.

 

No

 

destruction

 

is

 

performed

 

beforehand.

 

The

 

user

 

is

 

expected

 

to

 

use

 

the

 

destroy(void*,

 

size_t)

 

to

 

terminate

 

an

 

array

 

before

 

deallocating

 

the

 

memory.

 

linkageInfo()

 

This

 

function

 

returns

 

the

 

mangled

 

name

 

of

 

the

 

class

 

type.

   

Chapter

 

30.

 

Casting

 

with

 

Run-Time

 

Type

 

Information

 

517



class

 

extended_type_info

 

:

 

public

 

type_info

 

{

   

public:

  

~extended_type_info();

       

virtual

 

size_t

 

size()

 

const=0;

       

virtual

 

void*

 

create(void*

 

at)

 

const=0;

  

//object

     

virtual

 

void*

 

create(void*

 

at,

 

size_t

 

count)

 

const=0;

 

//

 

array

       

virtual

 

void*

 

copy

 

(void*

 

to,

 

const

 

void*

 

from)

 

const=0;

  

//object

     

virtual

 

void*

 

copy

 

(void*

 

to,

 

const

 

void*

 

from,

 

size_t

 

count)

 

const=0;

     

//array

       

virtual

 

void*

 

destroy(void*

 

at)

 

const=0;

  

//object

     

virtual

 

void*

 

destroy(void*

 

at,

 

size_t

 

count)

 

const=0;

  

//array

       

virtual

 

void*

 

allocObject()

 

const=0;

  

//object

     

virtual

 

void*

 

allocArray(size_t

 

count)

 

const=0;

  

//array

       

virtual

 

void*

 

deallocObject(void*

 

at)

 

const=0;

  

//object

     

virtual

 

void*

 

deallocArray(void*

 

at,

 

size_t

 

count)

 

const=0;

  

//array

   

};

 

Figure

 

333.

 

ILE

 

Source

 

Showing

 

extended_type_info

 

Class

 

Types.

   

518

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Part

 

7.

 

Using

 

International

 

Locales

 

and

 

Coded

 

Character

 

Sets

 

This

 

part

 

describes

 

how

 

to:

 

v

   

Work

 

with

 

alternate

 

coded

 

character

 

sets

 

v

   

Use

 

international

 

locales

 

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

519



520

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

31.

 

Internationalizing

 

a

 

Program

 

This

 

chapter

 

describes

 

how

 

to:

 

v

   

Create

 

a

 

source

 

physical

 

file

 

with

 

a

 

specific

 

Coded

 

Character

 

Set

 

Identifier

 

(CCSID)

 

v

   

Change

 

the

 

CCSID

 

of

 

a

 

member

 

in

 

a

 

source

 

physical

 

file

 

to

 

the

 

CCSID

 

of

 

another

 

member

 

in

 

another

 

source

 

physical

 

file

 

v

   

Convert

 

the

 

CCSID

 

for

 

specific

 

source

 

statements

 

in

 

a

 

member

The

 

ILE

 

C/C++

 

compiler

 

recognizes

 

source

 

code

 

that

 

is

 

written

 

in

 

most

 

single-byte

 

EBCDIC

 

CCSID.

 

CCSID

 

290

 

is

 

not

 

recognized

 

because

 

it

 

does

 

not

 

have

 

the

 

same

 

code

 

points

 

for

 

the

 

lowercase

 

letters

 

a

 

to

 

z.

 

All

 

of

 

the

 

other

 

EBCDIC

 

CCSIDs

 

do

 

have

 

the

 

same

 

code

 

points

 

for

 

the

 

lowercase

 

letters

 

a-z.

 

String

 

literals

 

can

 

be

 

converted

 

back

 

to

 

CCSID

 

290

 

by

 

using

 

the

 

#pragma

 

convert

 

directive.

 

A

 

file

 

with

 

CCSID

 

290

 

still

 

compiles

 

because

 

the

 

ILE

 

C/C++

 

compiler

 

converts

 

the

 

file

 

to

 

CCSID

 

037

 

before

 

compiling.

 

CCSID

 

905

 

and

 

1026

 

are

 

not

 

recognized

 

because

 

the

 

"

 

character

 

varies

 

on

 

these

 

CCSIDs.

 

The

 

CRTCMOD/CRTCPPMOD

 

and

 

CRTBNDC/CRTBNDCPP

 

commands

 

do

 

not

 

support

 

the

 

SRCSTMF

 

parameter

 

in

 

a

 

mixed-byte

 

environment.

 

Double-byte

 

character

 

set

 

(DBCS)

 

source

 

code

 

requires

 

special

 

programming

 

considerations.

Note:

  

You

 

should

 

tag

 

the

 

source

 

physical

 

file

 

with

 

a

 

CCSID

 

value

 

number

 

if

 

the

 

CCSID

 

(determined

 

by

 

the

 

primary

 

language)

 

is

 

other

 

than

 

CCSID

 

037

 

(US

 

English).

 

Coded

 

Character

 

Set

 

Identifiers

 

A

 

Coded

 

Character

 

Set

 

Identifier

 

(CCSID)

 

comprises

 

a

 

specific

 

set

 

of

 

an

 

encoding

 

scheme

 

(EBCDIC,

 

ASCII,

 

or

 

8-bit

 

ASCII),

 

character

 

set

 

identifiers,

 

code

 

page

 

identifiers,

 

and

 

additional

 

coding-related

 

information

 

that

 

uniquely

 

identifies

 

the

 

coded

 

graphic

 

character

 

representation

 

used.

 

A

 

character

 

set

 

is

 

a

 

collection

 

of

 

graphic

 

characters.

 

Graphic

 

characters

 

are

 

symbols,

 

such

 

as

 

letters,

 

numbers,

 

and

 

punctuation

 

marks.

 

A

 

code

 

page

 

is

 

a

 

set

 

of

 

binary

 

identifiers

 

for

 

a

 

group

 

of

 

graphic

 

characters.

 

Code

 

points

 

are

 

binary

 

values

 

that

 

are

 

assigned

 

to

 

each

 

graphic

 

character,

 

to

 

be

 

used

 

for

 

entering,

 

storing,

 

changing,

 

viewing,

 

or

 

printing

 

information.

 

Character

 

Data

 

Representation

 

Architecture

 

(CDRA)

 

defines

 

the

 

CCSID

 

values

 

to

 

identify

 

the

 

code

 

points

 

used

 

to

 

represent

 

characters,

 

and

 

to

 

convert

 

the

 

character

 

data

 

as

 

needed

 

to

 

preserve

 

their

 

meanings.

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

521



Source

 

File

 

Conversions

 

to

 

CCSID

 

Your

 

ILE

 

C/C++

 

source

 

program

 

can

 

be

 

made

 

up

 

of

 

more

 

than

 

one

 

source

 

file.

 

You

 

can

 

have

 

a

 

root

 

source

 

member

 

and

 

multiple

 

secondary

 

source

 

files

 

(such

 

as

 

include

 

files

 

and

 

DDS

 

files).

 

If

 

any

 

secondary

 

source

 

files

 

are

 

tagged

 

with

 

CCSIDs

 

that

 

are

 

different

 

from

 

the

 

root

 

source

 

member,

 

their

 

contents

 

are

 

automatically

 

converted

 

to

 

the

 

CCSID

 

of

 

the

 

root

 

source

 

member

 

as

 

they

 

are

 

read

 

by

 

the

 

ILE

 

C/C++

 

compiler.

 

If

 

the

 

primary

 

source

 

physical

 

file

 

has

 

CCSID

 

65535,

 

the

 

job

 

CCSID

 

is

 

assumed

 

for

 

the

 

source

 

physical

 

file.

 

If

 

the

 

source

 

physical

 

file

 

has

 

CCSID

 

65535

 

and

 

the

 

job

 

is

 

CCSID

 

65535,

 

and

 

the

 

system

 

has

 

non-65535,

 

the

 

system

 

CCSID

 

value

 

is

 

assumed

 

for

 

the

 

source

 

physical

 

file.

 

If

 

the

 

primary

 

source

 

physical

 

file,

 

job,

 

and

 

system

 

have

 

CCSID

 

65535,

 

then

 

CCSID

 

037

 

is

 

assumed.

 

If

 

the

 

secondary

 

file,

 

job,

 

and

 

system

 

CCSID

 

is

 

65535,

 

then

 

the

 

CCSID

 

of

 

the

 

primary

 

source

 

physical

 

file

 

is

 

assumed,

 

and

 

no

 

conversion

 

takes

 

place.

 

The

 

compiler

 

converts

 

DBCS

 

source

 

files

 

to

 

CCSID

 

037.

 

Creating

 

a

 

Source

 

Physical

 

File

 

with

 

a

 

Coded

 

Character

 

Set

 

Identifier

 

You

 

specify

 

the

 

character

 

set

 

you

 

want

 

to

 

use

 

with

 

the

 

CCSID

 

parameter

 

when

 

you

 

create

 

a

 

source

 

physical

 

file.

 

The

 

default

 

for

 

the

 

CCSID

 

parameter

 

is

 

the

 

CCSID

 

of

 

the

 

job.

 

This

 

figure

 

shows

 

you

 

what

 

happens

 

when

 

you

 

create

 

a

 

program

 

object

 

that

 

has

 

a

 

root

 

source

 

member

 

with

 

CCSID

 

273

 

and

 

include

 

files

 

with

 

different

 

CCSIDs.

 

The

 

ILE

 

C

 

compiler

 

converts

 

the

 

include

 

files

 

to

 

CCSID

 

273.

 

The

 

program

 

object

 

is

 

created

 

with

 

the

 

same

 

CCSID

 

as

 

the

 

root

 

source

 

member.

  

Note:

  

Some

 

combinations

 

of

 

the

 

root

 

source

 

member

 

CCSID

 

and

 

the

 

include

 

file

 

CCSID

 

are

 

not

 

supported.

273 273037

273

273

Complied ’C’
Module Object

500

273

Root Source
Member

Converted Secondary Source Files

Include File Include File Include File

  

Figure

 

334.

 

Source

 

File

 

CCSID

 

Conversion

  

522

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Example:

 

The

 

following

 

example

 

shows

 

you

 

how

 

to

 

specify

 

CCSID

 

273

 

for

 

the

 

source

 

physical

 

file

 

QCSRC

 

in

 

library

 

MYLIB.

 

To

 

create

 

a

 

source

 

physical

 

file

 

with

 

CCSID

 

273,

 

type:

 

CRTSRCPF

 

FILE(MYLIB/QCSRC)

 

CCSID(273)

 

Changing

 

the

 

Coded

 

Character

 

Set

 

Identifier

 

(CCSID)

 

To

 

change

 

the

 

CCSID

 

of

 

the

 

source

 

physical

 

member

 

from

 

one

 

CCSID

 

to

 

another,

 

use

 

the

 

command

 

CPYF

 

with

 

parameter

 

FMTOPT(*MAP)

 

to

 

obtain

 

the

 

copy

 

of

 

the

 

source

 

physical

 

member

 

in

 

another

 

CCSID.

 

The

 

following

 

example

 

shows

 

you

 

how

 

to

 

change

 

a

 

member

 

in

 

a

 

source

 

file

 

with

 

CCSID

 

037

 

to

 

CCSID

 

273.

 

Example:

 

CRTSRCPF

 

FILE(MYLIB/NEWCCSID)

 

CCSID(273)

 

CPYF

 

FROMFILE(MYLIB/QCPPSRC)

 

TOFILE(MYLIB/NEWCCSID)

 

FROMMBR(HELLO)

 

TOMBR(HELLO)

    

MBROPT(*ADD)

 

FMTOPT(*MAP)

 

Notes:

  

1.

   

The

 

first

 

command

 

creates

 

CCSID

 

273.

 

2.

   

During

 

the

 

copy

 

file

 

operation,

 

the

 

character

 

data

 

in

 

the

 

from-member

 

is

 

converted

 

between

 

the

 

from-file

 

field

 

CCSID

 

and

 

the

 

to-file

 

field

 

CCSID

 

as

 

long

 

as

 

a

 

valid

 

conversion

 

is

 

defined.

 

3.

   

The

 

HELLO

 

member

 

in

 

the

 

file

 

NEWCCSID

 

is

 

copied

 

to

 

QCSRC

 

with

 

CCSID

 

273.

 

If

 

CCSID

 

65535

 

or

 

*HEX

 

is

 

used,

 

it

 

indicates

 

that

 

character

 

data

 

in

 

the

 

fields

 

is

 

treated

 

as

 

bit

 

data

 

and

 

is

 

not

 

converted.

Converting

 

String

 

Literals

 

in

 

a

 

Source

 

File

 

You

 

can

 

convert

 

the

 

string

 

literals

 

in

 

a

 

source

 

program

 

from

 

the

 

point

 

that

 

the

 

#pragma

 

convert

 

directive

 

is

 

specified

 

to

 

the

 

end

 

of

 

the

 

program.

 

The

 

#pragma

 

convert

 

directive

 

specifies

 

the

 

CCSID

 

to

 

use

 

for

 

converting

 

the

 

string

 

literals

 

from

 

that

 

point

 

onward

 

in

 

the

 

program.

 

The

 

conversion

 

continues

 

until

 

the

 

end

 

of

 

the

 

source

 

or

 

until

 

another

 

#pragma

 

convert

 

directive

 

is

 

specified.

 

If

 

a

 

CCSID

 

with

 

the

 

value

 

65535

 

is

 

specified,

 

the

 

CCSID

 

of

 

the

 

root

 

source

 

member

 

is

 

assumed.

 

If

 

the

 

source

 

file

 

CCSID

 

value

 

is

 

65535,

 

CCSID

 

037

 

is

 

assumed.

 

The

 

CCSID

 

of

 

the

 

string

 

literals

 

before

 

conversion

 

is

 

the

 

same

 

CCSID

 

as

 

the

 

root

 

source

 

member.

 

The

 

CCSID

 

can

 

be

 

either

 

EBCDIC

 

or

 

ASCII.

 

Example:

 

The

 

following

 

example

 

shows

 

you

 

how

 

to

 

convert

 

the

 

string

 

literals

 

in

 

T1520CCS

 

to

 

ASCII

 

CCSID

 

850

 

even

 

though

 

the

 

CCSID

 

of

 

the

 

source

 

physical

 

file

 

is

 

EBCDIC.

 

Note:

  

In

 

this

 

example,

 

the

 

TGTCCSID

 

parameter

 

is

 

defaulted

 

to

 

*SOURCE.

 

1.

   

Type:

 

CRTBNDC

 

PGM(MYLIB/T1520CCS)

 

SRCFILE(QCPPLE/QACSRC)

 

To

 

create

 

the

 

program

 

T1520CCS

 

using

 

the

 

following

 

source:

    

Chapter

 

31.

 

Internationalizing

 

a

 

Program

 

523



The

 

CRTBNDC

 

command

 

creates

 

the

 

program

 

T1520CCS

 

in

 

library

 

MYLIB.

 

Program

 

T1520CCS

 

converts

 

the

 

EBCDIC

 

string

 

Hello

 

World

 

to

 

ASCII

 

CCSID

 

850.

 

2.

   

To

 

run

 

the

 

program

 

T1520CCS,

 

type:

 

CALL

 

PGM(MYLIB/T1520CCS)

 

The

 

output

 

is

 

as

 

follows:

 

EBCDIC_str(hex)

 

=

 

C8

 

85

 

93

 

93

 

96

 

40

 

E6

 

96

 

99

 

93

 

84

 

ASCII_str(hex)

 

=

 

48

 

65

 

6C

 

6C

 

6F

 

20

 

57

 

6F

 

72

 

6C

 

64

 

Press

 

ENTER

 

to

 

end

 

terminal

 

session.

 

Using

 

Unicode

 

Support

 

for

 

Wide-Character

 

Literals

 

Using

 

Unicode

 

character

 

storage

 

permits

 

processing

 

of

 

characters

 

in

 

multiple

 

character

 

sets

 

without

 

loss

 

of

 

data

 

integrity.

 

Wide-character

 

literals

 

and

 

strings

 

can

 

be

 

stored

 

as

 

UCS-2

 

characters

 

(Unicode

 

CCSID

 

13488),

 

which

 

minimizes

 

the

 

need

 

for

 

code

 

page

 

conversions

 

when

 

developing

 

applications

 

for

 

international

 

use.

 

The

 

ILE

 

C/C++

 

compiler

 

supports

 

Unicode

 

character

 

storage.

 

Representation

 

of

 

Wide-Character

 

Literals

 

Wide-character

 

literals

 

can

 

be

 

represented

 

in

 

various

 

ways.

 

These

 

representations

 

and

 

how

 

they

 

are

 

handled

 

are

 

described

 

below:

 

Trigraphs

 

Trigraph

 

characters

 

used

 

as

 

literals

 

are

 

converted

 

to

 

their

 

corresponding

 

Unicode

 

characters.

 

For

 

example:

 

wchar_t

 

*wcs

 

=

 

L"

 

??(";

 

is

 

equivalent

 

to:

 

wchar_t

 

wcs[]

 

=

 

{0x0020,

 

0x005B,

 

0x0000};

 

/*

 

This

 

program

 

uses

 

the

 

#pragma

 

convert

 

directive

 

to

 

convert

         

*/

 

/*

 

string

 

literals.

                                                   

*/

 

#include

 

<stdio.h>

 

char

 

EBCDIC_str[20]

 

=

 

"Hello

 

World";

 

#pragma

 

convert(850)

              

/*

 

Use

 

the

 

#pragma

 

convert

          

*/

                                   

/*

 

directive

 

to

 

convert

 

the

         

*/

                                   

/*

 

string

 

to

 

ASCII,

 

CCSID

 

850.

      

*/

 

char

 

ASCII_str[20]

 

=

 

"Hello

 

World";

 

#pragma

 

convert(0)

                

/*

 

Stop

 

string

 

conversion.

          

*/

 

int

 

main(void)

 

{

   

int

 

i;

   

printf

 

("EBCDIC_str(hex)

 

=

 

");

  

/*

 

Print

 

hex

 

value

 

of

 

EBCDIC

        

*/

   

for

 

(i

 

=

 

0;

 

i

 

<

 

11;

 

++i)

        

/*

 

string.

                          

*/

       

printf

 

("%X

 

",EBCDIC_str[i]);

   

printf

 

("\n\n");

   

printf

 

("ASCII_str(hex)

 

=

 

");

   

/*

 

Print

 

hex

 

value

 

of

 

ASCII

         

*/

   

for

 

(i

 

=

 

0;

 

i

 

<

 

11;

 

++i)

        

/*

 

string.

                          

*/

       

printf

 

("%X

 

",ASCII_str[i]);

 

}

 

Figure

 

335.

 

T1520CCS

 

—

 

ILE

 

C

 

Source

 

to

 

Convert

 

Strings

 

and

 

Literals

  

524

 

ILE

 

C/C++

 

Programmer’s

 

Guide



For

 

more

 

information

 

about

 

trigraphs,

 

see

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference.

 

Character

 

Escape

 

Codes

 

(\a,

 

\b,

 

\f,

 

\n,

 

\r,

 

\t,

 

\v,

 

\’,

 

\″,

 

\?)

 

Character

 

escape

 

codes

 

are

 

converted

 

to

 

their

 

corresponding

 

Unicode

 

escape

 

codes.

 

For

 

example:

 

wchar_t

 

*wcs

 

=

 

L"

 

\t

 

\n";

 

is

 

equivalent

 

to:

 

wchar_t

 

wcs[]

 

=

 

{0x0020,

 

0x0009,

 

0x0020,

 

0x000A,

 

0x0000};

 

Numeric

 

Escape

 

Codes

 

(\xnnnn,

 

\ooo)

 

Numeric

 

escape

 

codes

 

are

 

not

 

converted

 

to

 

Unicode.

 

Instead,

 

the

 

numeric

 

portion

 

of

 

the

 

literal

 

is

 

preserved

 

and

 

assumed

 

to

 

be

 

a

 

Unicode

 

character

 

represented

 

in

 

hexadecimal

 

or

 

octal

 

form.

 

For

 

example:

 

wchar_t

 

*wcs

 

=

 

L"

 

\x4145";

 

is

 

equivalent

 

to:

 

wchar_t

 

wcs[]

 

=

 

{0x0020,

 

0x4145,

 

0x0000};

 

Specifying

 

\xnn

 

in

 

a

 

wchar_t

 

string

 

literal

 

is

 

equivalent

 

to

 

specifying

 

\x00nn.

  

Hexadecimal

 

constant

 

values

 

larger

 

than

 

0xFF

 

are

 

normally

 

considered

 

invalid.

 

Setting

 

the

 

*LOCALEUCS2

 

option

 

changes

 

this

 

to

 

allow

 

2–byte

 

hexadecimal

 

initialization

 

of

 

wchar_t

 

types

 

only.

 

For

 

example:

 

wchar_t

 

wc

 

=

 

L’\x4145’;

  

/*

 

Valid

 

only

 

with

 

*LOCALEUCS2

 

option,

 

*/

                          

/*

 

otherwise

 

an

 

out

 

of

 

bounds

 

error

    

*/

                          

/*

 

will

 

result.

                        

*/

   

char

     

c

 

=

  

’\x4145’;

  

/*

 

Not

 

valid

 

due

 

to

 

size

 

restriction.

  

*/

                          

/*

 

Error

 

will

 

result

 

with

 

or

 

without

   

*/

                          

/*

 

specifying

 

*LOCALEUCS2

 

option.

      

*/

 

Note:

  

Numeric

 

hexadecimal

 

escape

 

codes

 

are

 

not

 

validated

 

other

 

than

 

to

 

ensure

 

type

 

size-limits

 

are

 

not

 

exceeded.

DBCS

 

Characters

 

DBCS

 

characters

 

entered

 

as

 

hexadecimal

 

escape

 

sequences

 

are

 

not

 

converted

 

to

 

Unicode.

 

They

 

are

 

stored

 

as

 

received.

Enabling

 

Unicode

 

Character

 

Set

 

Support

 

To

 

enable

 

Unicode

 

character

 

set

 

support,

 

specify

 

LOCALETYPE(*LOCALEUCS2)

 

on

 

the

 

CRTCMOD/CRTCMODCPP

 

or

 

CRTBNDC/CRTBNDCPP

 

command

 

line.

 

When

 

this

 

option

 

is

 

selected,

 

the

 

__UCS2__

 

macro

 

is

 

defined.

 

Wide-character

 

literals

 

are

 

interpreted

 

using

 

the

 

CCSID

 

of

 

the

 

root

 

source

 

file,

 

then

 

translated

 

to

 

the

 

Unicode

 

CCSID

 

(13488)

 

when

 

stored.

 

Effect

 

of

 

Unicode

 

on

 

#pragma

 

convert()

 

Operations

 

When

 

LOCALETYPE(*LCOALEUTFp)

 

is

 

specified,

 

wide-character

 

literals

 

are

 

always

 

represented

 

in

 

UTF-32

 

format,

 

regardless

 

of

 

the

 

CCSID

 

used

 

by

 

the

 

root

 

source

 

file.

 

In

 

addition,

 

#pragma

 

convert()

 

will

 

have

 

no

 

effect

 

on

 

the

 

wide-character

 

literals.

 

When

 

LOCALETYPE(*LOCALEUCS2)

 

is

 

specified,

 

wide-character

 

literals

 

will

 

always

 

represent

 

a

 

UCS-2

 

character

 

literal

 

regardless

 

of

 

CCSID

 

used

 

by

 

the

 

root

   

Chapter

 

31.

 

Internationalizing

 

a

 

Program

 

525



source

 

file.

 

In

 

addition,

 

#pragma

 

convert()

 

will

 

ignore

 

wide-character

 

literals

 

when

 

converting

 

characters

 

from

 

one

 

codepage

 

to

 

another.

 

Example:

 

This

 

example

 

assumes

 

a

 

CCSID

 

37

 

source:

 

#include

 

<stdio.h>

 

#include

 

<wchar.h>

     

void

 

main

 

()

 

{

 

#pragma

 

convert

 

(500)

     

wchar_t

 

wcs1[]

 

=

 

L"[]";

     

char

    

str1[]

 

=

  

"[]";

 

#pragma

 

convert

 

(0)

     

wchar_t

 

wcs2[]

 

=

 

L"[]";

     

char

    

str2[]

 

=

  

"[]";

     

printf("str1

 

=

 

%x

 

%x\n",

 

str1[0],

 

str1[1]);

     

printf("str2

 

=

 

%x

 

%x\n",

 

str2[0],

 

str2[1]);

     

printf("wcs1

 

=

 

%04x

 

%04x\n",

 

wcs1[0],

 

wcs1[1]);

     

printf("wcs2

 

=

 

%04x

 

%04x\n",

 

wcs2[0],

 

wcs2[1]);

 

}

 

Running

 

the

 

program

 

would

 

result

 

in

 

output

 

similar

 

to

 

that

 

shown

 

below.

     

str1

 

=

 

4a

 

5a

     

str2

 

=

 

ba

 

bb

     

wcs1

 

=

 

005b

 

005d

     

wcs2

 

=

 

005b

 

005d

 

GB18030

 

Code

 

Page

 

Support

 

The

 

Chinese

 

government

 

requires

 

support

 

of

 

the

 

GB18030

 

code

 

page

 

in

 

all

 

products

 

sold

 

in

 

China.

 

GB18030

 

is

 

a

 

Chinese

 

standard

 

that

 

specifies

 

a

 

code

 

page

 

and

 

a

 

mapping

 

table

 

to

 

Unicode.

 

The

 

key

 

points

 

in

 

this

 

standard

 

are:

 

v

   

The

 

code

 

page

 

uses

 

multi-byte

 

encoding.

 

v

   

There

 

is

 

a

 

direct

 

mapping

 

to

 

Unicode

 

(all

 

the

 

code

 

points

 

available

 

in

 

GB18030

 

are

 

in

 

Unicode).

 

v

   

There

 

are

 

more

 

than

 

64

 

K

 

characters.

This

 

means

 

that

 

GB18030

 

characters

 

can

 

be

 

represented

 

using

 

Unicode,

 

we

 

use:

 

v

   

UTF-8

 

to

 

represent

 

the

 

narrow

 

characters

 

and

 

string

 

literals

 

v

   

UTF-32

 

for

 

the

 

wide-characters

 

and

 

string

 

literals

The

 

basic

 

character

 

set

 

that

 

the

 

compiler

 

processes

 

is

 

UTF-8.

 

The

 

user

 

source

 

does

 

not

 

have

 

to

 

be

 

encoded

 

in

 

UTF-8

 

because

 

the

 

compiler

 

converts

 

it

 

into

 

UTF-8

 

for

 

the

 

internal

 

processing.

 

Generating

 

Wide

 

Characters

 

and

 

String

 

Literals

 

in

 

UTF-32

 

To

 

generate

 

wide

 

characters

 

and

 

string

 

literals

 

in

 

UTF-32,

 

use

 

the

 

LOCALETYPE(*LOCALEUTF)

 

option

 

with:

 

v

      

Either

 

the

 

Create

 

C

 

Module

 

(CRTCMOD)

 

or

 

the

 

Create

 

Bound

 

C

 

(CRTBNDC)

 

command

 

v

      

Either

 

the

 

Create

 

C++

 

Module

 

(CRTCPPMOD)

 

or

 

the

 

Create

 

Bound

 

C++

 

(CRTBNDCPP)

 

command

  

526

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Considerations

 

When

 

LOCALETYPE(*LOCALEUTFp)

 

is

 

specified,

 

wide-character

 

literals

 

are

 

always

 

represented

 

in

 

UTF-32

 

format

 

regardless

 

of

 

the

 

CCSID

 

used

 

by

 

the

 

root

 

source

 

file.

 

In

 

addition,

 

#pragma

 

convert()

 

has

 

no

 

effect

 

on

 

the

 

wide-character

 

literals.

 

The

 

LOCALETYPE(*LOCALEUTF)

 

option

 

requires

 

that

 

the

 

target

 

CCSID

 

be

 

1208.

 

When

 

a

 

default

 

or

 

specified

 

target

 

CCSID

 

does

 

not

 

map

 

to

 

1208:

 

v

   

An

 

override

 

allows

 

compilation

 

to

 

proceed.

 

v

   

A

 

diagnostic

 

warning

 

CZS2118

 

is

 

issued.

A

 

new-line

 

character

 

(’\n’)

 

is

 

converted

 

to

 

the

 

value

 

0x0a

 

regardless

 

of

 

the

 

SYSIFCOPT

 

option

 

(

 

*IFS64IO

 

||

 

*IFSIO

 

||

 

*NOIFSIO).

 

Translation

 

of

 

narrow

 

characters

 

includes

 

values

 

above

 

the

 

basic

 

character

 

set.

 

An

 

example

 

of

 

such

 

character

 

is

 

’¬’,

 

which

 

has

 

the

 

2–byte

 

value

 

0xC2AC

 

in

 

UTF-8.

   

When

 

the

 

LOCALETYPE(*LOCALEUTF)

 

option

 

is

 

specified,

 

the

 

compiler

 

predefines

 

’wchar_t’

 

as

 

an

 

unsigned

 

integer

 

with

 

4–byte

 

size

 

and

 

alignment

 

(otherwise

 

’wchar-t’

 

remains

 

an

 

unsigned

 

short

 

integer

 

with

 

2–byte

 

size

 

and

 

alignment).

   

When

 

the

 

LOCALETYPE(*LOCALEUTF)

 

option

 

is

 

specified,

 

the

 

definition

 

for

 

an

 

unsigned

 

integer

 

with

 

4–byte

 

size

 

and

 

alignment

 

is

 

used.

 

This

 

definition

 

is

 

provided

 

in

 

<stdlib.h>.

 

Targeting

 

a

 

CCSID

 

The

 

TGTCCSID

 

parameter

 

allows

 

the

 

compiler

 

to:

 

v

   

Process

 

source

 

files

 

from

 

a

 

variety

 

of

 

CCSIDs

 

or

 

code

 

pages

 

(in

 

the

 

case

 

of

 

a

 

source

 

stream

 

file)

 

v

   

Target

 

a

 

module

 

CCSID

 

different

 

from

 

that

 

of

 

the

 

root

 

source

 

file,

 

as

 

long

 

as

 

the

 

translation

 

between

 

the

 

source

 

character

 

set

 

and

 

the

 

target

 

module

 

CCSID

 

is

 

installed

 

into

 

the

 

operating

 

system.

Target

 

CCSID

 

(TGTCCSID)

 

is

 

a

 

parameter

 

used

 

with

 

the

 

following

 

ILE

 

C/C++

 

commands:

 

v

   

Create

 

C

 

Module

 

(CRTCMOD)

 

v

   

Create

 

C++

 

Module

 

(CRTCPPMOD)

 

v

   

Create

 

Bound

 

C

 

(CRTBNDC)

 

v

   

Create

 

Bound

 

C++

 

(CRTBNDCPP)

How

 

the

 

ILE

 

C/C++

 

Compiler

 

Converts

 

a

 

Source

 

File

 

to

 

a

 

Target

 

CCSID

   

When

 

the

 

TGTCCSID

 

differs

 

from

 

the

 

source

 

file’s

 

CCSID,

 

the

 

ILE

 

C

 

compiler

 

converts

 

the

 

source

 

files

 

to

 

the

 

TGTCCSID

 

and

 

processes

 

files.

 

This

 

ensures

 

that

 

the

 

target

 

module

 

and

 

all

 

it’s

 

character

 

data

 

components

 

(for

 

example,

 

listing,

 

string

 

pool)

 

are

 

in

 

the

 

desired

 

TGTCCSID.

 

You

 

can

 

then

 

develop

 

in

 

one

 

character

 

set

 

and

 

target

 

another.

 

The

 

argument

 

defaults

 

to

 

the

 

source

 

file’s

 

character

 

set

 

so

 

the

 

default

 

behavior

 

is

 

backward

 

compatible

 

(with

 

the

 

exception

 

of

 

290,

 

930

 

and

 

5026).

Note:

    

C++

 

converts

 

only

 

the

 

string

 

literals

 

(not

 

the

 

source)

 

to

 

the

 

TGTCCSID.

  

Chapter

 

31.

 

Internationalizing

 

a

 

Program

 

527



Providing

 

support

 

for

 

more

 

source

 

character

 

sets,

 

increases

 

the

 

NLS

 

usability

 

of

 

the

 

compilers.

 

CCSIDs

 

290,

 

930

 

and

 

5026

 

are

 

now

 

supported.

 

The

 

TGTCCSID

 

parameter

 

provides

 

solutions

 

to

 

more

 

complex

 

NLS

 

programming

 

issues.

 

For

 

example,

 

several

 

modules

 

with

 

different

 

module

 

CCSIDs

 

may

 

be

 

compiled

 

from

 

the

 

same

 

source

 

by

 

simply

 

recompiling

 

the

 

source

 

with

 

different

 

TGTCCSID

 

values.

 

Literals,

 

Comments,

 

and

 

Identifiers

 

The

 

TGTCCSID

 

parameter

 

allows

 

you

 

to

 

choose

 

the

 

CCSID

 

of

 

the

 

resulting

 

module.

 

The

 

module’s

 

CCSID

 

identifies

 

the

 

coded

 

character

 

set

 

identifier

 

in

 

which

 

the

 

module’s

 

character

 

data

 

is

 

stored,

 

including

 

character

 

data

 

used

 

to

 

describe

 

literals,

 

comments

 

and

 

identifier

 

names

 

described

 

by

 

the

 

source

 

(with

 

the

 

exception

 

of

 

identifier

 

names

 

for

 

CCSIDs

 

5026,

 

930

 

and

 

290).

 

For

 

example,

 

if

 

the

 

root

 

source

 

file

 

has

 

a

 

CCSID

 

of

 

500

 

and

 

the

 

compiler

 

parameter

 

TGTCCSID

 

default

 

value

 

is

 

not

 

changed

 

(that

 

is,

 

*SOURCE),

 

the

 

behavior

 

is

 

as

 

before

 

with

 

the

 

resulting

 

module

 

CCSID

 

of

 

500.

 

All

 

string

 

and

 

character

 

literals,

 

both

 

single

 

and

 

wide-character,

 

are

 

as

 

described

 

in

 

the

 

source

 

file’s

 

CCSID.

 

Translations

 

may

 

still

 

occur

 

as

 

before

 

for

 

literals,

 

comments

 

and

 

identifiers.

 

However,

 

if

 

the

 

TGTCCSID

 

parameter

 

is

 

set

 

to

 

37

 

and

 

the

 

same

 

source

 

recompiled,

 

the

 

resulting

 

module

 

CCSID

 

is

 

37;

 

all

 

literals,

 

comments,

 

and

 

identifiers

 

are

 

translated

 

to

 

37

 

where

 

needed

 

and

 

stored

 

as

 

such

 

in

 

the

 

module.

 

Regardless

 

of

 

what

 

CCSID

 

the

 

root

 

source

 

and

 

included

 

headers

 

are,

 

the

 

resulting

 

module

 

is

 

defined

 

by

 

the

 

TGTCCSID,

 

and

 

all

 

of

 

its

 

literals,

 

comments,

 

and

 

identifiers

 

are

 

stored

 

in

 

this

 

CCSID.

 

Limitations

 

Debug

 

Listing

 

View

 

Introduction

 

of

 

the

 

TGTCCSID

 

parameter

 

removes

 

the

 

limitation

 

preventing

 

the

 

compilation

 

of

 

source

 

with

 

CCSIDs

 

5026,

 

930

 

or

 

290

 

without

 

the

 

loss

 

of

 

DBSC

 

characters

 

in

 

literals

 

and

 

comments.

 

However,

 

a

 

lesser

 

limitation

 

is

 

introduced

 

for

 

these

 

CCSIDs;

 

when

 

using

 

listing

 

view

 

to

 

debug

 

a

 

module

 

compiled

 

with

 

TGTCCSID

 

equal

 

to

 

CCSDI

 

5026,

 

930,

 

or

 

290,

 

substitution

 

characters

 

appear

 

for

 

all

 

characters

 

not

 

compatible

 

with

 

CCSID

 

37.

 

Format

 

Strings

 

When

 

coding

 

format

 

strings

 

for

 

C

 

run-time

 

I/O

 

functions

 

(for

 

example,

 

printf(″%d\n″,

 

1234);)

 

the

 

format

 

string

 

must

 

be

 

compatible

 

with

 

CCSID

 

037.

 

When

 

targetting

 

CCSIDs

 

290,

 

930,

 

5026

 

which

 

are

 

not

 

CCSID

 

037

 

compatible,

 

a

 

#pragma

 

convert(37)

 

is

 

required

 

around

 

the

 

format

 

string

 

literal

 

to

 

ensure

 

that

 

the

 

run-time

 

function

 

processes

 

the

 

format

 

string

 

correctly.

 

Valid

 

Target

 

Encoding

 

Schemes

 

TGTCCSID

 

values

 

are

 

limited

 

to

 

CCSIDs

 

with

 

encoding

 

schemes

 

1100

 

or

 

1301.

 

An

 

error

 

message

 

is

 

issued

 

by

 

the

 

command

 

if

 

any

 

other

 

value

 

is

 

entered.

 

1100

 

=

 

EBCDIC,

 

single-byte,

 

No

 

code

 

extension

 

is

 

allowed,

 

Number

 

of

 

States

 

=

 

1.

 

1301

 

=

 

EBCDIC,

 

mixed

 

single-byte

 

and

 

double-byte,

 

using

 

shift-in

 

(SI)

 

and

 

shift-out

 

(SO)

 

code

 

extension

 

method,

 

Number

 

of

 

States

 

=

 

2.

   

528

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Chapter

 

32.

 

International

 

Locale

 

Support

 

International

 

locale

 

support

 

allows

 

programs

 

to

 

change

 

their

 

behavior

 

according

 

to

 

the

 

user’s

 

language

 

environment.

 

This

 

support

 

has

 

three

 

key

 

components:

 

v

   

Programming

 

tools

 

that

 

create

 

language-specific

 

data

 

v

   

Programming

 

interfaces

 

(functions)

 

that

 

allow

 

access

 

to

 

this

 

data

 

v

   

Methods

 

of

 

creating

 

programs

 

that

 

are

 

automatically

 

sensitive

 

to

 

the

 

language

 

environment

 

in

 

which

 

they

 

run

Elements

 

of

 

a

 

Language

 

Environment

 

The

 

typical

 

elements

 

of

 

a

 

language

 

environment

 

are

 

as

 

follows:

 

v

   

Native

 

language:

  

The

 

natural

 

language

 

of

 

the

 

user.

 

v

   

Character

 

sets

 

and

 

coded

 

character

 

sets:

  

A

 

coded

 

character

 

set

 

is

 

created

 

by

 

mapping

 

the

 

characters

 

of

 

a

 

character

 

set

 

onto

 

a

 

set

 

of

 

code

 

points

 

(hexadecimal

 

values).

 

See

 

Chapter

 

31,

 

“Internationalizing

 

a

 

Program,”

 

on

 

page

 

521

 

for

 

more

 

information

 

about

 

coded

 

character

 

sets

 

and

 

CCSIDs.

 

v

   

Collating

 

and

 

ordering:

  

The

 

relative

 

order

 

of

 

characters

 

that

 

are

 

used

 

for

 

sorting.

 

v

   

Character

 

classification:

  

The

 

type

 

of

 

a

 

character

 

(for

 

example,

 

alphabetic,

 

numeric)

 

in

 

a

 

character

 

set.

 

v

   

Character

 

case

 

conversion:

  

The

 

mapping

 

between

 

uppercase

 

and

 

lowercase

 

characters

 

in

 

a

 

character

 

set.

 

v

   

Date

 

and

 

time

 

format:

  

The

 

format

 

of

 

date

 

and

 

time

 

data

 

(for

 

example,

 

order

 

of

 

the

 

months,

 

names

 

of

 

the

 

weekdays).

 

v

   

Format

 

of

 

numbers

 

and

 

monetary

 

quantities:

  

The

 

format

 

of

 

numbers

 

and

 

monetary

 

quantities.

 

For

 

example,

 

numeric

 

grouping,

 

decimal-point

 

character,

 

and

 

monetary

 

symbols.

 

v

   

Format

 

of

 

affirmative

 

and

 

negative

 

system

 

responses:

  

The

 

format

 

of

 

affirmative

 

and

 

negative

 

system

 

responses.

Locales

 

A

 

locale

 

is

 

a

 

system

 

object

 

that

 

specifies

 

how

 

language-specific

 

data

 

is

 

processed,

 

printed

 

and

 

displayed.

 

A

 

locale

 

is

 

made

 

up

 

of

 

categories

 

that

 

describe

 

the

 

character

 

set,

 

collating

 

sequence,

 

date

 

and

 

time

 

representation

 

and

 

monetary

 

representation

 

of

 

the

 

language

 

environment

 

in

 

which

 

it

 

will

 

be

 

used.

 

Using

 

locales

 

and

 

locale-sensitive

 

functions,

 

applications

 

can

 

be

 

created

 

that

 

are

 

independent

 

of

 

language,

 

cultural

 

data,

 

or

 

character

 

set,

 

yet

 

are

 

sensitive

 

to

 

the

 

language

 

environment

 

of

 

the

 

user.

 

ILE

 

C/C++

 

Support

 

for

 

Locales

   

The

 

ILE

 

C

 

compiler

 

and

 

run

 

time

 

environment

 

support

 

locales

 

of

 

the

 

following

 

types:

 

*CLD,

 

*LOCALE,

 

*LOCALEUCS2,

 

and

 

*LOCALEUTF..

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

529



The

 

ILE

 

C++

 

compiler

 

and

 

run

 

time

 

environment

 

support

 

locales

 

of

 

the

 

following

 

types:

 

*LOCALE,

 

*LOCALEUCS2,

 

and

 

*LOCALEUTF.

 

Locales

 

of

 

type

 

*LOCALE

 

and

 

the

 

ILE

 

C/C++

 

support

 

for

 

them

 

is

 

based

 

on

 

the

 

IEEE

 

POSIX

 

P1003.2,

 

ISO/IEC

 

9899:1990/Amendment

 

1:1994[E],

 

and

 

X/Open

 

Portability

 

Guide

 

standards

 

for

 

global

 

locales

 

and

 

coded

 

character

 

set

 

conversion.

   

The

 

POSIX

 

standard

 

defines

 

a

 

much

 

more

 

comprehensive

 

set

 

of

 

functions

 

and

 

locale

 

data

 

for

 

application

 

internationalization

 

that

 

is

 

compared

 

to

 

that

 

available

 

for

 

*CLD

 

locales.

 

By

 

supporting

 

the

 

POSIX

 

specification

 

for

 

locales

 

in

 

the

 

ILE

 

C/C++

 

run-time

 

libraries,

 

and

 

introducing

 

new

 

functions

 

which

 

comply

 

with

 

the

 

XPG4,

 

POSIX

 

and

 

ISO/IEC

 

standards,

 

ILE

 

C/C++

 

programs

 

using

 

locales

 

of

 

type

 

*LOCALE

 

become

 

more

 

portable

 

to

 

and

 

from

 

other

 

operating

 

systems.

Note:

  

CLD

 

is

 

available

 

for

 

use

 

by

 

ILE

 

C

 

only.

 

ILE

 

C/C++

 

Support

 

for

 

*CLD

 

and

 

*LOCALE

 

Object

 

Types

 

Programs

 

that

 

were

 

compiled

 

prior

 

to

 

V3R7

 

use

 

the

 

*CLD

 

locale

 

support.

 

Programs

 

that

 

are

 

compiled

 

with

 

the

 

option

 

LOCALETYPE(*CLD)

 

on

 

the

 

CRTCMOD

 

or

 

CRTBNDC

 

command

 

uses

 

the

 

locale

 

support

 

that

 

is

 

provided

 

by

 

ILE

 

C/C++

 

for

 

*CLD

 

objects.

 

Programs

 

compiled

 

with

 

the

 

option

 

LOCALETYPE(*LOCALE)

 

on

 

the

 

CRTCMOD/CRTCMODCPP

 

or

 

CRTBNDC/CRTBNDCPP

 

command

 

uses

 

the

 

locale

 

support

 

provided

 

by

 

ILE

 

C/C++

 

for

 

locales

 

of

 

type

 

*LOCALE.

Note:

    

C++

 

does

 

not

 

support

 

*CLD

 

objects.

 

If

 

you

 

wish

 

to

 

convert

 

your

 

application

 

from

 

using

 

locales

 

of

 

type

 

*CLD

 

to

 

locales

 

of

 

type

 

*LOCALE,

 

the

 

only

 

changes

 

required

 

to

 

your

 

C

 

source

 

code

 

are

 

in

 

calls

 

to

 

setlocale().

 

However,

 

there

 

are

 

many

 

differences

 

between

 

the

 

locale

 

definition

 

source

 

for

 

*CLD

 

and

 

*LOCALE

 

objects.

 

The

 

*LOCALE

 

definition

 

source

 

members

 

for

 

many

 

language

 

environments

 

are

 

provided

 

by

 

the

 

system

 

in

 

the

 

optionally

 

installable

 

library

 

QSYSLOCALE.

 

You

 

may

 

also

 

convert

 

your

 

existing

 

*CLD

 

locale

 

source

 

to

 

the

 

*LOCALE

 

source

 

definition.

 

See

 

Table

 

33

 

on

 

page

 

531

 

for

 

a

 

mapping

 

of

 

the

 

commands

 

in

 

a

 

source

 

file

 

for

 

creating

 

*CLD

 

objects

 

to

 

the

 

corresponding

 

keywords

 

in

 

a

 

source

 

file

 

for

 

creating

 

*LOCALE

 

objects.

 

An

 

application

 

may

 

use

 

either

 

locales

 

of

 

type

 

*CLD

 

or

 

*LOCALE,

 

but

 

not

 

both.

 

If

 

an

 

ILE

 

C

 

program

 

attempts

 

to

 

use

 

both

 

types

 

of

 

locales,

 

the

 

results

 

are

 

undefined.

 

ILE

 

C++

 

does

 

not

 

use

 

*CLD.

 

Also,

 

some

 

locale-sensitive

 

functions

 

are

 

only

 

supported

 

when

 

locales

 

of

 

type

 

*LOCALE

 

are

 

used.

 

See

 

Table

 

35

 

on

 

page

 

538

 

for

 

a

 

list

 

of

 

locale-sensitive

 

functions.

 

C

 

Locale

 

Migration

 

Table

 

The

 

ILE

 

C

 

run

 

time

 

supports

 

two

 

implementations

 

of

 

the

 

setlocale()

 

function

 

and

 

the

 

locale-sensitive

 

functions.

 

The

 

original

 

implementation

 

uses

 

locale

 

objects

 

of

 

type

 

*CLD,

 

while

 

the

 

second

 

implementation

 

uses

 

locale

 

objects

 

of

 

type

 

*LOCALE.

 

The

 

following

 

table

 

summarizes

 

the

 

differences

 

in

 

the

 

locale

 

source

 

keywords

 

between

 

the

 

locales

 

of

 

type

 

*CLD

 

and

 

*LOCALE.

   

530

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Table

 

33.

 

C

 

Locale

 

Migration

 

Table

 

Category

 

*CLD

 

Command

 

Description

 

and

 

Format

 

*LOCALE

 

Keyword

 

LC_TIME

 

AM

 

String

 

of

 

characters

 

used

 

to

 

represent

 

the

 

locale’s

 

equivalent

 

of

 

AM.

 

am_pm

 

LC_CTYPE

 

CHARTYP

 

Character

 

set

 

type.

 

Determined

 

by

 

CCSID

 

of

 

the

 

locale

 

LC_COLLATE

 

CPYSYSCOL

 

System

 

collating

 

sequence

 

table.

 

cpysyscol

 

LC_COLLATE

 

COLLSTR

 

String

 

transformation

 

table.

 

collating-element

 

LC_COLLATE

 

COLLTAB

 

Character

 

weight

 

reassignment

 

for

 

the

 

strcoll

 

function.

 

collating-element

 

LC_CTYPE

 

CTYPE

 

Set

 

the

 

attributes

 

of

 

a

 

particular

 

character.

 

upper

 

lower

 

alpha

 

digit

 

space

 

cntrl

 

punct

 

graph

 

print

 

xdigit

 

blank

 

LC_MONETARY

 

CURR

 

A

 

string

 

of

 

characters

 

that

 

represent

 

the

 

currency

 

symbol.

 

currency_symbol

 

LC_TIME

 

DATFMT

 

A

 

string

 

of

 

characters

 

used

 

to

 

specify

 

the

 

format

 

of

 

the

 

date

 

in

 

this

 

locale.

 

d_fmt

 

LC_TIME

 

DATTIM

 

A

 

string

 

of

 

characters

 

used

 

to

 

specify

 

the

 

format

 

of

 

the

 

date

 

and

 

time

 

in

 

this

 

locale.

 

d_t_fmt

 

LC_NUMERIC

 

DEC

 

Decimal

 

point

 

character

 

for

 

formatted

 

non-monetary

 

quantities.

 

decimal_point

 

LC_TOD

 

DSTEND

 

The

 

instant

 

when

 

Daylight

 

Savings

 

Time

 

ceases

 

to

 

be

 

in

 

effect.

 

(day,time)

 

dstend

 

LC_TOD

 

DSTNAME

 

The

 

name

 

of

 

the

 

time

 

zone

 

when

 

Daylight

 

Savings

 

Time

 

is

 

in

 

effect.

 

dstname

 

LC_TOD

 

DSTSHIFT

 

The

 

number

 

of

 

seconds

 

that

 

the

 

locale’s

 

time

 

is

 

shifted

 

when

 

Daylight

 

Savings

 

Time

 

takes

 

effect.

 

dstshift

 

LC_TOD

 

DSTSTART

 

The

 

instant

 

when

 

Daylight

 

Savings

 

Time

 

comes

 

into

 

effect.

 

dststart

 

LC_NUMERIC

 

GROUP

 

Digit

 

grouping

 

from

 

processing

 

digits

 

to

 

the

 

left

 

of

 

the

 

decimal

 

point

 

from

 

left

 

to

 

right

 

for

 

formatted

 

non-monetary

 

quantities.

 

grouping

 

LC_MONETARY

 

ICURR

 

String

 

of

 

characters

 

used

 

to

 

represent

 

the

 

currency

 

symbol

 

in

 

an

 

internationally

 

formatted

 

monetary

 

quantity.

 

int_curr_symbol

   

Chapter

 

32.

 

International

 

Locale

 

Support

 

531



Table

 

33.

 

C

 

Locale

 

Migration

 

Table

 

(continued)

 

Category

 

*CLD

 

Command

 

Description

 

and

 

Format

 

*LOCALE

 

Keyword

 

LC_TIME

 

LDAYS

 

The

 

long

 

form

 

of

 

each

 

day

 

of

 

the

 

week.

 

day

 

LC_TIME

 

LMONS

 

The

 

long

 

form

 

of

 

each

 

month

 

of

 

the

 

year.

 

mon

 

LC_CTYPE

 

LOWER

 

Set

 

the

 

lowercase

 

character

 

to

 

be

 

returned

 

for

 

a

 

given

 

character

 

by

 

the

 

tolower

 

library

 

function.

 

tolower

 

LC_MONETARY

 

MDEC

 

String

 

of

 

characters

 

used

 

for

 

the

 

decimal

 

point

 

in

 

a

 

formatted

 

monetary

 

quantity.

 

mon_decimal_point

 

LC_MONETARY

 

MFDIGIT

 

Number

 

of

 

fractional

 

digits

 

to

 

display

 

in

 

a

 

formatted

 

monetary

 

quantity.

 

frac_digits

 

LC_MONETARY

 

MGROUP

 

Digit

 

grouping

 

from

 

processing

 

digits

 

to

 

the

 

left

 

of

 

the

 

decimal

 

point

 

from

 

left

 

to

 

right

 

for

 

formatted

 

monetary

 

quantities.

 

mon_grouping

 

LC_MONETARY

 

MIFDIGIT

 

Number

 

of

 

fractional

 

digits

 

to

 

display

 

in

 

an

 

internationally

 

formatted

 

monetary

 

quantity.

 

int_frac_digits

 

LC_MONETARY

 

MMINUS

 

String

 

of

 

characters

 

used

 

to

 

represent

 

a

 

negative

 

value

 

in

 

a

 

formatted

 

negative

 

monetary

 

quantity.

 

negative_sign

 

LC_MONETARY

 

MMINUSPOS

 

An

 

encoded

 

value

 

used

 

to

 

represent

 

the

 

position

 

of

 

the

 

negative

 

symbol

 

in

 

a

 

formatted

 

negative

 

monetary

 

quantity.

 

n_sign_posn

 

LC_MONETARY

 

MNCSP

 

A

 

true

 

or

 

false

 

value

 

used

 

to

 

determine

 

if

 

the

 

currency

 

symbol

 

precedes

 

the

 

value

 

in

 

a

 

formatted

 

negative

 

monetary

 

quantity.

 

If

 

the

 

value

 

is

 

false,

 

then

 

the

 

symbol

 

succeeds

 

the

 

value.

 

n_cs_precedes

 

LC_MONETARY

 

MNSBYS

 

A

 

true

 

or

 

false

 

value

 

used

 

to

 

determine

 

if

 

the

 

currency

 

symbol

 

is

 

space-separated

 

in

 

a

 

formatted

 

negative

 

monetary

 

quantity.

 

n_sep_by_space

 

LC_MONETARY

 

MPCSP

 

A

 

true

 

or

 

false

 

value

 

used

 

to

 

determine

 

if

 

the

 

currency

 

symbol

 

precedes

 

the

 

value

 

in

 

a

 

formatted

 

positive

 

monetary

 

quantity.

 

If

 

the

 

value

 

is

 

false,

 

then

 

the

 

symbol

 

succeeds

 

the

 

value.

 

p_cs_precedes

   

532

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Table

 

33.

 

C

 

Locale

 

Migration

 

Table

 

(continued)

 

Category

 

*CLD

 

Command

 

Description

 

and

 

Format

 

*LOCALE

 

Keyword

 

LC_MONETARY

 

MPLUS

 

String

 

of

 

characters

 

used

 

to

 

represent

 

a

 

positive

 

value

 

in

 

a

 

formatted

 

positive

 

monetary

 

quantity.

 

positive_sign

 

LC_MONETARY

 

MPLUSPOS

 

An

 

encoded

 

value

 

used

 

to

 

represent

 

the

 

position

 

of

 

the

 

positive

 

symbol

 

in

 

a

 

formatted

 

positive

 

monetary

 

quantity.

 

p_sign_posn

 

LC_MONETARY

 

MPSBYS

 

A

 

true

 

or

 

false

 

value

 

used

 

to

 

determine

 

if

 

the

 

currency

 

symbol

 

is

 

space-separated

 

in

 

a

 

formatted

 

positive

 

monetary

 

quantity.

 

p_sep_by_space

 

LC_MONETARY

 

MSEP

 

Character

 

used

 

to

 

separate

 

grouped

 

digits

 

in

 

a

 

formatted

 

monetary

 

quantity.

 

mon_thousands_sep

 

LC_TIME

 

PM

 

String

 

of

 

characters

 

used

 

to

 

represent

 

the

 

locale’s

 

equivalent

 

of

 

PM.

 

am_pm

 

LC_TIME

 

SDAYS

 

The

 

short

 

form

 

of

 

each

 

day

 

of

 

the

 

week.

 

abday

 

LC_NUMERIC

 

SEP

 

Character

 

used

 

to

 

separate

 

grouped

 

digits

 

in

 

a

 

formatted

 

non-monetary

 

quantity.

 

decimal_point

 

LC_TIME

 

SMONS

 

The

 

short

 

form

 

of

 

each

 

month

 

of

 

the

 

year.

 

abmon

 

LC_TIME

 

TIMFMT

 

A

 

string

 

of

 

characters

 

used

 

to

 

specify

 

the

 

format

 

of

 

the

 

time

 

in

 

this

 

locale.

 

t_fmt

 

LC_TOD

 

TNAME

 

String

 

of

 

characters

 

used

 

to

 

represent

 

the

 

locale’s

 

time

 

zone

 

name.

 

tname

 

LC_TOD

 

TZDIFF

 

The

 

number

 

of

 

minutes

 

that

 

the

 

locale’s

 

time

 

zone

 

is

 

different

 

from

 

Greenwich

 

Mean

 

Time.

 

tzdiff

 

LC_CTYPE

 

UPPER

 

Set

 

the

 

uppercase

 

character

 

to

 

be

 

returned

 

for

 

a

 

given

 

character

 

by

 

the

 

toupper

 

library

 

function.

 

toupper

   

POSIX

 

Locale

 

Definition

 

and

 

*LOCALE

 

Support

 

Locale

 

definition

 

source

 

files

 

that

 

conform

 

to

 

the

 

IEEE

 

POSIX

 

P1003.2

 

standard

 

will

 

be

 

shipped

 

with

 

the

 

system

 

in

 

the

 

optionally

 

installable

 

library

 

QSYSLOCALE.

 

One

 

*LOCALE

 

object,

 

the

 

C

 

locale

 

as

 

defined

 

by

 

the

 

POSIX

 

standard,

 

is

 

provided

 

with

 

the

 

system.

 

Other

 

locales

 

of

 

type

 

*LOCALE

 

can

 

be

 

created

 

with

 

the

 

CRTLOCALE

 

command

 

from

 

the

 

locale

 

source

 

definition

 

members

 

in

 

the

 

QSYSLOCALE

 

library.

   

Chapter

 

32.

 

International

 

Locale

 

Support

 

533



LOCALETYPE

 

Compiler

 

Option

 

The

 

LOCALETYPE

 

option

 

on

 

the

 

CRTCMOD/CRTCPPMOD

 

or

 

CRTBNDC/CRTBNDCPP

 

command

 

allows

 

a

 

program

 

to

 

specify

 

the

 

type

 

of

 

locale

 

object

 

to

 

be

 

used

 

when

 

it

 

is

 

being

 

compiled.

 

The

 

keyword

 

options

 

for

 

the

 

LOCALETYPE

 

option

 

are

 

*CLD

 

and

 

*LOCALE,

 

with

 

the

 

default

 

being

 

*LOCALE.

 

The

 

keyword

 

*CLD

 

enables

 

the

 

*CLD

 

locale

 

support,

 

whereas

 

the

 

keyword

 

*LOCALE

 

enables

 

the

 

support

 

for

 

locales

 

of

 

type

 

*LOCALE.

 

The

 

command

 

format

 

for

 

enabling

 

the

 

run-time

 

environment

 

that

 

supports

 

locales

 

of

 

type

 

*LOCALE

 

is:

 

CRTCMOD

 

MODULE(MYLIB/MYMOD)

 

SRCFILE(MYLIB/QCSRC)

 

LOCALETYPE(*LOCALE)

 

CRTBNDC

 

PGM(MYLIB/MYPGM)

 

SRCFILE(MYLIB/QCSRC)

 

LOCALETYPE(*LOCALE)

 

When

 

the

 

*LOCALE

 

keyword

 

is

 

specified

 

for

 

the

 

LOCALETYPE

 

option,

 

the

 

ILE

 

C/C++

 

compiler

 

defines

 

the

 

macro

 

__POSIX_LOCALE__.

 

When

 

__POSIX_LOCALE__

 

is

 

defined,

 

the

 

locale-sensitive

 

C

 

run-time

 

functions

 

are

 

remapped

 

to

 

functions

 

that

 

are

 

sensitive

 

to

 

locales

 

that

 

are

 

defined

 

in

 

*LOCALE

 

objects.

 

In

 

addition,

 

certain

 

ILE

 

C/C++

 

run-time

 

functions

 

can

 

only

 

be

 

used

 

with

 

locales

 

of

 

type

 

*LOCALE

 

and

 

do

 

not

 

work

 

with

 

*CLD

 

locales.

 

These

 

functions

 

are

 

available

 

only

 

in

 

V3R7

 

and

 

later

 

releases

 

of

 

the

 

ILE

 

C/C++

 

runtime.

 

The

 

list

 

of

 

locale-sensitive

 

functions

 

later

 

in

 

this

 

chapter

 

indicates

 

which

 

functions

 

are

 

sensitive

 

only

 

to

 

locales

 

of

 

type

 

*LOCALE.

Note:

  

The

 

default

 

has

 

changed.

 

Prior

 

to

 

V5R1,

 

*CLD

 

was

 

the

 

default

 

value

 

for

 

ILE

 

C.

 

As

 

of

 

V5R1,

 

the

 

default

 

has

 

been

 

changed

 

to

 

*LOCALE.

 

Creating

 

Locales

 

On

 

iSeries

 

systems,

 

*LOCALE

 

objects

 

are

 

created

 

with

 

the

 

CRTLOCALE

 

command,

 

specifying

 

the

 

name

 

of

 

the

 

file

 

member

 

containing

 

the

 

locale’s

 

definition

 

source,

 

and

 

the

 

CCSID

 

to

 

be

 

used

 

for

 

mapping

 

the

 

characters

 

of

 

the

 

locale’s

 

character

 

set

 

to

 

their

 

hexadecimal

 

values.

 

A

 

locale

 

definition

 

source

 

member

 

contains

 

information

 

about

 

a

 

language

 

environment.

 

This

 

information

 

is

 

divided

 

into

 

a

 

number

 

of

 

distinct

 

categories

 

which

 

are

 

described

 

in

 

the

 

next

 

section.

 

One

 

locale

 

definition

 

source

 

member

 

characterizes

 

one

 

language

 

environment.

 

Characters

 

are

 

represented

 

in

 

a

 

locale

 

definition

 

source

 

member

 

with

 

their

 

symbolic

 

names.

 

The

 

mapping

 

between

 

the

 

symbolic

 

names,

 

the

 

characters

 

they

 

represent,

 

and

 

their

 

associated

 

hexadecimal

 

values

 

is

 

based

 

on

 

the

 

CCSID

 

value

 

that

 

is

 

specified

 

on

 

the

 

CRTLOCALE

 

command.

 

Here

 

is

 

a

 

model

 

of

 

how

 

a

 

locale

 

of

 

type

 

*LOCALE

 

is

 

created:

    

534

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Note:

  

There

 

is

 

no

 

support

 

for

 

locales

 

created

 

with

 

non-EBCDIC

 

CCSIDs.

 

Creating

 

Modules

 

Using

 

LOCALETYPE(*LOCALE)

 

When

 

you

 

create

 

modules

 

with

 

the

 

LOCALETYPE(*LOCALE)

 

option,

 

MB_CUR_MAX

 

have

 

the

 

following

 

values:

 

v

   

1

 

for

 

locales

 

built

 

with

 

a

 

single

 

byte

 

CCSID,

 

such

 

as

 

00037

 

v

   

4

 

for

 

locales

 

built

 

with

 

a

 

mixed

 

byte

 

CCSID

 

such

 

as

 

00939

MB_CUR_MAX

 

is

 

dependent

 

on

 

the

 

LC_CTYPE

 

category

 

of

 

the

 

current

 

locale.

 

Categories

 

Used

 

in

 

a

 

Locale

 

A

 

locale

 

and

 

its

 

definition

 

source

 

member

 

contain

 

the

 

following

 

categories.

  

Table

 

34.

 

Categories

 

Used

 

in

 

a

 

Locale

 

Category

 

Purpose

 

LC_COLLATE

 

Defines

 

the

 

collation

 

relations

 

among

 

the

 

characters.

 

Affects

 

the

 

behavior

 

of

 

the

 

collating

 

functions

 

strcoll(),

 

strxfrm(),

 

wcscoll()

 

and

 

wcsxfrm().

 

LC_CTYPE

 

Defines

 

character

 

types,

 

such

 

as

 

upper-case,

 

lower-case,

 

space,

 

digit,

 

and

 

punctuation.

 

Affects

 

the

 

behavior

 

of

 

character

 

handling

 

functions.

 

LC_MESSAGES

 

Defines

 

the

 

format

 

and

 

values

 

for

 

responses

 

from

 

the

 

application.

 

LC_MONETARY

 

Defines

 

the

 

monetary

 

names,

 

symbols,

 

punctuation,

 

and

 

other

 

details.

 

Affects

 

monetary

 

information

 

returned

 

by

 

localeconv().

 

LC_NUMERIC

 

Defines

 

the

 

decimal-point

 

(radix)

 

character

 

for

 

the

 

formatted

 

input/output

 

and

 

string

 

conversion

 

functions,

 

and

 

the

 

non-monetary

 

formatting

 

information

 

returned

 

by

 

localeconv().

 

LC_TIME

 

Defines

 

the

 

date

 

and

 

time

 

conventions,

 

such

 

as

 

calendar

 

used,

 

time

 

zone,

 

and

 

days

 

of

 

the

 

week.

 

Affects

 

the

 

behavior

 

of

 

time

 

display

 

functions.

 

LC_TOD

 

Defines

 

time

 

zone

 

difference,

 

time

 

zone

 

name,

 

and

 

Daylight

 

Savings

 

Time

 

start

 

and

 

end.

      

Chapter

 

32.

 

International

 

Locale

 

Support

 

535



Setting

 

an

 

Active

 

Locale

 

for

 

an

 

Application

 

All

 

C

 

and

 

C++

 

applications

 

using

 

locales

 

of

 

type

 

*LOCALE

 

have

 

an

 

active

 

locale

 

which

 

is

 

scoped

 

to

 

the

 

activation

 

group

 

of

 

the

 

program.

 

The

 

active

 

locale

 

determines

 

the

 

behavior

 

of

 

the

 

locale-sensitive

 

functions

 

in

 

the

 

C

 

library.

 

The

 

active

 

locale

 

can

 

be

 

set

 

explicitly

 

with

 

a

 

call

 

to

 

setlocale().

 

See

 

the

 

ILE

 

C/C++

 

Run-Time

 

Library

 

Functions

 

for

 

more

 

information

 

on

 

using

 

setlocale().

 

If

 

the

 

active

 

locale

 

is

 

not

 

set

 

explicitly

 

by

 

a

 

call

 

to

 

setlocale(),

 

it

 

is

 

implicitly

 

set

 

by

 

the

 

C

 

run-time

 

environment

 

at

 

program

 

activation

 

time.

 

Here

 

is

 

how

 

the

 

run-time

 

environment

 

sets

 

the

 

active

 

locale

 

when

 

a

 

program

 

is

 

activated:

 

v

   

If

 

the

 

user

 

profile

 

has

 

a

 

value

 

for

 

the

 

LOCALE

 

parameter

 

other

 

than

 

*NONE

 

(the

 

default)

 

or

 

*SYSVAL,

 

that

 

value

 

is

 

used

 

for

 

the

 

application’s

 

active

 

locale.

 

v

   

If

 

the

 

value

 

of

 

the

 

LOCALE

 

parameter

 

in

 

the

 

user

 

profile

 

is

 

*NONE,

 

the

 

default

 

″C″

 

locale

 

becomes

 

the

 

active

 

locale.

 

v

   

If

 

the

 

value

 

of

 

the

 

LOCALE

 

parameter

 

in

 

the

 

user

 

profile

 

is

 

*SYSVAL,

 

the

 

locale

 

associated

 

with

 

the

 

system

 

value

 

QLOCALE

 

will

 

be

 

used

 

for

 

the

 

program’s

 

active

 

locale.

 

v

   

If

 

the

 

value

 

of

 

QLOCALE

 

is

 

*NONE,

 

the

 

default

 

″C″

 

locale

 

becomes

 

the

 

active

 

locale.

Using

 

Environment

 

Variables

 

to

 

Set

 

the

 

Active

 

Locale

 

A

 

program’s

 

active

 

locale

 

is

 

set

 

either

 

implicitly

 

at

 

program

 

startup,

 

as

 

described

 

above,

 

or

 

explicitly

 

by

 

a

 

call

 

to

 

setlocale().

 

The

 

setlocale()

 

function

 

takes

 

two

 

arguments:

 

an

 

integer

 

representing

 

the

 

locale

 

category

 

whose

 

values

 

are

 

needed

 

for

 

the

 

active

 

locale,

 

and

 

the

 

name

 

of

 

the

 

locale

 

from

 

which

 

the

 

values

 

are

 

to

 

be

 

taken.

 

The

 

name

 

of

 

the

 

locale

 

can

 

be

 

any

 

of

 

the

 

following:

 

v

   

C

 

v

   

POSIX

 

v

   

the

 

fully-qualified

 

path

 

name

 

of

 

a

 

locale

 

object

 

of

 

type

 

*LOCALE

 

v

   

a

 

null

 

string(″″)

When

 

the

 

locale

 

argument

 

of

 

setlocale()

 

is

 

specified

 

as

 

a

 

null

 

string

 

(″″),

 

setlocale()

 

sets

 

the

 

active

 

locale

 

according

 

to

 

the

 

environment

 

variables

 

defined

 

for

 

the

 

job

 

in

 

which

 

the

 

program

 

is

 

running.

 

You

 

can

 

create

 

environment

 

variables

 

that

 

have

 

the

 

same

 

names

 

as

 

the

 

locale

 

categories

 

and

 

specify

 

the

 

locale

 

to

 

be

 

associated

 

with

 

each

 

environment

 

variable.

 

The

 

LANG

 

environment

 

variable

 

is

 

automatically

 

created

 

during

 

job

 

initiation

 

when

 

you

 

specify

 

a

 

locale

 

path

 

name

 

for

 

the

 

LOCALE

 

parameter

 

in

 

your

 

user

 

profile

 

or

 

for

 

the

 

QLOCALE

 

system

 

value.

 

When

 

a

 

program

 

calls

 

setlocale(category,

 

""),

 

the

 

locale-related

 

environment

 

variables

 

defined

 

in

 

the

 

current

 

job

 

are

 

checked

 

to

 

find

 

the

 

locale

 

name

 

or

 

names

 

to

 

be

 

used

 

for

 

the

 

specified

 

category.

 

The

 

locale

 

name

 

is

 

chosen

 

according

 

to

 

the

 

first

 

of

 

the

 

following

 

conditions

 

that

 

applies:

 

1.

   

If

 

the

 

environment

 

variable

 

LC_ALL

 

is

 

defined

 

and

 

is

 

not

 

null,

 

the

 

value

 

of

 

LC_ALL

 

is

 

used

 

for

 

the

 

specified

 

category.

 

If

 

the

 

specified

 

category

 

is

 

LC_ALL,

 

that

 

value

 

is

 

applied

 

to

 

all

 

categories.

 

2.

   

If

 

the

 

environment

 

variable

 

for

 

the

 

category

 

is

 

defined

 

and

 

is

 

not

 

null,

 

then

 

the

 

value

 

that

 

is

 

specified

 

for

 

the

 

environment

 

variable

 

is

 

used.

 

For

 

the

 

LC_ALL

 

category,

 

if

 

individual

 

environment

 

variables

 

(for

 

example,

 

LC_CTYPE,

 

LC_MONETARY,

 

and

 

so

 

on)

 

are

 

defined

 

and

 

are

 

not

 

null,

 

then

 

their

 

values

 

are

   

536

 

ILE

 

C/C++

 

Programmer’s

 

Guide



used

 

for

 

the

 

categories

 

that

 

correspond

 

to

 

the

 

environment

 

variables.

 

This

 

could

 

result

 

in

 

the

 

locale

 

information

 

for

 

each

 

category

 

that

 

is

 

retrieved

 

from

 

a

 

different

 

locale

 

object.

 

3.

   

If

 

the

 

environment

 

variable

 

LANG

 

is

 

defined

 

and

 

is

 

not

 

null,

 

the

 

value

 

of

 

the

 

LANG

 

environment

 

variable

 

is

 

used.

 

4.

   

If

 

no

 

non-null

 

environment

 

variable

 

is

 

present

 

to

 

supply

 

a

 

locale

 

value,

 

the

 

default

 

C

 

locale

 

is

 

used.

If

 

the

 

locale

 

specified

 

for

 

the

 

environment

 

variable

 

is

 

found

 

to

 

be

 

invalid

 

or

 

non-existent,

 

setlocale()

 

returns

 

NULL

 

and

 

the

 

program’s

 

active

 

locale

 

remains

 

unchanged.

 

For

 

setlocale(LC_ALL,

 

""),

 

if

 

the

 

locale

 

names

 

found

 

identify

 

valid

 

locales

 

on

 

the

 

system,

 

setlocale()

 

returns

 

a

 

string

 

naming

 

the

 

locale

 

associated

 

with

 

each

 

locale

 

category.

 

Otherwise,

 

setlocale()

 

returns

 

NULL,

 

and

 

the

 

program’s

 

locale

 

remains

 

unchanged.

 

SAA

 

and

 

POSIX

 

*Locale

 

Definitions

 

If

 

an

 

ILE

 

C

 

program

 

is

 

compiled

 

with

 

LOCALETYPE(*LOCALE)

 

and

 

setlocale()

 

is

 

not

 

called

 

or

 

if

 

it

 

is

 

called

 

with

 

locale

 

name

 

C

 

or

 

POSIX,

 

the

 

default

 

C

 

environment

 

used

 

is

 

that

 

specified

 

in

 

the

 

POSIX

 

locale

 

definition

 

source

 

in

 

the

 

QSYSLOCALE

 

library.

 

This

 

locale

 

definition

 

is

 

slightly

 

different

 

from

 

the

 

default

 

C

 

locale

 

for

 

type

 

*CLD.

 

Another

 

locale

 

definition

 

source

 

member

 

that

 

is

 

called

 

SAA

 

is

 

provided

 

in

 

the

 

QSYSLOCALE

 

library

 

for

 

compatibility

 

with

 

the

 

default

 

C

 

locale

 

of

 

type

 

*CLD.

 

If

 

you

 

wish

 

to

 

migrate

 

your

 

application

 

from

 

locales

 

of

 

type

 

*CLD

 

to

 

locales

 

of

 

type

 

*LOCALE,

 

but

 

you

 

want

 

to

 

be

 

compatible

 

with

 

the

 

default

 

C

 

locale

 

of

 

type

 

*CLD,

 

use

 

the

 

SAA

 

locale

 

definition

 

source

 

member

 

in

 

the

 

QSYSLOCALE

 

library

 

to

 

create

 

a

 

locale

 

with

 

the

 

CRTLOCALE

 

command.

 

Then

 

use

 

the

 

name

 

of

 

this

 

locale

 

when

 

you

 

call

 

setlocale()

 

in

 

your

 

application.

 

The

 

differences

 

between

 

the

 

SAA

 

and

 

POSIX

 

locale

 

definitions

 

are

 

as

 

follows:

 

v

   

For

 

the

 

LC_CTYPE

 

category,

 

the

 

SAA

 

locale

 

has

 

all

 

the

 

EBCDIC

 

control

 

characters

 

defined

 

in

 

the

 

cntrl

 

class,

 

whereas

 

the

 

POSIX

 

locale

 

only

 

includes

 

the

 

ASCII

 

control

 

characters.

 

Also,

 

SAA

 

has

 

the

 

cent

 

character

 

and

 

the

 

broken

 

vertical

 

line

 

as

 

punct

 

characters

 

whereas

 

POSIX

 

does

 

not

 

include

 

these

 

two

 

characters

 

in

 

its

 

punct

 

characters.

 

v

   

For

 

the

 

LC_COLLATE

 

category,

 

the

 

default

 

collation

 

sequence

 

for

 

SAA

 

is

 

the

 

EBCDIC

 

sequence

 

whereas

 

POSIX

 

uses

 

the

 

ASCII

 

sequence.

 

This

 

is

 

independent

 

of

 

the

 

CCSID

 

mapping

 

of

 

the

 

character

 

set.

 

For

 

the

 

POSIX

 

locale,

 

the

 

first

 

128

 

ASCII

 

characters

 

are

 

defined

 

in

 

the

 

collation

 

sequence,

 

and

 

the

 

remaining

 

EBCDIC

 

characters

 

are

 

at

 

the

 

end

 

of

 

the

 

collating

 

sequence.

 

Also,

 

in

 

the

 

SAA

 

locale

 

definition,

 

the

 

lowercase

 

letters

 

collate

 

before

 

the

 

uppercase

 

letters,

 

whereas

 

in

 

the

 

POSIX

 

locale

 

definition,

 

the

 

lowercase

 

letters

 

collate

 

after

 

the

 

uppercase

 

letters.

 

v

   

For

 

the

 

LC_TIME

 

category,

 

the

 

SAA

 

locale

 

specifies

 

the

 

date

 

and

 

time

 

format

 

(d_t_fmt)

 

as

 

″%Y/%M/%D

 

%X″

 

whereas

 

the

 

POSIX

 

locale

 

uses

 

″%a

 

%b

 

%d

 

%H

 

%M

 

%S

 

%Y″.

  

Chapter

 

32.

 

International

 

Locale

 

Support

 

537



Locale-Sensitive

 

Run-Time

 

Functions

 

The

 

following

 

ILE

 

C/C++

 

run-time

 

functions

 

are

 

sensitive

 

to

 

locales:

  

Table

 

35.

 

Locale-Sensitive

 

Run-Time

 

Functions

 

asctime()

 

asctime_r()

 

btowc()1

 

ctime()

 

ctime_r()

 

fprintf()

 

fgetwc()1

 

fgetws()1

 

fputwc()1

 

fputws()1

 

fwprintf()1

 

fwscanf()1

 

getwc()1

 

getwchar()1

 

gmtime()

 

gmtime_r()

 

isalnum()

 

to

 

isxdigit()

 

isascii()

 

iswalnum()

 

to

 

iswxdigit()1

 

localeconv()

 

localtime()

 

localtime_r()

 

mblen()

 

mbrlen()1

 

mbsinit()1

 

mbrtows()1

 

mbsrtowcs()1

 

mbstowcs()1

 

mbtowc()1

 

mktime()

 

nl_langinfo()1

 

printf()

 

putwc()1

 

putwchar()1

 

regcomp()

 

regerror()

 

regexec()

 

regfree()

 

setlocale()

 

sprintf()

 

strcoll()

 

strfmon()1

 

strftime()

 

strptime()1

 

strxfrm()

 

swprintf()1

 

swscanf()1

 

time()

 

toascii()

 

tolower()

 

toupper()

 

towlower()1

 

towtrans()1

 

towupper()1

 

vfprintf()

 

vfwprint()1

 

vprintf()

 

vsprintf()

 

vswprintf()1

 

vwprintf()1

 

wcrtomb()1

 

wcscoll()1

 

wcsftime()

 

wcstod()

 

wcstol()

 

wcstoul()

 

wcsrtombs()1

 

wcstombs()

 

wcswidth()1

 

wcsxfrm()1

 

wctob()

 

wctomb()1

 

wctrans()1

 

wctype()1

 

wcwidth()1

 

wscanf()1

 

wprintf()

 

Note:

 

1

 

sensitive

 

to

 

*LOCALE

 

objects

 

only.

   

538

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Part

 

8.

 

Appendixes

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

539



540

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Appendix

 

A.

 

The

 

GENCSRC

 

Utility

 

and

 

the

 

#pragma

 

mapinc

 

Directive

 

By

 

using

 

the

 

Generate

 

C/C++

 

Source

 

(GENCSRC)

 

utility

 

to

 

generate

 

database

 

header

 

files,

 

you

 

can:

 

v

   

Extract

 

data

 

description

 

specification

 

(DDS)

 

information

 

v

   

Create

 

a

 

header

 

file

 

with

 

declarations

 

for

 

use

 

in

 

your

 

programs

GENCSRC

 

provides

 

the

 

means

 

to

 

retrieve

 

externally

 

described

 

file

 

information

 

for

 

use

 

in

 

a

 

C/C++

 

program.

 

The

 

utility

 

creates

 

a

 

C/C++

 

header

 

file

 

which

 

contains

 

the

 

type

 

definition

 

structure

 

for

 

the

 

include

 

file.

 

The

 

#pragma

 

mapinc

 

directive

 

uses

 

the

 

GENCSRC

 

command

 

to

 

provide

 

the

 

opportunity

 

to

 

convert

 

DDS

 

files

 

to

 

include

 

files

 

directly.

 

To

 

compare

 

the

 

GENCSRC

 

utility

 

and

 

the

 

#pragma

 

mapinc

 

directive:

 

v

   

GENCSRC

 

can

 

produce

 

include

 

files

 

in

 

IFS

 

file

 

systems

 

or

 

database

 

file

 

systems,

 

while

 

#pragma

 

mapinc

 

produces

 

headers

 

in

 

database

 

file

 

systems

 

only.

 

v

   

GENCSRC

 

include

 

files

 

can

 

be

 

placed

 

permanently

 

anywhere,

 

while

 

#pragma

 

mapinc

 

writes

 

generated

 

include

 

files

 

into

 

the

 

QTEMP

 

library.

The

 

following

 

table

 

shows

 

the

 

comparison

 

of

 

#pragma

 

mapinc

 

options

 

and

 

the

 

keywords

 

for

 

GENCSRC.

 

For

 

more

 

information

 

on

 

any

 

particular

 

option,

 

refer

 

to

 

the

 

description

 

of

 

#pragma

 

mapinc

 

in

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference.

  

Table

 

36.

 

Comparison

 

of

 

GENCSRC

 

Keywords

 

and

 

#pragma

 

mapinc

 

Options

 

GENCSRC

 

Keyword

 

#pragma

 

mapinc

 

option

 

Description

 

SRCFILE

 

member_name

 

The

 

name

 

of

 

the

 

file

 

that

 

you

 

reference

 

on

 

the

 

#include

 

directive

 

in

 

the

 

source

 

program.

 

The

 

output

 

file

 

is

 

generated

 

in

 

the

 

Data

 

Management

 

file

 

system.

 

SRCMBR

 

member_name

 

The

 

name

 

of

 

member

 

with

 

the

 

header

 

information.

 

It

 

follows

 

the

 

iSeries

 

naming

 

conventions.

 

The

 

output

 

file

 

is

 

generated

 

in

 

the

 

Data

 

Management

 

file

 

system.

 

OBJ

 

file_name

 

The

 

path

 

name

 

of

 

the

 

object

 

to

 

map

 

in

 

QSYS

 

file

 

system.

 

SRCSTMF

 

member_name

 

The

 

output

 

file

 

is

 

generated

 

in

 

the

 

IFS

 

file

 

system.

 

RCDFMT

 

format_name

 

Indicates

 

the

 

DDS

 

record

 

format

 

to

 

be

 

included

 

in

 

your

 

program.

 

The

 

default

 

is

 

*ALL.

 

SLTFLD

 

options

 

Restricted

 

to

 

a

 

combination

 

of

 

the

 

following

 

values:

 

v

   

*INPUT

 

v

   

*OUTPUT

 

v

   

*BOTH

 

(default)

 

v

   

*KEY

 

v

   

*INDICATOR

 

v

   

*LVLCHK1

 

v

   

*NULLFLDS

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

541



Table

 

36.

 

Comparison

 

of

 

GENCSRC

 

Keywords

 

and

 

#pragma

 

mapinc

 

Options

 

(continued)

 

GENCSRC

 

Keyword

 

#pragma

 

mapinc

 

option

 

Description

 

PKDDECFLD

 

d

 

or

 

p

 

*DECIMAL

 

or

 

*CHAR

 

STRUCTURES

 

_P

 

*NONPACKED

 

or

 

*PACKED

 

ONEBYTE

 

1BYTE_CHAR

 

*CHAR

 

or

 

*ARRAY

 

UNIONDFN

 

union_name

 

*OBJ

 

,

 

NONE

 

,

 

or

 

union_name

 

Note:

 

*OBJ

 

is

 

the

 

default

 

and

 

the

 

default

 

type

 

definition

 

union

 

name

 

is

 

FILE_t

 

and

 

not

 

LIBRARY_FILE_FMT_both_t

 

as

 

described

 

in

 

the

 

#pragma

 

mapinc

 

directive

 

TYPEDEFPFX

 

prefix_name

 

*OBJ

 

or

 

*NONE1

 

Notes:

  

1.

   

For

 

more

 

information,

 

see

 

“Level

 

Checking

 

to

 

Verify

 

Descriptions”

 

on

 

page

 

232.

   

Note:

  

For

 

information

 

about

 

DDS-to-C/C++

 

data

 

type

 

mapping,

 

see

 

the

 

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference.

  

542

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Appendix

 

B.

 

Interlanguage

 

Data-Type

 

Compatibilities

 

Each

 

high-level

 

language

 

(HLL)

 

has

 

different

 

data

 

types.

 

When

 

you

 

want

 

to

 

pass

 

data

 

between

 

programs

 

written

 

in

 

different

 

languages,

 

you

 

must

 

be

 

aware

 

of

 

these

 

differences.

 

Some

 

data

 

types

 

in

 

the

 

ILE

 

C++

 

programming

 

language

 

have

 

no

 

direct

 

equivalent

 

in

 

other

 

languages.

 

You

 

can

 

simulate

 

data

 

types

 

in

 

other

 

languages

 

using

 

ILE

 

C++

 

data

 

types.

 

Notes:

  

1.

   

No

 

data-type

 

compatibility

 

tables

 

are

 

shown

 

for

 

C.

 

You

 

can

 

use

 

the

 

C++

 

tables

 

because

 

C

 

and

 

C++

 

data

 

types

 

are

 

the

 

same

 

except

 

for

 

the

 

packed

 

decimal

 

data

 

type.

 

For

 

detailed

 

information

 

on

 

using

 

packed

 

decimal

 

data

 

in

 

ILE

 

C/C++,

 

see:

 

v

   

Chapter

 

26,

 

“Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C

 

Program,”

 

on

 

page

 

451

 

v

   

Chapter

 

27,

 

“Using

 

Packed

 

Decimal

 

Data

 

in

 

a

 

C++

 

Program,”

 

on

 

page

 

465
2.

   

In

 

C++

 

the

 

packed

 

decimal

 

data

 

type

 

is

 

implemented

 

as

 

the

 

bcd

 

class.

 

The

 

packed

 

decimal

 

data

 

type

 

in

 

ILE

 

C

 

and

 

the

 

binary

 

coded

 

decimal

 

class

 

in

 

C++

 

are

 

binary-compatible.

 

This

 

appendix

 

provides

 

the

 

following

 

tables:

 

v

   

Table

 

37

 

shows

 

the

 

ILE

 

C++

 

data-type

 

compatibility

 

with

 

ILE

 

CL.

 

v

   

Table

 

38

 

on

 

page

 

544

 

shows

 

the

 

ILE

 

C++

 

data-type

 

compatibility

 

with

 

ILE

 

CL.

 

v

   

Table

 

39

 

on

 

page

 

545

 

shows

 

the

 

ILE

 

C++

 

data

 

type

 

compatibility

 

with

 

ILE

 

RPG.

 

v

   

Table

 

40

 

on

 

page

 

546

 

shows

 

the

 

ILE

 

C++

 

data-type

 

compatibility

 

with

 

OPM

 

RPG.

 

v

   

Table

 

41

 

on

 

page

 

547

 

shows

 

the

 

ILE

 

C++

 

data-type

 

compatibility

 

with

 

ILE

 

COBOL.

 

v

   

Table

 

42

 

on

 

page

 

549

 

shows

 

the

 

ILE

 

C++

 

data-type

 

compatibility

 

with

 

OPM

 

COBOL.

Table

 

37

 

shows

 

the

 

ILE

 

C++

 

data-type

 

compatibility

 

with

 

ILE

 

CL.

  

Table

 

37.

 

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

ILE

 

CL

 

ILE

 

C++

 

declaration

 

in

 

prototype

 

CL

 

Length

 

Comments

 

char[n]

 

char

 

*

 

*CHAR

 

LEN(&N)

 

n

 

An

 

array

 

of

 

characters

 

where

 

n=1

 

to

 

32766.

 

A

 

null-terminated

 

string.

 

CHGVAR

 

&V1

 

VALUE(&V

 

*TCAT

 

X’00’)

 

where

 

&V1

 

is

 

one

 

byte

 

bigger

 

than

 

&V

 

char

 

*LGL

 

1

 

Holds

 

’1’

 

or

 

’0’

 

_Packed

 

struct

 

{short

 

i;

 

char[n]}

 

Not

 

supported

 

n+2

 

A

 

variable

 

length

 

field

 

where

 

i

 

is

 

the

 

intended

 

length

 

and

 

n

 

is

 

the

 

maximum

 

length.

 

integer

 

types

 

Not

 

supported

 

1,

 

2,

 

4

 

A

 

1,

 

2

 

or

 

4

 

byte

 

signed

 

or

 

unsigned

 

integer

 

float

 

constants

 

CL

 

constants

 

only

 

4

 

A

 

4

 

or

 

8

 

byte

 

floating

 

point

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

543



Table

 

37.

 

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

ILE

 

CL

 

(continued)

 

ILE

 

C++

 

declaration

 

in

 

prototype

 

CL

 

Length

 

Comments

 

_DecimalT<n,p>

 

*DEC

 

n/2+1

 

A

 

packed

 

decimal.

 

The

 

limit

 

of

 

n

 

is

 

15

 

and

 

p

 

is

 

9.

 

In

 

C++,

 

this

 

is

 

a

 

binary

 

coded

 

decimal

 

class

 

and

 

not

 

a

 

data

 

type.

 

union.element

 

Not

 

supported

 

length

 

of

 

longest

 

union

 

member

 

An

 

element

 

of

 

a

 

union

 

struct

 

or

 

class

 

Not

 

supported

 

n

 

A

 

structure.

 

The

 

structure

 

must

 

be

 

packed.¹

 

Structures

 

passed

 

should

 

be

 

passed

 

as

 

a

 

pointer

 

to

 

the

 

structure

 

if

 

you

 

want

 

to

 

change

 

the

 

contents

 

of

 

the

 

structure.

 

pointer

 

to

 

function

 

Not

 

supported

 

16

 

A

 

16-byte

 

pointer

    

Table

 

38

 

shows

 

the

 

ILE

 

C++

 

data-type

 

compatibility

 

with

 

CL.

  

Table

 

38.

 

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

CL

 

ILE

 

C++

 

declaration

 

in

 

prototype

 

CL

 

Length

 

Comments

 

char[n]

 

char

 

*

 

*CHAR

 

LEN(&N)

 

n

 

An

 

array

 

of

 

characters

 

where

 

n=1

 

to

 

32766.

 

A

 

null-terminated

 

string.

 

CHGVAR

 

&V1

 

VALUE(&V

 

*TCAT

 

X’00’)

 

where

 

&V1

 

is

 

one

 

byte

 

bigger

 

than

 

&V.

 

The

 

limit

 

of

 

n

 

is

 

9999.

 

char

 

*LGL

 

1

 

Holds

 

’1’

 

or

 

’0’

 

_Packed

 

struct

 

{short

 

i;

 

char[n]}

 

Not

 

supported

 

n+2

 

A

 

variable

 

length

 

field

 

where

 

i

 

is

 

the

 

intended

 

length

 

and

 

n

 

is

 

the

 

maximum

 

length.

 

integer

 

types

 

Not

 

supported

 

1,

 

2,

 

4

 

A

 

1,

 

2

 

or

 

4

 

byte

 

signed

 

or

 

unsigned

 

integer.

 

float

 

constants

 

CL

 

constants

 

only

 

4

 

A

 

4

 

or

 

8

 

byte

 

floating

 

point

 

_DecimalT<n,p>

 

*DEC

 

n/2+1

 

A

 

packed

 

decimal.

 

The

 

limit

 

of

 

n

 

is

 

15

 

and

 

p

 

is

 

9.

 

In

 

C++,

 

this

 

is

 

a

 

binary

 

coded

 

decimal

 

class

 

and

 

not

 

a

 

data

 

type.

 

union.element

 

Not

 

supported

 

length

 

of

 

longest

 

union

 

member

 

An

 

element

 

of

 

a

 

union

   

544

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Table

 

38.

 

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

CL

 

(continued)

 

ILE

 

C++

 

declaration

 

in

 

prototype

 

CL

 

Length

 

Comments

 

struct

 

or

 

class

 

Not

 

supported

 

n

 

A

 

structure.

 

The

 

structure

 

must

 

be

 

packed.¹

 

Structures

 

passed

 

should

 

be

 

passed

 

as

 

a

 

pointer

 

to

 

the

 

structure

 

if

 

you

 

want

 

to

 

change

 

the

 

contents

 

of

 

the

 

structure.

 

pointer

 

to

 

function

 

Not

 

supported

 

16

 

A

 

16-byte

 

pointer

    

Table

 

39

 

shows

 

the

 

ILE

 

C++

 

data

 

type

 

compatibility

 

with

 

ILE

 

RPG.

  

Table

 

39.

 

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

ILE

 

RPG

 

ILE

 

C++

 

declaration

 

in

 

prototype

 

ILE

 

RPG

 

D

 

spec,

 

columns

 

33

 

to

 

39

 

Length

 

Comments

 

char[n]

 

nA

 

n

 

An

 

array

 

of

 

characters

 

where

 

n=1

 

to

 

32766

 

char

 

*

 

*

 

16

 

A

 

pointer

 

char

 

1A

 

1

 

An

 

indicator

 

which

 

is

 

a

 

variable

 

starting

 

with

 

*IN

 

char[n]

 

nS

 

0

 

n

 

A

 

zoned

 

decimal

 

char[2n]

 

nG

 

2n

 

A

 

graphic

 

added

 

char[2n+2]

 

Not

 

supported

 

2n+2

 

A

 

graphic

 

data

 

type

 

_Packed

 

struct

 

{short

 

i;

 

char[n]}

 

data

 

structure

 

n+2

 

A

 

variable

 

length

 

field

 

where

 

i

 

is

 

the

 

intended

 

length

 

and

 

n

 

is

 

the

 

maximum

 

length

 

char[n]

 

D

 

8,

 

10

 

A

 

date

 

field

 

char[n]

 

T

 

8

 

A

 

time

 

field

 

char[n]

 

Z

 

26

 

A

 

timestamp

 

field

 

short

 

int

 

5I

 

0

 

2

 

An

 

integer

 

field

 

short

 

unsigned

 

int

 

5U

 

0

 

2

 

An

 

unsigned

 

integer

 

field

 

int

 

10I

 

0

 

4

 

An

 

integer

 

field

 

unsigned

 

int

 

10U

 

0

 

4

 

An

 

unsigned

 

integer

 

field

 

long

 

int

 

10I

 

0

 

4

 

An

 

integer

 

field

 

long

 

unsigned

 

int

 

10I

 

0

 

4

 

An

 

unsigned

 

integer

 

field

 

struct

 

{unsigned

 

int

 

:

 

n}x;

 

Not

 

supported

 

1,

 

2,

 

4

 

A

 

4-byte

 

unsigned

 

integer,

 

a

 

bitfield

 

float

 

Not

 

supported

 

4

 

A

 

4-byte

 

floating

 

point

 

double

 

Not

 

supported

 

8

 

An

 

8-byte

 

floating

 

point

 

long

 

double

 

Not

 

supported

 

8

 

An

 

8-byte

 

floating

 

point

 

enum

 

Not

 

supported

 

1,

 

2,

 

4

 

Enumeration

   

Appendix

 

B.

 

Interlanguage

 

Data-Type

 

Compatibilities

 

545



Table

 

39.

 

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

ILE

 

RPG

 

(continued)

 

ILE

 

C++

 

declaration

 

in

 

prototype

 

ILE

 

RPG

 

D

 

spec,

 

columns

 

33

 

to

 

39

 

Length

 

Comments

 

_DecimalT<n,p>

 

nP

 

p

 

n/2+1

 

A

 

packed

 

decimal.

 

n

 

must

 

be

 

less

 

than

 

or

 

equal

 

to

 

30.

 

In

 

C++,

 

this

 

is

 

a

 

binary

 

coded

 

decimal

 

class

 

and

 

not

 

a

 

data

 

type.

 

union.element

 

<type>

 

with

 

keyword

 

OVERLAY(longest

 

field)

 

length

 

of

 

longest

 

union

 

member

 

An

 

element

 

of

 

a

 

union

 

data_type[n]

 

<type>

 

with

 

keyword

 

DIM(n)

 

16

 

An

 

array

 

to

 

which

 

C++

 

passes

 

a

 

pointer

 

struct

 

or

 

class

 

data

 

structure

 

n

 

A

 

structure.

 

The

 

structure

 

must

 

be

 

packed.¹

 

Structures

 

passed

 

should

 

be

 

passed

 

as

 

a

 

pointer

 

to

 

the

 

structure

 

if

 

you

 

want

 

to

 

change

 

the

 

contents

 

of

 

the

 

structure.

 

pointer

 

to

 

function

 

*

 

with

 

keyword

 

PROCPTR

 

16

 

A

 

16-byte

 

pointer

 

Note:

 

¹All

 

structures

 

must

 

be

 

packed.

 

Classes

 

with

 

virtual

 

functions

 

cannot

 

be

 

directly

 

represented

 

in

 

any

 

other

 

language.

 

Nested

 

structures

 

must

 

be

 

explicitly

 

packed.

 

In

 

C,

 

all

 

nested

 

structures

 

are

 

packed.

    

Table

 

40

 

shows

 

the

 

ILE

 

C++

 

data-type

 

compatibility

 

with

 

OPM

 

RPG.

  

Table

 

40.

 

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

OPM

 

RPG

 

ILE

 

C++

 

declaration

 

in

 

prototype

 

OPM

 

RPG

 

I

 

spec,

 

DS

 

subfield

 

columns

 

spec

 

Length

 

Comments

 

char[n]

 

1

 

10

 

n

 

An

 

array

 

of

 

characters

 

where

 

n=1

 

to

 

32766

 

char

 

*INxxxx

 

1

 

An

 

indicator

 

which

 

is

 

a

 

variable

 

starting

 

with

 

*IN

 

char[n]

 

1

 

nd

 

(d>=0)

 

n

 

A

 

zoned

 

decimal

 

The

 

limit

 

of

 

n

 

is

 

30

 

char[2n+2]

 

Not

 

supported

 

2n+2

 

A

 

graphic

 

data

 

type

 

_Packed

 

struct

 

{short

 

i;

 

char[n]}

 

Data

 

structure

 

n+2

 

A

 

variable

 

length

 

field

 

where

 

i

 

is

 

the

 

intended

 

length

 

and

 

n

 

is

 

the

 

maximum

 

length.

 

char[n]

 

char

 

6,

 

8,

 

10

 

A

 

date

 

field

 

char[n]

 

char

 

8

 

A

 

time

 

field

 

char[n]

 

char

 

26

 

A

 

time

 

stamp

 

field.

 

short

 

int

 

B

 

1

 

20

 

2

 

A

 

2-byte

 

signed

 

integer

 

with

 

a

 

range

 

of

 

-9999

 

to

 

+9999

 

int

 

B

 

1

 

40

 

4

 

A

 

4-byte

 

signed

 

integer

 

with

 

a

 

range

 

of

 

-999999999

 

to

 

+999999999

 

long

 

int

 

B

 

1

 

40

 

4

 

A

 

4-byte

 

signed

 

integer

 

with

 

a

 

range

 

of

 

-999999999

 

to

 

+999999999

   

546

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Table

 

40.

 

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

OPM

 

RPG

 

(continued)

 

ILE

 

C++

 

declaration

 

in

 

prototype

 

OPM

 

RPG

 

I

 

spec,

 

DS

 

subfield

 

columns

 

spec

 

Length

 

Comments

 

struct

 

{unsigned

 

int

 

:

 

n}x;

 

Not

 

supported

 

1,

 

2,

 

4

 

A

 

4-byte

 

unsigned

 

integer,

 

a

 

bitfield

 

float

 

Not

 

supported

 

4

 

A

 

4-byte

 

floating

 

point

 

double

 

Not

 

supported

 

8

 

An

 

8-byte

 

floating

 

point

 

long

 

double

 

Not

 

supported

 

8

 

An

 

8-byte

 

floating

 

point

 

enum

 

Not

 

supported

 

1,

 

2,

 

4

 

Enumeration

 

*

 

Not

 

supported

 

16

 

A

 

pointer

 

_DecimalT<n,p>

 

P

 

1

 

n/2+1d

 

n/2+1

 

A

 

packed

 

decimal.

 

n

 

must

 

be

 

less

 

than

 

or

 

equal

 

to

 

30.

 

In

 

C++,

 

this

 

is

 

a

 

binary

 

coded

 

decimal

 

class

 

and

 

not

 

a

 

data

 

type.

 

union.element

 

data

 

structure

 

subfield

 

length

 

of

 

longest

 

union

 

member

 

An

 

element

 

of

 

a

 

union

 

data_type[n]

 

E-SPEC

 

array

 

16

 

An

 

array

 

to

 

which

 

C++

 

passes

 

a

 

pointer

 

struct

 

or

 

class

 

data

 

structure

 

n

 

A

 

structure.

 

The

 

structure

 

must

 

be

 

packed.¹

 

Structures

 

passed

 

should

 

be

 

passed

 

as

 

a

 

pointer

 

to

 

the

 

structure

 

if

 

you

 

want

 

to

 

change

 

the

 

contents

 

of

 

the

 

structure.

 

pointer

 

to

 

function

 

Not

 

supported

 

16

 

A

 

16-byte

 

pointer

 

Note:

 

¹All

 

structures

 

must

 

be

 

packed.

 

Classes

 

with

 

virtual

 

functions

 

cannot

 

be

 

directly

 

represented

 

in

 

any

 

other

 

language.

 

Nested

 

structures

 

must

 

be

 

explicitly

 

packed.

 

In

 

C,

 

all

 

nested

 

structures

 

are

 

packed.

    

Table

 

41

 

shows

 

the

 

ILE

 

C++

 

data-type

 

compatibility

 

with

 

ILE

 

COBOL.

  

Table

 

41.

 

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

ILE

 

COBOL

 

ILE

 

C++

 

declaration

 

in

 

prototype

 

ILE

 

COBOL

 

LINKAGE

 

SECTION

 

Length

 

Comments

 

char[n]

 

char

 

*

 

PIC

 

X(n).

 

n

 

An

 

array

 

of

 

characters

 

where

 

n=1

 

to

 

3,000,000

 

char

 

PIC

 

1

 

INDIC

 

..

 

1

 

An

 

indicator

 

char[n]

 

PIC

 

S9(n)

 

DISPLAY.

 

n

 

A

 

zoned

 

decimal

 

wchar_t[n]

 

PIC

 

G(n)

 

DISPLAY.

 

2n

 

A

 

graphic

 

data

 

type

 

_Packed

 

struct

 

{short

 

i;

 

char[n]}

 

05

 

VL-FIELD.

   

10

 

i

 

PIC

 

S9(4)

            

COMP-4.

   

10

 

data

 

PIC

 

X(n).

 

n+2

 

A

 

variable

 

length

 

field

 

where

 

i

 

is

 

the

 

intended

 

length

 

and

 

n

 

is

 

the

 

maximum

 

length.

 

char[n]

 

PIC

 

X(n).

 

6

 

A

 

date

 

field

   

Appendix

 

B.

 

Interlanguage

 

Data-Type

 

Compatibilities

 

547



Table

 

41.

 

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

ILE

 

COBOL

 

(continued)

 

ILE

 

C++

 

declaration

 

in

 

prototype

 

ILE

 

COBOL

 

LINKAGE

 

SECTION

 

Length

 

Comments

 

char[n]

 

PIC

 

X(n).

 

5

 

A

 

day

 

field

 

char

 

PIC

 

X.

 

1

 

A

 

day-of-week-field

 

char[n]

 

PIC

 

X(n).

 

8

 

A

 

time

 

field

 

char[n]

 

PIC

 

X(n).

 

26

 

A

 

time

 

stamp

 

field

 

short

 

int

 

PIC

 

S9(4)

 

COMP-4.

 

2

 

A

 

2-byte

 

signed

 

integer

 

with

 

a

 

range

 

of

 

-9999

 

to

 

+9999

 

short

 

int

 

PIC

 

S9(4)

 

BINARY.

 

2

 

A

 

2-byte

 

signed

 

integer

 

with

 

a

 

range

 

of

 

-9999

 

to

 

+9999

 

int

 

PIC

 

S9(9)

 

COMP-4.

 

4

 

A

 

4-byte

 

signed

 

integer

 

with

 

a

 

range

 

of

 

-999999999

 

to

 

+999999999

 

int

 

PIC

 

S9(9)

 

BINARY.

 

4

 

A

 

4-byte

 

signed

 

integer

 

with

 

a

 

range

 

of

 

-999999999

 

to

 

+999999999

 

int

 

USAGE

 

IS

 

INDEX

 

4

 

A

 

4-byte

 

integer

 

long

 

int

 

PIC

 

S9(9)

 

COMP-4.

 

4

 

A

 

4-byte

 

signed

 

integer

 

with

 

a

 

range

 

of

 

-999999999

 

to

 

+999999999

 

long

 

int

 

PIC

 

S9(9)

 

BINARY.

 

4

 

A

 

4-byte

 

signed

 

integer

 

with

 

a

 

range

 

of

 

-999999999

 

to

 

+999999999

 

struct

 

{unsigned

 

int

 

:

 

n}x;

 

PIC

 

9(9)

 

COMP-4.

 

PIC

 

X(4).

 

1,

 

2,

 

4

 

Bitfields

 

can

 

be

 

manipulated

 

using

 

hex

 

literals

 

float

 

Not

 

supported

 

4

 

A

 

4-byte

 

floating

 

point

 

double

 

Not

 

supported

 

8

 

An

 

8-byte

 

floating

 

point

 

long

 

double

 

Not

 

supported

 

8

 

An

 

8-byte

 

floating

 

point

 

enum

 

Not

 

supported

 

1,

 

2,

 

4

 

Enumeration

 

*

 

USAGE

 

IS

 

POINTER

 

16

 

A

 

pointer

 

_DecimalT<n,p>

 

PIC

 

S9(n-p)V9(p)

 

COMP-3.

 

n/2+1

 

A

 

packed

 

decimal.

 

In

 

C++,

 

this

 

is

 

a

 

binary

 

coded

 

decimal

 

class

 

and

 

not

 

a

 

data

 

type.

 

_DecimalT<n,p>

 

PIC

 

S9(n-p)

 

9(p)

 

PACKED-DECIMAL.

 

n/2+1

 

A

 

packed

 

decimal.

 

In

 

C++

 

this

 

is

 

a

 

binary

 

coded

 

decimal

 

class

 

not

 

a

 

data

 

type.

 

union.element

 

REDEFINES

 

length

 

of

 

longest

 

union

 

member

 

An

 

element

 

of

 

a

 

union

 

data_type[n]

 

OCCURS

 

n

 

times

 

the

 

length

 

of

 

the

 

data

 

type

 

An

 

array

 

to

 

which

 

C++

 

passes

 

a

 

pointer

 

struct

 

or

 

class

 

OCCURS

 

...DEPENDING

 

ON

 

variable

 

A

 

structure.

 

The

 

structure

 

must

 

be

 

packed.¹

 

Structures

 

passed

 

should

 

be

 

passed

 

as

 

a

 

pointer

 

to

 

the

 

structure

 

if

 

you

 

want

 

to

 

change

 

the

 

contents

 

of

 

the

 

structure.

   

548

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Table

 

41.

 

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

ILE

 

COBOL

 

(continued)

 

ILE

 

C++

 

declaration

 

in

 

prototype

 

ILE

 

COBOL

 

LINKAGE

 

SECTION

 

Length

 

Comments

 

struct

 

or

 

class

 

01

 

record

    

05

 

field1

    

05

 

field2

 

n

 

A

 

structure.

 

The

 

structure

 

must

 

be

 

packed.¹

 

Structures

 

passed

 

should

 

be

 

passed

 

as

 

a

 

pointer

 

to

 

the

 

structure

 

if

 

you

 

want

 

to

 

change

 

the

 

contents

 

of

 

the

 

structure.

 

pointer

 

to

 

function

 

PROCEDURE-POINTER

 

16

 

A

 

16-byte

 

pointer

 

to

 

a

 

procedure

 

Not

 

supported.

 

PIC

 

S9(18)

 

COMP-4.

 

8

 

An

 

8-byte

 

integer

 

Not

 

supported.

 

PIC

 

S9(18)

 

BINARY.

 

8

 

An

 

8-byte

 

integer

 

Note:

 

¹All

 

structures

 

must

 

be

 

packed.

 

Classes

 

with

 

virtual

 

functions

 

cannot

 

be

 

directly

 

represented

 

in

 

any

 

other

 

language.

 

Nested

 

structures

 

must

 

be

 

explicitly

 

packed.

 

In

 

C,

 

all

 

nested

 

structures

 

are

 

packed.

    

Table

 

42

 

shows

 

the

 

ILE

 

C++

 

data-type

 

compatibility

 

with

 

OPM

 

COBOL.

  

Table

 

42.

 

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

OPM

 

COBOL

 

ILE

 

C++

 

declaration

 

in

 

prototype

 

OPM

 

COBOL

 

LINKAGE

 

SECTION

 

Length

 

Comments

 

char[n]

 

char

 

*

 

PIC

 

X(n).

 

n

 

An

 

array

 

of

 

characters

 

where

 

n=1

 

to

 

3,000,000

 

char

 

PIC

 

1

 

INDIC

 

..

 

1

 

An

 

indicator

 

char[n]

 

PIC

 

S9(n)

 

USAGE

 

IS

 

DISPLAY

 

n

 

A

 

zoned

 

decimal

 

The

 

limit

 

of

 

n

 

is

 

18.

 

_Packed

 

struct

 

{short

 

i;

 

char[n]}

 

05

 

VL-FIELD.

   

10

 

i

 

PIC

 

S9(4)

            

COMP-4.

   

10

 

data

 

PIC

 

X(n).

 

n+2

 

A

 

variable

 

length

 

field

 

where

 

i

 

is

 

the

 

intended

 

length

 

and

 

n

 

is

 

the

 

maximum

 

length

 

char[n]

 

PIC

 

X(n).

 

6,

 

8,

 

10

 

A

 

date

 

field

 

char[n]

 

PIC

 

X(n).

 

8

 

A

 

time

 

field

 

char[n]

 

PIC

 

X(n).

 

26

 

A

 

time

 

stamp

 

field

 

short

 

int

 

PIC

 

S9(4)

 

COMP-4.

 

2

 

A

 

2-byte

 

signed

 

integer

 

with

 

a

 

range

 

of

 

-9999

 

to

 

+9999.

 

int

 

PIC

 

S9(9)

 

COMP-4.

 

4

 

A

 

4-byte

 

signed

 

integer

 

with

 

a

 

range

 

of

 

-999999999

 

to

 

+999999999

 

long

 

int

 

PIC

 

S9(9)

 

COMP-4.

 

4

 

A

 

4-byte

 

signed

 

integer

 

with

 

a

 

range

 

of

 

-999999999

 

to

 

+999999999

 

struct

 

{unsigned

 

int

 

:

 

n}x;

 

PIC

 

9(9)

 

COMP-4.

 

PIC

 

X(4).

 

1,

 

2,

 

4

 

Bitfields

 

can

 

be

 

manipulated

 

using

 

hex

 

literals.

 

float

 

Not

 

supported

 

4

 

A

 

4-byte

 

floating

 

point

 

double

 

Not

 

supported

 

8

 

An

 

8-byte

 

floating

 

point

 

long

 

double

 

Not

 

supported

 

8

 

An

 

8-byte

 

floating

 

point

 

enum

 

Not

 

supported

 

1,

 

2,

 

4

 

Enumeration

 

*

 

USAGE

 

IS

 

POINTER

 

16

 

A

 

pointer

   

Appendix

 

B.

 

Interlanguage

 

Data-Type

 

Compatibilities

 

549



Table

 

42.

 

ILE

 

C++

 

Data-Type

 

Compatibility

 

with

 

OPM

 

COBOL

 

(continued)

 

ILE

 

C++

 

declaration

 

in

 

prototype

 

OPM

 

COBOL

 

LINKAGE

 

SECTION

 

Length

 

Comments

 

_DecimalT<n,p>

 

PIC

 

S9(n-p)V9(p)

 

COMP-3.

 

n/2+1

 

A

 

packed

 

decimal

 

The

 

limits

 

of

 

n

 

and

 

p

 

are

 

18.

 

In

 

C++,

 

this

 

is

 

a

 

binary

 

coded

 

decimal

 

class

 

and

 

not

 

a

 

data

 

type.

 

union.element

 

REDEFINES

 

length

 

of

 

longest

 

union

 

member

 

An

 

element

 

of

 

a

 

union

 

data_type[n]

 

OCCURS

 

n

 

times

 

the

 

length

 

of

 

the

 

data

 

type

 

An

 

array

 

to

 

which

 

C++

 

passes

 

a

 

pointer

 

struct

 

or

 

class

 

OCCURS

 

...DEPENDING

 

ON

 

variable

 

A

 

structure.

 

The

 

structure

 

must

 

be

 

packed.¹

 

Structures

 

passed

 

should

 

be

 

passed

 

as

 

a

 

pointer

 

to

 

the

 

structure

 

if

 

you

 

want

 

to

 

change

 

the

 

contents

 

of

 

the

 

structure.

 

struct

 

or

 

class

 

01

 

record

 

n

 

A

 

structure.

 

The

 

structure

 

must

 

be

 

packed.¹

 

Structures

 

passed

 

should

 

be

 

passed

 

as

 

a

 

pointer

 

to

 

the

 

structure

 

if

 

you

 

want

 

to

 

change

 

the

 

contents

 

of

 

the

 

structure.

 

pointer

 

to

 

function

 

Not

 

supported

 

16

 

A

 

16-byte

 

pointer

 

Not

 

supported.

 

PIC

 

S9(18)

 

COMP-4.

 

8

 

An

 

8-byte

 

integer

 

Note:

 

¹All

 

structures

 

must

 

be

 

packed.

 

Classes

 

with

 

virtual

 

functions

 

cannot

 

be

 

directly

 

represented

 

in

 

any

 

other

 

language.

 

Nested

 

structures

 

must

 

be

 

explicitly

 

packed.

 

In

 

C

 

all

 

nested

 

structures

 

are

 

packed.

    

550

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Bibliography

 

For

 

additional

 

information

 

about

 

topics

 

related

 

to

 

ILE

 

C/400

 

programming,

 

refer

 

to

 

the

 

following

 

IBM

 

publications:

 

v

   

The

 

IBM

 

iSeries

 

Information

 

Center

 

describes

 

creating

 

and

 

managing

 

projects

 

defined

 

for

 

the

 

Application

 

Development

 

Manager/400

 

feature,

 

as

 

well

 

as

 

using

 

the

 

program

 

to

 

develop

 

applications.

 

View

 

Programmer

 

information,

 

ADTS.

 

v

   

ADTS

 

for

 

AS/400:

 

Source

 

Entry

 

Utility,

 

SC09-2605-00,

 

provides

 

information

 

about

 

using

 

the

 

Application

 

Development

 

ToolSet/400

 

source

 

entry

 

utility

 

(SEU)

 

to

 

create

 

and

 

edit

 

source

 

members.

 

The

 

manual

 

explains

 

how

 

to

 

start

 

and

 

end

 

an

 

SEU

 

session

 

and

 

how

 

to

 

use

 

the

 

many

 

features

 

of

 

this

 

full-screen

 

text

 

editor.

 

The

 

manual

 

contains

 

examples

 

to

 

help

 

both

 

new

 

and

 

experienced

 

users

 

accomplish

 

various

 

editing

 

tasks,

 

from

 

the

 

simplest

 

line

 

commands

 

to

 

using

 

pre-defined

 

prompts

 

for

 

high-level

 

languages

 

and

 

data

 

formats.

 

v

   

Application

 

Display

 

Programming,

 

SC41-5715-00,

 

provides

 

information

 

about:

 

–

   

Using

 

DDS

 

to

 

create

 

and

 

maintain

 

displays

 

for

 

applications;

 

–

   

Creating

 

and

 

working

 

with

 

display

 

files

 

on

 

the

 

system;

 

–

   

Creating

 

online

 

help

 

information;

 

–

   

Using

 

UIM

 

to

 

define

 

panels

 

and

 

dialogs

 

for

 

an

 

application;

 

–

   

Using

 

panel

 

groups,

 

records,

 

or

 

documents
v

   

Backup

 

and

 

Recovery,

 

SC41-5304-07,

 

provides

 

information

 

about

 

setting

 

up

 

and

 

managing

 

the

 

following:

 

–

   

Journaling,

 

access

 

path

 

protection,

 

and

 

commitment

 

control

 

–

   

User

 

auxiliary

 

storage

 

pools

 

(ASPs)

 

–

   

Disk

 

protection

 

(device

 

parity,

 

mirrored,

 

and

 

checksum)

 

Provides

 

performance

 

information

 

about

 

backup

 

media

 

and

 

save/restore

 

operations.

 

Also

 

includes

 

advanced

 

backup

 

and

 

recovery

 

topics,

 

such

 

as

 

using

 

save-while-active

 

support,

 

saving

 

and

 

restoring

 

to

 

a

 

different

 

release,

 

and

 

programming

 

tips

 

and

 

techniques.

 

v

   

CICS

 

for

 

iSeries

 

Application

 

Programming

 

Guide,

 

SC41-5454-02,

 

provides

 

information

 

on

 

application

 

programming

 

for

 

CICS/400®.

 

It

 

includes

 

guidance

 

and

 

reference

 

information

 

on

 

the

 

CICS

 

application

 

programming

 

interface

 

and

 

system

 

programming

 

interface

 

commands,

 

and

 

gives

 

general

 

information

 

about

 

developing

 

new

 

applications

 

and

 

migrating

 

existing

 

applications

 

from

 

other

 

CICS

 

platforms.

 

v

   

ILE

 

C/C++

 

for

 

AS/400

 

MI

 

Library

 

Reference,

 

SC09-2418-00,

 

provides

 

information

 

on

 

Machine

 

Interface

 

instructions

 

available

 

in

 

the

 

C

 

for

 

AS/400

 

compiler

 

that

 

provide

 

system-level

 

programming

 

capabilities.

 

v

   

CL

 

Programming,

 

SC41-5721-06,

 

provides

 

a

 

wide-ranging

 

discussion

 

of

 

AS/400

 

programming

 

topics

 

including

 

a

 

general

 

discussion

 

on

 

objects

 

and

 

libraries,

 

CL

 

programming,

 

controlling

 

flow

 

and

 

communicating

 

between

 

programs,

 

working

 

with

 

objects

 

in

 

CL

 

programs,

 

and

 

creating

 

CL

 

programs.

 

Other

 

topics

 

include

 

predefined

 

and

 

impromptu

 

messages

 

and

 

message

 

handling,

 

defining

 

and

 

creating

 

user-defined

 

commands

 

and

 

menus,

 

application

 

testing,

 

including

 

debug

 

mode,

 

breakpoints,

 

traces,

 

and

 

display

 

functions.

 

v

   

Communications

 

Management,

 

SC41-5406-02,

 

provides

 

information

 

about

 

work

 

management

 

in

 

a

 

communications

 

environment,

 

communications

 

status,

 

tracing

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

551



and

 

diagnosing

 

communications

 

problems,

 

error

 

handling

 

and

 

recovery,

 

performance,

 

and

 

specific

 

line

 

speed

 

and

 

subsystem

 

storage

 

information.

 

v

   

Experience

 

RPG

 

IV

 

Multimedia

 

Tutorial,

 

SK2T-2700,

 

is

 

an

 

interactive

 

self-study

 

program

 

explaining

 

the

 

differences

 

between

 

RPG

 

III

 

and

 

RPG

 

IV

 

and

 

how

 

to

 

work

 

within

 

the

 

new

 

ILE

 

environment.

 

An

 

accompanying

 

workbook

 

provides

 

additional

 

exercises

 

and

 

doubles

 

as

 

a

 

reference

 

upon

 

completion

 

of

 

the

 

tutorial.

 

ILE

 

RPG

 

code

 

examples

 

are

 

shipped

 

with

 

the

 

tutorial

 

and

 

run

 

directly

 

on

 

the

 

AS/400.

 

v

   

GDDM

 

Programming

 

Guide,

 

SC41-0536-00,

 

provides

 

information

 

about

 

using

 

OS/400

 

graphical

 

data

 

display

 

manager

 

(GDDM®)

 

to

 

write

 

graphics

 

application

 

programs.

 

Includes

 

many

 

example

 

programs

 

and

 

information

 

to

 

help

 

users

 

understand

 

how

 

the

 

product

 

fits

 

into

 

data

 

processing

 

systems.

 

v

   

GDDM

 

Reference,

 

SC41-3718-00,

 

provides

 

information

 

about

 

using

 

OS/400

 

graphical

 

data

 

display

 

manager

 

(GDDM)

 

to

 

write

 

graphics

 

application

 

programs.

 

This

 

manual

 

provides

 

detailed

 

descriptions

 

of

 

all

 

graphics

 

routines

 

available

 

in

 

GDDM.

 

Also

 

provides

 

information

 

about

 

high-level

 

language

 

interfaces

 

to

 

GDDM.

 

v

   

ICF

 

Programming,

 

SC41-5442-00,

 

provides

 

information

 

needed

 

to

 

write

 

application

 

programs

 

that

 

use

 

AS/400

 

communications

 

and

 

the

 

OS/400

 

intersystem

 

communications

 

function

 

(OS/400-ICF).

 

Also

 

contains

 

information

 

on

 

data

 

description

 

specifications

 

(DDS)

 

keywords,

 

system-supplied

 

formats,

 

return

 

codes,

 

file

 

transfer

 

support,

 

and

 

program

 

examples.

 

v

   

IDDU

 

Use,

 

SC41-5704-00,

 

describes

 

how

 

to

 

use

 

the

 

AS/400

 

interactive

 

data

 

definition

 

utility

 

(IDDU)

 

to

 

describe

 

data

 

dictionaries,

 

files,

 

and

 

records

 

to

 

the

 

system.

 

Includes:

 

–

   

An

 

introduction

 

to

 

computer

 

file

 

and

 

data

 

definition

 

concepts

 

–

   

An

 

introduction

 

to

 

the

 

use

 

of

 

IDDU

 

to

 

describe

 

the

 

data

 

used

 

in

 

queries

 

and

 

documents

 

–

   

Representative

 

tasks

 

related

 

to

 

creating,

 

maintaining,

 

and

 

using

 

data

 

dictionaries,

 

files,

 

record

 

formats,

 

and

 

fields

 

–

   

Advanced

 

information

 

about

 

using

 

IDDU

 

to

 

work

 

with

 

files

 

created

 

on

 

other

 

systems

 

and

 

information

 

about

 

error

 

recovery

 

and

 

problem

 

prevention.
v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Compiler

 

Reference,

 

SC09-4816-03,

 

provides

 

reference

 

information

 

for

 

the

 

ILE

 

C/C++

 

compiler.

 

It

 

includes

 

compiler

 

options,

 

ILE

 

C/C++

 

macros,

 

preprocessor

 

directives,

 

and

 

pragmas.

 

v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

C/C++

 

Language

 

Reference,

 

SC09-7852-00,

 

provides

 

reference

 

information

 

about

 

the

 

ILE

 

C/C++

 

compiler,

 

including

 

elements

 

of

 

the

 

language,

 

statements,

 

and

 

preprocessor

 

directives.

 

Examples

 

are

 

provided

 

and

 

considerations

 

for

 

programming

 

are

 

also

 

discussed.

 

v

   

Standard

 

C/C++

 

Library

 

Reference,

 

SC09-4949-01,

 

provides

 

reference

 

information

 

about

 

the

 

standard

 

C/C++

 

language,

 

statements,

 

and

 

preprocessor

 

directives.

 

v

   

ILE

 

C/C++

 

Run-Time

 

Library

 

Functions,

 

SC41-5607-02,

 

provides

 

reference

 

information

 

about

 

C

 

for

 

AS/400

 

library

 

functions,

 

including

 

Standard

 

C

 

library

 

functions

 

and

 

C

 

for

 

AS/400

 

library

 

extensions.

 

Examples

 

are

 

provided

 

and

 

considerations

 

for

 

programming

 

are

 

also

 

discussed.

 

v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

COBOL

 

Programmer’s

 

Guide,

 

SC09-2540-04,

 

provides

 

information

 

about

 

how

 

to

 

write,

 

compile,

 

bind,

 

run,

 

debug,

 

and

 

maintain

 

ILE

 

COBOL

 

programs

 

on

 

the

 

AS/400

 

system.

 

It

 

provides

 

programming

 

information

 

on

 

how

 

to

 

call

 

other

 

ILE

 

COBOL

 

and

 

non-ILE

 

COBOL

 

programs,

 

share

 

data

 

with

 

other

 

programs,

 

use

 

pointers,

 

and

 

handle

 

exceptions.

 

It

 

also

 

describes

 

how

 

to

 

perform

 

input/output

 

operations

 

on

 

externally

 

attached

 

devices,

 

database

 

files,

 

display

 

files,

 

and

 

ICF

 

files.

   

552

 

ILE

 

C/C++

 

Programmer’s

 

Guide



v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

COBOL

 

Reference,

 

SC09-2539-04,

 

provides

 

a

 

description

 

of

 

the

 

ILE

 

COBOL

 

programming

 

language.

 

It

 

provides

 

information

 

on

 

the

 

structure

 

of

 

the

 

ILE

 

COBOL

 

programming

 

language

 

and

 

the

 

structure

 

of

 

an

 

ILE

 

COBOL

 

source

 

program.

 

It

 

also

 

provides

 

a

 

description

 

of

 

all

 

Identification

 

Division

 

paragraphs,

 

Environment

 

Division

 

clauses,

 

Data

 

Division

 

clauses,

 

Procedure

 

Division

 

statements,

 

and

 

Compiler-Directing

 

statements.

 

v

   

ILE

 

Concepts,

 

SC41-5606-07,

 

explains

 

concepts

 

and

 

terminology

 

pertaining

 

to

 

the

 

Integrated

 

Language

 

Environment

 

architecture

 

of

 

the

 

OS/400

 

licensed

 

program.

 

Topics

 

covered

 

include

 

creating

 

modules,

 

binding,

 

running

 

programs,

 

debugging

 

programs,

 

and

 

handling

 

exceptions.

 

v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

RPG

 

Programmer’s

 

Guide,

 

SC09-2507-05,

 

provides

 

information

 

about

 

the

 

ILE

 

RPG

 

programming

 

language,

 

which

 

is

 

an

 

implementation

 

of

 

the

 

RPG

 

IV

 

language

 

in

 

the

 

Integrated

 

Language

 

Environment

 

(ILE)

 

on

 

the

 

AS/400

 

system.

 

It

 

includes

 

information

 

on

 

creating

 

and

 

running

 

programs,

 

with

 

considerations

 

for

 

procedure

 

calls

 

and

 

interlanguage

 

programming.

 

The

 

guide

 

also

 

covers

 

debugging

 

and

 

exception

 

handling

 

and

 

explains

 

how

 

to

 

use

 

AS/400

 

files

 

and

 

devices

 

in

 

RPG

 

programs.

 

Appendixes

 

include

 

information

 

on

 

migration

 

to

 

RPG

 

IV

 

and

 

sample

 

compiler

 

listings.

 

It

 

is

 

intended

 

for

 

people

 

with

 

a

 

basic

 

understanding

 

of

 

data

 

processing

 

concepts

 

and

 

of

 

the

 

RPG

 

language.

 

v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

RPG

 

Reference,

 

SC09-2508-05,

 

provides

 

information

 

about

 

the

 

ILE

 

RPG

 

programming

 

language.

 

This

 

manual

 

describes,

 

position

 

by

 

position

 

and

 

keyword

 

by

 

keyword,

 

the

 

valid

 

entries

 

for

 

all

 

RPG

 

IV

 

specifications,

 

and

 

provides

 

a

 

detailed

 

description

 

of

 

all

 

the

 

operation

 

codes

 

and

 

built-in

 

functions.

 

This

 

manual

 

also

 

contains

 

information

 

on

 

the

 

RPG

 

logic

 

cycle,

 

arrays

 

and

 

tables,

 

editing

 

functions,

 

and

 

indicators.

 

v

   

Local

 

Device

 

Configuration,

 

SC41-5121-00,

 

provides

 

information

 

about

 

configuring

 

local

 

devices

 

on

 

the

 

AS/400

 

system.

 

This

 

includes

 

information

 

on

 

how

 

to

 

configure

 

the

 

following:

 

–

   

Local

 

work

 

station

 

controllers

 

(including

 

twinaxial

 

controllers)

 

–

   

Tape

 

controllers

 

–

   

Locally

 

attached

 

devices

 

(including

 

twinaxial

 

devices)
v

   

Machine

 

Interface

 

Functional

 

Reference,

 

SC41-5810-00,

 

describes

 

the

 

machine

 

interface

 

instruction

 

set.

 

Describes

 

the

 

functions

 

that

 

can

 

be

 

performed

 

by

 

each

 

instruction

 

and

 

also

 

the

 

necessary

 

information

 

to

 

code

 

each

 

instruction.

 

v

   

Printer

 

Device

 

Programming,

 

SC41-5713-06,

 

provides

 

information

 

to

 

help

 

you

 

understand

 

and

 

control

 

printing.

 

Provides

 

specific

 

information

 

on

 

printing

 

elements

 

and

 

concepts

 

of

 

the

 

AS/400

 

system,

 

printer

 

file

 

and

 

print

 

spooling

 

support

 

for

 

printing

 

operations,

 

and

 

printer

 

connectivity.

 

Includes

 

considerations

 

for

 

using

 

personal

 

computers,

 

other

 

printing

 

functions

 

such

 

as

 

Business

 

Graphics

 

Utility

 

(BGU),

 

advanced

 

function

 

printing

 

(AFP),

 

and

 

examples

 

of

 

working

 

with

 

the

 

AS/400

 

system

 

printing

 

elements

 

such

 

as

 

how

 

to

 

move

 

spooled

 

output

 

files

 

from

 

one

 

output

 

queue

 

to

 

a

 

different

 

output

 

queue.

 

Also

 

includes

 

an

 

appendix

 

of

 

control

 

language

 

(CL)

 

commands

 

used

 

to

 

manage

 

printing

 

workload.

 

Fonts

 

available

 

for

 

use

 

with

 

the

 

AS/400

 

system

 

are

 

also

 

provided.

 

Font

 

substitution

 

tables

 

provide

 

a

 

cross-reference

 

of

 

substituted

 

fonts

 

if

 

attached

 

printers

 

do

 

not

 

support

 

application-specified

 

fonts.

 

v

   

REXX/400

 

Programmer’s

 

Guide,

 

SC41-5728-00,

 

provides

 

a

 

wide-ranging

 

discussion

 

of

 

programming

 

with

 

REXX

 

on

 

the

 

iSeries

 

system.

 

Its

 

primary

 

purpose

 

is

 

to

 

provide

 

useful

 

programming

 

information

 

and

 

examples

 

to

 

those

 

who

 

are

 

new

 

to

 

Procedures

 

Language

 

400/REXX

 

and

 

to

 

provide

 

those

 

who

 

have

 

used

 

REXX

 

in

 

other

 

computing

 

environments

 

with

 

information

 

about

 

the

 

Procedures

 

Language

 

400/REXX

 

implementation.

   

Bibliography

 

553



v

   

WebSphere

 

Development

 

Studio:

 

ILE

 

RPG

 

Programmer’s

 

Guide,

 

SC09-2507-05,

 

provides

 

information

 

needed

 

to

 

design,

 

code,

 

compile,

 

and

 

test

 

RPG

 

programs

 

on

 

the

 

iSeries

 

system.

 

The

 

manual

 

provides

 

information

 

on

 

data

 

structures,

 

data

 

formats,

 

file

 

processing,

 

multiple

 

file

 

processing,

 

the

 

automatic

 

report

 

function,

 

RPG

 

command

 

statements,

 

testing

 

and

 

debugging

 

functions,

 

application

 

design

 

techniques,

 

problem

 

analysis,

 

and

 

compiler

 

service

 

information.

 

The

 

differences

 

between

 

the

 

RPG

 

for

 

AS/400

 

compiler,

 

the

 

System/38®

 

environment

 

RPG

 

III

 

compiler,

 

and

 

the

 

System/36®-compatible

 

RPG

 

II

 

compiler

 

are

 

also

 

discussed.

 

v

   

iSeries

 

Security

 

Reference,

 

SC41-5302-07,

 

tells

 

how

 

system

 

security

 

support

 

can

 

be

 

used

 

to

 

protect

 

the

 

system

 

and

 

the

 

data

 

from

 

being

 

used

 

by

 

people

 

who

 

do

 

not

 

have

 

the

 

proper

 

authorization,

 

protect

 

the

 

data

 

from

 

intentional

 

or

 

unintentional

 

damage

 

or

 

destruction,

 

keep

 

security

 

information

 

up-to-date,

 

and

 

set

 

up

 

security

 

on

 

the

 

system.

 

v

   

Local

 

Device

 

Configuration,

 

SC41-5121-00,

 

provides

 

step-by-step

 

procedures

 

for

 

initial

 

installation,

 

installing

 

licensed

 

programs,

 

program

 

temporary

 

fixes

 

(PTFs),

 

and

 

secondary

 

languages

 

from

 

IBM.

 

This

 

manual

 

is

 

also

 

for

 

users

 

who

 

already

 

have

 

an

 

AS/400

 

system

 

with

 

an

 

installed

 

release

 

and

 

want

 

to

 

install

 

a

 

new

 

release.

 

v

   

The

 

IBM

 

iSeries

 

Information

 

Center

 

provides

 

information

 

for

 

the

 

experienced

 

application

 

and

 

system

 

programmers

 

who

 

want

 

to

 

use

 

the

 

OS/400

 

application

 

programming

 

interfaces

 

(APIs),

 

as

 

well

 

as

 

examples

 

to

 

help

 

the

 

programmer

 

use

 

APIs.

 

View

 

Programmer

 

information,

 

APIs.

  

554

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Notices

 

This

 

information

 

was

 

developed

 

for

 

products

 

and

 

services

 

offered

 

in

 

the

 

U.S.A.

 

IBM

 

may

 

not

 

offer

 

the

 

products,

 

services,

 

or

 

features

 

discussed

 

in

 

this

 

document

 

in

 

other

 

countries.

 

Consult

 

your

 

local

 

IBM

 

representative

 

for

 

information

 

on

 

the

 

products

 

and

 

services

 

currently

 

available

 

in

 

your

 

area.

 

Any

 

reference

 

to

 

an

 

IBM

 

product,

 

program,

 

or

 

service

 

is

 

not

 

intended

 

to

 

state

 

or

 

imply

 

that

 

only

 

IBM

 

product,

 

program,

 

or

 

service

 

may

 

be

 

used.

 

Any

 

functionally

 

equivalent

 

product,

 

program,

 

or

 

service

 

that

 

does

 

not

 

infringe

 

any

 

of

 

IBM’s

 

intellectual

 

property

 

rights

 

may

 

be

 

used

 

instead.

 

However,

 

it

 

is

 

the

 

user’s

 

responsibility

 

to

 

evaluate

 

and

 

verify

 

the

 

operation

 

of

 

any

 

non-IBM

 

product,

 

program,

 

or

 

service.

 

IBM

 

may

 

have

 

patents

 

or

 

pending

 

patent

 

applications

 

covering

 

subject

 

matter

 

in

 

this

 

document.

 

The

 

furnishing

 

of

 

this

 

document

 

does

 

not

 

give

 

you

 

any

 

license

 

to

 

these

 

patents.

 

You

 

can

 

send

 

license

 

inquiries,

 

in

 

writing,

 

to:

Director

 

of

 

Licensing,

 

Intellectual

 

Property

 

&

 

Licensing

 

International

 

Business

 

Machines

 

Corporation,

 

North

 

Castle

 

Drive,

 

MD

 

-

 

NC119

 

Armonk,

 

New

 

York

 

10504-1785,

 

U.S.A.

The

 

following

 

paragraph

 

does

 

not

 

apply

 

to

 

the

 

United

 

Kingdom

 

or

 

any

 

other

 

country

 

where

 

such

 

provisions

 

are

 

inconsistent

 

with

 

local

 

law:

 

INTERNATIONAL

 

BUSINESS

 

MACHINES

 

CORPORATION

 

PROVIDES

 

THIS

 

PUBLICATION

 

“AS

 

IS”

 

WITHOUT

 

WARRANTY

 

OF

 

ANY

 

KIND,

 

EITHER

 

EXPRESS

 

OR

 

IMPLIED,

 

INCLUDING,

 

BUT

 

NOT

 

LIMITED

 

TO,

 

THE

 

IMPLIED

 

WARRANTIES

 

OF

 

NON-INFRINGEMENT,

 

MERCHANTABILITY

 

OR

 

FITNESS

 

FOR

 

A

 

PARTICULAR

 

PURPOSE.

 

Some

 

states

 

do

 

not

 

allow

 

disclaimer

 

of

 

express

 

or

 

implied

 

warranties

 

in

 

certain

 

transactions,

 

therefore,

 

this

 

statement

 

may

 

not

 

apply

 

to

 

you.

 

This

 

information

 

could

 

include

 

technical

 

inaccuracies

 

or

 

typographical

 

errors.

 

Changes

 

are

 

periodically

 

made

 

to

 

the

 

information

 

herein;

 

these

 

changes

 

will

 

be

 

incorporated

 

in

 

new

 

editions

 

of

 

the

 

publication.

 

IBM

 

may

 

make

 

improvements

 

and/or

 

changes

 

in

 

the

 

product(s)

 

and/or

 

the

 

program(s)

 

described

 

in

 

this

 

publication

 

at

 

any

 

time

 

without

 

notice.

 

Any

 

references

 

in

 

this

 

information

 

to

 

non-IBM

 

Web

 

sites

 

are

 

provided

 

for

 

convenience

 

only

 

and

 

do

 

not

 

in

 

any

 

manner

 

serve

 

as

 

an

 

endorsement

 

of

 

those

 

Web

 

sites.

 

The

 

materials

 

at

 

those

 

Web

 

sites

 

are

 

not

 

part

 

of

 

the

 

materials

 

for

 

this

 

IBM

 

product

 

and

 

use

 

of

 

those

 

Web

 

sites

 

is

 

at

 

your

 

own

 

risk.

 

Licensees

 

of

 

this

 

program

 

who

 

wish

 

to

 

have

 

information

 

about

 

it

 

for

 

the

 

purpose

 

of

 

enabling:

 

(i)

 

the

 

exchange

 

of

 

information

 

between

 

independent

 

created

 

programs

 

and

 

other

 

programs

 

(including

 

this

 

one)

 

and

 

(ii)

 

the

 

mutual

 

use

 

of

 

the

 

information

 

which

 

has

 

been

 

exchanged,

 

should

 

contact:

IBM

 

Canada

 

Ltd.

 

Department

 

071

 

8200

 

Warden

 

Avenue

 

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

555



Markham,

 

Ontario

 

L6G

 

1C7

 

Canada

Such

 

information

 

may

 

be

 

available,

 

subject

 

to

 

appropriate

 

terms

 

and

 

conditions,

 

including

 

in

 

some

 

cases

 

payment

 

of

 

a

 

fee.

 

The

 

licensed

 

program

 

described

 

in

 

this

 

information

 

and

 

all

 

licensed

 

material

 

available

 

for

 

it

 

are

 

provided

 

by

 

IBM

 

under

 

terms

 

of

 

the

 

IBM

 

Customer

 

Agreement,

 

IBM

 

International

 

Program

 

License

 

Agreement,

 

or

 

any

 

equivalent

 

agreement

 

between

 

us.

 

This

 

publication

 

contains

 

examples

 

of

 

data

 

and

 

reports

 

used

 

in

 

daily

 

business

 

operations.

 

To

 

illustrate

 

them

 

as

 

completely

 

as

 

possible,

 

the

 

examples

 

include

 

the

 

names

 

of

 

individuals,

 

companies,

 

brands,

 

and

 

products.

 

All

 

of

 

these

 

names

 

are

 

fictitious

 

and

 

any

 

similarity

 

to

 

the

 

names

 

and

 

addresses

 

used

 

by

 

an

 

actual

 

business

 

enterprise

 

is

 

entirely

 

coincidental.

 

Programming

 

Interface

 

Information

 

This

 

edition

 

applies

 

to

 

Version

 

5,

 

Release

 

1,

 

Modification

 

0,

 

of

 

IBM

 

WebSphere

 

Development

 

Studio

 

(5722-WDS),

 

ILE

 

C/C++

 

compilers.

 

This

 

book

 

is

 

intended

 

to

 

help

 

you

 

create

 

Integrated

 

Language

 

Environment

 

C/C++

 

programs.

 

It

 

contains

 

information

 

necessary

 

to

 

use

 

the

 

Integrated

 

Language

 

Environment

 

C/C++

 

compiler.

 

This

 

book

 

documents

 

general-use

 

programming

 

interfaces

 

and

 

associated

 

guidance

 

information

 

provided

 

by

 

the

 

Integrated

 

Language

 

Environment

 

C/C++

 

compiler.

 

Trademarks

 

and

 

Service

 

Marks

 

The

 

following

 

terms

 

are

 

trademarks

 

of

 

the

 

International

 

Business

 

Machines

 

Corporation

 

in

 

the

 

United

 

States

 

or

 

other

 

countries

 

or

 

both:

  

400

 

IBM

 

AFP

 

IBMLink

 

AS/400

 

Integrated

 

Language

 

Environment

 

AS/400e

 

iSeries

 

Application

 

System/400

 

OS/2

 

C/400

 

OS/400

 

CICS/400

 

RPG/400

 

COBOL/400

 

SAA

 

DB2

 

SQL/400

 

Eserver

 

WebSphere

 

GDDM

    

Microsoft

 

and

 

Windows

 

are

 

trademarks

 

of

 

Microsoft

 

Corporation

 

in

 

the

 

United

 

States,

 

other

 

countries,

 

or

 

both.

 

UNIX

 

is

 

a

 

registered

 

trademark

 

of

 

The

 

Open

 

Group

 

in

 

the

 

United

 

States

 

and

 

other

 

countries.

 

Java

 

and

 

all

 

Java-based

 

trademarks

 

are

 

trademarks

 

of

 

Sun

 

Microsystems,

 

Inc.

 

in

 

the

 

United

 

States,

 

other

 

countries,

 

or

 

both.

   

556

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Other

 

company,

 

product,

 

and

 

service

 

names

 

may

 

be

 

trademarks

 

or

 

service

 

marks

 

of

 

others.

 

Industry

 

Standards

 

The

 

Integrated

 

Language

 

Environment

 

C

 

compiler

 

and

 

run-time

 

library

 

are

 

designed

 

according

 

to

 

the

 

ISO

 

for

 

C

 

Programming

 

Languages

 

-

 

C

 

ISO

 

9899-1990

 

standard.

 

The

 

C++

 

language

 

is

 

consistent

 

with

 

the

 

International

 

Standard

 

for

 

Information

 

Systems

 

-

 

Programming

 

Language

 

C++

 

-

 

ISO/IEC

 

14882:1998

 

standard.

   

Notices

 

557



558

 

ILE

 

C/C++

 

Programmer’s

 

Guide



Index

 

Special

 

characters
__ptr128

 

501

 

__ptr64

 

501

 

_C_TS_calloc()

 

502

 

_C_TS_free()

 

502

 

_C_TS_malloc()

 

502

 

_C_TS_realloc()

 

502

 

_CTLA_HANDLE

 

control

 

action

 

321

 

_CTLA_HANDLE_NO_MSG

 

control

 

action

 

321

 

_CTLA_IGNORE

 

control

 

action

 

321

 

_CTLA_IGNORE_NO_MSG

 

control

 

action

 

321

 

_CTLA_INVOKE

 

control

 

action

 

321

 

_EXCP_MSGID

 

global

 

variable

 

317

 

_Racquire()

 

function

 

274,

 

286,

 

288

 

_Rclose()

 

function

 

286

 

_Rdevatr

 

269

 

_Rdevatr()

 

function

 

286

 

_Rfeod()

 

function

 

286,

 

299

 

_Rfeov()

 

function

 

299

 

_Rformat()

 

function

 

286

 

_Rindara()

 

function

 

286

 

_Riofbk()

 

function

 

196,

 

279,

 

286

 

_Ropen()

 

function

 

177,

 

181,

 

285

 

_Ropnfbk()

 

function

 

196

 

_Rpgmdev()

 

function

 

276,

 

286,

 

289

 

_Rreadd()

 

function

 

286

 

_Rreadindv()

 

function

 

286,

 

289

 

_Rreadn()

 

function

 

286

 

_Rreadnc()

 

function

 

286

 

_Rrelease()

 

function

 

286,

 

289

 

_Rupdate()

 

function

 

286

 

_Rupfb()

 

function

 

286

 

_Rwrite()

 

function

 

286

 

_Rwrited()

 

function

 

286

 

_Rwriterd()

 

function

 

286

 

_Rwrread()

 

function

 

286

 

#include

 

directive

 

225,

 

497

 

#pragma

 

argument

 

directive

 

381,

 

397,

 

403

 

#pragma

 

cancel_handler

 

directive

 

346

 

#pragma

 

convert

 

directive

 

521,

 

523,

 

526,

 

528

 

#pragma

 

descriptor

 

directive

 

422

 

#pragma

 

disable_handler

 

directive

 

319

 

#pragma

 

enum

 

392

 

#pragma

 

exception_handler

 

directive

 

70,

 

318,

 

319,

 

322

 

#pragma

 

implementation

 

directive

 

496,

 

498

 

#pragma

 

linkage

 

(PGMNAME,

 

OS)

 

directive

 

400

 

#pragma

 

linkage

 

directive

 

381,

 

382

 

#pragma

 

map

 

directive

 

365,

 

381,

 

400,

 

404

 

#pragma

 

mapinc

 

directive

 

228,

 

254

 

creating

 

C

 

structure

 

type

 

definitions

 

225

 

database

 

files

 

242

 

header

 

description

 

226

 

#pragma

 

mapinc

 

directive

 

(continued)
long

 

record

 

field

 

names

 

231

 

multiple

 

record

 

formats

 

243

 

record

 

format

 

227

 

#pragma

 

nosigntrunc

 

directive

 

464

 

#pragma

 

pack

 

directive

 

390

 

#pragma

 

undeclared

 

directive

 

501

 

Numerics
64–bit

 

version

 

of

 

IFS

 

207

 

64–bit

 

version

 

of

 

IFS

 

interface,

 

enabling

 

221

 

A
activation

 

group,

 

description

 

5

 

activation

 

groups
*CALLER

 

62

 

*NEW

 

60

 

abnormal

 

program

 

end

 

58

 

creation

 

49

 

default

 

heap

 

64

 

deleting

 

named

 

63

 

description

 

59

 

dynamic

 

storage

 

64

 

identifying

 

17

 

impact

 

on

 

performance

 

85

 

naming

 

51

 

process

 

50

 

reasons

 

to

 

use

 

21

 

specifying

 

59

 

activation

 

groups,

 

named
and

 

call

 

stack

 

62

 

creating

 

59

 

deleting

 

63

 

impact

 

on

 

performance

 

85

 

non-ISO

 

compliant

 

behaviour

 

61

 

run-time

 

behaviour

 

60

 

activation,

 

description

 

4

 

activations
description

 

21,

 

50

 

grouping

 

51

 

processes

 

50

 

Add

 

Program

 

(ADDPGM)

 

command

 

128

 

address

 

overflows

 

82

 

ALIAS

 

keyword

 

228

 

alignment

 

problems

 

in

 

C

 

structures,

 

avoiding

 

237

 

Allocate

 

Object(ALCOBJ)

 

command

 

252

 

arguments
packed

 

decimal

 

455,

 

459

 

passed

 

in

 

registers

 

73

 

passing
default

 

styles

 

406

 

from

 

CL

 

program

 

to

 

ILE

 

C++

 

program

 

408

 

ILE,

 

CL,

 

COBOL,

 

or

 

RPG

 

linkage

 

403

 

arguments

 

(continued)
passing

 

(continued)
matching

 

data

 

type

 

requirements

 

421

 

operational

 

descriptors

 

408,

 

421

 

packed

 

decimal

 

455

 

pointers

 

as

 

arguments

 

359

 

arrays,

 

evaluating

 

151

 

B
bcd.h

 

file

 

383

 

Binary

 

Coded

 

Decimal

 

Class

 

Library

 

for

 

OS/400

 

383

 

binary

 

stream

 

files
binary

 

stream

 

database

 

files
I/O

 

considerations

 

255

 

binary

 

stream

 

display

 

files
program

 

devices

 

285

 

binary

 

stream

 

ICF

 

files
I/O

 

considerations

 

287

 

program

 

devices

 

288

 

binary

 

stream

 

save

 

files
I/O

 

considerations

 

306

 

binary

 

stream

 

subfiles
I/O

 

considerations

 

285

 

binary

 

stream

 

tape

 

files
I/O

 

considerations

 

299

 

opening,

 

one

 

character

 

at

 

a

 

time

 

187

 

opening,

 

one

 

character

 

at

 

a

 

time

 

(C++)

 

189

 

opening,

 

one

 

record

 

at

 

a

 

time

 

193

 

opening,

 

one

 

record

 

at

 

a

 

time

 

(C++)

 

194

 

reading,

 

one

 

character

 

at

 

a

 

time

 

190

 

reading,

 

one

 

record

 

at

 

a

 

time

 

195

 

updating,

 

one

 

character

 

at

 

a

 

time

 

191

 

writing,

 

one

 

character

 

at

 

a

 

time

 

189

 

writing,

 

one

 

record

 

at

 

a

 

time

 

194

 

binary

 

streams

 

210

 

binary

 

streams,

 

described

 

209

 

bindable

 

APIs
to

 

free

 

or

 

re-allocate

 

storage

 

64

 

to

 

manage

 

the

 

default

 

heap

 

64

 

bindable

 

APIs

 

for

 

using

 

teraspace

 

502

 

binder

 

language
creating

 

33,

 

38

 

EXPORT

 

keyword

 

34

 

EXPORT

 

symbol

 

93

 

Export

 

Symbol

 

(EXPORT)

 

command

 

43

 

reason

 

to

 

use

 

23

 

source

 

file

 

31

 

source

 

file

 

creation

 

32

 

to

 

create

 

a

 

service

 

program

 

36

 

binder

 

listings,

 

using

 

18

 

binder,

 

using

 

16

 

binding

 

directories
creating

 

16

 

description

 

15

 

reasons

 

for

 

creating

 

15

  

©

 

Copyright

 

IBM

 

Corp.

 

1993,

 

2004

 

559



binding

 

modules

 

into

 

a

 

program

 

12,

 

14

 

bit

 

fields

 

68

 

evaluating

 

151,

 

159

 

breakpoints
conditional

 

133

 

job

 

133

 

removing

 

(clearing)

 

all

 

137

 

setting

 

133

 

thread

 

133

 

unconditional

 

133

 

C
C

 

linkage,

 

specifying

 

for

 

a

 

function

 

405

 

C

 

locale

 

migration

 

table

 

530

 

C++

 

calling

 

conventions

 

363

 

C++

 

I/O

 

stream

 

classes

 

78

 

C++

 

objects
using

 

in

 

a

 

C

 

program

 

368,

 

373

 

C++

 

templates

 

489

 

Call

 

(CALL)

 

command

 

146,

 

262

 

changes

 

to

 

parameters

 

54

 

passing

 

parameters

 

to

 

a

 

program

 

52,

 

54

 

using

 

52

 

call

 

message

 

queue

 

312

 

call

 

stack

 

62,

 

364

 

call

 

stack

 

entries

 

364

 

calling
C++

 

procedures

 

367

 

C++

 

programs

 

367

 

call

 

stack

 

entries

 

364

 

ILE

 

C++

 

programs

 

416

 

ILE

 

programs

 

410

 

message

 

queue

 

312

 

OPM

 

programs

 

442

 

procedures

 

197,

 

420

 

procedures,

 

using

 

linkage

 

specification

 

448

 

programs

 

52,

 

55

 

programs,

 

using

 

library

 

qualifications

 

365

 

programs,

 

using

 

linkage

 

specification

 

401,

 

449

 

calling

 

conventions

 

(C++)

 

363

 

cancel

 

handlers,

 

using

 

(C++)

 

346

 

casting

 

pointers,

 

description

 

357

 

Change

 

Command

 

Defaults

 

(CHGCMDDFT)

 

command

 

13,

 

50

 

Change

 

Debug

 

(CHGDBG)

 

command

 

128,

 

129

 

Change

 

Service

 

Program

 

(CHGSRVPGM)

 

command

 

25

 

Change

 

Tape

 

File

 

(CHGTAPF)

 

command

 

299

 

character

 

arrays,

 

displaying

 

158

 

Character

 

Data

 

Representation

 

Architecture

 

(CDRA)

 

521

 

character

 

escape

 

codes

 

525

 

character

 

sets

 

521,

 

529

 

characters
case

 

conversion

 

529

 

classification

 

529

 

coded

 

character

 

sets

 

521

 

collating

 

529

 

evaluating

 

arrays

 

151

 

graphic

 

521

 

characters

 

(continued)
ordering

 

529

 

CHGMOD

 

command

 

173

 

CL

 

linkage

 

403

 

classes
accessing

 

a

 

C++

 

class

 

from

 

a

 

C

 

program

 

373

 

creating

 

for

 

use

 

in

 

ILE

 

C++

 

372

 

evaluating

 

151

 

extended_type_info

 

516

 

ILE

 

C++

 

372

 

mapping

 

a

 

C++

 

class

 

to

 

a

 

C

 

structure

 

372

 

type_info

 

515

 

COBOL

 

linkage

 

403

 

Coded

 

Character

 

Set

 

Identifiers

 

(CCSID)
CCSID

 

037

 

522,

 

523

 

CCSID

 

1026

 

521

 

CCSID

 

1100

 

528

 

CCSID

 

1301

 

528

 

CCSID

 

13488

 

524

 

CCSID

 

273

 

522

 

CCSID

 

290

 

521,

 

528

 

CCSID

 

5026

 

528

 

CCSID

 

65535

 

522,

 

523

 

CCSID

 

905

 

521

 

CCSID

 

930

 

528

 

changing

 

523

 

Character

 

Data

 

Representation

 

Architecture

 

(CDRA)

 

521

 

code

 

points

 

521

 

codepages

 

521

 

definition

 

521

 

double-byte

 

character

 

set

 

(DBCS)

 

521

 

exceptions

 

11

 

graphic

 

characters

 

521

 

ILE

 

C/C++

 

compiler

 

recognition

 

521

 

mixed-byte

 

CCSIDs

 

535

 

other

 

than

 

CCSID

 

037

 

521

 

single-byte

 

CCSIDs

 

535

 

source

 

file

 

conversion

 

522

 

specifying

 

522

 

Target

 

CCSID

 

(TGTCCSID)

 

parameter

 

527

 

Target

 

CCSID

 

(TGTCCSID)

 

parameter

 

support

 

528

 

trigraphs

 

in

 

place

 

of

 

C

 

characters

 

11

 

wide-character

 

literals

 

524

 

coded

 

character

 

sets

 

529

 

codepages

 

521

 

coding

 

procedures

 

and

 

data

 

items

 

93

 

command

 

line,

 

debug

 

108

 

command

 

processing

 

program

 

(CPP)

 

409

 

commitment

 

control

 

262

 

common

 

mechanism

 

to

 

return

 

function

 

results

 

400

 

compile-time

 

errors

 

462

 

Compress

 

Object

 

(CPROBJ)

 

command

 

85

 

Compress

 

Object(CPROBJ)

 

command

 

25

 

condition

 

handling
description

 

328

 

registering

 

328

 

service

 

programs

 

329

 

to

 

promote

 

an

 

exception

 

334

 

conditional

 

breakpoints
adding

 

135,

 

136

 

seting

 

to

 

a

 

statement

 

136

 

contiguous

 

address

 

ranges

 

501

 

control

 

actions

 

320

 

control

 

language

 

(CL)

 

commands
Add

 

ICF

 

Device

 

(ADDICFDEVE)

 

288

 

Add

 

Program

 

(ADDPGM)

 

128

 

Allocate

 

Object(ALCOBJ)

 

252

 

Break

 

148

 

Call

 

(CALL)

 

146,

 

262

 

Change

 

Command

 

Defaults

 

(CHGCMDDFT)

 

13,

 

50

 

Change

 

Debug

 

(CHGDBG)

 

128,

 

129

 

Change

 

ICF

 

File

 

(CHGICFF)

 

288

 

Change

 

Service

 

Program

 

(CHGSRVPGM)

 

25

 

Change

 

Tape

 

File

 

(CHGTAPF)

 

299

 

checking

 

syntax

 

before

 

running

 

55

 

CHGMOD

 

173

 

Compress

 

Object

 

(CPROBJ)

 

85

 

Compress

 

Object(CPROBJ)

 

25

 

Copy

 

File

 

(CPYF)

 

11

 

Copy

 

to

 

Stream

 

File

 

(CPYTOSTMF)

 

212

 

Create

 

a

 

Display

 

File

 

(CRTDSPF)

 

285

 

Create

 

Binding

 

Directory

 

(CRTBNDDIR)

 

16

 

Create

 

Bound

 

C

 

Program

 

(CRTBNDC)

 

12,

 

49,

 

125

 

Create

 

Bound

 

C++

 

Program

 

(CRTBNDCPP)

 

12,

 

49

 

Create

 

C

 

Module

 

(CRTCMOD)

 

14,

 

125

 

Create

 

C++

 

Module

 

(CRTCPPMOD)

 

14,

 

490

 

Create

 

Command

 

(CRTCMD)

 

56

 

Create

 

DDM

 

file

 

(CRTDDMF)

 

255

 

Create

 

Display

 

File

 

(CRTDSPF)

 

281

 

Create

 

ICF

 

File

 

(CRTICFF)

 

287,

 

288

 

Create

 

Journal

 

(CRTJRN)

 

262

 

Create

 

Journal

 

Receiver

 

(CRTJRNRCV)

 

262

 

Create

 

Locale

 

(CRTLOCALE)

 

533,

 

534,

 

537

 

Create

 

Printer

 

File

 

(CRTPRTF)

 

294

 

Create

 

Program

 

(CRTPGM)

 

12,

 

49

 

default

 

parameters

 

12

 

specifying

 

parameters

 

17

 

Create

 

Service

 

Program

 

(CRTSRVPGM)

 

24

 

Create

 

Structured

 

Query

 

Language

 

ILE

 

C

 

Object

 

(CRTSQLCI)

 

13

 

Create

 

Tape

 

File

 

(CRTTAPF)

 

298

 

Decompress

 

Object

 

(DCPOBJ)

 

85

 

Display

 

Debug

 

Watches

 

(DSPDBGWCH)

 

144

 

Display

 

Module

 

Source

 

(DSPMODSRC)

 

128

 

End

 

Commitment

 

Control

 

(ENDCMTCTL)

 

262

 

End

 

Debug

 

(ENDDBG)

 

125

 

End

 

Program

 

Export

 

(ENDPGMEXP)

 

93

 

Initialize

 

Physical

 

File

 

Member

 

(INZPFM)

 

252

 

Monitor

 

Message

 

(MONMSG)

 

59

   

560

 

ILE

 

C/C++

 

Programmer’s

 

Guide



control

 

language

 

(CL)

 

commands

 

(continued)
Override

 

database

 

file

 

(OVRDBF)

 

267

 

Override

 

Database

 

File

 

(OVRDBF)

 

252

 

Override

 

Diskette

 

File

 

(OVRDKTF)

 

302

 

Override

 

ICF

 

Device

 

(OVRICFDEVE)

 

288

 

Override

 

ICF

 

File

 

(OVRICFF)

 

288

 

Override

 

Tape

 

File

 

(OVRTAPF)

 

299

 

Reclaim

 

Resources

 

(RCLRSC)

 

63

 

Remove

 

Program

 

(RMVPGM)

 

128

 

Reorganize

 

Physical

 

File

 

Member

 

(RGZPFM)

 

252

 

Retrieve

 

Binder

 

Source

 

(RTVBNDSRC)

 

33

 

Retrieve

 

Job

 

Attributes

 

(RTVJOBA)

 

400,

 

427,

 

444

 

Start

 

Commitment

 

Control

 

(STRCMTCTL)

 

262

 

Start

 

Debug

 

(STRDBG)

 

125,

 

128,

 

129

 

Start

 

Journal

 

Physical

 

File

 

(STRJRNPF)

 

262

 

Start

 

Program

 

Export

 

(STRPGMEXP)

 

93

 

Start

 

Source

 

Entry

 

Utility

 

(STRSEU)

 

11

 

Transfer

 

Control

 

(TFRCTL)

 

55

 

Update

 

Service

 

Program

 

(UPDSRVPGM)

 

25

 

using

 

with

 

service

 

programs

 

25

 

Work

 

with

 

Module

 

(WRKMOD)

 

171

 

conventions,

 

calling

 

363,

 

397

 

converting
*CLD

 

objects

 

types

 

to

 

*LOCALE

 

object

 

types

 

530

 

codepages,

 

wide-character

 

literals

 

526

 

from

 

packed

 

decimal

 

data

 

types

 

451

 

packed

 

decimal

 

data

 

stored

 

in

 

character

 

arrays

 

247

 

packed

 

decimal

 

or

 

xoned

 

data,

 

automatically

 

247

 

packed

 

decimal

 

type

 

to

 

floating

 

point

 

type

 

454

 

packed

 

decimal

 

type

 

to

 

integer

 

type

 

453

 

packed

 

decimal

 

type

 

to

 

packed

 

decimal

 

type

 

452

 

REXX

 

variables

 

54

 

source

 

file

 

CCSID

 

522

 

string

 

literals

 

in

 

a

 

source

 

file

 

523

 

xoned

 

decimal

 

data

 

stored

 

in

 

character

 

arrays

 

247

 

Copy

 

File

 

(CPYF)

 

command

 

11

 

Copy

 

to

 

Stream

 

File

 

(CPYTOSTMF)

 

command

 

212

 

Create

 

Binding

 

Directory

 

(CRTBNDDIR)

 

command

 

16

 

Create

 

Bound

 

C

 

Program

 

(CRTBNDC)

 

command

 

125

 

Create

 

C

 

Module

 

(CRTCMOD)

 

command

 

125

 

Create

 

C++

 

Module

 

(CRTCPPMOD)

 

command

 

490

 

Create

 

Command

 

(CRTCMD)

 

command

 

56

 

Create

 

DDM

 

file

 

(CRTDDMF)

 

command

 

255

 

Create

 

Display

 

File

 

(CRTDSPF)

 

285

 

Create

 

Display

 

File

 

(CRTDSPF)

 

command

 

281

 

Create

 

ICF

 

File

 

(CRTICFF)

 

command

 

287

 

Create

 

Journal

 

(CRTJRN)

 

command

 

262

 

Create

 

Journal

 

Receiver

 

(CRTJRNRCV)

 

command

 

262

 

Create

 

Locale

 

(CRTLOCALE)

 

comman

 

534

 

Create

 

Locale

 

(CRTLOCALE)

 

command

 

533,

 

537

 

Create

 

Printer

 

File

 

(CRTPRTF)

 

command

 

294

 

Create

 

Service

 

Program

 

(CRTSRVPGM)

 

command

 

24

 

Create

 

Structured

 

Query

 

Language

 

ILE

 

C

 

Object

 

(CRTSQLCI)

 

command

 

13

 

Create

 

Tape

 

File

 

(CRTTAPF)

 

command

 

298

 

creating
binding

 

directory

 

16

 

include

 

source

 

view

 

125

 

listing

 

view

 

125

 

listing

 

view

 

for

 

debugging

 

123

 

locale

 

objects

 

534

 

new

 

commands

 

56

 

program

 

in

 

one

 

step
compiling

 

and

 

binding

 

12

 

program

 

in

 

two

 

steps
compiling

 

and

 

binding

 

14

 

programs

 

9,

 

16

 

root

 

source

 

view

 

125

 

service

 

programs

 

15

 

source

 

physical

 

file

 

with

 

a

 

CCSID

 

522

 

temporary

 

module

 

12

 

views

 

125

 

D
data

 

description

 

specification

 

(DDS)

 

250

 

and

 

keyed

 

sequence

 

files

 

251

 

avoiding

 

duplicate

 

key

 

values

 

251

 

GENCSRC

 

utility

 

541

 

support

 

for

 

541

 

Data

 

Management

 

files
compilations

 

213

 

file

 

description

 

179

 

file

 

naming

 

conventions

 

181

 

file

 

objects

 

179,

 

180

 

record-at-a-time

 

processing

 

194

 

data

 

type

 

compatibility

 

439

 

data

 

types
bit

 

fields

 

68

 

choosing

 

82

 

compatibility

 

543

 

to

 

improve

 

performance

 

67

 

database

 

files

 

208

 

access

 

paths

 

250

 

arranging

 

key

 

fields

 

251

 

arrival

 

sequence

 

access

 

paths

 

250

 

binary

 

stream

 

functions

 

255

 

database

 

files

 

(continued)
commitment

 

control

 

262

 

comparison

 

with

 

stream

 

file

 

208

 

definition

 

249

 

duplicate

 

key

 

values

 

251

 

field

 

level

 

description

 

250

 

input

 

and

 

output

 

buffers

 

228

 

key

 

fields

 

228

 

keyed

 

sequence

 

access

 

path

 

251

 

arranging

 

key

 

fields

 

251

 

keyed

 

sequence

 

access

 

paths

 

251

 

managing

 

250

 

null-capable

 

fields

 

253

 

opening

 

as

 

binary

 

stream

 

files

 

255

 

opening

 

as

 

record

 

files

 

254

 

preventing

 

corruption

 

of

 

123

 

record

 

functions

 

254

 

record

 

level

 

description

 

250

 

record-at-a-time

 

processing

 

255

 

source

 

members

 

250

 

synchronizing

 

changes

 

262

 

valid

 

keyword

 

parameters

 

254

 

database

 

records
arrival

 

sequence

 

processing

 

256

 

deleting

 

252

 

evaluating

 

151

 

keyed

 

sequence

 

processing

 

257

 

locking

 

252

 

record

 

I/O

 

functions

 

259

 

removing

 

deleted

 

records

 

252

 

DBCS

 

characters

 

525

 

DBGVIEW

 

parameter
*ALL

 

option

 

125

 

*EXPMAC

 

option

 

125

 

*LIST

 

option

 

125

 

*NONE

 

option

 

126

 

*SHOWINC

 

option

 

125

 

*SHOWSKP

 

option

 

125

 

*SHOWSYS

 

option

 

125

 

*SHOWUSR

 

option

 

125

 

*SOURCE

 

option

 

125

 

CRTBNDC

 

command

 

125

 

CRTBNDCPP

 

command

 

123,

 

125

 

CRTCMOD

 

command

 

125

 

CRTCPPMOD

 

command

 

125

 

ILE

 

options

 

130

 

options

 

107

 

preparing

 

a

 

program

 

for

 

debugging

 

123

 

DDM

 

files
binary

 

stream

 

functions

 

255

 

creation

 

249

 

I/O

 

considerations

 

255

 

opening

 

as

 

binary

 

files

 

255

 

opening

 

as

 

record

 

files

 

254

 

record

 

functions

 

254

 

valid

 

keyword

 

parameters

 

254

 

debug

 

command

 

line

 

108

 

debug

 

commands
ATTR

 

108

 

BOTTOM

 

109

 

BREAK

 

108,

 

135

 

CLEAR

 

108,

 

136,

 

137,

 

142

 

DISPLAY

 

109

 

Display

 

Module

 

130

 

DOWN

 

109

 

entering

 

108

   

Index

 

561



debug

 

commands

 

(continued)
EQUATE

 

109,

 

154,

 

155

 

EVAL

 

109,

 

151,

 

152,

 

153,

 

159,

 

163,

 

165

 

EVAL

 

(C++)

 

167

 

FIND

 

109

 

HELP

 

110

 

LEFT

 

109

 

NEXT

 

109

 

PREVIOUS

 

109

 

QUAL

 

109,

 

151

 

RIGHT

 

109

 

SET

 

109,

 

128,

 

129

 

STEP

 

109,

 

145

 

STEP

 

INTO

 

145,

 

149

 

STEP

 

OVER

 

145,

 

148

 

TBREAK

 

109,

 

136

 

THREAD

 

109

 

TOP

 

109

 

UP

 

109

 

using

 

108

 

WATCH

 

109,

 

140

 

where

 

to

 

find

 

them

 

108

 

debug

 

data
creating

 

123

 

effect

 

on

 

object

 

size

 

107

 

none

 

126

 

options

 

107

 

debug

 

options
setting

 

129

 

debug

 

session
adding

 

OPM

 

program

 

to

 

ILE

 

debug

 

session

 

129

 

adding

 

programs

 

128

 

adding

 

programs

 

and

 

service

 

programs

 

to

 

128

 

before

 

starting

 

the

 

debugger

 

107,

 

123,

 

125

 

expression

 

grammar

 

107

 

limitations

 

107

 

removing

 

programs

 

and

 

service

 

programs

 

from

 

128

 

starting

 

125

 

starting

 

for

 

OPM

 

programs

 

127

 

debug

 

view
description

 

107

 

synchronizing

 

options

 

with

 

listing

 

view

 

123

 

debugging

 

programs
adding

 

OPM

 

program

 

to

 

ILE

 

debug

 

session

 

129

 

before

 

starting

 

107,

 

123,

 

125

 

limitations

 

107

 

preparing

 

a

 

program

 

for

 

123

 

decimal

 

types

 

107

 

declaring

 

pointer

 

variables

 

355

 

Decompress

 

Object

 

(DCPOBJ)

 

command

 

85

 

deep

 

copy

 

82

 

default

 

program

 

device
acquiring

 

274

 

changing

 

276

 

demangling

 

names

 

34

 

device

 

files
both

 

fields

 

238

 

indicator

 

field

 

240

 

input

 

fields

 

237

 

device

 

files

 

(continued)
OS/400

 

feedback

 

areas

 

269

 

output

 

fields

 

238

 

separate

 

indicator

 

area

 

240

 

INDARA

 

keyword

 

240

 

part

 

of

 

the

 

file

 

buffer

 

240

 

using

 

INDARA

 

keyword

 

in

 

DDS

 

270

 

different

 

passing

 

methods

 

397

 

direct

 

monitor

 

handlers
scoping

 

319

 

using

 

318

 

diskette

 

files
binary

 

stream

 

functions

 

303

 

blocking

 

303

 

I/O

 

considerations

 

302,

 

303

 

opening

 

as

 

binary

 

stream

 

files

 

302

 

opening

 

as

 

record

 

files

 

303

 

record

 

functions

 

303

 

Display

 

Debug

 

Watches

 

(DSPDBGWCH)

 

command

 

144

 

display

 

files
binary

 

stream

 

functions

 

285

 

changing

 

default

 

program

 

device

 

286

 

creating

 

281

 

definition

 

281

 

I/O

 

considerations

 

281

 

indicators

 

269

 

major/minor

 

return

 

codes

 

270

 

open

 

as

 

record

 

files

 

285

 

opening

 

as

 

binary

 

stream

 

files

 

284

 

record

 

functions

 

286

 

separate

 

indicator

 

areas

 

270

 

subfiles

 

281

 

Display

 

Module

 

Source

 

(DSPMODSRC)

 

command

 

128

 

displaying
C++

 

constructs,

 

sample

 

source

 

167

 

character

 

arrays

 

158

 

characters

 

to

 

a

 

newline

 

157

 

null-ended

 

character

 

arrays

 

156

 

structure

 

155

 

system

 

and

 

space

 

pointers,

 

sample

 

source

 

165

 

templates,

 

while

 

debugging

 

162

 

value

 

of

 

variables

 

151

 

variables

 

as

 

hexadecimal

 

values

 

155

 

distributed

 

data

 

management

 

(DDM)
definition

 

249

 

opening

 

files

 

as

 

binary

 

stream

 

files

 

255

 

Document

 

Library

 

Services

 

(QDLS)

 

204

 

downcasting

 

511

 

dynamic

 

program

 

call,

 

description

 

363

 

E
elements

 

of

 

a

 

language

 

environment

 

529

 

End

 

Commitment

 

Control

 

(ENDCMTCTL)

 

command

 

262

 

ending
abnormal

 

program

 

end

 

58

 

programs

 

58

 

enumerations,

 

evaluating

 

151,

 

160

 

environment

 

variables
locale

 

536

 

equating

 

a

 

name

 

with

 

a

 

variable

 

expression

 

or

 

command

 

154

 

errno
checking

 

the

 

value

 

315

 

header

 

file

 

315

 

initialization

 

and

 

re-initialization

 

316

 

error

 

macros
EIOERROR

 

315

 

EIORECERR

 

315

 

errors
compile-time

 

462,

 

463,

 

464

 

language-specific

 

311

 

messaging

 

support

 

22

 

packed

 

decimal

 

data

 

type

 

462

 

run-time

 

463

 

escape

 

codes

 

525

 

EVAL

 

debug

 

command
sample

 

source

 

163

 

examples
creating

 

a

 

sample

 

ILE

 

C

 

application

 

89

 

debugging

 

C

 

applications

 

110,

 

119

 

exception

 

percolaton

 

70

 

exception

 

classes

 

320

 

exception

 

handling
additional

 

types

 

311

 

direct

 

monitor

 

handler

 

70

 

direct

 

monitor

 

handlers

 

318

 

errno

 

values

 

315

 

HLL-specific

 

handlers

 

318

 

ILE

 

condition

 

handlers

 

318

 

priority

 

312,

 

344

 

return

 

values

 

315

 

to

 

improve

 

performance

 

69

 

exception

 

handling

 

mechanism

 

328

 

exception

 

messages

 

312

 

C2M

 

69

 

global

 

variable

 

_EXCP_MSGID

 

317

 

list

 

312

 

monitoring

 

59

 

reducing

 

69

 

specifying

 

identifiers

 

322

 

exceptions
nested

 

345

 

reducing

 

69

 

explicit

 

instantiations

 

of

 

C++

 

templates

 

494

 

explicit

 

specializations

 

of

 

C++

 

templates

 

494

 

Export

 

Symbol

 

(EXPORT)

 

command

 

43,

 

93

 

exports
definition

 

16

 

determining

 

31

 

updating

 

list

 

of

 

34,

 

43

 

using

 

the

 

Display

 

Module

 

command

 

31

 

working

 

with

 

31

 

external

 

programs,

 

declaring

 

404

 

externally

 

described

 

device

 

files,

 

using

 

243

 

externally

 

described

 

files

 

250

 

#pragma

 

mapinc

 

directive

 

225

 

definition

 

225

 

field

 

level

 

descriptions

 

249

 

logical

 

database

 

files

 

242

 

physical

 

database

 

files

 

242

   

562

 

ILE

 

C/C++

 

Programmer’s

 

Guide



externally

 

described

 

files

 

(continued)
record

 

format

 

name

 

227

 

using

 

242

 

externally

 

described

 

physical

 

database

 

files

 

242

 

F
fclose()

 

function

 

285

 

feedback

 

information

 

75

 

file

 

control
text

 

streams

 

and

 

binary

 

streams

 

182

 

file

 

description

 

179

 

file

 

objects

 

179,

 

180

 

File

 

Server

 

(QFileSvr.400)

 

206

 

files
database

 

249

 

distributed

 

data

 

management

 

(DDM)

 

249

 

externally

 

described

 

250

 

linking

 

a

 

file

 

stream

 

with

 

181

 

logical

 

249

 

long

 

name

 

support

 

231

 

names,

 

long

 

and

 

short

 

231

 

opening

 

once

 

for

 

input

 

and

 

output

 

76

 

physical

 

78,

 

249

 

program-described

 

250

 

shared,

 

reducing

 

use

 

of

 

77

 

sharing

 

252

 

tempinc

 

files

 

499

 

template-implementation

 

498

 

fopen()

 

function

 

178,

 

180,

 

181,

 

183,

 

184,

 

187,

 

188,

 

193,

 

194,

 

209,

 

210,

 

284,

 

285,

 

295

 

format
date

 

529

 

monetary

 

quantities

 

529

 

numbers

 

529

 

SYSIFCOPT

 

207

 

system

 

responses

 

529

 

time

 

529

 

fread()

 

function

 

195,

 

285

 

Free

 

Storage

 

(CEEFRST)

 

bindable

 

API

 

64

 

freopen()

 

function

 

179,

 

184,

 

188,

 

193

 

fropen()

 

function

 

285

 

function

 

calls

 

107

 

function

 

pointer

 

355

 

functions
_GetExcData

 

338

 

_Racquire()

 

286

 

_Rclose()

 

286

 

_Rdevatr()

 

286

 

_Rfeod()

 

286

 

_Rformat()

 

286

 

_Rindara

 

270

 

_Rindara()

 

286

 

_Riofbk()

 

279,

 

286

 

_Ropen()

 

285

 

_Rpgmdev()

 

276,

 

286

 

_Rreadd()

 

286

 

_Rreadindn()

 

286

 

_Rreadindnc()

 

286

 

_Rreadindv()

 

286

 

_Rreadnc()

 

286

 

_Rrelease()

 

286

 

_Rupdate()

 

286

 

functions

 

(continued)
_Rupfb()

 

286

 

_Rwrite()

 

286

 

_Rwrited()

 

286

 

_Rwriterd()

 

286

 

_Rwrread()

 

286

 

binary

 

stream,

 

for

 

database

 

and

 

DDM

 

files

 

255

 

checking

 

return

 

value

 

315

 

evaluating

 

151

 

fclose()

 

285

 

fopen()

 

178,

 

188,

 

209,

 

210,

 

284,

 

285,

 

295

 

fopen()

 

format

 

180

 

fread()

 

285

 

freopen()

 

179

 

fropen()

 

285

 

fwrite()

 

285,

 

294

 

library

 

functions

 

with

 

a

 

packed

 

decimal

 

data

 

type

 

459

 

locale-sensitve

 

run-time

 

538

 

lrecl

 

parameter

 

178

 

open()

 

member

 

189

 

raise

 

338

 

record

 

I/O

 

74

 

setbuf()

 

178

 

setvbuf()

 

178

 

signal

 

338

 

signals

 

raised

 

338

 

specifying

 

ILE

 

linkage

 

for

 

403

 

stepping

 

into

 

149

 

stream

 

77

 

fwrite()

 

function

 

285,

 

294

 

G
GENCSRC

 

utility

 

226

 

GENCSRC

 

utility,

 

described

 

541

 

GENCSRC

 

utility,

 

level

 

checking

 

233

 

Get

 

Heap

 

Storage

 

(CEEGTST)

 

bindable

 

API

 

64

 

global

 

variables
_EXCP_MSGID

 

317

 

graphic

 

characters

 

521

 

grouping

 

file

 

operations

 

262

 

H
handling

 

errors

 

349

 

handling

 

the

 

signal

 

339

 

header

 

files
<bcd.h>

 

465

 

<decimal.h>

 

451

 

<errno.h>

 

315

 

<recio.h>

 

253

 

<signal.h>

 

339

 

<stdio.h>

 

182

 

bcd.h

 

383

 

creating

 

with

 

GENCSRC

 

541

 

lecond.h

 

328

 

milib.h

 

400

 

recio.h

 

177

 

stdio.h

 

196

 

xxfdbk.h

 

196

 

heap

 

storage
default

 

64

 

heap

 

storage

 

(continued)
managing

 

64

 

types

 

64

 

user-created

 

64

 

HLL-specific

 

handlers
using

 

337

 

I
I/O

 

considerations
binary

 

stream

 

database

 

files

 

255

 

binary

 

stream

 

ICF

 

files

 

287

 

binary

 

stream

 

save

 

files

 

306

 

binary

 

stream

 

subfiles

 

285

 

binary

 

stream

 

tape

 

files

 

299

 

DDM

 

files

 

255

 

record

 

diskette

 

files

 

303

 

record

 

subfiles

 

282

 

I/O

 

feedback

 

area

 

196

 

ICF

 

files
binary

 

stream

 

functions

 

288

 

change

 

the

 

default

 

program

 

device

 

288

 

creation

 

287

 

I/O

 

considerations

 

287

 

indicators

 

269

 

major/minor

 

return

 

codes

 

270

 

open

 

as

 

binary

 

stream

 

files

 

287

 

opening

 

as

 

record

 

files

 

288

 

record

 

functions

 

289

 

record-at-a-time

 

processing

 

287

 

separate

 

indicator

 

areas

 

270

 

usings

 

287

 

ILE

 

C

 

function,

 

described

 

421

 

ILE

 

C

 

standard

 

74

 

ILE

 

condition

 

handlers

 

329

 

ILE

 

linkage

 

403

 

ILE

 

linkage

 

for

 

a

 

function

 

403

 

ILE

 

source

 

debugger

 

110,

 

119

 

commands

 

108

 

enabling

 

to

 

accept

 

OPM

 

programs

 

129

 

limitations
decimal

 

types

 

107

 

function

 

calls

 

107

 

type

 

casts

 

107

 

starting

 

125

 

importing
definition

 

16

 

requests,

 

resolving

 

18

 

unresolved

 

requests

 

35

 

circular

 

references

 

36

 

handling

 

40

 

program

 

creation

 

order

 

40

 

include

 

source

 

view

 

125

 

INDARA

 

keyword

 

270

 

indicators
definition

 

269

 

INDARA

 

270

 

option

 

indicators

 

269

 

response

 

indicators

 

269

 

separate

 

indicator

 

areas

 

270

 

specifying

 

as

 

part

 

of

 

the

 

file

 

buffer

 

269

 

types

 

269

 

indicators

 

as

 

part

 

of

 

the

 

file

 

buffer
INDARA

 

keyword

 

270

   

Index

 

563



indicators

 

in

 

a

 

separate

 

indicator

 

area

 

270

 

Initialize

 

Physical

 

File

 

Member

 

(INZPFM)

 

command

 

252

 

inlining

 

72

 

inlining

 

(C++)

 

72

 

integrated

 

file

 

system

 

207

 

Integrated

 

File

 

System

 

(IFS)

 

201

 

64–bit

 

version

 

207

 

binary

 

streams

 

209

 

compilations

 

213

 

Document

 

Library

 

Services

 

(QDLS)

 

204

 

File

 

Server

 

(QFileSvr.400)

 

206

 

LAN

 

Server/400

 

(QLANSrv)

 

204

 

Library

 

(QSYS.LIB)

 

203,

 

209

 

OpenSsystems

 

(QOpenSys)

 

203

 

Optical

 

support

 

(QOPT)

 

205

 

root

 

(/)

 

202

 

storing

 

data

 

as

 

streams

 

210

 

stream

 

files

 

207

 

stream

 

files

 

and

 

database

 

files

 

208

 

stream

 

files,

 

editing

 

212

 

text

 

streams

 

209

 

Integrated

 

Language

 

Environment

 

(ILE)
activating

 

groups

 

21

 

activation

 

50

 

condition

 

handlers

 

328

 

inter-language

 

calls

 

381

 

international

 

locale

 

support
ILE

 

C

 

support

 

529

 

ISO

 

C

 

standard

 

74

 

J
job

 

breakpoints

 

133

 

journaling

 

environment

 

262

 

L
LAN

 

Server/400

 

(QLANSrv)

 

204

 

language

 

environment

 

529

 

language

 

environments

 

534

 

LC_ALL

 

locale

 

variable

 

535

 

LC_COLLATE

 

locale

 

variable

 

535

 

LC_CTYPE

 

locale

 

variable

 

535

 

LC_MONETARY

 

locale

 

variable

 

535

 

LC_NUMERIC

 

locale

 

variable

 

535

 

LC_TIME

 

locale

 

variable

 

535

 

LC_TOD

 

locale

 

variable

 

535

 

level

 

checking,

 

described

 

232

 

level

 

checking,

 

GENCSRC

 

utility

 

233

 

Library

 

(QSYS.LIB)

 

203,

 

209

 

library

 

names,

 

specifying

 

78

 

limitations
debug

 

expression

 

grammar

 

107

 

ILE

 

source

 

debugger

 

107

 

porting

 

programs

 

to

 

ILE

 

C++

 

379

 

linking

 

a

 

file

 

stream

 

with

 

a

 

file

 

181

 

listing

 

125

 

listing

 

view

 

123

 

listing

 

view,

 

creating

 

125

 

locale

 

definition
POSIX

 

locale

 

definition

 

537

 

POSIX

 

standard

 

533

 

POSIX

 

versus

 

SAA

 

537

 

locale

 

definition

 

(continued)
SAA

 

locale

 

definition

 

537

 

locales
*CLD

 

object

 

types

 

530

 

*LOCALE

 

object

 

types

 

530

 

customizing

 

535

 

environment

 

variables

 

536

 

ILE

 

C

 

for

 

AS/400

 

support

 

529

 

international

 

locale

 

support

 

529

 

library

 

function

 

535

 

overview

 

of

 

ILE

 

C

 

support

 

529

 

run-time

 

functions

 

538

 

setting

 

an

 

active

 

locale

 

536

 

LOCALETYPE

 

option

 

i

 

CRTBNDC

 

command

 

534

 

CRTCMOD

 

command

 

534

 

locate

 

mode

 

76

 

logical

 

files

 

249

 

multi-format

 

249

 

M
macros,

 

expanding

 

72

 

major/minor

 

return

 

code,

 

checking

 

316

 

major/minor

 

return

 

codes

 

270

 

mapping
C++

 

class

 

to

 

C

 

structure

 

372

 

internal

 

identifier

 

to

 

OS/400–compliant

 

name

 

365

 

match

 

data

 

type

 

requirements
by

 

reference

 

397

 

by

 

value

 

directly

 

397

 

by

 

value

 

indirectly

 

397

 

messaging

 

support

 

22

 

mixed-byte

 

environment

 

521

 

module

 

object
debug

 

data

 

14

 

program

 

entry

 

procedure

 

14

 

user

 

entry

 

procedure

 

14

 

modules
changing

 

the

 

view

 

131

 

different

 

views

 

131

 

effect

 

of

 

debug

 

data

 

on

 

size

 

107

 

observability,

 

changing

 

171

 

observability,

 

removing

 

173

 

preparing

 

for

 

debugging

 

123

 

setting

 

debug

 

options

 

130

 

Monitor

 

Message

 

(MONMSG)

 

command

 

59

 

multiple

 

record

 

formats,

 

using

 

in

 

a

 

logical

 

file

 

243

 

N
name

 

mangling

 

31

 

names,

 

mangled

 

34

 

naming

 

conventions
#pragma

 

mapinc

 

231

 

#pragma

 

mapinc

 

lname

 

option

 

227

 

#pragma

 

mapinc

 

name

 

generation

 

226

 

field

 

type

 

lvlchk

 

227

 

long

 

filenames

 

231

 

native

 

language

 

529

 

nested

 

exceptions

 

345

 

newline,

 

displaying

 

157

 

no

 

debug

 

data

 

126

 

null

 

ended

 

character

 

arrays,

 

displaying

 

156

 

null-capable

 

fields

 

253

 

numeric

 

escape

 

codes

 

525

 

O
observability

 

of

 

modules

 

171

 

and

 

object

 

size

 

85

 

removing

 

85,

 

173

 

open

 

data

 

path

 

252

 

open

 

data

 

paths

 

252

 

open

 

feedback

 

area

 

196

 

Open

 

Systems

 

(QOpenSys)

 

203

 

open()

 

function

 

194

 

open()

 

member

 

function

 

181,

 

185,

 

189

 

opening
database

 

files

 

as

 

binary

 

stream

 

files

 

255

 

DDM

 

files

 

as

 

binary

 

stream

 

files

 

255

 

display

 

files

 

as

 

record

 

files

 

285

 

opening

 

text

 

stream

 

files
modes

 

183

 

operational

 

descriptors

 

407

 

operational

 

descriptors,

 

description

 

421

 

Optical

 

support

 

(QOPT)

 

205

 

optimization

 

level
*FULL

 

171

 

*NONE

 

171

 

changing

 

86,

 

171

 

optimization

 

process

 

86

 

option

 

indicators

 

269

 

options
for

 

performance

 

87

 

INLINE

 

72

 

OPTIMIZE

 

86

 

rtncode=y

 

69

 

speed

 

versus

 

size

 

86

 

to

 

enable

 

performance

 

measurement

 

68

 

OS

 

linkage

 

function

 

(C++)

 

404

 

overflow

 

behavior

 

455

 

Override

 

database

 

file

 

(OVRDBF)

 

267

 

Override

 

Database

 

File

 

(OVRDBF)

 

command

 

252

 

Override

 

Diskette

 

File

 

(OVRDKTF)

 

command

 

302

 

Override

 

Tape

 

File

 

(OVRTAPF)

 

command

 

299

 

P
packed

 

decimal

 

data
conversion

 

functions

 

247

 

using

 

246

 

packed

 

decimal

 

data

 

type

 

representation

 

451,

 

465

 

packed

 

decimal

 

data

 

type,

 

C

 

versus

 

C++

 

support

 

451

 

packed

 

decimal

 

data

 

types
creating

 

compatible

 

binary-coded

 

decimal

 

types

 

383

 

packed

 

decimal

 

datatypes
#pragma

 

nosigntrunc

 

directive

 

464

 

page

 

faults

 

82

   

564

 

ILE

 

C/C++

 

Programmer’s

 

Guide



parameters
default

 

passing

 

styles

 

406

 

passing

 

52

 

passing

 

(C++)

 

402

 

passing

 

from

 

C++

 

to

 

a

 

different

 

HLL

 

402

 

using

 

operational

 

descriptors

 

to

 

pass

 

407

 

passing
arguments

 

397

 

different

 

methods

 

397

 

packed

 

decimal

 

arguments

 

457

 

packed

 

decimal

 

data

 

to

 

a

 

function

 

455

 

packed

 

decimal

 

value

 

to

 

a

 

function

 

455

 

parameters

 

54,

 

406

 

parameters

 

(C++)

 

402

 

parameters

 

by

 

using

 

operational

 

descriptors

 

407

 

parameters

 

from

 

C++

 

to

 

a

 

different

 

HLL

 

402

 

pointer

 

to

 

a

 

packed

 

decimal

 

variable

 

to

 

a

 

function

 

456

 

pointers

 

as

 

arguments

 

359

 

styles

 

397

 

percolating

 

exceptions

 

70

 

percolation
example

 

70

 

performance
compile-time

improving

 

86

 

function

 

calls

 

72

 

hooks

 

68

 

improving

 

67

 

avoiding

 

virtual

 

functions

 

86

 

choosing

 

data

 

types

 

82

 

I/O

 

considerations

 

73

 

inline

 

function

 

calls

 

72

 

reducing

 

dynamic

 

memoriy

 

allocation

 

calls

 

82

 

reducing

 

program

 

startup

 

time

 

86

 

reducing

 

space

 

requirements

 

82

 

reducing

 

space

 

used

 

for

 

padding

 

83

 

improving

 

through

 

data

 

types

 

67

 

improving

 

with

 

minimal

 

code

 

changes

 

68

 

measuring

 

68

 

run-time

 

performannce

 

67

 

performance

 

improvement

 

73

 

perror()

 

function

 

316

 

physical

 

file

 

78

 

physical

 

files

 

249

 

pointer

 

casting,

 

description

 

357

 

pointers
_null_map

 

253

 

16–byte

 

501

 

8–byte

 

501

 

and

 

data

 

models

 

501

 

casting

 

357

 

casting

 

constraints

 

357

 

comparisons

 

78

 

constraints
casting

 

357

 

declaring

 

pointer

 

variables

 

355

 

defining

 

68

 

pointers

 

(continued)
dynamic

 

casting

 

with

 

512

 

evaluating

 

151,

 

159

 

FILE

 

pointer

 

casting

 

269

 

function
with

 

OS-linkage

 

356

 

ILE

 

constraints

 

354

 

incompatible

 

pointer

 

types

 

356

 

iSeries

 

typess

 

353

 

iSeries

 

uses

 

353

 

ISO

 

C

 

definition

 

353

 

label

 

353

 

modifying

 

for

 

teraspace

 

501

 

open

 

354

 

ILE

 

constraints

 

354

 

impact

 

on

 

performance

 

78

 

passing

 

pointers

 

359

 

pointers

 

other

 

than

 

open

 

pointers

 

354

 

shallow

 

copy

 

versus

 

deep

 

copy

 

82

 

teraspace

 

501

 

to

 

improve

 

performance

 

81

 

to

 

input,

 

output,

 

and

 

key

 

null

 

field

 

maps

 

253

 

to

 

reduce

 

indirect

 

access

 

81

 

types

 

353

 

printer

 

files
binary

 

stream

 

functions

 

295

 

FCFC

 

294

 

I/O

 

considerations

 

295

 

indicators

 

269

 

major/minor

 

return

 

codes

 

270

 

open

 

as

 

binary

 

stream

 

files

 

295

 

opening

 

as

 

record

 

files

 

295

 

record

 

functions

 

295

 

separate

 

indicator

 

areas

 

270

 

procedure

 

calls
call

 

stack

 

entries

 

364

 

ILE

 

C++

 

and

 

ILE

 

COBOL

 

procedure

 

calls

 

399

 

static

 

15

 

procedure

 

pointer

 

calls,

 

described

 

421

 

procedures
calling

 

197,

 

363,

 

420

 

calling,

 

using

 

linkage

 

specification

 

448

 

non-recursive

 

call

 

364

 

recursive

 

call

 

364

 

renaming

 

364

 

stepping

 

into

 

149

 

stepping

 

over

 

148

 

Process

 

Commands

 

(QCAPCMD)

 

API

 

55

 

program

 

entry

 

procedure,

 

description

 

363

 

program

 

entry

 

procedures

 

(PEP)
as

 

component

 

of

 

program

 

object

 

15

 

identifying

 

14

 

program

 

source,

 

viewing

 

130

 

program-described

 

files

 

250

 

programs
call

 

stack

 

entries

 

364

 

calling

 

52,

 

363

 

calling

 

(TFRCTLl)

 

55

 

calling

 

ILE

 

363,

 

410

 

calling

 

ILE

 

C++

 

416

 

calling

 

OPM

 

442

 

programs

 

(continued)
calling,

 

using

 

library

 

qualifications

 

365

 

calling,

 

using

 

linkage

 

specification

 

401,

 

449

 

creating

 

16

 

debugging

 

125,

 

133,

 

139

 

devices
I/O

 

feedback

 

area

 

279

 

effect

 

of

 

debug

 

data

 

on

 

size

 

107

 

end

 

58

 

porting

 

to

 

ILE

 

C++

 

379

 

preparing

 

for

 

debugging

 

123,

 

171

 

preparing

 

for

 

production

 

171

 

renaming

 

364

 

running

 

49

 

running

 

via

 

auser-created

 

CL

 

command

 

56

 

stepping

 

into

 

145

 

stepping

 

over

 

145

 

stepping

 

through

 

145

 

updating

 

21

 

versus

 

service

 

programs

 

23

 

public

 

interface

 

23

 

Q
QINLINE

 

179

 

QTEMP

 

library

 

178

 

QXX

 

functions

 

394

 

R
Reallocate

 

Storage

 

(CEECZST)

 

bindable

 

API

 

64

 

recio.h

 

file

 

177

 

Reclaim

 

Resources

 

(RCLRSC)

 

command

 

63

 

record

 

blocking

 

75

 

I/O

 

feedback

 

structure

 

267

 

to

 

improve

 

I/O

 

performance

 

267

 

turning

 

off

 

267

 

turning

 

on

 

267

 

record

 

diskette

 

files
blocking

 

303

 

I/O

 

considerations

 

303

 

reading

 

and

 

writing

 

303

 

record

 

display

 

files
I/O

 

considerations

 

285

 

record

 

field

 

names

 

228

 

record

 

files
I/O

 

extensions

 

and

 

C++

 

177

 

record

 

format
_Rformat()

 

function

 

227

 

definition

 

227

 

record

 

ICF

 

files
I/O

 

considerations

 

288

 

program

 

devices

 

288

 

record

 

save

 

files
I/O

 

considerations

 

307

 

record

 

subfiles
I/O

 

considerations

 

286

 

record

 

tape

 

files
blocking

 

299

 

I/O

 

considerations

 

299

 

using

 

_Rfeod

 

299

   

Index

 

565



record

 

tape

 

files

 

(continued)
using

 

_Rfeov

 

299

 

Register

 

Call

 

Stack

 

Entry

 

Termination

 

User

 

Exit

 

Procedure

 

(CEERTX)

 

bindable

 

API

 

346

 

Register

 

ILE

 

Condition

 

Handler

 

(CEEHDLR)

 

bindable

 

API

 

328

 

Register

 

Storage

 

class

 

68

 

Remove

 

Program

 

(RMVPGM)

 

command

 

128

 

removing
breakpoints

 

133

 

module

 

observability

 

173

 

Reorganize

 

Physical

 

File

 

Member

 

(RGZPFM)

 

command

 

252

 

reserving

 

storage

 

237

 

response

 

indicators

 

269

 

Retrieve

 

Binder

 

Source

 

(RTVBNDSRC)

 

command

 

33

 

Retrieve

 

Job

 

Attributes

 

(RTVJOBA)

 

command

 

400,

 

427,

 

444

 

return

 

value

 

of

 

a

 

function,

 

checking

 

315

 

returning

 

function

 

results

 

400

 

RIOFB_T

 

75

 

root

 

source

 

125

 

root

 

source

 

view,

 

creating

 

125

 

RPG

 

linkage

 

403

 

RTBND,

 

using

 

to

 

optimize

 

performance

 

(C++)

 

503

 

run

 

time
errors

 

462

 

limits

 

87

 

locale-sensitive

 

functions

 

538

 

suppressing

 

errors

 

464

 

run-time

 

model

 

49

 

ISO

 

C

 

standard

 

49

 

run-time

 

storage
dynamically

 

allocating

 

(C++)

 

65

 

managing

 

64

 

Run-Time

 

Type

 

Information

 

(RTTI)
C++

 

language-defined

 

511

 

dynamic

 

casting

 

511

 

dynamic

 

casting

 

with

 

pointers

 

512

 

dynamic

 

casting

 

with

 

references

 

513

 

dynamic_cast

 

operator

 

511

 

extended_type_info

 

class

 

516

 

extensions

 

516

 

type_info

 

class

 

515

 

typeid

 

operator

 

514

 

using

 

in

 

constructors

 

and

 

destructors

 

515

 

S
save

 

files
binary

 

stream

 

functions

 

306

 

I/O

 

considerations

 

306

 

open

 

as

 

record

 

files

 

306

 

opening

 

as

 

binary

 

stream

 

files

 

306

 

record

 

functions

 

307

 

using

 

306

 

scalar

 

variables
arrays

 

151

 

changing

 

value

 

while

 

debugging

 

153

 

structures

 

151

 

segment

 

faults

 

82

 

service

 

programs
automatically

 

putting

 

into

 

debug

 

mode

 

149

 

changing

 

25

 

condition

 

handlers

 

329

 

creating

 

24

 

exports

 

31

 

public

 

interface

 

23

 

reasons

 

for

 

creating

 

15,

 

23

 

related

 

commands

 

25

 

sample

 

program

 

SEARCH

 

25

 

updating

 

25

 

updating

 

export

 

list

 

34

 

updating

 

export

 

lists

 

43

 

using

 

a

 

placeholder

 

41

 

using

 

binder

 

language

 

to

 

create

 

36

 

versus

 

programs

 

23

 

session

 

handle

 

196

 

session

 

manager

 

196

 

setbuf()

 

function

 

178

 

setting
active

 

locale

 

536

 

breakpoints

 

133

 

conditional

 

breakpoint

 

to

 

a

 

statement

 

136

 

debug

 

options

 

129

 

setvbuf()

 

function

 

178

 

shallow

 

copy

 

82

 

shared

 

files,

 

reducing

 

use

 

of

 

77

 

SIG_DFL

 

339

 

SIG_IGN

 

339

 

signal
SIGABRT

 

338

 

SIGFPE

 

338

 

SIGILL

 

338

 

SIGINT

 

338

 

SIGIO

 

338

 

SIGOTHER

 

338

 

SIGSEGV

 

338

 

SIGTERM

 

338

 

SIGUSR1

 

338

 

SIGUSR2

 

338

 

signal

 

handler
changing

 

the

 

state

 

of

 

nested

 

338

 

signal

 

handling

 

339

 

signature

 

23

 

SLTFLD

 

keyword

 

233

 

Source

 

Entry

 

Utility

 

(SEU)

 

32

 

source

 

file

 

conversions

 

522

 

source

 

statements
entering

 

10

 

entering,

 

using

 

SEU

 

32

 

viewing

 

130

 

space

 

pointers,

 

displaying

 

165

 

specifying

 

CCSID

 

522

 

Start

 

Commitment

 

Control

 

(STRCMTCTL)

 

command

 

262

 

Start

 

Debug

 

(STRDBG)

 

command

 

128

 

Start

 

Journal

 

Physical

 

File

 

(STRJRNPF)

 

command

 

262

 

Start

 

Program

 

Export

 

(STRPGMEXP)

 

command

 

93

 

Start

 

Source

 

Entry

 

Utility

 

(STRSEU)

 

command

 

11

 

starting
OPM

 

debug

 

session

 

127

 

source

 

debug

 

session

 

125

 

static

 

procedure

 

call,

 

description

 

420

 

stderr

 

179

 

stdin

 

179

 

stdio.h

 

file

 

196

 

stdout

 

179

 

STEP

 

debug

 

command
into

 

145

 

into,

 

example

 

146

 

over

 

145

 

stepping
into

 

a

 

program

 

145

 

into

 

a

 

program,

 

example

 

146

 

into

 

procedures

 

149

 

over

 

a

 

program

 

145

 

over

 

procedures

 

148

 

through

 

program

 

145

 

storage
dynamically

 

allocating

 

at

 

run

 

time

 

(C++)

 

65

 

exhausted

 

63

 

heap

 

64

 

managing
requirements

 

85

 

reclaiming

 

63

 

run-time
dynamically

 

allocating

 

(C++)

 

65

 

managing

 

64

 

static
OPM

 

default

 

activation

 

group

 

63

 

stream

 

buffering
fully

 

buffered

 

177

 

line

 

buffered

 

177

 

unbuffered

 

177

 

stream

 

files

 

180,

 

207,

 

208

 

dynamic

 

creation

 

178

 

record

 

lengths

 

178

 

stream

 

files,

 

editing

 

212

 

strerror()

 

function

 

316

 

string

 

literals

 

401,

 

449

 

structure,

 

displaying

 

155

 

structures
evaluating

 

151,

 

160

 

subfiles
binary

 

stream

 

functions

 

285

 

definition

 

281

 

I/O

 

considerations

 

282

 

opening

 

as

 

binary

 

stream

 

files

 

284

 

record

 

functions

 

286

 

using

 

281,

 

282

 

system

 

buffer

 

76

 

system

 

exceptions
record

 

files

 

316

 

stream

 

files

 

316

 

system

 

pointers,

 

displaying

 

165

 

system

 

resources
reclaiming

 

63

 

T
tape

 

files
binary

 

stream

 

functions

 

299

 

blocking

 

299

 

I/O

 

considerations

 

298

 

open

 

as

 

binary

 

stream

 

files

 

298

 

opening

 

as

 

record

 

files

 

299

 

processing

 

77

 

record

 

functions

 

300

   

566

 

ILE

 

C/C++

 

Programmer’s

 

Guide



TEMPINC

 

496

 

templates
explicit

 

specializations

 

492

 

function

 

definitions

 

497

 

implementation

 

files

 

498

 

include

 

files

 

499

 

instantiating

 

489

 

instantiations

 

494

 

instantiations,

 

automatic

 

491,

 

494

 

using

 

489

 

templates,

 

displaying

 

162

 

teraspace

 

(C++)
16–byte

 

pointers

 

501

 

bindable

 

APIs

 

502

 

C/C++

 

pointer

 

support

 

501

 

C++

 

limitations

 

when

 

overloading

 

replacement

 

functions

 

66

 

C++

 

replacement

 

functions

 

66

 

definition

 

501

 

determining

 

the

 

environment

 

501

 

function

 

overloading

 

509

 

operator

 

delete

 

66,

 

507

 

operator

 

delete,

 

overloading

 

66

 

operator

 

new

 

66,

 

507

 

operator

 

new,

 

overloading

 

66

 

overloading

 

functions

 

509

 

overloading

 

operator

 

new

 

or

 

operator

 

delete

 

66

 

pointer

 

conversions

 

501

 

replacement

 

functions

 

(C++)

 

66

 

supported

 

environments

 

501

 

testing
for

 

a

 

coding

 

assumption

 

513

 

TEXT

 

keyword

 

228

 

text

 

stream

 

files
opening

 

183

 

opening

 

(C++)

 

185

 

reading

 

186

 

reading,

 

example

 

186

 

updating

 

187

 

writing

 

185

 

text

 

streams

 

210

 

how

 

they

 

are

 

defined

 

179

 

opening

 

179

 

printing

 

179

 

text

 

streams,

 

described

 

209

 

thread

 

breakpoints

 

133

 

Transfer

 

Control

 

(TFRCTL)

 

command

 

55

 

trigraphs

 

524

 

try

 

catch

 

throw

 

(C++),

 

using

 

478

 

try-catch-throw

 

(C++),

 

using

 

346

 

type

 

casts

 

107

 

TYPEDEFPFX

 

keyword

 

233

 

types

 

of

 

handlers

 

318

 

U
unconditional

 

breakpoints
removing

 

133

 

setting

 

133

 

understanding

 

packed

 

decimal

 

data

 

type

 

errors

 

463

 

unicode

 

i

 

effect

 

on

 

codepage

 

conversions

 

526

 

enabling

 

character

 

set

 

support

 

525

 

support

 

for

 

multiple

 

character

 

literals

 

524

 

unicode

 

(continued)
support

 

for

 

wide-character

 

literals

 

524

 

Unregister

 

Call

 

Stack

 

Entry

 

Termination

 

User

 

Exit

 

Procedure

 

(CEETUTX)

 

bindable

 

API

 

346

 

Unregister

 

ILE

 

Condition

 

Handler

 

(CEEHDLU)

 

bindable

 

API

 

328

 

Update

 

Service

 

Program

 

(UPDSRVPGM)

 

command

 

25

 

updating
service

 

program

 

export

 

list

 

43

 

user

 

entry

 

procedures

 

(UEP)
as

 

component

 

of

 

program

 

object

 

15

 

identifying

 

14

 

user-defined

 

data

 

stream

 

(UDDS)

 

282

 

V
va_arg

 

macro

 

459

 

variable,

 

expression

 

or

 

command,

 

equating

 

a

 

name

 

154

 

variables
assigning

 

an

 

expression

 

to

 

152

 

assigning

 

values

 

to

 

154

 

DDS

 

variable

 

names

 

228

 

debugging

 

151

 

defining

 

scope

 

154

 

determining

 

the

 

value

 

of

 

an

 

expression

 

152

 

displaying

 

accurately

 

171

 

displaying

 

as

 

hexadecimal

 

values

 

155

 

displaying

 

values

 

151

 

environment

 

variables

 

536

 

equating

 

a

 

name

 

with

 

154

 

evaluating

 

151,

 

159

 

global

 

68,

 

72

 

handling

 

duplicate

 

names

 

18

 

optimizing

 

67

 

Register

 

Storage

 

class

 

use

 

68

 

REXX

 

54

 

scalar

 

153

 

changing

 

value

 

while

 

debugging

 

153

 

static

 

68

 

using

 

F11

 

to

 

display

 

151,

 

152

 

volatile

 

qualifier

 

67

 

views
creating

 

125

 

different

 

module

 

views

 

131

 

include

 

source

 

126

 

listing

 

125

 

program

 

source

 

130

 

root

 

source

 

125

 

VREF

 

linkage,

 

specifying

 

404

 

W
watch

 

conditions
and

 

conditional

 

breakpoints

 

139

 

example

 

of

 

setting

 

142

 

removing

 

142

 

setting

 

and

 

removing

 

140,

 

144

 

watches
displaying

 

active

 

144

 

wide-character

 

literals,

 

codepage

 

conversions

 

526

 

wide-character

 

literals,

 

Unicode

 

support

 

for

 

524

 

X
xxfdbk.h

 

file

 

196

 

Z
zoned

 

decimal

 

data
conversion

 

functions

 

247

 

using

 

246

  

Index

 

567



568

 

ILE

 

C/C++

 

Programmer’s

 

Guide





���

Program

 

Number:

 

5722–WDS

       

SC09-2712-05

               

 


	Contents
	About This Guide
	Who Should Use This Guide
	Prerequisite and Related Information
	Install Licensed Program Information
	Notes About Examples
	Control Language Commands and the Procedures in This Guide
	How to Send Your Comments

	Figures
	Tables
	Part 1. Introduction
	Chapter 1. Introduction to the ILE C/C++ Compiler
	Multi-Language Program Creation
	Programming Languages Supported by the OS/400 Operating System
	ILE Program Creation
	Binding Directories
	Service Programs

	Program and Resource Management
	Program Flow
	Program and Procedure Calls

	Resource Allocation
	Bindable APIs
	Run-Time Exceptions

	Program Debugging

	Part 2. Creating and Compiling Programs
	Chapter 2. Creating a Program
	The Program Development Process
	Preparing a Program
	Compiling a Program
	Binding Modules
	Running or Calling Objects
	Debugging a Program

	Entering Source Statements
	Example Of Creating a Source File
	Instructions
	Source Code Sample

	Creating a Program in One Step
	Creating a Program in Two Steps
	Identifying Program and User Entry Procedures
	Understanding the Internal Structure of a Program Object
	Using Static Procedure Calls
	Working with Binding Directories
	Creating a Binding Directory
	Using the Binder to Create a Program
	Preparing to Create a Program
	Specifying Parameters for the CRTPGM Command
	How Import Requests Are Resolved
	Using a Binder Listing
	Updating a Module or a Program Object
	Updating a Program
	Activating Groups

	Messaging Support

	Chapter 3. Service Programs
	Differences Between Programs and Service Programs
	Public Interface
	Considerations When Creating a Service Program
	Using the Binder to Create a Service Program
	Specifying Parameters for the CRTSRVPGM Command
	Updating or Changing a Service Program
	Using Control Language (CL) Commands with Service Programs

	Creating, Compiling, and Binding a Service Program
	Creating the Source Files
	User Header File
	Source Code Files

	Compiling and Binding the Service Program
	Binding the Service Program to a Program


	Chapter 4. Working with Exports from Service Programs
	Determining Exports from Service Programs
	Displaying Exported Defined Symbols with the Display Module Command

	Creating a Binder Language Source File
	Creating Binder Language Using SEU
	Creating Binder Language Using the RTVBNDSRC Command

	Updating a Service Program Export List
	Using the Demangling Functions
	Handling Unresolved Import Requests During Program Creation
	Creating an Export Service Program Using Binder Language
	Creating a Program with Circular References
	Creating the Source Files
	Compiling the Source Files into Modules
	Generating the Binder Language to Create the Service Program
	Binding the Modules into the Program
	Handling Unresolved Import Requests Using the *UNRSLVREF Parameter
	Handling Unresolved Import Requests by Changing Program Creation Order

	Binding a Program to a Non-Existent Service Program
	Instructions
	Code Samples
	Running the Program

	Updating a Service Program Export List
	Program Description
	Creating the Source Files
	Compiling and Binding Programs and Service Programs
	Running the Program


	Chapter 5. Running a Program
	The ILE C/C++ Run-Time Model
	Activations and Activation Groups
	Run-Time Library Functions and Activation Groups
	Calling Programs
	Using the Call (CALL) Command
	Passing Parameters to the Called Program
	Call (CALL) Command Parameter Conversions
	Using the Process Commands (QCAPCMD) API

	Using the Transfer Control (TFRCTL) Command
	Example: Creating and Running a Program that Uses the TFRCTL Command
	Code Samples

	Creating a CL Command to Run a Program
	Program Description
	Instructions
	Code Samples


	Normal and Abnormal End-of-Program
	Managing Activation Groups
	Specifying an Activation Group
	Running a Program in a Named Activation Group
	Running a Program in Activation Group *NEW
	Non-Standard Behavior with Named Activation Groups
	Running a Program in Activation Group (*CALLER)

	Presence of a Program on the Call Stack
	Deleting an Activation Group
	Reclaiming System Resources
	Using the Reclaim Resources (RCLRSC) Command


	Managing Run-Time Storage
	Managing the Default Heap
	Using Bindable APIs to Manage the Default Heap
	Dynamically Allocating Storage at Run Time
	Overriding Replacement Functions
	Overloading the new or delete Operator



	Chapter 6. Improving Run-Time Performance
	Choosing Data Types to Improve Performance
	Avoiding Use of the Volatile Qualifier
	Replacing Bit Fields with Other Data Types
	Minimizing the Use of Static and Global Variables
	Using the Register Storage Class

	Creating Classes to Improve Performance
	Enabling Performance Measurement
	Using a Compiler Option to Enable Performance Measurement

	Minimizing Exception Handling
	Turning on Return Codes during Record I/O
	Turning Off C2M Messages during Record Input and Output
	Using a Direct Monitor Handler
	Minimizing Percolation of Exceptions
	Example of Exception Percolation for a Sample ILE C Source Code


	Reducing the Number of Function Calls and Arguments
	Inlining Function Calls
	Using Static Class Member Functions or Global Variables
	Passing Arguments in Registers
	Using Prototypes to Minimize Function Call Processing

	Choosing Input and Output Functions to Improve Performance
	Using Record Input and Output Functions
	ISO C Record I/O
	ILE C Record I/O
	Using Input and Output Feedback Information
	Blocking Records
	Manipulating the System Buffer
	Opening Files Once for Both Input and Output
	Minimizing the Use of Shared Files
	Minimizing the Number of File Opens and Closes
	Defining Tape Files to Improve Performance
	Improving Performance when Using Stream Input and Output Functions
	Using C++ Input and Output Stream Classes
	Using Physical Files Instead of Source Physical Files
	Specifying Library Names

	Using Pointers to Improve Performance
	Avoiding Use of Open Pointers
	Avoiding Pointer Comparisons
	Reducing Indirect Access through Pointers

	Using Shallow Copy instead of Deep Copy
	Minimizing Space Requirements
	Choosing Appropriate Data Types
	Minimizing Dynamic Memory Allocation Calls
	Arranging Variables to Reduce Padding
	Removing Observability
	Compressing Objects

	Optimizing Use of Activation Groups
	Calling Functions in Other Activation Groups
	Reducing Program Startup Time

	Minimizing Use of Virtual Functions
	Choosing Compiler Options to Optimize for Speed or Size
	Setting Run-Time Limits

	Chapter 7. Example: Creating an ILE C Application
	Process Flow
	ILE Activation Group
	Resource Requirements
	Task Summary
	Instructions to Create the Sample Application
	Source Code Samples
	Source Code for an Audit Log File
	Source Code Pass Terminal Session Input to an ILE Program
	Source Code to Define a CL Command to Collect Session Data
	Source Code for a User Entry Procedure (UEP)
	Source Code to Calculate Tax and Format Cost for Output
	Source Code to Write an Audit Trail
	Source Code to Export Tax Rate Data
	Binder Language to Export Tax Rate Data
	Binder Language to Export the write-audit-trail Procedure


	Part 3. Debugging Programs
	Chapter 8. The ILE Source Debugger
	Debug Data Options
	Debug Language Syntax
	Limitations of the Debug Language Syntax
	Debug Commands
	Examples of Using Debug Expressions in ILE C Programs
	Examples of Program Definitions and Corresponding Debug Expressions
	Evaluating Pointers to Find and Correct Errors
	Evaluating Simple Expression to Find and Correct Errors
	Evaluating Bit Fields to Find and Correct Errors
	Evaluating Structures and Unions to Find and Correct Errors
	Evaluating Enumerations to Find and Correct Errors

	Examples of Displaying System and Space Pointers in the ILE Source Debugger


	Chapter 9. Preparing a Program for Debugging
	Setting Up a Test Library
	Creating a Listing View for Debugging

	Chapter 10. Working with Source Debug Sessions
	Starting a Source Debug Session
	Adding and Removing Programs from a Debug Session
	Setting or Changing Debug Options During a Session
	Example: Adding an OPM Program to an ILE Debug Session
	Example: Setting Debug Options during a Debug Session

	Viewing the Program Source
	Displaying Other Modules in Your Program
	Example: Changing the Module Displayed in a Session

	Displaying a Different View Of a Module


	Chapter 11. Using Breakpoints to Aid Debugging
	Types Of Breakpoints
	Job and Thread Breakpoints
	Conditional and Unconditional Breakpoints

	Setting Breakpoints
	Setting Unconditional Breakpoints from the Display Module Source Display
	Setting Unconditional Breakpoints from the Command Line
	Setting Conditional Breakpoints for a Macro
	Setting Conditional Breakpoints for a Statement

	Setting Conditional Thread Breakpoints
	Setting a Conditional Thread Breakpoint from the Work with Module Breakpoints Display
	Setting a Conditional Thread Breakpoint from the Command Line

	Testing Breakpoints
	Removing All Breakpoints

	Chapter 12. Using Watches to Aid Debugging
	Characteristics and Limitations Of Watches
	Setting and Removing Watch Conditions
	Setting watch conditions
	Using the WATCH Debug Command
	Removing Watch Conditions
	Automatic Removal Of Watch Conditions

	Example Of Setting a Watch Condition
	Displaying Active Watches

	Chapter 13. Stepping Through Programs
	Stepping Over Programs
	Using F10 to Step Over Programs
	Using the STEP OVER Debug Command

	Stepping into Programs
	Using F22 to Step into Programs
	Using the STEP INTO Debug Command
	Stepping into Called Programs
	Example of Stepping into a Program Using F22
	Stepping into an OPM Program

	Stepping Over Procedures
	Stepping into Procedures

	Chapter 14. Debugging Variables
	Displaying the Value Of a Variable
	Using F11 to Display Variables

	Changing the Value of a Variable
	Changing the Value of a Scalar Variable
	Equating a Name with a Variable, Expression, or Debug Command
	Displaying a Structure
	Displaying Variables As Hexadecimal Values
	Displaying Null-Ended Character Arrays
	Displaying Character Arrays
	Sample EVAL Commands for Pointers, Variables, and Bit Fields
	EVAL Commands for System and Space Pointers
	Displaying a Class Template and a Function Template


	Source for Sample EVAL Commands
	Source for Sample EVAL Commands for Displaying System and Space Pointers
	Source for Sample EVAL Commands for Displaying C++ Constructs

	Chapter 15. Changing Module Optimization and Observability
	Changing Optimization Levels
	Removing Module Observability

	Part 4. Performing I/O Operations
	Chapter 16. Using ILE C/C++ Stream and Record I/O Functions with iSeries Data Management files
	ILE C Record I/O Functions
	Stream Buffering
	Dynamic Stream File Creation
	Open Modes for Dynamically Created Stream Files
	Standard I/O Text Stream Files (<stdio.h>)
	Overriding Standard Output to the Terminal
	Allowing a Program to Re-Read an Input File with QINLINE Specified


	iSeries Data Management Files
	iSeries Data Management File Types
	Data Management Stream Files and ILE C I/O Operations
	Avoiding Positioning Problems in the File
	Using the fopen() Function
	Using the open() member Function

	iSeries Data Management File Naming Conventions

	File Control Structure of Text Streams and Binary Streams
	I/O Processes for Text Stream Files
	Opening Text Stream Files
	Writing Text Stream Files
	Reading Text Stream Files
	Updating Text Stream Files

	I/O Process for Binary Stream Files
	Opening Binary Stream Files (character at a time)
	Writing Binary Stream Files (character at a time)
	Reading Binary Stream Files (character at a time)
	Updating Binary Stream Files (character at a time)
	Opening Binary Stream Files (record at a time)
	Writing Binary Stream Files (record at a time)
	Reading Binary Stream Files (record at a time)

	Open Feedback Area
	I/O Feedback Area
	Using Session Manager
	Obtaining the Session Handle
	Using Session Manager APIs
	Example: Using an ILE Bindable API to Display a DSM Session
	Instructions
	Code Samples



	Chapter 17. Using ILE C/C++ Stream Functions with the iSeries Integrated File System
	The Integrated File System (IFS)
	root(/) File System
	User Access
	Path Names

	Open Systems (QOpenSys) File System
	User Access
	Path Names

	Library (QSYS.LIB) File System
	File Handling Restrictions
	Path Names

	Document Library Services (QDLS) File System
	User Access
	Path Names

	LAN Server/400 (QLANSrv) File System
	User Access
	Path Names

	Optical Support (QOPT) File System
	Path Names

	File Server (QFileSvr.400) File System
	Path Names


	Enabling Integrated File System Stream I/O
	Using Stream I/O with Large Files

	Stream Files
	Stream Files Versus Database Files
	Text Streams
	Binary Streams
	Opening Text Stream and Binary Stream Files
	Storing Data as a Text Stream or as a Binary Stream
	Using the Integrated File System (IFS)
	Copying Source Files into the IFS
	Editing Stream Files
	The SRCSTMF Parameter
	Header File Search
	Include File Links
	Include Directive Syntax
	Include Search Path Rules
	Considerations for Specifying Source Stream Files
	Restrictions on the Absolute Include Path Name
	Recommendation for Source and Header Files

	Preprocessor Output
	Listing Output
	Code Pages and CCSIDs
	Pitfalls to Avoid
	Examples of Using Integrated File System Source
	Using Stream I/O
	Large Files
	Open Mode
	Line-End Characters



	Part 5. Working with iSeries File Systems and Devices
	Chapter 18. Using Externally Described Files in a Program
	Creating Externally Described Database Files
	Creating Type Definitions
	Creating Header Descriptions
	Specifying the Record Format Name
	Specifying Record Field Names
	Including Database Files in the Type Definition
	Defining the Structure Type (KEY Field)
	Using Long Names for Files

	Level Checking to Verify Descriptions
	Using the GENCSRC Utility for Level Checking
	Using the #pragma mapinc Directive for Level Checking

	Avoiding Field Alignment Problems in C/C++ Structures
	Including External Field Definitions in a Program
	The INPUT Option
	The OUTPUT Option
	The BOTH Option

	Defining and Using Indicators
	Creation of Indicators in the File Buffer
	Creating a Separate Indicator Area

	Including Physical and Logical Database Files in a Program
	Including Device Files in a Program
	Including Externally Described Multiple Record Formats in a Logical File
	Using Externally Described Packed Decimal Data in a Program

	Chapter 19. Using Database Files and Distributed Data Management Files in a Program
	Database Files and Distributed Data Management Files
	Physical Files and Logical Files
	Describing Records in Database Files
	Defining Externally Described Files


	Data Files and Source Files
	Access Paths
	Arranging Key Fields
	Duplicate Key Values

	Deleted Records
	Locking
	Sharing
	Null-Capable Fields
	Opening Database and DDM Files as Record Files
	Record Functions for Database and DDM Files
	I/O Considerations for DDM Files

	Opening Database and DDM Files as Binary Stream Files
	I/O Considerations for Binary Stream Database and DDM Files
	Binary Stream Functions for Database and DDM Files

	Processing a Database Record File in Arrival Sequence
	Instructions
	Source Code Sample

	Processing a Database Record File in Keyed Sequence
	Processing a Database Record File Using Record Input and Output Functions
	Synchronizing Database File Changes in a Single Job
	Blocking Records

	Chapter 20. Using Device Files in a Program
	Using OS/400 Feedback Areas for all Device Files
	Using Indicators to Transfer Information
	Types of Indicators
	Separate Indicator Areas
	Major and Minor Return Codes
	Example: Returning Indicators to a Separate Indicator Area
	Instructions
	Source Code Samples

	Example: Returning Indicators to the File Buffer
	Instructions
	Code Samples


	Establishing the Default Program Device
	Changing the Default Program Device
	Obtaining Feedback Information
	Using Display Files and Subfiles
	Display Files and Subfiles
	I/O Considerations for Display Files
	I/O Considerations for Subfiles

	Using Subfiles to Minimize I/O Operations
	Opening Display Files and Subfiles as Binary Stream Files
	I/O Considerations for Binary Stream Subfiles
	Program Devices for Binary Stream Display Files
	Binary Stream Functions for Display Files and Subfiles

	Opening Display Files as Record Files
	I/O Considerations for Record Display Files
	I/O Considerations for Record Subfiles
	Record Functions for Display Files and Subfiles


	Using Intersystem Communication Function Files
	I/O Considerations for Intersystem Communication Function Files
	Opening ICF Files as Binary Stream Files
	I/O Considerations for Binary Stream ICF Files
	Program Devices for Binary Stream ICF Files

	Binary Stream Functions for ICF Files
	Opening ICF Files as Record Files
	I/O Considerations for Record ICF Files
	Program Devices for Record ICF Files

	Record Functions for ICF Files

	Using Printer Files
	I/O Considerations for Printer Files
	Opening Printer Files as Binary Stream Files
	Binary Stream Functions for Printer Files

	Opening Printer Files as Record Files
	Record Functions for Printer Files

	Writing to a Tape File
	I/O Considerations for Tape Files
	Opening Tape Files as Binary Stream Files
	I/O Considerations for Binary Stream Tape Files

	Binary Stream Functions for Tape Files
	Opening Tape Files as Record Files
	I/O Considerations for Record Tape Files

	Record Functions for Tape Files

	Writing to a Diskette File
	I/O Considerations for Diskette Files
	Opening Diskette Files as Binary Stream Files
	I/O Considerations for Binary Stream Diskette Files

	Binary Stream Functions for Diskette Files
	Opening Diskette Files as Record Files
	I/O Considerations for Record Diskette Files

	Record Functions for Diskette Files

	Using Save Files
	I/O Considerations for Save Files
	Opening Save Files as Binary Stream Files
	I/O Considerations for Binary Stream Save Files
	Binary Stream Functions for Save Files
	Opening Save Files as Record Files
	I/O Considerations for Record Save Files
	Record Functions for Save Files


	Part 6. Working with iSeries Features
	Chapter 21. Handling Exceptions in a Program
	ILE Language-Specific Error Handling
	Exception Messages
	How the System Processes Exceptions
	How the Call Message Queue Handles ILE Procedures and Functions
	How Control Boundaries Affect Exception Handling in ILE
	Unmonitored Exceptions and Unhandled Exceptions
	Example of ILE C Source Code with an Unhandled Exception

	Nested Exceptions

	Detecting Stream File and Record File Errors
	Checking the Return Value of a Function
	Checking the Errno Value
	Initializing Errno
	Viewing and Printing the Errno Value
	Example: Checking the errno Value for the fopen() Function

	Checking the Major/Minor Return Code
	Checking the System Exceptions for Record Files
	Checking the Global Variable _EXCP_MSGID

	Using ILE Exception Handlers
	Types of Exception Handlers
	Using ILE Direct Monitor Handlers
	Using the pragma Directives
	Using Communications Area Variables
	Scoping Direct Monitor Handles
	Using Exception Classes
	Specifying Control Actions
	Specifying Message Identifiers
	Example of Source Code that Uses a Direct Monitor Handler
	Example of Source that Illustrates How to Use Direct Monitor Handlers
	Example of a Service Program that Provides Direct Monitor Handle
	Example that Uses Labels instead of Functions as Handlers

	Using ILE Condition Handlers
	When to Use an ILE Condition Handler
	Example of ILE Source that Uses Condition Handlers
	Example of a Service Program that Provides ILE Condition Handlers
	Examples of Handling an Exception
	Example of Handling a Divide-By-Zero Exception
	Example of Promoting an Exception


	Using the C/C++ Signal Handler
	When to Use the Signal Handler
	Raising Signals
	Signal Handling Function Prototypes
	How the ILE C/C++ Run-Time Environment Handles Signals
	Resetting the Signal Action
	Stacking Signal Handlers
	Example: Setting Up a Signal Handler
	Instructions
	Source Code Sample that Sets Up Signal Handlers


	Using Both C/C++ Signal and ILE Exception Handlers
	Order of Priority
	Example of Using a Direct Monitor Handler and Signal Handler Together

	Handling Nested Exceptions
	Using Cancel Handlers
	Example: Using a Variety of Ways to Detect Errors and Handle Exceptions
	Instructions
	Source Code Samples


	Chapter 22. Using OS/400 pointers in a Program
	OS/400 pointer Types
	Using Open Pointers
	Using Pointers Other than Open Pointers
	Declaring Pointer Variables
	Declaring OS/400 pointer Variables in C and C++
	Declaring a Function Pointer to a Bound Procedure in ILE C
	Declaring a Function Pointer with OS-Linkage in ILE C and ILE C++

	Casting Pointers
	Example: Passing OS/400 pointers as Arguments on a Dynamic Program Call to Another ILE C Program
	Instructions
	Source Code Samples


	Chapter 23. Using ILE C/C++ Call Conventions
	Program and Procedure Calls
	Using Dynamic Program Calls
	How the ILE Call Stack Is Used to Control Program Flow

	Renaming Programs and Procedures
	Calling Programs that Have Library Qualification
	Calling C++ Programs and Procedures from ILE C
	Specifying the Linkage Convention
	Example: An ILE C Program that Uses C++ Objects
	Program Structure
	Program Flow
	Program Output


	Accessing C++ Classes from ILE C
	Mapping a C++ Class to a C Structure
	Example: An ILE C Program that Uses C++ Objects
	Program Files and Structures
	Program Description
	Program Output



	Chapter 24. Porting Programs from Another Platform to ILE
	Limitations to Porting Code to ILE C or C++
	File Inclusions
	Platform-Specific Extensions
	Members of a Union
	Members of a Structure
	Decimal Constants
	Decimal Constants and Case Statements
	Library QSYS.LIB under IFS
	Teraspace Considerations

	Modifying Calls of ILE C++ Objects
	Differences in Header Files
	Differences in Linkage Specification
	Differences in Function Definitions

	Using BCD Macros to Port Coded Decimal Objects to ILE C++
	Examples
	Mapping Class Template Instantiations to ILE C Syntax
	Handling Extra Precision for Multiplication and Division
	Determining the Number of Digits in an Object
	Determining the Number of Digits in an Internal Packed Decimal Data Object
	Formatting the Value of a Formatted C Input or Output Function
	Print Function Flags
	Print Function Field Width
	Print Function Field Precision
	Conversion Specifiers

	Porting Conditional Operators to ILE C or C++
	Example of an Explicit Cast that Resolves Class Differences between Expression
	Example of Use of a Consistent Variable Type

	Porting ILE C Packed Decimal Data Types to the _DecimalT Class Template
	Differences in Using Packed Structures
	Differences in Error Checking
	Invalid Decimal Format
	Mathematical Operators


	Header Files that Work with Both C and C++
	Using Dual Function Prototypes
	Permitting ILE C Programs to Access C++ Linkage Functions
	Including QSYSINC Header Files

	Handling the Stricter C++ Type Checking
	Resolving Integer Data Type Size Issues
	Resolving Incompatible Pointer Types

	Disabling Name Mangling to Avoid Undefined Name Errors
	Resolving Type Mismatches with the C++ Function Prototype
	Example of Function Prototype Mismatch
	Handling the Function Prototype Mismatch

	Declaring unsigned char Pointers as unsigned char Variables
	Initializing Character Arrays
	Specifying Access to String Literals
	Avoiding Uncaught Exceptions by Scoping to a Single Activation Group

	Chapter 25. Working with Multi-Language Applications
	Inter-Language Procedure Calls
	ILE Conventions for Calling Any Program (*PGM)
	Mixing Recursive and Non-Recursive Calls
	Passing Arguments from an ILE Program to a Non-EPM Program
	Passing Arguments from an ILE Program to an EPM Program
	Using a Linkage Specification in a C++ Dynamic Program Call
	Valid String Literals
	Linkage Specification


	Calling Any ILE Program from ILE C/C++
	Passing Parameters from ILE C++ to a Different High-Level Language
	Using Different Linkage Specifications
	Using Different Linkage Specifications (C++ Only)
	Using Default Parameter Passing Styles
	Using Operational Descriptors to Pass Parameters of Unknown Data Type
	Example: Calling a Function with Operational Descriptors

	Type Casting to Override a Function without Overriding Linkage

	Passing Arguments from a CL Program to an ILE C++ Program
	How CL Constants Are Passed to an ILE C++ Program
	How CL Variables Are Passed to an ILE C++ Program
	CL Example: a Multi-Language ILE Application
	Program Description
	Program Structure
	Program Activation
	Application Modules and Files
	Invoking the ILE Program

	Example: a User-Defined CL Program that Calls an ILE C++ Program
	Programming Tasks
	Source Code
	Using the CL Command SQUARE to Return the Calculated Value

	Example: CL Program that Passes Parameters to an ILE C++ Program

	Accessing ILE C Procedures from Any ILE Program
	Static Procedure Calls
	Procedure Pointer Calls
	Called Procedures and Operational Descriptors
	Example: Calling an ILE API from ILE C

	Operational Descriptors and the #pragma descriptor Directive
	Example: Declaring a Function that Requires Use of Operational Descriptors
	Example: Generating Operational Descriptors

	OPM CL Example: Calling OPM, COBOL, and RPG Programs from an ILE C Program
	Basic Program Structure
	Program Modules and Activation Groups
	Programming Tasks

	ILE CL Example: Calling OPM, COBOL, and RPG Programs from an ILE C Program
	Program Modules and Activation Groups
	Programming Tasks

	ILE-OPM CL Example: Calling OPM, COBOL, and RPG Programs from an ILE C++ Program
	Program Description
	Program Structure
	Program Activation
	Program Files
	Invoking the ILE-OPM Program

	Using a Linkage Specification to Call an ILE Procedure

	Using a Linkage Specification in a C++ Dynamic Program Call
	Valid String Literals
	Linkage Specification


	Chapter 26. Using Packed Decimal Data in a C Program
	Converting from Packed Decimal Data Types
	Converting from a Packed Decimal Type to a Packed Decimal Type
	Converting from a Packed Decimal Type to an Integer Type
	Converting from a Packed Decimal Type to a Floating Point Type
	Overflow Behavior

	Passing Packed Decimal Data to a Function
	Passing a Pointer to a Packed Decimal Variable to a Function

	Calling Another Program that Contains Packed Decimal Data
	Using Library Functions with a Packed Decimal Data Type
	Understanding Packed Decimal Data Type Errors
	Packed Decimal Warnings and Error Conditions
	Suppressing a Run-Time Overflow Exception


	Chapter 27. Using Packed Decimal Data in a C++ Program
	The OS/400 Binary Coded Decimal (BCD) Header File
	Using the _DecimalT Class Template
	Declaring _DecimalT Class Template Objects
	Using the __D Macro to Simplify Code
	_DecimalT Class Template Input and Output
	Using Operators with the _DecimalT Class Template
	Using Arithmetic Operators with the _DecimalT Class Template
	Using Relational Operators with the _DecimalT Class Template
	Using Conditional Expressions with the _DecimalT Class Template
	Using Equality Operators with the _DecimalT Class Template
	Using Unary Operators with the _DecimalT Class Template


	C++ Packed Decimal Data Conversions
	Converting Values from One _DecimalT Class Template to Another
	Converting Values from a _DecimalT Class Template to an Integer Data Type
	Converting Values from a _DecimalT Class Template to a Floating Point Data Type
	Determining the Size of a _DecimalT Class Template
	Determining the Number of Digits in a _DecimalT Class Template
	Determining the Precision of a _DecimalT Class Template
	How Overflows Are Handled

	Using C++ Exception Handling with the _DecimalT Template
	_DecimalT Class Template Run-Time Exceptions
	When Run-Time Exceptions Occur
	Run-Time Exceptions Issued by the Compiler for _DecimalT Class Templates

	Defining a C++ _DecimalT Class Template Exception Handler
	Using Debug Macros for _DecimalT Class Templates
	Enabling and Disabling Error Checking for the _DecimalT Class Template


	Passing a _DecimalT Class Template Object to a Function
	Passing a Pointer to a _DecimalT Class Template Object
	Calling Another Program Containing a _DecimalT Class Template
	Validating _DecimalT Class Template Constants to a File

	Chapter 28. Using Templates in C++ Programs
	Managing Template Instantiations
	Template Instantiation Management Options
	How the ILE C++ Compiler Handles Template Instantiations
	Generation of Static Member Definitions
	Internal Linkage
	External Linkage

	Example of a Class Template Instantiation
	Declarations and Definitions
	Linkage

	Using the Default Template Instantiation Management Option
	Manually Structuring Code for Single Instantiations
	Explicit Instantiations

	Using the ILE Template Registry Option
	How the ILE Template Registry Option Works
	Specifying Values for the TMPLREG Parameter

	Using the ILE TEMPINC Option
	How the ILE TEMPINC Option Works
	Structuring a Program for TEMPINC-Managed Instantiations
	The Template-Implementation File
	Tempinc Files



	Chapter 29. Using Teraspace in ILE C and C++ Programs
	Supported Teraspace Environments
	C/C++ Pointer Support
	C/C++ Pointer Conversions
	Bindable APIs for Using Teraspace

	The 16–Byte Run-Time Binding Libraries
	The 8–Byte Run-Time Binding (RTBND) Library Extensions
	Using RTBND to Optimize Performance of a C++ Program
	Requirements
	Error Conditions
	Limitations

	Characteristics of Each Teraspace Storage Model
	Binary Compatibility Considerations When Porting Code in a Teraspace Environment
	Specifying the Teraspace Environment
	Determining the Size of a Specific Pointer
	Maintaining Consistent Argument Declarations

	Source Code Samples
	Example: Effect of Forward Declarations on the Data Model
	Example: Redefining the new or delete Operator
	Example: How a Template Adopts a Data Model
	Examples: Overloading Functions


	Chapter 30. Casting with Run-Time Type Information
	The RTTI Language Extension
	Using C++ Language-Defined RTTI
	The dynamic_cast Operator
	Dynamic Casts with Pointers
	Dynamic Casts with References

	The typeid Operator
	Results of typeid Operations
	Using the typeid Operator in Expressions
	The type_info Class


	Using RTTI in Constructors and Destructors
	ILE C++ Extensions to RTTI
	The extended_type_info Classes


	Part 7. Using International Locales and Coded Character Sets
	Chapter 31. Internationalizing a Program
	Coded Character Set Identifiers
	Source File Conversions to CCSID
	Creating a Source Physical File with a Coded Character Set Identifier
	Changing the Coded Character Set Identifier (CCSID)
	Converting String Literals in a Source File
	Using Unicode Support for Wide-Character Literals
	Representation of Wide-Character Literals
	Enabling Unicode Character Set Support
	Effect of Unicode on #pragma convert() Operations
	GB18030 Code Page Support
	Generating Wide Characters and String Literals in UTF-32
	Considerations


	Targeting a CCSID
	How the ILE C/C++ Compiler Converts a Source File to a Target CCSID
	Literals, Comments, and Identifiers
	Limitations


	Chapter 32. International Locale Support
	Elements of a Language Environment
	Locales
	ILE C/C++ Support for Locales
	ILE C/C++ Support for *CLD and *LOCALE Object Types
	C Locale Migration Table
	POSIX Locale Definition and *LOCALE Support
	LOCALETYPE Compiler Option
	Creating Locales
	Creating Modules Using LOCALETYPE(*LOCALE)
	Categories Used in a Locale
	Setting an Active Locale for an Application
	Using Environment Variables to Set the Active Locale

	SAA and POSIX *Locale Definitions
	Locale-Sensitive Run-Time Functions

	Part 8. Appendixes
	Appendix A. The GENCSRC Utility and the #pragma mapinc Directive
	Appendix B. Interlanguage Data-Type Compatibilities
	Bibliography
	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

	Index

