
iSeries

Integrated File System

Version 5 Release 3

ERserver

���

iSeries

Integrated File System

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 117.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of IBM Operating System/400 (product number 5722–SS1)

and to all subsequent releases and modifications until otherwise indicated in new editions. This version does not

run on all reduced instruction set computer (RISC) models nor does it run on CICS® models.

© Copyright International Business Machines Corporation 1999, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

|
|
|

Contents

Integrated file system 1

Code disclaimer information 1

What’s new for V5R3 2

Print this topic 3

Overview of the integrated file system 3

What the integrated file system is 3

Why use the integrated file system 4

Concepts 5

Directory 5

Link 11

Path name 15

Stream file 16

Name continuity 17

Extended attributes 17

Scanning support 18

Work with file systems 23

File system comparison 24

“root” (/) file system 28

Open systems file system (QOpenSys) 30

User-defined file system (UDFS) 31

Library file system (QSYS.LIB) 36

Independent ASP QSYS.LIB 38

Document library services file system (QDLS) . . 41

Optical File System (QOPT) 43

NetWare file system (QNetWare) 45

iSeries NetClient file system (QNTC) 48

OS/400 File Server file system (QFileSvr.400) . . 51

Network file system (NFS) 54

Access the integrated file system 56

Access using menus and displays 57

Access using CL commands 58

Access using APIs 74

Access using iSeries Navigator 74

Access using iSeries NetServer 75

Access using file transfer programs 76

Access using a PC 76

Convert directories from *TYPE1 to *TYPE2 . . . 77

Overview of *TYPE1 to *TYPE2 conversion . . . 77

Tips: Conversions 78

Journaling objects 81

Journaling overview 81

Start journaling 85

Change journaling 86

End journaling 86

Programming support 86

Copy data between stream files and database

files 86

Copy data between stream files and save files . . 90

Perform operations using APIs 90

Socket support 98

Naming and international support 99

Data conversion 99

Example: Integrated file system C functions . . 100

Work with files and folders using iSeries Navigator 105

Check in a file 105

Check out a file 106

Create a folder 106

Remove a folder 106

Move files or folders to another file system . . 106

Set permissions 107

Set up file text conversion 108

Send a file or folder to another system 108

Change options for a package definition . . . 108

Schedule a date and time to send your file or

folder 109

Create a file share 109

Change a file share 109

Set whether objects should be scanned or not 109

Related information for integrated file system . . 110

Transport Independent Remote Procedure Call 110

References 115

Experience Reports 116

Appendix. Notices 117

Programming Interface Information 119

Trademarks 119

Terms and conditions for downloading and

printing publications 119

© Copyright IBM Corp. 1999, 2005 iii

||

||

 | |

 | |

 | |

iv iSeries: Integrated File System

Integrated file system

The integrated file system is a part of OS/400® that lets you support stream input/output and storage

management similar to personal computer and UNIX® operating systems, while providing you with an

integrating structure over all information stored in the server.

See the following topics for detailed information about the integrated file system on OS/400.

What’s new for V5R3
Find out how this topic has changed since the last release.

Printable PDF
Learn how to display or print a PDF version of this topic.

Overview of the integrated file system
Find out the basics of the integrated file system.

Concepts
Look here for information on the different concepts regarding the integrated file system.

Work with file systems
Learn how to manage the different file systems that exist in OS/400.

Access the integrated file system
Learn the different options to access the integrated file system. They include: using menus and

displays, CL commands, APIs, iSeries™ NetServer, iSeries Navigator, and file transfer programs.

Convert Directories from *TYPE1 to *TYPE2
Learn how the system will automatically convert from *TYPE1 to *TYPE2 directories.

Journaling objects
Find out how to start, end and change journaling for integrated file system objects.

Programming support
Find out how to copy data, use APIs, and perform other support functions.

Work with files and folders using iSeries Navigator
Look here for accomplishing tasks with files and folders, such as checking in and out a file and

creating and removing a folder.

Related information for integrated file system
Find information in the iSeries Information Center and on the Internet that offers additional topics

about the integrated file system.

Note: Read the “Code disclaimer information” for important legal information.

Code disclaimer information

This document contains programming examples.

IBM® grants you a nonexclusive copyright license to use all programming code examples from which you

can generate similar function tailored to your own specific needs.

© Copyright IBM Corp. 1999, 2005 1

|
|

All sample code is provided by IBM for illustrative purposes only. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,

or function of these programs.

All programs contained herein are provided to you ″AS IS″ without any warranties of any kind. The

implied warranties of non-infringement, merchantability and fitness for a particular purpose are expressly

disclaimed.

What’s new for V5R3

The following information was added or updated in this release of the information:

Integrated file system APIs

The integrated file system has added function and support for the following APIs:

v Clear a file (fclear())

v Clear a file (large file enabled) (fclear64())

v Change Scan Signature (QP0LCHSG)

v Retrieve Referenced Objects (QP0LRRO)

v Retrieve Scan Signature (QP0LRTSG)

Integrated file system CL commands

For V5R3, the integrated file system has added function and support for the following CL commands:

v Change Journaled Object (CHGJRNOBJ) command

v Print Directory Information (PRTDIRINF) command

v Retrieve Directory Information (RTVDIRINF) command

For information on the output of the PRTDIRINF and RTVDIRINF commands, see “Work with output of

the RTVDIRINF and PRTDIRINF commands” on page 63.

Two device drivers

The ″root″ (/) file system under the directory of /dev/xti will now hold two device drivers named udp

and tcp. The following topic discusses the device drivers:

v “UDP and TCP devices in the ″root″ (/) file system” on page 29

Kerberos configuration for QNTC file system

In prior releases, QNTC used a password to authenticate itself with remote servers. To simplify password

administration, QNTC will begin using a kerberos server ticket to authenticate with remote servers.

“Enabling Kerberos for use with the QNTC file system” on page 50 has more information on how to

configure kerberos for use with the QNTC file system.

Automatic conversion to *TYPE2 directories

Shortly after V5R3 is installed, the system will automatically begin converting any file systems which

currently support *TYPE1 directories to *TYPE2 directories. See “Convert directories from *TYPE1 to

*TYPE2” on page 77 for more information.

Scanning support

iSeries now possesses the optional ability to allow integrated file system objects to be scanned. The scans

can occur during open and close operations on the objects. The objects can be scanned for many different

2 iSeries: Integrated File System

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|
|
|
|

|

|
|
|

|

|
|

reasons, such as scanning for viruses. You can also choose when the scans occur based on your different

needs. The following topic provides additional information on scanning support and what is required to

activate it:

v “Scanning support” on page 18

Print this topic

To view or download the PDF version of this document, see Integrated file system

(about 1,455 KB).

Saving PDF files

To save a PDF on your workstation for viewing or printing:

1. Right-click the PDF in your browser (right-click the link above).

2. Click Save Target As... if you are using Internet Explorer. Click Save Link As... if you are using

Netscape Communicator.

3. Navigate to the directory in which you would like to save the PDF.

4. Click Save.

Downloading Adobe Acrobat Reader

You need Adobe Acrobat Reader to view or print these PDFs. You can download a copy from the Adobe

Web site (www.adobe.com/products/acrobat/readstep.html).

Overview of the integrated file system

The following topics describe the integrated file system on your iSeries server and show how it can be of

use on your server.

v “What the integrated file system is”

v “Why use the integrated file system” on page 4

What the integrated file system is

The integrated file system is a part of OS/400 that supports stream input/output and storage

management similar to personal computer and UNIX operating systems, while providing an integrating

structure over all information stored in your server.

The integrated file system is comprised of 11 file systems, each with their own set of logical structures

and rules for interacting with information in storage. See Work with file systems for more information.

The key features of the integrated file system are the following:

v Support for storing information in stream files that can contain long continuous strings of data. These

strings of data might be, for example, the text of a document or the picture elements in a picture. The

stream file support is designed for efficient use in client/server applications.

v A hierarchical directory structure that allows objects to be organized like fruit on the branches of a tree.

Specifying the path through the directories to an object accesses the object.

v A common interface that allows users and applications to access not only the stream files but also

database files, documents, and other objects that are stored in your server.

v A common view of stream files that are stored locally on your server, Integrated xSeries Server for

iSeries, or a remote Windows NT® server. Stream files can also be stored remotely on a Local Area

Network (LAN) server, a Novell NetWare server, another remote iSeries server, or a Network File

System server.

Integrated file system 3

|
|
|

|

rzaax.pdf
http://www.adobe.com/products/acrobat/readstep.html
http://www.adobe.com/products/acrobat/readstep.html

Why use the integrated file system

The integrated file system enhances the already extensive data management capabilities of OS/400 with

additional capabilities to better support emerging and future forms of information processing, such as

client/server, open systems, and multimedia.

You can use the integrated file system to:

v Provide fast access to OS/400 data, especially for applications such as Client Access that use the

OS/400 file server.

v Allow more efficient handling of types of stream data, such as images, audio, and video.

v Provide a file system base and a directory base for supporting UNIX-based open system standards,

such as Portable Operating System Interface for Computer Environments (POSIX) and XPG. This file

structure and this directory structure also provides a familiar environment for users of PC operating

systems such as Disk Operating System (DOS), and Windows® operating systems.

v Allow file support with unique capabilities (such as record-oriented database files, UNIX-based stream

files, and file serving) to be handled as separate file systems, while allowing them all to be managed

through a common interface.

Figure 1. A structure over all information stored in the iSeries server

4 iSeries: Integrated File System

v Allow PC users to take better advantage of their graphical user interface. For example, Windows users

can use the Windows graphical tools to operate on iSeries server stream files and other objects in the

same way they operate on files stored on their PCs.

v Provide continuity of object names and associated object information across national languages. For

example, this ensures that individual characters remain the same when switching from the code page

of one language to the code page of another language.

Concepts

This section discusses concepts of the integrated file system. See any of the topics from the following list

to find out how the integrated file system works on your server.

v “Directory”

v “Link” on page 11

v “Path name” on page 15

v “Stream file” on page 16

v “Name continuity” on page 17

v “Extended attributes” on page 17

v “Scanning support” on page 18

Directory

A directory is a special object that is used to locate objects by names that you specify. Each directory

contains a list of objects that are attached to it. That list may include other directories.

Figure 2. A common interface to separate file systems

Integrated file system 5

|

The integrated file system provides a hierarchical directory structure that allows you to access all objects

in your server. You might think of this directory structure as an inverse tree where the root is at the top

and the branches below. The branches represent directories in the directory hierarchy. These directory

branches have subordinate branches that are called sub-directories. Attached to the various directory and

sub-directory branches are objects such as files. Locating an object requires specifying a path through the

directories to the sub-directory to which the object is attached. Objects that are attached to a particular

directory are sometimes described as being “in” that directory.

A particular directory branch, along with all of its subordinate branches (sub-directories) and all of the

objects that are attached to those branches, is referred to as a sub-tree. Each file system is a major

sub-tree in the integrated file system directory structure. In the QSYS.LIB and Independent ASP QSYS.LIB

file systems’ sub-trees, a library is handled the same way as a sub-directory. Objects in a library are

handled like objects in a sub-directory. Because database files contain objects (database file members),

they are handled like sub-directories rather than objects. In the document library services file system

(QDLS sub-tree), folders are handled like sub-directories and documents in folders are handled like

objects in a sub-directory.

Because of differences in file systems, the operations you can perform in one sub-tree of the directory

hierarchy may not work in another sub-tree.

The integrated file system directory support is similar to the directory support that is provided by the

DOS file system. In addition, it provides features typical of UNIX systems, such as the ability to store a

file only once but access it through multiple paths by using links.

Refer to the following topics for more information about integrated file system directories:

v “Current directory” on page 8

v “Home Directory” on page 8

v “Provided directories” on page 8

v “*TYPE2 directories” on page 10

6 iSeries: Integrated File System

Figure 3. File systems and objects are branches on the integrated file system directory tree

Integrated file system 7

Current directory

Your current directory is the first directory in which the operating system looks for your programs and

files and stores your temporary files and output. When you request an operation on an object, such as a

file, the system searches for the object in your current directory unless you specify a different directory

path. The current directory is similar to the idea of the current library. It is also called the current

working directory, or just working directory.

Home Directory

The home directory is used as the current directory when you sign on the system. The name of the home

directory is specified in your user profile. When your job is started, the system looks in your user profile

for the name of your home directory. If a directory by that name does not exist on the system, the home

directory is changed to the “root” (/) directory.

Typically, the system administrator who creates the user profile for a user would also create the user’s

home directory. Creating individual home directories for each user under the /home directory is

recommended. The /home directory is a sub-directory under the “root” (/) directory. The system default

expects the name of the home directory of a user to be the same name as the user profile.

For example, the command CRTUSRPRF USRPRF(John) HOMEDIR(*USRPRF) will assign the home directory for

John to /home/JOHN. If the directory /home/JOHN does not exist, the ″root″ (/) directory becomes the home

directory for John.

You can specify a directory other than the home directory as your current directory at any time after you

sign on by using the Change Current Directory (CHGCURDIR) CL command, the chdir() API, or the

fchdir() API.

The home directory chosen during process initiation will remain each thread’s home directory by default.

This is regardless of whether your active user profile for the thread has changed after initiation. However,

there is support provided by the Change Job (QWTCHGJB) API that can be used to change the home

directory being used for a thread to that thread’s current user profile’s home directory (or the ″root″ (/)

directory if that home directory does not exist). Secondary threads will always inherit the home directory

of the thread that created it. Note that the process’ current directory does not change when you use

QWTCHGJB to change the thread’s home directory. The current directory is scoped to the process level,

and the home directory is scoped to the thread level. Changing the current working directory in any

thread changes it for the whole process. Changing the home directory for a thread does not change its

current working directory.

See the Application programming interfaces (APIs) topic for details on the QWTCHGJB API.

Provided directories

The integrated file system creates the following directories when the system is restarted if they do not

already exist:

/tmp The /tmp directory gives applications a place to store temporary files. This directory is a

sub-directory of the “root” (/) directory, so its path name is /tmp.

 Once an application puts a file in the /tmp directory, the file stays there until you or the

application removes it. The system does not automatically remove files from /tmp or perform any

other special processing for files in /tmp.

 You can use the user displays and commands that support the integrated file system to manage

the /tmp directory and its files. For example, you can use the Work with Object Links display or

the WRKLNK command to copy, remove, or rename the /tmp directory or files in the directory.

All users are given *ALL authority to the directory, which means that they can perform most

valid actions on the directory.

8 iSeries: Integrated File System

An application can use the application program interfaces (API) that support the integrated file

system to manage /tmp and its files (see “Access using APIs” on page 74). For example, the

application program can remove a file in /tmp by using the unlink() API.

 If /tmp is removed, it is automatically created again during the next restart of the system.

 The /tmp directory is now shipped with the ″restrict rename and unlink″ attribute turned on. The

Change Attribute command, CHGATR, can be used to change this attribute. Users are allowed to

turn this attribute off, but it is automatically turned back on during the next restart of the system.

When this attribute is on, the /tmp possesses the following restriction:

v Renames and unlinks are restricted for objects within this directory. Objects can be linked into

this directory, but cannot be renamed or unlinked from it unless one or more of the following

are true for the user performing the operation:

1. The user is the owner of the object

2. The user is the owner of the directory

3. The user has *ALLOBJ special authority

/home System administrators use the /home directory to store a separate directory for every user. The

system administrator often sets the home directory that is associated with the user profile to be

the user’s directory in /home, for example/home/john. See “Home Directory” on page 8 for more

information.

/etc The /etc directory stores administrative, configuration, and other system files.

/usr The /usr directory includes subdirectories that contain information that is used by the system.

Files in /usr typically do not change often.

/usr/bin

The /usr/bin directory contains the standard utility programs.

/QIBM

The /QIBM directory is the system directory and is provided with the system.

/QIBM/ProdData

The /QIBM/ProdData directory is a system directory used for Licensed program data.

/QIBM/UserData

The /QIBM/UserData directory is a system directory used for Licensed Program user data such as

configuration files.

/QOpenSys/QIBM

The /QOpenSys/QIBM directory is the system directory for the QOpenSys file system.

/QOpenSys/QIBM/ProdData

The /QOpenSys/QIBM/ProdData directory is the system directory for the QOpenSys file system and

is used for Licensed program data.

/QOpenSys/QIBM/UserData

The /QOpenSys/QIBM/UserData directory is the system directory for the QOpenSys file system and

is used for Licensed Program user data such as configuration files.

/asp_name/QIBM

The /asp_name/QIBM directory is the system directory for any independent ASPs that exist on your

system, where asp_name is the name of the independent ASP.

/asp_name/QIBM/UserData

The /asp_name/QIBM/UserData directory is a system directory used for Licensed Program user

data such as configuration files for any independent ASPs that exist on your system, where

asp_name is the name of the independent ASP.

/dev The /dev directory contains various system files and directories.

Integrated file system 9

|
|
|
|

|
|
|

|

|

|

||

/dev/xti

The /dev/xti directory contains the UDP and TCP device drivers. See “UDP and TCP devices in

the ″root″ (/) file system” on page 29 for more information.

*TYPE2 directories

The ″root″ (/), QOpenSys, and user-defined file systems (UDFS) in the integrated file system support the

*TYPE2 directory format. The *TYPE2 directory format is an enhancement of the original *TYPE1

directory format. *TYPE2 directories have a different internal structure and different implementation than

*TYPE1 directories.

The advantages of *TYPE2 directories are:

v Improved performance

v Improved reliability

v Added functionality

v Less auxiliary storage space (in many cases).

*TYPE2 directories improve file system performance over *TYPE1 directories, especially when creating

and deleting directories.

*TYPE2 directories are more reliable than *TYPE1 directories. After a system abnormally ends, *TYPE2

directories are completely recovered unless there has been an auxiliary storage failure. *TYPE1 directories

may require the use of the Reclaim Storage (RCLSTG) command in order to recover completely.

*TYPE2 directories provide the following added functionality:

1. *TYPE2 directories support renaming the case of a name in a monocase file system (for example,

renaming from A to a).

2. An object in a *TYPE2 directory can have up to one million links compared to 32,767 links for *TYPE1

directories. This means you can have up to 1 million hard links to a stream file, and a *TYPE2

directory can contain up to 999,998 sub-directories.

3. Using iSeries Navigator, the list of entries are automatically sorted in binary order when you open a

directory that has the *TYPE2 format.

4. Some new functions such as integrated file system scanning support are only available for objects in

*TYPE2 directories.

Typically, *TYPE2 directories that have less than 350 objects require less auxiliary storage than *TYPE1

directories with the same number of objects. *TYPE2 directories with more than 350 objects are ten

percent larger (on average) than *TYPE1 directories.

There are several ways to get *TYPE2 directories on your system:

v New iSeries servers that are preinstalled with OS/400 V5R2 or later have *TYPE2 directories. No

conversion is needed for ″root″ (/), QOpenSys, and UDFSs in ASPs 1-32.

v A scratch install of OS/400 V5R2 or later on an iSeries server has *TYPE2 directories. No conversion is

needed for ″root″ (/), QOpenSys, and UDFSs in ASPs 1-32.

v The V5R1 or V5R2 conversion utility was used to convert the file systems.

v If the UDFSs in an independent auxiliary storage pool (ASP) have not yet been converted to the

*TYPE2 format, they will be converted the first time the independent ASP is varied on to a system

installed with OS/400 V5R2 or later.

v All other supported file systems except UDFSs on independent ASPs that are still using *TYPE1

directories will be converted automatically by the system. This conversion will begin after the

installation of V5R3 and should not significantly impact your system activity. See “Convert directories

from *TYPE1 to *TYPE2” on page 77 for additional information.

10 iSeries: Integrated File System

|
|
|

|
|
|

|
|

|
|

|
|

|

|
|
|

|
|
|
|

To determine the directory format for the file systems on your server, use the Convert Directory

(CVTDIR) command:

CVTDIR OPTION(*CHECK)

Note: *TYPE2 directories are supported on OS/400 V5R1 or later, but there are some differences from

normal *TYPE2 directory support. For more information, see Using *TYPE2 directories in OS/400

V5R1 or V5R2.

For more information about *TYPE2 directories, refer to “Convert directories from *TYPE1 to *TYPE2” on

page 77.

Using *TYPE2 directories in OS/400 V5R1 or V5R2: The ″root″ (/), QOpenSys, and user-defined file

systems (UDFS) in the integrated file system support the *TYPE2 directory format in OS/400 V5R1, V5R2,

and later. The *TYPE2 directory format is an enhancement of the original *TYPE1 directory format.

*TYPE2 directories have a different internal structure from *TYPE1 directories and provide improved

performance and reliability.

If you have V5R1 or V5R2, you can convert your directories to the *TYPE2 directory format using the

appropriate conversion utility. Shortly after V5R3 is installed, the conversion to *TYPE2 directories will

automatically begin for any of the file systems which have not yet been converted to support *TYPE2

directories. Therefore, you may want to consider converting to the *TYPE2 directory format before

installing V5R3 to avoid this automatic conversion. For more information, refer to “Convert directories

from *TYPE1 to *TYPE2” on page 77.

The support for *TYPE2 directories in V5R2 is available in the V5R2 iSeries Information Center through

the Convert Directory (CVTDIR) command.

The support for *TYPE2 directories in V5R1 is available through fixes (PTFs). The conversion utility is

slightly different from the V5R2 version. Refer to the informational APAR II13161 for complete

documentation on *TYPE2 directories in V5R1. Use one of the following methods to access the APAR:

1. Download the informational APAR to your iSeries server and view it. Use the following commands:

SNDPTFORD PTFID((II13161))

DSPPTFCVR LICPGM(INFOAS4) SELECT(II13161)

2. Go to http://www.ibm.com/eserver/iseries/support/supporthome.nsf/document/10000045

Web site to view the informational APAR online. See Problem Solving —> Technical Databases —>

Authorized Program Analysis Reports (APARs) —> V5R1 APARs —> APAR number II13161.

Link

A link is a named connection between a directory and an object. A user or a program can tell the server

where to find an object by specifying the name of a link to the object. A link can be used as a path name

or as part of a path name.

For users of directory-based file systems, it is convenient to think of an object, such as a file, as

something that has a name that identifies it to the server. In fact, it is the directory path to the object that

identifies it. You can sometimes access an object by giving just the object’s “name”. You can do this only

because the system is designed to assume the directory part of the path under certain conditions. The

idea of a link takes advantage of the reality that it is the directory path that identifies the object. The

name is given to the link rather than the object.

Once you get used to the idea that the link has the name rather than the object, you begin to see

possibilities that were hidden before. There can be multiple links to the same object. For example, two

users can share a file by having a link from each user’s home directory to the file (see “Home Directory”

on page 8). Certain types of links can cross file systems, and can exist without an object existing.

Integrated file system 11

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

http://www.ibm.com/eserver/iseries/support/supporthome.nsf/document/10000045

There are two types of links: “Hard link” and “Symbolic link” on page 13. When using path names in

programs, you have a choice of using a hard link or a symbolic link. Each type of link has advantages

and disadvantages. The conditions under which one type of link has an advantage over the other type is

as follows:

 Table 1. Comparison of Hard Link and Symbolic Link

Item Hard Link Symbolic Link

Name resolution Faster. A hard link contains a direct

reference to the object.

Slower. A symbolic link contains a

path name to the object, which must

be resolved to find the object.

Object existence Required. An object must exist in

order to create a hard link to it.

Optional. A symbolic link can be

created when the object it refers to

does not exist.

Object deletion Restricted. All hard links to an object

must be unlinked (removed) to delete

the object.

Unrestricted. An object can be

deleted even if there are symbolic

links referring to it.

Static objects (attributes do not

change)

Faster. For a static object, name

resolution is the primary performance

concern. Name resolution is faster

when hard links are used.

Slower. Name resolution is slower

when symbolic links are used.

Scope Restricted. Hard links cannot cross

file systems.

Unrestricted. Symbolic links can

cross file systems.

Refer to the following topics for more information about links:

v Hard link

v Symbolic link

Hard link

A hard link, which is sometimes called just a link, cannot exist unless it is linked to an actual object.

When an object is created in a directory (for example, by copying a file into a directory), the first hard

link is established between the directory and the object. Users and application programs can add other

hard links. Each hard link is indicated by a separate directory entry in the directory. Links from the same

directory cannot have the same name, but links from different directories can have the same name.

If supported by the file system, there can be multiple hard links to an object, either from the same

directory or from different directories. The one exception is where the object is another directory. There

can be only one hard link from a directory to another directory.

12 iSeries: Integrated File System

Hard links can be removed without affecting the existence of an object as long as there is at least one

remaining hard link to the object. When the last hard link is removed, the object is removed from the

server, unless an application has the object open. Each application that has the object open can continue

to use it until that application closes the object. When the object is closed by the last application using it,

the object is removed from the server. An object cannot be opened after the last hard link is removed.

The concept of a hard link can also be applied to the QSYS.LIB or Independent ASP QSYS.LIB file

systems and the document library services (QDLS) file system, but with a restriction. A library, in effect,

has one hard link to each object in the library. Similarly, a folder has one hard link to each document in

the folder. Multiple hard links to the same object are not allowed in QSYS.LIB, Independent ASP

QSYS.LIB, or in QDLS, however.

A hard link cannot cross file systems. For example, a directory in the QOpenSys file system cannot have a

hard link to an object in the QSYS.LIB or Independent ASP QSYS.LIB file systems or to a document in the

QDLS file system.

Symbolic link

A symbolic link, which is also called a soft link, is a path name contained in a file. When the system

encounters a symbolic link, it follows the path name provided by the symbolic link and then continues

on any remaining path that follows the symbolic link. If the path name begins with a /, the system

returns to the / (“root”) directory and begins following the path from that point. If the path name does

not begin with a /, the system returns to the immediately preceding directory and follows the path name

in the symbolic link beginning at that directory.

Figure 4. A directory entry defines each hard link.

Integrated file system 13

Consider the following example of how a symbolic link might be used:

 You select a menu option to show the status of customer accounts. The program displaying the menu

uses the following path name:

 /Customer/Status/Summary

The system follows the Customer link, which leads to a directory �1�, and then follows the Status link.

The Status link is a symbolic link, which contains a path name �2�. Because the path name begins with a

/, the system returns to the / (“root”) directory and follows the links Records and Accounts in sequence.

This path leads to another directory �3�. Now the system completes the path in the path name provided

by the program. It follows the Summary link, which leads to a file �4� containing the data you will need.

Unlike a hard link, a symbolic link is an object (of object type *SYMLNK); it can exist without pointing to

an object that exists. You can use a symbolic link, for example, to provide a path to a file that will be

added or replaced later.

Also unlike a hard link, a symbolic link can cross file systems. For example, if you are working in one file

system, you can use a symbolic link to access a file in another file system. Although the QSYS.LIB,

Independent ASP QSYS.LIB, and QDLS file systems do not support creating and storing symbolic links,

you can create a symbolic link in the ″root″ (/) or QOpenSys file system that allows you to:

v Access a database file member in the QSYS.LIB or Independent ASP QSYS.LIB file systems.

v Access a document in the QDLS file system.

See also Table 1 on page 12.

Figure 5. An example of using a symbolic link

14 iSeries: Integrated File System

Path name

A path name (also called a pathname on some systems) tells the server how to locate an object. The path

name is expressed as a sequence of directory names followed by the name of the object. Individual

directories and the object name are separated by a slash (/) character; for example:

 directory1/directory2/file

For your convenience, the back slash (\) can be used instead of the slash in integrated file system

commands.

There are two ways of indicating a path name:

v An absolute path name begins at the highest level, or “root” directory (which is identified by the /

character). For example, consider the following path from the / directory to the file named Smith.

The absolute path name to the Smith file is as follows:

 /Dept2/Photo/Smith

The absolute path name is also known as the full path name.

v If the path name does not begin with the / character, the system assumes that the path begins at your

current directory. This type of path name is called a relative path name. For example, if your current

directory is Dept2 and it has a sub-directory named Photo containing the file Smith, the relative path

name to the file is:

 Photo/Smith

Notice that the path name does not include the name of the current directory. The first item in the

name is the directory or object at the next level below the current directory.

Figure 6. The components of a path name

Integrated file system 15

Stream file

A stream file is a randomly accessible sequence of bytes, with no further structure imposed by the

system. The integrated file system provides support for storing and operating on information in the form

of stream files. Documents that are stored in your server’s folders are stream files. Other examples of

stream files are PC files and the files in UNIX systems. An integrated file system stream file is a system

object that has an object type of *STMF.

To better understand stream files, it is useful to compare them with iSeries database files. A database file

is record-oriented; it has predefined subdivisions that consist of one or more fields that have specific

characteristics, such as length and data type.

Stream files and record-oriented files are structured differently, and this difference in structure affects how

the files are used. The structure affects how an application is written to interact with the files and where

each type of file is best used in an application. A record-oriented file, for example, is well suited for

storing customer statistics such as name, address, and account balance. A record-oriented file allows these

predefined fields to be individually accessed and manipulated, using the extensive programming facilities

of your server. But a stream file is better suited for storing information such as a customer’s picture,

which is composed of a continuous string of bits representing variations in color. Stream files are

particularly well suited for storing strings of data such as the text of a document, images, audio, and

video.

A file has one of two format options: *TYPE1 stream file or *TYPE2 stream file. The file format depends

on the release the file was created on, or if a file was created in a user-defined file system, the value that

was specified for that file system.

For more information about stream files in the integrated file system, see:

v “Copy data between stream files and database files” on page 86.

v “*TYPE1 stream files” on page 17.

Figure 7. Comparison of a stream file and a record-oriented file

16 iSeries: Integrated File System

|
|
|

v “*TYPE2 stream files.”

*TYPE1 stream files

A *TYPE1 stream file has the same format as stream files created on releases before version 4, release 4 of

OS/400. It has a minimum size of 4096 bytes. *TYPE1 stream files have a maximum object size of

approximately 256 gigabytes.

*TYPE2 stream files

A *TYPE2 stream file has high performance file access and was new in version 4 release 4 of OS/400. In

V5R3, *TYPE2 stream files now have a maximum object size of approximately one terabyte in the ″root″

(/), QOpenSys and user-defined file systems. Otherwise, the maximum is approximately 256 gigabytes. It

is also capable of memory mapping, as well as the ability to specify an attribute to optimize main storage

allocation. All files created with V4R4 and newer systems are *TYPE2 stream files, unless they were

created in a user-defined file system which specified a file format of *TYPE1.

Note: Any files larger than 256 gigabytes cannot be saved or restored to systems before V5R3.

Name continuity

When you use the “root” (/), QOpenSys, and user-defined file systems, you can take advantage of

system support that ensures characters in object names remain the same. This also applies when you use

these file systems across iSeries servers and connected devices that have different character encoding

schemes (code pages). Your server stores the characters in the names in a 16-bit form that is known as

UCS2 Level 1 (that is also called Unicode) for *TYPE1 directories and UTF-16 for *TYPE2 directories.

Refer to *TYPE2 directories for more information about the directory formats. UCS2 Level 1 and UTF-16

are subsets of the ISO 10646 standard. When the name is used, the system converts the stored form of the

characters into the proper character representation in the code page being used. The names of extended

attributes associated with each object are also handled the same way.

 This support makes it easier to interact with a server from devices using different code pages. For

example, PC users can access an iSeries server file using the same file name, even though their PCs do

not have the same code page as your server. The conversion from one code page to another is handled

automatically by your server. Of course, the device must be using a code page that contains the

characters used in the name.

Extended attributes

An extended attribute (EA) is information associated with an object that provides additional details about

the object. The EA consists of a name, which is used to refer to it, and a value. The value can be text,

binary data, or another type of data.

Figure 8. Keeping characters the same across encoding schemes

Integrated file system 17

|
|
|
|

|
|
|
|
|
|
|

|

The EAs for an object exist only as long as the object exists.

EAs come in many varieties and can be used to contain a variety of information. You may need to be

aware of the following three EAs, in particular:

.SUBJECT

A brief description of the content or purpose of the object.

.TYPE The type of data in the object. The type of data might be text, binary, source for a program, a

compiled program, or other information.

.CODEPAGE

The code page to be used for the object. The code page used for the object is also used for the EA

associated with the object.

A period (.) as the first character of the name means that the EA is a standard system EA (SEA), which is

reserved for system use.

Various objects in the various file systems may or may not have EAs. The QSYS.LIB and Independent

ASP QSYS.LIB file systems support three predefined EAs: .SUBJECT, .TYPE, and .CODEPAGE. In the

document library services (QDLS) file system, folders and documents can have any kind of EA. Some

folders and documents may have EAs, and some may not. In the “root” (/), QOpenSys, and user-defined

file systems, all directories, stream files, and symbolic links can have EAs of any kind. Some, however,

may not have any EAs at all.

The Work with Object Links (WRKLNK) command can be used to display the .SUBJECT extended

attribute (EA) for an object. There is no other integrated file system support through which applications

or users can access and change EAs. The only exceptions to this rule are the Display a UDFS (DSPUDFS)

and the Display Mounted File System Information (DSPMFSINF) CL commands, which present extended

attributes to users.

EAs associated with some objects in the QDLS can, however, be changed through interfaces provided by

the hierarchical file system (HFS). See “Document library services file system (QDLS)” on page 41 and

“Optical File System (QOPT)” on page 43 for more information about these file systems.

If a client PC is connected to an iSeries server through OS/2® or Windows, the programming interfaces of

the respective operating system (such as DosQueryFileInfo and DosSetFileInfo) can be used to query and

set the EAs of any file object. OS/2 users can also change the EAs of an object on the desktop by using

the settings notebook; that is, by selecting Settings on the pop-up menu associated with the object.

If you define extended attributes, use the following naming guidelines:

v The name of an EA can be up to 255 characters long.

v Do not use a period (.) as the first character of the name. An EA whose name begins with a period is

interpreted as a standard system EA.

v To minimize the possibility of name conflicts, use a consistent naming structure for EAs. The following

form is recommended:

 CompanyNameProductName.Attribute_Name

Scanning support

iSeries now possesses the ability to allow integrated file system objects to be scanned. This new support

creates flexibility for iSeries users by: allowing scans for various items; users decide when the scan

should occur; users decide what actions to take based on the results of your scan. For more information

about scanning, see any of the following topics:

v “Related system values” on page 20

v “Scanning occurrences” on page 21

18 iSeries: Integrated File System

|

|
|
|
|

|

|

v “Scan examples”

The two new exit-points related to this support are:

v QIBM_QP0L_SCAN_OPEN - Integrated File System Scan on Open Exit Program

For this exit point, the integrated file system scan on open exit program is called to do scan processing

when an integrated file system object is opened under certain conditions.

v QIBM_QP0L_SCAN_CLOSE - Integrated File System Scan on Close Exit Program

For this exit point, the integrated file system scan on close exit program is called to do scan processing

when an integrated file system object is closed under certain conditions.

For more information about how to set whether objects should or should not be scanned, see “Set

whether objects should be scanned or not” on page 109.

Note: Only objects in file systems that have been fully converted to *TYPE2 directories will be scanned.

Scan examples

Listed below are a couple examples of what the exit program can scan for:

v Viruses

The exit programs can scan for viruses. If a virus is located in a file, the anti-virus program can act

accordingly by repairing the problem or by attempting to quarantine the virus. Since the iSeries itself

would not be infected by the virus, what this accomplishes is a reduction in virus transmissions

between servers.

v Calls to know when a file was opened

You may also scan to find out when a file was opened. By enacting this scan, you are able to track the

date and time of when certain files were accessed. This would be useful to know if you want to track

the behavior of certain users.

The scan may occur at two different times depending on how the system values are set and how the scan

environment is established. The list below describes the two different times.

1. Runtime scanning

A runtime scan is a scan on a file or files during normal day-to-day activities. This will ensure the

integrity of your files every time they are accessed. Scanning during your normal activities allows you

to ensure that your file or files are current for whatever standards you are scanning.

Example of a runtime scan for viruses

On a Wednesday, you chose to access a file on the integrated file system from your PC. When the file

is opened from the PC, it is scanned because an open exit program is registered, and because the

QSCANFS system value is set to scan files in the ″root″ (/), QOpenSys and UDFS file systems. The

scan showed one virus was found and the anti-virus exit program proceeded to repair the problem.

Because the exit program repaired the file so that it was no longer infected, the access from the PC

cannot be infected, nor can it spread an infection.

Now say that instead of scanning for viruses on that access, you chose not to do a runtime scan. After

accessing the infected file from your PC, the virus was transferred to your PC. By employing a

runtime scan, the virus was detected before it was spread to your PC.

The main downfall to this method is that resource time is required to do the scans. People attempting

to access a file must wait until the scan is completed, before being able to use the file. The system

attempts to ensure that scanning is only done when required and not on every access. See

QIBM_QP0L_SCAN_OPEN and QIBM_QP0L_SCAN_CLOSE for more information.

2. Mass or manually activated scanning

You should use this option if you want to scan many items at one time. In this instance, you can set

the scan to occur on the weekend when your server may be at an off time. This would generate very

little impact when accessing files during your normal day-to-day activities. Since the scan is done

Integrated file system 19

|

|

|

|
|

|

|
|

|
|

|

|
|

|

|
|
|
|

|

|
|
|

|
|

|

|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|

offline, this may reduce runtime scan overhead for files which do not change after the mass scan is

done, as a re-scan would not be required when they are accessed.

Related system values

Related to this new scan support are two new system values. You can use these two system values to

establish the scanning environment you want for your server. Listed below are the names of the two

system values and the descriptions for each one. These system values and their control options are

described for the iSeries Navigator. The comparable character-based interface values are listed in

parenthesis following the iSeries Navigator names. For example, for the system value QSCANFSCTL,

when the iSeries Navigator control option ’Scan accesses through file servers only’ is selected, you would

essentially be creating the same results by specifying the character-based control option *FSVRONLY.

The name and descriptions of them are as follows:

1. Use registered exit program to scan the ″root″ (/), QOpenSys, and user-defined file systems

(QSCANFS)

This system value can be used to specify whether file systems should be scanned. Only objects in the

″root″ (/), QOpenSys, and user-defined file systems will be scanned if the file system has been fully

converted. This value specifies whether objects should be scanned by exit programs registered with

any of the integrated file system scan-related exit points.

The default value is that objects will be scanned if any exit programs are registered.

2. Scan control (QSCANFSCTL)

For this system value, you can use the default control options or you can use specified control

options. For brief descriptions on the different specified control options based on the iSeries Navigator

system values, see below.

v Scan accesses through file servers only - (*FSVRONLY specified)

A scan will only take place if you access the iSeries from a file server. If this option is not selected,

all accesses will be scanned.

v Fail request if exit program fails - (*ERRFAIL specified)

If there are errors when the exit program is called, the request or operation that triggered the call to

the exit program will fail. If this option is not selected, the system will skip the failing exit program

and the object will be treated as if it was not scanned.

v Perform write access upgrades - (*NOWRTUPG not specified)

The access upgrade will occur for the scan descriptor passed to the exit program to include write

access. If *NOWRTUPG option is not selected, the system will not attempt to do the write access

upgrade.

If *NOWRTUPG is specified, the system will not attempt to upgrade the access for the scan

descriptor passed to the exit program to include write access. If *NOWRTUPG is not specified, the

system will attempt to do the write access upgrade.

v Use ’only when objects have changed’ attribute to control scan - (*USEOCOATR specified)

The ’object change only’ attribute (only scan the object if it has been modified) will be used. If this

option is not selected, this attribute will not be used and the object will be scanned after it is

modified and when scan software indicates an update.

v Fail close request if scan fails during close - (*NOFAILCLO not specified)

If an object failed a scan during close processing, the close request will be failed. If this option is

not selected, the close request will not be failed. When not selected, this value overrides the

specification of the ’fail request if exit program fails’ value.

If *NOFAILCLO is specified, the system will not fail the close request with an indication of scan

failure, even if the object failed a scan which was done as part of the close processing.

v Scan on next access after object has been restored - (*NOPOSTRST not specified)

20 iSeries: Integrated File System

|
|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|

|

|

|
|
|

|

|
|

|

|
|
|

|

|
|
|

|
|
|

|

|
|
|

|

|
|
|

|
|

|

Objects will be scanned after they are restored. If ’the object will not be scanned’ attribute is

specified, the object will be scanned once after being restored. If the attribute ’object change only’ is

specified, the object will be scanned after being restored.

If *NOPOSTRST is specified while the objects are restored, they will not be scanned just because

they were restored. If the object attribute is ’the object will not be scanned’, the object will not be

scanned at any time. If the object attribute is ’object change only’, the object will only be scanned if

it is modified after being restored.

For more information about these two system values, see QSCANFS or QSCANFSCTL.

Scanning occurrences

Scanning can occur for a variety of reasons. The list below shows when and why a scan might occur.

v “Object change”

v “Signature change”

v “Different CCSID” on page 22

v “During save operation” on page 22

v “Check object integrity” on page 23

To see the current scan status and attribute of an object, you can use the Work with Object Links

(WRKLNK) command, the Get attributes (Qp0lGetAttr()) API, or the Properties page in iSeries Navigator.

Object change: A scan would occur if the object is accessed after an object has changed or has been

modified. Normally, the modification occurs in the object’s data. Examples of modifications to an object

are writing to the object directly, or through memory mapping, truncating the object, or clearing the

object. If the object’s CCSID attribute changes, this will also trigger a scan on the next access.

Signature change: A scan would occur when the object is accessed if the global signature is different

than the object’s signature. The global or independent ASP group signatures represent the level of

software associated with the scan-related exit programs. See QIBM_QP0L_SCAN_OPEN for more details.

The object signature reflects the global or independent ASP signature when the object was last scanned.

When an object is not in an independent ASP group, the object signature is compared to the global scan

signature. If the object is in an independent ASP, the object signature is compared to the associated

independent ASP group scan signature.

Note: In the following example, the phrases scan key and scan key signature are used. The scan key is a

method to identify one set of scanning software. An example of this is for a specific company. The

scan key signature allows the set of scanning software to indicate the level of support it provides.

One example of this is a set of virus definitions. See QIBM_QP0L_SCAN_OPEN for more

information.

Here is an example of when an object is not in an independent ASP group and a scan occurs:

1. An exit program is registered to the QIBM_QP0L_SCAN_OPEN exit point. A scan key and a scan key

signature were specified as follows:

Scan key: XXXXXX

Scan key signature: 0000000000

The global scan signature is 0000 and is not updated.

2. An exit program is then registered to the QIBM_QP0L_SCAN_CLOSE exit point. A scan key and a

scan key signature were specified as follows:

Scan key: XXXXXX

Scan key signature: 1111111111

Integrated file system 21

|
|
|

|
|
|
|

|

|
|

|

|

|

|

|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|

|

|
|

|
|

The global scan signature is then updated to 0001.

3. Next, a file is opened that currently has an object signature of 0000. The existence of the exit

programs, coupled with the difference in global scan signatures (0000 to 0001), initiate a scan. When

the scan completes successfully, the file signature is updated to 0001.

4. If the file is opened by another user, it will not be re-scanned since the object and global signatures

match.

The example below displays that the exit program wants to cause a re-scan to occur:

1. Support has been added to the system to scan for new types of viruses. The Change Scan Signature,

QP0LCHSG, API is called to update the scan keys’ scan key signature. A scan key and a scan key

signature are specified as follows:

Scan key: XXXXXX

Scan key signature: 2222222222

The global scan key signature is then updated to 0002.

2. If the previously scanned file is now opened, the difference in signatures will cause a re-scan.

The example continues on to show when an object is in an independent ASP group:

1. An independent ASP is varied on for the first time and a file in the independent ASP is opened.

When the first file is opened, the independent ASP scan key list is compared to the system scan key

list. The two are different because of the fact that there is no independent ASP scan key list. In this

case, the independent ASP scan key list obtains the global scan key list. The independent ASP scan

key list would then have a scan key of XXXXXX and a scan key signature of 2222222222. As a result,

the independent ASP scan signature is changed to 0001. When the file in the independent ASP is

opened that currently has an object signature of 0000, it is then compared to the independent ASP

scan signature of 0001, and because of the difference the file is scanned. When scanned successfully,

the file signature is updated to 0001.

Note: A signature change will trigger a scan unless the object has the ’object change only’ attribute and

the *USEOCOATR system value specified.

Different CCSID: If an object is accessed with a different CCSID than it was previously scanned in, a

scan would be triggered.

An example of this is when a file with data stored in CCSID 819 is opened in CCSID 1200, and scanned

successfully. As long as the file’s data is not changed, then every time that file is opened in CCSID 1200,

a scan is not triggered. However, if that file is opened in a different CCSID, for example, 37, a scan is

triggered for that CCSID 37. If that scan is also successful, then any subsequent accesses with CCSID 1200

and 37 will not trigger an additional scan.

Only two CCSIDs and one binary indication are kept in an effort to minimize data stored on the system.

If you typically access the same object with many different CCSIDs, then this can cause a lot of additional

scanning to occur.

During save operation: This provides yet another example of when a scan might occur. A scan can be

requested when an object is saved. The SAV command now includes a SCAN parameter that allows for

specification as to whether the files will be scanned when being saved. You may also request for the

object not to be saved if it has either previously failed a scan or if it fails a scan during the save. This

prevents files who fail the scan from being put on media and possibly moved to other systems.

Note: This does not mean that when your object is restored it will be marked as having been scanned.

Whenever objects are restored, the entire scan status history is cleared.

22 iSeries: Integrated File System

|

|
|
|

|
|

|

|
|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|

Check object integrity: Lastly, a scan can be requested if the SCANFS parameter on the Check Object

Integrity (CHKOBJITG) command is specified with a value of *YES. This option would be ideal if you

wanted to determine if a file is good without opening it. If SCANFS (*Status) is specified, then all objects

which have failed previous scans will log a scan failure violation.

Work with file systems

A file system provides you the support to access specific segments of storage that are organized as

logical units. These logical units on your server are files, directories, libraries, and objects.

Each file system has a set of logical structures and rules for interacting with information in storage. These

structures and rules may be different from one file system to another. In fact, from the perspective of

structures and rules, the OS/400 support for accessing database files and various other object types

through libraries can be thought of as a file system. Similarly, the OS/400 support for accessing

documents (which are really stream files) through the folders structure may be thought of as a separate

file system.

The integrated file system treats the library support and folders support as separate file systems. Other

types of file management support that have differing capabilities are also treated as separate file systems.

To see a comparison of the features and limitations of each file system, see “File system comparison” on

page 24.

The file systems in the integrated file system are:

v “root” (/)

v Open systems file system (QOpenSys)

v User-defined file system (UDFS)

v Library file system (QSYS.LIB)

v Independent ASP QSYS.LIB

v Document library services file system (QDLS)

v Optical File System (QOPT)

v NetWare file system (QNetWare)

v iSeries NetClient file system (QNTC)

v OS/400 File Server file system (QFileSvr.400)

v Network file system (NFS)

You can interact with any of the file systems through a common interface. This interface is optimized for

the input and output of stream data, in contrast to the record input and output that is provided through

the data management interfaces. The provided commands, menus and displays, and application program

interfaces (APIs) allow interaction with the file systems through this common interface.

Integrated file system 23

|
|
|
|

For more information, refer to the following topics and publications:

v Optical Support

v OS/400 Network File System Support

File system comparison

Table 2 and Table 3 on page 26 summarize the features and limitations of each file system.

 Table 2. File System Summary (Part 1 of 2)

Capability ″root″ (/) QOpenSys QSYS.LIB16 QDLS QNTC

Standard part of OS/400 Yes Yes Yes Yes Yes

Type of file Stream Stream Record

12 Stream Stream

File size limit T2=1 TB;

T1=256 GB

T2=1 TB;

T1=256 GB

Database File

Sizes

4 GB Varies

17

Integrated with OfficeVision® (for

example, file can be mailed)

No No No Yes No

Figure 9. File systems, file servers, and the integrated file system interface

24 iSeries: Integrated File System

||
|
|
|
|
|
||

Table 2. File System Summary (Part 1 of 2) (continued)

Capability ″root″ (/) QOpenSys QSYS.LIB16 QDLS QNTC

Access through OS/400 file server Yes Yes Yes Yes Yes

Direct access through file server I/O

processor

1

No No No No Yes

Comparative speed for open/close Medium

2 Medium

2 Low

2 Low

2 Medium

2

Case-sensitive name search No Yes No

4 No

5 No

Maximum length of each component in

path name

255 char 255 char 10.6 char

6 8.3 char

7 255 char

Maximum length of path name

8 16MB 16MB 55 – 66 char4 82 char 255 char

Maximum length of extended attributes

for an object

2GB 2GB Varies

9 32KB 0

18

Maximum levels of directory hierarchy

within file system

No limit

10 No limit

10 3 32 127

Maximum links per object

11 Varies

15 Varies

15 1 1 1

Supports symbolic links Yes Yes No No No

Object/file can have owner Yes Yes Yes Yes No

Supports integrated file system

commands

Yes Yes Yes Yes Yes

Supports integrated file system APIs Yes Yes Yes Yes Yes

Supports hierarchical file system (HFS)

APIs

No No No Yes No

Threadsafe

13 Yes Yes Yes No Yes

Supports object journaling Yes Yes Yes14 No No

Integrated file system 25

|

Table 2. File System Summary (Part 1 of 2) (continued)

Capability ″root″ (/) QOpenSys QSYS.LIB16 QDLS QNTC

Notes:

 1. The file server I/O processor is hardware used by LAN Server.

 2. When accessed through the OS/400 file server.

 3. When accessed through a LAN Server client PC. Access using iSeries APIs is comparatively slow.

 4. The QSYS.LIB file system has a maximum path name length of 55 characters. See “Library file system

(QSYS.LIB)” on page 36 for details. The Independent ASP QSYS.LIB file system has a maximum path length of

66 characters. See “Independent ASP QSYS.LIB” on page 38 for details.

 5. See “Document library services file system (QDLS)” on page 41 for details.

 6. Up to 10 characters for the object name and up to 6 characters for the object type. See “Library file system

(QSYS.LIB)” on page 36 for more details.

 7. Up to 8 characters for the name and 1 to 3 characters for the file type extension (if any). See “Document library

services file system (QDLS)” on page 41 for details.

 8. Assuming an absolute path name that begins with / followed by the file system name (such as /QDLS...).

 9. The QSYS.LIB and Independent ASP QSYS.LIB file systems support three predefined extended attributes:

.SUBJECT, .CODEPAGE, and .TYPE. The maximum length is determined by the combined length of these three

extended attributes.

10. In practice, directory levels are limited by program and system space limits.

11. Except a directory, which can have only one link to another directory.

12. The user spaces in QSYS.LIB and Independent ASP QSYS.LIB file systems support stream file input and output.

13. Integrated file system APIs are threadsafe when the operation is directed to an object that resides in a

threadsafe file system. When these APIs are operating on objects in file systems that are not threadsafe when

multiple threads are running in the job, the API will fail.

14. QSYS.LIB and Independent ASP QSYS.LIB file systems support journaling different object types than the ″root″

(/), UDFS, and QOpenSys file systems. See the Journal management topic in the iSeries Information Center for

more information about journaling objects that reside in the QSYS.LIB or Independent ASP QSYS.LIB file

systems.

15. *TYPE2 directories have a limit of one million links per object and a limit of 999,998 sub-directories. *TYPE1

directories have a limit of 32,767 links per object. For more information, see *TYPE2 directories.

16. Data in this column refers to both the QSYS.LIB file system and the Independent ASP QSYS.LIB file system.

17. Depends on the system being accessed

18. QNTC does not support extended attributes

Abbreviations

 char = characters

 T1 = *TYPE1 *STMF

 T2 = *TYPE2 *STMF

 B = bytes KB = kilobytes MB = megabytes GB = gigabytes TB = terabytes

 Table 3. File System Summary (Part 2 of 2)

Capability QOPT QFileSvr.400 UDFS NFS QNetWare

Standard part of OS/400 Yes Yes Yes Yes No

Type of file Stream Stream Stream Stream Stream

File size limit 4 GB 4 GB T2 = 1 TB;

T1=256 GB

Varies

16

Integrated with

OfficeVision (for example,

file can be mailed)

No No No No No

26 iSeries: Integrated File System

|
|
|
|

|
|

|

|

|

|

|

|

||||
|
||

Table 3. File System Summary (Part 2 of 2) (continued)

Capability QOPT QFileSvr.400 UDFS NFS QNetWare

Access through OS/400

file server

Yes Yes Yes Yes Yes

Direct access through the

Integrated PC Server

1

No No No No Yes

Comparative speed for

open/close

Low Low

2 Medium

2 Medium

2 High

11

Case-sensitive name

search

No No

2 Yes

12 Varies

2 No

Maximum length of each

component in path name

Varies

4 Varies

2 255 char Varies

2 255 char

13

Maximum length of path

name

294 char No limit

2 16MB No limit

2 255 char

Maximum length of

extended attributes for an

object

8MB 0

6 2GB

10 0

6 64KB

Maximum levels of

directory hierarchy within

file system

No limit

7 No limit

2 No limit

7 No limit

2 100

Maximum links per object

7

1 1 Varies

15 Varies

2 1

Supports symbolic links No No Yes Yes

2 No

Object/file can have

owner

No No

9 Yes Yes

2 Yes

Supports integrated file

system commands

Yes Yes Yes Yes Yes

Supports integrated file

system APIs

Yes Yes Yes Yes Yes

Supports hierarchical file

system (HFS) APIs

Yes No No No

2 No

Threadsafe

14 Yes Yes Yes Yes No

Supports object journaling No No Yes No No

Integrated file system 27

|
|
|||||

||||||

Table 3. File System Summary (Part 2 of 2) (continued)

Capability QOPT QFileSvr.400 UDFS NFS QNetWare

Notes:

 1. The file server I/O processor is hardware used by LAN Server.

 2. Depends on which remote file system is being accessed.

 3. When accessed through the OS/400 file server

 4. See “Optical File System (QOPT)” on page 43 for details.

 5. Assuming an absolute path name that begins with / followed by the file system name.

 6. The QFileSvr.400 file system does not return extended attributes even if the file system being accessed supports

extended attributes.

 7. In practice, directory levels are limited by program and system space limits.

 8. Except a directory, which can have only one link to another directory.

 9. The file system being accessed may support object owners.

10. The maximum length of extended attributes for the UDFS itself cannot exceed 40 bytes.

11. When accessed through a Novell NetWare client PC. Access using iSeries APIs is comparatively slow.

12. Case-sensitivity can be specified when a UDFS is created. If the *MIXED parameter is used when creating a

UDFS, it will allow a case-sensitive search.

13. NetWare Directory Services objects are a maximum of 255 characters. Files and directories are limited to DOS

8.3 format.

14. Integrated file system APIs are threadsafe when they are accessed in a multi-thread capable process. The file

system does not allow accesses to the file systems that are not threadsafe.

15. *TYPE2 directories have a limit of one million links per object. *TYPE1 directories have a limit of 32, 767 links

per object. For more information, see *TYPE2 directories.

16. Depends on the system being accessed

Abbreviations

 char = characters

 T1 = *TYPE1 *STMF

 T2 = *TYPE2 *STMF

 B = bytes KB = kilobytes MB = megabytes GB = gigabytes TB = terabytes

“root” (/) file system

The ″root″ (/) file system takes full advantage of the stream file support and hierarchical directory

structure of the integrated file system. The ″root″ (/) file system has the characteristics of the Disk

Operating System (DOS) and OS/2 file systems.

In addition, it:

v Is optimized for stream file input and output.

v Supports multiple hard links and symbolic links.

v Supports local sockets.

v Supports threadsafe application program interfaces (APIs).

v Supports *FIFO objects.

v Supports the /dev/null and /dev/zero *CHRSF objects as well as other *CHRSF objects.

v Supports the journaling of object changes.

v Supports the scanning of objects using the integrated file system scan-related exit points.

The ″root″ (/) file system has support for the character special files (*CHRSF) called /dev/null and

/dev/zero. Character special files are associated with a device or resource of a computer system. They

have path names that appear in directories and have the same access protection as regular files. The

28 iSeries: Integrated File System

|

|

|

|

|

|

/dev/null or /dev/zero character special files are always empty, and any data written to /dev/null or

/dev/zero is discarded. The files /dev/null and /dev/zero have an object type of *CHRSF and can be

used like regular files, except that no data is ever read in the/dev/null file, and the /dev/zero file always

returns successfully with the data cleared to zeros.

For more information about the ″root″ (/) file system, see Use the “root” (/) file system.

Use the “root” (/) file system

The “root” (/) file system can be accessed through the integrated file system interface using either the

OS/400 file server or the integrated file system commands, user displays, and APIs.

v “Case-sensitivity in the ″root″ (/) file system”

v “Path names in the ″root″ (/) file system”

v “Links in the ″root″ (/) file system”

v “Use integrated file system commands in the ″root″ (/) file system”

v “Use integrated file system APIs in the ″root″ (/) file system”

v “Journaling object changes in the ″root″ (/) file system”

v “UDP and TCP devices in the ″root″ (/) file system”

Case-sensitivity in the ″root″ (/) file system: The file system preserves the same uppercase and

lowercase form in which object names are entered, but no distinction is made between uppercase and

lowercase when the server searches for names.

Path names in the ″root″ (/) file system:

v Path names have the following form:

 Directory/Directory . . . /Object

v Each component of the path name can be up to 255 characters long, much longer than in the QSYS.LIB

or QDLS file systems. The full path name can be extremely long, up to 16 megabytes.

v There is no limit to the depth of the directory hierarchy other than program and server space limits.

v The characters in names are converted to UCS2 Level 1 form (for *TYPE1 directories) and UTF-16 (for

*TYPE2 directories) when the names are stored (see “Name continuity” on page 17). Refer to *TYPE2

directories for more information about the directory formats.

Links in the ″root″ (/) file system: Multiple hard links to the same object are allowed in the “root” (/)

file system. Symbolic links are fully supported. A symbolic link can be used to link from the “root” (/)

file system to an object in another file system, such as QSYS.LIB, Independent ASP QSYS.LIB, or QDLS.

For a description of links, see “Link” on page 11.

Use integrated file system commands in the ″root″ (/) file system: All of the commands listed in

“Access using CL commands” on page 58 and the displays described in “Access using menus and

displays” on page 57 can operate on the “root” (/) file system. However, it may not be safe to use these

commands in a multi-thread capable process.

Use integrated file system APIs in the ″root″ (/) file system: All of the APIs listed in “Perform

operations using APIs” on page 90 can operate on the ″root″ (/) file system. See APIs for any more

information about APIs such as thread safety.

Journaling object changes in the ″root″ (/) file system: Objects in the ″root″ (/) file system can be

journaled. The main purpose for journal management is to enable you to recover the changes to an object

that have occurred since the object was last saved. For more information about journaling object changes

in the ″root″ (/) file system, see “Journaling objects” on page 81.

UDP and TCP devices in the ″root″ (/) file system: The ″root″ (/) file system under the directory of

/dev/xti will now hold two device drivers named udp and tcp. Both of these drivers are character

Integrated file system 29

|

|
|

|
|
|

|

|
|

special files (*CHRSFs) and will be created during the first initial program load (IPL). The udp and tcp

device drivers will be used to open a connection to the UDP and TCP transport providers. Both of these

drivers will be user devices and will receive a new device major number. They will also have cloned

opens, which means that each open will obtain a unique instance of the device. The use of these devices

will only be supported in PASE (Portable Application Solutions Environment). Table 4 below contains the

objects that will be created and their properties.

 Table 4. Device driver objects and properties

Path name Type Major Minor Owner Owner

data

authorities

Group Group

data

authorities

Public

data

authorities

/dev/xti *DIR N/A N/A QSYS *RWX None *RX *RX

/dev/xti/tcp *CHRSF Clone TCP QSYS *RW None *RW *RW

/dev/xti/udp *CHRSF Clone UDP QSYS *RW None *RW *RW

Open systems file system (QOpenSys)

The QOpenSys file system is compatible with UNIX-based open system standards, such as POSIX and

XPG. Like the ″root″ (/) file system, this file system takes advantage of the stream file and directory

support that is provided by the integrated file system.

In addition, it:

v Is accessed through a hierarchical directory structure similar to UNIX systems.

v Is optimized for stream file input and output.

v Supports multiple hard links and symbolic links.

v Supports case-sensitive names.

v Supports local sockets.

v Supports threadsafe APIs.

v Supports *FIFO objects.

v Supports the journaling of object changes.

v Supports the scanning of objects using the integrated file system scan-related exit points.

The QOpenSys file system has the same characteristics as the “root” (/) file system, except it is

case-sensitive to enable support for UNIX-based open systems standards.

For more information about QOpenSys, see Use QOpenSys.

Use QOpenSys

QOpenSys can be accessed through the integrated file system interface using either the OS/400 file server

or the integrated file system commands, user displays, and APIs.

v “Case-sensitivity in the QOpenSys file system”

v “Path names in the QOpenSys file system” on page 31

v “Links in the QOpenSys file system” on page 31

v “Use integrated file system commands and displays in the QOpenSys file system” on page 31

v “Use integrated file system APIs in the QOpenSys file system” on page 31

v “Journaling object changes in the QOpenSys file system” on page 31

Case-sensitivity in the QOpenSys file system: Unlike the “root” (/) file system, the QOpenSys file

system distinguishes between uppercase or lowercase when searching for object names. For example, a

character string supplied in all uppercase characters will not match the same character string in which

any of the characters is lowercase.

30 iSeries: Integrated File System

|
|
|
|
|
|

||

||||||
|
|

||
|
|

|
|
|

|||||||||

|||||||||

|||||||||
|

|

|

This case-sensitivity allows you to use duplicate names, provided there is some difference in uppercase

and lowercase of the characters making up the name. For example, you can have an object named

Payroll, an object named PayRoll, and an object named PAYROLL in the same directory in QOpenSys.

Path names in the QOpenSys file system:

v Path names have the following form:

 Directory/Directory/ . . . /Object

v Each component of the path name can be up to 255 characters long. The full path name can be up to

16 megabytes long.

v There is no limit to the depth of the directory hierarchy other than program and server space limits.

v The characters in names are converted to UCS2 Level 1 form (for *TYPE1 directories) and UTF-16 (for

*TYPE2 directories) when the names are stored (see “Name continuity” on page 17). Refer to *TYPE2

directories for more information about the directory formats.

Links in the QOpenSys file system: Multiple hard links to the same object are allowed in the

QOpenSys file system. Symbolic links are fully supported. A symbolic link can be used to link from the

QOpenSys file system to an object in another file system.

See “Link” on page 11 for a description of links.

Use integrated file system commands and displays in the QOpenSys file system: All of the commands

that are listed in “Access using CL commands” on page 58 and the displays that are described in “Access

using menus and displays” on page 57 can operate on the QOpenSys file system. However, it may not be

safe to use these commands in a multi-thread capable process.

Use integrated file system APIs in the QOpenSys file system: All of the APIs listed in “Perform

operations using APIs” on page 90 can operate on the QOpenSys file system. See APIs for any more

information about APIs such as thread safety.

Journaling object changes in the QOpenSys file system: Objects in the QOpenSys file system can be

journaled. The main purpose for journal management is to enable you to recover the changes to an object

that have occurred since the object was last saved. For more information about journaling object changes

in the QOpenSys file system, see “Journaling objects” on page 81.

User-defined file system (UDFS)

The UDFS file systems reside on the auxiliary storage pool (ASP) or independent auxiliary storage pool

(ASP) of your choice. You create and manage these file systems.

In addition, they:

v Provide a hierarchical directory structure similar to PC operating systems such as DOS and OS/2.

v Are optimized for stream file input and output.

v Support multiple hard links and symbolic links.

v Support local sockets.

v Support threadsafe APIs.

v Support *FIFO objects.

v Support the journaling of object changes.

v Support the scanning of objects using the integrated file system scan-related exit points.

For more information about creating UDFSs, see CRTUDFS. You can create multiple UDFSs by giving

each a unique name. You can specify other attributes for a UDFS during its creation, including:

v An ASP number or independent ASP name where the objects that are located in the UDFS are stored.

v The case-sensitivity characteristics of the object names that are located within a UDFS.

Integrated file system 31

|
|
|

|

|
|

The case-sensitivity of a UDFS determines whether uppercase and lowercase characters will match

when searching for object names within the UDFS.

v The create object scanning attribute which defines what the scan attribute should be for objects created

in a UDFS. For information about setting this attribute, see “Set whether objects should be scanned or

not” on page 109.

v The restrict rename and unlink attribute.

v The auditing value for a UDFS.

v The different stream file formats, *TYPE1 and *TYPE2. For additional information about these two

stream file formats, see “Stream file” on page 16.

See the following topics for more information about user-defined file systems:

v UDFS concepts

v Use UDFS through the integrated file system interface

UDFS concepts

In a UDFS, as in the “root” (/) and QOpenSys file systems, you can create directories, stream files,

symbolic links, local sockets, and *FIFO objects.

A single block special file object (*BLKSF) represents a UDFS. As you create UDFSs, you also

automatically create block special files. The block special file is only accessible to the user through the

integrated file system generic commands, APIs, and the QFileSvr.400 interface.

A UDFS exists only in two states: mounted and unmounted. When you mount a UDFS, the objects

within it are accessible. When you unmount a UDFS, the objects within it become inaccessible.

In order to access the objects within a UDFS, you must mount the UDFS on a directory (for example,

/home/JON). When you mount a UDFS on a directory, the original contents of that directory, including

objects and sub-directories, become inaccessible. When you mount a UDFS, the contents of the UDFS

become accessible through the directory path that you mount the UDFS over. For example, the /home/JON

directory contains a file /home/JON/payroll. A UDFS contains three directories mail, action, and

outgoing. After mounting the UDFS on /home/JON, the /home/JON/payroll file is inaccessible, and the

three UDFS directories become accessible as /home/JON/mail, /home/JON/action, and /home/JON/outgoing.

After unmounting the UDFS, the /home/JON/payroll file is accessible again, and the three directories in

the UDFS become inaccessible.

Note: A UDFS on an independent ASP cannot be mounted over.

To learn more about mounting file systems, see OS/400 Network File System Support

.

Use UDFS through the integrated file system interface

A UDFS can be accessed through the integrated file system interface using either the OS/400 file server

or the integrated file system commands, user displays, and APIs. In using the integrated file system

interface, you should be aware of the following considerations and limitations.

v “Case-sensitivity in an integrated file system UDFS” on page 33

v “Path names in an integrated file system UDFS” on page 33

v “Links in an integrated file system UDFS” on page 33

v “Use integrated file system commands in a UDFS” on page 34

v “Use integrated file system APIs in a UDFS” on page 34

v “Graphical user interface for a UDFS” on page 34

v “Create an integrated file system UDFS” on page 34

v “Delete an integrated file system UDFS” on page 35

v “Display an integrated file system UDFS” on page 35

32 iSeries: Integrated File System

|
|
|

|

|

|
|

|
|

v “Mount an integrated file system UDFS” on page 35

v “Unmount an integrated file system UDFS” on page 35

v “Save and restore an integrated file system UDFS” on page 35

v “Journaling object changes in a UDFS file system” on page 35

v “UDFS and Independent Auxiliary Storage Pools (ASP)” on page 35

Case-sensitivity in an integrated file system UDFS: You can specify whether object names in the UDFS

will be case-sensitive or case-insensitive when you create it.

When you select case-sensitivity, uppercase and lowercase characters are distinguished when searching

for object names. For example, a name that is supplied in all uppercase characters will not match the

same name in which any of the characters are lowercase. Therefore, /home/MURPH/ and /home/murph/ are

recognized as different directories. To create a case-sensitive UDFS, you can specify *MIXED for the CASE

parameter when using the CRTUDFS command.

When you select case-insensitivity, the server does not distinguish between uppercase and lowercase

characters during searches for names. Therefore, the server would recognize /home/CAYCE and

/HOME/cayce as the same directory, not as two separate directories. To create a case-insensitive UDFS, you

can specify *MONO for the CASE parameter when using the CRTUDFS command.

In either case, the file system saves the same uppercase and lowercase forms in which the user enters

object names. The case-sensitivity option only applies to how the user searches for names through the

server.

Path names in an integrated file system UDFS: A block special file (*BLKSF) represents a UDFS when

the entire UDFS and all of the objects within it need to be manipulated. If your UDFS resides on the

system or on a basic user ASP, block special file names must be of the form

/dev/QASPXX/udfs_name.udfs

where XX is the ASP number where you store the UDFS, and udfs_name is the unique name of the UDFS

within that ASP. Note that the UDFS name must end with the .udfs extension.

If your UDFS resides on an independent ASP, block special file names must be of the form

/dev/asp_name/udfs_name.udfs

where asp_name is the name of independent ASP where you store the UDFS and udfs_name is the unique

name of the UDFS within that independent ASP. Note that the UDFS name must end with the .udfs

extension.

Path names for objects within a UDFS are relative to the directory over which you mount a UDFS. For

example, if you mount the UDFS /dev/qasp01/wysocki.udfs over /home/dennis, then the path names for

all objects within the UDFS will begin with /home/dennis.

Additional path name rules:

v Each component of the path name can be up to 255 characters long. The full path name can be up to

16 megabytes long.

v There is no limit to the depth of the directory hierarchy other than program and server space limits.

v The characters in names are converted to UCS2 Level 1 form (for *TYPE1 directories) and UTF-16 (for

*TYPE2 directories) when the names are stored (see “Name continuity” on page 17). Refer to *TYPE2

directories for more information about the directory formats.

Links in an integrated file system UDFS: A UDFS allows multiple hard links to the same object and

fully supports symbolic links. A symbolic link can create a link from a UDFS to an object in another file

system.

Integrated file system 33

|

|
|
|

See “Link” on page 11 for a description of links.

Use integrated file system commands in a UDFS: All of the commands that are listed in “Access using

CL commands” on page 58 and the displays that are described in “Access using menus and displays” on

page 57 can operate on a user-defined file system. There are some CL commands that are specific to the

user-defined file system and other mounted file systems in general. The following table describes them.

 Table 5. User-Defined File System CL Commands

Command Description

ADDMFS Add Mounted File System. Places exported, remote server file systems over

local client directories.

CRTUDFS Create UDFS. Creates a user-defined file system.

DLTUDFS Delete UDFS. Deletes a user-defined file system.

DSPMFSINF Display Mounted File System Information. Displays information about a

mounted file system.

DSPUDFS Display UDFS. Displays information about a user-defined file system.

MOUNT Mount a File System. Places exported, remote server file systems over local

client directories. This command is an alias for the ADDMFS command.

RMVMFS Remove Mounted File System. Removes exported, remote server file

systems from the local client namespace.

UNMOUNT Unmount a File System. Removes exported, remote server file systems from

the local client namespace. This command is an alias for the RMVMFS

command.

Note: You must mount a UDFS before any integrated file system commands can operate on the objects

that are stored in that UDFS.

Use integrated file system APIs in a UDFS: All of the APIs that are listed in “Perform operations using

APIs” on page 90 can operate on a user-defined file system.

Note: You must mount a UDFS before any integrated file system APIs can operate on the objects that are

stored in that UDFS.

Graphical user interface for a UDFS: iSeries Navigator, a graphical user interface on your PC, provides

for easy and convenient access to UDFSs. This interface enables you to create, delete, display, mount, and

unmount a UDFS from a Windows client.

You can perform operations on a UDFS through iSeries Navigator. Basic tasks include:

v “Create an integrated file system UDFS.”

v “Mount an integrated file system UDFS” on page 35.

v “Unmount an integrated file system UDFS” on page 35.

Create an integrated file system UDFS: The Create User-Defined File System command (CRTUDFS)

creates a file system that can be made visible through the integrated file system namespace, APIs, and CL

commands. The ADDMFS or MOUNT commands place the UDFS “on top” of the already-existing local

directory. You can create a UDFS in an ASP or independent ASP of your choice.

You can also specify the following items for a UDFS:

v Case-sensitivity

v Whether objects created in the UDFS should be scanned or not

v The auditing value for objects created in the UDFS

v The value for the restricted, rename and unlink attribute

34 iSeries: Integrated File System

|
|

|

|

|

Delete an integrated file system UDFS: The Delete User-Defined File System command (DLTUDFS)

deletes an existing, unmounted UDFS, and all the objects within it. The command will fail if you have

mounted the UDFS. Deletion of a UDFS will cause the deletion of all objects in the UDFS. If you do not

have proper authority to delete all of the objects within a UDFS, then none of the objects will be deleted.

Display an integrated file system UDFS: The Display User-Defined File System (DSPUDFS) command

presents the attributes of an existing UDFS, whether mounted or unmounted. The Display Mounted File

System Information (DSPMFSINF) command will also present information about a mounted UDFS as

well as any mounted file system.

Mount an integrated file system UDFS: The Add Mounted File System (ADDMFS) and MOUNT

commands make the objects in a file system accessible to the integrated file system namespace. To mount

a UDFS, you need to specify *UDFS for the TYPE parameter on the ADDMFS command.

Note: A UDFS on an independent ASP cannot be mounted over.

Unmount an integrated file system UDFS: The unmount command makes the contents of a UDFS

inaccessible to the integrated file system interfaces. The objects in a UDFS will not be individually

accessible once the UDFS is unmounted. The Remove Mounted File System (RMVMFS) or UNMOUNT

commands will make a mounted file system inaccessible to the integrated file system namespace. If any

of the objects in the file system are in use (for example, a file is opened) at the time of using the

command, you will receive an error message. The UDFS will remain mounted. If you have mounted over

any part of the UDFS, then this UDFS cannot be unmounted until it is uncovered.

For example, you mount a UDFS /dev/qasp02/jenn.udfs over /home/judy in the integrated file system

namespace. If you then mount another file system /pubs over /home/judy, then the contents of jenn.udfs

will become inaccessible. Furthermore, you cannot unmount jenn.udfs until you unmount the second file

system from /home/judy.

Note: A UDFS on an independent ASP cannot be mounted over.

Save and restore an integrated file system UDFS: You have the ability to save and restore all UDFS

objects, as well as their associated authorities. The Save command (SAV) allows you to save objects in a

UDFS while the Restore command (RST) allows you to restore UDFS objects. Both commands will

function whether the UDFS is mounted or unmounted. However, to correctly save the UDFS attributes,

and not just the objects within the UDFS, the UDFS should be unmounted.

Journaling object changes in a UDFS file system: Objects in user-defined file systems can be journaled.

The main purpose for journal management is to enable you to recover the changes to an object that have

occurred since the object was last saved. For more information about journaling object changes in a UDFS

file system, see “Journaling objects” on page 81.

UDFS and Independent Auxiliary Storage Pools (ASP): When you vary on an independent ASP,

several changes occur within the ″root″ (/) file system:

v A directory is created inside the /dev directory for the independent ASP. The name of this directory

matches the name of the device description associated with the ASP. If this directory exists before the

vary on request, and this directory is not empty, then the vary on will proceed but you will not be able

to work with any UDFS’s on the ASP. If this occurs, vary off the independent ASP, either rename the

directory or remove its contents and then try the vary on request again.

v Within the /dev/asp_name directory you will find the block special file objects associated with all

UDFS’s that reside on the independent ASP. There will always be a system-provided default UDFS.

The path to the default UDFS’s block special file is: /dev/asp_name/QDEFAULT.UDFS

v The default UDFS is mounted over the directory /asp_name. The /asp_name directory does not need

to exist before the vary on request. However, if it does exist, it must be empty. If it is not empty, the

Integrated file system 35

|

|
|

|
|
|
|
|

|
|
|

|
|

ASP will still be varied on, but the default UDFS will not be mounted. If this occurs, either rename the

directory or remove its contents and then either vary off and try the vary on again or use the MOUNT

command to mount the default UDFS.

v If the independent ASP is either a primary or secondary ASP, and the default UDFS was successfully

mounted, then an additional file system will be mounted. The independent ASP QSYS.LIB file system

will be mounted over /asp_name/QSYS.LIB. See “Independent ASP QSYS.LIB” on page 38 for more

information.

Note: This file system cannot be mounted or unmounted independently of the default UDFS. It will

always be mounted or unmounted automatically.

Library file system (QSYS.LIB)

The QSYS.LIB file system supports the iSeries server library structure. This file system provides you with

access to database files and all of the other iSeries server object types that the library support manages in

the system and basic user ASPs.

In addition, it:

v Supports all user interfaces and programming interfaces that operate on iSeries server libraries and

objects in those libraries

v Supports all programming languages and facilities that operate on database files

v Provides extensive administrative support for managing iSeries server objects

v Supports stream I/O operations on physical file members, user spaces, and save files

Before Version 3 of OS/400, the QSYS.LIB file system would likely have been known as the iSeries server

file system. Programmers who used languages such as RPG or COBOL and facilities such as DDS to

develop applications were using the QSYS.LIB file system. System operators who used commands,

menus, and displays to manipulate output queues were using the QSYS.LIB file system, as were system

administrators who were creating and changing user profiles.

All of these facilities and the applications based on these facilities work as they did before the

introduction of the integrated file system. These facilities cannot, however, access QSYS.LIB through the

integrated file system interface.

For more information about QSYS.LIB, see Use QSYS.LIB through the integrated file system interface.

Use QSYS.LIB through the integrated file system interface

The QSYS.LIB file system can be accessed through the integrated file system interface using either the

OS/400 file server or the integrated file system commands, user displays, and APIs. In using the

integrated file system interfaces, you should be aware of the following considerations and limitations.

v “QPWFSERVER authorization list in the QSYS.LIB file system” on page 37

v “File handling restrictions in the QSYS.LIB file system” on page 37

v “Support for user spaces in the QSYS.LIB file system” on page 37

v “Support for save files in the QSYS.LIB file system” on page 37

v “Case-sensitivity in the QSYS.LIB file system” on page 37

v “Path names in the QSYS.LIB file system” on page 37

v “Links in the QSYS.LIB file system” on page 38

v “Use integrated file system commands and displays in the QSYS.LIB file system” on page 38

v “Use integrated file system APIs in the QSYS.LIB file system” on page 38

36 iSeries: Integrated File System

|
|
|

|
|
|
|

|
|

|

QPWFSERVER authorization list in the QSYS.LIB file system: The QPWFSERVER is an authorization

list (object type *AUTL) that provides additional access requirements for all objects in the QSYS.LIB file

system being accessed through remote clients. The authorities specified in this authorization list apply to

all objects within the QSYS.LIB file system.

The default authority to this object is PUBLIC *USE authority. The administrator can use the EDTAUTL

(Edit Authorization List) or WRKAUTL (Work With Authorization List) commands to change the value of

this authority. The administrator can assign PUBLIC *EXCLUDE authority to the authorization list so that

the general public cannot access QSYS.LIB objects from remote clients.

File handling restrictions in the QSYS.LIB file system:

v Logical files are not supported.

v Physical files supported for text mode access are program-described physical files containing a single

field and source physical files containing a single text field. Physical files supported for binary mode

access include externally-described physical files in addition to those files supported for text mode

access.

v Byte-range locking is not supported. (For more information about byte-range locking, see the fcntl()

topic in the iSeries Information Center.)

v If any job has a database file member open, only one job is given write access to that file member at

any time. Other requests are allowed only read access.

Support for user spaces in the QSYS.LIB file system: QSYS.LIB supports stream input and output

operations to user space objects. For example, a program can write stream data to a user space and read

data from a user space. The maximum size of a user space is 16 776 704 bytes.

Be aware that user spaces are not tagged with a CCSID (coded character set identifier). Therefore, the

CCSID returned is the default CCSID of the job.

Support for save files in the QSYS.LIB file system: The QSYS.LIB file system supports stream I/O

operations to save file objects. For example, an existing save file has data that may be read out or copied

to another file until it is necessary to place the data into a different, existing, and empty save file object.

When a save file is open for writing, no other open instances of the file are allowed. A save file does

allow multiple open instances for reading, provided no job has more than one open instance of the file

for reading. A save file may not be opened for read/write access. Stream I/O operations to save file data

are not allowed when multiple threads are running in a job.

Stream I/O operations on a save file are not supported when the save file or its directory are being

exported through the Network File System server. They may, however, be accessed from PC clients and

through the QFileSvr.400 file system.

Case-sensitivity in the QSYS.LIB file system: In general, the QSYS.LIB file system does not distinguish

between uppercase and lowercase in the names of objects. A search for object names achieves the same

result regardless of whether characters in the names are uppercase or lowercase.

However, if a name is enclosed in quotation marks, the case of each character in the name is preserved. A

search involving quoted names, therefore, is sensitive to the case of the characters in the quoted name.

Path names in the QSYS.LIB file system:

v Each component of the path name must contain the object name followed by the object type of the

object. For example:

 /QSYS.LIB/QGPL.LIB/PRT1.OUTQ

 /QSYS.LIB/EMP.LIB/PAY.FILE/TAX.MBR

Integrated file system 37

The object name and object type are separated by a period (.). Objects in a library can have the same

name if they are different object types, so the object type must be specified to uniquely identify the

object.

v The object name in each component can be up to 10 characters long, and the object type can be up to 6

characters long.

v The directory hierarchy within QSYS.LIB can be either two or three levels deep (two or three

components in the path name), depending on the type of object being accessed. If the object is a

database file, the hierarchy can contain three levels (library, file, member); otherwise, there can be only

two levels (library, object). The combination of the length of each component name and the number of

directory levels determines the maximum length of the path name.

If ″root″ (/) and QSYS.LIB are included as the first two levels, the directory hierarchy for QSYS.LIB can

be up to five levels deep.

v The characters in names are converted to CCSID 37 when the names are stored. Quoted names,

however, are stored using the CCSID of the job.

For more information about CCSID, see the Globalization topic in the iSeries Information Center.

Links in the QSYS.LIB file system: Symbolic links cannot be created or stored in the QSYS.LIB file

system.

The relationship between a library and objects in a library is the equivalent of one hard link between the

library and each object in the library. The integrated file system handles the library-object relationship as

a link. Thus, it is possible to link from a file system that supports symbolic links to an object in the

QSYS.LIB file system.

See “Link” on page 11 for a description of links.

Use integrated file system commands and displays in the QSYS.LIB file system: The commands listed

in “Access using CL commands” on page 58 can operate on the QSYS.LIB file system, except for the

following:

v The ADDLNK command can be used only to create a symbolic link to an object in QSYS.LIB.

v File operations can be done only on program-described physical files and source physical files.

v The STRJRN and ENDJRN commands cannot be used on database physical files.

The same restrictions apply to the user displays described in “Access using menus and displays” on page

57.

Use integrated file system APIs in the QSYS.LIB file system: The APIs listed in “Perform operations

using APIs” on page 90 can operate on the QSYS.LIB file system, except for the following:

v File operations can be done only on program-described physical files and source physical files.

v The symlink() function can be used only to link to an object in QSYS.LIB from another file system that

supports symbolic links.

v The QjoStartJournal() and QjoEndJournal() APIs cannot be used on database physical files.

Independent ASP QSYS.LIB

The Independent ASP QSYS.LIB file system supports the iSeries server library structure in independent

auxiliary storage pools (ASPs) you create and define. This file system provides access to database files

and all of the other iSeries server object types that the library support manages in the independent ASPs.

In addition, it:

v Supports all user interfaces and programming interfaces that operate on iSeries server libraries and

objects in those libraries in independent ASPs

v Supports all programming languages and facilities that operate on database files

38 iSeries: Integrated File System

v Provides extensive administrative support for managing iSeries server objects

v Supports stream I/O operations on physical file members, user spaces, and save files

For more information about the Independent ASP QSYS.LIB file system, see Use Independent ASP

QSYS.LIB through the integrated file system interface.

Use Independent ASP QSYS.LIB through the integrated file system interface

The Independent ASP QSYS.LIB file system can be accessed through the integrated file system interface

using either the OS/400 file server or the integrated file system commands, user displays, and APIs. In

using the integrated file system interfaces, you should be aware of the following considerations and

limitations.

v “QPWFSERVER authorization list in the Independent ASP QSYS.LIB file system”

v “File handling restrictions in the Independent ASP QSYS.LIB file system”

v “Support for user spaces in the Independent ASP QSYS.LIB file system”

v “Support for save files in the Independent ASP QSYS.LIB file system”

v “Case-sensitivity in the Independent ASP QSYS.LIB file system” on page 40

v “Path names in the Independent ASP QSYS.LIB file system” on page 40

v “Links in the Independent ASP QSYS.LIB file system” on page 40

v “Use integrated file system commands and displays in the Independent ASP QSYS.LIB file system” on

page 40

v “Use integrated file system APIs in the Independent ASP QSYS.LIB file system” on page 41

QPWFSERVER authorization list in the Independent ASP QSYS.LIB file system: The QPWFSERVER

is an authorization list (object type *AUTL) that provides additional access requirements for all objects in

the Independent ASP QSYS.LIB file system being accessed through remote clients. The authorities

specified in this authorization list apply to all objects within the Independent ASP QSYS.LIB file system.

The default authority to this object is PUBLIC *USE authority. The administrator can use the EDTAUTL

(Edit Authorization List) or WRKAUTL (Work With Authorization List) commands to change the value of

this authority. The administrator can assign PUBLIC *EXCLUDE authority to the authorization list so that

the general public cannot access Independent ASP QSYS.LIB objects from remote clients.

File handling restrictions in the Independent ASP QSYS.LIB file system:

v Logical files are not supported.

v Physical files supported for text mode access are program-described physical files containing a single

field and source physical files containing a single text field. Physical files supported for binary mode

access include externally-described physical files in addition to those files supported for text mode

access.

v Byte-range locking is not supported. (For more information about byte-range locking, see the fcntl()

topic in the iSeries Information Center.)

v If any job has a database file member open, only one job is given write access to that file member at

any time. Other requests are allowed only read access.

Support for user spaces in the Independent ASP QSYS.LIB file system: Independent ASP QSYS.LIB

supports stream input and output operations to user space objects. For example, a program can write

stream data to a user space and read data from a user space. The maximum size of a user space is

16 776 704 bytes.

Be aware that user spaces are not tagged with a CCSID (coded character set identifier). Therefore, the

CCSID returned is the default CCSID of the job.

Support for save files in the Independent ASP QSYS.LIB file system: The Independent ASP QSYS.LIB

supports stream I/O operations to save file objects. For example, an existing save file has data that may

Integrated file system 39

be read out or copied to another file until it is necessary to place the data into a different, existing, and

empty save file object. When a save file is open for writing, no other open instances of the file are

allowed. A save file does allow multiple open instances for reading, provided no job has more than one

open instance of the file for reading. A save file may not be opened for read/write access. Stream I/O

operations to save file data are not allowed when multiple threads are running in a job.

Stream I/O operations on a save file are not supported when the save file or its directory are being

exported through the Network File System server. They may, however, be accessed from PC clients and

through the QFileSvr.400 file system.

Case-sensitivity in the Independent ASP QSYS.LIB file system: In general, the Independent ASP

QSYS.LIB file system does not distinguish between uppercase and lowercase in the names of objects. A

search for object names achieves the same result regardless of whether characters in the names are

uppercase or lowercase.

However, if a name is enclosed in quotation marks, the case of each character in the name is preserved. A

search involving quoted names, therefore, is sensitive to the case of the characters in the quoted name.

Path names in the Independent ASP QSYS.LIB file system:

v Each component of the path name must contain the object name followed by the object type of the

object. For example:

 /asp_name/QSYS.LIB/QGPL.LIB/PRT1.OUTQ

 /asp_name/QSYS.LIB/EMP.LIB/PAY.FILE/TAX.MBR

where asp_name is the name of the independent ASP. The object name and object type are separated by

a period (.). Objects in a library can have the same name if they are different object types, so the object

type must be specified to uniquely identify the object.

v The object name in each component can be up to 10 characters long, and the object type can be up to 6

characters long.

v The directory hierarchy within Independent ASP QSYS.LIB can be either two or three levels deep (two

or three components in the path name), depending on the type of object being accessed. If the object is

a database file, the hierarchy can contain three levels (library, file, member); otherwise, there can be

only two levels (library, object). The combination of the length of each component name and the

number of directory levels determines the maximum length of the path name.

If /, asp_name, and QSYS.LIB are included as the first three levels, the directory hierarchy for the

Independent ASP QSYS.LIB file system can be up to six levels deep.

v The characters in names are converted to CCSID 37 when the names are stored. Quoted names,

however, are stored using the CCSID of the job.

For more information about CCSID, see the Globalization topic in the iSeries Information Center.

Links in the Independent ASP QSYS.LIB file system: Symbolic links cannot be created or stored in the

Independent ASP QSYS.LIB file system.

The relationship between a library and objects in a library is the equivalent of one hard link between the

library and each object in the library. The integrated file system handles the library-object relationship as

a link. Thus, it is possible to link from a file system that supports symbolic links to an object in the

Independent ASP QSYS.LIB file system.

See “Link” on page 11 for a description of links.

Use integrated file system commands and displays in the Independent ASP QSYS.LIB file system:

 The commands listed in “Access using CL commands” on page 58 can operate on the Independent ASP

QSYS.LIB file system, except for the following:

40 iSeries: Integrated File System

v The ADDLNK command can be used only to create a symbolic link to an object in Independent ASP

QSYS.LIB.

v File operations can be done only on program-described physical files and source physical files.

v The STRJRN and ENDJRN commands cannot be used on database physical files.

v You cannot move libraries in the Independent ASP QSYS.LIB file system to basic auxiliary storage

pools (ASPs) using the MOV command. However, you can move libraries in Independent ASP

QSYS.LIB to the system ASP or other independent ASPs.

v If you use SAV or RST to save or restore library objects on an independent ASP, then that independent

ASP must be associated with the job doing the SAV or RST, or the independent ASP must be specified

on the ASPDEV parameter. The path name naming convention of /asp_name/QSYS.LIB/object.type is not

supported on SAV and RST.

The same restrictions apply to the user displays described in “Access using menus and displays” on page

57.

Use integrated file system APIs in the Independent ASP QSYS.LIB file system: The APIs listed in

“Perform operations using APIs” on page 90 can operate on the Independent ASP QSYS.LIB file system,

except for the following:

v File operations can be done only on program-described physical files and source physical files.

v The symlink() function can be used only to link to an object in Independent ASP QSYS.LIB from

another file system that supports symbolic links.

v The QjoStartJournal() and QjoEndJournal() APIs cannot be used on database physical files.

Document library services file system (QDLS)

The QDLS file system supports the folders structure. It provides access to documents and folders.

In addition, it:

v Supports iSeries server folders and document library objects (DLOs).

v Supports data stored in stream files.

For more information about QDLS, see Use QDLS through the integrated file system interface.

Use QDLS through the integrated file system interface

The QDLS file system can be accessed through the integrated file system interface using either the

OS/400 file server or the integrated file system commands, user displays, and APIs. In using the

integrated file system interfaces, you should be aware of the following considerations and limitations.

For more information about the QDLS file system, see any of the following topics.

v “Integrated file system and HFS in the QDLS file system”

v “User enrollment in the QDLS file system” on page 42

v “Case-sensitivity in the QDLS file system” on page 42

v “Path names in the QDLS file system” on page 42

v “Links in the QDLS file system” on page 42

v “Use integrated file system commands and displays in the QDLS file system” on page 42

v “Use integrated file system APIs in the QDLS file system” on page 43

Integrated file system and HFS in the QDLS file system: Operations can be performed on objects in

the QDLS file system not only through the Document Library Objects (DLO) CL commands but also

through either the integrated file system interface or APIs provided by a hierarchical file system known

as HFS. Whereas the integrated file system is based on the Integrated Language Environment (ILE)

program model, HFS is based on the original iSeries server program model.

Integrated file system 41

The HFS APIs allow you to perform a few additional operations that the integrated file system does not

support. In particular, you can use HFS APIs to access and change directory extended attributes (also

called directory entry attributes). Be aware that the naming rules for using HFS APIs are different from the

naming rules for APIs using the integrated file system interface.

For more information about HFS, see the Hierarchical File System APIs topic in the iSeries Information

Center.

User enrollment in the QDLS file system: You must be enrolled in the system distribution directory

when working with objects in QDLS.

Case-sensitivity in the QDLS file system: QDLS converts the lowercase English alphabetic characters a

to z to uppercase when used in object names. Therefore, a search for object names using only those

characters is not case-sensitive.

All other characters are case-sensitive in QDLS.

For more details, see the Folder and Document Name topic in the iSeries Information Center.

Path names in the QDLS file system:

v Each component of the path name can consist of just a name, such as:

 /QDLS/FLR1/DOC1

or a name plus an extension (similar to a DOS file extension), such as:

 /QDLS/FLR1/DOC1.TXT

v The name in each component can be up to 8 characters long, and the extension (if any) can be up to 3

characters long. The maximum length of the path name is 82 characters, assuming an absolute path

name that begins with /QDLS.

v The directory hierarchy within QDLS can be 32 levels deep. If / and QDLS are included as the first

two levels, the directory hierarchy can be 34 levels deep.

v The characters in names are converted to the code page of the job when the names are stored unless

data area Q0DEC500 has been created in the QUSRSYS library. If this data area exists, then the

characters in names are converted to code page 500 when the names are stored. This function provides

compatibility with the behavior of the QDLS file system in previous releases. A name may be rejected

if it cannot be converted to the appropriate code page.

For more information about code pages, see the Globalization topic in the iSeries Information Center.

Links in the QDLS file system: Symbolic links cannot be created or stored in the QDLS file system.

The integrated file system handles the relationship between a folder and document library objects in a

folder as the equivalent of one link between the folder and each object in the folder. Thus, it is possible to

link to an object in the QDLS file system from a file system that supports symbolic links.

See “Link” on page 11 for a description of links.

Use integrated file system commands and displays in the QDLS file system: The commands listed in

“Access using CL commands” on page 58 can operate on the QDLS file system, except for the following:

v The ADDLNK command can be used only to link to an object in QDLS from another file system that

supports symbolic links.

v The CHKIN and CHKOUT commands are supported for files, but not for directories.

v The APYJRNCHG, CHGJRNOBJ, ENDJRN, SNDJRNE, and STRJRN commands are not supported.

The same restrictions apply to the user displays described in “Access using menus and displays” on page

57.

42 iSeries: Integrated File System

|

Use integrated file system APIs in the QDLS file system: The APIs listed in “Perform operations using

APIs” on page 90 can operate on the QDLS file system, except for the following:

v The symlink() function can be used only to link to an object in QDLS from another file system that

supports symbolic links.

v The following functions are not supported:

 givedescriptor()

 ioctl()

 link()

 QjoEndJournal()

 QjoRetrieveJournalInformation()

 QJORJIDI()

 QJOSJRNE()

 QjoStartJournal()

 Qp0lGetPathFromFileID()

 readlink()

 takedescriptor()

Optical File System (QOPT)

The QOPT file system provides access to stream data that is stored on optical media.

In addition, it:

v Provides a hierarchical directory structure similar to PC operating systems such as DOS and OS/2.

v Is optimized for stream file input and output.

v Supports data stored in stream files.

For more information about QOPT, see Use QOPT through the integrated file system.

Use QOPT through the integrated file system

The QOPT file system can be accessed through the integrated file system using either the PC server or

the integrated file system commands, user displays, and APIs. In using the integrated file system

interface, you should be aware of the following considerations and limitations.

For more information about the QOPT file system, see any of the following topics.

v “Integrated file system and HFS in the QOPT file system”

v “Case-sensitivity in the QOPT file system” on page 44

v “Path names in the QOPT file system” on page 44

v “Links in the QOPT file system” on page 44

v “Use integrated file system commands and displays in the QOPT file system” on page 44

v “Use integrated file system APIs in the QOPT file system” on page 45

For more details, see the publication Optical Support

.

Integrated file system and HFS in the QOPT file system: Operations can be performed on objects in

the QOPT file system through either the integrated file system interface or APIs provided by a

hierarchical file system known as HFS. Whereas the integrated file system is based on the Integrated

Language Environment (ILE) program model, HFS is based on the original iSeries server program model.

The HFS APIs allow you to perform a few additional operations that the integrated file system does not

support. In particular, you can use HFS APIs to access and change directory extended attributes (also

Integrated file system 43

called directory entry attributes) or to work with held optical files. Be aware that the naming rules for

using HFS APIs are different from the naming rules for APIs using the integrated file system interface.

For more information about HFS APIs, see the Hierarchical File System APIs topic in the iSeries

Information Center, or in the publication Optical Support

.

Case-sensitivity in the QOPT file system: Depending upon the format of the optical media, case may

or may not be preserved when creating files or directories in QOPT. However, file and directory searches

are case insensitive regardless of the optical media format.

Path names in the QOPT file system:

v The path name must begin with a slash (/). The path is made up of the file system name, the volume

name, the directory and sub-directory names, and the file name. For example:

 /QOPT/VOLUMENAME/DIRECTORYNAME/SUBDIRECTORYNAME/FILENAME

v The file system name, QOPT, is required.

v The volume and path name length vary by optical media format.

v You can specify /QOPT in the path name or include one or more directories or subdirectories in the

path name. Directory and file names allow any character except X'00' through X'3F', X'FF'. Additional

restrictions may apply based on the optical media format.

v The file name is the last element in the path name. The file name length is limited by the directory

name length in the path.

For more details on path name rules in the QOPT file system, see the “Path Name Rules” discussion in

the publication Optical Support

.

Links in the QOPT file system: The QOPT file system supports only one link to an object. Symbolic

links cannot be created or stored in QOPT. However, files in QOPT can be accessed by using a symbolic

link from the “root” (/) or QOpenSys file system.

See “Link” on page 11 for a description of links.

Use integrated file system commands and displays in the QOPT file system: Most commands listed in

“Access using CL commands” on page 58 can operate on the QOPT file system. There are, however, a

few exceptions in the QOPT file system. Keep in mind that it may not be safe to use these CL commands

in a multi-thread capable process; Certain restrictions may apply, depending on the optical media format.

The same restrictions apply to the user displays described in “Access using menus and displays” on page

57.

The following integrated file system commands are not supported by the QOPT file system:

v ADDLNK

v APYJRNCHG

v CHGJRNOBJ

v CHKIN

v CHKOUT

v ENDJRN

v SNDJRNE

v STRJRN

v WRKOBJOWN

v WRKOBJPGP

44 iSeries: Integrated File System

|

Use integrated file system APIs in the QOPT file system: All of the APIs listed in “Perform operations

using APIs” on page 90 can operate on the “root” (/) file system in a threadsafe manner, except for the

following:

v QjoEndJournal()

v QjoRetrieveJournalInformation()

v QJORJIDI()

v QJOSJRNE()

v QjoStartJournal()

NetWare file system (QNetWare)

The QNetWare file system provides access to data on a local or remote Integrated xSeries Server for

iSeries running Novell NetWare 4.10 or 4.11, or to stand alone PC Servers running Novell NetWare 3.12,

4.10, 4.11 or 5.0.

In addition, it:

v Provides access to NetWare Directory Services (NDS) objects.

v Supports data stored in stream files.

v Provides dynamic mounting of Netware File Systems into the local name space

Note: The QNetWare file system is available only when NetWare Enhanced Integration for iSeries 400®,

BOSS option 25, is installed on the system. After the next IPL following the installation, the

/QNetWare directory and its sub-directories appear as part of the integrated file system directory

structure.

See the following topics for more information about the QNetWare file system:

v Mount NetWare file systems

v QNetWare directory structure

v Use QNetWare through the integrated file system interface

Mount NetWare file systems

NetWare file systems located on Novell NetWare servers can be mounted on the “root” (/), QOpenSys,

and other file systems to make access easier and perform better than under the /QNetWare directory.

Mounting NetWare file systems can also be used to take advantage of the options on the Add Mounted

File System (ADDMFS) command, such as mounting a read-write file system as read-only.

NetWare file systems can be mounted using an NDS path or by specifying a NetWare path in the form of

SERVER/VOLUME:directory/directory. For example, to mount the directory doorway located in volume

Nest on server Dreyfuss, you would use this syntax:

DREYFUSS/NEST:doorway

This path syntax is very similar to the NetWare MAP command syntax. NDS paths can be used to specify

a path to a NetWare volume but cannot themselves be mounted.

QNetWare directory structure

The /QNetWare directory structure represents multiple distinct file systems:

v The structure represents Novell NetWare servers and volumes out in the network in the following

form:

/QNetWare/SERVER.SVR/VOLUME

The extension .SVR is used to represent a Novell NetWare server.

v When a volume under a server is accessed either through the integrated file system menus, commands,

or APIs, the root directory of the NetWare volume is automatically mounted on the VOLUME directory

under /QNetWare.

Integrated file system 45

v QNetWare represents NDS trees on the network in the following form:

/QNetWare/CORP_TREE.TRE/USA.C/ORG.O/ORG_UNIT.OU/SVR1_VOL.CN

The extension .TRE is used to represent NDS trees, .C represents countries, .O represents organizations,

.OU represents organizational units, and .CN is used to represent common names. If a Novell NetWare

volume is accessed through the NDS path through a volume object or an alias to a volume object, it’s

root directory is also automatically mounted on the NDS object.

Use QNetWare through the integrated file system interface

The QNetWare file system can be accessed through the integrated file system interface using either the

OS/400 file server or the integrated file system commands, user displays, and APIs. You should be aware

of the following considerations, limitations, and dependencies.

To see more information about the QNetWare file system, see:

v “Authorities and ownership in the QNetWare file system”

v “Audit in the QNetWare file system”

v “Files and directories in the QNetWare file system”

v “NDS objects in the QNetWare file system”

v “Links in the QNetWare file system”

v “Use integrated file system commands and displays in the QNetWare file system”

v “Use integrated file system APIs in the QNetWare file system” on page 47

Authorities and ownership in the QNetWare file system: Files and directories in QNetWare are stored

and managed by Novell NetWare servers. When using commands and APIs to retrieve or set the

authorities of either owners or users, QNetWare maps NetWare users to iSeries server users based on the

name of a user. If the NetWare name exceeds ten characters or a corresponding iSeries server user does

not exist, then the authority is not mapped. Owners that cannot be mapped are automatically mapped to

the user profile QDFTOWN. The authorities of users can be displayed and changed using the WRKAUT

and CHGAUT commands. When authorities are transferred to and from the server they are mapped to

iSeries server authorities.

Audit in the QNetWare file system: Although Novell NetWare supports the auditing of files and

directories, the QNetWare file system cannot change the auditing values of these objects. Therefore, the

CHGAUD command is not supported.

Files and directories in the QNetWare file system: The QNetWare file system does not preserve the

case in which files or directories are entered in a command or API. All names are set to uppercase in

transmission to the NetWare server. Novell NetWare also supports the namespaces of multiple platforms,

such as DOS, OS/2, Apple Macintosh, and NFS. The QNetWare file system only supports the DOS

namespace. Since the DOS namespace is required on all Novell NetWare volumes, all files and directories

will appear in the QNetWare file system.

NDS objects in the QNetWare file system: The QNetWare file system supports the display of NDS

names in uppercase and lowercase.

Links in the QNetWare file system: The QNetWare file system supports only one link to an object.

Symbolic links cannot be created or stored in QNetWare. However, symbolic links can be created in the

“root” (/) or QOpenSys directories that point to a QNetWare file or directory.

Use integrated file system commands and displays in the QNetWare file system: The commands listed

in “Access using CL commands” on page 58 can operate on the QNetWare file system, except for the

following:

 ADDLINK

 APYJRNCHG

 CHGAUD

46 iSeries: Integrated File System

CHGJRNOBJ

 CHGPGP

 CHKIN

 CHKOUT

 ENDJRN

 SNDJRNE

 STRJRN

 WRKOBJOWN

 WRKOBJPGP

In addition to the previous commands, the following commands cannot be used against NDS objects,

servers, or volumes:

 CHGOWN

 CPYFRMSTMF

 CPYTOSTMF

 CRTDIR

Use integrated file system APIs in the QNetWare file system: The APIs listed in “Perform operations

using APIs” on page 90 can operate on the QNetWare file system, except for the following APIs:

 givedescriptor()

 link()

 QjoEndJournal()

 QjoRetrieveJournalInformation()

 QJORJIDI()

 QJOSJRNE()

 QjoStartJournal()

 readlink()

 symlink()

 takedescriptor()

In addition to the previous APIs, the following APIs cannot be used against NDS objects, servers, or

volumes:

 chmod()

 chown()

 create()

 fchmod()

 fchown()

 fcntl()

 ftruncate()

 lseek()

 mkdir()

 read()

 readv()

 unmask()

 write()

 writev()

Integrated file system 47

|

iSeries NetClient file system (QNTC)

The QNTC file system provides access to data and objects that are stored on a local or remote Integrated

xSeries Server for iSeries running Windows NT 4.0 Server or higher or stand-alone server. It allows

iSeries server applications to use the same data as Windows clients.

The QNTC file system is part of the base OS/400 operating system. It is not necessary to have the iSeries

400 Integration with Windows NT Server, option 29 of the Operating System, installed to access /QNTC.

For more information about QNTC, see Use QNTC through the integrated file system interface.

Use QNTC through the integrated file system interface

By using the iSeries NetServer, iSeries Navigator, integrated file system commands, user displays, or

APIs, you can access the QNTC file system through the integrated file system interface. You should be

aware of the following considerations and limitations.

The following topics provide more information about the QNTC file system.

v “Authorities and ownership in the QNTC file system”

v “Case-sensitivity in the QNTC file system”

v “Path names in the QNTC file system”

v “Links in the QNTC file system” on page 49

v “Use integrated file system commands and displays in the QNTC file system” on page 49

v “Use the MKDIR command in the QNTC file system” on page 49

v “Use integrated file system APIs in the QNTC file system” on page 50

v “Enabling Kerberos for use with the QNTC file system” on page 50

Authorities and ownership in the QNTC file system: The QNTC file system does not support the

ownership concept of a file or directory. Attempts to use a command or API to change the ownership of

files that are stored in QNTC will fail. A system user profile, called QDFTOWN, owns all of the files and

directories in QNTC.

The authority to NT server files and directories is administered from the Windows NT server. QNTC

does not support the WRKAUT and CHGAUT commands.

Case-sensitivity in the QNTC file system: The QNTC file system preserves the same uppercase and

lowercase form in which object names are entered, but does not distinguish between uppercase and

lowercase in the names. A search for object names achieves the same result regardless of whether

characters in the names are uppercase or lowercase.

Path names in the QNTC file system:

v The path name must begin with a slash and can be up to 255 characters long.

v Path names are case sensitive.

v The path consists of the file system name, the Windows NT server name, the sharename, the directory

and sub-directory names, and the object name. Path names have the following form:

 /QNTC/Servername/Sharename/Directory/ . . . /Object

(QNTC is a required part of the path name.)

v The server name can be up to 15 characters long. It must be part of the path.

v The sharename can be up to 12 characters long.

v Each component of the path name after the sharename can be up to 255 characters long.

v Within QNTC, 130 levels of hierarchy are generally available. If all components of the path name are

included as hierarchy levels, the directory hierarchy can be as many as 132 levels deep.

v Names are stored in the Unicode CCSID.

48 iSeries: Integrated File System

|
|

|
|
|

|

v Each functional Windows NT server in the local subnet will automatically appear as a directory under

/QNTC. Use the Make Directory (MKDIR) command (see Table 7 on page 58) or mkdir() API (see

“Access using APIs” on page 74) to add Windows based servers outside the local subnet.

Links in the QNTC file system: The QNTC file system supports only one link to an object. You cannot

create or store symbolic links in QNTC. You can use a symbolic link from the “root” (/) or QOpenSys file

system to access data in QNTC.

See “Link” on page 11 for a description of links.

Use integrated file system commands and displays in the QNTC file system: The commands listed in

“Access using CL commands” on page 58 can operate on the QNTC file system, except for the following:

 ADDLNK

 APYJRNCHG

 CHGJRNOBJ

 CHGOWN

 CHGAUT

 CHGPGP

 CHKIN

 CHKOUT

 DSPAUT

 ENDJRN

 RST (available with Integrated xSeries® Servers)

 SAV (available with Integrated xSeries Servers)

 SNDJRNE

 STRJRN

 WRKAUT

 WRKOBJOWN

 WRKOBJPGP

The same restrictions apply to the user displays that are described in “Access using menus and displays”

on page 57.

Use the MKDIR command in the QNTC file system: Use the Make Directory (MKDIR) command to

add a server directory to the /QNTC directory. A QNTC directory is automatically created for all

functional Windows servers in the iSeries NetServer’s domain and the local subnet. Those Windows

based servers outside the local subnet or iSeries NetServer domain must be added using the MKDIR

command or mkdir() API. For example:

MKDIR ’/QNTC/NTSRV1’

would add the NTSRV1 server into the QNTC file system directory structure to enable access of files and

directories on that server.

You can also add the a new server to the directory structure by using the TCP/IP address. For example:

MKDIR ’/QNTC/9.130.67.24’

would add the server into the QNTC file system directory structure.

Note: By configuring iSeries NetServer for WINS it is possible to automatically create directories for

servers beyond your subnet.

Integrated file system 49

|

|

|

Note: If you use mkdir() API or the MKDIR CL command to add directories to the directory structure,

they will not remain visible across IPLs. The MKDIR command or mkdir() API must be reissued

after every system IPL.

Use integrated file system APIs in the QNTC file system: The APIs listed in “Perform operations using

APIs” on page 90 can operate on the QNTC file system, except for the following:

v The chmod(), fchmod(), utime(), and umask() functions will have no effect on objects in QNTC, but

attempting to use them will not cause an error.

v The QNTC file system does not support the following functions:

 chown()

 fchown()

 givedescriptor()

 link()

 QjoEndJournal()

 QjoRetrieveJournalInformation()

 QJORJIDI()

 QJOSJRNE()

 QjoStartJournal()

 Qp0lGetPathFromFileID()

 readlink()

 symlink()

 takedescriptor()

Enabling Kerberos for use with the QNTC file system: QNTC allows iSeries access to Windows-based

servers that support the kerberos V5 authentication protocol. Rather than using a LAN manager type

password to authenticate with each server, a properly configured iSeries will now be able to access

supported CIFS servers with a single logon transaction.

Before enabling kerberos for use with the QNTC file system, you must first configure the following:

v Network authentication service

v Enterprise Identity Mapping (EIM)

Once the above items have been configured, you can then enable a user to use kerberos with the QNTC

file system. The following steps are needed to allow a user to take advantage of the QNTC kerberos

support.

v The user’s iSeries user profile must have the local password management parameter, LCLPWDMGT,

set to *NO. By specifying *NO, the user will not have a password to the system and will not be able to

sign on to a 5250 session. The only access to the system will be through kerberos enabled applications

such as iSeries Navigator.

If the user specifies *YES, the password will be managed by the system and the user will be

authenticated without kerberos.

v You must have a kerberos ticket and an iSeries Navigator connection.

v The kerberos ticket for the iSeries you are using must be forwardable. To make a ticket forwardable,

follow these steps:

– Access the ’Active Directory Users and Computers’ tool on the KDC for your kerberos realm

– Select users

– Select the name that corresponds to the service principal name

– Select Properties

– Select the Account tab

50 iSeries: Integrated File System

|
|
|
|

|

|

|

|
|
|

|
|
|
|

|
|

|

|
|

|

|

|

|

|

– In the Account options check ’Account is trusted for delegation’

OS/400 File Server file system (QFileSvr.400)

The OS/400 file server file system provides transparent access to other file systems that reside on remote

iSeries servers. It is accessed through a hierarchical directory structure.

The QFileSvr.400 file system can be thought of as a client that acts on behalf of users to perform file

requests. QFileSvr.400 interacts with the OS/400 file server on the target system to perform the actual file

operation.

For more information about QFileSvr.400, see Use QFileSvr.400 through the integrated file system

interface.

Use QFileSvr.400 through the integrated file system interface

The QFileSvr.400 file system can be accessed through the integrated file system interface using either the

OS/400 file server or the integrated file system commands, user displays, and APIs. In using the

integrated file system interfaces, you should be aware of the following considerations and limitations.

Note: The characteristics of the QFileSvr.400 file system are determined by the characteristics of the file

system being accessed on the target server.

The following topics provide more information about the QFileSvr.400 file system.

v “Case-sensitivity in the OS/400 file server file system”

v “Path names in the OS/400 file server file system”

v “Communications in the OS/400 file server file system” on page 52

v “Security and object authority in the OS/400 file server file system” on page 53

v “Links in the OS/400 file server file system” on page 53

v “Use integrated file system commands and displays in the OS/400 file server file system” on page 53

v “Use integrated file system APIs in the OS/400 file server file system” on page 54

Case-sensitivity in the OS/400 file server file system: For a first-level directory, which actually

represents the “root” (/) directory of the target system, the QFileSvr.400 file system preserves the same

uppercase and lowercase form in which object names are entered. However, no distinction is made

between uppercase and lowercase when QFileSvr.400 searches for names.

For all other directories, case-sensitivity is dependent on the specific file system being accessed.

QFileSvr.400 preserves the same uppercase and lowercase form in which object names are entered when

file requests are sent to the OS/400 file server.

Path names in the OS/400 file server file system:

v Path names have the following form:

 /QFileSvr.400/RemoteLocationName/Directory/Directory . . . /Object

The first-level directory (that is, RemoteLocationName in the example shown above) represents both of

the following:

– The name of the target server that will be used to establish a communications connection. The target

server name can be either of the following:

- A TCP/IP host name (for example, beowulf.newyork.corp.com)

- An SNA LU 6.2 name (for example. appn.newyork).
– The “root” (/) directory of the target server

Therefore, when a first-level directory is created using an integrated file system interface, any specified

attributes are ignored.

Integrated file system 51

|

Note: First-level directories are not persistent across IPLs. That is, the first-level directories must be

created again after each IPL.

v Each component of the path name can be up to 255 characters long. The full path name can be up to

16 megabytes long.

Note: The file system in which the object resides may restrict the component length and path name

length to less than the maximum allowed by QFileSvr.400.

v There is no limit to the depth of the directory hierarchy, other than program and system limits and any

limits imposed by the file system being accessed.

v The characters in names are converted to UCS2 Level 1 form when the names are stored (see “Name

continuity” on page 17).

Communications in the OS/400 file server file system:

v TCP connections with the file server on a target server can be established only if the QSERVER

subsystem on the target server is active.

v SNA LU 6.2 connections are attempted only if there is a locally controlled session that is not in use (for

example, a session specifically established for use by the LU 6.2 connection). When establishing LU 6.2

connections, the QFileSvr.400 file system uses a mode of BLANK. On the target system, a job named

QPWFSERV is submitted to the QSERVER subsystem. The user profile of this job is defined by the

communications entry for the BLANK mode. For more information about LU 6.2 communications, see

the publication APPC Programming

.

v File server requests that use TCP as the communications protocol are performed within the context of

the job that is issuing the request. File server requests that use SNA as the communications protocol are

performed by the OS/400 system job Q400FILSVR.

v If a connection is not already established with the target server, the QFileSvr.400 file system assumes

that the first-level directory represents a TCP/IP host name. The QFileSvr.400 file system goes through

the following steps to establish a connection with the target server:

1. Resolve the remote location name to an IP address.

2. Connect to the host server’s server mapper on well-known port 449 using the resolved IP address.

Then send a query to the server mapper for the service name “as-file.” One of the following occurs

as result of the query:

– If “as-file” is in the service table on the target server, the server mapper returns the port on

which the OS/400 file server daemon is listening.

– If the server mapper is not active on the target server, the default port number for “as-file”

(8473) is used.

The QFileSvr.400 file system then tries to establish a TCP connection with the OS/400 file server

daemon on the target server. When the connection is established, QFileSvr.400 exchanges requests

and replies with the file server. Within the QSERVER subsystem, the QPWFSERVSO prestart

requests take control of the connection. Each prestart job runs under its own user profile.

3. If the remote location name is not resolved to an IP address, the first-level directory is assumed to

be an SNA LU 6.2 name. Therefore, an attempt is made to establish an APPC connection with the

OS/400 file server.
v The QFileSvr.400 file system periodically (every 2 hours) checks to determine if there are any

connections that are not being used (for example, no opened files associated with the connection) and

those connections had no activity during a 2-hour period. If such a connection is found, the connection

is ended.

v The QFileSvr.400 file system cannot detect loops. The following path name is an example of a loop:

 /QFileSvr.400/Remote2/QFileSvr.400/Remote1/QFileSvr.400/Remote2/...

where Remote1 is the local system. When the path name that contains a loop is specified, the

QFileSvr.400 file system returns an error after a brief period of time. The error indicates that a time-out

has occurred.

52 iSeries: Integrated File System

The QFileSvr.400 file system will use an existing free session when communicating over SNA. It is

necessary to start the mode and establish a session for the QFileSvr.400 to successfully connect to the

remote communications system.

Security and object authority in the OS/400 file server file system: If both of the systems have

Kerberos configured, and the user has authenticated to Kerberos, then Kerberos may be used to

authenticate a file system that resides on a target iSeries server. If the Kerberos authentication fails, then

the user ID and password may be used to verify access.

Note: If the ticket-granting ticket or the server ticket expires after the target server has verified your

access, the expiration will not be effective until the connection to the target server has ended. For

more information about Kerberos, see the Network authentication service topic in the iSeries

Information Center.

v To access a file system that resides on a target iSeries server, you must have a user ID and password

on the target server that matches the user ID and password on the local server if Kerberos is not used

to authenticate.

Note: If your password on the local or target server is changed after the target server has verified your

access, then the change is not reflected until the connection to the target server has ended.

However, there is no delay if your user profile on the local server is deleted and another user

profile is created with the same user ID. In this case, the QFileSvr.400 file system verifies that

you have access to the target server.

v Object authority is based on the user profile that resides on the target server. That is, you are allowed

to access an object in the file system on the target server only if your user profile on the target server

has the proper authority to the object.

Links in the OS/400 file server file system: The QFileSvr.400 file system supports only one link to an

object. Symbolic links cannot be created or stored in QFileSvr.400. However, files in QFileSvr.400 can be

accessed by using a symbolic link from the “root” (/), QOpenSys, or user-defined file systems.

See “Link” on page 11 for a description of links.

Use integrated file system commands and displays in the OS/400 file server file system: The

commands listed in “Access using CL commands” on page 58 can operate on the QFileSvr.400 file

system, except for the following:

 ADDLNK

 APYJRNCHG

 CHGAUT

 CHGJRNOBJ

 CHGOWN

 DSPAUT

 ENDJRN

 RST

 SAV

 SNDJRNE

 STRJRN

 WRKOBJOWN

 WRKOBJPGP

The same restrictions apply to the user displays described in “Access using menus and displays” on page

57.

Integrated file system 53

|

Use integrated file system APIs in the OS/400 file server file system: The APIs listed in “Perform

operations using APIs” on page 90 can operate on the QFileSvr.400 file system, except for the following:

 chown()

 fchown()

 fclear()

 fclear64()

 givedescriptor()

 link()

 QjoEndJournal()

 QjoRetrieveJournalInformation()

 QJORJIDI()

 QJOSJRNE

 QjoStartJournal

 Qp0lGetPathFromFileID()

 symlink()

 takedescriptor()

Network file system (NFS)

The NFS file system provides the user with access to data and objects that are stored on a remote NFS

server. An NFS server can export a network file system that NFS clients will then mount dynamically.

In addition, any file system mounted locally through the Network File System will have the features,

characteristics, limitations, and dependencies of the directory or file system it was mounted from on the

remote server. Operations on mounted file systems are not performed locally. Requests flow through the

connection to the server and must obey the requirements and restrictions of the type of file system on the

server.

For more information about NFS, see Use NFS file systems through the integrated file system interface.

Use NFS file systems through the integrated file system interface

The Network File System is accessible through the integrated file system interface and has the following

considerations and limitations.

The following topics provide more information about the NFS file system.

v “Characteristics of the network file system”

v “Variations of servers and clients in the network file system” on page 55

v “Links in the network file system” on page 55

v “Use integrated file system commands in the network file system” on page 55

v “Use integrated file system APIs in the network file system” on page 56

Characteristics of the network file system: The characteristics of any file system mounted through NFS

are dependent upon the type of file system that was mounted from the server. It is important to realize

that requests performed on what appears to be a local directory or file system are really operating on the

server through the NFS connection.

This client/server relationship can be confusing. Consider, for example, that you mounted the QDLS file

system from the server on top of a branch of the “root” (/) directory of your client. Although the

mounted file system would appear to be an extension of the local directory, it would actually function

and perform as the QDLS file system.

54 iSeries: Integrated File System

|

|

Realizing this relationship for file systems mounted through NFS is important for processing requests

locally and through the server connection. Just because a command processes correctly on the local level

does not mean that it will work on the directory mounted from the server. Each directory mounted on

the client will have the properties and characteristics of the server file system.

Variations of servers and clients in the network file system: There are three major possibilities for

client/server connections that can affect how the Network File System will function and what its

characteristics will be:

1. The user mounts a file system from an iSeries server on a client.

2. The user mounts a file system from a UNIX server on a client.

3. The user mounts a file system from a non-iSeries, non-UNIX server on a client.

In the first scenario, the mounted file system will behave on the client similarly to how it behaves on the

iSeries server. However, both the characteristics of the Network File System and the file system being

served need to be taken into account. For example, if you mount the QDLS file system from the server to

the client, it will have the characteristics and limitations of the QDLS file system. For example, in the

QDLS file system, path name components are limited to 8 characters plus a 3 character extension.

However, the mounted file system will also have NFS characteristics and limitations. For example, you

cannot use the CHGAUD command to change the auditing value of an NFS object.

In the second scenario, it is important to realize that any file system mounted from a UNIX server will

behave most similar to the iSeries server QOpenSys file system. To find out more about the QOpenSys

file system, see “Open systems file system (QOpenSys)” on page 30.

In the third scenario, you will need to review the documentation for the file system associated with the

server’s operating system.

Links in the network file system: Generally, multiple hard links to the same object are allowed in the

Network File System. Symbolic links are fully supported. A symbolic link can be used to link from a

Network File System to an object in another file system. The capabilities for multiple hard links and

symbolic links are completely dependent on the file system that is being mounted with NFS.

See “Link” on page 11 for a description of links.

Use integrated file system commands in the network file system: All of the commands that are listed

in “Access using CL commands” on page 58 and the displays that are described in “Access using menus

and displays” on page 57 can operate on the Network File System, except for the following:

v APYJRNCHG

v CHGJRNOBJ

v CHGAUD

v CHGATR

v CHGAUT

v CHGOWN

v CHGPGP

v CHKIN

v CHKOUT

v ENDJRN

v SNDJRNE

v STRJRN

There are some CL commands that are specific to the Network File System and other mounted file

systems in general. However, it may not be safe to use these commands in a multi-thread capable

Integrated file system 55

|

process. The following table describes these commands. For a complete description of commands and

displays that are related specifically to the Network File System, see OS/400 Network File System

Support

.

 Table 6. Network File System CL Commands

Command Description

ADDMFS Add Mounted File System. Places exported, remote server file systems over local

client directories.

CHGNFSEXP Change Network File System. Export Adds or removes directory trees to the export

table of file systems that are exported to Network File System clients.

DSPMFSINF Display Mounted File System Information. Displays information about a mounted

file system.

ENDNFSSVR End Network File System Server. Ends one or all of the Network File System

daemons on the server.

EXPORTFS Export a File System. Adds or removes directory trees to the export table of file

systems that are exported to Network File System clients.

MOUNT Mount a File System. Places exported, remote server file systems over local client

directories. This command is an alias for the ADDMFS command.

RLSIFSLCK Release Integrated File System Locks. Releases all Network File System byte-range

locks held by a client or on an object.

RMVMFS Remove Mounted File System. Removes exported, remote server file systems from

the local client namespace.

STRNFSSVR Start Network File System Server. Starts one or all of the Network File System

daemons on the server.

UNMOUNT Unmount a File System. Removes exported, remote server file systems from the local

client namespace. This command is an alias for the RMVMFS command.

Note: A Network File System must be mounted before any commands can be used on it.

Use integrated file system APIs in the network file system: All of the APIs that are listed in “Perform

operations using APIs” on page 90 can operate on the network file system, except for the following:

v QjoEndJournal()

v QjoRetrieveJournalInformation()

v QJORJIDI()

v QJOSJRNE()

v QjoStartJournal()

For a complete description of the C language functions that are related specifically to the Network File

System, see OS/400 Network File System Support

.

Note: A Network File System must be mounted before any APIs can be used on it.

Access the integrated file system

All of the user interfaces, such as menus, commands, and displays, that are used to work with your

system’s libraries, objects, database files, folders, and documents still operate as they did before the

introduction of the integrated file system. These interfaces, however, cannot be used to work with the

stream files, directories, and other objects supported by the integrated file system.

56 iSeries: Integrated File System

A separate set of user interfaces is provided for the integrated file system. These interfaces can be used

on objects in any file system that can be accessed through the integrated file system directories.

You can interact with the directories and objects of the integrated file system from your server by using

menus and displays or by using control language (CL) commands. Additionally, you can use application

program interfaces (APIs) to take advantage of the stream files, directories, and other support of the

integrated file system.

You can also interact with the integrated file system through iSeries Navigator, a graphical user interface

used for managing and administering your server from your Windows desktop.

There are several ways to interact with the integrated file system:

Access using menus and displays
You can perform operations on files and other objects in the integrated file system by using a set of

menus and displays provided by your server.

Access using CL commands
CL commands can operate on files and other objects in any file system that are accessible through

the integrated file system.

Access using APIs
The application program interfaces (APIs) that perform operations on integrated file system

directories and stream files are in the form of C language functions.

Access using iSeries Navigator
iSeries Navigator is the graphical user interface for managing and administering your servers from

your Windows desktop.

Access using iSeries NetServer
Through iSeries NetServer, Windows users can access OS/400 shared directory paths and shared

output queues.

Access using file transfer programs
File transfer programs transfers files from several different file systems. It also will transfer folders

and documents found in the QDLS file system.

Access using a PC
A PC connected to the iSeries allows for interaction with directories and objects stored in the

integrated file system. The directories and objects will appear as if they are stored on your PC.

Access using menus and displays

You can perform operations on files and other objects in the integrated file system by using a set of

menus and displays provided by your server. To display integrated file system menus:

1. Sign on to your server.

2. Press Enter to continue.

3. Select the Files, Libraries, and Folders option from the iSeries main menu.

4. Select the Integrated File System option from the Files, Libraries, and Folders menu.

From here, you can work with Directory commands, Object commands, or Security commands in the

integrated file system, depending upon your needs. However, If you know the CL command you will be

using, you can type it at the command line at the bottom of the screen and press Enter, bypassing the

menu of options.

Integrated file system 57

Additionally, you can access the integrated file system from any menu on your server by performing the

following steps:

1. Type GO DATA on any command line to display the Files, Libraries, and Folders menu.

2. Select the option Integrated file system.

To see a menu of Network File System commands, type GO CMDNFS on any command line. To see a menu

of user-defined file system commands, type GO CMDUDFS on any command line.

From the integrated file system menus, you can request displays on which you can do the following

operations:

v Create, convert, and remove a directory

v Display and change the name of the current directory

v Add, display, change, and remove object links

v Copy, move, and rename objects

v Check out and check in objects

v Save (back up) and restore objects

v Display and change object owners and user authorities

v Display and change attributes of objects

v Copy data between stream files and database file members

v Create, delete, and display the status of user-defined file systems

v Export file systems from a server

v Mount and unmount file systems on a client

Some file systems do not support all of these operations. For restrictions in particular file systems, see

Work with file systems.

Refer to the following topic for more information about integrated file system menus and displays:

v Path name rules for CL commands and displays

v Access using CL commands

Access using CL commands

All of the operations that you can do through the integrated file system menus and displays (see “Access

using menus and displays” on page 57) can be done by entering control language (CL) commands. These

commands can operate on files and other objects in any file system that are accessible through the

integrated file system interface.

Table 1 summarizes the integrated file system commands. For more information about CL commands that

are specifically related to user-defined file systems, the Network File System, and mounted file systems in

general, see “User-defined file system (UDFS)” on page 31 and “Network file system (NFS)” on page 54.

Where a command performs the same operation as an OS/2 or DOS command, an alias (an alternative

command name) is provided for the convenience of OS/2 and DOS users.

 Table 7. Integrated File System Commands

Command Description Alias

ADDLNK Add Link. Adds a link between a directory and an object.

ADDMFS Add Mounted File System. Places exported, remote server file

systems over local client directories.

MOUNT

APYJRNCHG2 Apply Journaled Changes. Uses journal entries to apply changes

that have occurred since a journaled object was saved or to apply

changes up to a specified point.

58 iSeries: Integrated File System

Table 7. Integrated File System Commands (continued)

Command Description Alias

CHGATR Change Attribute. Change an attribute for a single object, a group

of objects, or a directory tree where the directory, its contents, and

the contents of all of its subdirectories have the attribute changed.

CHGAUD Change Auditing Value. Turns auditing on or off for an object.

CHGAUT Change Authority. Gives specific authority for an object to a user

or group of users.

CHGCURDIR Change Current Directory. Changes the directory to be used as

the current directory.

CD, CHDIR

CHGJRNOBJ2 Change Journaled Objects. Changes the journaling attributes of an

object or list of objects without the need to end and restart

journaling for the object.

CHGNFSEXP Change Network File System Export. Adds directory trees to or

removes them from the export table that is exported to NFS

clients.

EXPORTFS

CHGOWN Change Owner. Transfers object ownership from one user to

another.

CHGPGP Change Primary Group. Changes the primary group from one

user to another.

CHKIN Check In. Checks in an object that was previously checked out.

CHKOUT Check Out. Checks out an object, which prevents other users from

changing it.

CPY Copy. Copies a single object or a group of objects. COPY

CPYFRMSTMF Copy from Stream File. Copies data from a stream file to a

database file member.

CPYTOSTMF Copy to Stream File. Copies data from a database file member to

a stream file.

CRTDIR Create Directory. Adds a new directory to the system. MD, MKDIR

CRTUDFS Create UDFS. Creates a User-Defined File System.

CVTDIR Convert directory. Provides information about converting

integrated file system directories from *TYPE1 format to *TYPE2

format.

CVTRPCSRC Convert RPC Source. Generates C code from an input file written

in the Remote Procedure Call (RPC) language.

RPCGEN

DLTUDFS Delete UDFS. Deletes a User-Defined File.

DSPAUT Display Authority. Shows a list of authorized users of an object

and their authorities for the object.

DSPCURDIR Display Current Directory. Shows the name of the current

directory.

DSPLNK Display Object Links. Shows a list of objects in a directory and

provides options to display information about the objects.

DSPF Display Stream File. Displays a stream file or a database file.

DSPMFSINF Display Mounted File System Information. Displays information

about a mounted file system.

STATFS

DSPUDFS Display UDFS. Displays User-Defined File System.

EDTF Edit Stream File. Edits a stream file or a database file.

Integrated file system 59

||
|
|

|

Table 7. Integrated File System Commands (continued)

Command Description Alias

ENDJRN2 End Journal. End the journaling of changes for an object or list of

objects.

ENDNFSSVR End Network File System Server. Ends one or all of the NFS

daemons on the server and the client.

ENDRPCBIND End RPC Binder Daemon. Ends the Remote Procedure Call (RPC)

RPCBind daemon.

MOV Move. Moves an object to a different directory MOVE

PRTDIRINF Print Directory Information. Used to print directory information

for objects in the integrated file system that was collected by the

Retrieve Directory Information (RTVDIRINF) command.

RLSIFSLCK Release Integrated File System Locks. Releases all byte-range locks

held by an NFS client or on an object.

RMVDIR Remove Directory. Removes a directory from the system. RD, RMDIR

RMVLNK Remove Link. Removes the link to an object DEL, ERASE

RMVMFS Remove Mounted File System. Removes exported, remote server

file systems from the local client directories.

UNMOUNT

RNM Rename. Changes the name of an object in a directory. REN

RPCBIND Start RPC Binder Daemon. Starts the Remote Procedure Call

(RPC) RPCBind Daemon.

RST Restore. Copies an object or group of objects from a backup

device to the system

RTVCURDIR Retrieve Current Directory. Retrieves the name of the current

directory and puts it into a specified variable (used in CL

programs)

RTVDIRINF Retrieve Directory Information. Used to collect attributes for

objects in the integrated file system.

SAV Save. Copies an object or group of objects from the system to a

backup device

SNDJRNE2 Send Journal Entry. Adds user journal entries, optionally

associated with a journaled object, to a journal receiver.

STRJRN2 Start Journal. Start journaling changes (made to an object or list of

objects) to a specific journal.

STRNFSSVR Start Network File System Server. Starts one or all of the NFS

daemons on the server and client.

WRKAUT Work with Authority. Shows a list of users and their authorities

and provides options for adding a user, changing a user authority,

or removing a user.

WRKLNK Work with Object Links. Shows a list of objects in a directory and

provides options for performing actions on the objects.

WRKOBJOWN1 Work with Objects by Owner. Shows a list of objects owned by a

user profile and provides options for performing actions on the

objects.

WRKOBJPGP1 Work with Objects by Primary Group. Shows a list of objects

controlled by a primary group and provides options for

performing actions on the objects.

Note:

60 iSeries: Integrated File System

||
|
|

|

|
|

||
|
|

1. The WRKOBJOWN and WRKOBJPGP commands can display all object types but may not be

fully functional in all file systems.

2. See Journal management in the iSeries Information Center for more information.

Refer to the following topics for more information about integrated file system CL commands and

restrictions on using these commands in particular file systems:

v Work with file systems

v Path name rules for CL commands and displays

v Work with output of the RTVDIRINF and PRTDIRINF commands

v The CL topic in the iSeries Information Center

Path name rules for CL commands and displays

When using an integrated file system command or display to operate on an object, you identify the object

by supplying its path name. Following is a summary of rules to keep in mind when specifying path

names. The term object in these rules refers to any directory, file, link, or other object.

v Object names must be unique within each directory.

v The path name that is passed to an integrated file system CL command must be represented in the

CCSID currently in effect for the job. If the CCSID of the job is 65535, the path name must be

represented in the default CCSID of the job. Because text strings are normally encoded in CCSID 37, it

is necessary to convert hard-coded path names to the job CCSID before passing the path to the

command.

v Path names must be enclosed in apostrophe (') marks when entered on a command line. These marks

are optional when path names are entered on displays. If the path name includes any quoted strings,

however, the enclosing ' ' marks must also be included.

v Path names are entered left-to-right, beginning with the highest level directory and ending with the

name of the object to be operated on by the command. The name of each component in the path is

separated by a slash (/) or back slash (\); for example:

 ’Dir1/Dir2/Dir3/UsrFile’

or

 ’Dir1\Dir2\Dir3\UsrFile’

v The / and \ characters and nulls cannot be used in the individual components of the path name

(because the / and \ are used as separators). Lowercase letters are not changed to uppercase letters by

the commands. The name may or may not be changed to uppercase, depending on whether the file

system containing the object is case-sensitive and whether the object is being created or searched for.

v The length of an object name is limited by the file system the object is in and the maximum length of a

command string. The commands will accept object names up to 255 characters long and path names up

to 5000 characters long.

See Work with file systems for path name limits in each file system.

v A / or \ character at the beginning of a path name means that the path begins at the topmost

directory, the “root” (/) directory; for example:

 ’/Dir1/Dir2/Dir3/UsrFile’

v If the path name does not begin with a / or \ character, the path is assumed to begin at the current

directory of the user entering the command; for example:

 ’MyDir/MyFile’

where MyDir is a subdirectory of the user’s current directory.

v A tilde (~) character followed by a slash (or backslash) at the beginning of a path name means that the

path begins at the home directory of the user entering the command; for example:

 ’~/UsrDir/UsrObj’

v A tilde (~) character followed by a user name and then a slash (or backslash) at the beginning of a

path name means that the path begins at the home directory of the user identified by the user name;

for example:

Integrated file system 61

|

’~user-name/UsrDir/UsrObj’

v In some commands, an asterisk (*) or a question mark (?) can be used in the last component of a path

name to search for patterns of names. The * tells the system to search for names that have any number

of characters in the position of the * character. The ? tells the system to search for names that have a

single character in the position of the ? character. The following example searches for all objects whose

names begin with d and end with txt:

 ’/Dir1/Dir2/Dir3/d*txt’

The following example searches for objects whose names begin with d followed by any single character

and end with txt:

 ’/Dir1/Dir2/Dir3/d?txt’

v To avoid confusion with iSeries server special values, path names cannot start with a single asterisk (*)

character. To perform a pattern match at the beginning of a path name, use two asterisks (*); for

example:

 ’**.file’

Note: This only applies to relative path names where there are no other characters before the asterisk

(*).

v When operating on objects in the QSYS.LIB file system, the component names must be of the form

name.object-type; for example:

 ’/QSYS.LIB/PAY.LIB/TAX.FILE’

See “Library file system (QSYS.LIB)” on page 36 for more details.

v When operating on objects in the Independent ASP QSYS.LIB file system, the component names must

be of the form name.object-type; for example:

 ’/asp_name/QSYS.LIB/PAYDAVE.LIB/PAY.FILE

See “Independent ASP QSYS.LIB” on page 38 for more details.

v The path name must be enclosed in additional sets of apostrophes (') or quotation marks (") if any of

the following characters is used in a component name:

– Asterisk (*)

– Question mark (?)

– Apostrophe (')

– Quotation mark (")

– Tilde (~), if used as the first character in the first component name of the path name (if used in any

other position, the tilde is interpreted as just another character)

For example:

 ’“/Dir1/Dir/A*Smith”’

or

 ’’’/Dir1/Dir/A*Smith’’’

This practice is not recommended because the meaning of the character in a command string can be

confused and it is more likely that the command string will be entered incorrectly.

v Do not use a colon (:) in path names. It has a special meaning within the system.

v The processing support for commands and associated user displays does not recognize code points

below hexadecimal 40 as characters that can be used in command strings or on displays. If these code

points are used, they must be entered as a hexadecimal representation, such as the following:

 crtdir dir(X’02’)

Therefore, use of code points below hexadecimal 40 in path names is not recommended. This

restriction applies only to commands and associated displays, not to APIs (see “Access using APIs” on

page 74). In addition, a value of hexadecimal 0 is not allowed in path names.

For restrictions on using a particular command, see the command help or the Control language (CL) topic

in the iSeries Information Center.

62 iSeries: Integrated File System

Work with output of the RTVDIRINF and PRTDIRINF commands

The RTVDIRINF command is used to collect attributes for objects in the integrated file system. The

collected information is stored in database files (tables) that are named using the information file prefix

specified by the INFFILEPFX parameter. The tables are created in the library specified by the INFLIB

parameter. For more information such as how the database files or tables are named, see RTVDIRINF.

Three tables are created as a result of the RTVDIRINF command. One table stores object attributes, one is

for directories, and the last table is used to determine which files were used to store object attributes.

“Accessing the data of RTVDIRINF” on page 73 contains information about how you can access the data

in these three tables. For more information about how to use the data, see “Using the data of

RTVDIRINF” on page 74.

Table 8 describes the fields that are provided for the table which stores the object attributes. If *GEN is

specified in the INFFILEPFX parameter, the database files will be created with a unique prefix generated

by this command. The prefix will begin with QAEZD followed by four digits. The files created to store

the collected information will be named using this prefix followed by either the letter ’D’ (for the file

which contains directory information) or the letter ’O’ (for the file that contains information about objects

in directories). For example, the first time the command is run with *GEN specified, files QAEZD0001D

and QAEZD0001O will be created in the library specified by the INFLIB parameter. Users may specify a

file prefix to use for naming this database, which can be up to nine characters long.

 Table 8. QAEZDxxxxO (Store object’s attributes)

Field Name Field Type Field Description

QEZDIRIDX INTEGER The parent directory index.

QEZOBJNAM

1 VARGRAPHIC

(1024)

The object name.

2

QEZOBJLEN INTEGER Number of bytes contained in the object name field.

QEZNMCCSID INTEGER The CCSID in which a the object name is represented.

QEZREGION GRAPHIC (2) A two character ID representing the country of the object name. (Affects

actions which tend to be defined by the location of the action, such as

collating sequence.)

QEZLANGID GRAPHIC (3) A three character ID representing the language the object name is in.

QEZMODE INTEGER The file access mode and type. For more information about mode, see Open

file open() API.

QEZOBJTYPE

1 GRAPHIC (10) The object type.

QEZCCSID INTEGER The CCSID of the data and extended attributes of the object.

QEZALCSIZE

1 BIGINT The number of bytes that have been allocated for this object.

QEZDTASIZE BIGINT The size in bytes of the data in this object. This size does not include object

headers or the size of extended attributes associated with the object.

QEZEAS BIGINT Number of extended attributes associated with this object.

QEZCEAS BIGINT Number of critical extended attributes associated with this object.

QEZEXTATRS BIGINT Total number of bytes for all the extended attribute data.

QEZCRTTIM TIMESTAMP The date and time at which the object was created.

QEZACCTIM TIMESTAMP The date and time that the object’s data was last accessed.

QEZCHGTIMA

1 TIMESTAMP The date and time that the object’s attributes were last changed.

QEZCHGTIMD TIMESTAMP The date and time that the object’s data was last changed.

Integrated file system 63

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

||

|||

|||

||
|
|

|||

|||

|||
|
|

|||

|||
|

|||

|||

|||

|||
|

|||

|||

|||

|||

|||

|||

|||

Table 8. QAEZDxxxxO (Store object’s attributes) (continued)

Field Name Field Type Field Description

QEZSTGFREE

1 SMALLINT Whether the object’s data has been moved offline, freeing its online storage.

Valid values are:

0 - The object’s data is not offline.

1 - The object’s data is offline.

QEZCHKOUT

1 SMALLINT An indicator as to whether an object is checked out. Valid values are:

0 - The object is not checked out.

1 - The object is checked out.

QEZCHKOWN GRAPHIC (10) The user who has the object checked out. This field is blank if it is not

checked out.

QEZCHKTIM TIMESTAMP The date and time the object was checked out. If the object is not checked

out, this field will not contain any data.

QEZLOCAL SMALLINT Whether an object is stored locally or stored on a remote system. The

decision of whether an object is local or remote varies according to the

respective file system rules. Objects in file systems that do not carry either a

local or remote indicator are treated as remote. Valid values are:

1 - The object’s data is stored locally.

2 - The object’s data is on a remote system.

QEZOWN

1 GRAPHIC (10) The name of the user profile that is the owner of the object or the following

special value:

*NOUSRPRF - This special value is used by the Network File System to

indicate that there is no user profile on the local iSeries server with a user

ID (UID) matching the UID of the remote object.

QEZUID INTEGER Each user on the system must have a unique numeric user identification

number (UID).

QEZOWNPGP GRAPHIC (10) The name of the user profile that is the primary group of the object or the

following special values:

*NONE - The object does not have a primary group

*NOUSRPRF - This special value is used by the Network File System to

indicate that there is no user profile on the local server with a group ID

(GID) matching the GID of the remote object.

QEZGID INTEGER Group profiles are identified by a unique numeric group identification

number (GID).

QEZAUTLST GRAPHIC (10) The name of the authorization list that is used to secure the named object.

The value *NONE indicates that no authorization list is used in determining

authority to the object.

QEZASP SMALLINT The auxiliary storage pool in which the object is stored.

QEZJRNSTS

1 SMALLINT Current journaling status of the object. This field will be one of the

following values:

0 (NOT_JOURNALED) - The object is currently not being journaled.

1 (JOURNALED) - The object is currently being journaled.

64 iSeries: Integrated File System

|

|||

|||
|

|

|

|||

|

|

|||
|

|||
|

|||
|
|
|

|

|

|||
|

|
|
|

|||
|

|||
|

|

|
|
|

|||
|

|||
|
|

|||

|||
|

|

|

Table 8. QAEZDxxxxO (Store object’s attributes) (continued)

Field Name Field Type Field Description

QEZJSUBTRE SMALLINT When this flag is returned, this object is a directory with integrated file

system journaling subtree semantics.

0 - The object is not journaled with subtree semantics.

1 - The object is journaled with subtree semantics. New objects created

within this directory’s subtree will inherit the journaling attributes and

options from this directory.

QEZJOPTENT SMALLINT When journaling is active, entries that are considered optional are

journaled. The list of optional journal entries varies for each object type.

0 - Object is not journaled with optional entries.

1 - Object is journaled with optional entries.

QEZJAFTERI SMALLINT When journaling is active, the image of the object after a change is

journaled.

0 - Object is not journaled with after images.

1 - Object is journaled with after images.

QEZJBEFORI SMALLINT When journaling is active, the image of the object before a change is

journaled.

0 - Object is not journaled with before images.

1 - Object is journaled with before images.

QEZJRNID GRAPHIC (10) This field associates the object being journaled with an identifier that can be

used on various journaling-related commands and APIs.

QEZJRNNAM GRAPHIC (10) If the value of the journaling status is JOURNALED, then this field contains

the name of the journal currently being used. If the value of the journaling

status is NOT_JOURNALED, then this field contains the name of the

journal last used for this object. All bytes in this field will be set to binary

zero if this object has never been journaled.

QEZJRNLIB GRAPHIC (10) If the value of the journaling status is JOURNALED, then this field contains

the name of the library containing the currently used journal. If the value of

the journaling status is NOT_JOURNALED, then this field contains the

name of the library containing the last used journal. All bytes in this field

will be set to binary zero if this object has never been journaled.

QEZJRNSTR TIMESTAMP The number of seconds since the Epoch that corresponds to the last date

and time for which the object had journaling started for it. This field will be

set to binary zero if this object has never been journaled.

QEZAUDT GRAPHIC (10) The auditing value associated with the object. Valid values are:

*NONE - No auditing occurs for this object when it is read or changed

regardless of the user who is accessing the object.

*USRPRF - Audit this object only if the current user is being audited. The

current user is tested to determine if auditing should be done for this

object. The user profile can specify if only change access is audited or if

both read and change accesses are audited for this object.

*CHANGE - Audit all change access to this object by all users on the

system.

*ALL - Audit all access to this object by all users on the system. All access

is defined as a read or change operation.

Integrated file system 65

|

|||

|||
|

|

|
|
|

|||
|

|

|

|||
|

|

|

|||
|

|

|

|||
|

|||
|
|
|
|

|||
|
|
|
|

|||
|
|

|||

|
|

|
|
|
|

|
|

|
|

Table 8. QAEZDxxxxO (Store object’s attributes) (continued)

Field Name Field Type Field Description

QEZBLKSIZ INTEGER The block size of an object.

QEZNLNK INTEGER The number of hard links to the object.

QEZFILEID

1 GRAPHIC (16) The file ID for the object. An identifier associated with the object. A file ID

can be used with Qp0lGetPathFromFileID() to retrieve an object’s path

name.

QEZFILEIDS INTEGER The 4 byte file ID of the file. This number uniquely identifies the object

within a file system. This number cannot identify the object in the whole

system.

QEZGENID BIGINT The generation ID associated with the file ID.

QEZFSID BIGINT The file system ID to which the object belongs. This number uniquely

identifies the file system to which the object belongs.

QEZRDEV BIGINT If the object represents a device special file, the real device it represents.

QEZDOM GRAPHIC (10) The domain of the object. Valid values are:

*SYSTEM - Object exists in system domain.

*USER - Object exists in user domain.

QEZCRTAUD GRAPHIC (10) The auditing value associated with an object created in this directory. Valid

values are:

*NONE - No auditing occurs for this object when it is read or changed

regardless of the user who is accessing the object.

*USRPRF - Audit this object only if the current user is being audited. The

current user is tested to determine if auditing should be done for this

object. The user profile can specify if only change accesses are audited or if

both read and change accesses are audited for this object.

*CHANGE - Audit all change accesses to this object by all users on the

system.

*ALL - Audit all accesses to this object by all users on the system. All

accesses are defined as a read or change operation.

66 iSeries: Integrated File System

|

|||

|||

|||

|||
|
|

|||
|
|

|||

|||
|

|||

|||

|

|

|||
|

|
|

|
|
|
|

|
|

|
|

Table 8. QAEZDxxxxO (Store object’s attributes) (continued)

Field Name Field Type Field Description

QEZSCN GRAPHIC (1) Whether the object will be scanned when exit programs are registered with

any of the integrated file system scan-related exit points. For more

information, see “Scanning support” on page 18.

Valid values are:

’x40’ (SCANNING_NO) - The object will not be scanned according to the

rules described in the scan-related exit programs. Note: If the Scan file

systems control (QSCANFSCTL) value *NOPOSTRST is not specified when

an object with this attribute is restored, the object will be scanned at least

once after the restore.

’x80’ (SCANNING_YES) - The object will be scanned according to the rules

described in the scan-related exit programs if the object has been modified

or if the scanning software has been updated since the last time the object

was scanned.

’x20’ (SCANNING_CHGONLY) - The object will be scanned according to

the rules described in the scan-related exit programs only if the object has

been modified since the last time the object was scanned. It will not be

scanned if the scanning software has been updated. This attribute only

takes effect if the Scan file systems control (QSCANFSCTL) system value

has *USEOCOATR specified. Otherwise, it will be treated as if the attribute

is SCANNING_YES. Note: If the Scan file systems control (QSCANFSCTL)

value *NOPOSTRST is not specified when an object with this attribute is

restored, the object will be scanned at least once after the restore.

QEZINHSCN GRAPHIC (1) Whether the objects created in a directory will be scanned when exit

programs are registered with any of the integrated file system scan-related

exit points. For more information, see “Scanning support” on page 18.

Valid values are:

x’40’ - After an object is created in the directory, the object will not be

scanned according to the rules described in the scan-related exit programs.

Note: If the Scan file systems control (QSCANFSCTL) value *NOPOSTRST

is not specified when an object with this attribute is restored, the object will

be scanned at least once after the restore.

x’80’ - After an object is created in the directory, the object will be scanned

according to the rules described in the scan-related exit programs if the

object has been modified or if the scanning software has been updated since

the last time the object was scanned.

x’20’ - After an object is created in the directory, the object will be scanned

according to the rules described in the scan-related exit programs only if

the object has been modified since the last time the object was scanned. It

will not be scanned if the scanning software has been updated. This

attribute only takes effect if the Scan file systems control (QSCANFSCTL)

system value has *USEOCOATR specified. Otherwise, it will be treated as if

the attribute is SCANNING_YES. Note: If the Scan file systems control

(QSCANFSCTL) value *NOPOSTRST is not specified when an object with

this attribute is restored, the object will be scanned at least once after the

restore.

Integrated file system 67

|

|||

|||
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|||
|
|

|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

Table 8. QAEZDxxxxO (Store object’s attributes) (continued)

Field Name Field Type Field Description

QEZSSTATUS GRAPHIC (1) The scan status associated with this object. This field will be one of the

following values:

x’00’ (SCAN_REQUIRED) - A scan is required for the object either because

it has not yet been scanned by the scan-related exit programs, or because

the objects data or CCSID has been modified since it was last scanned.

Examples of object data or CCSID modifications are: writing to the object,

directly or through memory mapping; truncating the object; clearing the

object; and changing the objects CCSID attribute.

x’01’ (SCAN_SUCCESS) - The object has been scanned by a scan-related exit

program, and at the time of that last scan request, the object did not fail the

scan.

x’02’ (SCAN_FAILURE) - The object has been scanned by a scan-related exit

program, and at the time of that last scan request, the object failed the scan

and the operation did not complete. Once an object has been marked as a

failure, it will not be scanned again until the object’s scan signature is

different than the global scan key signature or independent ASP group scan

key signature as appropriate. Therefore, subsequent requests to work with

the object will fail with a scan failure indication. Examples of requests

which will fail are opening the object, changing the CCSID of the object,

copying the object.

x’05’ (SCAN_PENDING_CVN) - The object is not in a *TYPE2 directory,

and therefore will not be scanned until the directory is converted.

x’06’ (SCAN_NOT_REQUIRED) - The object does not require any scanning

because the object is marked to not be scanned.

QEZSSIGDF GRAPHIC (1) The scan signatures give an indication of the level of the scanning software

support.

When an object is in an independent ASP group, the object scan signature is

compared to the associated independent ASP group scan signature. When

an object is not in an independent ASP group, the object scan signature is

compared to the global scan signature value. This field will be one of the

following values:

x’00’ - The compared signatures are not different.

x’01’ - The compared signatures are different.

QEZSBINARY GRAPHIC (1) This indicates if the object has been scanned in binary mode when it was

previously scanned. This field will be one of the following values:

x’00’ - The object was not scanned in binary mode.

x’01’ - The object was scanned in binary mode. If the object scan status is

SCAN_SUCCESS, then the object was successfully scanned in binary. If the

object scan status is SCAN_FAILURE, then the object failed the scan in

binary.

QEZSCCSID1 INTEGER This indicates if the object has been scanned in the listed CCSID when it

was previously scanned. If the object scan status is SCAN_SUCCESS, then

the object was successfully scanned in this CCSID. If the object scan status

is SCAN_FAILURE, then the object failed the scan in this CCSID. A value of

0 means this field does not apply.

68 iSeries: Integrated File System

|

|||

|||
|

|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|

|
|

|||
|

|
|
|
|
|

|

|

|||
|

|

|
|
|
|

|||
|
|
|
|

Table 8. QAEZDxxxxO (Store object’s attributes) (continued)

Field Name Field Type Field Description

QEZSCCSID2 INTEGER This indicates if the object has been scanned in the listed CCSID when it

was previously scanned. If the object scan status is SCAN_SUCCESS, then

the object was successfully scanned in this CCSID. If the object scan status

is SCAN_FAILURE, then this field will be 0. A value of 0 means this field

does not apply.

QEZUDATE TIMESTAMP The number of seconds since the Epoch that corresponds to the date the

object was last used. This field is zero when the object is created. If usage

data is not maintained for the OS/400 type or the file system to which an

object belongs, this field is zero.

QEZUDCOUNT INTEGER The number of days an object has been used. Usage has different meanings

according to the specific file system and according to the individual object

types supported within a file system. Usage can indicate the opening or

closing of a file or can refer to adding links, renaming, restoring, or

checking out an object. This count is increased each day that an object is

used and is reset to zero by calling the Qp0lSetAttr() API.

QEZURESET INTEGER The number of seconds since the Epoch that corresponds to the date the

days used count was last reset to zero (0). This date is set to the current

date when the Qp0lSetAttr() API is called to reset the Days used count to

zero.

QEZPRMLNK SMALLINT When an object has several names, this field will be set only for the first

name found.

QEZALWCKPW SMALLINT Whether a stream file (*STMF) can be shared with readers and writers

during the save-while-active checkpoint processing. Valid values are:

0 - The object can be shared with readers only.

1 - The object can be shared with readers and writers.

QEZSIG

1 SMALLINT Whether an object has an OS/400 digital signature. Valid values are:

0 - The object does not have an OS/400 digital signature.

1 - The object does have an OS/400 digital signature.

QEZSYSSIG SMALLINT Whether the object was signed by a source that is trusted by the system.

Valid values are:

0 - None of the signatures came from a source that is trusted by the system.

1 - The object was signed by a source that is trusted by the system. If the

object has multiple signatures, at least one of the signatures came from a

source that is trusted by the system.

QEZMLTSIG SMALLINT Whether an object has more than one OS/400 digital signature. Valid values

are:

0 - The object has only one digital signature.

1 - The object has more than one digital signature. If the QEZSYSSIG field

has the value 1, at least one of the signatures is from a source trusted by

the system.

Integrated file system 69

|

|||

|||
|
|
|
|

|||
|
|
|

|||
|
|
|
|
|

|||
|
|
|

|||
|

|||
|

|

|

|||

|

|

|||
|

|

|
|
|

|||
|

|

|
|
|

Table 8. QAEZDxxxxO (Store object’s attributes) (continued)

Field Name Field Type Field Description

QEZDSTGOPT SMALLINT This option should be used to determine how auxiliary storage is allocated

by the system for the specified object. This option can only be specified for

stream files in the ″root″ (/), QOpenSys and user-defined file systems. This

option will be ignored for *TYPE1 byte stream files. Valid values are:

0 - The auxiliary storage will be allocated normally. That is, as additional

auxiliary storage is required, it will be allocated in logically sized extents to

accommodate the current space requirement, and anticipated future

requirements, while minimizing the number of disk I/O operations.

1 - The auxiliary storage will be allocated to minimize the space used by

the object. That is, as additional auxiliary storage is required, it will be

allocated in small sized extents to accommodate the current space

requirement. Accessing an object composed of many small extents may

increase the number of disk I/O operations for that object.

2 - The system will dynamically determine the optimum auxiliary storage

allocation for the object, balancing space used versus disk I/O operations.

For example, if a file has many small extents, yet is frequently being read

and written, then future auxiliary storage allocations will be larger extents

to minimize the number of disk I/O operations. Or, if a file is frequently

truncated, then future auxiliary storage allocations will be small extents to

minimize the space used. Additionally, information will be maintained on

the stream file sizes for this system and its activity. This file size

information will also be used to help determine the optimum auxiliary

storage allocations for this object as it relates to the other objects sizes.

QEZMSTGOPT SMALLINT This option should be used to determine how main storage is allocated and

used by the system for the specified object. This option can only be

specified for stream files in the ″root″ (/), QOpenSys and user-defined file

systems. Valid values are:

0 - The main storage will be allocated normally. That is, as much main

storage as possible will be allocated and used. This minimizes the number

of disk I/O operations since the information is cached in main storage.

1 - The main storage will be allocated to minimize the space used by the

object. That is, as little main storage as possible will be allocated and used.

This minimizes main storage usage while increasing the number of disk

I/O operations since less information is cached in main storage.

2 - The system will dynamically determine the optimum main storage

allocation for the object depending on other system activity and main

storage contention. That is, when there is little main storage contention, as

much storage as possible will be allocated and used to minimize the

number of disk I/O operations. And when there is significant main storage

contention, less main storage will be allocated and used to minimize the

main storage contention. This option only has an effect when the storage

pool’s paging option is *CALC. When the storage pool’s paging option is

*FIXED, the behavior is the same as STG_NORMAL. When the object is

accessed through a file server, this option has no effect. Instead, its behavior

is the same as STG_NORMAL.

QEZDIRTYP2 SMALLINT The format of the specified directory object. Valid values are:

0 - The directory format is *TYPE1.

1 - The directory format is *TYPE2.

For more information, see “*TYPE2 directories” on page 10.

70 iSeries: Integrated File System

|

|||

|||
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|||
|
|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|||

|

|

|

Table 8. QAEZDxxxxO (Store object’s attributes) (continued)

Field Name Field Type Field Description

QEZFILTYP2

1 SMALLINT The format of the stream file (*STMF). Valid values are:

0 - The stream file format is *TYPE1.

1 - The stream file format is *TYPE2.

For more information, see “Stream file” on page 16.

QEZUDFTYP2 SMALLINT The default file format of stream files (*STMF) created in the user-defined

file system. Valid values are:

0 - The stream file format is *TYPE1.

1 - The stream file format is *TYPE2.

For more information, see “Stream file” on page 16.

QEZNONSAV SMALLINT Whether the object can be saved or not. Valid values are:

0 - Object will be saved.

1 - Object will not be saved. Additionally, if this object is a directory, none

of the objects in the directory’s subtree will be saved unless they were

explicitly specified as an object to be saved. The subtree includes all

subdirectories and the objects within those subdirectories.

QEZCLSTRSP SMALLINT The object is the storage which was allocated for Integrated xSeries servers

to use as virtual disk drives for the xSeries servers. From the perspective of

the iSeries server, virtual drives appear as byte stream files within the

integrated file system.

0 - Object is not virtual disk storage.

1 - Object is virtual disk storage.

QEZCASE SMALLINT Indicates the Case Sensitivity of the file system that contains this object.

0 - File system is not case sensitive.

1 - File system is case sensitive.

QEZOFLOW SMALLINT Indicates if the object has overflowed the auxiliary storage pool it resides in.

Valid values are:

0 - Auxiliary storage pool is not overflowed.

1 - Auxiliary storage pool is overflowed.

QEZPCREAD SMALLINT Whether the object can be written to or deleted, have its extended attributes

changed or deleted, or have its size changed. Valid values are:

0 - The object can be changed.

1 - The object cannot be changed.

QEZPCHID

1 SMALLINT Whether the object can be displayed using an ordinary directory listing.

0 - The object is not hidden.

1 - The object is hidden.

Integrated file system 71

|

|||

|||

|

|

|

|||
|

|

|

|

|||

|

|
|
|
|

|||
|
|
|

|

|

|||

|

|

|||
|

|

|

|||
|

|

|

|||

|

|

Table 8. QAEZDxxxxO (Store object’s attributes) (continued)

Field Name Field Type Field Description

QEZPCSYS SMALLINT Whether the object is a system file and is excluded from normal directory

searches.

0 - The object is not a system file.

1 - The object is a system file.

QEZPCARC SMALLINT Whether the object has changed since the last time the object was examined.

0 - The object has not changed.

1 - The object has changed.

QEZSYSARC SMALLINT Whether the object has changed and needs to be saved. It is set on when an

object’s change time is updated, and set off when the object has been saved.

0 - The object has not changed and does not need to be saved.

1 - The object has changed and does need to be saved.

QEZJRCVNAM GRAPHIC(10) The oldest journal receiver needed to successfully apply journal changes.

When the Apply information field is set to PARTIAL_TRANSACTION the

journal receiver contains the start of the partial transaction. Otherwise; the

journal receiver contains the start of the save operation.

QEZJRCVLIB GRAPHIC(10) The name of the library that contains the journal receiver needed to

successfully apply journal changes.

QEZJRCVASP GRAPHIC(10) The name of the ASP that contains the journal receiver needed to

successfully apply journal changes. The valid values are:

*SYSBAS - The journal receiver resides in the system or user ASP.

ASP device - The name of the ASP device that contains the journal receiver.

QEZJTRNI GRAPHIC(1) This field describes information about the current state of the object as it

relates to commitment control boundaries. The valid values are:

x’00’ (NONE) - There are no partial transactions.

x’01’ (PARTIAL_TRANSACTION) - The object was restored with partial

transactions. This object cannot be used until the Apply Journaled Changes

(APYJRNCHG) or Remove Journaled Changes (RMVJRNCHG) command is

used to complete or rollback the partial transactions.

x’02’ (ROLLBACK_ENDED) - The object had a rollback operation ended

using the ″End Rollback″ option on the Work with Commitment Definition

(WRKCMTDFN) screen. It is recommended that the object be restored as it

cannot be used. As a last option, the Change Journaled Object

(CHGJRNOBJ) command can be used to allow the object to be used. Doing

this, however, can leave the object in an inconsistent state.

Note:

1. This field is included in the subset of fields used by the PRTDIRINF command.

2. In this field, only the object name is stored. The rest of the path name is stored in Table 9 on page 73, in field

QEZDIRNAM1 if the length of the directory name is below 1 KB or in QEZDIRNAM2 if the directory names are

above 1 KB.

Table 9 on page 73 is an example of a table that lists the directories processed by the RTVDIRINF

command.

72 iSeries: Integrated File System

|

|||

|||
|

|

|

|||

|

|

|||
|

|

|

|||
|
|
|

|||
|

|||
|

|

|

|||
|

|

|
|
|
|

|
|
|
|
|
|

|

|

|
|
|
|

|
|

Table 9. QAEZDxxxD (Store directory’s attributes)

Field Name Field Type Field Description

QEZDIRIDX INTEGER Identifier of path name (applies only to directories).

QEZDIRNAM1

1

VARGRAPHIC (1024) The parent directory path. Only used when path length is below 1 KB.

QEZDIRNAM2

1

DBCLOB (16M) The parent directory path. Only used when path length is above 1 KB

long. Can store paths up to 16 MB long.

QEZDRCCSID INTEGER The directory CCSID.

QEZDREGION GRAPHIC (2) The directory path region ID.

QEZLANGID GRAPHIC (3) The directory path language ID.

QEZDIRLEN

1 INTEGER Length of directory’s path name.

QEZDIRFID GRAPHIC (16) The file ID of the directory. An identifier associated with the object. A file

ID can be used with Qp0lGetPathFromFileID() to retrieve an object’s path

name.

QEZDFID INTEGER The file ID of the directory.

QEZDIRFSID BIGINT The file system ID of the directory.

QEZDIRGID BIGINT The generation ID.

Note:

1. This field is included in the subset of fields used by the PRTDIRINF command.

Table 10 is an example of a table that is created when using the RTVDIRINF command. This table is used

by the PRTDIRINF command to know which database files were used to store information retrieved by

different instances of the RTVDIRINF command.

 Table 10. QUSRSYS/QAEZDBFILE (Store files created)

Field Name Field Type Field Description

QEZDIRSRC VARGRAPHIC (5000) Path specified in DIR parameter (RTVDIRINF).

QEZPRCCSID INTEGER The path CCSID.

QEZPREGION GRAPHIC (2) The path region ID.

QEZPLANGID GRAPHIC (3) The path language ID

QEZOBJFILE

1 VARGRAPHIC (20) The name of the file generated to store the object’s attributes.

QEZDIRFILE

1 VARGRAPHIC (20) The name of the file generated to store the directory’s indexes.

QEZLIB

1 VARGRAPHIC (20) Library where both generated files reside.

QEZSTRTIME TIMESTAMP Date/Time when RTVDIRINF was submitted.

QEZENDTIME TIMESTAMP Date/Time when RTVDIRINF was completed.

Note:

1. This field is included in the subset of fields used by the PRTDIRINF command.

Accessing the data of RTVDIRINF: There exist several options for accessing the data in the tables.

Listed below are ways that you can access the data created by the RTVDIRINF command:

v Using the PRTDIRINF command

This command is used to print directory information about objects and directory information in the

integrated file system. The information it will print is already stored in the database file specified by

the user in the RTVDIRINF command.

v Using any program or command provided by IBM that can run queries over a DB2® table in the

iSeries.

Integrated file system 73

||

|||

|||

|
|
||

|
|
||
|

|||

|||

|||

|||

|||
|
|

|||

|||

|||

|

|
|

|
|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|

|
|

|
|

|

|
|
|

|
|

Some of the more common tools are the Start SQL Interactive Session (STRSQL) command and the

iSeries Navigator.

For example, if you want to select objects in a specific path (previously collected by the RTVDIRINF

command) that have an allocation size larger than 10kb, you can run a query like this:

SELECT QEZOBJNAM, QEZALCSIZE FROM library_name/QAEZDxxxxO WHERE

QEZALCSIZE > 10240

v You can make your own programs and access the database tables by using any valid DB methods.

Examples of these methods are Embedded SQL and SQL CLIs.

Using the data of RTVDIRINF: Listed below are examples that display why the data is important or

how you can use the data that is produced from each of the three tables.

v For Table 8 on page 63, you can make queries to create reports or statistics based on any of the fields

within this table. PRTDIRINF does not include reports based on all of the fields. Instead, a subset will

be used.

v The data from Table 9 on page 73 contains all the directories within the path specified in DIR

parameter of the RTVDIRINF command. If you want to know specific attributes about the path name,

for example the CCSID, language ID, or length, then this data would be useful. Also, each directory

stored in this table has a unique value, or index that identifies it. In Table 8 on page 63, you can find

the same field, QEZDIRIDX, that will tell you which objects belong to which directory. To find which

objects belong to which directory, you can make a query using joins. For example, the following query

statement selects the names of all objects existing in directory ″/MYDIR″:

SELECT QEZOBJNAM FROM library_name/QAEZxxxxO, library_name/QAEZxxxxD WHERE QEZDIRNAM1 = "/MYDIR" AND

library_name/QAEZxxxxO.QEZDIRIDX=library_name/QAEZxxxxD.QEZDIRIDX

v Table 10 on page 73 is mostly used by PRTDIRINF command to obtain specific data about RTVDIRINF

runs. Examples of this are: The names of the tables created, the library where the tables reside, and the

starting and ending time of processing. You might use this table to know when a RTVDIRINF was

issued or what tables must be searched in order to query them.

Access using APIs

You can use Application program interfaces (APIs) to access the integrated file system. For details on

using APIs with the integrated file system, see Perform operations using APIs.

Access using iSeries Navigator

iSeries Navigator is the graphical user interface for managing and administering your systems from your

Windows desktop. iSeries Navigator makes operation and administration of your system easier and more

productive. For instance, you can copy a user profile onto another system by dragging the user profile

from one iSeries server to another iSeries server. Wizards guide you through setting up security and

TCP/IP services and applications.

There are many tasks you can perform using iSeries Navigator. Listed below are some common file

system tasks to help you get started:

Work with files and folders

v “Create a folder” on page 106

v “Remove a folder” on page 106

v “Check in a file” on page 105

v “Check out a file” on page 106

v “Set permissions” on page 107

v “Set up file text conversion” on page 108

v “Send a file or folder to another system” on page 108

v “Change options for a package definition” on page 108

74 iSeries: Integrated File System

|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|
|
|

|
|

|
|
|
|

v “Schedule a date and time to send your file or folder” on page 109

v “Set whether objects should be scanned or not” on page 109

Work with file shares

v “Create a file share” on page 109

v “Change a file share” on page 109

Work with user-defined file systems

v “Create an integrated file system UDFS” on page 34

v “Mount an integrated file system UDFS” on page 35

v “Unmount an integrated file system UDFS” on page 35

Journaling objects

v “Start journaling” on page 85

v “End journaling” on page 86

Access using iSeries NetServer

iSeries Support for Windows Network Neighborhood (iSeries NetServer) is an IBM Operating

System/400® (OS/400) function that enables Windows clients to access OS/400 shared directory paths

and shared output queues. iSeries NetServer allows PCs that run Windows software to seamlessly access

data and printers that are managed by your iSeries. PC clients on a network use the file and print sharing

functions that are included in their operating systems. This means that you do not need to install any

additional software on your PC to use iSeries NetServer.

LINUX clients with the Samba client software installed may also seamlessly access data and printers

through iSeries NetServer. Shared iSeries NetServer directories can be mounted on Linux clients as Samba

file systems (smbfs) in a similar manner to mounting NFS file systems that have been exported from the

iSeries. For more information, see the iSeries NetServer topic in the iSeries Information Center.

An iSeries NetServer file share is a directory path that iSeries NetServer shares with clients on the iSeries

network. A file share can consist of any integrated file system directory on iSeries. Before you can work

with file sharing using iSeries NetServer, you must create a iSeries NetServer file share, and, if necessary,

change a iSeries NetServer file share using iSeries Navigator.

To access integrated file system file shares using iSeries NetServer:

1. Right-click Start, and select Explore to open Windows Explorer on your Windows PC.

2. Open the Tools menu, and select Map network drive.

3. Select a letter of a free drive for the file share (such as the I:\ drive).

4. Enter the name of an iSeries NetServer file share. For example, you can enter the following syntax:

\\QSYSTEM1\Sharename

Note: QSYSTEM1 is the system name of iSeries NetServer, and Sharename is the name of the file share

you want to use.

5. Click OK.

Note: When connecting using iSeries NetServer, the server name may be different than the name used by

iSeries Access Family. For example the iSeries NetServer name may be QAS400X, and the path to

work with files may be \\QAS400X\QDLS\MYFOLDER.FLR\MYFILE.DOC. However, the iSeries Access

Family name may be AS400X, and the path to work with files may be

\\AS400X\QDLS\MYFOLDER.FLR\MYFILE.DOC.

Integrated file system 75

|

You choose which directories to share with the network using iSeries NetServer. Those directories appear

as the first level under the server name. For example, if you share the /home/fred directory with the

name fredsdir, a user would be able to access that directory from the PC with the name

\\QAS400X\FREDSDIR, or from a LINUX client with the name //qas400x/fredsdir.

The ″root″ (/) file system provides much better performance for PC file serving than other iSeries file

systems. You may want to move files to the ″root″ (/) file system. See “Move files or folders to another

file system” on page 106 for more information

For more information about iSeries NetServer and file shares, see the following topics in the Networking

category of the iSeries Information Center:

v iSeries NetServer

v iSeries NetServer file shares

v Accessing iSeries NetServer file shares with a Windows PC client

Access using file transfer programs

The File Transfer Protocol (FTP) client allows you to transfer files that are found on your iSeries server,

including those in the ″root″ (/), QOpenSys, QSYS.LIB, Independent ASP QSYS.LIB, QOPT, and

QFileSvr.400 file systems. It also allows you to transfer folders and documents in the document library

services (QDLS) file system. The FTP client may be run interactively in an unattended batch mode where

client subcommands are read from a file and the responses to these subcommands are written to a file. It

also includes other features for manipulating files on your server.

You can use FTP support to transfer files to and from any of the following file systems:

v “root” (/) file system

v Open systems file system (QOpenSys)

v Library file system (QSYS.LIB)

v Independent ASP QSYS.LIB file system

v Document library services file system (QDLS)

v Optical file system (QOPT)

v Network File System (NFS)

v NetWare file system (QNetWare)

v iSeries NetClient file system (QNTC)

However, be aware of the following restrictions:

v The integrated file system limits FTP support to transferring file data only. You cannot use FTP to

transfer attribute data.

v QSYS.LIB and Independent ASP QSYS.LIB file systems limit FTP support to physical file members,

source physical file members, and save files. You cannot use FTP to transfer other object types, such as

programs (*PGM). However, you can save other object types to a save file, transfer the save file, and

then restore the objects.

For information about FTP, see the following topics in the Networking category of the iSeries Information

Center:

v FTP

v Transfer files with FTP

Access using a PC

If your PC is connected to an iSeries server, you can interact with the directories and objects of the

integrated file system as if they were stored on your PC. You can copy objects between directories by

76 iSeries: Integrated File System

using the drag-and-drop capability of Windows Explorer. As needed, you can actually copy an object

from your server to the PC by selecting the object in the server drive and dragging the object to the PC

drive.

Any objects that are copied between an iSeries server and PCs by using the Windows interface may be

automatically converted between EBCDIC and ASCII. EBCDIC is extended binary-coded decimal

interchange code, and ASCII is the American National Standard Code for Information Interchange. iSeries

Access Family can be configured to automatically perform this conversion, and can even specify the

conversion be performed on files with a specific extension. Since OS/400 V4R4, iSeries NetServer can also

be configured to perform conversion on files.

Depending on the type of object, you can use PC interfaces and possibly PC applications to work with it.

For example, a stream file containing text can be edited using a PC editor.

If you are connected to an iSeries server using your PC, the integrated file system makes your server’s

directories and objects available to the PC. PCs can work with files in the integrated file system by using

file sharing clients built into the Windows operating systems, an FTP client, or iSeries Navigator (a part

of iSeries Access Family). Your PC uses Windows file sharing clients to access iSeries NetServer, which

runs on your iSeries server.

 Transfer files using FTP
The FTP client allows you to transfer files that are found on your iSeries server, including those in the ″root″

(/), QSYS.LIB, Independent ASP QSYS.LIB, QOpenSys, QOPT, and QFileSvr.400 file systems. It also allows

you to transfer folders and documents in the document library services (QDLS) file system.

Work with files using iSeries Navigator

iSeries Access Family includes iSeries Navigator, which connects to an iSeries server and makes the integrated

file system available to the PC. iSeries Navigator is the graphical user interface for managing and

administering your iSeries server from your Windows desktop.

Work with files using iSeries NetServer
iSeries NetServer is a part of OS/400 that allows the file and print sharing built into Windows clients to work

with your server.

Note: The new version of iSeries Access Family relies entirely on NetServer to access the integrated file

system. NetServer support is available only for TCP/IP connections to an iSeries server that run

OS/400 V4R2 and above.

Convert directories from *TYPE1 to *TYPE2

The ″root″ (/), QOpenSys, and user-defined file systems (UDFS) in the integrated file system support the

*TYPE2 directory format as of OS/400 V5R1. The *TYPE2 directory format is an enhancement of the

original *TYPE1 directory format. *TYPE2 directories have a different internal structure from *TYPE1

directories and provide improved performance and reliability.

Shortly after V5R3 is installed, the conversion to *TYPE2 directories will automatically begin for any of

the file systems which have not yet been converted to support *TYPE2 directories. This conversion should

not significantly impact your system activity.

v “Overview of *TYPE1 to *TYPE2 conversion”

v “Tips: Conversions” on page 78

Overview of *TYPE1 to *TYPE2 conversion

The ″root″ (/), QOpenSys, and user-defined file systems (UDFS) in the integrated file system support the

*TYPE2 directory format as of OS/400 V5R1. The *TYPE2 directory format is an enhancement of the

original *TYPE1 directory format. *TYPE2 directories have a different internal structure from *TYPE1

directories and provide improved performance and reliability. In addition to improved performance and

Integrated file system 77

|
|
|
|

|
|
|

|
|
|
|

reliability, new functions such as integrated file system scanning support are only available for objects in

*TYPE2 directories. See “Scanning support” on page 18 for more information.

Shortly after V5R3 is installed, the conversion to *TYPE2 directories will automatically begin for any of

the file systems which have not yet been converted to support *TYPE2 directories. This conversion should

not significantly impact your system activity as it will run in a low priority background job.

If the conversion function has not yet completed, and the system has a normal or abnormal IPL, the

conversion function will resume when the IPL is completed. The conversion will restart on every IPL

until all eligible file systems have been fully converted.

See “Determine conversion status” for information about whether the conversion function has completed.

The file systems which are eligible for this automatic conversion are ″root″ (/), QOpenSys and the

user-defined file systems for ASPs 1 through 32. See “Tips: Independent ASP” on page 80 for information

about user-defined file systems on independent ASPs.

Note: You can avoid the automatic conversion to *TYPE2 directories if you convert the file systems

before the V5R3 install. See “Using *TYPE2 directories in OS/400 V5R1 or V5R2” on page 11.

Tips: Conversions

Shortly after V5R3 is installed, the conversion to *TYPE2 directories will automatically begin for any of

the file systems which have not yet been converted to support *TYPE2 directories. This conversion

processing will take place in a secondary thread of the QFILESYS1 system job.

There are several things to consider during the conversion process:

v “Determine conversion status”

v “Creating user profiles” on page 79

v “Objects renamed” on page 79

v “User profile considerations” on page 79

v “Auxiliary storage requirements” on page 80

v “Tips: Symbolic link” on page 80

v “Tips: Independent ASP” on page 80

v “Tips: Save and restore” on page 81

v “Reclaim Storage (RCLSTG)” on page 81

v “Integrated file system scanning” on page 81

Determine conversion status

Shortly after V5R3 is installed, the conversion to *TYPE2 directories will automatically begin for any of

the file systems which have not yet been converted to support *TYPE2 directories. This conversion

processing will take place in a secondary thread of the QFILESYS1 system job.

To determine the status of the conversion processing, you can use the Convert Directory (CVTDIR)

command as follows:

CVTDIR OPTION(*CHECK)

This invocation of the CVTDIR command lists the current directory format for the ″root″ (/), QOpenSys

and UDFS file systems and if the file system is currently being converted. Additionally, it lists the current

priority of the conversion function, the file system currently being converted by the system, the number

of links that have been processed for that file system, and the percentage of directories which have been

processed for that file system. The system starts the conversion function with a very low priority (99) so

that the conversion function does not significantly impact system activity. However, you can change the

78 iSeries: Integrated File System

|
|

|
|
|

|
|
|

|

|
|
|

|
|

|
|
|

|

|

|

|
|
|
|

|
|

|

|
|
|
|
|
|

priority of the conversion function by using the *CHGPTY value for the OPTION parameter of the

CVTDIR command. See CVTDIR for additional information about this parameter specification.

Since the QFILESYS1 job is processing the conversion, you can display the QFILESYS1 job log for

messages indicating any problems with the conversion. Additionally, various progress messages will be

sent about the file system conversions. These messages include information such as: the file system being

converted, the number of links which have been processed in the file system, the percentage of directories

which have been processed in the file system and so on. All of the error and many of the progress

messages are also sent to the QSYSOPR message queue. Therefore, for future reference, it would be good

practice to ensure that the QHST logs or QFILESYS1 job logs are preserved which would contain these

messages. Once the file systems have been fully converted, and the integrated file system is working as

expected, you can delete this historical information.

Creating user profiles

The conversion function creates a user profile that is used while the conversion function is running. This

user profile has the name QP0FCWA. It is used by the conversion function to own converted directories

in the file system if the original owner is unable to own their directories.

The user profile is deleted when the conversion has completed, if possible. Message CPIA08B is sent to

the QFILESYS1 job log and the QSYSOPR message queue if ownership of a directory is given to this user

profile.

Objects renamed

*TYPE2 directories require the link names to be valid UTF-16 names. This differs from *TYPE1 directories,

which have UCS2 Level 1 names. For this reason, invalid or duplicate names may be found during a

directory conversion. When a name is found to be invalid or a duplicate, the name is changed to a

unique, valid, UTF-16 name, and message CPIA08A is sent to the QFILESYS1 job log and the QSYSOPR

message queue listing the original name and the new name. Combined characters or invalid surrogate

character pairs contained in a name may cause an object to be renamed.

For more information about characters, see “Combined Characters” or “Surrogate Characters”

For more information about UTF-16, refer to the Unicode home page (http://www.unicode.org

).

Combined Characters: Some characters may be made up of more than one Unicode character. For

example, there are characters that have an accent or an umlaut. These characters need to be changed, or

normalized, to a common format before they are stored in the directory, so that all objects have a unique

name. Normalizing a combined character is a process by which the character is put in a known and

predictable format. The format chosen for *TYPE2 directories is the canonical composed form. If there are

two objects in a *TYPE1 directory that contain the same combined characters, they are normalized to the

same name. This causes a collision, even if one object contains composed combined characters and the

other object contains decomposed combined characters. Therefore, one of them has its name changed

before it is linked in the *TYPE2 directory.

Surrogate Characters: Some characters do not have a valid representation in Unicode. These characters

have some special values; they are made up of two Unicode characters in two specific ranges such that

the first Unicode character is in one range (for example 0xD800-0xD8FF) and the second Unicode

character is in the second range (for example 0xDC00-0xDCFF). This is called a surrogate pair. If one of

the Unicode characters are missing or if they are out of order, (only a partial character), it is an invalid

name. Names of this type have been allowed in *TYPE1 directories, but are not allowed in *TYPE2

directories. In order for the conversion function to continue, the name is changed before the object is

linked into the *TYPE2 directory if a name containing one of these invalid names is found.

User profile considerations

While the conversion is running, every attempt is made to ensure that the same user profile that owns

any *TYPE1 directories continues to own the corresponding *TYPE2 directories. Since the *TYPE1 and

Integrated file system 79

|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

http://www.unicode.org

*TYPE2 directories momentarily exist at the same time, this impacts the amount of storage owned by the

user profile and the number of entries in the user profile.

The following topics provide more information about user profiles.

v “Change maximum storage for a user profile”

v “Change the owner of a directory”

Change maximum storage for a user profile: During the directory conversion processing, there are a

number of directories that momentarily exist in both formats at the same time and are owned by the

same user profile. If during conversion processing the maximum storage limit for the user profile is

reached, the limit for the user profile is increased. Message CPIA08C is sent to the QFILESYS1 joblog and

the QSYSOPR message queue.

Change the owner of a directory: If the user profile that owns the *TYPE1 directory is unable to own

the *TYPE2 directory that is created, the owner of the *TYPE2 directory is set to the alternate user profile

described in Creating user profiles. Message CPIA08B is sent to the QFILESYS1 joblog and the QSYSOPR

message queue, and conversion continues.

Auxiliary storage requirements

Auxiliary storage requirements should be considered while the system is converting the directories in a

file system to the *TYPE2 format. There are several issues regarding auxiliary storage requirements:

v The final size of the directories after they have been converted to the *TYPE2 format

v Additional storage required while the conversion function is running

In many cases, the final size of a *TYPE2 directory is smaller than a *TYPE1 directory. Typically, *TYPE2

directories that have less than 350 objects require less auxiliary storage than *TYPE1 directories with the

same number of objects. *TYPE2 directories with more than 350 objects are ten percent larger (on average)

than *TYPE1 directories.

While the conversion function is running, additional storage is required. The conversion function requires

that the directories have both a *TYPE1 version and a *TYPE2 version in existence simultaneously.

Note: Before installing V5R3, you may want to consider running the *ESTIMATE option on the V5R2

(CVTDIR) command, as it can provide a conservative estimate of the amount of auxiliary storage

to be needed during conversion.

Tips: Symbolic link

Symbolic links are objects within the integrated file system that contain a path to another object. There

are some instances during conversion when the name of an object can be changed. If one of the elements

of the path within a symbolic link is renamed during conversion, then the contents of the symbolic link

no longer point to the object. See Objects renamed for details on object renaming.

Tips: Independent ASP

If the user-defined file systems in an independent ASP have not yet been converted to the *TYPE2

directory format, they will be converted the first time the independent ASP is varied on to a system

installed with OS/400 V5R2 or later. For planning purposes, an estimate function is provided in OS/400

V5R1 to provide information about the length of time that a conversion will run. Before varying on the

independent ASP to the V5R2 or later server, run the following API on your V5R1 system when the

independent ASP (named ASP_NAME) is varied on and active:

CALL QP0FCVT2 (*ESTIMATE ASP_NAME *TYPE2)

80 iSeries: Integrated File System

|
|
|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|
|
|
|
|

Tips: Save and restore

Directories that exist as *TYPE1 can be saved and restored in a file system that has been converted to

*TYPE2. Likewise, directories that exist as *TYPE2 can be saved and restored in a file system that is

*TYPE1 format, provided none of the *TYPE1 limits have been exceeded when the directory existed as a

*TYPE2 directory.

Reclaim Storage (RCLSTG)

While the system is converting the ″root″ (/), QOpenSys and user ASP UDFS file systems to support the

*TYPE2 directory format, the RCLSTG command cannot be run on any integrated file system directories

including those in independent ASPs. However, the OMIT(*DIR) parameter value can be used to omit

integrated file system directories and allow the non-directory related objects to be reclaimed. To

determine when the file systems are fully converted so that you can run a RCLSTG including the

integrated file system directories, see “Determine conversion status” on page 78.

Integrated file system scanning

Objects in the ″root″ (/), QOpenSys and user ASP UDFS file systems will not be scanned using the

integrated file system scan-related exit points until the file systems have fully converted to the *TYPE2

directory format. The scan-related attributes can be set for objects in *TYPE1 and *TYPE2 directories to

specify whether the objects are to be scanned or not, even if the file system is not fully converted. For

more information about the integrated file system scanning support, see “Scanning support” on page 18.

While the system converts objects from the *TYPE1 directory format to the *TYPE2 directory format, the

Scan control system value ’Scan on next access after object has been restored’ is taken into consideration

as if the converted object was being restored. For example, if the ’Scan on next access after object has

been restored’ value is specified while the conversion is in progress, then an object which was in a

*TYPE1 directory, and had the ’the object will not be scanned’ attribute specified, will be scanned at least

once after the file system has been fully converted. For more information about the scan-related system

values, see “Related system values” on page 20.

To determine when the file systems are fully converted so that integrated file system scanning can begin

in that file system, see “Determine conversion status” on page 78.

Journaling objects

The primary purpose of journaling is to enable you to recover the changes to an object that have occurred

since the object was last saved. Additionally, a key use of journaling is to assist in the replication of object

changes to another system either for high availability or workload balancing.

This information will provide a brief overview of journal management, as well as provide considerations

for journaling integrated file system objects and a description of journaling support for integrated file

system objects.

For more information about journaling objects, see the following topics.

v “Journaling overview”

v “Start journaling” on page 85

v “Change journaling” on page 86

v “End journaling” on page 86

Journaling overview

The following topics introduce journaling support for integrated file system objects:

v “Journal management” on page 82

v “Objects you should journal” on page 82

v “Journaled integrated file system objects” on page 82

Integrated file system 81

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|

|
|

|
|
|

|

v “Journaled operations” on page 83

v “Special considerations for journal entries” on page 84

v “Considerations for multiple hard links and journaling” on page 85

For detailed information about journaling integrated file system objects, refer to the Journal management

topic in the iSeries Information Center.

Journal management

The main purpose for journal management is to enable you to recover the changes to an object that have

occurred since the object was last saved. You can also use journal management for:

v An audit trail of activity that occurs for objects on the system

v Recording activity that has occurred for objects other than those you can journal

v Quicker recovery when restoring from save-while-active media

v Assist in the replication of object changes to another system either for high availability or workload

balancing

v Assistance in testing application programs

You can use a journal to define what objects you want to protect with journal management. See “Objects

you should journal” for more considerations on journaling objects. In the integrated file system , you can

journal stream files, directories, and symbolic links. Only objects in ″root″ (/), QOpenSys, and UDFS file

systems are supported.

Objects you should journal

Consider the following questions when deciding if you should journal an integrated file system object:

v How much does the object change? An object with a high volume of changes between save operations

is a good candidate for journaling.

v How difficult would it be to reconstruct the changes made to an object? Are many changes made to the

object without written records? For example, an object used for telephone order entries would be more

difficult to reconstruct than an object used for orders that arrive in the mail on order forms.

v How critical is the information in the object? If the object had to be restored back to the last save

operation, what effect would the delay in reconstructing changes have on the business?

v How does the object relate to other objects on the server? Although the data in a particular object may

not change often, that object’s data may be critical to other, more dynamic objects on the server. For

example, many objects depend on a customer master file. If you are reconstructing orders, the

customer master file must include new customers or changes in credit limits that have taken place

since the previous save.

Journaled integrated file system objects

Some integrated file system object types can be journaled using OS/400 journaling support. The object

types supported are stream files, directories, and symbolic links. The ″root″ (/), QOpenSys, and UDFS are

the only file systems that support journaling of these object types. Integrated file system objects can be

journaled using either the traditional system interface (CL commands or APIs) or by using iSeries

Navigator. You can Start journaling and End journaling through iSeries Navigator, as well as display

journaling status information.

Note: Memory mapped stream files and stream files that are used by the Integrated xSeries Server for

iSeries (IXS) for virtual drive storage space cannot be journaled. Directories that can contain block

special file objects cannot be journaled. Examples of these are: /dev/QASP01, /dev/QASP22, and

/dev/IASPNAME.

Following is a list that summarizes journaling support in the integrated file system:

82 iSeries: Integrated File System

|
|

|
|
|
|

v You can use both generic commands and APIs to perform journal operations on the supported object

types. These interfaces generally accept object identification in the form of a path name, file ID, or

both.

v Some journal operation commands, including Start Journaling, End Journaling, Change Journaling and

Apply Journaled Changes, may be performed on entire subtrees of integrated file system objects. You

can optionally use the include and exclude lists that may use wild card patterns for object names. For

example, you can use the Start Journaling command to specify to start on all objects in the tree

"/MyCompany" that match the pattern "*.data" but that excludes any objects matching the patterns

"A*.data" and "B*.data".

v Journaling support on directories includes directory operations such as adding links, removing links,

creating objects, renaming objects, and moving objects within the directory.

Journaled directories support an attribute that can be set to cause new objects in the subtree to inherit

the current journaling state of the directory. When this attribute is turned on for a journaled directory,

all stream files, directories, and symbolic links that are created or linked into the directory (by adding a

hard link or by renaming or moving the object) will automatically have journaling started by the

system.

Note: Inherit journaling attribute considerations:

– If you rename an object in the same directory it currently resides in, journaling is not started

for the object, even if the directory has the inherit current journaling state attribute on.

– When a directory is moved to a directory which has the inherit journaling attribute on, only

that moved directory has journaling started for it if appropriate. The objects within that

moved directory are not affected.

– If an object is restored to a directory which has the inherit journaling attribute on, journaling

is not started for that object if the object has ever been journaled.

– When using the Apply Journaled Changes (APYJRNCHG) command, the current value of the

inherit journaling attribute for any directories is not used. Instead, any objects which are

created as part of the apply have journaling started or not based on what happened during

the runtime activity which is being applied.
v Object names and complete path names are contained within several journal entries of integrated file

system objects. Object names and path names are National Language Support (NLS)-enabled.

v If the system ends abnormally, system initial program load (IPL) recovery is provided for journaled

integrated file system objects.

v The maximum write limit supported by the various writer interfaces is 2 gigabytes-1. The maximum

journal entry size if RCVSIZOPT (*MAXOPT2 or *MAXOPT3) is specified is 4,000,000,000. Otherwise,

the maximum journal entry size is 15, 761,440 bytes. If you journal your stream file and have any

writes which exceed 15, 761,440 bytes, you will want to use the *MAXOPT2 or *MAXOPT3 support to

prevent any errors from occurring.

For more detailed information about journaling integrated file system objects, refer to Journal

Management topic.

For more information about the layout of various journal entries, there is a C language include file,

qp0ljrnl.h, shipped in member QSYSINC/H (QP0LJRNL), that contains details of the integrated file

system journal entry specific data content and formats.

For a complete list of all journal entries deposited for integrated file system objects, and definitions of the

layouts mentioned above, refer to the Journal entry information finder in the Journal Management topic.

Journaled operations

The following operations are only journaled when the type of the object or link that the operation is

using is a type that can also be journaled:

v Create an object.

Integrated file system 83

|
|
|
|
|
|

|

|
|

|
|
|

|
|

|
|
|
|

|
|
|
|
|

v Add a link to an existing object.

v Unlink a link.

v Rename a link.

v Rename a file identifier.

v Move a link into or out of the directory.

The following journaled operations are specific to a stream file:

v Data write or clear

v File truncate/extend

v File data forced

v Save with storage freed

The following journaled operations apply to all journaled object types:

v Attribute changes (including security changes such as authorities and ownership)

v Open

v Close

v Start journaling

v Change Journaled Object (CHGJRNOBJ) command

v End journaling

v Start the Apply Journaled Changes (APYJRNCHG) command

v End the Apply Journaled Changes (APYJRNCHG) command

v Save

v Restore

For more detailed information about journaling integrated file system objects, refer to the Journal

management topic. For a complete list of all journal entries deposited for integrated file system objects,

refer to the Journal entry information finder in the Journal Management topic.

Special considerations for journal entries

Many journaled integrated file system operations internally use commitment control to form a single

transaction from the multiple functions performed during the operations. These journaled operations

should not be considered complete unless the commitment control cycle has a Commit journal entry

(Journal Code C, Type CM). Journaled operations that contain a Rollback journal entry (Journal Code C,

Type RB) in the commitment control cycle are failed operations, and the journal entries within them

should not be replayed or replicated.

Journaled integrated file system entries (Journal Code B) that use commitment control in this manner

include:

v AA — Change Audit Value

v B0 — Begin Create

v B1 — Create Summary

v B2 — Add link

v B3 — Rename/Move

v B4 — Unlink (Parent Directory)

v B5 — Unlink (Link)

v FA — Attribute Change

v JT — Start Journal (only when journaling is started because of an operation in a directory with the

inherit journaling attribute of Yes)

v OA — Authority Change

84 iSeries: Integrated File System

|

|

v OG — Object Primary Group Change

v OO — Object Owner Change

Several integrated file system journal entries have a specific data field indicating whether the entry is a

summary entry. Operations that send summary entry types will send two of the same entry types to the

journal. The first entry contains a subset of the entry specific data. The second entry contains complete

entry specific data and will indicate that it is a summary entry. Programs that are replicating the object or

replaying the operation will generally only be interested in the summary entries.

For a create operation in a journaled directory, the B1 journal entry (Create Summary) is considered the

summary entry.

Some journaled operations need to send a journal entry that is conversely related to the operation. For

example, a commitment control cycle containing a B4 journal entry (Unlink) may also contain a B2

journal entry (Add Link). This type of scenario will only occur in operations that result in a Rollback

journal entry (C — RB) .

This scenario may occur for two reasons:

1. The operation was about to fail, and the entry was needed internally for error path cleanup.

2. The operation was interrupted by a system outage, and during the subsequent IPL, recovery that

needed to send the entry was performed to rollback the interrupted operation.

Considerations for multiple hard links and journaling

For information about hard links, such as what they are and how they work, see “Hard link” on page 12.

If you have multiple hard links to a journaled integrated file system object, all the links should be saved

and restored together so that the linkage is preserved as well as the associated journal information.

If specifying names in some of the journal related commands and if the names are really multiple hard

links, then the object will only be operated on ’once’. The other hard links are essentially ignored.

Since multiple hard links point to the same object, and the journal entry has only the file identifier (File

ID) which is the same for the object, then any journal interfaces which show the path name, for example,

Display Journal (DSPJRN), will show only one link name for the object. However, this should not cause

problems since one can operate on an object by any name and get the same result.

Start journaling

The primary purpose of journaling is to enable you to recover the changes to an object that have occurred

since the object was last saved.

To start journaling on an object through the iSeries Navigator:

1. Expand your system in iSeries Navigator.

2. Expand File Systems.

3. Right-click the object that you want to journal, and select Journaling....

4. After selecting the appropriate journaling options, click Start.

To start journaling on an object through the character-based interface, you can use either the Start Journal

(STRJRN) command or the QjoStartJournal API.

For more detailed information about journaling integrated file system objects, refer to Journal

management in the iSeries Information Center.

Integrated file system 85

|
|

|
|

|
|

|
|
|
|

|

|

|

|

|

|
|

|

Change journaling

The primary purpose of journaling is to enable you to recover the changes to an object that have occurred

since the object was last saved. See Start journaling for more information about how to start journaling on

an object. Once journaling has started on an object, for whatever reasons, you may want to change the

journal attributes on the object without having to end and restart journaling. The Change Journaled

Object (CHGJRNOBJ) command allows you to change journaled objects.

End journaling

The primary purpose of journaling is to enable you to recover the changes to an object that have occurred

since the object was last saved. See Start journaling for more information about how to start journaling on

an object. Once journaling has started on an object, for whatever reasons, you may want to end

journaling on this object.

To end journaling on an object through the iSeries Navigator:

1. Expand your system in iSeries Navigator.

2. Expand File Systems.

3. Right-click the object that you want to stop journaling, and select Journaling....

4. Click End.

To end journaling on an object through the character-based interface, you can use either the End Journal

(ENDJRN) command or the QjoEndJournal API.

For more detailed information about journaling integrated file system objects, refer to Journal

management in the iSeries Information Center.

Programming support

The addition of the integrated file system to the iSeries server does not affect existing iSeries server

applications. The programming languages, utilities, and system support such as data description

specifications operate the same as they did before the addition of the integrated file system.

To take advantage of the stream files, directories, and other support of the integrated file system,

however, you must use a set of application program interfaces (APIs) provided for accessing integrated

file system functions.

Additionally, the addition of the integrated file system allows you to copy data between physical

database files and stream files. You can perform this copy using CL commands, the data transfer function

of iSeries Access Family, or APIs.

The following topics explain how to use copy functions with integrated file system stream files, and

introduce APIs as a way to access integrated file system functions:

v Copy data between stream files and database files

v Copy data between stream files and save files

v Perform operations using APIs

v Socket support

v Naming and international support

v Data conversion

v Example: Integrated file system C functions

Copy data between stream files and database files

If you are familiar with operating on database files using record-oriented facilities such as data

description specifications (DDS), you may find some fundamental differences in the way you operate on

86 iSeries: Integrated File System

|

|
|
|
|
|

|

|

|

|

|

|
|

stream files. The differences result from the different structure (or perhaps lack of structure) of stream

files in comparison with database files. To access data in a stream file, you indicate a byte offset and a

length. To access data in a database file, you typically define the fields to be used and the number of

records to be processed.

Because you define the format and characteristics of a record-oriented file ahead of time, the operating

system has knowledge of the file and can help you avoid performing operations that are not appropriate

for the file format and characteristics. With stream files, the operating system has little or no knowledge

of the format of the file. The application must know what the file looks like and how to operate on it

properly. Stream files allow an extremely flexible programming environment, but at the cost of having

little or no help from the operating system. Stream files are better suited for some programming

situations; record-oriented files are better suited for other programming situations.

There are several ways to copy data between stream files and database files in the integrated file system:

v Copy data using CL commands

v Copy data using APIs

v Copy data using data transfer function

Copy data using CL commands

There are two sets of CL commands that allow you to copy data between stream files and database file

members:

v CPYTOSTMF and CPYFRMSTMF

v CPYTOIMPF and CPYFRMIMPF

CPYTOSTMF and CPYFRMSTMF commands

You can use the Copy from Stream File (CPYFRMSTMF) and Copy to Stream File (CPYTOSTMF)

commands to copy data between stream files and database file members. You can create a stream file

from a database file member by using the CPYTOSTMF command. You can also create a database file

member from a stream file by using the CPYFRMSTMF command. If the file or member that is the target

of the copy does not exist, it is created.

There are some limitations, however. The database file must be either a program-described physical file

containing only one field or a source physical file containing only one text field. The commands give you

a variety of options for converting and reformatting the data that is being copied.

The CPYTOSTMF and CPYFRMSTMF commands can also be used to copy data between a stream file

and a save file.

CPYTOIMPF and CPYFRMIMPF commands

You can also use the Copy to Import File (CPYTOIMPF) and Copy from Import File (CPYFRMIMPF)

commands to copy data between stream files and database members. The CPYTOSTMF and

CPYFRMSTMF commands do not allow you to move data from complex, externally-described

(DDS-described) database files. The word import file refers to the stream type file; the term typically refers

to a file created for purposes of copying data between heterogeneous databases.

When copying from a stream (or import) file, the CPYFRMIMPF command allows you to specify a field

definition file (FDF), which describes the data in the stream file. Or, you can specify that the stream files

is delimited, and what characters are used to mark string, field, and record boundaries. Options for

converting special data types such as time and date are also provided.

Data conversion is provided on these commands if the target stream file or database member already

exists. If the file does not exist, you can use the following two-step method to get the data converted:

Integrated file system 87

1. Use the CPYTOIMPF and CPYFRMIMPF commands to copy the data between the

externally-described file and a source physical file.

2. Use the CPYTOSTMF and CPYFRMSTMF commands (which provide full data conversion regardless

of whether the destination file exists) to copy between the source physical file and the stream file.

Here is an example:

CPYTOIMPF FROMFILE(DB2FILE) TOFILE(EXPFILE) DTAFMT(*DLM)

 FLDDLM(’;’) RCDDLM(X’07’) STRDLM(’"’) DATFMT(*USA) TIMFMT(*USA)

The DTAFMT parameter specifies that the input stream (import) file is delimited; the other choice is

DTAFMT(*FIXED), which requires an field definition file to be specified. The FLDDLM, RCDDLM and

STRDLM parameters identify the characters that act as the delimiters, or separators for fields, records,

and strings.

The DATFMT and TIMFMT parameters indicate the format for any date and time information that is

copied to the import file.

The commands are useful because they can be placed into a program, and they run entirely on your

server. However, the interfaces are complex.

For more information, see the command help or the Control language (CL) topic in the iSeries

Information Center.

Copy data using APIs

If you want to copy database file members to a stream file in an application, you can use the integrated

file system open(), read(), and write() functions to open a member, read data from it, and write data to it

or another file. See the Integrated File System APIs topic in the iSeries Information Center for more

information.

Copy data using data transfer function

The iSeries Access Family data transfer applications have the advantage of an easy-to-follow graphical

interface, and automatic numeric and character data conversion. However, data transfer requires the

installation of the iSeries Access Family product and requires use of both PC and iSeries server resources

and communications between the two.

If you have iSeries Access Family installed on the PC and your server, you can use the data transfer

applications to transfer data between stream files and database files. You can also transfer data into a new

database file based on an existing database file, into an externally-described database file, or into a new

database file definition and file.

The following tasks help you copy and transfer data using the data transfer applications:

v Transfer data from a database file to a stream file

v Transfer data from a stream file to a database file

v Transfer data into a newly created database file definition and file

v Create a format description file

Transfer data from a database file to a stream file: To transfer a file from a database file to a stream file

on your server:

1. Establish a connection to the server.

2. Map a network drive to the appropriate path in the iSeries file system.

3. Select Data Transfer from iSeries server from the iSeries Access for Windows window.

4. Select the server you want to transfer from.

88 iSeries: Integrated File System

5. Select the file names, using the iSeries database library and file name to copy from, and the network

drive for the location of the resulting stream file. You can also choose PC File Details to select the PC

file format for the stream file. Data transfer supports common PC file types, such as ASCII text, BIFF3,

CSV, DIF, Tab-delimited Text, or WK4.

6. Click Transfer data from iSeries to run the file transfer.

You can also perform this data movement in a batch job with the data transfer applications. Proceed as

above, but select the File menu option to save the transfer request. The Data Transfer To iSeries server

application creates a .DTT or a .TFR file. The Data Transfer from iSeries server application creates a .DTF

or a .TTO file. In the iSeries Access Family directory, two programs can be run in batch from a command

line:

v RTOPCB takes either a .DTF or a .TTO file as a parameter

v RFROMPCB takes either a .DTT or a .TFR file as a parameter

You can set either of these commands to run on a scheduled basis by using a scheduler application. For

example, you can use the System Agent Tool (a part of the Microsoft® Plus Pack) to specify the program

to run (for instance, RTOPCB MYFILE.TTO) and the time at which you want to run the program.

Transfer data from a stream file to a database file: To transfer data from a stream file to a database file

on your server:

1. Establish a connection to the server.

2. Map a network drive to the appropriate path in the iSeries file system.

3. Select Data Transfer to iSeries server from the iSeries Access for Windows window.

4. Select the PC file name you want to transfer. For the PC file name, you can choose Browse for the

network drive you assigned, and choose a stream file. You can also use a stream file located on the

PC itself.

5. Select the server on which you want the externally described database file to be located.

6. Click Transfer data to iSeries server to run the file transfer.

Note: If you are moving data to an existing database file definition on the server, the Data Transfer To

iSeries server application requires you to use an associated format description file (FDF). An FDF file

describes the format of a stream file, and is created by the Data Transfer from iSeries server

application when data is transferred from a database file to a stream file. To complete the transfer of

data from a stream file to a database file, click Transfer data to iSeries. If an existing .FDF file is not

available, you can quickly create an .FDF file.

You can also perform this data movement in a batch job with the data transfer applications. Proceed as

above, but select the File menu option to save the transfer request. The Data Transfer To iSeries server

application creates a .DTT or a .TFR file. The Data Transfer from iSeries server application creates a .DTF

or a .TTO file. In the IBM e(logo)server iSeries Access Family directory, two programs can be run in batch

from a command line:

v RTOPCB takes either a .DTF or a .TTO file as a parameter

v RFROMPCB takes either a .DTT or a .TFR file as a parameter

You can set either of these commands to run on a scheduled basis by using a scheduler application. For

example, you can use the System Agent Tool (a part of the Microsoft Plus Pack) to specify the program to

run (for instance, RTOPCB MYFILE.TTO) and the time at which you want to run the program.

Transfer data into a newly created database file definition and file: To transfer data into a newly

created database file definition and file:

1. Establish a connection to the server.

2. Map a network drive to the appropriate path in the iSeries file system.

3. Select Data Transfer to iSeries server from the iSeries Access for Windows window.

4. Open the Tools menu of the Data Transfer to iSeries server application.

Integrated file system 89

5. Select Create iSeries database file.

A wizard will appear that allows you to create a new iSeries database file from an existing PC file.

You will be required to specify the name of the PC file from which the iSeries file will be based, the

name of the iSeries file which to create, and several other necessary details. This tool parses a given

stream file to determine the number, type, and size of the fields that are required in the resulting

database file. The tool can then create the database file definition on your server.

Create a format description file: If you are moving data to an existing database file definition on the

server, the Data Transfer To iSeries server application requires you to use an associated format description

file (FDF). An FDF file describes the format of a stream file, and is created by the Data Transfer from

iSeries server application when data is transferred from a database file to a stream file.

To create a .FDF file:

1. Create an externally described database file with a format that matches your source stream file

(number of fields, types of data).

2. Create one temporary data record within the database file.

3. Use the Data Transfer from iSeries server function to create a stream file and its associated .FDF file

from this database file.

4. Now, you can use the Data Transfer to iSeries server function. Specify this .FDF file with the source

stream file you want to transfer.

Copy data between stream files and save files

A save file is used with save and restore commands to retain data that would otherwise be written to

tape or diskette. The file can also be used like a database file to read or write records that contain

save/restore information. A save file can also be used to send objects to another user on the SNADS

network.

You can use the CPY command to copy a save file both to and from a stream file. However, when

copying a stream file back into a save file object, the data must be valid save file data (it must have

originated from a save file and been copied into a stream file).

By using a PC client, you can also access the save file and copy the data to your PC storage or LAN.

Keep in mind, though, that data in save files cannot be accessed through the Network File System (NFS).

Perform operations using APIs

Many of the application program interfaces (APIs) that perform operations on integrated file system

objects are in the form of C language functions. You have a choice of two sets of functions, either of

which you can use in programs that are created using Integrated Language Environment® (ILE) C/400:

v Integrated file system C functions that are included in OS/400.

v C functions provided by the ILE C/400 licensed program.

For information about the exit programs that the integrated file system supports, select Table 12 on page

95.

The integrated file system functions operate only through the integrated file system stream I/O support.

The following APIs are supported:

 Table 11. Integrated File System APIs

Function Description

access() Determine file accessibility

accessx() Determine file accessibility for a class of users

chdir() Change current directory

90 iSeries: Integrated File System

Table 11. Integrated File System APIs (continued)

Function Description

chmod() Change file authorizations

chown() Change owner and group of file

close() Close file descriptor

closedir() Close directory

creat() Create new file or rewrite existing file

creat64() Create new file or rewrite existing file (large file enabled)

DosSetFileLocks() Lock and unlock byte range of a file

DosSetFileLocks64() Lock and unlock byte range of a file (large file enabled)

DosSetRelMaxFH() Change the maximum number of file descriptors

dup() Duplicate open file descriptor

dup2() Duplicate open file descriptor to another descriptor

faccessx() Determine file accessibility for a class of users by descriptor

fchdir() Change current directory by descriptor

fchmod() Change file authorizations by descriptor

fchown() Change owner and group of file by descriptor

fclear() Clear a file

fclear64() Clear a file (large file enabled)

fcntl() Perform file control action

fpathconf() Get configurable path name variables by descriptor

fstat() Get file information by descriptor

fstat64() Get file information by descriptor (large file enabled)

fstatvfs() Get information by descriptor

fstatvfs64() Get information by descriptor (64-bit enabled)

fsync() Synchronize changes to file

ftruncate() Truncate file

ftruncate64() Truncate file (large file enabled)

getcwd() Get path name of current directory

getegid() Get effective group ID

geteuid() Get effective user ID

getgid() Get real group ID

getgrgid() Get group information using group ID

getgrnam() Get group information using group name

getgroups() Get group IDs

getwpnam() Get user information for user name

getpwuid() Get user information for user ID

getuid() Get real user ID

givedescriptor() Give file access to another job

ioctl() Perform file I/O control action

link() Create link to file

lseek() Set file read/write offset

Integrated file system 91

||

||

Table 11. Integrated File System APIs (continued)

Function Description

lseek64() Set file read/write offset (large file enabled)

lstat() Get file or link information

lstat64() Get file or link information (large file enabled)

mmap() Create a memory map

mmap64() Create a memory map (large file enabled)

mprotect() Change a memory map protection

msync() Synchronize a memory map

munmap() Remove a memory map

mkdir() Make directory

mkfifo() Make FIFO special file

open() Open file

open64() Open file (large file enabled)

opendir() Open directory

pathconf() Get configurable path name variables

pipe() Create interprocess channel with sockets

pread() Read from descriptor with offset

pread64() Read from descriptor with offset (large file enabled)

pwrite() Write to descriptor with offset

pwrite64() Write to descriptor with offset (large file enabled)

QjoEndJournal() End journaling

QjoRetrieveJournal Information() Retrieve journal information

QJORJIDI() Retrieve journal identifier information

QJOSJRNE() Send journal entry

QjoStartJournal() Start journaling

QlgAccess() Determine file accessibility (using NLS-enabled path name)

QlgAccessx()

Determine file accessibility for a class of users (using

NLS-enabled path name)

QlgChdir() Change current directory (using NLS-enabled path name)

QlgChmod() Change file authorizations (using NLS-enabled path name)

QlgChown()

Change owner and group of file (using NLS-enabled path

name)

QlgCreat()

Create new file or rewrite existing file (using NLS-enabled

path name)

QlgCreat64()

Create new file or rewrite existing file (large file enabled and

using NLS-enabled path name)

QlgCvtPathToQSYSObjName()

Resolve Integrated File System path name into QSYS Object

Name (using NLS-enabled path name)

QlgGetAttr()

Get system attributes for an object (using NLS-enabled path

name)

QlgGetcwd()

Get path name of current directory (using NLS-enabled path

name)

92 iSeries: Integrated File System

Table 11. Integrated File System APIs (continued)

Function Description

QlgGetPathFromFileID()

Get path name of object from its file ID (using NLS-enabled

path name)

QlgGetpwnam()

Get user information for user name (using NLS-enabled path

name)

QlgGetpwnam_r()

Get user information for user name (using NLS-enabled path

name)

QlgGetpwuid()

Get user information for user ID (using NLS-enabled path

name)

QlgGetpwuid_r()

Get user information for user ID (using NLS-enabled path

name)

QlgLchown()

Change owner and group of symbolic link (using

NLS-enabled path name)

QlgLink() Create link to file (using NLS-enabled path name)

QlgLstat() Get file or link information (using NLS-enabled path name)

QlgLstat64()

Get file or link information (large file enabled and using

NLS-enabled path name)

QlgMkdir() Make directory (using NLS-enabled path name)

QlgMkfifo() Make FIFO special file (using NLS-enabled path name)

QlgOpen() Open file (using NLS-enabled path name)

QlgOpen64()

Open file (large file enabled and using NLS-enabled path

name)

QlgOpendir() Open directory (using NLS-enabled path name)

QlgPathconf()

Get configurable path name variables (using NLS-enabled

path name)

QlgProcessSubtree()

Process directories or objects within a directory tree (using

NLS-enabled path name)

QlgReaddir() Read directory entry (using NLS-enabled path name)

QlgReaddir_r()

Read directory entry (threadsafe and using NLS-enabled path

name)

QlgReadlink() Read value of symbolic link (using NLS-enabled path name)

QlgRenameKeep()

Rename file or directory, keep new if it exists (using

NLS-enabled path name)

QlgRenameUnlink()

Rename file or directory, unlink new if it exists (using

NLS-enabled path name)

QlgRmdir() Remove directory (using NLS-enabled path name)

QlgSaveStgFree()

Save objects data and free its storage (using NLS-enabled

path name)

QlgSetAttr()

Set system attributes for an object (using NLS-enabled path

name)

QlgStat() Get file information (using NLS-enabled path name)

QlgStat64()

Get file information (large file enabled and using

NLS-enabled path name)

QlgStatvfs() Get file system information (using NLS-enabled path name)

QlgStatvfs64()

Get file system information (large file enabled and using

NLS-enabled path name)

Integrated file system 93

Table 11. Integrated File System APIs (continued)

Function Description

QlgSymlink() Make symbolic link (using NLS-enabled path name)

QlgUnlink() Unlink file (using NLS-enabled path name)

QlgUtime()

Set file access and modification times (using NLS-enabled

path name)

QP0FPTOS() Perform miscellaneous file system functions

QP0LCHSG() Change scan signature

Qp0lCvtPathToSYSObjName()

Resolve integrated file system path name into QSYS Object

Name

QP0LFLOP() Perform miscellaneous operations on objects

Qp0lGetAttr() Get system attributes for an object

Qp0lGetPathFromFileID() Get path name of object from its file ID

Qp0lOpen() Open file with NLS-enabled path name

Qp0lProcessSubtree() Process directories or objects within a directory tree

Qp0lRenameKeep() Rename file or directory, keep new if it exists

Qp0lRenameUnlink() Rename file or directory, unlink new if it exists

QP0LROR() Retrieve object references

QP0LRRO() Retrieve referenced objects

QP0LRTSG() Retrieve scan signature

Qp0lSaveStgFree() Save objects data and free its storage

Qp0lSetAttr() Set system attributes for an object

Qp0lUnlink() Unlink file with NLS-enabled path name

qsysetegid() Set effective group ID

qsyseteuid() Set effective user ID

qsysetgid() Set group ID

qsysetregid() Set real and effective group IDs

qsysetreuid() Set real and effective user IDs

qsysetuid() Set user ID

QZNFRTVE() Retrieve NFS export information

read() Read from file

readdir() Read directory entry

readdir_r() Read directory entry (threadsafe)

readlink() Read value of symbolic link

readv() Read from file (vector)

rename()

Rename file or directory. Can be defined to have the

semantics of Qp0lRenameKeep() or Qp0lRenameUnlink().

rewinddir() Reset directory stream

rmdir() Remove directory

select() Check I/O status of multiple file descriptors

stat() Get file information

stat64() Get file information (large file enabled)

statvfs() Get file system information

94 iSeries: Integrated File System

||

||

||

Table 11. Integrated File System APIs (continued)

Function Description

statvfs64() Get file system information (large file enabled)

symlink() Make symbolic link

sysconf() Get system configuration variables

takedescriptor() Take file access from another job

umask() Set authorization mask for job

unlink() Remove link to file

utime() Set file access and modification times

write() Write to file

writev() Write to file (vector)

Note: Some of these functions are also used for OS/400 sockets. For restrictions on use of these functions

for particular file systems, see Work with file systems. For an example program using integrated

file system C functions, see “Example: Integrated file system C functions” on page 100.

 Table 12. Integrated File System Exit Programs

Function Description

Integrated File System Scan on Close API Called during close processing such as with the close() API.

This exit program must be provided by the user.

Integrated File System Scan on Open API Called during open processing such as with the open() API.

This exit program must be provided by the user.

Process a Path Name Called by the Qp0lProcessSubtree() API for each object in the

API’s search that meets the caller’s selection criteria. This exit

program must be provided by the user.

Save Storage Free Called by the Qp0lSaveStgFree() API to save a *STMF iSeries

object type

Refer to the following topics for more information about integrated file system APIs:

v ILE C/400 functions

v Large file support for APIs

v Path name rules for APIs

v File descriptor

v Security

v Copy data using APIs

v The Application programming interfaces (APIs) topic in the iSeries Information Center

ILE C/400 functions

ILE C/400 provides the standard C functions defined by the American National Standards Institute

(ANSI). These functions can operate through either the data management I/O support or the integrated

file system stream I/O support, depending on what you specify when you create the C program. The

compiler uses the data management I/O unless you tell it differently.

To tell the compiler to use the integrated file system stream I/O, you must specify *IFSIO for the System

interface option (SYSIFCOPT) parameter in the Create ILE C/400 Module (CRTCMOD) or Create Bound

C Program (CRTBNDC) command. When you specify *IFSIO, the integrated file system I/O functions are

Integrated file system 95

||

||

||
|

||
|

||
|
|

||
|
|

bound instead of the data management I/O functions. In effect, the ILE C/400 C functions use the

integrated file system functions to perform I/O.

 For more information about using ILE C/400 functions with integrated file system stream I/O, see the

publication WebSphere® Development Studio: ILE C/C++ Programmers Guide

. For details on each

ILE C/400 C function, see the publication WebSphere Development Studio: C/C++ Language Reference

.

Large file support

The integrated file system APIs are enhanced to allow your applications to store and manipulate very

large files. The integrated file system allows stream file sizes up to approximately one terabyte in the

″root″ (/), QOpenSys, and user-defined file systems.

The integrated file system provides a set of 64-bit UNIX-type APIs and allows an easy mapping of

existing 32-bit APIs to 64-bit APIs that are capable of accessing large file sizes and offsets by using eight

byte integer arguments. For details on each 64-bit API, see the Integrated File System APIs topic in the

iSeries Information Center.

The following are provided to allow applications to use large file support:

1. If the macro label _LARGE_FILE_API is defined at compile time, applications have access to APIs and

data structures that are 64-bit enabled. For example, an application intending to use stat64() API and

stat64 structure will need to define _LARGE_FILE_API at compile time.

2. If the macro label _LARGE_FILES is defined by the applications at compile time, existing APIs and data

structures are mapped to their 64-bit versions. For example, if an application defines _LARGE_FILES at

compile time, a call to stat() API is mapped to stat64() API and stat()structure is mapped to

stat64() structure.

The applications that intend to use the large file support can either define _LARGE_FILE_API at compile

time and code directly to the 64-bit APIs, or they can define _LARGE_FILES at compile time. All the

appropriate APIs and data structures are then mapped to the 64-bit version automatically.

Applications that do not intend to use the large file support are not impacted and can continue to use

integrated file system APIs without any changes.

Figure 10. ILE C/400 functions use the integrated file system stream I/O functions.

96 iSeries: Integrated File System

|
|
|

Path name rules for APIs

When using an integrated file system or ILE C/400 API to operate on an object, you identify the object

by supplying its directory path. Following is a summary of rules to keep in mind when specifying path

names in the APIs. The term object in these rules refers to any directory, file, link, or other object.

v Path names are specified in hierarchical order beginning with the highest level of the directory

hierarchy. The name of each component in the path is separated by a slash (/); for example:

 Dir1/Dir2/Dir3/UsrFile

The back slash (\) is not recognized as a separator. It is handled as just another character in a name.

v Object names must be unique within a directory.

v The maximum length of each component of the path name and the maximum length of the path name

string can vary for each file system. See “File system comparison” on page 24 for the limits in each file

system.

v A / character at the beginning of a path name means that the path begins at the “root” (/) directory;

for example:

 /Dir1/Dir2/Dir3/UsrFile

v If the path name does not begin with a / character, the path is assumed to begin at the current

directory; for example:

 MyDir/MyFile

where MyDir is a subdirectory of the current directory.

v To avoid confusion with iSeries server special values, path names cannot start with a single asterisk (*)

character. To specify a path name that begins with any number of characters, use two asterisks (*); for

example:

 ’**.file’

Note that this only applies to relative path names where there are no other characters before the

asterisk (*).

v When operating on objects in the QSYS.LIB file system, the component names must be of the form

name.object-type; for example:

 /QSYS.LIB/PAYROLL.LIB/PAY.FILE

See “Library file system (QSYS.LIB)” on page 36 for more details.

v When operating on objects in the Independent ASP QSYS.LIB file system, the component names must

be of the form name.object-type; for example:

 ’/asp_name/QSYS.LIB/PAYDAVE.LIB/PAY.FILE

See “Independent ASP QSYS.LIB” on page 38 for more details.

v Do not use a colon (:) in path names. It has a special meaning within the server.

v Unlike path names in integrated file system commands (see “Path name rules for CL commands and

displays” on page 61), an asterisk (*), a question mark (?), an apostrophe ('), a quotation mark ("), and

a tilde (~) have no special significance. They are handled as if they are just another character in a

name. The only APIs that are an exception to this rule are QjoEndJournal and QjoStartJournal.

v When using the Qlg (using NLS-enabled path names) API interfaces, a null character value is not

allowed as one of the characters in the path name unless a null character is specified as a path name

delimiter.

File descriptor

When using ILE C/400 stream I/O functions as defined by the American National Standards Institute

(ANSI) to perform operations on a file, you identify the file through use of pointers. When using the

integrated file system C functions, you identify the file by specifying a file descriptor. A file descriptor is

a positive integer that must be unique in each job. The job uses a file descriptor to identify an open file

when performing operations on the file. The file descriptor is represented by the variable fildes in C

functions that operate on the integrated file system and by the variable descriptor in C functions that

operate on sockets.

Integrated file system 97

|
|
|

Each file descriptor refers to an open file description, which contains information such as a file offset,

status of the file, and access modes for the file. The same open file description can be referred to by more

than one file descriptor, but a file descriptor can refer to only one open file description.

 If an ILE C/400 stream I/O function is used with the integrated file system, the ILE C/400 run-time

support converts the file pointer to a file descriptor.

When using the “root” (/), QOpenSys, or user-defined file systems, you can pass access to an open file

description from one job to another, thus allowing the job to access the file. You do this by using the

givedescriptor() or takedescriptor() function to pass the file descriptor between jobs. For a description of

these functions, see Sockets Programming , or the Sockets APIs topic in the iSeries Information Center.

Security

When using the integrated file system APIs, you can restrict access to objects as you can when using data

management interfaces. Be aware, however, that adopting authorities is not supported. An integrated file

system API uses the authority of the user profile under which the job is running.

Each file system may have its own special authority requirements. NFS server jobs are the only exception

to this rule. Network File System server requests run under the profile of the user whose user

identification (UID) number was received by the NFS server at the time of the request.

Authorities on your server are the equivalent of permissions on UNIX systems. The types of permissions

are read and write (for a file or a directory) and execute (for a file) or search (for a directory). The

permissions are indicated by a set of permission bits, which make up the “mode of access” of the file or

directory. You can change the permission bits by using the “change mode” functions chmod() or

fchmod(). You can also use the umask() function to control which file permission bits are set each time a

job creates a file.

For details on data security and authorities, see the publication Security — Reference

.

Socket support

If your application is using the “root” (/), QOpenSys, or user-defined file systems, you can take

advantage of the integrated file system local socket support. A local socket object (object type *SOCKET)

allows two jobs running on the same system to establish a communications connection with each other.

Figure 11. File descriptor and open file description

98 iSeries: Integrated File System

One of the jobs establishes a connection point by using the bind() C language function to create a local

socket object. The other job specifies the name of the local socket object on the connect(), sendto(), or

sendmsg() function. These functions and the concepts of sockets in general are described in the Socket

Programming topic in the iSeries Information Center.

After the connection is established, the two jobs can send data to and receive data from each other using

the integrated file system functions such as write() and read(). None of the data that is transferred

actually goes through the socket object. The socket object is just a meeting point where the two jobs can

find each other.

When the two jobs are finished communicating, each job uses the close() function to close the socket

connection. The local socket object remains in the system until it is removed using the unlink() function

or the Remove Link (RMVLNK) command.

A local socket object cannot be saved.

Naming and international support

The support for the “root” (/) and QOpenSys file systems ensures that the characters in object names

remain constant across encoding schemes used for different national languages and devices. When an

object name is passed to the system, each character of the name is converted to a 16-bit form in which all

characters have a standard coded representation (see “Name continuity” on page 17). When the name is

used, it is converted to the proper coded form for the code page being used.

If the code page to which the name is being converted does not contain a character used in a name, the

name is rejected as not valid.

Because characters remain constant across code pages, you should not do an operation on the assumption

a particular character will change to another particular character when a specific code page is used. For

example, you should not assume the number sign character will change to the pound sterling character

even though they may have the same coded representation in different code pages.

Note that the names of the extended attributes of an object are converted in the same way as the name of

the object, so the same considerations apply.

For more information about code pages, see the Globalization topic in the iSeries Information Center.

Data conversion

When you access files through the integrated file system, data in the files may or may not be converted,

depending on the open mode requested when the file is opened.

An open file can be in one of two open modes:

Binary

The data is read from the file and written to the file without conversion. The application is

responsible for handling the data.

Text The data is read from the file and written to the file, assuming it is in textual form. When the

data is read from the file, it is converted from the coded character set identifier (CCSID) of the

file to the CCSID of the application, job, or system receiving the data. When data is written to the

file, it is converted from the CCSID of the application, job, or system to the CCSID of the file. For

true stream files, any line-formatting characters (such as carriage return, tab, and end-of-file) are

just converted from one CCSID to another.

 When reading from record files that are being used as stream files, end-of-line characters (carriage

return and line feed) are appended to the end of the data in each record. When writing to record

files:

Integrated file system 99

v End-of-line characters are removed.

v Tab characters are replaced by the appropriate number of blanks to the next tab position.

v Lines are padded with either blanks (for a source physical file member) or nulls (for a data

physical file member) to the end of the record.

On an open request, one of the following can be specified:

Binary, Forced

The data is processed as binary regardless of the actual content of the file. The application is

responsible for knowing how to handle the data.

Text, Forced

The data is assumed to be text. The data is converted from the CCSID of the file to the CCSID of

the application.

A default of Binary, Forced is used for the integrated file system open() function.

Example: Integrated file system C functions

This simple C language program illustrates the use of several integrated file system functions. The

program performs the following operations:

�1� Uses the getuid() function to determine the real user ID (uid).

�2� Uses the getcwd() function to determine the current directory.

�3� Uses the open() function to create a file. It establishes read, write, and execute authority to the

file for the owner (the person who created the file).

�4� Uses the write() function to write a byte string to the file. The file descriptor that was provided in

the open operation (�3�), identifies the file.

�5� Uses the close() function to close the file.

�6� Uses the mkdir() function to create a new subdirectory in the current directory. The owner is

given read, write, and execute access to the subdirectory.

�7� Uses the chdir() function to change the new subdirectory to the current directory.

�8� Uses the link() function to create a link to the file that was previously created (�3�).

�9� Uses the open() function to open the file for read only. The link that was created in (�8�) allows

access to the file.

�10� Uses the read() function to read a byte string from the file. The file descriptor that was provided

in the open operation (�9�) identifies the file.

�11� Uses the close() function to close the file.

�12� Uses the unlink() function to remove the link to the file.

�13� Uses the chdir() function to change the current directory back to the parent directory in which the

new subdirectory was created.

�14� Uses the rmdir() function to remove the subdirectory that was previously created (�6�).

�15� Uses the unlink() function to remove the file that was previously created (�3�).

Note: This sample program will run correctly on systems where the CCSID of the job in which it is run

is 37. The integrated file system APIs must have the object and path names encoded in the job’s

CCSID; however, the C compiler stores character constants in CCSID 37. For complete

compatibility, translate character constants, such as object and path names, before passing APIs to

the job’s CCSID.

100 iSeries: Integrated File System

#include <stdlib.h>

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/types.h>

#define BUFFER_SIZE 2048

#define NEW_DIRECTORY "testdir"

#define TEST_FILE "test.file"

#define TEST_DATA "Hello World!"

#define USER_ID "user_id_"

#define PARENT_DIRECTORY ".."

char InitialFile[BUFFER_SIZE];

char LinkName[BUFFER_SIZE];

char InitialDirectory[BUFFER_SIZE] = ".";

char Buffer[32];

int FilDes = -1;

int BytesRead;

int BytesWritten;

uid_t UserID;

void CleanUpOnError(int level)

{

 printf("Error encountered, cleaning up.\n");

 switch (level)

 {

 case 1:

 printf("Could not get current working directory.\n");

 break;

 case 2:

 printf("Could not create file %s.\n",TEST_FILE);

 break;

 case 3:

 printf("Could not write to file %s.\n",TEST_FILE);

 close(FilDes);

 unlink(TEST_FILE);

 break;

 case 4:

 printf("Could not close file %s.\n",TEST_FILE);

 close(FilDes);

 unlink(TEST_FILE);

 break;

 case 5:

 printf("Could not make directory %s.\n",NEW_DIRECTORY);

 unlink(TEST_FILE);

 break;

 case 6:

 printf("Could not change to directory %s.\n",NEW_DIRECTORY);

 rmdir(NEW_DIRECTORY);

 unlink(TEST_FILE);

 break;

 case 7:

 printf("Could not create link %s to %s.\n",LinkName,InitialFile);

 chdir(PARENT_DIRECTORY);

 rmdir(NEW_DIRECTORY);

 unlink(TEST_FILE);

 break;

 case 8:

 printf("Could not open link %s.\n",LinkName);

 unlink(LinkName);

 chdir(PARENT_DIRECTORY);

 rmdir(NEW_DIRECTORY);

Integrated file system 101

unlink(TEST_FILE);

 break;

 case 9:

 printf("Could not read link %s.\n",LinkName);

 close(FilDes);

 unlink(LinkName);

 chdir(PARENT_DIRECTORY);

 rmdir(NEW_DIRECTORY);

 unlink(TEST_FILE);

 break;

 case 10:

 printf("Could not close link %s.\n",LinkName);

 close(FilDes);

 unlink(LinkName);

 chdir(PARENT_DIRECTORY);

 rmdir(NEW_DIRECTORY);

 unlink(TEST_FILE);

 break;

 case 11:

 printf("Could not unlink link %s.\n",LinkName);

 unlink(LinkName);

 chdir(PARENT_DIRECTORY);

 rmdir(NEW_DIRECTORY);

 unlink(TEST_FILE);

 break;

 case 12:

 printf("Could not change to directory %s.\n",PARENT_DIRECTORY);

 chdir(PARENT_DIRECTORY);

 rmdir(NEW_DIRECTORY);

 unlink(TEST_FILE);

 break;

 case 13:

 printf("Could not remove directory %s.\n",NEW_DIRECTORY);

 rmdir(NEW_DIRECTORY);

 unlink(TEST_FILE);

 break;

 case 14:

 printf("Could not unlink file %s.\n",TEST_FILE);

 unlink(TEST_FILE);

 break;

 default:

 break;

 }

 printf("Program ended with Error.\n"\

 "All test files and directories may not have been removed.\n");

}

int main ()

{

 �1�

/* Get and print the real user id with the getuid() function. */

 UserID = getuid();

 printf("The real user id is %u. \n",UserID);

 �2�

/* Get the current working directory and store it in InitialDirectory. */

 if (NULL == getcwd(InitialDirectory,BUFFER_SIZE))

 {

 perror("getcwd Error");

 CleanUpOnError(1);

 return 0;

 }

 printf("The current working directory is %s. \n",InitialDirectory);

 �3�

/* Create the file TEST_FILE for writing, if it does not exist.

 Give the owner authority to read, write, and execute. */

102 iSeries: Integrated File System

FilDes = open(TEST_FILE, O_WRONLY | O_CREAT | O_EXCL, S_IRWXU);

 if (-1 == FilDes)

 {

 perror("open Error");

 CleanUpOnError(2);

 return 0;

 }

 printf("Created %s in directory %s.\n",TEST_FILE,InitialDirectory);

 �4�

/* Write TEST_DATA to TEST_FILE via FilDes */

 BytesWritten = write(FilDes,TEST_DATA,strlen(TEST_DATA));

 if (-1 == BytesWritten)

 {

 perror("write Error");

 CleanUpOnError(3);

 return 0;

 }

 printf("Wrote %s to file %s.\n",TEST_DATA,TEST_FILE);

 �5�

/* Close TEST_FILE via FilDes */

 if (-1 == close(FilDes))

 {

 perror("close Error");

 CleanUpOnError(4);

 return 0;

 }

 FilDes = -1;

 printf("File %s closed.\n",TEST_FILE);

 �6�

/* Make a new directory in the current working directory and

 grant the owner read, write and execute authority */

 if (-1 == mkdir(NEW_DIRECTORY, S_IRWXU))

 {

 perror("mkdir Error");

 CleanUpOnError(5);

 return 0;

 }

 printf("Created directory %s in directory %s.\n",NEW_DIRECTORY,InitialDirectory);

 �7�

/* Change the current working directory to the

 directory NEW_DIRECTORY just created. */

 if (-1 == chdir(NEW_DIRECTORY))

 {

 perror("chdir Error");

 CleanUpOnError(6);

 return 0;

 }

 printf("Changed to directory %s/%s.\n",InitialDirectory,NEW_DIRECTORY);

/* Copy PARENT_DIRECTORY to InitialFile and

 append "/" and TEST_FILE to InitialFile. */

 strcpy(InitialFile,PARENT_DIRECTORY);

 strcat(InitialFile,"/");

 strcat(InitialFile,TEST_FILE);

/* Copy USER_ID to LinkName then append the

 UserID as a string to LinkName. */

 strcpy(LinkName, USER_ID);

 sprintf(Buffer, "%d\0", (int)UserID);

 strcat(LinkName, Buffer);

 �8�

/* Create a link to the InitialFile name with the LinkName. */

Integrated file system 103

if (-1 == link(InitialFile,LinkName))

 {

 perror("link Error");

 CleanUpOnError(7);

 return 0;

 }

 printf("Created a link %s to %s.\n",LinkName,InitialFile);

 �9�

/* Open the LinkName file for reading only. */

 if (-1 == (FilDes = open(LinkName,O_RDONLY)))

 {

 perror("open Error");

 CleanUpOnError(8);

 return 0;

 }

 printf("Opened %s for reading.\n",LinkName);

 �10�

/* Read from the LinkName file, via FilDes, into Buffer. */

 BytesRead = read(FilDes,Buffer,sizeof(Buffer));

 if (-1 == BytesRead)

 {

 perror("read Error");

 CleanUpOnError(9);

 return 0;

 }

 printf("Read %s from %s.\n",Buffer,LinkName);

 if (BytesRead != BytesWritten)

 {

 printf("WARNING: the number of bytes read is "\

 "not equal to the number of bytes written.\n");

 }

 �11�

/* Close the LinkName file via FilDes. */

 if (-1 == close(FilDes))

 {

 perror("close Error");

 CleanUpOnError(10);

 return 0;

 }

 FilDes = -1;

 printf("Closed %s.\n",LinkName);

 �12�

/* Unlink the LinkName link to InitialFile. */

 if (-1 == unlink(LinkName))

 {

 perror("unlink Error");

 CleanUpOnError(11);

 return 0;

 }

 printf("%s is unlinked.\n",LinkName);

 �13�

/* Change the current working directory

 back to the starting directory. */

 if (-1 == chdir(PARENT_DIRECTORY))

 {

 perror("chdir Error");

 CleanUpOnError(12);

 return 0;

 }

 printf("changing directory to %s.\n",InitialDirectory);

 �14�

104 iSeries: Integrated File System

/* Remove the directory NEW_DIRECTORY */

 if (-1 == rmdir(NEW_DIRECTORY))

 {

 perror("rmdir Error");

 CleanUpOnError(13);

 return 0;

 }

 printf("Removing directory %s.\n",NEW_DIRECTORY);

 �15�

/* Unlink the file TEST_FILE */

 if (-1 == unlink(TEST_FILE))

 {

 perror("unlink Error");

 CleanUpOnError(14);

 return 0;

 }

 printf("Unlinking file %s.\n",TEST_FILE);

 printf("Program completed successfully.\n");

 return 0;

}

Note: Read the “Code disclaimer information” on page 1 for important legal information.

Work with files and folders using iSeries Navigator

You can perform the following tasks with files and folders:

v “Check in a file”

v “Check out a file” on page 106

v “Create a folder” on page 106

v “Remove a folder” on page 106

v “Move files or folders to another file system” on page 106

v “Set permissions” on page 107

v “Set up file text conversion” on page 108

v “Send a file or folder to another system” on page 108

v “Change options for a package definition” on page 108

v “Schedule a date and time to send your file or folder” on page 109

v “Create a file share” on page 109

v “Change a file share” on page 109

v “Set whether objects should be scanned or not” on page 109

Check in a file

To check in a file:

1. In iSeries Navigator, right-click the file that you want to check in.

2. Select Properties.

3. Select the File Properties –> Use Page.

4. Click Check In.

If you like to drag, you can mount a UDFS by dragging it to a folder within the integrated file system on

the same server. You cannot drop the UDFS on /dev, /dev/QASPxx, /dev/asp_name, another system, or the

desktop.

Integrated file system 105

|

|

Check out a file

To check out a file:

1. In iSeries Navigator, right-click the file that you want to check out.

2. Select Properties.

3. Select the File Properties –> Use Page.

4. Click Check Out.

Create a folder

To create a folder:

1. Expand the system you want to use in iSeries Navigator.

2. Expand File Systems.

3. Expand Integrated File System.

4. Right-click on the file system to which you want to add the new folder and select New Folder.

5. Type a new name for the object in the New Folder dialog.

6. Click OK.

You also must consider whether you want objects created in this folder to be scanned or not. For more

information about this topic, see “Set whether objects should be scanned or not” on page 109.

When you create a folder on the iSeries server, you need to consider whether you want to protect the

new folder (or object) with journal management. See the Journal management topic for more information.

Related topics:

v Start journaling

v End journaling

Remove a folder

To remove a folder:

1. Expand the system you want to use in iSeries Navigator.

2. Expand File Systems.

3. Expand Integrated File System. Continue to expand until the file or folder you want to remove is

visible.

4. Right-click on the file or folder and select Delete.

Move files or folders to another file system

Each file system has its own unique characteristics. However, moving objects to a different file system

may mean losing the advantages of the file system in which the objects are currently stored. You may

want to move objects from one file system to another to take advantage of those characteristics. Before

moving objects to another file system, you should be familiar with the file systems on the integrated file

system and their characteristics. For more information, see Work with file systems.

You should also consider the following:

v Are you using applications that use advantages of the file system that the objects are currently in?

Some file systems support interfaces that are not part of the integrated file system support.

Applications that use these interfaces may no longer be able to access objects that are moved to

another file system. For example, the QDLS and QOPT file systems support the hierarchical file system

(HFS). APIs and commands work with document and folder objects. You cannot use these interfaces on

objects that are in other file systems.

v What characteristics of the objects are important to you?

106 iSeries: Integrated File System

|
|

|
|

Not all characteristics are supported by all file systems. For example, the QSYS.LIB or Independent

ASP QSYS.LIB file systems support storing and retrieving only a few extended attributes, whereas the

“root” (/) and QOpenSys file systems support storing and retrieving all extended attributes. Therefore

QSYS.LIB and Independent ASP QSYS.LIB are not good candidates for storing objects that have

extended attributes.

Good candidates for moving are the PC files that are in stored in QDLS. Most PC applications should

be able to continue working with PC files that are moved from QDLS to other file systems. The ″root″

(/), QOpenSys, QNetWare, and QNTC file systems are good choices for storing these PC files. Because

they support many of the OS/2 file system characteristics, these file systems can provide faster access

to files. See “File system comparison” on page 24 for a comparison of the different characteristics for

each particular file system.

To move objects to another file system, perform the following steps:

1. Save a copy of all objects that you are planning to move.

Having a backup copy allows you to restore the objects to the original file system if you find that

applications cannot access the objects in the file system to which you have moved them.

Note: You cannot save objects from one file system and restore them to another.

2. Create the directories in the file system that you want to move the objects to using the Create

Directory (CRTDIR) command.

You should carefully examine the attributes of the directory the objects are currently in to determine if

you want to duplicate those attributes on the directories you create. For example, the user who creates

the directory is its owner, rather than the user who owned the old directory. You may want to transfer

ownership of the directory after you have created it, if the file system supports setting the owner of a

directory.

3. Move the files to the file system that you have chosen using the Move (MOV) command.

MOV is recommended because it preserves the ownership of the objects, if the file system supports

setting the ownership of objects. You can, however, use the Copy (CPY) command to preserve the

ownership of the objects by using the OWNER(*KEEP) parameter. Keep in mind that this only works

for file systems that support setting the owner of an object. Note that when using MOV or CPY:

v Attributes may not match and may be discarded.

v Extended attributes may be discarded.

v Authorities may not be equivalent and may be discarded.

This means that if you decide to return the object to its original file system, you may not want to just

move or copy it back because of the attributes and authorities that have been discarded. The safest

way to return an object is to restore a saved version of it.

Set permissions

Adding permissions to an object allows you to control the ability of others to manipulate that object. With

permissions, you can allow some users to only view objects, while allowing others to actually edit the

objects.

To set permissions to a file or folder:

 1. Expand the system you want to use in the iSeries Navigator window .

 2. Expand File Systems.

 3. Expand Integrated File System. Continue to expand until the object for which you want to add

permissions is visible.

 4. Right-click the object for which for you want to add permissions and select Permissions.

 5. Click Add on the Permissions dialog.

 6. Select one or more users and groups or enter the name of a user or group in the user or groups

name field in the Add dialog.

Integrated file system 107

|

7. Click OK. This will add the users or groups to the top of the list.

 8. Click on the Details button to implement detailed permissions.

 9. Apply the permissions you want for the user by checking the box by the appropriate check box.

10. Click OK.

Set up file text conversion

You can set up automatic text file conversion in iSeries Navigator. Automatic text file conversion allows

you to use file extensions for file data conversion. The integrated file system can convert a data file when

it is transferred between an iSeries and a PC. When you access the data file from a PC, it is handled as if

it were in ASCII.

To set up file text conversion:

1. Expand the system you want to use in iSeries Navigator.

2. Expand File Systems.

3. Right-click Integrated File System and select Properties.

4. Enter the file extension that you want to convert automatically in the File extensions for automatic

text file conversion text box and click Add.

5. Repeat step 4 for all file extensions that you want to convert automatically.

6. Click OK.

Send a file or folder to another system

To send a file or folder to another system:

1. Expand the system you want to use in iSeries Navigator.

2. Expand File Systems.

3. Expand Integrated File System. Continue to expand until the file or folder you want to send is

visible.

4. Right-click on the file or folder and select Send. The file or folder appears in the Selected Files and

Folders list of the Send Files from dialog.

5. Expand the list of available systems and groups.

6. Select a system and click Add to add the system to the Target systems and groups list. Repeat this

step for all the systems you want to send this file or folder.

7. Click OK to send the file or folder with the current default package definitions and schedule

information.

You can also “Change options for a package definition” or “Schedule a date and time to send your file or

folder” on page 109.

When you create a package definition, it is saved and can be reused at any time to send the defined set

of files and folders to multiple endpoint systems or system groups. If you choose to create a snapshot of

your files, you can keep more than one version of copies of the same set of files. Sending a snapshot

ensures that no updates are made to the files during the distribution, so that the last target system

receives the same objects as the first target system.

Change options for a package definition

A package definition allows you to group together a set of OS/400 objects or integrated file system files.

The package definition also allows you to view this same group of files as a logical set, or as a physical

set, by taking a snapshot of the files to preserve them for later distribution.

To change the options for the package definitions:

1. Complete the steps for “Send a file or folder to another system.”

108 iSeries: Integrated File System

2. Click the Options tab. The default options are to include subfolders when packaging and sending

files and to replace an existing file with the file being sent.

3. Change these options as required.

4. Click Advanced to set advanced save and restore options.

5. Click OK to save the advanced options.

6. Click OK to send the file, or click Schedule to set a time for sending the file.

Related topics:

v “Schedule a date and time to send your file or folder.”

Schedule a date and time to send your file or folder

Using the scheduler function gives you the flexibility to do your work when it’s convenient for you to do

it. To schedule a date and time to send your file or folder:

1. Complete the steps for “Send a file or folder to another system” on page 108.

2. Click Schedule.

3. Select the options for when you want to send the file or folder.

Create a file share

A file share is a directory path that iSeries NetServer shares with PC clients on the iSeries network. A file

share can consist of any integrated file system directory on iSeries.

To create a file share:

1. Expand your system in iSeries Navigator.

2. Expand File Systems.

3. Expand Integrated File System.

4. Expand the file system that contains the folder for which you want to create a share.

5. Right-click the folder for which you want to create a share and select Sharing.

6. Select New Share.

Change a file share

A file share is a directory path that iSeries NetServer shares with PC clients on the iSeries network. A file

share can consist of any integrated file system directory on iSeries.

To change a file share:

1. Expand your system in iSeries Navigator.

2. Expand File Systems.

3. Expand Integrated File System.

4. Expand the folder that has the share defined for it that you want to change.

5. Right-click the folder that has the share defined for it that you want to Sharing.

6. Select New Share.

Set whether objects should be scanned or not

To set whether an object should be scanned or not:

1. Expand your system in iSeries Navigator.

2. Expand File Systems.

3. Expand Integrated File System.

4. Expand the folder or file of interest.

5. Right-click the folder or file and select Properties

Integrated file system 109

|

|

|

|

|

|

|

6. Select the Security tab.

7. Select Scan objects with the option that you want.

For more information about the options, see below. The descriptions for these options are for files. Only

files may be scanned. With folders and user-defined file systems, you can specify what scan attribute

should be given to files created in that folder or user-defined file system.

v Yes

The object will be scanned according to the rules described in the scan-related exit programs if the

object has been modified or if the scanning software has been updated since the last time the object

was scanned.

v No

The object will not be scanned by the scan-related exit programs.

Note: If the ’Scan on next access after object has been restored’ option is selected in the system values

when an object with this attribute is restored, the object will be scanned at least once after the

restore.

v Only when the object has changed

The object will be scanned according to the rules described in the scan-related exit programs only if the

object has been modified since the last time the object was scanned. It will not be scanned if the

scanning software has been updated.

If the ″Use ’only when objects have changed’ attribute to control scan″ system value is not specified,

this ’object change only’ attribute will not be used, and the object will be scanned after it is modified

and when scan software indicates an update.

Note: On this tab for files, you can also determine the scan status of an object.

Note: If the ’Scan on next access after object has been restored’ option is selected in the system values

when an object with this attribute is restored, the object will be scanned at least once after the

restore.

Related information for integrated file system

The following topics contain related information for the integrated file system:

v “Transport Independent Remote Procedure Call”

v “References” on page 115

v “Experience Reports” on page 116

Transport Independent Remote Procedure Call

Developed by Sun Microsystems, Remote Procedure Call (RPC), easily separates and distributes client

applications from a server mechanism. It includes a standard for data representation, called eXternal Data

Representation, or XDR, to allow more than one type of machine to access transmitted data. Transport

Independent RPC (TI-RPC), is the latest version of RPC. It provides a method of separating the

underlying protocol that is used at the network layer, providing a more seamless transition from one

protocol to another. The only protocols that are currently available on the iSeries server are TCP and

UDP.

Developing distributed applications across a network is a seamless task when using RPC. The primary

targets are applications that gravitate more towards distributing the user interface or data retrieval.

For more information on Transport Independent Remote Procedure Calls, see any of the following topics:

v “Network selections” on page 111

v “Name-to-address translation” on page 111

110 iSeries: Integrated File System

|

|

|
|
|

|

|
|
|

|

|

|
|
|

|

|
|
|

|
|
|

|

|
|
|

v “eXternal Data Representation (XDR)”

v “Authentication” on page 113

v “Transport Independent RPC (TI-RPC)” on page 113

Network selections

The following APIs provide the means to choose the transport on which an application should run.

These APIs require that *STMF /etc/netconfig file exist on the system. If the netconfig file does not exist

in the /etc directory, the user must copy it from /QIBM/ProdData/OS400/RPC directory. The netconfig

file is always in the /QIBM/ProdData/OS400/RPC directory.

 API Description

endnetconfig() Releases the pointer to the records stored in the netconfig file

freenetconfigent() Frees the netconfig structure that is returned from the call to the

getnetconfigent() function

getnetconfig() Returns the pointer to the current record in the netconfig file and increments

its pointer to the next record

getnetconfigent() Returns the pointer to the netconfig structure that corresponds to the input

netid

setnetconfig() Initializes the record pointer to the first entry in the netconfig file. The

setnetconfig() function must be used before the first use of getnetconfig()

function. The setnetconfig() function returns a unique handle (a pointer to

the records stored in the netconfig file) to be used by the getnetconfig()

function.

Name-to-address translation

The following APIs allow an application to obtain the address of a service or a specified host in a

transport-independent manner.

 API Description

netdir_free() Frees structures that are allocated by name-to-address translation APIs

netdir_getbyaddr() Maps addresses into host names and service names

netdir_getbyname() Maps the host name and service name that are specified in the service

parameter to a set of addresses that are consistent with the transport

identified in the netconfig structure

netdir_options() Provides interfaces to transport-specific capabilities such as the broadcast

address and reserved port facilities of TCP and UDP

netdir_sperror() Issues an informational message that states why one of the name-to-address

translation APIs failed

taddr2uaddr() Translates a transport-specific (local) address to a transport-independent

(universal) address

uaddr2taddr() Translates a transport-independent (universal) address to a transport-specific

(local) address (netbuf structure)

eXternal Data Representation (XDR)

The following APIs allow Remote Procedure Call (RPC) applications to handle arbitrary data structures,

regardless of their different hosts’ byte orders or structure layout conventions.

Integrated file system 111

API Description

xdr_array() A filter primitive that translates between variable-length arrays and their

corresponding external representations. This function is called to encode or

decode each element of the array

xdr_bool() A filter primitive that translates between Booleans (C integers) and their

external representations. When encoding data, this filter produces values of

either 1 or 0.

xdr_bytes() A filter primitive that translates between counted byte arrays and their

external representations. This function treats a subset of generic arrays in

which the size of array elements is known to be 1 and the external

description of each element is built-in. The length of the byte sequence is

explicitly located in an unsigned integer. The byte sequence is not ended by

a null character. The external representation of the bytes is the same as their

internal representation.

xdr_char() A filter primitive that translates between C-language characters and their

external representation

xdr_double() A filter primitive that translates between C-language double-precision

numbers and their external representations

xdr_double_char() A filter primitive that translates between C-language 2-byte characters and

their external representation

xdr_enum() A filter primitive that translates between C-language enumeration (enum)

and its external representation

xdr_free() Recursively frees the object pointed to by the pointer passed in

xdr_float() A filter primitive that translates between C-language floating-point numbers

(normalized single floating-point numbers) and their external representations

xdr_int() A filter primitive that translates between C-language integers and their

external representation

xdr_long() A filter primitive that translates between C-language long integers and their

external representations

xdr_netobj() A filter primitive that translates between variable-length opaque data and its

external representation

xdr_opaque() Afilter primitive that translates between fixed-size opaque data and its

external representation

xdr_pointer() Provides pointer chasing within structures and serializes null pointers. Can

represent recursive data structures, such as binary trees or linked lists.

xdr_reference() a filter primitive that provides pointer chasing within structures. This

primitive allows the serializing, deserializing, and freeing of any pointers

within one structure that are referenced by another structure. The

xdr_reference() function does not attach special meaning to a null pointer

during serialization, and passing the address of a null pointer may cause a

memory error. Therefore, the programmer must describe data with a

two-sided discriminated union. One side is used when the pointer is valid;

the other side, when the pointer is null.

xdr_short() A filter primitive that translates between C-language short integers and their

external representation

xdr_string() A filter primitive that translates between C-language strings and their

corresponding external representations

xdr_u_char() A filter primitive that translates between unsigned C-language characters and

their external representations

xdr_u_int() A filter primitive that translates between C-language unsigned integers and

their external representations

112 iSeries: Integrated File System

API Description

xdr_u_long() A filter primitive that translates between C-language unsigned long integers

and their external representations

xdr_u_short() A filter primitive that translates between C-language unsigned short integers

and their external representations

xdr_union() A filter primitive that translates between discriminated C unions and their

corresponding external representations

xdr_vector() A filter primitive that translates between fixed-length arrays and their

corresponding external representations

xdr_void() Has no parameters. It is passed to other RPC functions that require a

parameter, but does not transmit data

xdr_wrapstring() A primitive that calls the xdr_string(xdr, sp, maxuint) API, where maxuint is

the maximum value of an unsigned integer. The xdr_wrapstring() is useful

because the RPC package passes a maximum of two XDR functions as

parameters, and the xdr_string() function requires three.

Authentication

The following APIs provide authentication to the Transport-Independent Remote Procedure Call (TI-RPC)

applications.

 API Description

auth_destroy() Destroys the authentication information structure that is pointed to by the

auth parameter

authnone_create() Creates and returns a default RPC authentication handle that passes null

authentication information with each remote procedure call.

authsys_create() Creates and returns an RPC authentication handle that contains

authentication information

Transport Independent RPC (TI-RPC)

The following APIs provide a distributed application development environment by isolating the

application from any specific transport feature. This adds ease-of-use to the transports.

For more information on Transport Independent RPC (TI-RPC), see any of the following topics:

v “TI-RPC simplified APIs”

v “TI-RPC top-level APIs” on page 114

v “TI-RPC intermediate level APIs” on page 114

v “TI-RPC expert level APIs” on page 114

v “Other TI-RPC APIs” on page 114

TI-RPC simplified APIs:

The following simplified APIs specify the type of transport to use. Applications using this level do not

have to explicitly create handles.

 API Description

rpc_call() Call a remote procedure on the specified system

rpc_reg() Register a procedure with RPC service package

Integrated file system 113

TI-RPC top-level APIs: The following APIs allow the application to specify the type of transport.

 API Description

clnt_call() Call a remote procedure associated with the client

clnt_control() Change information about a client object

clnt_create() Create a generic client handle clnt_destroy() Destroy the client’s RPC handle

clnt_destroy() Destroy the client’s RPC handle

svc_create() Create a server handle

svc_destroy() Destroy an RPC service transport handle

TI-RPC intermediate level APIs:

The following APIs are similar to the top-level APIs, but the user applications select the transport specific

information using network selection APIs:

 API Description

clnt_tp_create() Create a client handle

svc_tp_create() Create a server handle

TI-RPC expert level APIs: The following APIs allow the application to select which transport to use.

They also offer an increased level of control over the details of the CLIENT and SVCXPRT handles. These

APIs are similar to the intermediate-level APIs with an additional control that is provided by using the

name-to-address translation APIs.

An additional control that is provided by using the name-to-address translation APIs.

 API Description

clnt_tli_create() Create a client handle

rpcb_getaddr() Find the universal address of a service

rpcb_set() Register the server address with the RPCbind

rpcb_unset() Used by the servers to unregister their addresses

svc_reg() Associate program and version with dispatch

svc_tli_create() Create a server handle

svc_unreg() Delete an association set by svc_reg()

Other TI-RPC APIs: These APIs allow the various applications to work in coordination with the

simplified, top-level, intermediate-level, and expert-level APIs.

 API Description

clnt_freeres() Free data allocated by the RPC or XDR system

clnt_geterr() Get the error structure from the client handle

svc_freeargs() Free data allocated by the RPC or XDR system

svc_getargs() Decodes the arguments of an RPC request

svc_getrpccaller() Get the network address of the caller

svc_run() Waits for RPC requests to arrive

svc_sendreply() Sends the results of a procedure call to a remote client.

svcerr_decode() Sends information to client for decode error

114 iSeries: Integrated File System

API Description

svcerr_noproc() Sends information to client for procedure number error

svcerr_systemerr() Sends information to client for system error

References

This bibliography lists iSeries server information that contains background information or more details

for information discussed in this book.

v The Control language topic in the Programming category of the iSeries Information Center provides a

description of the iSeries server control language (CL) and its commands. Each command description

includes a syntax diagram, parameters, default values, keywords, and an example.

v The Globalization topic in the iSeries Information Center explains national language support (NLS)

concepts, such as character set and code page, and provides information needed to evaluate, plan, and

use the iSeries server NLS and multilingual capabilities.

v The APIs topic in the Programming category of the iSeries Information Center provides a description

of each OS/400 API, including the integrated file system APIs, as well as integrated file system exit

points or programs.

v The Journal management topic in the Systems management category of the iSeries Information Center

provides information on how to set up, manage, and troubleshoot system-managed access-path

protection (SMAPP), local journals, and remote journals on an iSeries server.

v The Commitment control topic in the Database category of the iSeries Information Center category

explains how to define and process a group of changes to resources, such as database files or

integrated file system files, as a logical unit of work.

v OS/400 Network File System Support

This book describes the Network File System through a

series of real-life applications. Included is information about exporting, mounting, file locking, and

security considerations. From this book you can learn how to use NFS to construct and develop a

secure network namespace.

v Optical Support

This book serves as a user’s guide and reference for IBM Optical Support on

OS/400. The information in this book can help the user understand optical library dataserver concepts,

plan for an optical library, administer and operate an optical library dataserver, and solve optical

dataserver problems.

v WebSphere Development Studio: ILE C/C++ Programmers Guide

This book provides information

needed to design, edit, compile, run, and debug ILE C/400 programs on the iSeries server.

v WebSphere Development Studio: C/C++ Language Reference

This book provides information

about the structure of ILE C/400 programs and contains details on the library functions and include

(header) files.

v Security — Reference

This book provides detailed technical information about OS/400 security

including security related system values that impact integrated file system scan-related processing.

v APPC Programming

This book describes the advanced program-to-program communications

(APPC) support for the iSeries server. It guides in developing application programs that use APPC and

in defining the communications environment for APPC.

v Backup and Recovery

This book provides general information about recovery and availability

options for the IBM iSeries server.

Integrated file system 115

Experience Reports

Experience reports are written by IBM developers, documenting their hands-on experiences implementing

real-world scenarios and solutions. Use them to follow the experiences of IBM developers with a specific

implementation of an iSeries solution, complete with step-by-step instructions and tips.

The following experience report is related to files and file systems.

Backing up the Integrated File System

116 iSeries: Integrated File System

|

|
|
|

|

|

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not give you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

500 Columbus Avenue

Thornwood, NY 10594-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS

OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation

© Copyright IBM Corp. 1999, 2005 117

|
|
|
|
|

|
|
|
|

|
|

|

Software Interoperability Coordinator, Department 49XA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement, or

any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their

published announcements or other publicly available sources. IBM has not tested those products and

cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM

products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of

those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

All IBM prices shown are IBM’s suggested retail prices, are current and are subject to change without

notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to change before the

products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. You may copy, modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application programs conforming

to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must include a copyright

notice as follows:

© IBM Corp., 2004. Portions of this code are derived from IBM Corp. Sample Programs. © Copyright IBM

Corp. 2004. All rights reserved.

118 iSeries: Integrated File System

|
|
|
|

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Programming Interface Information

This information documents intended Programming Interfaces that allow the customer to write programs

to obtain the services of the Integrated File System.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:

Application System/400

AS/400

e (logo)

IBM

iSeries

Operating System/400

OS/400

400

C/400

DB2

Integrated Language Environment

OfficeVision

OS/2

WebSphere

xSeries

Lotus, Freelance, and WordPro are trademarks of International Business Machines Corporation and Lotus

Development Corporation in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the publications you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce these Publications for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of these

Publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these Publications solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of

these Publications, or reproduce, distribute or display these Publications or any portion thereof outside

your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the Publications or any information, data, software or other intellectual property

contained therein.

Appendix. Notices 119

|
|

|
|

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the Publications is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE

PROVIDED ″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,

INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS

FOR A PARTICULAR PURPOSE

All material copyrighted by IBM Corporation.

By downloading or printing a publication from this site, you have indicated your agreement with these

terms and conditions.

120 iSeries: Integrated File System

����

Printed in USA

	Contents
	Integrated file system
	Code disclaimer information
	What's new for V5R3
	Print this topic
	Overview of the integrated file system
	What the integrated file system is
	Why use the integrated file system

	Concepts
	Directory
	Current directory
	Home Directory
	Provided directories
	*TYPE2 directories

	Link
	Hard link
	Symbolic link

	Path name
	Stream file
	*TYPE1 stream files
	*TYPE2 stream files

	Name continuity
	Extended attributes
	Scanning support
	Scan examples
	Related system values
	Scanning occurrences

	Work with file systems
	File system comparison
	“root” (/) file system
	Use the “root” (/) file system

	Open systems file system (QOpenSys)
	Use QOpenSys

	User-defined file system (UDFS)
	UDFS concepts
	Use UDFS through the integrated file system interface

	Library file system (QSYS.LIB)
	Use QSYS.LIB through the integrated file system interface

	Independent ASP QSYS.LIB
	Use Independent ASP QSYS.LIB through the integrated file system interface

	Document library services file system (QDLS)
	Use QDLS through the integrated file system interface

	Optical File System (QOPT)
	Use QOPT through the integrated file system

	NetWare file system (QNetWare)
	Mount NetWare file systems
	QNetWare directory structure
	Use QNetWare through the integrated file system interface

	iSeries NetClient file system (QNTC)
	Use QNTC through the integrated file system interface

	OS/400 File Server file system (QFileSvr.400)
	Use QFileSvr.400 through the integrated file system interface

	Network file system (NFS)
	Use NFS file systems through the integrated file system interface

	Access the integrated file system
	Access using menus and displays
	Access using CL commands
	Path name rules for CL commands and displays
	Work with output of the RTVDIRINF and PRTDIRINF commands

	Access using APIs
	Access using iSeries Navigator
	Access using iSeries NetServer
	Access using file transfer programs
	Access using a PC

	Convert directories from *TYPE1 to *TYPE2
	Overview of *TYPE1 to *TYPE2 conversion
	Tips: Conversions
	Determine conversion status
	Creating user profiles
	Objects renamed
	User profile considerations
	Auxiliary storage requirements
	Tips: Symbolic link
	Tips: Independent ASP
	Tips: Save and restore
	Reclaim Storage (RCLSTG)
	Integrated file system scanning

	Journaling objects
	Journaling overview
	Journal management
	Objects you should journal
	Journaled integrated file system objects
	Journaled operations
	Special considerations for journal entries
	Considerations for multiple hard links and journaling

	Start journaling
	Change journaling
	End journaling

	Programming support
	Copy data between stream files and database files
	Copy data using CL commands
	Copy data using APIs
	Copy data using data transfer function

	Copy data between stream files and save files
	Perform operations using APIs
	ILE C/400 functions
	Large file support
	Path name rules for APIs
	File descriptor
	Security

	Socket support
	Naming and international support
	Data conversion
	Example: Integrated file system C functions

	Work with files and folders using iSeries Navigator
	Check in a file
	Check out a file
	Create a folder
	Remove a folder
	Move files or folders to another file system
	Set permissions
	Set up file text conversion
	Send a file or folder to another system
	Change options for a package definition
	Schedule a date and time to send your file or folder
	Create a file share
	Change a file share
	Set whether objects should be scanned or not

	Related information for integrated file system
	Transport Independent Remote Procedure Call
	Network selections
	Name-to-address translation
	eXternal Data Representation (XDR)
	Authentication
	Transport Independent RPC (TI-RPC)

	References
	Experience Reports

	Appendix. Notices
	Programming Interface Information
	Trademarks
	Terms and conditions for downloading and printing publications

