@server

ISeries .
WebSphere Development Studio

ILE C/C++ Programmer’s Guide

Version 5

SC09-2712-05

@server

ISeries .
WebSphere Development Studio

ILE C/C++ Programmer’s Guide

Version 5

SC09-2712-05

Note!
Before using this information and the product it supports, be sure to read the general information
under ["Notices” on page 555,

Fifth Edition (April 2004)

This edition applies to Version 5, Release 3, Modification 0, of IBM WebSphere® Development Studio for iSeries
(program 5722-WDS), ILE C/C++ compilers, and to all subsequent releases and modifications until otherwise
indicated in new editions.

Changes or additions to the text and illustrations are indicated by a vertical line to the left of the change or
addition.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are
not stocked at the address given below.

IBM welcomes your comments. You can send comments to:
compinfo@ca.ibm.com

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1993, 2004. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About This Guide X
Who Should Use This Guide. . . xi
Prerequisite and Related Information . . xi
Install Licensed Program Information . xii
Notes About Examples . xii
Control Language Commands and the Procedures
in This Guide . . . xii
How to Send Your Comments . . xii
Figures . Xiii
Tables. . XiX
Part 1. Introduction . 1
Chapter 1. Introduction to the ILE C/C++
Compiler oo .3
Multi-Language Program Creatlon3
Programming Languages Supported by the
0S/400 Operating System . .3
ILE Program Creation .3
Binding Directories . .4
Service Programs . .4
Program and Resource Management .4
Program Flow . .4
Resource Allocation . .5
Bindable APIs . .5
Run-Time Exceptions .5
Program Debugging . . 6
Part 2. Creating and Compiling
Programs 7
Chapter 2. Creating a Program . . 9
The Program Development Process . .9
Preparing a Program. .9
Compiling a Program .9
Binding Modules . . 10
Running or Calling Objects . 10
Debugging a Program . 10
Entering Source Statements . . . 10
Example Of Creating a Source File. 11
Instructions 11
Source Code Sample .1
Creating a Program in One Step .12
Creating a Program in Two Steps . 14
Identifying Program and User Entry Procedures 14
Understanding the Internal Structure of a
Program Object . .15
Using Static Procedure Calls .15
Working with Binding Directories . .15
Creating a Binding Directory . . 16
Using the Binder to Create a Program . 16

© Copyright IBM Corp. 1993, 2004

Preparing to Create a Program . .
Specifying Parameters for the CRTPGM
Command . . .
How Import Requests Are Resolved .
Using a Binder Listing.
Updating a Module or a Program Ob]ect
Updating a Program .
Activating Groups .

Messaging Support .

Chapter 3. Service Programs

Differences Between Programs and Service

Programs .

Public Interface . .

Considerations When Creatmg a Serv1ce Program

Using the Binder to Create a Service Program .
Specifying Parameters for the CRTSRVPGM
Command . . .
Updating or Changlng a Serv1ce Program
Using Control Language (CL) Commands with
Service Programs

Creating, Compiling, and Bmdlng a Serv1ce Program

Creating the Source Files . .
Compiling and Binding the Service Program
Binding the Service Program to a Program .

Chapter 4. Working with Exports from

Service Programs . Coe

Determining Exports from Service Programs
Displaying Exported Defined Symbols with the
Display Module Command . o

Creating a Binder Language Source File .
Creating Binder Language Using SEU
Creating Binder Language Using the
RTVBNDSRC Command . .

Updating a Service Program Export LlSt

Using the Demangling Functions .

Handling Unresolved Import Requests Durmg

Program Creation .

Creating an Export Service Program Usmg Bmder

Language . .

Creating a Program w1th Clrcular References .
Creating the Source Files . .
Compiling the Source Files into Modules
Generating the Binder Language to Create the
Service Program . .
Binding the Modules mto the Program .
Handling Unresolved Import Requests Using the
*UNRSLVREF Parameter . .o
Handling Unresolved Import Requests by
Changing Program Creation Order

Binding a Program to a Non-Existent Service

Program
Instructions
Code Samples

. 16

.17
. 18
.18
. 20
.21
.21
.22

. 23

.23
.23

.24

.31
.31

.31
.32
. 32

. 33
. 34
. 34

. 35
. 36
. 36
. 37
. 38

. 38
. 39

. 40
. 40
.41

.42
.42

iii

Running the Program .

Updating a Service Program Export Lrst
Program Description .o
Creating the Source Files . . .
Compiling and Binding Programs and Servrce
Programs . .
Running the Program .

Chapter 5. Running a Program
The ILE C/C++ Run-Time Model .
Activations and Activation Groups
Run-Time Library Functions and Actrvatron Groups
Calling Programs

Using the Call (CALL) Command .

Using the Transfer Control (TFRCTL) Command

Creating a CL Command to Run a Program
Normal and Abnormal End-of-Program .
Managing Activation Groups

Specifying an Activation Group.

Presence of a Program on the Call Stack

Deleting an Activation Group

Reclaiming System Resources
Managing Run-Time Storage.

Managing the Default Heap .

Chapter 6. Improving Run-Time
Performance Coe e
Choosing Data Types to Improve Performance.
Avoiding Use of the Volatile Qualifier
Replacing Bit Fields with Other Data Types.
Minimizing the Use of Static and Global
Variables
Using the Register Storage Class
Creating Classes to Improve Performance
Enabling Performance Measurement . .
Using a Compiler Option to Enable Performance
Measurement. .
Minimizing Exception Handlmg
Turning on Return Codes during Record 1/ O
Turning Off C2M Messages durmg Record Input
and Output .
Using a Direct Monrtor Handler
Minimizing Percolation of Exceptions.
Reducing the Number of Function Calls and
Arguments .
Inlining Function Calls
Using Static Class Member Functlons or Global
Variables .
Passing Arguments in Reg1sters
Using Prototypes to Minimize Function Call
Processing . .
Choosing Input and Output Funct1ons to Improve
Performance . .
Using Record Input and Output Functrons .
ISO C Record 1/0 .
ILE C Record 1/0O
Using Input and Output Feedback Informatron
Blocking Records .
Manipulating the System Buffer
Opening Files Once for Both Input and Output

iV ILE C/C++ Programmer’s Guide

.42
. 43
. 43
.44

. 46
. 47

. 49
. 49
. 50

51

. 52

. 52

. 56
. 58
. 59
. 59
. 62
. 63
. 63
. 64
. 64

. 67
. 67
. 67
. 68

. 68
. 68
. 68
. 68

. 68
. 69
. 69

. 69
. 70
. 70

.72
.72

.72
.73

.73

.73
. 74
.74
. 74

75

.75
. 76

76

Minimizing the Use of Shared Files
Minimizing the Number of File Opens and
Closes .

Defining Tape F1les to Improve Performance
Improving Performance when Using Stream
Input and Output Functions.

Using C++ Input and Output Stream Classes .
Using Physical Files Instead of Source Physical

Files .

Specifying L1brary Names .
Using Pointers to Improve Performance .

Avoiding Use of Open Pointers.

Avoiding Pointer Comparisons .

Reducing Indirect Access through Pomters
Using Shallow Copy instead of Deep Copy
Minimizing Space Requirements

Choosing Appropriate Data Types .

Minimizing Dynamic Memory Allocation Calls

Arranging Variables to Reduce Padding .
Removing Observability . .
Compressing Objects

Optimizing Use of Activation Groups

Calling Functions in Other Activation Groups .

Reducing Program Startup Time
Minimizing Use of Virtual Functions .

Choosing Compiler Optrons to Optrmrze for Speed

or Size .
Setting Run- Trme errts .

Chapter 7. Example: Creating an ILE C

Application .
Process Flow .
ILE Activation Group
Resource Requirements
Task Summary
Instructions to Create the Sample Applrcatron
Source Code Samples . .
Source Code for an Audit Log Flle

Source Code Pass Terminal Session Input to an

ILE Program .

.77

.77
.77

.77
. 78

. 78
. 78
. 78
.78
. 78
. 81
. 82
. 82
. 82

82
. 83
. 85
. 85
. 85
. 85
. 86
. 86

. 86
. 87

. 89

. 89
.91
.92
.92
. 93
. 96
. 96

.97

Source Code to Deflne a CL Command to Collect

Session Data . .97
Source Code for a User Entry Procedure (UEP) 98
Source Code to Calculate Tax and Format Cost
for Output . 100
Source Code to Wr1te an Audlt Trall . 102
Source Code to Export Tax Rate Data . 103
Binder Language to Export Tax Rate Data . . 104
Binder Language to Export the write-audit-trail
Procedure . 104
Part 3. Debugging Programs 105
Chapter 8. The ILE Source Debugger 107
Debug Data Options . . 107
Debug Language Syntax. . 107
Limitations of the Debug Language Syntax . 107
Debug Commands . .. 108
Examples of Usmg Debug Expressrons in ILE C
Programs . Lo . 110

Examples of Program Definitions and
Corresponding Debug Expressions
Examples of Displaying System and Space
Pointers in the ILE Source Debugger

Chapter 9. Preparing a Program for

Debugging
Setting Up a Test lerary
Creating a Listing View for Debuggmg

Chapter 10. Working with Source
Debug Sessions
Starting a Source Debug Session .

Adding and Removing Programs from a Debug

Session
Setting or Changlng Debug Optlons Dur1ng a
Session

Example: Addlng an OPM Program to an ILE

Debug Session .
Example: Setting Debug Optlons durlng a
Debug Session .

Viewing the Program Source .

Displaying Other Modules in Your Program .

Displaying a Different View Of a Module .

Chapter 11. Using Breakpomts to Aid

Debugging
Types Of Breakpoints.
Job and Thread Breakpomts

Conditional and Unconditional Breakpomts .

Setting Breakpoints

Setting Unconditional Breakpomts from the

Display Module Source Display .

Setting Unconditional Breakpoints from the

Command Line.

Setting Conditional Breakpomts for a Macro .
Setting Conditional Breakpoints for a Statement

Setting Conditional Thread Breakpoints

Setting a Conditional Thread Breakpoint from
the Work with Module Breakpoints Display .
Setting a Conditional Thread Breakpoint from

the Command Line
Testing Breakpoints
Removing All Breakpoints .

Chapter 12. Using Watches to Aid
Debugging

Characteristics and leltatlons Of Watches
Setting and Removing Watch Conditions .
Setting watch conditions.
Using the WATCH Debug Command
Removing Watch Conditions . .
Automatic Removal Of Watch Condltrons .
Example Of Setting a Watch Condition .
Displaying Active Watches .

Chapter 13. Stepplng Through
Programs . .
Stepping Over Programs

. 110

. 119

. 123
. 123
123

. 125
. 125

. 128
. 129
. 129

. 129
. 130
. 130
. 131

. 133
. 133
. 133
. 133
. 133

. 134

. 135
. 135

136

. 136
. 136

. 136
. 137
. 137

. 139
. 139
. 140
. 140
. 140
. 142
. 142
142
. 144

. 145
. 145

Using F10 to Step Over Programs . . 145
Using the STEP OVER Debug Command . 145
Stepping into Programs . o . 145
Using F22 to Step into Programs . . . 145
Using the STEP INTO Debug Command . 146
Stepping into Called Programs . 146
Example of Stepping into a Program Usmg F22 146
Stepping into an OPM Program . .. 148
Stepping Over Procedures . . 148
Stepping into Procedures . 149
Chapter 14. Debugging Variables . . 151
Displaying the Value Of a Variable . . 151
Using F11 to Display Variables . 151
Changing the Value of a Variable. . 152
Changing the Value of a Scalar Variable . 153
Equating a Name with a Variable, Expression, or
Debug Command . . 154
Displaying a Structure . 155
Displaying Variables As Hexadec1ma1 Values 155
Displaying Null-Ended Character Arrays . . 156
Displaying Character Arrays . 158
Sample EVAL Commands for Pomters
Variables, and Bit Fields . . . 159
EVAL Commands for System and Space
Pointers 161
Source for Sample EVAL Commands . 163
Source for Sample EVAL Commands for
Displaying System and Space Pointers . . 165
Source for Sample EVAL Commands for
Displaying C++ Constructs . . . 167
Chapter 15. Changing Module
Optimization and Observability . 171
Changing Optimization Levels . 171
Removing Module Observability . . 173
Part 4. Performing 1/0O Operations 175
Chapter 16. Using ILE C/C++ Stream
and Record I/O Functions with iSeries
Data Management files 177
ILE C Record I/O Functions . 177
Stream Buffering . . . 177
Dynamic Stream File Creatlon . 178
Open Modes for Dynamically Created Stream
Files .. 178
Standard I/ O Text Stream Flles (<std10 h>) . 179
iSeries Data Management Files . 179
iSeries Data Management File Types. . 180
Data Management Stream Files and ILE C I/ O
Operations 180
iSeries Data Management F11e Nammg
Conventions. . 181
File Control Structure of Text Streams and Blnary
Streams . . . 182
I/0O Processes for Text Stream Flles . . 183
Opening Text Stream Files . . 183
Writing Text Stream Files . 185

Contents

A\

Reading Text Stream Files . . 186
Updating Text Stream Files . . 187
I/0O Process for Binary Stream Files 187
Opening Binary Stream Files (character at a
time) . . 187
Writing Bmary Stream Frles (character at a trme) 189
Reading Binary Stream Files (character at a
time) . . 190
Updating Blnary Stream Flles (Character at a
time) . . . 191
Opening Brnary Stream Frles (record at a trme) 193
Writing Binary Stream Files (record at a time) 194
Reading Binary Stream Files (record at a time) 195
Open Feedback Area . . 196
I/O Feedback Area . 196
Using Session Manager . . . 196
Obtaining the Session Handle . 197
Using Session Manager APIs . 197
Example: Using an ILE Bindable API to Dlsplay
a DSM Session . e V4
Chapter 17. Using ILE C/C++ Stream
Functions with the iSeries Integrated
File System : . 201
The Integrated File System (IFS) . . 201
root(/) File System . 202
Open Systems (QOpenSys) Flle System . 203
Library (QSYS.LIB) File System . . 203
Document Library Services (QDLS) File System 204
LAN Server/400 (QLANSrv) File System . . 204
Optical Support (QOPT) File System . 205
File Server (QFileSvr.400) File System . 206
Enabling Integrated File System Stream I/0O . . 207
Using Stream I/O with Large Files . . 207
Stream Files 207
Stream Files Versus Database Flles . 208
Text Streams. . 209
Binary Streams . . 209
Opening Text Stream and Blnary Stream Frles . 210
Storing Data as a Text Stream or as a Brnary
Stream . 210
Using the Integrated Frle System (IFS) . 211
Copying Source Files into the IFS. . 212
Editing Stream Files . . 212
The SRCSTMF Parameter . 212
Header File Search . 212
Preprocessor Output . . 218
Listing Output . . 218
Code Pages and CCSIDs . 219
Pitfalls to Avoid . . 219
Examples of Usmg Integrated Flle System
Source. . Lo . 220
Using Stream I / O . 220
Part 5. Working with iSeries File
Systems and Devices. 223
Chapter 18. Using Externally
Described Files in a Program . 225

Vi ILE C/C++ Programmer’s Guide

Creating Externally Described Database Files. . . 225
Creating Type Definitions 226
Creating Header Descriptions 226
Specifying the Record Format Name. 227
Specifying Record Field Names . . . 228
Including Database Files in the Type Deﬁnrtron 228
Defining the Structure Type (KEY Freld) ... 228
Using Long Names for Files 231

Level Checking to Verify Descriptions . . . 232

Using the GENCSRC Utility for Level Checkmg 233
Using the #pragma mapinc Directive for Level

Checking. 235
Avoiding Field Ahgnment Problems in C / C++
Structures . . . 237
Including External Freld Deflnrtrons in a Program 237

The INPUT Option238

The OUTPUT Option.238

The BOTH Option.238
Defining and Using Indicators. . . .o..240

Creation of Indicators in the File Buffer .. .240

Creating a Separate Indicator Area 240
Including Physical and Logrcal Database Files in a
Program . . . o242
Including Device Flles ina Program . . 243
Including Externally Described Multiple Record
Formats in a Logical File 243
Using Externally Described Packed Dec1ma1 Data
ina Program246

Chapter 19. Using Database Files and
Distributed Data Management Files in

a Program. . . . 249
Database Files and Drstrlbuted Data Management
Files . . . o ... 249
Physical Files and Loglcal Frles ..o L2499
Describing Records in Database Files 250
Data Files and Source Files.250
Access Paths 0250
Arranging Key Flelds Lo)
Duplicate Key Values.251
Deleted Records25
Locking25
Sharing . . e 232
Null-Capable Flelds S . 253

Opening Database and DDM Frles as Record Fﬂes 254
Record Functions for Database and DDM Files 254

I/0 Considerations for DDM Files 255
Opening Database and DDM Files as Binary
Stream Files. . . . 255
170 Consrderatrons for Blnary Stream Database
and DDM Files. . . . 255
Binary Stream Functions for Database and DDM
Files 255
Processing a Database Record Frle in Arrlval
Sequence.256
Instructions256
Source Code Sample 256
Processing a Database Record File in Keyed
Sequence.257

Processing a Database Record File Using Record
Input and Output Functions

Synchronizing Database File Changes ina Srngle
Job. . . . PR
Blocking Records .

Chapter 20. Using Device Files in a

Program .

Using OS/400 Feedback Areas for all Devrce Frles

Using Indicators to Transfer Information
Types of Indicators
Separate Indicator Areas.

Major and Minor Return Codes .

Example: Returning Indicators to a Separate

Indicator Area .

Example: Returning Indlcators to the Frle Buffer
Establishing the Default Program Device .
Changing the Default Program Device .
Obtaining Feedback Information .

Using Display Files and Subfiles .

Display Files and Subfiles .

Using Subfiles to Minimize 1/0O Operatlons

Opening Display Files and Subfiles as Binary

Stream Files . S

Opening Display F1les as Record F1les .

Using Intersystem Communication Function Files
1/0 Considerations for Intersystem
Communication Function Files .
Opening ICF Files as Binary Stream Files .
I/0 Considerations for Binary Stream ICF Files
Binary Stream Functions for ICF Files .
Opening ICF Files as Record Files
I/0O Considerations for Record ICF Files
Record Functions for ICF Files.

Using Printer Files.

I/0 Considerations for Prrnter Frles .

Opening Printer Files as Binary Stream Files .

Opening Printer Files as Record Files

Record Functions for Printer Files
Writing to a Tape File

I/0O Considerations for Tape F1les

Opening Tape Files as Binary Stream Files.

Binary Stream Functions for Tape Files .

Opening Tape Files as Record Files .

Record Functions for Tape Files
Writing to a Diskette File

I/0 Considerations for Diskette Frles

Opening Diskette Files as Binary Stream Files

Binary Stream Functions for Diskette Files.

Opening Diskette Files as Record Files .

Record Functions for Diskette Files .

Using Save Files
I/0 Considerations for Save F1les
Opening Save Files as Binary Stream Files.
I/0 Considerations for Binary Stream Save Files
Binary Stream Functions for Save Files .
Opening Save Files as Record Files .

1/0 Considerations for Record Save Files .

Record Functions for Save Files

. 259

. 262
. 267

. 269

269

. 269
. 269
. 270
. 270

. 270
272

. 274
. 276
. 279
. 281
. 281
. 282

. 284
. 285

287

. 287
. 287

287

. 288
. 288
. 288
. 289
. 294
. 295
. 295
. 295
. 295
. 298
. 298
. 298
. 299
. 299
. 300
. 302
. 302

302

. 303
. 303
. 303
. 306
. 306
. 306

306

. 306
. 306
. 307
. 307

Part 6. Working with iSeries

Features.309
Chapter 21. Handling Exceptions in a
Program . . . R N i
ILE Language-Specific Error Handhng3n
Exception Messages 0312
How the System Processes Except1ons .o . 312
How the Call Message Queue Handles ILE
Procedures and Functions 312
How Control Boundaries Affect Except1on
Handling in ILE 313
Unmonitored Exceptions and Unhandled
Exceptions313
Nested Exceptions. 314
Detecting Stream File and Record Frle Errors . . 315
Checking the Return Value of a Function . . . 315
Checking the Errno Value315
Checking the Major/Minor Return Code . . .316
Checking the System Exceptions for Record
Files 316
Checking the Global Var1able EXCP MSGID 317
Using ILE Exception Handlers. 318
Types of Exception Handlers 318
Using ILE Direct Monitor Handlers 318
Using ILE Condition Handlers 328
Using the C/C++ Signal Handler. 337
When to Use the Signal Handler 337
Raising Signals 338
Signal Handling Functron Prototypes 338
How the ILE C/C++ Run-Time Environment
Handles Signals . . N
Resetting the Signal Actron N &
Stacking Signal Handlers L340
Example: Setting Up a Signal Handler 340
Using Both C/C++ Srgnal and ILE Exceptron
Handlers L. 344
Order of Pr1or1ty . . 344
Example of Using a D1rect Monrtor Handler and
Signal Handler Together. 344
Handling Nested Exceptions345
Using Cancel Handlers 346
Example: Using a Variety of Ways to Detect Errors
and Handle Exceptions349
Instructions . . . G .
Source Code Samples e 2

Chapter 22. Using OS/400 pointers in

a Program. 353
0S/400 pointer Types353
Using Open Pointers 354
Using Pointers Other than Open Pomters 354
Declaring Pointer Variables. . . . 355
Declaring OS/400 pointer Var1ables in C and
C++35
Declaring a Funct1on Pomter to a Bound
Procedure in ILEC 355
Declaring a Function Pointer w1th OS Lrnkage
inILECand ILEC++356

Contents Vil

Casting Pointers
Example: Passing OS/ 400 pomters as
Arguments on a Dynamic Program Call to
Another ILE C Program .
Instructions .
Source Code Samples

Chapter 23. Using ILE C/C++ Call
Conventions. :
Program and Procedure Calls .
Using Dynamic Program Calls.
How the ILE Call Stack Is Used to Control
Program Flow .
Renaming Programs and Procedures
Calling Programs that Have Library Qua11f1cat1on
Calling C++ Programs and Procedures from ILE C
Specifying the Linkage Convention . .
Example: An ILE C Program that Uses C++
Objects . e
Accessing C++ Classes from ILE C .
Mapping a C++ Class to a C Structure .
Example: An ILE C Program that Uses C++
Objects

Chapter 24. Porting Programs from

Another Platform to ILE .

Limitations to Porting Code to ILE C or C++
File Inclusions .

Platform-Specific Extens1ons

Members of a Union .

Members of a Structure .

Decimal Constants. .

Decimal Constants and Case Statements
Library QSYS.LIB under IFS

Teraspace Considerations

Modifying Calls of ILE C++ Ob]ects
Differences in Header Files .

Differences in Linkage Specification .
Differences in Function Definitions .

Using BCD Macros to Port Coded Decimal Ob]ects

to ILE C++ .
Examples.

Mapping Class Template Instantlatlons to ILE C
Syntax.

Handling Extra Prec1s10n for Mult1pl1cat1on and
Division .

Determining the Number of D1g1ts in an Ob]ect
Determining the Number of Digits in an
Internal Packed Decimal Data Object
Formatting the Value of a Formatted C Input or
Output Function

Porting Conditional Operators to lLE C or C++
Porting ILE C Packed Decimal Data Types to
the _DecimalT Class Template. .
Differences in Using Packed Structures .
Differences in Error Checking . .

Header Files that Work with Both C and C++
Using Dual Function Prototypes . .
Permitting ILE C Programs to Access C++
Linkage Functions.

viii ILE C/C++ Programmer’s Guide

. 357

. 359
. 359
. 359

. 363
. 363
. 363

. 364
. 364

365
367

. 368

. 368
. 372
. 372

. 373

. 379
. 379
. 379
. 379
. 379
. 379
. 380
. 380
. 380
. 381
. 381
. 381
. 381
. 382

. 383
. 383

. 384

. 384

384

. 385

. 386
387

. 388
. 389
. 390
. 391
. 391

. 392

Including QSYSINC Header Files. 392

Handling the Stricter C++ Type Checking 392
Resolving Integer Data Type Size Issues . . . 392
Resolving Incompatible Pointer Types 393

Disabling Name Mangling to Avoid Undefined

Name Errors . . . 393

Resolving Type M1smatches w1th the C++ Funct1on

Prototype. 3%
Example of Functlon Prototype M1smatch . . 3%
Handling the Function Prototype Mismatch . . 394

Declaring unsigned char Pointers as unsigned char

Variables39

Initializing Character Arrays39

Specifying Access to String Literals39

Avoiding Uncaught Exceptions by Scoplng to a

Single Activation Group.39

Chapter 25. Working with

Multi-Language Applications. 397

Inter-Language Procedure Calls 397

ILE Conventions for Calling Any Program (*PGM) 398
Mixing Recursive and Non-Recursive Calls . . 399
Passing Arguments from an ILE Program to a
Non-EPM Program . . . 400
Passing Arguments from an ILE Program to an
EPM Program 40
Using a Linkage Spec1f1cat10n ina C++
Dynamic Program Call40

Calling Any ILE Program from ILE C / C++ ... 402
Passing Parameters from ILE C++ to a Different
High-Level Language. . . . 402
Type Casting to Override a Functlon w1thout
Overriding Linkage 408

Passing Arguments from a CL Program t0 an ILE

C++ Program . . . 408
How CL Constants Are Passed to an ILE C++
Program . . . 409
How CL Var1ables Are Passed to an ILE C++
Program . . . 409

CL Example: a Multr—Language ILE Appl1cat1on 410
Example: a User-Defined CL Program that Calls

an ILE C++ Program 416
Example: CL Program that Passes Parameters to
an ILE C++ Program 419
Accessing ILE C Procedures from Any ILE
Program . . e A
Static Procedure Calls " 310
Procedure Pointer Calls 421

Called Procedures and Operational Descr1ptors 421
Operational Descriptors and the #pragma

descriptor Directive 422
OPM CL Example: Calling OPM COBOL and

RPG Programs from an ILE C Program. . . . 423
ILE CL Example: Calling OPM, COBOL, and

RPG Programs from an ILE C Program. . . . 433

ILE-OPM CL Example: Calling OPM, COBOL,
and RPG Programs from an ILE C++ Program . 442
Using a Linkage Specification to Call an ILE

Procedure 448
Using a Linkage Spec1f1cat1on ina C++ Dynamlc
Program Call449

Valid String Literals449
Linkage Specification.449

Chapter 26. Using Packed Decimal

Data in a C Program 451
Converting from Packed Decimal Data Types .. 451
Converting from a Packed Decimal Type to a
Packed Decimal Type. . . . 452
Converting from a Packed Decrmal Type to an
Integer Type. . . . 453
Converting from a Packed Dec1mal Type to a
Floating Point Type454
Overflow Behavior 455
Passing Packed Decimal Data to a Funct1on ... 455
Passing a Pointer to a Packed Decimal Variable
to a Function . . . 456
Calling Another Program that Contams Packed
Decimal Data 457
Using Library Functions w1th a Packed Dec1mal
Data Type . . . 459

Understanding Packed Decrmal Data Type Errors 462
Packed Decimal Warnings and Error Conditions 463
Suppressing a Run-Time Overflow Exception 464

Chapter 27. Using Packed Decimal

Data in a C++ Program 465

The OS/400 Binary Coded Decimal (BCD) Header

File. 465

Using the Dec1malT Class Template .o . 466
Declaring _DecimalT Class Template Ob]ects 466
Using the __D Macro to Simplify Code. . . . 467

_DecimalT Class Template Input and Output 467
Using Operators with the _DecimalT Class

Template oo L 4e7
C++ Packed Decimal Data Conversrons . . 471
Converting Values from One _DecimalT Class
Template to Another 4n
Converting Values from a Dec1malT Class
Template to an Integer Data Type 473
Converting Values from a _DecimalT Class
Template to a Floating Point Data Type. . . . 474
Determining the Size of a _DecimalT Class
Template 474
Determining the Number of D1g1ts in a
_DecimalT Class Template 475
Determining the Precision of a Dec1malT Class
Template 475
How Overflows Are Handled47
Using C++ Exception Handling with the
_DecimalT Template 476

_DecimalT Class Template Run—Tlme Exceptlons 476
Defining a C++ _DecimalT Class Template

Exception Handler. 478

Using Debug Macros for Dec1malT Class

Templates . . . 478
Passing a _DecimalT Class Template Ob]ect to a
Function 480
Passing a Pointer to a Dec1malT Class Template
Object.48

Calling Another Program Containing a _DecimalT

Class Template 481
Validating _DecimalT Class Template Constants to
aFile48

Chapter 28. Using Templates in C++

Programs 489
Managing Template Instantratrons . .. 489
Template Instantiation Management Optlons .. 490
How the ILE C++ Compiler Handles Template
Instantiations . . . !
Generation of Static Member Def1n1t10ns !
Internal Linkage491
External Linkage 491
Example of a Class Template Instant1at1on ... 492
Declarations and Definitions 492
Linkage 493
Using the Default Template Instantlat1on
Management Option 494
Manually Structuring Code for Smgle
Instantiations 494
Explicit Instantiations. 494
Using the ILE Template Registry Optron .o . 495

How the ILE Template Registry Option Works 495
Specifying Values for the TMPLREG Parameter 496

Using the ILE TEMPINC Option49
How the ILE TEMPINC Option Works .. .49
Structuring a Program for TEMPINC- Managed
Instantiations oL .. 497

Chapter 29. Using Teraspace in ILE C

and C++ Programs 501
Supported Teraspace Environments 501
C/C++ Pointer Support501
C/C++ Pointer Conversions501
Bindable APIs for Using Teraspace 502
The 16-Byte Run-Time Binding Libraries . . . 502
The 8-Byte Run-Time Binding (RTBND) Lrbrary
Extensions . . . 503
Using RTBND to Optlmlze Performance of a C++
Program503
Requirementsb503
Error Conditionsb504
Limitations . . . 504

Characteristics of Each Teraspace Storage Model 504
Binary Compatibility Considerations When Porting

Code in a Teraspace Environment 505
Specifying the Teraspace Environment 505
Determining the Size of a Specific Pointer. . . 506
Maintaining Consistent Argument Declarations 506

Source Code Samples. 506
Example: Effect of Forward Declaratlons on the
Data Model 506

Example: Redefining the new or delete Operator 507
Example: How a Template Adopts a Data Model 509
Examples: Overloading Functions 509

Chapter 30. Casting with Run-Time
Type Information 511
The RTTI Language Extension.5I1

Contents 1X

Using C++ Language-Defined RTTI 511
The dynamic_cast Operator.5I1
The typeid Operator . . . 514

Using RTTI in Constructors and Destructors . . 515

ILE C++ Extensions to RTTI . 516
The extended_type_info Classes . . 516

Part 7. Using International Locales

and Coded Character Sets . 519

Chapter 31. Internationalizing a

Program . 521

Coded Character Set Identlflers . 521

Source File Conversions to CCSID . 522

Creating a Source Physical File with a Coded

Character Set Identifier . . 522

Changing the Coded Character Set Identlfler

(CCSID) . . 523

Converting String L1tera1s ina Source Flle . 523

Using Unicode Support for Wide-Character Literals 524
Representation of Wide-Character Literals . . 524
Enabling Unicode Character Set Support . . 525
Effect of Unicode on #pragma convert()

Operations . . . 525
GB18030 Code Page Support . . 526

Targeting a CCSID. . 527
How the ILE C/C++ Comp1ler Converts a
Source File to a Target CCSID . . 527
Literals, Comments, and Identifiers . . 528
Limitations . . 528

Chapter 32. International Locale

Support. Coe . 529

Elements of a Language Env1ror1ment . . 529

X ILE C/C++ Programmer’s Guide

Locales . . 529
ILE C/C++ Support for Locales . . . 529
ILE C/C++ Support for *CLD and *LOCALE
Object Types. e . 530
C Locale Migration Table . . 530
POSIX Locale Definition and *LOCALE Support 533
LOCALETYPE Compiler Option . . . 534
Creating Locales . . 534
Creating Modules Using LOCALETYPE(*LOCALE) 535
Categories Used in a Locale . . . 535

Setting an Active Locale for an Apphcat1or1 . 536

Using Environment Variables to Set the Active

Locale . . 536
SAA and POSIX *Locale Deflrutrons . 537
Locale-Sensitive Run-Time Functions . 538
Part 8. Appendixes . . 539
Appendix A. The GENCSRC Utility and
the #pragma mapinc Directive . . 541
Appendix B. Interlanguage Data- Type
Compatibilities . . 543
Bibliography. . 551
Notices . . 555
Programming Interface Informatlon . 556
Trademarks and Service Marks . 556
Industry Standards . 557
Index . . 559

About This Guide

This guide contains instructions on:
* Entering source statements
* Creating a program in two steps
* Creating a program in one step
* Running a program
* Debugging a program
* Managing streams and record files
* Writing programs that:
— Use externally described files
— Use database files and distributed data management files
- Use device files
— Handle exceptions
— Call programs and procedures
- Use pointers on the iSeries® system
* Internationalizing a program
* Using templates in C++ programs
¢ Porting programs to ILE C++
 Casting with run-time type information
¢ Using Teraspace support
* Customizing programs using locales

Who Should Use This Guide

This guide is for programmers who are familiar with the C and C++ programming

languages and who plan to write or maintain ILE C/C++ applications.

Users need experience in using at least one of the following:
* Applicable iSeries menus and displays
* Control Language (CL) commands

Prerequisite and Related Information

Use the iSeries” Information Center as your starting point for finding iSeries and
AS/400e technical information. You can access the Information Center from the

following Web site:
http://www.ibm.com/eserver/iseries/infocenter

The iSeries Information Center contains advisors and important topics such as CL

commands, system application programming interfaces (APIs), logical partitions,
, TCP/IP, Web serving, and secured networks. It also includes
links to related IBM® Redbooks™'; and Internet links to other IBM Web sites such

TMTM

clustering, Java

as the Technical Studio and the IBM home page.

Other information is listed in the [‘Bibliography” on page 551

© Copyright IBM Corp. 1993, 2004

xi

Install Licensed Program Information

The QSYSINC library must be installed on systems that use the ILE C/C++
compiler.

Notes About Examples

Examples illustrating the use of the ILE C/C++ compilers are written in a simple
style. Note the following;:

e The examples do not demonstrate all of the possible uses of C/C++ language
constructs.

* Some examples are code fragments and cannot be compiled without additional
code.

* All complete, runnable examples begin with T1520. They can be found in the
QCPPLE library, in source file QACSRC.

* Most of the examples found in this guide are illustrated by entering Control
Language (CL) commands on a CL command line. You can use a CL program to
run most of the examples.

* See the member T1520INF in QCPPLE/QAINFO for information about running
the examples in each chapter.

Control Language Commands and the Procedures in This Guide

In this guide, the procedures instruct you to enter CL commands. To enter a CL
command, type the command on the command line and then either press the Enter
key or press F4 to be prompted for options and parameters.

If you need online help information, press F1 (Help) on the CL command prompt
display.

See WebSphere Development Studio: ILE C/C++ Compiler Reference for command
syntax for the CL commands including Integrated Language Environment (ILE) CL
commands. CL commands can be used in either batch or interactive mode, or from
a CL program.

Note: You need object authority to use CL commands.

How to Send Your Comments

xii

Your feedback is important in helping to provide the most accurate and
high-quality information. IBM welcomes any comments about this book or any
other iSeries documentation. Use one of these e-mail addresses:

e Comments on books:
compinfo@ca.ibm.com
IBMLink: to toribm(torrcf)

¢ Comments on the iSeries 400 Information Center:
RCHINFOC@us.ibm.com

Be sure to include the following:

* The name of the book

¢ The publication number of the book

* The page number or topic to which your comment applies.

ILE C/C++ Programmer’s Guide

Figures

N

ALl

11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.

25.
26.

27.

28.

29.

30.

31.

32.

33.
34.

35.

Program Creation in ILE

ILE C Source to Add Integers and Prmt
Characters . .
Structure of Program MYPROG

Example of a Basic Binder Listing .

Example of Header File (search.h) .

Source File that Contains Constructor
Definitions for the Search Class .

File that Contains the Member Function
Definition for the Search Class .

Source Code for myproga.cpp .
Calls between Program and Service Program
Display Module Information Screen for a
Sample Module SEARCH . .
Example of a Binder Language Source Frle
Binder Language Source File Generated for
Module SEARCH

Binder Language Source File Generated by the
RTVBNDSRC Command . . .
Unresolved Import Requests in a Program
with Circular References . .
ml.cpp — First Source File for Applrcatron
with Circular References .

m2.cpp — Second Source Files for Appl1cat1on
with Circular References .

m3.cpp — Third Source File for Applrcatron
with Circular References . . .
Binder Language for Service Program SPl
Binder Language for Service Program SP2
Binder Language for Service Program SP1
Example of Source Code to Create a Dummy
C++ Program .

Source Code for Example myprog cpp

Exports from Service Program COST .

Import Requests in Programs COSTDPT1 and
COSTDPT2. .
Source Code for Servrce Program COST
T1520REP — ILE C Source to Pass Parameters
to an ILE C Program .

Source File for a Program that Passes the Value
'Hello, World' to Another Program

Calling Program XRUN2 Using the TFRCTL
Command .

Example of Source Code that Transfers Control
to Another Program.

Example of Source Code that Recelves and
Prints a Null-Terminated Character String
Calling Program CALCOST from a
User-Defined Command COST .

Source Code for Command Prompt that Runs
the CALCOST Program . .
Source Code for Program CALCOST .
Running Programs in a Named Activation
Group . .
Running Programs in Unnamed Actlvatlon
Groups .

© Copyright IBM Corp. 1993, 2004

.12
.15
. 20
. 26

.27
.27
. 28

.32

32

. 34

. 36

. 37

. 37

. 38

. 38

39
39
41

.42
.42

.44
. 45

. 53

. 54

. 55

. 56

. 56

. 57

. 58
. 58

. 60

. 61

36.

37.

38.

39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.
51.
52.

53.
54.

55.

56.

57.

58.
59.

60.

61.

62.
63.

64.

65.

66.

67.

68.

Running a Service Program in the Activation

Groups of Calling Programs . . . 62
Example of Dynamic Allocation and
De-Allocation of Storage for a Class Object . . 65
Example of Dynamic Allocation and
De-Allocation of Storage for an Array of
Objects . . 65
T1520XH7 — ILE C Source for Exceptlon
Handling . . .71
Example: Using ISO C Record I / O .74
Example: Using ILE C Record I/0O . .75
I/0O Feedback Information .75
Using the System Buffer .76
Example: Opening a File Twice . . 76
Example: Opening a File Once . .77
Using printf()77
Using printf() to Reduce Functlon Calls 78
Example of a Program that Uses Linked Lists 79
Example of Source Code that Uses a short
Type Member to End a Linked List . 80
Example of Minimizing Padding by
Rearranging Variables . . . 84
Sample Application: High- Level
Input/Processing/Output Flow . . 89
ILE Activation Group of the Sample
Application .91
DDS Source for Aud1t F1le T1520DD1 .97
T1520CL1 — CL Source to Pass Variables to an
ILE C Program . .97
T1520CM1 — CL Command Source to Recerve
Input Data . . . 98
ILE C Source to Call Funct1ons in Other
Modules .99
Sample ILE C Source to Calculate Tax and
Format Cost for Output . . 101
ILE C Source to Write an Audit Trarl 102
T1520IC4 — ILE C Source to Export Tax Rate
Data . 103
Binder Language Source to Export Tax Rate
Data . 104
Binder Language Source to Export
write_audit_trail Procedure . . 104
Example of ILE C Source Data Defmltlons 111
Examples of Using Pointers in Debug
Sessions, Screen 1 . . . 113
Examples of Using Pointers in Debug
Sessions, Screen 2 . . 114
Examples of Simple Operatrons Used in
Debug Expressions. . 115
Examples of Using Bit Flelds in Debug
Expressions . . 116
Examples of Using Structures and Unrons in
Debug Expressions. . 117
Examples of Using Enumeratlons in Debug
Expressions . . 118
xiii

69.
70.
71.
72.

73.
74.

75.
76.
77.
78.
79.
80.
81.
82.
83.
84.

85.
86.

87.
88.

89.
90.

91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.

102.
103.

104.

xiv

System and Space Pointers in ILE C Source
Code

Example of System and Space Pornter Drsplay
Module Source Display for DEBUGEX
Module Source Display After Steppmg into
CPGM .. .

Using EVAL to Change a Var1able

Sample EVAL Commands for Pointers,
Variables, and Bit Fields .

Sample EVAL Commands for C Structures,
Unions and Enumerations

Sample EVAL Commands for System and
Space Pointers . . .
Sample EVAL Commands for C++
Expressions .

Using EVAL with a Class Template

Using EVAL with a Function Template
Source for Sample EVAL Commands
Source for Sample EVAL Commands for
Displaying System and Space Pointers .
Source for Sample EVAL Commands for
Displaying C++ Constructs .

iSeries Data Management Records Mappmg
to an ILE C Stream File .

ILE C Source to Open an ILE C Text Stream
File . .

Writing to a Text Stream F1le

ILE C Source to Write Characters to a Text
Stream File . .

Reading from a Text Stream F1le .

ILE C Source to Read Characters from a Text
Stream File

ILE C Source to Open a Blnary Stream F1le

Writing to a Binary Stream File One Character
. 189

at a Time .

ILE C Source to Wr1te Characters to a Bmary
Stream File .

Reading from a Binary Stream F1le One
Character at a Time

ILE C Source to Read Characters from a
Binary Stream File . . .
Updating a Binary Stream File w1th Data
Longer than Record Length . .

ILE C Source to Update a Binary Stream Frle
with Data Longer than the Record Length .
Updating a Binary Stream File with Data
Shorter than Record Length. .

ILE C Source to Update a Binary Stream Flle
with Data Shorter than the Record Length .
Writing to a Binary Stream File One Record at
a Time .

ILE C Source to Wr1te to a Bmary Stream F1le
by Record. .

Reading from a Binary Stream Flle a Record
at a Time .

ILE C Source to Read from a B1nary Stream
File by Record .

Simple C Program to Clear a C Sessron
T1520API — ILE C Source to Call an ILE C
Procedure.

The Integrated File System Interface

ILE C/C++ Programmer’s Guide

. 119
121
147

. 147
. 154

. 159

. 160

. 161

. 162
. 163

163
163

. 166

. 168

. 182

. 184
. 185

. 186

. 186

. 187

189

. 190

. 190

. 191

. 191

. 192

. 192

. 193

. 194

. 195

. 195

. 196

197

. 198
. 202

105.

106.

107.

108.
109.

110.
111.
112.
113.
114.
115.
116.
117.
118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.

141.

Comparison of a Stream File and a
Record-Oriented File .

iSeries Records Mapping to a C/ C++ Stream
File . .
Comparison of Text Stream and Bmary
Stream Contents

Header Description

T1520DD8 — DDS Source for Customer
Records

T1520EDF — ILE C Source to Include an
Externally Described Database File

Ouput Listing from Program T1520EDF —
Customer Master Record. .
Example of SLTFLD(*LVLCHK) w1th the
Default TYPEDEFPFEX(*OB]J)

Example of SLTFLD(*LVLCHK) with the
Default TYPEDEFPFX(*NONE)

Example of SLTFLD(*LVLCHK) with the
Default TYPEDEFPFX value *MYPREFIX
ILE C Source Using the #pragma mapinc
Ivlchk Option .
T1520DD3 — DDS Source for Program
Ouput Listing from the Program .

DDS Source for a Display File .

Structure Definition for a Display File

DDS Source for a Device File

Structure Definitions for a Device File

DDS Source for Indicators

Structure Definition for Indicators.

Header Description Showing Comments for
Indicators. .
Structure Def1n1t10n for Multrple Formats
Structure Definitions for a Device File
Structure Definitions for BOTH Option
T1520ASP — ILE C Source to Process a
Database Record File in Arrival Sequence .
T1520DD3 — DDS Source for Database
Records

T1520KSP — ILE C Source to Process a
Database Record File in Keyed Sequence
T1520DD4 — DDS Source for Database
Records

T1520REC — ILE C Source to Process a
Database File Using Record I/O Functions.
T1520DD5 — DDS Source for Daily
Transactions . .

T1520DD6 — DDS Source for Monthly
Transactions .

T1520DD7 — DDS Source for a Purchase
Order Display L
T1520COM — ILE C Source to Group File
Operations Using Commitment Control.
T1520DD0 — DDS Source for a Phone Book
Display .

T1520ID2 — ILE C Source to Spec1fy
Indicators in a Separate Indicator Area .
T1520DD9 — DDS Source for a Phone Book
Display .

T1520ID1 — ILE C Source to Spec1fy
Indicators as Part of the File Buffer

. 208

. 208

. 211
. 226

. 229

. 230

. 231

. 234

. 234

. 235

. 236

236

. 237
. 238

238

. 239

240

. 241
. 242

. 242

244
245
246

. 257

. 258

. 259

. 260

. 260

. 263

. 263

. 263

. 265

. 271

. 272

. 273

. 273

T1520DDD — DDS Source for an 1/O Display 274

142.

143.

144.

145.

146.

147.

148.
149.

150.

151.

152.

153.

154.

155.

156.

157.

158.
159.

160.
161.
162.
163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.

175.

T1520DEV — ILE C Source to Establish a

Default Device .

T1520DDE — DDS Source for Name and

Password Display . .

T1520CDV — ILE C Source to Change the
Default Device . .

T1520DDF — DDS Source for a Feedback

Display
T1520FBK — ILE C Source to Use Feedback
Information .

T1520DDG — DDS Source for a Subfrle
Display

T1520SUB — ILE C Source to Use Subflles
T1520DDA — DDS Source for Password and
User ID .
T1520DDB — DDS Source to Send Password
and User ID . .
T1520DDC — DDS Source to Recelve
Password and User ID .
T1520ICF — ILE C Source to Send and
Receive Data.
T1520TGT — ILE C Source to Check Data is
Sent and Returned . .
T1520FCF — ILE C Source to Use Flrst
Character Forms Control. . .
Sample Source Statements for Program
T1520TAP.
T1520TAP — ILE C Source to Wrrte to a Tape
File . .
T1520DSK — ILE C Source to Wrrte Records
to a Diskette File
Error Handling for OPM and ILE
ILE C Source Code with Unhandled
Exceptions
ILE C Source to Check for the Return Value
of fopen() .
ILE C Source to Check the errno Value for
fopen(). .

_C_Maj_Min_rc Type Def1n1t1on
_RIOFB_T Type Definition .
_Sys_Struct_T Type Definition .
_Maj_Min_rc_T Type Definition
Definition of Structure

_INTRPT_Hndlr_Parms_T
ILE C Source to Scope Direct Monrtor
Handlers . .
ILE C Source to Use Exceptron Classes
ILE C Source to Handle Exceptions .
T1520XH1 — ILE C Source to Use Direct
Monitor Handlers — main() .
T1520ICA — ILE C Source that Uses Dlrect
Monitor Handlers .
T1520XH2 — ILE C Source to Use Dlrect
Monitor Handlers — Service Program
T1520XH3 — ILE C Source to Use Direct
Monitors with Labels as Handlers
T1520XH5 — ILE C Source to Use ILE
Condition Handlers — main() . .
T1520XH6 — ILE C Source to Use ILE
Condition Handlers — Service Program.

. 275

. 276

. 277

. 279

. 280

. 282

283

. 290

. 290

. 290

. 291

. 293

. 297

. 300

. 301

. 305
. 311

. 313
. 315
. 316
. 316
. 317
. 317
. 317
. 319

. 319

320

. 321

. 322

. 324

. 327

. 328

. 329

. 330

176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.

193.
194.

195.

196.

197.

198.

199.

200.

201.
202.

203.

204.

205.

206.

207.
208.

209.

210.

T1520IC6 — ILE C Source to Use ILE
Condition Handlers

T1520IC7 — ILE C Source to Percolate a
Message to Handle a Condition .
T1520IC8 — ILE C Source to Promote a
Message to Handle a Condition

ILE C Source to Manage the State of a S1gnal
Handler P
Resetting Signal Handlers

Stacking Signal Handlers. .
T1520SIG — ILE C Source that Sets Up S1gnal
Handlers . .

Exception Handler Pr10r1ty .

ILE C Source to Nest Exceptions . .
T1520XH4 — ILE C Source that Uses Cancel
Handlers .
T1520DDJ — DDS Source for a Phone Book
Display . .
T1520EHD — ILE C Source to Handle
Exceptions .
ILE C Source to Declare Pornter Varrables
ILE C++ Source to Declare Pointer Variables
ILE C Source to Declare a Pointer to a Bound
Procedure.

ILE C Source to Declare a Po1nter to an
iSeries Program as a Function Pointer

ILE C++ Source to Declare a Pointer to an
iSeries Program as a Function Pointer

ILE C Source to Show OS/400 pointer casting
T1520DL8 — ILE C Source that Uses OS/400
pointers

T1520DL9 — ILE C Source that Uses OS / 400
pointers . .
Program and Procedure Calls on the Call
Stack

Example of Us1ng the #pragrna map D1rect1ve
to Rename Functions . . .

An ILE C++ Function Declared As an
External Function .

C++ Source File hourclas. cpp Def1n1t10ns
Used by C Source File hour.c .
C Source file hour.c that Uses Def1n1t1ons
from C++ Source File hourclas.cpp .
Example of a Shared C/C++ Header File
Example of C++ Class without Virtual
Functions .

Example of C Structure that Corresponds to
C++ Class without Virtual Functions.

C++ Source File hourclas.cpp that Contains
Classes Used by C Source File hour.c

C Source File hour.c that Uses C++ Classes
Defined in Source File hourclas.cpp . .
Example of ILE C Structure Definition that
Cannot Be Ported to ILE C++ .

. 331

. 333

. 335

. 338
. 340

. 340

. 342
. 344

. 346

. 347

. 350

. 351

355
355

. 356

. 357

. 357

358

. 359

. 360

. 364

. 365

. 368

. 369

. 371

372

. 373

. 373

. 375

. 377

. 380

. 380

Example of Code with Decimal Constants
and a Case Statement that Are Incompatible
Example of ILE C Source Code Using the
extern Linkage Specification .
Example of ILE C Source Code Us1ng the
#pragma argument Linkage Specification

Figures

. 380

. 382

. 382

XV

211.
212.
213.
214.
215.
216.

217.

218.

219.

220.

221.
222.

223.
224.

225.

226.

227.

228.
229.

230.
231.

232.
233.

234.

235.
236.

237.
238.

xvi

Example of ILE C++ Source Code Using the

extern Linkage Specification

BCD Macros that Port Code from ILE C to

ILE C++ .

ILE C Source Code to Port Code to a Packed

Decimal Data Type. .

ILE C++ Source Code to Port Code a Packed

Decimal Data Type. .

Example of Using BCD Macros to Port Code

to ILE C++ .

BCD Macros that Map C++ Class Template

Instantiations to ILE C Syntax . .

Example of Code that Determines the

Number of Digits in a Packed Decimal Data

Type.

Example of Code that Determmes the

Number of Digits in a _DecimalT Class

Template Object.

Example of Code that Determmes the

Number of Decimal Digits in an Internal

Packed Decimal Data Object

Example of Code that Determines the

Number of Decimal Digits in an Internal
_DecimalT Class Object . .

Example of a Conditional Expressron that

Fails because of Class Differences . .

Example of an Explicit Cast that Resolves

Class Differences between Expressions .

Example of Use of a Consistent Variable Type

ILE C Code that Uses Packed Decimal Data

Types . .

ILE C++ Code that Uses the DecrmalT Class

Template Instead of the C Packed Decimal

Data Types

Example of a Smgle Set of Dual Prototypes

that Allow a Header File to be Used by Both

ILE C and ILE C++ .

Example of Multiple Sets of Dual Prototypes

that Allow a Header File to be Used by Both

ILE C and ILE C++ . .

Example of Construct that Permrts ILE C

Programs to Access C++ LInkage Functions

Example of #pragma enum Directive that

Resolves Data Type Size Issues.

Example of Type Mismatch . .o

Code that Declares an unsigned char Pomter

as an unsigned char Variable .

Example of Code Ported to ILE that Results

in an Uncaught Exception .

ILE C++ Procedures Cannot Call Actlve ILE

COBOL Procedures

Example of Using the #pragma

linkage(PGMNAME, OS) Directive to Retrieve
.. . 400

Returned Function Results . .

ILE C Source to Call a Function with
Operational Descriptors .

Type Cast to Override a Function wrthout
Overriding Linkage

ILE Structure.

Basic Object Structure

ILE C/C++ Programmer’s Guide

. 382

. 383

. 383

. 383

. 384

. 384

. 385

. 385

. 385

. 386

. 387

. 388

388

. 389

. 389

. 391

. 391

. 392

. 393
. 394

. 395

. 396

. 400

. 408

. 408
. 410
. 411

239.

240.

241.

242.

243.

244.

245.

246.

247.

248.
249.

250.
251.
252.
253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.

272.
273.

Example of the Interlanguage Call
Capabilities of an ILE C++ Program . .
C++ Source Code T2123ICC that Exports a
Variable for Use by ILE COBOL and ILE RPG
Procedures e
T2123CB2.

ILE RPG Module T2123RP2

SQUARE — CL Command Source to Rece1ve
Input Data .

SQITF — ILE C Source to Pass an Argument
by Value .

SQ —ILE C Source to Perform Calculatrons
and Return a Value

User-Defined CL Command SQUARE that

Calculates the Square of a Specified Number .

Example of CL Program that Passes
Arguments to an ILE C++ Program .
Example of Generic CL Command Prompt
Example of C++ Program that Receives
Arguments (Pointers) by Reference

ILE C Source to Determine the String
Arguments in a Function.

ILE C Source that Declares a Funct1on that
Requires Operational Descriptors .

ILE C Source to Generate Operational
Descriptors

OPM CL Example: Bas1c Program Structure
Structure of the Program in ILE C .
T1520DD2 — DDS Source for an Audit File
T1520CL2 — CL Source to Pass Variables to
an ILE C Program . .
T1520CM2 — CL Command Source to
Receive Input Data. .

T1520IC5 — ILE C Source to Call COBOL
AND RPG

T1520CB1 — OPM COBOL Source to
Calculate Tax and Format Cost. .
T1520RP1 — OPM RPG Source to Write the
Audit Trail

Basic Object Structure.

Integrated Language Env1ronment Structure
T1520DD2 — Source to Create Physical Files
T1520CL3 — ILE CL Source to Pass Variables
to an ILE C Program .

T1520CM2 — Source to Create a CL
Command Prompt .

T1520ICB — ILE C Source to Call COBOL
and RPG Procedures .

T1520ICC — Source Code to Export Tax Rate
Data .

T1520CB2 — ILE COBOL Source to Calculate
Tax and Format Cost .

T1520RP2 — ILE RPG Source to Wr1te the
Audit Trail .

ILE-OPM CL Example Basrc Program
Structure .

Structure of the Program in ILE C++

ILE C Source to Convert Packed Decimals
ILE C Source to Convert a Packed Decimal to
a Packed Decimal with Smaller Precision

. 413

. 414
. 415

. 416

. 417

. 417

. 417

418

. 419

419

. 420

. 421

. 422

. 423

424

. 425

426

. 426

. 427

. 428

. 431

. 432
. 433

434
435

. 435

. 436

. 437

. 439

. 440

. 441

. 442

443
452

. 452

274.

275.

276.

277.

278.

279.

280.

281.

282.

283.

284.

285.

286.

287.

288.

289.

290.

291.

292.

293.

294.

295.

296.

297.

298.

299.

ILE C Source to Convert a Packed Decimal to

a Packed Decimal with Smaller Integral Part

ILE C Source to Convert a Packed Decimal to

a Packed Decimal with Smaller Integral Part

and Smaller Precision .

ILE C Source to Convert a Packed Decrmal

with a Fractional Part to an Integer . .

ILE C Source to Convert a Packed Decimal

with Less than 10 Digits in the Integral Part

to an Integer .

ILE C Source to Convert a Packed Dec1mal

with More than 10 D1g1ts in the Integral Part

to an Integer .

ILE C Source to Convert a Packed Dec1mal

with More than 10 D1g1ts in Both Parts to an

Integer .

ILE C Source to Convert a Packed Decrmal to

a Floating Point.

ILE C Source to Pass Packed Dec1mal Var1able

to a Function.

ILE C Source to Pass a Pornter to a Packed

Decimal Value to a Function

ILE C Source for an ILE C Program that

Passes Packed Decimal Data .

COBOL Source that Receives Packed Dec1mal

Data from an ILE C Program

ILE C Source to Use the va_arg Macro w1th a

Packed Decimal Data Type . . .

ILE C Source to Write Packed Dec1mal

Constants to a File and Scan Them Back

ILE C Source to Print Packed Decimal

Constants .

Packed Decimal Warn1ngs and Error

Conditions

ILE C Source to Suppress a Run—T1me

Exception . .

Example: Ar1thmet1c Operators for the
_DecimalT Class Template . .

Example: Relational Operators and the
_DecimalT Class Template .

Example: Conditional Operators and the
_DecimalT Class Template .

Example: Equality Operators and the

_DecimalT Class Template .

Example: Unary Operators and the
_DecimalT Class Template . .

Example of Converting a Value from One

_DecimalT Class Template to Another

Example of Conversion from One _DecimalT

Class Template to Another with Smaller

Precision .

Example of Conversmn from One Dec1malT

Class Template to Another with a Smaller

Integral Part . .

Example of Conversion from One Dec1malT

Class Template to Another with a Smaller

Integral Part and Smaller Precision

Example of Converting an Integer Type to a

_DecimalT Class Template with a Fractional

Part.

. 453

. 453

. 453

. 454

. 454

. 454

. 455

. 456

. 457

. 458

. 458

. 459

. 460

. 462

. 463

. 464

. 468

. 469

. 470

. 470

. 471

. 472

. 472

. 472

. 473

. 473

300.

301.

302.

303.

304.

305.

306.

307.

308.

309.

310.

311.

312.

313.

314.

315.

316.

317.

318.

319.

320.

321.

322.

323.

324.
325.

Example of Converting an Integer Type to a
_DecimalT Class Template with Less than 10

Digits in the Integral Part

. 473

Example of Converting to an Integer Type
from a _DecimalT Class Template with More

than 10 Digits in the Integral Part.

. 473

Example of Converting to an Integer Type
from a _DecimalT Class Template with a
Fractional Part, and with an Integral Part that

Has More than 10 Digits .

. 474

Example of Converting a _DecimalT Class
Template to a Floating Point Data Type . . . 474
Example of Determining the Total Number of
Bytes Occupied by a _DecimalT Class

Template .

. 475

Example of Determmrng the Number of

Digits in a _DecimalT Class Template . . . 475
Example of Determining the Number of

Decimal Digits p of a _DecimalT Class

Template . . 475
_DecimalT Class Template Run—Trme

Exceptions . 476

Run-Time Except1ons Issued by the Comp1ler

for _DecimalT Class Templates. . 477

Example of Using the C++ Try Catch Throw

Feature to Handle a _DecimalT Class

Template Exception . 478

Commands to Enable Error Checkmg w1th1n

the _DecimalT Class Template at Compile

Time . . 479

Commands to Dlsable Error Checkmg w1th1n

the _DecimalT Class Template at Compile

Time . . 479

Example of Pass1ng a Dec1malT Class

Template Object to a Function . . 480

Example of Passing a Pointer to a DecrmalT

Class Template Object. . . 481

Example of Calling an ILE COBOL Program

from an ILE C++ Program and Passing a
_DecimalT Class Template . . 482

Example of Writing _DecimalT Class

Template Constants to a File . . 484

Example of Writing _DecimalT Class

Template Constants to a File Using the

ofstream Class . .. 486

Example of Class Template Instantlahon 492

Example of C++ Code that Works with or

without the TEMPINC Option . . 492

Example of a Constructor Function that Is

Defined Inline . 493

Example of a Constructor Funct1on that Is

Defined Externally . . 493

Example of All Instances of a Class Def1ned

in a Single Compilation Unit . 495

Example of Class Definitions Used in

Template Arguments Also Contained in

Source Code (Does Not Compile Properly). . 498
Example of Template-Implementation File 498

A Typical tempinc File

. 499

Example of a Forward Declaration Based on

the LLP64 Data Model

. 507

Figures xvii

326. Example of Source Code that Redefines the
Global new and delete Operators .

327. Example of a Template that Adopts the Data
Model in Effect When the Template Is

Declared .

328. ILE Source to Cast a Pomter to a Der1ved
Class to Use a Detail that Is Otherwise

Unavailable .

329. ILE Source to Get a Pomter to a Derlved
Class to Use a Member Function in Specified

Calculations Only .

xviii

ILE C/C++ Programmer’s Guide

. 508

. 509

. 512

. 513

330.

331.
332.
333.

334.
335.

ILE Source to Get a Pointer to a Derived
Class Using Reference Casts

Examples of typeid operator in Express1ons
Examples of typeid operators . .

ILE Source Showing extended type mfo
Class Types . .
Source File CCSID Conversmn .
T1520CCS — ILE C Source to Convert Strmgs
and Literals . e

. 513

514

. 515

. 518

. 522

. 524

Tables

SR

10.
11.
12.
13.
14.
15.
16.

17.
18.
19.
20.
21.

22.

23.

Programming Languages Supported by the

iSeries family . . .3
Parameters for CRTPGM Command and Thelr
Default Values17
Sections of the Binder Llstmg Based on the
DETAIL Parameter18
Parameters and Default Values for

CRTSRVPGM Command24
Call (CALL) Command Parameter Convers1ons 54
Compiler Options for Performance.87
Summary of Tasks Required to Create Sample

ILE Application92
Comparison of iSeries Data Management Text
Streams and Binary Stream File Processing. . 183
Integrated File System Compilations. . . . 213
Data Management File System Compilations 213
INCDIR Command Parameter215
Include Search Order216
Parameter Values . . . s VA
INCDIRFIRST Command Opt10ns ... 217
Lock States for Open Modes 252
Flag Meanings for Printing the Value of a
_DecimalT Class Template Object. 386
Comparing Packed Structures 390
Argument Passing for ILE Procedures 398
Dynamic Program Calling Conventions 399
Effects of Various Linkage Specifications 402
Default Argument Passing Style for ILE
Programs 407
Default Argument Passmg Style for ILE
Procedures 407
Arguments Passed from a Command L1ne CL

Call to an ILE C++ Program 408

© Copyright IBM Corp. 1993, 2004

24.

25.

26.

27.
28.

29.

30.
31.

32.
33.
34.
35.
36.
37.

38.
39.

40.

41.

42.

CL Constants Passed from a Compiled CL
Program to an ILE C++ Program .
CL Variables Passed from a Compiled CL
Program to an ILE C++ Program .

Handling Overflow from a Packed Dec1mal to
. 455
. 466

a Smaller Target.

Constants Defined in bcd h

Handling Overflow from a _DecimalT Class
Template to a Smaller Target

Debug Macros for _DecimalT Class Templates

Template Instantiation Management Options
Characteristics of the Default Teraspace
Storage Model Versus the RTBND(LLP64)
Teraspace Storage Model. .
typeid Operations . .

C Locale Migration Table

Categories Used in a Locale.
Locale-Sensitive Run-Time Functions
Comparison of GENCSRC Keywords and
#pragma mapinc Options

ILE C++ Data-Type Compatibility w1th ILE
cL
ILE C++ Data-Type Compat1b1l1ty w1th CL
ILE C++ Data-Type Compatibility with ILE
ILE C++ Data-Type Compatibility with OPM
RPG0
ILE C++ Data-Type Compatibility with ILE
COBOL .

ILE C++ Data-Type Compat1b1l1ty w1th OPM
COBOL . .o

. 409

. 409

. 475
478
490

. 504
. 514
. 531
. 535

538

. 541

. 543

544

. 545

. 546

. 547

. 549

Xix

XX ILE C/C++ Programmer’s Guide

Part 1. Introduction

This part introduces Integrated Language Environment (ILE) and OS/400
operating system programming features. It includes overviews of the following;:

+ [Multi-language program creation|

* |Program and resource management|

* |Program debugging]

© Copyright IBM Corp. 1993, 2004

2 ILE C/C++ Programmer’s Guide

Chapter 1. Introduction to the ILE C/C++ Compiler

Integrated Language Environment (ILE), together with the OS/400® operating system,

provides a wide range of support for serious program development. C and C++
are two of the programming languages supported by ILE .|Table 1flists the

complete set of ILE languages.

The ILE C/C++ Compiler supports program development on iSeries systems in
both C and C++ programming languages. C++ extends the capabilities of the C
compiler by providing:

* Additional keywords

* Parameterized types (templates)

* Support of object-oriented programming via classes

* Stricter type checking

ILE C/C++ provides advantages in the following areas of program development:

+ |Creation of multi-language programs and applications|

* |Program flow and resource management|

* [Program debugging]|

Multi-Language Program Creation

You can build mixed-language programs that are composed of modules written in
any ILE programming language.

Programming Languages Supported by the OS/400 Operating
System

The ILE family of compilers includes: ILE C++, ILE C, ILE RPG, ILE COBOL, and
ILE CL.|Table 1] lists the programming languages supported by the OS/400
operating system.

Table 1. Programming Languages Supported by the iSeries family

Integrated Language Original Program Model Extended Program Model
Environment (ILE) (OPM) (EPM)
C++ BASIC (PRPQ) C
C CL FORTRAN
CL COBOL PASCAL (PRPQ)
COBOL PL/I (PRPQ)
RPG RPG

ILE Program Creation

ILE program creation consists of:

1. Compiling source code into modules

2. Binding (combining) one or more modules into a program object.

You can create and maintain multi-language programs because you can combine
modules from any ILE language.

© Copyright IBM Corp. 1993, 2004

shows the process of creating an ILE program through compiler and

binder invocation.

C++ Source Files

v

-Other ILE Modules
-Existing Service Programs C++ Module

CRTPGM CRTSRVPGM
A A 4 A 4

ILE Program or Service Program

Figure 1. Program Creation in ILE

Note: Once a program is created, you can update it by using the Update Program
(UPDPGM) or Update Service Program (UPDSRVPGM) command. These
commands are useful because you only need to have the new or changed
modules available when you want to update the program.

Binding Directories

You can create a binding directory to contain the names of modules and service
programs that your ILE C++ program or service program may need. Each binding
directory is created in a specific library with the Create Binding Directory
(CRTBNDDIR) command. Use binding directories to reduce program size. Modules
or service programs listed in a binding directory are called only if needed.

Service Programs

You can bind modules into service programs (*SRVPGM). Service programs are a
means of packaging callable routines (functions or procedures) into a separately
bound program. The use of service programs provides modularity and improves
maintainability. You can use off-the-shelf modules developed by third parties or
you can package your own modules for third-party use.

Program and Resource Management

4

ILE provides a common basis for:

+ [Managing program flow|

* |Sharing resourceg

» [Bindable application program interfaces (APIs)

+ [Handling exceptions during a program’s run time]

Program Flow

The process of getting a program or service program ready to run is known as
activation. Activation allocates resources within a job so that one or more programs
can run in that space. When a program is called, ILE automatically initiates the
activation group specified for the program. If the specified activation group for a
program does not exist when the program is called, it is created within the job to
hold the program’s activation.

Note: For more information on activation groups, see:

+ |[“Activations and Activation Groups” on page 50.|

ILE C/C++ Programmer’s Guide

+ ["Managing Activation Groups” on page 59|

Program and Procedure Calls

In ILE, you can write programs in which ILE C++, OPM, and EPM programs can
work together by using dynamic program calls. When using such calls, the calling
program specifies the name of the called program. This name is resolved to an
address at run time, just before the calling program passes control to the called
program.

You can optimize the use of dynamic program calls by using static procedure calls.
Because the procedure names are resolved at bind time (that is, when you create
the program), static procedure calls are faster than dynamic calls.

In addition, static procedure calls allow operational descriptors. Operational
descriptors are used to call bindable APIs or procedures written in other ILE
languages.

Note: A procedure is a self-contained set of code that performs a task and then
returns to the caller. An ILE C++ module consists of one or more
procedures.

See [Chapter 23, “Using ILE C/C++ Call Conventions,” on page 363 for information
on calls between programs and procedures.

Resource Allocation

An activation group is the key element in governing an ILE program’s resources and
behavior. You can scope commitment-control operations to the activation group
level. You can scope file overrides and shared open data paths to the activation
group of the running program. The behavior of a program upon termination is
affected by the activation group in which the program runs.

Note: For more information on activation groups, see:

» |“Activations and Activation Groups” on page 50.|

+ ["Managing Activation Groups” on page 59

Bindable APIs

ILE offers a number of bindable APIs that supplement ILE C/C++ functions.
Bindable APIs provide program calling and activation capability, condition and
storage management, math functions, and dynamic screen management. The
System API Reference contains information on bindable APIs.

Run-Time Exceptions

Many C and C++ run-time library functions have a return value associated with
them for error-checking purposes. For example, the _Rfeov() function returns 1 if
the file has moved from one volume to the next. The fopen() function returns
NULL if a file is not opened successfully. ILE C/C++ Run-Time Library Functions
contains information about the ILE C/C++ function return values.

Chapter 1. Introduction to the ILE C/C++ Compiler 5

Program Debugging

6

In ILE, you can perform source-level debugging on any program written in one or
more ILE languages, provided that the program was compiled with debug
information.

You can:

* Control the flow of a program by using debug commands while the program is
running

* Set conditional and unconditional breakpoints prior to running the program
* Step through a specified number of statements and display or change variables
after calling the program

When a program stops because of a breakpoint, a step command, or a run-time
error, the pertinent module is displayed at the point where the program stopped.
At that point, you can enter more debug commands.

See [Part 3, “Debugging Programs,” on page 105|for information on debugging ILE
C/C++ programs.

ILE C/C++ Programmer’s Guide

Part 2. Creating and Compiling Programs

This part describes how to:

* |[Use compiler and binder commands to create ILE C/C++ programs|

* |Create ILE service programs

» |Work with procedures and data items that can be exported from a service|
program|

* |Run ILE programsl

« [Improve program performance|

» |Use the compiler and binder programs to create program modules and)

executable§|

© Copyright IBM Corp. 1993, 2004

8 ILE C/C++ Programmer’s Guide

Chapter 2. Creating a Program

This chapter describes:

* [The program development process|

* [How to enter source statements

e |How to create a program in one step|

* |How to create a program in two steps|

* [Messaging support]

The Program Development Process

During the development process, an ILE program passes through five stages:
* Preparing

¢ Compiling

* Binding

* Running

* Debugging

These process steps are not necessarily performed in the order listed. You can
compile, correct compile-time errors, modify, and recompile the program several
times before binding it.

Preparing a Program

Preparing a program involves designing, writing, and creating source code. See
[“Entering Source Statements” on page 10| for more information about creating
source code.

Compiling a Program
Issue a compile command against your source, and fix any compile errors that

arise. You can see the errors either as messages in the job log or in the listing (if
you chose to create one).

The ILE C/C++ compiler includes the following compile commands:

Compile .

Command Use Description

CRTCMOD Create C The Create Module command creates a module object. If
Module your program will include objects from more than one

source file, you must use the Create Module command for
each source file, and then run CRTPGM specifying all the
required *MODULEs to create the bound program.

CRTCPPMOD | Create C++
Module

CRTBNDC Create Bound |The Create Bound Program command performs both the
C Program module creation and the binding operation in one step,
CRTBNDCPP | Create Bound and produces a *PGM object from a single source file.

C++ Program

Note: The compile command might also originate in a CL program or makefile.

© Copyright IBM Corp. 1993, 2004

See WebSphere Development Studio: ILE C/C++ Compiler Reference for more
information about the Create Module and Create Bound Program commands and
their options.

Note: In the following pages:

1. CRTCMOD and/or CRTCPPMOD may be referred to as simply the "Create
Module” command.

2. CRTBNDC and/or CRTBNDCPP may be referred to as simply the "Create
Bound Program” command.

3. Examples may show the use of either of the C or C++ versions of the Create
Module and Create Bound Program commands. Unless specifically stated
otherwise, both C and C++ versions of these commands function in the same
way and can be used interchangeably, according to the language of the source
program being compiled.

Binding Modules

If you created modules during compilation, you need to bind the module objects
together using the Create Program (CRTPGM) or Create Service Program
(CRTSRVPGM) commands. The result is an executable *PGM or *SRVPGM object.

Binding combines one or more modules into a program (*PGM) or a service
program (*SRVPGM). Modules written in ILE C or C++ can be bound to modules
written in any other ILE language. C++ programs can use routines from C++ class
libraries, C libraries, and any ILE service program. The binder resolves addresses
within each module, import requests and export offers between modules that are
being bound together.

Once a program is created, you can later update it using the Update Program
(UPDPGM) or Update Service Program (UPDSRVPGM) commands. These
commands are useful because you only need to have the new or changed modules
available when you want to update the program.

Running or Calling Objects

*CMD objects are run, while *PGM objects are called. For example, to run HELLO
*CMD, type HELLO on a command line and press Enter. To run HELLO *PGM,
type CALL HELLO on the QCMD line and press Enter.

Debugging a Program

Debugging allows you to detect, diagnose, and eliminate run-time errors in a
program. You can use the ILE source debugger to debug ILE or OPM programs.

For information about ILE debugging considerations, see ILE Concepts,
SC41-5606-07

Entering Source Statements

10

Before you can start an edit session and enter your source statements, you must
create a library and a source physical file. You can also compile source statements

from Integrated File System (IFS) files. See[“Using the Integrated File System (IFS)’]
for details.

You can use the Start Programming Development Manager (STRPDM) command to
start an edit session, and enter your source statements.

ILE C/C++ Programmer’s Guide

Besides Programming Development Manager (PDM), there are several other ways
to enter your source:

* The Copy File (CPYF) command.
* The Start Source Entry Utility (STRSEU) command.

¢ The Programmer Menu.

This is by no means an exhaustive list. There are other ways of creating source and
placing it on an iSeries system, including NFS and ftp.

Example Of Creating a Source File

The following example shows you how to create a library, a source physical file, a
member, start an edit session, enter source statements, and save the member.

Instructions

1.

To create a library called MYLIB, enter:

CRTLIB LIB(MYLIB)

To create a source physical file called QCSRC in library MYLIB, enter
CRTSRCPF FILE(MYLIB/QCSRC) TEXT('Source physical file for all ILE C programs')

QCSRC is the default source file name for ILE C commands that are used to
create modules and programs. For ILE C++ commands, the corresponding
default is QCPPSRC. For information about how to copy this file to an
ﬁgrated File System file, see [“Using the Integrated File System (IFS)” on page
211,

To start an edit session enter:
STRPDM

Choose option 3 (Work with members); specify the source file name QCSRC,
and the library MYLIB.

Press F6 (Create), enter the member name T1520ALP, and source type C. The
SEU Edit display appears ready for you to enter your source statements.

Type the source shown in|“Source Code Sample”]into your SEU Edit display.
Trigraph sequences can be used in place of square brackets, as demonstrated in
[Figure 2 on page 12|

Note: For more information about using trigraph sequences, see WebSphere
Development Studio: ILE C/C++ Language Reference.

Press F3 (Exit) to go to the Exit display. Type Y (Yes) to save the member
T1520ALP.

Source Code Sample

The ILE C compiler recognizes source code written in any single-byte EBCDIC
CCSID (Coded Character Set Identifier) except CCSID 290, 905 and 1026. See

(Chapter 31, “Internationalizing a Program,” on page 521 for information on

CCSIDs.

Some characters from the C and C++ character set are not available in all
environments. You can enter these characters into a C or C++ source program
using a sequence of three characters called a trigraph.

Note: For more information about using trigraph sequences, see WebSphere

Development Studio: ILE C/C++ Language Reference.

Chapter 2. Creating a Program 11

B The C compiler also supports digraphs. (The C++ compiler does not
support digraphs.)

/* This program reads input from the terminal, displays characters, */

/* and sums and prints the digits. Enter a "+" character to */
/* indicate EOF (end-of-file). */
#define MAXLEN 60 /* The maximum input line size. */

#include <stdio.h>
#include <ctype.h>

void main(void)
{
int c;
int i =0, j=0;
int sum = 0;
int count, cnt;

int num[MAXLEN]; /* An array of digits. x/
char letter??(MAXLEN??); /* An array of characters. Trigraphs
replace the square brackets. */
while ((¢ = getchar()) != '+')
{
if (isalpha (c)) /* A test for an alphabetic */
{ /* character. */

letter[i++] = c;
1
else if (isdigit (c)) /x A test for a decimal digit. x/
{
num?? (j++??) = c - '0'; /* Trigraphs replace the square
brackets. */
1
1
printf ("Characters are ");
for (count = 0; count < i; ++count)

{

printf ("%c", letter[count]);
}
printf("\nSum of Digits is ");
for (cnt = 0; cnt < j; ++cnt)

{

1
printf ("%d\n", sum);

sum += num[cnt];

Figure 2. ILE C Source to Add Integers and Print Characters

Creating a Program in One Step

You can use the CRTBNDC and CRTBNDCPP Create Bound Program commands
to create a program (*PGM object) in one step.

The Create Bound Program commands combine the steps of compiling and
binding. Using them is the same as first calling the CRTCMOD or CRTCPPMOD

12 ILE C/C++ Programmer’s Guide

Create Module command, then calling the Create Program (CRTPGM) command,
except that the module created by the Create Module command step is deleted
after the CRTPGM step.

To use the Create Bound Program commands, the source member must contain a
main() function.

Note: When a CRTPGM parameter does not appear in the Create Bound Program
command, the CRTPGM parameter default is used. For example, the
parameter ACTGRP(*NEW) is the default for the CRTPGM command, and is
used for the Create Bound Program command. You can change the
CRTPGM parameter defaults by using the Change Command Defaults
(CHGCMDDFT) command.

You can use the CRTSQLCI or CRTSQLCPPI command to start the ILE C compiler
and create a program object. The SQL database can be accessed from an ILE

C/C++ program if you embed SQL statements in the ILE C/C++ source.

Example:

1. ﬁcreate the program T1520ALP, using the source found in [Figure 2 on pagd
enter:

CRTBNDC PGM(MYLIB/T1520ALP) SRCFILE(QCPPLE/QACSRC)
TEXT('Adds integers and prints characters') OUTPUT(*PRINT)
OPTION(*SHOWINC *NOLOGMSG) FLAG(30) MSGLMT(10)
CHECKOUT (*PARM) DBGVIEW(*ALL)

The options specified are:
* OUTPUT(*PRINT) - specifies that you want a compiler listing.

* OPTION(*SHOWINC *NOLOGMSG) - specifies that you want to expand
include files in a compiler listing and not log messages in the job log.

* FLAG(30) - specifies that you want severity level 30 messages to appear in
the listing.

* MSGLMT(10) — specifies that you want compilation to stop after 11
messages at severity level 30.

¢ CHECKOUT(*PARM) — shows a list of function parameters not used.

* DBGVIEW(*ALL) specifies that you want all three views and debug data to
debug this program.

2. To see the compiler listing, enter one of the following CL commands:
* DSPJOB and then select option 4 (Display spooled files)
* WRKJOB and then select option 4 (Work with spooled files)
* WRKOUTQ queue-name
* WRKSPLF

Select an option to see the compiler listing.
3. To run the program enter:
CALL PGM(MYLIB/T1520ALP)

4. Type a and press Enter. Type 9 and press Enter. Type b and press Enter. Type 8
and press Enter. Type + and press Enter.

The interactive session is as shown:

Chapter 2. Creating a Program 13

VVV VYV
oo T O o

+
Characters are ab

Sum of Digits is 17

Press ENTER to end terminal session.

Creating a Program in Two Steps

14

To take advantage of the flexibility that ILE C/C++ offers, you can compile and
bind source code into an ILE C/C++ program in two steps:

1. In the first step, you create one or more ILE C/C++ module objects (*MODULE)
from their respective source members using the Create Module command.

2. In the second step, you use the Create Program (CRTPGM) command to bind
one or more of these module objects into an executable ILE program object
(*PGM). Binding is the process of combining one or multiple modules and
optional service programs, and resolving external symbols between them. The
system code that combines modules and resolves symbols is called the binder.

For example,

CRTCMOD HELLO
CRTPGM HELLO
CALL HELLO

Using modules has these advantages:

* Modules are easier to maintain. It is easier to maintain a small module
representing a single function than to maintain an entire program. For example,
if you change only a line or two in a module, you may only need to recompile
the module, rather than the entire program.

* Modules are easier to test. Testing of functions can be done in isolation. You do
not have to run the entire program. A test harness which includes the module
under test can be used instead.

* Modules are easier to code. You can subdivide the work into smaller source
members rather than coding an entire program in a single source file.

* Modules can be reused in different application programs.

Identifying Program and User Entry Procedures

When a module object is created, a program entry procedure (PEP) and a user
entry procedure (UEP) may also be generated.

Both ILE C and C++ require the main() function, but in ILE C, it becomes the UEP
of an ILE program. After the PEP runs, it calls the associated UEP, and starts the
ILE program running.

As part of the binding process, a procedure must be identified as the startup
procedure, or program entry procedure (PEP). When a program is called, the PEP
receives the command line parameters and is given initial control for the program.
The procedures that get control from the PEP are called user entry procedures
(UEP).

ILE C/C++ Programmer’s Guide

An ILE module contains a program entry procedure only if it contains a main()
function. Therefore, one of the modules being bound into the program must
contain a main() function.

Understanding the Internal Structure of a Program Object

shows the internal structure of a typical program object, MYPROG, created
by binding two modules, TRNSRPT and INCALC. In this example, TRNSRPT is the entry
module containing the PEP, in addition to a UEP. Module INCALC contains a UEP
only.

~ MYPROG(*PGM)
- TRNSRPT Module

Program Entry Procedure

User Entry Procedure

~ INCALC Module

User Entry Procedure

Figure 3. Structure of Program MYPROG

Using Static Procedure Calls

Within a bound object, procedures can be called using static procedure calls. These
bound calls are faster than external calls. Therefore, an application consisting of a
single bound program with many bound calls should perform faster than a similar
application consisting of separate programs with many external inter-program
calls.

Working with Binding Directories

A binding directory contains the names of the modules and service programs that
you may need when creating an ILE program or service program.

Binding directories offer:

* A convenient method of packaging modules or service programs that you may
need when creating an ILE program or service program.

* Reduce program size, because modules or service programs listed in a binding
directory are used only if they are needed.

Binding directories are optional. They are objects identified to the system by the
BNDDIR parameter on the CRTPGM command.

Chapter 2. Creating a Program 15

16

Modules or service programs listed in a binding directory are used only if they
provide an export that can satisfy any currently unresolved import requests.
Entries in the binding directory may refer to objects that do not yet exist at the
time the binding directory is created, but exist later.

Creating a Binding Directory

If you want to create a binding directory, use the Create Binding Directory
(CRTBNDDIR) command to contain the names of modules and service programs
that your ILE C/C++ program or service programs may need.

For example,

CRTBNDDIR BNDDIR(MYBNDDIR) MODULES (MOD1, MOD2)
CRTCMOD PROG(MYPROG) BNDDIR (MYBNDDIR)

or

CRTBNDDIR BNDDIR(MYBNDDIR) MODULES (MOD1, MOD2)
CRTCPPMOD PROG(MYPROG) BNDDIR (MYBNDDIR)

Using the Binder to Create a Program

The binder is invoked through the Create Program (CRTPGM) or the Create
Service Program (CRTSRVPGM) commands. The CRTPGM command creates a
program object from one or more module object objects and, if required, binds to
one or more service programs. The CRTSRVPGM command creates a service
progam object from one or more module objects and, if required, binds to one or
more service programs. See [Chapter 3, “Service Programs,” on page 23| for more
information about service programs.

The CRTPGM and CRTSRVPGM commands invoke an OS/400° component
referred to as the binder. The binder processes import requests for procedure names
and data item names from specified modules. The binder then tries to find
matching exports in the specified modules, service programs, and binding
directories. An export is an external symbol defined in a module or program that is
available for use by other modules or programs. An import is the use of, or
reference to, the name of a procedure or data item that is not defined in the
current module object.

You can bind modules created by the compiler with modules created by any of the
other ILE Create Module commands, including CRTRPGMOD, CRTCMOD,
CRTCBLMOD, or CRTCLMOD, or other ILE compilers.

Note: The modules or service programs to be bound must already have been
created.

Preparing to Create a Program

Before you create a program object using the CRTPGM command, you should:
1. Establish a program name.

2. Identify the module(s) and, if required, the service programs you want to bind
into a program object.

3. Make sure that the program has a program entry procedure that gets control
when a dynamic program call is made. (That is, one module must contain the
main() function of the program.)

You indicate which module contains the program entry procedure through the
ENTMOD parameter. The default is ENTMOD(*FIRST), which means that the

ILE C/C++ Programmer’s Guide

module containing the first program entry procedure found in the list for the
MODULE parameter is the entry module.

If you are binding more than one ILE module together, you should specify
ENTMOD(*FIRST) or else specify the module name with the program entry
procedure. You can use ENTMOD(*ONLY) when you are binding only one
module into a program object, or if you are binding several modules but only
one contains a program entry procedure. For example, if you bind a module
with a main() function to a C module without a main() function, you can
specify ENTMOD(*ONLY).

4. Identify the activation group that the program is to use.

Specify ACTGRP(*NEW) if your program has no special requirements or if you
are not sure which group to use.

Note that ACTGRP(*NEW) is the default activation group for CRTPGM. This
means that your program will run in its own activation group, and the
activation group will terminate once the program terminates. This default
ensures that your program has a refresh of the resources necessary to run,
every time you call it.

See [“Activating Groups” on page 21| for more information on unnamed and
named activation groups.

Specifying Parameters for the CRTPGM Command

lists CRTPGM command parameters and their default values. Each
parameter has default values which are used whenever you do not specify your
own values.

Note: For a detailed description of the parameters, , see the CL and APIs section of

the Programming category in the iSeries 400 Information Center at this Web
site: http://www.ibm.com/eserver/iseries/infocenter.

Table 2. Parameters for CRTPGM Command and Their Default Values

Parameter Group |Parameter(Default Value)

Identification PGM(library name/program name) MODULE(*PGM)
TEXT*ENTMODTXT)

Program access ENTMOD(*FIRST)

Binding BNDSRVPGM(*NONE)
BNDDIR(*NONE)

Run time ACTGRP(*NEW)

Miscellaneous OPTION(*GEN *NODUPPROC *NODUPVAR *WARN *RSLVREF)
DETAIL(*NONE)
ALWUPD(*YES)
ALWLIBUPD(*NO)
USRPRF(*USER)
REPLACE(*YES)
AUT(*LIBCRTAUT)
TGTRLS(*CURRENT)
ALWRINZ(*NO)
STGMDL(*SNGLVL)
IPA(*NO)
IPACTLFILE(*NONE)
IPARPLIL(*NO)

Chapter 2. Creating a Program 17

18

How Import Requests Are Resolved

Whenever modules from different sources are combined into a single program, the
compiler might have to process duplicate symbols.

Whenever you enter a CRTPGM command, the ILE compiler resolves import
requests by:

1. Copying listed modules into what will become the program object and links
any service programs to the program object.

2. Identifying the module containing the program entry procedure and locates the
first import in this module.

3. Checking the modules in the order in which they are listed and matches the
first import with a module export.

4. Returning to the first module and locates the next import.
5. Resolving all imports in the first module.

6. Continuing to the next module and resolving all imports in each subsequent
module until all imports have been resolved.

After all the imports have been resolved, the ILE compiler completes the binding
process and creates the program object. If any imports cannot be resolved with an
export, the compiler terminates the binding process without creating a program
object.

Note: If you have specified in the binder language that a variable is to be exported
(using the EXPORT keyword), it is possible that the variable name will be
identical to a variable in another procedure within the bound program
object. You can use the *DUPPROC option on the CRTPGM OPTION
parameter to allow duplicate procedure names. See WebSphere Development
Studio: ILE C/C++ Compiler Reference for further information on how to
handle this situation.

Using a Binder Listing

The binding process can optionally produce a binder listing that describes the
resources used, symbols and objects encountered, and problems that were resolved,
or not resolved, in the binding process.

The listing is produced as a spooled file for the job you use to enter the CRTPGM
command. You can choose a DETAIL parameter value to generate the listing at
three levels of detail:

* *BASIC
* *EXTENDED
* *FULL

The default is not to generate a listing. If it is generated, the binder listing includes
the sections described in [Table 3, depending on the value specified for DETAIL.

Table 3. Sections of the Binder Listing Based on the DETAIL Parameter

Section Name *BASIC *EXTENDED *FULL
Command Option Summary X X X
Brief Summary Table X X X
Extended Summary Table X X
Binder Information Listing X X

ILE C/C++ Programmer’s Guide

Table 3. Sections of the Binder Listing Based on the DETAIL Parameter (continued)

Section Name *BASIC *EXTENDED *FULL
Cross-Reference Listing X
Binding Statistics X

The information in this listing can help you diagnose problems if the binding was
not successful, or give feedback about what the binder encountered during the
binding process.

[Figure 4 on page 20| shows the basic binder listing for a program CVTHEXPGM. Note
that this listing is taken out of context. It only serves to illustrate the type of
information you may find in a binder listing.

Chapter 2. Creating a Program 19

XXXXXXXXXXXXX

XXXXXXXXXXXXXX
Create Program Page 1
5722SS1 V5RIMO 010525 MYLIB /CVTHEXPGM TORAS597 00/12/07 16:25:32
Program CVTHEXPGM
Library . . . o . oo e e MYLIB
Program entry procedure module : *FIRST
Library oo oo e
Activation group *NEW
Creation options *GEN *NODUPPROC ~ *NODUPVAR ~ *WARN *RSLVREF

Listing detail
Allow Update o o o v o oo
Allow bound *SRVPGM Tibrary name update
User profile o oo

Replace existing program *YES
Authority Lo oo *LIBCRTAUT
Target release+ .+ o« o+ v« . . *CURRENT
Allow reinitialization =*NO
Storage model ¢ *SNGLVL
Interprocedural analysist *NO

IPA control file =*NONE

IPA replace IL data : *NO

Text « o o 0o e e e e e *ENTMODTXT

Create Program Page 2

5722SS1 V5RIMO 010525 MYLIB/CVTHEXPGM TORAS597
00/12/07

16:25:32

Module Library Module Library Module Library Module Library
CVTHEXPGM ~ MYLIB

Service Service Service Service

Program Library Program Library Program Library Program Library
*NONE

Binding Binding Binding Binding

Directory Library Directory Library Directory Library Directory Library
*NONE

Create Program Page 3
5722SS1 V5RIMO 010525 MYLIB/CVTHEXPGM TORAS597
00/12/07
16:25:32

Brief Summary Table
Program entry procedures 1
Symbo1 Type Library Object Bound Identifier
*MODULE ~ MYLIB CVTHEXPGM *YES _CXX_PEP_Fv
Multiple strong definitions : 0
Unresolved references: 0
#%%%x% END OF BRIEF SUMMARY TABLE * %% %%

Create Program Page 4
5722SS1 V5RIMO 010525 MYLIB/CVTHEXPGM TORAS597
00/12/07
16:25:32

Binding Statistics

Symbol collection CPU time : .001

Symbol resolution CPU time: .000

Binding directory resolution CPU time: .158

Binder language compilation CPU time: .000

Listing creation CPU time: .015

Program/service program creation CPU time: .030

Total CPU time o v v v v b o .562

Total elapsed time 2.618
%% %% END OF BINDING STATISTICS **x*x

*CPC5D07 - Program CVTHEXPGM created in 1ibrary MYLIB.

#x%x% END OF CREATE PROGRAM LISTING *****

Figure 4. Example of a Basic Binder Listing

Updating a Module or a Program Object

There are many reasons why you may want to change a module or a program

object:

* An object may need to be changed to accommodate enhancements, or for
maintenance reasons.

You can isolate what needs to be changed by using debugging information or
the binder listing from the CRTPGM command. From this information you can
determine what modules, procedures, or fields need to change.

* You may want to change the optimization level or observability of a module or
program.

20 ILE C/C++ Programmer’s Guide

This is often the case when you want to debug a program or module, or when
you are ready to put a program into production. Such changes can be performed
more quickly and use fewer system resources than the re-creation of the object in
question.

* You may want to reduce the program size once you have completed an
application.

ILE program objects have additional data added to them, which makes them
larger than similar OPM or EPM program objects.

Each of the above approaches requires different data to make the change.

Updating a Program

In general, you can update a program by replacing modules as needed. You do not
have to re-create the program object. The ability to replace specific modules is
helpful if, for example, you are supplying an application to other sites that are
already using the program. You need only send the revised modules, and the
receiving site can update the application using the UPDPGM and UPDSRVPGM
commands.

The update commands work with both program and module objects. The
parameters for these commands are very similar to those for the Create Program
(CRTPGM) command. For example, to replace a module in a program, you would
enter the module name for the MODULE parameter and the library name.

To use the UPDPGM command, the modules to be replaced must be located in the
same libraries they were in when the program was created. You can specify that all
modules, or only some subsets of modules, are to be replaced.

Activating Groups

Activation is the process used to prepare an ILE program to run. Activation
allocates and initializes static storage for an ILE program, and completes the
binding of ILE programs to ILE service programs. The ACTGRP parameter on the
CRTPGM and CRTSRVPGM commands specifies the activation group in which a
program or service program runs.

All ILE programs and service programs are activated within a substructure of a job
called an activation group. This substructure contains the resources necessary to run
the ILE programs. The static and automatic program variables and dynamic
storage are assigned separate address spaces for each activation group. Activation
and activation groups:

* Help ensure that ILE programs running in the same job run independently
without intruding on each other (for example, commitment control, overrides,
shared files) by scoping resources to the activation group.

* Scope resources to the ILE program.
* Uniquely allocate the static data needed by the ILE program or service program.
* Change the symbolic links to ILE service programs into physical addresses.

Chapter 2. Creating a Program 21

Messaging Support

The following table describes the level of compiler messages that you could receive
during compilation of your source code

Severity Compiler Response

Informational (00) Compilation continues. The message reports
conditions found during compilation.

Warning (10) Compilation continues. The message reports valid,
but possibly unintended, conditions.

Error (20) Compilation continues and object code is generated.
Error conditions exist that the compiler can correct,
but the program might not run correctly.

Severe error (30) Compilation continues, but object code is not
generated. Error conditions exist that the compiler
cannot correct.

Unrecoverable error (40) The compiler halts. An internal compiler error has
been found. This message should be reported to your
IBM service representative.

22 ILE C/C++ Programmer’s Guide

Chapter 3. Service Programs

A service program is an OS/400 object of type *SRVPGM. Service programs are
typically used for common functions that are frequently called by other procedures
within an application and across applications. For example, the ILE compilers use
service programs to provide run-time services such as math functions and
input/output routines.

Service programs simplify maintenance, and reduce storage requirements, because
only a single copy of a service program is maintained and stored.

This chapter describes:

* [The difference between programs and service programs|

« |Public interface]

+ |Considerations when creating a service program|

+ [How to use the binder to create a service program|

+ |How to create a service program|

Differences Between Programs and Service Programs

A service program differs from a program in two ways:

* A service program is bound to existing programs or other service programs. It
cannot run independently.

* A service program does not contain a program entry procedure. Therefore, you
cannot call a service program using an 0S linkage specification. However, you
can call a service program with a c linkage specification, because it contains at
least one user entry procedure. A service program may have data exports rather
than a user entry procedure.

* Service programs are bound by reference. This means that the content of the
service program is not copied into the program to which it is bound. Instead,
linkage information about the service program is bound into the program.

This process is different from the static binding process used to bind modules
into programs. However, you can still call the service program’s exported
procedures as if they were statically bound. The initial activation is longer, but
subsequent calls to any of the service program’s exported procedures are faster
than program calls.

Public Interface

The public interface of a service program consists of the names of the exported
procedures and data items that can be referenced by other ILE objects. In order to
be exported from an ILE service program, a data item must be exported from one
of the module objects making up the ILE service program.

The exports list is used to specify the public interface for a service program. A
signature is generated from the procedure and data item names listed in the binder
language. This signature can then be used to validate the interface to the service
program.

© Copyright IBM Corp. 1993, 2004 23

As long as the public interface is unchanged, the clients of a service program do
not have to be recompiled after a change to the service program.

Considerations When Creating a Service Program

When creating a service program, you should consider:
* Whether or not you intend to update the program at a later date
* Whether or not any updates involve changes to its interface

If the interface to a service program changes, you may have to rebind all programs
bound to the original service program. However, depending on the changes and
how you implement them, you may be able to reduce the amount of rebinding if
you create the service program using binder language. In this case, after updating
the binder language source to identify new exports, you need to rebind only those
programs that require the new exports.

Using the Binder to Create a Service Program

24

Creating a service program involves compiling source code into module objects,
and then binding one or more module objects into a service program object with
the Create Service Program (CRTSRVPGM) command. You can also use modules
created with other ILE language compilers, such as ILE C/C++, ILE RPG/400, or
ILE COBOL/400.

Specifying Parameters for the CRTSRVPGM Command

lists CRTSRVPGM command parameters and their default values.. For a
detailed description of the parameters, refer to the CL Reference CHKxxx through
CVTxxx Commands: SC41-5724. Each parameter has default values which are used
whenever you do not specify your own values.

Table 4. Parameters and Default Values for CRTSRVPGM Command

Parameter Group |Parameter(Default Value)
Identification SRVPGM(library name/service program name) MODULE(*SRVPGM)

Program access EXPORT(*SRCFILE)
SRCFILE(*LIBL /QSRVSRC)
SRCMBR(*SRVPGM)

Binding BNDSRVPGM(*NONE)
BNDDIR(*NONE)

Run time ACTGRP(*CALLER)

Miscellaneous OPTION(*GEN *NODUPPROC *NODUPVAR *WARN *RSLVREF)
DETAIL(*NONE)
ALWUPD(*YES)
ALWRINZ(*NO)
REPLACE(*YES)
AUT(*LIBCRTAUT)
TEXT(*ENTMODTXT)
TGTRLS(*CURRENT)
USRPRF(*USER)
STGMDL(*SNGLVL)
IPA(*NO)
IPACTLFILE(*NONE)
IPARPLIL(*NO)

ILE C/C++ Programmer’s Guide

Updating or Changing a Service Program

You can update or change a service program in the same way you modify a
program object. In other words, you can:

* Update the service program, using the Update Service Program (UPDSRVPGM)
command.

* Change the optimization level, using the Change Service Program
(CHGSRVPGM) command

* Remove observability (using CHGSRVPGM)
* Reduce the size, using the Compress Object (CPROBJ) command

See [“Updating a Module or a Program Object” on page 20| for more information on
any of the above points.

If you use binder language, a service program can be updated without requiring
programs calling it to be recompiled. For example, to add a new procedure to an
existing service program:

1. Create a module object for the new procedure.

2. Modify the binder-language source file to handle the interface associated with
the new procedure. Add any new export statements following the existing ones.
See [“Updating a Service Program Export List” on page 34|for details on
modifying binder-language source files.

3. Recreate the original service program and include the new module.

Now existing programs can access the new functions. Because the old exports are
in the same order, they can still be used by the existing programs. Until it is
necessary to also update the existing programs, they do not have to be recompiled.

Using Control Language (CL) Commands with Service
Programs

The following CL commands can be used with service programs:

* Create Service Program (CRTSRVPGM)

* Change Service Program (CHGSRVPGM)

* Display Service Program (DSPSRVPGM)

* Delete Service Program (DLTSRVPGM)

* Update Service Program (UPDSRVPGM)

* Work with Service Program (WRKSRVPGM).

Creating, Compiling, and Binding a Service Program

The example in this section is used to show how to create a service program
SEARCH that can be called by other programs to locate a character string in any
given string of characters.

This section describes how to:

* [Create the source files|
¢ [Compile and bind the service programl
* [Bind the service program to a program|

Chapter 3. Service Programs 25

Creating the Source Files

The SEARCH program is implemented as a class object Search. The class Search
contains:

* Three private data members: skippat, needle_p, and needle_size
* Three constructors, each taking different arguments
* A destructor

* An overloaded function where(), which takes four different sets of arguments

The service program is composed of the following files:
* A user-defined header file search.h

* A source code file search.cpp

* A source code file where.cpp

User Header File
The class and function declarations are placed into a separate header file, search.h,
as shown in the following figure:

// header file search.h
// contains declarations for class Search, and inlined function
// definitions

#include <iostream.h>

class Search {
private:
char skippat[256];
char * needle_p;
int needle_size;
public:

// Constructors
Search(unsigned char * needle, int size);
Search (unsigned char * needle);
Search (char * needle);

//Destructor
~Search () { delete needle_p;}

//Overloaded member functions
unsigned int where (char * haystack) {
return where (haystack, strlen(haystack));
}

unsigned int where (unsigned char * haystack) {
return where (haystack, strlen((const char *)haystack));
}

unsigned int where (char * haystack, int size) {
return where ((unsigned char *) haystack, size);
}

unsigned int where (unsigned char * haystack, int size);

}s

Figure 5. Example of Header File (search.h)

Source Code Files
If the definitions for the member functions of class Search are not inlined in the
class declaration, they are contained in two separate files:

* The source file search.cpp, which contains constructor definitions for class
Search

26 ILE C/C++ Programmer’s Guide

* The file where.cpp, which contains the member function definition.

These files are shown in the following figures:

// source file search.cpp
// contains the definitions for the constructors for class Search

#include "search.h"

Search::Search(unsigned char * needle, int size)
: needle_size(size) , needle_p (new char [size])
{

memset (skippat, needle size, 256);
for (unsigned int i=0; i<size; ++i) {
skippat [needle [i]] = size -i-1;

memcpy (needle_p, needle, needle_size);

1

Search::Search (unsigned char * needle) {
needle size = strlen((const char *)needle) ;
needle_p = new char [needle_size];
memset (skippat, needle_size, 256);
for (unsigned int i=0; i<needle_size; ++i) {

skippat [needle [i]] = needle_size -i-1;

memcpy (needle_p, needle, needle_size);
}
Search::Search (char * needle) {
needle size = strlen(needle) ;
needle p = new char [needle_size];
memset (skippat,needle_size, 256);
for (unsigned int i=0; i<needle_size; ++i) {
skippat [needle [i]] = needle_size -i-1;

memcpy (needle_p, needle, needle_size);

Figure 6. Source File that Contains Constructor Definitions for the Search Class

Figure 7. File that Contains the Member Function Definition for the Search Class.

// where.cpp
// contains definition of overloaded member function for class Search

#include "search.h"

unsigned int Search:: where (unsigned char * haystack, int size)
{ wunsigned int i, t;
int j;
for (i= needle_size-1, j = needle_size-1; j >= 0; --1, --j){
while (haystack[i] != needle p[j]) {
t = skippat [haystack [i]] ;
i += (needle_size - j > t) ? needle_size - j : t ;
if (i >= size)
return size;
J = needle_size - 1;
1
}
return ++i;

}

The modules that result from the compilation of these source files, SEARCH and
WHERE, are bound into a service program, SERVICEL.

Chapter 3. Service Programs

27

28

Compiling and Binding the Service Program

To create the service program SERVICEL, issue the following commands:

CRTCPPMOD MODULE (MYLIB/SEARCH) SRCSTMF(search.cpp)
CRTCPPMOD MODULE (MYLIB/WHERE) SRCSTMF (where.cpp)
CRTSRVPGM SRVPGM(MYLIB/SERVICEL) MODULE(MYLIB/SEARCH MYLIB/WHERE) EXPORT (*ALL)

By default, the binder creates the service program in your current library.

The parameter EXPORT(*ALL) specifies that all data and procedures exported from
the modules are also exported from the service program.

Binding the Service Program to a Program

In the following example, a very short application consisting of a program MYPROGA
is bound to the service program. The source code for MYPROGA, MYPROGA. cpp, is
shown in the following figure.

Note: This sample application has been reduced to minimal functionality. It's main
purpose is to demonstrate how to create a service program.

// myproga.cpp
// Finds a character string in another character string.

#include <stdio.h>

#include <iostream.h>

#include <stdlib.h>

#include "search.h"

#define HS "Find the needle in this haystack"

void main () {
int i;
Search token("needle");
i = token.where (HS, sizeof(HS));
cout << "The string was found in position " << i << endl;

Figure 8. Source Code for myproga.cpp

The program creates an object of class Search. It invokes the constructor with a
value that represents the string of characters ("needle”) to be searched for. It calls
the member function where() with the string to be searched ("Find the needle in
this haystack”). The string "needle” is located, and its position in the target string
"Find a needle in this haystack” is returned and printed.

To create the program MYPROGA in library MYLIB, and bind it to the service program
SERVICEL, enter the following:

CRTPGM PGM(MYLIB/MYPROGA) SRCSTMF (myprogA.cpp) BNDSRVPGM(MYLIB/SERVICEL)

[Figure 9 on page 29| shows the internal and external function calls between
program MYPROGA and service program SERVICEL.

ILE C/C++ Programmer’s Guide

PGM MYPROGA

main function .
Internal function call

search constructor

Function call between
PGM and SRVPGM

A 4

SRVPGM SERVICEH1

where() function

Figure 9. Calls between Program and Service Program

When MYPROGA is created, it includes information regarding the interface it uses to
interact with the service program.

To run the program, enter:
CALL MYLIB/MYPROGA

During the process of making MYPROGA ready to run, the system verifies that:
* The service program SERVICEL in library MYLIB can be found.

* The public interface used by MYPROGA when it was created is still valid at run
time.

If either of the above is not true, an error message is issued.

The output of MYPROGA is:
The string was found in position 9

Chapter 3. Service Programs 29

30 ILE C/C++ Programmer’s Guide

Chapter 4. Working with Exports from Service Programs

This section describes how to work with procedures and data items that can be
exported from a service program.

Determining Exports from Service Programs

A service program exports procedures and data items that can be imported by
other programs. These exports represent the interface to the service program. In the
C/C++ programming language, procedures and data items correspond to functions
and variables.

Information about exports, which can be derived from the modules that form a
particular service program, may be used to create a binder language source file
which then defines the interface to this service program. A binder language source
file specifies the exports the service program makes available to all programs that
call it. This file can be specified on the EXPORT parameter of the CRTSRVPGM
command.

Binder language gives you better control over the exports of a service program.
This control can be very useful if you want to:

* Determine export and import mismatches in an application.
* Add functionality to service programs.

* Reduce the impact of changes to a service program on the users of an
application.

* Mask certain service program exports from service program users. That is, by
not listing certain functions or variables in the binder language source file, you
can prevent any calling programs from having access to these exports.

Displaying Exported Defined Symbols with the Display Module
Command

To find out which exports are available from a module, enter:
DSPMOD MODULE(Iibrary-name/module-name)

Specify the module name and the library where the module is stored.

This command opens the Display Module Information display. At the bottom of
this display, you find the name and type of each symbol that can be exported from
the module.

Note: When the compiler compiles a source file, it encodes function names and
certain variables to include type and scoping information. This encoding
process is called name mangling. The symbol names in the sample display
below are shown in mangled form. The source code for module SEARCH is
shown in [“Source Code Files” on page 26

© Copyright IBM Corp. 1993, 2004 31

Display Module Information Display 3 of 3
Module : SEARCH
Library 8 MYLIB
Detail : *EXPORT

Module attribute 8
Exported defined symbols:

Symbol Name Symbol Type
__ct__6SearchFPc PROCEDURE
__ct__6SearchFPUc PROCEDURE
ct__6SearchFPUci PROCEDURE
\—_ J

Figure 10. Display Module Information Screen for a Sample Module SEARCH

Creating a Binder Language Source File

Binder language is based on the exports available from modules that are bound
into service programs. A binder language source file must contain the following
entries:

e The Start Program Export (STRPGMEXP) command identifies the beginning of
the list of exports from the service program.

¢ Export Symbol (EXPORT) commands identify each a symbol name available to
be exported from the service program.

* The End Program Export (ENDPGMEXP) command identifies the end of the list
of exports from the service program.

The following figure shows the structure of a binder language source file:

STRPGEXP PGMLEVEL (*CURRENT)
EXPORT SYMBOL("mangled_procedure_name_a")
EXPORT SYMBOL("mangled_procedure_name_b")

EXPORT SYMBOL("mangled_procedure_name_x")
ENDPGMEXP

Figure 11. Example of a Binder Language Source File

Note: You must specify the mangled name of each symbol on the EXPORT
command, because the binder looks for the mangled names of exports when
it tries to resolve import requests from other modules.

After all the modules to be bound into a service program have been created, you
can create the binder language source file by using either of the following
methods:

* You can write this file yourself, jusing the Source Entry Utility (SEU),
* You can generate a skeleton binding source by using the [Retrieve Binder Source]
(RTVBNDSRC)[command.

Creating Binder Language Using SEU

To use the Source Entry Utility (SEU) to create a binder language source file,
follow these steps:

1. Create a source physical file QSRVSRC in library MYLIB.
2. Create a member MEMBER1 that will contain the binder language.

32 ILE C/C++ Programmer’s Guide

3. Use the Display Module (DSPMOD) command to display the symbols that can
be exported from each module.

4. Decide which exports you want to make available to calling programs.
5. Use the Source Entry Utility (SEU) to enter the syntax of the binder language.

You need one export statement for each procedure whose exports you want to
make available to the caller of the service program. Do not list symbols that you
do not want to make available to calling programs.

For example, based on the information shown in [Figure 10 on page 32} the binder
language source file for module SEARCH could list the following export symbols:

STRPGEXP PGMLEVEL (*CURRENT)
EXPORT SYMBOL(" _ ct_ 6SearchFPc")
EXPORT SYMBOL(" _ ct_6SearchFPUc")
EXPORT SYMBOL(" __ct_ 6SearchFPUci")
ENDPGMEXP

Creating Binder Language Using the RTVBNDSRC Command

The Retrieve Binder Source (RTVBNDSRC) command can automatically create a
binder language source file. It retrieves the exports from a module, or a set of
modules. It generates the binder language for these exports, and places exports
and binder language in a specified file member. This file member can later be used
as input to the EXPORT parameter of the Create Service Program (CRTSRVPGM)
command.

Note: After the binder language has been retrieved into a source file member, you
can edit the binder language and modify it as needed (for example, if you
make changes to a module or if you want to make certain exports
unavailable to calling programs).

The syntax for the RTVBNDSRC command is:
RTVBNDSRC MODULE(MYLIB/SEARCH) SRCFILE(MYLIB/QSRVSRC) SRCMBR(*DFT) MBROPT (*REPLACE)

For detailed information on the RTVBNDSRC command and its parameters enter
RTVBNDSRC on a command line and press F1 for Help.

The following example shows how to create a binder language source file for
module SEARCH, located in library MYLIB, using the RTVBNDSRC command. The
source code for module SEARCH is shown in [“Source Code Files” on page 26

RTVBNDSRC MODULE (MYLIB/SEARCH) SRCFILE(MYLIB/QSRVSRC) SRCMBR(ONE)

This command automatically:
1. Creates a source physical file QSRVSRC in library MYLIB.
2. Adds a member ONE to QSRVSRC.

3. Generates binder language from module SEARCH in library MYLIB and places it
in member ONE.

Member ONE in file MYLIB/QSRVSRC now contains the following binder language:

Chapter 4. Working with Exports from Service Programs 33

/Co1umns o o o 8§ 1 71 Browse MYLIB/QSRVSRC
SEU==> ONE
Fl' &% cootooco b 00o¥oco & cooWooo & oooPooo & cooTooo B cco®ooo @ cootooo ¥

*kkxkkkxkkkxkkx Beginning of data

0000.01 STRPGMEXP PGMLVL (*CURRENT)

0000.02 / /
0000.03 /* *MODULE SEARCH MYLIB 95/06/10 17:34:41 */
0000.04 / /

0000.05 EXPORT SYMBOL("__ct_ 6SearchFPc")
0000.06 ~ EXPORT SYMBOL("__ct_ 6SearchFPUc")
0000.07 EXPORT SYMBOL("__ct_ 6SearchFPUci")
0000.08 ENDPGMEXP

*kkkkkkkkkkkkkkkk*x End of data

- J
Figure 12. Binder Language Source File Generated for Module SEARCH

Updating a Service Program Export List

You can use binder language to reflect changes in the list of exports a service
program makes available. When you create binder language, a signature is
generated from the order in which the modules that form a service program are
processed, and from the order in which symbols are exported from these modules.
The EXPORT keyword in the binder language identifies the procedure and data
item names that make up the signature for the service program.

When you make changes to the exports of a service program this does not
necessarily mean that all programs that call this service program must be
re-created. You can implement changes in the binder language such that they are
backward-compatible. Backward-compatible means that programs which depend
on exports that remain unchanged do not need to be re-created.

To ensure backward compatibility, add new procedure or data item names to the
end of the export list, and re-create the service program with the same signature.
This lets existing programs still use the service program, because the order of the
unchanged exports remains the same.

Note: When changes to a service program result in a loss of exports, or in a
change of existing exports, it becomes difficult to update the export list
without affecting existing programs that require its services. Changes in the
order, number, or name of exports result in a new signature that requires the
re-creation of all programs and service programs that use the changed
service program.

Using the Demangling Functions

You can retrieve the mangled names of exported symbols with the
To help you find the corresponding demangled names, the runtime
library contains a small class hierarchy of functions that you can use to demangle
names and examine the resulting parts of the name. The interface is documented in
the <demangle.h> header file.

Using the demangling functions, you can write programs to convert a mangled
name to a demangled name and to determine characteristics of that name, such as
its type qualifiers or scope. For example, given the mangled name of a function,
the program returns the demangled name of the function and the names of its
qualifiers. If the mangled name refers to a class member, you can determine if it is
static, const, or volatile. You can also get the whole text of the mangled name.

34 ILE C/C++ Programmer’s Guide

To demangle a name, which is represented as a character array, create a dynamic
instance of the Name class and provide the character string to the class’s constructor.
For example, to demangle the name f__1XFi, create:

char *rest;
Name *name = Demangle("f__1XFi", rest);

The demangling functions classify names into five categories: function names,
member function names, special names, class names, and member variable names.
After you construct an instance of class Name, you can use the Kind member
function of Name to determine what kind of Name the instance is. Based on the kind
of name returned, you can ask for the text of the different parts of the name or of
the entire name.

For the mangled name f__1XFi, you can determine:

name->Kind() == MemberFunction

((MemberFunctionName *) name)->Scope()->Text() is "X"
((MemberFunctionName *) name)->RootName() is "f"
((MemberFunctionName *) name)->Text() is "X::f(int)"

If the character string passed to the Name constructor is not a mangled name, the
Demangle function returns NULL.

For further details about the demangling functions, refer to the information
contained in the demangle.h header file. If you installed ILE C/C++ using default
settings, this header file should be in IFS in the /QIBM/include directory and in
DM in QSYSINC/H.

Handling Unresolved Import Requests During Program Creation

An unresolved import is an import whose type and name do not yet match the type
and name of an export. Unresolved import requests do not necessarily prevent you
from creating a program or a service program. You can proceed in two ways:

* Specify the *UNRSLVREF option on the CRTPGM or CRTSRVPGM commands to
tell the binder to go ahead and create a program or service program, even if
there are imports in the modules, and no matching exports can be found.

* Change the order of program creation to avoid unresolved references.

Both approaches are demonstrated in [‘Creating a Program with Circular]
[References” on page 36

Use the *UNRSLVREF option to convert, create, or build pieces of code when all
the pieces of code are not yet available. After the development or conversion phase
has finished and all import requests can be resolved, make sure you re-create the
program or service program that has the unresolved imports.

If you use the *UNRSLVREF option, specify DETAIL(*EXTENDED) or
DETAIL(*FULL), or keep the job log when the object is created, to identify the
procedure or data item names that are not found.

Note: If you have specified *UNRSLVREF and a program is created with

unresolved import requests, you receive an error message (MCH3203) when
you try to run the program.

Chapter 4. Working with Exports from Service Programs 35

Creating an Export Service Program Using Binder Language

The Create C++ Module (CRTCPPMOD) command creates only one module at a
time. You must use the CRTCPPMOD for each source stream file or source file
member. The following example consists of two modules: SEARCH asnd WHERE.

Example:

To use binder language to create the service program described in
ICompiling, and Binding a Service Program” on page 25| follow these steps:

1. To create modules from all source files enter the following commands:

CRTCPPMOD MODULE (MYLIB/SEARCH) SRCSTMF(search.cpp)
CRTCPPMOD MODULE (MYLIB/WHERE) SRCSTMF(where.cpp)

Note: The CRTCPPMOD command stops the compilation process afer the
creation of the *MODULE object. The binder is not invoked.

2. To create the corresponding binder language source file, enter the following
command:

RTVBNDSRC MODULE (MYLIB/SEARCH MYLIB/WHERE)
SRCFILE(MYLIB/QSRVSRC) SRCMBR(TWO)

This command creates the binder language source file shown in
3. To create service program SERVICEZ2, enter the following command:

CRTSRVPGM SRVPGM(MYLIB/SERVICE2) MODULE(MYLIB/SEARCH MYLIB/WHERE)
SRCFILE(MYLIB/QSRVSRC) SRCMBR(TWO)

4 Columns . . . : 1 71 Browse MYLIB/QSRVSRC
SEU==> TWO
{l ¥ cootooo b 0aoTooo & coo¥ooo & 00o0Toso & cooTooa B cccPaco B cootooo 4
kkkkhkkkkhkkkkk Beg-inn'ing of data =*
0000.01 STRPGMEXP PGMLVL(*CURRENT)
0000.02 [Hxkxkrkkhkhhkhhrhrhrhrhhhhrhrkhdhdhkhhhhrhrhdhdhkhhrhrhdhbhkhkrhrhrrsrs/
0000.03 /* *MODULE SEARCH MYLIB 95/06/11 15:30:51%/
0000.04 / /
0000.05 EXPORT SYMBOL("__ct_ 6SearchFPc")
0000.06 EXPORT SYMBOL("__ct_ 6SearchFPUc")
0000.07 EXPORT SYMBOL("__ct_ 6SearchFPUci")

0000.08 / /
0000.09 /* *MODULE WHERE MYLIB 95/06/11 15:30:51x/
0000.10 / /

0000.11 EXPORT SYMBOL("where__6SearchFPUci")
0000.12 ENDPGMEXP

*xkkxkkkrkxkkxxk%x*x End of data

- J
Figure 13. Binder Language Source File Generated by the RTVYBNDSRC Command

Creating a Program with Circular References

36

A circular reference is a special case of unresolved import requests. It occurs, for
example, when a service program SP1 depends on imports from a service program
SP2, which in turn depends on an import from service program SP1.

[Figure 14 on page 37| illustrates the unresolved import requests between program A
and two service programs, SP1 and SP2.

ILE C/C++ Programmer’s Guide

PGM A

main()

A 4

SRVPGM SP1

funci()

A

A 4

SRVPGM SP2

func2()

Figure 14. Unresolved Import Requests in a Program with Circular References

The following import requests occur between program A and the two service
programs, SP1 and SP2, that are called by programA:

1. Program A uses function funcl(), which it imports from service program SP1.

2. Service program SP1 needs to import function func2() provided by service
program SP2, in order to provide funcl() to program A.

3. Service program SP2, in turn, first needs to import funcl from service program
SP1 before being able to provide func2.

To create a program with unresolved circular references, perform the following
tasks:

1. |Create the source files)

. |Compile the source files into modules.|

2
3. Create the binder language.
4. Bind the modules into the program.

Creating the Source Files

The application consists of three source files, ml.cpp, m2.cpp, and m3.cpp, shown in
the following figures:

// ml.cpp
#include <iostream.h>
int main(void)
{
void funcl(int);
int n = 0;
funcl(n); // Function funcl() is called.
}

Figure 15. m1l.cpp — First Source File for Application with Circular References

Chapter 4. Working with Exports from Service Programs 37

// m2.cpp
#include <iostream.h>
void func2 (int);
void funcl(int x)

{

if (x<5)

{
X +=1;
cout << "This is from funcl(), n=" << x << endl;
func2(x); // Function func2() is called.

Figure 16. m2.cpp — Second Source Files for Application with Circular References

// m3.cpp
#include <iostream.h>
void funcl(int);
void func2(int y)
{

if (y<5)

{
y+=1
cout << "This is from func2(), n=" << y << endl;
funcl(y); // Function funcl() is called.

Figure 17. m3.cpp — Third Source File for Application with Circular References

Compiling the Source Files into Modules

Compile the source file m1.cpp into a module object from which you later create
program A. This allows you to display their exports with the DSPMOD command,
or to generate binder language source with the RTVBNDSRC command.

To create module objects from the source files described above, invoke the
commands:

CRTCPPMOD MODULE(MYLIB/M1) SRCSTMF(ml.cpp)
CRTCPPMOD MODULE (MYLIB/M2) SRCSTMF(m2.cpp)
CRTCPPMOD MODULE (MYLIB/M3) SRCSTMF(m3.cpp)

The CRTCPPMOD compiler option indicates to the compiler that you do not want to
create a program object from the source file. The target library is specified by the
MODULE option.

Generating the Binder Language to Create the Service

Program

To generate binder language for module M2, from which you want to create service
program SP1, enter the following command:

RTVBNDSRC MODULE(MYLIB/M2) SRCFILE(MYLIB/QSRVSRC) SRCMBR(BNDLANG1)

This command results in the following binder language being created for module
M2, in library MYLIB, source file QSRVSRC, file member BNDLANGI:

38 ILE C/C++ Programmer’s Guide

/Co1umns o o o 8 1 71 Browse MYLIB/QSRVSRC
SEU==> BNDLANG1
[l &% ocooTo00 b cootooo & coo¥ooo & cocooo & cooTooo B cooc®ooo B cootooo ¥

*kkxkkkxkkkxkkx Beginning of data
0000.01 STRPGMEXP PGMLVL (*CURRENT)

0000.02 / /
0000.03 /* *MODULE M2 MYLIB 95/06/11 18:07:04%/
0000.04 / /

0000.05 EXPORT SYMBOL("funcl_Fi")
0000.06 ENDPGMEXP

*hkkkxxkkhkkxxxx** End of data

- J
Figure 18. Binder Language for Service Program SP1

To generate binder language for module M3, from which you want to create service
program SP2, issue the following command:

RTVBNDSRC MODULE (MYLIB/M3) SRCFILE(MYLIB/QSRVSRC) SRCMBR(BNDLANG2)

This command results in the following binder language being created for module
M3, in library MYLIB, source file QSRVSRC, file member BNDLANG2:

/Co1umns o o o 8 1 71 Browse MYLIB/QSRVSRC
SEU==> BNDLANG2
I T O R T S A S U R DR

*kkkkkkkkkkkxkkx Beginning of data
0000.01 STRPGMEXP PGMLVL (*CURRENT)

0000.02 /kxwwx - * - /
0000.03 /x *MODULE M3 MYLIB 95/06/11 18:08:14 */
0000.04 /* — - — « o . R

0000.05 EXPORT SYMBOL("func2_ Fi")
0000.06 ENDPGMEXP

xkkkxxkkxkkxxxxx End of data

- J
Figure 19. Binder Language for Service Program SP2

Binding the Modules into the Program

Program A will be created from M1. Service program SP1 will be created from M2.
Service program SP2 is created from M3.

If you try and create service program SP1 from module M2, using the binder
language shown in and the compiler invocation:
CRTSRVPGM SRVPGM(MYLIB/SP1) MODULE(MYLIB/M2)

SRCFILE(MYLIB/QSRVSRC) SRCMBR(BNDLANG1)

you find that the binder tries to resolve the import for function func2(), but fails,
because it is not able to find a matching export. Therefore, service program SP1 is
not created.

If SP1 is not created, this leads to problems if you try and create service program
SP2 from module M3 using the binder language shown in and the
compiler invocation:

CRTSRVPGM SRVPGM(MYLIB/SP2) MODULE(MYLIB/M3)
SRCFILE(MYLIB/QSRVSRC) SRCMBR(BNDLANG2)

Service program SP2 is not created, because the binder fails in searching for the
import for funcl() in service program SP1, which has not been created in the

previous step.

If you try and create program A with the compiler invocation:
CRTPGM PGM(A) MODULE(MYLIB/M1) BNDSRVPGM(MYLIB/SP1 MYLIB/SP2)

Chapter 4. Working with Exports from Service Programs 39

40

the binder fails, because service programs SP1 and SP2 do not exist.

Handling Unresolved Import Requests Using the *UNRSLVREF
Parameter
The following example shows:
* How to create service program SP1 from m2.cpp, shown in
* How to use the parameter *UNRSLVREF to handle the unresolved import
requests which would otherwise prevent you from creating program A.

The example

Example:
1. To create service program SP1 from m2.cpp, enter:

CRTSRVPGM SRVPGM(MYLIB/SP1) MODULE(MYLIB/M2)
SRCFILE(MYLIB/QSRVSRC) SRCMBR(BNDLANG1)
OPTION (*UNRSLVREF)

Because the *UNRSLVREF option is specified, service program SP1 is created
even though the import request for func2() is not resolved.
2. To create service program SP2 from module M3 and service program SP1, enter:

CRTSRVPGM SRVPGM(MYLIB/SP2) MODULE(MYLIB/M3)
SRCFILE(MYLIB/QSRVSRC) SRCMBR(BNDLANG2)
BNDSRVPGM(MYLIB/SP1)

Because service program SP1 now exists, the binder resolves all the import
requests required, and service program SP2 is created successfully.
3. To re-create the service program SP1, enter:

CRTSRVPGM SRVPGM(MYLIB/SP1) MODULE(MYLIB/M2)
SRCFILE(MYLIB/QSRVSRC) SRCMBR(BNDLANG1)
BNDSRVPGM(MYLIB/SP2)

Although service program SP1 does exist, the import request for func2() is not
resolved. Therefore, the re-creation of service program SP1 is required. Because
service program SP2 now exists, the binder resolves all import requests
required and, service program SP1 is created successfully.

4. To create program A, enter:

CRTPGM PGM(MYLIB/A) MODULE(MYLIB/M1) BNDSRVPGM(MYLIB/SP1 MYLIB/SP2)

Because service programs SP1 and SP2 do exist, the binder creates the program
A.

Handling Unresolved Import Requests by Changing Program
Creation Order

You can also change the order of program creation to avoid unresolved references,
by first creating a service program with all modules, and then re-creating this same
service program later.

1. To generate binder language for modules M2 and M3, from which you want to
create service program SP1, issue the following command:

RTVBNDSRC MODULE(MYLIB/M2 MYLIB/M3) SRCFILE(MYLIB/QSRVSRC)
SRCMBR (BNDLANG3)

This command results in the binder language shown in [Figure 20 on page 41|
being created in library MYLIB, source file QSRVSRC, file member BNDLANG3.

ILE C/C++ Programmer’s Guide

2. To create service program SP1 from module M2 and module M3 enter:

CRTSRVPGM SRVPGM(MYLIB/SP1) MODULE(MYLIB/M2 MYLIB/M3)
SRCFILE(MYLIB/QSRVSRC) SRCMBR(BNDLANG3)

Because modules M2 and M3 are specified, all import requests are resolved and
service program SP1 is created successfully.
3. To create service program SP2, enter:

CRTSRVPGM SRVPGM(MYLIB/SP2) MODULE(MYLIB/M3)
SRCFILE(MYLIB/QSRVSRC) SRCMBR(BNDLANG2)
BNDSRVPGM(MYLIB/SP1)

Because service program SP1 exists, the binder resolves all the import requests
required and service program SP2 is created successfully.
4. To re-create service program SP1, enter:

CRTSRVPGM SRVPGM(MYLIB/SP1) MODULE (MYLIB/M2)
SRCFILE(MYLIB/QSRVSRC) SRCMBR(BNDLANG1)
BNDSRVPGM (MYLIB/SP2)

Although service program SP1 does exist, the import request for func2() is not
resolved to the one in service program SP2. Therefore, a re-creation of service
program SP1 is necessary to make the circular reference work.

Because service program SP2 now exists, the binder can resolve the import
request for func2() from service program SP2, and service program SP1 is
successfully created.

5. To create program A, enter:
CRTPGM PGM(MYLIB/A) MODULE(MYLIB/M1) BNDSRVPGM(MYLIB/SP1 MYLIB/SP2)

Because service programs SP1 and SP2 do exist, the binder creates program A.

Columns . . . : 171 Browse MYLIB/QSRVSRC
SEU==> BNDLANG3
FMT #% o +..0 1 coa+eo0 2 oatees 3 oo teao 4 Lo +eoo b Lokl 6 Lt T
*kkkkkkkkkkkkkx Beginning of data
0000.01 STRPGMEXP PGMLVL (*CURRENT)

0000.02 /#x**xx* * * * *% * * */
0000.03 /* *MODULE M2 MYLIB 95/06/11 18:50:23 */
0000.04 / * * B kx|
0000.05 EXPORT SYMBOL("funcl_ Fi")

0000.06 / /
0000.07 /* *MODULE M3 MYLIB 95/06/11 18:50:23 */
0000.08 / /

0000.09 EXPORT SYMBOL("func2_ Fi")
0000.10 ENDPGMEXP

hkkkxxxkkkkxxxxx End of data

N J
Figure 20. Binder Language for Service Program SP1

Binding a Program to a Non-Existent Service Program

To successfully create a program or a service program, all required modules must
exist prior to invoking the binder.

However, if you want to bind a program to a non-existent service program, you
can create a "placeholder” service program first. Consider the following example:

Chapter 4. Working with Exports from Service Programs 41

A program MYPROG requires a function print() to be exported by a service program
PRINT. The code for the program is available in myprog.cpp. However, the source
for the service program does not yet exist.

To work around this problem, follow the instructions in this sections, using the
source code shown in the sample code figures.

Instructions

1. Create a source file dummy.cpp, using the source code shown in
2. Compile and bind dummy.cpp into a service program PRINT:

CRTCPPMOD MODULE(MYLIB/DUMMY) SRCSTMF(dummy.cpp)
CRTSRVPGM SRVPGM(MYLIB/PRINT) MODULE(MYLIB/DUMMY) EXPORT (*ALL)

3. Create the source file for program MYPROG, using the source code shown in
[Figure 21]

4. Create the program MYPROG from myprog.cpp and bind it to the service program
PRINT. Enter the following commands:
CRTCPPMOD MODULE (MYLIB/MYPROG) SRCSTMF(myprog.cpp)

CRTPGM PGM(MYLIB/MYPROG) MODULE(MYLIB/MYPROG)
BNDSRVPGM(MYLIB/PRINT) OPTION(*UNRSLVREF)

The option *UNRSLVREF ensures that the program binds to the service
program, although there is no matching export for MYPROG’s import void
print(char =).

Code Samples

//dummy . cpp

#include <iostream.h>

void function(void) {
cout << "I am a placeholder only" << endl;
return;

Figure 21. Example of Source Code to Create a Dummy C++ Program

// myprog.cpp
#include <iostream.h>
#define size 80
void print(char *);
int main(void) {
char text[size];
cout << "Enter text" << endl;
cin >> text;
print(text);
return 1;

Figure 22. Source Code for Example myprog.cpp

Running the Program

Before you can run program MYPROG successfully, you must

* Re-create service program PRINT from the real source code instead of from the
placeholder code in dummy.cpp.

42 ILE C/C++ Programmer’s Guide

* Re-create program MYPROG, binding it to the new version of service program
PRINT to resolve the reference to print().

Note: MYPROG runs successfully only if PRINT actually exports a function that
matches MYPROG’s import request.

Updating a Service Program Export List

To make backward-compatible changes to an ILE C/C++ service program, you use
the binder language. This language allows you to define a list of procedure names
and data item names that can be exported. The Export Symbol (EXPORT)
command in the binder language identifies the procedure and data item names
that make up the signature for the service program module.

New procedure or data item names should be added to the end of the export list
to ensure changes are compatible. A signature is generated by the order in which
the modules are processed and the order in which the symbols are exported from
the copied modules. A service program becomes difficult to update once the
exports are used by other ILE C/C++ programs. If the service program is changed,
the order or number of exports could change. If the signature changes all ILE
C/C++ programs and service programs that use the changed service program have
to be re-created.

The following example shows how to add a new procedure called cost2() to
service program COST without having to re-create the existing program COSTDPT1
that requires an export from COST.

Program Description

The figure below shows the exports in the existing version of service program
COST, and in the updated version.

COST (OLD) COST (NEW)
*SRVPGM *SRVPGM
Exports: Exports:
cost1 () cost1 ()

cost2 ()

Figure 23. Exports from Service Program COST

The figure below shows the import requests in the existing program COSTDPT1, and
in the new program COSTDPT2.

Chapter 4. Working with Exports from Service Programs 43

COSTDTP1 (OLD) COSTDTP2 (NEW)

*PGM *PGM
Imports: Imports:
costi1 () cost2 ()

Figure 24. Import Requests in Programs COSTDPT1 and COSTDPT2

The binder language for the old version of service program COST is located in
member BND of source file QSRVSRC, in library MYLIB:

STRPGMEXP PGMLVL (*CURRENT)
EXPORT SYMBOL("costl Fi9 DecimalTXSP10SP2_")
ENDPGMEXP

The export signature is 94898385315FD06BB65E44D38A852904.

The updated binder language includes the new export procedure cost2(). It is
located in member BNDUPD of source file QSRVSRC, in library MYLIB:

STRPGMEXP PGMLVL (*CURRENT)

EXPORT SYMBOL("costl Fi9 DecimalTXSP10SP2_")

EXPORT SYMBOL("cost2_ Fi9_DecimalTXSP10SP2_9 DecimalTXSP3SP1_")
ENDPGMEXP

The new export signature is 61E595C21D3EC9FDFD29749FB36B42D0.

In the binder language source that defines the old service program, the PGMLVL
value is changed from *CURRENT to *PRV:

STRPGMEXP PGMLVL (*PRV)
EXPORT SYMBOL("costl_ Fi9 DecimalTXSP10SP2_")
ENDPGMEXP

Its export signature is unchanged.

Note: If you want to ensure that existing programs can call the new version of the
service program without being re-created, ensure that you:

1. Add the new exports to the end of the symbol list in the binder language

2. Explicitly specify a signature for the new version of the service program
that is identical to the signature of the old version.

Creating the Source Files

The source code for service program COST, module C0ST2, and programs COSTDPT1
and COSTDPTZ2 is shown in the following figure:

44 ILE C/C++ Programmer’s Guide

// costl.cpp

// contains the export function costl() for the old service program
#include <iostream.h>

#include <bcd.h>

_DecimalT<10,2> costl (

int q, // The quantity.
_DecimalT<10,2> p) // The price.

{

_DecimalT<10,2> c; // The cost.

c = qp;

return c;

}

// cost2.cpp

// contains the export function cost2() for the new service program
#include <iostream.h>

#include <bcd.h>
_DecimalT<10,2> cost2 (int quantity, _DecimalT<10,2> price,

_DecimalT<3,1> discount)

{

_DecimalT<10,2> c = _ D(quantity*pricexdiscount/100);

return c;

}

// costdptl.cpp

// This program prompts users (from deptl) to enter the

// quantity, and price for a product. It uses function

// costl() to calculate the cost, and prints the result out.
#include <iostream.h>

#include <bcd.h>
_DecimalT<10,2> costl(int, DecimalT<10,2>);

int main(void)

{

int quantity;

_DecimalT<10,2> cost;

_DecimalT<10,2> price;

cout << "Enter the quantity, please." << endl;

cin >> quantity;

cout << "Enter the price, please." << endl;

cin >> price;

cost = costl(quantity, price);

cout << "The cost is §" << cost << endl;

Figure 25. Source Code for Service Program COST (Part 1 of 2)

Chapter 4. Working with Exports from Service Programs 45

46

// costdpt2.cpp

// This program prompts users (from dept2) to enter the
// quantity, price, and discount rate for a product.

// It uses function cost2() to calculate the cost, and prints
// the result out.

#include <iostream.h>

#include <decimal.h>
_DecimalT<10,2> cost2(int, DecimalT<10,2>, DecimalT<3,1>);
int main(void)

{

int quantity;

_DecimalT<10,2> price;

_DecimalT<10,2> cost;

_DecimalT<3,1> discount;

cout << "Enter the quantity, please." << endl;

cin >> quantity;

cout << "Enter the price, please." << endl;

cin >> price;

cout << "Enter the discount, please.(%)" << endl;

cin >> discount;

cost = cost2(quantity, price, discount);

cout << "The cost is be §" << cost << endl;

Figure 25. Source Code for Service Program COST (Part 2 of 2)

Compiling and Binding Programs and Service Programs

1. Create service program COST from source file costl.cpp, using the binder

source member BND, located in source file QSRVSRC, in library MYLIB:

CRTCPPMOD MODULE(MYLIB/COST1) SRCSTMF(costl.cpp)

CRTSRVPGM SRVPGM(MYLIB/COST) MODULE(MYLIB/COST1) SRCFILE(MYLIB/QSRVSRC)
SRCMBR(BND) DETAIL(*EXTENDED)

Create program COSTDPT1 from source file costdptl.cpp and service program
COST, located in library MYLIB:

CRTCPPMOD MODULE(MYLIB/COSTDPT1) SRCSTMF(costdptl.cpp)

CRTPGM PGM(MYLIB/COSTDPT1) MODULE(MYLIB/COSTDPT1) BNDSRVPGM(MYLIB/COST)

Update service program COST to include module COST2, using the updated

binder language source BNDUPD, located in source file QSRVSRC in library MYLIB:
CRTCPPMOD MODULE(MYLIB/COST2) SRCSTMF(cost2.cpp)

CRTSRVPGM SRVPGM(MYLIB/COST) MODULE(MYLIB/COST1 MYLIB/COST2)
SRCFILE(MYLIB/QSRVSRC) SRCMBR(BND) DETAIL(*EXTENDED)

It is necessary to re-create the service program COST, using the two modules
COST1 and COST2 and the updated version of the binder language BNDUPD, so
that it supports the new cost2() function. Program COSTDPT1, which used COST
before it was re-created, remains unchanged.

In order to update service program COST, it is necessary to re-create it from the
two modules COST1 and COST2, using the updated version of the binder
language BNDUPD. The *EXTENDED option in the DETAIL parameter creates an
extended output listing, so that you can look at the current and previous
signature of COST.

4. Create program COSTDPT2 from source file costdpt2:

ILE C/C++ Programmer’s Guide

CRTCPPMOD MODULE(MYLIB/COSTDPT2) SRCSTMF(costdpt2.cpp)
CRTPGM PGM(MYLIB/COSTDPT2) MODULE(MYLIB/COSTDPT2) BNDSRVPGM(MYLIB/COST)

Running the Program

Run program COSTDPT1 from an OS/400 command line using the CL command
CALL COSTDPTI.

Run program COSTDPT2 from an OS/400 command line using the CL command
CALL COSTDPTZ.

Chapter 4. Working with Exports from Service Programs 47

48 ILE C/C++ Programmer’s Guide

Chapter 5. Running a Program

There are several ways to run a program in the ILE environment. You can use:
* A control language (CL) command:

Call (CALL) command

Transfer Control (TFRCTL) command

Start Programming Development Manager (STRPDM) command

— user-defined CL command
e An ILE C/C++ program as a Command Processing Program (CPP)
* A high-level language CALL statement

Note: |Chapter 23, “Using ILE C/C++ Call Conventions,” on page 363|contains
information on interlanguage calls.

* The EVOKE statement in an ICF file
* The REXX interpreter

¢ The QCAPEXC program

* The ILE Programmer Menu

This chapter describes:
* [The ILE C/C++ run-time model|

* |Activations and activation groups|

+ |Run-time functions and activation groups|

+ |How to call programs|

+ [Normal and abnormal end-of-program|

« [How to manage activation groups|

° |H0w to manage run-time storage|

The ILE C/C++ Run-Time Model

The ILE C/C++ run-time model guarantees ISO C/C++ standard semantics when
either of the following are true:

* All programs in an application are created with the Create Bound Program
commands (CRTBNDC and CRTBNDCPP).

* The following options are used with the Create Program (CRTPGM) command:

Option Description

ACTGRP(*NEW) A new activation group is created on every
call of the created *PGM, and the activation
group is destroyed when the program ends.

OPTION(*NODUPPROC) No duplicate procedure definitions in the
same bound program are allowed.
OPTION(*NODUPVAR) No duplicate variable definitions in the same

bound program are allowed.

* The following options are used with the Create Service Program (CRTSRVPGM)
command:

© Copyright IBM Corp. 1993, 2004 49

Option Description

ACTGRP(*CALLER) When this service program is called, it is
activated into the activation group of the
calling program.

OPTION(*NODUPPROC) No duplicate procedure definitions in the
same bound program are allowed.
OPTION(*NODUPVAR) No duplicate variable definitions in the same

bound program are allowed.

Note: When a CRTPGM parameter does not appear in the Create Bound Program
command invocation, the default is the CRTPGM parameter. For example,
the parameter ACTGRP(*NEW) is the default for the CRTPGM command,
and is used for the Create Bound Program command. You can change the
CRTPGM parameter defaults using the Change Command Defaults
(CHGCMDDFT) command.

Activations and Activation Groups

50

After successfully creating an ILE C/C++ program, you can run your code.
Activation is the process of getting an ILE C/C++ program or service program
ready to run. When an ILE C/C++ program is called, the system performs
activation. Because ILE C/C++ service programs are not called, they are activated
during the call to an ILE C/C++ program that directly or indirectly requires their
services.

Activations and activation groups provide the following functions and benefits:

¢ They help ensure that ILE C/C++ programs running in the same job run
independently without intruding on each other by scoping resources to the
activation group. Examples of programs running in the same job are
commitment control, overrides, and shared files.

* They scope resources to the ILE C/C++ program.

* They uniquely allocate static data needed by the ILE C/C++ program or service
program.

e They change symbolic links to ILE C/C++ service programs to physical
addresses.

When activation allocates the storage necessary for the static variables that are
used by an ILE C/C++ program or service program, the space is allocated from an
activation group. At the time the ILE C/C++ program or service program is
created, you specify the activation group that should be used at run time.

Once an ILE C/C++ program is activated, it remains activated until the activation
group is deleted. Even though they are activated, programs do not appear in the
call stack unless they are running.

When an OS/400 job is started, the system creates two activation groups for OPM
programs. One activation group is reserved for OS/400 system code and the other
is used for all other OPM programs. You cannot delete the OPM default activation
groups. The system deletes them when your job ends.

Note: OPM programs are not threadsafe. OPM programs should be migrated to
ILE and made threadsafe before they are called in a multithreaded

ILE C/C++ Programmer’s Guide

application. When it is necessary to call an OPM program in a
multithreaded application, start another process to run the OPM program.

An activation group can continue to exist even when the main() function of an ILE
C/C++ program is not on the call stack. This occurs when the ILE C/C++ program
was created with a named activation group (specifying a name on the ACTGRP
option of the CRTPGM command), and the main() function issues a return. This
can also occur when the ILE C/C++ program performs a longjmp() across a
control boundary by using a jump buffer that is set in an ILE C/C++ procedure.
This procedure is higher in the call stack and before the nearest control boundary.

Run-Time Library Functions and Activation Groups

The ILE C/C++ run-time library functions are bound to the application in the
activation group in which the application is called. This means that:

+ All program activations in the same activation group share one instance of the
ILE C/C++ run-time library.

* The state of the ILE C/C++ run-time environment propagates across program
call boundaries.

In other words, if one program in an activation group changes the state of the ILE
C/C++ run time, then all other programs in that activation group are affected. For
example, other programs in the same activation group are affected by the locale
setting of an application or the shift-in/shift-out states of the multibyte functions.

If the ACTGRP parameter of the CRTPGM command is specified to a value other
than *NEW, the application’s run-time behavior might not follow ISO C or ISO
C++ standards. Non-ISO behavior may occur during:

* Program ending (exit(), abort(), atexit())

* Signal handling (signal(), raise())

* Multibyte string handling (mblen())

* Any locale-dependent library functions (isalpha(), gsort())

In the default activation groups, I/0O files are not automatically closed. The I/O
buffers are not flushed.

If ACTGREP is set to *CALLER, multiple calls of an ILE C/C++ program share one
instance of the ILE C/C++ run-time library state in the same activation group.
Through this option, ILE C/C++ programs can run within the OPM default
activation groups. Certain restrictions exist for ILE C/C++ programs that run in
the OPM default activation groups. For example, you are not allowed to register
atexit() functions within the OPM default activation groups.

If the activation group is named:

 All calls to programs in this activation group within the same job share the same
instance of the ILE C/C++ run-time library state.

* No constructors, destructors, or static initialization in the program are executed.

Note: Constructors, destructors, and static initializations are executed only when
the activation group is created.

It is possible to create an ISO-compliant application whose programs are created
with options other than ACTGRP(*NEW).

Chapter 5. Running a Program 51

Note: It is the responsibility of the application designer to ensure that the sharing
of resources, and run-time states across all programs in the activation group
do not result in non-ISO behavior.

Calling Programs

52

When you call a program, the OS/400 system locates the corresponding executable
code and performs the instructions found in the program.

Note: Only programs can run independently. Service programs or other bound
procedures must be called from a program that requires their services.

There are several ways to call a program:
* [Using the Call (CALL) command|
* |Using the Transfer Control (TFRCTL) command|

. ‘Creating a CL command to call a program|

Using the Call (CALL) Command

You can use the Call (CALL) command to run a program interactively, or as part of
a batch job.

The syntax for this command is:

»»—CALL PGM—(library-name/program-name) ><

For example, the command
CALL PGM(MYLIB/MYPROG)

invokes the program MYPROG located in the library MYLIB.
If the program object specified by program-name exists in a library that is contained

in your library list, you can omit the library name in the command, and the syntax
is:

»»—CALL—program-name ><

For example, if MYLIB appears in your library list, you can simply enter:
CALL MYPROG

Note: If you need prompting for the command parameters, type CALL and press
F4 (Prompt). If you need help on how to use the command, type CALL and
press Fl1(Help).

Passing Parameters to the Called Program
When you request prompting with the Call command, a display appears that
allows you to supply the parameters to the program you are calling.

You can also type the parameters directly onto the command line, following the
Call command.

If the program requires only one parameter, enter:
CALL MYPROG 'parameter 1'

ILE C/C++ Programmer’s Guide

If the program requires more than one parameter, you must use the PARM
keyword. For example:

CALL MYPROG PARM ('parameter 1' parameter 2')

Examplel:: The following example shows an ILE C/C++ program T1520REP that
requires parameters at run time.

1. Suppose the source code is stored as a member T1520REP in file QACSRC of
library QCPPLE. To create the program T1520REP, enter:

CRTBNDC PGM(MYLIB/T1520REP) SRCFILE(QCPPLE/QACSRC)

The source code is shown in [Figure 26

2. To run the program T1520REP, enter:
CALL PGM(MYLIB/T1520REP) PARM('Hello, World')

The output is:

Hello, World
Press ENTER to end terminal session.

The source file for program T1520REP is shown in the following figure:

/* Print out the command line arguments. */
#include <stdio.h>
void main (int argc, char xargv[])
{
int i;
for (i =1; i < argcy ++i)
printf("%s\n", argv[i]);

Figure 26. T1520REP — ILE C Source to Pass Parameters to an ILE C Program

Example 2:: The following example demonstrates how to pass the value 'Hello,
World' to program XRUN1 which expects parameters at run time.

Follow the steps below to create and run program XRUN1:

1. Compile the source shown above with default compiler options. From the
command line, enter:

CRTBNDCPP PGM(MYLIB/XRUN1) SRCSTMF('xrunl.cpp')

The resulting program object is created in the default library (in this example,
MYLIB).

2. To run the program from a command line, enter:
CALL PGM(MYLIB/XRUN1) PARM('Hello, World')

The output of program XRUNI is:

Hello, World
Press ENTER to end terminal session.

The source file xrunl.cpp for program XRUN1 is shown in the following figure:

Chapter 5. Running a Program 53

54

// xrunl.cpp
// Prints out command line arguments.

#include <iostream.h>
int main (int argc, char *argv[])
{
int i;
for (i =1; i <argc; ++i)
cout << argv[i] << endl;

Figure 27. Source File for a Program that Passes the Value 'Hello, World' to Another
Program

Call (CALL) Command Parameter Conversions
When you call a program from a CL command line, the parameters you pass on
the Call command are changed, depending on how you state the parameters.

shows how parameters are converted.

Table 5. Call (CALL) Command Parameter Conversions

Conversion Rules Examples Conversion Results

String literals are passed CALL PGM(T1520REP) ABC\0

with a null terminating PARM(abc) (converted to uppercase;
character. passed as a string)

Numeric constants are CALL PGM(T1520REP) 123.4

passed as packed decimal PARM('123.4") (passed as a packed decimal
digits. (15,5))

Characters that are not CALL PGM(T1520REP) 123.4\0

enclosed in single quotation | PARM(123.4) (passed as a string)

marks are:

* Folded to uppercase
* Passed with a null

character
Characters that are enclosed | CALL PGM(T1520REP) abc\0
in single quotation marks PARM('abc') (passed as a string)
are not changed. Mixed and and
case strings are supported, |CALL PGM(T1520REP) abC\0
and are passed with a null | PARM("'abC") (passed as a string)

terminating character.

The REXX interpreter treats all REXX variables as strings (without a null
terminator). REXX passes parameters to OS/400 which then calls the ILE C/C++
program. Conversion to a packed decimal data type still occurs, and strings are
null terminated.

Note: These changes only apply to calling a program from a command line, not to
interlanguage calls. See [Chapter 23, “Using ILE C/C++ Call Conventions,”|
for information on ILE C/C++ calling conventions.

Using the Process Commands (QCAPCMD) API

You can use the Process Commands (QCAPCMD) API to:

* Add the null character to arguments that are passed to an ILE C/C++ program.

* Check the syntax of a command string prior to running it, prompt the command
and receive the changed command string, and run a command from an HLL
(high-level language).

ILE C/C++ Programmer’s Guide

The QCAPCMD API is used to perform command analyzer processing on
command strings. You can check or run CL commands from HLLs as well as check
syntax for specific source definition types.

Using the Transfer Control (TFRCTL) Command

You can run an application from within a CL program that transfers control to
your program using the Transfer Control (TFRCTL) command. This command:

1. Transfers control to the program specified on the command.

2. Removes the transferring CL program from the call stack.

In the following example, the TFRCTL command in a CL program RUNCP calls a
C++ program XRUN2, which is specified on the TFRCTL command. RUNCP transfers
control to XRUN2. The transferring program RUNCP is removed from the call stack.

illustrates the call to the CL program RUNCP, and the transfer of control to
the C++ program XRUN2.

User Call
CL Program C++ Program
RUNCP XRUN2
Control
TRECTL Transfer s
removed from program
call stack exits

Figure 28. Calling Program XRUN2 Using the TFRCTL Command

Example: Creating and Running a Program that Uses the
TFRCTL Command
To create and run programs RUNCP and XRUN2, follow the steps below:
1. Create the source file QCLSRC and enter the source code shown in
2. Create the CL program RUNCP. From the command line, enter:
CRTCLPGM PGM(MYLIB/RUNCP) SRCFILE(MYLIB/QCLSRC)
3. T create program XRUN2 in library MYLIB from source file xrun2.cpp (shown in
[Figure 30 on page 56), enter:
CRTBNDCPP PGM(MYLIB/XRUN2) SRCSTMF(xrun2.cpp)
4. Run program RUNCP from a command line, passing it the string "nails”, with the
command:
CALL PGM(MYLIB/RUNCP) PARM('nails')

The output from program XRUN2 is:

Chapter 5. Running a Program 55

string = nails
Press ENTER to end terminal session.

Code Samples

/* Source for CL Program RUNCP */
PGM PARM(&STRING)

DCL VAR(&STRING) TYPE (*CHAR) LEN(20)

DCL VAR (&NULL) TYPE (*CHAR) LEN(1) VALUE(X'00")

/+* ADD NULL TERMINATOR FOR THE ILE C++ PROGRAM */

CHGVAR VAR(&STRING) VALUE(&STRING *TCAT &NULL)
TFRCTL PGM(MYLIB/XRUN2) PARM(&STRING)

/* THE DSPJOBLOG COMMAND IS NOT CARRIED OUT SINCE */
/* WHEN PROGRAM XRRUN2 RETURNS, IT DOES NOT RETURN TO THIS =*/
/* CL PROGRAM. */
DSPJOBLOG

ENDPGM

Figure 29. Example of Source Code that Transfers Control to Another Program

Note: In the example [“Example: Creating and Running a Program that Uses the]
[TFRCTL Command” on page 55) program RUNCP uses the TFRCTL command
to pass control to the ILE C++ program XRUN2, which does not return control
to RUNCP.

// xrun2.cpp
// Source for Program XRUN2
// Receives and prints a null-terminated character string

#include <iostream.h>

int main(int argc, char xargv[])
{
int i
char * string;
string = argv[1];
cout << "string = " << string << endl;

Figure 30. Example of Source Code that Receives and Prints a Null-Terminated Character
String

Note: In the example [“Example: Creating and Running a Program that Uses the]
[TERCTL Command” on page 55| program XRUN2 receives a null-terminated
character string from the CL program and prints the string.

Creating a CL Command to Run a Program
You can also run a program from your own CL command. To create a command:
1. Enter a set of command statements into a source file.

2. Process the source file and create a command object (type *CMD) using the
Create Command (CRTCMD) command.

56 ILE C/C++ Programmer’s Guide

The CRTCMD command definition includes the command name, parameter
descriptions, and validity-checking information, and identifies the program that
performs the function requested by the command.

Enter the command interactively, or in a batch job.

The program called by your command is run.

The following illustrates how to run a program from a user-created
command:

Program Description

A newly created command COST prompts for and accepts user input values. It then
calls a C++ program CALCOST and passes it the input values. CALCOST accepts the
input values from the command COST, performs calculations on these values, and

prints results. illustrates this example.

Command

COST

- Prompts for user input

- Accepts user-input values

- Calls program CALCOST and
passes input values to it

C++ Program

CALCOST

- Processes input values
- Performs calculations
- Produces printed output

Figure 31. Calling Program CALCOST from a User-Defined Command COST

Instructions

To create and run the example, follow the steps below:

Enter the source code for the command prompt COST (shown in

page 58) into a source file QCMDSRC in library MYLIB, and save it as member
COST:

To Create the command prompt COST. From the command line, enter:
CRTCMD CMD(MYLIB/COST) PGM(MYLIB/CALCOST) SRCFILE(MYLIB/QCMDSRC)
To create program CALCOST from the source file calcost.cpp (shown in

1.

|Figure 32 on page 58|), enter:
CRTBNDCPP PGM(MYLIB/CALCOST)
To run program CALCOST:

a. EnterCOST and press F4 (Prompt). The prompts ITEM, PRICE, and

QUANTITY appear in order.
b. When prompted, enter the data shown below:

Hammers
1.98
5000

Chapter 5. Running a Program 57

The output of program CALCOST is:

It costs $11385.00 to buy 5000 HAMMERS
Press ENTER to end terminal session.
>

Code Samples

/* Source for Command Prompt COST =/

CMD PROMPT (' CALCULATE TOTAL COST')

PARM KWD(ITEM) TYPE(*CHAR) LEN(20) RSTD(*NO) +
MIN(1) ALWUNPRT(*NO) PROMPT('Item name' 1)

PARM KWD(PRICE) TYPE(*DEC) LEN(10 2) RSTD(*NO) +

RANGE (0.01 99999999.99) MIN(1) +
ALWUNPRT (*YES) PROMPT('Unit price' 2)

PARM KWD (QUANTITY) TYPE(*INT2) RSTD(*NO) RANGE(L +
9999) MIN(1) ALWUNPRT(*YES) +
PROMPT (' Number of items' 3)

Figure 32. Source Code for Command Prompt that Runs the CALCOST Program

// calcost.cpp
// Source for Program CALCOST

#include <iostream.h>
#include <string.h>
#include <bcd.h>

int main(int argc, char =*argv[])

{

char *item_name;
_DecimalT<10,2> *price;

short int *quantity;

const DecimalT<2,2> taxrate=_ D("0.15");
_DecimalT<17,2> cost;

item name = argv[1];

price = (_DecimalT<10,2> *) argv[2];

quantity = (short x) argv[3];
cost = (*quantity)=*(*price)*(__D(1.00+taxrate));
cout << "\nIt costs $§" << cost << " to buy "

<< *quantity << " " << jtem_name << endl;

Figure 33. Source Code for Program CALCOST

Note: This program receives the incoming arguments from the command COST,
calculates a cost, and prints values. All incoming arguments are pointers.

Normal and Abnormal End-of-Program

58

When a program ends normally, the system returns control to the caller. The caller
might be a workstation user or another program.

If a program ends abnormally during run time, and the program had been running

in a different activation group from its caller, the escape message CEE9901 is
issued and control is returned to the caller:

ILE C/C++ Programmer’s Guide

Application error <msgid> unmonitored by <pgm> at
statement <stmtid>, instruction <instruction>

A CL program can monitor for this exception by using the Monitor Message
(MONMSG) command.

If the program and its caller are running in the same activation group and the
program ends abnormally, the message that is issued depends on how the program
ends. If it ends with a function check, CPF9999 is issued.

Note: For more information about escape messages, see the iSeries Information
Center (Message Handling Terms and Concepts:
http:/ /publib.boulder.ibm.com/iseries/v5r2/ic2924 /info/apis/term.htm).

Managing Activation Groups

Activation groups make it possible for multiple ILE programs to run in the same
job independently, without intruding on each other.

An activation group is a substructure of a job. It consists of system resources such
as storage, commitment definitions, and open files. These resources are allocated to
run one or more ILE or OPM programs. For example, the storage space for the
static variables of a program is allocated from an activation group.

Once a program (type *PGM) is called, it remains activated until the activation
group it runs in is deleted. Because service programs are not called directly, they
are activated during the call to the program that requires their services.

Specifying an Activation Group

When an OS/400 job is started, the system automatically creates two activation
groups to be used by OPM programs. One activation group is reserved for OS/400
system code. The other activation group is used for all other OPM programs. The
symbol used to represent this activation group is *DFTACTGRP. You cannot delete
the OPM default activation groups. The system deletes them when your job ends.

Note: OPM programs always run in the default activation group; you cannot
change their activation group specification.

For ILE programs you specify the activation group that should be used at run time
through the ACTGRP parameter of the Create Program or Create Service Program
commands. You can choose between:

* Running your program in a named activation group.
* Accepting the default activation group:
- *NEW for programs
— *CALLER for service programs
¢ Activating a program into the activation group of a calling program.

Running a Program in a Named Activation Group

To manage a collection of ILE programs and service programs as one application,
you create a named activation group for them by specifying a user-defined name
on the ACTGRP parameter.

Chapter 5. Running a Program 59

60

The system creates the named activation group as soon as the first program that
has specified this activation group is called. This group is then used by all
programs and service programs that have specified its name.

A named activation group ends when it is deleted through the Reclaim Activation
Group (RCLACTGRP) command. This command can only be used when the
activation group is no longer in use. It also ends when you call the exit () function
in your code.

When a named activation group ends, all resources associated with the programs
and service programs of the group are returned to the system.

Note: Using named activation groups may result in non-ISO compliant run-time
behavior. If a program created using named activation groups remains
activated by a return statement, you encounter the following problems:

 Static variables are not re-initialized.
* Static constructors are not called again.
* Static destructors are not called on return.

¢ Other programs activated in the same activation group may terminate
your program, although they seem to be independent.

* Your program is not portable, if you count on the behavior of the named
activation group.

ACTGRP GROUP1

PROGH1

PROG2

PROG3

Figure 34. Running Programs in a Named Activation Group

In the following example, programs PROG1, PROG2, and PROG3 are part of the same
application and run in the same activation group, GROUP1. illustrates this

scenario:

To create these programs in the same activation group, you specify GROUP1 on the
ACTGRP parameter when you create each program:

CRTCPPMOD MODULE(PROG1) SRCSTMF(progl.cpp)

CRTPGM PGM(PROG1) MODULE(PROG1) ACTGRP(GROUP1)

CRTCPPMOD MODULE(PROG2) SRCSTMF(prog2.cpp)

CRTPGM PGM(PROG2) MODULE(PROG2) ACTGRP(GROUP1)

CRTCPPMOD MODULE (PROG3) SRCSTMF (prog3.cpp)

CRTPGM PGM(PROG3) MODULE(PROG3) ACTGRP(GROUP1)

Running a Program in Activation Group *NEW

To create a new activation group whenever your program is called, specify *NEW
on the ACTGRP parameter. In this case, the system creates a name for the
activation group that is unique within your job.

ILE C/C++ Programmer’s Guide

*NEW is the default value of the ACTGRP parameter on the CRTPGM command.
An activation group created with *NEW always ends when the last program
associated with it ends.

Note: *NEW is not valid for a service program, which can only run in the
activation group of its caller, or in a named activation group.

If you create a program with ACTGRP(*NEW), more than one user can call the
program at the same time without using the same activation group. Each call uses

a new copy of the program. Each new copy has its own data and opens its files.

In the following example, programs PROG4, PROG5, and PROG6 run in separate
unnamed activation groups.

ACTGRP *NEW

PROG4

ACTGRP *NEW

PROG5

ACTGRP *NEW
PROG6

Figure 35. Running Programs in Unnamed Activation Groups

By default, each program is created into a different activation group, identified by
the ACTGRP parameter (*NEW).

CRTCPPMOD MODULE(PROG4) SRCSTMF(prog4.cpp)

CRTPGM PGM(PROG4) MODULE(PROG4) ACTGRP (*NEW)

CRTCPPMOD MODULE(PROG5) SRCSTMF(prog5.cpp)

CRTPGM PGM(PROG5) MODULE(PROG5) ACTGRP (*NEW)

CRTCPPMOD MODULE(PROG6) SRCSTMF (prog6.cpp)

CRTPGM PGM(PROG6) MODULE(PROG6) ACTGRP (*NEW)

Because *NEW is the default, you obtain the same result with the following
invocations:
CRTBNDCPP PGM(PROG4) SRCSTMF (prog4.cpp)

CRTBNDCPP PGM(PROG5) SRCSTMF(prog5.cpp)
CRTBNDCPP PGM(PROG6) SRCSTMF (prog6.cpp)

Note: If you invoke three modules in one command a single program object PROG
is created in activation group *NEW:

CRTCPPMOD MODULE (PROG7) SRCSTMF(prog7.cpp)
CRTCPPMOD MODULE (PROG8) SRCSTMF(prog8.cpp)
CRTCPPMOD MODULE (PROG9) SRCSTMF (prog9.cpp)
CRTPGM PGM(PROG) MODULE(PROG7 PROG8 PROG9)

Non-Standard Behavior with Named Activation Groups

If the ACTGRP parameter of the CRTPGM command is specified as a value other
than *NEW, the application’s run-time behavior may not follow ISO semantics.
Run-time and class libraries assume that programs are built with ACTGRP(*NEW)

Non-ISO behavior may occur during:
* Program termination - exit(), abort(), atexit()

e Signal handling - signal(), raise()

Chapter 5. Running a Program 61

62

* Multibyte string handling - mblen()
* Any locale-dependent library functions - isalpha(), gsort()

In the default activation groups, 1/O files are not automatically closed. The I/O
buffers are not flushed unless explicitly requested.

Running a Program in Activation Group (*CALLER)

You can specify that an ILE program or an ILE service program be activated within
the activation group of a calling program, by setting ACTGRP to *CALLER. With
this attribute, a new activation group is never created when the program or service
program is activated. Through this option, ILE C/C++ programs can run within
the OPM default activation groups when the caller is an OPM program.

Certain restrictions exist for ILE C/C++ programs running in the OPM default
activation groups. For example, you are not allowed to register atexit() functions
within the OPM default activation groups.

If the activation group is named, all calls to programs in this activation group
within the same job share the same instance of the ILE C/C++ run-time library
state.

It is possible to create an ISO-compliant application whose programs are created
with options other than ACTGRP(*NEW). While non-ISO behavior may be
desirable in certain cases, it is the responsibility of the application designer to
ensure that the sharing of resources and run-time states across all programs in the
activation group does not result in incorrect behavior.

In the following example, a service program SRV1 is activated into the respective
activation groups of programsPROG7 and PROG8. PROG7 runs in a named activation
group GROUP2, while PROG8 runs in an unnamed activation group *NEW.

ACTGRP GROUP2

PROG7
SRV1

ACTGRP *NEW

PROGS8
SRV1

Figure 36. Running a Service Program in the Activation Groups of Calling Programs

By default, the service program SRV1 is created into the activation group of each
calling program.

CRTCPPMOD MODULE (SRV1) SRCSTMF(srvl.cpp)
CRTSRVPGM SRVPGM(SRV1) MODULE(SRV1)

Presence of a Program on the Call Stack

Even though it is activated, a program does not appear on the call stack unless it is
running. But an activation group can continue to exist even when the main()
function of the program is not on the call stack.

This occurs when the program was created with a named activation group, and the
main() function issues a return. It can also occur when the program performs a

ILE C/C++ Programmer’s Guide

Tongjmp() across a control boundary by using a jump buffer that is set in an ILE C
or C++ procedure. (This procedure is higher in the call stack and before the nearest
control boundary.)

Deleting an Activation Group

When an activation group is deleted, its resources are reclaimed. The resources
include static storage and open files. A *NEW activation group is deleted when the
program it is associated with returns to its caller.

Named activation groups are persistent. You must delete them explicitly. Otherwise
they end only when the job ends. The storage associated with programs running in
named activation groups is not released until these activation groups are deleted.

The OPM default activation group is also a persistent activation group. The storage
associated with ILE programs running in the default activation group is released
either when you sign off (for an interactive job) or when the job ends (for a batch
job).

Reclaiming System Resources

You may encounter situations where system storage is exhausted, for example:
* If many ILE programs are activated (that is, called at least once).

 If ILE programs that use large amounts of static storage run in the OPM default
activation group (storage is not reclaimed until the job ends).

* If many service programs are called into named activation groups (resources are
only reclaimed when the job ends).

In such situations, you may want to reclaim system resources that are no longer
needed for a program, but are still tied up because an activation group has not
been deleted. You have the following options:

* Delete a named activation group that is not in use through the Reclaim
Activation Group (RCLACTGRP) command .

The command provides options to either delete all eligible activation groups or
to delete an activation group by name.

* Free resources for programs that are no longer active through the Reclaim
Resources (RCLRSC) command.

Using the Reclaim Resources (RCLRSC) Command
The RCLRSC command works differently depending on how the program was
created:

* For OPM programs, the RCLRSC command closes open files and frees static
storage.

* For ILE programs that were activated into the OPM default activation group
(because they were created with *CALLER), The RCLRSC command closes files
and reinitializes storage. However, the storage is not released.

* For ILE programs associated with a named activation group, the RCLRSC
command has no effect. You must use the RCLACTGRP command to free
resources in a named activation group.

Chapter 5. Running a Program 63

Managing Run-Time Storage

64

ILE allows you to manage run-time storage directly from your program, by
managing heaps. A heap is an area of storage used for allocations of dynamic
storage. The amount of dynamic storage required by an application depends on the
data being processed by the programs and procedures that use the heap. You
manage heaps by using ILE bindable APIs.

You are not required to manage run-time storage explicitly. However, you may
wish to do so if you want to make use of dynamically allocated storage. For
example, if you do not know exactly how big an array should be, you could
acquire the actual storage for the array at run time, once your program determines
how big the array should be.

There are two types of heaps available on the system:
* default heap
* user-created heap

You can use one or more user-created heaps to isolate the dynamic storage
required by some programs and procedures within an activation group.

The rest of this section explains how to use a default heap to manage run-time
storage in a program.

Managing the Default Heap

The first request for dynamic storage within an activation group results in the
creation of a default heap from which the storage allocation takes place. Additional
requests for dynamic storage are met by further allocations from the default heap.
If there is insufficient storage in the heap to satisfy the current request for dynamic
storage, the heap is extended, and the additional storage is allocated.

Allocated dynamic storage remains allocated until it is explicitly freed, or until the
heap is discarded. The default heap is discarded only when the owning activation
group ends.

Programs in the same activation group all use the same default heap. If one
program accesses storage beyond what has been allocated, it can cause problems
for another program.

For example, assume that two programs, PGM1 and PGM2 are running in the same
activation group. 10 bytes are allocated for PGM1, but 11 bytes are changed by it. If
the extra byte was in fact allocated for PGM2 problems may arise for PGM2.

Using Bindable APIs to Manage the Default Heap
You can use the following ILE bindable APIs on the default heap:

Free Storage (CEEFRST)
Frees one previous allocation of heap storage

Get Heap Storage (CEEGTST)
Allocates storage within a heap

Reallocate Storage (CEECZST)
Changes the size of previously allocated storage

ILE C/C++ Programmer’s Guide

Dynamically Allocating Storage at Run Time

In an ILE C++ program, you manage dynamic storage belonging to the default
heap using the operators new and delete to create and delete dynamic objects.
Dynamic objects are never created and deleted automatically. Their creation can fail
if there is not enough free heap space available, and your programs must provide
for this possibility.

The following figures illustrate how to use the new and delete operators for
dynamic storage allocation:

TClass *p; // Define pointer
p= new TClass; // Construct object
if (!p) {
Error("Unable to construct object");
exit(1);

}

delete p; // Delete object

Figure 37. Example of Dynamic Allocation and De-Allocation of Storage for a Class Object

TClass *array; // Define pointer
array = new TClass[100];// Construct array of 100 objects

delete[] array; // Delete array

Note: In this example, you use delete[] to delete the array. Without the brackets, delete
deletes the entire array, but calls the destructor only for the first element in the array.
If you have an array of values that do not have destructors, you can use delete or
delete[].

Figure 38. Example of Dynamic Allocation and De-Allocation of Storage for an Array of
Objects

Overriding Replacement Functions

The C++ standard allows an application to redefine a number of replacement
functions. The program’s definitions are used instead of the default versions
supplied by the library. Such replacement occurs prior to program startup.

A C++ program may provide the definition for any of the eight dynamic memory
allocation functions. These include:

* void *operator new (size t) throw(std::bad alloc);

* void *operator new (size_t, const std::nothrow_t&) throw();

» void *operator new[] (size_t) throw(std:bad alloc);

* void *operator new[] (size_t, const std::nothrow t&) throw();

* void operator delete (void*) throw();

* void operator delete (void*, const std::nothrow_t&) throw();

* void operator delete [] (voidx) throw();

» void operator delete [] (void*, const std::nothrow_t&) throw();

Limitations: When overriding replacement functions, consider the following
limitations:

Chapter 5. Running a Program 65

66

* A program that contains a main function has to be compiled with C++ compiler.

* When the main() entry point is not a C++ module, the calls to global new or
delete operators work only if they are in the same compilation unit (where the
definition of the corresponding replacement functions are visible).

* Infinite recursion can occur when you use standard library objects in the
implementation of replacement functions because the library makes extensive
use of calls to the allocation operators.

Note: Avoid using iostreams for logging.

Overloading the new or delete Operator

The ISO C++ Standard categorizes operator new and operator delete as
replacement functions, which means that they can be redefined in a C++ program.
However, the standard allows only one definition of an operator to be in effect
during program execution.

Note: Visibility issues can arise if a program does both of the following:
* Opverloads operator new or operator delete
* Uses multiple C++ translation units

For detailed information about visibility issues, see WebSphere Development
Studio: ILE C/C++ Language Reference.

Example:

Suppose an application uses three C++ source files (one.cpp, two.cpp, and
three.cpp):

* One.cpp contains the main function.
* Two.cpp contains a redefinition of operator new or operator delete.
* Three.cpp calls operator new.

After you compile the application, the redefined operator new (or operator delete)
is visible to, and used for, all translation units.

Given the same three-translation unit scenario, suppose that one.cpp is compiled
with the C compiler. The redefined operator is visible in translation unit two.cpp
but not in three.cpp. Any calls to operator new (or operator delete) outside of
translation unit two.cpp uses the standard version, not the user-defined version, of
the operator.

Note: Because user-defined and standard operators have different signatures, no
binder error or compiler warning is generated.

ILE C/C++ Programmer’s Guide

Chapter 6. Improving Run-Time Performance

When you examine a program to improve performance, look at those aspects
which have a significant impact every time a program is run.

Often run-time performance can be improved through minor changes to your
source programs. The amount of improvement each change provides depends on
* How your program is organized

¢ The functions and language constructs your program uses

Some changes may provide substantial performance improvement to your
program, while others may offer almost no improvement.

Note: Some tips may contradict each other because they trade one advantage for
another. For example, one tip is to reduce the size of the call stack by using
static and global variables, while another tip is to improve execution startup
performance by reducing the use of static and global variables.

Before trying to improve run-time performance, compile and benchmark your
programs using full optimization. Use performance analysis tools to find out where
your performance problems are, and then try and apply different appropriate tips
to try and achieve the best performance for your program.

This chapter discusses how you might try to improve performance with respect to:

* [Data typed
* [Classes|

* [Performance measurement]

+ |[Exception handling|

« [Function call performance]

* [Input and output considerations|

* |Pointers

« [Shallow copy and deep copy]

* |Space considerations

* |Activation groups|

* |Compiler options|

* [Run-time limits|

Choosing Data Types to Improve Performance

There are several ways to improve performance through data types. Replacing bit
fields with other data types and minimizing the use of static and global variables
are some of the ways.

Avoiding Use of the Volatile Qualifier

Only use the volatile qualifier when necessary. Volatile specifies that a variable
can be changed at any time, possibly by an external program, and therefore it is
not a candidate for optimization.

© Copyright IBM Corp. 1993, 2004 67

Replacing Bit Fields with Other Data Types

Avoid using bit fields because it takes more time to access bit-fields than other
data types such as short and int. Whenever possible, replace bit fields with other
data types. If a bit field takes 16 bits and aligns on 2-byte boundary, you can
replace it with the short data type.

Note: You can still obtain a run-time improvement if the bit-field is smaller than
the integral type. The extra time required for bit-field manipulation code
offsets the performance gain due to space saved in data.

Minimizing the Use of Static and Global Variables

Minimize the use of static and global variables, if possible. These are
initializedwhether or not you explicitly initialize them. By not using static and
global variables, the performance improvement is obtained at activation group
startup.

Using the Register Storage Class

Use the Register Storage classfor a variable that is frequently used. Do not overuse
the Register Storage class, so that the optimizer can place the most frequently used
variables into the available hardware registers.

If you use the Register Storage class, you cannot rely on the value displayed from
within the debugger because you may be referencing an older value that is still in
storage.

Creating Classes to Improve Performance

When you use class libraries to create classes, use a high level of abstraction. After
you establish the type of access to your class, you can create more specific
implementations. This can result in improved performance with minimal code
changes.

When you define structures or data members within a class, define the largest data
types first to align them on the largest natural boundary. Define pointers first to
reduce the padding necessary to align them on quadword (16-byte) boundaries.
Follow them, in order, with the double-word, and half-word items to avoid
padding or improve load/store time.

Enabling Performance Measurement

68

You can use a native compiler option to include performance hooks in your
generated code.

Using a Compiler Option to Enable Performance Measurement

The performance-measurement compiler option ENBPFRCOL() allows you to specify
whether or not the compiler should generate code (sometimes called performance
hooks) into your compiled program or module. The performance hooks enable the
Performance Explorer to analyze your programs. The default for this option
specifies that program entry procedure level performance-measurement code is
generated for your compiled module or program.

ILE C/C++ Programmer’s Guide

Compiling performance collection code into the module or program allows
performance data to be gathered and analyzed. The insertion of the additional
collection code results in slightly larger module or program objects and may affect
performance to a small degree.

Types of performance data collected include:
* Pre-call and post-call information

This information is gathered immediately before and after calling any given
functions. It provides a record of where a call was made, and information on the
performance of the operation called.

* Procedure entry and exit information

This information is gathered immediately upon entry into a procedure and exit
from that procedure. A snapshot is taken of the current performance statistics
when entering a procedure, and a calculation is made of the differences in those
statistics when exiting that procedure.

When performance collection code is generated into a leaf procedure, the
procedure is changed so that it is no longer a leaf procedure. (A leaf procedure is
one that does not call any other procedures.) This is because the leaf procedure
now contains hooks to call the performance collection routines. This can be a
time-consuming process.

See WebSphere Development Studio: ILE C/C++ Compiler Reference for information on
these options.

Minimizing Exception Handling

To minimize exception handling, you can try:

* [Turning on return codes during record 1/0|

* [Turning off C2M messages during record 1/0|

+ |Using direct monitor handlers|

* [Minimizing percolation of exceptions|

See [Chapter 21, “Handling Exceptions in a Program,” on page 311 for information
on handling exceptions.

Turning on Return Codes during Record 1/O

Exceptions are expensive to process.

If you use record 1/0, you can minimize exceptions by using the rtncode=y option
on _Ropen(). Exceptions are not generated for the following conditions:

* "Record not found" (CPF5006)

* "End-of-File" (CPF5001)

When these conditions occur, the num_bytes field of the RIOFB_T structure is
updated and errno is set, but no exceptions are generated. For the "Record not

found" condition, the num_bytes field is set to zero. For the "End-of-File"
condition, the num_bytes field is set to EOF.

Turning Off C2M Messages during Record Input and Output

To turn off C2M messages during record 1/O, set the variable _C2M_MSG (in
<recio.h>) to zero. If _C2M_MSG is set to a different value, record I/O sends C2M

Chapter 6. Improving Run-Time Performance 69

70

messages to your program when it detects any of the following errors: C2M3003,
C2M3004, C2M3005, C2M3009, C2M3014, C2M3015, C2M3040, C2M3041, C2M3042
and C2M3044.

Note: Removing data truncation messages with signal handlers or message
handlers is no longer necessary when the C2M messages are turned off
during record 1/0.

Using a Direct Monitor Handler

When an exception occurs, the compiler first attempts to use any direct monitor
handler. If there is no direct monitor handler, the exception is mapped to a signal
at run time, and the corresponding signal handler is called. By using the #pragma
exception_handler directive to enable a direct monitor handler, you avoid the
process for both the signal mapping and search for a signal handler.

For all exceptions specified by the #pragma exception_handler directive, the direct
monitor handler marks each exception as handled; otherwise the exception is
percolated again.

For information about #pragma exception_handler, see the WebSphere Development
Studio: ILE C/C++ Compiler Reference.

For more information about using direct monitor handlers, seeWebSphere
Development Studio: ILE C/C++ Compiler Reference.

Minimizing Percolation of Exceptions

Try to handle an exception in the place it occurs. There is some processing
overhead incurred with exception percolation.

Example of Exception Percolation for a Sample ILE C Source
Code

The following figure shows an example of ILE C source code for handling
exceptions. Below the figure is an example of an exception that can occur and the
steps the code takes to handle the exception.

ILE C/C++ Programmer’s Guide

#include <stdio.h>

#include <except.h>

#include <signal.h>

#include <lecond.h>

void handlerl(_INTRPT Hndlr_Parms_T * _ ptrl28 parms)
{

printf("In handlerl: will not handle the exception\n");

}
void handler2(_INTRPT_Hndlr_Parms_T * _ ptrl28 parms)

{

printf("In handler2: will not handle the exception\n");

void handler3(_FEEDBACK *condition, _POINTER *token, _INT4 *result_code,
_FEEDBACK *new_condition)
{

printf("In handler3: will not handle the exception\n");

}
void handler4(_INTRPT_Hndlr_Parms_T * _ ptr 128 parms)

{
printf("In handler4: will not handle the exception\n");

}
void fred(void)

{
_HDLR_ENTRY hdlr = handler3;
char *p = NULL;
#pragma exception_handler(handler2, 0, 0, \
_C2_MH_ESCAPE | _C2_MH_FUNCTION_CHECK)
CEEHDLR(&hd1r, NULL, NULL);
#pragma exception_handler(handlerl, 0, 0, C2 MH_ESCAPE)
p = 'x'; / exception */
1

int main(void)

signal (SIGSEGV, SIG_DFL);
#pragma exception_handler(handler4, 0, 0, \
_C2_MH_ESCAPE | _C2_MH_FUNCTION_CHECK)
fred();
}

Figure 39. T1520XH7 — ILE C Source for Exception Handling

The sequence of exceptions and handling actions that occur when the source code
in is run is:

1. An escape exception occurs in function fred().

2. handlerl gets control because it is monitoring for an escape message, it is the
closest nested monitor to the exception, and it has highest priority because it
is a direct handler.

3. handler2 gets control because it is monitoring for an escape message, and has
a higher priority than a CEEHDLR.

4. handler3 gets control (from CEEHDLR).

5. signal handler gets control. Even though it is registered in main, signal is
scoped to the activation group and therefore will get control. It gets control
after handlerl, handler2, and handler3 because it has a lower priority than
either direct handlers or CEEHDLRs. Because the action is SIG_DFL, the
exception is not handled.

6. The exception is percolated to main().

7. handler4 gets control.

8. The exception is still not handled. Thus, when it hits the control boundary

(the PEP for main()), it is turned into a function check and is re-driven.

Chapter 6. Improving Run-Time Performance 71

9. handlerl does NOT get control, because it is not monitoring for a function
check.

10. handler2 gets control because it is monitoring for function check.

11. handler3 gets control because CEEHDLRs get control for all *ESCAPE,
*STATUS, *NOTIFY, and Function Check messages.

12. signal handler does NOT get control because signal does not recognize
function checks.

13. The function check is percolated to main().

14. handler4 gets control because it is monitoring for function check.

15. The function check percolates to the control boundary and causes the ending.
16. (CEE9901) *ESCAPE is sent to the caller of main().

Reducing the Number of Function Calls and Arguments

72

Extra processing is involved in accessing the return value of a program call.

You can reduce the number of function calls and arguments by:

+ |Inlining function calls|

+ [Using static class members or global variables|

+ [Passing arguments in registerg

+ |Using prototypes to minimize function call processing|

Inlining Function Calls

When a function is called in a few places but executed many times, changing the
function to an inline function typically saves many function calls and results in
performance improvement. You might be able to improve performance by
changing function calls to inline functions or macro expressions, provided such a
change does not increase the size of the program object and cause enough page
faults to slow the program down. To optimize performance, strike a balance
between program size and inlining or macro expressions. See [Table 6 on page 87

Note: In C++, macro expressions are not recommended. Instead, use the
inline keyword and turn on inlining.

The INLINE compile-time option allows you to request that the compiler replace a
function call with that function’s code in place of the function call. If the compiler
allows the inlining to take place, the function call is replaced by the machine code
that represents the source code in the function definition.

Inlining is a method that allows you to improve the run-time performance of a C
or C++ program by eliminating the function call overhead. Inlining allows for an
expanded view of the program for optimization. Exposing constants and flow
constructs on a global scale allows the compiler to make better choices during
optimization.

For information about inlining and expanding macros, see:
* WebSphere Development Studio: ILE C/C++ Language Reference
* WebSphere Development Studio: ILE C/C++ Compiler Reference

Using Static Class Member Functions or Global Variables

You might be able to improve run-time performance of a C++ program by
using static class members to pass an argument to a function.

ILE C/C++ Programmer’s Guide

In a C or C++ program, an alternative to passing an argument to a function is to
have the variable defined as being global and to have the function use the global
variable.

Note: Using more global variables increases the amount of work that has to be
done at activation group startup to allocate and initialize the global

variables, which can inhibit optimization.

For information about class member functions and global variables, see:

“Minimizing the Use of Static and Global Variables” on page 6§

* WebSphere Development Studio: ILE C/C++ Language Reference
* WebSphere Development Studio: ILE C/C++ Compiler Reference

Passing Arguments in Registers

Function call performance can be improved if the system has all of the arguments
passed in registers. Because there are only a limited number of registers, in order
to increase the chance of having all arguments passed in registers, combine several
arguments into a class and pass the address of the class to the function. Because an
address is being passed, pass-by-reference semantics are used, which may not have
been the case when the arguments were being passed as individual variables.

For more information about passing arguments in registers, see:
* WebSphere Development Studio: ILE C/C++ Language Reference
* WebSphere Development Studio: ILE C/C++ Compiler Reference

For more information about storage classes, see:

+ |[“Using the Register Storage Class” on page 68|

* WebSphere Development Studio: ILE C/C++ Language Reference

Using Prototypes to Minimize Function Call Processing

A function prototype consists of the function return type, the name of the function,
and the parameter list. An un-prototyped function has its signature inferred by the
data model in effect at the time of its first reference.

Note: C++ requires full prototype declarations. ISO C allows non-prototyped
functions.

When calling a program dynamically from a C++ program using extern
0S linkage, prototype the program to return void rather than int. Extra processing
is involved in accessing the return value of a program call. Passing the address of
storage that can hold a return value in the call’s argument list is better from a
performance viewpoint.

For information about function prototypes, see WebSphere Development Studio: ILE
C/C++ Language Reference.

Choosing Input and Output Functions to Improve Performance

This section covers some Input and Output issues.

Chapter 6. Improving Run-Time Performance 73

Using Record Input and Output Functions

Using record 1/0O functions instead of stream I/O functions can greatly improve
I/0 performance. Instead of accessing one byte at a time, record I/O functions
access one record at a time.

The two types of record I/O supported by the ILE C/C++ run-time libraries are
ISO C record I/0 and ILE C record I/0.

ISO C Record /O

If you use an ISO C record I/0O in your program, you must specify type = record
in the open mode parameter of fopen() when you open a file, and you must use
the FILE data type. The following figure provides an example.

#include <stdio.h>
#define MAX_LEN 80
int main(void)
{
FILE *fp;
int len;
char buf[MAX_LEN + 1];
fp = fopen("MY_LIB/MY_FILE", "rb, type = record");
while ((len = fread(buf, 1, MAX_LEN, fp)) != 0)
{
buf[len] = '\0';
printf("%s\n", buf);
}
fclose(fp);
return 0;

Figure 40. Example: Using ISO C Record 1/O

ILE C Record I/O

If you use ILE C record I/O in your program, you must:
* Use the ILE C record I/0 functions (for example, functions that begin with _R)
* Use the _RFILE data type.

The example in can be rewritten as follows:

74 ILE C/C++ Programmer’s Guide

Using

#include <stdio.h>
#include <recio.h>
#define MAX_LEN 80
int main(void)
{
_RFILE *fp;
_RIOFB_T *iofb;
char buf[MAX_LEN + 1];
fp = _Ropen("MY_LIB/MY_FILE", "rr");
iofb =_Rreadn(fp, buf, MAX_LEN, _ DFT);
while (iofb->num_bytes != EOF)
{
buf[iofb->num_bytes] = '\0';
printf("%s\n", buf);
jofb = Rreadn(fp, buf, MAX _LEN, _ DFT);
}
_Rclose(fp);
return 0;

Figure 41. Example: Using ILE C Record I/O

Input and Output Feedback Information

_RIOFB_T is a structure that contains I/0O feedback information from ILE C record
functions, for example, the number of bytes that are read or are written. By
default, the ILE C record I/O functions update the fields in _RIOFB_T after a
record 1/0O operation is performed.

If your program does not use all these values, you can improve your application's
performance by opening a file as shown in the following figure:

fp = _Ropen("MY_LIB/MY_FILE", "rr, riofb = N");

Figure 42. 1/0 Feedback Information

By specifying riofb = N, only the num_bytes field (the number of bytes read or
written in the _RIOFB_T structure) is updated. If you specify riofb =Y, all fields in
the _RIOFB_T structure are updated.

Blocking Records

You can improve record I/O performance by blocking records. When blocking is
specified, the first read causes a whole block of records to be placed into a buffer.
Subsequent read operations return a record from the buffer until the buffer is
empty. At that time, the next block is fetched.

If you wish to block records when the FILE data type is used, open the file with
blksize=value specified, where value indicates the block size. If b1ksize isspecified

with a value of 0, a block size is calculated for you when you open a file.

If you wish to block records when the _RFILE data type is used, specify blkrcd =
Y when you open the file.

Similar rules apply when blocking records for write operations.

Chapter 6. Improving Run-Time Performance 75

76

Manipulating the System Buffer

You can improve I/O performance of your ILE C/C++ programs by performing
read and write operations directly to and from the system buffer, without the need
for an application-defined buffer. This system access is referred to as locate mode.
The following illustrates how to directly manipulate the system buffer when
reading a source physical file.

fp = Ropen("MY_LIB/MY FILE", "rr, blkrcd = Y, riofb = N");

while ((_Rreadn(fp, NULL, 92, _ DFT))->num_bytes != EOF)
{

printf("%75.75s\n", ((char *) (*(fp->in_buf))) + 12);
}

_Rclose(fp);

Figure 43. Using the System Buffer

The example code above prints up to 75 characters of each record that is contained
in the file. The second parameter for the Rreadn() , NULL, allows you to
manipulate the record in the system buffer. An _RFILE structure contains the
in_buf and out_buf fields, which point to the system input buffer and system
output buffer, respectively. The example above prints each record by accessing the
system's input buffer.

Directly manipulating the system buffer provides a performance improvement
when you process very long records. It also provides a significant performance
improvement when you use Intersystem Communications Function (ICF) files.
Usually, you only need to access the last several bytes in an ICF file and not all the
other data in the record. By using the system buffer directly, the data that you do
not use for ICF files need not be copied.

The system buffer should always be accessed through the in_buf and out_buf
pointers in the _RFILE structure that is located in the <recio.h> header file.
Unpredictable results can occur if the system buffer is not accessed through the
in_buf and out_buf pointers.

Opening Files Once for Both Input and Output

If your application writes data into a file and then reads the data back, you can
improve performance by opening the file only once, instead of the usual two times
to complete both input and output. The following illustrates how a file is opened
twice and closed twice:

fp = _Ropen("MY_LIB/MY_FILE", "wr"); /* Output only.*/

/* Code to write data to MY_FILE */
_Rclose(fp)s

/* Other code in your application. */
fp = _Ropen("MY_LIB/MY_FILE", "rr"); /* Input only.*/

/* Code to read data from MY_FILE. x/
_Rclose(fp)s

Figure 44. Example: Opening a File Twice

ILE C/C++ Programmer’s Guide

By changing this example to the following, one call to _Ropen, and one call to
_Rclose is saved:

fp = _Ropen("MY_LIB/MY_FILE", "ar+"); /* Input and

output.*/

/* Code to write data to MY _FILE. */

/* Other code in your application. */

/* Code to read data from MY_FILE. */

/* Use either Rreadf or _Rlocate with the option
_Rclose(fp);

Figure 45. Example: Opening a File Once

Minimizing the Use of Shared Files

You can improve performance by not opening the same file more than once in an
application. You can allocate the file pointers as global (external) variables, opening
the files once, and not closing the file until the end of the application.

Minimizing the Number of File Opens and Closes

Open and close are very expensive operations. You can improve performance by
opening and closing files only as often as necessary. You can use a class to
encapsulate I/O operations such as opening the files once, and not closing the file
until the end of the program.

Defining Tape Files to Improve Performance

You can improve the performance of programs that use tape files by using
fixed-length record tape files instead of variable-length tape files.

Improving Performance when Using Stream Input and Output
Functions

Although using ILE C record 1/0 functions improves performance more effectively
than stream I/O functions, there are still ways to improve performance when using
stream 1/0.

You can use IFS stream files, with performance similar to record I/O functions, by
specifying SYSIFCOPT(*IFSIO) on the CRTCMOD or CRTBNDC commands.

You should use the macro version of getc instead of fgetc() to read characters
from a file. See|“Using Static Class Member Functions or Global Variables” on page]
The macro version of getc() reads all the characters in the buffer until the
buffer is empty. At this point, getc() calls fgetc() to get the next record.

For the same reason, you should use putc() instead of fputc(). The macro version
of putc() writes all the characters to the buffer until the buffer is full. At this point,
putc() calls fputc() to write the record into the file.

Because stream 1/O functions cause many function calls; reducing their use in your
application improves performance. The following illustrates calls to printf():

printf("Enter next item.\n");
printf("When done, enter 'done'.\n");

Figure 46. Using printf()

Chapter 6. Improving Run-Time Performance 77

__FIRST. >

The two calls to printf() can be combined into a single call so that one call is
saved as follows:

printf("Enter next item.\n"
"When done, enter 'done'.\n");

Figure 47. Using printf() to Reduce Function Calls

Using C++ Input and Output Stream Classes

Use overloaded shift << >>operators on the standard streams, instead of their C
equivalents.

Using Physical Files Instead of Source Physical Files

To improve performance, use physical files instead of source physical files for your
data.

When a source physical file is used for stream 1/O, the first 12 bytes of each record
are not visible to your application. They are used to store the record number and
update time. These 12 bytes are an extra load that the ILE C stream I/O functions
must manipulate. For example:

* When performing output, these 12 bytes must be initialized to zero.
* When performing input, these 12 bytes must be fetched even though they are
not passed to your application.

Because the ILE C stream I/0 functions dynamically create a source physical file
when opening a text file that does not already exist for output, create the file as a
physical file before you start your application.

Specifying Library Names

You should specify the name of the library in which the file resides. If you do not
specify a library name when processing a file, the library list is searched for the
file. The search time can be lengthy, depending on the number of libraries and the
objects that they contain.

Using Pointers to Improve Performance

78

Using and comparing pointers can impact performance.

Avoiding Use of Open Pointers

Avoid using open pointers. Open pointers inhibit optimization. Note that pointers to
void (voidx) are open pointers in ILE C/C++.

Avoiding Pointer Comparisons

Because pointers take up 16 bytes of space, pointer comparisons are less efficient
than comparisons using other data types. You might want to replace pointer
comparisons with comparisons using other data types, such as int.

The following figure shows a program that constructs a linked list, processes all
the elements in the list, and then frees the linked list:

ILE C/C++ Programmer’s Guide

#include <string.h>
#include <stdlib.h>
#include <recio.h>

#define MAX_LEN 80

struct Tink

{

struct Tink *next;
char record[MAX_LEN];
}s

int main(void)

{
struct Tink *start, *ptr;
_RFILE *fp;
return 0;

int i;

// Construct the linked Tist and read in records.

fp = _Ropen("MY_LIB/MY_FILE", "rr, blkrcd = Y");
start = (struct Tink *) malloc(sizeof(struct 1ink));
start->next = NULL;
ptr = start;
for (i = (_Ropnfbk(fp))->num_records; i > 0; --i)
{
_Rreadn (fp, NULL, MAX_LEN, _ DFT);
ptr = ptr->next = (struct Tink *) malloc(sizeof(struct 1ink));
memcpy (ptr->record, (void const *) *(fp->in_buf), MAX_LEN);
ptr->next = NULL;
}
ptr = start->next;
free(start);
start = ptr;
_Rclose(fp);
return 0;

Figure 48. Example of a Program that Uses Linked Lists (Part 1 of 2)

Chapter 6. Improving Run-Time Performance

79

// Process all records.

for (ptr = start; ptr != NULL; ptr = ptr->next)
{

// Code to process the element pointed to by ptr.

}

// Free space allocated for the linked Tist.

while (start != NULL)
{

ptr = start->next;
free(start);
start = ptr;

Figure 48. Example of a Program that Uses Linked Lists (Part 2 of 2)

Each element in the link list holds one record from a file:

In the preceding program, pointer comparisons are used when processing elements
and freeing the linked list. The program can be rewritten using a short type
member to indicate the end of the link list. As a result, you change pointer
comparisons to integer comparisons, as shown in the following figure:

#include <string.h>
#include <stdlib.h>
#include <recio.h>

#define MAX_LEN 80
int i;

struct Tink

{

struct Tink *next;
short Tast;

char record[MAX LEN];

}s
int main(void)

{

struct Tink *start, =*ptr;
_RFILE =fp;
return 0;

Figure 49. Example of Source Code that Uses a short Type Member to End a Linked List
(Part 1 of 3)

80 ILE C/C++ Programmer’s Guide

// Construct the linked Tist and read in records.

fp = Ropen(" MY_LIB/MY_FILE", "rr, blkrcd = Y");
start = (struct link *) malloc(sizeof(struct Tink));
start->next = NULL;

ptr = start;
for (i = (_Ropnfbk(fp))->num_records; i > 0; --i)
{

_Rreadn(fp, NULL, MAX_LEN, _ DFT);
(struct link *) malloc(sizeof(struct 1ink));
memcpy (ptr->record, (void const *) *(fp->in_buf), MAX_LEN);
ptr->Tast = 0;

}

ptr->last = 1;

ptr = start->next;

free(start);

start = ptr;

_Rclose(fp);

Figure 49. Example of Source Code that Uses a short Type Member to End a Linked List
(Part 2 of 3)

// Process all records.

if (start != NULL)
{
for (ptr = start; !ptr->last; ptr = ptr->next)
{

// Code to process the element pointed to by

}
// code to process the element
//(last element) pointed.
// Free space allocated for the linked 1ist.

while (!start->last)
{
ptr = start->next;
free(start);
start = ptr;
1

free(start);
1
1

Figure 49. Example of Source Code that Uses a short Type Member to End a Linked List
(Part 3 of 3)

Reducing Indirect Access through Pointers

You can improve performance by reducing indirect access through pointers. Each
level of indirection adds some overhead:

for (i =0; i <n; i++)

{
}

x->y->z[i] = i;

Performance in the above example improves if it is rewritten as:

Chapter 6. Improving Run-Time Performance 81

temp = x->y;
for (i =0; i <n; i++)
{

temp->z[i] = i;

}

Using Shallow Copy instead of Deep Copy

Avoid performing a deep copy if a shallow copy is all you require. For an object that
contains pointers to other objects, a shallow copy copies only the pointers and not
the objects to which they point. The result is two objects that point to the same
contained object. A deep copy copies the pointers and the objects they point to, as
well as any pointers or objects contained within that object, and so on.

Note: If a program points to an object more than once, you must use deep copy.
Objects that use shallow copy can destroy objects pointed to more than once.

Minimizing Space Requirements

You can improve the performance of a program by reducing the space it requires.
Reducing the space requirement helps reduce page faults, segment faults, and
effective address overflows.

Choosing Appropriate Data Types

Choosing the appropriate data type can reduce program space requirements and
help improve program performance. When choosing data types, consider all the
platforms that your code must support. You may not know all the data types and
sizes at the beginning of your code design. Because the data types can hold the
same size data on various platforms, you can use typedefs, enums, or classes
depending on the use of the data type. If possible use short instead of int, and
float instead of double. The compiler uses 2 bytes for short, 4 bytes for int, and 8
bytes for double.

Minimizing Dynamic Memory Allocation Calls

You can improve performance by reducing the number of times you dynamically
allocate memory. Every time you call the new operator a certain amount of space
is allocated from the heap. This space is always aligned at 16 bytes, which is
suitable for storage of any object type. In addition, 32 extra bytes are taken from
the dynamic heap for bookkeeping. This means that even if you only want one
byte, 48 bytes are allocated from the dynamic heap, 32 bytes for bookkeeping and
15 bytes for padding. When the current space allocation in the heap is used up,
storage allocation is slower:

ptrl = new char[12];
ptr2 = new char[4];

In the code above, 96 bytes are taken from the heap (including 64 bytes for
bookkeeping and 16 bytes for padding) and new is used twice. This code can be
rewritten as:

ptrl = new char[16];
ptr2 = ptrl + 12;

Only 48 bytes are taken from the heap and the new operator is only used once.
Because you reduce the dynamic space allocation requirement, less storage is taken
from the heap. You may gain other benefits such as a reduction in page faults.
Because there are fewer calls to the new operator, function call overhead is reduced
as well.

82 ILE C/C++ Programmer’s Guide

Note: If you allocate space by incrementing pointers, you must guarantee the
proper alignment when you allocate pointers (or aggregates which can
contain pointers) because pointers require 16-byte alignments. There is a
performance degradation for data types such as float if they are not
allocated on their natural boundaries because these data types have a
natural alignment of word or doubleword.

Arranging Variables to Reduce Padding

Reducing space wasted on padding by rearranging variables is another way to
reduce your program’s space requirement.

With the exception of packed decimal data types, variables are padded the same in
both C and C++:

* A char type variable takes one byte

* A short type variable takes 2 bytes

* An int type variable takes 4 bytes

* A Tong type variable takes 4 bytes

* A Tonglong type variable takes 8 bytes
* A float type variable takes 4 bytes

* A double type variable takes 8 bytes

* A pointer takes 16 bytes

A DecimalT template class object takes 1 to 16 bytes
A C packed decimal type variable can be 1-32 bytes in size.
A C++ packed decimal type variable can be 1-16 bytes in size.

By rearranging variables, wasted space created by padding can be minimized, as
shown in [Figure 50 on page 84

Chapter 6. Improving Run-Time Performance 83

class OrderT
{
float value; // Four bytes.
char flagl; // One byte plus one byte.
short num; // Two bytes.
char flag2; // One byte plus three bytes.
1

orderT;
class ItemT

{

char *name; // 16 bytes.

int number; // 4 bytes plus 12 bytes.
char *address; // 16 bytes.

double value; // 8 bytes plus 8 bytes.
char *next; // 16 bytes.

short rating; // 2 bytes plus 14 bytes.
char *previous; // 16 bytes.
_DecimalT<25,5> tot_order; // 13 bytes plus 3 bytes.
int quantity; // 4 bytes.
_DecimalT<12,5> unit_price; // 7 bytes plus 5 bytes.
char *title; // 16 bytes.

char flag; // 1 byte plus 15 bytes.

1
itemT;

Note: The structure of the ItemT class takes 176 bytes, of which 57 bytes are used for
padding.

The ItemT class can be rearranged as:

class ItemT

{

char *name; // 16 bytes
char *address; // 16 bytes
char *next; // 16 bytes
char *previous; // 16 bytes
char *title; // 16 bytes
double value; // 8 bytes
int quantity; // 4 bytes
int number; // 4 bytes
short rating; // 2 bytes
char flag; // 1 byte
_DecimalT<25,5> tot_order; // 13 bytes
_DecimalT<12,5> unit_price; // 7 bytes plus 9 bytes

itemT;

Note: After rearrangement, the ItemTclass takes only 128 bytes, with 9 bytes for padding.
The saving of space is even more substantial when you are rearranging arrays of
similar structure type.

Figure 50. Example of Minimizing Padding by Rearranging Variables

As a general rule, the space used for padding can be minimized if 16-byte
variables are declared first, 8-byte variables are declared second, 4 byte variables
are declared third, 2-byte variables are declared fourth, and 1-byte variables are
declared fifth. DecimalT template class objects should be declared last, after all
other variables have been declared. The same rule can be applied to structure or
class definitions.

To show the layout (including padding) of module structures, in both packed and
normal alignment, use either the *AGR or the *STRUCREF compiler option.

84 ILE C/C++ Programmer’s Guide

Note: *AGR, which gives a map of all structures, overrides *STRUCREF, which
gives a map of referenced structures.

Removing Observability

A module has observability when it contains data that allows it to be changed
without being compiled again. Two types of data can make a module observable:

Create Data This data is necessary to translate the code into machine
instructions. The object must have this data before you can change
the optimization level. It is represented by the *CRTDTA value on
the RMVOBS parameter of the Change Program (CHGPGM)
command.

Debug Data This data enables an object to be debugged. It is represented by the
*DBGDTA value on the RMVOBS parameter of the CHGPGM
command.

The addition of these types of data increases the size of the object. Consequently,
you may at some point want to remove the data in order to reduce object size.
However, once the data is removed, so is the object’s observability. To regain it,
you must recompile the source and re-create the program.

To remove either kind of data from a program or module, use the CHGMOD or
the CHGPGM command. Again, once you have removed the data, it is not possible
to change the object in any way unless you re-create it. Therefore, ensure that you
have access to all source required to create the program, or that you have a
comparable program object with create data.

Compressing Objects

The Create Data (*CRTDTA) value associated with an ILE program or module may
make up more than half of the object’s size. By removing or compressing this data,
you reduce the secondary storage requirements for your programs significantly.

An alternative is to compress the object through using the Compress Object
(CPROB]J) command. A compressed object takes up less system storage than an
uncompressed one. When the compressed program is called, the part of the object
containing the executable code is automatically decompressed. You can also
decompress an object by using the Decompress Object (DCPOBJ) command.

Optimizing Use of Activation Groups

Using activation groups can impact performance.

Calling Functions in Other Activation Groups

Within the same job, calling a function that runs in a different activation group
degrades the performance of the call significantly (the call takes approximately
twice as long).

If a service program was created to run in a named activation group (using the
ACTGRP(name) parameter of the CRTSRVPGM command) then any calls to that
function from a program or service program would be calling across an activation
group and would therefore be slower. Sometimes it makes sense to run programs or
service programs in other activations groups (for storage isolation, exception
handling) but it should be noted that call-performance suffers in that arrangement.

Chapter 6. Improving Run-Time Performance 85

Reducing Program Startup Time

When a new ILE program is first called, the system needs to perform some
initialization to prepare the program to run. Part of this initialization requires
creating an activation group for all of the program storage, resolving all service
programs bound to the program, getting program arguments and so on. Several
recommendations for improving start-up time can be drawn from these
initialization steps:

* Reduce the use of global variables.

* Reduce the number of service programs bound to the program. The more service
programs used by an ILE program, the more time is required to start up the
program. It is often better to have a few large service programs than many small
ones. For example, the C run-time libraries comprise a small number of service
programs.

Minimizing Use of Virtual Functions

There is a performance impact if you use virtual functions because virtual
functions are compiled to be indirect calls, which are slower than direct calls. You
may be able to minimize this performance impact depending on your program
design by using a minimum number of parameters on the virtual functions.

Choosing Compiler Options to Optimize for Speed or Size

86

There are several ways to improve compile-time performance. These include both
front end and back end compile-time activities.

[Table 6 on page 87 describes different compiler options to make your program run
faster, and to make your compiled program smaller. Note that sometimes you have
to decide which is more important to you, program size or program speed. In
some cases optimizing for one aspect means the other suffers.

Optimization is the process through which the system looks for processing shortcuts
that reduce the amount of system resources necessary to produce output.
Processing shortcuts are translated into machine code, allowing the procedures in a
module to run more efficiently. A highly optimized program or service program
should run faster than it would without optimization.

To control the level of optimization, use the OPTIMIZE option on the Create Module
and Create Bound Program commands. Changing the desired optimization level
requires recompiling your source code. Changing the optimization of a module can
also be accomplished through a Change Module (CHGMOD) command.

Note: You cannot use the Change Module (CHGMOD) command to change the
optimization level without recompiling your source code.

You should be aware of the following limitations when working with optimized
code:

* In general, the higher the optimizing request, the longer it takes to create an
object.

* At higher levels of optimization, the values of fields may not be accurate when
they are displayed in a debug session, or after the program recovers from an
exception.

ILE C/C++ Programmer’s Guide

¢ Optimized code may have altered breakpoints and step locations used by the
source debugger because the optimization changes may rearrange or eliminate

some statements.

To circumvent this restriction while debugging, you can lower the optimization
level of a module to display fields accurately as you debug a program, and then
raise the level again afterwards, to improve the program efficiency as you get

the program ready for production.

Use the guidelines in except where they are contradicted. Intrinsic
functions may improve performance, but they increase the size of your module.

Table 6. Compiler Options for Performance

Option

Optimize for
Speed

Optimize for
Size

OPTIMIZE 10 //Default value
OPTIMIZE 20
OPTIMIZE 30
OPTIMIZE 40

Turns on optimization.

Yes

Yes

INLINE (*OFF)

Turns off inlining. May reduce module size, especially if the
inlined functions consist of small pieces of code.

Yes

INLINE(*ON)

Turns on inlining. Saves many function calls when a
function is called in a few places but executed many times.

Yes

DBGVIEW (*NONE)

Does not generate debug information, which would increase
module size.

Yes

Setting Run-Time Limits

¢ The maximum amount of storage of any single variable (such as a string or

array) is 16 773 104 bytes

¢ The maximum length of a command passed to the system function is 32 702

bytes

¢ The maximum size of dynamic heap storage is 4 gigabytes

A very large memory allocation may cause a system crash if there is insufficient
auxiliary storage on your system. A 4-gigabtye memory allocation requires more
than 4 gigabytes of available DASD. The iSeries Work System Status
(WRKSYSSTS) command shows auxiliary storage usage.

The maximum size of a single heap allocation is 16 711 568 bytes

The maximum auto storage is 16 MB and there is a recursion limit of
approximately 21743 levels deep

87

Chapter 6. Improving Run-Time Performance

88 ILE C/C++ Programmer’s Guide

Chapter 7. Example: Creating an ILE C Application

The example in this section demonstrates some typical steps in creating a sample

ILE C application.

The application is a small transaction-processing program that takes item names,
price, and quantity as input. As output, the application displays the total cost of

the items on the screen and updates an audit trail of the transaction.

This chapter describes, for the sample application, the following:

Process flow

ILE activation group
Resource requirements
Task summary
Step-by-step instructions
Source code

Process Flow

Session Input

l

CL CMD Program
T1520CM1

CL Program
T1520CL1

h 4
ILE C/400 Program
T1520PG1

'

!

Session
Qutput

Audit File
T1520DD1

Figure 51. Sample Application: High-Level Input/Processing/Output Flow

Figare 51 shows:

© Copyright IBM Corp. 1993, 2004

90

Session input
Data entered during a terminal session:
* Name of the item being ordered
* Price per unit

* Quantity of units being ordered

CL CMD Program T1520CM1
A developer-created CL command that accepts user input and passes it to
CL Program T1520CL1.

CL Program T1520CL1
A CL program that processes the input, and passes it to ILE C/400
Program T1520PG1.

ILE C/400 Program T1520PG1
An ILE C program that processes the input and directs output to the user’s
terminal and to an externally described file. The ILE C program consists of
two modules: T1520IC1 and T1520IC2, as shown in [Figure 52 on page 91|
Module T1520IC1 provides the user entry procedure main(), which calls
the calc_and_format() procedure.

Service Program T1520SP1
An ILE service program that makes the write_audit trail() procedure
available for a program to import, as shown in [Figure 52 on page 91}

Service Program T1520SP2
An ILE service program that makes the tax rate data item available for a
program to import, as shown in [Figure 52 on page 91|

Session Output
The following appears on the screen:

* A statement: " (Quantity of units being ordered) (Name of item being
ordered) plus tax = (Calculated cost to user)"

* A prompt: "Press ENTER to end terminal session."
Audit File T1520DD1
A log that is updated with each transaction. The DDS source, shown in

[Figure 53 on page 97} defines the data fields and relationships (that is,
layout) of the audit file.

ILE C/C++ Programmer’s Guide

ILE Activation Group

_~—Activation Group ———————-————-———————————- ~

/ N

Program T1520PG1 \

Module T1520I1C1 Module T1520I1C2
{ main() W { calc_and_format()w

Module T15201C3 Module T15201C4
{ write_audit_trail() W { taxrate W

! I
‘ \
‘ \
‘ \
‘ \
‘ \
‘ \
| |
! [
| |
| Service Program T1520SP1 Service Program T1520SP2 |
‘ \
‘ \
‘ \
‘ \
‘ \
i |
! I

Figure 52. ILE Activation Group of the Sample Application

When the CL Command program calls the CL program, all the resources necessary
to run these programs are allocated in the default activation group.

When the CL program calls the ILE C program, a new activation group is started,
as shown in because the ILE C program is created with the

ACTGRP(*NEW) parameter. The ILE C service programs are also activated in this
new activation group because they are created with the ACTGRP (*CALLER)
parameter.

In other words, the ILE C program and ILE C service programs are activated
within one activation group because the programs are developed as one
cooperative application.

Note: To isolate programs from other programs running in the same job you can
select different activation groups. For example, a complete customer solution
may be provided by integrating software packages from four different
vendors. Different activation groups ease the integration by isolating the
resources associated with each vendor package.

Chapter 7. Example: Creating an ILE C Application 91

Resource Requirements

To create the sample application, you need to create the following resources:

* A binding directory for the ILE C application modules and service programs

e Source code for:

Data Description Specification (DDS) [T1520DD1ffor the output file.

CL Program |l 1520CL1|

CL CMD Program |T1520CM1|

ILE C/400 Program T1520PG1 modules |l 15201C1| and |T15201C2|

Service program T15205P1 module [I'15201C3[and its binder language

Service program T15205P2 module [I15201C4{and its binder language
QASRVSRC

Note: This example is for illustration purposes. It is not necessary to create a
binding directory for an ILE C program of this size. You might not want to
break up ILE C service programs by data and function as shown.

Task Summary

92

lists the tasks you must perform to create the sample ILE application. Each
task number is linked to the corresponding procedure step. Each component name
is linked to the figure that contains its source code.

Table 7. Summary of Tasks Required to Create Sample ILE Application

calc_and_format (), which completes the tax calculation by:

* Receiving arguments from module T1520IC1

* Importing the tax rate data item from an ILE C service
program

Note: The function calc_and_format() also formats the total
cost.

Task Component
Create the physical file to contain the audit log. The DDS source |[I'1520DD1
defines the fields for the audit file.
Create the CL program that passes required parameters to the 1520CL1
ILE C program T1520PG1.
Create the CL command prompt that collects data from the 1520CM1
user’s terminal session.
El Create the module that provides the UEP (main() function), 1520IC1
which:
* Receives the user input from the CL program T1520CL1
+ Calls calc_and_format () function in module T1520IC2, which:
— Calculates an item’s total cost
— Calls the write_audit_trail() function in module T1520I1C3
Create the module that provides the called function 15201C2

Create the module that provides the write_audit_trail()
function. This module creates the ILE C service program
T1520SP1.

1520IC3

Create the module that exports the tax rate data. This module
creates the ILE C service program T1520SP2.

15201C4

ILE C/C++ Programmer’s Guide

Table 7. Summary of Tasks Required to Create Sample ILE Application (continued)

Task Component

Create a source physical file QSRVSRC that contains the binder QSRVSRC
language to export the procedure write_audit_trail from ILE
Service Program T1520SP1.

2 Create the source physical file QASRVSRC that contains the binder |[[QASRVSR(
language to export the data item taxratefrom ILE service
program T1520SP2.

Create the binding directory that contains the service programs | T1520BD1
T1520SP1 and T1520SP2 and add the service program names to
the directory.

Create the ILE C service program T1520SP1 from: T15ZOIC3!
* Module T15201C3, which exports the tax rate data SRVSRC

* The physical file (QSRVSRC), which contains the binder
language source

Create the ILE C service program T1520SP2 from: T15201C4!

* Module T15201C4, which exports the procedure SRVSRC
write_audit_trail.

* The physical file (QASRVSRC), which contains the binder
language source

Create the ILE C program T1520PG1 from the following T1520IC1
components: [TC1520IC
e T1520IC1
+ T15201IC2

Test the program by running it.

Notes:

1. A tool is provided in the QUSRTOOL library to help generate the binder language for
one or more modules. See member TBNINFO in the file QUSRTOOL /QATTINFO.

Instructions to Create the Sample Application

1. Create the physical file T1520DD1, which contains the audit log entries, by
entering the following command:

CRTPF FILE(MYLIB/T1520DD1) SRCFILE(QCPPLE/QADDSSRC) MAXMBRS (*NOMAX)

Note: [Figure 53 on page 97|shows the source code in T1520DD1.

2. Create the CL program T1520CL1, which passes parameters to the ILE C
program T1520PG1 by entering the following command:

CRTCLPGM PGM(MYLIB/T1520CL1) SRCFILE(QCPPLE/QACLSRC)

Note: [Figure 54 on page 97|shows the source code in T1520CL1.

3. Create the CL command prompt T1520CM1, which collects data for item name,
price, and quantity by entering the following command:

CRTCMD CMD(MYLIB/T1520CM1) PGM(MYLIB/T1520CL1) SRCFILE(QCPPLE/QACMDSRC)

Note: [Figure 55 on page 98|shows the source code in T1520CM1.

4. Create the module T1520IC1, which provides the main() function by entering
the following command:

CRTCMOD MODULE(MYLIB/T1520IC1) SRCFILE(QCPPLE/Q CSRC) OUTPUT(*PRINT) DBGVIEW(*ALL)

Chapter 7. Example: Creating an ILE C Application 93

94

Notes:
+ [Figure 56 on page 99|shows the source code in T15201C1.

* OUTPUT (*PRINT) specifies that you want a compiler listing.

* The parameter DBGVIEW(*ALL) specifies that you want a root source view and
a listing view, along with debug data, to debug this module. See
[“Working with Source Debug Sessions,” on page 125 for information on
debug views and debug data.

. Create the module T1520IC2, which calculates the tax and formats the total cost

for output, by entering the following command:

CRTCMOD MODULE (MYLIB/T15201C2) SRCFILE(QCPPLE/QACSRC) OUTPUT(*PRINT)
DBGVIEW (*ALL)

Notes:

Figure 57 on page 101|shows the source code in T15201C2.

* DBGVIEW(*ALL) specifies that you want a root source view and a listing view,
along with debug data to debug this module.

. Create the module T1520IC3, which updates the audit trail in audit file

T1520DD1, by entering the following command:

CRTCMOD MODULE(MYLIB/T1520IC3) SRCFILE(QCPPLE/QACSRC)
OUTPUT (*PRINT) DBGVIEW(*SOURCE) OPTION (*SHOWUSR)

Notes:
+ [Figure 58 on page 102|shows the source code in T15201C3.

* The DBGVIEW(*SOURCE) OPTION(*SHOWUSR) parameters specifies that you want
an include view containing the root source member, user include files, and
debug data to debug this module.

* The OPTION(*SHOWUSR) parameter expands the type definitions generated by
the compiler from the DDS source file MYLIB/T1520DD1, as specified on the
#pragma mapinc directive, into the compiler listing and the include debug
view.

. Create the module T15201C4, which exports the tax rate data, by entering the

following command:

CRTCMOD MODULE(MYLIB/T1520IC4) SRCFILE(QCPPLE/QACSRC) OUTPUT(*PRINT)
OPTION(*XREF) DBGVIEW(*SOURCE)

Notes:
« |Figure 59 on page 103[shows the source code in T15201C4.

* The OPTION(*XREF) parameter generates a cross reference table containing the
list of identifiers in the source code with the numbers of the lines in which
they appear. The table provides the class, length and type of the variable
taxrate. The class is an external definition. The length is 2. The type is a
constant decimal(2,2). The use of this option in this example is for
illustrative purposes. Typically you use this option when there are several
variable references or executable statements.

* The DBGVIEW(*SOURCE) parameter creates a root source view and debug data
to debug this module. If you do not specify DBGVIEW(*SOURCE), you can
debug the modules that reference taxrate, but you cannot display taxrate
during that debug session nor can you debug this module that defines
taxrate.

. Create a source physical file QSRVSRC, which contains the binder language to

export the procedure write_audit_trail() from ILE Service Program T1520SP1,
by entering the following command :

ILE C/C++ Programmer’s Guide

CRTSRCPF FILE(MYLIB/QSRVSRC) MBR(T1520SP1)

Note: [Figure 60 on page 104|shows the source code in MYLIB/QSRVSRC.

9. Create the source physical file QASRVSRC, which contains the binder language to
export the data item taxrate, from ILE service program T1520SP2, by entering
the following command:

CRTSRCPF FILE(MYLIB/QASRVSRC) MBR(T1520SP2)

Note: [Figure 61 on page 104/shows the source code in MYLIB/QASRVSRC.

10. Create the binding directory T1520BD1 in library MYLIB and add the two
service program names (T1520SP1 and T1520SP2) to it.

a. To create the binding directory, enter the following command:
CRTBNDDIR BNDDIR(MYLIB/T1520BD1)
b. To add the service program names, enter the following commands:

ADDBNDDIRE BNDDIR(MYLIB/T1520BD1) OBJ((MYLIB/T1520SP1 *SRVPGM))
ADDBNDDIRE BNDDIR(MYLIB/T1520BD1) OBJ((MYLIB/T1520SP2 *SRVPGM))

Note: The service program names T1520SP1 and T1520SP2 can be added
even though the service program objects do not yet exist.

Note: These instructions assume that the library MYLIB already exists.
11. Create the ILE C service program T1520SP1 from module T1520IC3 and the
binder source language in QSRVSRC by entering the following command:

CRTSRVPGM SRVPGM(MYLIB/T1520SP1) MODULE(MYLIB/T1520IC3 MYLIB/T15201C4)
SRCFILE(MYLIB/QSRVSRC) SRCMBR(*SRVPGM) BNDDIR(MYLIB/T1520BD1) DETAIL(*FULL)

Notes:

+ [Figure 58 on page 102|shows the source code in T15201C3 and
page 103[shows the source code in T15201C4.

* Service program T1520SP1 needs both module T15201C3 and module
T15201C4 because it exports the procedure write_audit_trail to satisfy an
import request for function write_audit_trail in module T1520IC1, and the
write_audit_trail procedure uses the data item taxrate, which is defined
in module T1520IC4.

12. Create the ILE C service program T1520SP2 from module T15201C4 and the
binder source language in QASRVSRC by entering the following command:

CRTSRVPGM SRVPGM(MYLIB/T1520SP2) MODULE(MYLIB/T15201C4) SRCFILE(MYLIB/QASRVSRC)
SRCMBR(*SRVPGM) BNDDIR(MYLIB/T1520BD1) DETAIL(*FULL)

Note: Service program T1520SP2 exports the data item taxrate to satisfy an
import request for variable taxrate in module T15201C2.
13. Create the ILE C program T1520PG1 from components T1520IC1 and T15201C2
by entering the following command:

CRTPGM PGM(MYLIB/T1520PG1) MODULE(MYLIB/T1520IC1 MYLIB/T1520IC2) ENTMOD(*ONLY)
BNDDIR(MYLIB/T1520BD1) DETAIL(*FULL)

Notes:
* [Figure 56 on page 99 shows the source code in T1520IC1 and
age 101 shows the source code in T15201IC2.

* Module T1520IC1 contains an import procedure request named
write_audit_trail, which matches an export request in T1520SP1, using
symbol write_audit_trail. The binder matches:

Chapter 7. Example: Creating an ILE C Application 95

— The import request from T1520IC1 for the procedure write_audit_trail
with the corresponding export from T1520SP1

— The import request from T15201C2 for the data item taxrate with the
corresponding export from T1520SP2

* The ENTMOD (*ONLY) parameter specifies that only one module from the list
of modules can have a PEP. An error is issued if more than one module is
found to have a PEP. If the ENTMOD (*FIRST) parameter is used, the first
module found from a list of modules that has a PEP is selected as the PEP.
All other modules with PEPs are ignored.

* The default ACTGRP (*NEW) parameter is used to define a new activation
group. The program T1520PG1 is associated with a new activation group.
Service programs T1520SP1 and T1520SP2 were created with activation
group *CALLER. These service programs become part of the callers activation
group using the resources of one activation group for the purposes of
developing one cooperative program. Service program T1520SP1 and
T1520SP2 are bound to the program being activated. These service programs
are also activated as part of the dynamic call processing.

14. Run the program T1520PGI:

Note: Ensure that the library MYLIB is on the LIBL library list.
a. Enter the command T1520CM1 and press F4 (Prompt).
b. As you are prompted by T1520CM, type the following data:

Hammers
1.98
5000
Nails
0.25
2000

The output is:

5000 HAMMERS plus tax = $11,385.00
Press ENTER to end terminal session.

>
2000 NAILS plus tax = $575.00
Press ENTER to end terminal session.

The physical file T1520DD1 is updated with the following data:

SMITHE HAMMERS 0000000198500015 $11,385.00072893
SMITHE NAILS 0000000025200015 $575.00072893

Note: Each entry is identified with the user’s ID. In this case, SMITHE was
the user.

Source Code Samples

The figures in this section contain the source code used to create the ILE sample
application.

Source Code for an Audit Log File

Audit file T1520DD1 is shown in [Figure 51 on page 89 The DDS source defines the
fields for the audit file.

96 ILE C/C++ Programmer’s Guide

R T152
USER
ITEM
PRIC
QTY
TXRA
TOTA
DATE

K USER

Figure 53. DDS

Source Code Pass Terminal Session Input to an ILE Program

CL program T
parameters to

PGM

ENDP

ODDIR

10 COLHDG('User")

20 COLHDG('Item name')
E 10S 2 COLHDG('Unit price')

45 COLHDG ('Number of items')
TE 2S 2 COLHDG('Current tax rate')
L 21 COLHDG('Total cost')

6 COLHDG('Transaction date')

Source for Audit File T1520DD1

1520CL1 is shown in [Figure 51 on page 89} It passes required
the ILE C program T1520PG1.

PARM(&ITEMIN &PRICE &QUANTITY)
DCL VAR (&USER) TYPE (xCHAR) LEN(10)
DCL VAR(&ITEMIN) TYPE(*CHAR) LEN(20)
DCL VAR(&ITEMOUT) TYPE(%CHAR) LEN(21)
DCL VAR (&PRICE) TYPE(*DEC) LEN(10 2)
DCL VAR(&QUANTITY) TYPE(+DEC) LEN(2 0)
DCL VAR (&NULL) TYPE (*CHAR) LEN(1) VALUE(X'00')

/* ADD NULL TERMINATOR FOR THE ILE C PROGRAM
CHGVAR VAR(&ITEMOUT) VALUE(&ITEMIN *TCAT &NULL)
/* GET THE USERID FOR THE AUDIT TRAIL «/H
RTVJOBA USER(&USER)

/* ENSURE AUDIT RECORDS WRITTEN TO CORRECT AUDIT FILE MEMBER */

*/

OVRDBF FILE(T1520DD1) TOFILE(*LIBL/T1520DD1) +
MBR(T1520DD1) OVRSCOPE(*CALLLVL) SHARE(*NO)
CALL PGM(T1520PG1) PARM(&ITEMOUT &PRICE &QUANTITY +
&USER)
DLTOVR FILE(*ALL)
GM

Figure 54. T1520CL1 — CL Source to Pass Variables to an ILE C Program

Notes:
1. This progr

am passes (by reference) the CL variables for item name, price,

quantity, and user ID to an ILE C program T1520PG1. Variables in a CL program

are passed

by reference to allow an ILE C program to change the contents in

the CL program.

The variable ITEMOUT is null-terminated in the CL program T1520CL1. Passing

CL variables passed from CL to ILE C are not automatically null-terminated on
a_compiled CL call. See [Chapter 23, “Using ILE C/C++ Call Conventions,” on|
for information about null-terminated strings for compiled CL calls
and command line CL calls.

audit trail.

Source Code to
Data

The Retrieve Job Attributes (RTVJOBA) command obtains the user ID for the

Define a CL Command to Collect Session

CL CMD program T1520CM1 is shown in [Figure 51 on page 89|

This develope

r-defined command:

Chapter 7. Example: Creating an ILE C Application

97

* Prompts the user to enter, in the following order: Item name, Unit price, and
Number of items

* Stores the input data in the following keyword parameters: ITEM, PRICE, and
QUANTITY.

Note: These keyword parameters were defined in the DDS file|T1520DD1}

CMD PROMPT (' CALCULATE TOTAL COST')
PARM KWD(ITEM) TYPE(*CHAR) LEN(20) RSTD(*NO) +

MIN(1) ALWUNPRT(*NO) PROMPT('Item name' 1)
PARM KWD(PRICE) TYPE(*DEC) LEN(10 2) RSTD(*NO) +

RANGE(0.01 99999999.99) MIN(1) +
ALWUNPRT (*YES) PROMPT('Unit price' 2)
PARM KWD (QUANTITY) TYPE(*INT2) RSTD(*NO) RANGE(1 +
9999) MIN(1) ALWUNPRT(*YES) +
PROMPT (' Number of items' 3)

Figure 55. T1520CM1 — CL Command Source to Receive Input Data

Source Code for a User Entry Procedure (UEP)
In the source code for T15201C1, the main() function:
* Receives the user ID, item name, quantity, and price from a CL program
+ Calls calc_and_format () function in module T15201C2, which:
— Calculates an item’s total cost

— Calls the write_audit_trail() function from module T15201C2, which writes
the transaction to an audit file

98 ILE C/C++ Programmer’s Guide

/* This program demonstrates how to use multiple modules, service */
/* programs and a binding directory. This program accepts a user ID, */
/* item name, quantity, and price, calculates the total cost, and */
/* writes an audit trail of the transaction. */
#include <stdio.h>

#include <stdlib.h>

#include <string.h.>

#include <decimal.h>

int calc_and_format (decimal(10,2),

short int,
char(]);
void write_audit_trail (char[],
char[],
decimal(10,2),
short int,
char[]);
int main(int argc, char xargv[])
{
/* Incoming arguments from a CL program have been verified by */
/* the *CMD and null ended within the CL program. /A
char *xuser_id;
char *jtem_name;
short int *quantity;
decimal (10,2) =*price;
char formatted_cost[22];
/* Incoming arguments are all pointers. ~/ H
item_name = argv[1];
price = (decimal (10, 2) *) argv[2];
quantity = (short x) argv[3];
user_id = argv[4];

/* Call an ILE C function that returns a formatted cost. =/]
/* Function calc_and_format returns true if successful. x/
if (calc_and_format (*price, *quantity, formatted cost))

{
write audit_trail (user_id, B
item_name,
*price,
*quantity,
formatted_cost);
printf("\n%d %s plus tax = %-s\n", =*quantity,
item_name,
formatted cost);

}

else

{
printf("Calculation failed\n");

}

return 0;

}

Figure 56. ILE C Source to Call Functions in Other Modules

Notes:

1. The main() function in this module is the user entry procedure (UEP), which is
the target of a dynamic program call from the CL program T1520CL1. The UEP
receives control from the program entry procedure (PEP). This module has a
PEP that is generated by the ILE C compiler during compilation. The PEP is an
entry point for the ILE C/C++ program on a dynamic program call from the
CL program T1520CL1. The PEP is shown in the call stack as _C_pep.

2. The main() function in this module receives the incoming arguments from the
CL program T1520CL1 that are verified by the CL command prompt
T1520CM1.

Chapter 7. Example: Creating an ILE C Application 99

3. All the incoming arguments are pointers. The variable item_name is null
terminated within the CL program T1520CL1.

4. The main() function in this module calls calc_and_format in module T1520IC2
to return a formatted cost. If the calc_and_format returns successful a record is
written to the audit trail by write_audit_trail in the service program
T1520SP1.

5. The function write_audit_trail is not defined in this module (T1520IC1), so it
must be imported.

Source Code to Calculate Tax and Format Cost for Output

Module T15201C2 is shown in [Figure 52 on page 91} It provides the
calc_and_format() function.

100 ILE C/C++ Programmer’s Guide

/* This function calculates the tax and formats the total cost. The */
/* function calc_and_format() returns 1 if successful and 0 if it fails. */
#include <stdio.h>

#include <string.h>

#include <decimal.h>

/* Tax rate is imported from the service program T1520SP2. */I]
const extern decimal (2,2) taxrate;

int calc_and_format (decimal (10,2) price,

short int quantity,
char formatted cost[22])
{
decimal (17,4) hold_result;
char hold_formatted cost[22];
int i,33
memset (formatted cost, ' ', 21);
hold_result = (decimal(4,0))quantity =
price * (1.00D+taxrate); /* Calculate the total cost. =/
if (hold_result < 0.01D || hold result > 1989800999801.02D)
{

printf("calc out of range:%17.4D(17,4)\n", hold_result);
return(0);
}
/* Format the total cost. */
sprintf(hold formatted cost, "%21.2D(17,4)", hold_result);
J=0;
for (i=0; i<22; ++1)

if (hold_formatted cost[i] != ' ' &
hold formatted cost[i] != '0")

hold formatted cost[j] = '$';

break;
}
Jjo= i
1
for (i=j=21; i>=0; --i)
{
if (j < 0) return(0);
if (hold_formatted cost[i] == '$"')
{
formatted _cost[j] = hold_formatted cost[i];
break;
}
if (i<16 & !((i-2)%3))
{
formatted cost[j] = ',';
--Js

}
formatted_cost[j] = hold_formatted cost[i];
--Js
1
/* End of for loop, 21->0. */
return(1);
1

Figure 57. Sample ILE C Source to Calculate Tax and Format Cost for Output

Notes:

1. The function calc_and_format in this module calculates and formats the total
cost. To do the calculation, the data item taxrate is imported from service
program T1520SP2. This data item must be imported because it is not defined in
this module (T15201C2).

Chapter 7. Example: Creating an ILE C Application 101

Source Code to Write an Audit Trall

The function write_audit_trail in module T15201C3 writes the audit trail for the
ILE C program T1520PG1. Module T15201C3 is used to create service program
T1520SP1, shown in|Figure 52 on page 91}

Use the following source:

/* This function writes an audit trail. To write the audit trail the =/
/* file field structure is retrieved from the DDS file T1520DD1 and =/
/* the taxrate data item is imported from service program T1520SP2. =/
/* Retrieves the file field structure. */
#pragma mapinc("myinc", "MYLIB/T1520DD1(*all)", "both", "p z","")
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <time.h>

#include <decimal.h>

#include <recio.h>

#include <xxcvt.h>

/* These includes are for the call to QWCCVTDT API to get the system */Iﬂ
/* date to be used in the audit trail. */
#include <QSYSINC/H/QWCCVTDT>

#include <QSYSINC/H/QUSEC>

/* DDS mapping of the audit file, T1520DD1. */Iﬂ
#include "myinc"
/* Tax rate is imported from service program T1520SP2. */ |
const extern decimal (2,2) taxrate;
void write audit trail (char user_id[10],

char item_name[],

decimal (10,2) price,

short int quantity,

char formatted_cost[22])
{

char char_item_name[21];
char char_price[11];
char temp_char_price[11];
char char_quantity[4];
char char_date[6];
char char_taxrate[2];
/* Qus_EC_t is defined in QUSEC. */
Qus_EC_t errcode;
char get_date[16];
int i
double d;
/* File field structure is generated by the #pragma mapinc directive. */
MYLIB_T1520DD1_T1520DDIR_both t bufl;

_RFILE *fp;

/* Get the current date. */
errcode.Bytes_Provided = 0;
QWCCVTDT ("*CURRENT ", "", "«MDY ", get_date, &errcode);

memcpy (char_date, &(get_date[1]), 6);

Figure 58. ILE C Source to Write an Audit Trail (Part 1 of 2)

102 ILE C/C++ Programmer’s Guide

/* Loop through the item name and remove the null terminator. */
for (i=0; i<=20; i++)
{
if (item_name[i] == '\0') char_item_name[i] = ' ';
else char_item name[i] = item_name[i];
1
/* Convert packed to zoned for audit file. x/
d = price;
QXXDTOZ (char_price, 10, 2, d);
QXXITOZ (char_quantity, 4, 0, quantity);
d = taxrate;
QXXDTOZ (char_taxrate, 2, 2, d);
/* Set up buffer for write. */
memset (&bufl, ' ', sizeof(bufl));
memcpy (bufl1.USER, user_id, 10);
memcpy (bufl.ITEM, char_item name, 20);
memcpy (buf1.PRICE, char price, 11);
memcpy (buf1.QTY, char_quantity, 4);
memcpy (bufl.TXRATE, char_taxrate, 2);
memcpy (buf1.TOTAL, formatted cost, 21);
memcpy (bufl.DATE, char_date, 6);
if ((fp = _Ropen("MYLIB/T1520DD1", "ar+")) == NULL)

printf("Cannot open audit file\n");

1
_Rwrite(fp, (void *)&bufl, sizeof(bufl));
_Rclose(fp)s

}

Figure 58. ILE C Source to Write an Audit Trail (Part 2 of 2)

Notes:

1. This source requires two members, QUSEC and QWCCVTDT, that are in the
QSYSINC/H file. The QSYSINC library is automatically searched for system
include files as long as the OPTION(*STDINC) parameter (the default) is
specified on the CRTBNDC or CRTCMOD command.

2. The include name myinc is associated with the temporary source member
created by the compiler when it generates the type definitions for the #pragma
mapinc directive. See [Chapter 18, “Using Externally Described Files in al
[Program,” on page 225[for information on how to use the #pragma mapinc
directive.

3. To write the audit trail, the tax rate is imported from the service program
T1520SP2.

Source Code to Export Tax Rate Data
Module T15201C4 is used to create service program T1520SP2.

/* Export the tax rate data. */
#include <decimal.h>
const decimal (2,2) taxrate = .15D;

Figure 59. T15201C4 — ILE C Source to Export Tax Rate Data

Note: Because it is coded in a separate module, the data item taxrate can be
imported by both or either of the following:

* The calc_and_format function in service program T15201C2
e The write_audit_trail in T1520IC3.

Chapter 7. Example: Creating an ILE C Application 103

104

Binder Language to Export Tax Rate Data

STRPGMEXP PGMLVL (*CURRENT) EXPORT SYMBOL('taxrate')
ENDPGMEXP

Figure 60. Binder Language Source to Export Tax Rate Data

Notes:

1.

The Start Program Export (STRPGMEXP) command identifies the beginning of a
list of exports from the service program T1520SP1.

The Export Symbol (EXPORT) command identifies the symbol name taxrate to
be exported from the service program T1520SP1.

The symbol name taxrate, identified between the STRPGMEXP PGMLVL (*CURRENT)
and ENDPGMEXP pair, defines the public interface to the service program
T1520SP2. Only those procedures and data items exported from the module
objects making up the ILE C service program can be exported from this service
program.

The symbol name taxrate is enclosed in apostrophes to maintain its lowercase
format. Without apostrophes it is converted to uppercase characters. (The
binder would search for TAXRATE, which it would not find.)

The symbol name taxrate is also used to create a signature. The signature
validates the public interface to the service program T15205P2 at activation. This
ensures that the ILE C service program T15205P1 and the ILE C program
T1520PG1 can use service program T1520SP2 without being re-created.

Binder Language to Export the write-audit-trail Procedure

STRPGMEXP ~ PGMLVL(*CURRENT) EXPORT SYMBOL('write_audit_trail')
ENDPGMEXP

Figure 61. Binder Language Source to Export write_audit_trail Procedure

Notes:

1.

The Start Program Export (STRPGMEXP) command identifies the beginning of a
list of exports from the service program T1520SP2.

The Export Symbol (EXPORT) command identifies the symbol name
write_audit_trail to be exported from the service program T1520SP2.

The symbol name write_audit_trail, identified between the STRPGMEXP

PGMLVL (*CURRENT) and ENDPGMEXP pair, defines the public interface to the service
program T1520SP2. Only those procedures and data items exported from the
module objects making up the ILE C service program can be exported from this
service program. If you cannot control the public interface, run-time or
activation errors may occur.

The symbol name write_audit_trail is enclosed in apostrophes to maintain its
lowercase format. Without apostrophes it is converted to uppercase characters.
(The binder would search for WRITE_AUDIT_TRAIL, which it would not find.)

The symbol name write_audit_trail is also used to create a signature. The
signature validates the public interface to the service program T1520SP2 at
activation. This ensures that the ILE C service program T1520SP1 and the ILE C
program T1520PG1 can use service program T1520SP2 without being re-created.

ILE C/C++ Programmer’s Guide

Part 3. Debugging Programs

This part describes how to:

* |Use the ILE source debugger (its options, language syntax, and commands)|

+ |Bind a module with debug data into a program and create a listing view for|

debugging|

* [Prepare and compile your program to include debugging datal

* |Use debugging sessiong
* [Use breakpoints to aid debugging]

¢ [Use watches to aid debugging

* |Step through a program|

« |Debug variabled|

© Copyright IBM Corp. 1993, 2004 105

106 ILE C/C++ Programmer’s Guide

Chapter 8. The ILE Source Debugger

The ILE source debugger helps you locate programming errors in ILE C/C++
programs and service programs.

Before you can use the ILE source debugger, you must use one of the non-default
debug options (DBGVIEW) when you compile a source file. Once you set
breakpoints or other ILE source debugger options, you can start your debug
session and call the program.

This chapter describes:

+ |Debug data options|

* [Debug language syntax| and fits limitations|

* [Debug commands|

+ [Examples of data definitions to illustrate what can be done with the ILE source]
debugger and ILE C applications|

Debug Data Options

The type of debug data that can be associated with a module is referred to as a
debug view.

The storage requirements for a module or program vary somewhat, depending on
the type of debug data included. The debug options are listed below. Secondary
storage requirements increase as you work down the list:

1. DBGVIEW(*NONE) (No debug data)

2. DBGVIEW(*STMT) (Statement view)
3. DBGVIEW(*SOURCE) (Source view)
4. DBGVIEW(*LIST) (Listing view)

5. DBGVIEW(*ALL) (All views)

Debug Language Syntax

Limitations of the C debug expression grammar include:
¢ Type casts: Array and function designator type casts are prohibited.
* Function calls: Function calls cannot be used in debug expressions.

* Decimal types: Decimal types are supported for display only. They cannot be
used in debug expressions.

Precedence of operators and type conversion of mixed types conforms to the ISO C
standard. For more information, see WebSphere Development Studio: ILE C/C++
Language Reference.

Limitations of the Debug Language Syntax

The ILE source debugger has the following limitations:

* Function calls cannot be used in debug expressions. This is a limitation of the
debug expression grammar.

© Copyright IBM Corp. 1993, 2004 107

* Precedence of operators and type conversion of mixed types conform to the C
and C++ language standards.

* The maximum size of variables that can be displayed is 65535 characters:

— With the :c and :x formatting overrides, if no count is entered, the command
stops after one byte.

— With the :s formatting override, if no count is entered, the command stops
after 30 bytes or a NULL, whichever is encountered first.

— With the :f formatting override, if no count is entered, the command stops
after 1024 bytes or a NULL, whichever is encountered first.

¢ The maximum number of classes that can be inherited as virtual base classes in
a single compilation unit is 512.

Debug Commands

108

Many debug commands are available for use with the ILE source debugger.

For example, if you enter break 10 on the debug command line (and line 10 is a
debuggable statement), the debugger adds an unconditional breakpoint to line 10
of your source.

Notes:
1. If line 10 is a blank line or a comment statement, the debugger will give an
error.

2. If line 10 is not a debuggable statement, such as a typedef statement, it will set
the break point to the very next debuggable statement.

3. Pressing the F6 key (while the cursor is on a debuggable command line) sets or
clears a break point.

Debug data is created when you compile a module with one of the following
debug options:

e *STMT

* *SOURCE
e *LIST

e *ALL

The debug commands and their parameters are entered on the Debug command
line shown at the bottom of the Display Module Source display or the Evaluate
Expression display. They can be entered in uppercase, lowercase, or mixed case.

The online information describes the debug commands, and shows their allowed
abbreviations.

The debug commands are as follows:

ATTR Displays the attributes of variables. The attributes are the size and
type of the variable as recorded in the Debug Symbol table.

BREAK Permits you to enter either an unconditional or conditional job
breakpoint at a position in the program being tested. To enter a
conditional job breakpoint, enter BREAK line-number WHEN
expression.

CLEAR Removes conditional and unconditional breakpoints; removes one
or all active watch conditions.

ILE C/C++ Programmer’s Guide

DISPLAY

EQUATE

EVAL

QUAL

SET

STEP

TBREAK

THREAD

WATCH

FIND

up

DOWN

LEFT

RIGHT

TOP
BOTTOM
NEXT

PREVIOUS

Displays the names and definitions assigned by using the Equate
command. It also allows you to display a different source module
than the one that is currently shown on the Display Module Source
display. The module object must exist in the current program
object.

Assigns an expression, variable, or debug command to a name for
shorthand use.

Displays or changes the value of a variable; displays the value of
expressions, records, structures, or arrays.

Defines the scope of variables that appear in subsequent EVAL or
WATCH commands.

Changes debug options, such as the ability to update production
tiles; specifies whether find operations are to be case sensitive;
enables OPM source debug support.

Runs one or more statements of the procedure that is being
debugged.

Permits you to enter either an unconditional or conditional
breakpoint in the current thread in a position, in the program
being tested.

Allows you to either open the Work with Debugged Threads
display or change the current thread.

Requests a breakpoint when the contents of a specified storage
location is changed from its current value.

Searches in the module that is currently displayed for a specified
line number or string of text. The text search can be specified in a
forward or backward direction from the position of the cursor on
the displayed view text. If the cursor is not on the view text, the
search starts at the first position of the top line of text on the
current screen. When the string is successfully found, the cursor
will be positioned on the first character of the found string.

The last Find command that is entered can be repeated by using
the F16 Repeat Find key.

Moves the displayed window of source towards the beginning of
the view by the number of lines entered.

Moves the displayed window of source towards the end of the
view by the number of lines entered.

Moves the displayed window of source to the left by the number
of characters that are entered.

Moves the displayed window of source to the right by the number
of characters that are entered.

Positions the view to show the first line.
Positions the view to show the last line.

Positions the view to the next breakpoint in the source that is
currently displayed.

Positions the view to the previous breakpoint in the source that is
currently displayed.

Chapter 8. The ILE Source Debugger 109

HELP Shows the online help information for the available source
debugger commands.

Examples of Using Debug Expressions in ILE C Programs

This chapter provides examples of ILE C source code and the ILE debug
expressions that can be used to diagnose and correct programming errors.

In the examples in this chapter:
e The ILE C source code to be evaluated is presented in figures.

¢ Information shown in an ILE Source Debugger session is presented in screen
figures. Each screen shows the EVAL debug command and the information it
retrieves and displays.

Examples of Program Definitions and Corresponding Debug
Expressions

The ILE C source code in [Figure 62 on page 111] includes data definitions of
pointers, simple variables, structures, unions, and enumerations. To illustrate what
can be done with the ILE source debugger and ILE C applications, the
corresponding debug expressions and information are shown in the following
sections:

+ |“Evaluating Pointers to Find and Correct Errors” on page 113

* [“Evaluating Simple Expression to Find and Correct Errors” on page 115

+ |“Evaluating Bit Fields to Find and Correct Errors” on page 116

+ |“Evaluating Structures and Unions to Find and Correct Errors” on page 117}

+ |“Evaluating Enumerations to Find and Correct Errors” on page 118|

110 ILE C/C++ Programmer’s Guide

#include <stdio.h>
#include <decimal.h>
#include <pointer.h>
/*% POINTERS »*x/
_SYSPTR pSys;
_SPCPTR pSpace;
int (*fncptr) (void);
char *pcl;
char *pc2;
int *pil;
char arrl[] = "ABC";
/*% SIMPLE VARIABLES ==/
int il;
unsigned ul;
char cl;
float f1;
_Decimal(3,1) decl;
/*% STRUCTURES **/
struct {
int bl : 1;
int b4 : 4,
} bits;
struct x{
int x;
char *p;
}s
struct y{
int y;
struct x x;
}s
typedef struct
int z;
char *p;
bozs
zZ 273
z *pll;

/* Same
typedef struct c {
unsigned a;

char *b;
}ocs
c d;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*

/*

/*

/*

/*

/*

/*

System pointer x/
Space pointer */
Function pointer =/
Character pointerx/
Character pointerx/
Integer pointer =x/
Array */

*/
*/
*/
*/
*/

Integer

Unsigned Integer
Character

Float

Decimal

Bit fields */

*/

Tagged structure

with */
member */

Structure
structure

Structure typedefx/

Structure

*/

Structure

Structure

using typedef x/

typedef =/

using typedef =/

Figure 62. Example of ILE C Source Data Definitions (Part 1 of 2)

Chapter 8. The ILE Source Debugger

111

/%% UNIONS #+/

union u{ /* Union */
int x;
unsigned y;

}s

union u u; /* Variable using union */

union u *pU; /* Same */

/*% ENUMERATIONS *=/

enum number {one, two, three};

enum color {red,yellow,blue};

enum number number = one;

enum color color = blue;

/*% FUNCTION *x/

int ret100(void) { return 100;}

main(){
struct y y, *pY;
bits.bl = 1;
bits.b4 = 2;
il = ret100();
cl="'C";
fl = 100e2;
decl = 12.3;
pcl = &cl;
pil = &il;
d.a = 1;
pZZ = &zz;
pZZ->z=1;
pY = 8y;
pY->x.p=(char=)ay;
pU = &u;
pU->x=255;

number=color;

fncptr = &retl00;

pY->x.x=1; /* Set breakpoint here */
}

int main(void) {
return(0); }

Figure 62. Example of ILE C Source Data Definitions (Part 2 of 2)

112 ILE C/C++ Programmer’s Guide

Evaluating Pointers to Find and Correct Errors

A pointer type variable holds the address of a data object or a function. A pointer
can refer to an object of any one data type (except a bit field or a reference). A
pointer is classified as a scalar type, which means that it can hold only one value
at a time.

For information about using pointers in your programs, see:

+ |Chapter 22, “Using OS/400 pointers in a Program,” on page 353

» [“Using Pointers to Improve Performance” on page 78|

* WebSphere Development Studio: ILE C/C++ Language Reference

Use the EVAL debug command to display or change the value of a pointer variable
or array. Messages with multiple line responses launch the Evaluate Expression
display, which also shows a history of the debug commands entered and the
results from these commands. To return to the Display Module Source display,
press the Enter key. You can use the Enter key as a toggle switch between displays.

Note: Single-line responses are shown on the Display Module Source message line.

The following figures show examples of debug expressions for pointers.

4 N

Evaluate Expression
Previous debug expressions

>eval pcl

pcl = SPP:C0260900107C0000 Displaying pointers

>eval pc2=pcl

pc2=pcl = SPP:C0260900107C0000 Assigning pointers

>eval *pcl

*pcl = 'C' Dereferencing pointers
>eval &pcl

&pcl = SPP:C026090010400000 Taking an address
>eval *&pcl

*&pcl = SPP:(0260900107C0000 Can build expressions with

normal C precedence
>eval x(short *)pcl
*(short *)pcl = -15616 Casting
Bottom
Debug . . .

F3=Exit F9=Retrieve F12=Cancel F18=Command entry F19=Left F20=Right

Figure 63. Examples of Using Pointers in Debug Sessions, Screen 1

Chapter 8. The ILE Source Debugger 113

4 N

Evaluate Expression
Previous debug expressions
>eval arrl
arrl = SPP:C026090010700000 Unqualified arrays are treated
as pointers
>eval *arrl
*=arrl = 'A' Dereferencing applies the array type
(character in this example)
>eval *arrl:s
*arrl:s = "ABC" If the expression is an lvalue
you can override the formatting
>eval pcl=0
pcl=0 = SYP:*NULL Setting a pointer to null by assigning 0
>eval fncptr
fncptr = PRP:AOCDOOO4F0100000 Function pointers
>eval *pY->x.p
*pY->x.p = ' ' Using the arrow operator
Bottom
Debug . . .

F3=Exit F9=Retrieve F12=Cancel F18=Command entry F19=Left F20=Right

Figure 64. Examples of Using Pointers in Debug Sessions, Screen 2

114 1LE C/C++ Programmer’s Guide

Evaluating Simple Expression to Find and Correct Errors
Expressions are sequences of operators, operands, and punctuators that specify a
computation. The evaluation of expressions is based on the operators that the
expressions contain and the context in which they are used.

For information about using expressions and operators in your programs, see:

+ |Chapter 22, “Using OS/400 pointers in a Program,” on page 353
» |“Using BCD Macros to Port Coded Decimal Objects to ILE C++” on page 383|
» |Chapter 26, “Using Packed Decimal Data in a C Program,” on page 451|

* |Chapter 27, “Using Packed Decimal Data in a C++ Program,” on page 465]

* WebSphere Development Studio: ILE C/C++ Language Reference

Use the EVAL debug command to display or change the value of a simple
expression or operator. Messages with multiple line responses launch the Evaluate
Expression display, which also shows a history of the debug commands entered
and the results from these commands. To return to the Display Module Source
display, press the Enter key. You can use the Enter key as a toggle switch between
displays.

Note: Single-line responses are shown on the Display Module Source message line.

This following figure shows examples of debug expressions for simple operations
(for example, assignment, arithmetic, or relational operations).

7 . N\
Evaluate Expression

Previous debug expressions
>eval il==ul || il<ul

il==ul || il<ul = 0 Logical operations
>eval il++

il++ = 100 Unary operators occur in proper order
>eval il

il = 101 Increment has happened after il was used
>eval ++il

++il = 102 Increment has happened before il was used
>eval ul = -10

ul = -10 = 4294967286 Implicit conversions happen
>eval (int)ul

(int)ul = -10
>eval decl Decimal types are displayed but cannot

decl = 12.3 be used in expressions

Bottom

Debug . . .

F3=Exit F9=Retrieve F12=Cancel F18=Command entry F19=Left F20=Right

Figure 65. Examples of Simple Operations Used in Debug Expressions

Chapter 8. The ILE Source Debugger 115

Evaluating Bit Fields to Find and Correct Errors
Both C and C++ allow integer members to be stored into memory spaces smaller

than the compiler would ordinarily allow. These space-saving structure members
are called bit fields, and their width in bits can be explicitly declared. Bit fields are
used in programs that must force a data structure to correspond to a fixed
hardware representation and are unlikely to be portable.

For information about using bit fields, see:

+ |[“Choosing Data Types to Improve Performance” on page 67]

* WebSphere Development Studio: ILE C/C++ Language Reference

Use the EVAL debug command to display or change the value of a bit field.
Messages with multiple line responses launch the Evaluate Expression display,
which also shows a history of the debug commands entered and the results from
these commands. To return to the Display Module Source display, press the Enter
key. You can use the Enter key as a toggle switch between displays.

Note: Single-line responses are shown on the Display Module Source message line.

The following figure shows examples of debug expressions for bit fields.

4 ™

Evaluate Expression
Previous debug expressions

>eval bits You can display an entire structure
bits.bl =1

bits.b4 = 2

>eval bits.b4 = bits.bl You can work with a single member
bits.b4 = bits.bl =1

>eval bits.bl << 2 Bit fields are fully supported
bits.bl << 2 = 4

>eval bits.bl = bits.bl << 2 You can overflow, but no warning is
bits.bl = bits.bl << 2 =4 generated

>eval bits.bl

bits.bl = 0

Bottom
Debug . . .

F3=Exit F9=Retrieve F12=Cancel F18=Command entry F19=Left F20=Right

Figure 66. Examples of Using Bit Fields in Debug Expressions

116 ILE C/C++ Programmer’s Guide

Evaluating Structures and Unions to Find and Correct Errors
A structure is a class declared with the class_key struct. The members and base
classes of a structure are public by default.

A union is a class declared with the class_key union. The members of a union are
public by default; a union holds only one data member at a time.

No conversions between structure or union types are allowed, except for the
following: In C, an assignment conversion between compatible structure
or union types is allowed if the right operand is of a type compatible with that of
the left operand.

For information about using structures and unions in your programs, see:

* |Chapter 24, “Porting Programs from Another Platform to ILE,” on page 379
» [“Using BCD Macros to Port Coded Decimal Objects to ILE C++” on page 383
« |Chapter 18, “Using Externally Described Files in a Program,” on page 225|

+ |Appendix B, “Interlanguage Data-Type Compatibilities,” on page 543

* WebSphere Development Studio: ILE C/C++ Language Reference

Use the EVAL debug command to display or change the value of a structure or
union. Messages with multiple line responses launch the Evaluate Expression
display, which also shows a history of the debug commands entered and the
results from these commands. To return to the Display Module Source display,
press the Enter key. You can use the Enter key as a toggle switch between displays.

Note: Single-line responses are shown on the Display Module Source message line.

The following shows examples of debug expressions for structures and unions.

4 N

Evaluate Expression
Previous debug expressions

>eval (struct z x)&zz

(struct z *)&zz = SPP:C005AA0010D00000 You can cast with typedefs
>eval *(c *)&zz

x(c *)&zz.a = 1 You can cast with tags

*(c *)&zz.b = SYP:*NULL

>eval u.x = -10

u.x = =10 = -10 You can assign union members
>eval u
u.y = 4294967286 You can display and the union will be
u.x = -10 formatted for each definition
Bottom
Debug . . .

\F3=Ex1’t F9=Retrieve F12=Cancel F18=Command entry F19=Left F20=Right

Figure 67. Examples of Using Structures and Unions in Debug Expressions

Chapter 8. The ILE Source Debugger 117

118

Evaluating Enumerations to Find and Correct Errors
An enumeration is a data type consisting of a set of values that are named integral

constants. It is also referred to as an enumerated type because you must list
(enumerate) each of the values in creating a name for each of them. A named value
in an enumeration is called an enumeration constant. In addition to providing a
way of defining and grouping sets of integral constants, enumerations are useful
for variables that have a small number of possible values. For information about
using enumerations in your programs, see:

* |Appendix B, “Interlanguage Data-Type Compatibilities,” on page 543
* WebSphere Development Studio: ILE C/C++ Language Reference

The following figure shows debug expressions for enumerations.

4 . N\
Evaluate Expression

Previous debug expressions
>eval color

color = blue (2) Both the enumeration and its value are
>eval number displayed

number = three (2)
>eval (enum color)number Casting to a different enumeration

(enum color)number = blue (2)
>eval number = 1 Assigning by number

number = 1 = two (1)
>eval number = three Assigning by enumeration

number = three = three (2)
>eval arrl[one] Using in an expression

arrlfone] = 'A'

Bottom

Debug . . .

F3=Exit F9=Retrieve F12=Cancel F18=Command entry F19=Left F20=Right

Figure 68. Examples of Using Enumerations in Debug Expressions

ILE C/C++ Programmer’s Guide

Examples of Displaying System and Space Pointers in the ILE
Source Debugger

The ILE C source code in sets up system and space pointers for an
example of how they can be displayed with the debugger. The corresponding
debug expressions and information are shown in [Figure 70 on page 121]

#include <stdio.h>
#include <mispace.h>
#include <pointer.h>
#include <mispcobj.h>
#include <except.h>
#include <lecond.h>
#include <leenv.h>
#include <qtedbgs.h> /* From gsysinc */
/* Link up the Create User Space API */
#pragma linkage(CreateUserSpace,0S)
#pragma map(CreateUserSpace,"QUSCRTUS")
void CreateUserSpace(char[20],
char[10],
long int,
char,
char[10],
char[50],
char[10],
_TE_ERROR_CODE_T *
)s
/* Link up the Delete User Space API =/
#pragma linkage(DeleteUserSpace,0S)
#pragma map(DeleteUserSpace,"QUSDLTUS")
void DeleteUserSpace(char[20],
_TE_ERROR_CODE_T *
)s

Figure 69. System and Space Pointers in ILE C Source Code (Part 1 of 2)

Chapter 8. The ILE Source Debugger 119

120

/* Link up the Retrieve Pointer to User Space API */
#pragma linkage(RetrievePointerToUserSpace,0S)
#pragma map(RetrievePointerToUserSpace, "QUSPTRUS")
void RetrievePointerToUserSpace(char[20],

char **,
_TE_ERROR_CODE_T *
)s

int main (int argc, char =*argv[])

{

char *pBuffer;

_SYSPTR pSYSptr;
_TE_ERROR_CODE_T errorCode;
errorCode.BytesProvided = 0;

CreateUserSpace ("QTEUSERSPCQTEMP ",
"QTESSPC ",
10,
0:
II*ALL II’
II*YES II,
&errorCode
)s

/%! call RetrievePointerToUserSpace - Retrieve Pointer to User Space x/
/*!! (pass: Name and library of user space, pointer variable x/
/*!! return: nothing (pointer variable is left pointing to start*/
/%1 of user space) */
RetrievePointerToUserSpace("QTEUSERSPCQTEMP ",

&pBuffer,

&errorCode) ;

/* convert the space pointer to a system pointer x/
pSYSptr = _SETSPFP(pBuffer);

printf("Space pointer: %p\n",pBuffer);
printf("System pointer: %p\n",pSYSptr);

return 0;

Figure 69. System and Space Pointers in ILE C Source Code (Part 2 of 2)

ILE C/C++ Programmer’s Guide

The following figure illustrates how the debugger displays system and space

pointers.
/ . N
Evaluate Expression
Previous debug expressions
>eval pSYSptr System pointers are formatted
pSYSptr =
SYP:QTEUSERSPC :1934:QTEMP :111111110
0011100
>eval pBuffer
pBuffer = SPP:071ECD0002000000 Space pointers return 6 bytes that can
be used in System Service Tools
Bottom
Debug . . .
F3=Exit F9=Retrieve F12=Cancel F18=Command entry F19=Left F20=Right)
Figure 70. Example of System and Space Pointer Display
Chapter 8. The ILE Source Debugger 121

122 ILE C/C++ Programmer’s Guide

Chapter 9. Preparing a Program for Debugging

This chapter describes how to:

* [Set up a test library to avoid modification of production files.|

+ |Bind a module with debug data into a program and create a listing view for|

debugging.|

Before you can use the ILE source debugger, the program has to contain debug
data. Then you can start your debug session. After you set breakpoints or other
ILE source debugger options, you can call the program.

Note: For information about setting breakpoints and other ILE source debugger
options, see [Chapter 11, “Using Breakpoints to Aid Debugging,” on page]
i

Setting Up a Test Library

Attention: While debugging and testing your programs, ensure that your library
list is changed to direct the programs to a test library containing test objects so that
any existing production data is not affected.

To prevent production libraries from being modified unintentionally, do one of the
following:

* Use Start Debug (STRDBG) with the UPDPROD parameter set to *NO (the
default).

* Use Change Debug (CHGDBG) with the UPDPROD parameter set to *NO (the
default).

* Specify SET UPDPROD NO in the Display Module Source display.

Note: If you start a debug session with the UPDPROD parameter set to (*YES), the
debug session will be able to access objects in production libraries.

Creating a Listing View for Debugging

A listing view contains text similar to the text in the compiler listing produced by
the compiler. To create a listing view for debugging, use the DBGVIEW(*LIST) option
when you create the module or program.

Notes:

1. B The ILE C compiler creates the listing view by copying the lines in a
section of the listing into the module.

2. The ILE C++ compiler creates the listing view by copying the text of
the appropriate source files into the module.

The listing view is not linked to the source files upon which it is based.

For example, to create a listing view to debug a program created from the source
file myfile.cpp, enter:
CRTBNDCPP MYFILE SRCSTMF('/home/myfile.cpp') DBGVIEW(*LIST)

Note: The maximum line length for a listing view is 255 characters.

© Copyright IBM Corp. 1993, 2004 123

124 ILE C/C++ Programmer’s Guide

Chapter 10. Working with Source Debug Sessions

Use the ILE source debugger to locate programming errors in ILE C/C++
programs and service programs.

Before you can use the ILE source debugger, you must use one of the non-default
debug options (DBGVIEW) when you compile a source file. Next, you can start
your debug session. Once you set breakpoints or other ILE source debugger
options, you can call the program.

This chapter describes how to:

* Start a debug session

* Add and remove programs from a debug session
* Set and change debug options

* View the program source from a debug session

Starting a Source Debug Session

You use the Start Debug (STRDBG) command to start the ILE source debugger.
Once the debugger is started, it remains active until you enter the End Debug
(ENDDBG) command.

Note: You must have *USE object authority to use the STRDBG command and
*CHANGE authority for the objects that are to be debugged.

Initially you can add as many as 20 programs to a debug session by using the
Program (PGM) parameter on the STRDBG command. You can add any
combination of OPM or ILE programs. Whether you can use the ILE source
debugger to debug all of them depends on

* how the OPM programs were compiled

* the debug environment settings

You can also add as many as 20 service programs to a debug session by using the
Service Program (SRVPGM) parameter on the STRDBG command.

Before you can use the ILE source debugger to debug an ILE C/C++ program or
service program, a valid debug view must be specified when the module or
program is created. Valid debug views include: *SOURCE, *LIST, *STMT, or *ALL.

You can create several views for each module that you want to debug. They are:
* Root source view

A root source view contains text from the root source file. This view does not
contain any include file expansions.

You can create a root source view by using the *SOURCE or *ALL options on
the DBGVIEW parameter for either the CRTCMOD/CRTCPPMOD or
CRTBNDC/CRTBNDCPP command when you create the module or the
program, respectively.

The ILE C/C++ compiler creates the root source view while the module object
(*MODULE) is being compiled. The root source view is created using references
to locations of text in the root source file rather than copying the text of the file

© Copyright IBM Corp. 1993, 2004 125

126

into the view. For this reason, do not modify, rename, or move root source files
between the module creation of these files and the debugging of the module
created from these files.

* Statement view. This is the view obtained when the source is compiled with
*STMF option on the DBGVIEW parameter on either C or C++ comand. This
will allow to debug programs with statement numbers and symbolic identifiers
which can be referenced in the listing.

You can create a statement view by using the *STMF option on the DBGVIEW
parameter on either the CRTCMOD/CRTCPPMOD or CRTBNDC/CRTBNDCPP
command when you create the module or the program, respectively.

¢ Include source view

An include source view contains text from the root source file, as well as the text
of all included files that are expanded into the text of the source. This view does
not contain any macro expansion. When you use this view, you can debug the
root source file and all included files.

You can create an include source view to debug a module by using the
*SOURCE or *ALL option on the DBGVIEW parameter, and *SHOWINC on the
OPTION parameter.

* Listing view
A listing view contains text similar to the compiler listing produced by the ILE
C/C++ compiler specified in the OUTPUT() command parameter.
You can create a listing view to debug a module by using the *LIST or *ALL
options when you compile the module. You can also specify at least one of
*SHOWINC, *SHOWUSR, *SHOWSYS, and *SHOWSKP on the OPTION
parameter, depending on the listing view that you want to see.

Note: SF *SHOWSKEP is valid for ILE C only.

The first program specified on the STRDBG command is shown when it has debug
data. In the case of ILE program, the entry module is shown when it has debug
data; otherwise, the first module bound to the ILE program with debug data is
shown. To debug an OPM program with ILE source debugger, the following
conditions must be met:

* If the program is an OPM RPG or COBOL program, it was compiled with
OPTION(*LSTDBG).

e If the program is an OPM CL program, it was compiled with
OPTION(*SRCDBG).

* The ILE debug environment is set to accept OPM programs. You can do this by
specifying OPMSRC(*YES) on the STRDBG command. (The system default is
OPMSRC(*NO).)

If these two conditions are not met, then debug the OPM program with the OPM
system debugger.

To start a debug session for the sample debug program DEBUGEX which calls the
OPM program RPGPGM, enter:

STRDBG PGM(MYLIB/DEBUGEX MYLIB/RPGPGM) OPMSRC(*YES)

DBGVIEW(*NONE) is the default DBGVIEW option. No debug data is created
when the module is created.

Once you have created a module with debug data or debug views, and bound it
into a program object (*PGM), you can start to debug your program.

ILE C/C++ Programmer’s Guide

Example:

This example shows you how to create three modules with debug views and start
a debug session.

1.

To create module T1520IC1 with a root source view, enter:
CRTCMOD MODULE (MYLIB/T15201C1) SRCFILE(QCPPLE/QACSRC) DBGVIEMW (*SOURCE)

A root source view and debug data is created to debug module T15201C1.
To create module T1520IC2 with all three views, enter:

CRTCMOD MODULE(MYLIB/T1520IC2) SRCFILE(QCPPLE/QACSRC) DBGVIEW(*ALL)
OPTION(*SHOWINC)

All views and debug data are created to debug module T15201C2.
To create module T1520IC3 with both root source and include view, enter:

CRTCMOD MODULE(MYLIB/T1520IC3) SRCFILE(QCPPLE/QACSRC) DBGVIEW(*SOURCE)
OPTION(*SHOWINC)

An include view containing the root source file, user include files, and debug
data is created to debug module T1520IC3.
To create program T1520PGl, enter:

CRTPGM PGM(MYLIB/T1520PG1) MODULE(MYLIB/T1520IC1 MYLIB/T15201C2) ENTMOD(*ONLY)
BNDDIR(MYLIB/T1520BD1) DETAIL(*FULL)

Note: The creation of this program requires modules, service programs, and a
binding directory. See [‘Creating a Program in Two Steps” on page 14

To start a debug session for program T1520PG1, enter:
STRDBG PGM(MYLIB/T1520PG1)

The Display Module Source display appears as shown:
p

~
Display Module Source

Program: T1520PG1 Library: MYLIB Module: T1520IC1
1 /* This program demonstrates how to use multiple modules, service =*/
2 /* programs and a binding directory. This program accepts user ID, */
3 /x item name, quantity and price, calculates the total cost and */
4 [+ writes an audit trail of the transaction. */
5
6 #include <stdio.h>
7 #include <stdlib.h>
8 #include <string.h>
9 #include <decimal.h>
10 11 int calc_and_format (decimal(10,2),
12 short int,
13 char[];
14
15 void write_audit_trail (char[],

Debug . . .

F3=End program F6=Add/Clear breakpoint F10=Step Fll=Display variable

\\F12=Resume F17=Watch variable F18=Work with watch F24=More keys)

The module T1520IC1 is shown. It is the module with the main() function.
You can start a debug session for OPM programs or a combination of ILE and

OPM programs by typing:
STRDBG PGM(MYLIB/T1520RP1 MYLIB/T1520CB1 MYLIB/T15201C5) DSPMODSRC(*YES)

Chapter 10. Working with Source Debug Sessions 127

The parameter DSPMODSRC(*YES) specifies that you want the ILE source
debug program display panel to be shown at start debug time. The
DSPMODSRC parameter accepts the *PGMDEP value as a default. This value
indicates that if any program in the STRDBG PGM list is an ILE program, the
source display panel is shown.

Adding and Removing Programs from a Debug Session

128

If you have *CHANGE authority, you can add programs and service programs to a
debug session, or remove them from a current debug session.

For ILE programs, use option 1 (Add program) on the Work with Module List
display (F14) of the DSPMODSRC command. To remove an ILE program or service
program, use option 4 (Remove program) on the same display. When an ILE
program or service program is removed, all breakpoints for that program are
removed. There is no limit to the number of ILE programs or service programs
that can be included in a debug session at one time.

For OPM programs, you have two choices depending on the value specified for
OPMSRC. If you specified OPMSRC(*YES), by using either STRDBG, the SET
debug command, or Change Debug (CHGDBG) options, then you add or remove
an OPM program using the Work with Module Display. (Note that there will not
be a module name listed for an OPM program.) There is no limit to the number of
OPM programs that can be included in a debug session when OPMSRC(*YES) is
specified.

If you specified OPMSRC(*NO), then you must use the Add Program (ADDPGM)
command or the Remove Program (RMVPGM) command. Only 20 OPM programs
can be in a debug session at one time when OPMSRC(*NO) is specified.

Note: You cannot debug an OPM program with debug data from both an ILE and
an OPM debug session. If OPM program is already in an OPM debug
session, you must first remove it from that session before adding it to the
ILE debug session or stepping into it from a call statement. Similarly, if you
want to debug it from an OPM debug session, you must first remove it from
an ILE debug session.

Example:

This example shows you how to add an ILE C service program to, and remove an
ILE C program from a debug session.

Note: Assume the ILE C program T1520ALP is part of this debug session, and the
program has been debugged. It can be removed from this debug session.
1. To add programs to or remove programs from a debug session type:
DSPMODSRC

and press Enter. The Display Module Source display appears.
2. Press F14 (Work with module list) to show the Work with Module List display.

3. On this display type 1 (Add program) on the first line of the list to add
programs and service programs to a debug session. To add service program
T1520SP1, type T1520SP1 for the Program/module field, MYLIB for the Library
field, change the default program type from *PGM to *SRVPGM and press
Enter.

ILE C/C++ Programmer’s Guide

4. On this display type 4 (Remove program) on the line next to each program or
service program that you want to remove from the debug session.

5. To remove program T1520ALP, type 4 next to TI520ALP, and press Enter.
6. Press F12 (Cancel) to return to the Display Module Source display.

If an ILE C/C++ program with debug data is in a debug session, the module
with the main() function is shown (if it has a debug view). Otherwise, the first
module bound to the ILE C/C++ program with debug data is shown.

Setting or Changing Debug Options During a Session
After you start a debug session, you can set or change the following debug
options:
* Whether database files can be updated while debugging your program. (This
option corresponds to the UPDPROD parameter of the STRDBG command.)
* Whether text searches using FIND are case sensitive.

* Whether OPM programs are to be debugged using the ILE source debugger.
(This corresponds to the OPMSRC parameter.)

Changing the debug options by using the SET debug command affects the value
for the corresponding parameter, if any, specified on the STRDBG command. You
can also use the Change Debug (CHGDBG) command to set debug options.

Example: Adding an OPM Program to an ILE Debug Session

This example shows you how to allow the ILE source debugger to add an OPM
program to an ILE debug session.

Suppose you are in a debug session working with an ILE program and you decide
you should also debug an OPM program that has debug data available. To enable
the ILE source debugger to accept OPM programs, follow these steps:

1. If, after you enter STRDBG, the current display is not the Display Module
Source display, enter:

DSPMODSRC

The Display Module Source display appears
2. Enter
SET

3. When the Set Debug Options display appears, type Y (Yes) for the OPM source
debug support field, and press Enter to return to the Display Module Source
display.

You can now add the OPM program, either by using the Work with Module
display, or by processing a call statement to that program.

Example: Setting Debug Options during a Debug Session

This example shows how to set the Update production files debug option during
a debug session.

1. To set debug options from a debug session, enter:
DSPMODSRC

2. When the Display Module Source display appears, enter
SET

Chapter 10. Working with Source Debug Sessions 129

3. When the Set Debug Options display appears, type Y (Yes) for the Update
production files field, and press Enter to return to the Display Module Source
display. The database files in production libraries are updated while the job is
in debug mode.

Viewing the Program Source

130

The Display Module Source display shows the source of an ILE program object one
module at a time. The source of an ILE module object can be shown if the module
object was compiled using one of the following debug view options:

- DBGVIEW(*SOURCE)

+ DBGVIEW(*COPY) - ILE RPG only
- DBGVIEW/(*LIST)

« DBGVIEW(*ALL)

The source of an OPM program can be shown if the following conditions are met:
1. The OPM program was compiled with OPTION(*LSTDBG).

2. The ILE debug environment is set to accept OPM programs; that is the value of
OPMSRC is *YES. (The system default is OPMSRC(*NO).)

Once you have displayed a view of a module, you may want to display a different
module or see a different view of the same module (if you created the module
with several different views). The ILE source debugger remembers the last position
in which the module is displayed, and displays it in the same position when a
module is redisplayed. Lines that have breakpoints set are highlighted. When a
breakpoint, step, or message causes the program to stop and the display to be
shown, the statement where the breakpoint occurred is highlighted.

Displaying Other Modules in Your Program

You may want to set some debug options in other modules of your program. You
can do this by changing the module that is shown on the Display Module Source
display to specify the preferred module.

You can change the module that is shown on the Display Module Source display
by using;:

* The Work with Module list display

¢ The Display Module debug command

If you use the Display Module debug command with an ILE program object, the
entry module with a root source, COPY, or listing view is shown (if it exists).
Otherwise the first module object bound to the program object with debug data is
shown. If you use this option with an OPM program object, then the source or
listing view is shown (if available).

Example: Changing the Module Displayed in a Session

This example shows you how to change from the module shown on the Display
Module Source display to another module in the same program using Display
Module debug command.

1. While in a debug session, enter DSPMODSRC. The Display Module Source display
is shown.

2. On the debug command line, enter: display module T1520IC2
The module T1520IC2 is displayed.

ILE C/C++ Programmer’s Guide

Displaying a Different View Of a Module

Several different views of a module are available depending on the values you
specify when you create the module. They are:

* Root source view
¢ Include source view
* Listing view

Example:

This example shows you how to change the view of the module shown on the
Display Module Source display.

1. To change the view of the module on the Display Module Source display type
DSPMODSRC, and press Enter. The Display Module Source display is shown.

2. Press F15 (Select view). The Select View window is as shown:

Display Module Source
Select View
Current View . . . : ILE C root source view

Type option, press Enter.

1=Select
Opt View
_ ILE C root source view
1 ILE C include view

Bottom
F12=Cancel
More...
Debug . . .

F3=End program F6=Add/Clear breakpoint F10=Step Fll=Display variable
\\F12=Resume F17=Watch variable F18=Work with watch F24=More keys

The current view is listed at the top of the window, and the other views that
are available are shown below. Each module in a program can have a different
set of views available, depending on the debug options used to create it.

3. Enter 1 next to the ILE C Include view. The Display Module Source display
appears showing the module with an include source view. The source of the
include view will be shown at a statement position that is equivalent to the
statement position in the current view.

Chapter 10. Working with Source Debug Sessions 131

132 ILE C/C++ Programmer’s Guide

Chapter 11. Using Breakpoints to Aid Debugging

The flow of a program can be controlled with breakpoints.

When a breakpoint stops the program, the Display Module Source display appears.
Use this display to evaluate variables, set more breakpoints, and run any of the
source debugger commands. The appropriate module is shown with the source
positioned to the line where the condition occurred. The cursor will be positioned
on the line where the breakpoint occurred if the cursor was in the text area of the
display the last time the source was displayed. Otherwise, it is positioned on the
debug command line.

If you change the view of the module after setting breakpoints, then the line
numbers of the breakpoints are mapped to the new view by the source debugger.

This chapter describes:

+ |Breakpoint types|

+ |How to set conditional and unconditional breakpoints in an unthreaded|

Erogram|

+ [How to set conditional thread breakpoints|

+ |How to test breakpoints]

+ [How to remove all breakpoints|

Types Of Breakpoints

The type of breakpoint determines the scope of the flow that it controls.

Job and Thread Breakpoints
There are two types of breakpoints: job and thread.
* Typically, you use breakpoints to halt processing of a program, or job.

* Each thread in a threaded application may have it’s own thread breakpoint.

Both job and thread breakpoints can be either unconditional or conditional.

In general, there is one set of debug commands and function keys for job
breakpoints and another for thread breakpoints.

For the rest of this section on breakpoints, the term breakpoint refers to both job
and thread, unless specifically mentioned otherwise.

Conditional and Unconditional Breakpoints

You can set unconditional and conditional breakpoints. An unconditional breakpoint
stops the program at a specific statement. A conditional breakpoint stops the program
when a specific condition at a specific statement is met.

Setting Breakpoints

To work with a module you can: use either of the following:
* F13 (Work with module breakpoints)
* F6 (Add/Clear breakpoint)

© Copyright IBM Corp. 1993, 2004 133

You can set conditional and unconditional breakpoints by using the BREAK debug
command.

Note: You can also add breakpoints with the BREAK or TBREAK debu
commands. For information on using the BREAK command, see |”Setting|
|Unconditional Breakpoints from the Command Line” on page 135 For
information on using the TBREAK command, see[“Setting Conditionall
|Thread Breakpoints” on page 136.|

You can remove conditional and unconditional breakpoints by using the CLEAR
debug command.

Setting Unconditional Breakpoints from the Display Module
Source Display

Example:

This example shows you how to set an unconditional breakpoint using F6
(Add/clear breakpoints).

1. Enter DSPMODSRC. The Display Module Source display is shown.

2. To display the module source that you want to modify, type display module
name, where name is the file name of the module you want to modify, and press
Enter.

3. For each unconditional breakpoint you want to set:

a. Place the cursor on the line that should follow the new breakpoint.
b. Press F6 (Add/Clear breakpoint).

Note: If there is no breakpoint on the line you specify, an unconditional
breakpoint is set on that line. If there is a breakpoint on the line you
specify, it is removed (even if it is a conditional breakpoint).

The following example shows an unconditional breakpoint set at line 50 of

module T1520PG1:

4 N
Display Module Source
Program: T1520PGl Library: MYLIB Module: T1520IC2
46 {
47 if (j<0) return(0);
48 if (hold_formatted cost[i] == '§"')
49 {
50 formatted cost[j] = hold_formatted cost[i];
51 break;
52 }
53 if (i<16 &&; !((i-2)%3))
54 {
55 formatted cost[j] = ',';
56 =38
57 }
58 formatted_cost[j] = hold_formatted cost[i];
59 =38
60 }
Debug .
F3=End program F6=Add/Clear breakpoint F10=Step Fll=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys

\\Breakpoint added to Tine 50

Note: To remove a breakpoint, use the CLEAR command. For example,
clear 50 removes the breakpoint at line 50.

4. After all breakpoints are set:

134 ILE C/C++ Programmer’s Guide

a. Press F12 (Cancel) to leave the Work with Module Breakpoints display.
b. Press F3 (End Program) to leave the ILE source debugger. Your breakpoints

are not removed.

Setting Unconditional Breakpoints from the Command Line

To set an unconditional breakpoint using the BREAK debug command, enter BREAK
line-number on the debug command line. The variable line-number is the line
number in the currently displayed view of the module on which you want to set a
breakpoint.

Note: To remove an unconditional breakpoint using the CLEAR debug command,

enter: CLEAR line-number on the debug command line.

Setting Conditional Breakpoints for a Macro

To set a breakpoint on the first statement of a multi-statement macro, position the
cursor on the line containing the macro invocation, not the macro expansion.

Example:

This example shows you how to set a conditional breakpoint using F13 (Work with
module breakpoints).

1.

To work with a module, enter DSPMODSRC. The Display Module Source display is
shown.

To display the module source that you want to modify, type display module
name, where name is the file name of the module you want to modify, and press
Enter.

For each conditional breakpoint you want to set:
a. Place the cursor on the line that should follow the new breakpoint.
b. Press F13 (Work with module breakpoints). The Work with Module

Breakpoints display appears.

. Place the cursor on the first line of the list, type 1 (Add), and press Enter.

For example, to set a conditional breakpoint at line 35 when i is equal to 21:
1) In the Line type, enter 35.

2) In the Condition field, type i==21.

3) Press Enter

Note: If you do not want to switch panels, you can set the same breakpoint
from the Display Module Source command line by typing:

break 35 when i==21

A conditional breakpoint is set on line 35.

/ N
Work with Module Breakpoints

System: TORASD80
Program . . . : T1520PG1 Library . . . : MYLIB
Module . . . : T15201C2 Type : *PGM
Type options, press Enter.
1=Add 4=Clear

Opt Line Condition
1 35 i==21
50
= J

Note: An existing breakpoint is always replaced by a new breakpoint
entered at the same location.

Chapter 11. Using Breakpoints to Aid Debugging 135

4. After all breakpoints are set:
a. Press F12 (Cancel) to leave the Work with Module Breakpoints display.

b. Press F3 (End Program) to leave the ILE source debugger. Your breakpoints
are not removed.

Setting Conditional Breakpoints for a Statement

You can set a conditional breakpoint to a statement. For example, if you have a
compiler listing that contains line numbers and statement numbers, you can use
the statement syntax to set a breakpoint on a specific statement when there are
several statements on a single line.

Line Stmt Source
33 24 i=j; j=0;
34 26 array[i] = cost;

Break myfunction/25 sets a breakpoint on the statement j=0 assuming this is in
myfunction. If you then enter Break 33, a breakpoint is set at statement 24, i=j.

To set a breakpoint on the first statement of a multi-statement macro, position the
cursor on the line containing the macro invocation, not the macro expansion.

Setting Conditional Thread Breakpoints

136

You can set or remove a conditional thread breakpoint by using:
¢ The Work with Module Breakpoints display

* The TBREAK debug command to set a conditional thread breakpoint in the
current thread

* The CLEAR debug command to remove a conditional thread breakpoint

Setting a Conditional Thread Breakpoint from the Work with
Module Breakpoints Display

To set a conditional thread breakpoint using the Work with Module Breakpoints
display:

1. Press F13 to display Work with Module Breakpoints and press Enter.

2. Type 1 (Add) in the Opt field and press Enter.

3. Fill in the remaining fields as if it were a conditional job breakpoint.

To remove a conditional thread breakpoint using the Work with Module
Breakpoints display: Type 4 (Clear) in the Opt field next to the breakpoint you
want to remove and Press Enter.

Setting a Conditional Thread Breakpoint from the Command

Line

You use the same syntax for the TBREAK debug command as you would for the
BREAK debug command. The difference between these commands is that the
BREAK debug command sets a conditional job breakpoint at the same position in
all threads, while the TBREAK debug command sets a conditional thread
breakpoint in the current thread.

Note: To remove a conditional thread breakpoint, use the CLEAR debug
command. When a conditional thread breakpoint is removed, it is removed
for the current thread only.

ILE C/C++ Programmer’s Guide

Testing Breakpoints
1. Call the program.

2. When an unconditional breakpoint is reached, the program stops and the
Display Module Source display is shown again.

3. When a conditional breakpoint is reached, the expression is evaluated before
the statement is run.

¢ If the result is true (in the example, if i is equal to 21), the program stops,
and the Display Module Source display is shown.

e If the result is false, the program continues to run.

Removing All Breakpoints

You can remove all breakpoints, conditional and unconditional, from a program
that has a module shown on the Display Module Source display by using the
CLEAR PGM debug command. To use the debug command, type CLEAR PGM on the
debug command line and press Enter. The breakpoints are removed from all of the
modules bound to the program.

Chapter 11. Using Breakpoints to Aid Debugging 137

138 ILE C/C++ Programmer’s Guide

Chapter 12. Using Watches to Aid Debugging

Use a watch condition to monitor changes in the current value of a variable or an
expression which determines the address of a storage location. Setting watch
conditions is similar to setting conditional breakpoints, with one important
difference:

* Watch conditions stop the program as soon as the value of a variable changes
from its current value.

* Conditional breakpoints stop the program only if the condition stated in the
associated expression is satisfied when the statement is executed.

The debugger watches a variable through the content of a storage address, computed
at the time the watch condition is set. When the content at the storage address is
changed from the value it had when the watch condition was set or when the last
watch condition occurred, a breakpoint is set, and the program stops.

Note: After a watch condition has been registered, the new content at the watched
storage location is saved as the new current value of the corresponding
variable. The next watch condition will be registered if the new content at
the watched storage location changes subsequently.

This chapter describes:

* Characteristics of watches

* How to set and remove watch conditions

* An example of setting a watch condition on a variable

* How to display active watches

Characteristics and Limitations Of Watches

When using watches, keep the following watch characteristics in mind:

* Watches are monitored on a system-wide basis, with a maximum number of 256
watches that can be active simultaneously. This number includes watches set by
the system.

Depending on overall system use, you may be limited in the number of watch
conditions you can set at a given time. If you try to set a watch condition while
the maximum number of active watches across the system is exceeded, you will
receive an error message and the watch condition is not set.

Note: If a variable crosses a page boundary, two watches are used internally to
monitor the storage locations. Therefore, the maximum number of
variables that can be watched simultaneously on a system-wide basis
ranges from 128 to 256.

* Watch conditions can be set only when a program is stopped under debug, and
the variable to be watched is in scope. If this is not the case, an error message is
issued when a watch is requested, indicating that the corresponding call stack
entry does not exist.

* Once the watch condition is set, the address of a storage location that is watched
does not change. Therefore, if a watch is set on a temporary location, it could
result in spurious watch-condition notifications.

© Copyright IBM Corp. 1993, 2004 139

An example of this is the automatic storage of an ILE C/C++ procedure, which
can be reused after the procedure ends.

A watch condition may be triggered even though the watched variable is no
longer in scope. You must not assume that a variable is in scope just because a
watch condition has been reported.

* Two watch locations in the same job must not overlay in any way. Two watch
locations in different jobs must not start at the same storage address; otherwise,
overlap is allowed. If these restrictions are violated, an error message is issued.

Note: Changes that are made to a watched storage location are ignored if they
are made by a job other than the one that set the watch condition.

* Eligible programs are automatically added to the debug session if they cause the
watch-stop condition.

* When multiple watch conditions are hit on the same program statement, only
the first one will be reported.

* You can set watch conditions when you are using service jobs for debugging,
that is when you debug one job from another job.

* If a program in your session changes the content of a watched storage location
and a watch command is successfully run, your application is stopped and the
Display Module Source display is shown.

If the program has debug data and a debug view is available, the debug data is
shown. The source line highlighted is the next statement to run (after the
statement that changed the storage location). A message indicates which watch
condition was satisfied.

Note: If the program cannot be debugged, the text area of the display is blank.

Setting and Removing Watch Conditions

Your program must be stopped under debug, and the variable you want to watch
must be in scope before you can set a watch condition:

* To watch a global variable, you must ensure that the program in which the
variable is defined is active before setting the watch condition.

* To watch a local variable, you must step into the function in which the variable
is defined before setting the watch condition.

Setting watch conditions
You can set a watch condition by using:
» F17 (watch variable) to set a watch condition for the variable under the cursor.
* The WATCH debug command with or without its parameters.

Using the WATCH Debug Command

If you use the WATCH command, it must be entered as a single command; no
other debug commands are allowed on the same command line.

* To access the Work with Watch display shown below, enter WATCHwithout any
parameters.

140 ILE C/C++ Programmer’s Guide

Work with Watch
System: DEBUGGER
Type options, press Enter.
4=Clear 5=Display
Opt Num Variable Address Length
- 1 salary 080090506F027004 4
Bottom
Command
S=S=2

\\F3=Exit F4=Prompt F5=Refresh F9=Retrieve Fl12=Cancel

The Work with Watch display shows all watches currently active in the debug
session. You can clear, and display watches from this display. When you select
5=Display, the Display Watch window that is shown below displays information
about the currently active watch.

4 N
Work with Watch

Display Watch : DEBUGGER
Watch Number: 1
Address: 080090506F027004
Length: 4
Number of Hits ..: 0

Scope when watch was set:
Program/Library/Type: PAYROLL ABC *PGM

ModuTe...: PAYROLL
Procedure: main
Variable.: salary
F12=Cancel
Bottom
Command

===>

\\F3=Exit F4=Prompt F5=Refresh F9=Retrieve Fl12=Cancel

* To specify a variable to be watched, enter the following debug command:
WATCH variable

This command requests a breakpoint to be set if the value of variable is
changed from its current value. For example, watch V, where V is a variable.

* To specify an expression to be watched, enter the following debug command:
WATCH expression

This command requests a breakpoint to be set if the value of expression is
changed from its current value.

Note: expression is used to determine the address of the storage location to

watch and must resolve to a location that can be assigned to, for example:
watch (p+2), where p is a pointer.

Chapter 12. Using Watches to Aid Debugging 141

The scope of the expression variables in a watch is defined by the most recently
issued QUAL command.

* To set a watch condition and specify a watch length, enter WATCH expression :
watch-length.

Each watch allows you to monitor and compare a maximum of 128 bytes of
contiguous storage. If the maximum length of 128 bytes is exceeded, the watch
condition will not be set, and the debugger issues an error message.

By default, the length of the expression type is also the length of the
watch-comparison operation. The watch-Tength parameter overrides this default.
It determines the number of bytes of an expression that should be compared to
determine if a change in value has occurred.

For example, if a 4-byte binary integer is specified as the variable, without the
watch-length parameter, the comparison length is four bytes. However, if the
watch-length parameter is specified, it overrides the length of the expression in
determining the watch length.

Removing Watch Conditions
Watches can be removed in the following ways:

* The CLEAR command that is used with the WATCH keyword selectively ends
one or all watches. For example, to clear the watch that is identified by
watch-number, enter:

CLEAR WATCH watch-number
The watch number can be obtained from the Work with Watches display.

To clear all watches for your session, enter:
CLEAR WATCH ALL

Note: While the CLEAR PGM command removes all breakpoints in the program
that contains the module being displayed, it has no effect on watches. You
must explicitly use the WATCH keyword with the CLEAR command to
remove watch conditions.

Automatic Removal Of Watch Conditions

Watches are also removed in the following ways:

* The CL End Debug (ENDDBG) command removes watches that are set in the
local job or in a service job.

Note: ENDDBG will be called automatically in abnormal situations to ensure
that all affected watches are removed.

* The initial program load (IPL) of your iSeries system removes all watch
conditions system-wide.

Example Of Setting a Watch Condition

142

In this example, you watch a variable salary in program MYLIB/PAYROLL. To set the
watch condition, type WATCH salary on a debug line, accepting the default value
for the watch-length.

If the value of the variable salary changes subsequently, the application stops, and
the Display Module Source display is as shown:

ILE C/C++ Programmer’s Guide

4 N

Display Module Source

Program: PAYROL Library: MYLIB Module: PAYROLL
52 for (cnt=0;
53 cnt<EMPMAX &&
54 scanf ("%s%s%f%d%d", payptr->first, payptr->last,
55 &(payptr->wage), &eflag, &(payptr->hrs))!=EOF;
56 cnt++, payptr++)
57 |
58 payptr->exempt=eflag;
59

60 empsort(payfile, cnt);
61 for (index=1, payptr=payfile; index<=cnt; index++,payptr++) {
62 if (payptr->exempt==1) {

63 salary = 40*(payptr->wage);
64 numexempt++; }
65 else
66 salary = (payptr->hours)=*(payptr->wage);
More...
Debug . . .
F3=End program F6=Add/Clear breakpoint F10=Step F1l1l=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
\\Watch number 1 at line 64, variable: salary)

* The line number of the statement where the change to the watch variable was
detected is highlighted. This is typically the first executable line following the
statement that changed the variable.

* A message indicates that the watch condition was satisfied.

If a text view is not available, a blank Display Module Source display is shown,
with the same message as above in the message area.

Display Module Source
(Source not available)

F3=End program F12=Resume F14=Work with module 1list F18 Work with watch
F21=Command entry F22=Step into F23=Display output
Watch number 1 at instruction 18, variable: salary

The following programs cannot be added to the ILE debug environment:
* ILE programs without debug data

¢ OPM programs with non-source debug data only

* OPM programs without debug data

In the first two cases, the stopped statement number is passed. In the third case,
the stopped MI instruction is passed. The information is displayed at the bottom of
a blank Display Module Source display as shown above. Instead of the line
number, the statement or the instruction number is given.

Chapter 12. Using Watches to Aid Debugging 143

Displaying Active Watches

144

To display a system-wide list of active watches and show which job set them, type

DSPDBGWCH on the command line. This command brings up the Display Debug

Watches display that is shown below.

MYJOBNAME1
JOB4567890
J0B4567890
JOB
SOMEJOB
Bottom
Press Enter t

F3=Exit F5=Refresh
o

MYUSERPRF1
PRF4567890
PRF4567890
PROFILE

SOMEPROFIL

o continue

Display Debug Watches

444444

F12=Cancel

NUM
1

1

2
14
3

LENGTH

B e

System: DEBUGGER
ADDRESS
080090506F027004
09849403845A2C32
098494038456AA00
040689578309AF09
005498348048242A

~

Note: This display does not show watch conditions that are set by the system.

ILE C/C++ Programmer’s Guide

Chapter 13. Stepping Through Programs

The STEP command of the ILE source debugger allows you to run a specified
number of statements of a program, and then return to the Display Module Source
display at the position of the next statement to be run. The cursor is positioned on
this statement if the cursor was in the text area of the display the last time the
source was displayed. Otherwise, it is positioned on the debug command line. The
program begins at the statement where the program stopped. Setting a breakpoint
causes the program to stop before the statement is run. The default number of
statements to run is one.

This chapter describes how to:
* Step over programs

* Step into programs

* Step over procedures

* Step into procedures

Stepping Over Programs

You can step over programs by using:
* F10 (Step) on the Display Module Source display
* Step Over debug command

Using F10 to Step Over Programs

Use F10 (Step) on the Display Module Source display to step over a called
program in a debug session. If the next statement to be run is a CALL statement to
another program, pressing F10 (Step) causes the called program to run to
completion before the calling program is stopped again.

Using the STEP OVER Debug Command

Use the Step Over debug command to step over a called program in a debug
session. To use the Step Over debug command, enter STEP number-of-statements
OVER. The variable number-of-statements is the number of statements of the program
that you want to run in the next step before the program is halted again.

If this variable is omitted, the default is 1. If one of the statements that are run
contains a call to another program, the ILE source debugger steps over the called
program.

Stepping into Programs

Step into programs by using:
* [F22 (Step into){ on the Display Module Source display
* The[STEP INTO| debug command.

Using F22 to Step into Programs

Use F22 (Step into) on the Display Module Source display to step into a called
program in a debug session. If the next statement to be run is a Call (CALL)

© Copyright IBM Corp. 1993, 2004 145

146

statement to another program, pressing F22 causes the first executable statement in
the called program to be run. The called program is then shown in the Display
Module Source display.

Note: The called program must have debug data associated with it in order for it
to be shown in the Display Module Source display.

Using the STEP INTO Debug Command

Use the STEP INTO debug command to step into a called program in a debug
session. To use the STEP INTO debug command, enter:

STEP number-of-statements INTO

The variable number-of-statements is the number of statements of the program that
you want to run in the next step before the program is halted again. If this variable
is omitted, the default is 1.

Stepping into Called Programs

If one of the statements being run contains a Call (CALL) statement to another
program, the source debugger steps into the called program. Each statement in the
called program is counted in the step. If the step ends in the called program, the
called program is shown in the Display Module Source display. For example, if
you enter STEP 5 INTO, the next five statements of the program are run. If the third
statement is a Call (CALL) statement to another program, two statements of the
calling program are run and the first two statements of the called program are run.

Note: The step is counted as a statement.

The STEP INTO command works with the Call (CALL) command as well. You can
take advantage of this to step through your program after calling it. After starting

the source debugger, from the initial Display Module Source display, enter STEP 1

INTO and press the Enter key. This sets the step count to 1.

Example of Stepping into a Program Using F22

Use F22 (Step Into) to step into program CPGM from the program DEBUGEX.
1. Assume that the Display Module Source display shows the source for DEBUGEX.

2. To set an unconditional breakpoint at line 92, which is the last executable
statement before the call to function CalcTax() in program CPPPGM, type Break
92 and press Enter.

3. Press F3 (End Program) to leave the Display Module Source display.

4. Call the pro fram. The program stops at breakpoint 92, as shown in
|0n Eaée 147

ILE C/C++ Programmer’s Guide

DEBUGEX Before Stepping Into CPGM

4 . N
Display Module Source

Program: DEBUGEX Library: MYLIB Module: DEBUGEX

88 cout << "Please enter amount" << endl;

89 cin >> input;

90 if (input > MINIMUM) {

91 // call function CalcTax in separate program CPPPGM

92 retvall = CalcTax(input);

93 if (retvall > LIMIT)

94 retval2 = CalcSurtax(input)

95 }

96 cout << "Total tax is " << retvall = retval2 << endl;

97 }

98

99

100

101

102

More...

Debug . . .
F3=End program F6=Add/Clear breakpoint F10=Step Fl1l=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys

Breakpoint at line 90
-

Figure 71. Module Source Display for DEBUGEX

5. Press F22 (Step into). One statement of the program is run, and then the
Display Module Source display of CPGM is shown.

The program stops at the first executable statement of CPGM (line 13).

Note: You cannot specify the number of statements to step through when you
use F22. Pressing F22 performs a single step.

4 . N
Display Module Source
Program: CPGM Library: MYLIB
1 = = == S == S = S s S s S S S S S S SS= SSESS S = = == = === ===
2 * CPGM - Program called by DEBUGEX to illustrate the
3 * STEP functions of the ILE source
4 *debugger
5 * This program receives a parameter input from DEBUGEX,
6 % calculates a tax amount, and then returns
7 A S S S SSS =SS S S S S S S S S S S S S S S S SSSSSSSSSSSSSSS=SSS=S=S=S==S========
8
9 double CalcTax(double input)
104
11 double tax;
12
13 tax= input * TAXRATE
14 return taxrate;
Bottom
Debug . . .

F3=End program F6=Add/Clear breakpoint F10=Step Fl1l=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
\\Step completed at line 13.

Figure 72. Module Source Display After Stepping into CPGM

If there is no debug data available, you see a blank Display Module Source display
with a message indicating that the source is not available.

Chapter 13. Stepping Through Programs 147

Stepping into an OPM Program

When calls to other functions are encountered, you can step into an OPM program
if it has debug data available and if the debug session accepts OPM programs for
debugging.

If the ILE source debugger is not set to accept OPM programs, or if there is no
debug data available, then you see a blank Display Module Source display with a
message indicating that the source is not available. An OPM program has debug
data if it was compiled with OPTION(*LSTDBG).

The default step mode is step over.

Stepping Over Procedures

If you specify over on the STEP debug command, calls to procedures and functions
count as single statements. This is the default STEP mode. Stepping through four
statements of a program could result in running 20 statements if one of the four is
a call to a procedure with 16 statements. You can start the step-over function by
using:

* The STEP OVER debug command

* F10 (Step)

Example:

This example shows you how to use F10 (Step) to step over one statement at a

time in your program.

1. To work with a module type DSPMODSRC and press Enter. The Display Module
Source display is shown.

2. Enter display module T15201C2.

3. To set an unconditional breakpoint at line 50, enter Break 50 on the debug
command line.

4. To set a conditional breakpoint at line 35, enter Break 35 when i==21 on the
debug command line.

5. Press F12 (Resume) to leave the Display Module Source display.

6. Call the program. The program stops at breakpoint 35 if i is equal to 21, or at
line 50 whichever comes first.

7. To step over a statement, press F10 (Step). One statement of the program runs,
and then the Display Module Source display is shown. If the statement is a
function call, the function runs to completion. If the called function has a
breakpoint set, however, the breakpoint will be hit. At this point you are in the
function and the next step will take you to the next statement inside the
function.

Note: You cannot specify the number of statements to step through when you
use F10. Pressing F10 performs a single step.

148 ILE C/C++ Programmer’s Guide

/ N

Display Module Source
Program: T1520PG1 Library: MYLIB Module: T1520IC2
47 if (j<0) return(0);
48 if (hold_formatted_cost[i] == '$"')
49 {
50 formatted cost[j] = hold formatted cost[i];
51 break;
52 }
53 if (i<16 &&; !((i-2)%3))
54 {
55 formatted_cost[j] = ',"';
56 --Js
57 }
58 formatted _cost[j] = hold_formatted_cost[i];
59 =38
60 }
61
Debug
F3=End program F6=Add/Clear breakpoint F10=Step Fll=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys

Breakpoint at line 50.
i J

8. To step over 5 statements, enter step 5 over on the debug command line. The
next five statements of your program run, and then the Display Module Source
display is shown.

If the third statement is a call to a function, the first two statements run, the
function is called and returns, and the last two statements run.

9. To step over 11 statements, enter step 11 over on the debug command liner.
The next 11 statements of your program runs. The Display Module Source
display is shown.

Stepping into Procedures

There is an automatic feature for stepping. This feature automatically puts a
service program into debug. This happens if the service program that is stepped
into from another program in debug:

* Has debug data
* Is not in debug

* Contains a procedure

The service program is added to debug for the user, and the DSPMODSRC panel
shows the procedure in the service program. From this point, modules in the
service program can be accessed using the Work with Modules display just like
modules in programs the user added to debug.

If you specify INTO on the STEP debug command, each statement in a procedure
or function that is called counts as a single statement. You can start the step into
function by using;:

* The STEP INTO debug command
e F22 (Step into)

Example:

This example shows you how to use F22 (Step Into) to step into one procedure.
1. Enter DSPMODSRC. The Display Module Source display is shown.

2. To set an unconditional breakpoint at line 50, enter Break 50 on the debug
command line.

Chapter 13. Stepping Through Programs 149

150

To set a conditional breakpoint at line 35, enter Break 35 when i==21 on the
debug command line.

Press F12 (Resume) to leave the Display Module Source display.

Call the program. The program stops at breakpoint 35 if i is equal to 21 or at
line 50 whichever comes first.

4 N
Display Module Source
Program: T1520PG1 Library: MYLIB Module: T1520IC2
47 if (j<0) return(0);
48 if (hold_formatted cost[i] == '$")
49 {
50 formatted_cost[j] = hold_formatted cost[i];
51 break;
52 }
53 if (i<16 &&; !((i-2)%3))
54 {
55 formatted_cost[j] = ',';
56 =8
57 }
58 formatted cost[j] = hold_formatted cost[i];
59 =8
60 }
61
Debug
F3=End program F6=Add/Clear breakpoint F10=Step Fl1l=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
\\Breakpoint at line 50.)

6. Press F22 (Step into). One statement of the program runs, and then the Display

Module Source display is shown. If the statement is a procedure or function
call, the program stops at the first statement of the procedure or function.

Note: You cannot specify the number of statements to step through when you
use F22. Pressing F22 performs a single step.

To step into 5 statements, enter step 5 into on the debug command line.

The next five statements of your program are run, and then the Display
Module Source display is shown. If the third statement is a call to a function,
the first two statements of the calling procedure run, and the first two
statements of the function run.

Note: The step is counted as a statement.

To step into 11 statements, enter step 11 into on the debug command line. The
next 11 statements of your program runs. The Display Module Source display
is shown.

ILE C/C++ Programmer’s Guide

Chapter 14. Debugging Variables

You can display the value of scalar variables, expressions, structures, arrays, or
errno and change the value of scalar variables or errno using the EVAL debug
command.

This chapter describes how to:

* |Display values of scalar variables, expressions, structures, arrays, or errno|
during a debug session|

+ [Change the value of a variable by using the EVAL debug command|

* [Change the value of scalar variables or errno during a debug session|

» |[Equate a shorthand name with a variable, expression, or command during a|

debug sessiog]

This chapter also includes sample source that illustrates uses of the EVAL debug
command.

Displaying the Value Of a Variable

To display or chagnge the value of a variable:

* The module that is shown on the Display Module Source display must be bound
to a program that is in a debug session.

* The program must be called and stopped at a breakpoint or step location.

The scope of the variables used in the EVAL debug command is defined by using
the QUAL debug command.

* The EVAL debug command
* F11 (Display variable)

You can use the Enter key as a toggle switch between displays.

Note: You can change variables by using the EVAL debug command with
assignment.

Using F11 to Display Variables

The easiest way to display data or an expression is to use F11 (Display variable) on
the Display Module Source display. Place your cursor on the variable that you
want to display and press F11. The current value of the variable is shown on the
message line at the bottom of the Display Module Source display.

In cases where you are evaluating structures, records, classes, arrays, pointers,
enumerations, bit fields, unions or functions, the message returned when you press
F11 (Display variable) may span several lines. Messages that span several lines are
shown on the Evaluate Expression display to show the entire text of the message.
Once you have finished viewing the message on the Evaluate Expression display,
press Enter to return to the Display Module Source display.

The Evaluate Expression display also shows all the past debug commands that you
entered and the results from these commands. You can search forward or
backward on the Evaluate Expression display for a specified string, or text and
retrieve or re-issue debug commands.

© Copyright IBM Corp. 1993, 2004 151

Example:

This example shows you how to use the F11 (Display variable) to display a
variable.

1. Enter DSPMODSRC. The Display Module Source display is shown.
2. Enter display module T1520IC2.

3. Place the cursor on the variable hold_formatted_cost on line 50 and press F11
(Display variable). A pointer to the array is shown on the message line in the

following.
4 N
Display Module Source
Program: T1520PG1 Library: MYLIB Module: T1520IC2
47 if (j<0) return(0);
48 if (hold_formatted cost[i] == '$")
49 {
50 formatted_cost[j] = hold_formatted cost[i];
51 break;
52 }
53 if (i<16 &&; !((i-2)%3))
54 {
55 formatted cost[j] = ',';
56 =8
57 }
58 formatted cost[j] = hold_formatted cost[i];
59 ==J8
60 }
61
More...
Debug . . .
F3=End program F6=Add/Clear breakpoint F10=Step F11=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
\hold_formatted_cost = SPP:C048BD000O3FO)

Messages with multiple line responses will cause the Evaluate Expression
display to be shown. This display will show all response lines. It also shows a
history of the debug commands entered and the results from these commands.
To return to the Display Module Source display, press the Enter key. You can
use the Enter key as a toggle switch between displays. Single-line responses
will be shown on the Display Module Source message line.

You can also use the EVAL debug command to determine the value of an
expression. For example, if j has a value of 1024, enter eval (j * j)/512 on the
debug command line. You use the QUAL debug command to determine the
line or statement number within the function that you want the variables
scoped to for the EVAL debug command. The Evaluate Expression display
shows (j * j)/512 = 2048.

Changing the Value of a Variable

152

You can change variables by using the EVAL debug command with assignment. To
specify the scope of the EVAL command, use a QUAL command.

Example:

This example shows you how to use the EVAL debug command to assign an
expression to a variable.

1. Enter DSPMODSRCr. The Display Module Source display is shown.
2. Enter display module T1520IC2.

ILE C/C++ Programmer’s Guide

3. To specify the scope of the EVAL command you can use a QUAL command.
For example, QUAL 48. will qualify the EVAL command to the scope that line 48
is located at. Line 48 is the number within the function to which you want the
variables scoped for the following EVAL debug command.

Note: You do not always have to use the QUAL debug command before the
EVAL debug command. An automatic QUAL is done when a breakpoint
is encountered or a step is done. This establishes the default for the
scoping rules to be the current stop location.

4. To change an expression in the module shown enter: EVAL x=<expr>, where x is
the variable name and <expra> is the expression you want to assign to variable
X.

For example, "EVAL hold_formatted_cost [1] = '#'" changes the array element
at 1 from $ to # and shows "hold_formatted_cost[1]= '#' = '#':" on the
Display Module Source display as shown:

e

~
Display Module Source
Program: T1520PG1 Library: MYLIB Module: T15201IC2
47 if (j<0) return(0);
48 if (hold_formatted cost[i] == '§"')
49 {
50 formatted_cost[j] = hold_formatted cost[i];
51 break;
52 }
53 if (i<16 &&; !((i-2)%3))
54 {
55 formatted cost[j] = ',';
56)8
57 }
58 formatted cost[j] = hold formatted cost[i];
59 =8
60 }
61
Debug . . .
F3=End program F6=Add/Clear breakpoint F10=Step Fll=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
\\hold_formatted_cost[1]= #o= 4)

Changing the Value of a Scalar Variable

Change the value of scalar variables using the EVAL debug command with an
assignment operator (=). The program must be called and stopped at a breakpoint
or step location to change the value. To change the value of a variable, enter:

EVAL variable-name = value
where variable-name is the name of the variable that you want to change and value
is an identifier, literal, or constant value that you want to assign to variable

variable-name.

Example:
EVAL COUNTER=3

changes the value of COUNTER to 3 and shows
COUNTER=3 = 3

on the message line of the Display Module Source display.

Chapter 14. Debugging Variables 153

When you assign values to a character variable, the following rules apply:

* If the length of the source expression is less than the length of the target
expression, the data is left justified in the target expression and the remaining
positions are filled with blanks.

* If the length of the source expression is greater than the length of the target
expression, the data is left justified in the target expression and truncated to the
length of the target expression.

The scope of the variables used in the EVAL debug command is defined by using
the QUAL debug command. To change a variable at line 48, enter QUAL 48. Line 48
is the number within a function to which you want the variables scoped for the
EVAL debug command.

Note: You do not always have to use the QUAL debug command before the EVAL
debug command. An automatic QUAL is done when a breakpoint is
encountered or a step is done. This establishes the default for the scoping
rules to be the current stop location.

The example below shows the results of changing the array element at 1 from $ to
#.

EVAL hold_formatted_cost [1] = '#'
hold formatted cost[1]= '#' = '#':

//Code evaluated before statement 51 where a breakpoint is set

47 if (j<0) return(0);

48 if (hold_formatted cost[i] == '$"')

49

50 formatted cost[j] = hold_formatted cost[i];
51 break;

52 }

53 if (i<16 && !((i-2)%3))

54 {

55 formatted cost[j] = ',';

56 --Js

57 }

58 formatted cost[j] = hold_formatted cost[i];
59 --Js

60 }

61

Figure 73. Using EVAL to Change a Variable

Equating a Name with a Variable, Expression, or Debug Command

154

You can equate a name with a variable, expression, or debug command for
shorthand use. You can then use that name alone or within another expression. If
you use it within another expression, the value of the name is determined before
the expression is evaluated. Equates stay active until a debug session ends or a
name is removed.

Example:

This example shows you how to use the Equate debug command with a variable
name.
1. Enter DSPMODSRC. The Display Module Source display is shown.

2. To equate an expression, enter equate <name> <definition> where <name> is a
character string that contains no blanks and <definition> is a character string

ILE C/C++ Programmer’s Guide

separated from <name> by at least one blank. The character strings can be in
uppercase, lowercase, or mixed case. The length of the character strings
combined is limited to 144 characters, which is the length of the command line.
After any Equates have been expanded, the length is limited to 150 characters,
which is the maximum command length. For example, enter equate dv display
variable .

If a definition is not supplied, and a previous Equate debug command has defined
the name, the previous definition is removed. If the name was not previously
defined, an error message is shown.

To see the Equates that are defined for this debug session, enter: display equate.
A list of the active Equates is shown on the Evaluate Expression display.

Displaying a Structure

The following example shows a structure with two elements being displayed. Each
element of the structure is formatted according to its type and displayed.

1.

a s~ DN

6.

7.

Enter DSPMODSRCr. The Display Module Source display is shown.
Set a breakpoint at line 9.

Press F12 (Resume) to leave the Display Module Source display.
Call the program. The program stops at the breakpoint at line 9.

Enter eval test on the debug command line, as shown:
4 N
Display Module Source
Program: TEST1 Library: DEBUG Module: MAIN
1 struct {

char charValue;

unsigned long intValue;
} test;

int main(){
test.intValue = 10;
test.charValue = 'c';
test.charValue = 11;
return 0;

}

FoOWwWONOOL B WN

— -

Bottom
Debug . . . eval test

F3=Exit program F6=Add/Clear breakpoint F10=Step F1ll=Display variable
\\F12=Resume F17=Watch variable F18=Work with watch F24=More keys

v

Press Enter to go to the next display. The Evaluate Expression Display shows
the entire structure as shown:

Evaluate Expression
Previous debug expressions
> BREAK 9
> EVAL test
test.charValue = 'c'
test.intValue = 10

Press Enter from the Evaluate Expression Display to return to the Display
Module Source screen.

Displaying Variables As Hexadecimal Values

The following example shows the steps and syntax used to dump hexadecimal
variables.

1. Enter DSPMODSRC. The Display Module Source display appears, as shown below.

Chapter 14. Debugging Variables 155

156

a s~ N

Set a breakpoint at line 9.
Press F12 (Resume) to leave the Display Module Source display.
Call the program. The program stops at the breakpoint at line 9.

Enter eval test: x 32 on the debug command line, as shown below.
4 N
Display Module Source
Program: TEST1 Library: DEBUG Module: MAIN
1 struct {
char charValue;
unsigned long intValue;
} test;

2

3

4

5

6 int main(){

7 test.intValue = 1
8 test.charValue =
9 test.charValue =
0 return 0;

1

03
ICI;
11;
1
1
Bottom
Debug . . . eval test: x 32

F3=Exit program F6=Add/Clear breakpoint F10=Step F1l1l=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys

The Evaluate Expression display appears. As requested, 32 bytes are shown,
but only the first 8 bytes are meaningful. The left column is an offset in hex
from the start of the variable. The right column is an EBCDIC character
representation of the data. If no length is specified after the 'x’, the size of the
variable is used as the length. A minimum of 16 bytes is displayed. Press the
Enter key to return to the Display Module Source display.

Evaluate Expression
Previous debug expressions

> BREAK 9

> EVAL test: x 32
00000 83000000 0000OO0A 00000000 00000000 - Coveveveeennnnn
00010 00000000 00000000 00000000 00000000 -vvvenerenn.

Displaying Null-Ended Character Arrays

The following example shows the display of a character string. The array must be
dereferenced by the "*" operator. If the * operator is not entered, the array is
displayed as a space pointer. If the dereferencing operator is used, but the ":s’ is
not appended to the expression, only the first array element is displayed.

1.

a s~ DN

While in a debug session, enter DSPMODSRCr. The Display Module Source display
is shown.

Set a breakpoint at line 6.

Press F12(Resume) to leave the Display Module Source Display.
Call the program. The program stops at the breakpoint at line 6.
Enter eval *arrayl: s on the debug command line, as shown:

ILE C/C++ Programmer’s Guide

/ N

Display Module Source

Program: TEST3 Library: DEBUG Module: MAIN
#include <string.h>
char arrayl [11];
int i;
int main(){

strcpy(arrayl,"0123456789") ;

i=0;

return 0;

}

CONOOI B WN =

Bottom
Debug . . . eval *arrayl: s

F3=Exit program F6=Add/Clear breakpoint F10=Step Fll=Display variable
\\F12=Resume F17=Watch variable F18=Work with watch F24=More keys

J

The following shows the value of the array. A string length of up to 65535 can
follow the s character. Formatting will stop at the first null character
encountered. If no length is specified, formatting will stop after 30 characters or
the first null, whichever is less.
4 N
Display Module Source
Program: TEST3 Library: DEBUG Module: MAIN
#include <string.h>
char arrayl [11];
int i;
int main(){
strcpy(arrayl,"0123456789") ;
i=0;
return 0;

}

CONOOYOI B WN =

Bottom
Debug . . .

F3=Exit program F6=Add/Clear breakpoint F10=Step F1l1=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
\farrayl: s = "0123456789"

The following example shows the usage of the :f syntax to specify that the
newline character (x'15) should be scanned for while displaying string output. If
the end of the display line occurs, the output is wrapped to the next display line.

When the :f formatting code is used, the text string will display on the current line
until a newline is encountered. If no newline character is encountered before the
end of the display screen line, the output is wrapped until a newline is found.
DBCS SO/SI characters are added as necessary to make sure they are matched.

An example of :f format code usage is shown:

int main()

{
char testc[]={"This is the first Tine.\nThis is the second line."
"\nThis is the third line."};
int i;
i=1;
1

This program will result in the following screen output:

Chapter 14. Debugging Variables 157

158

Ve
> EVAL *testc:s 100
*testc:s 100 =
"This is the first line. This is the second Tine. This is the"
"third Tine."
> EVAL =testc:f 100
*testc:f 100 =
This is the first line.
This is the second line.

This is the third Tine.
o %

Displaying Character Arrays

The following example shows the usage of the ":c’ syntax to format an expression
as characters. The array must be dereferenced by the "*’ operator. If the * operator
is not entered, the array will be displayed as a space pointer. If the dereferencing
operator is used, but the ":c’ is not appended to the expression, only the first array
element is displayed. The default length of the display is 1.

1. While in a debug session, type DSPMODSRC. The Display Module Source display

is shown.
2. Set a breakpoint at line 6.
3. Press F12(Resume) to leave the Display Module Source Display.
4. Call the program. The program stops at the breakpoint at line 6.
5. Enter eval *arrayl: c 11 on the debug command line, as shown:
4 N
Display Module Source
Program: TEST3 Library: DEBUG Module: MAIN
1 #include <string.h>
2 char arrayl [11];
3 int i3
4 int main(){
5 strcpy(arrayl,"0123456789") ;
6 i=0;
7 return 0;
8 }
Bottom
Debug . . . eval *arrayl: c 11
F3=Exit program F6=Add/Clear breakpoint F10=Step Fl1l=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys)
The following illustrates displaying 11 characters, including a null character.
The null character appears as a blank.
4 N
Display Module Source
Program: TEST3 Library: DEBUG Module: MAIN
1 #include <string.h>
2 char arrayl [11];
3 int i3
4 int main(){
5 strcpy(arrayl,"0123456789") ;
6 i=0;
7 return 0;
8 }
Bottom
Debug . . .
F3=Exit program F6=Add/Clear breakpoint F10=Step F1l1l=Display variable
F12=Resume F17=Watch variable F18=Work with watch F24=More keys
*arrayl: c 11 = '0123456789 ')

ILE C/C++ Programmer’s Guide

Sample EVAL Commands for Pointers, Variables, and Bit
Fields

shows the use of the EVAL command with pointers, variables, and bit
fields. The pointers, variables, and bit fields are based on the source in
Sample EVAL Commands” on page 163/

Pointers
// Display a pointer
>eval pcl
pcl = SPP:0000C0260900107C

// Assign a value to a pointer
>eval pc2=pcl
pc2=pcl = SPP:0000C0260900107C

// Dereference a pointer
>eval #*pcl
«pcl = 'C

// Take the address of a pointer
>eval &pcl
&pcl = SPP:0000C02609001040

// Build an expression with normal C precedence
>eval =*&pcl
*&pcl = SPP:0000C0260900107C

// Casting a pointer
>eval *(short *)pcl
*(short *)pcl = -15616

// Treat an unqualified array as a pointer
>eval arrl
arrl = SPP:0000C02609001070

// Apply the array type through dereferencing
// (character in this example)

>eval *arrl

*arrl = 'A'

// Override the formatting of an expression that is an Ivalue
>eval *arrl:s
*arrl:s = "ABC"

// Set a pointer to null by assigning 0
>eval pcl=0
pcl=0 = SYP:*NULL

// Evaluate a function pointer
>eval fncptr
fncptr = PRP:0000AOCDOO04FO10

// Use the arrow operator
>eval *pY->X.p
*pY->x.p = ' '

Simple Variables
// Perform logical operations

>eval il==ul || il<ul
il==ul || il<ul = 0

Figure 74. Sample EVAL Commands for Pointers, Variables, and Bit Fields (Part 1 of 2)

Chapter 14. Debugging Variables 159

// Unary operators occur in proper order
>eval il++
il++ = 100

// il is incremented after being used
>eval il
il = 101

// il is incremented before being used
>eval ++il
+i1 = 102

// Implicit conversion
>eval ul = -10
ul = -10 = 4294967286

// Implicit conversion
>eval (int)ul
(int)ul = -10

Bit Fields

// Display an entire structure
>eval bits

bits.bl =1

bits.b4 = 2

// Work with a single member of a structure
>eval bits.b4 = bits.bl
bits.b4 = bits.bl =1

// Bit fields are fully supported
>eval bits.bl << 2
bits.bl << 2 = 4

// You can overflow bit fields, but no warning is generated
>eval bits.bl = bits.bl << 2

bits.bl = bits.bl << 2 =4
>eval bits.bl

bits.bl = 0

Figure 74. Sample EVAL Commands for Pointers, Variables, and Bit Fields (Part 2 of 2)

The examples below show the use of the EVAL command with structures, unions,
and enumerations. The structures, unions, and enumerations are based on the
source in [“Source for Sample EVAL Commands” on page 163/

Note: For C++, the structures are simple structures, not Classes.

Structures and Unions
// Cast with typedefs
>eval (struct z *)&zz

(struct z *)&zz = SPP:0000C005AA0010D0

// Cast with tags
>eval *(c *)&zz

(*(c *)&zz).a =1
(*(c *)&zz).b = SYP:*NULL

Figure 75. Sample EVAL Commands for C Structures, Unions and Enumerations (Part 1 of 2)

160 ILE C/C++ Programmer’s Guide

Structures and Unions// Assign union members
>eval u.x = -10
u.x = -10 = -10

// Display a union. The union is formatted for each definition
>eval u

u.y = 4294967286

u.x = -10

Enumerations

// Display both the enumeration and its value
>eval Color

Color = blue (2)
>eval Number

Number = three (2)

// Cast to a different enumeration
>eval (enum color)Number
(enum color)Number = blue (2)

// Assign by number
>eval Number =1
Number = 1 = two (1)

// Assign by enumeration
>eval Number = three
Number = three = three (2)

// Use enums in an expression
>eval arrl[one]
arrlfone] = 'A'

Figure 75. Sample EVAL Commands for C Structures, Unions and Enumerations (Part 2 of 2)

EVAL Commands for System and Space Pointers

The example below shows the use of the EVAL command with system and space
pointers. The system and space pointers are based on the source in |”Source forl
Sample EVAL Commands for Displaying System and Space Pointers” on page 165.]

System and Space Pointers
// System pointers are formatted
// :1934:QTEMP :111111110
>eval pSYSptr
pSYSptr =
SYP:QTEUSERSPC
0011100
// Space pointers return 8 bytes that can be used in
// System Service Tools
>eval pBuffer
pBuffer = SPP:0000071ECD000200

Figure 76. Sample EVAL Commands for System and Space Pointers

You can use the EVAL command on C and C++ language features and constructs.
The ILE source debugger can display a full class or structure but only with those
fields defined in the derived class. You can display a base class in full by casting

the derived class to the particular base class.

The example below shows the use of the EVAL command with C++ language
constructs. The C++ language constructs are based on the source in “Source for

Chapter 14. Debugging Variables 161

[Sample EVAL Commands for Displaying C++ Constructs” on page 167 Additional
C++ examples are provided in the source debugger online help.

// Follow the class hierarchy (specifying class D is optional)

> EVAL *(class D *)this
(*(class D *)this)._vbplB
(*(class D *)this)._vbplD
(*(class D *)this).d = 4

SPP:C40F5E3D7F000490
SPP:C40F5E3D7F000440

// Follow the class hierarchy (without specifying class D)
> EVAL *(D *)this
(*(D *)this). vbplB
(*(D *)this).__vbplD
(*(D *)this).d = 4

SPP:C40F5E3D7F000490
SPP:C40F5E3D7F000440

// Look at a local variable
> EVAL VAR
VAR =1

// Look at a global variable
> EVAL ::VAR
::VAR = 2

// Look at a class member (specifying this-> is optional)
> EVAL this->f
this->f = 6

// Look at a class member (without specifying this->)
> EVAL f
f=6

// Disambiguate variable ac
> EVAL A::ac
A::ac = 12

// Scope operator with template
> EVAL E<int>::ac
E<int>::ac = 12

// Cast with template:

> EVAL *(E<int> *)this
(*(E<int> *)this)._vbplB = SPP:C40F5E3D7F000490
(*(E<int> *)this)._ vbplEXTi_ = SPP:C40F5E3D7F000400
(*(E<int> *)this).e = 5

// Assign a value to a variable
> EVAL f=23
=23 = 23

// See all Tocal variables in a single EVAL statement
> EVAL %LOCALVARS

local = 828
this = SPP:C40F5E3D7F000400
VAR = 1

Figure 77. Sample EVAL Commands for C++ Expressions

Displaying a Class Template and a Function Template

To display a class template or a function template, enter EVAL template-name on
the debug command line. The variable template-name is the name of the class
template or function template you want to display.

The example below shows the results of evaluating a class template. You must
enter a template name that matches the demangled template name. Type definition

162 ILE C/C++ Programmer’s Guide

names are not valid because the typedef information is removed when the
template name is mangled.

> EVAL XX<int>::a
XX<int>::= '1 '
EVAL XX<inttype>::a
Identifier not found

\%

1 template < class A > //Code evaluated at line 8

2 class XX { //where a breakpoint was set
3 static A a;

4 static B b;

5 13

6 XX<int> x;

7 typedef int inttype;

8 int XX<int>::a =1; //mangled name a_ 2XXXTi_

9 int XX<inttype>::b = 2; //mangled name b__ 2XXXTi_

Figure 78. Using EVAL with a Class Template
The example below shows the results of evaluating a function template.

> EVAL XX<int,12>::sxa
XX<int,12>::sxa = 'l '
> EVAL xxobj.xcal[0]
xxobj.xca[0] = '2 '
1 template < class A, int B> //Code evaluated at lines 8 and 9
2 class XX { //where breakpoints were set
3 static A sxa;
4 char xca[B];
5 public:
6 XX(void) { xca[0] = 2; }
7}
8 XX<int,12> xxobj;
9 int XX<int,2*6>::sxa =1;
//same as intXX<int,12>::sxa
//mangled name sxa_ 2XXXTiSP12_

Figure 79. Using EVAL with a Function Template

Source for Sample EVAL Commands

The sample EVAL commands presented in [Figure 74 on page 159 and [Figure 75 on|
Eage 160| are based on the source shown in the following figure:

#include <iostream.h>
#include <pointer.h>

[** POINTERS **/

_SYSPTR pSys; //System pointer
_SPCPTR pSpace; //Space pointer

int (*fncptr)(void); //Function pointer
char *pcl; //Character pointer
char #*pc2; //Character pointer
int *pil; //Integer pointer
char arrl[] = "ABC"; //Array

Figure 80. Source for Sample EVAL Commands (Part 1 of 3)

Chapter 14. Debugging Variables 163

164

/*% SIMPLE VARIABLES **/

int il;
unsigned ul;
char cl;
float fl;

/#% STRUCTURES
struct {
int bl : 1;
int b4 : 4;
Ibits;
struct x{
int x;
char *p;
}s
struct y{
int y;
struct x x;
}s
typedef struct
int z;
char *p;
b ozs
zZ 273
z *pll;
typedef struct
unsigned a;
char =b;
}cs
c d;
/*% UNIONS *x/
union uf{
int x;
unsigned y;
}s
union u u;
union u *pU;

*%x/

//Integer
//Unsigned Integer
//Character
//Float

//Bit fields

// Tagged structure

// Structure with
// structure member

// Structure typedef

// Structure using typedef
// Same
// Structure typedef

// Structure using typedef

// Union

// Variable using union
// Same

/#% ENUMERATIONS x*/

enum number {one, two, three};
enum color {red,yellow,blue};
enum number Number = one;

enum color Color = blue;

Figure 80. Source for Sample EVAL Commands (Part 2 of 3)

ILE C/C++ Programmer’s Guide

/%% FUNCTION ##/
int ret100(void) { return 100;}
int main()
{
float decl;
struct y y, *pY;
bits.bl = 1;
bits.bd = 2;
il = retl100();
cl="'C';
fl = 100e2;
decl = 12.3;
pcl = &cl;
pil = &il;
d.a = 1;
pZZ = &zz;
pZZ->z=1;
pY = 8&y;
pY->x.p=(charx)&y;
pU=&u;
pU->x=255;
Number=(number)Color;
fncptr = &retl00;
pY->x.x=1; // Set breakpoint here
return 0;

Figure 80. Source for Sample EVAL Commands (Part 3 of 3)

Source for Sample EVAL Commands for Displaying System and Space
Pointers

The sample EVAL command for displaying system and space pointers presented in
[Figure 76 on page 161|is based on the source shown in the following figure:

Chapter 14. Debugging Variables 165

#include <iostream.h>

#include <mispace.h>

#include <pointer.h>

#include <mispcobj.h>

#include <except.h>

#include <lecond.h>

#include <leenv.h>

#include <qtedbgs.h> // From gsysinc

// Link up the Create User Space API
#pragma linkage(CreateUserSpace,0S)
#pragma map(CreateUserSpace, "QUSCRTUS")
void CreateUserSpace(char[20],

char[10],

long int,

char,

char[10],

char[50],

char[10],
_TE_ERROR_CODE_T *
)s

// Link up the Delete User Space API

#pragma linkage(DeleteUserSpace,0S)

#pragma map (DeleteUserSpace, "QUSDLTUS")

void DeleteUserSpace(char[20],
_TE_ERROR_CODE_T *
)s

// Link up the Retrieve Pointer to User Space API
#pragma linkage(RetrievePointerToUserSpace,0S)
#pragma map (RetrievePointerToUserSpace,"QUSPTRUS")
void RetrievePointerToUserSpace(char[20],
char #x,
_TE_ERROR_CODE_T *
)s

Figure 81. Source for Sample EVAL Commands for Displaying System and Space Pointers
(Part 1 of 2)

166 ILE C/C++ Programmer’s Guide

int main (int argc, char =*argv[])
{

char *pBuffer;
SYSPTR pSYSptr;
_TE_ERROR_CODE_T errorCode;
errorCode.BytesProvided = 0;

CreateUserSpace ("QTEUSERSPCQTEMP ",
"QTESSPC ",
10,
0,
II*ALL II’
II*YES II’
&errorCode

)s

//! call RetrievePointerToUserSpace - Retrieve Pointer to User Space
//'!" (pass: Name and library of user space, pointer variable
//'! return: nothing (pointer variable is left pointing to start
/1) of user space)
RetrievePointerToUserSpace ("QTEUSERSPCQTEMP ',

&pBuffer,

&errorCode) ;

// convert the space pointer to a system pointer
pSYSptr = _SETSPFP(pBuffer);

cout << "Space pointer: " << pBuffer << endl;
cout << "System pointer: " << pSYSptr << endl;
return 0;

Figure 81. Source for Sample EVAL Commands for Displaying System and Space Pointers
(Part 2 of 2)

Source for Sample EVAL Commands for Displaying C++ Constructs

L4+

n page 162|is based on the source shown in the following figure:

The sample EVAL command for displaying C++ constructs presented in

Chapter 14. Debugging Variables 167

// Program demonstrates the EVAL debug command
class A {
public:
union {
int a;
int ua;
1
int ac;
int amb;
int not_amb;

}s

class B {
pubTic:
int b;
}s

class C {
public:
int ac;
static int c;
int amb;
int not_amb;

}s

int C::c = 45;
template <class T> class E : public A, public virtual B {
pubTic:
T e;
}s

class D : public C, public virtual B {
pubTic:
int d;
}s

class outter {
public:
static int static_i;
class F : public E<int>, public D {
public:
int f;
int not_amb;
void funct();
} inobj;
}s

Figure 82. Source for Sample EVAL Commands for Displaying C++ Constructs (Part 1 of 3)

168 ILE C/C++ Programmer’s Guide

int outter ::

int VAR = 2;

void outter::F::funct()

{

VAR=1;
static_i=10;
A::ac=12;
C::ac=13;
not_amb=32;

not_amb=13;

/1
//

Stop
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL

EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL
EVAL

here and show:
VAR

::VAR
%LOCALVARS
*this
this->f

f

a

b

C

static_i

au
a=49

au

ac

A::ac

B::ac
E<int>::ac
this
(E<int>*)this
(class D *)this
x(E<int> *)this
*(D *) this

//EVAL VAR

static_i = 45;

: Is VAR in global scope

: is VAR in local scope
: is VAR in global scope
: see all Tocal vars
: fields of derived class
: show member f

: in derived class
: in base class

: in Virtual Base class
: static member
: static var made visible

: by middle-end

: show ambigous var
: disambig with scope op
: Scope op
: Scope op
: notice pointer values

: change

: anonymous union members

: class is optional

: show fields
: show fields

Figure 82. Source for Sample EVAL Commands for Displaying C++ Constructs (Part 2 of 3)

Chapter 14. Debugging Variables

169

int main()
{
outter obj;
int outter::F::*mptr = &outter::F::b;
int i;
int& r = i3
obj.inobj.funct();
i=777;

obj.static_i = 2;

// Stop here

// EVAL obj.inobj.*mptr : member ptr

// EVAL obj.inobj.b

// EVAL i

// EVAL r

// EVAL r=1

// EVAL i

// EVAL (A &) (obj.inobj) : reference cast
// EVAL

Figure 82. Source for Sample EVAL Commands for Displaying C++ Constructs (Part 3 of 3)

170 ILE C/C++ Programmer’s Guide

Chapter 15. Changing Module Optimization and Observability

After a program is created, it might need to be changed to address problems or
revised user requirements.

When a program is in production, it is optimized for performance and reduced to
its minimum size.

When you debug a program, you need to be able to:
* Observe the behavior of the program as it processes data
* See variable values that might not be visible at higher levels of optimization

When you create a listing view, you add the data required to observe the behavior
of the program. See [“Creating a Listing View for Debugging” on page 123)

During a debug session, you can lower the optimization level of a module to
display variables accurately as you debug the program, and then raise the level
again afterwards to improve the program efficiency as you get the program ready
for production.

After a debug session, you can remove module observability to reduce the size of
the module.

This chapter describes how to:

+ |Change optimization levels during a debug session.

* [Remove module observability]|

Changing Optimization Levels

Optimizing an object means looking at the compiled code, determining what can be
done to make the run-time performance as fast as possible, and making the
necessary changes. In general, the higher the optimizing request, the longer it takes
to create an object. At run time, the highly optimized program or service program
should run faster than the corresponding non-optimized program or service
program.

Example:

This example shows you how to change the optimization level of module T1520I1C4
from *FULL to *NONE to allow variables to be displayed and changed when the
program is in debug mode. Once debug is complete, you can change the
optimization level back to *FULL for improved run-time performance.

1. Enter WRKMOD MODULE (T15201C1). The Work with Modules display is shown.

2. Select option 5 (Display) to see the attribute values that need to be changed.
The Display Module Information display is shown:

© Copyright IBM Corp. 1993, 2004 171

172

Display Module Information
Module : T1520ICl
Library MYLIB
Detail : *BASIC
Module attribute : CLE
Module information:
Module creation date/time : 93/09/93 12:00:00
Source file QACSRC
Library . . .« o o o o o o e e e e e e e e e e e e MYLIB
Source member T1520IC1
Source file change date/time : 93/08/18 13:31:40
OWNer . . v v v e e e e e e e e e e e e e e e e SMITH
Coded character set identifier : 65535
Text description 0oLt
Creation data *YES
Intermediate language data : *NO
More...
Press Enter to continue.
F3=Exit Fl12=Cancel

J

Note: In the display shown above, the Creation data value is *YES. This means
that the module can be translated again once the optimization level
value is changed. If the value is *NO, you must compile the module
again in order to change the optimization level.

3. Press the Roll Down key to see more information for the module as shown:

4)) N
Display Module Information

Module : T1520IC4
Library MYLIB

Detail *BASIC

Module attribute : CLE
Sort sequence table *HEX
Language identifier *JOBRUN
Optimization level : *NONE
Maximum optimization level *FULL
Debug data *ES
Compressed v v v v v v oot *NO
Program entry procedure name : _C.pep
Number of parameters 0 255
Module state : *USER
Module domain *SYSTEM
Number of exported defined symbols : 1
Number of imported (unresolved) symbols : 10
Press Enter to continue.

More...
F3=Exit Fl2=Cancel

J

4. Check the Maximum Optimization Level value. It may already be at the level

you desire. If the module has the creation data, and you want to change the
optimization level, press F12 (Cancel). The Work with Modules display is
shown.

Select option 2 (Change) for the module whose optimization level you want to
change. The CHGMOD command prompt is shown.

Type over the value specified for the field Optimize Module. Changing the
module to a lower level of optimization allows you to display, and possibly
change, the value of variables while debugging. The following command can be
used to lower the optimization level to *NONE on the command prompt but it
will NOT be put in the job log.

CHGMOD MODULE(MYLIB/T1520IC4) OPTIMIZE(*NONE)

ILE C/C++ Programmer’s Guide

7. Do steps El through El again for any additional modules you may want to
change. Whether you are changing one module or several in the same ILE
program, the program creation time is the same because all imports are
resolved when the system encounters them.

Note: Imports can be left unresolved using the *UNRSLVREF parameter of the
CRTPGM command.

8. Create the program again using the CRTPGM command.

Removing Module Observability

Before you can observe a module, two types of data must be stored with the
module.

The two types of data are:

Create Data Represented by the *CRTDTA value. This data is necessary to
translate the code to machine instructions. The module must have
this data before you can change the module optimization level.

Debug Data Represented by the *DBGDTA value.
Both *CRTDTA and *DBGDTA are necessary for a module to be debugged.

You can change the module without re-compiling it only if these two data types
are stored with it. After the module is re-compiled, only this data can be removed.
After this data is removed, its observability is also removed, and you must
recompile the module to replace the data.

Removing all observability reduces the module to its minimum size (with
compression). It is not possible to change the module in any way unless you
compile the module again. To compile it again, you must have authorization to
access the source code.

You can use the CHGMOD command to remove either kind of data from the
module.

Example:

Use the following procedure to remove observability from the T1520IC4 program:
1. Enter WRKMOD. The Work with Modules display is shown.

2. Select option 5 (Display) to see the attribute values that need to be changed.
The Display Module Information display is shown.

Check the value of the field Creation data. If it is *YES, the Create Data exists,
and can be removed. If this value is *NO, there is no Create Data to remove.
The module cannot be translated again unless you re-create it.

3. Press the Roll Down key to see more information for the module. Check the
value of the field Debug Data. If it is *YES, the module can be debugged. If it is
*NO, the module cannot be debugged unless you compile it again, and include
the debug data. Then press F3 to get back to Work with Modules display.

4. Select option 2 (Change) for the module whose observability you want to
change. The CHGMOD command prompt is shown.

5. Type over the value specified for the Remove Observable Info prompt. The
following command appears in the job log for the Change Module command
after the Enter key is pressed.

Chapter 15. Changing Module Optimization and Observability ~ 173

CHGMOD MODULE (MYLIB/T15201C4) RMVOBS(*ALL)

6. You can ensure that the module is created again by changing the value of the
Force Module Recreation parameter to *YES.

Note: This parameter is not required simply because the optimization level is
changed. A change in the optimization level typically results in module
re-creation unless the Create Data has been removed. If you want the
program to be translated again after removing the debug data, without
changing the optimization level, you must use the Force Module Recreation
parameter.

7. Do steps El through El again for any additional modules you want to change.
Whether you are changing one module or several in the same ILE program, the
program creation time is the same because all imports are resolved when the
system encounters them.

Note: Imports can be left unresolved using the *UNRSLVREF parameter of the
CRTPGM command. Program creation time is the same.

8. Create the ILE program again by using the CRTPGM command.

174 ILE C/C++ Programmer’s Guide

Part 4. Performing 1/0O Operations

This part describes how to:

e |Use ILE C/C++ stream and record I/O functions with iSeries data managemenﬂ
files|

» |Use ILE C/C++ stream 1/0O functions with the iSeries Integrated File System|
(IFS),

© Copyright IBM Corp. 1993, 2004 175

176 ILE C/C++ Programmer’s Guide

Chapter 16. Using ILE C/C++ Stream and Record 1/0
Functions with iSeries Data Management files

The ILE C/C++ compiler allows your program to process stream files as text
stream files or as binary stream files. See [‘File Control Structure of Text Streams|
land Binary Streams” on page 182]

This chapter describes:
* |ILE C Record 1/0 Functions|
* [iSeries Data Management fileg

* [File control structure of text streams and binary streams

« |I/O processes for text stream files|

+ [I/O processes for binary stream files|
* |Open feedback ared

+ [I/O feedback area|

+ [How to use Session Manager]

ILE C Record I/O Functions

The ILE C library provides a set of extensions to the ISO C definition for I/O. This

set of extensions, referred to as record I/O, allows your program to perform I/0
operations one record at a time.

The ILE C record I/0O functions work with all the file types that are supported on
the iSeries system.

Each file that is opened with _Ropen() has an associated structure of type _RFILE.
The <recio.h> header file defines this structure.

Attention: Unpredictable results may occur if you attempt to change this
structure.

Different open modes and keyword parameters apply to the different iSeries Data
Management file types. For information about each file type and how to open a
record file using _Ropen(), see:

+ |Chapter 18, “Using Externally Described Files in a Program,” on page 225|

* |Chapter 19, “Using Database Files and Distributed Data Management Files in a|
Program,” on page 249

» |Chapter 20, “Using Device Files in a Program,” on page 269

Note: There is no equivalent function provided by the C++ run-time library.

Stream Buffering
b C |

Three buffering schemes are defined for ISO standard C streams. They are:

© Copyright IBM Corp. 1993, 2004 177

178

* Unbuffered - characters are intended to appear from the source or at the
destination, as soon as possible. The ILE C compiler does not support
unbuffered streams.

* Fully buffered - characters are transmitted to and from a file one block at time,
after the buffer is full. The ILE C compiler treats a block as the size of the
system file’s record.

* Line buffered - characters are transmitted to and from a file, as a block, when a
new-line control character (\n) is encountered.

The ILE C compiler supports fully-buffered and line-buffered streams in the same
manner, because a block and a line are equal to the record length of the opened
file.

Note: The setbuf() and setvbuf() functions do not allow you to control buffering
and buffer size when using the data management system.

Dynamic Stream File Creation

Dynamic file creation for text stream files is the same as specifying:
CRTSRCPF FILE(filename) RCDLEN(reclin)

Dynamic file creation for binary stream files is the same as specifying;:
CRTPF FILE(filename) RCDLEN(recin)

The length that is specified on the Trec] parameter of fopen() is used for the

record length of the file that is created, with the following exceptions:

* If you do not specify a record length when you open a text file, then a source
physical file with a record length of 266 is created.

* If you do not specify a record length when you open a binary or record file,
then a physical file with a record length of 80 is created.

* If you specify a record length of zero (1rec1=0) when you open a text file, then a
source physical file with a record length of 266 is created.

* If you specify a record length of zero (1rec1=0) when you open a binary file,
then a physical file with a record length of 80 is created.

* If the Trec] parameter is not specified for program-described files, then the
record length that is specified on the CRTPRTG, or CRTPRTF is used. This
length has a default value of 132, and if specified must be a minimum of 1.

Note: To use the source entry utility (SEU) to edit source files, specify an Trecl
value of 240 characters or less on fopen().

Open Modes for Dynamically Created Stream Files

If you specify the mode when opening a file, and if the file you specified does not
already exist, the iSeries Data Management system automatically creates the file.

* If you are using binary mode, a physical database file is created.

* If you are using text mode, a source physical file is created.

If the file exists, but the member does not, the iSeries system adds the member to
the file.

If you do not specify a library name when you open the file, the database file is
dynamically created in library QTEMP. If you do not specify a member name, a
member is created with the same name as the file.

ILE C/C++ Programmer’s Guide

Standard I/O Text Stream Files (<stdio.h>)

When a program that includes the <stdio.h> file starts, three text streams are
defined:

+ Standard input (stdin) reads input from the terminal.
* Standard output (stdout) writes output to the terminal.
 Standard error (stderr) writes diagnostic output to the terminal.

Streams stdin, stdout, and stderr are implicitly opened the first time they are used.
* Stream stdin is opened with fopen("stdin", "r").

 Stream stdout is opened with fopen("stdout", "w").

* Stream stderr is opened with fopen("stderr", "w").

Note: These streams are not real iSeries Data Management files, but are simulated
as files by the ILE C library routines. By default, they are directed to the
terminal session.

Overriding Standard Output to the Terminal
The stdin, stdout, and stderr streams can be associated with other devices using

the OS/400 override commands on the files stdin, stdout, and stderr respectively. If
stdin, stdout, and stderr are used, and a file override is present on any of these
streams prior to opening the stream, then the override takes effect, and the I/O
operation may not go to the terminal.

If stdout or stderr are used in a non-interactive job, and if there are no file
overrides for the stream, then the ILE C compiler overrides the stream to the
printer file QPRINT. Output prints or spools for printing instead of displaying at
your workstation.

Allowing a Program to Re-Read an Input File with QINLINE
Specified

If stdin is specified (or the default accepted) for an input file that is not part of an
interactive job, then the QINLINE file is used. You cannot re-read a file with
QINLINE specified, because the database reader will treat it as an unnamed file,
and therefore it cannot be read twice. You can avoid this by issuing an override. If
you are reading characters from stdin, pressing F4 triggers the run time to end any
pending input and to set the EOF indicator on. Pressing F3 is the same as calling
exit() from your ILE C/C++ program.

If stdin is specified in batch and has no overrides associated with it, then QINLINE
will be used. If stdin has overrides associated with it, then the override is used
instead of QINLINE.

Note: You can also use freopen() to reopen text streams. The stdout and stderr
streams can be reopened for printer and database files. The stdin stream can
be overridden only with database files. Using freopen() to redirect
stdin/stdout/stderr from/to an IFS stream file is not supported on iSeries.

iISeries Data Management Files

An ILE C stream file or record file is the same as an iSeries Data Management file.
System files are also called file objects. Each iSeries Data Management file or file
object is differentiated and categorized by information that is stored within it. Each
file has its own set of unique characteristics, which determine how the file can be
used and what capabilities it provides. This information is called the file description.

Chapter 16. Using ILE C/C++ Stream and Record I/O Functions with iSeries Data Management files 179

180

The file description also contains the file’s characteristics, details on how the data
associated with the file is organized into records, and how the fields are organized
within these records. Whenever a file is processed, the operating system uses the
file description. Data is created and accessed on the system through file objects.

iISeries Data Management File Types

The iSeries Data Management files are listed:
* Database files store data on the iSeries Data Management system.

* Device files provide access to externally attached devices such as: displays,
printers, tapes, and diskettes.

e Intersystem communications function (ICF) files define the layout of the data sent
and received between two application programs on different systems. This file
links the configuration objects that are used to communicate with the remote
system

* Save files save data in a format that is used for backup and recovery purposes.
* Distributed Data Management (DDM) files access data on remote systems.

Data Management Stream Files and ILE C I/O Operations

The C International Standard defines a C language stream file as a
sequence of data that is read and written one character at a time. All I/O
operations in ISO C are stream operations.

On the iSeries Data Management system:
¢ A stream is a continuous string of characters.
* All files are made up of records.

e All I/O operations at the operating system level are carried out a record at a
time, using data management operations.

The ILE C/C++ run-time library allows your program to process stream files as
text stream files or as binary stream files. Text stream files process one character at
a time. Binary stream files process either one character at a time or one record at a
time.

Because the iSeries Data Management system carries out I/O operations one record
at a time, the ILE C/C++ library simulates stream file processing with OS/400
records. Although the ILE C/C++ library logically handles I/O one character at a
time, the actual I/O that is performed by the operating system is done one record
at a time.

Avoiding Positioning Problems in the File

Because the iSeries Data Management system carries out I/O operations one record
at a time, using system commands such as OPNQRYF together with stream 1/O
operations on the same file may cause positioning problems in the file your
program is processing.

Caution:

* Do not mix the use of ILE C/C++ extensions for record I/O and stream file
functions on the same file as unpredictable results can occur.

* Avoid using system commands that logically work with records instead of
characters in programs that contain stream I/O operations.

Using the fopen() Function
The format of fopen() is:

ILE C/C++ Programmer’s Guide

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);

The mode variable is a character string that consists of an open mode which may be
followed by keyword parameters. The open mode and keyword parameters must
be separated by a comma or one or more blank characters.

Note: For information about the recln parameter, see [“Dynamic Stream File]
[Creation” on page 178

Using the open() member Function

Create an input, output, or input/output file stream and then link to a file. Use the
open() member function of the file stream class to link a file stream with a file. The
format of the open() member function is:

void ifstream::open(const char xfilename, openmode mode=ios::in);
void ofstream::open(const char xfilename, openmode mode=1’os::outlios:trunc);
void fstream::open(const char xfilename, openmode mode);

ISeries Data Management File Naming Conventions

The _Ropen() and fopen() functions that refer to iSeries system files require a file
name. This file name must be a null-ended string.

The syntax of an iSeries data management filename is:

»> file-name
I—l ibrary-name /—I l—fi le-name (member-name)—|

A\
A

library-name
Enter the name of the library that contains the file. If you do not specify a
library, the system searches the job’s library list for the file.

filename
Enter the name of the file. This is a required parameter.

member-name
Enter the name of the file member. If you do not specify a member name,
the first member (*FIRST) is used.

Note: If you specify *ALL for member-name when using fopen() and
_Ropen(), multi-member processing occurs.

All characters specified for library-name, filename, or member-name are folded to
uppercase unless you surround the string by the back slash and quotation mark
(\") control sequence. This allows you to specify the OS/400 quoted names. For
example:

"\"tst1ib\"/tstfile(tstmbr)"

Library is: "tstlib"
File is: TSTFILE
Member is: TSTMBR

Chapter 16. Using ILE C/C++ Stream and Record I/O Functions with iSeries Data Management files 181

If you surround the filename, library name, or member name in double quotation
marks and the name is a normal name, the double quotation marks are discarded
by the ILE C\C++ compiler. A normal name is any file, library, or member name

with the following characters:

* Uppercase characters

* Numeric values

* $ (hexadecimal value 0x5B)
* @ (hexadecimal value 0x7C)
* # (hexadecimal value 0x7B)
* _ (hexadecimal value 0x6D)

* . (hexadecimal value 0x4B)
The following characters cannot appear anywhere in your filenames, library names,
or member names:

Incorrect Character
Hexadecimal Representation

(0x4D
* 0x5C
) 0x5D
/ 0x61
? 0Ox6F
! 0x7D
! 0x7F
(blank)

0x40

Note: "() / " can be used in quoted filenames.

File Control Structure of Text Streams and Binary Streams

182

Both text streams and binary streams map to records in iSeries Data Management
files. They can be processed one character at a time or one record at a time.

C stream
characters 0 1 2 ... 320 ...

RRN file
e HEEEEEEEEEEEEEEEEREN

B W N a

Record length=80 RRN=Relative Record Number

Figure 83. iSeries Data Management Records Mapping to an ILE C Stream File

Each text stream file and each binary stream file is represented by a file control
structure of type FILE. This structure is defined in the <stdio.h> header file.

Attention: Unpredictable results may occur if you attempt to change the file
control structure.

ILE C/C++ Programmer’s Guide

Table 8. Comparison of iSeries Data Management Text Streams and Binary Stream File

Processing

Text Streams

Binary Streams

Definition

An ordered sequence of characters
that are composed of lines. Each
line consists of zero or more
characters and ends with a
new-line character.

A sequence of characters that has
a one-to-one correspondence
with the characters stored in the
associated iSeries Data
Management file. On the iSeries
system, the length of a binary
stream file is a multiple of the
record length.

Processing

Impact of I/O

The iSeries Data Management
system may add, alter, or delete
some special characters during
input or output. Therefore, there
may not be a one-to-one
correspondence between the
characters written to a text stream
and characters read from the same
text stream. Data read from a text
stream is equal to data written to
the text stream if all of the
following are true:

* The data consists of printable
characters, horizontal tab,
vertical tab, new-line character,
or form-feed control characters.

* No new-line character is
immediately preceded by a
space (blank) character.

¢ The last character in a stream is
a new-line character.

e The lines that are written to a
file do not exceed the record
length of the file.

Character translation is not
performed on binary streams.
When data is written to a binary
stream, it is the same when it is
read back later.

Note: New-line characters have
no special significance in a
binary stream.

Processing

End-of-File

When a file is closed, an implicit
new-line character is appended to
the end of the file unless a
new-line character is already
specified.

When a file is closed, the last
record in the file is padded with
nulls (hexadecimal value 0x00) to
the end of the record.

I/O Processes for Text Stream Files

This section describes how to:

* lopen text stream files|

s |write text stream files|

* |read text stream files|

* lupdate text stream files|

Opening Text Stream Files

To open an iSeries system file as a text stream file, use fopen() with one of the

following modes:

er

Chapter 16. Using ILE C/C++ Stream and Record I/O Functions with iSeries Data Management files

183

e r+
°w

. W+
°a

° a+
Notes:

1. The number of files that can be simultaneously opened by fopen() depends on
the amount of the system storage available.

2. The fopen() function open modes also apply to the freopen() function.

3. If the text stream file contains deleted records, the deleted records are skipped
by the text stream I/O functions.

The valid keyword parameters are:
* lrecl

* ccsid

* recfm (F FA, and FB only)

If you specify a mode or keyword parameter that is not valid on fopen(), errno is
set to EBADMODE, and NULL is returned.

Example:

The following example illustrates how to open a text stream file. Library MYLIB
must exist. The file TEST is created for you if it does not exist. The mode w+
indicates that if MBR does not exist, it is created for update. If it does exist, it is
cleared.

#include <stdio.h>
#include <stdlib.h>
int main(void)

{

FILE *fp;
/* Open a text stream file. */
/* Check to see if it opened successfully */

if ((fp = fopen ("MYLIB/TEST(MBR)", "w+")) == NULL)
{

printf ("Cannot open MYLIB/TEST(MBR)\n");

exit (1);
1

printf ("Opened the file successfully\n");
/* Perform some I1/0 operations. */

fclose (fp);
return 0;

Figure 84. ILE C Source to Open an ILE C Text Stream File

Note: You can read, write to, or update any text stream file that is open for
processing.

184 ILE C/C++ Programmer’s Guide

To open an iSeries system file as a text stream file, use the open() member function
with the following modes:

* jos::app
* jos::ate
* jos::in

* jos::out

* jos::trunc

Writing Text Stream Files

During a write operation, a new-line character in the buffer causes the remainder
of the record written to the text stream file to be padded with blank characters
(hexadecimal value 0x40). The new-line character itself is discarded.

RRN file
»» 1 abcd
2 | efghi
characters buffer
0 1 2 83 4 5 6 7 8 9 10 3

alblc|d|\Wn|je|[f|lg|h|[i]|\n

Record length=80

RRN=Relative Record Number

Figure 85. Writing to a Text Stream File

If the number of characters being written in the buffer exceeds the record length of
the file, the data written to the file is truncated, and errno is set to ETRUNC.

Example:

The following example illustrates how to write to a text stream file.

Chapter 16. Using ILE C/C++ Stream and Record I/O Functions with iSeries Data Management files 185

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
char buf[12] = "abcd\nefghi\n";
FILE *fp;
/* Open a text file for writing. */
if ((fp = fopen ("MYLIB/TEST(MBR)", "w")) == NULL)
{
printf ("Cannot open file\n");

exit (1);
1

/* Write characters to the file. */
fputs (buf, fp);
/* Close the text file. */

fclose (fp);
return 0;

Figure 86. ILE C Source to Write Characters to a Text Stream File

Reading Text Stream Files

During a read operation from a text stream file, all the trailing blank characters
(hexadecimal value 0x40) in the record that are read from the file into a buffer are
ignored. A new-line character is inserted after the last non-blank.

buffer
characters 01 2 3 4 5 6 7 8 9 10
RRN file albjc|d|\nfe|f[g|h|i]|\n
—>>
1 abcd
2 efghi records
3
Record length=80 RRN=Relative Record Number

Figure 87. Reading from a Text Stream File

Example:

The following example illustrates how to read from a text stream file.

186 ILE C/C++ Programmer’s Guide

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
char buf[12];
char *result;
FILE *fp;
/* Open an existing text file for reading. */
if ((fp = fopen ("MYLIB/TEST(MBR)", "r")) == NULL)
{
printf ("Cannot open file\n");
exit (1),

/* Read characters into the buffer. */

result = fgets (buf, sizeof(buf), fp);
printf("%10s", result);

result = fgets (buf+5, sizeof(buf), fp);
printf("%10s", result);

fclose (fp);
return 0;

Figure 88. ILE C Source to Read Characters from a Text Stream File

Updating Text Stream Files

During an update operation to a text stream file, if the number of characters being
written to the file exceeds the record length of the file, trailing characters in the
record are truncated and errno is set to ETRUNC.

If the data being written to the text stream file is shorter than the record length
being updated, and the last character of the data being written is a new-line
character, then the record is updated and the remainder of the record is filled with
blank characters. If the last character of the data being written is not a new-line
character, the record is updated and the remainder of the record remains
unchanged.

I/O Process for Binary Stream Files

This section describes how to:

* |Open binary stream files, one character at a time

e |Write binary stream files, one character at a time

» |Read binary stream files, one character at a time|

+ [Update binary stream files, one character at a time]

* |Open binary stream files, one record at a time|

* [Write binary stream files, one record at a time

» |Read binary stream files, one record at a time|

Opening Binary Stream Files (character at a time)

To open an iSeries Data Management file as a binary stream file for
character-at-a-time processing, use fopen() with any of the following modes:

Chapter 16. Using ILE C/C++ Stream and Record I/O Functions with iSeries Data Management files 187

188

rb
r+b
rb+
wh
w+b
wh+
ab
atb
ab+

Notes:

1.

The number of files that can be simultaneously opened by fopen() depends on
the size of the system storage available.

The fopen() function open modes also apply to the freopen() function.

If the binary stream file contains deleted records, the deleted records are
skipped by the binary stream I/O functions.

The valid keyword parameters are:

blksize
Trecl
recfm

type
commit
ccsid
arrseq
indicators

If you specify the type parameter the value must be memory for binary stream
character-at-a-time processing.

Note: The memory parameter identifies this file as a memory file that is accessible

only from C programs. This parameter is the default and is ignored.

If you specify a mode or keyword parameter that is not valid on fopen (), errno is
set to EBADMODE.

Example:

The following example illustrates how to open a binary stream file.

ILE C/C++ Programmer’s Guide

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
FILE *fp;
/* Open an existing binary file. */
if ((fp = fopen ("MYLIB/TEST(MBR)", "wb+")) == NULL)
{
printf ("Cannot open file\n");

exit (1),
}
printf ("Opened the file successfully\n");

/* Perform some I/0 operations. */
fprintf (fp, "Hello, world");

fclose (fp);
return 0;

Figure 89. ILE C Source to Open a Binary Stream File

Note: You can read, write to, or update any binary stream files that are open for
character-at-a time processing.

To open an iSeries Data Management file as a binary stream file for
character-at-a-time processing, use the open() member function with ios::binary as
well as any of the following modes:

* jos::app
* jos::ate
* jos::in

* jos::out

* jos::trunc

Writing Binary Stream Files (character at a time)

If you write data to a binary stream processed one character at a time, and the size
of the data is greater than the current record length, then the excess data is written
to the current record up to its record size and the remaining data is written to the
next record in the file.

RRN file
>»» 1 abc
2 de record

characters buffer
0 1 2 3 4

alblc|d]|e

Record length=3

RRN=Relative Record Number

Figure 90. Writing to a Binary Stream File One Character at a Time

Chapter 16. Using ILE C/C++ Stream and Record I/O Functions with iSeries Data Management files 189

190

Example:
The following example illustrates how to write to a binary stream by character.

#include <stdio.h>
#include <stdlib.h>
int main(void)

{

FILE *fp;
char buf[5] = {'a', 'b', 'c', 'd', ‘'e'};
/* Open an existing binary file for writing. */

if ((fp = fopen ("MYLIB/TEST(MBR)", "wb")) == NULL)
{

printf ("Cannot open file\n");

exit (1);

1
/* Write 5 characters from the buffer to the file. */

fwrite (buf, 1, sizeof(buf), fp);

fclose (fp);
return 0;

Figure 91. ILE C Source to Write Characters to a Binary Stream File

Reading Binary Stream Files (character at a time)

During a read operation from a binary stream that is processed a character at a
time, if the length of the data being read is greater than the record length of the
file, then data is read from the next record in the file.

buffer
characters 0 1 2 3 4 5
RRN file afbfcfdfeff
—>>
1 abc
2 def record
3
Record length=3 RRN=Relative Record Number

Figure 92. Reading from a Binary Stream File One Character at a Time
Example:

The following illustrates how to read from a binary stream file by character.

ILE C/C++ Programmer’s Guide

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
FILE *fp;
char buf[6];
/* Open an existing binary file for reading. */
if ((fp = fopen ("MYLIB/TEST(MBR)", "rb")) == NULL)
{
printf ("Cannot open file\n");
exit (1);
1

/* Read characters from the file to the buffer. x/

fread (buf, 1, sizeof(buf), fp);
printf ("%6s\n", buf);

fclose (fp);
return 0;

Figure 93. ILE C Source to Read Characters from a Binary Stream File

Updating Binary Stream Files (character at a time)

If the amount of data being updated exceeds the current record length, then the
excess data updates the next record. If the current record is the last record in the
file, a new record is created.

RRN=Relative Record Number RRN ?i:g
»» 1 abc
2 def record
old buffer 3 ghi

alb|lc|d|e|f|lg|h]|i

Record length=3

updated
RRN file
> 1 123
2 45f record

new buffer 3 ghi

112|13|4]|5

Record length=3

Figure 94. Updating a Binary Stream File with Data Longer than Record Length

Example:

Chapter 16. Using ILE C/C++ Stream and Record I/O Functions with iSeries Data Management files 191

The following example illustrates updating a binary stream file with data that is
longer than the record length.

#include <stdio.h>
#include <stdlib.h>
int main(void)

{

FILE *fp;
char buf[5] = "12345";
/* Open an existing binary file for updating. */

if ((fp = fopen ("QTEMP/TEST(MBR)", "rb+")) == NULL)
{
printf ("Cannot open file\n");

exit (1);
1
/* Write 5 characters from the buffer to the file. */

fwrite (buf, 1, sizeof(buf), fp);

fclose (fp);
return 0;

Figure 95. ILE C Source to Update a Binary Stream File with Data Longer than the Record
Length

If the amount of data being updated is shorter than the current record length, then
the record is partially updated and the remainder is unchanged.

old
Record Number RRN file
> abc
2 def record
old buffer 3 ghi

alblc|d|e|f|lg|h]|i

Record length=3

updated
RRN file
>> 12c
2 def record
new buffer 3 ghi
112

Record length=3

Figure 96. Updating a Binary Stream File with Data Shorter than Record Length

Example:

192 ILE C/C++ Programmer’s Guide

The following example illustrates updating a binary stream file with data that is
shorter than the record length.

#include <stdio.h>
#include <stdlib.h>
int main(void)

{

FILE *fp;
char buf[2] = "12";
/* Open an existing binary file for updating. */

if ((fp = fopen ("QTEMP/TEST(MBR)", "rb+")) == NULL)
{
printf ("Cannot open file\n");
exit (1);
1
/* Write 2 characters from the buffer to the file. */

fwrite (buf, 1, sizeof(buf), fp);

fclose (fp);

Figure 97. ILE C Source to Update a Binary Stream File with Data Shorter than the Record
Length

Opening Binary Stream Files (record at a time)

To open an iSeries Data Management file as a binary stream file for
record-at-a-time processing, use fopen() with any of the following modes:

rb
r+b
rb+
wh
w+b
wh+
ab
ath
ab+

Notes:

1.

4.

The number of files that can be simultaneously opened by fopen() depends on
the size of the system storage available.

The fopen() open modes also apply to freopen().

If the binary stream file contains deleted records, the deleted records are
skipped by the binary stream I/O functions.

The file must be opened with the type set to record.

The valid keyword parameters are:

bTksize
recfm
commit
arrseq
Trecl

Chapter 16. Using ILE C/C++ Stream and Record I/O Functions with iSeries Data Management files 193

* type
* ccsid
e indicator

If you specify a mode or keyword parameter that is not valid on fopen () function,
errno is set to EBADMODE.

Only fread() and fwrite() can be used for binary stream files opened for
record-at-a-time processing.

To open an iSeries Data Management file as a binary stream file for

record-at-a-time processing, use theopen() function with ios::binaryas well as any
of the following modes:

* jos::app
* jos::ate
* jos::in

* jos::out

* jos::trunc

Writing Binary Stream Files (record at a time)

If you write data to a binary stream processed one record at a time, and the
product of size and count (parameters of fwrite()) is greater than the record
length, then only the data that fits in the current record is written and errno is set
to ETRUNC.

If the product of size and count is less than the actual record length, the current
record is padded with blank characters and errno is set to EPAD.

RRN=Relative Record Number RRN file
»» 1 abc
2 record
characters
0O 1 2 3 4

alblc|d]|e

Record length=3

buffer

Figure 98. Writing to a Binary Stream File One Record at a Time

Only fwrite() is valid for writing to binary stream files opened for
record-at-a-time processing. All other output and positioning functions fail, and
errno is set to ERECIO.

Example:

The following example illustrates how to write to a binary stream file by record.

194 ILE C/C++ Programmer’s Guide

#include <stdio.h>

#include <stdlib.h>

int main(void)

{

FILE *fp;
char buf[5] = {'a', 'b', 'c', 'd', 'e'};
/* Open an existing binary file for writing. */

if ((fp = fopen ("MYLIB/TEST(MBR)", "wb,type=record,lrec1=3"))==NULL)

{

printf ("Cannot open file\n");
exit (1);

}

/* Write 3 characters from the buffer to the file. */

fwrite (buf, 1, sizeof(buf), fp);

fclose (fp);
return 0;

Figure 99. ILE C Source to Write to a Binary Stream File by Record

Reading Binary Stream Files (record at a time)

If you read data from a binary stream processed one record at a time, and the

product of size and count (parameters of fread()) is greater than the record length,

then only the data in the current record is read into the buffer. The fread()
function returns a value indicating that there is less data in the buffer than was

specified.

If the product of size and count is less than the actual record length, errno is set to
ETRUNC to indicate that there is data in the record that was not copied into the

buffer.

This figure illustrates how only the current record is read into the buffer, when the
product of size and count is greater than the record length.

RRN file
1 abc
2 def
3

Record length=3

characters

record

buffer
o 1 2
alb|c

RRN=Relative Record Number

Figure 100. Reading from a Binary Stream File a Record at a Time

Only fread() function is valid for reading binary stream files opened for

record-at-a-time processing. All other input and positioning functions fail, and

errno is set to ERECIO.

Example:

Chapter 16. Using ILE C/C++ Stream and Record I/O Functions with iSeries Data Management files

195

The following example illustrates how to read a binary stream a record at a time.

#include <stdio.h>
#include <stdlib.h>
int main(void)
{
FILE *fp;
char buf[6];
/* Open an existing binary file for reading a record at a time. */
if ((fp = fopen ("MYLIB/TEST(MBR)", "rb, type=record")) == NULL)
{
printf ("Cannot open file\n");
exit (1);
1

/* Read characters from the file to the buffer. */

fread (buf, sizeof(buf), 1, fp);
printf ("%6s\n", buf);

fclose (fp);
return 0;

Figure 101. ILE C Source to Read from a Binary Stream File by Record

Open Feedback Area

The open feedback area is part of the open data path that contains information
about the open file that is associated with that open data path. You can assign a
pointer to this information by using the _Ropnfbk() function. The structure that
maps to the open feedback area can be that is found in the <xxfdbk.h> header file.

/O Feedback Area

The 1/0 feedback area is a part of the open data path for the file that is updated
after each successful non-blocked I/O operation. If record blocking is taking place,
the I/0O feedback is updated after each block of records is transferred between
your program and the Data Management system.

The I/0 feedback consists of two parts: one part that is common to all file types,
and one part that is specific to the type of file.

To assign a pointer to the common part of the I/O feedback area, use the
_Riofbk() function. To assign a pointer to the part of the I/O feedback area that is
specific to the type of file, add the offset contained in the file_dep_fb_offset field
of the common part to a pointer to the common part.

Note: The offset is in bytes, so you need to cast the pointer (char *) to the common
part to a pointer to character when performing the pointer arithmetic. The
structures that map to the I/O feedback areas are the structures contained in
the <xxfdbk.h> header file.

Using Session Manager

ILE C stream I/O functions that output information to the display are defined
through the Dynamic Screen Manager (DSM) session manager APIs.

196 ILE C/C++ Programmer’s Guide

Obtaining the Session Handle

You can obtain the session handle for the C/C++ session and then use the DSM
APIs to manipulate that session. The session handle is supplied through
_C_Get_Ssn_Handle() in <stdio.h>.

You can write a simple C program to clear the C session using the DSM QsnClrScl
API, as shown in the following example:

#include <stdio.h>
#include "gqsnapi.h"
void main (void)

{
}

QsnC1rSc1(_C_Get_Ssn_Handle(), '0', NULL);

Figure 102. Simple C Program to Clear a C Session

Using Session Manager APIs

You can use the DSM APIs to perform any operation that is valid with a session
handle, which includes the window services APIs and many of the low-level
services.

For example:

* You can display the session using a combination of the QsnStrWin,
QsnDspSsnBot, and QsnReadSsnDta APIs, but it is simpler in this case to simply
write a program that contains a getc().

* You can use the QsnRtvWinD and QsnChgWin APIs to change the C/C++
session from the default full-screen window to a smaller window.

Example: Using an ILE Bindable API to Display a DSM
Session

The following example shows you how to call a Dynamic Screen Manager (DSM)
ILE bindable API to display a DSM session. This DSM session echoes back data
that you enter during the DSM session.

Instructions

1. To create module T1520API using the source shown in IFigure 103 on page 198|,
enter:

CRTCMOD MODULE (MYLIB/T1520API) SRCFILE(QCPPLE/QACSRC) OUTPUT(*PRINT)
2. To create program T1520AP]I, enter:
CRTPGM PGM(MYLIB/T1520API) MODULE(MYLIB/T1520API) BNDDIR(QSNAPI)

The CRTPGM command creates the program T1520API in library MYLIB.
3. To run the program T1520AP]I, enter:
CALL PGM(MYLIB/T1520API)

The output is as follows:

Chapter 16. Using ILE C/C++ Stream and Record I/O Functions with iSeries Data Management files 197

198

AS for iSeries 400 Programming Development Manager (PDM)

S==2
Echo lines until: PF3 - exit

Selection or command

===> call pgm(mylib/t1520api)

F3=Exit F4=Prompt F9=Retreive F10=Command entry
\F12=Cance1 F18=Change Defaults

Code Samples

/* This program uses Dynamic Screen Manager API calls to */
/* create a window and echo whatever is entered. This is an */
/* example of bound API calls. Note the use of #pragma argument */
/* in the <gsnsess.h> header file. 0S, nowiden ensures that a pointer */
/* to an unwidened copy of the argument is passed to the API. */
/* */
/* Use BNDDIR(QSNAPI) on the CRTPGM command to build this */
/* example. */

#include <stddef.h>
#include <string.h>
#include <stdio.h>
#include "QSYSINC/H/QSNAPI"

/* QSNSESS nests QSNWIN and QSNLL include files. To get these 3 */
/* include files, do the following: */
/% 1) If you do not have a SRCPF called H in your Library (MYLIB), */
/* create one. */
/* 2) Copy QUSRTOOL/QATTSYSC/OPSN3API to MYLIB/H/QSNSESS */
/* 3) Copy QUSRTOOL/QATTSYSC/OPSN2API to MYLIB/H/QSNWIN */
/* 4) Copy QUSRTOOL/QATTSYSC/OPSNIAPI to MYLIB/H/QSNLL */

#define BOTLINE " Echo Tines until: PF3 - exit"
/* DSM Session Descriptor Structure. */

typedef struct{
Qsn_Ssn_Desc_T sess_desc;
char buffer[300];
}storage t;

void F3Exit(const Qsn_Ssn T *Ssn, const Qsn_Inp Buf T *Buf, char xaction)

{
*action = '1';

}

Figure 103. T1520API — ILE C Source to Call an ILE C Procedure (Part 1 of 3)

ILE C/C++ Programmer’s Guide

int main(void)

{

int i;
storage_t storage;

/* Declarators for declaring windows. Types are from the <gsnsess.h>
/* header file.

Qsn_Inp_Buf_T input_buffer = 0;

Q_Bin4 input_buffer_size = 50;
char char_buffer[100];
Q_Bin4 char_buffer_size;
Qsn_Ssn T sessionl;

Qsn_Ssn_Desc_ T *sess_desc = (Qsn_Ssn _Desc_T *) &storage;
Qsn_Win_Desc_T win_desc;

Q_Bin4 win_desc_length = sizeof(Qsn_Win_Desc_T);
char *botline = BOTLINE;

Q_Bin4 botline _len = sizeof(BOTLINE) - 1;

Q_Bin4 sess_desc_length = sizeof(Qsn_Ssn_Desc_T) +

botline_len;
Q_Bin4 bytes_read;

/* Initialize Session Descriptor API.
QsnInzSsnD(sess_desc, sess_desc_length, NULL);

/* Initialize Window Descriptor API.
QsnInzWinD(&win_desc, win_desc_length, NULL);
sess_desc->cmd_key_desc_line_1_offset = sizeof(Qsn_Ssn_Desc_T);
sess_desc->cmd_key desc_Tine_1 len = botline_len;

memcpy (storage.buffer, botline, botline_len);

sess_desc->cmd_key desc_line 2 offset = sizeof(Qsn_Ssn Desc T) +
botline_len;

/* Set up the session type.

sess_desc->EBCDIC dsp _cc = '1';
sess_desc->scl_Tine_dsp = 'l';
sess_desc->num_input_Tine_rows = 1;

sess_desc->wrap = 'l';

*/
*/

*/

Figure 103. T1520API — ILE C Source to Call an ILE C Procedure (Part 2 of 3)

Chapter 16. Using ILE C/C++ Stream and Record I/O Functions with iSeries Data Management files

199

/* Set up the window size. */

win_desc.top_row = 3;
win_desc.left_col = 3;
win_desc.num_rows = 13;
win_desc.num_cols = 45;

/* Create a window session. %/

sess_desc->cmd_key_action[2] = F3Exit;

sessionl = QsnCrtSsn(sess_desc, sess_desc_length,
NULL, 0,
Ill’
&win_desc, win_desc_length,
NULL, 0,
NULL, NULL);

if(input_buffer == 0)

{
input_buffer = QsnCrtInpBuf(100, 50, 0, NULL, NULL);
}
for (53)
{
/* Echo lines until F3 is pressed. */

QsnReadSsnDta(sessionl, input_buffer, NULL, NULL);
if (QsnRtvReadAID(input_buffer, NULL, NULL) == QSN_F3)
{

break;
}
1

Figure 103. T1520API — ILE C Source to Call an ILE C Procedure (Part 3 of 3)

Notes:
1. The prototypes for the DSM APlIs are in the <gsnsess.h> header file.

2. The #pragma argument (API, OS, nowiden) directive is specified for each APIL.
This ensures that any value argument is passed by value indirectly.

200 ILE C/C++ Programmer’s Guide

Chapter 17. Using ILE C/C++ Stream Functions with the
iSeries Integrated File System

This chapter describes how to open, write, read, and update text and binary stream
files through the iSeries Integrated File System (IFS).

IFS provides a common interface to store and operate on information in stream
files. Examples of stream files are PC files, files in UNIX® systems, LAN server
files, iSeries files, and folders.

Note: The ILE C/C++ IFS-enabled stream I/O functions are defined through the
integrated file system. You need to be familiar with the integrated file
system to use the ILE C/C++ stream I/O function. Seven file systems
comprise the integrated file system. Depending on your application and
environment, you may use several of the file systems. If you have existing
applications that use iSeries system files, you need to understand the
limitations of the QSYS.LIB file system. If you have new applications, you
can use the other file systems which do not have the QSYS.LIB file handling
restrictions. See [“The Integrated File System (IFS)”|section for information
on each file system.

This chapter describes:

* [The Integrated File System (IFS) components|
+ |How to enable IFS stream 1/0|
* [Stream files| ftext streams|, and [binary streamsg|

+ |How to open text stream and binary stream files|

. |How to store data as a text stream or binary stream|

« |Useful information for using IFS files|

The Integrated

File System (IFS)

A file system provides the support that allows applications to access specific
segments of storage that are organized as logical units. These logical units are files,
directories, libraries, and objects.

There are seven file systems in the Integrated File System:
* root (/)

* Open Systems (QOpenSys)

* Library (QSYS.LIB)

e Document Library Services (QDLS)

* LAN Server/400 (QLANSrv)

* Optical Support (QOPT)

* File Server (QFileSvr.400)

[Figure 104 on page 202|illustrates these file systems.

Users and application programs can interact with any of the file systems through a
common Integrated File System (IFS) interface. This interface is optimized for
input/output of stream data, in contrast to the record input/output that is
provided through the data management interfaces. The common integrated file

© Copyright IBM Corp. 1993, 2004 201

202

root(/)

system interface includes a set of user interfaces (commands, menus, and displays)
and application program interfaces (APIs).

PC
Clients

iSeries and AS5/400 Users

Applications |ntegrated File Spstem

Menus & Commands

Application Program |nterfaces

05400 LM
File S erver Server/400

Integrated File Syztem Interface

Faat Q0penSys [SYs.LIB LoLs GL&MS e .
File File: File File File
Syztem Spztem System System Swyztem
QorT OIFileS . 400
File: File

Syztem / Spztem

Figure 104. The Integrated File System Interface

File System

The root (/) file system is designed to take full advantage of the stream file
support and hierarchical directory structure of the integrated file system. It has the
characteristics of the DOS and OS/2 file systems.

User Access

The root (/) file system can be accessed only through the integrated file system
interface. You work with the root (/) file system using integrated file system
commands, user displays, or ISO stream I/O functions and system APIs.

Path Names

This file system preserves the same uppercase and lowercase form in which object

names are entered, but no distinction is made between uppercase and lowercase

when the system searches for names.

 Path names have the following form:
Directory/Directory/ . . . /Object

¢ Each component of the path name can be up to 255 characters long. The path
can be up to 16 megabytes.

* There is no limit on the depth of the directory hierarchy other than program and
space limits.

* The characters in names are converted to Universal Character Set 2 (UCS2) Level
1 form when the names are stored.

ILE C/C++ Programmer’s Guide

Open Systems (QOpenSys) File System
The Open Systems (QOpenSys) file system is designed to be compatible with
UNIX-based open system standards, such as POSIX and XPG. Like the root (/) file
system, it takes advantage of the stream file and directory support provided by the
integrated file system. In addition, it supports case-sensitive object names.

User Access

QOpenSys can be accessed only through the integrated file system interface. You
work with QOpenSys using integrated file system commands, user displays, or
ISO stream 1/0O functions and system APlIs.

Path Names
Unlike the QSYS.LIB, QDLS, QLANSrv, and root (/) file systems, the QOpenSys file

system distinguishes between uppercase and lowercase characters when searching
object names.

The path names, link support, commands, displays and ISO stream 1/O functions
and system APIs are the same as defined under the root (/) file system.

Library (QSYS.LIB) File System

The library (QSYS.LIB) file system supports the iSeries library structure. It provides
access to database files and all of the other iSeries object types that are managed
by the library support.

The QSYS.LIB file system maps to the iSeries file system. For example, the path
/qsys.lib/qgsysinc.lib/h.file/stdio.mbr refers to the data management file member
STDIO, in the file H, in library QSYSINC, within the root library QSYS.

File Handling Restrictions
There are some limitations in using the integrated file system facilities:

* Logical files are not supported.

* The only types of physical files that are supported are program-described files
that contain a single field, and source physical files that contain a single text
field.

* Byte-range locking is not supported.

 If any job has a database file member open, only one job is given write access to
that file at any time; other jobs are allowed only read access.

Path Names

In general, the QSYS.LIB file system does not distinguish between uppercase and
lowercase names of objects. A search for object names achieves the same result
regardless of whether characters in the names are uppercase or lowercase.

However, if the name is enclosed in quotation marks, the case of each character in
the name is preserved. The search is sensitive to the case of characters in quoted
names.

Each component of the path name must contain the object name followed by the
object type. For example:

/QSYS.LIB/QGPL.LIB/PRT1.0UTQ
/QSYS.LIB/PAYROLL.LIB/PAY.FILE/TAX.MBR

The object name and object type are separated by a period (.). Objects in a library
can have the same name if they are different object types, so the object type must

be specified to uniquely identify the object.

Chapter 17. Using ILE C/C++ Stream Functions with the iSeries Integrated File System 203

The object name in each component can be up to 10 characters long, and the object
type can be up to 6 characters long.

The directory hierarchy within QSYS.LIB can be either two or three levels deep
(two or three components in the path name), depending on the type of the object
being accessed. If the object is a database file, the hierarchy can contain three levels
(library, file, member); otherwise, there can be only two levels (library, object). The
combination of the length of each component name and the number of directory
levels determines the maximum length of the path name.

If root (/) and QSYS.LIB are included as the first two levels, the directory hierarchy
for QSYS.LIB can be four or five levels deep.

The characters in names are converted to code page 37 when the names are stored.
Quoted names are stored using the code page of the job.

Document Library Services (QDLS) File System

The Document Library Services (QDLS) file system supports the folder objects. It
provides access to documents and folders.

User Access

To work with the QDLS file system through the integrated file system interface,
use the integrated file system commands, user displays, or ISO stream 1/0O
functions and system APIs.

All users working with objects in QDLS must be enrolled in the system
distribution directory.

Path Names

QDLS does not distinguish between uppercase and lowercase in the names
containing only the alphabetic characters a to z. A search for object names achieves
the same result regardless of whether characters in the names are uppercase or
lowercase.

Other characters are case sensitive and are used as is.

Each component of the path name can consist of just a name, such as:
/QDLS/FLR1/D0OC1

or a name plus an extension, such as:
/QDLS/FLR1/DOC1.TXT

The name in each component can be up to 8 characters long, and the extension can
be up to 3 characters long. The maximum length of the path name is 82 characters.

The directory hierarchy below /QDLS/ can be 32 levels deep.

The characters in names are converted to code page 500 when the names are
stored. A name may be rejected if it cannot be converted to code page 500.

LAN Server/400 (QLANSrv) File System

The LAN Server/400 (QLANSrv) file system provides access to the same
directories and files that are accessed through the LAN Server/400 licensed
program. It allows users of the OS/400 file server and iSeries applications to use
the same data as LAN Server/400 clients.

204 ILE C/C++ Programmer’s Guide

Files and directories in the QLANSrv file system are stored and managed by a
LAN server that is based on the OS/2 LAN server. This LAN server does not
support the concept of a file or directory owner or owning group. File ownership
cannot be changed using a command or an ISO stream 1/O function and system
APIL. Access is controlled through access control lists. You can change these lists by
using the WRKAUT and CHGAUT commands.

User Access
To work with the QLANSrv file system through the integrated file system

interface, use the integrated file system commands, user displays, or ISO stream
I/0 functions and system APIs.

Path Names
The file system preserves the same uppercase and lowercase form in which object

names are entered. No distinction is made between uppercase and lowercase when
the system searches for names. A search for object names achieves the same result
regardless of whether characters in the names are uppercase or lowercase.
 Path names have the following form:

Directory/Directory/ . . . /Object
¢ Each component of the path name can be up to 255 characters long.

* The directory hierarchy within QLANSrv can be 127 levels deep. If all
components of a path are included as hierarchy levels, the directory hierarchy
can be 132 levels deep.

* Names are stored in the code page that is defined for the File Server.

Optical Support (QOPT) File System

The Optical Support (QOPT) file system can be accessed through the integrated file
system interface. This is done using either the OS/400 file server or the integrated
file system commands, user displays, and ISO stream I/O functions, and system
APIs.

Path Names
QOPT converts the lowercase English alphabetic characters a to z to uppercase

when used in object names. Therefore, a search for object names that uses only
those characters is not case-sensitive.

* The path name must begin with a slash (/) and contain no more than 294
characters. The path is made up of the file system name, the volume name, the
directory and subdirectory names, and the file name. For example:

/QOPT/VOLUMENAME/DIRECTORYNAME/SUBDIRECTORYNAME/FILENAME
¢ The file system name, QOPT, is required.
* The volume name is required and can be up to 32 characters long.

* One or more directories or subdirectories can be included in the path name, but
none are required. The total number of characters in all directory and
subdirectory names, including the leading slash, cannot exceed 63 characters.
Directory and file names allow any character except 0x00 through 0x3F, OxFF,
0x80, lowercase-alphabetic characters, and the following characters:

— Asterisk (*)

- Hyphen (-)

— Question mark (?)
— Quotation mark (")
— Greater than (>)

— Less than (<)

Chapter 17. Using ILE C/C++ Stream Functions with the iSeries Integrated File System 205

206

* The file name is the last element in the path name. The file name length is
limited by the directory name length in the path. The directory name and file
name that are combined cannot exceed 256 characters, including the leading
slash.

* The characters in names are converted to code page 500 within the QOPT file
system. A name may be rejected if it cannot be converted to code page 500.
Names are written to the optical media in the code page that is specified when
the volume was initialized.

File Server (QFileSvr.400) File System

The File Server (QFileSvr.400) file system can be accessed through the integrated
file system (IFS) interface. This is done by using either the OS/400 file server or
the integrated file system commands, user displays, and ISO stream 1/O functions
and system APlIs.

Note: The characteristics of the QFileSvr.400 file system are determined by the
characteristics of the file system that are being accessed on the target system.

Path Names

For a first-level directory, which actually represents the root (/) directory of the
target system, the QFileSvr.400 file system preserves the same uppercase and
lowercase form in which object names are entered. However, no distinction is
made between uppercase and lowercase when QFileSvr.400 searches for names.

For all other directories, case-sensitivity is dependent on the specific file system
being accessed. QFileSvr.400 preserves the same uppercase and lowercase form in
which object names are entered when file requests are sent to the OS/400 file
server.

* Path names have the following form:
/QFileSvr.400/RemoteLocationName/Directory/Directory . . . /Object

The first-level directory (that is, RemoteLocationName in the example shown
above) represents both of the following;:

— The name of the target system that will be used to establish a
communications connection. The target system name can be either of the
following:

- A TCP/IP host name (for example, beowulf.newyork.corp.com)
- An SNA LU 6.2 name (for example, appn.newyork).
— The root (/) directory of the target system

Therefore, when a first-level directory is created using an integrated file system
interface, any specified attributes are ignored.

Note: First-level directories are not persistent across initial program loads (IPLs).
That is, the first-level directories must be created again after each IPL.

¢ Each component of the path name can be up to 255 characters long. The
absolute path name can be up to 16 megabytes long.

Note: The file system in which the object resides may restrict the component
length and path name length to less than the maximum allowed by
QFileSvr.400.

* There is no limit to the depth of the directory hierarchy, other than program and
system limits, and any limits that are imposed by the file system being accessed.

ILE C/C++ Programmer’s Guide

e The characters in names are converted to UCS2 Level 1 form when the names
are stored.

Enabling Integrated File System Stream I/O

You can enable ILE C/C++ stream I/O for files up to two gigabytes in size by
specifying the *IFSIO option on the system interface keyword (SYSIFCOPT) on the
Create Module or Create Bound Program command prompt. For example:

CRTCMOD MODULE(QTEMP/IFSIO) SRCFILE(QCPPLE/QACSRC) SYSIFCOPT(*IFSIO)
CRTBNDC PGM(QTEMP/IFSIO) SRCFILE(QCPPLE/QACSRC) SYSIFCOPT(*IFSIO)

Using Stream I/O with Large Files

The 64-bit version of the Integrated File System interface lets you use ILE C/C++
Stream 1/0O with files greater than two gigabytes in size. Use any of the methods
listed below to enable this interface.

* Specify the *IFS6410 option with the SYSIFCOPT keyword on the Create Module
or Create Bound Program command prompt. When this keyword is specified,
the compiler defines the _ IFS64_IO__ macro, which in turn causes the
_LARGE_FILES and _LARGE_FILE_API macros to be defined in the
IBM-supplied header files. For example:

CRTCPPMOD MODULE(QTEMP/IFSIO) SRCFILE(QCPPLE/QACSRC) SYSIFCOPT(*IFS6410)

* Define the _LARGE_FILES macro in the program source. Alternately, specify
DEFINE('_LARGE_FILES’) on a Create Module or Create Bound Program
command line. Integrated File System APIs and relevant data types are
automatically mapped or redefined to their 64-bit Integrated File System
counterparts. For example:

CRTCPPMOD MODULE (QTEMP/IFSIO) SRCFILE(QCPPLE/QACSRC)
SYSIFCOPT (*IFSI0) DEFINE(' LARGE_FILES')

* Define the _LARGE_FILE_API macro in the program source. Alternately, specify
DEFINE('_LARGE_FILE_APT’) on a Create Module or Create Bound Program
command line. This makes 64-bit Integrated File System APIs and
corresponding data types visible, but applications must explicitly specify which
Integrated File System APIs (regular or 64-bit) to use. For example:

CRTCMOD MODULE (QTEMP/IFSIO) SRCFILE(QCPPLE/QACSRC)
SYSIFCOPT (*IFSI0) DEFINE(' LARGE_FILE_API')

Note: The _ IFS64_10__, LARGE_FILES, and _LARGE_FILE_API macros are not
mutually exclusive. For example, you might specify SYSIFCOPT(*IFS6410)
on the command line, and define either or both of the _LARGE_FILES and
_LARGE_FILE_API macros in your program source.

Stream Files

The ILE C/C++ compiler allows your program to process stream files as true text
or binary stream files (using the integrated file system enabled stream 1/0) or as
simulated text and binary stream files (using the default data management stream

1/0).

When writing an application that uses stream files, for better performance, it is
recommended that the integrated file system be used instead of the default C
stream I/O which is mapped on top of the data management record I/0O.

Chapter 17. Using ILE C/C++ Stream Functions with the iSeries Integrated File System 207

Stream Files Versus Database Files

208

To better understand stream files, it is useful to compare them with iSeries
database files.

On the integrated file system, a stream is simply a continuous string of characters.
A database file is record arranged; It has predefined subdivisions consisting of one
or more fields that have specific characteristics, such as length and data type.

Stream File

Record-oriented Database File

EE s s s (s EEEEEEEEEEEEEEEEEEEER AR EEEEEE] Recordl
Record 2
EE R EEEEEEEEEEEEEEEEEEEEEEEREEN RN Recordn
Field 1 Field 2 Field 3 Field n

RV3N081-0

Figure 105. Comparison of a Stream File and a Record-Oriented File

Default C/C++ stream I/O on the iSeries systems is simulated on top of an iSeries
database file. illustrates how an iSeries record is mapped to a C/C++

stream. This is simulated stream file processing with iSeries records.

C stream
characters 0 1 2 ... 320 ...

RRN file
e B EEEEEEEEEEEEEEEEEN

B W N a

Record length=80 RRN=Relative Record Number
Figure 106. iSeries Records Mapping to a C/C++ Stream File

The differences in structure of stream files and record-oriented files affect how an
application is written to interact with them and which type of file is best suited to
an application.

* A record-arranged file is well suited for storing customer information, such as
name, address, and account balance. These fields can be individually accessed
and manipulated using the extensive programming functions of the iSeries
system.

* A stream file is better suited for storing information such as a customer’s picture,
which is composed of a continuous string of bits representing variations in color.
Stream files are particularly well suited for storing strings of data such as the
text of a document, images, audio, and video.

ILE C/C++ Programmer’s Guide

Text Streams

Text streams contain printable characters and control characters that are organized
into lines. Each line consists of zero or more characters and ends with a new-line
character (\n). A new-line character is not automatically appended to the end of
file.

The ILE C/C++ run-time environment may add, alter, or ignore some special
characters during input or output so as to conform to the conventions for
representing text in the iSeries environment. Thus, there may not be a one-to-one
correspondence between characters written to a file and characters read back from
the same file.

Data read from an integrated file system text stream is equal to the data which was
written if the data consists only of printable characters and the horizontal tab,
new-line, vertical tab, and form-feed control characters.

For most integrated file system stream files, a line consists of zero or more
characters, and ends with the following character combination: a carriage return
plus a new-line character. However, the integrated file system can have logical
links to files on different systems that may use a single line-feed as a line
terminator. A good example of this are the files on most UNIX systems.

On input, the default in text mode is to strip all carriage-returns from new-line
carriage-return character combination line delimiters. On output, each line-feed
character is translated to a carriage-return character that is followed by a line-feed
character. The line terminator character sequence can be changed with the CRLN
option on fopen().

Note: The *IFSIO option also changes the value for the '\n’ escape character value
to the 0x25 line feed character. If *NOIFSIO is specified, the "\n” escape
character has a value of 0x15.

When a file is opened in text mode, there may be code-page conversions on data
that is processed to and from that file. When the data is read from the file, it is
converted from the code page of the file to the code page of the application, job, or
system receiving the data.

When data is written to an iSeries file, it is converted from the code page of the
application, job, or system to the code page of the file. For true stream files, any
line-formatting characters (such as carriage return, tab, and end-of-file) are
converted from one code page to another.

When reading from QSYS.LIB files end-of-line characters (carriage return and line
feed) are appended to the end of the data that is returned in the buffer.

The code-page conversion that is done when a text file is processed can be
changed by specifying the code-page or CCSID option on fopen(). The default is
to convert all data read from a file to the job’s CCSID or code page.

Binary Streams

A binary stream is a sequence of characters that has a one-to-one correspondence
with the characters stored in the associated iSeries system file. The data is not
altered on input or output, so the data that is read from a binary stream is equal to
the data that was written. New-line characters have no special significance in a

Chapter 17. Using ILE C/C++ Stream Functions with the iSeries Integrated File System 209

binary stream. The application is responsible for knowing how to handle the data.
The fgets() function handles new-line characters. Binary files are always created
with the CCSID of the job.

Opening Text Stream and Binary Stream Files

Each text stream file and each binary stream file is represented by a file control
structure of type file. This structure is initialized depending on the mode in
which the file was opened. Unpredictable results might occur if you attempt to
change the file control structure.

The format of fopen() is:

#include <stdio.h>
FILE =fopen(const char *filename, const char *mode);

The mode variable is a character string that consists of an open mode which may be
followed by keyword parameters. The open mode and keyword parameters must
be separated by a comma or one or more blank characters.

To open a text stream file, use fopen() with one of the following modes:
* rorr+
* wWorwt

* aorat

To open a binary stream file, use fopen() with one of the following modes:
° rb,

* rb+, or rtb

* wb,

* wh+ or w+b

* ab,

* awb+ or a+b

To open a binary stream file, use theopen() member function with ios::binary, or
any of the following modes:

* jos::app
* jos::ate
* jos::in

* jos::out

* jos::trunc

Storing Data as a Text Stream or as a Binary Stream

If two streams are opened, one as a binary stream and the other as text stream,
and the same information is written to both, the contents of the stream may differ.
The following illustrates two streams of different types. The hexadecimal values of
the resulting files (which show how the data is actually stored) are not the same.

210 ILE C/C++ Programmer’s Guide

/* Use CRTBNDC SYSIFCOPT(*IFSIO) */
#include <stdio.h>
int main(void)
{
FILE *fpl, *fp2;
char 1ineBin[15], TineTxt[15];
int x;
fpl = fopen("script.bin","wb");
fprintf(fpl,"hello world\n");
fp2 = fopen("script.txt","w");
fprintf(fp2,"hello world\n");
fclose(fpl);
fclose(fp2);
fpl = fopen("script.bin","rb");
/* opening the text file as binary to suppress
the conversion of internal data =/
fp2 = fopen("script.txt","rb");
fgets(1ineBin, 15, fpl);
fgets(1ineTxt, 15, fp2);
printf("Hex value of binary file = ");
for (x=0; TineBin[x]; x++)
printf("%.2x", (int)(1ineBin[x]));
printf("\nHex value of text file =");
for (x=0; TineTxt[x]; x++)
printf("%.2x", (int) (1ineTxt[x]));
printf("\n");
fclose(fpl);
fclose(fp2);

/* The expected output is: */
/* */
/* Hex value of binary file = 888593939640a69699938425 */
/* Hex value of text file 888593939640a6969993840d25 */

Figure 107. Comparison of Text Stream and Binary Stream Contents

As the hexadecimal values of the file contents shows in the binary stream
(script.bin), the new-line character is converted to a line-feed hexadecimal value
(0x25). While in the text stream (script.txt), the new-line is converted to a
carriage-return line-feed hexadecimal value (0x0d25).

Using the Integrated File System (IFS)

ILE C/C++ primarily supports the iSeries root file system. The root file system is
one of the many file systems accessible through the Integrated File System
interface. It uses notation similar to that used to access files and directories on
UNIX systems, allowing you to access information across multiple platforms in a
uniform way.

Take care when transferring files to and from various platforms. Use of a

download and upload utility like FTP allows you to specify the correct mapping of
characters so your streamed source remains valid on_the iSeries platform, even if it

has been stored temporarily on other platforms. See [“Pitfalls to Avoid” on page 219)|
for more tips.

Chapter 17. Using ILE C/C++ Stream Functions with the iSeries Integrated File System 211

Copying Source Files into the IFS

You can copy your main source physical file to an Integrated File System (IFS) file.
Assuming that you used a standard name for your source physical file, use the
following command:

CPYTOSTMF FROMMBR('/QSYS.LIB/MYLIB.LIB/QCSRC.FILE/QCSRC.MBR') TOSTMF('/home/qgcsrc.c')

Editing Stream Files
You can edit stream files directly with the Edit File (EDTF) command. There are
also three ways that you can edit files to be used with stream files:

* Use Client Access to map the Integrated File System directory as a PC network
drive and then use a PC-based editor to edit files in that path as if they were
local PC files.

 Edit with SEU and then use the Copy to Stream File (CPYTOSTMF) command to
move that file from the traditional QSYS file system to a root file system path.

* Place the source in a Source Physical File (SRCPF) with Integrated File System
links. (The actual source resides in a QSYS member, but there is a root file
system link that points to the member.) Use the Add Link (ADDLNK) command
to create the link, and thereafter edit the member with SEU, but use the root file
system pathname link when you compile.

The SRCSTMF Parameter

The SRCSTMF parameter identifies a source stream file as a path name. Specify the
path name of the stream file that contains the ILE C source code that you want to
compile. The path name can be either absolutely qualified or relatively qualified.

For file systems that are case sensitive, the path name may be case sensitive.

An absolutely qualified name starts with / or \. A / or \ character at the beginning
of a path name means that the path begins at the topmost directory, the root (/)
directory. For example:

/Dirl/Dir2/Dir3/UsrFile

If the path name does not begin with a / or \ character, the path is assumed to
begin at your current directory. For example:

MyDir/MyFile

is equivalent to
/CurrentDir/MyDir/MyFile

where MyDir is a subdirectory of your current directory.
There is no support for the tilde () character or wildcards (* or ?).
SRCSTMF is mutually exclusive with SRCMBR and SRCFILE. Also, if you specify

SRCSTMF, then the compiler ignores TEXT (*SRCMBRTXT). Other values for TEXT are
valid.

Header File Search

The compiler uses different search techniques when entering your source file using
the source stream file parameters. The compiler no longer uses the library list
search method.

212 ILE C/C++ Programmer’s Guide

Include File Links

ILE C/C++ headers, along with system headers, are located in QSYSINC/H. The
links are in the directory /QIBM/include.

For example, the links are as follows for assert.h:
* Display Symbolic Link Object link: /QIBM/include/assert.h
* Content of Link: /qsys.1ib/qsysinc.1ib/h.file/assert.mbr

Include Directive Syntax
The #include directive syntax depends on the file system specified for the root
source file: Integrated File System (IFS) or Data Management (DM) file system.

Integrated File System (IFS) compilations: IFS is a hierarchical file system similar

to that found on AIX.

When an IFS file specification is used for the root source file (that is, when the
SRCSTRMF option is used), all #include directives within that compilation are
similarly resolved to the IFS file system. The syntactical variations are:

Table 9. Integrated File System Compilations

#include specification

enclosed in < >

"o

enclosed in

filename (e.g., <cstdio>)

resolves to
[syssearchpath]/filename

resolves to
[usrsearchpath]/filename

dir/filename (e.g.,
<sys/limits.h>)

resolves to
[syssearchpath]/dir/filename

resolves to
[usrsearchpath]/dir/filename

/dir/filename (e.g.,

resolves to /dir/filename

resolves to /dir/filename

"/home/header.h")

Data Management File System (DM) compilations: DM is the traditional iSeries
monolithic (fixed-depth) file system. It is composed of a number of libraries, which
contain objects. There are a fixed set of object types - source files are found within
*FILE object types, in sub-objects called members. All native iSeries processes have
an ordered library list (*LIBL) and, in general, iSeries objects are resolved by
searching through this library list. The library list has three components, ordered as
follows:

* The System Library List (*SYSLIBL): A set of libraries which comprises the
operating system.

e The Product Library List (*PRDLIBL): Officially licensed programs typically add
themselves to the product library list when run. For example, the C and C++
compilers add their product library QCPPLE to the library list when run.

e The User Library List (*URSLIBL): Libraries that you can configure or order.

When a DM file specification is used for the root source file (that is, when the
SRCFILE/SRCMBR options are used), all #include directives within that
compilation are similarly resolved to the DM filesystem. The syntactical variations
are:

Table 10. Data Management File System Compilations

#include library file member
specification

mbr default search! default file? mbr
mbr.file default search! file mbr

Chapter 17. Using ILE C/C++ Stream Functions with the iSeries Integrated File System 213

Table 10. Data Management File System Compilations (continued)

#include library file member
specification
file/mbr default search® file mbr
file(mbr) default search’ file mbr
file/mbr.ext® default search® file mbr or mbr.ext®
lib/file/ mbr lib file mbr
lib/file(mbr) lib file mbr

Notes:

1. For default library search paths:

Note: When the *SYSINCPATH option is specified, the compiler treats user
includes (" ") the same as system includes (< >).

* When the library is not specified, and:
— the #include specification is enclosed in < >: Search the *LIBL.

— the #include specification is enclosed in " ": Check the library containing
the root source file; if not found there, then search the *USRLIBL; if still
not found, search the *LIBL.

* When the library is specified, and:
— the #include specification is enclosed in < >: Search the lib/file/mbr only.

— the #include specification is enclosed in " ": Search for the member in the
library/file specified.

2. For the Default file:
* When includes have the form #include <mbr>:
- A C: default file is H.
- BEEEE : the default file is STD.

* When includes have the form #include "mbr": the default file is the root
source file.

3. For mbr.ext:
* When the #include specification is enclosed in < >, and:

— the member name has the h extension: <file/mbr.h> format resolves to
member mbr in file file. This rule is for POSIX support (for example, to be
able to include specifications like <sys/1imits.h>). The only member
names which activate POSIX support are extensions of h or H.

— Otherwise, <file/mbr.ext> resolves to file file, and member mbr.ext

* When the #include specification is enclosed in " ": "file/mbr.ext” resolves to
file file, and member mbr.ext

Include Search Path Rules
This section lists rules governing search paths for the following;:

* INCDIR (Include Directory) command parameter

* INCLUDE environment variable

* *STDINC/*NOSTDINC command options

* *SYSINCPATH/*NOSYSINCPATH command options

INCDIR (Include Directory) Command Parameter: The Include Directory
parameter (INCDIR) works with the Create Module and Create Bound Program
compiler commands, allowing you to redefine the path used to locate include

214 ILE C/C++ Programmer’s Guide

header files (with the #include directive) when compiling a source stream file only.
The parameter is ignored if the source file’s location is not defined as an IFS path
via the Source Stream File (SRCSTMF) parameter, or if the full (absolute) path
name is specified on the #include directive.

The parameter accepts a list of IFS directories. These directories are inserted into
the include search path in the order they are entered.

The include files search path adheres to the following directory search order to
locate the file:

Table 11. INCDIR Command Parameter

#include type Directory Search Order

#include <file_name> 1. If you specify a directory in the INCDIR parameter,
the compiler searches for file_name in that directory
first.

2. If more than one directory is specified, the compiler
searches the directories in the order that they
appear on the command line.

3. Searches the directory /QIBM/include.

#include "file_name" 1. Searches the directory where your current source

file resides. The current source file is the file that
contains the #include "file_name" directive.

2. If you specify a directory in the INCDIR parameter,
the compiler searches for file_name in that
directory.

3. If more than one directory is specified, the compiler
searches the directories in the order that they
appear on the command line.

4. Searches the directory /QIBM/include.

For example, if you enter the following value for the INCDIR parameter:

Include directory INCDIR '/tmp/dirl’
+ for more values ' /dir2!

and with your source stream file you include the following header files:

#include "foo.h"
#include <stdio.h>

The compiler first searches for a file "foo.h” in the directory where the root source
file resides. If the file is found, it is included and the search ends. Otherwise, the
compiler searches the directories entered INCDIR, starting with "/tmp/dirl". If the
file is found, this file is included. If the directory does not exist, or if the file does
not exist within that directory, the compiler continues to search in the subdirectory
"dir2" within the current working directory (symbolized by "."). Again, if the file is
found, this file is included, otherwise, because the directories in INCDIR path have
now been exhausted, the default user include path (/QIBM/include) is used to
find the header.

As for <stdio.h>, the same logic is followed in the same order, except the initial
search in the root source directory is bypassed.

INCLUDE Environment Variable: The INCLUDE environment variable value:
* Contains a path of directories delimited by colons (:)

Chapter 17. Using ILE C/C++ Stream Functions with the iSeries Integrated File System 215

* Does not override the order
* Has higher priority in the search order than the default include path

* Has a lower priority in the search order than INCDIR and the root source’s
directory (for a user-defined include search)

If the include search contains a defined INCLUDE environment variable for both C
and C++ compilers, the resulting include search order including is as shown in the
following table:

Table 12. Include Search Order

#include type Directory Search Order

#include <file_name> 1. If you specify a directory in the INCDIR parameter,
the compiler searches for file_name in that directory
first.

2. If more than one directory is specified, the compiler
searches the directories in the order that they
appear on the command line.

3. If the INCLUDE environment variable is defined,
the compiler searches the directories in the order
they appear in the INCLUDE path.

4. Searches the directory /QIBM/include.

#include "file_name” 1. Searches the directory where your current source
file resides. The current source file is the one that
contains the directive #include "file_name".

2. 1If you specify a directory in the INCDIR parameter,
the compiler searches for file_name in that directory.

3. If more than one directory is specified, the compiler
searches the directories in the order that they
appear on the command line.

4. If the INCLUDE environment variable is defined,
the compiler searches the directories in the order
they appear in the INCLUDE environment variable.

5. Searches the directory /QIBM/include.

Note: This feature is only available for source stream file compiles.

*STDINC/*NOSTDINC Command Options: The *STDINC/*NOSTDINC
command options have been added to the OPTION parameter of the
CRTCMOD/CRTCPPMOD and CRTBNDC/CRTBNDCPP commands.

The *STDINC and *NOSTDINC command options work on the
CRTCMOD/CRTCPPMOD and CRTBNDC/CRTBNDCPP commands.

The *NOSTDINC option allows you to remove the default include path
(/QIBM/include for IFS source stream files; QSYSINC for data management source
file members) from the search order, while the *STDINC option retains the default
include path at the end of the order. *STDINC is the default.

The *STDINC option works as did the former SYSINC parameter for data

management source file members. The options relate to the old parameter values
as follows:

216 ILE C/C++ Programmer’s Guide

Table 13. Parameter Values

SYSINC values Equivalent New Command Option
*YES *STDINC
*NO *NOSTDINC

*INCDIRFIRST/*NOINCDIRFIRST Command Options:

The *INCDIRFIRST option allows you to process the directories listed via the
INCDIR parameter first in the search order (that is, before the root source file
directory) in a user include search, while the *NOINCDIRFIRST option retains
INCDIR directories to their default position in the user include search order as
described above.

Note: These options are valid only for source stream file compiles.

If *INCDIRFIRST is selected, the following changes occur to the user include
search order:

Table 14. INCDIRFIRST Command Options

#include type Directory Search Order

#include "file_name” 1. If you specify a directory in the INCDIR

parameter, the compiler searches for file_name
in that directory.

2. If more than one directory is specified, the

compiler searches the directories in the order
that they appear on the command line.

3. Searches the directory where your current root
source file resides.

4. If the INCLUDE environment variable is
defined, the compiler searches the directories in
the order they appear in the INCLUDE path.

5. If the *NOSTDINC compiler option is not

chosen, search the default include directory
/QIBM/include.

*SYSINCPATH/*NOSYSINCPATH Command Options: The
*SYSINCPATH /*NOSYSINCPATH command options work on the Create Module
and Create Bound Program commands.

The *SYSINCPATH option changes the search path of user includes to the system
include search path. It is equivalent to changing the double-qoutes in the user
#include directive (#include "file_name") to angle brackets (#incTude
<file_name>). *NOSYSINCPATH is the default value.

Considerations for Specifying Source Stream Files
When you specify the SRCSTMF parameter during program or module creation,
the *MODULE object contains no source file attribute information.

If the source is specified via the SRCFILE/SRCMBR parameters, the INCDIR
parameter and the INCLUDE environment variable are ignored. When the source
resides in the Data Management file system, the library list is used to search for
include files. The library list (*LIBL) has no concept of the directory file structure.

Chapter 17. Using ILE C/C++ Stream Functions with the iSeries Integrated File System 217

If the source file is not specified via the SRCSTMF parameter, the job’s *LIBL is
used to find the include files.

Restrictions on the Absolute Include Path Name
If you specify an absolute (full) path name on the #include directive, the INCDIR
parameter and the INCLUDE environment variable have no effect.

Example:

Assume the following:
e There is a statement like #include "myinc.h" in a C/C++ source file

* You are compiling a source member from the QSYS file system through the
SRCSTMF parameter in the following command:

CRTCMOD MODULE (MYSOURCE) SRCSTMF('/qsys.lib/goodness.Tib/qcppsrc.file/mysource.mbr')

ILE C/C++ tries to find something called
/qsys.1ib/goodness.1ib/qcppsrc.file/myinc.h, which is an invalid Integrated File
System filename because .h is not a valid object type in the QSYS file system.

If you want to use a header file that is in the QSYS file system, you must do either
of the following:

* Specify the path in the source code, as shown below:
#include "/qsys.lib/goodness.1ib/h.file/myinc.mbr"

* Set the search path appropriately, as shown in [“Examples of Using Integrated|
[File System Source” on page 220.| Then you can leave the path out of the include
statement, as shown below:

#include "myinc.mbr"

Recommendation for Source and Header Files

If you are porting from other platforms which have hierarchical file systems (such
as the Microsoft® Windows®, UNIX, or OS/2 operating systems), consider that the
Integrated File System (IFS) is more compatible with those file systems. To avoid
changing your current C/C++ source code, put source and header files into IFS.

Preprocessor Output

If you specify SRCSTMF with OPTION(*PPONLY), then the preprocessor writes a stream
file to the current directory with the new extension .1i. For example, if you specify
SRCSTMF (' /home/MOE/mainprogram.c') with OPTION(*PPONLY), then the preprocessor
writes output to the current directory as a stream file called mainprogram.i. For
this to happen, you need *RW authority to the current directory.

Listing Output

The compiler can send the listing output to a user-specified IFS file, as well as to a
spool file. The prolog identifies the source file from a path name:

Module TEST
Library 8 MOE
Source stream file : /home/MOE/src/mainprogram.c

Note: The source stream file is not included in the prolog when SRCFILE() and
SRCSTME() are specified.

The listing also identifies the include files from their path names:

218 ILE C/C++ Programmer’s Guide

*%%% FILE TABLE SECTION %%

0 = hello.cpp
1 = /QIBM/include/iostream.h
2 = /QIBM/include/string.h

The listing includes:
* The files specified in any #include directive
* The file specified or implied in the SRCSTMF() or SRCFILE()/SRCMBR() options

Note: This happens for either a database file or a stream file source.

The format of the OUTPUT option is: OUTPUT (*NONE | *PRINT | filename), where
*PRINT causes the compiler to send it to a spool file, and filename causes the
compiler to send it to a user-specified IFS file.

Code Pages and CCSIDs

For source physical files, the compiler respects the CCSID of ILE C source. A
similar scheme exists for stream file compilation. Stream files have a code page
attribute.

The compiler converts source files, translating code pages to the root source.

The source stream file may have been entered through a mounted file on an ASCII
system. In such a case, the compiler translates from the ASCII codepage that is
associated with the stream file (for example, 437) to EBCDIC (for example, 37).

Support for Unicode wide-character literals can be enabled when building your
program by specifying LOCALETYPE(*LOCALEUCS2) on the compile command.
See [Chapter 32, “International Locale Support,” on page 529| for more information..

You can configure most file transfer utilities to automatically do the conversion to
enable ASCII-based file systems to work for producing stream file source.

Pitfalls to Avoid

Any source file created on the workstation with an ASCII editor that deposits an
EOF marker at the end of a text file will generate an invalid character warning
message when it is compiled with the ILE C/C++ compiler. This includes your
main source file. The problem arises when the source file is copied to, or saved in,
the root(/) file system on the iSeries . This is because of the translation between
ASCII and EBCDIC codepoints.

If you receive an invalid character message referring to the last character of a file,
it is likely that you have an EOF marker in the file. One way to avoid this problem
is to use an editor which does not add the EOF marker.

Alternatively you can use a File Transfer Protocol (FIP) utility. FTP will result in a
root(/) file system file with either codepage 819 or 37. Any of these FTP commands
issued to the target iSeries system prior to the put command will result in a file of
codepage 819:

* ascii

* quote type a

If you issue the following command to the target iSeries system prior to the put
command, put results in a file with codepage 37 (EBCDIC): quote type e. When
the file is transferred using FTP to the Root file system, the file is created with

Chapter 17. Using ILE C/C++ Stream Functions with the iSeries Integrated File System 219

220

either codepage 819 or codepage 37 (depending on the previous commands as
outlined above) whether the file exists prior to the transfer or not.

Files transferred to an Integrated File System with codepage 37, fail to compile.

Examples of Using Integrated File System Source

The most basic entry of an Integrated File System name does not specify any path
information.
: N

Create C++ Module (CRTCPPMOD)

Type choices, press Enter.
Module > TEST Name

Library *CURLIB Name, *CURLIB
Source file QCPPSRC Name

Library *CURLIB Name, *CURLIB
Source member *MODULE Name, *MODULE
Source stream file > test.cpp
Text 'description' *BLANK

Bottom
F3=Exit F4=Prompt F5=Refresh F10=Additional parameters F12=Cancel
\F13=H0w to use this display F24=More keys)

Without a pathname, the system assumes that your source is located in the current
directory. The default current directory is the base (/) directory of the root file
system, but your individual user profile may change this default to a different
directory. You can change the current directory with the Change Current Directory
(CHGCURDIR) command.

Note: The current directory and the current library are separate and distinct
entities. Although you can set the current library and the current directory
to be the same name, a change in one will not affect the other.

The header files specified in any #include statements in your source will be
searched for in the source directory first and then the specified INCDIR directory.
For example, if you compile the following source in file /goodness/mysource.cpp:

#include "special/mystuff.h"
class test : public base

{

with the INCDIR value set to /mydir, your included header file is first searched for
as /goodness/special/mystuff.h and then /mydir/special/mystuff.h.

Using Stream 1/O

The following sections describe stream I/O requirements for using:
* Large files

* Open mode

* Line-end characters

ILE C/C++ Programmer’s Guide

Large Files
Within the C or C++ run-time environment, stream 1/O for files up to two GB in

size is enabled by specifying the *IFSIO option on the system interface keyword
(SYSIFCOPT) on the Create Module or Create Bound Program command prompt.

When using the SYSIFCOPT keyword with either command, follow this format:

CRTCPPMOD MODULE(QTEMP/IFSIO) SRCFILE(QCPPLE/QACSRC) SYSIFCOPT(*IFSIO)
CRTBNDCPP PGM(QTEMP/IFSIO) SRCFILE(QCPPLE/QACSRC) SYSIFCOPT(*IFSIO)

When the *IFSIO option is specified, the compiler defines the _ IFS_IO__ macro.
When __IFS_IO__ is defined, prototypes associated with stream 1/0O in <stdio.h>
are no longer defined. The header file <ifs.h> is included by <stdio.h>, which
declares all structure and prototypes associated with the integrated file system
enabled C stream 1/0.

The 64-bit version of the Integrated File System interface lets you use ILE
C stream I/0 with files up to and greater than two gigabytes in size. (C++ stream
I/0 for files greater than two gigabytes is not supported.) To enable the 64-bit
interface, specify the *IFS6410 option with the SYSIFCOPT keyword on the
CRTCPPMOD or CRTBNDCPP command prompt. When this option is specified,
the compiler defines the _ IFS64_I0__ macro which, for example, remaps the
open() function to an open64() function to allow 64-bit indexing..

Open Mode

The fstream(), ifstream(), and ofstream() classes have a new open mode
ios::text, which opens the file in text mode.

By default, I/O streams are opened in binary mode (not in text mode, as stated in
the Version 3 Release 7 books).

Line-End Characters

* If the input or output is unformatted (for example, via the read() or write()
method), newline (\n) characters are not expanded to \r\n on output and \r
characters are not stripped out on input.

. If the input or output is formatted (via the >> or << operator), newline
(\n) characters are not expanded to \r\n on output but any \r characters are
stripped out on input

If you want to add carriage return (\r) characters, use the fopen() function with
crin=Y (the default).

Chapter 17. Using ILE C/C++ Stream Functions with the iSeries Integrated File System 221

222 ILE C/C++ Programmer’s Guide

Part 5. Working with iSeries File Systems and Devices

This part describes how to:

* Retrieve external file descriptions

* Work in disconnected mode

* Include externally described physical and logical database files

* Use physical and logical database files and distributed data

* Use commitment control

* Use display files, printer files, ICF files, tape files, diskette files, and save files
* Use the device attributes feedback area

© Copyright IBM Corp. 1993, 2004 223

224 ILE C/C++ Programmer’s Guide

Chapter 18. Using Externally Described Files in a Program

This chapter describes how to:
* Create externally described files

* Use level checking to verify that the descriptions with which the program was
compiled are still functional

* Avoid field alignment problems in C/C++ structures

* Including external field definitions in a program

* Define and use indicators

* Include physical and logical database files in a program
¢ Include device files in a program

* Include multiple record formats in a program

* Include packed decimal data in a program

Creating Externally Described Database Files

Externally described files are files that have their field descriptions stored as part of
the file. The description includes information about the type of file (such as data or
device), record formats, and a description of each field and its attributes.

You can create an externally described database file using any of the following:

* SQL/400 database

¢ Interactive Data Definition Utility (IDDU) using DDS for externally described
files

* Data Description Specifications (DDS)

B The ILE C preprocessor automatically creates C structure type definitions
from external file descriptions when you use the #pragma mapinc directive with
the #include directive.

Note: You cannot use the #pragma mapinc directive if you are compiling IFS files.
For more information about including IFS files in a program, see
Appendix A, “The GENCSRC Utility and the #pragma mapinc Directive,” on|

page 541J

The #pragma mapinc directive identifies only those file formats and fields to the
compiler; it does not include the file description in the ILE C program. To include
a file description, the #include directive must be coded in the ILE C program.

You refer to the include-name parameter of the #pragma mapinc directive on the
#include. The #include directive must be coded after the #pragma mapinc
directive in your source program.

For example, to include a type definition of the input fields for the record format
FMT from the file EXAMPLE/TEST, the following statements must appear in your
program in the order shown below:

#pragma mapinc("tempname","EXAMPLE/TEST(FMT)","input","d",,"")
#include "tempname"

© Copyright IBM Corp. 1993, 2004 225

226

Creating Type Definitions

To create the type definition structure to be included in your ILE C program, use
the options parameter. A header description is also created. This header description
contains information about the external file.

C++ users must use the GENCSRC utility for creating type definitions.

B C users can use either the GENCSRC utility or the #pragma mapinc
directive for creating type definitions.

Note: For more information on the differences between the GENCSRC utility and
the #pragma mapinc directive, see|Appendix A, “The GENCSRC Utility and|
[the #pragma mapinc Directive,” on page 541

To see the type definitions in your compiler listing, specify OPTION(*SHOWUSR).

Note: OPTION(*SHOWINC) expands any include file created by GENCSRC or
#pragma mapinc, but it also expands the system includes.

Creating Header Descriptions

The header description for each format contains the following information:

* File and library name of the external file

* File type (physical, logical, device)

* Date the file was created

* Record format name

* Record format level ID (level checking information)

For example, the following directives are used to create the header
shown below:

#pragma mapinc("payrol1","example/test(fmt1l)","input","")
#include "payroll"

Ty */
/* PHYSICAL FILE: EXAMPLE/TEST */
/* FILE CREATION DATE: 93/09/01 */
/* RECORD FORMAT: FMT1 */
/* FORMAT LEVEL IDENTIFIER: 371EQOA681EA7 */
gy */

Figure 108. Header Description

The following is an example of a type definition of type structure:
typedef struct {

} LIBRARY_FILE_FORMAT tag_t;

Parameters of the #pragma mapinc directive are used to create the name
of the created type. LIBRARY, FILE, and FORMAT are the library-name, file-name,
and format-name specified on the #pragma mapinc directive. These names are

ILE C/C++ Programmer’s Guide

folded to uppercase unless quoted names are used. The library and file names can
be replaced with your own prefix-name as specified on the #pragma mapinc
directive.

Any characters that are not recognized as valid by the C language that
appear in library and file names are translated to the underscore (_) character.

Note: Do not use the special characters #, @, or $ in library and file names. If these
characters are used in library and file names, they are also translated to the
underscore (_) character.

The tag on the structure name indicates the type of fields that are included in the
structure definition. The possible values for tag are:

Field Type Tag Field Type Tag

input i key key

output o indicators indic

both both nullflds nmap/nkmap

Unlike the naming convention used for other listed field types, if field type lvlchk
is specified, the name of the array of structure type created is _LVLCHK_T.

B To include external file descriptions for more than one format, specify
more than one format name (formatl format2) or (*ALL) on the #pragma mapinc
directive. A header description and type definitions are created for each format.

When the Iname option is specified and the filename in the #pragma mapinc
directive is greater than 10 characters in length, a system-generated 10-character
name will be used in the type definitions generated by the compiler.

Specifying the Record Format Name

B A record format describes all the fields and the arrangement of these fields
within a record. You can include a record format from an externally described file
in your ILE program by providing its name on the #pragma mapinc directive. You
can provide more than one format name, or you can specify the special value *ALL
to include all record formats from the file.

If the file you are working with contains more than one record format, set the
format for subsequent I/O operations with the _Rformat() function.

Record format functions are useful when working with display, ICF, and printer
files. Logical files can also contain more than one record format.

The record format name for a device file defaults to blank unless you explicitly set
it to a name with _Rformat(). You can reset the format name to blank by passing a
blank name to _Rformat().

If the record format does not contain fields that match the option
specified (input, output, both, key, indicators or nullflds) on the #pragma mapinc

directive, the following comment appears after the header description:

/* FORMAT HAS NO FIELDS OF REQUIRED TYPE */

Chapter 18. Using Externally Described Files in a Program 227

228

Note: Do not use #, @, or $ in record format names. These characters are not
allowed in ILE identifiers and cannot appear in a type definition name. If
you have record format names that contain #, @ or $, these characters are
translated to the lowercase characters p, a, and d, respectively.

Specifying Record Field Names

When you specify record field names, consider the following:

* All DDS keywords are supported by the ILE library and compiler. The actual
comment that is associated with the TEXT keyword is translated to uppercase in
the type definition that is generated. The ALIAS keyword is supported and
brings the alias field name into the type definition that is generated.

* Some of the special characters that are supported in DDS variable names are not
supported by the ILE compiler and library. If you use the special characters (@,
#, or $) in a field name, those characters are changed to lowercase a, p and d in
the type definition that is generated.

Note: If the format names contain C characters that are not valid, they
are translated to the underscore (_) character.

Including Database Files in the Type Definition

Input and output buffers for database files have the same format. When you
specify input, the fields that are defined as either INPUT or BOTH in the
externally described database file are included in the type definition. When you
specify both, the fields that are defined as either INPUT, OUTPUT, or BOTH are
included in the type definition.

If all the fields are defined as BOTH or INPUT, only one type definition structure
is generated in the type definition.

Defining the Structure Type (KEY Field)

To include a separate structure type definition for the KEY fields in a format,
specify the KEY option on the #pragma mapinc directive. Comments are listed
beside the fields in the structure definition to indicate how the key fields are
defined in the externally described file.

C++ users must use the GENCSRC utility for structure type definition.

C users can use either the GENCSRC utility or the #pragma mapinc
directive for structure type definition.

Note: For more information on the differences between the GENCSRC utility and
the #pragma mapinc directive, see[Appendix A, “The GENCSRC Utility and|
[the #pragma mapinc Directive,” on page 541

Example:

The following ILE C program contains the #pragma mapinc directive to include
the externally described database file CUSMSTL:

#pragma mapinc("custmf","example/cusmstl(cusrec)","both key","d")
#include "custmf"

ILE C/C++ Programmer’s Guide

The following example contains the DDS for the file T1520DDS8 in the library
MYLIB.

A CUSTOMER MASTER FILE -- T1520DD8

A R CUSREC TEXT('Customer master record')
A CUST 5 TEXT('Customer number')

A NAME 20 TEXT('Customer name')

A ADDR 20 TEXT('Customer address')

A CITY 20 TEXT('Customer city"')

A STATE 2 TEXT('State abbreviation')

A ZIP 5 0 TEXT('Zip code')

A ARBAL 10 2 TEXT('Accounts receivable balance')
A K CUST

A*

A*

Figure 109. T1520DD8 — DDS Source for Customer Records

Program T1520EDF uses the #pragma mapinc directive to generate the file field
structure that is defined in T1520DDS.

Chapter 18. Using Externally Described Files in a Program 229

/* This program contains the #pragma mapinc directive to */

/* include the externally described database file T1520DDS8. */
/* This program reads customer information from a terminal and issues */
/* a warning message if the customer's balance is less than $1000. */

#include <stdio.h>
#include <recio.h>
#include <stdlib.h>
#include <string.h>
#include <decimal.h>

#pragma mapinc("custmf","QGPL/T1520DD8(cusrec)","both key"," P")
#include "custmf"

int main(void)
{

/* Declare x of data structure type QGPL_T1520DD8 CUSREC both t. */
/* The data structure type was defined from the DDS specified. */

QGPL_T1520DD8_CUSREC_both_t x;

/* Get information from entry. */
printf("Please type in the customer name (max 20 char).\n");
gets(x.NAME) ;

printf("Please type in the customer balance.\n");
scanf("%D(10,2)",&x.ARBAL);

/* Prints out warning message if x.ARBAL<1000. */
if (x.ARBAL<1000)

{

printf("%s has a balance less than $1000!\n", x.NAME);
}

Figure 110. T1520EDF — ILE C Source to Include an Externally Described Database File

The type definitions are created in your ILE C source listing that is based on the
#pragma directive that is specified in the ILE C source program.

The output is as follows:

Please type in the customer name (max 20 char).
> James Smith
Please type in the customer balance.
> 250.58
James Smith has a balance less than $1000!
Press ENTER to end terminal session.

The DDS part of the program listing is as follows:

230 ILE C/C++ Programmer’s Guide

Using

2y */

/* PHYSICAL FILE: QGPL/T1520DD8 */
/* FILE CREATION DATE: 93/08/14 */
/* RECORD FORMAT: CUSREC */
/* FORMAT LEVEL IDENTIFIER: 4E9D9ACA60E0Q */
/ey */
typedef _Packed struct {

char CUST[5]; /* Customer number %/

char NAME[20]; /* Customer name */

char ADDR[20]; /* Customer address =*/

char CITY[20]; /* Customer city */

char STATE[2]; /* State abbreviation*/

decimal(5,0) ZIP; /* Zip code */

/* PACKED SPECIFIED IN DDS */
decimal(10,2) ARBAL; /* Accounts receivable balancex*/

/* PACKED SPECIFIED IN DDS */
}QGPL_T1520DD8_CUSREC_both t;
typedef _Packed struct {
char CUST[5];
/* DDS - ASCENDING+*/
/* STRING KEY FIELD=*/
}QGPL_T1520DD8_CUSREC_key t;

Figure 111. Ouput Listing from Program T1520EDF — Customer Master Record

Long Names for Files

The #pragma mapinc directive supports file names up to 128 characters long and
record field names up to 30 characters long.

The LNAME option was added to #pragma mapinc to support SQL long name
formats. SQL long names map to a 10—character short file name, which consists of
the first 5 characters of the name followed by a 5-digit unique number. For
example, the system short name for LONGSQLTABLENAME is LONGS00001.

Long record field names are not mapped to a 10—character short name. When the
LNAME option is specified it is assumed that the long name format for the file
name is being used. If the file name has more than 10 characters, this name is
converted to the associated short name internally. This short name is used to
extract the external file definition. When a regular short name of 10 characters or
less is specified, no conversion occurs.

The #pragma mapinc directive uses the 30 character record field names
in the type definitions that are generated, with or without the LNAME option that
is specified. For the filenames that are specified using a long name format, the type
definitions that are generated use the associated regular 10—character short
filename.

C++ users must use the GENCSRC utility to create type definitions from
an external file.

C users can use either the GENCSRC utility or the #pragma mapinc
directive to create type definitions from an external file.

Chapter 18. Using Externally Described Files in a Program 231

Note: For more information on the differences between the GENCSRC utility and
the #pragma mapinc directive, see|Appendix A, “The GENCSRC Utility and|
[the #pragma mapinc Directive,” on page 541

Level Checking to Verify Descriptions

232

When an ILE C/C++ program that uses externally described files is compiled, the
compiler extracts the record-level and field-level descriptions for the files referred
to in the program and makes those descriptions part of the compiled program.
When you run the program, you can verify that the descriptions with which the
program was compiled are the current descriptions. This process is referred to as
level checking.

When it creates the associated header file, the server assigns a unique level
identifier for each record format. The following information determines the level
identifier:

* Record format name

* Field name

* Total length of the record format

* Number of fields in the record format

* Field attributes (for example, length and decimal positions)

e Order of the field in the record format

Note: It is possible for files with large record formats (many fields) to have the
same format level identifiers even though their formats may be slightly
different. Problems can occur when copying these files if the record format
names of the from-file and the to-file are the same.

If you change any of the data description specification (DDS) items in the
preceding list, the level identifier changes.

When you create or change files, and you specify that you want level checking;:

¢ The system checks the level identifier to determine whether the description of
the record format you are using was changed since the program was compiled.

e If that information has changed so much that your program cannot process the
file, the system notifies your program of this condition.

If the changes affect a field that your program uses, you must compile the program
again for it to run properly.

C++ users must use the GENCSRC utility for level checking.

C users can use either the GENCSRC utility or the #pragma mapinc
directive for level checking.

Note: For more information on the differences between the GENCSRC utility and
the #pragma mapinc directive, see|Appendix A, “The GENCSRC Utility and|
[the #pragma mapinc Directive,” on page 541

If you make changes that do not affect the fields that your program uses, you can
run the program without compiling again by entering an override command for

the file and specifying LVLCHK(*NO). For example, suppose that you add a field
to the end of a record format in a database file, but the program does not use the

ILE C/C++ Programmer’s Guide

new field. You can use the Override with Database File (OVRDBF) command with
LVLCHK(*NO) to enable the program to run without compiling again.

Note: The Override with Database File (OVRDBF) command can be used with
DDM to override a local database file named in the program with a DDM
file. The DDM file causes the associated remote file to be used by the
program instead of the local database file.

The use of level checking ensures file integrity. It alerts you to the possibility of
unpredictable results.

An alternative to level checking is to display and analyze the file description to
determine if the changes affect your program. You can use the Display File Field
Description (DSPFFD) command to display the description or, if you have the
source entry utility (SEU), you can display the source file containing the DDS for
the file. To display the format level identifier defined in the file, use the Display
File Description (DSPFD) command.

Note: When you are displaying the level identifier, remember that the record
format identifier is compared, rather than the file identifier.

Using the GENCSRC Utility for Level Checking

Use the GENCSRC utility to retrieve externally described file information for use
in a C/C++ program. The utility:

* Creates a C/C++ header file which contains the type definition structure for the
include file.

¢ Supports creation of C/C++ include files.

Use the SLTFLD keyword to turn on level checking.

Note: For a list of options for the SLTFLD keyword, see [Appendix A, “The]
[GENCSRC Utility and the #pragma mapinc Directive,” on page 541

If you specify the keyword SLTFLD with value *LVLCHK on the GENCSRC
command, in addition to generating the type _LVLCHK_T (array of structures), a
variable of type _LVLCHK_T is also generated. The name of this variable of type
_LVLCHK_T is based on some or all of the following:

* File name specified for the OB] keyword (see [Figure 112 on page 234)

* Member name (see [Figure 113 on page 234)
¢ Value of the TYPEDEFPFX keyword (see [Figure 114 on page 235)
* Include name

Note: In each of the following figures, the include name is actually the include
file (that is, the SRCFILE/SRCMBR or SRCSTMF keywords).

In the case when SLTFLD(*LVLCHK) is specified with the default
TYPEDEFPFX(*OB]J), the name of the level check structure is based on the file
name as specified in the OBJ keyword and the include name (see [Table 36 on page]
. The GENCSRC command generates the level check structure named
mylib_myfile_mymbr_1vlchk, as shown in the following examples:

Chapter 18. Using Externally Described Files in a Program 233

234

GENCSRC OBJ('/QSYS.LIB/MYLIB.LIB/MYFILE.FILE') SRCFILE(INCLIB/H)
SRCMBR (MYMBR) SLTFLD(*LVLCHK) TYPEDEFPFX(*0BJ)

or

GENCSRC OBJ('/QSYS.LIB/MYLIB.LIB/MYFILE.FILE')
SRCSTMF (' incdir/mymbr.h) SLTFLD(*LVLCHK) TYPEDEFPFX(*O0BJ)

/ey */
// PHYSICAL FILE : MYLIB/MYFILE

// FILE LAST CHANGE DATE : 2001/09/13

// RECORD FORMAT : FORMAT1

// FORMAT LEVEL IDENTIFIER : 38A624C5F3B51
2y */

_LVLCHK_T mylib_myfile_mymbr_lvichk = {
bs

Note: The level check name depends on your source location (library, file, member).

Figure 112. Example of SLTFLD(*LVLCHK) with the Default TYPEDEFPFX(*OBJ)

In the case when SLTFLD(*LVLCHK) is specified with TYPEDEFPFX(*NONE), the
name of the level check structure is based on the member name, and the
commands in generate a level check structure named mymbr_1v1chk.

GENCSRC OBJ('/QSYS.LIB/MYLIB.LIB/MYFILE.FILE') SRCFILE(INCLIB/H)
SRCMBR (MYMBR) SLTFLD(*LVLCHK) TYPEDEFPFX(*NONE)

or

GENCSRC OBJ('/QSYS.LIB/MYLIB.LIB/MYFILE.FILE")

SRCSTMF ('incdir/mymbr.h) SLTFLD(*LVLCHK) TYPEDEFPFX(*NONE)
J* ——— - */
// PHYSICAL FILE : MYLIB/MYFILE

// FILE LAST CHANGE DATE : 2001/09/13

// RECORD FORMAT : FORMAT1

// FORMAT LEVEL IDENTIFIER : 38A624C5F3B51
2y */

_LVLCHK_T mymbr_1vichk = {

bs
Note: The level check name depends on your source location (library, file, member).

Figure 113. Example of SLTFLD(*LVLCHK) with the Default TYPEDEFPFX(*NONE)

In the case when SLTFLD(*LVLCHK) is specified with TYPEDEFPFX(prefix_name),
the name of the level check structure is the prefix_name followed by the file name
based on the OBJ keyword and the SRCFILE/SRCMBR or SRCSTMF keywords
(the include file). The commands in [Figure 114 on page 235 give the level check
structure named MYPREFIX_mylib_myfile_mymbr_1vichk.

ILE C/C++ Programmer’s Guide

GENCSRC OBJ('/QSYS.LIB/MYLIB.LIB/MYFILE.FILE') SRCFILE(INCLIB/H)
SRCMBR(MYMBR) SLTFLD(*LVLCHK) TYPEDEFPFX(MYPREFIX)

or

GENCSRC OBJ('/QSYS.LIB/MYLIB.LIB/MYFILE.FILE")
SRCSTMF (' incdir/mymbr.h) SLTFLD(*LVLCHK) TYPEDEFPFX(MYPREFIX)

// PHYSICAL FILE : MYLIB/MYFILE

// FILE LAST CHANGE DATE : 2001/09/13

// RECORD FORMAT : FORMAT1

// FORMAT LEVEL IDENTIFIER : 38A624C5F3B5
2y */

_LVLCHK_T MYPREFIX_mylib_myfile_mymbr_lvichk = {

bs
Note: The level check name depends on your source location (library, file, member).

Figure 114. Example of SLTFLD(*LVLCHK) with the Default TYPEDEFPFX value
*MYPREFIX

Using the #pragma mapinc Directive for Level Checking
- C

The #pragma mapinc directive provides the opportunity to convert DDS files to
include files directly.

If you specify the LVLCHK option on the #pragma mapinc directive, the following
are generated:

* An array of structures of type _LVLCHK_T

* A variable of type _LVLCHK_T

The array is initialized so that each array element contains the level check
information for the corresponding formats specified on the #pragma mapinc

directive. The last two array elements are always empty strings, one for each field
of the structure.

The name of the variable is LIBRARY_FILE_INCLUDE_lvlchk, where LIBRARY, FILE,
and INCLUDE are the library_name, file_name and include_name, respectively.

If you specify the lvlchk keyword on the _Ropen varparm parameter and the
composition of the file is changed, the file pointer on the _Ropen returns NULL

and the CPF4131 message is issued.

Note: For more information about using the LVLCHK option of the #pragma mapinc
directive, see WebSphere Development Studio: ILE C/C++ Compiler Reference.

The following figure shows the #pragma mapinc directive and the LVLCHK option
to perform a level check on a file when it is opened.

Chapter 18. Using Externally Described Files in a Program 235

/* This program illustrates how to use level check information. */

/* This example uses ILE C record I/0. See the ILE C */
/* Programmer's Reference for descriptions of the record I/0 */
/* functions. */

#include <stdio.h>

#include <stdlib.h>

#include <recio.h>

#pragma mapinc("DD3FILE","MYLIB/T1520DD3(purchase)","key Tvichk"," P")
#include "DD3FILE"

int main(void)

{

_RFILE *in;

char new_purchase[21] = "PEAR 1002022244"
/* Open the file for processing in keyed sequence. File is created */
/* with the default access path. */

Figure 115. ILE C Source Using the #pragma mapinc Ivichk Option (Part 1 of 2)

if ((in = _Ropen("MYLIB/T1520DD3", "rr+ varparm = (lvichk)",
&MYLIB_T1520DD3_DD3FILE_1v]Chk)) == NULL)

{
printf("Open failed\n");

exit(1);
}
/* Update the first record in the keyed sequence. The function */
/* _Rlocate locks the record. */

_Rlocate(in, NULL, 0, _ FIRST);
_Rupdate(in, new_purchase, 20);
/* Force the end of data. */
_Rfeod(in);
_Rclose(in);

Figure 115. ILE C Source Using the #pragma mapinc Ivichk Option (Part 2 of 2)

The following example contains the DDS in the file T1520DD3 in the library

MYLIB.
A R PURCHASE
A ITEMNAME 10
A SERTALNUM 10
A K SERIALNUM

Figure 116. T1520DD3 — DDS Source for Program

The DDS part of the program listing is as follows:

236 ILE C/C++ Programmer’s Guide

2y */

/* PHYSICAL FILE: MYLIB/T1520DD3 */
/* FILE CREATION DATE: 93/09/02 */
/* RECORD FORMAT: PURCHASE */
/* FORMAT LEVEL IDENTIFIER: 322C4B361172D */
/ey */

typedef _Packed struct {
char SERIALNUM[10];
/* DDS - ASCENDING=*/
/* STRING KEY FIELDx/
}MYLIB_T1520DD3_PURCHASE_key t;
typedef Packed struct {
unsigned char format_name[10];
unsigned char sequence no[13];
} LVLCHK T[1;
_LVLCHK_T MYLIB_T1520DD3_DD3FILE_Ivlchk = {
"PURCHASE ", "322C4B361172D",

IIII’ nn };

Figure 117. Ouput Listing from the Program

Avoiding Field Alignment Problems in C/C++ Structures

All fields defined in ILE C/C++ structures are aligned on their natural boundaries.
For example, int fields are four bytes long and are stored on four-byte boundaries.
If you create a file that is externally described, the system does not enforce
boundary alignment of the externally described data. The structure may need to be
packed because packed structures match the alignment of the externally described
data.

If the fields defined in the DDS are aligned (for example, all are character fields),
you can use the type definition that is generated without packing the structure.

To avoid an alignment problem, specify the _P option to generate a packed
structure. For example, to include a packed type definition structure of input and
key fields for the record format custrec from the file EXAMPLE/CUSTMSTL, the
following statements must appear in your program in the order shown below:

#pragma mapinc("custmf","EXAMPLE/CUSTMSTL(custrec)","input key"," P")

#include "custmf"

Including External Field Definitions in a Program

Response indicators are included when the DDS keyword INDARA is not
specified. When this is the case, use the INPUT, OUTPUT, or BOTH option.

C++ users must use the GENCSRC utility to create external file
definitions.

C users can use either the GENCSRC utility or the #pragma mapinc
directive to create external file definitions.

Note: For more information on the differences between the GENCSRC utility and
the #pragma mapinc directive, see[Appendix A, “The GENCSRC Utility and|
[the #pragma mapinc Directive,” on page 541

Chapter 18. Using Externally Described Files in a Program 237

238

When the DDS shown in |Figure 118|is included in your ILE C program, the
structure definition shown in [Figure 119|is generated.

#pragma mapinc("test","example/phonelist(phone)","input","")
#include "test"

A R PHONE

A CFO3(03 'EXIT')

A 1 35'PHONE BOOK'

A DSPATR(HI)

A 7 28'Name:'

A NAME 11A I 7 34

A 9 25'Address:"’

A ADDRESS 200 1 9 34

A 11 25'Phone #:'

A PHONE_NUM 8A I 11 34

A 23 34'F3 - EXIT'

A DSPATR(HI)
Figure 118. DDS Source for a Display File
/2y */
/* DEVICE FILE: EXAMPLE/PHONELIST */
/* FILE CREATION DATE: 93/09/01 */
/* RECORD FORMAT: PHONE */
/* FORMAT LEVEL IDENTIFIER: 10D2DODB2BEE8 */
/Sy */
typedef struct {

char INO3; /* EXIT */

char NAME[11];

char ADDRESS[20];

char PHONE_NUM[8];
}EXAMPLE_PHONELIST PHONE i t;

Figure 119. Structure Definition for a Display File

The INPUT Option

Specify the INPUT option when you want to include the fields that are defined as
INPUT or BOTH in the externally described device file.

Note: Option and response indicators are included in the type definition structures
only if the DDS keyword INDARA is not specified in the external file
description.

The OUTPUT Option

Specify the OUTPUT option when you want to include fields that are defined as
OUTPUT or BOTH in the externally described device file.

Note: Option and response indicators are included in the type definition structures

only if the DDS keyword INDARA is not specified in the external file
description.

The BOTH Option

When you specify BOTH, two type definition structures are generated:

ILE C/C++ Programmer’s Guide

* One type definition contains all fields defined as INPUT or BOTH; the other
contains all fields defined as OUTPUT, or BOTH.

* One type definition structure is generated for each format that is specified when
all fields are defined as BOTH, and a separate indicator area is not specified.

Note: Option and response indicators are included in the type definition structures
only if the DDS keyword INDARA is not specified in the external file
description.

If you are including the external file description for only one record format, a type
definition union is automatically created containing the two type definitions. The
name of this type definition union is LIBRARY_FILE_FMT_both_t. If you specify a
union-type-name on the #pragma mapinc directive, the name that is generated is
union-type-name_t.

C++ users must use the GENCSRC utility for type definitions.

C users can use either the GENCSRC utility or the #pragma mapinc
directive for type definitions.

Note: For more information on the differences between the GENCSRC utility and
the #pragma mapinc directive, see[Appendix A, “The GENCSRC Utility and|
[the #pragma mapinc Directive,” on page 541

INDARA
R FMT
CFO1(50)
CFO2(51)
CFO3(99 'EXIT')
1 35'PHONE BOOK'
DSPATR(HI)
7 28'Name:'
7 34
9 25'Address:'
ADDRESS 200 0 9 34
11 25'Phone #:'
PHONE_NUM 8A 0 11 34
23 34'F3 - EXIT'

NAME 11A 1

> > > > > >> > > > > >

Figure 120. DDS Source for a Device File

When the DDS shown above is included in your ILE C program, the
following structure is generated:

#pragma mapinc("example/screenl","example/test(fmt)","both","d")
#include "example/screenl"

Chapter 18. Using Externally Described Files in a Program 239

2y
/* DEVICE FILE: EXAMPLE/TEST
/* FILE CREATION DATE: 93/09/01
/* RECORD FORMAT: FMT
/* FORMAT LEVEL IDENTIFIER: 371EQOQA681EA7
/ey
/* INDICATORS FOR FORMAT FMT
/* INDICATOR 50
/* INDICATOR 51
/* INDICATOR 99
[% e e e e
typedef struct {
char NAME[11];
}EXAMPLE_TEST_FMT i_t;
typedef struct {
char ADDRESS[20];
char PHONE_NUM[8];
}EXAMPLE_TEST_FMT o_t;
typedef union {
EXAMPLE_TEST FMT i t EXAMPLE_TEST FMT i;
EXAMPLE TEST FMT o t EXAMPLE_TEST FMT o3
}EXAMPLE_TEST_FMT both_t;

Figure 121. Structure Definitions for a Device File

This shows the structure definitions that are created when the format FMT in the
device file EXAMPLE/TEST is included in your program. The external file
description contains three indicators IN50, IN51, and IN99, and the DDS keyword
INDARA. The indicators will appear as comments and will not be included in the
structure because the option INDICATOR was not specified in the #pragma
mapinc directive.

Defining and Using Indicators

240

Indicators for a record format are allowed only for device files, and can be defined
as a separate indicator structure or as a member in the record format structure.

C++ users must use the GENCSRC utility for structure definitions.

B C users can use either the GENCSRC utility or the #pragma mapinc
directive for structure definitions.

Note: For more information on the differences between the GENCSRC utility and
the #pragma mapinc directive, see|Appendix A, “The GENCSRC Utility and|
|the #pragma mapinc Directive,” on page 541

Creation of Indicators in the File Buffer

If you do not specify the keyword INDARA in DDS, the indicators are created as
part of the file buffer being read or written. Only those indicators that are used are
declared in the type definition of the structure. They are declared as char, and
created when the INPUT, OUTPUT, or BOTH option is specified on the #pragma
mapinc directive.

Creating a Separate Indicator Area

To use indicators as a separate structure you must specify:
* the DDS keyword INDARA in the external description of the file

ILE C/C++ Programmer’s Guide

* the INDICATORS option on the #pragma mapinc directive or the GENCSRC
command.

* use indicators=y when opening the file

You must also set the address of the separate indicator area by using the
_Rindara() function for record files, before performing I/O operations.

Note: If you specify indicators on the #pragma mapinc directive and do not use
the DDS keyword INDARA in your external file description, you will
receive a warning message at compile time.

If indicators are requested, and exist in the format, a 99-byte structure definition is
created. The structure definition contains a field declaration for each indicator
defined in the DDS. The name of each field is INXX, where XX is the DDS indicator
number. The sequence of bytes between indicators is defined as INXX_INYY,
where XX is the first undefined byte and YY is the last undefined byte in a
sequence.

INDARA
R FMT
CFO1(50)
CFO2(51)
CFO3(99 'EXIT')
1 35'PHONE BOOK'
DSPATR(HI)
28'Name: '
34
9 25'Address:'
ADDRESS 200 0 9 34
11 25'Phone #:'
PHONE_NUM 8A 0 11 34
23 34'F3 - EXIT'

~N N

NAME 11A 1

> > > > > > > > > > >

Figure 122. DDS Source for Indicators

#pragma mapinc("example/temp","exindic/test(fmt)","indicators",
#include "example/temp"

When this DDS is included in your ILE C/C++ program, the following structure is
generated:

Chapter 18. Using Externally Described Files in a Program 241

[* e e e e */

/* DEVICE FILE: EXINDIC/TEST */
/* FILE CREATION DATE: 93/09/01 */
/* RECORD FORMAT: FMT */
/+ FORMAT LEVEL IDENTIFIER: 371EQQA681EA7 */
Ty */
/* INDICATORS FOR FORMAT FMT */
/* INDICATOR 50 */
/* INDICATOR 51 */
/* INDICATOR 99 */
J % m e e e e */
typedef struct {

char INO1_IN49[49]; /* UNUSED INDICATOR(S) =/

char IN50;

char IN51;

char IN52_IN98[47]; /* UNUSED INDICATOR(S) =/

char IN99;

}EXINDIC_TEST_FMT indic_t;

Figure 123. Structure Definition for Indicators

This shows a type definition of a structure for the indicators in the format FMT of
the file EXINDIC/TEST. The external file description contains three indicators:
IN50, IN51, and IN99. The DDS keyword INDARA is also specified in the DDS for
the file.

If indicators are defined for a record format and the INDICATOR option is not
specified on the #pragma mapinc directive or GENCSRC command, a list of the
indicators in the DDS is included as a comment in the header description.

The following shows the header description created when the file
description for the file EXINDIC/TEST is included in your program and the
indicators option is not specified on the #pragma mapinc directive.

2y */
/* DEVICE FILE: EXINDIC/TEST */
/* CREATION DATE: 93/09/01 */
/* RECORD FORMAT: FMT */
/* FORMAT LEVEL IDENTIFIER: 371EQQA681EA7 */
Ty */
/* INDICATORS FOR RECORD FORMAT FMT */
/* INDICATOR 50 */
/* INDICATOR 51 */
/* INDICATOR 99 */
J* = e e e */

Figure 124. Header Description Showing Comments for Indicators

Including Physical and Logical Database Files in a Program

To include external database file descriptions, use the INPUT, BOTH, KEY,
NULLFLDS, or LVLCHK option on the #pragma mapinc directive. If you specify
either the OUTPUT or INDICATOR option, an error message is generated.

242 ILE C/C++ Programmer’s Guide

You can include external file descriptions for Distributed Data Management (DDM)
files using the same method described for database files if you specify either the
INPUT, KEY, or BOTH option. If you specify OUTPUT or INDICATOR, an error
message is issued.

C++ users must use the GENCSRC utility for level checking and
including external file descriptions.

B C users can use either the GENCSRC utility or the #pragma mapinc
directive for level checking and external file descriptions.

Note: For more information on the differences between the GENCSRC utility and
the #pragma mapinc directive, see[Appendix A, “The GENCSRC Utility and|
[the #pragma mapinc Directive,” on page 541/

Including Device Files in a Program

To include external device file descriptions, use the INPUT, OUTPUT, BOTH,
and/or INDICATOR options on the #pragma mapinc directive. Device files do not
contain KEY fields. Therefore, you cannot specify the KEY option with device files.

C users may use the GENCSRC utility to create type definitions from an
external file.

C++ users must use the GENCSRC utility to create type definitions from
an external file.

Note: For more information on the differences between the GENCSRC utility and
the #pragma mapinc directive, see|Appendix A, “The GENCSRC Utility and|
[the #pragma mapinc Directive,” on page 541

Including Externally Described Multiple Record Formats in a Logical

File

To include multiple formats in a logical file, specify more than one record format
name or (*ALL) on the #pragma mapinc directive. If you specify multiple formats,
a header description and type definition is created for each format. If you specify a
union- type-name, a union type definition is created.

C++ users must use the GENCSRC utility to create type definitions from
an external file.

C users can use either the GENCSRC utility or the #pragma mapinc
directive to create type definitions from an external file.

Note: For more information on the differences between the GENCSRC utility and
the #pragma mapinc directive, see|Appendix A, “The GENCSRC Utility and|
[the #pragma mapinc Directive,” on page 541

The typedef union contains structure definitions created for each format. Structure
definitions that are created for key fields when the key option is specified are not
included in the union definition. The name of the union definition is
union-type-name_t. The name you provide for the union-type-name is not folded
to uppercase.

Chapter 18. Using Externally Described Files in a Program 243

The following shows the type definitions created for a logical file with two record
formats with the BOTH and KEY options specified. A typedef union with the tag

buffer_t is also generated. SN

#pragma mapinc("pay","libl/pay(fmtl fmt2)","both key","","buffer","Pay")
#include "pay"

/2y */
/* LOGICAL FILE: PAY */
/* FILE CREATION DATE: 93/09/01 */
/* RECORD FORMAT: FMT1 */
/* FORMAT LEVEL IDENTIFIER: 371E0OA681EA7 */
/Sy */

typedef struct {

}Pay FMT1_both_t;

typedef struct {

}Pay FMT1 key t;

J* e e s */
/* LOGICAL FILE: PAY */
/* FILE CREATION DATE: 93/09/01 */
/* RECORD FORMAT: FMT2 %/
/* FORMAT LEVEL IDENTIFIER: 371EOOA681EA7 */
/2y */

typedef struct {

}Pay_FMT2_both_t;

typedef struct {

}Pay FMT2 key t;

typedef union {

Pay FMT1 both_t; Pay FMT1_both;
Pay FMT2_both_t; Pay_FMT2_both;
}buffer_t;

Figure 125. Structure Definition for Multiple Formats

Note: A typedef union is not created for the key fields.

If you specify *ALL, or more than one record format on the format-name
parameter, structure definitions for multiple formats are created.

If you specify multiple formats, and the input, or output option, one structure is

created for each format. The following shows the structure definitions that are
created when you include the following statements in your program. The device

244 ILE C/C++ Programmer’s Guide

file TESTLIB/FILE contains two record formats, FMT1, and FMT2. Each record
format has fields defined as OUTPUT in its file description. SFI

#pragma mapinc("example","testlib/file(fmtl fmt2)","output","z","unionex"
#include "example"

2y */
/* DEVICE FILE: TESTLIB/FILE */
/* FILE CREATION DATE: 93/09/01 */
/* RECORD FORMAT: FMT1 */
/* FORMAT LEVEL IDENTIFIER: 371E0OA681EA7 */
Ty */

typedef struct {

}TESTLIB_FILE_FMT1 o _t;

Ty Sy Sy USSR S — */
/* DEVICE FILE: TESTLIB/FILE */
/* CREATION DATE: 93/09/01 */
/* RECORD FORMAT: FMT2 */
/* FORMAT LEVEL IDENTIFIER: 371EOOA681EA8 %/
gy */

typedef struct

}TESTLIB_FILE_FMT2 o _t;

typedef union {
TESTLIB_FILE FMT1 o t TESTLIB_FILE_FMT1 o;
TESTLIB FILE_FMT2 o t TESTLIB_FILE_FMT2 o;
Junionex_t;

Figure 126. Structure Definitions for a Device File

When both are specified as an option, two structure definitions are created for each
format. The following shows the structure definitions created when you include
two formats, FMT1 and FMT2, for the device file EXAMPLE/TEST and specify the

both option: S

#pragma mapinc("test","example/test(fmtl fmt2)","both","z","unionex")
#include "test"

If all the fields are defined as BOTH and there are to be no indicators in the

typedef struct, only one typedef struct is generated for each format specified. The
following shows a separate typedef structure for input and output fields.

Chapter 18. Using Externally Described Files in a Program 245

/* DEVICE FILE: EXAMPLE/TEST */
/* CREATION DATE: 93/09/01 */
/* RECORD FORMAT: FMT1 */
/* FORMAT LEVEL IDENTIFIER: 371EQOA681EA7 */
Ty */

typedef struct {

YEXAMPLE TEST FMT1 i t;
typedef struct {

}EXAMPLE_TEST FMT1 o t;

Ty */
/* DEVICE FILE: EXAMPLE/TEST */
/* CREATION DATE: 93/09/01 */
/* RECORD FORMAT: FMT2 */
/* FORMAT LEVEL IDENTIFIER: 371E0OA681EA8 */
J* = e e e */

typedef struct {

YEXAMPLE_TEST_FMT2 i t;
typedef struct {

}EXAMPLE_TEST_FMT2_o_t;
typedef union{

EXAMPLE_TEST FMT1 i t EXAMPLE_TEST_FMT1 i;
EXAMPLE_TEST FMTI o_t EXAMPLE_TEST_FMT1 o;
EXAMPLE_TEST FMT2 i t EXAMPLE_TEST_FMT2 i;
EXAMPLE_TEST FMT2 o t EXAMPLE_TEST_FMT2 o;

Junionex_t;

Figure 127. Structure Definitions for BOTH Option

Using Externally Described Packed Decimal Data in a Program
The ILE C/C++ compiler and library supports packed decimal data.

The d option of the #pragma mapinc directive causes the compiler to generate
packed decimal variables for any packed decimal fields defined in the DDS file. If
you use the p option of the #pragma mapinc directive or the PKDDECFLD
parameter of the GENCSRC command, character arrays are generated to store the
packed decimal values.

C++ users must use the GENCSRC utility to create type definitions from
an external file.

B C users can use either the GENCSRC utility or the #pragma mapinc
directive to create type definitions from an external file.

246 ILE C/C++ Programmer’s Guide

Note: For more information on the differences between the GENCSRC utility and
the #pragma mapinc directive, see|Appendix A, “The GENCSRC Utility and|
[the #pragma mapinc Directive,” on page 541

These character arrays then need to be converted to an ILE C/C++ numeric data
type to be used in the ILE C/C++ program. If neither the d or p option is
specified, the d option is the default. See [Chapter 26, “Using Packed Decimal Datal
in a C Program,” on page 451| or [Chapter 27, “Using Packed Decimal Data in a|
C++ Program,” on page 465|for examples in using packed decimal data types.

Note: If you have a DDS file with packed decimal fields defined in your program,
your source code must:

. Include the <decimal.h> header file
. Include the <bcd.h> header file

Note: If <decimal.h> is included in a source that is compiled with the
C++ compiler, <bcd.h> is included anyway.

Use either the #pragma mapinc d option or the GENCSRC PKDDECFLD
parameter in your ILE C/C++ source code.

Note: The ILE C/C++ compiler and library do not support zoned decimal data. If
there are zoned fields, #pragma mapinc and GENCSRC convert them into
*CHAR type.

To convert packed decimal data that is stored in character arrays to integer or
floating point (double) and vice versa, the functions QXXDTOP (), QXXITOP(),
QXXPTOD(), QXXPTOI() can be used.

To convert zoned decimal data that is stored in character arrays to integer or
floating point (double) and vice versa, the functions QXXDTOZ(), QXXITOZ(),
QXXZTOD, () and QXXZTOI() can be used.

The MI cpynv () function can also be used to convert packed or zoned decimal data
to an ILE C/C++ numeric data type. It can be used to convert an ILE C/C++
numeric data type to packed or zoned decimal data.

The conversion functions are included with the ILE C/C++ compiler so that EPM
C code that uses these functions can be maintained.

If you are doing database 1/O operations, you can use a logical file with integer or
floating point fields to redefine packed and zoned fields in your physical file.
When you perform an input, or output operation through the logical file, the
iSeries 400 system converts the data for you automatically.

Chapter 18. Using Externally Described Files in a Program 247

248 ILE C/C++ Programmer’s Guide

Chapter 19. Using Database Files and Distributed Data

Management

Files in a Program

This chapter describes how to:

* Copy data from one file to another using an arrival sequence access path
¢ Update data in a record file by using a keyed sequence access path

* Read and print records from a data file

* Specify commitment control conditions

Database Files

and Distributed Data Management Files

A database file contains data that is stored permanently on the system. The object
type is *FILE.

Database files can be created and used as either physical files or logical files.
Database files can contain either data or source statements.

ILE C/C++ programs access files on remote systems through distributed data
management (DDM). DDM allows application programs on one system to use files
that are stored on a remote system as database files. No special statements are
required in ILE C/C++ programs to support DDM files.

A DDM file is created by a user or program on a local (source) system. This file
(with object type *FILE) identifies a file that is kept on a remote (target) system.
The DDM file provides the information that is needed for a local iSeries 400 to
locate a remote iSeries 400 and to access the data in the target file.

Physical Files and Logical Files

Physical files contain the actual data that is stored on an iSeries system, and a
description of how data is to be presented to or received from a program. They
contain only one record format, and one or more members.

A physical file can have a keyed sequence access path. This means that data is
presented to an ILE C/C++ program in a sequence that is based on one or more
key fields in the file.

Logical files do not contain data. They contain a description of records that are
found in one or more physical files. A logical file is a view or representation of one
or more physical files. Logical files that contain more than one format are referred
to as multi-format logical files.

If your program processes a logical file which contains more than one record
format, you can use the Rformat() function to set the format you wish to use.

Some operations cannot be performed on logical files. If you open a logical file for
stream file processing with open modes w, w+, wb, or wb+, the file is opened but not
cleared. If you open a logical file for record file processing with open modes wr or
wr+, the file is opened but not cleared.

© Copyright IBM Corp. 1993, 2004 249

Describing Records in Database Files

Records in database files can be described using either a field level description or
record level description.

A field level description includes a description of all fields and their arrangement in
this record. because the description of the fields and their arrangement is kept
within a database file and not in your ILE C/C++ program, database files created
with a field level description are referred to as externally described files. See
(Chapter 18, “Using Externally Described Files in a Program,” on page 225

A record level description describes only the length of the record, and not the
contents of the record. Database files that are created with record level descriptions
are referred to as program-described files. This means that your ILE C/C++ program
must describe the fields in the record.

Defining Externally Described Files

An ILE C/C++ program can use either externally described or program-described
files. If it uses an externally described file, the ILE C/C++ compiler can extract
information from the externally described file, and automatically include field
information in your program. Your program does not need to define the field
information. For further information see [Chapter 18, “Using Externally Described|
[Files in a Program,” on page 225

To define externally described database files, use one of the following;:
+ DB2® database
* Interactive Data Definition Utility (IDDU)

* Data Descriptive Specifications (DDS) source

A data description specification is a description of a database file that is entered into
the system in a fixed form, and is used to create files. This description is composed
of one or more record formats that define the fields that make up the record. It can
also include access path information that determines the order in which records are
retrieved from the file.

Data Files and

Source Files

A data file contains actual data.

Records in data files are grouped into members. All the records in a file can be in
one member, or they can be grouped into different members. Most database
commands and operations by default assume that database files which contain
data have only one member. This means that when your ILE C/C++ program
works with database files containing data you do not need to specify the member
name for the file unless your file contains more than one member.

Usually, database files that contain source programs are made up of more than one
member. Organizing source programs into members within database files allows
you to better manage your programs. These source members contain source
statements that the iSeries system uses to create iSeries objects. For example, a
source member which contains C++ statements is used to create a program object.

Access Paths

Access paths describe the logical order of records in a file. There are two types of
access paths: arrival sequence and keyed sequence.

250 ILE C/C++ Programmer’s Guide

Records that are retrieved using an arrival sequence access path will be retrieved in
the same order in which they were added to the file. This is similar to processing
sequential files. New records are physically stored at the end of the file. An arrival
sequence access path is valid for both physical and logical files.

Records that are retrieved using a keyed sequence access path are retrieved based on
the contents of one or more key fields in the record. This is similar to processing
indexed or keyed files on other systems. A keyed sequence access path is updated
whenever records are added, deleted, or updated, or when the contents of the key
field are changed. This access path is valid for both physical and logical files.

If a file defines more than one record format, each record format may have
different key fields. The default key for the file (for example, if no format is
specified) will be the key fields that all record formats have in common. If there is
no default key (for example, no common key fields), the first record in the file will
always be returned on an input operation that does not specify the format.

Note: When your ILE C/C++ program opens a file, the default is to process the
file with the access path that is used to create the file. If you specify
arrseq=N (the default), the file is processed the way it was created. This
means that if the file was created using a keyed sequence access path, your
ILE C/C++ program processes the file by using a keyed sequence access
path. If you specify arrseq=Y, the file is processed using arrival sequence.
This means that even though the file was created using a keyed sequence
access path, your ILE C/C++ program processes the file by using an arrival
sequence access path.

Arranging Key Fields
Keyed sequence access paths can be ordered in ascending or descending sequence.
When you describe a key field, the default is ascending sequence. If you are using
Data Description Specifications (DDS) to create a keyed sequence file, the
DESCEND DDS keyword can be used to specify that the key fields are to be
arranged in descending sequence.

Duplicate Key Values

When a record has key fields whose contents are the same as another record’s key
fields in the same file, the file has records with duplicate key values. For example,
if the record has two key fields num and date, duplicate key values occur when the
contents of both num and date are the same in two or more records.

If you want an indication that your program is processing a record that contains a
duplicate key value, specify dupkey=y on the call to _Ropen() that opens the file. If
an I/0O operation on a record is successful and a duplicate key value is found in
that record, the dup_key flag in the RIOFB_T structure is set. (The _Rreadd()
function does not update this flag.)

Note: Using the dupkey=y option on the call to the _Ropen() function may cause
your I/O operations to be slower.

You can avoid duplicate key values by specifying the keyword UNIQUE in the
DDS file.

Chapter 19. Using Database Files and Distributed Data Management Files in a Program 251

Deleted Records

When a database record is deleted, the physical record is marked as deleted but
remains in the file. Deleted records can be overwritten by using the _Rwrite()
function. Deleted records can be removed from a file by using the RGZPFM
(Reorganize Physical File Member) command. They can also be reused on write
operations by specifying the REUSEDLT (*YES) parameter on the CRTPF command.

Deleted records can occur in a file if the file has been initialized with deleted
records using the Initialize Physical File Member (INZPFM) command. Once a
record is deleted, it cannot be read.

Locking

The iSeries database has built-in record integrity. The system determines the lock
conditions that are based on how your ILE C/C++ program opens the file. This
table shows the valid open modes and the lock states that are associated with
them:

Table 15. Lock States for Open Modes

Open Mode Lock State

rorrb shared for read (*SHRRD)

a, w, ab, wb, a+, r+, w+, ab+, rb+, wh+ shared for update (*SHRUPD)

You can change the lock state for a file by using the Override Database File
(OVRDBF) command or the Allocate Object (ALCOBJ) command before you open
the file. For example, your ILE C program can use the system() function to call the
ALCOBJ command:

system("ALCOBJ OBJ((FILEA *FILE *EXCLRD))");

If a file is opened for update, the database locks any record read or positioned to
provided the _ NO_LOCK option is not specified. This means that the locked
record cannot be locked to any other open data path, whether that open data path
is opened by another program or even by the same program through another file
pointer.

Successfully reading and locking another record releases the lock on a previously
locked record. If the __NO_LOCK option is specified on any read then the lock on
the previously locked record is not released. You can also release a lock on a record
by using the _Rrlslck() function.

Sharing

If your application consists only of C and C++ modules, the preferred way to share
a file is by opening the file in one program and passing the file pointer to the other
programs. This eliminates the need to open the file more than once.

Sharing a file in the same job allows programs in that job to share the file’s status,
record position, and buffer. To allow an Open Data Path (ODP) to be shared
between two or more programs running in the same job, use the SHARE(*YES)
parameter on commands that create, change, or override files . An open data path is
the path through which all I/O operations for a file are performed.

252 ILE C/C++ Programmer’s Guide

You can share open data paths for streams processed a record at a time. You can
also share open data paths for record files. You should not share the open data
path for streams processed a character at a time, because unpredictable results can
occur when you perform I/O operations.

If you want to share a file between your C/C++ programs and programs that are
written in other languages, you can do this by sharing an open data path.

The first open of a shared file determines the open mode for the file (for example,
whether it is open for INPUT, OUTPUT, UPDATE, and DELETE). If a subsequent
open specifies an open mode that was not specified by the first open, the file will
be opened the second time but the open mode will be ignored. For example, if the
first open specifies an open mode of 10 and the second open specifies 10UD, the file
will be opened the second time with a mode of I0.

Null-Capable Fields

The ILE C compiler allows you to process files with records that may contain fields
that are considered to be null. You must specify nullcap=Y on the _Ropen()
function. If a null-capable field is set to null, any data that is written into that field
is not valid.

If a file is opened with nullcap=Y, the database provides input and output null
maps and, if the file is keyed, a key null map. The input and output null maps
consist of one byte for each field in the current record format of the file. These null
field maps are used to communicate between the database and your program to
indicate which specific fields should be considered null.

The _RFILE structure defined in the <recio.h> file contains pointers to the input,
output and key null field maps, and the lengths of these maps (null_map_len and
null_key_map_len).

When you write to a database file, you specify which fields are null with a
character "1". If a field is not null you specify the character '0’. This is specified in
the null field map pointed to by the out_null_map pointer. If the file does not
contain any null-capable fields, but has been opened with nullcap=Y, your
program must set each field in the null field map to the character ‘0’. This must be
done prior to writing any data to the file.

When you read from a database file, the corresponding byte in the null field map
is indicated with a character 1" if the field is considered null. This is specified in
the null field map pointed to by the in_null_map pointer.

The null key field map consists of one byte for each field in the key for the current
record format. If you are reading a database file by key which has null fields, you
must first indicate in the null key map pointed to by null_key_map which fields
contain null. Specify character 1" for any field to be considered null, and character
‘0" for the other fields.

When the _Rupdate() function is called to update a file which has been opened to
allow null field processing, the system input buffer is used. As a result, the
database requires that an input null field map be provided through the
in_null_map pointer. Prior to calling _Rupdate(), the user must clear and then set
the input null field map (using the in_null _map pointer) according to the data
which will be used to update the record.

Chapter 19. Using Database Files and Distributed Data Management Files in a Program 253

You can use the #pragma mapinc directive to generate typedefs that correspond to
the null field maps. You can cast the null field map pointers in the _RFILE
structures to these types to manipulate these maps. Null field macros have also
been provided in the <recio.h> file to assist users in clearing and setting the null
field maps in their programs.

Opening Database and DDM Files as Record Files

254

To open an iSeries database file as a record file, use the _Ropen() function with one
of the following modes:

* rrorrrt
® Wr or wrt

e arorart

The valid keyword parameters for database and DDM files are:
* arrseq
* blkrcd
e commit
* ccsid

e dupkey
* riofb

* secure
> varparm
e vir

* rtncode

Record Functions for Database and DDM Files

Use the following record functions to process database and DDM files:
* Rclose()

e Rcommit()

e Rdelete()

e Rfeod()

* _Rformat() (multi-format logical files)
« _Riofbk()
* Rlocate()
* _Ropen()
* _Ropnfbk()
e Rreadd()
e _Rreadf()
* Rreadk()
e Rreadl()
e Rreadn()
e Rreadp()

e Rrilsick()
e Rrollbck()
* _Rupfb()

* Rupdate()

ILE C/C++ Programmer’s Guide

* Rwrit()
* Rwrited()

/O Considerations for DDM Files

DDM files may be accessed as program-described files (specify the remote file
name on the RMTFILE parameter of the CRTDDMF command), or as externally
described files (specify the remote DDS file name on the RMTFILE parameter of
the CRTDDMF command).

Opening Database and DDM Files as Binary Stream Files

To open an iSeries database file as a binary stream file for record-at-a-time
processing, use the fopen() function with one of the following modes:

* rb
e wh
* ab

The valid keyword parameters for database and DDM files are:
* blksize

* lrecl

* type

e commit

> arrseq

e ccsid

If you specify a database or a DDM file, the parameter type must be record.

Note: The physical database files that are created when the database file does not
exist (that is, where the open mode is wb or ab) are equivalent to specifying
the following CL command:

CRTPF FILE(filename) RCDLEN(1recl)

Records in this file are created with a record length that is based on the
keyword parameter Trecl.

The only way to create a DDM file is to use the Create DDM File
(CRTDDMF) command. If you use the fopen() function with a mode of wb
or ab, and the DDM file exists on the source system but the database file
does not exist on the remote system, a physical database file is created on
the remote system. If the DDM file does not exist on the source system, a
physical database file is created on the source system.

I/O Considerations for Binary Stream Database and DDM Files

If the database file contains deleted records, the deleted records are skipped by all
binary stream I/0O functions.

Binary stream record-at-a-time files cannot be processed by key. As well, they can
only be opened with the rb, wb, and ab modes.

Binary Stream Functions for Database and DDM Files

Use one of the following binary stream functions to process database files and
DDM files one record at time:

Chapter 19. Using Database Files and Distributed Data Management Files in a Program 255

e fclose()
» fopen()
* fread()
» freopen()
o fwrite()

Processing a Database Record File in Arrival Sequence

256

You can copy data from one file to another file by using an arrival sequence access

path. The records are accessed in the file in the same order in which they are
added to the file.

Instructions

The following example copies data from the input file TI520ASI to the output file
T1520AS0 by using the same order in which they are added to the file T1520ASI.

The Rreadn() and Rwrite() functions are used.
1. To create an input file, enter:
CRTPF FILE(MYLIB/T1520ASI) RCDLEN(300)

This creates a physical file T1520ASL.
2. Type the following sample data into T1520ASI:
joe 5
fred 6
wilma 7

3. To create an output file, enter:
CRTPF FILE(MYLIB/T1520AS0) RCDLEN(300)

This creates a physical file T1520ASO.
4. To create the program, enter:
CRTBNDC PGM(MYLIB/T1520ASP) SCRFILE(QCPPLE/QACSRC)

This creates the program T1520ASP that uses the source code in

5. To run the program, enter:
CALL PGM(MYLIB/T1520ASP)

The physical file T1520ASO contains the following data:
joe 5
fred 6
wilma 7

Source Code Sample

ILE C/C++ Programmer’s Guide

/* This program illustrates how to copy records from one file to */
/* another file, using the Rreadn(), and Rwrite() functions. */

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

#define _RCDLEN 300

int main(void)
{
_RFILE *in;
"RFILE *out;
"RIOFB_T *fb;
char record[RCDLEN];

/* Open the input file for processing in arrival sequence. A 1|

if ((in = _Ropen("*LIBL/T1520ASI", "rr, arrseq=Y")) == NULL)
{
printf("Open failed for input file\n");
exit(1);
}s
/* Open the output file. */2]
| if ((out = Ropen("+LIBL/T1520AS0", "wr")) == NULL)
{
printf("Open failed for output file\n");
exit(2);
}s
/* Copy the file until the end-of-file condition occurs. */
fb = Rreadn(in, record, RCDLEN, _ DFT);
while (fb->num_bytes != EOF)
{
_Rwrite(out, record, RCDLEN); I}

fb = Rreadn(in, record, _RCDLEN, _ DFT);
}s

_Rclose(in)s
_Rclose(out);

Figure 128. T1520ASP — ILE C Source to Process a Database Record File in Arrival
Sequence

Notes:

1. This program uses the _Ropen() function to open the input file T1520ASI to
access the records in the same order that they are added.

2. The _Ropen() function also opens the output file T1520ASO.
3. The Rread() function reads the records in the file T1520ASI.
4. The Rwrite() function writes them to the file T1520ASO.

Processing a Database Record File in Keyed Sequence

You can update a record file by using a keyed sequence access path. The records
are arranged based on the contents of one or more key fields in the record.

Example:

The following example updates data in the record file T1520DD3 by using the key
field SERTALNUM. The Rupdate() function is used.

Chapter 19. Using Database Files and Distributed Data Management Files in a Program 257

258

On the command line, enter:
CRTPF FILE(MYLIB/T1520DD3) SRCFILE(QCPPLE/QADDSSRC)

To create the physical file T1520DD3 that uses the following DDS source:

R PURCHASE
ITEMNAME 10
SERTALNUM 10

K SERIALNUM

== = =

Figure 129. T1520DD3 — DDS Source for Database Records

2. Enter the following sample data into T1520DD3:

orange 1000222200
grape 1000222010
apple 1000222030
cherry 1000222020

Although you enter the data as shown, the file T1520DD3 is accessed by the
program T1520KSP in keyed sequence. Therefore the program T1520KSP reads
the file T1520DD3 in the following sequence:

grape 1000222010

cherry 1000222020

apple 1000222030

orange 1000222200

On the command line, enter:

CRTBNDC PGM(MYLIB/T1520KSP) SRCFILE(QCPPLE/QACSRC)

This creates the program T1520KSP, using the following source:

ILE C/C++ Programmer’s Guide

/*
/*

This program illustrates how to update a record in a file using
the Rupdate() function.

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)

{

/*

/*

/*

/*

/*

RFILE *in;
char new_purchase[21] = "PEAR 1002022244"

Open the file for processing in keyed sequence. File is created
with the default access path.

if ((in = _Ropen("+LIBL/T1520DD3", "rr+")) == NULL)
{
printf("Open failed\n");
exit(1);
}s
Update the first record in the keyed sequence. The function
_Rlocate Tocks the record.

_Rlocate(in, NULL, 0, _ FIRST);
_Rupdate(in, new_purchase, 20);
Force the end of data.

_Rfeod(in);

_Rclose(in);

*/
*/

*/
*/

*/
*/

Figure 130. T1520KSP — ILE C Source to Process a Database Record File in Keyed
Sequence

This program uses the _Ropen() function to open the record file T1520DD3. The
default access path which is the keyed sequence access path is used to create
the file T1520DD3. The _Rlocate() function locks the first record in the keyed
sequence. The _Rupdate() function updates the record that is locked by
_Rlocate() to PEAR 1002022244. (The first record becomes the second record in

the keyed sequence access path because the key has changed.)
To run the program T1520KSP, enter:
CALL PGM(MYLIB/T1520KSP)

because grape is the first record in the keyed sequence, it is updated, and the

data file T1520DD3 is as follows:

orange 1000222200
PEAR 1002022244
apple 1000222030
cherry 1000222020

Processing a Database Record File Using Record Input and Output

Functions

You can read and print records from a data file.

Example:

Chapter 19. Using Database Files and Distributed Data Management Files in a Program 259

The following example uses the _Ropen(), Rreadl(), Rreadp(), Rreads(),
_Rreadd(), Rreadf(), Rrlsick(), Rdelete(), Ropnfbk(), and Rclose() record
I/0 functions. The program T1520REC reads and prints records from the data file
T1520DD4.

1. On the command line, enter:
CRTPF FILE(MYLIB/T1520DD4) SRCFILE(QCPPLE/QADDSSRC)

This creates the physical file T1520DD4 that uses the following DDS:

R PURCHASE
ITEMNAME 10
SERTALNUM 10

K SERIALNUM

== = =

Figure 131. T1520DD4 — DDS Source for Database Records

2. Enter the following sample data into T1520DD4:

orange 1000222200
grape 1000222010
apple 1000222030
cherry 1000222020

3. On the command line, enter:
CRTBNDC PGM(MYLIB/T1520REC) SRCFILE(QCPPLE/QACSRC).

This creates the program T1520REC that uses the following source:

/* This program illustrates how to use the Rreadp(), _Rreads(), */
/* Rreadd(), _Rreadf(), Rreadn(),
/* Ropnfbk(), Rdelete, and Rrlslick() functions. */

#include <stdio.h>
#include <stdlib.h>
#include <recio.h>

int main(void)

{

char buf[21];
_RFILE *fp;
_XXOPFB_T =opfb;
/* Open the file for processing in arrival sequence. */

if ((fp = _Ropen ("*LIBL/T1520DD4", "rr+, arrseq=Y")) == NULL)
{
printf ("Open failed\n");
exit (1);
1
/* Get the Tibrary and file names of the file opened. */

opfb = _Ropnfbk (fp);

printf ("Library: %10.10s\nFile: %10.10s\n",
opfb->Tibrary name,
opfb->file_name);

Figure 132. T1520REC — ILE C Source to Process a Database File Using Record 1/0
Functions (Part 1 of 2)

260 ILE C/C++ Programmer’s Guide

/* Get the Tast record. */

_Rreadl (fp, NULL, 20, _ DFT);
printf ("Fourth record: %10.10s\n", *(fp->in_buf));

/* Get the third record. */

_Rreadp (fp, NULL, 20, _ DFT);
printf ("Third record: %10.10s\n", *(fp->in_buf));

/* Release lock on the record so another function can access it. */

_Rrisick (fp);
/* Read the same record. */

_Rreads (fp, NULL, 20, _ DFT);
printf ("Same record: %10.10s\n", *(fp->in_buf));

/* Get the second record without locking it. */

_Rreadd (fp, NULL, 20, _ NO_LOCK, 2);
printf ("Second record: %10.10s\n", *(fp->in_buf));

/* Get the first record. */

_Rreadf (fp, NULL, 20, _ DFT);
printf ("First record: %10.10s\n", *(fp->in_buf));

/* Delete the second record. */

_Rreadn (fp, NULL, 20, _ DFT);
_Rdelete (fp);

/* Read all records after deletion. */

_Rreadf (fp, NULL, 20, _ DFT);
printf ("First record after deletion: %10.10s\n", *(fp->in_buf));
_Rreadn (fp, NULL, 20, _ DFT);
printf ("Second record after deletion: %10.10s\n", *(fp->in_buf));
_Rreadn (fp, NULL, 20, _ DFT);
printf ("Third record after deletion: %10.10s\n", *(fp->in_buf));

_Rclose (fp)s

Figure 132. T1520REC — ILE C Source to Process a Database File Using Record 1/0
Functions (Part 2 of 2)

The _Ropen() function opens the file T1520DD4. The _Ropnfbk() function gets
the library name MYLIB and file name T1520DD4. The Rreadl() function
reads the fourth record "cherry 1000222020". The _Rreadp() function reads the
third record " apple 1000222030". The _Rrlslck() function releases the lock on
this record so that _Rreads() can read it again. The _Rreadd() function reads
the second record "grape 1000222010" without locking it. The _Rreadf ()
function reads the first record "orange 1000222200". The _Rdelete() function
deletes the second record. All records are then read and printed.

4. Run the program T1520REC. On the command line, enter:
CALL PGM(MYLIB/T1520REC)

Chapter 19. Using Database Files and Distributed Data Management Files in a Program 261

The screen output is as follows:

4 N
Library: MYLIB
File: T1520DD4
Fourth record: cherry
Third record: apple
Same record: apple
Second record: grape
First record: orange
First record after deletion: orange
Second record after deletion: apple
Third record after deletion: cherry
Press ENTER to end terminal session.

- /

The physical file T1520DD4 contains the following data:

ORANGE 1000222200
APPLE 1000222030
CHERRY 1000222020

Synchronizing Database File Changes in a Single Job

Commitment control is a means of grouping file operations as a single unit so that
you can synchronize changes to database files in a single job.

Before you can start commitment control, you must ensure that all the database
files you want processed as one unit are in a singlecommitment control
environment. All the files within this environment must be journaled to the same
journal. Use the CL commands Create Journal Receiver (CRTJRNRCV), Create
Journal (CRTJRN) and Start Journal Physical File (STRJRNPF) to prepare for the
journaling environment.

Once the journaling environment is established, you can use the following
commands:

* Start Commitment Control (STRCMTCTL)
* CALL program-name
* End Commitment Control (ENDCMTCTL)

You can use commitment control to define and process several changes to database
files as a single transaction.

Example:

The following example uses commitment control. Purchase orders are entered and
logged in two files, T1520DD5 for daily transactions, and T1520DD6é6 for monthly
transactions. Journal entries that reflect the changes that are made to T1520DD5
and T1520DD6 are kept in the journal JRN.

1. Prepare the journaling environment:
a. On the command line, enter:
CRTPF FILE(QTEMP/T1520DD5) SRCFILE(QCPPLE/QADDSSRC)

This creates the physical file T1520DD5 using the DDS source shown below:

262 ILE C/C++ Programmer’s Guide

A R PURCHASE
A ITEMNAME 30
A SERIALNUM 10

Figure 133. T1520DD5 — DDS Source for Daily Transactions

b. On the command line enter:

CRTPF FILE(QTEMP/T1520DD6) SRCFILE(QCPPLE/QADDSSRC)

This creates the physical file T1520DD6 using the DDS source shown below:

type:
A R PURCHASE
A ITEMNAME 30
A SERTALNUM 10

Figure 134. T1520DD6 — DDS Source for Monthly Transactions

c. On the command line, enter:
CRTPF FILE(MYLIB/NFTOBJ) RCDLEN(19)

This creates the physical file NFTOBJ for notification text.

Note: Notification text is sent to the file NFTOB] when the ILE C program
T1520COM that uses commitment control is run.

d. On the command line, enter:

CRTDSPF FILE(QTEMP/T1520DD7) SRCFILE(QCPPLE/QADDSSRC)

This creates the display file T1520DD7 using the DDS source shown below:

R PURCHASE

ITEMNAME R
SERIALNUM R

R ERROR

> > > > > >

10
12
I10

I12
23

10

DSPSIZ(24 80 *DS3)

REF (QTEMP/T1520DD5)

INDARA

CFO3(03 'EXIT ORDER ENTRY')

32'PURCHASE ORDER FORM'
DSPATR (UL)
DSPATR(HI)

20'ITEM NAME o
DSPATR(HI)

20'SERIAL NUMBER :'
DSPATR(HI)

37

37

34'F3 - Exit'
DSPATR(HI)

28'ERROR: Write failed'
DSPATR(BL)
DSPATR(UL)
DSPATR(HI)

26'Purchase order entry ended'

Figure 135. T1520DD7 — DDS Source for a Purchase Order Display

e. On the command line, enter:

Chapter 19. Using Database Files and Distributed Data Management Files in a Program

263

CRTJRNRCV JRNRCV(MYLIB/JRNRCV)
This creates the journal receiver JRNRCV.

Note: Journal entries are placed in JRNRCV when the application is run.
f. On the command line, enter:
CRTJRN JRN(MYLIB/JRN) JRNRCV(MYLIB/JRNRCV)

This creates the journal JRN and attaches the journal receiver JRNRCV to it.
g. On the command line, enter:

STRIRNPF FILE(QTEMP/T1520DD5 QTEMP/T1520DD6) JRN(MYLIB/JRN)
IMAGES (*BOTH)

This starts journaling the changes that are made to T1520DD5 and
T1520DD6 in the journal JRN.

h. On the command line, enter:
CRTBNDC PGM(MYLIB/T1520COM) SRCFILE(QCPPLE/QACSRC)

This creates the program T1520COM using the program source shown
below:

264 ILE C/C++ Programmer’s Guide

/* This program illustrates how to use commitment control using the
/* Rcommit() function and to rollback a transaction using the
/* _Rollbck() function.

#include <stdio.h>
#include <recio.h>
#include <stdlib.h>
#include <string.h>

#define PFO3 2

#define IND_OFF 'O’

#define IND ON '1'

int main(void)

{
char buf[40];
int rc = 1;
_SYSindara ind_area;
_RFILE *purf;
_RFILE *dailyf;
_RFILE *monthlyf;

/* Open purchase display file, daily transaction file and monthly
/* transaction file.

*/
*/
*/

*/
*/

if ((purf = Ropen ("+LIBL/T1520DD7", "ar+,indicators=y")) == NULL)

{
printf ("Display file did not open.\n");
exit (1);

}

if ((dailyf = Ropen ("+LIBL/T1520DD5", "wr,commit=y")) == NULL)

{
printf ("Daily transaction file did not open.\n");
exit (2);

}

if ((monthlyf = Ropen ("+LIBL/T1520DD6","ar,commit=y")) == NULL)

{
printf ("Monthly transaction file did not open.\n");

exit (3);
}

/* The associate separate indicator area with the purchase file.
_Rindara (purf, ind_area);

/* Select the purchase record format.
_Rformat (purf, "PURCHASE");

/* Invite the user to enter a purchase transaction.
/* The Rwrite function writes the purchase display.

_Rwrite (purf, "", 0);

_Rreadn (purf, buf, sizeof(buf), _ DFT);
/* While the user is entering transactions, update daily and
/* monthly transaction files.

*/

*/
*/

*/
*/

Figure 136. T1520COM — ILE C Source to Group File Operations Using Commitment

Control (Part 1 of 2)

Chapter 19. Using Database Files and Distributed Data Management Files in a Program

265

while (rc && ind_area[PF03] == IND_OFF)
{

rc = ((_Rwrite (dailyf, buf, sizeof(buf)))->num_bytes);
rc = rc & (_Rwrite (monthlyf, buf, sizeof(buf)))->num bytes;

/* If the databases were updated, then commit transaction. */
/* Otherwise, rollback the transaction and indicate to the */
/* user that an error has occurred and end the application. */
if (rc)
{

_Rcommit ("Transaction complete");
}
else
{

_Rrollbck ()3

_Rformat (purf, "ERROR");
1

_Rwrite (purf, "", 0);
_Rreadn (purf, buf, sizeof(buf), _ DFT);
}
1

Figure 136. T1520COM — ILE C Source to Group File Operations Using Commitment
Control (Part 2 of 2)

The _Ropen() function opens the purchase display file, the daily transaction
file, and the monthly transaction file. The _Rindara() function identifies a
separate indicator area for the purchase file. The _Rformat () function selects
the purchase record format defined in T1520DD7. The _Rwrite() function
writes the purchase order display. Data that is entered updates the daily
and monthly transaction files T1520DD5 and T1520DD6. The transactions
are committed to these database files that use the Rcommit() function.

2. Run program T1520COM under commitment control. On the command line,
enter:

STRCMTCTL LCKLVL(*CHG) NFYOBJ(MYLIB/NFTOBJ (*FILE)) CMTSCOPE(*JOB)
CALL PGM(MYLIB/T1520C0M)

The display appears as follows:
e

PURCHASE ORDER FORM

ITEM NAME

SERIAL NUMBER :

F3 - Exit

266 ILE C/C++ Programmer’s Guide

3. Fill out the online Purchase Order Form, using the following sample data:

TABLE 12345
BENCH 43623
CHAIR 62513

After an item and serial number are entered, T1520DD5 and T1520DD6 files are
updated. The daily transaction file T1520DD5 file contains the sample data after
all three purchase order items are entered.

4. End commitment control. On the command line, enter:
ENDCMTCTL

The journal JRN contains entries that correspond to changes that are made to
T1520DD5 and T1520DDeé.

Blocking Records

You can use record blocking to improve the performance of 1/O operations on files
that are opened for input or output only. Specify the bTksize=value parameter on a
call to the fopen() function or the blkrcd=y on a call to the Ropen() function to
turn on record blocking. In some situations, the operating system will return only
one record in the block when processing a file. In these cases there is no
performance gain.

You can turn off record blocking without changing your program by specifying
SEQONLY (*YES) on the OVRDBF command.

Note: When record blocking is in effect, the I/O feedback structure is updated

only when a block of records is transferred between your program and the
system.

Chapter 19. Using Database Files and Distributed Data Management Files in a Program 267

268 ILE C/C++ Programmer’s Guide

Chapter 20. Using Device Files in a Program

This chapter describes how to:
e |Use OS/400 feedback areas for all device files]
+ |Use indicators to transfer information between a program and the system|

+ [Establish a default program device|

* |Change a default program device.|

¢ |Obtain feedback information.

+ |Use display files and subfiles.|

+ |Use Intersystem Communication Files.|

* |Use printer files.

+ |Write source statements to a tape file.|

* [Write source statements to a diskette file)

.
Using OS/400 Feedback Areas for all Device Files

To access the device attributes feedback area, use the Rdevatr() function. To use
stream files (type=record) with record I/O functions, you must cast the FILE
pointer to an _RFILE pointer.

Using Indicators to Transfer Information

Indicators allow information to be passed from a program to the system or from the
system to a program. Display, ICF, and printer files can make use of indicators.
Indicators are boolean data items that can contain a character value of either 1 or 0.

This section describes:

* [Types of indicators|

* |Separate indicator areas|

* [Major and minor return codes|

* |Returning indicators to the file buffer|

For records that are either read or written by a program, you can specify
indicators:

* |As part of the file buffer]
* |In a separate indicator area|

Types of Indicators

There are two types of indicators:

Option indicators pass information from a program to the system. For example, they
can control which fields in a record can be displayed.

Response indicators pass information from the system to an application when an

input request finishes. For example, they can be used to inform the program which
function keys were pressed by the workstation user.

© Copyright IBM Corp. 1993, 2004 269

270

To use indicators, the display, ICF, and printer files must be defined as an
externally described file. The data description specification (DDS) for the externally
described display file must contain a one-character INDICATOR field for each
indicator. Indicators are either in the records read or written by the program (the
indicators are in the file buffer) or in a separate indicator area.

Separate Indicator Areas

An indicator area is a 99-element character array with indices from 0-98.

If you specify the INDARA keyword (indicators=y) in the DDS, the indicators for
the display, ICF, and printer files are returned in a separate indicator area. Use the

_Rindara() function to identify the separate indicator buffer associated with the
file.

If you do not specify the INDARA keyword in the DDS, the indicators for the
display, ICE, or printer file will be specified in the record buffer. The number and
order of the indicators that are defined in the DDS determine the number and
order of the indicators in the record buffer. Indicators are always positioned first in
the record buffer. The in_buf and out_buf pointers in the _RFILE structure point to
the input and output record buffers for a file.

Major and Minor Return Codes

Major and minor return codes are used to report certain status information for
display, ICFE, and printer files. If the major return code is 00, the operation
completed successfully. If an error occurs with a display, ICF, or printer file your
program should handle it as it occurs.

After a read (_Rreadindv() or _Rreadn()) or write (_Rwrite()) operation, the
sysparm field in the _RIOFB_T structure points to the major/minor return code for
the display, ICF or printer files. The header file <recio.h> declares the _RIOFB_T
structure.

Your program should test the return code after each I/O operation and define any
error handling operations that are based on the major/minor return code.

The Application Display Programming manual describes major and minor return
codes and their meanings for display files. The Printer Device Programming manual
describes major and minor return codes and their meanings for printer files.

Example: Returning Indicators to a Separate Indicator Area

You can specify indicators in records to be read or written by a program in a
separate indicator area using the INDARA keyword in DDS.

The following example illustrates how indicators are returned in a separate
indicator area. The INDARA keyword that is specified in the DDS means that the
indicator for the display is returned to a separate indicator area.

Instructions
1. To create the display file T1520DDO0 using the DDS source shown below, enter:
CRTDSPF FILE(MYLIB/T1520DD0) SRCFILE(QCPPLE/QADDSSRC)

[Figure 137 on page 271|shows the DDS source.

2. To create the program T1520ID2, using the source shown in [Figure 138 on pagel

enter:

ILE C/C++ Programmer’s Guide

CRTBNDC PGM(MYLIB/T15201D2) SRCFILE(QCPPLE/QACSRC)
3. To run the program T1520ID2, enter:
CALL PGM(MYLIB/T15201D2)

The output is as follows:

4 N
PHONE BOOK
Name:
Address:
Phone #:
F3 - EXIT
o %

Source Code Samples

INDARA
R PHONE
CFO3(03 'EXIT')
1 35'PHONE BOOK'
DSPATR(HI)
28'Name: '
34
25'Address:'
ADDRESS 200 I 9 34
11 25'Phone #:'
PHONE_NUM 8A I 11 34
23 34'F3 - EXIT'
DSPATR(HI)

NAME 11A 1

> > > > > > > > > > >
O N

Figure 137. T1520DD0 — DDS Source for a Phone Book Display

Chapter 20. Using Device Files in a Program 271

272

/* This program uses response indicators to inform the program that =/

/* F3 was pressed by a user to indicate that an input request */
/* finished. The response indicators are returned in a separate */
/* indicator area. */

#include <stdio.h>

#include <recio.h>

#include <stdlib.