

AS/400 Advanced Series IBM

Asynchronous Communications
Programming
Version 4

 SC41-5444-00

AS/400 Advanced Series IBM

Asynchronous Communications
Programming
Version 4

 SC41-5444-00

 Take Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page vii.

First Edition (August 1997)

This edition applies to the licensed program IBM Operating System/400 (Program 5769-SS1), Version 4 Release 1 Modification 0, and to all
subsequent releases and modifications until otherwise indicated in new editions.

Make sure that you are using the proper edition for the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. If you live in the United States, Puerto Rico, or
Guam, you can order publications through the IBM Software Manufacturing Solutions at 800+879-2755. Publications are not stocked at the
address given below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication. You can also mail your
comments to the following address:

IBM Corporation
Attention Department 542
IDCLERK
3605 Highway 52 N
Rochester, MN 55901-7829 USA

or you can fax your comments to:

United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192

If you have access to Internet, you can send your comments electronically to IDCLERK@RCHVMW2.VNET.IBM.COM; IBMMAIL, to
IBMMAIL(USIB56RZ).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes appropriate
without incurring any obligation to you.

 Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth
in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . vii
Programming Interface vii
Trademarks and Service Marks vii

About This Book . ix
Who Should Use This Book ix
Prerequisite and Related Information ix
Information Available on the World Wide Web ix

Chapter 1. Introduction to Asynchronous
Communications Support 1-1

Chapter 2. Asynchronous Communications Support 2-1
Asynchronous Communications on Start-Stop Lines . . 2-1

Nonswitched Line Support 2-1
Switched Line Support 2-1

Asynchronous (Non-SNA) Communications on X.25
Lines . 2-2

Connecting Systems without a Network
(DCE-to-DTE) 2-2

Connections to a Packet-Switching Data Network . 2-3

Chapter 3. Using the Integrated Packet
Assembler/Disassembler Support 3-1

Using the PAD . 3-1
PAD Parameters . 3-2
PAD Commands . 3-3

Examples of SET, SET?, and PAR? Commands . . 3-4
PAD Service Signals 3-4
PAD Messages . 3-5

Requests from the Packet-Mode Host 3-5
Responses from the PAD 3-6
Examples of PAD Messages 3-6

Rotary Dial . 3-7

Chapter 4. Configuring Asynchronous
Communications Support 4-1

Asynchronous Configuration Commands 4-1

Chapter 5. Running Asynchronous Communications
Support . 5-1

Chapter 6. Writing Asynchronous Communications
Application Programs 6-1

Intersystem Communications Function Files 6-1
Specifying the Program Device Entry Parameters . . . 6-2
Communications Operations 6-2
Starting a Session 6-2

Open/Acquire Operation 6-3
Starting a Transaction 6-3

Evoke Function 6-3
Syntax of Program Start Requests 6-3

Sending Data . 6-3
Write Operation 6-4
Function-Management-Header Function 6-4

Receiving Data . 6-4

Read Operation 6-5
Invite Function . 6-5
Read-From-Invited-Program-Devices Operation . . 6-5
Waiting for a Display File, an ICF File, and a Data

Queue . 6-6
Notifying the Remote Program of Problems 6-6

Fail Function . 6-6
Using Additional Functions and Operations 6-6

Cancel-Invite Function 6-6
Timer Function . 6-6
Get-Attributes Operation 6-6

Ending Transactions 6-6
Detach Function 6-6

Ending a Session . 6-6
Release Operation 6-7
End-of-Session Function 6-7

Using Response Indicators 6-7
Receive-Fail Indicator 6-7

Using I/O Feedback Areas 6-7
Using Return Codes 6-7

Chapter 7. Asynchronous Communications
Considerations . 7-1

Application Considerations 7-1
Evoke Confirmation 7-1
Function-Management-Header Function 7-1
Logical Records 7-1

Prestarting Jobs for Program Start Requests 7-1
Performance Considerations 7-2

Buffer Size . 7-2
Data Buffering Using XOFF Characters 7-2
Asynchronous Overhead 7-2

Chapter 8. Using the Interactive Terminal Facility . 8-1
Starting ITF . 8-1
Selecting ITF Functions 8-2

Sending or Receiving a File Member or OfficeVision
Document . 8-3

Work with ITF Telephone List 8-5
Using the Attn Key to Send a Control Character . . 8-6

Appendix A. Language Operations, DDS Keywords,
and System-Supplied Formats A-1

ICF Operations and Supported Language Operations . A-1
DDS Keywords . A-2
System-Supplied Formats A-2

Appendix B. Return Codes, Messages, and Sense
Codes . B-1

Return Codes . B-1
Major Code 00 . B-1
Major Code 02 . B-2
Major Code 03 . B-3
Major Code 04 . B-4
Major Codes 08 and 11 B-5
Major Code 34 . B-6

 Copyright IBM Corp. 1997 iii

Major Code 80 . B-6
Major Code 81 . B-9
Major Code 82 . B-11
Major Code 83 . B-16
Failed Program Start Requests B-19

Appendix C. Code Conversion Tables C-1
Code Page 037 (EBCDIC) USA/Canada C-1
International Alphabet (IA-5) ASCII Character Set . . . C-2
EBCDIC-to-ASCII Translation Table C-3
ASCII-to-EBCDIC Translation Table C-4

Appendix D. Break and Interrupt Handling D-1
Fail Function . D-1
Receive Break or Interrupt Actions D-1

Appendix E. Asynchronous Communications
Configuration Examples E-1

Nonswitched Asynchronous Communications
Example . E-1

Switched Asynchronous Communications
Configuration Example E-2

Asynchronous/X.25 Network Examples E-4

Permanent Virtual Circuit (*PVC) E-4
Incoming Call on a Switched Virtual Circuit (*SVCIN) E-6
Incoming Call on a Switched Virtual Circuit (*SVCIN)

for Generic Controllers and Devices E-6
Incoming Call on a Switched Virtual Circuit (*SVCIN)

for Generic Controllers E-7
Outgoing Call on a Switched Virtual Circuit

(*SVCOUT) . E-8
Outgoing Call on a Switched Virtual Circuit

(*SVCOUT) for PAD Emulation E-9

Appendix F. Program Examples F-1
COBOL/400 Program Examples F-1

COBOL/400 Program Descriptions F-1
RPG/400 Program Examples F-15

RPG/400 Program Descriptions F-15
ILE C/400 Program Examples F-29

ILE C/400 Program Descriptions F-29

Bibliography . H-1

Index . X-1

 Figures

1-1. OS/400 Asynchronous Communications
Support . 1-1

2-1. X.25 Packet-Switching Data Network 2-3
3-1. CCITT Recommendations 3-1
3-2. PAD Parameter Chart 3-2
3-3. PAD Service Signals – Response to PAD

Commands 3-4
3-4. PAD Service Signals – Response to

Unsuccessful Call Attempts 3-5
A-1. ICF Operations A-1
A-2. Valid Operations for Programming Languages A-1
A-3. DDS Keywords A-2
A-4. System-Supplied Formats A-3
B-1. Actions for Return Code 0000 B-1
B-2. Reason Codes for Rejected Program Start

Requests B-19
C-1. Code Page 037 (EBCDIC) USA/Canada . . C-1
C-2. International Alphabet (IA-5) ASCII Character

Set . C-2
C-3. EBCDIC-to-ASCII Translation Table C-3
C-4. ASCII-to-EBCDIC Translation Table C-4
E-1. Nonswitched Asynchronous Communications

Example E-1
E-2. Prompt Displays for Nonswitched

Asynchronous Line Description E-2
E-3. Prompt Display for Nonswitched

Asynchronous Controller Description E-2
E-4. Prompt Display for Nonswitched

Asynchronous Device Description E-2

E-5. Switched Asynchronous Communications
Example E-3

E-6. Prompt Displays for Switched Asynchronous
Line Description E-3

E-7. Prompt Display for Switched Asynchronous
Controller Description E-3

E-8. Prompt Display for Switched Asynchronous
Device Description E-3

E-9. Prompt Displays for X.25 Line Description . E-4
E-10. Prompt Display for Asynchronous PVC

Controller E-5
E-11. Prompt Display for Asynchronous PVC Device E-5
E-12. Prompt Display for Asynchronous Controller:

*SVCIN from Address 40100055 E-6
E-13. Prompt Display for Asynchronous Device:

*SVCIN from Address 40100055 E-6
E-14. Using a Generic Device Description with

Asynchronous Remote Location Entries . . . E-7
E-15. Prompt Display for Asynchronous Controller:

*SVCIN from Any Network Address E-7
E-16. Prompt Display for Asynchronous Device:

*SVCIN from Any Network Address E-7
E-17. Prompt Display for Asynchronous Controller:

*SVCIN from Any Network Address E-8
E-18. Prompt Display for Asynchronous Device:

*SVCIN from Any Network Address E-8
E-19. Prompt Displays for Asynchronous Controller:

*SVCOUT to Address 40100100 E-8
E-20. Prompt Display for Asynchronous Device:

*SVCOUT to Address 40100100 E-8

iv AS/400 Asynchronous Communications Programming V4R1

E-21. Prompt Displays for Asynchronous Controller:
*SVCOUT to PAD E-9

E-22. Prompt Display for Asynchronous Device:
*SVCOUT to PAD E-9

F-1. DDS Source for ICF File ASYNFILS, COBOL
Source and Target Programs F-2

F-2. DDS Source for Display Device File, COBOL
Source Program F-2

F-3. COBOL/400 Inquiry Example – Source
Program F-4

F-4. DDS Source for Database File, COBOL
Target Program F-10

F-5. COBOL/400 Inquiry Example – Target
Program F-11

F-6. DDS Source for ICF File CMNFILS, RPG/400
Source Program F-16

F-7. RPG/400 Inquiry Example – Source Program F-18
F-8. DDS Source for ICF File CMNFILT, RPG/400

Target Program F-23
F-9. RPG/400 Inquiry Example – Target Program F-24

F-10. DDS Source for ICF File ASYNICF, ILE
C/400 Source Program F-30

F-11. ILE C/400 Inquiry Example – Source
Program F-32

F-12. DDS Source for ICF File CMNFILR, C/400
Target Program F-38

F-13. ILE C/400 Inquiry Example – Target Program F-40

 Figures v

vi AS/400 Asynchronous Communications Programming V4R1

 Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Subject to IBM's valid intellectual property or other legally protectable
rights, any functionally equivalent product, program, or service may be used instead of the IBM product, program, or service.
The evaluation and verification of operation in conjunction with other products, except those expressly designated by IBM, are
the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The furnishing of this docu-
ment does not give you any license to these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information
between independently created programs and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact the software interoperability coordinator. Such information may be available,
subject to appropriate terms and conditions, including in some cases, payment of a fee.

Address your questions to:

IBM Corporation
Software Interoperability Coordinator
3605 Highway 52 N
Rochester, MN 55901-7829 USA

This publication could contain technical inaccuracies or typographical errors.

This publication may refer to products that are announced but not currently available in your country. This publication may also
refer to products that have not been announced in your country. IBM makes no commitment to make available any unan-
nounced products referred to herein. The final decision to announce any product is based on IBM's business and technical
judgment.

This publication contains examples of data and reports used in daily business operations. To illustrate them as completely as
possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious
and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

This publication contains small programs that are furnished by IBM as simple examples to provide an illustration. These exam-
ples have not been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability,
or function of these programs. All programs contained herein are provided to you "AS IS". THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

 Programming Interface

This programmer's guide is intended to help the customer write communications programs using asynchronous communica-
tions. It contains programming information needed to use the AS/400 asynchronous communications support. The Asynchro-
nous Communications Programming book contains no programming interfaces for customers.

Trademarks and Service Marks

The following terms, denoted by an asterisk (*) in this publication, are trademarks of the IBM Corporation in the United States
or other countries or both:

 Copyright IBM Corp. 1997 vii

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks of Microsoft Corporation.

PC Direct is a trademark of Ziff Communications Company and is used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.

Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double asterisk (**), may be trademarks or service
marks of others.

Application System/400
AS/400
COBOL/400
FORTRAN/400
IBM
ILE C/400
ILE COBOL/400

ILE RPG/400
OfficeVision
OfficeVision/400
Operating System/400
OS/400
RPG/400
400

viii AS/400 Asynchronous Communications Programming V4R1

About This Book

This book supplies the programming information you need to
use the AS/400 asynchronous communications support. This
book and the ICF Programming book are intended to be
used together. You should be familiar with the concepts
explained in the ICF Programming book and apply those
concepts to the detailed information presented here for asyn-
chronous communications.

This book does not discuss the use or configuration of ASCII
work stations attached to work station controllers. For infor-
mation about attaching ASCII work stations to the AS/400
system, see the ASCII Work Station Reference book.

For a list of related publications, see the “Bibliography.”

Who Should Use This Book

This book is intended for programmers who write commu-
nications programs using asynchronous communications. It
may be used by AS/400 programmers and programmers
using other systems and devices that communicate with the
AS/400 system using asynchronous communications.

This book also contains information for the AS/400 user who
needs information about how to use the interactive terminal
facility (ITF).

Before you use this book, you should be familiar with the fol-
lowing information:

� AS/400 programming and communications terminology.

� Terminology of the remote system or devices.

� General communications concepts. In addition, specific
communications topics are discussed in the InfoSeeker.
For more information on basic communications, you can
also refer to the Discover/Education course in the com-
munications module. The Discover/Education course
can be ordered separately.

� Communications configuration information for asynchro-
nous support as described in the Communications Con-
figuration book.

� Intersystem communications function (ICF) support
described in the ICF Programming book.

� If you are using asynchronous communications over
X.25 lines with integrated packet
assembler/disassembler (PAD), you should be familiar
with CCITT recommendations X.3, X.28, and X.29. For
more information about X.25 line capabilities, see the
X.25 Network Support book.

Prerequisite and Related Information

For information about other AS/400 publications (except
Advanced 36), see either of the following:

� The Publications Reference book, SC41-5003, in the
AS/400 Softcopy Library.

� The AS/400 Information Directory, a unique, multimedia
interface to a searchable database that contains
descriptions of titles available from IBM or from selected
other publishers. The AS/400 Information Directory is
shipped with the OS/400 operating system at no charge.

Information Available on the World Wide
Web

More AS/400 information is available on the World Wide
Web. You can access this information from the AS/400
home page, which is at the following uniform resource locator
(URL) address:

http://www.as4ðð.ibm.com

Select the Information Desk, and you will be able to access a
variety of AS/400 information topics from that page.

 Copyright IBM Corp. 1997 ix

x AS/400 Asynchronous Communications Programming V4R1

Chapter 1. Introduction to Asynchronous Communications Support

IBM* Operating System/400* (OS/400*) asynchronous com-
munications support allows an AS/400* application program
to exchange data with a remote system or device using
either an asynchronous (start-stop) or X.25 line. AS/400
application programs can be written in ILE COBOL/400*, ILE
RPG/400*, ILE C/400*, or FORTRAN/400* languages. Asyn-
chronous communications support includes file transfer
support (also used with other communications types) and
interactive terminal facility (ITF).

Asynchronous communications support provides program-to-
program and program-to-device communications between
systems that use asynchronous (start-stop) or X.25 lines.
For X.25 lines, it also supplies an integrated packet
assembler/disassembler (PAD) 1 that follows CCITT recom-
mendations X.3, X.28, and X.29.

File transfer support (FTS) , called from your application
program, is a function of the operating system that moves file
members from one system to another by using asynchro-
nous, APPC, or BSCEL communications support. See the
ICF Programming book for more information about file
transfer support.

Interactive terminal facility (ITF) allows AS/400 work stations
to connect to applications such as the Telemail** service of
the TELNET data network. Using ITF, you can send and
receive data, memos, and AS/400 file members. You can
also send text from OfficeVision documents. See Chapter 8
for more information about ITF.

AS/400 programs can start programs on a remote system,
and the remote system can start programs on the local
system. Security options for both systems are supported.

Note: It is the responsibility of the application program to
provide error detection, recovery, and data acknowledge-
ment. Data may be lost or received out of sequence if the
application program does not provide these checks. When
an asynchronous (start-stop) line is used, the physical line
can be switched or nonswitched. For switched lines,

momentary drops of the CTS signal are not detected by the
AS/400 system. However, long-term drops of the CTS are
detected and fed back accordingly. See Appendix B,
“Return Codes, Messages, and Sense Codes” on page B-1
for return code information. When an X.25 line is used to
connect directly to a packet-switching data network (PSDN),
the physical line is nonswitched, but the connection through
the network to another system can be a permanent virtual
circuit (PVC) or a switched virtual circuit (SVC). A perma-
nent virtual circuit (PVC) is a virtual circuit that has a
logical channel permanently assigned to it at each data ter-
minal equipment (DTE). A call establishment protocol is not
required. The permanent virtual circuit establishes the iden-
tity of the called party within the network services contract. A
switched virtual circuit (SVC) is a virtual circuit that is
requested by a virtual call. It is released when the virtual
circuit is cleared.

The number of communication lines available for asynchro-
nous communications is dependent on the size of your
system and the type of communications adapters attached.

Figure 1-1 shows an overview of the OS/400 asynchronous
communications support.

 ┌─────────────────────────┐ ┌───────────────────────────┐

 │ Application Program │ │ Interactive Terminal │

 └────┬────────────────────┘ │ Facility │

 │ └─────────────┬─────────────┘

│ ┌──────────────────┐ │

 │ │ File Transfer │ │

 │ │ Support │ │

│ └───┬──────────────┘ │

 ┌───┴─────────────────┴────────────────────────────┴───────────┐

│ Intersystem Communications Function (ICF) File │

 └────────────────────────────────┬─────────────────────────────┘

 ┌────────────────────────────────┴─────────────────────────────┐

│ Asynchronous Communications Support │

 └──────────┬─────────────────────────┬───────────┬─────────────┤

 │ │ │ Integrated │

 │ │ │ PAD │

 │ │ └───────┬─────┘

 │ │ │

 ┌──────────┴──────────┐ ┌────┴───────────────────┴─────┐

 │ Start/Stop │ │ X.25 │

 │ Communications │ │ Communications │

│ Subsystem │ │ Subsystem │

 └─────────────────────┘ └──────────────────────────────┘

Figure 1-1. OS/400 Asynchronous Communications Support

1 A functional unit that enables data terminal equipment (DTE) not equipped for packet switching to use a packet-switched network. The data
terminal equipment (DTE) is that part of a data link that sends data, receives data, and provides the data communications control function
according to protocols.

 Copyright IBM Corp. 1997 1-1

1-2 AS/400 Asynchronous Communications Programming V4R1

Chapter 2. Asynchronous Communications Support

This chapter describes the configurations and communica-
tions environments that are possible using asynchronous
communications support. Asynchronous communications
support allows you to send data to and receive data from a
remote program or device attached by either an asynchro-
nous (start-stop) or an X.25 line. Your application program
must provide the data stream required by the remote device.
Asynchronous communications support packages your data
stream in either a start-stop format or within X.25 data
packets.

You must provide an application program on the AS/400
system to communicate with the remote device. The ICF
operations your program uses to communicate with the
remote device are the same as those used to communicate
with another AS/400 system. The intersystem communica-
tions function (ICF) is a function of the operating system
that allows a program to communicate interactively with
another program or system. See Chapter 6 for a description
of the ICF operations. For more information about config-
uring for asynchronous communications, see the Commu-
nications Configuration book.

Asynchronous Communications on
Start-Stop Lines

Asynchronous support allows an AS/400 system to use an
asynchronous (start-stop) line to communicate with another
start-stop device. Possible devices include: plotters,
printers, terminals, modems, X.25 network-supplied packet
assembler/disassemblers (PADs), another AS/400 system, a
System/36, or an IBM personal computer. The remote
device can be attached by a switched or nonswitched asyn-
chronous line.

The following are some of the parameters you need to
specify on the asynchronous communications line
description. Use the Create Line Description (Asynchronous)
(CRTLINASC) command to create the line description.
These parameters must match the characteristics of the
remote device.

BITSCHAR Data bits per character: Specify 7 or 8 bits.

CNN Connection type: Specify switched (*SWTPP)
or nonswitched (*NONSWTPP) point-to-point
to describe the physical start-stop communica-
tions line being used.

ECHO Echo support: Specify *NONE, *ALL, or
*CNTL.

EORTBL End-of-record table: Specify up to 8 individual
characters. Up to 4 trailing characters can
also be specified.

FLOWCNTL Flow control: Specify whether or not flow
control characters will be used to control the
flow of your data stream. (The hexadecimal

values of the XON and XOFF characters can
be specified using the XONCHAR and
XOFFCHAR parameters.)

IDLTMR Idle timer: Specify from 0 to 254 in 0.5
second intervals.

LINESPEED Line speed: Specify the line speed used, in
the range of 50 to 19,200 bits per second.

MAXBUFFER Maximum buffer size: Specify from 128 to
4096 characters.

PARITY Type of parity: Specify *EVEN, *ODD, or
*NONE.

STOPBITS Number of stop bits: Specify 1 or 2 bits.

Nonswitched Line Support

You should use a nonswitched asynchronous line description
and an asynchronous controller description configuration
when:

� The AS/400 system is attached to a nonswitched
modem.

� The AS/400 system and the asynchronous device are
connected by a modem eliminator or null modem.

� The AS/400 system and the remote device are con-
nected by limited distance modems.

� The attached modem is a command-capable modem.
This modem is configured to hold the Data Set Ready
(DSR) signal active when the Data Terminal Ready
(DTR) signal is active or when the modem is powered
on.

Switched Line Support

You should use a switched asynchronous line description
and an asynchronous controller description when the AS/400
system is attached to a switched modem. An asynchro-
nous controller description represents a remote system or
device when using asynchronous transmission methods on
an asynchronous communications line or when using
non-SNA protocols on an X.25 communications line to com-
municate with the system. The following types of switched
modems can be attached to an AS/400 system:

� Manual dial/answer modems

The connection to the remote system is made by manu-
ally dialing or answering the modem.

� V.25 bis modems (single line, capable of serial auto-
matic dialing)

When a V.25 bis modem is attached and configured, the
AS/400 system issues a dial command to the modem at
the time your program acquires the asynchronous
device. The number used in the dial command is config-

 Copyright IBM Corp. 1997 2-1

ured in the asynchronous controller description attached
to the device you are acquiring. No other action is
required by your application program to start the dial
operation to this type of modem.

Note: V.25 bis over an asynchronous line is not sup-
ported by all modems. Ensure that your modem sup-
ports V.25 bis over asynchronous lines. Device type
5853 supports V.25 bis only over a synchronous line.

� Intelligent or command-capable modems

Asynchronous support allows the attachment of
command-capable modems and provides a path through
which your application program can send commands to
prepare the modem. Your application program may
code the modem command sequence in a high-level lan-
guage (HLL) and send the data to the modem using a
write operation. All modem commands and responses
appear as application data to the asynchronous support,
and are handled as such.

These types of modems are typically capable, by
external switches or keypad configuration, of treating the
Data Set Ready (DSR) signal in one of three ways:

1. Holding DSR signals active at all times when the
modem is powered on.

2. Making DSR signals active when Data Terminal
Ready (DTR) is active.

When the modem is configured as in cases 1 and 2,
nonswitched asynchronous line and controller
descriptions should be used.

3. Making DSR signals active only after a successful
connection with a remote modem and during the
communications with that modem.

Asynchronous support allows data to be exchanged
between the application program and the modem
without the DSR signal being active. The modem
initialization and dial commands can be issued by
the program on a write operation.

To use this support, specify the following parame-
ters on the Create Line Description (Asynchronous)
(CRTLINASC) command:

CRTLINASC ... INLCNN(\SWTPP) SWTCNN(\DIAL)

 AUTOANS(\NO) AUTODIAL(\YES)

 DIALCMD(\OTHER)

You must specify the following parameters on the
Create Controller Description (Asynchronous)
(CRTCTLASC) command:

CRTCTLASC ... SWITCHED(\YES) INLCNN(\DIAL)

 CNNNBR(connection-number)

The connection number is a required parameter and
is used only if the line is changed to V.25 bis or
manual call.

Note: Hardware flow control is not supported on the AS/400
system.

 Asynchronous (Non-SNA)
Communications on X.25 Lines

Asynchronous communications support allows the AS/400
system to use X.25 lines to communicate with another
packet-mode host. It also allows the AS/400 system, acting
as a packet-mode host, to communicate with start-stop
devices that are connected to a packet-switching data
network through a PAD.

The physical X.25 communications line can be switched or
nonswitched. A nonswitched connection through the network
to another system can be a permanent virtual circuit (PVC)
or a switched virtual circuit (SVC). A switched connection
through the network to another system must be a SVC. For
additional information on X.25 switched or nonswitched lines,
see the Communications Configuration book.

The terms permanent virtual circuit (PVC), incoming switched
virtual circuit (SVC-IN), and outgoing switched virtual circuit
(SVC-OUT) are used in the remainder of this chapter to refer
to the various connection capabilities of the asynchronous
controller descriptions that are attached to X.25 line
descriptions.

The Create Controller Description (Asynchronous)
(CRTCTLASC) command is used to specify PVCs and SVCs.
PVCs are configured as SWITCHED(*NO) in the controller
description; SVCs are configured as SWITCHED(*YES). The
Initial Connection (INLCNN) parameter is used to specify
SVC-IN (INLCNN(*ANS)) or SVC-OUT (INLCNN(*DIAL)).

Connecting Systems without a Network
(DCE-to-DTE)

Asynchronous communications support using X.25 lines can
be configured by connecting your AS/400 system to data ter-
minal equipment (DTE) through a modem eliminator (or
equivalent) instead of attaching through an X.25 packet-
switching data network.

When this method is used, the AS/400 system acts as data
circuit-terminating equipment (DCE) to the remote DTE.
Data circuit-terminating equipment (DCE) is the equipment
installed at the customer location that provides all the func-
tions required to establish, maintain, and end a connection,
and the signal conversion and coding between the data ter-
minal equipment and the line. The remote system (DTE)
can, for example, be a System/36 or another AS/400 system.
The remote DTE acts as though it is attached to an X.25
network, but no packet-switching data network (PSDN) is
involved in the connection.

2-2 AS/400 Asynchronous Communications Programming V4R1

Connections to a Packet-Switching Data
Network

Asynchronous communications may be run on an X.25
PSDN. This is done by creating asynchronous controller and
device descriptions and either an X.25 or an asynchronous
line description. Figure 2-1 on page 2-3 shows the config-
urations supported.

Application Program

Application ProgramApplication ProgramApplication ProgramApplication Program

Asynchronous
Communications
Support

Asynchronous
Communications
Support

Asynchronous
Communications
Support

Asynchronous
Communications
Support

Asynchronous
Communications
Support

PVC

Switched Dial SVC-OUT SVC-IN

Modem

Modem

Asynchronous
Communications
Support

Application Program

X.25 SubsystemX.25 Subsystem

X.25 Subsystem

X.25 Subsystem

X.25 Subsystem

SVC-OUT with
PAD Support

SVC-IN Generic
Controller

PAD

Start/Stop
Subsystem

Packet
Switching
Data
Network

RSLS460-3

SVC-IN Generic Con-
troller and Device

Application Program

Asynchronous
Communications
Support

X.25 Subsystem

This figure is an illustration of the configurations that are supported.

Figure 2-1. X.25 Packet-Switching Data Network

Connection .1/ uses asynchronous support on an asynchro-
nous (start-stop) line through a switched connection to the
PSDN. Connections .2/ through .7/ use asynchronous
support on separate X.25 lines through physically switched or
nonswitched connections to the PSDN.

.1/ Switched dial connection to a network PAD

This is a switched dial connection using asynchronous
communications support on an asynchronous (start-

stop) line. A call is made from the AS/400 system to a
network PAD. Your application program can then com-
municate with the PAD to establish a virtual circuit with
a packet-mode host that is attached to the network.

The packet-mode host (any non-SNA, X.25 host
system) could be another AS/400 system configured to
accept calls from any network address. See the dis-
cussion of generic controllers and devices under .6/
and .7/.

 Chapter 2. Asynchronous Communications Support 2-3

.2/ Permanent virtual circuit (PVC) connection

This type of connection is used when the network sup-
ports permanently established circuits. No connection
is allowed to any network address other than the one
specified in your network subscription. This is similar
to using a nonswitched connection on an asynchronous
(start-stop) line.

.3/ Outgoing switched virtual circuit (SVC-OUT) to a spe-
cific network address

This type of connection is used when you know the
network address of the system that will accept your
call. This connection only initiates calls and estab-
lishes a virtual circuit with the network address speci-
fied in the asynchronous controller description.

Use this type of connection only when you want to ini-
tiate calls to a specific network address. If that
address is not valid, busy, or otherwise unable to
accept the call, the call is rejected.

The first byte of the call user data (protocol field) in the
X.25 call packet used to establish a virtual circuit con-
tains hex C0 to distinguish asynchronous communica-
tions from Systems Network Architecture (SNA)
protocols.

.4/ Outgoing switched virtual circuit (SVC-OUT) with inte-
grated PAD support

This type of connection is used when you want to
establish a virtual circuit with a packet-mode host that
accepts calls from a PAD.

The first byte of the call user data (protocol field) in the
X.25 call packet used to establish a virtual circuit con-
tains hex 01 to inform the host system that the call is
from a PAD.

The asynchronous communications integrated PAD
provides the following support:

� CCITT recommendations X.3, X.28, and X.29

– X.3 defines the PAD parameters that the PAD
uses to control data and service signals to
and from the application program. These
parameters can be set by the application
program or the packet-mode host.

– X.28 defines the control procedures used to
establish a virtual connection to a packet-
mode host, the PAD commands the applica-
tion program can send to the PAD, and the
PAD service signals the program can receive
from the PAD.

– X.29 defines the PAD messages sent between
the packet-mode host and the PAD.

� Rotary dial support

The PAD attempts to establish a virtual circuit with
an address contained in a list of network
addresses. The PAD network address list is

created using the Create Configuration List
(CRTCFGL) command.

.5/ Incoming switched virtual circuit (SVC-IN) from a spe-
cific network address

This type of connection is used when you know the
network address of the system that initiates the call.
This connection only accepts calls and establishes a
virtual circuit with the address specified in the asyn-
chronous controller description.

Use this type of connection only when you want to
accept calls from a specific network address. Calls
received from a network address other than the one
specified are rejected.

.6/ Incoming switched virtual circuit (SVC-IN) from any
network address (generic controller and device)

This type of connection requires that you configure a
generic controller and device description. This is done
by specifying CNNNBR(*ANY) and INLCNN(*ANS) in
the controller description and specifying
RMTLOCNAME(*NONE) in the attached device
description.

This type of connection allows you to accept a call
request from any network address. The asynchronous
support decides if the incoming call should be accepted
based on the following:

� The remote or calling system must have the fol-
lowing configured on the controller description:

– Remote verify (RMTVFY(*YES))
– Local location name (LCLLOCNAME)
– Local identifier (LCLID)

Connection examples .1/, .3/, and .4/ can be
used to establish a circuit with a generic controller.

� The local location name and identifier from the
above step must be entered in the asynchronous
remote location list of the system receiving the
call. Asynchronous remote location lists can be
created and changed using the Create Configura-
tion List (CRTCFGL) and Change Configuration
List (CHGCFGL) commands. See the Commu-
nications Configuration book for more information
about using these commands.

� The calling system’s local location name cannot be
configured as the remote location name in any
device description used by the system receiving
the call.

Once the call is accepted, the remote verification
parameter (configured on the remote or calling system
as the local location name in the controller description
and on the local system in the remote location list)
becomes the remote location name (RMTLOCNAME)
of the attached asynchronous device description.
When this occurs, the asynchronous device can be
acquired by a local program or it can receive program
start requests.

2-4 AS/400 Asynchronous Communications Programming V4R1

If the remote verification parameter is not defined in the
asynchronous remote location list, the call is not
accepted.

Remote devices can also connect to an AS/400 system
on an X.25 network through generic controllers and
device descriptions. When an incoming call is received
by a generic controller, an ID prompt is sent to the
calling device requesting its location name and location
identifier. This ID prompt consists of the following
ASCII data stream:

<syn>ID<syn>

where <syn> = hex 16

When the device receives this prompt, it must respond
by sending its location name and location identifier in
the following format:

@<location name><location identifier><CR>

where:

<location name> and <location identifier>
represent 8 alphanumeric ASCII characters, left-
justified and padded with blanks.

The carriage return character (<CR>) is hex 0D.

@ is the keyboard at sign (hex 40).

If the location name and location identifier received by
the generic controller are in the system's remote
location list, the call is accepted. Otherwise, the call is
rejected and the connection is dropped.

When the call is accepted, the asynchronous commu-
nications support responds with the following ASCII
data stream:

<ETX><CR><LF>CONNECT<CR><LF>

where:

<ETX> = hex 03
<CR> = hex 0D
<LF> = hex 0A

.7/ Incoming switched virtual circuit (SVC-IN) from any
network address (generic controller only)

This type of connection requires that you configure a
generic controller. This is done by specifying
CNNNBR(*ANY) and INLCNN(*ANS) in the controller
description.

As discussed under item .6/, this type of connection
allows you to accept a call from any network address.
However, because you have configured a remote
location name in the device description, your program
may attempt to acquire the device before an incoming
call is received. The acquire operation will not com-
plete until an incoming call is received.

Remote verification is not done when using this type of
connection; therefore, you should specify no remote
verification (RMTVFY(*NO)) on the controller
description for the remote or calling system.

 Chapter 2. Asynchronous Communications Support 2-5

2-6 AS/400 Asynchronous Communications Programming V4R1

Chapter 3. Using the Integrated Packet Assembler/Disassembler Support

Packet assembler/disassembler (PAD) is normally used to
allow the attachment of start-stop devices to a packet-
switching data network (PSDN). This is done by converting
the start-stop data stream into X.25 data packets. Integrated
PAD support provides the same support for user-written pro-
grams, file transfer, and ITF as a network PAD provides for
start-stop devices. This support includes:

� Establishing sessions between your program and a
packet-mode host

� Processing PAD messages received from the packet-
mode host

� Processing PAD commands received from your applica-
tion program and responding with PAD service signals

� Handling functions that depend on PAD parameter set-
tings

� Routing data between your application program and a
packet-mode host

You should consider using integrated PAD support when:

� You have an X.25 line connected to a packet-switching
data network (PSDN)

� You want to communicate with a packet-mode host
using your application program or ITF

� The packet-mode host communicates with start-stop
devices that are connected to the network through a
PAD

� The packet-mode host only accepts call requests from a
PAD

Using the PAD

You can configure an asynchronous controller to emulate a
PAD using the PADEML parameter on the Create Controller
Description (Asynchronous) (CRTCTLASC) command. The
integrated PAD support follows CCITT recommendations X.3,
X.28, and X.29. CCITT is the abbreviation for the Interna-
tional Telegraph and Telephone Consultative Committee.
These recommendations are as follows:

� X.3 defines the PAD parameters that the PAD uses to
control the session

� X.28 defines the PAD commands and service signals
exchanged between the PAD and an AS/400 application
program

� X.29 defines the PAD messages that are exchanged
between a packet-mode host and the PAD

Figure 3-1 shows the relationship between the PAD and the
CCITT recommendations. This figure shows an illustration of
the relationship between the PAD and the CCITT recommen-
dations.

X.25
Communications
Subsystem

Packet Switching
Data Network
(PSDN)

Integrated
PAD Support

Application Program

Intersystem
Communications
Function (ICF) File

PAD Commands
and Service
Signals (X.28)

Packet
Mode
Host

RSLS461-2

PAD
Messages
(X.29)

PAD
Parameters
(X.3)

Figure 3-1. CCITT Recommendations

To use the PAD support, your application program must
acquire a session with an asynchronous device that is
attached to an asynchronous/X.25 controller. The controller
must be configured for PAD emulation by specifying
PADEML(*YES). Your application program can acquire a
session with the PAD even though a connection to a remote
system has not been established.

The values specified for the PAD parameters determine how
the PAD operates on the data sent and received by your
program. You can change the way the PAD operates by
changing the values of the PAD parameters. This is done
using the appropriate PAD commands. The packet-mode
host can also change the values of the PAD parameters by
issuing the appropriate PAD messages.

PAD commands are sent as data on write operations that are
issued by your application program. Any resulting PAD
service signals are returned to your program as data on the
next read operation. PAD commands can only be issued
when the PAD is in command mode.

A connection with a remote system can be made by issuing
the PAD CONNECT command or by using the Rotary Dial func-
tion. See “Rotary Dial” on page 3-7 for more information.

Once a connection to a remote system is made, the PAD
enters data transfer mode. While in data transfer mode, your
program can send data to and receive data from the remote
system. You can enter command mode again if PAD param-
eter 1 is set to 1.

 Copyright IBM Corp. 1997 3-1

 PAD Parameters

The following PAD parameters are used to control the
session. The packet-mode host can set and read these
parameters by sending a SET, SET and READ, or READ PAD
message to the PAD. An application program can change or
read these parameters by issuing a SET, SET?, or PAR? PAD
command.

Parameters marked Not supported in the following table are
those that the PAD ignores because they are not used by the
programs supported on the AS/400 system. Any attempt to
read or change these parameters causes an error to be
reported, as follows:

� If a SET, READ, or SET and READ PAD message is
received by the PAD from a packet-mode host for a
parameter marked Not supported, the asynchronous
support sends a Parameter Indication PAD message
indicating the parameter in error.

� If a SET, SET?, or PAR? PAD command is received by the
PAD for a parameter marked Not supported, the asyn-
chronous support indicates that the parameter reference
is in error by returning the parameter value INV in the
PAD service signal.

The PAD parameters are defined as follows:

1 Escape to command mode

This function allows the PAD to change from data
transfer mode to command mode using the escape
sequence, <CR>@<CR>. Although the PAD is in
command mode, your program is still connected to the
remote system.

Note: Throughout this section <CR> refers to the car-
riage return character (hex ðD).

2 Echo

This function allows all characters you send to the PAD
to be transmitted back to you at the same time the
character is processed.

3 Data forwarding characters

This function allows you to define a set of characters
that control how data is sent by the PAD to the packet-
mode host. All data up to and including the defined
character are sent together. Data from the last for-
warding character to the end of the data stream is also
sent together. This function is only supported in data
transfer mode.

6 Suppression of service signals

This function allows you to determine whether or not
you want to receive PAD service signals.

7 Break options

This function allows you to determine how the PAD
operates when your application program issues a fail
function.

8 Discard output

This function allows the PAD to discard any data
received from the packet-mode host.

10 Line folding

This function allows you to set the maximum number of
characters per line. The PAD automatically inserts the
format effectors (layout characters).

Figure 3-2. PAD Parameter Chart

Parameter Description Values and Meanings

13 Line feed
insertion after
carriage return

0: None
1: To terminal
4: In echoed data to terminal
5: Combination of 1 and 4
6: Combination of 4 and from terminal
7: Combination of 1, 4 and from terminal
Default: 0

14 Padding after
line feed

Not supported

15 Editing Not supported

16 Character delete Not supported

17 Line delete Not supported

18 Line display Not supported

19 Editing PAD
service signals

Not supported

20 Echo mask Not supported

21 Parity treatment Not supported

22 Page wait Not supported

Figure 3-2. PAD Parameter Chart

Parameter Description Values and Meanings

1 Escape to
command mode

0: No escape possible
1: Escape possible
Default: 1

2 Echo 0: PAD does not echo
1: PAD will echo characters
Default: 1

3 Data forwarding
characters

Note: These
values represent
the ASCII char-
acters defined in
Figure C-2 on
page C-2.

0: None
2: Carriage return
6: ENQ, ACK, BEL, ESC, CR
18: ETX, EOT, CR
126: All characters in columns 1 and 2 of

Figure C-2 on page C-2, plus DEL
Default: 2

4 Idle timer Not supported

5 PAD suspension
of input

Not supported

6 Suppression of
service signals

0: Suppress signals
1: Deliver signals
Default: 1

7 Break options 0: Do nothing
1: Send interrupt
2: Reset
8: Escape to command mode
21: Discard pending data at the PAD, send

interrupt, and send indication of break PAD
message

Default: 0

8 Discard output 0: Deliver output
1: Discard output
Default: 0

9 Carriage return
padding

Not supported

10 Line folding 0: None
1-255: Number of characters per line

before line folding
Default: 0

11 Terminal speed Not supported

12 Flow control of
PAD

0: Not possible
1: Possible
Default: 0

3-2 AS/400 Asynchronous Communications Programming V4R1

12 Flow control of PAD

This function allows you to control the flow of data
between your application program and the PAD.
Sending XON or XOFF characters indicates to the PAD
whether or not your program is ready to receive data.
The XON and XOFF characters are defined as (DC1)
and (DC3) in Figure C-2 on page C-2.

13 Line feed insertion after carriage return

This function allows the PAD to automatically insert a
line feed after a carriage return. This function is only
supported in data transfer mode.

The following parameters are not supported:

4 - Idle timer
5 - PAD suspension of input
9 - Carriage return padding

11 - Terminal speed
14 - Padding after line feed
15 - Editing
16 - Character delete
17 - Line delete
18 - Line display
19 - Editing PAD service signals
20 - Echo mask
21 - Parity treatment
22 - Page wait

 PAD Commands

PAD commands are used to manage a virtual circuit and to
change the way the PAD operates. The PAD has two
modes of operation: command mode and data transfer mode.
While in command mode, your application program can send
commands to the PAD and receive PAD service signals in
response. Your program can enter command mode from
data transfer mode by entering the escape sequence:

<CR> @ <CR>

Note: Throughout this section <CR> refers to the carriage
return character (hex ðD).

When your program initially acquires a session with the PAD,
the PAD is in command mode. Once you have established a
connection with a packet-mode host, the PAD enters data
transfer mode. If an end-of-session function is issued
without disconnecting, and if SWTDSC(*NO) is specified on
the controller description, the PAD resumes the last mode of
operation and is still connected when your application
program issues the next acquire operation.

The following list describes the PAD commands available.

 � CONNECT

This command is used by your application program to
request establishment of a virtual call. It allows you to
connect to a specified network address. Network
addresses have a minimum length of 5 digits and a

maximum of 17. The following CONNECT commands are
allowed:

1. Connect with no address specified

Format: CONNECT

If your application program issues a CONNECT
command without specifying a network address, a
connection is attempted using the network address
specified in the connection number (CNNNBR) field
of the controller description. If this is not the first
connection attempt, the address with which you last
attempted a connection is used.

2. Connect with address specified

Format: CONNECT <address>

A connection is attempted to the specified address.
The fully qualified network address is constructed by
adding the address you specified to the data
network identification code (DNIC) configured in the
CNNNBR field of the controller description. The
data network identification code (DNIC) is assumed
to be the first 4 digits of the CNNNBR field and is
used to identify the network. Once a connection
has been attempted, the address you entered is the
default for any subsequent connection attempts for
which no address is specified.

3. Connect specifying a fully qualified network address

Format: CONNECT ðDNIC <address>

You can specify a fully qualified network address by
preceding the address with a ð (zero). This allows
you to connect to a network address whose data
network identification code (DNIC) is different from
that specified as the first 4 digits of the CNNNBR
field in the controller description. A connection is
attempted to the fully qualified address. The data
network identification code (DNIC) and address
become the default for any subsequent connection
attempts for which no address is specified.

Note: The valid abbreviations for this command are C
and CONN.

 � RESET

This command resets the session to the pre-connect
status. This includes setting the PAD parameters to
their default values and clearing the virtual call.

 � STATUS

Response to this command indicates whether a virtual
circuit is connected or available.

Note: The valid abbreviation for this command is STAT.

 � DISCONNECT

This command is used to request that the virtual call be
cleared. Communications with the connected network
address is discontinued. Another CONNECT command can
be issued after this command to establish a virtual circuit
with either the same or a different network address.

 Chapter 3. Using the Integrated Packet Assembler/Disassembler Support 3-3

Note: The valid abbreviations for this command are D
and DISC.

 � CONTINUE

This command is used to return to data transfer mode
when your application program is in command mode as
a result of entering the PAD escape sequence.

Note: The valid abbreviation for this command is CONT.

 � SET

This command is used to change the values of the PAD
parameters. If no list is provided, all PAD parameters
are reset to the default values. The following SET com-
mands can be used:

1. Set all PAD parameters to the default values

Format: SET

2. Set the values of specified PAD parameters

Format: SET <list>

The parameter list following the SET command con-
tains pairs of PAD parameters and values. Each
pair of parameters is separated by a comma. The
list has the following format:

 number:value,number:value,

 ...,number:value<CR>

 � SET?

This command is used to change the values of the PAD
parameters and to read the current values after they are
changed. If no list is specified, all PAD parameters are
reset to the default values and all values are read. The
following SET? commands can be used:

1. Set and read all PAD parameters

Format: SET?

2. Set and read specified PAD parameter values

Format: SET? <list>

The parameter list following the SET? command con-
tains pairs of PAD parameters and values. Each
pair of parameters is separated by a comma. The
list has the following format:

 number:value,number:value,

 ...,number:value<CR>

 � PAR?

This command is used to read the current values of the
PAD parameters. If no parameters are specified, all
values are read.

1. Read all PAD parameters

Format: PAR?

2. Read specified PAD parameters

Format: PAR? <list>

The parameter list following the PAR? command con-
tains the numbers of the PAD parameters you want
to read. Each number is separated by a comma.
The list has the following format:

 number,number,...,number<CR>

� PAD escape sequence

The PAD escape sequence is used to enter command
mode from data transfer mode. The sequence is:

 <CR>@<CR>

 � PAD prompt

When in command mode, the PAD prompts for the next
command by returning the PAD prompt service signal as
data on the next read operation issued by your program.
This prompt has the following format:

\ ENTER PAD COMMAND:

Examples of SET, SET?, and PAR?
Commands

The following are examples of the SET, SET?, and PAR? com-
mands. The examples show the PAD service signals
returned in response to both successful and unsuccessful
commands.

� SET - parameter 1 is changed to value 0 and parameter
7 is changed to value 4.

PAD Command - SET 1:ð,7:4<CR>
PAD Response - none unless an error occurs

� SET? - parameter 2 is changed to value 0 and param-
eter 7 is changed to value 21. Read the values of these
parameters after they are changed.

PAD Command - SET? 2:ð,7:21<CR>
PAD Response - PAR 2:ð,7:21<CR>

� PAR? - read the value of parameters 1 and 7.

PAD Command - PAR? 1,7<CR>
PAD Response - PAR 1:ð,7:21<CR>

� SET - attempt to change the value of a parameter that is
not valid.

PAD Command - SET 23:ð<CR>
PAD Response - PAR 23:INV<CR>

� SET - attempt to change a parameter to a value that is
not valid.

PAD Command - SET 7:3<CR>
PAD Response - PAR 7:INV<CR>

PAD Service Signals

The following chart shows the PAD service signals issued to
the application program in response to PAD commands.

Figure 3-3 (Page 1 of 2). PAD Service Signals – Response to
PAD Commands

Message
ID

PAD Service
Signal

Description

CPX6B76 CONNECTED Response to STATUS command when
connected

3-4 AS/400 Asynchronous Communications Programming V4R1

The following chart shows additional PAD service signals
issued in response to your unsuccessful call attempts.

 PAD Messages

PAD messages allow the packet-mode host to change the
PAD parameters as well as request that the PAD clear the
virtual circuit.

Two types of PAD messages are supported: requests from
the packet-mode host and responses from the PAD. Each
PAD message is defined by a message code. The following

PAD messages and the associated message codes are sup-
ported by the PAD:

� Set (hex 02)

Sent by the packet-mode host to change the PAD
parameters.

� Set and Read (hex 06)

Sent by the packet-mode host to change the PAD
parameters. The PAD responds by sending a
Parameter Indication message.

� Read (hex 04)

Sent by the packet-mode host to find out what the PAD
parameters are set to. The PAD responds by sending a
Parameter Indication message.

� Invitation to Clear (hex 01)

Sent by the packet-mode host to request the PAD to end
the connection. All previously received data is discarded
and the PAD enters command mode after dropping the
connection.

� Parameter Indication (hex 00)

Sent by the PAD in response to the packet-mode host
SET AND READ or READ message. This message tells the
packet-mode host what values the PAD parameters are
set to.

� Indication of Break (hex 03)

Sent by the PAD in response to the FAIL function. See
Appendix D for more information on break and interrupt
handling.

� Error (hex 05)

Sent by the PAD to indicate to the packet-mode host
that a PAD message that is not valid was received.

Requests from the Packet-Mode Host

Your application program may send PAD messages to a
remote PAD using the write function-management-header
operation. The PAD message may be a Set, Read, Set and

Read, Invitation to Clear, or any other messages sup-
ported by the remote PAD; the message code indicates
which PAD message is to be sent. Your program supplies
the message code and message parameters (if required for
that message) as data on the write function-management-
header operation. See “Write Operation” on page 6-4 for
more information.

Note: The data must be in the exact format required by the
remote PAD. The integrated PAD requires that all data
received in PAD messages be in hexadecimal. The following
discussions assume that the remote PAD to which you are
sending PAD messages is the integrated PAD.

Reading and Setting PAD Parameters: The current values
of the PAD parameters can be changed or read by sending a
Set, Read, or Set and Read message. These messages are
sent by your program using the write function-management-

Figure 3-3 (Page 2 of 2). PAD Service Signals – Response to
PAD Commands

Message
ID

PAD Service
Signal

Description

CPX6B77 DISCONNECTED Response to DISCONNECT command
when session is disconnected

CPX6B78 AVAILABLE Response to STATUS command when
not connected

CPX6B79 <address>
CONNECTED

Response to CONNECT command
when connection complete to speci-
fied address

CPX6B7B ERR PAD did not understand last
command

CPX6B7C INVALID ADDRESS Address supplied with CONNECT
command is not a valid address

CPX6B7D ALREADY

CONNECTED

Response to CONNECT command
when already connected to remote
system

CPX6B7E NOT CONNECTED Response to DISCONNECT command
when not connected to a remote
system

CPX6B7F \ ENTER PAD

COMMAND:

PAD acknowledgment and prompt

Figure 3-4. PAD Service Signals – Response to Unsuccessful Call
Attempts

Message ID PAD Service Signal

CPX6B64 CLR REJECTING

CPX6B65 CLR CALL CLEARED

CPX6B66 CLR NUMBER BUSY

CPX6B67 CLR NOT REACHABLE

CPX6B68 CLR NOT RESPONDING

CPX6B69 CLR REFUSING COLLECT CONNECTION

CPX6B6A CLR NOT OPERATING

CPX6B6B CLR STILL PENDING

CPX6B6C CLR NOT AVAILABLE

CPX6B6D CLR ILLEGAL ADDRESS

CPX6B6E CLR ILLEGAL SOURCE ADDRESS

CPX6B6F CLR NETWORK CONGESTION

CPX6B70 CLR INVALID FACILITY REQUEST

CPX6B71 CLR LOCAL PROCEDURE ERROR

CPX6B72 CLR REMOTE PROCEDURE ERROR

CPX6B73 CLR INVALID LOGICAL CHANNEL TYPE

CPX6B74 CLR CALL USER DATA ERROR

CPX6B75 CLR NO LOGICAL CHANNEL AVAILABLE

 Chapter 3. Using the Integrated Packet Assembler/Disassembler Support 3-5

header operation. The data to be sent by this operation
must be in the following format:

hex <message code><parameter><value>

 <parameter><value>...

where:

<message code> indicates which PAD message is being sent.
<parameter> specifies the PAD parameter that you want to
set or read, followed by the <value> that you want it set to.
PAD parameters and values supported by the PAD are listed
earlier in this chapter. When you send a Read message, you
should enter hex ðð for each parameter value, because you
are not setting values.

If you do not enter any parameters and values, one of the
following occurs:

� For a Set message, all parameters are reset to their
default values.

� For a Read message, the values of all parameters are
returned to the program by a Parameter Indication.

� For a Set and Read message, all parameters are reset to
their default values and the values are returned to the
program by a Parameter Indication.

A Parameter Indication or an Error message may be
received from the remote PAD in response to the above
operations. These messages are returned to your applica-
tion program as data on the next read operation. A return
code of 0004 indicates that the data is a PAD message.

Clearing the Virtual Circuit: Your packet-mode host
program can request that the remote PAD end the con-
nection by sending an Invitation to Clear message. This
message causes the PAD to clear the virtual circuit and has
no message parameters.

Responses from the PAD

The PAD responds to requests from the packet-mode host
by sending either a Parameter Indication or an Error

message. The PAD may also send an Indication of Break

message in response to a fail function issued by your appli-
cation program.

Parameter Indication Message: The PAD responds to a
valid Read or Set and Read message by sending a Parameter
Indication to the packet-mode host. This PAD message
contains the parameter numbers and the current values (after
any changes) of the PAD parameters to which the received
PAD message referred. The message has the following
format:

hex ðð<parameter><value><parameter><value>...

The PAD does not return a Parameter Indication message
in response to a valid Set message.

If the PAD receives a Set, Read, or Set and Read message
that contains a reference to a PAD parameter that is not sup-
ported, it responds by sending a Parameter Indication

message. The parameter field within the Parameter

Indication message indicates the parameter that is in error
by setting the most significant bit to 1. The corresponding
value field is then set to hex 00.

Note: Any remaining valid references to PAD parameters
are processed.

Possible reasons for a reference that is not valid to a PAD
parameter are:

� The parameter is not supported by the PAD.

� The parameter value is not supported by the PAD.

Indication of Break Message: The Indication of Break

message is sent by the PAD when your application program
issues a fail function. The break message that is sent
depends on the value of PAD parameter 7. See
Appendix D, for more information about how the PAD
responds to the fail function based on the value of PAD
parameter 7.

Error Message: The PAD sends an error message when a
PAD message that is not valid is received from a packet-
mode host. Possible reasons for a PAD message that is not
valid being received are as follows:

� The received PAD message contained less than 8 bits.
The reason code is hex 00.

� An unrecognized message code was received in the
PAD message. The reason code is hex 01.

� The received PAD message did not contain an integral
number of bytes. The reason code is hex 03.

The format of the error message is:

hex 05<reason code>

Note: For reason codes hex 01 and hex 03, the error
message also contains the message code of the PAD
message that was received from the packet-mode host. The
message code follows the reason code in the error message.

Examples of PAD Messages

The following are examples of PAD messages. These exam-
ples show the messages that can be sent from a packet-
mode host. They also show the responses sent by the PAD
to both successful and unsuccessful messages.

Note: The first byte of each PAD message indicates the
message being sent.

 � Set message

– The packet-mode host sends a Set message to set
PAD parameter 7 to 1 and parameter 10 to 8ð.

PAD message - hex ð2ð7ð1ðA5ð

PAD response - None, unless an error occurs

– The packet-mode host attempts to set PAD param-
eter 7 to 13.

PAD message - hex ð2ð7ðD

3-6 AS/400 Asynchronous Communications Programming V4R1

PAD response - hex ðð87ðð

 � Read message

– The packet-mode host issues a message to read
the values of PAD parameters 2 and 10 that have
the values 1 and 80.

PAD message - hex ð4ð2ðððAðð

PAD response - hex ððð2ð1ðA5ð

– The packet-mode host attempts to read the PAD
parameter 23, which is not valid.

PAD message - hex ð417ðð

PAD response - hex ðð97ðð

� Set and Read message

– The packet-mode host issues a Set and Read

message to change the value of PAD parameter 2
to ð and parameter 7 to 1. Read the values of
these parameters after the Set message.

PAD message - hex ð6ð2ððð7ð1

PAD response - hex ððð2ððð7ð1

– The packet-mode host issues a Set and Read

message to change the value of PAD parameter 2
to 1, parameter 7 to 25, and parameter 8 to ð. The
value 25 is not valid for parameter 7.

PAD message - hex ð6ð2ð1ð719ð8ðð

PAD response - hex ððð2ð187ððð8ðð

 � Error message

– The packet-mode host issues an unsupported PAD
message.

PAD message - hex ð7ð1ð1

PAD response - hex ð5ð1ð7

� Invitation to Clear message

– The packet-mode host requests that the remote
PAD clear the virtual circuit.

PAD message - hex ð1

PAD response - Clear the virtual circuit

 Rotary Dial

Rotary dial is a function of the PAD support that allows you
to enter the name of a PAD network address list to use in
connecting to a remote system. It provides a function similar
to that of the CONNECT command, and is only valid when the
PAD is in command mode and not already connected. You
create the PAD network address list by running the
CRTCFGL command. You should not use a PAD command
as the name of a PAD network address list. See the Com-
munications Configuration book for more information about
the Create Configuration List (CRTCFGL) command.

The rotary dial function is started by entering the name of the
PAD network address list as data either on a write operation
issued by your application program or on the input line of
ITF. PAD support begins calling the first address in the list
for the specified number of times or until a connection is
made. If no successful connection is made, the next address
in the list is called. This continues until a successful con-
nection is made or until all of the addresses have been
called. In either case, a PAD service signal is issued indi-
cating the result of the call attempt. See Figure 3-3 on
page 3-4 and Figure 3-4 on page 3-5 for more information
about PAD service signals.

 Chapter 3. Using the Integrated Packet Assembler/Disassembler Support 3-7

3-8 AS/400 Asynchronous Communications Programming V4R1

Chapter 4. Configuring Asynchronous Communications Support

This chapter lists the configuration commands that allow you
to configure the communications environments described in
Chapter 2. You can use either the system-supplied menus
or the control language (CL) commands to configure asyn-
chronous communications. For more information about com-
munications configuration, see the Communications
Configuration book.

Asynchronous Configuration Commands

An asynchronous configuration consists of an asynchronous
line, controller, and device description. If you are using X.25,
you need to configure an X.25 line with an asynchronous
controller and device description. The name of each config-
uration description must be unique for each configuration
object type. This unique name is used when the configura-
tion is varied on or varied off using the Vary Configuration
(VRYCFG) command. More than one line description can be
varied on and in use at the same time; however, each line
must be attached to a different communications port.

The following commands are used to create or change line
descriptions:

� CRTLINASC: Create Line Description (Asynchronous)
� CHGLINASC: Change Line Description (Asynchronous)
� CRTLINX25: Create Line Description (X.25)
� CHGLINX25: Change Line Description (X.25)

The following commands are used to create or change con-
troller descriptions:

� CRTCTLASC: Create Controller Description (Asynchro-
nous)

� CHGCTLASC: Change Controller Description (Asyn-
chronous)

The following commands are used to create or change
device descriptions:

� CRTDEVASC: Create Device Description (Asynchro-
nous)

� CHGDEVASC: Change Device Description (Asynchro-
nous)

The following commands are used to create or change asyn-
chronous configuration lists. A configuration list can be
either a remote location list or a PAD network address list.

� CRTCFGL: Create Configuration List
� CHGCFGL: Change Configuration List

Asynchronous communications configuration lists may
consist of either a remote location list or a PAD network
address list:

� The remote location list is used by asynchronous
support when you have configured generic controllers
and devices. See item .6/ under the topic “Connections
to a Packet-Switching Data Network” on page 2-3 for
more information about using generic controllers and
devices.

� The PAD network address list is used by the asynchro-
nous support as part of the rotary dial function. See
“Rotary Dial” on page 3-7 for more information about
this function.

 Copyright IBM Corp. 1997 4-1

4-2 AS/400 Asynchronous Communications Programming V4R1

Chapter 5. Running Asynchronous Communications Support

Once configuration for asynchronous communications is
complete, the Vary Configuration (VRYCFG) command is
used to activate and deactivate the line, controller, and
device descriptions used by asynchronous communications
support.

The VRYCFG command prepares the local AS/400 system to
communicate with the remote system. The remote system
must also be prepared to communicate with the local system.

Use the VRYCFG command and specify STATUS(*ON) to
vary on the configuration descriptions. Use the VRYCFG

command with STATUS(*OFF) to vary off the configured line,
controller, and device descriptions.

It is not necessary to activate configuration list support for
asynchronous communications. The remote locations or
network addresses used in the configuration list are known to
the asynchronous communications support at the time the list
is created or changed.

See the book, Communications Management, for more infor-
mation about using the VRYCFG command.

 Copyright IBM Corp. 1997 5-1

5-2 AS/400 Asynchronous Communications Programming V4R1

Chapter 6. Writing Asynchronous Communications Application Programs

This chapter describes how an application program uses the
intersystem communications function (ICF) file and the asyn-
chronous communications support. The program can be
coded using ILE C/400, ILE COBOL/400, FORTRAN/400, or
ILE RPG/400 languages. These four languages support an
interface that allows the program to do the following func-
tions:

� Start a session by opening an ICF file and acquiring a
program device.

� Send and receive information by writing or reading to an
ICF file.

� End a session by releasing the program device and
closing the ICF file.

The chapter also includes a description of the read and write
operations that specify a record format containing specific
communications functions. Record formats can be defined
using data description specifications (DDS), or you may use
system-supplied formats.

After an operation completes, a return code (and a high-level
language file status) is returned to your application. The
return code indicates whether the operation completed suc-
cessfully or unsuccessfully. Along with the return code,
exception messages may also be issued. Refer to
Appendix B for more information about return codes and to
the appropriate language reference books for more informa-
tion about the high-level language file status.

Intersystem Communications Function
Files

An ICF file must be created before your application can use
the asynchronous communications support. The inter-
system communications function (ICF) file is used to
describe how data is presented to the program with which
your program is communicating, and how data is received
from that program. If you are using DDS keywords, use the
Create Intersystem Communications Function File
(CRTICFF) command to create an ICF file. If you are using
the system-supplied formats (such as $$SEND), you do not
need to create an ICF file. The ICF file QICDMF, which is in
the library QSYS, is supplied by IBM for communications.

The ICF file is a system object of type *FILE with a specific
user interface. This interface is made up of a set of com-
mands and operations. The commands allow you to manage
the attributes of the file, and the operations allow a program
to use the file. Commands allow you to create, delete,
change, and display the file description.

The following commands are used to manage the ICF file,
and are described in detail in the book, ICF Programming.

CRTICFF
Create ICF File. This command allows you to create
an ICF file. Once you have created this file, asyn-
chronous communications support uses the attributes
for each session.

CHGICFF
Change ICF File. This command allows you to make
a permanent change to the file attributes of the ICF
file.

OVRICFF
Override ICF File. This command allows you to make
a temporary change to the file attributes of the ICF file
at run time. These changes are only in effect for the
duration of the job and do not affect other users of the
file.

DLTF
Delete File. This command allows you to delete a file
from the system.

DSPFD
Display File Description. This command displays the
file description of any file on the system. The infor-
mation can be printed or displayed.

DSPFFD
Display File Field Description. This command dis-
plays the description of the fields in any file on the
system. This information may be printed or displayed.

ADDICFDEVE
Add ICF Device Entry. This command allows you to
add a permanent program device entry to the ICF file
and have it associated with a program device name.
Only one program device name can be used for each
remote location name in a session. Once you have
added a program device entry, the attributes are used
for every session.

CHGICFDEVE
Change ICF Device Entry. This command allows you
to permanently change the device entry previously
added with the ADDICFDEVE command.

RMVICFDEVE
Remove ICF Device Entry. This command allows you
to permanently remove the device entries previously
added with the ADDICFDEVE command or changed
with the CHGICFDEVE command.

OVRICFDEVE
Override ICF Device Entry. This command can be
used for two functions:

� To temporarily add the program device entry and
the location to the ICF file. You must use an
OVRICFDEVE command if you do not use an
ADDICFDEVE command to add a program
device entry to the ICF file to be used for a
session.

 Copyright IBM Corp. 1997 6-1

� To override (replace) a program device entry with
the specified location name and attributes for an
ICF file. When the session ends, the attributes
revert to the parameters set by the ADDICFDEVE
command.

Specifying the Program Device Entry
Parameters

The following describes the parameters for the
ADDICFDEVE, CHGICFDEVE, and OVRICFDEVE com-
mands and lists the valid values for each parameter for asyn-
chronous communications. For a complete description of all
the parameters for these commands, refer to the ICF Pro-
gramming book.

FILE
Specifies the name and library of the ICF file to which
you are adding or changing the program device entry.
The FILE parameter is not available on the
OVRICFDEVE command.

*LIBL : Asynchronous communications support uses the
library list to locate the ICF file. This is the default.

*CURLIB : Asynchronous communications support uses
the current library for the job to locate the ICF file. If no
current library entry exists in the library list, asynchro-
nous communications uses QGPL.

filename: A 1- to 10-character value that specifies the
name of the ICF file.

library-name: A 1- to 10-character value that specifies
the library where the ICF file is located.

PGMDEV
Specifies the program device name that is defined in the
ICF file and specified in the application. The total
number of devices that can be acquired to an ICF file is
determined by the MAXPGMDEV parameter on the
CRTICFF or CHGICFF command.

pgm-device-name: A 1- to 10-character value for the
program device name being defined. This name is used
on device-specific input and output operations to identify
the program device and the attributes.

RMTLOCNAME
Specifies the remote location name with which your
program communicates. A remote location name must
be specified on the ADDICFDEVE command or an
OVRICFDEVE command. If a remote location name is
not specified, an 82AA return code is issued when the
program device is acquired.

*REQUESTER: The name used to refer to the commu-
nications device through which the program was started.
The session that is assigned when the program device is
acquired is the same session that receives the program
start request. If the program is not started as a result of
a program start request, the acquire operation for the

program device fails. The target program always uses
*REQUESTER as the remote location name in the ICF
file to connect to the session that the source program
uses to send the program start request.

remote-location-name: A 1- to 8-character name for the
remote location name that should be associated with the
program device.

FMTSLT
Specifies the type of record format selection used for
input operations for all devices.

*PGM: The program determines what record formats
are selected. If an input (read) operation with a record
format name is specified, that format is always selected.
If an input operation without a record format is specified,
the default format (the first record format in the file) is
always selected. This also means that if any record
identification (RECID) keywords are specified in the data
description specifications (DDS) for the file, they are not
taken into consideration when the record is selected.
This is the default.

*RECID: The RECID keywords specified in DDS for the
file are used to specify record selection. If no RECID
keywords are specified in the file, an error message is
sent and an acquire operation for the program device
will fail.

*RMTFMT: Remote format names are not supported by
asynchronous communications.

CMNTYPE
Identifies the communications type for which you define
a program device entry. You should specify the value
*ASYNC or *ALL for this parameter.

*ASYNC: The prompt for all asynchronous
communications-supported attributes.

Note: When you specify *REQUESTER for the remote
location name (RMTLOCNAME), you are only prompted
for the attributes of the format select parameter
(FMTSLT) and the secure from override parameter
(SECURE).

 Communications Operations

This section provides a description of the operations you can
code into a program that uses asynchronous communications
support to communicate with another program.

Starting a Session

A communications session is a logical connection between
two systems through which a local program can communi-
cate with a program at a remote location. A communications
session is established with an acquire operation and is
ended with a release operation or an end-of-session function.

6-2 AS/400 Asynchronous Communications Programming V4R1

 Open/Acquire Operation

Your program must open an ICF file and acquire a program
device before it can direct any read or write operations to the
program device. Only program devices defined to the file by
the ADDICFDEVE or OVRICFDEVE command can be
acquired.

A session can be established explicitly, using an acquire
operation, or implicitly, using an open operation. The acquire
operation is performed automatically as part of the open
operation if you specify the ACQPGMDEV parameter on the
ICF file.

You can start the session in one of the following ways:

� For a source program, the session between your
program and the remote location with which your
program is communicating is started by an open or
acquire operation. The program device name on the
acquire operation identifies the session and must match
the program device name specified in an associated
ADDICFDEVE or OVRICFDEVE command.

� For a target program, a source program on the remote
system sends a program start request to the AS/400
system to start your program. This also starts the
session. Before your program can send or receive data,
it must first make a logical connection to the source
program. This logical connection is made when your
program uses the open or acquire operation. The
program device name on the acquire operation identifies
the session. This name must match the program device
name specified in an associated ADDICFDEVE or
OVRICFDEVE command. You must specify a
requesting device for the remote location
(RMTLOCNAME(*REQUESTER)) on the ADDICFDEVE
or OVRICFDEVE command when your program is
started by a program start request.

See “Evoke Function” for the format of the program start
request built by asynchronous communications.

Starting a Transaction

A transaction is a logical connection between two programs.
Use the evoke function to start a transaction between your
program and a target program on the remote system.

 Evoke Function

Your program uses the evoke function to start a program on
the remote system. Control is then returned to your program
immediately without confirmation that the target program has
started successfully. It is the responsibility of your program
to confirm that the target program has started.

For example, after the evoke function has been issued, your
program can issue an invite function to request data from the

target program. Your program should then use the timer
function to set the maximum amount of time your program
waits to receive data. Your program can then issue a read-
from-invited-program-devices operation until it receives a
timer ended return code (0310) or until a confirmation is
received from the target program.

If your program sends program initialization parameters on
the evoke function, each parameter that is sent should be
equal in length to the corresponding parameter specified in
the target program. If it is longer than the parameter length
in the target program, the parameter is truncated. If it is
shorter than the parameter length in the target program,
unpredictable results may occur.

For information on how to code the evoke function, refer to
the ICF Programming book, and the DDS Reference book.

Syntax of Program Start Requests

When your program issues an evoke function, the asynchro-
nous support builds a program start request that is sent to
the remote system. The format of the program start request
as received by the remote system is:

<'\EXEC' or '\EXEX'><PROGRAM NAME>

 <PROGRAM DATA><CR>

<USER ID><CR><LIBRARY NAME>

 <CR><PASSWORD><CR><EOT>

where:

<\EXEC> = Normal evoke (Hex 2A45584543)

<\EXEX> = Evoke with detach

 (Hex 2A45584558)

 = Blank (Hex 2ð)

<CR> = Carriage return (Hex ðD)

<EOT> = End of transaction (Hex ð4)

<PROGRAM NAME> = Name of program to be started

<PROGRAM DATA> = Any program initialization

parameters sent by your program

<USER ID> = User identifier

<LIBRARY NAME> = Name of library where program

 resides

<PASSWORD> = Password used by your program

Notes:

1. The receiving system always expects the program start
request to be in ASCII.

2. If an *, E, C, or X are configured as end-of-record char-
acters in the end-of-record table (EORTBL) of an asyn-
chronous line description, asynchronous communications
support may not recognize the program start request.

 Sending Data

You can send data during a transaction using the write oper-
ation. The following section describes the write operations
and functions that are supported for asynchronous commu-
nications.

 Chapter 6. Writing Asynchronous Communications Application Programs 6-3

 Write Operation

Your program uses the write operation to send data to the
remote location. The maximum amount of data your
program can send with each write operation is 4096 charac-
ters. If an asynchronous line description is used, the asyn-
chronous support does not attempt to maintain the data as
logical records. Therefore, the remote system application
program must reassemble the data into logical records.

Note: If your program sends binary data, XON/XOFF char-
acters should not be sent. Sending these characters can
cause unpredictable results.

If an X.25 line description is used, the data sent by your
program is maintained as a logical record. This is done by
turning on the more-data bit in each data packet sent by the
asynchronous support.

If PAD emulation is configured, the settings of the PAD
parameters govern how data is sent. See Chapter 3 for
more information.

If your program had previously issued an invite function, the
write operation causes an implicit cancel invite if no data is
available. If data is available, the write operation will receive
a 0412 return code. This code indicates that before a write
operation can be issued, your program must issue a read
operation to receive the data.

 Function-Management-Header Function
Your program uses the function-management-header function
to affect data translation, to change certain characteristics of
data on an asynchronous communications line, or to send
PAD messages. All data associated with the function-
management-header function, with the exception of the send
PAD message function-management-header function, will be
used only by the local system. X.29 PAD messages are
used when the AS/400 system is the packet mode host.
Figure 3-1 on page 3-1 shows the PAD messages as X.29
messages.

When your program changes any of the following values, the
change remains in effect until the line is varied off or another
write function-management-header is issued.

Note: The line description is not changed; therefore, it is not
possible to determine what is changed by displaying the line
description.

� Setting translation mode: When an asynchronous
communications session is acquired, the default value
for the translation mode is XLATE-Y, which means data
is translated. User data is translated from EBCDIC to
ASCII on write operations and from ASCII to EBCDIC on
read operations. If you do not want user data in a
program to be translated, you must turn translation off
before you issue any write or read operations. See

Appendix C for the code conversion tables that are used
to translate your program data.

XLATE-Y: Data is translated.
XLATE-N: Data is not translated.

� Setting parity: When an asynchronous session is first
acquired, the default value for the parity setting is the
value configured in the line description. This value
remains in effect until you issue another write function-
management-header operation or deactivate the line.
You can use the write function-management-header
operation to change the parity setting in your session as
follows:

PARITY-N: Data is sent with no parity.
PARITY-O: Data is sent with odd parity.
PARITY-E: Data is sent with even parity.

� Changing flow control: Defaults to line description
configuration value. XON/XOFF values are configured
and cannot be changed.

FLOW-Y: Turn on flow control; the hardware stops
sending when an XOFF character is received and
begins again when an XON character is received.
FLOW-N: Turn off flow control; the hardware does
not recognize XOFF and XON characters received
as flow control characters.

Note: If the function-management-header function is
used to turn on flow control when no flow control charac-
ters have been specified in the line description, the
system assumes hex 11 for XON and hex 13 for XOFF.

� Changing the ECHO: Defaults to line description con-
figuration value. Echo is performed by the communica-
tions adapter.

ECHO-N: Turn echo off; do not echo any charac-
ters.
ECHO-A: Echo all characters received.
ECHO-C: Controlled echo; echo all characters
except end-of-record (EOR) characters.

Combinations can also be entered on one write function-
management-header operation. However, if done, each
operation must be separated by a comma, with no
embedded blanks, as in the following example:

XLATE-Y,PARITY-N

The output length for this example is 16.

 Receiving Data

Your program uses the read operation to receive data from a
remote location, data echoed by the integrated PAD, or data
from a PAD message or service signal. The following
section describes the read operations that are supported for
asynchronous communications.

6-4 AS/400 Asynchronous Communications Programming V4R1

 Read Operation

Your program uses the read operation to obtain data from
either the remote program with which your program is com-
municating, or an emulated PAD, or a PAD message. The
read operation also causes your program to wait for the data
if it is not available immediately. Your program then receives
control when the data is available.

Note: The read operation obtains data from a specific
program while the read-from-invited-program-devices opera-
tion allows the data to come from any previously invited
device.

In asynchronous communications, the read operation can be
issued by itself.

The asynchronous communications support attempts to
maintain the data in logical records whenever possible. The
following guidelines are used to provide your program with
data during a read operation.

� A logical record will not exceed 4096 bytes and is deter-
mined in one of the following ways:

– For asynchronous line descriptions, a logical record
is defined as one of the following:

- Data ended by an end-of-record (EOR) char-
acter, including any additional trailing characters
received. The EOR character and trailing char-
acters are specified by the EORTBL parameter
on the asynchronous line description.

- All data received prior to an inter-character idle
time out. The inter-character idle time out is
the length of time elapsed since the last byte of
data was received. It is specified by the
IDLTMR parameter on the asynchronous line
description.

- All data received in the communications adapter
data buffer until the buffer becomes full. The
size of the buffer is specified by the
MAXBUFFER parameter on the asynchronous
line description.

– For X.25 line descriptions not using PAD support,
each data packet received is treated as a logical
record unless the more-data bit is on in the data
packet. Packets containing the more-data bit are
combined and treated as one logical record.

– For X.25 line descriptions using PAD support config-
ured to echo data to the terminal (your program), all
data echoed by the PAD is considered to be one
logical record. The echoed data is received by your
program prior to any data received from the X.25
line.

� A default record, at least as large as the buffer size con-
figured on the line description, should be specified.

� If the record received contains a parity error or stop bit
(frame) error, your program receives a 0016 return code.

� If the record was received and data was lost (overrun
situation), your program receives a 0042 return code.

� The asynchronous support does not exceed the input
buffer length specified by your application program. If
the amount of data available is greater than the amount
requested by the read operation in your program, you
must issue another read operation to get the remaining
data.

� The asynchronous support does not cross a logical
record boundary in satisfying a read operation. The
actual length of the data supplied to your application
program is available in the I/O feedback area. Your
application program should always check this length
before processing the data received.

� If a fail indication is received, your application program
receives a 0302 return code and receives no data on the
current read operation. Refer to Appendix D for more
information on break and interrupt handling.

� If data is available at the time the read operation is
issued, that data is returned to your program imme-
diately. If data is not available, your program waits for
the data and control is returned to your program only
when the data becomes available.

 Invite Function

Your program uses the invite function to request input data
from another program (through the associated session), but it
receives control without waiting for the input. To obtain the
data, your program must then issue either a read-from-
invited-program-devices operation or read operation later in
this transaction.

If your program issues a read operation following the invite
function, the read operation satisfies the invite function. If
you then want to issue a read-from-invited-program-devices
operation, you must first issue another invite function
because the read operation satisfied the previous invite func-
tion.

 Read-From-Invited-Program-Devices
Operation

Your program can use the read-from-invited-program-devices
operation to obtain data from any device that has responded
to an invite function that was previously issued in your
program. If data becomes available to your program from
more than one device before the read-from-invited-program-
devices operation is issued, your program receives the data
that was first made available.

A read-from-invited-program-devices operation should be
issued to receive data only after an invite function is issued
and/or a timer function is issued.

Data received on a read-from-invited-program-devices opera-
tion follows the same guidelines as those described for the
read operation.

 Chapter 6. Writing Asynchronous Communications Application Programs 6-5

Waiting for a Display File, an ICF File, and
a Data Queue

Use data queues when a program must wait for a display
file, an ICF file, and a data queue, in any combination, at the
same time. The following commands are used with the
specified DTAQ parameter:

� Create Display File (CRTDSPF)
� Change Display File (CHGDSPF)
� Override Display File (OVRDSPF)
� Create ICF File (CRTICFF)
� Change ICF File (CHGICFF)
� Override ICF File (OVRICFF)

Use these commands to indicate a data queue that will have
entries placed in it when one of the following occurs:

� An enabled command key or Enter key is pressed from
an invited display device.

� Data becomes available when the session is invited for
an ICF device.

� A user-defined entry is made to a data queue by a job
running on the system.

For more information, see the CL Programming, and the ICF
Programming books.

Notifying the Remote Program of
Problems

Your program uses the functions described in this section to
indicate that an error has occurred during the transaction
with the target program.

 Fail Function

Your program uses the fail function to indicate that it has
detected an abnormal condition while it was sending or
receiving data. Refer to Appendix D for additional informa-
tion.

When a program that is sending data issues a fail function,
either the data just sent was in error or some other condition
occurred. However, the last record before the fail function
was issued is still sent to the target program.

A program that is receiving data issues a fail function to indi-
cate that the data it received was in error. The program
issuing the fail function may then do an output operation so it
can indicate why it sent the fail function. However, no data
can be sent with a fail function. The record sent by the write
operation should identify what the error is and where the
other program should start again.

In either case, the program that issued the fail function
should send, and the program that receives the fail return
code 0302 should receive. Otherwise, the program that was
sending cannot determine which record failed or with which
record it should begin sending again.

Note: When a fail is sent or received, all data that was to
be returned to the application program by asynchronous
communications support is discarded.

Using Additional Functions and
Operations

Additional functions available include the cancel-invite and
the timer functions. Also available is the get-attributes opera-
tion.

 Cancel-Invite Function

Your program uses the cancel-invite function to cancel a
valid invite for which no input has yet been received. If data
is in the input buffer, the function fails and the return code
0412 is received by the program. Your program must then
issue a read operation to receive the data.

 Timer Function

Your program uses the timer function to set the maximum
amount of time your program waits to receive data when
issuing a read-from-invited-program-devices operation.

When your program issues a read-from-invited-program-
devices operation and receives data before the timer ends, a
0000 return code is received. However, if no data is
received and the timer ends, a 0310 return code is sent to
your program.

 Get-Attributes Operation

Your program uses the get-attributes operation to determine
the status of the session. It can be issued at any time during
a session. The operation gets the current status information
about the session to which your program is communicating.

 Ending Transactions

The detach function is used to end a transaction.

 Detach Function

The detach function is used to end a transaction between
your program and the program with which it is communi-
cating. The detach function is valid only when used with the
evoke function. Any other use will cause an 831E return
code to be sent to your program.

Ending a Session

The release operation or the end-of-session function is used
to end a session.

6-6 AS/400 Asynchronous Communications Programming V4R1

 Release Operation

Your program uses the release operation to attempt to end a
session. Depending on how the session was started, the
release operation produces different results:

� If the session was started by a source program, the
release operation ends the session immediately. The
operation frees the resources that were used during the
session. If the release operation is not successful, the
end-of-session function can be issued to end the
session. The same or another session can then be
started.

� If the session was started by a target program, the con-
nection to the source program is ended, but the session
still exists. Your program must issue an end-of-session
function or go to end of job to end the session.

 End-of-Session Function

Your program uses the end-of-session function to end a
session. Unlike the release operation, the end-of-session
function always ends the session (if it still exists), and gives
a normal completion return code (0000). If the session does
not exist, the end-of-session operation gives your program an
830B return code.

The end-of-session function can be issued in a session that
was started by an evoke function. In this case, your program
should issue the end-of-session function after the transaction
has ended. The end-of-session function frees that session
so that it can be started again by another program.

If your program does not issue an end-of-session function,
the session exists until your program ends. To prevent your
program from ending abnormally because of a communica-
tions error, you may want to code the end-of-session function
in your program as a general recovery action for all unex-
pected errors that you have not handled individually in your
program. The end-of-session function could be used to end
the session rather than trying the failing operation again in
that session or specifying some special recovery action for
each error.

If you have specified switched disconnect (SWTDSC(*YES))
on a controller description for a switched connection, the
physical connection to the remote system is disconnected
during end-of-session processing.

Using Response Indicators

Response indicators are defined to your program in the ICF
file and are set on each input operation. However, these
indicators are optional and major and minor return codes can
also be used to indicate the status of input operations.

 Receive-Fail Indicator

Use the receive-fail response indicator to determine if a fail
function has been received. When a fail function is received,
all data received by the asynchronous support and not given
to the application program on a read operation is discarded.

Receipt of a fail request is also indicated by the return code
0302.

Using I/O Feedback Areas

Your program may have access to the I/O feedback area. If
it does, you should be aware of certain fields when writing
applications using asynchronous communications:

Actual received data length
This field contains the length of the data received on
an input operation.

Major return code
This field contains the major return code indicating the
status of input and output operations.

Minor return code
This field contains the minor return code indicating the
status of input and output operations.

feedbackoarea,fseeathen about the I/O feedback area, see
the ICF Programming book.

Using Return Codes

After each operation, an ICF return code is returned to your
program. Your program should check this return code to
determine:

� The status of the operation just completed
� The operation that should be issued next

For example, a major return code of 00 indicates that data
was received. Along with this major code you can receive
from asynchronous communications, for example, one of
these minor codes:

� 16: Indicates the data received contains a parity error
and/or a stop bit error. Your program should notify the
remote program to send data again.

� 42: Indicates that some data was lost, perhaps due to
an overrun situation. Your program should notify the
remote program to send the data again or ensure that
the maximum buffer length configured on the line
description is sufficiently large.

Another example would be a major code of 83. In this case,
an error was detected that may be recoverable. Different
minor codes can be returned, just as for the 00 major. For
example, if your program receives an E0 minor return code,
your program tried to run an operation using a record format
that was not defined for the file. You can check the name of
the record format in your program to be sure it is correct, and

 Chapter 6. Writing Asynchronous Communications Application Programs 6-7

then check to see whether the record format is defined in the
file definition.

It is recommended that your program check the ICF return
codes at the completion of every operation to ensure that the

operation completed successfully or that the appropriate
recovery action has been taken.

Refer to Appendix B for a description of the return codes
that can be returned to your application when it is using
asynchronous communications.

6-8 AS/400 Asynchronous Communications Programming V4R1

Chapter 7. Asynchronous Communications Considerations

This chapter contains application and performance consider-
ations for asynchronous communications programming.

 Application Considerations

The following considerations need to be taken into account
when writing your applications.

 Evoke Confirmation

When your source program issues an evoke function, asyn-
chronous communications does not determine whether or not
the evoke was successful. Your program must ensure the
evoke was successful. This can be done by issuing a write
operation from the target program.

This check can be made using the following steps in your
program:

� Issue an invite function after the evoke has been sent.

� Issue the timer function.

Your program should set the timer value to the
maximum length of time you expect to wait before
receiving data from the remote system.

� Issue a read-from-invited-program-devices operation
until:

– Your program receives confirmation from the target
program that the evoke was received

– The specified timer value has expired (return code
0310).

The asynchronous communications support does not perform
sequence checking, but issues return codes informing you of
parity errors, stop bit errors, and data loss. However,
because only minimal data integrity checking is done by the
asynchronous communications support, it is possible for data
to be lost without your program ever being notified. All
record sequence error recovery and retransmission of data
must be done by your program.

See Appendix B for more information about return codes and
their meanings.

 Function-Management-Header Function

If your program performs a write function management
header (FMH) operation to turn flow control on, and the XON
and XOFF characters have not been specified in the line
description (XONCHAR and XOFFCHAR parameters), the
asynchronous communications support uses the system
default values for these characters. The default values are
hex 11 for XON and hex 13 for XOFF.

 Logical Records

The asynchronous communications support attempts to
maintain the data in logical records whenever possible. The
following guidelines are used to provide your program with
data during a read operation.

A logical record will not exceed 4096 bytes and is deter-
mined in one of the following ways:

� For asynchronous line descriptions, a logical record is
defined as one of the following:

– Data ended by an end of record (EOR) character,
including any additional trailing characters received.
The EOR character and trailing characters are spec-
ified by the EORTBL parameter on the asynchro-
nous line description.

– All data received prior to an inter-character idle time
out. The inter-character idle time out is the length
of time elapsed since the last byte of data was
received and is specified by the IDLTMR parameter
on the asynchronous line description.

– All data received in the communications adapter
data buffer until the buffer becomes full. The size of
the buffer is specified by the MAXBUFFER param-
eter on the asynchronous line description.

� For X.25 line descriptions not using PAD support, each
data packet received is treated as a logical record
unless the more-data bit is on in the data packet.
Packets containing the more-data bit are combined and
treated as one logical record.

� For X.25 line descriptions using PAD support configured
to echo data to the terminal (your program), all data
echoed by the PAD is considered to be one logical
record. The echoed data is received by your program
prior to any data received from the X.25 line.

Prestarting Jobs for Program Start
Requests

A program start request is a request made by your program
to start a program on the remote system. When a source
program issues an evoke function, this signals a program
start request to the asynchronous communications support.

If the remote system is an AS/400 system, you can minimize
the time required to carry out a program start request by
using the prestart job entry to start a job on the remote
system before your program sends a program start request.
To use prestart jobs, you need to define both communica-
tions and prestart job entries in the same subsystem
description, and make certain programming changes to the
prestart job program with which your program communicates.

 Copyright IBM Corp. 1997 7-1

For information about how to use prestart jobs, refer to the
ICF Programming book.

 Performance Considerations

The AS/400 system provides support for many devices,
application programs, and services using asynchronous com-
munications support. Asynchronous communications is not
compatible with Systems Network Architecture (SNA). The
performance of this support depends on the application
program or service with which it is used and the speed of the
line or network used. See the Communications Management
book. for general information about communications perfor-
mance considerations.

 Buffer Size

AS/400 asynchronous support uses buffers ranging in size
from 128 to 4096 bytes. The maximum buffer size is deter-
mined by the value specified for the MAXBUFFER parameter
in the line description. This value should be selected based
on:

� The amount of time the input/output processor waits
before passing the data up (using the Idle timer
(IDLTMR) prompt).

� The amount of data received within a specified time
period

� Whether or not end-of-record processing is being used

� The size of output requests

If EOR processing is used for all received records,
MAXBUFFER should be configured to be the largest of the

input and output requests, including the EOR character and
any trailing characters.

If EOR processing is not used, MAXBUFFER should be con-
figured to be the largest of your input and output requests.

Note: If you use file transfer support (FTS), the
MAXBUFFER value must be at least 896.

Data Buffering Using XOFF Characters

When data arrives faster than a user application receives
and processes it, the AS/400 system buffers the data until
the application can accept it. 12KB of data (where 1KB =
1024 bytes) are buffered before sending an XOFF character
to the remote system. The AS/400 system continues to send
an XOFF character in response to each logical record
received until the amount of data received by the application
program reduces the amount of buffered data to less than
4KB. When the buffered data is below 4KB, the AS/400
system sends an XON character.

The AS/400 system will buffer up to 24KB before dropping
the connection with the remote system.

 Asynchronous Overhead

It may be possible to reduce the amount of overhead needed
to send each character on the line by changing the definition
of a character in the line description. For example, if you
have configured 8 bits even parity and 2 stop bits, the total
number of bits sent on the line would be 12. Note that a
start bit and at least 1 stop bit are always sent. If instead
you configured 8 data bits, 1 stop bit, and no parity, the total
number of bits sent on the line would be 10. This would
reduce the overhead by 17 percent. The remote system
must accept the character format sent by the system.

7-2 AS/400 Asynchronous Communications Programming V4R1

Chapter 8. Using the Interactive Terminal Facility

The interactive terminal facility (ITF) is included as a part of
the OS/400 asynchronous communications support. The
interactive terminal facility (ITF) allows the AS/400 user to
send and receive data through applications such as elec-
tronic message services for asynchronous terminals.
Through ITF, you can use these applications to send mes-
sages such as interoffice memos. In addition, ITF lets you
send and receive file members and send OfficeVision docu-
ments.

 Starting ITF

Before you can start ITF, you must start the asynchronous
communications devices. After you have started asynchro-
nous communications, type the following:

STRITF nnnnnnnn

where nnnnnnnn is the name of the remote location with
which you want to communicate. This name is the same as
the remote location name specified during configuration. For
example, if you are using ITF to communicate with TELE-
MAIL and you specified MAIL as the remote location name
for TELEMAIL, type the following:

STRITF MAIL

Notes:

1. ITF can send file members with record lengths up to
2048 characters. However, some applications can only
receive data with record lengths up to 132 characters. If
the receiving application cannot accept the record length
of the file member being sent, unpredictable results may
occur.

2. ITF is intended primarily for applications with record
lengths up to 132 characters. For longer record lengths,
file transfer support can be used. See the ICF Program-
ming book for more information about file transfer
support.

3. To improve performance, configure the end-of-record
table to match the end-of-record table of the remote
application. This configuration reduces time-out condi-
tions.

If you are communicating through a packet-switching data
network (PSDN), you must be connected to the network
before you can send or receive messages.

For a configuration using an asynchronous line, you can use
one of the following ways to make connections to the
network:

� Make a manual connection to the network by dialing the
number on the telephone.

� If you are using a command-capable modem, type the
modem dial command on the Use Interactive Terminal

Facility (ITF) display and press the Enter key. ITF sends
this command to the modem, which then calls the
number (the modem must support this function).

� For an asynchronous line, press F11 from the Use Inter-
active Terminal Facility (ITF) display to work with the ITF
telephone list. (F11 and F14 are not available for
asynchronous/X.25 lines or for lines using packet
assembler/disassembler [PAD] support.)

After you type the STRITF command, the Use Interactive
Terminal Facility (ITF) display is shown.

à ð
Use Interactive Terminal Facility (ITF)

 F3=Exit F5=Start send/receive F6=Stop send/receive

F9=Send data as typed F1ð=Send password F11=Telephone list

F12=Cancel F14=Redial Attn=Send control character

(C) COPYRIGHT IBM CORP. 1988.

á

ñ

The Use Interactive Terminal Facility (ITF) display is the first
display for ITF. From this display, you can type commands
and answer prompts to start the message service. Function
keys let you perform other ITF functions.

When you are using ITF, the display station functions as an
asynchronous terminal. Data is sent and received one
record at a time. Therefore, when you are typing a message
to be sent, you must press the Enter key or F9 at the end of
each line. If the data entry line is full, ITF automatically
sends the data for you.

When you press the Enter key or F9, ITF sends the data. If
you press the Enter key to send the data, a carriage return
(CR) is added to the data; if you press F9 to send the data,
the CR is not added. The data then disappears from the
data entry line of your display. If the remote system echoes
the data, it is written again on your display.

Echo can be set on or off at a packet-switching data network
(PSDN) PAD. However, you should not set echo off at the
PAD when you are using ITF. Echo must be set on at the
PAD for data that is sent to appear again on the display after
you press the Enter key; it must also be set on for ITF to
send file members and OfficeVision documents.

Note: All data sent either from the display or from a data
file, file member, or OfficeVision document is assumed to be
EBCDIC and is translated to ASCII. All data received is
assumed to be ASCII and is translated to EBCDIC before

 Copyright IBM Corp. 1997 8-1

being displayed or placed in a file or member. A control
character sent from the Send Control Character display is not
translated.

Incoming data is displayed as it is received or echoed. The
data is automatically rolled to the upper portion of the display
(lines 2 through 17) if a format effector 1 is encountered or if
160 bytes of data have been received. Otherwise, the data
is displayed on the data entry line. The old data that is rolled
off the top is held in a buffer area. This data can be
scanned using the roll keys. Up to six full displays of data,
or approximately 96 lines of data, are held in the buffer area.
After the buffer is full, old data is overlaid.

Selecting ITF Functions

The Use Interactive Terminal Facility (ITF) display is the first
display for ITF. From this display, you can type commands
and answer prompts to start the message service. You can
also type a message to be sent. Function keys let you select
other ITF functions.

The function keys have the following functions under ITF:

� F1=Help: Pressing F1 on any of the ITF displays shows
help for using that display.

� F3=Exit: If you press F3 from the Use Interactive Ter-
minal Facility (ITF) display, ITF ends. Pressing F3 from
any other ITF display returns you to the Use Interactive
Terminal Facility (ITF) display; in this case, ITF ignores
any data that you may have typed on the display. You
cannot use this function key if a data send or receive
operation is in progress.

� F5=Start send/receive: To send or receive a file
member or a document, press F5. The Start
Send/Receive display appears; on this display, you can
tell ITF to send data from a file or document or to
receive data into a file. You cannot use this function key
if a data send or receive operation is in progress.

� F6=Stop send/receive: To stop the sending or receiving
of a file or document, press F6. ITF stops sending or
receiving and returns control to you. For better perfor-
mance, use the Attention key for the stop send/receive
function.

� F9=Send data as typed: In normal data entry, a carriage
return character is added to the end of the data when
you press the Enter key. If you want to send data
without a carriage return (for example, to send com-
mands to a modem), press F9 instead of the Enter key
after typing data on the data entry line. If you are cur-
rently sending a file member or document, pressing F9
or the Enter key has no effect.

� F10=Send password: If the network asks for your pass-
word, press F10. ITF then shows the Send ITF Pass-
word display:

à ð
Send ITF Password

Type choice, press Enter.

Password. ________

 F3=Exit F12=Cancel

á

ñ

Type your password to the message application and
press the Enter key. To keep your password secure, the
characters are not displayed as you type them.

When you press the Enter key, ITF sends your pass-
word.

You cannot use this function key if a data send or
receive operation is in progress.

� F11=ITF telephone list: To make a switched connection
to the remote end, press F11. The Work with ITF Tele-
phone List display is shown. If you are using PAD
support or an asynchronous/X.25 line, F11 is not shown
on the Use Interactive Terminal Facility (ITF) display.
You cannot use this function key if a data send or
receive operation is in progress.

� F12=Cancel: Pressing F12 cancels the operation asso-
ciated with the display. You are returned to the display
shown before the display on which F12 is pressed.

� F14=Redial: If you want to redial the last telephone
number called from the Work with ITF Telephone List
display, press F14. The system automatically calls the
same number. F14 can only be used to redial numbers
that were dialed from the Work with ITF Telephone List
display. If you are using PAD support or an
asynchronous/X.25 line, F14 is not shown on the Use
Interactive Terminal Facility (ITF) display. You cannot
use this function key if a data send or receive operation
is in progress.

� Attn=Send control character: If you press the Attn
(Attention) key, the Send Control Character display is
shown. From this display, you can select options to stop
the send/receive process or to send either a break or a
control character.

1 A format effector is a control character used to position printed, displayed, or recorded data.

8-2 AS/400 Asynchronous Communications Programming V4R1

Sending or Receiving a File Member or
OfficeVision Document

With ITF, you can send a file member or OfficeVision docu-
ment or you can place received data into a file member. ITF
adds a carriage return (CR) to the end of each record sent
from a file member or OfficeVision document.

Notes:

1. ITF does not verify data integrity; unpredictable results
may occur if you send a file member that contains non-
text data (such as hexadecimal characters).

2. ITF can send files containing up to 32 767 records.
Unpredictable results will occur if you try to use ITF to
send a file containing more than 32 767 records. This
limitation does not apply to receiving files.

To select a file member or document, press F5 when the
Use Interactive Terminal Facility (ITF) display is shown. The
Start Send/Receive display is shown.

Sending or Receiving a File Member: To send a file
member, type 1 (Send) in the Option field and 1 (File
member) in the Type field, and press the Enter key. The
Start Send/Receive display is shown again with additional
fields.

à ð
 Start Send/Receive

 Type choices, press Enter.

Option 1 1=Send, 2=Receive

Type 1 1=File member, 2=Document

Member Name

File Name

Library Name

Remove sequence number

and date Y=Yes, N=No

 F3=Exit F12=Cancel

á

ñ

Type the name of the member to be sent, the name of the
file that contains this member, and the name of the library
that contains the file. Type either Y (Yes) or N (No) in the
Remove sequence number and date field. If the member
record size is less than 13 bytes, the Remove sequence
number and date field is not valid. If you type Y, the first 12
bytes of each record you send are deleted. Press the Enter
key.

The Use Interactive Terminal Facility (ITF) display is shown
again and ITF immediately starts sending the member. As
each record in the member is sent, either the PAD or the
remote device must echo it so that it is shown on your

display. (ITF cannot send file members if the PAD or remote
device does not echo.) If you press F6 (Stop send/receive)
at this time, you stop sending the data in the file member.
ITF always sends the last complete record before it stops
sending. When the last record is sent, ITF displays a
message:

Last record sent

If you type 2 (Receive) in the Option field and the Type is 1
(File member), the Start Send/Receive display is shown
again with additional fields.

à ð
 Start Send/Receive

 Type choices, press Enter.

Option 2 1=Send, 2=Receive

Type 1 1=File member, 2=Document

Member Name

File Name

Library Name

Replace 1=Replace, 2=Append

Convert to source . . . Y=Yes, N=No

 F3=Exit F12=Cancel

á

ñ

If the file you specify already exists, ITF asks if you want to
replace the existing file with the new data. If you type 1
(Replace), ITF writes the received data into the existing file
member, writing over the previous contents. If you type 2
(Append), ITF adds the received data to the end of the
existing file member. Type either Y (Yes) or N (No) in the
Convert to source field. If you type Y, the data is received,
starting at the 13th byte of each record. Bytes 1 through 12
of each record are used for sequence number and date. If
the existing member has a record size less than 13 bytes,
the Convert to source field is not valid. If you type N, the
data is received, starting at the first byte of each record.

After you have made your selections, ITF returns to the Use
Interactive Terminal Facility (ITF) display while receiving data
into the file. If you press F6 (Stop Send/Receive) at this
time, you stop receiving data in the file member. However,
partial records are not written into the file member. Only
complete records are written into the file member.

If you type 2 (Receive) in the Option field and the Type is 1
(file member) but the member that you specify does not
already exist in the library, ITF prompts you for more infor-
mation to create a new file member.

If you type 1 (Source) in the Receive type field, the following
display is shown.

 Chapter 8. Using the Interactive Terminal Facility 8-3

à ð
 Start Send/Receive

 Type choices, press Enter.

Option 2 1=Send, 2=Receive

Type 1 1=File member, 2=Document

Member Name

File Name

Library Name

Receive type 1 1=Source, 2=Search for header

Record size 1-2ð48

Convert to source . . . Y=Yes, N=No

 F3=Exit F12=Cancel

á

ñ

Record size information is handled in two ways. If you are
creating a new file and file member, type the record size. If
the file you specified already exists but the member does
not, the Record size field is ignored, even though it is
required. The record size of the member is determined by
the record size specified in the file attributes.

After the record size is specified, type either Y (Yes) or N
(No) in the Convert to source field. If you type Y, the data is
received, starting at the 13th byte. If you type Y in the
Convert to source field, you must specify a record size of at
least 13 bytes. Bytes 1 through 12 are used for sequence
number and date. If you type N, the data is received starting
at the first byte of each record. When you press the Enter
key, ITF then returns to the Use Interactive Terminal Facility
(ITF) display. While the receive operation is in progress, ITF
displays the following message:

Receive

ITF builds headers for documents and files of documents.
These headers contain the number of records and the record
length. Maximum record length is 120 characters.

If you are receiving a file member that was sent with a
header, specify 2 (Search for header) in the Receive type
field. ITF then uses the header record to create a new file
member. Only data that is received after the header record
is written to the new file member.

If you are receiving a file member that was not sent with a
header, specify 1 (Source) in the Receive type field and type
the record size. All data received is written to the file
member.

Note: If you are receiving data into a file member, users at
other work stations cannot send data from or receive data
into that file member until your operation is completed.

Sending or Receiving OfficeVision Documents: To
send an OfficeVision document, type 1 in the Option field,
type 2 (Document) in the Type field, and press the Enter key.
The following display is shown:

à ð
 Start Send/Receive

 Type choices, press Enter.

Option 1 1=Send, 2=Receive

Type 2 1=File member, 2=Document

Document Name, \ALL

Folder Name

 F3=Exit F12=Cancel

á

ñ

Either enter the name of the document or type *ALL for all of
the documents in a folder. Then type the name of the folder
that contains the documents. After you press the Enter key,
the Use Interactive Terminal Facility display is shown again.

ITF immediately starts sending the documents. Each record
is shown on the display as the PAD or remote device echoes
it back. (ITF cannot send if the PAD or remote device does
not echo.) When the last record is sent, ITF displays a
message:

Document(s) sent

ITF only sends the first 120 characters of each line in the
document. Any characters beyond the first 120 are truncated
and the following message is shown:

Document(s) sent. End of data dropped.

If *ALL was specified for the document name, all of the docu-
ments in the folder are sent.

Notes:

1. ITF only sends the base line, superscript, and subscript
text from a document. No document control characters
are sent. Superscripts and subscripts are handled as
separate records.

2. ITF attempts to maintain line integrity such as blank
lines.

3. A blank line is sent between pages of a document and
between documents.

You can use the Print Document (PRTDOC) command to
resolve the documents to the file that you select. See the
online information for more information on the PRTDOC
command. After you resolve the documents to a file
member, you can use the ITF Start Send/Receive display to
send the documents as a file. After the file member is sent,
messages are displayed that indicate the number of docu-
ments sent and if those documents were truncated.

ITF cannot directly receive OfficeVision documents. There-
fore, the information should be received as a new file
member with a record length of 120. To receive these docu-
ments, use the Start Send/Receive display and specify the
Receive type as 2 (Search for header).

8-4 AS/400 Asynchronous Communications Programming V4R1

When ITF sends documents or a file of documents, a header
is sent as the first record. ITF searches for the header and
uses the information in the header to create the file member.
If the number of records specified in the header is exceeded,
the additional records are not written into the new file
member. These records are displayed on the terminal as
data.

Work with ITF Telephone List

The Work with ITF Telephone List function allows you to
maintain a list of telephone numbers.

Note: This function is not available if the device you are
using is attached to an X.25 line. You can call the numbers
on the list, or you can change, add, or delete numbers from
the telephone list. If you press F11 (ITF telephone list) from
the Use Interactive Terminal Facility (ITF) display, the Work
with ITF Telephone List display is shown:

à ð
Work with ITF Telephone List

Library :

Type options, press Enter.

 1=Call number 2=Change 4=Delete

 Option Description Prefix Telephone number

 _ ___________ ____ ________________________________

 _ ___________ ____ ________________________________

 _ ___________ ____ ________________________________

 _ ___________ ____ ________________________________

 _ ___________ ____ ________________________________

 _ ___________ ____ ________________________________

 _ ___________ ____ ________________________________

 _ ___________ ____ ________________________________

 _ ___________ ____ ________________________________

 _ ___________ ____ ________________________________

 _ ___________ ____ ________________________________

 _ ___________ ____ ________________________________

 _ ___________ ____ ________________________________

 More...

 F3=Exit F6=Add entries F12=Cancel

á

ñ

This display lists the telephone numbers that you can call
from ITF. Position the cursor in the function field of the tele-
phone number you want to work with. Type the option; then
press the Enter key. Using the options, you can call a
number, change a number, or delete a number from the tele-
phone list.

 � Option:

– To call a number, type 1 in the Option field of the
number you want to call.

– To change a number, type 2 in the Option field of
the number you want to change, and make the
changes.

– To delete a number, type 4 in the Option field of the
number you want to delete.

� Description: This field is optional. You can use this field
to type the name of the location with which you want to
communicate.

� Prefix: If you are communicating through a command-
capable modem, the prefix field gives the modem infor-
mation about how to make the switched connection. If
your modem does not make the switched connection for

you, this field is not necessary and you can leave it
blank.

� Telephone number: Type the telephone number of the
remote location to which you want to communicate. If
you are communicating through a packet-switching data
network (PSDN), the telephone number that you call is a
number for a PAD, which gives you access to the
network. It is not the number for the remote location.
Once you have signed on the network, it will route your
message to the remote location that you specify.

You can select options in more than one option field before
pressing the Enter key. However, ITF processes all delete
options first, followed by any changes, and then calls the first
number selected. When the system calls a number from the
Work with ITF Telephone List display, it does not process
other call options selected after the call request.

If more than one call request is made (option 1), only the first
call requested is made.

When you press F3, the Use Interactive Terminal Facility
(ITF) display is shown again. Any data that you have typed
on the Work with ITF Telephone List display is ignored.

After the system makes a connection with the network, the
Use Interactive Terminal Facility (ITF) display is shown
again. You must now sign on the message application.
Refer to the operator’s book for the application sign-on and
sign-off commands and for the send and receive message
commands.

The telephone list is in the file member #ITFPHONE. The
file name is #ITFPHONE and the library is the current one.
The Library field on the Work with ITF Telephone List display
shows the current library name.

If you press F6 (Add entries), the Add Telephone Entries
display is shown. New entries are not processed into the
telephone list until you press the Enter key. All entries must
be unique. You can leave the description and prefix fields
blank. You can have up to 175 telephone entries.

à ð
Add Telephone Entries

Type information, press Enter.

 Description Prefix Telephone number

 ___________ ____ ____________________________________

 ___________ ____ ____________________________________

 ___________ ____ ____________________________________

 ___________ ____ ____________________________________

 ___________ ____ ____________________________________

 ___________ ____ ____________________________________

 ___________ ____ ____________________________________

 ___________ ____ ____________________________________

 ___________ ____ ____________________________________

 ___________ ____ ____________________________________

 ___________ ____ ____________________________________

 ___________ ____ ____________________________________

 ___________ ____ ____________________________________

 ___________ ____ ____________________________________

 ___________ ____ ____________________________________

 ___________ ____ ____________________________________

 ___________ ____ ____________________________________

 F3=Exit F12=Cancel

á

ñ

 Chapter 8. Using the Interactive Terminal Facility 8-5

Using the Attn Key to Send a Control
Character

When you press the Attn (Attention) key, the Send Control
Character display is shown.

à ð
Send Control Character

 Type choice, press Enter.

 Option

or control character 1=Stop send/receive

 2=Send break

 Control Control Control
 Char Desc ASCII Char Desc ASCII Char Desc ASCII

A SOH ð1 L FF ðC W ETB 17

B STX ð2 M CR ðD X CAN 18

C ETX ð3 N SO ðE Y EM 19

D EOT ð4 O SI ðF Z SUB 1A

 E ENQ ð5 P DLE 1ð 3 NUL ðð

 F ACK ð6 Q DC1 11 4 ESC 1B

G BEL ð7 R DC2 12 5 FS 1C

H BKSP ð8 S DC3 13 6 GS 1D

I HT ð9 T DC4 14 7 RS 1E

J LF ðA U NAK 15 8 US 1F

 K VT ðB V SYN 16 9 DEL 7F

 F3=Exit F12=Cancel

á

ñ

Each letter or number is associated with a function (option 1
or 2) or with a control character. Type your choice and press
the Enter key. ITF does the requested action and then
returns to the Use Interactive Terminal Facility (ITF) display.
Only one function or one control character at a time can be
sent from this display.

If you select option 1 (Stop send/receive), all send or receive
processing is stopped. If you select option 2 (Send break), a
break signal is sent to the host system application. The
control characters sent from this display are not translated.
No carriage return (CR) is added to the control character.

8-6 AS/400 Asynchronous Communications Programming V4R1

Appendix A. Language Operations, DDS Keywords, and System-Supplied
Formats

This appendix contains charts describing:

� All valid communications operations supported by the intersystem communications func-
tion (ICF)

� Valid operations for each programming language that supports ICF

� Data description specifications (DDS) processing keywords

 � System-supplied formats

ICF Operations and Supported Language Operations
Figure A-1 describes the language operations supported by ICF.

Figure A-2 shows all the valid operations for each programming language that supports ICF
(ILE C/400, ILE COBOL/400, FORTRAN/400, and ILE RPG/400 programming languages).

Figure A-1. ICF Operations

ICF Operations Description

Open Opens the ICF file.

Acquire Establishes a session between the application and the remote location.

Get attributes Used to determine the status of the session.

Read Obtains data from a specific session.

Read-from-invited-
program-devices

Obtains data from any session that has responded to an invite function.

Write Passes data records from the issuing program to the other program in the
transaction.

Write/Read Allows a write operation followed by a read operation. Valid for ILE RPG/400
only.

Release Attempts to end a session.

Close Closes the ICF file.

Figure A-2 (Page 1 of 2). Valid Operations for Programming Languages

ICF Operation ILE
RPG/400
Opera-
tion
Code

ILE
COBOL/400
Procedure
Statement

ILE C/400 Function FORTRAN/400
Statement

Open OPEN OPEN fopen, _Ropen OPEN

Acquire ACQ ACQUIRE _Racquire Not supported2

Get attributes POST ACCEPT _Rdevatr Not supported

Read READ READ fread, _Rreadn READ

Read-from-invited-
program-devices

READ1 READ1 _Rreadindv Not supported

Write WRITE WRITE fwrite, _Rwrite WRITE

Write/Read EXFMT Not sup-
ported

_Rwriterd Not supported

Release REL DROP _Rrelease Not supported

 Copyright IBM Corp. 1997 A-1

Figure A-2 (Page 2 of 2). Valid Operations for Programming Languages

ICF Operation ILE
RPG/400
Opera-
tion
Code

ILE
COBOL/400
Procedure
Statement

ILE C/400 Function FORTRAN/400
Statement

Close CLOSE CLOSE fclose, _Rclose CLOSE

1 A read operation can be directed either to a specific program device or to any invited program device.
The support provided by the compiler you are using determines whether to issue an ICF read or read-
from-invited-program-devices operation, based on the format of the read operation. For example, if a
read is issued with a specific format or terminal specified, the read operation is interpreted as an ICF
read operation. Refer to the appropriate language reference book for more information.

2 To acquire a program device using FORTRAN/400, you must specify the program device on the
ACQPGMDEV parameter on the CRTICFF, CHGICFF, or OVRICFF commands. The program device
will then be implicitly acquired when the ICF file is opened.

 DDS Keywords
The following table lists the DDS keywords that are valid for asynchronous communications.

Figure A-3. DDS Keywords

DDS Keyword Description

CNLINVITE Cancels any invite function for which no input has been received.

DETACH Ends the transaction with the target system.

Note: DETACH is only valid when used with the EVOKE keyword.

EOS Ends a communications session.

EVOKE Starts a program on the remote system.

FAIL Notifies the remote program that an error has occurred.

FMH Informs the remote program that function-management-header data is being
sent.

INVITE Schedules an invite function.

RCVFAIL Indicates that the remote program has sent a fail.

RECID Used to allow the data content to identify the record format to use to receive the
data.

Note: Refer to the ICF Programming, SC41-5442, for more information about
the RECID keyword.

SECURITY Includes security information needed to start a program on the target system.
Valid only with an EVOKE keyword.

TIMER Allows you to specify an interval of time to wait before a read-from-invited-
program-devices operation receives a timer-expired return code.

VARLEN Allows you to specify, at run time, the length of the data to be sent across the
communications line.

Note: Refer to the ICF Programming, SC41-5442, for more information about
the VARLEN keyword.

 System-Supplied Formats
The following table lists all the keyword functions performed by the system-supplied formats
that are valid for asynchronous communications. Refer to the ICF Programming book for
more information about system-supplied formats.

A-2 AS/400 Asynchronous Communications Programming V4R1

Figure A-4. System-Supplied Formats

System-Supplied Formats Description

$$CNLINV Cancel invite

$$EOS End of session

$$EVOK Evoke with invite

$$EVOKET Evoke with detach

$$EVOKNI Evoke

$$FAIL Fail

$$SEND Write then invite or invite

$$SENDNF Write function-management-header

$$SENDNI Write

$$TIMER Timer

 Appendix A. Lang Operations, DDS Keywords, and System-Supplied Formats A-3

A-4 AS/400 Asynchronous Communications Programming V4R1

Appendix B. Return Codes, Messages, and Sense Codes

 Return Codes
This section describes all the return codes that are valid for asynchronous communications.
These return codes are set in the I/O feedback area of the ICF file; they report the results of
each I/O operation issued by your application program. Your program should check the
return code and act accordingly. Refer to your high-level language book for more informa-
tion on how to access these return codes.

Each return code is a four-digit hexadecimal value. The first two digits contain the major
code, and the last two digits contain the minor code.

With some return codes, a message is also sent to the job log or the system operator
message queue (QSYSOPR). You can refer to the message for additional information.

Notes:

1. In the return code descriptions, your program refers to the local AS/400 application
program that issues the operation and receives a return code from ICF communications.
The remote program refers to the application program on the remote system with which
your program is communicating through ICF.

2. Several references to input and output operations are made in the descriptions. These
operations can include DDS keywords and system-supplied formats, which are listed in
Appendix A.

Major Code 00

Major Code 00 – Operation completed successfully.

Description: The operation issued by your program completed successfully. Your
program may have sent or received some data, or may have received a message from
the remote system.

Action: Examine the minor return code and continue with the next operation.

Code Description/Action

0000 Description: For input operations issued by your program, 0000 indicates that
your program received some data on a successful input operation. Your
program can continue to receive data, or it can send data to the remote
program.

For output operations issued by your program, 0000 indicates that the last
output operation completed successfully and that your program can continue to
send data.

Action: For the actions which can be taken after 0000 is received, refer to the
following table:

Figure B-1 (Page 1 of 2). Actions for Return Code 0000

Type of Session Last Operation
Issued

Actions Your Program Can Take

Started by a
source program

Acquire or open Issue an evoke or timer function, or a get-attributes
operation.

 Copyright IBM Corp. 1997 B-1

0004 Description: On a successful input operation, your program received a PAD
message from the remote PAD. The message may be a parameter indication,
an error indication, or an invitation to clear. See “PAD Messages” on page 3-5
for more information about PAD messages.

Action: Process the PAD message.

0016 Description: On a successful input operation, your program received some
data containing a parity error and/or a stop bit error (framing).

Action: Notify the remote program to send the data again.

Messages:

 CPD6B91 (Diagnostic)

0042 Description: Your program received some data on a successful input opera-
tion. However, some data was lost, possibly due to an overrun situation.

Action: Notify the remote program to send the data again, and ensure that the
maximum buffer length configured on the line description is large enough to
contain any expected data.

Messages:

 CPD6B92 (Diagnostic)

Figure B-1 (Page 2 of 2). Actions for Return Code 0000

Type of Session Last Operation
Issued

Actions Your Program Can Take

Evoke with detach or
write with detach

Issue another evoke function, issue a release opera-
tion, continue local processing, or end.

Any other output
operation

Issue another output operation (except evoke), or issue
an input operation.

End-of-Session Continue local processing or end.

Started by a
remote program
start request1

Acquire or open Issue an input or output operation.

Write with detach Continue local processing or end. This session has
ended.

Any other output
operation

Issue another output operation (except evoke), or issue
an input operation.

End-of-Session Continue local processing or end.

1 A target program (started by a program start request) cannot issue an evoke function in this session;
it can issue an evoke function only in a different session that it has first acquired.

Major Code 02

Major Code 02 – Input operation completed successfully, but your job is being ended
(controlled).

Description: The input operation issued by your program completed successfully. Your
program may have received some data or a message from the remote system.
However, your job is being ended (controlled).

Action: Your program should complete its processing and end as soon as possible.
The system eventually changes a job ended (controlled) to a job ended (immediate) and
forces all processing to stop for your job.

B-2 AS/400 Asynchronous Communications Programming V4R1

Code Description/Action

0200 Description: On a successful input operation, your program received some
data. Also, your job is being ended (controlled).

Action: Your program can continue to receive data, or it can send data to the
remote program. However, the recommended action is to complete all pro-
cessing and end your program as soon as possible. The system eventually
changes a job ended (controlled) to a job ended (immediate) and forces all pro-
cessing to stop for your job.

0204 Description: On a successful input operation, your program received a PAD
message from the remote PAD. The message may be a parameter indication,
an error indication, or an invitation to clear. See “PAD Messages” on page 3-5
for more information about PAD messages. Also, your job is being ended (con-
trolled).

Action: Your program can process the PAD message. However, the recom-
mended action is to complete all processing and end your program as soon as
possible. The system eventually changes a job ended (controlled) to a job
ended (immediate) and forces all processing to stop for your job.

0216 Description: On a successful input operation, your program received some
data containing a parity error and/or a stop bit error (framing). Also, your job is
being ended (controlled).

Action: Your program can notify the remote program to send the data again.
However, the recommended action is to complete all processing and end your
program as soon as possible. The system eventually changes a job ended
(controlled) to a job ended (immediate) and forces all processing to stop for
your job.

Messages:

 CPD6B91 (Diagnostic)

0242 Description: Your program received some data on a successful input opera-
tion. However, some data was lost, possibly due to an overrun situation. Also,
your job is being ended (controlled).

Action: Your program can notify the remote program to send the data again,
and ensure that the maximum buffer length configured on the line description is
large enough to contain any expected data. However, the recommended action
is to complete all processing and end your program as soon as possible. The
system eventually changes a job ended (controlled) to a job ended (immediate)
and forces all processing to stop for your job.

Messages:

 CPD6B92 (Diagnostic)

Major Code 03

Major Code 03 – Input operation completed successfully, but no data received.

Description: The input operation issued by your program completed successfully, but
no data was received.

Action: Examine the minor return code and continue with the next operation.

 Appendix B. Return Codes, Messages, and Sense Codes B-3

Code Description/Action

0300 Description: On a successful input operation, your program received no data
to process. The session is still active.

Action: Issue an input or output operation.

0302 Description: On a successful input operation, your program received a fail
indication without any data. Either the remote program has sent a fail function,
or the system has detected a break condition. All data received by the asyn-
chronous support that is not given to your program on an input operation is
discarded.

Action: Issue an input operation to receive the reason for the fail from the
remote program.

Messages:

 CPD6B92 (Diagnostic)

0309 Description: On a read-from-invited-program-devices operation, your program
did not receive any data. Also, your job is being ended (controlled).

Action: Your program can continue processing. However, the recommended
action is to complete all processing and end your program as soon as possible.
The system eventually changes a job ended (controlled) to a job ended (imme-
diate) and forces all processing to stop for your job.

Messages:

 CPF4741 (Notify)

0310 Description: On a read-from-invited-program-devices operation, the time
interval specified by a timer function in your program or by the WAITRCD value
specified for the ICF file expired.

Action: Issue the intended operation after the specified time interval has
ended. For example, if you were using the time interval to control the length of
time to wait for data, you can issue another read-from-invited-program-devices
operation to receive the data.

Note: Since no specific program device name is associated with the com-
pletion of this operation, the program device name in the common I/O feedback
area is set to *N. Therefore, your program should not make any checks based
on the program device name after receiving the 0310 return code.

Messages:

 CPF4742 (Status)

 CPF4743 (Status)

Major Code 04

Major Code 04 – Output exception occurred.

Description: An output exception occurred because your program attempted to send
data when it should be receiving data. The data from your output operation was not
sent. You can attempt to send the data later.

Action: Issue an input operation to receive the data.

B-4 AS/400 Asynchronous Communications Programming V4R1

Code Description/Action

0412 Description: An output exception occurred because your program attempted
to send data when it should be receiving data available from the remote
program or from the PAD. The data from your output operation was not sent to
the remote system. Your program can attempt to send the data later.

Action: Issue an input operation to receive the data.

Note: If your program issues another output operation before an input opera-
tion, your program receives a return code of 831C.

Messages:

 CPF475ð (Notify)

 CPF5ð76 (Notify)

Major Codes 08 and 11

Major Codes 08 and 11 – Miscellaneous program errors occurred.

Description: The operation just attempted by your program was not successful. The
operation may have failed because it was issued at the wrong time.

Action: Refer to the minor code description for the appropriate recovery action.

Code Description/Action

0800 Description: The acquire operation just attempted by your program was not
successful. Your program tried to acquire a program device that was already
acquired and is still active.

Action: If the session associated with the original acquire operation is the one
needed, your program can begin communicating in that session since it is
already available. If you want a different session, issue another acquire opera-
tion for the new session by specifying a different program device name in the
PGMDEV parameter of the ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command that precedes the program.

Messages:

 CPD4ð77 (Diagnostic)

 CPF5ð41 (Status)

 CPF5ðAð (Status)

1100 Description: The read-from-invited-program-devices operation just attempted
by your program was not successful because your program tried this operation
when no program devices were invited and no timer function was in effect.

Action: Issue an invite function (or a combined operation that includes an
invite) followed by a read-from-invited-program-devices operation.

Messages:

 CPF474ð (Notify)

 Appendix B. Return Codes, Messages, and Sense Codes B-5

Major Code 34

Major Code 34 – Input exception occurred.

Description: The input operation attempted by your program was not successful. The
data received was too long for your program's input buffer or was not compatible with the
record format specified on the input operation.

Action: Refer to the minor code description for the appropriate recovery action.

Code Description/Action

3441 Description: A valid record format name was specified with format selection
type *RECID. However, although the data received matched one of the record
formats in the ICF file, it did not match the format specified on the read opera-
tion.

Action: Correct your program to issue a read operation that does not specify a
record format name, or specify the correct record format name to process the
data based on the format selection option for the file.

Messages:

 CPF5ð58 (Notify)

3451 Description: Your program specified a file record size that was not large
enough for the indicators to be included with the data sent by the remote
program (for a file defined with a nonseparate indicator area). Your program
did not receive any data. For a file using a nonseparate indicator area, the
actual record length field in the device-dependent I/O feedback area contains
the number of indicators specified by the record format.

Action: End the session; close the file; correct the file record size; then open
the file again.

Messages:

 CPF4768 (Notify)

Major Code 80

Major Code 80 – Permanent system or file error (irrecoverable).

Description: An irrecoverable file or system error has occurred. The underlying com-
munications support may have ended and your session has ended. If the underlying
communications support ended, it must be established again before communications can
resume. Recovery from this error is unlikely until the problem causing the error is
detected and corrected.

Action: You can perform the following general actions for all 80xx return codes. Spe-
cific actions are given in each minor code description.

� Close the file, open the file again, then establish the session. If the operation is still
not successful, your program should end the session.

� Continue local processing.
 � End.

Note: If the session is started again, it starts from the beginning, not at the point where
the session error occurred.

B-6 AS/400 Asynchronous Communications Programming V4R1

Code Description/Action

8081 Description: The operation attempted by your program was not successful
because a system error condition was detected.

Action: Your communications configurations may need to be varied off and
then on again. Your program can do one of the following:

� Continue local processing.
� Close the ICF file, open the file again, and establish the session again.

 � End.

Messages:

 CPF417ð (Escape)

 CPF451ð (Escape)

 CPF5257 (Escape)

 CPF5447 (Escape)

8082 Description: The operation attempted by your program was not successful
because the device supporting communications between your program and the
remote location is not usable. For example, this may have occurred because
communications were stopped for the device by a Hold Communications
Device (HLDCMNDEV) command, or because a cancel reply was issued in
response to an error recovery message for the device. Your program should
not issue any operations to the device.

Action: Communications with the remote program cannot resume until the
device has been reset to a varied on state. If the device has been held, use
the Release Communications Device (RLSCMNDEV) command to reset the
device. If the device is in an error state, vary the device off and then on again.
Your program can attempt to establish the session again, continue local pro-
cessing, or end.

Messages:

 CPF4744 (Escape)

 CPF5269 (Escape)

80B3 Description: The open operation issued by your program was not successful
because the ICF file is in use by another process.

Action: Wait for the file to become available, then issue another open opera-
tion. Otherwise, your program may continue processing, or it can end.

Consider increasing the WAITFILE parameter with the Change ICF File
(CHGICFF) or Override ICF File (OVRICFF) command to allow more time for
the file resources to become available.

Messages:

 CPF4128 (Escape)

80EB Description: The open operation attempted by your program was not suc-
cessful due to one of the following:

� Your program used an option of update or delete to open the file, but that
option is not supported by the program device.

� Your program requested both blocked data and user buffers on an open
option, but these formats cannot be selected together.

� Your program tried to open a source file, but the file was not created as a
source file.

� There is a mismatch on the INDARA keyword between your program and
the ICF file as to whether or not a separate indicator area should be used.

� The file was originally opened as a shared file; however, no program
devices were ever acquired for the file before your program attempted the
current open operation.

Action: After performing one of the following actions, your program can try the
open operation again:

 Appendix B. Return Codes, Messages, and Sense Codes B-7

� If the update and delete options are not supported for the program device,
use an option of input, or output, or both.

� If your program tried selecting user buffers and blocked data together, it
should try selecting one or the other, but not both.

� If your program tried to open a non-source file as a source file, either
change the file name or change the library name.

� If there was a mismatch on the INDARA keyword, either correct the file or
correct your program so that the two match.

� If no program devices were previously acquired for a shared file, acquire
one or more program devices for the file.

Messages:

 CPF4133 (Escape)

 CPF4156 (Escape)

 CPF4238 (Escape)

 CPF425ð (Escape)

 CPF4345 (Escape)

 CPF5522 (Escape)

 CPF5549 (Escape)

80ED Description: The open operation attempted by your program was not suc-
cessful because there is a record format level mismatch between your program
and the ICF file.

Action: Close the file. Compile your program again to match the file level of
the ICF file, or change or override the file to LVLCHK(*NO); then open the file
again.

Messages:

 CPF4131 (Escape)

80EF Description: Your program attempted an open operation on a file or library for
which the user is not authorized.

Action: Close the file. Either change the file or library name on the open
operation, or obtain authority for the file or library from your security officer.
Then issue the open operation again.

Messages:

 CPF41ð4 (Escape)

80F8 Description: The open operation attempted by your program was not suc-
cessful because one of the following occurred:

� The file is already open.
� The file is marked in error on a previous return code.

Action:

� If the file is already open, close the file and end your program. Remove
the duplicate open operation from your program, then issue the open oper-
ation again.

� If the file is marked in error, your program can check the job log to see
what errors occurred previously, then take the appropriate recovery action
for those errors.

Messages:

 CPF4132 (Escape)

 CPF5129 (Escape)

B-8 AS/400 Asynchronous Communications Programming V4R1

Major Code 81

Major Code 81 – Permanent session error (irrecoverable).

Description: An irrecoverable session error occurred during an I/O operation. Your
session cannot continue and has ended. Before communications can resume, the
session must be established again by using an acquire operation or another program
start request. Recovery from this error is unlikely until the problem causing the error is
detected and corrected. Operations directed to other sessions associated with the file
should work.

Action: You can perform the following general actions for all 81xx return codes. Spe-
cific actions are given in each minor return code description.

If your program initiated the session, you can:

� Correct the problem and establish the session again. If the operation is still not
successful, your program should end the session.

� Continue processing without the session.
 � End.

If your session was initiated by a program start request from the remote program, you
can:

� Continue processing without the session.
 � End.

Several of the minor codes indicate that an error condition must be corrected by
changing a value in the communications configuration or in the file.

� To change a parameter value in the communications configuration, vary the config-
uration off, make the change to the configuration description, then vary the config-
uration on.

� To change a parameter value in the file, use the ADDICFDEVE, CHGICFDEVE, or
OVRICFDEVE command.

Note: When a parameter can be specified both in the ADDICFDEVE or
OVRICFDEVE command and in the configuration, the value in the
ADDICFDEVE or OVRICFDEVE command overrides the value specified in
the configuration (for your program only). Therefore, in some cases, you
may choose to make a change with the ADDICFDEVE or OVRICFDEVE
command rather than in the configuration.

Several other minor codes indicate a line or remote system error and may require an
operator to correct the error.

Note: If the session is started again, it starts from the beginning, not at the point where
the session error occurred.

Code Description/Action

8140 Description: A cancel reply was received from your program or from the oper-
ator in response to a notify message, or was the result of a system default,
causing the session to be ended. The session is no longer active.

Action: If your program started the session, issue an acquire operation to start
the session again. If your program was started by a program start request, it
can continue local processing or end.

Messages:

 CPF51ð4 (Escape)

 Appendix B. Return Codes, Messages, and Sense Codes B-9

8191 Description: A permanent line or controller error occurred on an input or
output operation, and the system operator attempted recovery in response to
the error message. You can learn what type of line error occurred by checking
the system operator's message queue. The session has ended. Data may
have been lost.

Action: If your program started the session, issue an acquire operation to start
the session again. If your program was started by a program start request from
the remote program, it can continue local processing or end.

Messages:

 CPF4146 (Escape)

 CPF4155 (Escape)

 CPF5128 (Escape)

 CPF5138 (Escape)

 CPF6B82 (Escape)

 CPF6B83 (Escape)

81E9 Description: An input operation was issued and the format selection option for
the ICF file was *RECID, but the data received did not match any record
formats in the file. There was no format in the file defined without a RECID
keyword, so there was no default record format to use. The session has
ended.

Action: Verify that the data sent by the remote program was correct. If the
data was not correct, have the operator on the remote system change the
remote program to send the correct data. If the data was correct, add a RECID
keyword definition to the file that matches the data, or define a record format in
the file without a RECID keyword so that a default record format can be used
on input operations. If your program started the session, use another acquire
operation to start the session again. If a program start request started your
program, continue local processing or end.

Messages:

 CPF5291 (Escape)

B-10 AS/400 Asynchronous Communications Programming V4R1

Major Code 82

Major Code 82 – Open or acquire operation failed.

Description: Your attempt to establish a session was not successful. The error may be
recoverable or permanent, and recovery from it is unlikely until the problem causing the
error is detected and corrected.

Action: You can perform the following general actions for all 82xx return codes. Spe-
cific actions are given in each minor code description.

If your program was attempting to start the session, you can:

� Correct the problem and attempt to establish the session again. The next operation
could be successful only if the error occurred because of some temporary condition
such as the communications line being in use at the time. If the operation is still not
successful, your program should end.

� Continue processing without the session.
 � End.

If your session was initiated by a program start request from the remote program, you
can:

� Correct the problem and attempt to connect to the requesting program device again.
If the operation is still not successful, your program should end.

� Continue processing without the session.
 � End.

Several of the minor codes indicate that an error condition must be corrected by
changing a value in the communications configuration or in the file.

� To change a parameter value in the communications configuration, vary the config-
uration off, make the change to the configuration description, then vary the config-
uration on.

� To change a parameter value in the file, use the ADDICFDEVE, CHGICFDEVE, or
OVRICFDEVE command.

Note: When a parameter can be specified both in the ADDICFDEVE or
OVRICFDEVE command and in the configuration, the value in the
ADDICFDEVE or OVRICFDEVE command overrides the value specified in
the configuration (for your program only). Therefore, in some cases, you
may choose to make a change with the ADDICFDEVE or OVRICFDEVE
command rather than in the configuration.

If no changes are needed in your file or in the configuration (and depending on what the
return code description says):

� If the attempted operation was an acquire, issue the acquire operation again.
� If the attempted operation was an open, close the file and issue the open operation

again.

Code Description/Action

8209 Description: The open or acquire operation issued by your program was not
successful because a prestart job is being canceled. One of the following may
have occurred:

� An End Job (ENDJOB), End Prestart Job (ENDPJ), End Subsystem
(ENDSBS), End System (ENDSYS), or Power Down System
(PWRDWNSYS) command was being issued.

� The maximum number of prestart jobs (MAXJOBS parameter) was
reduced by the Change Prestart Job Entry (CHGPJE) command.

 Appendix B. Return Codes, Messages, and Sense Codes B-11

� The value for the maximum number of program start requests allowed
(specified in the MAXUSE parameter on the ADDPJE or CHGPJE
command) was exceeded.

� Too many unused prestart jobs exist.
� The prestart job had an initialization error.

Action: Complete all processing and end your program as soon as possible.
Correct the system error before starting this job again.

Messages:

 CPF4292 (Escape)

 CPF5313 (Escape)

8233 Description: A program device name that was not valid was detected. Either
an ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE command was not run, or
the program device name in your program does not match the program device
name specified in the ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE
command for the session being acquired. The session was not started.

Action: If the error was in your program, change your program to specify the
correct program device name. If an incorrect identifier was specified in the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE command, specify the correct
value in the PGMDEV parameter.

Messages:

 CPF4288 (Escape)

 CPF5ð68 (Escape)

8281 Description: On an unsuccessful open or acquire operation, a system error
condition was detected. For example, the file may previously have been in
error, or the file could not be opened due to a system error.

Action: Your communications configurations may need to be varied off and
then on again. Your program can do one of the following:

� Continue local processing.
� Close the ICF file, open the file again, and acquire the program device

again. However, if this results in another 8281 return code, your program
should close the file and end.

� Close the file and end.

Messages:

 CPF4168 (Escape)

 CPF4182 (Escape)

 CPF43ð4 (Escape)

 CPF4369 (Escape)

 CPF437ð (Escape)

 CPF4375 (Escape)

 CPF5257 (Escape)

 CPF5274 (Escape)

 CPF5317 (Escape)

 CPF5318 (Escape)

 CPF5355 (Escape)

8282 Description: The open or acquire operation attempted by your program was
not successful because the device supporting communications between your
program and the remote location is not usable. For example, this may have
occurred because communications were stopped for the device by a Hold Com-
munications Device (HLDCMNDEV) command, or because a cancel reply was
issued in response to an error recovery message for the device. Your program
should not issue any operations to the device. The session was not started.

Action: Communications with the remote program cannot resume until the
device has been reset to a varied on state. If the device has been held, use
the Release Communications Device (RLSCMNDEV) command to reset the

B-12 AS/400 Asynchronous Communications Programming V4R1

device. If the device is in an error state, vary the device off, then on again.
Your program can attempt to acquire the program device again, continue local
processing, or end.

Messages:

 CPF4298 (Escape)

 CPF4354 (Escape)

 CPF5269 (Escape)

 CPF5548 (Escape)

8285 Description: On an open or acquire operation, the attempt by your program to
call a remote location automatically using a switched connection was not suc-
cessful. The number specified on the controller description was dialed, but the
connection was not established. Possible causes are that the line was busy,
that there was no answer, or that the number dialed was disconnected. The
session was not started.

Action: Verify that the number you are dialing is correct and that the remote
system is ready for the call. Also verify that the line description you are using
is varied on and is included in the switched line list on the controller
description. Your program can issue the open or acquire operation again, con-
tinue local processing, or end.

Messages:

 CPF526ð (Escape)

82A8 Description: The acquire operation attempted by your program was not suc-
cessful because the maximum number of program devices allowed for the ICF
file has been reached. The session was not started.

Action: Your program can recover by releasing a different program device and
issuing the acquire operation again. If more program devices are needed,
close the file and increase the MAXPGMDEV value for the ICF file.

Messages:

 CPF4745 (Diagnostic)

 CPF5ð41 (Status)

82A9 Description: The acquire operation issued by your program to a
*REQUESTER device was not successful due to one of the following causes:

� Your program has already acquired the *REQUESTER device.
� The job was started by a program start request with the *REQUESTER

device detached.
� The *REQUESTER device was released because an end-of-session was

requested.
� The job does not have a *REQUESTER device; that is, the job was not

started by a program start request.
� A permanent error occurred on the session.

Action:

� If the *REQUESTER device is already acquired and your program expects
to communicate with the *REQUESTER device, use the program device
that acquired the *REQUESTER.

� If the *REQUESTER device is not available and your program expects to
communicate with the *REQUESTER device, the remote program must
send a program start request without a detach function.

� If your program released its *REQUESTER device, correct the error that
caused your program to release its *REQUESTER device before trying to
acquire it.

� If this job does not have a *REQUESTER device, correct the error that
caused your program to attempt to acquire a *REQUESTER device.

� If a permanent error caused the acquire operation to fail, verify that your
program correctly handles the permanent error return codes (80xx, 81xx) it

 Appendix B. Return Codes, Messages, and Sense Codes B-13

received on previously issued input and output operations. Because your
program was started by a program start request, your program cannot
attempt error recovery after receiving a permanent error return code. It is
the responsibility of the remote program to initiate error recovery.

Messages:

 CPF4366 (Escape)

 CPF538ð (Escape)

 CPF5381 (Escape)

82AA Description: The open or acquire operation attempted by your program was
not successful because the remote location name specified on the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE command does not match
any remote location configured on the system. The session was not started.

Action: Your program can continue local processing, or close the file and end.
Verify that the name of the remote location is specified correctly in the
RMTLOCNAME parameter on the ADDICFDEVE, CHGICFDEVE, or
OVRICFDEVE command.

Messages:

 CPF41ð3 (Escape)

 CPF4363 (Escape)

 CPF4364 (Escape)

 CPF4747 (Escape)

 CPF5378 (Escape)

 CPF5379 (Escape)

82AB Description: The open or acquire operation attempted by your program was
not successful because the device description for the remote location was not
varied on. The session was not started.

Action: Your program can wait until the communications configuration is
varied on and then issue the acquire operation again, it can try the acquire
operation again using a different device description, continue local processing,
or end.

Messages:

82B3 Description: The open or acquire operation attempted by your program was
not successful because your program is trying to use a device description that
is already in use by another job. The session was not started.

Action: Wait for the device description to become available, then issue the
acquire operation again. You can use the Work with Configuration Status
(WRKCFGSTS) command to determine which job is using the device
description. Consider increasing the WAITFILE parameter of the CHGICFF or
OVRICFF command to allow more time for the device to become available.
Otherwise, your program can continue local processing or end.

Messages:

 CPF41ð6 (Escape)

 CPF55ð7 (Escape)

82EA Description: The open or acquire operation attempted by your program was
not successful. A format selection of *RECID was specified on the
ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE command, but cannot be
used with the ICF file because the RECID DDS keyword is not used on any of
the record formats in the file. The session was not started.

Action: Close the ICF file. Change the record format selection (FMTSLT)
parameter to select formats by some means other than *RECID, or use a file
that has a RECID DDS keyword specified for at least one record format. Open
the file again.

Messages:

B-14 AS/400 Asynchronous Communications Programming V4R1

 CPF4348 (Escape)

 CPF5521 (Escape)

82EE Description: Your program attempted an open or acquire operation to a
device that is not supported. Your program tried to acquire a device that is not
a valid ICF communications type, or it is trying to acquire the requesting
program device in a program that was not started by a program start request.
The session was not started.

Action: Your program can continue local processing or end. Verify that the
name of the remote location is specified correctly in the RMTLOCNAME param-
eter on the ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE command. If your
program was attempting to acquire a non-ICF device, use the appropriate inter-
face for that communications type. If your program was attempting to acquire a
requesting program device, verify that your program is running in the correct
environment.

Messages:

 CPF41ð5 (Escape)

 CPF4223 (Escape)

 CPF4251 (Escape)

 CPF476ð (Escape)

 CPF5ð38 (Escape)

 CPF555ð (Escape)

82EF Description: Your program attempted an acquire operation, or an open opera-
tion that implicitly acquires a session, to a device that the user is not authorized
to, or that is in service mode. The session was not started.

Action: If the operation was an acquire, correct the problem and issue the
acquire again. If the operation was an open, close the file, correct the problem,
then issue the open operation again. To correct an authority error, obtain
authority for the device from your security officer or device owner. If the device
is in service mode, wait until machine service function (MSF) is no longer using
the device before issuing the operation again.

Messages:

 CPF41ð4 (Escape)

 CPF4186 (Escape)

 CPF5278 (Escape)

 CPF5279 (Escape)

82F0 Description: The open or acquire operation attempted by your program to a
requesting program device was not successful because there is an error in the
ICF file.

Action: End your program, correct the error, then have the remote program
send the program start request again.

Messages:

 CPF4324 (Escape)

 CPF554ð (Escape)

82F5 Description: The open or acquire operation was not successful because your
program tried to use a format selection option of *RMTFMT in the FMTSLT
parameter on the ADDICFDEVE, CHGICFDEVE, or OVRICFDEVE command.
The session was not started.

Action: Change the value in the FMTSLT parameter on the ADDICFDEVE,
CHGICFDEVE, or OVRICFDEVE command, then issue the open or acquire
operation again.

Messages:

 CPF4347 (Escape)

 Appendix B. Return Codes, Messages, and Sense Codes B-15

Major Code 83

Major Code 83 – Session error occurred (the error is recoverable).

Description: A session error occurred, but the session may still be active. Recovery
within your program might be possible.

Action: You can perform the following general actions for all 83xx return codes. Spe-
cific actions are given in each minor code description.

� Correct the problem and continue processing with the session. If the error occurred
because of a resource failure on the remote system or because the remote system
was not active at the time, a second attempt may be successful. If the operation is
still not successful, your program should end the session.

� Issue an end-of-session function and continue processing without the session.
 � End.

Several of the minor codes indicate that an error condition must be corrected by
changing a value in the communications configuration or in the file.

� To change a parameter value in the communications configuration, vary the config-
uration off, make the change to the configuration description, then vary the config-
uration on.

� To change a parameter value in the file, use the ADDICFDEVE, CHGICFDEVE, or
OVRICFDEVE command.

Note: When a parameter can be specified both in the ADDICFDEVE or
OVRICFDEVE command and in the configuration, the value in the
ADDICFDEVE or OVRICFDEVE command overrides the value specified in
the configuration (for your program only). Therefore, in some cases, you
may choose to make a change with the ADDICFDEVE or OVRICFDEVE
command rather than in the configuration.

If no changes are needed in your file or in the configuration, and depending on what the
return code description says, you should notify the remote location that a change is
required at that location to correct the error received.

Code Description/Action

830B Description: Your program attempted an operation that was not valid because
the session was not yet acquired or has ended. The session may have ended
because of a release operation, an end-of-session function, or a permanent
error. Your program may have incorrectly handled a previous error.

Action: Verify that your program does not attempt any operations without an
active session. Also verify that your program correctly handles the permanent
error or session-not-acquired return codes (80xx, 81xx, 82xx) it received on
previously issued input and output operations. To recover from an incorrectly
handled error condition, your program may or may not be able to issue another
acquire operation, depending on the return code.

Messages:

 CPD4ð79 (Diagnostic)

 CPF4739 (Status)

 CPF5ð67 (Escape)

 CPF5ð68 (Escape)

 CPF5ð7ð (Escape)

831C Description: Your program's previous output operation received a return code
of 0412, indicating that your program must receive information sent by the
remote program or the PAD; however, your program did not handle the return
code correctly. The current output operation was not successful because your

B-16 AS/400 Asynchronous Communications Programming V4R1

program should have issued an input operation to receive the information
already sent by the remote program.

Action: Issue an input operation to receive the previous information.

Messages:

 CPF4934 (Notify)

 CPF5ð76 (Notify)

831E Description: The operation attempted by your program was not valid, or a
combination of operations that was not valid was specified. The session is still
active. The error may have been caused by one of the following:

� Your program issued an operation that is not recognizable or not supported
by asynchronous communications.

� Your program requested a combination of operations or keywords that was
not valid, such as a combined write-then-read operation with the invite
function specified.

� Your program issued an input operation, or an output operation with the
invite function, for a file that was opened for output only.

� Your program issued an output operation for a file that was opened for
input only.

� Your program issued a close operation with a temporary close option.

Action: Your program can try a different operation, issue a release operation
or end-of-session function, or end. Correct the error in your program before
trying to communicate with the remote program.

If the file was opened for input only, do not issue any output operations; or, if
the file was opened for output only, do not issue any input operations, and do
not use the invite or allow-write function on an output operation. If such an
operation is needed, then release the session, close the ICF file, and open the
file again for input and output.

Messages:

 CPF4564 (Escape)

 CPF4764 (Notify)

 CPF4766 (Notify)

 CPF479ð (Notify)

 CPF5132 (Escape)

 CPF5149 (Escape)

831F Description: Your program specified data or a length for the operation that
was not valid; however, the session is still active. One of the following caused
the error indication:

� On an output operation, your program tried to send a data record that was
longer than the MAXRCDLEN value specified for the ICF file.

� The program used a read or write operation that specified a data length
greater than the record format in the ICF file.

� If this was a timer function, the format of the timer interval was not
HHMMSS.

� If a system-defined format was used to specify the operation, or if the
variable-length-data-record (VARLEN) function was used, then the length
of the user buffer was not valid.

Action: If you want your program to recover, try the operation again with a
smaller data length. If you do not need your program to recover immediately,
do one of the following:

� Change the record format length in the ICF file, or change the record
length in your program and compile your program again.

� For an input operation, specify a data length equal to or less than the
record format length, or do not specify a length at all.

 Appendix B. Return Codes, Messages, and Sense Codes B-17

� If the timer function was used, verify that the format of the timer interval is
HHMMSS.

� For an output operation that used the variable-length-data-record
(VARLEN) function, verify that the length specified is less than the record
length specified for the ICF file when it was opened.

Messages:

 CPF4762 (Notify)

 CPF4765 (Notify)

 CPF4767 (Notify)

8329 Description: An evoke function that was not valid was detected in this
session. Your program was started by a program start request and, therefore,
cannot issue any evoke functions in this session.

Action: To recover, your program can try a different operation or function. To
issue an evoke function in a different session, first issue an acquire operation
(using a different program device name), then try the evoke function. Other-
wise, your program can issue an end-of-session function, continue local pro-
cessing, or end. If a coding error caused your program to attempt an evoke
that was not valid, correct your program.

Messages:

 CPF5ð99 (Notify)

832C Description: A release operation following an invite function was detected.
Because your program issued the invite function, it cannot issue a release
operation to end the invited session.

Action: Issue an input operation to satisfy the invite function, or issue a
cancel-invite function to cancel the invite function; then try the release operation
again. Otherwise, issue an end-of-session function to end the session. If a
coding error caused your program to attempt a release operation that was not
valid, correct your program.

Messages:

 CPF4769 (Notify)

832D Description: Following an invite function, your program issued an additional
invite function. This operation failed because the original invite function must
first be satisfied by an input operation.

Action: Issue an input operation to receive the data that was invited. Other-
wise, issue an end-of-session function to end the session. If a coding error
caused your program to attempt a request-to-write indication or an additional
invite function, correct your program.

Messages:

 CPF4924 (Notify)

83E0 Description: Your program attempted an operation using a record format that
was not defined for the ICF file.

Action: Verify that the name of the record format in your program is correct,
then check to see whether the record format is defined in the file definition.

Messages:

 CPF5ð54 (Notify)

83E8 Description: Your program attempted to issue a cancel-invite function to a
session that was not invited. One of the following may have occurred:

� The invite function was implicitly canceled earlier in your program by a
valid output operation.

� The invite function was satisfied earlier in your program by a valid input
operation.

B-18 AS/400 Asynchronous Communications Programming V4R1

� Your program had already canceled the invite function, then tried to cancel
it again.

� Your program never invited the session.

The session is still active.

Action: Your program can issue an input or output operation, issue an end-of-
session function, continue local processing, or end. However, you should
correct the error that caused your program to attempt the cancel-invite to a
session that was not invited.

Messages:

 CPF4763 (Notify)

83F8 Description: Your program attempted to issue an operation to a program
device that is marked in error due to a previous I/O or acquire operation. Your
program may have handled the error incorrectly.

Action: Release the program device, correct the previous error, then acquire
the program device again.

Messages:

 CPF5293 (Escape)

Failed Program Start Requests
Message CPF1269 is sent to the system operator message queue when the local system
rejects an incoming program start request. You can use the message information to deter-
mine why the program start request was rejected.

The CPF1269 message contains two reason codes. One of the reason codes can be zero,
which can be ignored. If only one nonzero reason code is received, that reason code repre-
sents the reason the program start request was rejected. If the System/36 environment is
installed on your AS/400 system, there can be two nonzero reason codes. These two
reason codes occur when OS/400 cannot determine whether the program start request was
to start a job in the System/36 environment or in OS/400. One reason code explains why
the program start request was rejected in the System/36 environment and the other explains
why the program start request was rejected in OS/400. Whenever you receive two reason
codes, you should determine which environment the job was to run in and correct the
problem for that environment.

Figure B-2 describes reason codes for failed program start requests.

Figure B-2 (Page 1 of 3). Reason Codes for Rejected Program Start
Requests

Reason
Code

Reason Description

401 Program start request received to a device that is not allocated to
an active subsystem.

402 Requested device is currently being held by a Hold Communica-
tions Device (HLDCMNDEV) command.

403 User profile is not accessible.

404 Job description is not accessible.

405 Output queue is not accessible.

406 Maximum number of jobs defined by subsystem description are
already active.

407 Maximum number of jobs defined by communications entry are
already active.

408 Maximum number of jobs defined by routing entry are already
active.

 Appendix B. Return Codes, Messages, and Sense Codes B-19

Figure B-2 (Page 2 of 3). Reason Codes for Rejected Program Start
Requests

Reason
Code

Reason Description

409 Library on library list is exclusively in use by another job.

410 Group profile cannot be accessed.

411 Insufficient storage in machine pool to start job.

412 System values not accessible.

501 Job description was not found.

502 Output queue was not found.

503 Class was not found.

504 Library on initial library list was not found.

505 Job description or job description library is damaged.

506 Library on library list is destroyed.

507 Duplicate libraries were found on library list.

508 Storage-pool defined size is zero.

602 Transaction program-name value is reserved but not supported.

604 Matching routing entry was not found.

605 Program was not found.

704 Password is not valid.

705 User is not authorized to device.

706 User is not authorized to subsystem description.

707 User is not authorized to job description.

708 User is not authorized to output queue.

709 User is not authorized to program.

710 User is not authorized to class.

711 User is not authorized to library on library list.

712 User is not authorized to group profile.

713 User ID is not valid.

714 Default user profile is not valid.

715 Neither password nor user ID was provided, and no default user
profile was specified in the communications entry.

718 No user ID.

722 A user ID was received but no password was sent.

723 No password was associated with the user ID.

725 User ID does not follow naming convention.

726 User profile has been disabled.

801 Program initialization parameters are present but not allowed.

802 Program initialization parameter exceeds 2000 bytes.

803 Subsystem is ending.

804 Prestart job is inactive or is ending.

805 WAIT(NO) was specified on the prestart job entry and no prestart
job was available.

806 The maximum number of prestart jobs that can be active on a
prestart job entry was exceeded.

807 Prestart job ended when a program start request was being
received.

901 Program initialization parameters are not valid.

902 Number of parameters for program not valid.

B-20 AS/400 Asynchronous Communications Programming V4R1

Figure B-2 (Page 3 of 3). Reason Codes for Rejected Program Start
Requests

Reason
Code

Reason Description

903 Program initialization parameters required but not present.

1001 System logic error. Function check or unexpected return code
encountered.

1002 System logic error. Function check or unexpected return code
encountered while receiving program initialization parameters.

1501 Character in procedure name not valid.

1502 Procedure not found.

1503 System/36 environment library not found.

1504 Library QSSP not found.

1505 File QS36PRC not found in library QSSP.

1506 Procedure or library name is greater than 8 characters.

1507 Current library not found.

1508 Not authorized to current library.

1509 Not authorized to QS36PRC in current library.

1510 Not authorized to procedure in current library.

1511 Not authorized to System/36 environment library.

1512 Not authorized to file QS36PRC in System/36 environment
library.

1513 Not authorized to procedure in System/36 environment library.

1514 Not authorized in library QSSP.

1515 Not authorized to file QS36PRC in QSSP.

1516 Not authorized to procedure in QS36PRC in QSSP.

1517 Unexpected return code from System/36 environment support.

1518 Problem phase program not found in QSSP.

1519 Not authorized to problem phase program in QSSP.

1520 Maximum number of target programs started (100 per System/36
environment).

 Appendix B. Return Codes, Messages, and Sense Codes B-21

B-22 AS/400 Asynchronous Communications Programming V4R1

Appendix C. Code Conversion Tables

The following tables show how asynchronous communica-
tions support translates your program data. Tables included
show:

� The EBCDIC character set
� The ASCII (IA-5) character set
� EBCDIC-to-ASCII translation table
� ASCII-to-EBCDIC translation table

You can also create your own translation table using the
Create Table (CRTTBL) command. See the online informa-
tion for a description of this command. A system-supplied
program, QDCXLATE, can be used to translate individual
fields, using any specified translation table. See the System
API Reference book for more information about using
QDCXLATE.

If you do choose to create your own translation table, you
must turn translation off by issuing a function-management-
header function. Your application program is then respon-
sible for translating all user data. See “Write Operation” on
page 6-4 for more information about the function-
management-header function.

Code Page 037 (EBCDIC) USA/Canada

The following example shows the characters for code page
037. If other characters are shown on your display, refer to
the National Language Support book and the International
Application Development book for more information about
code pages.

US

)

Main Storage
Bit Positions
4,5,6,7

Hex

*DC4

Main Storage Bit Positions 0,1,2,3

LF

RV3S000-1

SP

.

<

(

+

$

;

-

/

,

%

>

?

’

:

#

’

=

"

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

\

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

NUL

SOH

STX

ETX

HT

DEL

VT

FF

CR

SO

SI

DLE

DC1

DC2

DC3

NL

BS

CAN

EM

FS

GS

RS

ETB

ESC

ENQ

ACK

BEL

SYN

EOT

NAK

SUB

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

¢ !

¬|

This chart shows the characters for code page 037.

Figure C-1. Code Page 037 (EBCDIC) USA/Canada

 Copyright IBM Corp. 1997 C-1

International Alphabet (IA-5) ASCII
Character Set

The following table shows the ASCII characters as defined
by the international alphabet (IA-5) used by the integrated
PAD support to determine data forwarding characters.

#

Main Storage Bit Positions 0,1,2,3

Main Storage
Bit Positions
4,5,6,7

Hex

*

$

RSLS462-0
Multiple characters defined.
No specific characters defined.

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

NUL

SOH

STX

ETX

EOT

ENQ

ACK

BEL

BS

HT

LF

VT

FF

CR

SO

SI

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

IS4

IS3

IS2

IS1

SP

!

"

%

’

(

)

+

,

-

.

/

0

1

2

3

4

5

6

7

8

9

:

;

<

=

>

?

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

DEL

0 1 2 3 4 5 6 7 8 9 A B C D E F

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

This chart shows the characters in the International Alphabet (IA-5)
ASCII character set.

Figure C-2. International Alphabet (IA-5) ASCII Character Set

C-2 AS/400 Asynchronous Communications Programming V4R1

EBCDIC-to-ASCII Translation Table

The following table shows the hexadecimal values used
when translating characters from EBCDIC to ASCII.

For example, EBCDIC uses hex 82 to represent the letter b;
the ASCII equivalent for the letter b, as shown in the table, is
hex 62. Likewise, EBCDIC uses hex 2E to represent the
ACK character; the ASCII equivalent is hex ð6.

Blank squares in the table (for example, hex 8A) are trans-
lated to hex FF.

Main Storage
Bit Positions
4,5,6,7

Hex

Main Storage Bit Positions 0,1,2,3

RSLS463-1

7B

41

42

43

44

45

46

47

48

49

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

00

01

02

03

09

7F

0B

0C

0D

0E

0F

5C

53

54

55

56

57

58

59

5A

0 1 2 3 4 5 6 7 8 9 A B C D E F

61

62

63

64

65

66

67

68

6960

3A

23

40

27

3D

22

2D

2F

7C

2C

25

5F

3E

3F

26

5D

24

2A

29

3B

5E

0A

17

1B

05

06

07

10

11

12

13

0A

08

18

19

1C

1D

1E

1F

20

5B

2E

3C

28

2B

21

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

16

04

14

15

1A

6A

6B

6C

6D

6E

6F

70

71

72

7D

4A

4B

4C

4D

4E

4F

50

51

52

7E

73

74

75

76

77

78

79

7A

30

31

32

33

34

35

36

37

38

39

This chart shows the characters in the EBCDIC-to-ASCII translation table.

Figure C-3. EBCDIC-to-ASCII Translation Table

 Appendix C. Code Conversion Tables C-3

ASCII-to-EBCDIC Translation Table

The following table shows the hexadecimal values used
when translating characters from ASCII (using the IA-5
alphabet) to EBCDIC.

For example, ASCII uses hex 4E to represent the letter N; the
EBCDIC equivalent for the letter N, as shown in the table, is
hex D5.

Main Storage
Bit Positions
4,5,6,7

Hex

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Main Storage Bit Positions 0,1,2,3

0 1 2 3 4 5 6 7 8 9 A B C D E F

97

98

99

A2

A3

A4

A5

A6

A7

A8

A9

C0

6A

D0

A1

07

97

98

99

A2

A3

A4

A5

A6

A7

A8

A9

C0

6A

D0

A1

07

79

81

82

83

84

85

86

87

88

89

91

92

93

94

95

96

79

81

82

83

84

85

86

87

88

89

91

92

93

94

95

96

D7

D8

D9

E2

E3

E4

E5

E6

E7

E8

E9

4A

E0

5A

5F

6D

D7

D8

D9

E2

E3

E4

E5

E6

E7

E8

E9

4A

E0

5A

5F

6D

7C

C1

C2

C3

C4

C5

C6

C7

C8

C9

D1

D2

D3

D4

D5

D6

7C

C1

C2

C3

C4

C5

C6

C7

C8

C9

D1

D2

D3

D4

D5

D6

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

7A

5E

4C

7E

6E

6F

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

7A

5E

4C

7E

6E

6F

40

4F

7F

7B

5B

6C

50

7D

4D

5D

5C

4E

6B

60

4B

61

40

4F

7F

7B

5B

6C

50

7D

4D

5D

5C

4E

6B

60

4B

61

10

11

12

13

3C

3D

32

26

18

19

3F

27

1C

1D

1E

1F

10

11

12

13

3C

3D

32

26

18

19

3F

27

1C

1D

1E

1F

00

01

02

03

37

2D

2E

2F

16

05

15

0B

0C

0D

0E

0F

00

01

02

03

37

2D

2E

2F

16

05

15

0B

0C

0D

0E

0F

RSLS464-1

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

This chart shows the characters in the ASCII-to-EBCDIC translation table.

Figure C-4. ASCII-to-EBCDIC Translation Table

C-4 AS/400 Asynchronous Communications Programming V4R1

Appendix D. Break and Interrupt Handling

This appendix describes what actions and responses asyn-
chronous communications support takes when your program
issues a fail function or when a break signal, interrupt packet,
or Indication of Break message is received from the
remote device. The actions taken by asynchronous commu-
nications support depend on whether:

� The line being used is an asynchronous (start-stop) or
X.25 line

� Your application program is a packet-mode host applica-
tion

� You configured PAD emulation

� The remote device is attached to a PAD

Note: Indication of Break messages are qualified X.25
data packets.

 Fail Function

The following lists the actions taken by asynchronous support
when your application program issues a fail function.

� If the application program uses an asynchronous (start-
stop) line:

The I/O adapter creates a break signal of at least 300
milliseconds space-time duration.

� If the application program uses an X.25 line with PAD
emulation configured, and the value of the PAD param-
eter 7 is:

0 No action is taken.

1 An X.25 interrupt packet is sent with user data of
hex 01.

2 Clear the virtual circuit. The PAD parameters are
reset to the default values.

8 Escape to command mode.

21 An X.25 interrupt packet is sent with user data of
hex 00. PAD parameter 8 is set to a value of 1.
An Indication of Break message is sent that
also informs the packet-mode host that PAD
parameter 8 has been set to a value of 1.

� If the application program uses an X.25 line as a packet-
mode host and the remote device is a:

Packet-mode host
An X.25 interrupt packet is sent with user
data of hex 01.

PAD
An Indication of Break message is sent.

Receive Break or Interrupt Actions

The following list shows the actions and responses that occur
when asynchronous communications support receives a
break signal, Indication of Break message, or interrupt
packet from the remote device:

� If the application program uses an asynchronous (start-
stop) line, and a break signal is detected by the I/O
adapter, your application program will receive a 0302
return code.

Note: A framing (stop bit) error on a null character is
treated as a break signal and a 0302 return code is sent
to the receiving program.

� If the application program uses an X.25 line with PAD
emulation configured, and asynchronous communica-
tions support receives the following:

Indication of Break message
Your application program receives a 0302
return code.

Indication of Break message with data of hex 0801
Your application program receives a 0302
return code. PAD parameter 8 is set to a
value of 0.

X.25 interrupt packet
No action is taken.

� If the application program uses an X.25 line as a packet-
mode host and asynchronous communications support
receives the following:

Indication of Break message
Your application program receives a 0302
return code. If the remote device is a PAD,
a Set message is sent to set parameter 8 to
a value of 0.

X.25 interrupt packet with data of hex 00
No action is taken.

X.25 interrupt packet with data of hex 01
Your application program receives a 0302
return code.

 Copyright IBM Corp. 1997 D-1

D-2 AS/400 Asynchronous Communications Programming V4R1

Appendix E. Asynchronous Communications Configuration Examples

This appendix contains asynchronous communications con-
figuration examples for:

� A nonswitched line (for use in connecting directly to an
asynchronous device, such as a printer or plotter).

� A switched line where the AS/400 system uses a
command-capable modem, such as the IBM 5842, to
connect to a remote device.

� Asynchronous communications on an X.25 packet-
switching data network (PSDN).

Each example uses the command prompt displays shown by
typing the name of the command on the command line, then
pressing F4 (Prompt).

 Nonswitched Asynchronous
Communications Example

The following nonswitched configuration example is used to
communicate with a directly attached asynchronous commu-
nications device or a device connected through a modem
eliminator. The line has the following characteristics:

� Line speed of 9600 bits per second

 � Even parity
� 1 stop bit
� 7 data bits (ASCII)

 � Duplex (*FULL)
� Device buffer size of 128 bytes
� Device provides pacing by using flow control with the

default XON/XOFF characters
� Device ends each record sent to the AS/400 system with

an ASCII carriage return followed by a line feed

Because the device is not an AS/400 device, the file transfer
acknowledgment timer and file transfer retry do not apply to
the controller description, nor do the remote verification
parameters of verify, local location name, and local identifier.

DEVD
NSDEV

LIND
NSLIN

I/O
Adapter

Asynchronous
Device

AS/400 System

CTLD
NSCTL

Nonswitched

RSLN482-5

This diagram shows
an example of a nonswitched asynchronous communications
line.

Figure E-1. Nonswitched Asynchronous Communications Example

 Copyright IBM Corp. 1997 E-1

Nonswitched Asynchronous Line Description:

à ð
Create Line Desc (Async) (CRTLINASC)

 Type choices, press Enter.

 Line description > NSLIN Name

 Resource name > LINð31 Name

 Online at IPL \YES \YES, \NO

 Physical interface \RS232V24 \RS232V24

 Connection type \NONSWTPP \NONSWTPP, \SWTPP

 Switched network backup \NO \NO, \YES

 Data bits per character > 7 8, 7

 Type of parity > \EVEN \NONE, \ODD, \EVEN

 Stop bits 1 1, 2

 Duplex \FULL \FULL, \HALF

 Echo support \NONE \NONE, \ALL, \CNTL

 Line speed > 96ðð 5ð, 75, 11ð, 15ð, 3ðð, 6ðð...

 Modem type supported \NORMAL \NORMAL, \V54, \IBMWRAP

 Maximum buffer size > 128 128-4ð96

 Flow control > \YES \NO, \YES

 XON character 11 ð1-FF

 More...
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

à ð
Create Line Desc (Async) (CRTLINASC)

 Type choices, press Enter.

 XOFF character 13 ð1-FF

 End-of-Record table:

End-of-Record character . . . > ðA ðð-FF

Trailing characters ð ð-4

End-of-Record character . . . > ðD ðð-FF

Trailing characters ð ð-4

+ for more values

 Text 'description' > 'Asynchronous line to fast device'

 Bottom
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-2. Prompt Displays for Nonswitched Asynchronous Line
Description

Nonswitched Asynchronous Controller
Description:

à ð
Create Ctl Desc (Async) (CRTCTLASC)

 Type choices, press Enter.

 Controller description > NSCTL Name

 Link type > \ASYNC \ASYNC, \X25

 Online at IPL \YES \YES, \NO

 Switched connection \NO \NO, \YES

 Switched network backup \NO \NO, \YES

 Attached nonswitched line . . . > NSLIN Name

 Text 'description' > 'Asynchronous controller to fast device'

 Bottom
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-3. Prompt Display for Nonswitched Asynchronous Con-
troller Description

Nonswitched Asynchronous Device Description:

à ð
Create Device Desc (Async) (CRTDEVASC)

 Type choices, press Enter.

 Device description > NSDEV Name

 Remote location name > FASTDEV Name, \NONE

 Online at IPL \YES \YES, \NO

 Attached controller > NSCTL Name

 Text 'description' > 'Fast asynchronous device'

 Bottom
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-4. Prompt Display for Nonswitched Asynchronous Device
Description

Switched Asynchronous Communications
Configuration Example

The following switched configuration is used to communicate
with another AS/400 system that is capable of receiving a
call. The application program uses the file transfer subrou-
tines, and the line has the following characteristics:

� Line speed of 2400 bps
 � No parity
� 1 stop bit
� 8 data bits (EBCDIC)

 � Duplex (*FULL)
� Device buffer size of 896 bytes (required for file transfer)
� No flow control

 � No echo

Asynchronous communications allows you to connect to the
modem and to send dial commands without the data set
ready (DSR) signal being active. This is called a deferred

E-2 AS/400 Asynchronous Communications Programming V4R1

connection and is configured using the AUTODIAL(*YES)
and DIALCMD(*OTHER) parameters on the line description.
If you have the modem switches set to hold DSR active, you
must provide a nonswitched line and controller configuration
to communicate with the modem.

A command-capable modem requires that you send a dial
command to call the remote modem. This command must
be provided by your program as data on the first write opera-
tion.

Because file transfer runs on this line, you need to provide a
retry value and an acknowledgement timer value for file
transfer. If your lines are noisy or if the network you are
using is slow, you could choose to increase both values.
The values shown cause file transfer to wait for a response
from the remote system for up to 30 seconds before consid-
ering the transmission unsuccessful. Each unsuccessful
transmission is tried again a maximum of ten times. The
value provided for parity, bits per character, flow control, and
echo are also required for file transfer.

DEVD
SWDEV

CTLD
SWCTL

LIND
SWLIN

I/O
Adapter

AS/400 System
or System/36Modem Modem

Switched

AS/400 System

RV3S001-0

This diagram shows an example of a switched asynchronous communications
line.

Figure E-5. Switched Asynchronous Communications Example

Switched Asynchronous Line Description:

à ð
Create Line Desc (Async) (CRTLINASC)

 Type choices, press Enter.

 Line description > SWLIN Name

 Resource name > LINð31 Name

 Online at IPL > \NO \YES, \NO

 Physical interface \RS232V24 \RS232V24

 Connection type > \SWTPP \NONSWTPP, \SWTPP

 Vary on wait \NOWAIT \NOWAIT, 15-18ð (1 second)

 Autocall unit \NO \NO, \YES

 Data bits per character 8 8, 7

 Type of parity \NONE \NONE, \ODD, \EVEN

 Stop bits 1 1, 2

 Duplex \FULL \FULL, \HALF

 Echo support \NONE \NONE, \ALL, \CNTL

 Line speed > 24ðð 5ð, 75, 11ð, 15ð, 3ðð, 6ðð...

 Modem type supported \NORMAL \NORMAL, \V54, \IBMWRAP

 Switched connection type > \DIAL \BOTH, \ANS, \DIAL

 Autoanswer > \NO \YES, \NO

 More...
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

à ð
Create Line Desc (Async) (CRTLINASC)

 Type choices, press Enter.

 Autodial > \YES \NO, \YES

 Dial command type > \OTHER \NONE, \V25BIS, \OTHER

 Calling number \NONE

 Inactivity timer > \NOMAX \NOMAX, 15ð-42ðð (ð.1 sec)

 Maximum buffer size 896 128-4ð96

 Flow control \NO \NO, \YES

 End-of-Record table:

End-of-Record character . . . ðð ðð-FF

Trailing characters ð ð-4

+ for more values

 Data Set Ready drop timer . . . 6 3-6ð (seconds)

 Autoanswer type \DTR \DTR, \CDSTL

 Remote answer timer 6ð 3ð, 35, 4ð, 45 (seconds)...

 Text 'description' > 'Switched asynchronous line for file transfe

r'

 Bottom
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-6. Prompt Displays for Switched Asynchronous Line
Description

Switched Asynchronous Controller Description:

à ð
Create Ctl Desc (Async) (CRTCTLASC)

 Type choices, press Enter.

 Controller description > SWCTL Name

 Link type > \ASYNC \ASYNC, \X25

 Online at IPL \YES \YES, \NO

 Switched connection > \YES \NO, \YES

 Switched line list > SWLIN Name

+ for more values

 Initial connection \DIAL \DIAL, \ANS

 Connection number > '555-1234'

 Text 'description' > 'Switched controller for file transfer'

 Bottom
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-7. Prompt Display for Switched Asynchronous Controller
Description

Switched Asynchronous Device Description:

à ð
Create Device Desc (Async) (CRTDEVASC)

 Type choices, press Enter.

 Device description > SWDEV Name

 Remote location > ASYNDIAL Name, \NONE

 Online at IPL \YES \YES, \NO

 Attached controller > SWCTL Name

 Text 'description' > 'Asynchronous device for file transfer'

 Bottom
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-8. Prompt Display for Switched Asynchronous Device
Description

 Appendix E. Asynchronous Communications Configuration Examples E-3

Asynchronous/X.25 Network Examples

Asynchronous communications can be run on a switched or
nonswitched line to an X.25 packet-switching data network
(PSDN). This is done by creating an X.25 line description
and asynchronous controller and device descriptions. The
following examples show how to configure these descriptions
for running asynchronous communications over an X.25
PSDN using :

� A permanent virtual circuit (PVC).
� An incoming call on a switched virtual circuit (SVC),

*SVCIN.
� An incoming call on an SVC (*SVCIN) for generic asyn-

chronous communications controllers and devices.
Generic controllers are created to accept incoming calls
from any network address whose local location name
and local ID are defined in your asynchronous remote
location configuration list.

� An incoming call on an SVC (*SVCIN) for generic asyn-
chronous controllers. Generic controllers are created to
accept incoming calls from any network address.

� An outgoing call on an SVC (*SVCOUT).
� An outgoing call on an SVC (*SVCOUT) for packet

assembler/disassembler (PAD) emulation.

Permanent Virtual Circuit (*PVC)

This X.25 line description example supports one PVC and up
to four SVC controllers. Asynchronous communications
allows only one active session (device) for each controller.
The controller and device descriptions attached to this line
could be a combination of any of the communications types
supported by X.25.

The following controller and device description examples
show only asynchronous communications possibilities.

An exchange identifier (EXCHID) is required in the X.25 line
description although it is never used in establishing or con-
firming an asynchronous communications connection. The
EXCHID is used only by the SNA controller descriptions
attached to the X.25 line.

X.25 Line Description:

à ð
Create Line Desc (X.25) (CRTLINX25)

 Type choices, press Enter.

 Line description > X25LINE Name

 Resource name > LINð31 Name

 Logical channel entries:

Logical channel identifier . . > ðð1 ðð1-FFF

Logical channel type > \PVC \PVC, \SVCIN, \SVCBOTH...

PVC controller Name

+ for more values

 Local network address > 4ð1ððð3ð
 Connection initiation > \LOCAL \LOCAL, \REMOTE, \WAIT

 Online at IPL \YES \YES, \NO

 Physical interface \X21BISV24 \X21BISV24, \X21BISV35...

 Connection type \NONSWTPP \NONSWTPP, \SWTPP

 Vary on wait \NOWAIT \NOWAIT, 15-18ð (1 second)

 Line speed 96ðð 6ðð, 12ðð, 24ðð, 48ðð...

 Exchange identifier \SYSGEN ð56ððððð-ð56FFFFF, \SYSGEN

 Extended network addressing . . \NO \YES, \NO

 More...
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-9 (Part 1 of 3). Prompt Displays for X.25 Line
Description

E-4 AS/400 Asynchronous Communications Programming V4R1

à ð
Specify More Values for Parameter LGLCHLE

 Type choices, press Enter.

 Logical channel entries:

Logical channel identifier . . > ðð1 ðð1-FFF

Logical channel type > \PVC \PVC, \SVCIN, \SVCBOTH...

PVC controller Name

Logical channel identifier . . > ðð2 ðð1-FFF

Logical channel type > \SVCBOTH \PVC, \SVCIN, \SVCBOTH...

PVC controller Name

Logical channel identifier . . > ðð3 ðð1-FFF

Logical channel type > \SVCBOTH \PVC, \SVCIN, \SVCBOTH...

PVC controller Name

Logical channel identifier . . > ðð4 ðð1-FFF

Logical channel type > \SVCBOTH \PVC, \SVCIN, \SVCBOTH...

PVC controller Name

 More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á

ñ

à ð
Specify More Values for Parameter LGLCHLE

 Type choices, press Enter.

Logical channel identifier . . > ðð5 ðð1-FFF

Logical channel type > \SVCBOTH \PVC, \SVCIN, \SVCBOTH...

PVC controller Name

Logical channel identifier . . ðð1-FFF

Logical channel type \PVC, \SVCIN, \SVCBOTH...

PVC controller Name

Logical channel identifier . . ðð1-FFF

Logical channel type \PVC, \SVCIN, \SVCBOTH...

PVC controller Name

Logical channel identifier . . ðð1-FFF

Logical channel type \PVC, \SVCIN, \SVCBOTH...

PVC controller Name

 More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á

ñ

à ð
Create Line Desc (X.25) (CRTLINX25)

 Type choices, press Enter.

Logical channel identifier . . > ðð5 ðð1-FFF

Logical channel type > \SVCBOTH \PVC, \SVCIN, \SVCBOTH...

PVC controller Name

+ for more values

 Local network address > 4ð1ððð3ð
 Connection initiation > \LOCAL \LOCAL, \REMOTE, \WAIT

 Online at IPL \YES \YES, \NO

 Physical interface \X21BISV24 \X21BISV24, \X21BISV35...

 Connection type \NONSWTPP \NONSWTPP, \SWTPP

 Vary on wait \NOWAIT \NOWAIT, 15-18ð (1 second)

 Line speed 96ðð 6ðð, 12ðð, 24ðð, 48ðð...

 Exchange identifier \SYSGEN ð56ððððð-ð56FFFFF, \SYSGEN

 Extended network addressing . . \NO \YES, \NO

 More...
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-9 (Part 2 of 3). Prompt Displays for X.25 Line
Description

à ð
Create Line Desc (X.25) (CRTLINX25)

 Type choices, press Enter.

 Default packet size:

Transmit value 128 64, 128, 256, 512, 1ð24

Receive value \TRANSMIT \TRANSMIT, 64, 128, 256...

 Maximum packet size:

Transmit value \DFTPKTSIZE \DFTPKTSIZE, 64, 128, 256...

Receive value \DFTPKTSIZE \DFTPKTSIZE, \TRANSMIT, 64...

 Modulus 8 8, 128

 Default window size:

Transmit value 2 1-15

Receive value \TRANSMIT 1-15, \TRANSMIT

 Insert net address in packets . \YES \YES, \NO

 Text 'description' > 'X.25 line at address 4ð1ððð3ð'

 Bottom
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-9 (Part 3 of 3). Prompt Displays for X.25 Line
Description

Asynchronous Controller Description to PVC:

à ð
Create Ctl Desc (Async) (CRTCTLASC)

 Type choices, press Enter.

 Controller description > PVCCTL Name

 Link type > \X25 \ASYNC, \X25

 Online at IPL \YES \YES, \NO

 Switched connection \NO \NO, \YES

 Attached nonswitched line . . . > X25LINE Name

 X.25 logical channel ID > ðð1 ðð1-FFF

 Text 'description' > 'X.25 asynchronous controller to PVC'

 Bottom
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-10. Prompt Display for Asynchronous PVC Controller

Asynchronous Device Description to PVC:

à ð
Create Device Desc (Async) (CRTDEVASC)

 Type choices, press Enter.

 Device description > PVCDEV Name

 Remote location name > PVCLOC Name, \NONE

 Online at IPL \YES \YES, \NO

 Attached controller > PVCCTL Name

 Text 'description' > 'X.25 asynchronous device to PVC'

 Bottom
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-11. Prompt Display for Asynchronous PVC Device

 Appendix E. Asynchronous Communications Configuration Examples E-5

Incoming Call on a Switched Virtual Circuit
(*SVCIN)

This example should be used if you know the network
address of the system that starts the call. This configuration
is connected only to the address specified for the connection
number (CNNNBR parameter).

After creating the controller description, the name must be
added to the switched controller list (SWTCTLLST) of the
appropriate X.25 line description. To add the name to the
switched controller list, type the following command:

CHGLINX25 LIND(X25LINE) SWTCTLLST(SVCINCTL1)

Asynchronous Controller Description: *SVCIN
from a Specific Address:

à ð
Create Ctl Desc (Async) (CRTCTLASC)

 Type choices, press Enter.

 Controller description > SVCINCTL1 Name

 Link type > \X25 \ASYNC, \X25

 Online at IPL > \NO \YES, \NO

 Switched connection > \YES \NO, \YES

 Switched line list > X25LINE Name

+ for more values

 Initial connection > \ANS \DIAL, \ANS

 Connection number > 4ð1ððð55

 Text 'description' > 'X.25 async controller \SVCIN from 4ð1ððð55'

 Bottom
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-12. Prompt Display for Asynchronous Controller: *SVCIN
from Address 40100055

Asynchronous Device Description *SVCIN from a
Specific Address:

à ð
Create Device Desc (Async) (CRTDEVASC)

 Type choices, press Enter.

 Device description > SVCINDEV1 Name

 Remote location > SVC1 Name, \NONE

 Online at IPL > \NO \YES, \NO

 Attached controller > SVCINCTL1 Name

 Text 'description' > 'X.25 async device \SVCIN'

 Bottom
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-13. Prompt Display for Asynchronous Device: *SVCIN
from Address 40100055

Incoming Call on a Switched Virtual Circuit
(*SVCIN) for Generic Controllers and
Devices

This example describes an incoming call on a switched
virtual circuit (*SVCIN) for generic controllers and devices.
These descriptions accept a call from any system on the
network that satisfies the following conditions:

� The local system controller description must specify
INLCNN(*ANS) and CNNNBR(*ANY); no remote location
name (RMTLOCNAME(*NONE)) is specified in the
device description.

� The remote or calling system must have configured
RMTVFY(*YES) and have provided a local location
name and local identifier (LCLLOCNAME and LCLID
parameters) in the controller description.

� The local system must enter the local location name and
local identifier specified by the remote system in the
asynchronous communications remote location list (using
CRTCFGL TYPE(*ASYNCLOCE)). The local location
name cannot currently be specified as a remote location
name on an existing asynchronous device.

Figure E-14 on page E-7 shows a configuration of this type.
The remote system controller description has specified
RMTVFY(*YES) and provided a local location name and local
identifier. When the remote system calls the local system,
the local system will check the asynchronous remote location
list for the LCLLOCNAME and LCLID sent by the remote
system. If these entries are included, the call is accepted
and the local location name specified by the remote con-
troller is used as the remote location name (RMTLOCNAME
parameter) for the generic device description.

E-6 AS/400 Asynchronous Communications Programming V4R1

Local AS/4ðð System Remote AS/4ðð System

┌──────────────────────────────────────┐ ┌──────────────────┐ ┌───────────────────────────────────┐

 │ │ │ │ │ │

 │ CRTLINX25 LIND(X25LINE) ... │ │ X.25 Network │ │ CRTLINX25 LIND(LINX25) ... │

 │ │ │ │ │ │

 │ │ │ │ │ │

 │ CRTCTLASC CTLD(SVCINCTL2) │ │ │ │ CRTCTLASC CTLD(NORTHCTL) │

 │ SWTLINLST(X25LINE) │ │ │ │ SWTLINLST(LINX25) │

│ INLCNN(\ANS) │ │ │ │ INLCNN(\DIAL) │

 │ CNNNBR(\ANY) │ │ │ │ CNNNBR(4ð1ðð1ðð) │

 │ │ │ │ │ RMTVFY(\YES) │

 │ │ │ ┌────────┼──────┼────────── LCLLOCNAME(FARNORTH) │

 │ │ │ │ ┌──────┼──────┼────────── LCLID(NORTHID) │

│ │ │ │ │ │ │ │

│ CRTDEVASC DEVD(SVCINDEV2) │ │ │ │ │ │ CRTDEVASC DEVD(NORTHDEV) │

│ RMTLOCNAME(\NONE) %──┐ │ │ │ │ │ │ RMTLOCNAME(NORTH) │

│ CTL(SVCINCTL2) │ │ │ │ │ │ │ CTL(NORTHCTL) │

│ │ │ │ │ │ │ │ │

│ │ │ └─────────┼─┼──────┘ └───────────────────────────────────┘

 │ CRTCFGL TYPE(\ASYNCLOCE) │ │ │ │

 │ . │ │ │ │

 │ . │ │ │ │

 │ . │ │ │ │

 │ remote location name = FARNORTH %─┼────────────────┘ │

 │ remote location ID = NORTHID %─┼──────────────────┘

 │ . │

 │ . │

 │ . │

 └──────────────────────────────────────┘

Figure E-14. Using a Generic Device Description with Asynchronous Remote Location Entries

“Outgoing Call on a Switched Virtual Circuit (*SVCOUT)” on
page E-8 shows an example of an SVC configured like that
of the remote system in Figure E-14.

After creating the controller description, the name must be
added to the switched controller list (SWTCTLLST) of the
appropriate X.25 line description. To add the name to the
switched controller list, type the following command:

CHGLINX25 LIND(X25LINE) SWTCTLLST(SVCINCTL2)

Asynchronous Controller Description: *SVCIN
from Any Address:

à ð
Create Ctl Desc (Async) (CRTCTLASC)

 Type choices, press Enter.

 Controller description > SVCINCTL2 Name

 Link type > \X25 \ASYNC, \X25

 Online at IPL > \NO \YES, \NO

 Switched connection > \YES \NO, \YES

 Switched line list X25LINE Name

+ for more values

 Initial connection > \ANS \DIAL, \ANS

 Connection number > \ANY

 Text 'description' > 'X.25 async controller from any network addr

ess'

 Bottom
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-15. Prompt Display for Asynchronous Controller: *SVCIN
from Any Network Address. Display shows a generic controller
description (CNNNBR(*ANY)) used with generic device description
(RMTLOCNAME(*NONE)) shown in Figure E-16.

Asynchronous Device Description: *SVCIN from
Any Address:

à ð
Create Device Desc (Async) (CRTDEVASC)

 Type choices, press Enter.

 Device description > SVCINDEV2 Name

 Remote location > \NONE Name, \NONE

 Online at IPL > \NO \YES, \NO

 Attached controller > SVCINCTL2 Name

 Text 'description' > 'X.25 async device \SVCIN from any network a

ddress'

 Bottom
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-16. Prompt Display for Asynchronous Device: *SVCIN
from Any Network Address. Display shows a generic device
description (RMTLOCNAME(*NONE)) used with generic controller
description (CNNNBR(*ANY)) shown in Figure E-15.

Incoming Call on a Switched Virtual Circuit
(*SVCIN) for Generic Controllers

This example describes an incoming call on a switched
virtual circuit (*SVCIN) for generic controllers. These
descriptions accept a call from any system on the network.

After creating the controller description, the name must be
added to the switched controller list (SWTCTLLST) of the
appropriate X.25 line description. To add the name to the
switched controller list, type the following command:

CHGLINX25 LIND(X25LINE) SWTCTLLST(SVCINCTL3)

Asynchronous Controller Description: *SVCIN
from Any Address:

 Appendix E. Asynchronous Communications Configuration Examples E-7

à ð
Create Ctl Desc (Async) (CRTCTLASC)

 Type choices, press Enter.

 Controller description > SVCINCTL3 Name

 Link type > \X25 \ASYNC, \X25

 Online at IPL > \NO \YES, \NO

 Switched connection > \YES \NO, \YES

 Switched line list > X25LINE Name

+ for more values

 Initial connection > \ANS \DIAL, \ANS

 Connection number > \ANY

 Text 'description' > 'X.25 async ctl \SVCIN from any network addr

ess'

 Bottom
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-17. Prompt Display for Asynchronous Controller: *SVCIN
from Any Network Address. Display shows a generic controller
description (CNNNBR(*ANY)) used with the device description
shown in Figure E-18.

Asynchronous Device Description: *SVCIN from
Any Address:

à ð
Create Device Desc (Async) (CRTDEVASC)

 Type choices, press Enter.

 Device description > SVCINDEV3 Name

 Remote location > SVC3 Name, \NONE

 Online at IPL > \NO \YES, \NO

 Attached controller > SVCINCTL3 Name

 Text 'description' > 'X.25 async device \SVCIN from any network a

ddress'

 Bottom
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-18. Prompt Display for Asynchronous Device: *SVCIN
from Any Network Address

Outgoing Call on a Switched Virtual Circuit
(*SVCOUT)

This example describes an outgoing switched virtual circuit
using remote verification (RMTVFY(*YES)) and specifying a
local location name and local identifier to connect to a
generic controller and device at the remote system. The
local location name and the local identifier specified for the
controller description must also be specified in the asynchro-
nous remote location list (*ASYNCLOCE list when using
CRTCFGL) at the remote system.

This configuration is similar to that of the remote system
described in Figure E-14 on page E-7.

Asynchronous Controller Description: *SVCOUT to
a Specific Address:

à ð
Create Ctl Desc (Async) (CRTCTLASC)

 Type choices, press Enter.

 Controller description > SVCOUTCTL Name

 Link type > \X25 \ASYNC, \X25

 Online at IPL > \NO \YES, \NO

 Switched connection > \YES \NO, \YES

 Switched line list > X25LINE Name

+ for more values

 Initial connection \DIAL \DIAL, \ANS

 Connection number > 4ð1ðð1ðð

 Text 'description' > 'X.25 async ctl \SVCOUT to 4ð1ðð1ðð'

 Additional Parameters

 Attached devices Name

 Predial delay 6 ð-254 (ð.5 seconds)

 Redial delay 12ð ð-254 (ð.5 seconds)

 More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á

ñ

à ð
Create Ctl Desc (Async) (CRTCTLASC)

 Type choices, press Enter.

 Dial retry 2 ð-254

 Switched disconnect \NO \NO, \YES

 File transfer ack timer 16 16-65535 seconds

 File transfer retry 7 1-255

 Remote verify > \YES \NO, \YES

 Local location > FARNORTH Name

 Local identifier > NORTHID Name

 PAD Emulation \NO \NO, \YES

 X.25 switched line selection . . \FIRST \FIRST, \CALC

 X.25 default packet size:

Transmit value \LIND \LIND, 64, 128, 256, 512...

Receive value \LIND \LIND, \TRANSMIT, 64, 128...

 X.25 default window size:

Transmit value \LIND 1-15, \LIND

Receive value \LIND 1-15, \LIND, \TRANSMIT

 X.25 user group identifier . . . ðð-99

 More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á

ñ

Figure E-19. Prompt Displays for Asynchronous Controller:
*SVCOUT to Address 40100100

Asynchronous Device Description: *SVCOUT to a
Specific Address:

à ð
Create Device Desc (Async) (CRTDEVASC)

 Type choices, press Enter.

 Device description > SVCOUTDEV Name

 Remote location > SVCO Name, \NONE

 Online at IPL > \NO \YES, \NO

 Attached controller > SVCOUTCTL Name

 Text 'description' > 'X.25 async device \SVCOUT'

 Bottom
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-20. Prompt Display for Asynchronous Device: *SVCOUT
to Address 40100100

E-8 AS/400 Asynchronous Communications Programming V4R1

Outgoing Call on a Switched Virtual Circuit
(*SVCOUT) for PAD Emulation

This example describes how to configure packet
assembler/disassembler (PAD) emulation. PAD emulation
support allows an AS/400 application program to communi-
cate with host support that requires the PAD function to be
performed.

For a more detailed discussion of the PAD support provided,
refer to the Asynchronous Communications Programming
book.

Asynchronous Controller Description: *SVCOUT to
PAD:

à ð
Create Ctl Desc (Async) (CRTCTLASC)

 Type choices, press Enter.

 Controller description > SVCPADCTL Name

 Link type > \X25 \ASYNC, \X25

 Online at IPL > \NO \YES, \NO

 Switched connection > \YES \NO, \YES

 Switched line list > X25LINE Name

+ for more values

 Initial connection \DIAL \DIAL, \ANS

 Connection number > 4ð1ðð15ð

 Text 'description' > 'X.25 async ctl \SVCOUT to PAD'

 Additional Parameters

 Attached devices Name

 Predial delay 6 ð-254 (ð.5 seconds)

 Redial delay 12ð ð-254 (ð.5 seconds)

 More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á

ñ

Figure E-21. Prompt Displays for Asynchronous Controller:
*SVCOUT to PAD

à ð
Create Ctl Desc (Async) (CRTCTLASC)

 Type choices, press Enter.

 Dial retry 2 ð-254

 Switched disconnect \NO \NO, \YES

 File transfer ack timer 16 16-65535 seconds

 File transfer retry 7 1-255

 Remote verify \NO \NO, \YES

 Local location Name

 Local identifier Name

 PAD Emulation > \YES \NO, \YES

 X.25 switched line selection . . \FIRST \FIRST, \CALC

 X.25 default packet size:

Transmit value \LIND \LIND, 64, 128, 256, 512...

Receive value \LIND \LIND, \TRANSMIT, 64, 128...

 X.25 default window size:

Transmit value \LIND 1-15, \LIND

Receive value \LIND 1-15, \LIND, \TRANSMIT

 X.25 user group identifier . . . ðð-99

 More...
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display

 F24=More keys

á

ñ

Asynchronous Device Description: *SVCOUT to
PAD:

à ð
Create Device Desc (Async) (CRTDEVASC)

 Type choices, press Enter.

 Device description > SVCPADDEV Name

 Remote location > PAD Name, \NONE

 Online at IPL > \NO \YES, \NO

 Attached controller > SVCPADCTL Name

 Text 'description' > 'X.25 async device \SVCOUT to PAD'

 Bottom
F3=Exit F4=Prompt F5=Refresh F1ð=Additional parameters F12=Cancel

 F13=How to use this display F24=More keys

á

ñ

Figure E-22. Prompt Display for Asynchronous Device: *SVCOUT
to PAD

 Appendix E. Asynchronous Communications Configuration Examples E-9

E-10 AS/400 Asynchronous Communications Programming V4R1

 Appendix F. Program Examples

This appendix contains program examples written in
COBOL/400*, ILE C/400, and RPG/400* languages. Each
language is represented by two sample programs (a source
and a target program) that demonstrate passing data using
asynchronous communications support. A sample program
in FORTRAN/400 is provided in the ICF Programming book.

Not all programming considerations or techniques are illus-
trated in these examples. You should review the examples
before you begin application design and coding.

COBOL/400 Program Examples

The COBOL/400 source program starts a session with a
remote location and issues an evoke function, with no invite,
to start the target program. The source program sends an
item number to the target program and then waits 30
seconds (specified using the DDS TIMER keyword) to
receive a response from the target program indicating the
evoke function completed successfully. If the source
program receives a major return code equal to or greater
than 03, the program goes to end of job.

In the following sample programs, the source program sends
an item number to the target program requesting item infor-
mation, then waits 30 seconds. The target program then
sends the item information (description) to the source

program. The source program sends the value 99999 to the
target program, to indicate end-of-transaction. At this point,
both programs go to end-of-job.

If the source program does not receive a response from the
target program within 30 seconds of sending a request, the
source program issues a time-out message and goes to end-
of-job.

COBOL/400 Program Descriptions

The following information describes the structure of the
sample programs shown in Figure F-3 on page F-4 and
Figure F-5 on page F-11. The reference numbers in the
figures correspond to those in the descriptions.

COBOL/400 Source Program: The following describes
the COBOL/400 inquiry program that runs on the local
system.

Program Files: The COBOL/400 inquiry program uses the
following files:

ASYNFILS The ICF file used to send records to and receive
responses from the target program.

DSPFIL The display device file used to request part
number entry at the display station.

 Copyright IBM Corp. 1997 F-1

DDS Source: The DDS for the ICF file (ASYNFILS) is
shown in Figure F-1; the DDS for the display device file
(DSPFILE) is shown in Figure F-2.

SEQNBR \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 Date

 1ðð A

 2ðð A INDARA

 3ðð A

 4ðð A R STRTIM

 5ðð A TIMER(ðððð3ð)

 6ðð A

 7ðð A R PGMSTR

 8ðð A EVOKE(&LIB/&PGMID)

9ðð A SECURITY(2 'ASYNCPWD' 3 'ASYNCUSR')

 1ððð A PGMID 1ðA P

 11ðð A LIB 1ðA P

12ðð A\ \

 13ðð A\ \

14ðð A\ \ Depending on the security level of the Target Source, \

15ðð A\ a user profile of "ASYNCUSR" having a password of \

16ðð A\ "ASYNCPWD" may be required on the Target System. \

 17ðð A\ \

18ðð A\ \ User, "ASYNCUSR", must have authority to the device \

19ðð A\ object (device description) being used on the Target \

 2ððð A\ System. \

 21ðð A\ \

22ðð A\ \

 23ðð A

 24ðð A R ITEMRQ

 25ðð A INVITE

 26ðð A PARTNM 5A

 27ðð A

 28ðð A R JOBEND

 29ðð A EOJIND 5A

 3ððð A

 31ðð A R INVIT

 32ðð A INVITE

 33ðð A

 34ðð A R ITEMDS

 35ðð A PARTDS 25A

 36ðð A

 37ðð A R ERRDES

 38ðð A ERRORD 4ðA

 39ðð A

 4ððð A R PGMERR

 41ðð A INVITE

 42ðð A FAIL

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

Figure F-1. DDS Source for ICF File ASYNFILS, COBOL Source and Target Programs

SEQNBR \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 Date

1ðð A DSPSIZ(24 8ð \DS3)

 2ðð A INDARA

 3ðð A CFð3(99)

 4ðð A R PROMPT

5ðð A 5 1ð'Part Number: '

6ðð A PARTN 5A I 5 25

7ðð A 1ð 1ð'Part Description: '

8ðð A PARTD 25A O 1ð 3ð

9ðð A ERRORL 4ðA O 12 1ðDSPATR(HI)

1ððð A 23 5'F3 = Exit'

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

Figure F-2. DDS Source for Display Device File, COBOL Source Program

ICF File Creation and Program Device Entry Definition:
The following command is used to create the ICF file. Note
that the same ICF file is used for both the source and target
programs.

CRTICFF FILE(ASYNLIBCBL/ASYNFILS)

 SRCFILE(ASYNLIBCBL/QDDSSRC)

 SRCMBR(ASYNFIL) MAXPGMDEV(2)

 WAITRCD(3ð)

The following command is used to define the program device
entry.

ADDICFDEVE FILE(ASYNLIBCBL/ASYNFILS)

 PGMDEV(ICFðð)

 RMTLOCNAME(CHICAGO)

The following two commands can also be used.

OVRICFDEVE PGMDEV(ICFðð) RMTLOCNAME(CHICAGO)

OVRICFF FILE(ASYNFILS)

 TOFILE(ASYNLIBCBL/ASYNFILS)

Display Device File Creation: The following command is
used to create the display device file:

F-2 AS/400 Asynchronous Communications Programming V4R1

CRTDSPF FILE(ASYNLIBCBL/DSPFIL)

 SRCFILE(ASYNLIBCBL/QDDSSRC)

 SRCMBR(DSPFILE)

Program Explanation: The following describes the struc-
ture of the program example illustrated in Figure F-3 on
page F-4.

.1/ The files used in the program are described in the file
control section. ASYNFILS is the ICF file used to send
records to and receive records from the target system.

DSPFIL is the name of the display device file used to
request an entry from the work station and to display
the results of the inquiry.

Note that ICF files are defined to COBOL/400 as work
station files.

.2/ This section of the program redefines the feedback
areas for use within the program. See the ICF Pro-
gramming book for a description of the I/O feedback
areas.

.3/ The ICF file (ASYNFILS) and the display device file
(DSPFIL) are opened. The program device named
ICF00 is acquired by the program. This program
device was previously added to the ICF file
(ASYNFILS) by the ADDICFDEVE command.

Once the program device is acquired, routine
EVOKE-ROUTINE (.8/) is called to build the evoke
request to be sent to the remote system. Because the
DDS for the record format only specifies the field iden-
tifiers with the record, the program moves the literal
value ASYNTINQ to field PGMID, the value
ASYNLIBCBL to field LIB, and the value ICF00 to the
field PGM-DEV-NME. The write operation is then
issued using record format PGMSTR, which has the
evoke function specified in the DDS.

When the program start request is received at the
target AS/400 system, ASYNLIBCBL is searched for
program ASYNTINQ and that program is then started.
The target program for this example is shown in
Figure F-5 on page F-11.

.4/ The program builds the first prompt display to request
the entry of a part number and to read the part
number.

Routine DISPLAY-PROC (.6/) is called to send the
results of the read from the display station to the
remote program.

If F3 was pressed while the prompt was displayed, pro-
cessing goes to the end-of-job routine, END-JOB (.5/).

.5/ This part of the program does the end-of-job pro-
cessing. Control passes here whenever the program is
going to end normally. The program ends when the
operator presses F3 while the part number prompt is
displayed.

It first calls DETACH-ROUTINE (.9/) to end the trans-
action. The files used by the program are then implic-
itly closed and the program ends.

.6/ This routine (DISPLAY-PROC) is called from .4/ to
build the record to send to the target AS/400 system.
If F3 is pressed while the prompt is displayed, control
passes to .5/.

Routine .7/ is called to build the record and send it to
the target system. Control then returns here. The
results are displayed and input is again requested.

.7/ This routine (REMOTE-PROC) builds and sends the
item request record to the target system. It sends the
request using format ITEMRQ. When the operation
completes, the routine checks for a successful return
code (00 major code, as defined in .2/); if successful,
the item description (ITEMDS) is read from the
program device ICF00 and then moved to the part
description field (PARTD) for the display device
(DSPFIL). Control then returns to .6/.

If the target system returned a fail (return code 0302),
the error description is read from ICF00 and moved to
the display device error field (ERRORL). Control then
returns to .6/.

If any other return code is received, the program goes
to end of job (.5/).

.8/ This routine (EVOKE-ROUTINE) is called from .3/ to
build and send the program start request to the remote
program. Record format PGMSTR is used to issue the
evoke function.

.9/ This routine (DETACH-ROUTINE) is called from .5/ to
end the transaction by issuing a write operation using
format PGMEND.

.1ð/ If an exception occurs, routine ASYNFILS-EXCEPTION
is automatically called to check the return code on all
operations to ASYNFILS. If the major code is other
than a 00 or 03, it ends the program.

 Appendix F. Program Examples F-3

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source ASYNLIBCBL/ASYNSINQ RCH38321 12/19/9ð 11:26:45 Page 1

 Program : ASYNSINQ

Library : ASYNLIBCBL

 Source file : QCBLSRC

Library : ASYNLIBCBL

 Source member : ASYNSINQ 12/19/9ð 11:14:31

 Generation severity level : 29

 Text 'description' : Source System's asynchronous COBOL program example

 Source listing options : \NONE

 Generation options : \NONE

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM AS/4ðð COBOL/4ðð

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source ASYNLIBCBL/ASYNSINQ RCH38321 12/19/9ð 11:26:45 Page 2

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

1 ððð1ðð IDENTIFICATION DIVISION.

 ððð2ðð

 2 ððð3ðð PROGRAM-ID. ASYNSINQ.

 ððð4ðð

 ððð5ðð\\

ððð6ðð\ THIS PROGRAM STARTS A PROGRAM CALLED 'ASYNTINQ' A TARGET \

ððð7ðð\ SYSTEM. IT THEN BRINGS UP A DISPLAY WHICH PROMPTS THE USER \

ððð8ðð\ FOR A PART NUMBER. THE PART NUMBER IS PASSED ON PROGRAM \

ððð9ðð\ DEVICE 'ICFðð' TO 'ASYNTINQ'. IF THE PART IS FOUND IN THE \

ðð1ððð\ DATABASE OF 'ASYNTINQ', THE 'WRITE' IS CONFIRMED, AND THE \

ðð11ðð\ DESCRIPTION OF THE PART IS SENT BACK. IF THE PART IS NOT \

ðð12ðð\ FOUND OR THE PART NUMBER IS INVALID, A 'FAIL' IS RETURNED \

ðð13ðð\ IN RESPONSE TO THE WRITE ALONG WITH ERROR MESSAGE TEXT. \

ðð14ðð\ EITHER THE PART DESCRIPTION (IF THE PART WAS FOUND) OR THE \

ðð15ðð\ ERROR MESSAGE TEXT (IF THE PART WAS NOT FOUND) IS DISPLAYED \

ðð16ðð\ TO THE USER. THE USER MAY THEN ENTER A NEW PART NUMBER OR \

ðð17ðð\ END THE PROGRAM. THE PROGRAM IS ENDED BY F3. \

 ðð18ðð\\

 ðð19ðð

3 ðð2ððð ENVIRONMENT DIVISION.

 ðð21ðð

4 ðð22ðð CONFIGURATION SECTION.

 ðð23ðð

5 ðð24ðð SOURCE-COMPUTER. IBM-AS4ðð.

6 ðð25ðð OBJECT-COMPUTER. IBM-AS4ðð.

7 ðð26ðð SPECIAL-NAMES. I-O-FEEDBACK IS IO-FEEDBACK

8 ðð27ðð OPEN-FEEDBACK IS OPEN-FBA.

 ðð28ðð

9 ðð29ðð INPUT-OUTPUT SECTION.

 ðð3ððð

 .1/
 1ð ðð31ðð FILE-CONTROL.

 ðð32ðð

11 ðð33ðð SELECT ASYNFILS ASSIGN TO WORKSTATION-ASYNFILS

12 ðð34ðð ORGANIZATION IS TRANSACTION

13 ðð35ðð CONTROL-AREA IS TR-CTL-AREA

14 ðð36ðð FILE STATUS IS STATUS-IND MAJ-MIN.

15 ðð37ðð SELECT DSPFIL ASSIGN TO WORKSTATION-DSPFIL

16 ðð38ðð ORGANIZATION IS TRANSACTION

17 ðð39ðð CONTROL-AREA IS DISPLAY-FEEDBACK

18 ðð4ððð FILE STATUS IS STATUS-DSP.

 ðð41ðð

19 ðð42ðð DATA DIVISION.

 ðð43ðð

2ð ðð44ðð FILE SECTION.

 ðð45ðð

Figure F-3 (Part 1 of 6). COBOL/400 Inquiry Example – Source Program

F-4 AS/400 Asynchronous Communications Programming V4R1

 ðð46ðð\\

ðð47ðð\ FILE DESCRIPTION FOR THE ICF FILE FOR THIS PROGRAM. \

 ðð48ðð\\

 ðð49ðð

 21 ðð5ððð FD ASYNFILS

22 ðð51ðð LABEL RECORDS ARE STANDARD.

 23 ðð52ðð ð1 ASYNREC.

24 ðð53ðð COPY DDS-ALL-FORMATS-I-O OF ASYNFILS.

25 +ððððð1 ð5 ASYNFILS-RECORD PIC X(4ð). <-ALL-FMTS

+ððððð2\ I-O FORMAT:STRTIM FROM FILE ASYNFILS OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source ASYNLIBCBL/ASYNSINQ RCH38321 12/19/9ð 11:26:45 Page 3

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 +ððððð3\ <-ALL-FMTS

 +ððððð4\ ð5 STRTIM REDEFINES ASYNFILS-RECORD. <-ALL-FMTS

+ððððð5\ INPUT FORMAT:PGMSTR FROM FILE ASYNFILS OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ððððð6\ <-ALL-FMTS

 +ððððð7\ ð5 PGMSTR-I REDEFINES ASYNFILS-RECORD. <-ALL-FMTS

+ððððð8\ OUTPUT FORMAT:PGMSTR FROM FILE ASYNFILS OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ððððð9\ <-ALL-FMTS

 26 +ðððð1ð ð5 PGMSTR-O REDEFINES ASYNFILS-RECORD. <-ALL-FMTS

 27 +ðððð11 ð6 PGMID PIC X(1ð). <-ALL-FMTS

 28 +ðððð12 ð6 LIB PIC X(1ð). <-ALL-FMTS

+ðððð13\ I-O FORMAT:ITEMRQ FROM FILE ASYNFILS OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ðððð14\ <-ALL-FMTS

 29 +ðððð15 ð5 ITEMRQ REDEFINES ASYNFILS-RECORD. <-ALL-FMTS

 3ð +ðððð16 ð6 PARTNM PIC X(5). <-ALL-FMTS

+ðððð17\ I-O FORMAT:JOBEND FROM FILE ASYNFILS OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ðððð18\ <-ALL-FMTS

 31 +ðððð19 ð5 JOBEND REDEFINES ASYNFILS-RECORD. <-ALL-FMTS

 32 +ðððð2ð ð6 EOJIND PIC X(5). <-ALL-FMTS

+ðððð21\ I-O FORMAT:INVIT FROM FILE ASYNFILS OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ðððð22\ <-ALL-FMTS

 +ðððð23\ ð5 INVIT REDEFINES ASYNFILS-RECORD. <-ALL-FMTS

+ðððð24\ I-O FORMAT:ITEMDS FROM FILE ASYNFILS OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ðððð25\ <-ALL-FMTS

 33 +ðððð26 ð5 ITEMDS REDEFINES ASYNFILS-RECORD. <-ALL-FMTS

 34 +ðððð27 ð6 PARTDS PIC X(25). <-ALL-FMTS

+ðððð28\ I-O FORMAT:ERRDES FROM FILE ASYNFILS OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ðððð29\ <-ALL-FMTS

 35 +ðððð3ð ð5 ERRDES REDEFINES ASYNFILS-RECORD. <-ALL-FMTS

 36 +ðððð31 ð6 ERRORD PIC X(4ð). <-ALL-FMTS

+ðððð32\ I-O FORMAT:PGMERR FROM FILE ASYNFILS OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ðððð33\ <-ALL-FMTS

 +ðððð34\ ð5 PGMERR REDEFINES ASYNFILS-RECORD. <-ALL-FMTS

 ðð54ðð

 ðð55ðð\\

ðð56ðð\ FILE DESCRIPTION FOR THE DISPLAY FILE FOR THIS PROGRAM. \

 ðð57ðð\\

 ðð58ðð

 37 ðð59ðð FD DSPFIL

38 ðð6ððð LABEL RECORDS ARE STANDARD.

 39 ðð61ðð ð1 DSPREC.

4ð ðð62ðð COPY DDS-ALL-FORMATS-I-O OF DSPFIL.

41 +ððððð1 ð5 DSPFIL-RECORD PIC X(65). <-ALL-FMTS

+ððððð2\ INPUT FORMAT:PROMPT FROM FILE DSPFIL OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

 42 +ððððð4 ð5 PROMPT-I REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 43 +ððððð5 ð6 PARTN PIC X(5). <-ALL-FMTS

+ððððð6\ OUTPUT FORMAT:PROMPT FROM FILE DSPFIL OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ððððð7\ <-ALL-FMTS

 44 +ððððð8 ð5 PROMPT-O REDEFINES DSPFIL-RECORD. <-ALL-FMTS

 45 +ððððð9 ð6 PARTD PIC X(25). <-ALL-FMTS

 46 +ðððð1ð ð6 ERRORL PIC X(4ð). <-ALL-FMTS

 ðð63ðð

47 ðð64ðð WORKING-STORAGE SECTION.

 ðð65ðð

48 ðð66ðð 77 STATUS-IND PIC XX.

Figure F-3 (Part 2 of 6). COBOL/400 Inquiry Example – Source Program

 Appendix F. Program Examples F-5

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source ASYNLIBCBL/ASYNSINQ RCH38321 12/19/9ð 11:26:45 Page 4

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

49 ðð67ðð 77 STATUS-DSP PIC XX.

5ð ðð68ðð 77 MAJ-MIN-SAV PIC X(4).

51 ðð69ðð 77 ERR-SW PIC X VALUE "ð".

52 ðð7ððð 77 INDON PIC 1 VALUE B"1".

53 ðð71ðð 77 INDOFF PIC 1 VALUE B"ð".

54 ðð72ðð 77 OPEN-COUNT PIC 9(1) VALUE ð.

 ðð73ðð

55 ðð74ðð ð1 LGTHERR PIC X(4ð)

56 ðð75ðð VALUE "Invalid data received ".

57 ðð76ðð ð1 TIMEERR PIC X(4ð)

58 ðð77ðð VALUE "Timer expired on READ operation ".

 ðð78ðð

59 ðð79ðð ð1 TR-CTL-AREA.

 6ð ðð8ððð ð5 FILLER PIC XX.

 61 ðð81ðð ð5 PGM-DEV-NME PIC X(1ð).

 62 ðð82ðð ð5 RCD-FMT-NME PIC X(1ð).

 ðð83ðð

63 ðð84ðð ð1 DSPF-INDIC-AREA.

 64 ðð85ðð ð5 CMD3 PIC 1 INDIC 99.

 65 ðð86ðð 88 CMD3-ON VALUE B"1".

 66 ðð87ðð 88 CMD3-OFF VALUE B"ð".

 ðð88ðð

 .2/
67 ðð89ðð ð1 IO-FBA.

 68 ðð9ððð ð5 FILLER PIC X(44).

69 ðð91ðð ð5 DATA-LEN PIC 9(2) USAGE IS COMP-4.

 7ð ðð92ðð ð5 FILLER PIC X(369).

 ðð93ðð

71 ðð94ðð ð1 MAJ-MIN.

 72 ðð95ðð 88 PARITY-ERR VALUE "ðð16".

 73 ðð96ðð 88 DATA-LOST VALUE "ðð42".

74 ðð97ðð 88 FAIL-RETURNED VALUE "ð3ð2".

 75 ðð98ðð 88 TIME-OUT VALUE "ð31ð".

 76 ðð99ðð ð5 MAJ PIC XX.

 77 ð1ðððð 88 OK-RETURNED VALUE "ðð".

 78 ð1ð1ðð ð5 MIN PIC XX.

 ð1ð2ðð

79 ð1ð3ðð ð1 DISPLAY-FEEDBACK.

 8ð ð1ð4ðð ð5 CMD-KEY PIC XX.

 81 ð1ð5ðð ð5 FILLER PIC X(1ð).

 82 ð1ð6ðð ð5 RCD-FMT PIC X(1ð).

 ð1ð7ðð

83 ð1ð8ðð PROCEDURE DIVISION.

 ð1ð9ðð

 ð11ððð DECLARATIVES.

 ð111ðð

ð112ðð ERR-SECTION SECTION.

 ð113ðð

 ð114ðð\\

ð115ðð\ ICF FILE ERROR HANDLER. \

 ð116ðð\\

 ð117ðð

 ð118ðð USE AFTER STANDARD ERROR PROCEDURE ON ASYNFILS.

 ð119ðð

 .1ð/
 ð12ððð ASYNFILS-EXCEPTION.

 ð121ðð

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source ASYNLIBCBL/ASYNSINQ RCH38321 12/19/9ð 11:26:45 Page 5

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

84 ð122ðð IF MAJ NOT = "ðð" AND MAJ NOT = "ð3" THEN

 85 ð123ðð STOP RUN.

 ð124ðð

 ð125ðð EXIT-DECLARATIVES.

 ð126ðð

ð127ðð END DECLARATIVES.

 ð128ðð

Figure F-3 (Part 3 of 6). COBOL/400 Inquiry Example – Source Program

F-6 AS/400 Asynchronous Communications Programming V4R1

 ð129ðð\\

ð13ððð\ START OF PROGRAM. \

 ð131ðð\ \

ð132ðð\ FILES ARE OPENED. THE PROGRAM DEVICE IS ACQUIRED. THE \

ð133ðð\ EVOKE PROCESSING IS DONE. THE INITIAL DISPLAY IS SHOWN \

ð134ðð\ AND THE INITIAL READ FROM THE DISPLAY IS PERFORMED. \

ð135ðð\ PROCESSING CONTINUES UNTIL A F3 IS RECEIVED, THEN \

ð136ðð\ CLEAN UP ROUTINES ARE PERFORMED. \

 ð137ðð\\

 ð138ðð

ð139ðð START-PROGRAM SECTION.

 ð14ððð

 ð141ðð START-PROGRAM-PARAGRAPH.

 ð142ðð

 .3/
86 ð143ðð OPEN I-O ASYNFILS DSPFIL.

87 ð144ðð MOVE ZEROS TO DSPF-INDIC-AREA.

88 ð145ðð IF ERR-SW = "1" THEN

89 ð146ðð IF OPEN-COUNT = 9 THEN

 9ð ð147ðð PERFORM ERROR-RECOVERY

 91 ð148ðð STOP RUN

 ð149ðð ELSE

92 ð15ððð ADD 1 TO OPEN-COUNT

 93 ð151ðð PERFORM ERROR-RECOVERY

94 ð152ðð GO TO START-PROGRAM-PARAGRAPH

 ð153ðð ELSE

95 ð154ðð MOVE ð TO OPEN-COUNT.

96 ð155ðð ACQUIRE "ICFðð " FOR ASYNFILS.

97 ð156ðð MOVE "ICFðð " TO PGM-DEV-NME.

98 ð157ðð PERFORM EVOKE-ROUTINE THRU EVOKE-EXIT.

 .4/
99 ð158ðð MOVE SPACES TO DSPREC.

1ðð ð159ðð WRITE DSPREC FORMAT IS "PROMPT"

ð16ððð INDICATORS ARE DSPF-INDIC-AREA.

1ð1 ð161ðð READ DSPFIL INDICATORS ARE DSPF-INDIC-AREA.

1ð2 ð162ðð PERFORM DISPLAY-PROC THRU DISPLAY-EXIT

 ð163ðð UNTIL CMD3-ON.

 1ð3 ð164ðð PERFORM END-JOB.

 ð165ðð

 ð166ðð\\

ð167ðð\ PROCESS DISPLAY DATA. \

 ð168ðð\ \

ð169ðð\ SEND THE RESULTS OF THE PREVIOUS READ TO THE TARGET \

ð17ððð\ PROGRAM. PUT THE RESULTS RETURNED TO THE DISPLAY. \

ð171ðð\ PERFORM ANOTHER READ FROM THE DISPLAY. \

 ð172ðð\\

 ð173ðð

 .6/
 ð174ðð DISPLAY-PROC.

 ð175ðð

1ð4 ð176ðð PERFORM REMOTE-PROC THRU REMOTE-EXIT.

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source ASYNLIBCBL/ASYNSINQ RCH38321 12/19/9ð 11:26:45 Page 6

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

1ð5 ð177ðð WRITE DSPREC FORMAT IS "PROMPT".

1ð6 ð178ðð READ DSPFIL INDICATORS ARE DSPF-INDIC-AREA.

 ð179ðð

 ð18ððð DISPLAY-EXIT.

 ð181ðð

 ð182ðð EXIT.

 ð183ðð

 ð184ðð\\

ð185ðð\ PROCESS TARGET SYSTEM INFORMATION. \

 ð186ðð\ \

ð187ðð\ PREPARE AND SEND PART NUMBER RECORD TO THE TARGET PROGRAM. \

ð188ðð\ PERFORM A READ TO GET DATA FROM THE TARGET PROGRAM. IF A \

ð189ðð\ FAIL IS RECEIVED, PERFORM ANOTHER READ TO GET THE ERROR \

ð19ððð\ MESSAGE FROM THE TARGET PROGRAM. IF THERE IS A TIME OUT \

ð191ðð\ WAITING FOR THE READ TO COMPLETE, PUT OUT AN APPROPRIATE \

ð192ðð\ MESSAGE. ALSO, IF THERE IS A DATA LENGTH ERROR OR PARITY \

ð193ðð\ ERROR, AN ERROR MESSAGE IS OUTPUT. \

 ð194ðð\\

Figure F-3 (Part 4 of 6). COBOL/400 Inquiry Example – Source Program

 Appendix F. Program Examples F-7

 ð195ðð

 .7/
 1ð7 ð196ðð REMOTE-PROC.

 ð197ðð

1ð8 ð198ðð MOVE PARTN OF PROMPT-I TO PARTNM.

1ð9 ð199ðð WRITE ASYNREC FORMAT IS "ITEMRQ"

ð2ðððð TERMINAL IS PGM-DEV-NME.

11ð ð2ð1ðð WRITE ASYNREC FORMAT IS "STRTIM"

ð2ð2ðð TERMINAL IS PGM-DEV-NME.

 111 ð2ð3ðð READ ASYNFILS.

112 ð2ð4ðð IF TIME-OUT THEN

113 ð2ð5ðð MOVE SPACES TO PARTD

114 ð2ð6ðð MOVE TIMEERR TO ERRORL

 ð2ð7ðð ELSE

115 ð2ð8ðð IF FAIL-RETURNED THEN

116 ð2ð9ðð WRITE ASYNREC FORMAT IS "INVIT"

ð21ððð TERMINAL IS PGM-DEV-NME

117 ð211ðð WRITE ASYNREC FORMAT IS "STRTIM"

ð212ðð TERMINAL IS PGM-DEV-NME

 118 ð213ðð READ ASYNFILS

119 ð214ðð READ ASYNFILS FORMAT IS "ERRDES"

12ð ð215ðð MOVE SPACES TO PARTD

121 ð216ðð MOVE ERRORD TO ERRORL

 ð217ðð ELSE

122 ð218ðð READ ASYNFILS FORMAT IS "ITEMDS"

123 ð219ðð ACCEPT IO-FBA FROM IO-FEEDBACK FOR ASYNFILS

124 ð22ððð IF OK-RETURNED THEN

125 ð221ðð IF DATA-LEN NOT = 25 OR PARITY-ERR OR DATA-LOST

126 ð222ðð MOVE SPACES TO PARTD

127 ð223ðð MOVE LGTHERR TO ERRORL

 ð224ðð ELSE

128 ð225ðð MOVE PARTDS TO PARTD

129 ð226ðð MOVE SPACES TO ERRORL

 ð227ðð ELSE

 13ð ð228ðð PERFORM END-JOB.

 ð229ðð

 ð23ððð REMOTE-EXIT.

 ð231ðð

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source ASYNLIBCBL/ASYNSINQ RCH38321 12/19/9ð 11:26:45 Page 7

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 ð232ðð EXIT.

 ð233ðð

 ð234ðð\\

ð235ðð\ START TARGET PROGRAM. \

 ð236ðð\ \

ð237ðð\ MOVE DATA INTO THE APPROPRIATE FIELDS AND WRITE THE EVOKE \

ð238ðð\ REQUEST RECORD OUT TO THE TARGET SYSTEM. \

 ð239ðð\\

 ð24ððð

 .8/
 131 ð241ðð EVOKE-ROUTINE.

 ð242ðð

132 ð243ðð MOVE "ASYNCTCL " TO PGMID.

133 ð244ðð MOVE "ASYNLIBCBL" TO LIB.

134 ð245ðð WRITE ASYNREC FORMAT IS "PGMSTR"

ð246ðð TERMINAL IS PGM-DEV-NME.

 ð247ðð

 ð248ðð EVOKE-EXIT.

 ð249ðð

 ð25ððð EXIT.

 ð251ðð

 ð252ðð\\

ð253ðð\ PERFORM ERROR RECOVERY. \

 ð254ðð\ \

ð255ðð\ SEND A DETACH TO THE TARGET SYSTEM. CLOSE THE FILES. \

ð256ðð\ RESET THE ERROR SWITCH. \

 ð257ðð\\

 ð258ðð

 135 ð259ðð ERROR-RECOVERY.

 ð26ððð

136 ð261ðð CLOSE ASYNFILS DSPFIL.

137 ð262ðð MOVE "ð" TO ERR-SW.

 ð263ðð

 ð264ðð ERROR-RECOVERY-EXIT.

 ð265ðð

 ð266ðð EXIT.

 ð267ðð

Figure F-3 (Part 5 of 6). COBOL/400 Inquiry Example – Source Program

F-8 AS/400 Asynchronous Communications Programming V4R1

 ð268ðð\\

ð269ðð\ DETACH FROM TARGET SYSTEM. \

 ð27ððð\ \

ð271ðð\ SEND '99999' RECORD TO THE TARGET SYSTEM. \

 ð272ðð\\

 ð273ðð

 .9/
 138 ð274ðð DETACH-ROUTINE.

 ð275ðð

139 ð276ðð MOVE "99999" TO EOJIND.

14ð ð277ðð WRITE ASYNREC FORMAT IS "JOBEND"

ð278ðð TERMINAL IS PGM-DEV-NME.

 ð279ðð

 ð28ððð DETACH-EXIT.

 ð281ðð

 ð282ðð EXIT.

 ð283ðð

 ð284ðð\\

ð285ðð\ END THE JOB. \

 ð286ðð\ \

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source ASYNLIBCBL/ASYNSINQ RCH38321 12/19/9ð 11:26:45 Page 8

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

ð287ðð\ PERFORM DETACH PROCESSING. STOP PROGRAM. \

 ð288ðð\\

 ð289ðð

 .5/
 141 ð29ððð END-JOB.

 ð291ðð

142 ð292ðð PERFORM DETACH-ROUTINE THRU DETACH-EXIT.

 ð293ðð

 143 ð294ðð STOP RUN.

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Messages ASYNLIBCBL/ASYNSINQ RCH38321 12/19/9ð 11:26:45 Page 9

 STMT

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð53ðð

Message : No INPUT fields found for format STRTIM.

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð53ðð

Message : No INPUT fields found for format PGMSTR.

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð53ðð

Message : No INPUT fields found for format INVIT.

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð53ðð

Message : No INPUT fields found for format PGMERR.

\ 86 MSGID: LBLð335 SEVERITY: ðð SEQNBR: ð127ðð

Message : Empty paragraph or section precedes 'END

DECLARATIVES' paragraph or section.

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

5 1 4 ð ð ð

 Source records read : 294

 Copy records read : 44

 Copy members processed : 2

 Sequence errors : ð

 Highest severity message issued . . : 1ð

LBLð9ð1 ðð Program ASYNSINQ created in library ASYNLIBCBL.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure F-3 (Part 6 of 6). COBOL/400 Inquiry Example – Source Program

COBOL/400 Target Program: The following describes
the COBOL/400 inquiry program that runs on the remote
AS/400 system.

Program Files: The COBOL/400 inquiry target program
uses the following files:

ASYNFILT The ICF file used to receive part numbers from
and send responses to the source program.

Note: The DDS for the ICF file is the same at
the source and target program.

DBFIL The database file that contains the part numbers
and associated descriptions. This file is used to
validate the part number received from the
source program.

DDS Source: The DDS for the database file is shown in
Figure F-4 on page F-10.

 Appendix F. Program Examples F-9

SEQNBR \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 Date

1ðð A\ -

2ðð A\ This file has UNIQUE key values.

3ðð A\ In other words, Duplicate Keys are NOT allowed.

4ðð A\ -

 5ðð A UNIQUE

 6ðð A R DBRCD

 7ðð A ITEMNM 5

 8ðð A ITEMD 25A

 9ðð A K ITEMNM

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

Figure F-4. DDS Source for Database File, COBOL Target Program

ICF File Creation and Program Device Entry Definition:
The following command is used to create the ICF file. Note
that the same ICF file is used for both the source and target
programs.

CRTICFF FILE(ASYNLIBCBL/ASYNFILT)

 SRCFILE(ASYNLIBCBL/QDDSSRC)

 SRCMBR(ASYNFIL)

 MAXPGMDEV(2) WAITRCD(3ð)

The following command is used to define the program device
entry.

ADDICFDEVE FILE(ASYNLIBCBL/ASYNFILT)

 PGMDEV(ICFð1)

 RMTLOCNAME(\REQUESTER)

The following two commands can also be used.

OVRICFDEVE PGMDEV(ICFð1) RMTLOCNAME(\REQUESTER)

OVRICFF FILE(ASYNFILT)

 TOFILE(ASYNLIBCBL/ASYNFILT)

Database File Creation: The following command is used to
create the database file:

CRTPF FILE(ASYNLIBCBL/DBFIL)

 SRCFILE(ASYNLIBCBL/QDDSSRC)

 SRCMBR(DBFILE)

In order to use the database file with this example, data must
be entered in the file. The program requires the item
numbers to be greater than 10000.

Program Explanation: The following describes the struc-
ture of the program example illustrated in Figure F-5 on
page F-11.

.1/ The file division section defines the files used in the
program.

ASYNFILT is the ICF file used to receive records from
and send records to the source program. DBFIL is the
database file that contains the valid part numbers and
part descriptions.

.2/ This section defines the input/output feedback area for
use within the program.

.3/ The ICF file (ASYNFILT) and the database file (DBFIL)
are opened. The program then establishes a session
using program device ICF01 in ICF file ASYNFILT.

This is the program device that is associated with a
remote location name of *REQUESTER. The name of
the program device is then moved to field
PGM-DEV-NME to define the device used.

A read operation is issued to the program device to
receive an inquiry request from the source program. If
the read is successful, control passes to .5/.

.4/ This routine ends the job. It is called from .9/ if an
error has occurred; or it is performed after a detach is
received from the source program (subroutine .5/ has
completed).

The files used by the program are implicitly closed.
The program then ends.

.5/ This subroutine is called from .3/ to process the
request from the source program. If the part number
received is less than 10000, routine .8/ is called to
send the error message to the source program.

If the part number is greater than 10000, the database
file is read to find the part numbers and associated
description. If the part number is not found, routine
.7/ is called to build the error response. If the part
number is found, routine .6/ builds the response and
sends the record. Routine .5/ is repeated until a
detach is received from the source program.

.6/ This routine is called when the part number is found in
the database. It builds the response by moving the
part description to the output file and then sends the
response to the source program.

.7/ This routine is called from .5/ if the part number is not
found in the database file. It builds the error response
indicating that the record was not found and calls .8/
to send the response. Control then returns to .5/.

.8/ This routine is called from either .5/ or .7/ to send an
error response to the source program.

.9/ This routine is the exception handler for ASYNFILT.
When an exception is issued against the file, control
passes here to check the return code. If any return
code other than normal (0000) is returned to the
program, the program is ended.

.1ð/ This routine closes all opened files, resets the error
flag, and ends the program.

F-10 AS/400 Asynchronous Communications Programming V4R1

 5738CB1 V2R1Mð 91ð524 IBM AS/4ðð COBOL/4ðð ASYNLIBCBL/ASYNTINQ RCH38321 12/19/9ð 11:27:ð7 Page 1

 Program : ASYNTINQ

Library : ASYNLIBCBL

 Source file : QCBLSRC

Library : ASYNLIBCBL

 Source member : ASYNTINQ 12/19/9ð 11:14:51

 Generation severity level : 29

 Text 'description' : Target System's asynchronous COBOL program example

 Source listing options : \NONE

 Generation options : \NONE

 Print file : QSYSPRT

Library : \LIBL

 FIPS flagging : \NOFIPS \NOSEG \NODEB \NOOBSOLETE

 SAA flagging : \NOFLAG

 Flagging severity : ð

 Replace program : \YES

 Target release : \CURRENT

 User profile : \USER

 Authority : \LIBCRTAUT

 Compiler : IBM AS/4ðð COBOL/4ðð

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source ASYNLIBCBL/ASYNTINQ RCH38321 12/19/9ð 11:27:ð7 Page 2

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

1 ððð1ðð IDENTIFICATION DIVISION.

 ððð2ðð

 2 ððð3ðð PROGRAM-ID. ASYNTINQ.

 ððð4ðð

 ððð5ðð\\

ððð6ðð\ THIS PROGRAM IS STARTED BY THE PROGRAM 'ASYNSINQ' ON A \

ððð7ðð\ SOURCE SYSTEM SENDING A PROGRAM START REQUEST. \

ððð8ðð\ USING THE PROGRAM DEVICE 'ICFð1', IT RECEIVES A PART NUMBER \

ððð9ðð\ FROM THE SOURCE SYSTEM. IF THE PART NUMBER IS INVALID, A \

ðð1ððð\ 'FAIL' IS SENT TO THE SOURCE SYSTEM AND AND FOLLOWED WITH \

ðð11ðð\ THE TEXT TO BE USED AS AN ERROR MESSAGE ON THE SOURCE SYSTEM.\

ðð12ðð\ THE SAME IS TRUE IF THE PART NUMBER IS SEARCHED FOR BUT \

ðð13ðð\ NOT FOUND. IF THE PART NUMBER IS FOUND, A PART DESCRIPTION \

ðð14ðð\ WHICH WAS RETRIEVED FROM THE DATABASE IS SENT TO THE SOURCE \

ðð15ðð\ SYSTEM. IF THE PART NUMBER IS LESS THAN 1ðððð, AN ERROR \

ðð16ðð\ MESSAGE IS SENT TO THE SOURCE SYSTEM. \

 ðð17ðð\ \

ðð18ðð\ THE PROGRAM IS ENDED WHEN A '99999' IS RECEIVED FROM THE \

ðð19ðð\ SOURCE SYSTEM. \

 ðð2ððð\\

 ðð21ðð

3 ðð22ðð ENVIRONMENT DIVISION.

 ðð23ðð

4 ðð24ðð CONFIGURATION SECTION.

 ðð25ðð

5 ðð26ðð SOURCE-COMPUTER. IBM-AS4ðð.

6 ðð27ðð OBJECT-COMPUTER. IBM-AS4ðð.

7 ðð28ðð SPECIAL-NAMES. I-O-FEEDBACK IS IO-FEEDBACK

8 ðð29ðð OPEN-FEEDBACK IS OPEN-FBA.

 ðð3ððð

9 ðð31ðð INPUT-OUTPUT SECTION.

 ðð32ðð

 .1/
 1ð ðð33ðð FILE-CONTROL.

 ðð34ðð

11 ðð35ðð SELECT ASYNFILT ASSIGN TO WORKSTATION-ASYNFILT

12 ðð36ðð ORGANIZATION IS TRANSACTION

13 ðð37ðð CONTROL-AREA IS TR-CTL-AREA

14 ðð38ðð FILE STATUS IS STATUS-IND MAJ-MIN.

15 ðð39ðð SELECT DBFIL ASSIGN TO DATABASE-DBFIL

16 ðð4ððð ORGANIZATION IS INDEXED

17 ðð41ðð ACCESS IS RANDOM

18 ðð42ðð RECORD KEY IS ITEMNM.

 ðð43ðð

19 ðð44ðð DATA DIVISION.

 ðð45ðð

2ð ðð46ðð FILE SECTION.

 ðð47ðð

 ðð48ðð\\

ðð49ðð\ FILE DESCRIPTION FOR THE ICF FILE USED BY THIS PROGRAM. \

 ðð5ððð\\

 ðð51ðð

 21 ðð52ðð FD ASYNFILT

22 ðð53ðð LABEL RECORDS ARE STANDARD.

 23 ðð54ðð ð1 ASYNREC.

24 ðð55ðð COPY DDS-ALL-FORMATS-I-O OF ASYNFILT.

Figure F-5 (Part 1 of 5). COBOL/400 Inquiry Example – Target Program

 Appendix F. Program Examples F-11

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source ASYNLIBCBL/ASYNTINQ RCH38321 12/19/9ð 11:27:ð7 Page 3

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

25 +ððððð1 ð5 ASYNFILT-RECORD PIC X(4ð). <-ALL-FMTS

+ððððð2\ I-O FORMAT:STRTIM FROM FILE ASYNFILT OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

 +ððððð4\ ð5 STRTIM REDEFINES ASYNFILT-RECORD. <-ALL-FMTS

+ððððð5\ INPUT FORMAT:PGMSTR FROM FILE ASYNFILT OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ððððð6\ <-ALL-FMTS

 +ððððð7\ ð5 PGMSTR-I REDEFINES ASYNFILT-RECORD. <-ALL-FMTS

+ððððð8\ OUTPUT FORMAT:PGMSTR FROM FILE ASYNFILT OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ððððð9\ <-ALL-FMTS

 26 +ðððð1ð ð5 PGMSTR-O REDEFINES ASYNFILT-RECORD. <-ALL-FMTS

 27 +ðððð11 ð6 PGMID PIC X(1ð). <-ALL-FMTS

 28 +ðððð12 ð6 LIB PIC X(1ð). <-ALL-FMTS

+ðððð13\ I-O FORMAT:ITEMRQ FROM FILE ASYNFILT OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ðððð14\ <-ALL-FMTS

 29 +ðððð15 ð5 ITEMRQ REDEFINES ASYNFILT-RECORD. <-ALL-FMTS

 3ð +ðððð16 ð6 PARTNM PIC X(5). <-ALL-FMTS

+ðððð17\ I-O FORMAT:JOBEND FROM FILE ASYNFILT OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ðððð18\ <-ALL-FMTS

 31 +ðððð19 ð5 JOBEND REDEFINES ASYNFILT-RECORD. <-ALL-FMTS

 32 +ðððð2ð ð6 EOJIND PIC X(5). <-ALL-FMTS

+ðððð21\ I-O FORMAT:INVIT FROM FILE ASYNFILT OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ðððð22\ <-ALL-FMTS

 +ðððð23\ ð5 INVIT REDEFINES ASYNFILT-RECORD. <-ALL-FMTS

+ðððð24\ I-O FORMAT:ITEMDS FROM FILE ASYNFILT OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ðððð25\ <-ALL-FMTS

 33 +ðððð26 ð5 ITEMDS REDEFINES ASYNFILT-RECORD. <-ALL-FMTS

 34 +ðððð27 ð6 PARTDS PIC X(25). <-ALL-FMTS

+ðððð28\ I-O FORMAT:ERRDES FROM FILE ASYNFILT OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ðððð29\ <-ALL-FMTS

 35 +ðððð3ð ð5 ERRDES REDEFINES ASYNFILT-RECORD. <-ALL-FMTS

 36 +ðððð31 ð6 ERRORD PIC X(4ð). <-ALL-FMTS

+ðððð32\ I-O FORMAT:PGMERR FROM FILE ASYNFILT OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ðððð33\ <-ALL-FMTS

 +ðððð34\ ð5 PGMERR REDEFINES ASYNFILT-RECORD. <-ALL-FMTS

 ðð56ðð

 ðð57ðð\\

ðð58ðð\ FILE DESCRIPTION FOR THE DATABASE FILE USED BY THIS PROGRAM. \

 ðð59ðð\\

 ðð6ððð

 37 ðð61ðð FD DBFIL

38 ðð62ðð LABEL RECORDS ARE STANDARD.

 39 ðð63ðð ð1 DBREC.

4ð ðð64ðð COPY DDS-ALL-FORMATS OF DBFIL.

41 +ððððð1 ð5 DBFIL-RECORD PIC X(3ð). <-ALL-FMTS

+ððððð2\ I-O FORMAT:DBRCD FROM FILE DBFIL OF LIBRARY ASYNLIBCBL <-ALL-FMTS

 +ððððð3\ <-ALL-FMTS

+ððððð4\ USER SUPPLIED KEY BY RECORD KEY CLAUSE <-ALL-FMTS

 42 +ððððð5 ð5 DBRCD REDEFINES DBFIL-RECORD. <-ALL-FMTS

 43 +ððððð6 ð6 ITEMNM PIC X(5). <-ALL-FMTS

 44 +ððððð7 ð6 ITEMD PIC X(25). <-ALL-FMTS

 ðð65ðð

45 ðð66ðð WORKING-STORAGE SECTION.

 ðð67ðð

 46 ðð68ðð 77 STATUS-IND PIC XX.

 47 ðð69ðð 77 ERR-SW PIC X VALUE "ð".

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source ASYNLIBCBL/ASYNTINQ RCH38321 12/19/9ð 11:27:ð7 Page 4

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 48 ðð7ððð 77 OPEN-COUNT PIC 9(1) VALUE ð.

 49 ðð71ðð 77 ERROR-FND PIC X VALUE "ð".

 ðð72ðð

 5ð ðð73ðð ð1 TR-CTL-AREA.

 51 ðð74ðð ð5 FILLER PIC X(2).

 52 ðð75ðð ð5 PGM-DEV-NME PIC X(1ð).

 53 ðð76ðð ð5 RCD-FMT-NME PIC X(1ð).

 ðð77ðð

 .2/
 54 ðð78ðð ð1 IO-FBA.

 55 ðð79ðð ð5 FILLER PIC X(37).

 56 ðð8ððð ð5 DSP-FMT PIC X(1ð).

 57 ðð81ðð ð5 FILLER PIC X(225).

 58 ðð82ðð ð5 PGM-DEVICE-NAME PIC X(1ð).

 59 ðð83ðð ð5 FILLER PIC X(84).

 6ð ðð84ðð ð5 DEV-DEP-AREA.

 61 ðð85ðð 1ð FILLER PIC X(4).

 62 ðð86ðð 1ð DATA-LEN PIC 9(4).

 63 ðð87ðð 1ð FILLER PIC X(34).

Figure F-5 (Part 2 of 5). COBOL/400 Inquiry Example – Target Program

F-12 AS/400 Asynchronous Communications Programming V4R1

 64 ðð88ðð 1ð MAJ-MIN-S.

 65 ðð89ðð 15 MAJ-S PIC XX.

 66 ðð9ððð 15 MIN-S PIC XX.

 67 ðð91ðð 1ð FILLER PIC X(8).

 68 ðð92ðð ð5 FILLER PIC XXX.

 ðð93ðð

 69 ðð94ðð ð1 MAJ-MIN.

 7ð ðð95ðð ð5 MAJ PIC XX.

 71 ðð96ðð ð5 MIN PIC XX.

 ðð97ðð

 72 ðð98ðð ð1 NOT-FND-MSG PIC X(4ð)

73 ðð99ðð VALUE "The requested part was not found. ".

 ð1ðððð

 74 ð1ð1ðð ð1 INV-PRT-MSG PIC X(4ð)

75 ð1ð2ðð VALUE "The part number must be over 1ðððð. ".

 ð1ð3ðð

76 ð1ð4ðð PROCEDURE DIVISION.

 ð1ð5ðð

 ð1ð6ðð DECLARATIVES.

 ð1ð7ðð

ð1ð8ðð ERR-SECTION SECTION.

 ð1ð9ðð

 ð11ððð\\

ð111ðð\ ICF FILE ERROR HANDLER. \

 ð112ðð\\

 ð113ðð

ð114ðð USE AFTER STANDARD ERROR PROCEDURE ON ASYNFILT.

 ð115ðð

 .9/
 ð116ðð ASYNFILT-EXCEPTION.

 ð117ðð

77 ð118ðð IF MAJ-MIN NOT = "ðððð"

 78 ð119ðð STOP RUN.

 ð12ððð

 ð121ðð EXIT-DECLARATIVES.

 ð122ðð

ð123ðð END DECLARATIVES.

 ð124ðð

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source ASYNLIBCBL/ASYNTINQ RCH38321 12/19/9ð 11:27:ð7 Page 5

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 ð125ðð\\

ð126ðð\ START OF PROGRAM. \

 ð127ðð\\

 ð128ðð

ð129ðð START-PROGRAM SECTION.

 ð13ððð

 ð131ðð START-PROGRAM-PARAGRAPH.

 ð132ðð

 .3/
79 ð133ðð OPEN I-O ASYNFILT DBFIL.

8ð ð134ðð MOVE "ICFð1 " TO PGM-DEV-NME.

81 ð135ðð IF ERR-SW = "1" THEN

82 ð136ðð IF OPEN-COUNT IS = 9 THEN

 83 ð137ðð PERFORM ERROR-RECOVERY

 84 ð138ðð STOP RUN

 ð139ðð ELSE

85 ð14ððð ADD 1 TO OPEN-COUNT

 86 ð141ðð PERFORM ERROR-RECOVERY

87 ð142ðð GO TO START-PROGRAM-PARAGRAPH

 ð143ðð ELSE

88 ð144ðð MOVE ð TO OPEN-COUNT.

89 ð145ðð ACQUIRE "ICFð1 " FOR ASYNFILT.

9ð ð146ðð READ ASYNFILT FORMAT IS "ITEMRQ".

91 ð147ðð PERFORM READ-REQUEST THRU READ-EXIT

ð148ðð UNTIL ITEMRQ = "99999".

 92 ð149ðð PERFORM END-JOB.

 ð15ððð

 ð151ðð\\

ð152ðð\ PROCESS INPUT FROM SOURCE SYSTEM. \

 ð153ðð\ \

ð154ðð\ IF THE PART NUMBER IS LESS THAN 1ðððð, AN ERROR MESSAGE IS \

ð155ðð\ MOVED TO THE ERROR MESSAGE OUTPUT FIELD. OTHERWISE, THE \

ð156ðð\ DATABASE IS SEARCHED FOR THAT PART. IF IT IS NOT FOUND, \

ð157ðð\ ERROR PROCESSING IS DONE. IF IT IS FOUND, NORMAL PROCESSING \

 ð158ðð\ CONTINUES. \

 ð159ðð\\

Figure F-5 (Part 3 of 5). COBOL/400 Inquiry Example – Target Program

 Appendix F. Program Examples F-13

 ð16ððð

 .5/
 ð161ðð READ-REQUEST.

 ð162ðð

93 ð163ðð MOVE "ð" TO ERROR-FND.

94 ð164ðð IF PARTNM IS LESS THAN "1ðððð" THEN

95 ð165ðð MOVE INV-PRT-MSG TO ERRORD

96 ð166ðð PERFORM ERROR-SEND THRU ERROR-EXIT

 ð167ðð ELSE

97 ð168ðð MOVE PARTNM TO ITEMNM

98 ð169ðð READ DBFIL FORMAT IS "DBRCD"

99 ð17ððð INVALID KEY PERFORM RECORD-NOT-FOUND

 ð171ðð THRU RECORD-NF-EXIT.

1ðð ð172ðð IF ERROR-FND = "ð" THEN

1ð1 ð173ðð PERFORM SEND-RECORD THRU SEND-REC-EXIT.

1ð2 ð174ðð READ ASYNFILT FORMAT IS "ITEMRQ".

 ð175ðð

 ð176ðð READ-EXIT.

 ð177ðð

 ð178ðð EXIT.

 ð179ðð

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source ASYNLIBCBL/ASYNTINQ RCH38321 12/19/9ð 11:27:ð7 Page 6

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 ð18ððð\\

ð181ðð\ RECORD WAS FOUND IN DATABASE FILE, RETURN DATA. \

 ð182ðð\ \

ð183ðð\ THE ITEM DESCRIPTION OF THE PART IS MOVED TO THE OUTPUT \

ð184ðð\ FIELD AND SENT TO THE SOURCE PROGRAM. \

 ð185ðð\\

 ð186ðð

 .6/
 1ð3 ð187ðð SEND-RECORD.

 ð188ðð

1ð4 ð189ðð MOVE ITEMD TO PARTDS

1ð5 ð19ððð WRITE ASYNREC FORMAT IS "ITEMDS"

ð191ðð TERMINAL IS PGM-DEV-NME.

 ð192ðð

 ð193ðð SEND-REC-EXIT.

 ð194ðð

 ð195ðð EXIT.

 ð196ðð

 ð197ðð\\

ð198ðð\ RECORD NOT FOUND IN DATABASE FILE, INDICATE ERROR. \

 ð199ðð\ \

ð2ðððð\ MOVE THE ERROR MESSAGE TO THE OUTPUT FIELD AND EXECUTE THE \

ð2ð1ðð\ ERROR SEND PROCESSING. \

 ð2ð2ðð\\

 ð2ð3ðð

 .7/
 1ð6 ð2ð4ðð RECORD-NOT-FOUND.

 ð2ð5ðð

1ð7 ð2ð6ðð MOVE NOT-FND-MSG TO ERRORD.

1ð8 ð2ð7ðð PERFORM ERROR-SEND THRU ERROR-EXIT.

 ð2ð8ðð

 ð2ð9ðð RECORD-NF-EXIT.

 ð21ððð

 ð211ðð EXIT.

 ð212ðð

 ð213ðð\\

ð214ðð\ SEND ERROR BACK TO SOURCE SYSTEM. \

 ð215ðð\ \

ð216ðð\ TURN ERROR INDICATOR FLAG ON. SEND A 'FAIL' TO THE SOURCE \

ð217ðð\ PROGRAM. SEND THE ERROR MESSAGE WHICH WAS PREVIOUSLY PUT \

ð218ðð\ INTO THE OUTPUT FIELD TO THE SOURCE PROGRAM. \

 ð219ðð\\

 ð22ððð

 .8/
 1ð9 ð221ðð ERROR-SEND.

 ð222ðð

11ð ð223ðð MOVE "1" TO ERROR-FND.

111 ð224ðð WRITE ASYNREC FORMAT IS "PGMERR"

ð225ðð TERMINAL IS PGM-DEV-NME.

112 ð226ðð WRITE ASYNREC FORMAT IS "ERRDES"

ð227ðð TERMINAL IS PGM-DEV-NME.

 ð228ðð

 ð229ðð ERROR-EXIT.

 ð23ððð

 ð231ðð EXIT.

Figure F-5 (Part 4 of 5). COBOL/400 Inquiry Example – Target Program

F-14 AS/400 Asynchronous Communications Programming V4R1

 ð232ðð

 ð233ðð\\

ð234ðð\ PERFORM ERROR RECOVERY. \

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Source ASYNLIBCBL/ASYNTINQ RCH38321 12/19/9ð 11:27:ð7 Page 7

STMT SEQNBR -A 1 B..+....2....+....3....+....4....+....5....+....6....+....7..IDENTFCN S COPYNAME CHG DATE

 ð235ðð\ \

ð236ðð\ CLOSE OPENED FILES. RESET THE ERROR FLAG. \

 ð237ðð\\

 ð238ðð

 .1ð/
 113 ð239ðð ERROR-RECOVERY.

 ð24ððð

114 ð241ðð CLOSE ASYNFILT DBFIL.

115 ð242ðð MOVE "ð" TO ERR-SW.

 ð243ðð

 ð244ðð ERROR-RECOVERY-EXIT.

 ð245ðð

 ð246ðð EXIT.

 ð247ðð

 ð248ðð\\

ð249ðð\ END THE JOB. \

 ð25ððð\ \

ð251ðð\ STOP PROGRAM. \

 ð252ðð\\

 ð253ðð

 .4/
 116 ð254ðð END-JOB.

 ð255ðð

 117 ð256ðð STOP RUN.

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

 5738CB1 V2R1Mð 91ð524 AS/4ðð COBOL/4ðð Messages ASYNLIBCBL/ASYNTINQ RCH38321 12/19/9ð 11:27:ð7 Page 8

 STMT

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð55ðð

Message : No INPUT fields found for format STRTIM.

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð55ðð

Message : No INPUT fields found for format PGMSTR.

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð55ðð

Message : No INPUT fields found for format INVIT.

\ 24 MSGID: LBLð6ðð SEVERITY: 1ð SEQNBR: ðð55ðð

Message : No INPUT fields found for format PGMERR.

\ 79 MSGID: LBLð335 SEVERITY: ðð SEQNBR: ð123ðð

Message : Empty paragraph or section precedes 'END

DECLARATIVES' paragraph or section.

\ \ \ \ \ E N D O F M E S S A G E S \ \ \ \ \

 Message Summary

Total Info(ð-4) Warning(5-19) Error(2ð-29) Severe(3ð-39) Terminal(4ð-99)

5 1 4 ð ð ð

 Source records read : 256

 Copy records read : 41

 Copy members processed : 2

 Sequence errors : ð

 Highest severity message issued . . : 1ð

LBLð9ð1 ðð Program ASYNTINQ created in library ASYNLIBCBL.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure F-5 (Part 5 of 5). COBOL/400 Inquiry Example – Target Program

RPG/400 Program Examples

The RPG/400 source program starts a session with a remote
location and issues an evoke function, with no invite, to start
the target program. The source program sends item
numbers to the target program and then waits 30 seconds
(the value specified by the WAITRCD parameter on the
CRTICFF command) to receive an acknowledgment from the
target program indicating that the evoke function completed
successfully. If the source program receives a major return
code equal to or greater than 03, the program goes to end of
job.

In the following sample programs, the source program sends
an item number to the target program requesting item infor-
mation. The target program then sends the item information
(description and quantity) to the source program. The source
program sends the value 99999 to the target program, to

indicate end-of-transaction. At this point, both programs go
to end of job.

RPG/400 Program Descriptions

The following information describes the structure of the
example programs in Figure F-7 on page F-18 and
Figure F-9 on page F-24. The reference numbers in the
figures correspond to those in the descriptions.

RPG/400 Source Program: The following describes the
RPG/400 inquiry program that runs on the local system.

Program Files: The RPG/400 source program uses the fol-
lowing files:

CMNFILS An ICF file used to send records to and receive
records from the target program.

 Appendix F. Program Examples F-15

QPRINT An AS/400 printer file that is used to print
records, both sent and received, as well as
major and minor ICF return codes.

DDS Source: The DDS used in the ICF file is shown in the
following example. QPRINT is a program-described file and
does not require DDS.

SEQNBR \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 Date

1ðð A\ \

 2ðð A\ \

3ðð A\ ICF communications file used by the Source System to \

4ðð A\ send/receive interactively with the Target System. \

 5ðð A\ \

6ðð A\ \

 7ðð A\

 8ðð A R ITMREC

 9ðð A ITMDSC 25A

 1ððð A ITMQTY 5S

 11ðð A\

 12ðð A R EVOKE

 13ðð A EVOKE(&LIB/&PGM)

14ðð A SECURITY(2 &USRPWD +

 15ðð A 3 &USRID)

16ðð A\ \

 17ðð A\ \

18ðð A\ \ The data placed in USERID and USRPWD must correspond to \

19ðð A\ a user profile and password, respectively, on the Target \

 2ððð A\ System. \

 21ðð A\ \

22ðð A\ \ The user in USRID must have authority to the device \

23ðð A\ object (device description) being used on the Target \

24ðð A\ System, as well as to the program and library indicated \

25ðð A\ in PGM and LIB, respectively. \

 26ðð A\ \

27ðð A\ \

 28ðð A PGM 1ðA P

 29ðð A LIB 1ðA P

 3ððð A USRID 1ðA P

 31ðð A USRPWD 1ðA P

 32ðð A\

 33ðð A R ITMREQ

 34ðð A INVITE

 35ðð A ITMNO 5A

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

 5738SS1 V2R1Mð 91ð524 Data Description ASYNLIBRPG/CMNFILS 12/14/9ð 9:48:47 Page 2

 Expanded Source

 Field Buffer position

 SEQNBR \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 length Out In

 8ðð R ITMREC

 9ðð ITMDSC 25A B 25 1 1

 1ððð ITMQTY 5S ðB 5 26 26

 12ðð R EVOKE EVOKE(&LIB/&PGM) +

14ðð SECURITY(2 &USRPWD 3 &USRID)

 28ðð PGM 1ðA P 1ð 1

 29ðð LIB 1ðA P 1ð 11

 3ððð USRID 1ðA P 1ð 21

 31ðð USRPWD 1ðA P 1ð 31

 33ðð R ITMREQ INVITE

 35ðð ITMNO 5A B 5 1 1

\ \ \ \ \ E N D O F E X P A N D E D S O U R C E \ \ \ \ \

 5738SS1 V2R1Mð 91ð524 Data Description ASYNLIBRPG/CMNFILS 12/14/9ð 9:48:47 Page 3

 Message Summary

Total Informational Warning Error Severe

 (ð-9) (1ð-19) (2ð-29) (3ð-99)

 ð ð ð ð ð

\ CPC73ð1 ðð Message : File CMNFILS created in library ASYNLIBRPG.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure F-6. DDS Source for ICF File CMNFILS, RPG/400 Source Program

F-16 AS/400 Asynchronous Communications Programming V4R1

ICF File Creation and Program Device Entry Definition:
The following command is needed to create the ICF file:

CRTICFF FILE(ASYNLIBRPG/CMNFILS)

 SRCFILE(ASYNLIBRPG/QDDSSRC)

 ACQPGMDEV(CMNFILS)

 MAXPGMDEV(2) WAITRCD(3ð)

OVRICFDEVE PGMDEV(CMNFILS)

 RMTLOCNAME(CHICAGO)

Program Explanation: The following describes the struc-
ture of the program example shown in Figure F-7 on
page F-18. The ICF file used in this example contains
externally described data formats (DDS) defined by the user.
The reference letters in the figure correspond to those in the
following program description.

.1/ This section identifies the files used in the program.
CMNFILS is the name of the ICF file used to
send/receive records to and from the target program.

The files used in the program are opened at the begin-
ning of the RPG cycle and the ICF program device is
implicitly acquired because the ACQPGMDEV param-
eter was specified on the CRTICFF command.

.2/ IOFB is the name of the file information data structure
(INFDS) used with CMNFILS. It contains the following
information:

� File status (STS)
� Major and minor return code (MAJMIN, MAJCOD,

MINCOD)

.3/ This section builds the evoke function to send to the
target system. Because the DDS for the record format
only specifies the field identifiers with the record, this
code moves the values for the program name, library
name, user-id, and password from the array, TARGET,
to fields PGM, LIB, USRID, and USRPWD, respec-
tively.

When the program start request is received at the
target system, CMNLIB is searched for ASYNCRCL
and that program is then started. ASYNCRCL is a CL
program that contains the following:

ADDLIBLE LIB(ASYNLIBRPG)

OVRICFDEVE PGMDEV(CMNFILT)

 RMTLOCNAME(\REQUESTER)

OVRPRTF FILE(QPRINT)

 OUTQ(ASYNLIBRPG/ASYNCT)

CALL PGM(ASYNLIBRPG/ASYNCT)

.4/ Item numbers are sequentially retrieved from the array
ITM# and sent to the target program.

.5/ In this section, the value accessed in the array ITM# is
sent to the target program. The record format ITMREQ
contains the item number. The DDS keyword INVITE
allows the target program to respond.

.6/ A read-from-invited-program-devices operation is per-
formed to receive the data from the target program.
This operation continues to wait for data until data is
received or until the timer value, specified in the
WAITRCD parameter of the CRTICFF command, is
exceeded. If the time specified for the WAITRCD
parameter is exceeded, an ICF major or minor return
code of 0310 is received by the source program, and
the program ends. Using a read-from-invited-program-
devices operation and the WAITRCD parameter pre-
vents the source program from waiting indefinitely if no
data is available.

.7/ This section sends a flag to the target program to indi-
cate the end of transaction.

.8/ If an error occurs, the session ends.

.9/ The program ends by setting the last run indicator (LR)
to ON and returning to the program that called the
program. The ICF file is closed, and the session ends
at the end of the RPG/400 cycle.

 Appendix F. Program Examples F-17

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð ASYNLIBRPG/ASYNCS 12/14/9ð ð9:48:48 Page 1

 Compiler : IBM AS/4ðð RPG/4ðð

 Command Options:

Program : ASYNLIBRPG/ASYNCS

Source file : ASYNLIBRPG/QRPGSRC

Source member : \PGM

Source listing options : \SOURCE \XREF \GEN \NODUMP \NOSECLVL

Generation options : \NOLIST \NOXREF \NOATR \NODUMP \NOOPTIMIZE

Source listing indentation . . . : \NONE

SAA flagging : \NOFLAG

Generation severity level . . . : 9

Print file : \LIBL/QSYSPRT

Replace program : \YES

Target release : \CURRENT

User profile : \USER

Authority : \LIBCRTAUT

Text : \SRCMBRTXT

Phase trace : \NO

Intermediate text dump : \NONE

Snap dump : \NONE

Codelist : \NONE

Ignore decimal data error . . . : \NO

 Actual Program Source:

Member : ASYNCS

File : QRPGSRC

Library : ASYNLIBRPG

Last Change : 12/14/9ð ð9:48:ð7

Description : Source System's RPG program example (source code).

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð ASYNLIBRPG/ASYNCS 12/14/9ð ð9:48:48 Page 2

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

S o u r c e L i s t i n g

 1ðð H ASYNCS

2ðð \ -

3ðð \ THIS IS AN INTERACTIVE SEND/RECEIVE PROGRAM THAT USES AN ARRAY

4ðð \ (ITM#) TO SIMULATE THE RETRIEVING OF AN ITEM NUMBER FROM A DATA

5ðð \ FILE AND THEN SENDS THAT ITEM NUMBER TO A TARGET SYSTEM IN ORDER

6ðð \ TO RETRIEVE AN ITEM DESCRIPTION AND A QUANTITY FROM THE TARGET

7ðð \ SYSTEM'S DATA FILE ON A SUBSEQUENT READ TO THE ICF FILE.

8ðð \ -

 .1/
 9ðð F\ - 12/14/9ð

 1ððð FCMNFILS CF E WORKSTN

 11ðð F KINFDS IOFB

 12ðð F KNUM 1

 13ðð F KID ID

RECORD FORMAT(S): LIBRARY ASYNLIBRPG FILE CMNFILS.

EXTERNAL FORMAT ITMREC RPG NAME ITMREC

EXTERNAL FORMAT EVOKE RPG NAME EVOKE

EXTERNAL FORMAT ITMREQ RPG NAME ITMREQ

14ðð FQPRINT O F 132 OF PRINTER

 15ðð E\ ARRAYS

16ðð E TARGET 1 4 1ð Target Sys. Info. 12/12/9ð

17ðð E FILERR 1 6 66 File Error Msgs. 12/13/9ð

18ðð E ITM# 1 2ð 5 ITEM NUMBER

Aðððððð INPUT FIELDS FOR RECORD ITMREC FILE CMNFILS FORMAT ITMREC.

 Aððððð1 1 25 ITMDSC

 Aððððð2 26 3ððITMQTY

Bðððððð INPUT FIELDS FOR RECORD EVOKE FILE CMNFILS FORMAT EVOKE.

Cðððððð INPUT FIELDS FOR RECORD ITMREQ FILE CMNFILS FORMAT ITMREQ.

 Cððððð1 1 5 ITMNO

 .2/
 19ðð IIOFB DS

2ððð I\ I/O FEEDBACK AREA VALUES

 21ðð I \STATUS STS

22ðð I 4ð1 4ð4 MAJMIN

23ðð I 4ð1 4ð2 MAJCOD

24ðð I 4ð3 4ð4 MINCOD

Figure F-7 (Part 1 of 5). RPG/400 Inquiry Example – Source Program

F-18 AS/400 Asynchronous Communications Programming V4R1

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð ASYNLIBRPG/ASYNCS 12/14/9ð ð9:48:48 Page 3

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

26ðð C\ -

27ðð \ EVOKE program 'ASYNCTCL' in library 'ASYNLIBRPG' on the Target 12/11/9ð

28ðð \ system, using the user-id and password indicated by USRID and 12/11/9ð

29ðð \ USRPWD, respectively. The 'acquire' function is performed by 12/11/9ð

3ððð \ the 'ACQPGMDEV' parameter specified in the ICF file. 12/11/9ð

31ðð \ -

32ðð \ Indicator 98 tells you whether the WRITE command completed 12/13/9ð

33ðð \ successfully. (OFF means the command completed successfully.) 12/13/9ð

34ðð \ - 12/13/9ð

 35ðð \

 .3/
 36ðð C MOVEL'CMNFILS' ID

 37ðð C MOVELTARGET,3 PGM Target Program 12/12/9ð

 38ðð C MOVELTARGET,4 LIB Target Library 12/12/9ð

 39ðð C MOVELTARGET,1 USRID Target User-ID 12/12/9ð

 4ððð C MOVELTARGET,2 USRPWD Target Password 12/12/9ð

41ðð C WRITEEVOKE 98 DO THE EVOKE 2

42ðð C 98 TIME TIME 6ð GET TIME SENT 12/13/9ð

43ðð C 98 MOVELFILERR,1 PART1 66 12/13/9ð

44ðð C 98 MOVELFILERR,2 PART2 66 12/13/9ð

 45ðð C 98 MAJCOD CABGE' ' ERROR 12/13/9ð

 46ðð C 98 MAJCOD CABGE'ð3' ERROR

 47ðð \

 48ðð C REQST TAG

 49ðð \

5ððð \ -

51ðð \ THE FOLLOWING IS THE ARRAY PROCESSING THAT IS USED TO SIMULATE

52ðð \ READING A DATA BASE OR DISPLAY FILE TO GET THE ITEM NUMBER TO

53ðð \ SEND TO THE TARGET SYSTEM.

54ðð \ -

 55ðð \

 .4/
 56ðð C X CABGE2ð LAST LAST ELEMENT? 12/13/9ð

 57ðð C ADD 1 X 2ð

 58ðð C MOVE ITM#,X ITMNO ITEM NUMBER

 59ðð \

6ððð \ -

61ðð \ THIS WRITE WILL SEND THE ITEM NUMBER (ITMNO) TO THE TARGET

62ðð \ SYSTEM AND THEN INVITE IT TO SEND.

63ðð \ -

64ðð \ Indicator 98 tells you whether the WRITE command completed 12/13/9ð

65ðð \ successfully. (OFF means the command completed successfully.) 12/13/9ð

66ðð \ - 12/13/9ð

 67ðð \

 .5/
 68ðð C WRITEITMREQ 98 SEND W/INVITE 2

69ðð C TIME TIME 6ð GET TIME SENT

7ððð C 98 MOVELFILERR,5 PART1 66 12/13/9ð

 71ðð C 98 MOVEL\BLANKS PART2 66 12/13/9ð

 72ðð C 98 MAJCOD CABGE' ' ERROR 12/13/9ð

 73ðð C 98 MAJCOD CABGE'ð3' ERROR

 74ðð C EXCPTREQ PRINT LOG

 75ðð \

76ðð \ -

77ðð \ THIS READ-FROM-INVITED-DEVICES IS TO RECEIVE THE ITEM 12/11/9ð

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð ASYNLIBRPG/ASYNCS 12/14/9ð ð9:48:48 Page 4

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

78ðð \ DESCRIPTION AND QUANTITY. USING A READ-FROM-INVITED-DEVICES (ON 12/11/9ð

79ðð \ THE TIME VALUE SPECIFIED ON THE WAITRCD PARAMETER) PREVENTS 12/11/9ð

8ððð \ WAITING INDEFINITELY ON THE READ STATEMENT. THE 'READ'

81ðð \ STATEMENT REFERENCES THE FILE NAME 'CMNFILS' TO BE ABLE TO

82ðð \ DO A 'READ-FROM-INVITED-DEVICES' WHICH IS REQUIRED TO GET

83ðð \ THE TIMER TO INTERRUPT THE 'READ'. SINCE RECORD-IDENTIFYING

84ðð \ CHARACTERS WERE NOT USED FOR THE FORMATS IN THE FILE,

85ðð \ THE 'ITMREC' FORMAT WAS PLACED FIRST IN THE FILE AND WILL 12/11/9ð

86ðð \ RECEIVE THE INPUT FROM 'READ CMNFILS'STATEMENT.

87ðð \ -

88ðð \ Indicator 1ð tells you whether you have reached the end of the 12/13/9ð

89ðð \ file (EOF). (ON means EOF has been reached.) 12/13/9ð

Figure F-7 (Part 2 of 5). RPG/400 Inquiry Example – Source Program

 Appendix F. Program Examples F-19

9ððð \ - 12/13/9ð

91ðð \ Indicator 98 tells you whether the READ command completed 12/13/9ð

92ðð \ successfully. (OFF means the command completed successfully.) 12/13/9ð

93ðð \ - 12/13/9ð

 94ðð \

 .6/
 95ðð C READ CMNFILS 981ð 2 3

96ðð C TIME TIME GET TIME RECVD

 97ðð C MOVEL\BLANKS PART2 66 12/13/9ð

98ðð C 98 MOVELFILERR,3 PART1 66 12/13/9ð

99ðð C 98 1ð MOVELFILERR,4 PART2 66 12/13/9ð

1ðððð C N98 1ð MOVELFILERR,4 PART1 66 12/13/9ð

 1ð1ðð C 1ð GOTO ERROR 12/13/9ð

 1ð2ðð C 98 MAJMIN CABGE'ð31ð' ERROR CK INCL TIMER

 1ð3ðð C EXCPTRECVD

 1ð4ðð C GOTO REQST

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð ASYNLIBRPG/ASYNCS 12/14/9ð ð9:48:48 Page 5

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

1ð6ðð \ -

1ð7ðð \ THIS SECTION WILL SEND A DUMMY 'ITMNO' OF '99999' TO THE TARGET

1ð8ðð \ PROGRAM TO INDICATE THE END OF THE TRANSACTIONS.

1ð9ðð \ -

11ððð \ Indicator 98 tells you whether the WRITE command completed 12/13/9ð

111ðð \ successfully. (OFF means the command completed successfully.) 12/13/9ð

112ðð \ - 12/13/9ð

 113ðð \

 .7/
 114ðð C LAST TAG

115ðð C MOVE '99999' ITMNO ITMNO = 99999

116ðð C WRITEITMREQ 98 SEND LAST REC 2

117ðð C TIME TIME GET TIME SENT

118ðð C 98 MOVELFILERR,6 PART1 66 12/13/9ð

 119ðð C 98 MOVEL\BLANKS PART2 66 12/13/9ð

12ððð C 98 MAJCOD CABGE' ' ERROR CK FOR ERROR 12/13/9ð

121ðð C 98 MAJCOD CABGE'ð3' ERROR CK FOR ERROR

 122ðð C EXCPTREQ

 123ðð C GOTO END

 124ðð \

125ðð \ -

126ðð \ ERROR OCCURRED. PRINT THE MAJOR/MINOR RETURN CODES.

127ðð \ -

 128ðð \

 .8/
 129ðð C ERROR TAG

 13ððð \ 12/13/9ð

 131ðð C 1ð 12/13/9ð

 132ðð COR 98 EXCPTERRDSC ERROR DESCRIPTN 12/13/9ð

 133ðð \ 12/13/9ð

 134ðð C EXCPTERR

 135ðð \

136ðð \ -

137ðð \ END-OF-JOB. SETON 'LR' INDICATOR.

138ðð \ -

 139ðð \

 .9/
 14ððð C END TAG

141ðð C SETON LR 1

 142ðð C RETRN

Figure F-7 (Part 3 of 5). RPG/400 Inquiry Example – Source Program

F-20 AS/400 Asynchronous Communications Programming V4R1

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð ASYNLIBRPG/ASYNCS 12/14/9ð ð9:48:48 Page 6

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

144ðð O\ - - - - - - - - - \

 145ðð \ PRINT HEADINGS \

146ðð \ - - - - - - - - - \

147ðð OQPRINT H 3ð1 1P

 148ðð O OR OF

149ðð O 22 'SOURCE TRANSACTION LOG'

 15ððð O UDATE Y 35

 151ðð O 11ð 'PAGE' 12/14/9ð

152ðð O PAGE J 116 12/14/9ð

 153ðð O 13ð 'ASYNCS'

154ðð \ - - - - - - - - - - - - - - \

155ðð \ PRINT REQUEST TRANSACTION \

156ðð \ - - - - - - - - - - - - - - \

 157ðð O EF 1 REQ

158ðð O 18 'ITEM NUMBER SENT -'

 159ðð O ITMNO 25

16ððð O 9ð 'TIME -'

161ðð O TIME 99 'ð : : '

 162ðð O 13ð 'ASYNCS'

163ðð \ - - - - - - - - - - - - - - - \

164ðð \ PRINT RECEIVED TRANSACTION \

165ðð \ - - - - - - - - - - - - - - - \

 166ðð O EF 2 RECVD

167ðð O 22 'RECEIVED FROM TARGET :'

168ðð O 32 'ITMDSC -'

 169ðð O ITMDSC 58

17ððð O 68 'ITMQTY -'

 171ðð O ITMQTYJ 76

172ðð O 9ð 'TIME -'

173ðð O TIME 99 'ð : : '

 174ðð O 13ð 'ASYNCS'

175ðð \ - - - - - - - - - - - - - - - - - \ 12/13/9ð

176ðð \ PRINT ERROR DESCRIPTIONS \ 12/13/9ð

177ðð \ - - - - - - - - - - - - - - - - - \ 12/13/9ð

 178ðð O EF 1 ERRDSC 12/13/9ð

 179ðð O PART1 66 12/13/9ð

 18ððð O PART2 132 12/13/9ð

181ðð \ - - - - - - - - - - - - - - - - - \

182ðð \ PRINT MAJOR/MINOR RETURN CODES \

183ðð \ - - - - - - - - - - - - - - - - - \

 184ðð O EF 2 ERR

185ðð O 24 'MAJOR/MINOR RETURN CODE:'

 186ðð O MAJCOD 27

 187ðð O 28 '/'

 188ðð O MINCOD 3ð

189ðð O 4ð 'STATUS -'

 19ððð O STS 46

191ðð O 52 'ID -'

3ð

193ðð O 8ð 'JOB ENDED'

194ðð O 9ð 'TIME -'

195ðð O TIME 99 'ð : : '

 196ðð O 13ð 'ASYNCS'

Dðððððð OUTPUT FIELDS FOR RECORD EVOKE FILE CMNFILS FORMAT EVOKE.

 Dððððð1 PGM 1ð CHAR 1ð

 Dððððð2 LIB 2ð CHAR 1ð

 Dððððð3 USRID 3ð CHAR 1ð

 Dððððð4 USRPWD 4ð CHAR 1ð

Eðððððð OUTPUT FIELDS FOR RECORD ITMREQ FILE CMNFILS FORMAT ITMREQ.

 Eððððð1 ITMNO 5 CHAR 5

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

Figure F-7 (Part 4 of 5). RPG/400 Inquiry Example – Source Program

 Appendix F. Program Examples F-21

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð ASYNLIBRPG/ASYNCS 12/14/9ð ð9:48:48 Page 7

SEQUENCE LAST

 NUMBER \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 UPDATE

C o m p i l e - T i m e T a b l e s

 Table/Array : TARGET

198ðð ASYNCUSR /\ Target System: User-ID \/ 12/12/9ð

199ðð ASYNCPWD /\ Target System: Password \/ 12/12/9ð

2ðððð ASYNCTCL /\ Target System: Program name \/ 12/12/9ð

2ð1ðð ASYNLIBRPG /\ Target System: Library name \/ 12/12/9ð

 Table/Array : FILERR

2ð3ðð Error occurred when issuing the initial WRITE. The ICF file may h 12/13/9ð

2ð4ðð ave been created without the proper value for ACQPGMDEV parameter. 12/13/9ð

2ð5ðð Error occurred when issuing the READ CMNFILT command. 12/13/9ð

2ð6ðð EOF is indicated. (Has the CMNFILS been ACQUIREd?) 12/13/9ð

2ð7ðð Error occurred when issuing the WRITE ITMREQ command. 12/13/9ð

2ð8ðð Error occurred when issuing the Last WRITE ITMREQ command. 12/13/9ð

 Table/Array : ITM#

 21ððð ðððð1

 211ðð ðððð2

 212ðð ðððð3

 213ðð ðððð4

 214ðð ðððð5

 215ðð ðððð6

 216ðð ðððð7

 217ðð ðððð8

 218ðð ðððð9

 219ðð ððð1ð

 22ððð ððð11

 221ðð ððð12

 222ðð ððð13

 223ðð ððð14

 224ðð ððð15

 225ðð ððð16

 226ðð ððð17

 227ðð ððð18

 228ðð ððð19

 229ðð ððð2ð

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð ASYNLIBRPG/ASYNCS 12/14/9ð ð9:48:48 Page 8

F i n a l S u m m a r y

 No errors found in source program.

 Program Source Totals:

Records : 229

Specifications : 1ð1

Table Records : 3ð

Comments : 92

 PRM has been called.

 Program ASYNCS is placed in library ASYNLIBRPG. ðð highest Error-Severity-Code.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure F-7 (Part 5 of 5). RPG/400 Inquiry Example – Source Program

RPG/400 Target Program: The following describes an
RPG/400 asynchronous target program.

Program Files: The RPG/400 target program uses the fol-
lowing files:

CMNFILR An ICF file used to send records to and receive
records from the source program.

QPRINT An AS/400 printer file that is used to print
records, both sent and received, as well as
major and minor ICF return codes.

DDS Source: The following example shows the DDS
keywords that are used in the ICF file. (QPRINT is a
program-described file; no DDS is required.)

F-22 AS/400 Asynchronous Communications Programming V4R1

SEQNBR \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 Date

1ðð A\ \

 2ðð A\ \

3ðð A\ ICF communications file used by the Target System to \

4ðð A\ receive/send interactively with the Source System. \

 5ðð A\ \

6ðð A\ \

 7ðð A\

 8ðð A R ITMREQ

 9ðð A ITMNO 5A

 1ððð A\

 11ðð A R ITMREC

 12ðð A INVITE

 13ðð A ITMDSC 25A

 14ðð A ITMQTY 5S

 15ðð A\

 16ðð A R INVITE

 17ðð A INVITE

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

 5738SS1 V2R1Mð 91ð524 Data Description ASYNLIBRPG/CMNFILT 12/14/9ð 9:49:ð1 Page 2

 Expanded Source

 Field Buffer position

 SEQNBR \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 length Out In

 8ðð R ITMREQ

 9ðð ITMNO 5A B 5 1 1

 11ðð R ITMREC INVITE

 13ðð ITMDSC 25A B 25 1 1

 14ðð ITMQTY 5S ðB 5 26 26

 16ðð R INVITE INVITE

\ \ \ \ \ E N D O F E X P A N D E D S O U R C E \ \ \ \ \

 5738SS1 V2R1Mð 91ð524 Data Description ASYNLIBRPG/CMNFILT 12/14/9ð 9:49:ð1 Page 3

 Message Summary

Total Informational Warning Error Severe

 (ð-9) (1ð-19) (2ð-29) (3ð-99)

 ð ð ð ð ð

\ CPC73ð1 ðð Message : File CMNFILT created in library ASYNLIBRPG.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure F-8. DDS Source for ICF File CMNFILT, RPG/400 Target Program

ICF File Creation and Program Device Entry Definition:
The command needed to create the ICF file is:

CRTICFF FILE(ASYNLIBRPG/CMNFILT)

 SRCFILE(ASYNLIBRPG/QDDSSRC)

 ACQPGMDEV(CMNFILT)

 MAXPGMDEV(2) WAITRCD(3ð)

The following command is needed to define the program
device entry:

OVRICFDEVE PGMDEV(CMNFILT)

 RMTLOCNAME(\REQUESTER)

Program Explanation
The following describes the structure of the program
example shown in Figure F-9 on page F-24. The ICF
file used in this example uses externally described data
formats (DDS) defined by the user. The reference
letters in the figure correspond to those in the following
program.

.1/ This section identifies the files used in the program.
CMNFILT is the ICF file used to send/receive records
to and from the source program.

The files used in the program are opened at the begin-
ning of the RPG cycle and the ICF program device is
implicitly acquired because the ACQPGMDEV param-
eter was specified on the CRTICFF command.

.2/ IOFB is the name of the file information data structure
(INFDS) used with CMNFILT. It contains the following
information:

� File status (STS)
� Major/minor return code

(MAJMIN,MAJCOD,MINCOD)

.3/ A read-from-invited-program-devices operation is per-
formed to receive data from the source program and
will continue to wait for data until data is received or
the timer value, specified in the WAITRCD parameter
of the CRTICFF command, is exceeded. Using a read-
from-invited-program-devices operation and the
WAITRCD parameter prevents the target program from
waiting indefinitely if no data is available.

.4/ This section checks the ITMNO field for the value
99999 that indicates the end of transaction. When
99999 is received, the session ends; otherwise, the
item corresponding to the value sent from the source
program is accessed in the arrays ITMDES and
ITMQNT, and placed in the fields ITMDSC and
ITMQTY.

.5/ Item information is retrieved and sent to the source
program.

.6/ If an error occurs, the session ends.

.7/ The program ends by setting the last run indicator (LR)
to ON and returning to the program that called the
program. The ICF file is closed, and the session ends
at the end of the RPG/400 cycle.

 Appendix F. Program Examples F-23

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð ASYNLIBRPG/ASYNCT 12/14/9ð ð9:49:ð2 Page 1

 Compiler : IBM AS/4ðð RPG/4ðð

 Command Options:

Program : ASYNLIBRPG/ASYNCT

Source file : ASYNLIBRPG/QRPGSRC

Source member : \PGM

Source listing options : \SOURCE \XREF \GEN \NODUMP \NOSECLVL

Generation options : \NOLIST \NOXREF \NOATR \NODUMP \NOOPTIMIZE

Source listing indentation . . . : \NONE

SAA flagging : \NOFLAG

Generation severity level . . . : 9

Print file : \LIBL/QSYSPRT

Replace program : \YES

Target release : \CURRENT

User profile : \USER

Authority : \LIBCRTAUT

Text : \SRCMBRTXT

Phase trace : \NO

Intermediate text dump : \NONE

Snap dump : \NONE

Codelist : \NONE

Ignore decimal data error . . . : \NO

 Actual Program Source:

Member : ASYNCT

File : QRPGSRC

Library : ASYNLIBRPG

Last Change : 12/14/9ð ð9:48:24

Description : Target System's RPG program example (source code).

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð ASYNLIBRPG/ASYNCT 12/14/9ð ð9:49:ð2 Page 2

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

S o u r c e L i s t i n g

 1ðð H ASYNCT

2ðð \ -

3ðð \ THIS IS THE TARGET PROGRAM THAT WILL PERFORM THE INTERACTIVE

4ðð \ RECEIVE/SEND FUNCTION WITH THE SOURCE SYSTEM'S PROGRAM. IT WILL

5ðð \ ALSO USE ARRAYS TO SIMULATE THE RETRIEVAL OF DATA FROM A DATA

6ðð \ BASE FILE. IT USES THE 'ITMNO' SENT FROM THE SOURCE SYSTEM AS

7ðð \ THE INDEX FOR THE ARRAYS TO RETRIEVE THE APPROPRIATE ITEM

8ðð \ DESCRIPTION AND QUANTITY.

9ðð \ -

 1ððð F\

 .1/
 11ðð FCMNFILT CF E WORKSTN

 12ðð F KINFDS IOFB

 13ðð F KNUM 1

 14ðð F KID ID

RECORD FORMAT(S): LIBRARY ASYNLIBRPG FILE CMNFILT.

EXTERNAL FORMAT ITMREQ RPG NAME ITMREQ

EXTERNAL FORMAT ITMREC RPG NAME ITMREC

EXTERNAL FORMAT INVITE RPG NAME INVITE

15ðð FQPRINT O F 132 OF PRINTER

16ðð E\ ARRAYS

17ðð E FILERR 1 5 66 File Error Msgs.

18ðð E ITMERR 1 2 25 Item # Error Msgs

19ðð E ITMDES 1 2ð 25 Item Description

2ððð E ITMQNT 1 2ð 5 ð ITEM QUANTITY

Aðððððð INPUT FIELDS FOR RECORD ITMREQ FILE CMNFILT FORMAT ITMREQ.

 Aððððð1 1 5 ITMNO

Bðððððð INPUT FIELDS FOR RECORD ITMREC FILE CMNFILT FORMAT ITMREC.

 Bððððð1 1 25 ITMDSC

 Bððððð2 26 3ððITMQTY

Cðððððð INPUT FIELDS FOR RECORD INVITE FILE CMNFILT FORMAT INVITE.

 .2/
 \

 21ðð IIOFB DS

22ðð I\ I/O FEEDBACK AREA

 23ðð I \STATUS STS

24ðð I 4ð1 4ð4 MAJMIN

25ðð I 4ð1 4ð2 MAJCOD

26ðð I 4ð3 4ð4 MINCOD

Figure F-9 (Part 1 of 5). RPG/400 Inquiry Example – Target Program

F-24 AS/400 Asynchronous Communications Programming V4R1

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð ASYNLIBRPG/ASYNCT 12/14/9ð ð9:49:ð2 Page 3

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

 28ðð C\

29ðð \ -

3ððð \ THIS 'WRITE' STATEMENT IS TO ISSUE AN 'INVITE' SO THAT THE

31ðð \ 'READ' THAT FOLLOWS WILL HAVE AN OUTSTANDING 'INVITE' AND WILL

32ðð \ FUNCTION AS A 'READ-FROM-INVITED-DEVICES' STATEMENT.

33ðð \ -

34ðð \ Indicator 98 tells you whether the WRITE command completed

35ðð \ successfully. (OFF means the command completed successfully.)

36ðð \ -

 37ðð \

 38ðð C WRITEINVITE 98 2

 39ðð \

4ððð C 98 TIME TIME 6ð GET TIME RECVD

41ðð C 98 MOVELFILERR,1 PART1 66

42ðð C 98 MOVELFILERR,2 PART2 66

 43ðð C 98 GOTO ERROR

 44ðð \

45ðð \ -

46ðð \ THIS READ-FROM-INVITED-DEVICES IS TO RECEIVE THE 'ITMNO FROM THE

47ðð \ VALUE SPECIFIED ON THE WAITRCD PARAMETER OF THE ICF FILE)

48ðð \ PREVENTS WAITING INDEFINITELY ON THE 'READ' STATEMENT.

49ðð \ THE READ STATEMENT REFERENCES THE FILE NAME 'CMNFILS' TO BE ABLE

5ððð \ TO DO A 'READ-FROM-INVITED-DEVICES' WHICH IS REQUIRED TO GET THE

51ðð \ TIMER TO INTERRUPT THE 'READ'. UPON SUCCESSFUL COMPLETION, THE

52ðð \ 'READ' WILL PUT THE DATA INTO THE FIRST FORMAT IN THE ICF FILE

53ðð \ SINCE NO RECORD-IDENTIFYING CODES WERE USED FOR THE FORMATS ON

54ðð \ THE INPUT SPECIFICATIONS.

55ðð \ -

56ðð \ Indicator 1ð tells you whether you have reached the end of the

57ðð \ file (EOF). (ON means EOF has been reached.)

58ðð \ -

59ðð \ Indicator 98 tells you whether the READ command completed

6ððð \ successfully. (OFF means the command completed successfully.)

61ðð \ -

 62ðð \

 .3/
 63ðð C NXTREC TAG

 64ðð C READ CMNFILT 981ð 2 3

65ðð C TIME TIME 6ð GET TIME RECVD

 66ðð C MOVE \BLANKS PART2 66

67ðð C 98 MOVELFILERR,3 PART1 66

68ðð C 98 1ð MOVELFILERR,4 PART2 66

69ðð C N98 1ð MOVELFILERR,4 PART1 66

 7ððð C 1ð GOTO ERROR

71ðð C 98 MAJMIN CABGE'ð31ð' ERROR CK INCL TIMER

72ðð C EXCPTRECVD PRINT RECVD LOG

 73ðð \

74ðð \ -

75ðð \ THIS IS THE ROUTINE TO CHECK THE 'ITMNO' FIELD FOR '99999' THAT

76ðð \ INDICATES THAT THE SOURCE SYSTEM HAS NO MORE REQUESTS. IF NOT

77ðð \ THE END, THEN THE ARRAYS ARE PROCESSED TO RETRIEVE THE ITEM

78ðð \ DESCRIPTION AND QUANTITY TO BE SENT BACK TO THE SOURCE SYSTEM.

79ðð \ -

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð ASYNLIBRPG/ASYNCT 12/14/9ð ð9:49:ð2 Page 4

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

8ððð \ If the 'ITMNO' is not within the acceptable values for the

81ðð \ array index, the item number is placed in the quantity field

82ðð \ and an error meesage is placed in the description field.

83ðð \ -

 84ðð \

 .4/
 85ðð C ITMNO CABEQ'99999' END

 86ðð C MOVE ITMNO X 2ð

 87ðð \

88ðð C X IFGT ðð IF X > ð Bðð1

89ðð C X IFLE 2ð IF X <= 2ð Bðð2

 9ððð C MOVE ITMDES,X ITMDSC ðð2

 91ðð C MOVE ITMQNT,X ITMQTY ðð2

92ðð C ELSE IF X <=2ð ELSE Xðð2

 93ðð C MOVE ITMERR,2 ITMDSC ðð2

 94ðð C MOVE X ITMQTY ðð2

95ðð C ENDIF END: IF X <= 2ð Eðð2

96ðð C ELSE IF X > ð ELSE Xðð1

 97ðð C MOVE ITMERR,1 ITMDSC ðð1

 98ðð C MOVE X ITMQTY ðð1

99ðð C ENDIF END: IF X > ð Eðð1

 1ðððð \

Figure F-9 (Part 2 of 5). RPG/400 Inquiry Example – Target Program

 Appendix F. Program Examples F-25

1ð1ðð \ -

1ð2ðð \ WRITE THE 'ITMREC' FORMAT THAT WILL SEND THE ITEM DESCRIPTION

1ð3ðð \ AND QUANTITY TO THE SOURCE SYSTEM AND INVITE IT TO SEND.

1ð4ðð \ -

1ð5ðð \ Indicator 98 tells you whether the WRITE command completed

1ð6ðð \ successfully. (OFF means the command completed successfully.)

1ð7ðð \ -

 1ð8ðð \

 .5/
 1ð9ðð C WRITEITMREC 98 2

11ððð C TIME TIME 6ð GET TIME SENT

111ðð C 98 MOVELFILERR,5 PART1 66

 112ðð C 98 MOVE \BLANKS PART2 66

113ðð C 98 MAJCOD CABEQ' ' ERROR CK FOR ERROR

114ðð C 98 MAJCOD CABGE'ð3' ERROR CK FOR ERROR

115ðð C EXCPTSENT PRINT SENT LOG

 116ðð C GOTO NXTREC

 117ðð \

118ðð \ -

119ðð \ ERROR - PRINT OUT THE MAJOR/MINOR RETURN CODES.

12ððð \ -

 121ðð \

 .6/
 122ðð C ERROR TAG

 123ðð C 1ð

 124ðð COR 98 EXCPTERRDSC ERROR DESCRIPTN

 125ðð C EXCPTERR

 126ðð \

127ðð \ -

128ðð \ END-OF-JOB. TURN ON THE 'LR' INDICATOR.

129ðð \ -

 13ððð \

 .7/
 131ðð C END TAG

132ðð C SETON LR 1

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð ASYNLIBRPG/ASYNCT 12/14/9ð ð9:49:ð2 Page 5

SEQUENCE IND DO LAST PAGE PROGRAM

 NUMBER \...1....+....2....+....3....+....4....+....5....+....6....+....7...\ USE NUM UPDATE LINE ID

134ðð O\ - - - - - - - - - \

 135ðð \ PRINT HEADINGS \

136ðð \ - - - - - - - - - \

137ðð OQPRINT H 3ð1 1P

 138ðð O OR OF

139ðð O 22 'TARGET TRANSACTION LOG'

 14ððð O UDATE Y 6ð

 141ðð O 11ð 'PAGE'

142ðð O PAGE J 116

 143ðð O 13ð 'ASYNCT'

144ðð \ - - - - - - - - - - - - - - \

145ðð \ PRINT RECEIVED TRANSACTION \

146ðð \ - - - - - - - - - - - - - - \

 147ðð O EF 1 RECVD

148ðð O 22 'ITEM NUMBER RECEIVED -'

 149ðð O ITMNO 29

15ððð O 9ð 'TIME -'

151ðð O TIME 99 'ð : : '

 152ðð O 13ð 'ASYNCT'

153ðð \ - - - - - - - - - - - - - \

154ðð \ PRINT SENT TRANSACTION \

155ðð \ - - - - - - - - - - - - - \

 156ðð O EF 2 SENT

157ðð O 16 'SENT TO SOURCE :'

158ðð O 25 'ITMDSC -'

 159ðð O ITMDSC 51

16ððð O 6ð 'ITMQTY -'

 161ðð O ITMQTYJ 69

162ðð O 9ð 'TIME -'

163ðð O TIME 99 'ð : : '

 164ðð O 13ð 'ASYNCT'

165ðð \ - - - - - - - - - - - - - \

166ðð \ PRINT ERROR DESCRIPTION \

167ðð \ - - - - - - - - - - - - - \

 168ðð O EF 1 ERRDSC

 169ðð O PART1 66

 17ððð O PART2 132

Figure F-9 (Part 3 of 5). RPG/400 Inquiry Example – Target Program

F-26 AS/400 Asynchronous Communications Programming V4R1

171ðð \ - - - - - - - - - - - - - - - - \

172ðð \ PRINT MAJOR/MINOR RETURN CODES \

173ðð \ - - - - - - - - - - - - - - - - \

 174ðð O EF 2 ERR

175ðð O 24 'MAJOR/MINOR RETURN CODE:'

 176ðð O MAJCOD 27

 177ðð O 28 '/'

 178ðð O MINCOD 3ð

179ðð O 4ð 'STATUS -'

 18ððð O STS 46

181ðð O 52 'ID -'

 182ðð O ID 63

183ðð O 8ð 'JOB ENDED'

184ðð O 9ð 'TIME -'

185ðð O TIME 99 'ð : : '

 186ðð O 13ð 'ASYNCT'

Dðððððð OUTPUT FIELDS FOR RECORD ITMREC FILE CMNFILT FORMAT ITMREC.

 Dððððð1 ITMDSC 25 CHAR 25

 Dððððð2 ITMQTY 3ð ZONE 5,ð

Eðððððð OUTPUT FIELDS FOR RECORD INVITE FILE CMNFILT FORMAT INVITE.

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

A d d i t i o n a l D i a g n o s t i c M e s s a g e s

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð ASYNLIBRPG/ASYNCT 12/14/9ð ð9:49:ð2 Page 6

SEQUENCE LAST

 NUMBER \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 UPDATE

C o m p i l e - T i m e T a b l e s

 Table/Array : FILERR

188ðð Error occurred when issuing the initial WRITE. The ICF file may h

189ðð ave been created without the proper value for ACQPGMDEV parameter.

19ððð Error occurred when issuing the READ CMNFILT command.

191ðð EOF is indicated. (Has the CMNFILT been ACQUIREd?)

192ðð Error occurred when issuing the WRITE ITMREC command.

 Table/Array : ITMERR

194ðð ITEM NUMBER MUST BE > ðð.

195ðð ITEM NUMBER MUST BE < 21.

 Table/Array : ITMDES

197ðð THERE HAS TO BE A FIRST

198ðð ANYONE WANT SECONDS?

199ðð THREE'S A CROWD

 2ðððð FOURTH DOWN

2ð1ðð PLEAD THE FIFTH

 2ð2ðð SIXTH SENSE

 2ð3ðð SEVENTH HEAVEN

2ð4ðð EIGHT IS ENOUGH

2ð5ðð CAT WITH NINE LIVES

2ð6ðð THE TEN COMMANDMENTS

2ð7ðð THE 11TH OF MARCH

2ð8ðð CHEAPER BY THE DOZEN

2ð9ðð THE BAKER'S DOZEN

21ððð FOURTEENTH OF JUNE

211ðð FIFTEEN FRENCH HORNS

212ðð SWEET SIXTEEN AND ???

 213ðð SOUR SEVENTEEN

214ðð GRADUATE AT EIGHTEEN

215ðð FRESHMAN AGAIN AT 19

216ðð THE 2ðTH CENTURY

Figure F-9 (Part 4 of 5). RPG/400 Inquiry Example – Target Program

 Appendix F. Program Examples F-27

 Table/Array : ITMQNT

 218ðð ðð951

 219ðð ðð375

 22ððð ðð2ðð

 221ðð ð1ð27

 222ðð ððð56

 223ðð ðð45ð

 224ðð ð5798

 225ðð ð7731

 226ðð ð9843

 227ðð 7636ð

 228ðð ð1259

 229ðð ð8399

 23ððð ððð87

 231ðð 12ðð4

 232ðð ððð38

 233ðð ð3867

 234ðð 185ð3

 235ðð 8737ð

 236ðð 26589

 237ðð 58217

 5738RG1 V2R1Mð 91ð524 IBM AS/4ðð RPG/4ðð ASYNLIBRPG/ASYNCT 12/14/9ð ð9:49:ð2 Page 7

F i n a l S u m m a r y

 No errors found in source program.

 Program Source Totals:

Records : 237

Specifications : 96

Table Records : 47

Comments : 88

 PRM has been called.

 Program ASYNCT is placed in library ASYNLIBRPG. ðð highest Error-Severity-Code.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure F-9 (Part 5 of 5). RPG/400 Inquiry Example – Target Program

F-28 AS/400 Asynchronous Communications Programming V4R1

ILE C/400 Program Examples

The ILE C/400 source program starts a session with a
remote location and issues an evoke function, with no invite,
to start the target program. The source program sends item
numbers to the target program and then waits 30 seconds
(the value specified by the WAITRCD parameter on the
CRTICFF command) to receive an acknowledgment from the
target program indicating that the evoke function completed
successfully. If the source program receives a major return
code equal to or greater than 03, the program goes to end-
of-job.

In the following sample programs, the source program sends
an item number to the target program requesting item infor-
mation. The target program then sends the item information
(description and quantity) to the source program. The source
program sends the value 99999 to the target program, to
indicate end-of-transaction. At this point, both programs go
to end-of-job.

ILE C/400 Program Descriptions

The following information describes the structure of the
example programs in Figure F-11 on page F-32 and
Figure F-13 on page F-40. The reference numbers in the
figures correspond to those in the descriptions.

ILE C/400 Source Program: The following describes
the C/400 inquiry program that runs on the local system.

Program Files: The ILE C/400 source program uses the
following files:

ASYNICF An ICF file used to send records to and receive
records from the target program.

QPRINT An AS/400 printer file that is used to print
records, both sent and received, as well as
major and minor ICF return codes.

DDS Source: The DDS used in the ICF file is shown in
Figure F-10 on page F-30. QSYSPRT is a program-
described file and does not require DDS.

 Appendix F. Program Examples F-29

SEQNBR \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 Date

 1ðð A\\\

 2ðð A\ \

3ðð A\ ICF communications file used by the Source System to \

4ðð A\ send/receive interactively with the Target System. \

 5ðð A\ \

 6ðð A\\\

 7ðð A\

 8ðð A R ITMREC

 9ðð A ITMDSC 25A

 1ððð A ITMQTY 5S

 11ðð A\

 12ðð A R EVOKE

 13ðð A EVOKE(&LIB/&PGM)

14ðð A SECURITY(2 &USRPWD +

 15ðð A 3 &USRID)

16ðð A\ \

 17ðð A\ \

18ðð A\ \ The data placed in USERID and USRPWD must correspond to \

19ðð A\ a user profile and password, respectively, on the Target \

 2ððð A\ System. \

 21ðð A\ \

22ðð A\ \ The user in USRID must have authority to the device \

23ðð A\ object (device description) being used on the Target \

24ðð A\ System, as well as to the program and library indicated \

25ðð A\ in PGM and LIB, respectively. \

 26ðð A\ \

27ðð A\ \

 28ðð A PGM 1ðA P

 29ðð A LIB 1ðA P

 3ððð A USRID 1ðA P

 31ðð A USRPWD 1ðA P

 32ðð A\

 33ðð A R ITMREQ

 34ðð A INVITE

 35ðð A ITMNO 5A

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

 5763SS1 V3R1Mð 91ð524 Data Description ASYNLIBC/ASYNICF 1/ð2/94 11:21:46 Page 2

 Expanded Source

 Field Buffer position

 SEQNBR \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 length Out In

 8ðð R ITMREC

 9ðð ITMDSC 25A B 25 1 1

 1ððð ITMQTY 5S ðB 5 26 26

 12ðð R EVOKE EVOKE(&LIB/&PGM) +

14ðð SECURITY(2 &USRPWD 3 &USRID)

 28ðð PGM 1ðA P 1ð 1

 29ðð LIB 1ðA P 1ð 11

 3ððð USRID 1ðA P 1ð 21

 31ðð USRPWD 1ðA P 1ð 31

 33ðð R ITMREQ INVITE

 35ðð ITMNO 5A B 5 1 1

\ \ \ \ \ E N D O F E X P A N D E D S O U R C E \ \ \ \ \

 5763SS1 V3R1Mð 91ð524 Data Description ASYNLIBC/ASYNICF 1/ð2/94 11:21:46 Page 3

 Message Summary

Total Informational Warning Error Severe

 (ð-9) (1ð-19) (2ð-29) (3ð-99)

 ð ð ð ð ð

\ CPC73ð1 ðð Message : File ASYNICF created in library ASYNLIBC.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure F-10. DDS Source for ICF File ASYNICF, ILE C/400 Source Program

F-30 AS/400 Asynchronous Communications Programming V4R1

ICF File Creation and Program Device Entry Definition:
The following command is needed to create the ICF file:

CRTICFF FILE(ASYNLIBC/ASYNICF)

 SRCFILE(ASYNLIBC/QDDSSRC)

 ACQPGMDEV(\NONE)

 MAXPGMDEV(2) WAITRCD(3ð)

The following commands are needed to define the program
device entry and to direct the target program to the proper
ICF file:

OVRICFDEVE PGMDEV(ICFðð)

 RMTLOCNAME(\REQUESTER)

OVRICFF FILE(ASYNICF)

 TOFILE(ASYNLIBC/ASYNICF)

Print File Creation and Definition: If the print file,
QPRINT, does not already exist on the target system, it will
need to be created before running the C/400 program
example. The command needed to create the print file is:

CRTPRTF FILE(ASYNLIBC/QPRINT)

TEXT('Printer File for

Asynchronous program examples.')

 REPLACE(\NO)

The output queue, ASYNLIBC/ASYNC, is created by the
command:

CRTOUTQ OUTQ(ASYNLIBC/ASYNC)

TEXT('Target System''s asynchronous

ASYNC output queue.')

The following command is needed to direct the printer output
to the proper print file and output queue:

OVRPRTF FILE(QPRINT) TOFILE(ASYNLIBC/QPRINT)

 OUTQ(ASYNLIBC/ASYNC)

Program Explanation: The following describes the ILE
C/400 source program.

.1/ This section declares the structure for the record
formats in the ICF file. CMNFILR is the name of the
ICF file used to send records to and receive records
from the target program.

The files used in the program are opened at the begin-
ning of the program and the ICF program device is
explicitly acquired since the ACQPGMDEV parameter
was specified as *NONE on the CRTICFF command.

.2/ This section declares the structures for writing the fol-
lowing information to the printer file, QPRINT:

 � Item number
 � Description
 � Quantity
� Major/minor return code

.3/ The routines are prototypes so the compiler knows the
type of value returned and the type of parameters
passed.

.4/ This section opens the ICF file, ASYNICF, for
input/output and the printer file, QPRINT, for output.

.5/ This section sets the input/output feedback area pointer,
and the program device, ICF00, is explicitly acquired.

.6/ The EVOKE_TARGET routine is called to start the
target program.

.7/ Twenty records are sent to the target system.

.8/ Item number 99999 is sent to signify (to the target
program) an end to the transaction with the target
system.

.9/ The CL program, ASYNCTCCL, is started and contains
the following:

ADDLIBLE LIB(ASYNLIBC)

OVRICFDEVE PGMDEV(ICFðð) RMTLOCNAME(\REQUESTER)

OVRPRTF FILE(QPRINT) TOFILE(ASYNLIBC/QPRINT)

 OUTQ(ASYNLIBC/ASYNC)

CALL PGM(ASYNLIBC/ASYNCTC)

.1ð/ The program device is retrieved from the input/output
feedback area.

 Appendix F. Program Examples F-31

/\--\/

/\ This is an ICF send/receive program that uses an array (itm#) to \/

/\ simulate the retrieving of an item number from a data file and \/

/\ then sends that item number to a target system in order to retrieve \/

/\ an item description and a quantity from the target system's data file\/

/\ on a subsequent read to the ICF file. \/

/\--\/

#define NOERROR ð /\ No error occured \/

#define ERROR 1 /\ An error occured \/

#include <recio.h> /\ Record I/O header \/

#include <stdio.h> /\ Standard I/O header \/

#include <stddef.h> /\ Standard definitions \/

#include <stdlib.h> /\ General utilities \/

#include <string.h> /\ String handling utilities \/

#include <xxfdbk.h> /\ Feedback area structures \/

.1/

/\--\/

/\ Define the ICF file's structure. \/

/\--\/

struct {

 char itmdsc??(25??);

 char itmqty??(5??);

} itmrec_icf_i;

struct {

char pgm??(1ð??); /\ Program Name on Target System \/

char lib??(1ð??); /\ Library Name on Target System \/

char usr??(1ð??); /\ User-ID on Target System \/

char pwd??(1ð??); /\ Password on Target System \/

} evoke_icf_o;

struct {

 char itmno??(5??);

} itmreq_icf_o;

.2/

/\--\/

/\ Define structures used to write to the print file. \/

/\--\/

struct {

 char filler1??(37??);

 char filler2??(36??);

} blank_line;

struct {

char report_type??(22??); /\ Report Type (ie. Source Transaction Log) \/

 char spaces??(15??);

char main_title??(27??); /\ Main Title \/

 char filler??(9??);

} heading_one;

struct {

 char spaces??(37??);

char sub_title??(27??); /\ Sub-title \/

 char filler??(9??);

} heading_two;

struct {

char pgmnam??(1ð??); /\ Program Name \/

char sndmsg??(3ð??); /\ Send Message Title \/

char itmnum??(ð5??); /\ Item Number \/

 char filler??(28??);

} send_message;

struct {

char pgmnam??(1ð??); /\ Program Name \/

char recmsg??(3ð??); /\ Received Message Title \/

char itmdsc??(25??); /\ Item Description \/

 char spaces??(ð3??);

char itmqty??(ð5??); /\ Item Quantity \/

} receive_message;

Figure F-11 (Part 1 of 6). ILE C/400 Inquiry Example – Source Program

F-32 AS/400 Asynchronous Communications Programming V4R1

struct {

char pgmnam??(1ð??); /\ Program Name \/

char rtnmsg??(3ð??); /\ Return Code Message Title \/

char major??(ð2??); /\ Major Code \/

char slash??(ð1??); /\ slash \/

char minor??(ð2??); /\ Minor Code \/

 char spaces??(ð5??);

char lparen??(ð1??); /\ left parenthesis \/

char pgmdev??(1ð??); /\ Program Device, from feedback area \/

char rparen??(ð1??); /\ right parenthesis \/

 char filler??(11??);

} return_code;

struct {

char endmsg??(37??); /\ Ending Message Title \/

 char spaces??(21??);

char rsnhdg??(9??); /\ Reason Heading \/

char reason??(ð6??); /\ Reason (Normal or ERROR) \/

} ending_message;

/\--\/

/\ Declare the array that contains the item numbers to be sent to the \/

/\ target system. \/

/\--\/

static char \item??(2ð??) = {"ðððð1", "ðððð2", "ðððð3", "ðððð4", "ðððð5",

"ðððð6", "ðððð7", "ðððð8", "ðððð9", "ððð1ð",

"ððð11", "ððð12", "ððð13", "ððð14", "ððð15",

"ððð16", "ððð17", "ððð18", "ððð19", "ððð2ð"

};

.3/

int evoke_target(_RFILE \);

int send_item_number(_RFILE \);

int get_item_info(_RFILE \);

int check_error(void);

int check_timeout(void);

void end_error(_RFILE \, _RFILE \, _XXIOFB_T \);

void initialize_print_fields(_RFILE \);

void print_heading(_RFILE \);

void print_request(_RFILE \);

void print_received(_RFILE \);

void print_error(_RFILE \, _XXIOFB_T \);

main()

{

_XXIOFB_T \comm_fdbk; /\ Ptr to common I/O feedback \/

_RFILE \icffptr; /\ Ptr to ICF file \/

_RFILE \prtfptr; /\ Ptr to print file \/

 int i;

/\ - \/

 /\ Open a binary file for input and output. Writes (output) to \/

 /\ the file occur at the end of the file (append). \/

/\ - \/

.4/

if ((icffptr = _Ropen("ASYNICF", "ar+")) == NULL)

 exit(ERROR);

/\ - \/

 /\ Create a binary file for writing or clear the existing file. \/

/\ - \/

Figure F-11 (Part 2 of 6). ILE C/400 Inquiry Example – Source Program

 Appendix F. Program Examples F-33

 /\ Open printer file: \/

/\ Keyword parameter, type, must be "record". \/

/\ Keyword parameter, lrecl, is required for program-described \/

 /\ printer files. \/

/\ - \/

if ((prtfptr = _Ropen("QPRINT", "wr lrecl=132")) == NULL) {

 _Rclose(icffptr);

 exit(ERROR);

 }

 initialize_print_fields(prtfptr);

.5/

comm_fdbk = _Riofbk(icffptr);

 _Racquire(icffptr, "ICFðð ");

if (check_error() == ERROR) {

end_error(icffptr, prtfptr, comm_fdbk);

 exit(ERROR);

 }

 print_heading(prtfptr);

.6/
if (evoke_target(icffptr) == ERROR) {

end_error(icffptr, prtfptr, comm_fdbk);

 exit(ERROR);

 }

.7/

for (i = ð ; i < 2ð ; i++) {

strncpy(itmreq_icf_o.itmno, item??(i??), 5);

if (send_item_number(icffptr) == NOERROR) {

 print_request(prtfptr);

if (get_item_info(icffptr) == NOERROR)

 print_received(prtfptr);

 else {

end_error(icffptr, prtfptr, comm_fdbk);

 exit(ERROR);

 }

 }

 else {

end_error(icffptr, prtfptr, comm_fdbk);

 exit(ERROR);

 }

 }

.8/
strncpy(itmreq_icf_o.itmno, "99999", 5);

if (send_item_number(icffptr) == NOERROR) {

 print_request(prtfptr);

strncpy(ending_message.reason, "Normal", 6);

_Rwrite (prtfptr, &blank_line, sizeof(blank_line));

_Rwrite (prtfptr, &ending_message, sizeof(ending_message));

 _Rclose(icffptr);

 _Rclose(prtfptr);

 exit(NOERROR);

 }

 else {

end_error(icffptr, prtfptr, comm_fdbk);

 exit(ERROR);

 }

}

.9/

/\--\/

/\ Evoke the target program on the target system identified by the \/

/\ program named in "evoke_icf_o.pgm" and in the library named in \/

/\ "evoke_icf_o.lib". The user-id and password used to gain access \/

/\ to the target system is contained in "evoke_icf_ð.usr" and \/

/\ "evoke_icf_o.pwd", respectively. If an error occurs, this program \/

/\ will end. \/

/\--\/

evoke_target(_RFILE \icffptr)

{

strncpy(evoke_icf_o.pgm, "ASYNCTCCL ", 1ð);

 strncpy(evoke_icf_o.lib, "ASYNLIBC ", 1ð);

 strncpy(evoke_icf_o.usr, "ASYNCUSR ", 1ð);

 strncpy(evoke_icf_o.pwd, "ASYNCPWD ", 1ð);

Figure F-11 (Part 3 of 6). ILE C/400 Inquiry Example – Source Program

F-34 AS/400 Asynchronous Communications Programming V4R1

 _Rformat(icffptr, "EVOKE ");

 _Rpgmdev(icffptr, "ICFðð ");

_Rwrite (icffptr, &evoke_icf_o, sizeof(evoke_icf_o));

 return(check_error());

}

/\--\/

/\ This routine processes an array to simulate the reading of a data \/

/\ base or display file to get the item number to send to the target \/

/\ system. The write will send the item number (itmno) to the target \/

/\ system and then invite it to send. \/

/\--\/

send_item_number(_RFILE \icffptr)

{

 _Rformat(icffptr, "ITMREQ ");

_Rwrite(icffptr, &itmreq_icf_o, sizeof(itmreq_icf_o));

 return(check_error());

}

/\--\/

/\ This read-from-invited-devices is to receive the item description \/

/\ and quantity. Using a read-from-invited-devices (and the time value \/

/\ specified on the waitrcd parameter) prevents waiting indefinitely on \/

/\ the read statement. The 'read' statement refers to the file name \/

/\ 'cmnfils' to be able to do a 'read-from-invited-devices' which is \/

/\ required to get the timer to interrupt the 'read'. Since record- \/

/\ identifying characters were not used for the formats in the file, \/

/\ the 'itmrec' format was placed first in the file and will receive \/

/\ the input from the 'read cmnfils' statement. \/

/\--\/

get_item_info(_RFILE \icffptr)

{

_Rreadindv(icffptr, &itmrec_icf_i, sizeof(itmrec_icf_i), __DFT);

 return(check_timeout());

}

/\--\/

/\ Check for terminating error. If the major return code is greater \/

/\ than or equal to ð3, then the program ends. \/

/\--\/

check_error()

{

if (strncmp(_Maj_Min_rc.major_rc, "ð3", 2) == -1) /\ Major < ð3 \/

 return(NOERROR);

else /\ Major >= ð3 \/

 return(ERROR);

}

/\--\/

/\ Check for timeout on read-from-invited-program-devices operation. \/

/\ If a return code greater than or equal to ð31ð was received, then \/

/\ the program ends. \/

/\--\/

check_timeout()

{

if (strncmp(_Maj_Min_rc.major_rc, "ð3", 2) == 1) /\ Major > ð3 \/

 return(ERROR);

 else

if (strncmp(_Maj_Min_rc.major_rc, "ð3", 2) == ð) /\ Major = ð3 \/

if (strncmp(_Maj_Min_rc.minor_rc, "1ð", 2) == -1) /\ Minor < 1ð \/

 return(NOERROR);

Figure F-11 (Part 4 of 6). ILE C/400 Inquiry Example – Source Program

 Appendix F. Program Examples F-35

else /\ Minor >= 1ð \/

 return(ERROR);

else /\ Major < ð3 \/

 return(NOERROR);

}

/\--\/

/\ Print error message, close the files, and end the program. \/

/\--\/

void end_error(_RFILE \icffptr, _RFILE \prtfptr, _XXIOFB_T \comm_fdbk)

{

 print_error(prtfptr, comm_fdbk);

strncpy(ending_message.reason, "ERROR!", 6);

_Rwrite (prtfptr, &blank_line, sizeof(blank_line));

_Rwrite (prtfptr, &ending_message, sizeof(ending_message));

 _Rclose(icffptr);

 _Rclose(prtfptr);

}

void initialize_print_fields(_RFILE \prtfptr)

{

 strncpy(blank_line.filler1, " ", 37);

 strncpy(blank_line.filler2, blank_line.filler1, 36);

strncpy(heading_one.report_type, "Source Transaction Log", 22);

strncpy(heading_one.main_title, " C/4ðð Program Example ", 27);

strncpy(heading_one.spaces, blank_line.filler1, 15);

 strncpy(heading_one.filler, blank_line.filler1, 9);

 strncpy(heading_two.sub_title, "Asynchronous Communications", 27);

strncpy(heading_two.spaces, blank_line.filler1, 37);

 strncpy(heading_two.filler, blank_line.filler1, 9);

strncpy(send_message.pgmnam, "ASYNCSC - ", 1ð);

strncpy(send_message.sndmsg, "Item Number SENT to Target: ", 3ð);

strncpy(send_message.filler, blank_line.filler1, 28);

 strncpy(send_message.itmnum, "-----", 5);

strncpy(receive_message.pgmnam, send_message.pgmnam, 1ð);

strncpy(receive_message.recmsg, "Info. RECEIVED from Target: ", 3ð);

 strncpy(receive_message.spaces, " ", 3);

strncpy(receive_message.itmdsc, "-------------------------", 25);

 strncpy(receive_message.itmqty, "-----", 5);

strncpy(return_code.pgmnam, send_message.pgmnam, 1ð);

strncpy(return_code.rtnmsg, "\\ Major/Minor Return Code: ", 3ð);

 strncpy(return_code.slash, "/", 1);

 strncpy(return_code.spaces, " ", 5);

strncpy(return_code.lparen, "(", 1);

strncpy(return_code.rparen, ")", 1);

strncpy(return_code.filler, " \\ ", 11);

 strncpy(return_code.major, "--", 2);

 strncpy(return_code.minor, "--", 2);

strncpy(return_code.pgmdev, "----------", 1ð);

strncpy(ending_message.endmsg, "\\\\\\\ Source Program Ended \\\\\\\", 36);

strncpy(ending_message.rsnhdg, "Reason = ", 9);

strncpy(ending_message.spaces, blank_line.filler1, 22);

strncpy(ending_message.reason, "------", 6);

}

/\--\/

/\ Print heading to print file. \/

/\--\/

void print_heading(_RFILE \prtfptr)

{

_Rwrite (prtfptr, &heading_one, sizeof(heading_one));

_Rwrite (prtfptr, &heading_two, sizeof(heading_two));

_Rwrite (prtfptr, &blank_line, sizeof(blank_line));

}

Figure F-11 (Part 5 of 6). ILE C/400 Inquiry Example – Source Program

F-36 AS/400 Asynchronous Communications Programming V4R1

/\--\/

/\ Print request transaction to print file. \/

/\--\/

void print_request(_RFILE \prtfptr)

{

strncpy(send_message.itmnum, itmreq_icf_o.itmno, 5);

_Rwrite (prtfptr, &send_message, sizeof(send_message));

}

/\--\/

/\ Print received transaction to print file. \/

/\--\/

void print_received(_RFILE \prtfptr)

{

strncpy(receive_message.itmdsc, itmrec_icf_i.itmdsc, 25);

 strncpy(receive_message.itmqty, itmrec_icf_i.itmqty, 5);

_Rwrite (prtfptr, &receive_message, sizeof(receive_message));

_Rwrite (prtfptr, &blank_line, sizeof(blank_line));

}

/\--\/

/\ Print error information to print file. \/

/\--\/

void print_error(_RFILE \prtfptr, _XXIOFB_T \comm_fdbk)

{

strncpy(return_code.major, _Maj_Min_rc.major_rc, 2);

strncpy(return_code.minor, _Maj_Min_rc.minor_rc, 2);

strncpy(return_code.pgmdev, comm_fdbk->dev_name, 1ð);

_Rwrite (prtfptr, &return_code, sizeof(return_code));

}

Figure F-11 (Part 6 of 6). ILE C/400 Inquiry Example – Source Program

ILE C/400 Target Program: The following describes an
ILE C/400 asynchronous target program.

Program Files: The ILE C/400 target program uses the fol-
lowing files:

CMNFILR An ICF file used to send records to and receive
records from the source program.

QPRINT An AS/400 printer file that is used to print
records, both sent and received, as well as
major and minor ICF return codes.

DDS Source: Figure F-12 on page F-38 shows the DDS
keywords that are used in the ICF file. (QSYSPRT is a
program-described file; no DDS is required.)

 Appendix F. Program Examples F-37

Data Description Source

SEQNBR \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 Date

 1ðð A\\\

 2ðð A\ \

3ðð A\ ICF communications file used by the Target System to \

4ðð A\ send/receive interactively with the Source System. \

 5ðð A\ \

 6ðð A\\\

 7ðð A\

 8ðð A R ITMREQ

 9ðð A ITMNO 5A

 1ððð A\

 11ðð A R ITMREC

 12ðð A INVITE

 13ðð A ITMDSC 25A

 14ðð A ITMQTY 5S

 15ðð A\

 16ðð A R INVITE

 17ðð A INVITE

\ \ \ \ \ E N D O F S O U R C E \ \ \ \ \

 5738SS1 V2R1Mð 91ð524 Data Description ASYNLIBC/CMNFILR 1/ð2/91 11:22:42 Page 2

 Expanded Source

 Field Buffer position

 SEQNBR \...+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8 length Out In

 8ðð R ITMREQ

 9ðð ITMNO 5A B 5 1 1

 11ðð R ITMREC INVITE

 13ðð ITMDSC 25A B 25 1 1

 14ðð ITMQTY 5S ðB 5 26 26

 16ðð R INVITE INVITE

\ \ \ \ \ E N D O F E X P A N D E D S O U R C E \ \ \ \ \

 5738SS1 V2R1Mð 91ð524 Data Description ASYNLIBC/CMNFILR 1/ð2/91 11:22:42 Page 3

 Message Summary

Total Informational Warning Error Severe

 (ð-9) (1ð-19) (2ð-29) (3ð-99)

 ð ð ð ð ð

\ CPC73ð1 ðð Message : File CMNFILR created in library ASYNLIBC.

\ \ \ \ \ E N D O F C O M P I L A T I O N \ \ \ \ \

Figure F-12. DDS Source for ICF File CMNFILR, C/400 Target Program

ICF File Creation and Program Device Entry Definition:
The command needed to create the ICF file is:

CRTICFF FILE(ASYNLIBC/CMNFILR)

 SRCFILE(ASYNLIBC/QDDSSRC)

 ACQPGMDEV(\NONE)

 MAXPGMDEV(2) WAITRCD(3ð)

The following commands are needed to define the program
device entry and to direct the target program to the proper
ICF file:

OVRICFDEVE PGMDEV(ICFðð)

 RMTLOCNAME(\REQUESTER)

OVRICFF FILE(CMNFILR)

 TOFILE(ASYNLIBC/CMNFILR)

Print File Creation and Definition: If the print file,
QPRINT, does not already exist on the target system, it will
need to be created before running the C/400 program
example. The command needed to create the print file is:

CRTPRTF FILE(ASYNLIBC/QPRINT)

TEXT('Printer File for Asynchronous

 program examples.')

 REPLACE(\NO)

The output queque, ASYNLIBC/ASYNC, is created by the
command:

CRTOUTQ OUTQ(ASYNLIBC/ASYNC)

TEXT('Target System''s asynchronous

ASYNC output queue.')

The following command is needed to direct the printer output
to the proper print file and output queue:

OVRPRTF FILE(QPRINT) TOFILE(ASYNLIBC/QPRINT)

 OUTQ(ASYNLIBC/ASYNC)

Program Explanation: The following describes the struc-
ture of the program example shown in Figure F-13 on
page F-40. The ICF file used in this example uses
externally described data formats (DDS) defined by the user.
The reference letters in the figure correspond to those in the
following description.

.1/ This section declares the structure for the record
formats in the ICF file. CMNFILR is the name of the
ICF file used to send records to and receive records
from the target program.

The files used in the program are opened at the begin-
ning of the program and the ICF program device is
explicitly acquired since the ACQPGMDEV parameter
was specified as *NONE on the CRTICFF command.

.2/ This section declares the structures for writing the fol-
lowing information to the printer file, QPRINT:

 � Item number
 � Description
 � Quantity
� Major/minor return code

 � Program device

.3/ This section opens the ICF file, CMNFILR, for
input/output and the printer file, QPRINT, for output.

F-38 AS/400 Asynchronous Communications Programming V4R1

.4/ This section sets the input/output feedback area pointer,
and the program device, ICF00, is explicitly acquired.

.5/ The program device, ICF00, is invited.

.6/ Item numbers are read until an error occurs or the
number 99999 is received, signifying the source
program is finished with the transaction.

.7/ The program device is retrieved from the input/output
feedback area.

 Appendix F. Program Examples F-39

/\--\/

/\ This is the target program that will perform the ICF receive/send \/

/\ function with the source system's program. It will use arrays to \/

/\ simulate the retrieval of data from a data base file, using the \/

/\ 'itmno' sent from the source system to index into the arrays to \/

/\ retrieve the appropriate item description and quantity. \/

/\--\/

#define NOERROR ð /\ No error occured \/

#define ERROR 1 /\ An error occured \/

#include <recio.h> /\ Record I/O header \/

#include <stdio.h> /\ Standard I/O header \/

#include <stddef.h> /\ Standard definitions \/

#include <stdlib.h> /\ General utilities \/

#include <string.h> /\ String handling utilities \/

#include <xxfdbk.h> /\ Feedback area structures \/

.1/
/\--\/

/\ Define the ICF file's structure. \/

/\--\/

struct {

 char itmno??(5??);

} itmreq_icf_i;

struct {

 char itmdsc??(25??);

 char itmqty??(5??);

} itmrec_icf_o;

.2/
/\--\/

/\ Define structures used to write to the print file. \/

/\--\/

struct {

 char filler1??(37??);

 char filler2??(36??);

} blank_line;

struct {

char report_type??(22??); /\ Report Type (ie. Target Transaction Log) \/

 char spaces??(14??);

char main_title??(27??); /\ Main Title \/

 char filler??(1ð??);

} heading_one;

struct {

 char spaces??(36??);

char sub_title??(27??); /\ Sub-title \/

 char filler??(1ð??);

} heading_two;

struct {

char pgmnam??(1ð??); /\ Program Name \/

char recmsg??(3ð??); /\ Received Message Title \/

char itmnum??(ð5??); /\ Item Number \/

 char filler??(28??);

} receive_message;

Figure F-13 (Part 1 of 7). ILE C/400 Inquiry Example – Target Program

F-40 AS/400 Asynchronous Communications Programming V4R1

struct {

char pgmnam??(1ð??); /\ Program Name \/

char sndmsg??(3ð??); /\ Send Message Title \/

char itmdsc??(25??); /\ Item Description \/

 char spaces??(ð3??);

char itmqty??(ð5??); /\ Item Quantity \/

} send_message;

struct {

char pgmnam??(1ð??); /\ Program Name \/

char rtnmsg??(3ð??); /\ Return Code Message Title \/

char major??(ð2??); /\ Major Code \/

char slash??(ð1??); /\ slash \/

char minor??(ð2??); /\ Minor Code \/

 char spaces??(ð5??);

char lparen??(ð1??); /\ left parenthesis \/

char pgmdev??(1ð??); /\ Program Device, from feedback area \/

char rparen??(ð1??); /\ right parenthesis \/

 char filler??(11??);

} return_code;

struct {

char endmsg??(36??); /\ Ending Message Title \/

 char spaces??(2ð??);

char rsnhdg??(11??); /\ Reason Heading \/

char reason??(ð6??); /\ Reason (Normal or ERROR) \/

} ending_message;

/\--\/

/\ Declare array that contains the description of the items. \/

/\--\/

static char \itmdes??(2ð??) = {

"There has be to a FIRST. ",

"Anyone for SECONDS? ",

"THREE's a crowd. ",

"FOURTH down ... ",

"Plead the FIFTH. ",

"SIXTH sense ... ",

"SEVENTH Heaven ... ",

"EIGHT is enough. ",

"Cat with NINE lives ... ",

"The TEN Commandments ... ",

"The ELEVENTH of March ...",

"Cheaper by the DOZEN ... ",

"The BAKER'S DOZEN ... ",

"FOURTEENTH of June ... ",

"FIFTEEN French horns ... ",

"Sweet SIXTEEN and ??? ",

"Sour SEVENTEEN ... ",

"Graduate at EIGHTEEN. ",

"Freshman again at 19. ",

"The TWENTIETH Century ...",

};

Figure F-13 (Part 2 of 7). ILE C/400 Inquiry Example – Target Program

 Appendix F. Program Examples F-41

/\--\/

/\ Declare array that contains the quantity of the relative item in the \/

/\ itmdes array. \/

/\--\/

static char \itmqnt??(2ð??) = {"ðð951", "ðð375", "ðð2ðð", "ð1ð27", "ððð56",

"ðð45ð", "ð5798", "ð7731", "ð9843", "7636ð",

"ð1259", "ð8399", "ððð87", "12ðð4", "ððð38",

"ð3867", "185ð3", "8737ð", "26589", "58217"

};

int get_item_number(_RFILE \);

int send_item_info(_RFILE \);

int check_error(void);

int check_timeout(void);

void initialize_print_fields(_RFILE \);

void print_heading(_RFILE \);

void print_received(_RFILE \);

void print_sent(_RFILE \);

void print_error(_RFILE \, _XXIOFB_T \);

main()

{

_XXIOFB_T \comm_fdbk; /\ Ptr to common I/O feedback \/

_RFILE \icffptr; /\ Ptr to ICF file \/

_RFILE \prtfptr; /\ Ptr to print file \/

/\ - \/

 /\ Open a binary file for input and output. Writes (output) to \/

 /\ the file occur at the end of the file (append). \/

/\ - \/

.3/
if ((icffptr = _Ropen("CMNFILR", "ar+")) == NULL)

 exit(ERROR);

/\ - \/

 /\ Create a binary file for writing or clear the existing file. \/

/\ - \/

 /\ Open printer file: \/

/\ Keyword parameter, type, must be "record". \/

/\ Keyword parameter, lrecl, is required for program-described \/

 /\ printer files. \/

/\ - \/

if ((prtfptr = _Ropen("QPRINT", "wr lrecl=132")) == NULL) {

 _Rclose(icffptr);

 exit(ERROR);

 }

 initialize_print_fields(prtfptr);

.3/
comm_fdbk = _Riofbk(icffptr);

 _Racquire(icffptr, "ICFðð ");

if (check_error() == ERROR) {

 print_error(prtfptr, comm_fdbk);

strncpy(ending_message.reason, "Error-", 6);

_Rwrite (prtfptr, &ending_message, sizeof(ending_message));

 _Rclose(icffptr);

 _Rclose(prtfptr);

 exit(ERROR);

 }

Figure F-13 (Part 3 of 7). ILE C/400 Inquiry Example – Target Program

F-42 AS/400 Asynchronous Communications Programming V4R1

 print_heading(prtfptr);

.5/
 _Rformat(icffptr, "INVITE ");

 _Rpgmdev(icffptr, "ICFðð ");

_Rwrite (icffptr, NULL, ð);

if (check_error() == NOERROR)

.6/
while (1) {

if (get_item_number(icffptr) == ERROR) {

 print_error(prtfptr, comm_fdbk);

 break;

 }

 else {

 print_received(prtfptr);

/\ - \/

/\ When the 'itmno' field has a value of '99999', \/

/\ the source system has no more requests. \/

/\ - \/

if (strncmp(itmreq_icf_i.itmno, "99999", 5) == ð) {

strncpy(ending_message.reason, "Normal", 6);

 break;

 }

 else

if (send_item_info(icffptr) == ERROR) {

 print_error(prtfptr, comm_fdbk);

strncpy(ending_message.reason, "ERROR!", 6);

 break;

 }

 else

 print_sent(prtfptr);

 }

 }

 else

 print_error(prtfptr, comm_fdbk);

_Rwrite (prtfptr, &blank_line, sizeof(blank_line));

_Rwrite (prtfptr, &ending_message, sizeof(ending_message));

 _Rclose(icffptr);

 _Rclose(prtfptr);

}

/\--\/

/\ This read-from-program-devices is to receive the itmno from the \/

/\ source system. Using a read-from-invited-devices (and the timer \/

/\ value specified on the waitrcd parameter of the ICF file) prevents \/

/\ waiting indefinitely on the 'read' statement. The read statement \/

/\ refers to the file name 'cmnfilr' to be able to do a 'read-from- \/

/\ invited-device' which is required to get the timer interrupt on the \/

/\ 'read'. On successful completion, the 'read' will put the data into \/

/\ the first format in the ICF file since no record-identifying codes \/

/\ were used for the formats on the input specifications. \/

/\--\/

Figure F-13 (Part 4 of 7). ILE C/400 Inquiry Example – Target Program

 Appendix F. Program Examples F-43

get_item_number(_RFILE \icffptr)

{

_Rreadindv(icffptr, &itmreq_icf_i, sizeof(itmreq_icf_i), __DFT);

 return(check_timeout());

}

/\--\/

/\ This is the routine processes the arrays to retrieve the item \/

/\ description and quantity to be sent back to the source system. The \/

/\ item number received is converted to an integer and then decremented \/

/\ by one to get the correct position in the arrays. \/

/\--\/

send_item_info(_RFILE \icffptr)

{

 int item_number;

item_number = atoi(itmreq_icf_i.itmno) - 1;

strncpy(itmrec_icf_o.itmdsc, itmdes??(item_number??), 25);

strncpy(itmrec_icf_o.itmqty, itmqnt??(item_number??), 5);

 _Rformat(icffptr, "ITMREC ");

_Rwrite (icffptr, &itmrec_icf_o, sizeof(itmrec_icf_o));

 return(check_error());

}

/\--\/

/\ Check for terminating error. If the major return code is greater \/

/\ than or equal to ð3, then the program ends. \/

/\--\/

check_error()

{

if (strncmp(_Maj_Min_rc.major_rc, "ð3", 2) == -1)

 return(NOERROR);

 else

 return(ERROR);

}

/\--\/

/\ Check for timeout on read-from-invited-program-devices operation. \/

/\ If a return code greater than or equal to ð31ð was received, then \/

/\ the program ends. \/

/\--\/

check_timeout()

{

if (strncmp(_Maj_Min_rc.major_rc, "ð3", 2) == 1) /\ Major > ð3 \/

 return(ERROR);

 else

if (strncmp(_Maj_Min_rc.major_rc, "ð3", 2) == ð) /\ Major = ð3 \/

if (strncmp(_Maj_Min_rc.minor_rc, "1ð", 2) == -1) /\ Minor < 1ð \/

 return(NOERROR);

else /\ Minor >= ð3 \/

 return(ERROR);

return(NOERROR); /\ Major < ð3 \/

}

Figure F-13 (Part 5 of 7). ILE C/400 Inquiry Example – Target Program

F-44 AS/400 Asynchronous Communications Programming V4R1

/\--\/

/\ Initialize the various print file fields. \/

/\--\/

void initialize_print_fields(_RFILE \prtfptr)

{

 strncpy(blank_line.filler1, " ", 37);

 strncpy(blank_line.filler2, blank_line.filler1, 36);

strncpy(heading_one.report_type, "Target Transaction Log", 22);

strncpy(heading_one.main_title, " C/4ðð Program Example ", 27);

strncpy(heading_one.spaces, blank_line.filler1, 14);

strncpy(heading_one.filler, blank_line.filler1, 1ð);

 strncpy(heading_two.sub_title, "Asynchronous Communications", 27);

strncpy(heading_two.spaces, blank_line.filler1, 36);

strncpy(heading_two.filler, blank_line.filler1, 1ð);

strncpy(receive_message.pgmnam, "ASYNCTC --", 1ð);

strncpy(receive_message.recmsg, " Item RECEIVED from Source: ", 3ð);

strncpy(receive_message.filler, blank_line.filler1, 28);

 strncpy(receive_message.itmnum, "-----", 5);

strncpy(send_message.pgmnam, receive_message.pgmnam, 1ð);

strncpy(send_message.sndmsg, " Item Info. SENT to Source: ", 3ð);

 strncpy(send_message.spaces, " ", 3);

strncpy(send_message.itmdsc, "-------------------------", 25);

 strncpy(send_message.itmqty, "-----", 5);

strncpy(return_code.pgmnam, receive_message.pgmnam, 1ð);

strncpy(return_code.rtnmsg, "\\ Major/Minor Return Code: ", 3ð);

 strncpy(return_code.slash, "/", 1);

 strncpy(return_code.spaces, " ", 5);

strncpy(return_code.lparen, "(", 1);

strncpy(return_code.rparen, ")", 1);

strncpy(return_code.filler, " \\ ", 11);

 strncpy(return_code.major, "--", 2);

 strncpy(return_code.minor, "--", 2);

strncpy(return_code.pgmdev, "----------", 1ð);

strncpy(ending_message.endmsg, "\\\\\\\ Target Program Ended \\\\\\\", 36);

strncpy(ending_message.rsnhdg, "\ Reason = ", 11);

strncpy(ending_message.spaces, blank_line.filler1, 2ð);

strncpy(ending_message.reason, "------", 6);

}

/\--\/

/\ Print heading to print file. \/

/\--\/

void print_heading(_RFILE \prtfptr)

{

_Rwrite (prtfptr, &heading_one, sizeof(heading_one));

_Rwrite (prtfptr, &heading_two, sizeof(heading_two));

_Rwrite (prtfptr, &blank_line, sizeof(blank_line));

}

Figure F-13 (Part 6 of 7). ILE C/400 Inquiry Example – Target Program

 Appendix F. Program Examples F-45

/\--\/

/\ Print received transaction to print file. \/

/\--\/

void print_received(_RFILE \prtfptr)

{

strncpy(receive_message.itmnum, itmreq_icf_i.itmno, 5);

_Rwrite (prtfptr, &receive_message, sizeof(receive_message));

}

/\--\/

/\ Print sent transaction to print file. \/

/\--\/

void print_sent(_RFILE \prtfptr)

{

strncpy(send_message.itmdsc, itmrec_icf_o.itmdsc, 25);

 strncpy(send_message.itmqty, itmrec_icf_o.itmqty, 5);

_Rwrite (prtfptr, &send_message, sizeof(send_message));

_Rwrite (prtfptr, &blank_line, sizeof(blank_line));

}

/\--\/

/\ Print error information to print file. \/

/\--\/

void print_error(_RFILE \prtfptr, _XXIOFB_T \comm_fdbk)

{

strncpy(return_code.major, _Maj_Min_rc.major_rc, 2);

strncpy(return_code.minor, _Maj_Min_rc.minor_rc, 2);

strncpy(return_code.pgmdev, comm_fdbk->dev_name, 1ð);

_Rwrite (prtfptr, &return_code, sizeof(return_code));

}

Figure F-13 (Part 7 of 7). ILE C/400 Inquiry Example – Target Program

F-46 AS/400 Asynchronous Communications Programming V4R1

 Bibliography

The following AS/400 books contain additional information
you may need when you use the AS/400 asynchronous com-
munications support. The books are listed with their full title
and order number. Refer to the Publications Reference
book, SC41-5003, if you want a list of all books in the
AS/400 Softcopy Library. The AS/400 Information Directory,
a unique, multimedia interface to a searchable database that
contains descriptions of titles available from IBM or from
selected other publishers. The AS/400 Information Directory
is shipped with the OS/400 operating system at no charge.

� ICF Programming, SC41-5442. Contains information
about DDS specific to communications applications.

� Communications Management, SC41-5406. Supplies
management information relating to communications,
specific work management, communications error han-
dling, and performance.

� Communications Configuration, SC41-5401. Contains
general configuration information, including detailed
descriptions of network interface, line, controller, device,
mode, and class-of-service descriptions, configuration
lists, and connection lists.

� X.25 Network Support, SC41-5405. Contains informa-
tion about the X.25 network interface and how to use it
on the OS/400 operating system.

� DDS Reference, SC41-5712. Contains information
about coding data description specifications.

� System/36 Environment Programming, SC41-4730.
Identifies the differences in the applications process in
the System/36 environment on the AS/400 system.

� CL Programming, SC41-5721. Contains general infor-
mation about control language programming.

� CL Reference. Contains descriptions of all AS/400
control language (CL) commands, including syntax dia-
grams.

The following books contain information on how to design,
code, compile, run, and debug programs written in the lan-
guages supported for AS/400 communications:

� COBOL/400 Reference, SC09-1813.

� COBOL/400* User's Guide, SC09-1812.

� RPG/400 Reference, SC09-1817.

� RPG/400 User's Guide, SC09-1816.

� C/400* Reference Summary, SX09-1217.

� C/400* User's Guide, SC09-1347.

 Copyright IBM Corp. 1997 H-1

H-2 AS/400 Asynchronous Communications Programming V4R1

 Index

A
acquire operation 6-3
Add Intersystem Communications Function Device Entry

(ADDICFDEVE) command 6-1
See also ICF Programming

ADDICFDEVE (Add Intersystem Communications Func-
tion Device Entry) command 6-1

See also ICF Programming
adding

intersystem communications function (ICF) device
entry 6-1

application program
considerations 7-1
using ICF files 6-1

ASCII character set C-2
asynchronous communications

activating and deactivating 5-1
application considerations 7-1
break and interrupt handling

responses to break signals and interrupt packets D-1
responses to issued fail functions D-1

configuration commands 4-1
configuration examples E-1
configuring

See Communications Configuration
configuring support 4-1
considerations 7-1—7-2
definition 1-1
device entry parameters 6-2
elements 1-1
I/O feedback areas 6-7
illustration 1-1
interactive terminal facility (ITF) 8-1
introduction 1-1
ITF (interactive terminal facility) 8-1
logical records 7-1
nonswitched configuration example E-1
overview 1-1
packet-switching data network (PSDN) 2-3
performance considerations 7-1, 7-2
receiving data 6-5
return codes B-1
running support 5-1
sending data 6-4
start-stop line 2-1
support 2-1
switched configuration example E-2
writing application programs 6-1
X.25 lines

DCE-to-DTE mode 2-2
non-SNA communications 2-2

asynchronous controller description
definition 2-1

asynchronous line
nonswitched line support 2-1
specifying parameters 2-1
switched line support 2-1

asynchronous line description
creating 2-1

B
bibliography H-1
break handling D-1
buffer size 7-2

C
cancel invite function 6-6
CCITT (Telecommunication Standardization Sector)

definition 3-1
PAD support 2-4, 3-1
recommendations 2-4, 3-1

Change Intersystem Communications Function Device
Entry (CHGICFDEVE) command 6-1

See also ICF Programming
Change Intersystem Communications Function File

(CHGICFF) command 6-1
changing

intersystem communications function (ICF) device
entry 6-1

intersystem communications function (ICF) file 6-1
character set

ASCII C-2
ASCII-to-EBCDIC translation C-4
EBCDIC-to-ASCII translation C-3

CHGICFDEVE (Change Intersystem Communications
Function Device Entry) command 6-1

See also ICF Programming
CHGICFF (Change Intersystem Communications Func-

tion File) command 6-1
COBOL/400 programming language

source program for inquiry applications F-1
target program for inquiry applications F-9

code conversion table C-1
code page 037

EBCDIC character set C-1
command, CL

Add Intersystem Communications Function Device Entry
(ADDICFDEVE) 6-1

ADDICFDEVE (Add Intersystem Communications Func-
tion Device Entry) 6-1

Change Intersystem Communications Function Device
Entry (CHGICFDEVE) 6-1

 Copyright IBM Corp. 1997 X-1

command, CL (continued)
Change Intersystem Communications Function File

(CHGICFF) 6-1
CHGICFDEVE (Change Intersystem Communications

Function Device Entry) 6-1
CHGICFF (Change Intersystem Communications Function

File) 6-1
Create Configuration List (CRTCFGL) 3-7
Create Controller Description (Asynchronous)

(CRTCTLASC)
*SVCIN from a specific address example E-6
*SVCIN from any address example E-7
*SVCOUT to a specific address example E-8
*SVCOUT to PAD example E-9
emulating a PAD 3-1
nonswitched example E-2
permanent virtual circuit (PVC) example E-5
specifying permanent virtual circuit (PVC) 2-2
specifying switched virtual circuit (SVC) 2-2
switched example E-3

Create Device Description (Asynchronous) (CRTDEVASC)
*SVCIN from a specific address example E-6
*SVCIN from any address example E-7, E-8
*SVCOUT to a specific address example E-8
*SVCOUT to PAD example E-9
nonswitched example E-2
permanent virtual circuit (PVC) example E-5
switched example E-3

Create Intersystem Communications Function File
(CRTICFF) 6-1

Create Line Description (Asynchronous) (CRTLINASC)
matching parameters 2-1
switched example E-2, E-3

Create Line Description (X.25) (CRTLINX25) E-4
CRTCFGL (Create Configuration List) 3-7
CRTCTLASC (Create Controller Description (Asynchro-

nous))
*SVCIN from a specific address example E-6
*SVCIN from any address example E-7
*SVCOUT to a specific address example E-8
*SVCOUT to PAD example E-9
emulating a PAD 3-1
nonswitched example E-2
permanent virtual circuit (PVC) example E-5
specifying permanent virtual circuit (PVC) 2-2
specifying switched virtual circuit (SVC) 2-2
switched example E-3

CRTDEVASC (Create Device Description (Asynchronous))
*SVCIN from a specific address example E-6
*SVCIN from any address example E-7, E-8
*SVCOUT to a specific address example E-8
*SVCOUT to PAD example E-9
nonswitched example E-2
permanent virtual circuit (PVC) example E-5
switched example E-3

CRTICFF (Create Intersystem Communications Function
File) 6-1

command, CL (continued)
CRTLINASC (Create Line Description (Asynchronous))

matching parameters 2-1
nonswitched example E-2
switched example E-3

CRTLINX25 (Create Line Description (X.25)) E-4
Delete File (DLTF) 6-1
Display File Description (DSPFD) 6-1
Display File Field Description (DSPFFD) 6-1
DLTF (Delete File) 6-1
DSPFD (Display File Description) 6-1
DSPFFD (Display File Field Description) 6-1
Override Intersystem Communications Function Device

Entry (OVRICFDEVE) 6-1
Override Intersystem Communications Function File

(OVRICFF) 6-1
OVRICFDEVE (Override Intersystem Communications

Function Device Entry) 6-1
OVRICFF (Override Intersystem Communications Func-

tion File) 6-1
Remove Intersystem Communications Function Device

Entry (RMVICFDEVE) 6-1
RMVICFDEVE (Remove Intersystem Communications

Function Device Entry) 6-1
Start ITF (STRITF) 8-1
STRITF (Start ITF) 8-1
Vary Configuration (VRYCFG) 5-1
VRYCFG (Vary Configuration) 5-1

command, PAD
command mode 3-3
CONNECT 3-3
CONTINUE 3-4
data transfer mode 3-3
definition 3-3
DISCONNECT 3-3
disconnecting communications 3-3
examples

Par? 3-4
Set 3-4
Set? 3-4

PAD escape sequence 3-4
PAD prompt 3-4
PAR? 3-4
RESET 3-3
SET 3-4
SET? 3-4
STATUS 3-3

communication session
definition 6-2
starting 6-2

communications
See asynchronous communications

communications configuration
See also Communications Configuration
commands 4-1

X-2 AS/400 Asynchronous Communications Programming V4R1

communications operation 6-2 —6-8
acquire 6-3
cancel invite 6-6
description 6-2
detach 6-6
end-of-session 6-7
evoke 6-3
fail 6-6
get attributes 6-6
invite 6-5
open 6-3
read 6-5
read-from-invited-program-devices 6-5
release 6-7
timer 6-6
write 6-4

communications performance
See also Communications Management
asynchronous overhead 7-2
buffer size 7-2
data buffers using XOFF characters 7-2

communications session
definition 6-3
ending 6-7
starting 6-3

configuration
varying 5-1

configuration communications
commands 4-1

configuration example
asynchronous communications using X.25 PSDN E-4
nonswitched asynchronous communications E-1
switched asynchronous communications E-2

configuration list
creating 3-7

configuring
asynchronous communication support 4-1

control character
sending 8-6

controller description
asynchronous 2-1
creating

for incoming calls (*SVCIN) using generic
controller E-7

for incoming calls (*SVCIN) using X.25 PSDN E-6
for outgoing calls (*SVCOUT) using PAD

emulation E-9
for outgoing calls (*SVCOUT) using X.25 PSDN E-8
for permanent virtual circuit (*PVC) using X.25

PSDN E-5
Create Configuration List (CRTCFGL) command 3-7

See also Communications Configuration
Create Controller Description (Asynchronous)

(CRTCTLASC) command
emulating a PAD 3-1
examples

*SVCIN from any address example E-7

Create Controller Description (Asynchronous)
(CRTCTLASC) command (continued)

examples (continued)
for incoming calls (*SVCIN) using generic

controller E-7
for incoming calls (*SVCIN) using X.25 PSDN E-6
for outgoing calls (*SVCOUT) using PAD

emulation E-9
for outgoing calls (*SVCOUT) using X.25 PSDN E-8
for permanent virtual circuit (*PVC) using X.25

PSDN E-5
using nonswitched asynchronous communications E-2
using switched asynchronous communications E-3

specifying permanent virtual circuit (PVC) 2-2
specifying switched virtual circuit (SVC) 2-2

Create Device Description (Asynchronous)
(CRTDEVASC) command

examples
for incoming calls (*SVCIN) using generic device E-7,

E-8
for incoming calls (*SVCIN) using X.25 PSDN E-6
for outgoing calls (*SVCOUT) using PAD

emulation E-9
for outgoing calls (*SVCOUT) using X.25 PSDN E-8
for permanent virtual circuit (PVC) using X.25

PSDN E-5
using nonswitched asynchronous communications E-2
using switched asynchronous communications E-3

Create Intersystem Communications Function File
(CRTICFF) command 6-1

Create Line Description (Asynchronous) (CRTLINASC)
command 2-1

examples
using nonswitched asynchronous communications E-2
using switched asynchronous communications E-3

Create Line Description (X.25) (CRTLINX25) command
examples

using asynchronous communications over X.25
PSDN E-4

creating
configuration list 3-7
controller description

*SVCIN from a specific address example E-6
*SVCIN from any address example E-7
*SVCOUT to a specific address example E-8
*SVCOUT to PAD example E-9
permanent virtual circuit (PVC) example E-5

device description
*SVCIN from a specific address example E-6
*SVCIN from any address example E-7
*SVCOUT to a specific address example E-8
*SVCOUT to PAD example E-9
nonswitched example E-2
permanent virtual circuit (PVC) example E-5
switched example E-3

intersystem communications function (ICF) file 6-1

 Index X-3

creating (continued)
line description

asynchronous 2-1
nonswitched example E-2
X.25 E-4

CRTCFGL (Create Configuration List) command 3-7
See also Communications Configuration

CRTCTLASC (Create Controller Description (Asynchro-
nous)) command

emulating a PAD 3-1
examples

for incoming calls (*SVCIN) using generic
controller E-7

for incoming calls (*SVCIN) using X.25 PSDN E-6
for outgoing calls (*SVCOUT) using PAD

emulation E-9
for outgoing calls (*SVCOUT) using X.25 PSDN E-8
for permanent virtual circuit (*PVC) using X.25

PSDN E-5
using nonswitched asynchronous communications E-2
using switched asynchronous communications E-3

specifying permanent virtual circuit (PVC) 2-2
specifying switched virtual circuit (SVC) 2-2

CRTDEVASC (Create Device Description (Asynchro-
nous)) command

examples
for incoming calls (*SVCIN) using generic device E-7,

E-8
for incoming calls (*SVCIN) using X.25 PSDN E-6
for outgoing calls (*SVCOUT) using PAD

emulation E-9
for outgoing calls (*SVCOUT) using X.25 PSDN E-8
for permanent virtual circuit (PVC) using X.25

PSDN E-5
using nonswitched asynchronous communications E-2
using switched asynchronous communications E-3

CRTICFF (Create Intersystem Communications Function
File) command 6-1

CRTLINASC (Create Line Description (Asynchronous))
command 2-1

examples
using nonswitched asynchronous communications E-2
using switched asynchronous communications E-3

CRTLINX25 (Create Line Description (X.25)) command
examples

using asynchronous communications over X.25
PSDN E-4

D
data

receiving 6-5
requesting 6-5
sending 6-4

data buffering 7-2

data circuit-terminating equipment (DCE)
definition 2-2

data queue 6-6
Data Set Ready (DSR) signal 2-2
data terminal equipment (DTE)

definition 1-1
data transfer mode

returning to 3-4
DCE (data circuit-terminating equipment)

definition 2-2
DCE-to-DTE mode 2-2
DDS keyword A-2
deferred connection

definition E-3
Delete File (DLTF) command 6-1
deleting

file 6-1
detach function 6-6
device description

asynchronous
creating E-2—E-9

device entry parameter 6-2
disconnecting

communications 3-3
Display File Description (DSPFD) command 6-1
Display File Field Description (DSPFFD) command 6-1
displaying

file description 6-1
file field description 6-1

DLTF (Delete File) command 6-1
DSPFD (Display File Description) command 6-1
DSPFFD (Display File Field Description) command 6-1
DSR (Data Set Ready) signal 2-2
DTE (data terminal equipment)

definition 1-1

E
end-of-session function 6-7
ending

session 6-6
transaction 6-6

evoke function
See also DDS Reference
See also ICF Programming
coding 6-3
confirmation of evoke by source program 7-1
description 6-3

example
configuration

asynchronous communications using X.25 PSDN E-4
nonswitched asynchronous communications E-1
switched asynchronous communications E-2

example program
COBOL/400 source program F-1
COBOL/400 target program F-9

X-4 AS/400 Asynchronous Communications Programming V4R1

example program (continued)
FORTRAN/400

See ICF Programming
ILE C/400 source program F-29
ILE C/400 target program F-37
RPG/400 source program F-15
RPG/400 target program F-22

F
fail function 6-6
file

deleting 6-1
displaying description 6-1

file field
displaying 6-1

file member
receiving 8-3
sending 8-3

file transfer support (FTS)
See also ICF Programming
definition 1-1

flow control character 7-1
format

system-supplied A-2
format effector

definition 8-2
FORTRAN/400 programming language

example
See ICF Programming

table of statements A-1
FTS (file transfer support)

See also ICF Programming
definition 1-1

function-management-header function 6-4

G
generic controller

configuration example E-6, E-7
description E-6
for SVC-IN connections 2-4
ID prompt and response 2-5

generic device
configuration example E-6
description E-6
for SVC-IN connections 2-4
ID prompt and response 2-5

get-attributes operation 6-6

I
I/O feedback area 6-7

See also ICF Programming
ICF (intersystem communications function)

commands 6-1

ICF (intersystem communications function) (continued)
definition 2-1
device entry

parameters 6-2
operations A-1
using 6-1

ILE C/400 programming language
source program for inquiry applications F-29
table of functions A-1
target program for inquiry applications F-37

ILE COBOL/400 programming language
table of procedure statements A-1

ILE RPG/400 programming language
table of operation A-1

incoming switched virtual circuit (SVC-IN) connection
for packet-switching data network 2-4

indicator, response
using 6-7

input data
requesting 6-5

interactive terminal facility (ITF)
definition 8-1
displays

Add Telephone Entries display 8-5
Send Control Character display 8-6
Send ITF Password display 8-2
Start Send/Receive display 8-3
Use Interactive Terminal Facility (ITF) display 8-1
Work with ITF Telephone List display 8-5

end-of-record table specification 8-1
file members 8-3
functions 8-2
network connections 8-1
receiving OfficeVision documents 8-4
record length restrictions 8-1
sending OfficeVision documents 8-4
starting 8-1
using 8-1

International Alphabet (IA-5) C-2
interrupt handling D-1
intersystem communications function (ICF)

commands 6-1
definition 2-1
device entry

parameters 6-2
operations A-1
using 6-1

intersystem communications function (ICF) device entry
adding 6-1
changing 6-1
overriding 6-1
removing 6-1

intersystem communications function (ICF) file
changing 6-1
creating 6-1
definition 6-1

 Index X-5

intersystem communications function (ICF) file (con-
tinued)

deleting 6-1
overriding 6-1

invite function 6-5
ITF (interactive terminal facility)

definition 8-1
displays

Add Telephone Entries display 8-5
Send Control Character display 8-6
Send ITF Password display 8-2
Start Send/Receive display 8-3
Use Interactive Terminal Facility (ITF) display 8-1
Work with ITF Telephone List display 8-5

end-of-record table specification 8-1
file members 8-3
functions 8-2
network connections 8-1
receiving OfficeVision documents 8-4
record length restrictions 8-1
sending OfficeVision documents 8-4
starting 8-1
using 8-1

J
job

prestarting 7-1

K
keyword, DDS A-2

L
language operation A-1
logical record

definition 7-1

M
maximum wait time

setting 6-6
message

See also PAD message
PAD 3-5

modem
Data Set Ready (DSR) signal 2-2
for nonswitched lines 2-1
for switched lines 2-1
switched attached to AS/400 2-1

N
non-SNA communications 2-2
nonswitched line support 2-1

O
OfficeVision document

receiving 8-3, 8-4
sending 8-3, 8-4

open operation 6-3
operation

acquire 6-3
cancel invite 6-6
detach 6-6
end-of-session 6-7
fail 6-6
get attributes 6-6
invite 6-5
open 6-3
read 6-5
read-from-invited-program-devices 6-5
release 6-7
timer 6-6
write 6-4

Override Intersystem Communications Function Device
Entry (OVRICFDEVE) command 6-1

See also ICF Programming
Override Intersystem Communications Function File

(OVRICFF) command 6-1
overriding

intersystem communications function (ICF) device
entry 6-1

intersystem communications function (ICF) file 6-1
OVRICFDEVE (Override Intersystem Communications

Function Device Entry) command 6-1
See also ICF Programming

OVRICFF (Override Intersystem Communications Func-
tion File) command 6-1

P
packet assembler/disassembler (PAD)

See also PAD support
definition 1-1

packet assembler/disassembler support 3-1
packet-mode host

definition 2-4
requests 3-5

packet-switching data network (PSDN)
illustration 2-3
incoming switched virtual circuit (SVC-IN)

connections 2-4
interactive terminal facility (ITF) 8-1
outgoing switched virtual circuit (SVC-OUT)

connections 2-4
permanent virtual circuit (PVC) connection 2-4
switched dial connection to network PAD 2-3
using 2-3

PAD (packet assembler/disassembler)
definition 1-1, 2-4

X-6 AS/400 Asynchronous Communications Programming V4R1

PAD command
command mode 3-3
CONNECT 3-3
CONTINUE 3-4
data transfer mode 3-3
DISCONNECT 3-3
disconnecting communications 3-3
examples

Par? 3-4
Set 3-4
Set? 3-4

PAD escape sequence 3-4
PAD prompt 3-4
PAR? 3-4
RESET 3-3
SET 3-4
SET? 3-4
STATUS 3-3

PAD message
clearing the virtual circuit 3-6
error 3-5
examples 3-6
indication of break 3-5
invitation to clear 3-5
packet-mode host

requests 3-5
responses 3-6

parameter indication 3-5
read 3-5
responses from the PAD

Error 3-6
Indication of Break 3-6
Parameter Indication 3-6

set 3-5
set and read 3-5
write function-management-header operation

format 3-6
sending 3-5

PAD message identifier 3-4, 3-5
PAD network address list 4-1
PAD parameter

break options 3-2
changing and reading using PAD messages 3-5
changing values 3-4
controlling the session 3-2
current values 3-4
data forwarding characters 3-2
descriptions and values 3-2
discard output 3-2
echo 3-2
escape to command mode 3-2
flow control of PAD 3-3
line feed insertion after carriage return 3-3
line folding 3-2
suppression of service signals 3-2
unsupported parameters 3-3

PAD parameter (continued)
values 3-4

PAD service signal 3-4
PAD support

CCITT recommendations 2-4, 3-1
commands 3-3
configuring 3-1
illustration 3-1
parameters 3-2
rotary dial 3-7
sending data 6-4
using 3-1

parameter
See also PAD parameter
asynchronous line 2-1
PAD support 3-2

permanent virtual circuit (PVC)
configuration example using E-4
definition 1-1, 2-2
switched and nonswitched lines 2-2

pre-connect status
resetting 3-3

prestart job
See ICF Programming

prestart job entry 7-1
prestarting job 7-1
problem notification 6-6
program example

COBOL/400 source program F-1
COBOL/400 target program F-9
FORTRAN/400

See ICF Programming
ILE C/400 source program F-29
ILE C/400 target program F-37
RPG/400 source program F-15
RPG/400 target program F-22

program start request
for prestart jobs 7-1
reason codes for rejected B-19
syntax 6-3

PSDN (packet-switching data network)
definition 2-3
illustration 2-3
incoming switched virtual circuit (SVC-IN)

connections 2-4
interactive terminal facility (ITF) 8-1
outgoing switched virtual circuit (SVC-OUT)

connections 2-4
permanent virtual circuit (PVC) connection 2-4
using 2-3

PVC (permanent virtual circuit)
configuration example using E-4
definition 1-1, 2-2
switched and nonswitched lines 2-2

 Index X-7

Q
QDCXLATE

See System API Reference

R
read operation

comparison with read-from-invited-program-devices opera-
tion 6-5

programming considerations 6-5
receiving data 6-5

read-from-invited-program-devices operation
definition 6-5
starting 6-5

receive-fail indicator 6-7
receiving data 6-5
release operation 6-7
remote location list 4-1
Remove Intersystem Communications Function Device

Entry (RMVICFDEVE) command 6-1
removing

intersystem communications function (ICF) device
entry 6-1

requesting input data 6-5
resetting session to pre-connect status 3-3
response indicator

using 6-7
return code

detailed descriptions B-1
processing 6-7

RMVICFDEVE (Remove Intersystem Communications
Function Device Entry) command 6-1

rotary dial function 3-7
RPG/400 programming language

source program for inquiry applications F-15
target program for inquiry applications F-22

S
sending

control character 8-6
data 6-4

sense code
detailed descriptions B-1

service signal, PAD 3-4
session

definition 6-2
ending 6-7
starting 6-2

setting maximum wait time 6-6
source program 6-3, 6-7
Start ITF (STRITF) command 8-1
start-stop line 2-1
starting

communications session 6-3
ITF (interactive terminal facility) 8-1

STRITF (Start ITF) command 8-1
SVC (switched virtual circuit)

definition 1-1
for incoming calls (*SVCIN)

configuration example E-6
using generic controller E-7
using generic controllers and devices E-6
using generic device E-7, E-8

for outgoing calls (*SVCOUT)
configuration example E-8
configuration example using PAD emulation E-9

switched and nonswitched lines 2-2
SVC-IN connection

for generic controllers and devices 2-4
for packet-switching data network 2-4

switched line support 2-1
switched virtual circuit (SVC)

definition 1-1, 2-2
for incoming calls (*SVCIN)

configuration example E-6
using generic controller E-7
using generic controllers and devices E-6
using generic device E-7, E-8

for outgoing calls (*SVCOUT)
configuration example E-8
configuration example using PAD emulation E-9

switched and nonswitched lines 2-2
system-supplied format A-2

T
target program 6-3, 6-7
Telecommunication Standardization Sector (CCITT)

definition 3-1
PAD support 2-4
recommendations 2-4, 3-1

telephone list 8-5
timer function 6-6
transaction

definition 6-3
ending 6-6
starting 6-3

translation table
ASCII-to-EBCDIC C-4
creating using CRTTBL command C-1
EBCDIC-to-ASCII C-3
translating fields using QDCXLATE program C-1

V
Vary Configuration (VRYCFG) command

See also Communications Management
communicating with a remote system 5-1
starting asynchronous communications 5-1

varying
configuration 5-1

X-8 AS/400 Asynchronous Communications Programming V4R1

verifying
virtual circuit status 3-3

virtual call
establishing 3-3

VRYCFG (Vary Configuration) command
See also Communications Management
communicating with a remote system 5-1
starting asynchronous communications 5-1

W
wait time

setting maximum 6-6
write function-management-header operation

flow control characters 7-1
format of PAD message 3-6
sending PAD messages 3-5
using to set and change data characteristics

changing flow control 6-4
changing the echo 6-4
setting parity 6-4
setting translation mode 6-4

write operation
definition 6-4

X
X.25 line

configuring 2-2, 4-1
DCE-to-DTE mode 2-2
logical records 7-1
PAD support 3-1
receiving data 6-5
sending data 6-4
using a packet-switching data network (PSDN) 2-3

X.25 nonswitched line
See Communications Configuration

X.25 switched line
See Communications Configuration

X.3 parameter
See PAD parameter

 Index X-9

Reader Comments—We'd Like to Hear from You!

AS/400 Advanced Series
Asynchronous Communications
Programming
Version 4

Publication No. SC41-5444-00

Overall, how would you rate this manual?

Very
Satisfied Satisfied Dissatis-

fied

Very
Dissatis-

fied

Overall satisfaction

How satisfied are you that the information in this manual is:

Accurate

Complete

Easy to find

Easy to understand

Well organized

Applicable to your tasks

T H A N K Y O U !

Please tell us how we can improve this manual:

May we contact you to discuss your responses? __ Yes __ No
Phone: (____) ___________ Fax: (____) ___________ Internet: ___________

To return this form:

 � Mail it
 � Fax it

United States and Canada: 800+937-3430
 Other countries: (+1)+507+253-5192
� Hand it to your IBM representative.

Note that IBM may use or distribute the responses to this form without obligation.

Name Address

Company or Organization

Phone No.

Cut or Fold
Along Line

Cut or Fold
Along Line

Reader Comments—We'd Like to Hear from You!
SC41-5444-00 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

ATTN DEPT 542 IDCLERK
IBM CORPORATION
3605 HWY 52 N
ROCHESTER MN 55901-9986

Fold and Tape Please do not staple Fold and Tape

SC41-5444-00

IBM

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

SC41-5444-ðð

Spine information:

IBM AS/400 Advanced Series Programming
Asynchronous Communications

Version 4

