AS/400 Advanced Series

Application Display Programming

Version 4

SC41-5715-00

AS/400 Advanced Series

Application Display Programming

Version 4

SC41-5715-00

—— Take Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page Xxxix.

First Edition (August 1997)

This edition applies to the licensed program IBM Operating System/400 (Program 5769-SS1), Version 4 Release 1 Modification 0,
and to all subsequent releases and modifications until otherwise indicated in new editions.

Make sure that you are using the proper edition for the level of the product.

Order publications through your IBM representative or the IBM branch serving your locality. If you live in the United States, Puerto
Rico, or Guam, you can order publications through the IBM Software Manufacturing Solutions at 800+879-2755. Publications are not
stocked at the address given below.

IBM welcomes your comments. A form for readers’ comments may be provided at the back of this publication. You can also mail
your comments to the following address:

IBM Corporation

Attention Department 542
IDCLERK

3605 Highway 52 N

Rochester, MN 55901-7829 USA

or you can fax your comments to:

United States and Canada: 800+937-3430
Other countries: (+1)+507+253-5192

If you have access to Internet, you can send your comments electronically to IDCLERK@RCHVMW2.VNET.IBM.COM; IBMMAIL, to
IBMMAIL(USIB56RZ).

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices XXiX
Programming Interface Information XXX
Trademarks XXX
About Application Display Programming (SC41-5715) XXXi
Who Should Use ThisBook XXXi
Prerequisite and Related Information XXX
Information Available on the World WideWeb XXXIi
Summary of Changes to Application Display Programming XXXiii

Part 1. Building a Sample Display with Online Help Information

Chapter 1. Building a Sample Display with Online Help Information o1

Part 2. Programming Application Displays Using Display Files

Chapter 2. Defining Your Display in a Display File 2-1
Establishing a Display File 2-1
Determining File Descriptions 2-2
Deciding Whether to Describe Data Inside or Outside Your Program 2-3
Creating a Display File and Description 2-4
Changing the File Description 2-5
Detecting File Description Changes 2-6
Defining Display Fields and Functions in a Record Format 2-7
Understanding the Field Attribute Characters 2-8
Understanding How Record Format Fields CanBe Used 2-9
Defining Function Keys 2-11
Defining Command Attention (CAnn) and Command Function (CFnn) Keys 2-12
Specifying Alternative Keys o 2-13
Passing Information via Indicators 2-14
Inserting Constant Field Text from a Message Description 2-16
Allowing for Right-to-Left Cursor Movement 2-16
Defining Cursor Movement to Input-Capable Positions Only 2-16
Defining Cursor Progression for Entry Fields 2-17
Defining Attributes for Entry Fields 2-18
Protecting Entry Fields Using Edit Masks 2-19
Specifying Right-to-Left Display Processing 2-19
Specifying Word Wrap for Fields 2-20
Emphasizing Fields 2-21
Adding Color 2-22
Editing Output Fields 2-23
Defining Your Own Edit Codes 2-23
Specifying Valid Screen Sizes, 2-24
Enabling Your Display to Be Printed 2-25
Defining Windows 2-27
Using Program-Described Data 2-27
Defining Input-Only Files 2-28
Defining Output-Only Files 2-28

© Copyright IBM Corp. 1997 ili

Defining Input and Output Files 2-28

Chapter 3. Working with Display Files in an Applicaton 3-1
Understanding How the System Allocates Resources 3-1
Opening Display Files 3-2
Acquiring a Display Station for I/O Operations 3-2
Obtaining Information about Display Files and Display Stations 3-3
Obtaining Information about Open and I/O Operations 3-3
Obtaining Attribute Information about Display Stations 3-4
Sending and Receiving Data 3-4
Determining Which Record Formats Are Active on a Display 3-5
Writing Output to the Display 3-5
Inviting Input to the Display 3-30
Reading Invited Input from the Display 3-31
Reading Input from the Display 3-33
Writing Output and Reading Input at the Same Time 3-40
Canceling Input That Was Not Waited For 3-41
Locking the Keyboard and Positioning the Cursor During I/0O Operations . 3-41
Saving Previously Displayed Information 3-43
Understanding the Effects of I/O Operations on Command Keys 3-45
Avoiding Record Format Problems on the 5250 Display Station 3-45
Releasing an Acquired Display Station from 1/O Operations 3-49
Closing Display Files 3-49
Mapping Display Operations to High-Level Language Operations 3-49
Sharing Display Files in the Same Job 3-50
Understanding the Open Operation for Files SharedinaJob 3-51
Understanding the Input/Output Operation for Files SharedinaJob . .. 3-51
Understanding the Close Operation for Files Sharedina Job 3-52
Chapter 4. Displaying Groups of Records Using Subfiles 4-1
Recognizing Subfile Uses 4-1
Describing Subfiles in Your DDS Source 4-3
Using a Subfile ina Program 4-10
Requesting 1/0 Operations for a Subfile 4-12
Requesting 1/0 Operations for a Subfile Record Format 4-12
Requesting 1/0 Operations for a Subfile Control Record Format 4-15
Recognizing Subfile /O Requests in High-Level Languages 4-15
Controlling the Appearance of Subfiles 4-16
Displaying Horizontal Subfiles with Display Modes 4-17
Specifying Subfile Size Equal to Page Size 4-19
Specifying Subfile Size Not Equal to Page Size 4-21
Checking Validity on Subfile Data 4-22
Displaying Error Messages from Subfiles 4-23
Positioning the Cursor on the Displayed Subfile 4-24
Positioning the Cursor Initially 4-24
Positioning the Cursor When a Roll Key IsUsed 4-24
Positioning the Cursor When a Fold or Truncate Key IsUsed 4-27
Positioning the Cursor and Rolling When Two or More Records Are
Displayed 4-27
Understanding Subfile DDS and Program Logic—Example 4-31
Chapter 5. Defining Windows with Display Files 5-1
Window Terminology 5-2
DDS Window Keywords 5-2

iv Application Display Programming V4R1

Window Representation and Hardware Configuration 5-3

Creating Windows 5-3
Window Definition Records 5-3
Window Reference Records 5-3
Window Size and Location 5-4
Cursor Position 5-5
Error Messages 5-6
Subfiles 5-6
DDS Help Records 5-7

Defining Window Borders 5-7
Border Defaults 5-7
Multiple Border Definitions 5-8
UIM Help Window Borders 5-9

Defining a Window Title 5-9

Reading Data from Windows, 5-10

Changing Window Borders and Contents 5-10

Moving and Duplicating Windows 5-11

Making Two Windows Seem Active atOnce 5-11

Making One Window in a Series Stand Qut 5-12

Removing Windows, 5-12
Removing All Windows 5-13
Removing More Recent Windows 5-13

Improving Application Performance 5-13
System Save and Restore Operations 5-13
Bypassing System Save and Restore Operations 5-14

Programming Examples 5-15
Using Basic Window Functions 5-16
Defining Windows in a Separate Display File 5-20
RPG Program Source 5-21
RPG Program Source for WINPGM 5-22

Chapter 6. Creating a Graphical Look for Displays 6-1

Factors Affecting the Graphical Look 6-1
Hardware Configuration 6-1
Enhanced Display Parameter 6-4

DDS Keywords 6-5

Creating Menu Bars 6-7
Defining the Menu-Bar Choices 6-7
Suppressing the Menu-Bar Separator 6-8
Defining the Menu-Bar Separator 6-8

Selection Fields—Overview 6-10
DDS for Selection Fields—Example 6-12
Creating a Vertical Single-Choice Selection Field 6-13
Creating a Vertical Multiple-Choice Selection Field 6-14
Creating a Horizontal Selection Field 6-14
Cursor Movement in a Vertical Selection Field 6-15
Cursor Movement in a Horizontal Selection Field 6-16
Controlling the Selection Indicators in a Selection Field 6-17

Creating Pull-Down Menus Using Single-Choice Selection Fields 6-18
Controlling the Selection Indicators in a Pull-Down Menu 6-20
Defining Accelerator Keys 6-21
Defining a Menu-Bar Switch Key 6-22
Defining a Cancel Key 6-23
Limiting Function When Cursor is Outside a Pull-Down Menu 6-24

Contents V

Selection Lists—Overview 6-24

DDS for Selection Lists—Example 6-26
Creating Selection Lists 6-26
Controlling the Selection Indicators in a Selection List 6-28
Scroll Bars—Overview 6-30
Creatinga Scroll Bar 6-31
DDS for Scroll Bars—Example 6-33
Scroll Bar Operation 6-33
Push Buttons—QOverview 6-34
DDS for Push Buttons—Example 6-35
Creating Push Buttons 6-35
Controlling the Availability of Choices 6-36
Auto-Selection in Single-Choice Selection Fields 6-37
Auto-Enter in Single-Choice Selection Fields 6-38
Defining Mnemonics, 6-38
Defining Choice Colors and Attributes 6-39
Continued-Entry Fields—Overview 6-42
Specifying Word Wrap on Continued-Entry Fields 6-43
DBCS Considerations with Continued-Entry Fields 6-43
How DBCS Data is Returned for Continued-Entry Fields 6-44
Keyboard Functions with Continued-Entry Fields 6-44
Forward Field-Exit Processing 6-49
Backward Field-Exit Processing 6-49
How the Menu Bar Interacts with the Application 6-50
Defining the MNUBARDSP Keyword on the Application Record 6-50
Defining the MNUBARDSP Keyword on the Menu-Bar Record 6-51
Receiving Input from the Pull-Down Menus 6-53
Removing a Pull-Down Menu after Receiving Input 6-55
Updating a Pull-Down Menu before Displaying 6-55
Defining Application Help 6-56
Defining Choice-Level Help 6-56
Defining Help fora Field 6-59
Key Interaction for Menu Bars and Pull-Down Menus 6-60
Cursor Movement 6-61
Pressingthe TabKey 6-61
Pressing the Cursor Keys 6-62
Programming Examples 6-62
Using the MNUBARDSP Keyword on the Application Record 6-62
Using the MNUBARDSP Keyword on the Menu-Bar Record 6-65
How the Displays Look 6-67
Simple Hotspots 6-68
Command Key Emulation 6-68
Page Up and Page Down Key Emulation 6-69
Programmable Mouse Buttons—Overview 6-69
Pointer Device Events 6-69
AID Codes to be Returned 6-70
Programmable Mouse Buttons—Benefits 6-70
Programmable Mouse Buttons Operation 6-71
Programmable Mouse Buttons—NWS Considerations 6-72
Programmable Mouse Buttons—Event Processing States 6-72
Programmable Mouse Buttons—Event Processing Priority 6-73
Grid Line Structures—Overview 6-79
DDS for Grid Line Structures—Example 6-80
Grid Line Structures and Windows 6-81

Application Display Programming V4R1

Hardware Requirements for Grid Line Structures 6-82

Inserting HTML Tags e 6-82
Resolving HTML Field Overlap 6-83
Programming Examples 6-85
Chapter 7. Overriding Display Files and Display File Attributes 7-1
Determining Whether or Not to Use Overrides 7-1
Overriding File Attributes in HLL Programs 7-1
Overriding File Names in HLL Programs 7-3
Overriding Both File Names and Attributes in HLL Programs 7-3
Applying Overrides When Compiling a Program 7-4
Deleting Overrides 7-5
Displaying Overrides 7-6
Using File Redirection to Override File Names and Libraries or File Types . . 7-6
Overriding Files with the Same File Types 7-6
Overriding Files with Different File Types 7-6
Recognizing Commands That Ignore or Restrict Overrides 7-9
Chapter 8. Handling Messages and Errors for Display Files 8-1
Creating and Displaying Your Own Messages 8-1
Displaying a Message on the Message Line 8-2
Displaying a Message on the Message Line When a Subfile Control Record
isWritten L 8-2
Displaying a Message on the Message Line Using a Message Field 8-3
Priorities for Displaying Messages on a Message Line 8-3
Displaying Messages in a Field on the Display 8-3
Displaying Messages on a Program Message Queue 8-4
Displaying Error Messages through a Subfile 8-4
Sounding an Alarm for Messages 8-7
Automatically Handling Permanent 1/O Errors on Display Stations 8-7
Analyzing Error Messages Sent from the System 8-8
Understanding Messages and Message Monitors 8-9
Understanding Major/Minor Return Codes 8-10
Recovering from Errors 8-11
Chapter 9. Creating and Accessing Menus Using Display Files 9-1
Running System and User-Defined Menus 9-1
Returning to a Menu after Running the GO command 9-1
Determining the Previous Menu 9-1
Using the Cancel and Exit Keyson Menus 9-2
Choosing the Menu That Is Shown at Sign-On Time 9-3
Defining Your Own Display File Menus 9-4
Understanding DDS and Display File Considerations for Menus 9-4
Describing Menu Actions in a Message File 9-5
Naming Help Formats for Menus 9-6
Building a Display File Menu 9-7
Defining Your Own Program Menus 9-10
Passing Parameters for Program Menus 9-10
Building a Program Menu 9-11
Exiting from a Program Menu without Returning to the Previous Menu . . 9-13
Avoiding Menu Name Conflict 9-15
Naming Your Menus 9-15
Placing Your Menu in a Higher Library in the Library List 9-16
Specifying the Library That Contains the Menu 9-16

Contents Vil

Using the Generic Menu Specification 9-16

Changing the Command Default after Duplicating a Command 9-16
Displaying Menu Attributes 9-16
Changing Menu Attributes 9-16
Deleting Menus 9-17
Chapter 10. Using User-Defined Data Streams 10-1
Understanding Display Station Differences 10-1
Understanding User-Defined Data Stream Limitations 10-2
Chapter 11. Passing Data between Programs 11-1
Passing Data in the Same Routing StepinaJob 11-1
Passing Data between Routing StepsinaJob 11-3

Chapter 12. Waiting for Input from a Display File, an ICF File, and a

Data Queue 12-1
Chapter 13. Using Alternative Character Sets and Code Pages 13-1
Specifying Character Translation for Fields 13-2
Determining the Character Identifier (CHRID) Value for Your Display 13-4
Chapter 14. Improving System Performance with Displays 14-1
Deferring the Write Operation for a Display File 14-1
Designating the Primary Screen Size for a Display File 14-1
Writing Only One Page of Subfile Records ata Time 14-1
Sharing an Open Data Path (ODP) for the Same Job 14-2
Sending Records with Input Fields to the Display in Order 14-2
Overlapping and Not Deleting Repeatedly Sent Records 14-2
Restoring the Display 14-3
Defining Command Attention Keys Rather Than Command Function Keys . 14-3
Using the Invite Operation 14-3
Using Windows e 14-4

Part 3. Programming Application Displays Using Panel Groups

Chapter 15. Improving Productivity with User Interface Manager ... 151
Increasing User Productivity 15-1
Increasing Application Programmer Productivity 15-1
What to Consider before Using UIM Instead of Data Description

Specifications (DDS), 15-1
Chapter 16. Introduction to the User Interface Manager 16-1
Overview of UIM 16-1
What the UIM Supports 16-2
WhatIsa Panel Group 16-2
WhatlsaMenu 16-2
Creating Objects 16-3
Elements Within a Panel Group 16-3
Using the UIM Language Tags 16-4
Using Dialog Commands 16-4
Using Control Language (CL) Commands 16-5
Using an Application Programming Interface (API) 16-5
Defining a Menu Object Using UIM 16-6

viii Application Display Programming V4R1

Creating a Menu Panel 16-6

Required Tags for a Menu Panel 16-8
Source for Example Menu 16-9
Defining a Panel Group Object Using UIM 16-13
Creating a List Panel 16-13
Required Tags for a List Panel 16-16
Source for Example List Panel L. 16-17
Application Programming for a List Panel 16-25
Creating a Confirmation List Panel 16-27
Required Tags for a Confirmation List Panel 16-28
Source for Example Confirmation Panel 16-28
Automatic Confirmation Processing 16-31
Application Programming for Confirmation Processing 16-31
Creating a Data Presentation Panel 16-32
Required Tags for a Data Presentation Panel 16-34
Source for Example Data Presentation Panel 16-35
Application Programming for a Data Presentation Panel 16-46
Data Entry Panel 16-49
Creating a Panel witha MenuBar 16-50
Required Tags for a Panel witha MenuBar 16-52
Source for Example Panel witha Menu Bar 16-53
Application Programming for a Menu Bar Panel 16-63
Chapter 17. Details of Using User Interface Manager 17-1
Opening a UIM Application 17-1
Defining Dialog Variables L 17-1
Restrictions on Using Dialog Variables 17-3
Dialog Variable Error Messages 17-3
Providing Field Values for a Display Panel Using Dialog Variables 17-4
Using Variable Pool Services 17-4
Character Set and Code Page Considerations 17-5
Managing a List 17-7
Defininga List 17-8
Initializing a List 17-8
Displaying a List 17-8
Updating a List 17-9
Incomplete List Processing 17-9
Removing and Inserting an Entry fromaList 17-10
Controlling List Entries on a List Display 17-10
Improving Interactive Response Time for a List Display 17-11
Using Action Lists and Selection Lists 17-11
Using Selection Characters 17-13
Managing Panel Functions 17-13
Enabling Conversiontoa GUI 17-14
Scrolling Support 17-14
Defining Scrollable Areas 17-14
Defining Function Key Scrolling 17-15
Scrolling and Error Conditions 17-15
Scrolling a List Area 17-15
Scrolling a Menu Area 17-16
Scrolling an Information Area 17-16
Scrolling Data Item Groups 17-16
Scrollinga Text Area 17-16
Defining Contextual Help 17-16

Contents X

X Application Display Programming V4R1

Command Line Restrictions oL 17-19
Command Line Interpretation 17-19
Entering Commands That Are TooLong 17-20

Defining Function Keys, 17-20
Formatting Function Keys 17-20
Handling Function Keys and VARUPD Value 17-21

Panel Formatting Concepts 17-22
When Panel Formatting Is Performed 17-22
Application Control of Panel Formatting 17-23
Limits of the Panel Formatter 17-24

Folding Up Multiple Panels When EXIT Is Requested 17-24

FoldingUp aListPanel 17-26
Adding a Pop-Up Window over Another Panel 17-27

Using Menu Bars 17-27
Differences Between Pull-Down Menus and Pop-Up Windows 17-28

Using Pop-Up Windows 17-30
Defining Application Windows 17-30
Adding and Removing Windows L. 17-31
Using the Command Line ina Window 17-32

UIM as a Request Processor Program When Displaying a Panel 17-33

Printing Concepts 17-33
Printing a Print Head Panel 17-35
Printing a Print Panel 17-35
Using Blank Lines for Separating 17-36
Fonts and Highlighting 17-36
Printing the Trailer 17-36
Defining Prolog Areas 17-36
Defining Header Areas 17-36
Using the Page-Eject Function During Printing 17-37
Sharing and Overriding Printer Files 17-37
Printing Double-Byte Character Set (DBCS) Considerations 17-37
Commonly Asked UIM Questions 17-37

Part 4. Programming Help Displays
Chapter 18. Making Online Help Information Accessible for Your
Display File 18-1

Enablingthe Help Key 18-2

Choosing between Panel Groups, Documents, and Records for Help .. 18-2

Defining Which Areas of Your Display Need Online Help Information 18-3

Specifying Panel Groups for Help in Your Display File 18-6
Copying QUSRTOOL Examples That Specify Help Using Panel Groups 18-9

Specifying Documents in Your Display File 18-9

Specifying Records in Your Display File 18-12
Entering the Records That Contain the Help Information 18-14
Using Records and Documents for Help in the Same Display File . 18-15
Understanding the Restrictions on Records 18-15
Paging between Help Displays That Use Records 18-16

Returning Control to Your Program after Pressing the Help Key 18-20
Returning Control to Your Program after Showing the Help Display 18-20
Returning Control to Your Program without Showing the Help Display 18-22

Chapter 19. Making Online Help Accessible for Your Panel Group 19-1

Definitions and Explanations 19-1

HelpinaList Area 19-5
Coding Help 19-6
HelpinaMenu Area 19-7
Coding Help 19-7
HelpinaData Area 19-9
Coding Help 19-10
Helpina MenuBarArea 19-13
Coding Help 19-14
Help in a Function Key Area 19-15
Coding Help 19-16
Chapter 20. Defining Online Help Information 20-1
Defining Online Help Information in a Panel Group 20-1
Entering the UIM Source for a Panel Group forHelp 20-1
Creating and Deleting Panel Groups 20-15
Assigning Panel Groups as Help for Commands 20-16
Using Panel Groups in a Search Index 20-16
Copying QUSRTOOL Examples That Define Help in a Panel Group . . 20-18
Defining Online Information in a Document 20-18
Creating a Document forHelp 20-18
Viewing the Document without Pressing the Help Key 20-19
Defining Online Help Information in a DDS Record 20-19

Part 5. Guidelines for IBM AS/400-Style Displays

Chapter 21. Designing IBM AS/400-Style Displays 21-1
Using the Displays Example in the QUSRTOOL Library 21-1
Recognizing the Example Objects 21-1
Installing the Example Objects 21-4
Viewing the Sample Displays, Command, and Online Help Information . . 21-4
Copying the Source for the Example Objects for Your Own Use 21-7
Defining Special Functions and Attributes for All Displays 21-8
Designing the Single-Choice Menu Display 21-8
Title . . . 21-9
Instruction Line 21-9
Menu Options 21-9
Menu Selection Entry Field oo 21-10
Function Keys 21-10
Online Help Information 21-10
General Menu Display Operation 21-10
Designing the Entry Display L. 21-11
Title . . . 21-11
Instruction Line 21-12
Prompt Area 21-12
Function Keys 21-17
Online Help Information 21-17
General Entry Display Operation 21-17
Designing the Information Display 21-17
Title . . 21-19
Location Information 21-19
Prompt Area l 21-19
Prompt Area 2 21-20

Contents Xi

Instruction Line 21-20
Function Keys 21-20
Online Help Information 21-20
General Information Display Operation 21-21
Designing the List Display 21-21
Title . . . 21-22
Prompt Area e 21-22
Instruction Line 21-22
Options Line 21-23
Column Headings 21-24
Extended Action Entry Area 21-24
List Fields 21-24
Paging Location Information 21-25
Function Keys 21-25
Online Help Information 21-25
General List Display Operation 21-26
Defining the Function Key Area for All Displays 21-33
Optional Command Line and Identifier Field 21-34
Common Key Assignments, 21-38
Defining Help Information for All Displays 21-44
Help for the Menu Display 21-44
Help for the Entry Display 21-46
Help for the Information Display 21-47
Help for the List Display 21-48
Defining and Presenting Messages 21-49
Designing Common User Access (CUA) Entry Level Models 21-50
Entry Dialog Actions 21-51
Single-Choice Selection (Menu) 21-52
Entry Display 21-53
Information Display 21-55
ListDisplay 21-55
Help Information 21-57
Part 6. Appendixes
Appendix A. UIM Panel Group Definition Language A-1
Panel Group Organization A-4
Name Syntax A-4
Symbols . .. A-5
Comments A-6
Imbeds A-6
DBCS Graphic Literals A-6
Hexadecimal Literals A-6
APPFMT (Application Formatted Area) A-8
Required Attributes A-8
Optional Attribute A-8
Application Formatted Data A-9
Example: Application Formatted Area A-9
BOTINST (Bottom Instruction) A-10
Optional Attribute A-10
Optional Text A-10
CHECK (Validity Checking) A-11
Required Attribute A-11

Xii

Application Display Programming V4R1

Optional Attributes A-11

Example: Validity Checking A-12
CIT (Title Citation) A-13
Optional Text A-13
Example: Title Citations A-13
CLASS (Class Definition) A-14
Required Attributes A-14
Optional Attributes A-18
Example: Class Definitions A-24
Display Forms of Numeric Values A-24
Display Forms of Character, Date, and Time Values A-25
CMDLINE (Command Line) A-26
Required Attribute A-26
Optional Attribute A-26
Optional Text A-26
COND (Condition Definition) A-27
Required Attributes A-27
Optional Attribute A-28
Example: Conditioning an Option A-29
COPYR (Copyright) A-30
Required Text A-30
DATA (Data Presentation Area) A-31
Required Attribute A-32
Optional Attributes A-32
Optional Text A-33
Print Formatting Considerations A-33
Example 1: Data Entry Panel A-34
Example 2: Two-Column Format in a Data Entry Panel A-34
Example 3: Two Presentation Areas for Data ltems A-35
Example 4: Data Presentation Area with a Menu Area A-36
Example 5: Data Entry Panel with a Nested Data Group A-36
DATAC (Data Item Choices), A-38
Optional Attribute A-38
Optional Text A-38
DATACOL (Data Column) A-39
Required Attribute A-39
Optional Text A-39
DATAGRP (Data Group) o A-40
Optional Attributes A-40
Optional Text A-41
DATAI (Data Iltem) A-42
Required Attributeso A-42
Optional Attributes A-43
Optional Text A-45
DATAIX (Data Item Extender) A-47
Required Attributeso A-47
Optional Attributes A-48
DATASLT (Data Selection Field) A-51
Required Attributes A-51
Optional Attributes A-51
Optional Text A-52
Example 1: Data Entry Panel A-53
Example 2: Multiple-Selection Field A-53
DATASLTC (Data Selection Field Choice) A-55

Contents Xiii

Optional Attributes A-55

Optional Text A-56
DL (Definition List) A-57
Optional Attribute A-57
Required Tags e A-57
Optional Tags A-58
Example 1: Definition List A-58
Example 2: Compact Definition List A-58
FIG (Figure) A-59
Optional Attribute A-59
Optional Tag A-59
Example: Sample Figure A-59
HELP (Help Module) A-60
Required Attribute A-60
Optional Attributes A-60
Optional Text A-61
Example: Help Panel Definiton A-62
HPO through HP9 (Highlighted Phrase) A-63
Optional Text A-63
H1 through H4 (Heading) A-65
Required Text A-65
Example: Heading Tags A-65
IMHELP (Imbed Help) A-66
Required Attribute A-66
Example: Imbedded Help A-66
IMPORT (Import) A-67
Required Attributes A-67
Optional Attributes A-67
INFO (Information Area) A-68
Required Attribute A-68
Optional Attributes A-68
Optional Text A-68
Print Formatting Considerations A-69
ISCH (Index Search) A-70
Required Attribute A-70
Required Text A-70
Example: Index Search A-70
ISCHSUBT (Index Search Subtopic) A-71
Required Attribute A-71
Example: Index Search Hierarchy A-71
ISCHSYN (Index Search Synonym) A-72
Required Attribute A-72
Required Text A-72
Example: Index Search Synonyms A-72
KEYI (Key List Item) A-74
Required Attributeso A-74
Optional Attributes A-75
Optional Text A-75
Example: Key Definitions A-75
KEYL (Key List) A-76
Required Attribute A-76
Optional Attribute A-76
Example: Key List A-76
LINES (Unformatted Lines), A-77

Application Display Programming V4R1

Optional Text A-77

Example: Unformatted Lines A-77
LINK (Hypertext Link Definition) A-78
Required Attribute A-78
Optional Attributes A-78
Conditional Expressions A-79
Bidirectional Considerations L. A-80
Example: Hypertext Link A-80
LIST (List Area) A-82
Required Attributeso A-83
Optional Attributes A-83
Optional Text A-85
Print Formatting Considerations A-86
Example 1: ListArea A-86
Example 2: List Area with Three Layout Columns A-87
Example 3: List Area with List Column Groups A-87
Example 4: Dynamic List Column Heading Formatting A-88
LISTACT (List Action) A-90
Required Attributes A-90
Optional Attributes A-91
Optional Text A-94
Confirmation Panel Requirements A-94
Confirmation Panel Conventions A-94
Example: List Actions A-95
LISTCOL (List Column) A-96
Required Attributeso A-96
Optional Attributes A-97
Optional Text A-99
Formatting Considerations A-99
LISTDEF (List Definition) A-100
Required Attributes A-100
Optional Attributes A-100
LISTGRP (List Column Group) A-103
Required Attributes A-103
Optional Attribute A-103
Optional Text A-104
Example: List Column Group A-104
LISTVIEW (List View) A-105
Required Attribute A-105
Optional Attribute A-105
LP (List Part) A-107
Example: ListPart A-107
MBAR (Menu Bar) A-108
Required Attribute A-108
Optional Attributes A-108
Example: MenuBar A-108
MBARC (Menu Bar Choice) A-110
Required Attributes A-110
Required Text A-110
MENU (Menu Area) A-111
Required Attribute A-111
Optional Attribute A-111
Optional Text A-112
Example 1: Simple Menu Area A-112

Contents XV

Example 2: Menu Area with Groups A-112

MENUGRP (Menu Group) it A-114
Optional Attribute A-114
Optional Text A-114

MENUI or Ml (Menu Item) A-115
Required Attributeso A-115
Optional Attributes A-115
Optional Text A-116

NT or NOTE (Note) e A-117
Optional Text A-117
Example: UsingaNote A-117

OL (Ordered List) A-118
Optional Attribute A-119
Required Tag A-119
Example: Ordered List A-119

OPTLINE (Option Line) A-120
Optional Attribute A-120
Optional Text A-120

P (Paragraph) A-121
Optional Text A-121
Example: Paragraph Tag, A-121

PANEL (Display Panel) A-122
Required Attributes A-122
Optional Attributes A-123
Optional Text A-127
Example: Panel Definiton L. A-127

PARML (Parameter List) A-129
Required Tags A-129
Example: Parameter List A-130

PC (Paragraph Continuation) A-131
Example: Paragraph Continuation A-131

PDACCEL (Pull-Down Accelerator) A-132
Required Text A-132

PDFLD (Pull-Down Field) A-133
Optional Attribute A-133

PDFLDC (Pull-Down Field Choice) A-134
Required Attributes A-134
Optional Attributes A-134
Optional Text A-136
Confirmation Panel Requirements A-136
Confirmation Panel Conventions A-136

PK (Programming Keyword) A-138
Optional Attribute A-138
Required Text A-138

PNLGRP (Panel Group) A-139
Optional Attributes A-139

PRTHEAD (Print Head Panel) A-142
Required Attribute A-142
Optional Attributes A-142
Optional Text A-143
Layout of the Title Lines A-143
Example: Print Title Line A-145

PRTPNL (Print Panel) A-146
Required Attributeo A-146

XVi Application Display Programming V4R1

Optional Attributes A-146

Optional Text A-146
PRTTRAIL (Print Trailer Message) A-148
Required Text A-148
Example: Trailer Message A-148
PV (Programming Variable) A-149
Required Text A-149
RT (Reverse Text) A-150
Example 1: Left-to-Right Formatting on a Right-to-Left Panel A-150
Example 2: Left-to-Right Formatting on a Left-to-Right Panel A-151
SL (Simple List) A-152
Optional Attribute A-152
Required Tag A-152
Example: Simple Lists A-153
TEXT (Text Area) A-154
Required Attribute A-154
Optional Attributes A-155
Cursor positioning A-155
TextData A-155
Example: Textarea A-157
Tl (Translation List Item) A-158
Optional Attribute A-158
Optional Text A-158
TL (Translation List), A-159
Optional Attributes A-159
Examples: Translation List A-159
TOPINST (Top Instruction) A-161
Optional Attribute A-161
Optional Text A-161
TT (Truth Table) A-162
Required Attributes A-162
Example: Truth Table A-162
TTROW (Truth Table Row) A-163
Required Attributeo A-163
UL (Unordered List) A-164
Optional Attribute A-164
Required Tag A-165
Example: Unordered Lists A-165
VAR (Variable Definition) A-166
Required Attribute A-166
Optional Attributes A-166
Dialog Variables Defined by UM A-166
VARRCD (Variable Record Definition) A-169
Required Attributes A-169
Optional Attributes A-169
XH1 through XH4 (Extended Help Headings) A-170
Required Text A-170
Formatting Rules A-170
Example: Sample Headings A-170
XMP (Example) A-171
Example: Formatting an Example A-171
Appendix B. UIM Dialog Commands B-1
The VARUPD Attribute B-4

Contents XVii

ACTIONS (Menu Bar Cursor Action) B-4

CALL (Call Program) B-4
CANCEL B-6
CHGVIEW (Change View) B-6
CMD (System Command) B-7
CMDLINE (Command Line) B-7
DSPHELP (Display Help) B-7
ENTER B-8
EXIT (Exit Display) B-8
EXTHELP (Extended Help) B-9
HELP . . B-9
HELPHELP B-9
HELPIDX B-9
HOME (Display Home Menu) B-9
KEYSHELP B-10
MENU . . . B-10
MOREKEYS (Display More Function Keys) B-10
MOVETOP (Move to TOP) o e B-11
MSG (Display Message) B-11
PAGEDOWN B-11
PAGEUP B-12
PRINT (Print Display) B-12
PROMPT . . . B-13
PULLDOWN (Display Pull-Down Menu) B-14
RETRIEVE (Retrieve Command String) B-14
RETURN (Return Control to Application) B-14
Appendix C. Feedback Area Layouts for Display Files C-1
Open Feedback Area C-1
Device Definition List C-4
I/O Feedback Area C-6
Common I/O Feedback Area C-6
I/O Feedback Area for Display Files C-9
Get Attributes C-12
Appendix D. Double-Byte Character Set Support for Displays D-1
Double-Byte Character Set Fundamentals D-1
DBCS Code Scheme D-1
Shift-Control Characters D-3
Using Double-Byte Data D-3
Double-Byte Character Size D-4
Processing Double-Byte Characters D-4
Basic Characters D-4
Extended Characters D-4
What Happens When Extended Characters Are Not Processed D-4
Device File Support D-5
Whata DBCS Filels D-5
When to Indicate a DBCS File D-5
How to Indicate a DBCS File D-5
Improperly Indicated DBCS Files D-6
Display Support D-6
Inserting Shift-Control Characters D-6
Number of Displayed Extended Characters D-6
Number of Input Fields on a Display D-6

XViii Application Display Programming V4R1

Effects of Displaying Double-Byte Data at Alphanumeric Work Stations . . D-7

Effects of Displaying DBCS-Graphic Fields on Double-Byte Displays ... D-7
Application Program Considerations D-7
Designing Application Programs That Process Double-Byte Data D-7
Changing Alphanumeric Application Programs to DBCS Application
Programs D-8
DBCS Font Tables D-8
Finding Out if a DBCS Font Table Exists D-8
Copying a DBCS Font Table onto Tape or Diskette D-9
Copying a DBCS Font Table from Tape or Diskette D-9
Deletinga DBCS Font Table D-10
Starting the Character Generator Utility D-10
Copying User-Defined Double-Byte Characters D-10
DBCS Font Files D-10
DBCS Sort Tables D-11
Using DBCS Sort Tables onthe System D-12
Finding Out if a DBCS Sort Table Exists D-12
Saving a DBCS Sort Table onto Tape or Diskette D-12
Restoring a DBCS Sort Table from Tape or Diskette D-12
Copying a Japanese DBCS Master Sort Table to a Data File D-12
Copying a Japanese DBCS Master Sort Table from a Data File D-13
Deletinga DBCS Sort Table D-14
DBCS Conversion Dictionaries D-14
System-Supplied Dictionary (for Japanese Use Only) D-14
User-Created Dictionary D-15
Commands for DBCS Conversion Dictionaries D-15
Displaying and Printing the DBCS Conversion Dictionary D-19
Deleting a DBCS Conversion Dictionary D-19
DBCS Conversion (for Japanese Use Only) D-19
Where You Can Use DBCS Conversion D-20
How DBCS Conversion Works D-20
Using DBCS Conversion D-20
Performing DBCS Conversion D-21
Appendix E. Display File Return Codes E-1
Major Code 00 E-1
Major Code 02 E-1
Major Code 03 e E-2
Major Code 04 E-2
Major Codes 08—11 E-3
Major Code 34 E-3
Major Code 80 E-3
Major Code 81 E-5
Major Code 82 E-6
Major Code 83 E-10
Appendix F. EditCodes F-1
OS/400 Edit Codes F-1
Examples of Editing Using OS/400 Edit Codes F-3
User-Defined Edit Codes L F-4
Using User-Defined Edit Codes F-5
Example of a User-Defined Edit Code F-5
Appendix G. System/36-Compatible Display Data Management G-1

Contents XiX

Clearing Lines on the Display
Input Data for Display File Records
Input Data from the Work Station Controller
Self-Check
Return Input
Erase Input Fields
Display Attributes
Positioning the Cursor
Displaying Messages
Put Override
Handling Signed Numeric Data
FunctionKeys
Help Key Considerations
Using Command Keys to Exit Application Help
Cancel-Invite Operation
Retain Command and Function Keys
System/36 Functions Not Supported
Restricted DDS Keywords/Functions

Bibliography

XX Application Display Programming V4R1

Figures

2-1.
2-2.

2-4,
2-5.
2-6.
2-7.

3-1.
3-2.

3-3.
3-4.
3-5.

3-6.
3-7.
3-8.

3-10.
3-11.
3-12.

4-1.

4-3.
4-4.,

4-5,

4-7.
4-8.
4-9.
4-10.
4-11.
5-1.

6-1.
6-2.
6-3.
6-4.
6-5.

6-6.
6-7.

6-9.
6-10.

© Copyright IBM Corp. 1997

Sample DDS Source for a Display File 2-7
Record Formats in the Program and on the Display 2-8
DDS for Field-Level Cursor Progression 2-18
DDS for Subfile-Level Cursor Progression 2-18
Sample DDS for Right-to-Left Display Processing 2-19
Sample DDS for Program-to-System Fields 2-22
Sample DDS for Two Display Sizes 2-25
Sample DDS for Subfiles for Two Display Sizes 2-25
Valid Placement of Records on a Screen When the CLRL Keyword Is

Not Used 3-6
Wrong Placement of Records on Screen When CLRL Keyword Not

Used 3-8
Replacing Record Formats, .. 3-9
Sample DDS Source Showing Use of the SLNO(*VAR) Keyword . . 3-12
Sample DDS Source Showing Difference between CLRL and

OVERLAY 3-15
Sample DDS Source Showing Use of the PUTOVR Keyword 3-19

Sample DDS Source Showing Efficient Use of PUTOVR Keyword . 3-20
Sample DDS Source Showing Another Use of PUTOVR Keyword . 3-22

Sample DDS Source Showing Use of the PUTRETAIN Keyword . . 3-24
Sample DDS Source Showing Use of the PUTRETAIN Keyword . . 3-25
Sample DDS Source Showing Use of the DSPMOD Keyword . . . 3-27
Sample DDS to Show Record Format Problems 3-47
DDS Keyword Processing Order for Subfile Control 4-10
Vertically Displayed Subfile 4-16
Horizontally Displayed Subfile 4-16
Horizontally and Vertically Displayed Subfiles Displayed at the Same

Time 4-17
Sample DDS Using DSPMOD with Subfiles 4-18
Sample DDS Using SFLSIZ, SFLPAG, and ROLLUP Keywords . . 4-19
Sample DDS for a Variable-Length Record 4-20
Sample DDS Using the SFLNXTCHG Keyword 4-22
Sample DDS for a Message Subfile, 4-23
Sample DDS Using the DSPATR(PC) Keyword 4-25
Sample DDS Showing Customer Name Search Subfile 4-32
Window Title—Display Example 5-9
DDS fora Window Title 5-10
Radio Buttons and Check Boxes 6-1
Example ofaMenuBar oL 6-7
DDS foraMenuBar 6-9

Menu Bar on a Graphical Display Station with Enhanced Interface . 6-10
Menu Bar on a Nongraphical Display Station with Underline

Capability 6-10

Menu Bar on a Nongraphical Display Station without Underline

Capability 6-10

Menu Bar on a Display Station without Enhanced Interface 6-10

Selection Fields on a Graphical Display Station with Enhanced

Interface 6-11

Selection Fields on a Nongraphical Display Station 6-12

DDS for Single-Choice and Multiple-Choice Selection Fields 6-13
XXi

XXii

6-11.
6-12.
6-13.
6-14.
6-15.
6-16.

6-17.

6-18.

6-19.
6-20.
6-21.
6-22.
6-23.
6-24.
6-25.
6-26.

6-27.

6-28.
6-29.
6-30.
6-31.
6-32.

6-33.
6-34.

6-35.

6-36.

6-37.
6-38.
6-39.
6-40.
6-41.
6-42.
6-43.
6-44.
6-45.
6-46.

6-47.
6-48.
6-49.
6-50.

6-51.
6-52.

Example of DDS for Horizontal Selection Field
DDS for Suppressing Selection Indicators in a Selection Field .
Suppressed Selection Indicators in Selection Field
Example of a Pull-Down Menu
DDS for a Pull-Down Menu
Pull-Down Menu on a Graphical Display Station with Enhanced
Interface
Pull-Down Menu on a Nongraphical Display Station with Underline
Capability
Pull-Down Menu on a Nongraphical Display Station without
Underline Capability
Pull-Down Menu on a Display without Enhanced Interface
DDS for Suppressing Selection Indicators in a Pull-Down Menu
Suppressed Selection Indicators on Graphical Display Station
Suppressed Selection Indicators on Nongraphical Display Station .
DDS for Accelerator Keys
Accelerators in a Pull-Down Menu
DDS for Menu-Bar Switch Key and Cancel Key
Selection Lists on a Graphical Display Station with Enhanced
Interface
Selection Lists on a Nongraphical Display Station with Underline
Capability
DDS for Selection Lists—Example
DDS for Enabling Selection Indicators in a Selection List
Selection Indicators on Graphical Display Station
Scroll Bar on a Graphical Display Station with Enhanced Interface
Scroll Bar on a Nongraphical Display Station with Underline
Capability
DDS for Scroll Bars—Example L.
Push Buttons on a Graphical Display Station with Enhanced
Interface
Push Buttons on a Nongraphical Display Station with Underline
Capability
Push Buttons on a Nongraphical Display Station without Underline
Capability
Push Buttons on a Display Station without Enhanced Interface .
DDS for Push Buttons—Example
Control Values for the CHCCTL Keyword
DDS to Control the Availability of Choices
Single-Choice Selection Field with an Unavailable Choice
Examples of Valid DDS for Mnemonics
Examples of DDS Not Valid for Mnemonics
DDS Using CHCAVAIL and CHCSLT for Menu-Bar Choices

DDS Using CHCAVAIL and CHCUNAVAIL for Selection Fields .
DDS Using CHCAVAIL, CHCUNAVAIL, and CHCSLT for Selection
Fields
DDS Using CHCAVAIL, CHCUNAVAIL, and CHCSLT for Single
Choice Selection List Choices
DDS Using CHCAVAIL, CHCUNAVAIL, and CHCSLT for Multiple
Choice Selection List Choices
Continued-Entry Fields in Rectangular Arrangement
DDS Using MNUBARDSP on the Application Record
DDS Using MNUBARDSP on the Menu-Bar Record
DDS for Pull-Down Input (PULLINPUT) Parameter

Application Display Programming V4R1

6-19

6-20
6-20
6-20
6-21
6-21
6-22
6-22
6-23

6-25

6-25
6-26
6-29
6-29
6-30

6-31
6-33

6-34

6-34

6-34
6-34
6-35
6-36
6-37
6-37
6-38
6-38
6-40
6-41

6-53.
6-54.
6-55.
6-56.
6-57.
6-58.
6-59.
6-60.
6-61.
6-62.
6-63.
6-64.
8-1.
8-2.
9-1.
9-2.
16-1.
16-2.
16-3.
16-4.
16-5.
16-6.
16-7.
16-8.
16-9.
16-10.
16-11.
17-1.
17-2.
18-1.
18-2.
18-3.
18-4.
18-5.
18-6.
18-7.
18-8.
18-9.
18-10.
18-11.

19-1.
19-2.
21-1.
21-2.
21-3.
21-4.
21-5.
21-6.
21-7.
21-8.
21-9.
21-10.
21-11.

DDS for Return-Field Parameter
DDS for Menu-Bar Choice Help
DDS for Single-Selection Field Choice Help
A Help ListforaMenuBar
Help fora Named Field
Help fora Constant Field
Cursor Locations
Grid Line Structures
DDS for Grid Line Structures—Example
DDS Coding Before Adding HTML Keyword
DDS Coding After Adding HTML Keyword
Graphic Image on an AS/400 5250 Gateway Display
Sample DDS Source for ERRSFL Keyword
Sample DDS Source for SFLMSGID Keyword
DDS Source for Sample Menu Called PERSMENU
DDS Source for Program Menu Example
An Example Menu
Required UIM Tags for a Menu Panel
Example List Panel
Example of Alternate View of List
Required UIM Tags for a List Panel
Example Confirmation List Panel
Example Data Presentation Panel
Example Data Presentation Panel after Scrolling
Required UIM Tags for a Data Presentation Panel
Example Panel witha MenuBar
Required UIM Tags for a Panel witha Menu Bar
Example of Job ExitFlag
Example of Printout
Sample H Specification in DDS Source
Sample DDS Source Showing HLPPNLGRP
Sample DDS Source Showing HLPPNLGRP and Option Indicators
Sample DDS Source Showing HLPDOC
Sample DDS Source Showing HLPDOC and Option Indicators
Sample DDS Source Showing HLPRCD
Sample DDS Source Showing HLPRCD and Option Indicators
Sample DDS Source with HLPRCD
Sample DDS Source to Show Secondary Help
Sample DDS Source to Show HLPCMDKEY
Sample DDS Source to Show HLPCMDKEY and Response
Indicators
InfoSeeker Display
Index Search Display
Sample Menu in QUSRTOOL
Sample Entry Display in QUSRTOOL
Sample Information Display (Two Pages) in QUSRTOOL
Sample List Display in QUSRTOOL
Sample Application Menu
Sample Entry Display
Sample Information Display (Two Pages)
Sample List Display
Layout of Display with Location Information
Example of Processing Priority with List Display
Create User Profile Entry Display

Figures

XXiii

XXV

21-12.
21-13.
21-14.
21-15.
21-16.
21-17.
21-18.
21-19.
21-20.
21-21.

A-1.

D-1.

G-1.

Create Command Display with Additional Parameters Selected
Second Display of Additional Parameters
Work with Members Using PDM Entry Display
Help Areas for Entry Displays
Help Areas for Information Displays
Help Areas for List Displays
Example of an Application Menu
Entry Display
Example of an Information Display
Example of a List Display
Highlighting Classes Allowed in TEXT Area
IBM Host-System Code Scheme
Circumventing the Save Command

Application Display Programming V4R1

Tables

© Copyright IBM Corp. 1997

1-1.
1-2.

2-1.
2-2.
2-3.
3-1.

3-3.
3-4.
3-5.
3-6.

4-1.
4-2.

6-1.
6-2.
6-3.

6-5.
6-6.
6-7.
7-1.
7-2.
8-1.
8-2.
9-1.
9-2.
12-1.
13-1.
17-1.
17-2.
17-3.
17-4.
18-1.
18-2.
18-3.
18-4.
18-5.
18-6.
18-7.
21-1.

21-2.

21-3.
21-4.
21-5.
21-6.

Names Used in Steps for Creating Sample Displays 1-1
More Ways to Create Application Displays 1-6
More Ways to Create Online Help Information 1-6
Column positions for sample DDS 2-8
DDS for Emphasizing Fields 2-21
PRINT Keyword Results Using PrintKey 2-26
Display Stations Implicitly Acquired When Display Files Are Opened 3-2
Information Available from the Get-Attributes Operation 34
Results of SLNO(*VAR) Values 3-11
Results from CLRL Example 3-16
Keywords Ignored If Display Modes Are Changed 3-28
Display File Operations Supported by the Operating System and the
Equivalent High-Level Language Commands 3-49
Optional Functions for Subfiles 4-4
Subfile Operations Supported by the System and Equivalent HLL
Commands 4-15
Functions Supported by Hardware Configurations A, B,andC 6-2
Functions Supported by Hardware Configurations D, E,and F 6-3
How a Scroll Bar is Sized 6-32
Scroll Bar Operation 6-33
Keywords Used to Define Colors and Display Attributes 6-39
Values Returned in MNUCHOICE and PULLINPUT 6-55
Actions Performed at Different Cursor Locations 6-61
File Redirections 7-7
File Redirection Combinations 7-7
System Message Number Ranges 8-10
Major Return Code Definitions 8-11
Restrictions for Display File Menus 9-4
Suggestions for Display File Menus 9-5
Display File and ICF File Entry Field Attributes 12-1
CHRID Values 13-5
Initial Values of Dialog Variable 17-2
UIM CCSID/CHRID Conversions for Display 17-5
UIM CCSID/CHRID Conversions for Print 17-7
Cursor-Sensitive Function Keys Assigned to Dialog Commands . 17-29
Different Ways to Define Online Help Information 18-2
Characteristics of Different Methods of Online Help Information . . 18-2
Help for Sample Display 18-5
Other DDS Keywords forUIM Help 18-6
Help for Sample Display Using Panel Groups 18-7
Help for Sample Display Using HLPDOC 18-10
Help for Sample Display Using HLPRCD 18-13
Source Members for Displays Example in QUSRTOOL (Install,
Create, and Delete) 21-2
Source Members for Displays Example in QUSRTOOL (Sample
Displays, Command, and Online Help Information) 21-3
Objects Created When Creating Example Objects 21-4
Required Functions and Attributes of All AS/400-Style Displays . . 21-8
Optional Functions and Attributes of All AS/400-Style Displays . .. 21-8
Function Key Assignments 21-38
XXV

XXVi

21-7.
21-8.
21-9.
21-10.
21-11.
21-12.
21-13.
21-14.
21-15.
A-1.
A-2.
A-3.
A-4.
A-5.
A-6.
A-7.
A-8.
A-9.
A-10.
A-11.
A-12.
A-13.
A-14.
A-15.
A-16.
A-17.
A-18.
A-19.
A-20.
A-21.
A-22.
A-23.
A-24.
A-25.
A-26.
A-27.
A-28.
A-29.
A-30.
A-31.
A-32.
A-33.
A-34.
A-35.
A-36.
A-37.
B-1.
B-2.
C-1.
C-2.
C-3.
C-4.
C-5.
D-1.

Type of Help for Each Help Area—Menu Display
DDS Considerations—Help on Menu Displays
Type of Help for Each Help Area—Entry Display
DDS Considerations—Help on Entry Displays
Type of Help for Each Help Area—Information Display
DDS Considerations—Help on Information Displays
Type of Help for Each Help Area—List Display
DDS Considerations—Help on List Displays
CUA Entry Dialog Actions
Tag Attributes That Can Be Continued
Restrictions Associated With Mixed Panels
Tags Allowed Between the CLASS and ECLASS Tag
Attribute Summary for Each BASETYPE
Tags Allowed Between the DATA and EDATA Tags
Tag Allowed Between the DATASLT and EDATASLT Tags
Tags Allowed Betweenthe DLand EDL Tags
Tag Allowed Between the KEYL and EKEYL Tags
Tags Allowed Between the LIST and ELIST Tags
NOCMD and NOEXT Attribute Interaction
Emphasis Values
Layout Values for Width=80
Layout Values for WIDTH=132
Layout Values for WIDTH=132
Tag Allowed Between the MBAR and EMBAR Tags
Tags Allowed Between the MBARC and EMBARC Tags
Tags Allowed Between the MENU and EMENU Tags
Tag Allowed Between the MENUGRP and EMENUGRP Tags . .
Tags Allowed Between the NOTE and ENOTE Tags
Tags Allowed Between the OLand EOL Tags
Tags Allowed Between the PANEL and EPANEL Tag
Layout of UIM finger print
Tags Allowed Between the PARML and EPARML Tags
Tags Allowed Between the PDFLD and EPDFLD Tags
Valid Action Text for ACTION Values
Tags Allowed Between the PNLGRP and EPNLGRP Tags

Tags Allowed Between the PRTHEAD and EPRTHEAD Tags . .
First Line of Heading with Print Width 132
First Line of Heading with Print Width80
Second Line of Heading with Print Width 132
Second Line of Heading with Print Width80
Tags Allowed Between the PRTPNL and EPRTPNL Tags
Tags Allowed Between the SLand ESL Tags
Tag Allowed Between the TLand ETL Tags
Tag Allowed Between the TTand ETT Tags
Tags Allowed Between the UL and EUL Tags
Attributes of UIM-Defined Variables (Z-Variables)
Summary of the Valid Uses of Dialog Commands
Summary of the Effects of Dialog Commands
Open Feedback Area L.
Device Definition List L.
Common I/O Feedback Area
I/O Feedback Area for Display Files
Get Attributes
IBM Japanese Character Set

Application Display Programming V4R1

IBM Korean Character Set D-2
IBM Simplified Chinese Character Set D-2
IBM Traditional Chinese Character Set D-3
Summary Chart for OS/400 Edit Codes F-1
Valid Edit Codes, Source Data, and Edited Output F-3
IBM-Supplied Edit Descriptions L. F-4
Message Files for MSGID G-5
Message Files for MSGID G-5

Tables XXVii

XXViii Application Display Programming V4R1

Notices

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM product, program,
or service is not intended to state or imply that only that IBM product, program, or service may be used.
Subject to IBM's valid intellectual property or other legally protectable rights, any functionally equivalent
product, program, or service may be used instead of the IBM product, program, or service. The evaluation
and verification of operation in conjunction with other products, except those expressly designated by IBM,
are the responsibility of the user.

IBM may have patents or pending patent applications covering subject matter in this document. The fur-
nishing of this document does not give you any license to these patents. You can send license inquiries,
in writing, to the IBM Director of Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY
10594, U.S.A.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this one)
and (ii) the mutual use of the information which has been exchanged, should contact the software interop-
erability coordinator. Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

Address your questions to:

IBM Corporation

Software Interoperability Coordinator
3605 Highway 52 N

Rochester, MN 55901-7829 USA

This publication could contain technical inaccuracies or typographical errors.

This publication may refer to products that are announced but not currently available in your country. This
publication may also refer to products that have not been announced in your country. IBM makes no
commitment to make available any unannounced products referred to herein. The final decision to
announce any product is based on IBM's business and technical judgment.

This publication contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

This publication contains small programs that are furnished by IBM as simple examples to provide an
illustration. These examples have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. All programs contained herein
are provided to you "AS IS". THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE EXPRESSLY DISCLAIMED.

© Copyright IBM Corp. 1997 XXIiX

Programming Interface Information

This publication is intended to help the application programmer create and maintain displays for an appli-
cation. This publication documents Product-Sensitive Programming Interface and Associated Guidance
Information provided by the OS/400 licensed program.

Product-Sensitive programming interfaces allow the customer installation to perform tasks such as diag-
nosing, modifying, monitoring, repairing, tailoring, or tuning of this IBM software product. Use of such inter-
faces creates dependencies on the detailed design or implementation of the IBM software product.
Product-Sensitive programming interfaces should be used only for these specialized purposes. Because
of their dependencies on detailed design and implementation, it is to be expected that programs written to
such interfaces may need to be changed in order to run with new product releases or versions, or as a
result of service.

Trademarks

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

AFP Operating System/400
AIX 0s/2

Application System/Entry 0S/400

APPN PS/1

AS/400 PS/2

Common User Access RPG

CUA SAA

IBM System/36
Information Assistant System/38
InfowWindow System/370
Integrated Language Environment Systems Application Architecture
OfficeVision 400

Microsoft, Windows, and the Windows 95 logo are trademarks or registered trademarks of Microsoft Cor-
poration.

PC Direct is a trademark of Ziff Communications Company and is used by IBM Corporation under license.

UNIX is a registered trademark in the United States and other countries licensed exclusively through
X/Open Company Limited.

C-bus is a trademark of Corollary, Inc.
Java and HotJava are trademarks of Sun Microsystems, Inc.

Other company, product, and service names, which may be denoted by a double asterisk (**), may be
trademarks or service marks of others.

XXX Application Display Programming V4R1

About Application Display Programming (SC41-5715)

This book contains information on:

e Using DDS to create and maintain displays for an application
e Creating and working with display files on the system

e Creating online help information

e Using UIM to define panels and dialogs for an application

Use this book to program for application and help displays.

This book does not describe all the DDS keywords or the configuration of display
stations. You may need to refer to other IBM books for more specific information
about a particular topic.

For a list of related publications, see the “Bibliography.”

Who Should Use This Book

This book should be used by application programmers who create or work with
application and help displays. You should also have knowledge of the source entry
utility (SEU) and data description specifications (DDS).

This book assumes that a device description already exists to describe your display
station to the system.

Prerequisite and Related Information

For information about other AS/400 publications (except Advanced 36), see either
of the following:

* The Publications Reference book, SC41-5003, in the AS/400 Softcopy Library.

e The AS/400 Information Directory, a unique, multimedia interface to a
searchable database that contains descriptions of titles available from IBM or
from selected other publishers. The AS/400 Information Directory is shipped
with the OS/400 operating system at no charge.

Information Available on the World Wide Web

More AS/400 information is available on the World Wide Web. You can access this
information from the AS/400 home page, which is at the following uniform resource
locator (URL) address:

http://www.as400.1ibm.com

Select the Information Desk, and you will be able to access a variety of AS/400
information topics from that page.

© Copyright IBM Corp. 1997 XXXI

XXXil Application Display Programming V4R1

Summary of Changes to Application Display Programming

HTML Keyword

You can use HTML tags to update applications for use on the Internet through the
World Wide Web. For more information, see“DDS Keywords” on page 6-5 and
“Inserting HTML Tags” on page 6-82.

Changes or additions to the text are indicated by a vertical line (]) to the left of the
change or addition.

The following programming languages are no longer offered as licensed programs
in V3R7:

AS/400 BASIC, FORTRAN/400, AS/400 PL/I, AS/400 Pascal, and RM/COBOL-85
for the AS/400

Therefore, references to these products have been removed or adjusted in this
edition.

© Copyright IBM Corp. 1997 XXXili

XXXIV Application Display Programming V4R1

Part 1. Building a Sample Display with Online Help
Information

Chapter 1. Building a Sample Display with Online Help Information .1

© Copyright IBM Corp. 1997

Application Display Programming V4R1

Chapter 1. Building a Sample Display with Online Help

Information

© Copyright IBM Corp. 1997

This chapter outlines the steps you need to do to create a sample display with
online help information on the AS/400. If you are not sure how to do one or more
of the steps, see the additional information referred to in each step.

The Application Display: ~ The sample display is created using a display file (also
known as a display device file). A display file is an object, or named storage
space, created by the user that contains the file description. The file description
identifies the display station used and, optionally, the record formats used by the
display station. Record formats describe the characteristics and arrangement of
the fields on a display. Record formats are defined using data description spec-
ifications (DDS) , which describe data attributes outside the application program
that processes the data.

The Online Help Information: ~ The online help information for the sample display
is defined using help panel groups. A panel group is an object, or named storage
space, that contains text to be used as online help information by the user interface
manager. The user interface manager (UIM) is a function of the operating system
that provides online help information for displays, including help for part or all of a
display, help for commands, the InfoSeeker function, the index search function
(selectable help topics), and hypertext (the capability to link different units of online
help information).

The following table lists the sample names used in the steps:

Table 1-1. Names Used in Steps for Creating Sample Displays

Name What It Is

SRCSAM Sample source file

ADMSAM Sample source member for application display

DSPSAM Sample display file

HDMSAM Sample source member for help display

PNLSAM Sample panel group

LIBSAM Sample library that contains source file SRCSAM, display file

DSPSAM, and panel group PNLSAM

The steps show only one way to create a sample display with online help informa-
tion. Other methods are discussed at the end of this chapter.

1. Create the source file SRCSAM using the Create Source Physical File
(CRTSRCPF) command; create the library LIBSAM using the Create Library
(CRTLIB) command.

2. Enter the Start Programming Development Manager (STRPDM) command to
begin using the programming development manager (PDM). When the display
appears, select option 3 (Work with members).

AS/400 Programming Development Manager (PDM)
Select one of the following:
1. Work with libraries
2. Work with objects
3. Work with members

9. Work with user-defined options

Selection or command
===> 3

F3=Exit F4=Prompt F9=Retrieve F10=Command entry
F12=Cancel F18=Change defaults
(C) COPYRIGHT IBM CORP. 1981, 1993.

— Additional Information

The programming development manager (PDM) s the part of the
AS/400* Application Development Tools licensed program that allows users
to perform several operations (such as copy, delete, and rename) from lists
of libraries, objects, and members.

Since the display file (which will be created in step 9) does not actually
contain any data, the DDS source for a display file is entered in a source
file. A source file is an object that is made up of one or more source
members , which are the different sets of data that make up your DDS
source.

More information about the programming development manager is available
in the ADTS/400: Programming Development Manager book.

3. When the Specify Members to Work With display appears, complete the file
and library information and press the Enter key.

Specify Members to Work With
Type choices, press Enter.
File SRCSAM Name
Library LIBSAM *LIBL, *CURLIB, name
Member:
Name *ALL *ALL, name, *genericx
Type . . . o o *ALL *ALL, *BLANK, type, *generic*
F3=Exit F5=Refresh F12=Cancel

1-2 Application Display Programming V4R1

4. The Work with Members Using PDM display appears.

Work with Members Using PDM

File SRCSAM
Library LIBSAM Position to
Type options, press Enter.
2=Edit 3=Copy 4=Delete 5=Display 6=Print
7=Rename 8=Display description 9=Save 13=Change text
Opt Member Type Text

(No members match the subsetting criteria)

Parameters or command

===>

F3=Exit F4=Prompt F5=Refresh F6=Create
F9=Retrieve F10=Command entry F23=More options F24=More keys

Press F6 on this display to create a new member.

5. The Start Source Entry Utility display appears. Complete the information on

this display and press the Enter key.

Start Source Entry Utility (STRSEU)

Type choices, press Enter.

Source file > SRCSAM Name, *PRV

Library > LIBSAM Name, *LIBL, *CURLIB, *PRV
Source member ADMSAM Name, *PRV, *SELECT
Source type DSPF Name, *SAME, BAS, BASP, C...
Text 'description' DDS for sample display

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

— Additional Information

ToolSet licensed program that is used to create and change source

ADTS/400: Source Entry Utility book.

The source entry utility (SEU) is a function of the Application Development

members. More information about the source entry utility is available in the

screen of blank lines. The text on the last line of the display, Member

Chapter 1. Building a Sample Display with Online Help Information

6. Because you are creating a new member, the SEU Edit display appears with a

1-3

ADMSAM added to file SRCSAM indicates that SEU added the new member to
the file you specified.

Columns: 1 71 Edit LIBSAM/SRCSAM
SEU==> ADMSAM
FMT DP AANOINO2NO3T.Name++++++RLen++TDpBLinPosFunctions++++++++t++tt++t++

*kkkkkkxxkkkxxx Beginning of data

kkkxrxkkkkkxxxxx End of data

F3=Exit F4=Prompt F5=Refresh
F10=Top F11=Bottom F24=More keys
Member ADMSAM added to file LIBSAM/SRCSAM.

+

7. On the SEU edit display, enter the DDS source statements for the new
member. Since the instructions in this chapter allow you to provide online help
information for the sample display, make sure your DDS source includes the
necessary DDS keywords to enable and access help.

— Additional Information

SEU has many functions available to help you enter your DDS. More infor-
mation about the functions of SEU is available in the the ADTS/400: Source
Entry Utility book.

For information about describing your display using DDS, see “Defining
Display Fields and Functions in a Record Format” on page 2-7 in this
guide. For more information about the DDS keywords needed for online
help information, see Chapter 18, “Making Online Help Information Acces-
sible for Your Display File.”

8. When you are finished entering your DDS source, press F3 and complete the
information on the Exit display. Press the Enter key.

9. To create the new display file, enter the Create Display File (CRTDSPF)
command on any command line. Make sure you specify the source file and
member that contains your DDS source:

CRTDSPF FILE(LIBSAM/DSPSAM) SRCFILE(LIBSAM/SRCSAM) SRCMBR(ADMSAM)
Press the Enter key.

— Additional Information

For more information about creating display files, see “Creating a Display
File and Description” on page 2-4.

10. To add online help information to the sample display, create a second source
file member for the UIM source. You are not required to create the second
source member in the same source file that you created your DDS source in;

1-4 Application Display Programming V4R1

however, do not use the same source member for both the DDS and UIM
source.

To create the second source file member, repeat steps 2 through 4. When the
Start Source Entry Utility display appears again, continue with step 11.

11. Complete the information on the Start Source Entry Utility display by specifying

the following:

For this prompt... Enter this...

Source member HDMSAM

Source type PNLGRP

Text description UIM help for sample display

12. On the SEU edit display, enter the UIM source statements for the new member.

— Additional Information

For information about defining your online help information using UIM, see
“Defining Online Help Information in a Panel Group” on page 20-1.

13. When you are finished entering your UIM source, press F3 and complete the
information on the Exit display. Press the Enter key.

14. Enter the Create Panel Group (CRTPNLGRP) command on any command line:
CRTPNLGRP PNLGRP(LIBSAM/PNLSAM) SRCFILE(LIBSAM/SRCSAM) SRCMBR(HDMSAM)
Press the Enter key.

— Additional Information

For more information about panel groups, see “Creating and Deleting Panel
Groups” on page 20-15.

Although one library was used in the previous steps, you are not required to create
the different objects for your displays in the same library.

Other ways of creating your own application displays on the AS/400 system follow:

Chapter 1. Building a Sample Display with Online Help Information 1-5

Table 1-2. More Ways to Create Application Displays

Method Description Where to Find More
Information

Screen design aid A function of the Application Development ToolSet licensed ADTS/400: Screen

(SDA) program that helps you design, create, and maintain displays Design Aid book.

and menus. SDA allows you to design your displays as you
want them to look and then the system creates the DDS
source and a display file for you.

QUSRTOOL

A library, which is optionally installable on your system, that “Using the Displays
provides you access to examples of various tools and pro- Example in the
gramming techniques that may help you with application QUSRTOOL Library” on
development and management of your system. The display page 21-1

example in QUSRTOOL provides four sample displays with
online help information. You can copy the source for these
displays into a library of your choosing and then tailor them
for your own use.

UIM panel groups

A part of the system that allows you to define panels and Chapter 16, “Introduction
dialogs for your application. The UIM controls the panel's to the User Interface
appearance and assures consistency with panels developed Manager” on page 16-1
by IBM *,

Other ways of creating online help information for your displays follow:

Table 1-3. More Ways to Create Online Help Information

Method Description Where to Find More Information

Help documents Objects for online help information that are “Defining Online Information in a Document”
created using AS/400 OfficeVision, which on page 20-18 and “Specifying Documents
is the IBM licensed program that provides in Your Display File” on page 18-9

many office functions, such as word pro-
cessing. This can be accessed from
display files and not the UIM application

panels.

Help records DDS keywords that allow you to create “Defining Online Help Information in a DDS
your online help information in the same or Record” on page 20-19 and “Specifying
a different member as the DDS source for Records in Your Display File” on page 18-12

your application display. This can be
accessed from display files and not the
UIM application panels.

To compare and contrast the different ways to create online help information, see
“Choosing between Panel Groups, Documents, and Records for Help” on
page 18-2.

1-6 Application Display Programming V4R1

Part 2. Programming Application Displays Using Display

© Copyright IBM Corp. 1997

Files

Chapter 2. Defining Your Display in a Display File 2-1
Establishing a Display File 2-1
Determining File Descriptions 2-2
Field-Level Descriptions 2-2
Record-Level Descriptions 2-3
File-Level Descriptions 2-3
Deciding Whether to Describe Data Inside or Outside Your Program 2-3
Externally Described Data 2-3
Program-Described Data, 2-4
Creating a Display File and Description 2-4
Changing the File Description 2-5
Detecting File Description Changes 2-6
Defining Display Fields and Functions in a Record Format 2-7
Understanding the Field Attribute Characters 2-8
Understanding How Record Format Fields Can Be Used 2-9
Defining Function Keys 2-11
Defining Command Attention (CAnn) and Command Function (CFnn) Keys 2-12
Specifying Alternative Keyso 2-13
Passing Information via Indicators 2-14
Removing Option and Response Indicators from the Record Area . . . 2-15
Enabling Different Response Indicators Simultaneously 2-15
Setting an Indicator Off 2-15
Inserting Constant Field Text from a Message Description 2-16
Allowing for Right-to-Left Cursor Movement 2-16
Defining Cursor Movement to Input-Capable Positions Only 2-16
Defining Cursor Progression for Entry Fields 2-17
Defining Attributes for Entry Fields 2-18
Protecting Entry Fields Using Edit Masks 2-19
Specifying Right-to-Left Display Processing 2-19
Specifying Word Wrap for Fields 2-20
Specifying Word Wrap for Fields—Tips 2-21
Emphasizing Fields 2-21
Adding Color 2-22
Editing Output Fields 2-23
Defining Your Own Edit Codes 2-23
Specifying Valid Screen Sizes 2-24
Enabling Your Display to Be Printed 2-25
Defining Windows 2-27
Using Program-Described Data 2-27
Defining Input-Only Files 2-28
Defining Output-Only Files 2-28
Defining Input and Output Files 2-28
Chapter 3. Working with Display Files in an Applicaton 3-1
Understanding How the System Allocates Resources 3-1
Opening Display Files 3-2
Acquiring a Display Station for /O Operations 3-2
Obtaining Information about Display Files and Display Stations 3-3
Obtaining Information about Open and I/O Operations 3-3

Obtaining Attribute Information about Display Stations
Sending and Receiving Data,
Determining Which Record Formats Are Active on a Display
Writing Output to the Display
Placing Records on the Display
Understanding Which Records Do Not Occupy Space on the Display
Changing Record Formats ona Display
Deciding the Order of Record Formats Written to the Display
Overlaying and Erasing Record Formats on a Display
Starting Your Record Format on a Specific Line
Clearing a Specified Number of Lines
Rolling Data between Two LinesonaDisplay
Overriding the Attributes or the Content of a Field
Erasing All Unprotected Input and Output/Input Fields on the Display
Resetting Modified Data Tags Associated with Records on the Display
Keeping a Record or Fieldona Display
Deferring the Write Operation Until a Read Request is Made
Specifying Default Values for Fields
Indicating Which Mode to Display Records
Positioning the Cursor after an Output Operation
Returning the Cursor Position to an Application

Returning the Cursor Position Within a Subfile to an Application

Returning the Mode of a Subfile to an Application
Initializing Output/Input Fields
Inviting Input to the Display
Reading Invited Input from the Display
Understanding the Read-From-Invited-Devices
Reading Input from the Display

Unlocking the Keyboard while the Program Is Processing Data

Keeping Input Data
Setting an Indicator When Data Is Changed
Initializing Records and Unlocking the Keyboard-Diagram
Specifying Validity-Checking Functions
Understanding the Limitations on the Number of Input-Capable Fields
Handling Negative Numeric Input Data

Understanding How the System Reads Input from the Display

Writing Output and Reading Input at the Same Time
Canceling Input That Was Not Waited For
Locking the Keyboard and Positioning the Cursor During I/0 Operations
Saving Previously Displayed Information
Understanding the Effects of I/O Operations on Command Keys
Avoiding Record Format Problems on the 5250 Display Station
Releasing an Acquired Display Station from I/O Operations
Closing Display Files
Mapping Display Operations to High-Level Language Operations
Sharing Display Files in the Same Job
Understanding the Open Operation for Files Shared ina Job

Understanding the Input/Output Operation for Files Shared in a Job

Understanding the Close Operation for Files Shared ina Job

Chapter 4. Displaying Groups of Records Using Subfiles
Recognizing Subfile Uses
Describing Subfiles in Your DDS Source
Using a Subfile ina Program

Application Display Programming V4R1

Requesting 1/0 Operations for a Subfile 4-12

Requesting 1/0 Operations for a Subfile Record Format 4-12
Adding a Record at a Specified Location in a Subfile 4-12
Updating an Active Record in the Subfile 4-13
Reading an Active Record at a Specified Location in the Subfile 4-13
Reading the Next Changed Record in a Subfile 4-14

Requesting 1/0 Operations for a Subfile Control Record Format 4-15
Displaying Subfile Records 4-15
Placing Subfile Records on the Display for Processing 4-15
Displaying and Processing Subfile Records at the Same Time 4-15

Recognizing Subfile /0 Requests in High-Level Languages 4-15

Controlling the Appearance of Subfiles 4-16
Displaying Horizontal Subfiles with Display Modes 4-17
Specifying Subfile Size Equal to Page Size 4-19
Specifying Subfile Size Not Equal to Page Size 4-21
Checking Validity on Subfile Data 4-22
Displaying Error Messages from Subfiles 4-23
Positioning the Cursor on the Displayed Subfile 4-24

Positioning the Cursor Initially 4-24

Positioning the Cursor When a RollKey IsUsed 4-24

Positioning the Cursor When a Fold or Truncate Key IsUsed 4-27

Positioning the Cursor and Rolling When Two or More Records Are

Displayed 4-27
Understanding Subfile DDS and Program Logic—Example 4-31
Chapter 5. Defining Windows with Display Files 5-1
Window Terminology 5-2
DDS Window Keywords 5-2
Window Representation and Hardware Configuration 5-3
Creating Windows 5-3

Window Definition Records 5-3

Window Reference Records 5-3

Window Size and Location 5-4

Cursor Position 5-5

Error Messages 5-6

Subfiles 5-6

DDS Help Records 5-7

Defining Window Borders 5-7

Border Defaults 5-7

Multiple Border Definitions 5-8

UIM Help Window Borders 5-9

Defining a Window Title 5-9
DDS for a Window Title—Example 5-10
Reading Data from Windows 5-10
Changing Window Borders and Contents 5-10
Moving and Duplicating Windows 5-11
Making Two Windows Seem Active atOnce 5-11
Making One Window in a Series Stand Qut 5-12
Removing Windows 5-12
Removing All Windows 5-13
Removing More Recent Windows 5-13
Improving Application Performance 5-13

System Save and Restore Operations 5-13
Response Time 5-13

Part 2. Programming Application Displays Using Display Files

Bypassing System Save and Restore Operations 5-14

USRRSTDSP Keyword Processing and Interactions 5-15
Programming Examples 5-15
Using Basic Window Functions 5-16
DDS Full-Screen Display and Window Definitions 5-16

RPG Display Program 5-17

Step 1: Display Initial Display 5-18
Step 2: Display Window 1 5-18
Step 3: Display Window 2 5-19

Step 4: Restore Window 1 5-19

Step 5: Display Initial Display 5-20
Defining Windows in a Separate Display File 5-20
DDS Full-Screen Display and Window Definitions 5-21

RPG Program Source 5-21
RPG Program Source for WINPGM 5-22
Step 1: Display Initial Display 5-22
Step 2: Display a Window 5-22

Step 3: Return to the Initial Display 5-23
Chapter 6. Creating a Graphical Look for Displays 6-1
Factors Affecting the Graphical Look 6-1
Hardware Configuration 6-1
Enhanced Display Parameter 6-4
DDS Keywords 6-5
Creating Menu Bars 6-7
Defining the Menu-Bar Choices 6-7
Suppressing the Menu-Bar Separator, 6-8
Defining the Menu-Bar Separator 6-8
Selection Fields—Overview 6-10
DDS for Selection Fields—Example 6-12
Creating a Vertical Single-Choice Selection Field 6-13
Creating a Vertical Multiple-Choice Selection Field 6-14
Creating a Horizontal Selection Field 6-14
Cursor Movement in a Vertical Selection Field 6-15
Cursor Movement in a Horizontal Selection Field 6-16
Controlling the Selection Indicators in a Selection Field 6-17
Creating Pull-Down Menus Using Single-Choice Selection Fields 6-18
Controlling the Selection Indicators in a Pull-Down Menu 6-20
Defining Accelerator Keys 6-21
Defining a Menu-Bar Switch Key 6-22
Defining a Cancel Key 6-23
Limiting Function When Cursor is Outside a Pull-Down Menu 6-24
Selection Lists—Overview 6-24
DDS for Selection Lists—Example 6-26
Creating Selection Lists 6-26
Controlling the Selection Indicators in a Selection List 6-28
Scroll Bars—Overview 6-30
Creatinga Scroll Bar 6-31
DDS for Scroll Bars—Example 6-33
Scroll Bar Operation 6-33
Push Buttons—Overview 6-34
DDS for Push Buttons—Example 6-35
Creating Push Buttons 6-35
Controlling the Availability of Choices 6-36

Application Display Programming V4R1

Auto-Selection in Single-Choice Selection Fields 6-37

Auto-Enter in Single-Choice Selection Fields 6-38
Defining Mnemonics, 6-38
Defining Choice Colors and Attributes 6-39
Continued-Entry Fields—Overview 6-42
Specifying Word Wrap on Continued-Entry Fields 6-43
DBCS Considerations with Continued-Entry Fields 6-43
How DBCS Data is Returned for Continued-Entry Fields 6-44
Keyboard Functions with Continued-Entry Fields 6-44
Characterdata 6-44
Field Mark 6-45
Automatic Shape Determination (ASD) Processing 6-46
Delete 6-46
Erase EOF 6-46
Erase Input 6-46
Reverse 6-46
Close . . . 6-47
Field Exit 6-47
Field Plus 6-47
Field Minus 6-47
Dup . . 6-47
Kanji 6-47
Character Backspace, 6-48
Character Advance 6-48
New Line 6-48
Field Advance 6-49
Field Backspace 6-49
Forward Field-Exit Processing 6-49
Backward Field-Exit Processing L. 6-49
How the Menu Bar Interacts with the Application 6-50
Defining the MNUBARDSP Keyword on the Application Record 6-50
Defining the MNUBARDSP Keyword on the Menu-Bar Record 6-51
Receiving Input from the Pull-Down Menus 6-53
Receiving Input from Pull-Down Menus Using the Pull-Down Input
Parameter 6-53
Removing a Pull-Down Menu after Receiving Input 6-55
Updating a Pull-Down Menu before Displaying 6-55
Defining Application Help 6-56
Defining Choice-Level Help 6-56
Defining Help fora Field 6-59
Key Interaction for Menu Bars and Pull-Down Menus 6-60
Cursor Movement 6-61
Pressingthe TabKey 6-61
Pressing the Cursor Keys 6-62
Programming Examples 6-62
Using the MNUBARDSP Keyword on the Application Record 6-62
Description 6-64
Using the MNUBARDSP Keyword on the Menu-Bar Record 6-65
Description 6-66
How the Displays Look 6-67
Simple Hotspots 6-68
Command Key Emulation 6-68
Page Up and Page Down Key Emulation 6-69
Programmable Mouse Buttons—Overview 6-69

Part 2. Programming Application Displays Using Display Files

Pointer Device Events 6-69

AID Codesto be Returned 6-70
Programmable Mouse Buttons—Benefits 6-70
Programmable Mouse Buttons Operation 6-71
Programmable Mouse Buttons—NWS Considerations 6-72
Programmable Mouse Buttons—Event Processing States 6-72
Programmable Mouse Buttons—Event Processing Priority 6-73
Unshifted Left Button Pressed Event Processing 6-73
Unshifted Left Button Released Event Processing 6-75
Unshifted Left Button Double Click Event Processing 6-75
Shifted Left Button Pressed Event Processing 6-76
Shifted Left Button Released Event Processing 6-76
Shifted Right Button Pressed Event Processing 6-78
Any Other Pointer Device Event Processing 6-79
Grid Line Structures—Overview 6-79
DDS for Grid Line Structures—Example 6-80
Grid Line Structures and Windows 6-81
Hardware Requirements for Grid Line Structures 6-82
Inserting HTML Tags 6-82
Resolving HTML Field Overlap 6-83
Programming Examples 6-85
Chapter 7. Overriding Display Files and Display File Attributes 7-1
Determining Whether or Not to Use Overrides 7-1
Overriding File Attributes in HLL Programs 7-1
Overriding File Names in HLL Programs 7-3
Overriding Both File Names and Attributes in HLL Programs 7-3
Applying Overrides When Compiling a Program 7-4
Deleting Overrides 7-5
Displaying Overrides 7-6
Using File Redirection to Override File Names and Libraries or File Types .. 7-6
Overriding Files with the Same File Types 7-6
Overriding Files with Different File Types 7-6
Recognizing Commands That Ignore or Restrict Overrides 7-9
Chapter 8. Handling Messages and Errors for Display Files 8-1
Creating and Displaying Your Own Messages 8-1
Displaying a Message on the Message Line 8-2
Displaying a Message on the Message Line When a Subfile Control Record
isWritten 8-2
Displaying a Message on the Message Line Using a Message Field 8-3
Priorities for Displaying Messages on a Message Line 8-3
Displaying Messages in a Field onthe Display 8-3
Displaying Messages on a Program Message Queue 8-4
Displaying Error Messages through a Subfile 8-4
Sounding an Alarm for Messages 8-7
Automatically Handling Permanent I/O Errors on Display Stations 8-7
Analyzing Error Messages Sent from the System 8-8
Understanding Messages and Message Monitors 8-9
Understanding Major/Minor Return Codes 8-10
Recovering from Errors 8-11
Normal Completion 8-11
Completion with Exceptions 8-12
Permanent System or File Error L. 8-13

Application Display Programming V4R1

Permanent Device or Session Error on 1/O Operation 8-13

Device or Session Error on Open or Acquire Operation 8-14
Recoverable Device or Session Errors on I/O Operation 8-14
Chapter 9. Creating and Accessing Menus Using Display Files 9-1
Running System and User-Defined Menus 9-1
Returning to a Menu after Running the GO command 9-1
Determining the Previous Menu 9-1
Using the Cancel and Exit Keys on Menus 9-2
Choosing the Menu That Is Shown at Sign-On Time 9-3
Defining Your Own Display File Menus 9-4
Understanding DDS and Display File Considerations for Menus 9-4
Describing Menu Actions in a Message File 9-5
Naming Help Formats for Menus 9-6
Building a Display File Menu 9-7
Describing the Menu and Menu Help Information 9-7
Creating the Display File, 9-9
Creating the Message File 9-9
Adding Messages to the Message File 9-9
Creating the Menu Object 9-9
Runningthe Menu 9-10
Defining Your Own Program Menus 9-10
Passing Parameters for Program Menus 9-10
Building a Program Menu 9-11
Describingthe Menu 9-11
Creating the Display File 9-12
Entering the Source and Creating a CL Program 9-12
Creatingthe Menu 9-13
Runningthe Menu 9-13
Exiting from a Program Menu without Returning to the Previous Menu . . 9-13
Program 1 9-14
Program 2 9-15
Avoiding Menu Name Conflict 9-15
Naming Your Menus 9-15
Placing Your Menu in a Higher Library in the Library List 9-16
Specifying the Library That Containsthe Menu 9-16
Using the Generic Menu Specification 9-16
Changing the Command Default after Duplicating a Command 9-16
Displaying Menu Attributes 9-16
Changing Menu Attributes 9-16
Deleting Menus 9-17
Chapter 10. Using User-Defined Data Streams 10-1
Understanding Display Station Differences 10-1
Understanding User-Defined Data Stream Limitations 10-2
Chapter 11. Passing Data between Programs 11-1
Passing Data in the Same Routing StepinaJob 11-1
Passing Data between Routing StepsinaJob 11-3

Chapter 12. Waiting for Input from a Display File, an ICF File, and a
Data Queue 12-1

Chapter 13. Using Alternative Character Sets and Code Pages 13-1

Part 2. Programming Application Displays Using Display Files

Specifying Character Translation for Fields 13-2

Determining the Character Identifier (CHRID) Value for Your Display 13-4
Chapter 14. Improving System Performance with Displays 14-1
Deferring the Write Operation for a Display File 14-1
Designating the Primary Screen Size for a Display File 14-1
Writing Only One Page of Subfile Records ata Time 14-1
Sharing an Open Data Path (ODP) for the Same Job 14-2
Sending Records with Input Fields to the Display in Order 14-2
Overlapping and Not Deleting Repeatedly Sent Records 14-2
Restoring the Display 14-3
Defining Command Attention Keys Rather Than Command Function Keys . 14-3
Using the Invite Operation 14-3
Using Windows 14-4

Application Display Programming V4R1

Chapter 2. Defining Your Display in a Display File

A display file defines the format of the information to be presented on a display
station, and how that information is processed by the system on its way to and from
the display station. Data description specifications (DDS) describe the data
referred to by a display file.

This chapter tells you about display files, including how to create them and how to
provide DDS source for them to describe your display.

Establishing a Display File

A display file is an object on the system. An object is a named storage space that
consists of a set of characteristics that describe itself and, in the case of a display
file, the data. Like other objects on the system, display files have the following char-
acteristics:

e A display file is named and placed in a library when it is created. The file name
and library name allow you to refer to the display file in your applications.

e Once a display file is created, it can be changed, secured, saved, restored, or
deleted.

Before an application program can work with a display station, a display file must
be opened to allow data to flow between the program and the display station.

Application Display
Program File Display Station

> <—><—>"

/A | A

!

Device
Description

RV2W045-1

A device description , which is a system object that describes the display station to
the system, must also exist for the display station. A device description contains
information such as device address, device type, model number, and features.
Device descriptions are usually created by system personnel or, for locally attached
devices, can be created during the automatic configuration of the system.

A program may work with more than one display station at a time by doing one of
the following:

¢ Opening more than one display file

* Opening a display file that allows more than one display station to be attached
to an open file

© Copyright IBM Corp. 1997 2-1

Since a display file does not have a set of data uniquely associated with it, the
relationship between the data and the display file is established when the display
file is opened and ends when the display file is closed.

Determining File Descriptions

The file description , which is created at the same time the display file is created,
describes the characteristics of the display file and determines how the display file
does the following:

e Controls the display station
e Formats output data from the program for presentation at the display station
e Formats input data from the display station for presentation to the program

A file description determines how a program is able to use the file. If a program
attempts to perform an operation that is inconsistent with the display file
description, the system does not allow the operation.

The file description is created and deleted at the same time as the display file it
describes. Some parts of a file description may be changed, either permanently
with the Change Display File (CHGDSPF) command or temporarily with the Over-
ride with Display File (OVRDSPF) command.

A file description describes data at three different levels:

¢ Field level
¢ Record level
¢ File level

The following sections describe these levels.

Field-Level Descriptions

A field is the smallest unit of data that is recognized and handled by the data man-
agement support of the system. A field-level description allows you to give the
system detailed characteristics of a field, such as:

* Where on the screen the field is to appear

e What type of data is valid for the field

¢ Whether the field should be highlighted in some way

e How it will be presented from the program to the system on output and from
the system to the program on input.

* Where each field is relative to the start of a record

¢ What the characteristics of each field will be while in the system

¢ Where the data for each field should be acquired from for output

e Where and how input from the display station should be placed so the program
can use it

e Whether the field is an input-capable field or output-capable field only

Only field-level descriptions can determine that valid data is specified for individual
fields on a display.

2-2 Application Display Programming V4R1

Record-Level Descriptions

A record is an ordered set of one or more fields. A record-level description
allows you to tell the system what a particular record looks like, or its record
format .

A record-level description is given in one of two ways:

 [f field-level descriptions are also used, you identify what fields make up the
record format and the order of these fields within the record format. The
system can then perform separate operations on each field described with a
field-level description in the record-level description. For example, one field can
be highlighted while another is not.

 [f field-level descriptions are not used, the record format is given by specifying
the length of the record. The system handles the entire record as a unit and
cannot perform operations on one part of the record one way and another part
a different way.

Since records are used to transfer data between the system and the application
program, a record-level description is required for display files.

File-Level Descriptions

A file is an organized set of zero or more records (a file with zero records is
empty). A file-level description is a description that applies to the file as a whole.
For a display file, you can specify the following in the file-level description:

* What record formats are valid for the display file

* What display station should be usable with the display file

¢ What graphic character set is to be assumed for the data that will be entered
through the display file

Deciding Whether to Describe Data Inside or Outside Your Program

When the detailed description of the display file and the data it refers to is con-
tained in a display file rather than imbedded in a program, the data is called
externally described data . When the data is described within the source program,
the data is called program described data

Externally Described Data

Externally described data exists independently of any program that uses the file.
Using externally described data, you can produce a detailed and standard
description of both the display file and any data that can be processed through the
display file.

To use externally described data, you need to declare that the display file is to be
used as an externally described file. The language compiler or interpreter extracts
the file description from the display and then incorporates it into the program.

There are several advantages to using externally described data:

* Increased programmer productivity. The language automatically describes the
record layouts for you without additional coding. You need to describe records
and fields only once (when the file is created). You can then refer to these
fields within the program.

Chapter 2. Defining Your Display in a Display File ~ 2-3

Ease of file and program maintenance. When fields are added, deleted, or
changed, it can be done in one place instead of maintaining the record layout
in each program that uses the file.

Increased data integrity. Since the fields and records are described in one
central location, there is less chance of programming errors when describing
the data in the file to the program. All application programs using the file will
have the same view of the data. Moreover, the system view of the data
becomes the same as the application program view.

Level checking provided. Level checking is an automatic method used when
the program is run that determines if the file description has changed since the
program was last compiled. Depending on the type of change, the program
may only need to be recompiled without modification. This allows better control
over program maintenance. There is more information on the level-checking
function in “Detecting File Description Changes” on page 2-6.

Program-Described Data

You are not required to use external descriptions to describe your displays in your
program. If you do not use externally described data, you must declare variables in
your source program that define to the compiler or interpreter what the data looks

like.

When program-described data is used, the program and the system may not have
the same view of the data:

If the file does not have any field-level descriptions, the system must operate at
the record level. The only concern in this case is that the record length the
program is using is the same as what the system is using. It need not be, but
the system always operates with the record length it has. If the record length
that the system is using differs from the record length the program is using, the
system truncates or pads as necessary.

If the file has field-level descriptions but the program does not use them, the
system uses the field-level descriptions even though the program does not.
The system expects the program to present data according to the file
description and, conversely, provides data to the program according to the
description.

More information about program-described data is found in “Using Program-
Described Data” on page 2-27.

Creating a Display File and Description
Display files are created using the Create Display File (CRTDSPF) command.

You can define the DDS for your display file in one of two ways:

Using the screen design aid (SDA) utility
Entering your own DDS source

You can specify certain attributes about your display file. Information about these
attributes is found in the following:

“Deferring the Write Operation Until a Read Request is Made” on page 3-26
“Saving Previously Displayed Information” on page 3-43

CL Reference

Security — Reference

Application Display Programming V4R1

The following illustration compares the two ways to create display files:

Two Ways to Define Display Files

Enter your own DDS and then use the

Create Display File (CRTDSPF) Command ...

49
50

51

63

b o

CRTDSPF command compiles DDS and creates

R GOTO

FLpoo?

ALTHELP

BLINK
CFO3(03)
CF12(12)
HELP
HLPCLR
32160 To Another List
DSPATR(HI)

2'Select one of the folloping:’

COLOR(BLU)

1

3

5 71, Work With documents in folder!

6 7'2, Work with documenls to be print-
7

8

9

ed\

7'3. Work with folders!
7'4. Work with nontext document dato'
7'6. Work with text profiles’

20 2'selection’

7

DSPATR(RI PC)
23 2\F3-Exit
COLOR(BLU)

display file object.

Changing the File Description

F1Z«Cancel"

Go To Another List

Select one of the following:

aprwnNE

. Work with documents in folder

Work with documents to be printed
Work with folders
Work with nontext document data

. Work with text profiles

Selection

F3=Exit

F12=Cancel

PEEEEEEEEEEEEE R

Design your display as it will look
using the screen design aid (SDA) utility ...

F3=Exit

aRwWN PR

Go To Another List

Select one of the following:

. Work with documents in folder
Work with documents to be printed

Work with folders

. Work with nontext document data
. Work with text profiles

Selection

F12=Cancel

SDA generates DDS and runs the CRTDSPF command.

49
50

&1

63

o1

R GOTO

CaN B0 W~

FLDoO! 14 B 21

ALTHELP

BLINK
CFO3(03)
CF12012)
HELP
HLPCLR
32'G6o To Another List!'
DSPATR(HI)
21Select one of the following:!
COLOR(BLU)
7'1. Work with documents in folder’
7'2. Work with documents (o be print-
ed’
73, Work With folders'
714, Work with nontext document datal
7'5. Work with text profiles!
2'Selection!

7
DSPATR(R] PC)

2'F3-Exit
COLOR(BLU)

F12-Cancel!

RV2WO000-5

You may also combine the two methods, creating an initial display using SDA and

then tailoring the generated DDS.

After a display file has been created, the file description can be changed:

¢ To change the file description that was originally specified on the CRTDSPF
command, use the Change Display File (CHGDSPF) command.

¢ To change the file-level, record-level, or field-level information contained in the
DDS source, you must first update the DDS source and then create the display
file again using the CRTDSPF command. A new display file can be created
without deleting the existing display file by specifying REPLACE(YES) on the

CRTDSPF command.

e To change both the CL command file-level descriptions and the DDS source,
specify the new values when you create the display file again.

Chapter 2. Defining Your Display in a Display File ~ 2-5

Changes to display file descriptions are applied according to the following:

¢ |f the file-level description was changed with a CL command, any program that
uses the file will automatically use those new descriptions.

¢ |f the DDS descriptions were changed and the program uses the file as a
program-described file, the system uses the new file-level description.
However, if the DDS descriptions were changed and the program uses the file
as an externally described file, then the record-level and field-level descriptions
used when the program was compiled may not match the changed file. If the
system detects a mismatch when the program opens the file, an error occurs.
See “Detecting File Description Changes.”

You may also temporarily change a file-level description when a display file is
opened. More information about these temporary changes is found in Chapter 7,
“Overriding Display Files and Display File Attributes” on page 7-1.

Detecting File Description Changes

When a program that uses externally described files is compiled, the high-level lan-
guage compiler extracts the record-level and field-level descriptions for the files
referred to in the program and makes those descriptions part of the compiled
program. When you run the program, you can verify that the descriptions with
which the program was compiled are the current descriptions.

The system assigns a unique level identifier for each record format when the file it
is associated with is created. The system uses the following information to deter-
mine the level identifier:

e Record format name

¢ Field name

e Total length of the record format

e Number of fields in the record format

¢ Field attributes (for example, length and decimal positions)
¢ Order of the fields in the record format

Display files may also use the number of and order of special fields called indica-
tors to determine the level identifier.

If you change the DDS for a record format and change any of the items in the
preceding list, the level identifier changes.

To check for changes in the level identifiers when you run your program, specify
*YES for the LVLCHK parameter on the CRTDSPF or CHGDSPF command. When
the display file is opened, the level identifiers of the display file and the file
description that is part of the compiled program are compared format-by-format. If
the identifiers differ or if any of the formats specified in the program do not exist in
the file, a message is sent to the program to identify the condition.

If the identifiers differ, either the formats have been changed or your program does
not use the changed formats. If the changed format does affect your program, you
may decide to do the following:

e Compile the program again so that the changes are included
» Determine if the changes affect your program before deciding what action to
take.

2-6 Application Display Programming V4R1

To check the changes to the record format, run one of the following commands:

¢ Display File Field Description (DSPFFD) command to display the record-level
and field-level descriptions

e Start Source Entry Utility (STRSEU) command to display the source file con-
taining the DDS for the file

e Display File Description (DSPFD) or the DSPFFD command to display the
format level identifier defined in the file

e Display Program References (DSPPGMREF) command to display the format
level identifier that was used when the program was created

Defining Display Fields and Functions in a Record Format

A record format in a display file describes both the format of the record as it is used
in the application program and the format of the record when it is displayed (see
Figure 2-2 on page 2-8).

A record format contains field descriptions, which are defined using data description
specifications (DDS). For each field in a record format, you describe the following:

¢ Location of the field on the display

e Length of the field

* Type of data contained in the field (character, zoned decimal, or floating point)
* Field type (output, input, or output/input).

— Information about DDS keywords

This section describes how DDS keywords are used to describe the information
on your display. For more information about specific DDS keywords, see the
DDS Reference.

DDS for Display File: The following source shows the DDS for a sample display
file:

P T DU R U P SR SUPNEY X & 2 TN - SRR Y - PR T S

A R RECORD

A 3 2'Customer Number:'
A CUST 5 0 320

A 3 27'Customer Name:'

A NAME 20 344

A 4 27'Address:'

A ADDR 20 4 44

A CITY 20 5 44

A STATE 2 5 66

A ZIP 5 06 570

Figure 2-1. Sample DDS Source for a Display File

Table 2-1 on page 2-8 shows the column positions and descriptions for the DDS
specifications.

Chapter 2. Defining Your Display in a Display File ~ 2-7

Table 2-1. Column positions for sample DDS

Column Definition Starting Position
17 Type of name 17
19 - 28 Field name 19
30-34 Length 34
36 - 37 Decimal positions 37
39-41 Line location 41
42 - 44 Position location 44
45 - 80 Function 45

Record Format Used by the Program: The program passes the fields in the
record in the same order that you described them in the DDS source.

CUST NAME ADDR CITY STATE ZIP

1 516 25126 45146 65166 67168 721
| | | | | | |
| | | | | | |

RV2W028-1

Record Format on the Display: The fields are displayed according to the display
positions you assigned them in the DDS source.

CUST NAME

| /

|

Customer Number: 41394 Customer Name: Sorenson and Walton
Address: 500 5th Avenue

/ New York NY 55555
ADDR CITY STATE ZIP

RSLH714-0

Figure 2-2. Record Formats in the Program and on the Display

Understanding the Field Attribute Characters

Each field displayed has a beginning attribute character and an ending attribute
character associated with it that define the displayed field. The beginning char-
acter precedes the first character of a field and is displayed as a blank. The ending
attribute character follows the last character of a field and is also displayed as a
blank. For example, if you specify a field for positions 2 through 8, the beginning
attribute character is in position 1 and the ending attribute character is in position 9.
These characters are not included in the field length you specify in DDS. A begin-
ning attribute character can overlap an ending attribute character; that is, they can
occupy the same position on the display. However, nothing else can overlap the
beginning attribute character. Therefore, when you design a display, you must
allow one space for the beginning attribute character of each field. You can use
the blank attribute character to space between fields when they are displayed.

2-8 Application Display Programming V4R1

If field-level descriptions are not used, the entire record is treated as a field with a
beginning attribute character and an ending attribute character.

When a record is displayed so that the last field in the record ends in the last posi-
tion on the line, the ending attribute character for that field is in the first position of
the next line. The beginning attribute character of the first field in the next record
can be superimposed on the ending attribute character. For example, if the ending
attribute character for the last field in record 1 is in position 1 of line 5, the begin-
ning attribute character for record 2 can also be in position 1 of line 5. In this case,
the first record is not considered to be overlapped. However, if the first field in a
record begins in position 1, which means that the beginning attribute character is in
the last position of the preceding line, the previous record is overlapped and is
cleared from the display.

To see the locations of fields in the input records and output records used by the
program, see the printed DDS output produced when you created your display file
using the CRTDSPF command.

Understanding How Record Format Fields Can Be Used
The fields you describe in the record format can be used in the following ways:

Note: To see the location of positions on a DDS form, see Table 2-1 on
page 2-8.

e Input fields are fields that are passed from the display station to the program
when the program reads a record. Input fields can be initialized with a default
value (specified in the record format for the display file). If the user does not
change the field and the field is selected for input, the default value is passed
to the program. Input fields that are not initialized are displayed as blanks into
which the user can enter data. By default, input fields are underlined on the
display.

Note: Trailing blanks on input fields are replaced by null and not blank charac-
ters; therefore, the Insert key can be used to insert characters in all
input fields that end in blanks.

e Output fields are fields that are passed from the program to the display station
when the program writes a record to a display. Output fields contain data pro-
vided by the program, not by the user. To specify an initial value for a named
output field, see “Specifying Default Values for Fields” on page 3-26.

In the case of subfiles , which are special records used to display lists of infor-
mation, output fields are returned to the program as if they were output/input
fields.

e OQutput/input fields are fields that are passed from the program when the
program writes a record to a display and are passed to the program when the
program reads a record from the display and the field is selected for input. By
default, these fields are underlined on the display. Output/input fields are
usually used when the program displays data that can be changed by a user.
To specify an initial value for a named output field, see “Specifying Default
Values for Fields” on page 3-26.

» Hidden fields are fields that are passed from and to the program but are not
sent to the display. Hidden fields are useful in applications involving subfiles.
For example, a subfile record can contain record key information in a hidden
field. The hidden field cannot be seen by the user, but is returned to the

Chapter 2. Defining Your Display in a Display File ~ 2-9

program with the subfile record so that the program can return the record to the
database.

e Constant fields are fields that are passed to the display but are unknown to
the program. These fields are unnamed and have their constant values defined
in the DDS for the file. DATE, TIME, and MSGCON are examples of keywords
that are allowed only on constant fields and whose constant values are deter-
mined during program run time (DATE and TIME) or DDS compile time
(MSGCON).

e Message lines are output fields that are treated as messages.

e Program-to-system fields are output-only fields that are named, numeric or
alphanumeric. They are used to communicate between an application program
and the system. Program-to-system fields do not appear on the display. That
is, your program can place data in these fields and the system will use that
data to control its processing on an output operation, but the user cannot see
the contents of these fields.

A field is input-capable if it is an input field or an output/input field. Each input-
capable field has a special attribute called a modified data tag (MDT) . The MDT
is set on by the display station when any data is typed into the field. It can also be
set on and cleared by the application program.

The maximum number of fields that you can specify for each record format is

32 763. (See “Understanding the Limitations on the Number of Input-Capable
Fields” on page 3-39 for information on the number of input-capable fields that can
be specified.) The maximum combined length for all fields and indicators in a
record format is 32 763.

The following display shows output fields and input fields displayed in response to a
request (in the form of entering a customer number in an input field) from a user.

Customer number: 41394

Order number: 41882

Order date: 11/01/81
Order amount: $580.00
A/R balance: $580.00

Enter next customer number:

J

The prompts, Customer number:, Order number:, Order date:, Order amount:, A/R
balance:, and Enter next customer number: are constants. The data associated
with these fields (41394, 41882, 11/01/81, $580.00, and $580.00) is displayed in

2-10 Application Display Programming V4R1

output fields. The data is passed from the application program to the system, and
the system displays it. The field following the constant Enter next customer
number: is an input field. The user must enter data into this field (the cursor is
positioned at the beginning of the input field). Input fields are underlined by default.
Editing of the field is normally defined within DDS.

You must specify the location for each field except when the field is a hidden field,
a message line, or a program-to-system field, or when the field is in a subfile
message record format. You cannot specify line 1, position 1 for location, except
when you define a record that can start in any line.

The maximum length of a character field or numeric (zoned decimal) field is the
number of positions remaining (relative to the start location of the field) on the
display minus 1. Another restriction of the numeric (zoned decimal) field is that it
can be no longer than 31, even if more than 31 positions are remaining on the
display.

Specifications for the fields you describe can be retrieved from a previously
described field. The previously described field can be either in a database file or
already defined in the DDS source for the display file. When you use field-level
descriptions from a database file, binary and packed decimal fields are changed to
zoned decimal fields. These fields that you use to define other fields are called
reference fields .

You can define two fields to occupy the same positions on the display, and use
option indicators to select which of the overlapping fields is to be displayed. If
more than one overlapping field is selected on the same output operation, only the
first field selected is displayed.

Defining Function Keys

To write an application using a display station, you have to control both the func-
tions of the keys at the keyboard, and the contents of the display.

Display
Contents

Fonetions /5 f— T\\

RV2WO001-2

The Enter key can always be used by the user. So that the user can use the other
function keys, you must specify the following DDS keywords to enable the corre-
sponding function key:

e CAnn, where nn is 1-24
e CFnn, where nn is 1-24
e CLEAR

Chapter 2. Defining Your Display in a Display File ~2-11

e HELP (not required if you only need the Help key to retrieve the message help
on the display)

e HOME

e PRINT

e ROLLDOWN or PAGEUP (not required to be able to roll a subfile when the
subfile page is not equal to the subfile size)

e ROLLUP or PAGEDOWN (not required to be able to roll a subfile when the
subfile page is not equal to the subfile size)

e MOUBTN (Programmable Mouse Button) allows attention identifiers to be asso-
ciated with various pointer device events.

e PSHBTNFLD (Push Button Field) allows an attention ID to be associated with a
push button.

To tell which function key is pressed when you perform the read operation, you
need to define your function keys using one of the following:

» Define a response indicator for the function key. A response indicator is an
indicator that returns information back to an application. There are 99
response indicators available to you.

Note: Response indicators are used for more than function keys. For
example, you can use them to tell when the data in a field on the
display has changed.

e Examine the input/output feedback area. The input/output feedback area is
status information provided by the system about the operations performed on
an opened file. To find out how to get information from the input/output feed-
back area, see the manual for the programming language you are using. See
Appendix C, “Feedback Area Layouts for Display Files” on page C-1 for a
description of the information available from the feedback areas.

Defining Command Attention (CAnn) and Command Function (CFnn)

Keys
The command function (CFnn) keys and command attention (CAnn) keys are num-
bered 1 through 24 and are the same physical set of keys on the keyboard. These
keyboard keys are usually labeled Cmdnn or PFnn or Fnn, where nn is the associ-
ated key number. They can be used to set a response indicator or to perform a
certain function.

The different command keys do the following:

Command function A record containing changed fields is returned to the
program.
Command attention A record is returned to the program but the record does

not contain the data entered by the user and no field vali-
dation is performed.

If a key is specified as a CFnn key in a file, it cannot also be specified as a CAnn
key in the file. Likewise, if it is specified as a CAnn key, it cannot also be a CFnn
key. For example, if function key 01 is specified as a CAnn key (CA01), you
cannot specify CFO1 anywhere in the same file.

If a response indicator is specified for a CFnn key and the key is pressed, the

response indicator is set on and passed to the program with the input data. If a
response indicator is not specified for a CFnn key, only the input data is passed.

2-12 Application Display Programming V4R1

Note: The input/output feedback area contains the 1-character attention identifier
(AID), which also identifies the key pressed. See Appendix C, “Feedback
Area Layouts for Display Files” on page C-1 for a description of the
input/output feedback area.

If a response indicator is specified for a CAnn key and the key is pressed, the
response indicator is set on and passed to the program. Fields sent to the display
and hidden fields are returned to the program. If a CFnn key or the Enter key was
previously pressed, the input-only field is returned as previously typed data. If data
was never entered into an input-only field, the field is returned as blanks (character
field) or zeros (numeric field). Fields changed by the user since the last time a
CFnn key or Enter key was pressed are not returned.

The use of CAnn keys can cause the input buffer of the program to contain user-
entered data that does not meet the validation specified in the display file. For
example, the user enters data and presses a CFnn key or the Enter key, and the
data is validated as defined in your DDS. Input data is processed one field at a
time with data manipulation taking place before the validity checking. If a validity-
checking error occurs, a message is selected and all the other input data is pro-
cessed. After all input data is processed and one or more errors have occurred, a
message is sent to the user. Then, if the user presses a valid CAnn key, no
changed data is sent from the display. The data is moved from the input buffer
save area to the input buffer. The input buffer now contains the data that is in
error. If your program is not going to process this data when the CAnn key is
pressed, you do not have a problem. If this is a problem, avoid using CAnn keys;
only use CFnn keys so that data that is not valid can be detected.

If you want to use CAnn keys, you should not specify the following validity-checking
DDS keywords:

CHECK(M10)
CHECK(M11)
CHECK(VN)
CHECK(VNE)
CHKMSGID
COMP/CMP
RANGE
VALUES

The Print, Help, Clear, and Home keys operate in the same manner as the CAnn
keys. The Roll Up, Roll Down, Page Up, and Page Down keys operate in the
same manner as CFnn keys.

Specifying Alternative Keys
You can also define command attention or command function keys to perform the
functions of the Help, Page Up (or Roll Down) and Page Down (or Roll Up) keys.
The function key specified on the keyword identifies the alternative key to be used.

The DDS keywords are:

e ALTHELP: Indicates that the help function will be started when either the Help
key or the key specified on the ALTHELP keyword is pressed. If the ALTHELP
keyword is specified but an alternative key is not specified, the default is CAO1.

Chapter 2. Defining Your Display in a Display File ~ 2-13

Note that the Help key is an attention key, not a function key, because it does
not return input.

e ALTPAGEUP and ALTPAGEDWN : Indicate that the paging functions will be
started when the page keys or the keys specified on the keywords are pressed.
If alternative keys are not specified on the ALTPAGEUP or ALTPAGEDWN
keywords, the defaults are CFO7 and CF08, respectively. Note that the page
keys are function keys, because they return input.

The alternative keys specified on the ALTHELP, ALTPAGEUP, and ALTPAGEDWN
keywords provide the same function as the actual keys. For example, if pressing
the Help key starts the help function, then pressing the alternative key defined by
the ALTHELP keyword will also start the help function. Likewise, if pressing the
Page Up or Page Down key returns control to the application program, then
pressing the alternative key will also return control to the application program. Both
of these examples appear to the program as if the actual key was pressed.

The user profile option for paging (USROPT(*ROLLKEY)) applies to the PAGEUP,
PAGEDOWN, ALTPAGEUP, ALTPAGEDWN, ROLLUP, and ROLLDOWN
keywords.

The alternative help key function does not work when the keyboard is locked. For
example, if you type information into a field that is not input-capable, a controller-
detected error occurs and flashing numbers appear. The Help key can be used to
get more information about the error. The function key specified as the alternative
help key will not be valid until the Reset key is pressed, and then the help informa-
tion will no longer be available.

Passing Information via Indicators

Indicators are one-character fields that exist either in the input records and output
records used by the program or in a special indicator area. An indicator is on if it
has the value 1 and off if it has the value 0. You can use indicators to pass infor-
mation from a program to the system or from the system to a program. You
specify how indicators are to be used through the DDS for the display file.

There are two types of indicators for display files:

Option indicators: Pass information from an application program to the
system. These typically are used to control the pro-
cessing of a particular record format by the system.

Response indicators: Pass information from the system to an application
program when an input request completes. Response
indicators can inform the program which function keys
were pressed by the user or whether data was changed
by the user.

Both option and response indicators can be specified at the file level, record format

level, and field level. Indicators specified at the file level apply to all record formats
within the file.

2-14 Application Display Programming V4R1

Removing Option and Response Indicators from the Record

Area

You can use the Indicator Area (INDARA) keyword to separate the option and
response indicators from the input and output records used by the program. If you
use the INDARA keyword, the indicators are placed in a separate 99-character
area; see your appropriate high-level language manual for information on how this
99-character area is defined.

If you use the same indicator number as both a response indicator and as an
option indicator, you can use the status of the response indicator to set the option
indicator for a subsequent output operation. For example, indicator 15 is used as
both a response indicator and an option indicator. If the response indicator is on
when an input operation is performed on the record format, option indicator 15 is
set on and will be on when an output operation is performed for that record format.

The maximum number of record formats that you can define for a display file is
1024. If you do not use the INDARA keyword, the maximum number of fields that
you can specify depends on the number of indicators (1 character each) you use
and the length of each field you describe. The total combined length of all fields
and indicators in a record format cannot exceed 32 763 characters. If you use the
INDARA keyword to specify a separate indicator area, the maximum number of
fields that you can specify depends only on the length of each field. The total
number of all fields cannot exceed 32 763.

Enabling Different Response Indicators Simultaneously

It is possible to have different response indicators for the ROLLUP/ROLLDOWN
keywords on record formats displayed at the same time. For example, record A
has specified a roll-up indicator of 52 and record B has specified a roll-up indicator
of 25 and both records are displayed. When a read operation is requested to
record A in your program, the operator presses the Roll Up key which returns
control to your program. Record A is passed to your program with response indi-
cator 52 set on; response indicator 25 is not set. Your program can then do a read
operation to record B. When record B is passed to your program, response indi-
cator 25 is set on; response indicator 52 is not set. Only the response indicator
specified on the record format for which the read operation is done is set. The
record format in which the cursor was located when the Roll Up key was pressed
does not affect the setting of the response indicator associated with the ROLL
keyword.

Setting an Indicator Off

An indicator specified on the SETOF or SETOFF keyword becomes a response
indicator that is set off and returned to the program. The indicator is not set off
until an input operation is performed. If the same indicator is specified elsewhere in
the record format as a response indicator, the indicator is returned to the program
based on the status of the associated keyword condition. For example, if response
indicator 01 is specified both for the SETOF/SETOFF keyword and the CF5 key,
indicator 01 is returned in the on condition when the CF5 key is pressed. If the
indicator is specified elsewhere as a response indicator, there is no need to use the
SETOF/SETOFF keyword.

Chapter 2. Defining Your Display in a Display File ~ 2-15

Inserting Constant Field Text from a Message Description

You can specify that the text for constant fields is contained in a message
description using the Message Constant (MSGCON) keyword.

If the message description used for the constant text is shorter than the field on the
display, the remaining portion of the field is padded with blanks. If the message
description is longer than the field, the message description is truncated.

If the messages description does not exist when the DDS is compiled, the file is not
created. If you change the message description, you will have to create the file
again if you want the display file to contain the updated messages.

Allowing for Right-to-Left Cursor Movement

The cursor can be made to move from right to left on the display between fields
and in input fields. Two parameters for the DDS CHECK keyword can be used to
do this:

e CHECK (RL): Moves the cursor from right to left in specified nonnumeric input
fields or all nonnumeric input fields on the display.

e CHECK (RLTB): Moves the cursor from right to left between fields.

When using these parameters, remember the following:

* Modulus check digit verification is supported, but the check digit is still the byte
to the extreme right of the field.

* A field for which right-to-left cursor movement is specified can occupy more
than one line on the display. However, the cursor still moves from the top of
the display to the bottom.

e You cannot use right-to-left cursor movement with user-defined data streams.

Note: If no cursor positioning is specified in the display file or by the program, the
cursor is placed in the input-capable field to the extreme left of the top line.

Defining Cursor Movement to Input-Capable Positions Only

Use the cursor input only (CSRINPONLY) keyword to restrict cursor movement to
input-capable positions only. This keyword affects only the cursor arrow keys. This
function moves the cursor to the first input-capable position on a display in the
direction of the arrow key. The user needs to press the cursor key only once in the
appropriate direction to have the cursor move to the input-capable position.

Specify this keyword at the file or record level.

The input-capable positions to which the cursor can move include the following:
e Input field (except protected fields)

¢ Selection-field choice (except those on which you cannot place the cursor
because of its choice control (CHCCTL) value)

e Selection-list choice (except those on which you cannot place the cursor
because of its choice control (CHCCTL) value)

e Message line (if a message is displayed and the keyboard is not locked).

* Message subfile defined with the subfile message record (SFLMSGRCD)
keyword.

2-16 Application Display Programming V4R1

Several DDS keywords (such as DSPATR(PC) and CSRLOC) can be used to posi-
tion the cursor at any display position. This is true even if the CSRINPONLY
keyword is specified. The first subsequent cursor movement keystroke will move
the cursor to a cursorable location. If no cursorable position exists on the display,
the cursor will be positioned to row 1, column 1. Once the cursor has been moved
from this position, pressing the home key repositions the cursor back to its initial
position.

If a window is displayed with no input fields, the cursor is positioned at row 1,
column 1 of the window. If a cursor movement key is pressed, the cursor moves to
row 1, column 1 of the full display (outside the window). If the window is defined
with *RSTCSR, command keys are not valid outside the window. Pressing the
home key returns the cursor to the window. Pressing any command key or the
Enter key sounds an alarm and returns the cursor to the window. To avoid this
problem, consider specifying an input inhibited input field in the upper corner of the
window or specifying *NORSTCSR on the window keyword.

Notes:

1. If a message subfile is defined with a SFLPAG keyword greater than 1 and the
CSRINPONLY keyword is in effect, any fields that have been turned to reverse
image because of an error, will be turned to unreverse image if the message
subfile is rolled to a partial page of messages.

2. Fields that have been turned to reverse image because of an error are turned
to unreverse image when the following conditions are true:

* A message subfile is defined with a SFLPAG keyword greater than 1
e The CSRINPONLY keyword is in effect
e The message subfile is rolled to a partial page of messages

3. When a record is written with the PUTOVR, ERRMSG, or ERRMSGID
keywords in effect, the state of the CSRINPONLY keyword is not changed. If
the CSRINPONLY keyword is in effect prior to the write operation with the
PUTOVR, ERRMSG, or ERRMSGID keywords, the CSRINPONLY remains in
effect. This is true regardless of the optioning of the CSRINPONLY keyword
on the record assigned the PUTOVR, ERRMSG, or ERRMSGID keywords.
This is also true regardless of the optioning of the PUTOVR, ERRMSG, or
ERRMSGID keywords on the record assigned the CSRINPONLY keyword.

4. Writing a record with the PROTECT keyword does not affect the input fields
associated with messages when the CSRINPONLY keyword is in effect. Any
messages displayed are not protected. Therefore, the cursor may still be
moved the messages.

5. The CSRINPONLY keyword is valid only for display stations attached to a con-
troller that supports an enhanced interface for nonprogrammable work stations.
It is ignored on display stations attached to other controllers.

Defining Cursor Progression for Entry Fields

The FLDCSRPRG keyword lets the user specify the next field the cursor should
move to when the cursor leaves a field.

The DDS for the field looks like this:

Chapter 2. Defining Your Display in a Display File ~2-17

P S DU OO SO SO FUIE TRy S TN - SO S ST SR S

A F1 10A B 3 A4FLDCSRPRG(F3)
A F2 16A B 13 A4FLDCSRPRG(F1)
A F3 10A B 16 A4FLDCSRPRG(F2)

Figure 2-3. DDS for Field-Level Cursor Progression

The parameter for the FLDCSRPRG keyword is the name of the field the cursor will
go to when forward field-exit processing is performed. When the cursor leaves F1
because of a field exit key, it goes to F3. If the field named with this keyword is
optioned off, cursor progression for this field is ignored.

Note: When the cursor leaves a field using backward field-exit processing, the
cursor moves to the first field on the display that has the exited-field name
specified on the FLDCSRPRG keyword. For the DDS in Figure 2-3, if
backward field-exit processing is used to leave field 2, the cursor moves to
field 3.

SFLCSRPRG is the keyword used for subfile cursor progression. The DDS for
subfiles looks like this:

[P U FUTUE SN S SN SO U SO SN U SO : SR U SO

A R SFLO1 SFL

A S1 10A B 5 5SFLCSRPRG

A S2 1A B 525

A R CTLO1 SFLCTL(SFLO1)

A SFLPAG(5) SFLSIZ(20) SFLDSP

Figure 2-4. DDS for Subfile-Level Cursor Progression

The SFLCSRPRG keyword causes the cursor to move from a field in a subfile
record to the same field in the next displayed subfile record. Without
SFLCSRPRG, the cursor moves from a field in a record to the next field in the
same record. When the cursor leaves field S1 of the first record of the subfile, it
goes to S1 of the second record of the subfile. Without the SFLCSRPRG keyword,
the cursor goes to field S2 of the first record. When the cursor leaves S2, it goes
to S1 of the next record because S2 does not have the SFLCSRPRG keyword.
This keyword is not allowed with subfiles that use field selection. It cannot be used
with horizontal subfiles. When the cursor is on S1 of the last SFL record displayed,
the cursor moves to the next input field below the last SFL record. If there are no
remaining SFL fields, the cursor moves to the top of the display.

Note: The FLDCSRPRG keyword and the SFLCSRPRG keyword are ignored on
displays that are attached to a controller that does not support an enhanced
interface for nonprogrammable work stations.

Defining Attributes for Entry Fields

An entry field’s leading field attribute is changed to a specified attribute when the
cursor enters the field.

The DDS for the field looks like this:

P PO PO U SO SO SUE S U SN SR SO DU I S
A F1 16A B 3 A4ENTFLDATR(*CURSOR (*DSPATR CS))
A F2 10A B 13 4ENTFLDATR(*NOCURSOR (*COLOR RED))

2-18 Application Display Programming V4R1

ENTFLDATR tells the system to change the attribute of the field when the cursor
enters the field. *CURSOR and *NOCURSOR are used to specify whether the
cursor is visible when it enters the field. If the *NOCURSOR option is specified, the
cursor row and column values in the input-output feedback area indicate the first
position in the field. You can also specify a color or an attribute.

Note: The ENTFLDATR keyword is ignored on displays that are attached to a
controller that does not support an enhanced interface for nonprogrammable
work stations.

Protecting Entry Fields Using Edit Masks

The EDTMSK keyword is a new DDS keyword for fields with EDTCDE or EDTWRD
keywords. When the field is displayed, certain areas of the field will be protected.
You define which areas to protect.

The DDS for the field looks like this:

(P TS FUOT ST SO SUUS: ST SN SR SN U SO SR Y S
A F1 6 OB 3 4EDTWRD(' / / ')
A EDTMSK(' & & ')
A F2 6 OB 4 A4EDTCDE(Y)
A EDTMSK(' & & ')

The ampersand (&) represents a protected part of the field. A blank represents an
unprotected part of the field. The length of the edit mask must equal the display
length of the field. The number of unprotected positions must at least equal the
program length of the field. You must only protect nonnumeric data because pro-
tected data is not returned if the field is changed. Wherever there is an &, that part
is protected no matter what data is in the field.

The first field has the slash (/) characters protected in a date. For the second field,
the / in the date is always protected.

Keyboard functions on displays attached to a controller that supports an enhanced
interface for nonprogrammable work stations are the same for edit-mask fields as
they are for continued-entry fields.

Note: The EDTMSK keyword is ignored on display stations attached to a con-
troller that does not support an enhanced interface for nonprogrammable
work stations.

Specifying Right-to-Left Display Processing
You can specify that records in a display file be written in the right-to-left direction
by using the Display Right-to-Left (DSPRL) keyword. This keyword is allowed only
at the file level.

Figure 2-5 shows an example of the DDS coding.

P T DO U S S L DU SRR NN SO ST - PO Y SO

A DSPRL
A R RECORD
A FLD1 20A 5 5')Customer Name(:'

Figure 2-5. Sample DDS for Right-to-Left Display Processing

Chapter 2. Defining Your Display in a Display File ~2-19

The DDS in Figure 2-5 produces this output on the display:

: (emaN remotsuC)

Notice that the left and right parentheses in the DDS are reversed; this is so they
appear correctly on the display. All symmetrical characters have to be specified in
this way.

If your application program uses one display file with the DSPRL keyword and
another display file with the WINDOW keyword, make sure that the display file with
the WINDOW keyword also specifies the DSPRL keyword. Otherwise, the display
assumes the orientation of the display file that has the WINDOW keyword.

If you specify the DSPRL keyword, the cursor moves from right to left when you
enter data. Therefore, it is not necessary to use the CHECK(RL) keyword. If you
specify CHECK(RL) and DSPRL, the CHECK(RL) keyword is ignored.

The DSPRL keyword causes all records in a display file to be written in the right-to-
left direction. You cannot specify that individual records be written in the left-to-
right direction.

If you specify the ERRMSG or the ERRMSGID keywords with the DSPRL keyword,
the messages associated with these keywords display in the left-to-right direction.

Specifying Word Wrap for Fields

Word wrap is the function that automatically moves the last word in a field down to
the next line in the field if the word runs beyond the right margin of the field. To
specify the word wrap function for a named field, use the word wrap (WRDWRAP)
keyword. This keyword can be used at the file, record, or field level. It can only be
used with input-only (I) or output/input (B) fields.

Notes:

1. This function is available only for display stations attached to a controller that
supports an enhanced interface for nonprogrammable work stations.

2. The Reverse key and the Close key cannot be used in a word wrap field.
3. When word wrap is used and the keyboard is in insert mode, null characters
are not shifted to the right; they are replaced.
Word wrap is not allowed for these fields:

e DBCS-only fields

e Pure fields

e Either fields (with double byte)
¢ Open fields with SBCS data

Word wrap is not allowed with the following field types or features:

e Signed numeric
e Numeric only
¢ Digits only

2-20 Application Display Programming V4R1

e Magnetic Stripe Reader (DSPATR(OID))

e Light Pen (DSPATR(SP))

¢ Right-justify

e Mandatory fill

e Self-check (M10F/M11F)

e Dup allowed

¢ Right-to-left cursor movement (CHECK(RL))

¢ Right-to-left, top-to-bottom cursor movement (CHECK(RLTB))

If all the data cannot fit within a word wrap field without splitting words, the word
wrap function for that field is ignored. The data is written as if word wrap had not
been specified. The subsequent operation of the field is also as if word wrap were
not specified.

Word wrap may be specified on fields that are contained on a single line. In this
case, when the keyboard is in insert mode, null characters are not shifted to the
right; they are replaced.

Specifying Word Wrap for Fields—Tips
Some things to consider when using the word wrap function:
e The total length of the input field should allow for character positions at the

ends of lines or segments to be used for padding when a wrap occurs. If a
field is too short, errors will occur or word wrap will be turned off.

e The length of each line or segment should be as large, or larger than the
longest word that may be entered in the field. If a line or segment is too short,
errors will occur or the data may be shifted down to the last line or segment.

e Extra blanks that are inserted to make a wrap occur are removed when data is
returned to your program.

Emphasizing Fields
You can emphasize a field of a record on the display by specifying the following in
the DDS for the file:

Note: Any function not supported for your display station is ignored.

Table 2-2. DDS for Emphasizing Fields

Type of Emphasizing DDS keyword

Underlining a field (the default for input fields) DSPATR(UL)
Placing vertical separators between the characters in a field DSPATR(CS)
Highlighting a field by displaying it with greater intensity than is DSPATR(HI)

normally used on the display

Reversing the image of a field from light on dark to dark on light or DSPATR(RI)
from dark on light to light on dark

Making the data in the field invisible to the display station user DSPATR(ND)
Placing the cursor at a specific field DSPATR(PC)
Blinking a field when it is displayed DSPATR(BL)

Another way of specifying attributes for a field is by using a program-to-system field
parameter on the DSPATR keyword. Your application program uses the program-

Chapter 2. Defining Your Display in a Display File ~ 2-21

Adding Color

to-system field to set the display attributes or protection attribute for the field to
which the DSPATR keyword applies.

Figure 2-6 shows an example of the DDS coding for program-to-system fields:

A R RECORD

A FLD1 5A 2 2DSPATR(&PFLD1)
A FLD2 5A 2 9DSPATR(&PFLD2)
A PFLD1 1A P

A PFLD2 1A P

Figure 2-6. Sample DDS for Program-to-System Fields

One program-to-system field may be used for multiple fields within a record. Only
one program-to-system field can be used per field. You cannot specify the fol-
lowing attributes using the program-to-system field:

MDT Set changed data tag when displayed
OID Operator identification

PC Position cursor

SP Select by light pen

For the valid hexadecimal values that your program can pass to the program-to-
system field, see the DDS Reference.

You can design your displays for use on display stations that show color. The DDS
keyword COLOR allows you to specify the following colors for fields: green, white,

red, turquoise, yellow, pink, and blue. This keyword is ignored if it is selected for a
field displayed on a display station that does not support color.

If the COLOR keyword is not specified in the DDS for the display file but the
display station is specified in the display station description as a color display
station, displays that you have designed for display stations that do not support
color can also be used for the color display station. The keywords DSPATR(UL)
and DSPATR(RI), if specified on separate fields, function the same as they do for
the 5250 display station. However, the keywords DSPATR(CS), DSPATR(HI), and
DSPATR(BL) produce the following colors on a color display station (the specified
display attributes CS, HI, and BL are suppressed):

Color Produced on the Display Display Display
Color Display Station Attribute Attribute Attribute
when No COLOR Keyword Selected: Selected: Selected:
is Specified DSPATR(CS) DSPATR(HI) DSPATR(BL)
Green (normal)

Turquoise X

White X

Red, no blinking X

Red, blinking X X

2-22 Application Display Programming V4R1

Color Produced on the Display Display Display

Color Display Station Attribute Attribute Attribute
when No COLOR Keyword Selected: Selected: Selected:
is Specified DSPATR(CS) DSPATR(HI) DSPATR(BL)
Yellow X X

Pink X X

Blue X X X

Editing Output Fields

The system provides editing support that makes fields more readable when they
are displayed. With the system editing support, you can do the following:

e Suppress leading zeros

e Punctuate a field with commas and periods to show decimal column and to
group digits by threes

e Show negative values with a minus sign to the left or right

* Show negative values with the letters CR (credit) to the right

e Show zero values as zeros or blanks

e Show asterisks to the left of significant digits to provide asterisk protection

e Show a currency symbol corresponding to the system value QCURSYM

The system provides this editing support with edit codes and edit words. Edit
codes are a defined set of editing patterns. In addition to those provided by the
system, you may also define your own edit codes. You identify edit codes by
name, and the system edits a field according to the pattern defined by the named
edit code. Edit words are edit patterns that you define to produce the desired
results. Edit codes cover most commonly used editing requirements. You need to
use the edit word support only for those editing needs not covered by edit codes.

Edit codes are used as follows:

 |f your application is using program-described data, your high-level language
may allow you to identify edit codes or create your own edit words.

 |f your application is using externally described data, the edit code (EDTCDE)
DDS keyword allows you to identify an edit code, and the edit word (EDTWRD)
DDS keyword allows you to define your own editing pattern.

The system provides several edit codes. The editing patterns defined by these
codes are contained in Appendix F, “Edit Codes.”

Defining Your Own Edit Codes

You can define five edit codes to provide more editing function than is available
with the OS/400* edit codes, and to handle common editing functions that would
otherwise require the use of an edit word. These are called user-defined edit
codes. For example, you may need to edit numbers that include hyphens (like
some telephone numbers), or more than one decimal point. You can use user-
defined edit codes for these functions. These edit codes are named QEDIT5,
QEDIT6, QEDIT7, QEDIT8, and QEDIT9 and can be referred to in DDS or a high-
level language program by number (5, 6, 7, 8, or 9).

These edit codes are created by using the Create Edit Description (CRTEDTD)
command. Edit descriptions are always placed in library QSYS. They cannot be

Chapter 2. Defining Your Display in a Display File ~2-23

moved or renamed; only one occurrence of each is allowed. Edit descriptions have
an object type of *EDTD.

Even though they are user-defined edit codes, your system comes with a version of
each one of them. You can use these edit descriptions as they are, or you can
delete them and create your own. The editing performed by the IBM-supplied ver-
sions of these edit descriptions as well as a definition of the contents of and the
rules for using any user-defined edit code are described in Appendix F, “Edit
Codes.”

Before using any of the user-defined edit codes, you should check its contents on

your system, since it may have been changed from the IBM-supplied version. The
Display Edit Description (DSPEDTD) command will display the contents of a user-
defined edit code.

Changing a user-defined edit code description does not affect any application or
display file that has already been created using that edit description. If you want
your application to use the changed edit description, you must either create the
high-level language program again (if the edit code is referred to in the program) or
create the file again (if the application is using an externally described file that con-
tains EDTCDE keywords).

Specifying Valid Screen Sizes

In some cases, you can use the following screen size condition names to select
keywords and display locations based on screen size:

e *DS3, 24 by 80 (5251 Models 11 and 12, 5291, 5292, 3179 Model 2, 3180-2,
3196, and 3197)

e *DS4, 27 by 132 (3180-2; 3197 Models D1, D2, W1, W2; 3477 Models FA, FC,
FD, FE, FG, FW; 3487 Models HA, HG, HW, HC)

Note: The capability to display in 27 by 132 mode is allowed on 3180-2, 3197,
3477 Models FA, FC, FD, FE, FG, FW, and 3487 Models HE, HD, HW,
HC display stations attached to a 6040 or 6041 or 2638 local display
station controller, or remotely attached to a 5294 or 5394 controller.
The display size for 27 by 132 mode is ignored for the DSPSIZ keyword
unless these controllers are specified.

These condition hames can be used to place fields in different locations on different
sizes of screens. However, the fields must still be specified in the same order on
each size of screen. For example, the following DDS formats a display for both a
24 by 80 screen and a 27 by 132 screen:

2-24 Application Display Programming V4R1

P S DU OO SO SO FUIE TRy S TN - SO S ST SR S

A DSPSIZ(*DS3 *DS4)
A .

A

A

A R RECORD

A NAME 20 5 2

A +DS4 3112

A ADDR 30 6 2

A *DS4 4102

Figure 2-7. Sample DDS for Two Display Sizes

Normally, the display files are set up for a 24 by 80 screen (default size). The
DSPSIZ keyword specifies which display sizes are valid for a file and indicates
which sizes are the primary and secondary screen sizes. (The primary screen size
is the first or only DSPSIZ value.) On the DSPSIZ keyword, the screen size can be
specified as *DS3, *DS4, 24 80, or 27 132. For example, DSPSIZ (24 80) specifies
a screen size of 24 by 80. When primary and secondary display sizes are speci-
fied, the display file is validated for both sizes.

The screen size designated as the primary screen size should be the one with
which the display file will most often be used. A performance benefit will be real-
ized by coding the DSPSIZ keyword in this manner. Additional processing is per-
formed when the actual screen size is the secondary screen size.

The screen size condition names let you improve the use of a single display file for
any size screen. For example, when you are using subfiles, you can specify 22
records per page for a 24 by 80 screen or 25 records per page for a 27 by 132
screen:

P U PUTUE SN S SN NI U SO SN U SISO U SO
DSPSIZ(*DS4 *DS3)

SFLPAG(25)
*DS3 SFLPAG(22)

> > > > > > > >

Figure 2-8. Sample DDS for Subfiles for Two Display Sizes

You can also define your own screen size condition names.

Enabling Your Display to Be Printed

If the Print key is enabled for your display, the user can print the current display by
pressing the Print key. The parameter (or lack of parameter) you specify for the
DDS PRINT keyword controls how your display is printed:

Chapter 2. Defining Your Display in a Display File ~ 2-25

Table 2-3. PRINT Keyword Results Using Print Key

Parameter Action

No parameter The output goes to the display station printer associated with
this display (the PRINTER parameter on the Create Device
Description for Display (CRTDEVDSP) or Change Device
Description for Display (CHGDEVDSP)). If the operation to the
display station printer fails or if there is no display station
printer specified, the output goes to the printer file specified on
the PRTFILE parameter on the display station description.
The default for the PRTFILE parameter is QSYSPRT.

File name and, optionally, The print operation is directed to the specified printer file. If

library name the operation fails, it is directed to the default printer file, which
is specified on the PRTFILE parameter on the CRTDEVDSP or
CHGDEVDSP command.

Response indicator Control returns to the program with the response indicator set
on.
*PGM Control returns to the program which must check the attention

identifier in the input/output feedback area to determine which
key was pressed.

The PRINT keyword can be used at the file level and also at the record level.
When PRINT is specified at the record level, several records with different forms of
the PRINT keyword (or with no PRINT keyword) may be displayed on the screen at
the same time. The last record format written to the screen controls the use of the
Print key for the entire screen.

If you specify the PRINT keyword in any form, the user can print a display con-
taining the message help.

The PRTKEYFMT parameter allows you to control what information is included
when you print your display:

e Qutput only

e Output with header information (rows and columns)

e Output with border information (title lines, which include the system name, date
and time, and formatted user and display device name)

¢ OQutput with both border and header information

The PRTKEYFMT parameter on the Change Job (CHGJOB) and Retrieve Job Attri-
butes (RTVJOBA) commands allows you to select how you want your Print key
output to look.

When you change the device description of a display station printer (by using the
CHGDEVPRT command or the DLTDEVD and CRTDEVPRT commands), you
should also change the device description of the associated display station, using
the PRINTER parameter on the CHGDEVDSP command. You should do this even
if the name of the printer, whose device description you changed, remains the
same.

2-26 Application Display Programming V4R1

Defining Windows

There are applications that could make use of a window on the display to assist the
user in entering data.

A window is information that overlays part of the current display and allows the
user to read the information inside the window. The remainder of the display is not
overlaid by the window and can still be read by the user.

You can create windows by using standard DDS or by using user-defined data
streams. To use standard DDS, see Chapter 5, “Defining Windows with Display
Files” on page 5-1. Examples are also available in the QUSRTOOL library.

Using Program-Described Data

You can create a display file without using data description specifications. Such a
display file then uses program-described data, and has no record or field level
descriptions of its own.

When you are using program-described data with a display file to communicate with
one or more display stations, only simple display formatting can be performed, and
that formatting must be specified in the high-level language program that is using
the file. All field descriptions are defined and all processing is performed in the
program that uses the file. More than one display file can be opened to the same
display station at the same time within the same program, but only two can be used
on the same display station at the same time: one for input and one for output.

When a display file that uses program-described data is opened, the system treats
the area on the display as a single field. That is, the field length is the same as the
record length. The record length is defined by the program that is using the file,
and stays the same from the time the file is opened until it is closed. Indicators
cannot be passed when records are passed from the program to a display station,
or from the display station to a program. Also, command keys cannot be used for
program-described display files.

The space on the display is assigned to program-described display files as shown
in the following example.

Records for the first file used by the program appear on the first (top) part of the
display. Records for the second file appear on the display immediately following
the area used by records in the first file.

Record from file A } First File Used By Program

Record from file B } Second File Used By Program

Unused Area

RSLH705-0

Chapter 2. Defining Your Display in a Display File ~ 2-27

The record from file B starts at the beginning of the first full line after the last line of
the record from file A. If the record from file A does not completely fill its last line,
the space is used by neither record and must be accounted for when calculating
the maximum record lengths. In program-described display files, the maximum
record lengths are:

e For an input file, the screen size minus 2

e For an output file, the screen size minus 2

e For an output/input file, the screen size minus 2

e For two files (one output and one input), the screen size minus 3

When a program-described display file is opened, it can be defined as:

e Input only
e Qutput only
e Input and output

Defining Input-Only Files
When an input-only file is opened, the record is initialized to a single blank field on

the screen. The cursor is positioned at the first position of the field and the user
can type in any type of data.

When the program reads the record, the input is passed to the program. The
record is not erased from the screen. The cursor is again positioned at the first
position of the record (field) and the keyboard is unlocked when the program reads
the next record. The user can then type in the next record over the previous
record.

Defining Output-Only Files
When an output-only file is opened, the record is initialized to a single blank field on
the screen. When the program writes a record to the file, the record is displayed
and the keyboard is locked. The user must press the Enter key before another
record can be written to the file. Subsequent records written to the file erase the

currently displayed record because only one record can be displayed for the output
file.

Defining Input and Output Files

When an input and output file is opened, the record is initialized to a single blank
field on the screen. The cursor is positioned at the first position of the file and the
user can type in any kind of data.

The program that is using the file can read records or write records in any
sequence. Whenever a record is written to the file, the modified data tag is set off
(to indicate that data was not entered into the field) and the keyboard is unlocked.
If the user then enters data into the field, the modified data tag is set on. If the
next operation is a write operation instead of a read operation, the data typed in by
the user is written over and the modified data tag is set off again.

2-28 Application Display Programming V4R1

Chapter 3. Working with Display Files in an Application

After you define your display file, you can use it in an application. This chapter
discusses the operations performed when a display file is used in an application.

Understanding How the System Allocates Resources

When a high-level language program uses a display file, several operations require
that the system allocate the resources needed to perform that operation. Allocating
file resources causes the system to obtain a lock on a display file when it is
opened. Multiple users then cannot use the same display file in conflicting ways.
For example, the system will not allow you to delete a file while any application
program is using it.

File resources are allocated in two ways:

e The system performs the allocation whenever an operation is requested that
requires it. The following operations for display files require allocation:

— Open:. The file resources include the file description and the display
station. More information about the open operation is found in “Opening
Display Files” on page 3-2.

— Acquire: The display station is allocated as a resource. More information
about the acquire operation is found in “Acquiring a Display Station for I/O
Operations” on page 3-2.

— Starting a program on a remote system. The file resources include session
resources needed for APPC/APPN*.

» |f you prefer to ensure that all the resources that are needed by a program are
available before the program is run, you may use the Allocate Object (ALCOBJ)
CL command in the job prior to running the program.

When allocating resources, the system waits for a predefined time if the resources
are not immediately available. If the resources do not become available within the
time limit, the following happens:

e If you are using the ALCOBJ command, the command fails.
¢ |f your program is performing a file operation, that operation fails and an error
message is sent to the program message queue.

You may attempt to use the error handling functions of your high-level language to
try the operation again. For example, if an open operation fails because another
job is using the display station associated with the file, you could retry the open
operation later when the display station is no longer being used.

The length of time that the system waits when allocating resources is specified on
the ALCOBJ command and on the WAITFILE parameter of the CRTDSPF
command. If the ALCOBJ command is used prior to running a program, then the
value of the WAITFILE parameter is ignored because resources are available. If
your application has error handling procedures for display station errors occurring
on display files, you should specify a value other than *IMMED to allow the system
to recover from the display station error. The system recovery procedures for the
display station must be completed before your program can recover from errors due
to the allocation of resources.

© Copyright IBM Corp. 1997 3-1

Opening Display Files

The open operation connects a display file to a program for processing.

When a display file is opened, usually one or more display stations are implicitly
acquired, or automatically prepared for 1/0O operations, for the display file:

Table 3-1. Display Stations Implicitly Acquired When Display Files Are Opened

How the Display File is
Defined When Opened

Other Specifications Display Station Implicitly Acquired

Defined with a single
display station

Defined with multiple
display stations

Defined with no display
stations

*REQUESTER specified Display station at which the user requested the program

*REQUESTER not speci- Display station specified on the DEV parameter of the

fied CRTDSPF, CHGDSPF, or OVRDSPF command
Opened by a CL All display stations specified on the DEV parameter of
program the CRTDSPF, CHGDSPF, or OVRDSPF command
Opened by any high- The first display station specified on the DEV parameter
level language other than of the CRTDSPF, CHGDSPF, or OVRDSPF command
CL

- None

The value specified on the WAITFILE parameter for the CRTDSPF, CHGDSPF, or
OVRDSPF command is used to determine how long the open operation should wait
for file resources to become available so they can be allocated. If a file resource,
such as a display station, does not become available and the wait time specified
ends, the open operation fails.

Implicitly acquiring a display station when the file is opened results in the following:

e The screen is cleared completely and the cursor is placed in the upper-left
corner of the display.
* The keyboard is unlocked.

Any display station to be implicitly acquired at the open operation must be varied
on. Switched-line display stations can also be acquired if they are in a vary-on-
pending state. Also, a display station other than the *FREQUESTER display station
cannot be acquired if it is signed on.

Acquiring a Display Station for I/O Operations

The system implicitly acquires, or automatically assigns, a display station to a
display file when the display file is opened. However, you may also acquire addi-
tional display stations for your program using the acquire operation . The acquire
operation is used in multiple display file applications or if you are performing error
recovery in your application.

A successful acquire operation results in the following:

e The screen is cleared completely and the cursor is placed in the upper-left
corner of the display.
e The keyboard is unlocked.

3-2 Application Display Programming V4R1

The value specified for the WAITFILE parameter on the CRTDSPF, CHGDSPF, or
OVRDSPF command is used to determine how long the acquire operation should
wait for a display station to become available so it can be allocated. If a display
station does not become available and the wait time ends, no display is acquired.

A display station cannot be allocated unless it is varied on. Switched-line display
stations can be allocated if they are in a vary-on-pending state. Also, a display
station other than the *REQUESTER display station cannot be allocated if it is
signed on.

The system allows only one *REQUESTER display station to be acquired to any
display file, including a multiple-device display file.

If an acquire operation is not successful, the release operation is the only valid
operation to the display station.

Obtaining Information about Display Files and Display Stations

You can obtain information about the open and I/O operations performed on an
open display file, and attribute information about a display station you are using.

Obtaining Information about Open and 1/0O Operations

After a display file is successfully opened, the system keeps track of the status of
the file in feedback areas.

The open feedback area contains information about the display file after it has
been successfully opened, including:

e Name and library of the display file

¢ Number of rows and columns on the display

e Name and library of the file after overrides have been applied
e Information about the display station defined for the file

The device definition list part of the open feedback area contains information
about each device attached to the display file.

The 1/0O feedback area contains information about the I/O operations performed on
the display file after it has been successfully opened. The I/O feedback area has
two sections:

e The common feedback area contains information about I/O operations that
were performed on the file. This includes the number of operations and the
last operation.

* The file-dependent feedback area contains file-specific information for display
files, such as the major/minor return code and the amount of data received
from a display station.

As operations are performed on the display file, the feedback area is updated to
reflect the latest status.

There is one feedback area for each open file. An exception is for shared files,
which share feedback areas as well as the data path between the program and the
file. For more information on shared files, see “Sharing Display Files in the Same
Job” on page 3-50.

Chapter 3. Working with Display Files in an Application ~ 3-3

Feedback areas can be used to provide information when errors occur. For
example, when an error occurs with a display file, the program could determine
predefined error handling operations based on the major/minor return code in the
file-dependent feedback area. More information on major/minor return codes is
available in Chapter 8, “Handling Messages and Errors for Display Files.”

Some high-level languages on the system allow you to access the status and other
information about the file against which operations are being performed.

See Appendix C, “Feedback Area Layouts for Display Files,” for a description of all
the information available from the feedback areas.

Obtaining Attribute Information about Display Stations

The get-attributes operation allows you to obtain the following information about a
specific display station:

Table 3-2. Information Available from the Get-Attributes Operation

Information Details

The specific model of the Valid only when the display station is acquired to the file
display station

The screen size of the Valid only when the display station is acquired to the file
display station

Device acquired indicator Indicates whether or not the display station is currently
acquired to the file

Device invite status Indicates whether or not the display station is invited, and if
so whether or not the display station has data available;
valid only when the display station is acquired to the file

*REQUESTER display Indicates whether or not the display station is the
station indicator *REQUESTER display station

Since the information supplied is also available in the open and input/output feed-
back areas for the display station that is implicitly acquired when the file is opened,
the get-attributes operation is most useful for multiple display file applications. For
more information on how to perform the get-attributes operation, see the appro-
priate high-level language manual.

See Appendix C, “Feedback Area Layouts for Display Files,” for a description of all
the information available from the get-attributes operation.

Sending and Receiving Data

All data written to and read from the display by the application program is done with
records. Records consist of fields, which are individual items of data. The high-
level languages in which application programs are written have 1/O statements that
give data to the system to be written to the display and receive data from the
system that it read from the display in the form of records.

The 1/O statements of the high-level languages also refer to record formats, which
are defined using DDS. On output, a record format describes how the data given
by the program is to be presented on the display as well as how the data is to be
processed before presenting it. On input, the record format is used to control some

3-4 Application Display Programming V4R1

display functions, to extract the program data from all the data which is on the
display, and to present that data back to the application program.

— Information about DDS keywords

This section uses DDS keywords that control sending and receiving information
to the display. For more information about specific DDS keywords, see the
DDS Reference.

Determining Which Record Formats Are Active on a Display
The system maintains the active record format table , a table of all record formats
that are currently on the display. Read operations may take place against only
those record formats that are in the active record format table. Certain DDS
keywords cause records in the table to be altered.

A record format is added to the table when a write operation that contains the
record format is performed. A record format is removed from the table when a read
operation can no longer be correctly performed for this record.

The active record format table is cleared whenever the display is cleared.

Writing Output to the Display

A write operation passes a record from the program to the system. The record
format in the display file contains the information necessary for the system to
handle the record. The write operation results in the following:

Write Operation

HELLO HELLO
_— _—
/710X /710N /710X
Clears screen Writes record Unlocks
to screen keyboard

RV2W010-1

Placing Records on the Display
One record format can occupy an entire screen or the screen can be divided to
display more than one record format.

If a record is displayed on more than one line, the following rules apply:

Chapter 3. Working with Display Files in an Application ~ 3-5

e The lines must be consecutive lines on the display. For example, if one record
occupies two lines and the record begins on line 2, the record must continue on
line 3.

¢ Only a beginning attribute character can occupy line 1, position 1.

 If only the ending attribute character for the last field in a record is in position 1
of the next line, another record format can begin on that same line.

e Only one record can occupy a line on the display at a time. If you want to
display a record format that overlaps one or more lines of a record format
already on the display, specify *NO for the clear lines (CLRL) keyword.
CLRL(*NO) clears the common lines before displaying the new record format.

The following three figures show how screens can be divided when the CLRL
keyword is not specified:

Record Format A

RSLH199-0

Figure 3-1 (Part 1 of 3). Valid Placement of Records on a Screen When the CLRL
Keyword Is Not Used

3-6 Application Display Programming V4R1

Record Format A

Record Format B

RSLH197-0

Figure 3-1 (Part 2 of 3). Valid Placement of Records on a Screen When the CLRL
Keyword Is Not Used

Record Format A

Record Format D

Record Format B

RSLH198-0

Figure 3-1 (Part 3 of 3). Valid Placement of Records on a Screen When the CLRL
Keyword Is Not Used

The following figure shows how screens cannot be divided when the CLRL
keywords is not specified:

Chapter 3. Working with Display Files in an Application ~ 3-7

Record
Format B

Record
Format A

(Fields from different record formats cannot be displayed on the same line.)

= Record Format A 5
= Record Format B &
< Record Format A B

fj¢————Record Format A

— < Record Format B B

(Fields from different record formats cannot be displayed on the same line.)

RV2W048-0

Figure 3-2. Wrong Placement of Records on Screen When CLRL Keyword Not Used

Understanding Which Records Do Not Occupy Space on the
Display

The following types of records do not occupy space on a display but are assumed
to be at line O:

» Records with no fields defined
* Records with only hidden, program-to-system, or message fields
» Records with the CLRL keyword specified and with no input-capable fields

The system keeps track of only one of these records at a time. If an output opera-
tion for a record assumed to be at line 0 replaces another record assumed to be at
line 0, you can no longer issue an input operation for the replaced record.

Changing Record Formats on a Display
The formats displayed can change while a file is being processed because informa-
tion on a display can be deleted when new formats are displayed.

When your program displays a new record format for output or to allow input, the
existing display is usually erased before the new record format is displayed. For
example, if three record formats are on the display at the same time and you write
another record to the display, the three record formats on the display are erased.
Several DDS keywords, such as the OVERLAY keyword, let you control the dis-
playing of records and input fields on input and output operations. For more infor-
mation about these DDS keywords, see “Overlaying and Erasing Record Formats
on a Display” on page 3-10 and “Clearing a Specified Number of Lines” on

page 3-13.

In the following example, the fields are defined for a record format as follows:

3-8 Application Display Programming V4R1

e Fields from record format A occupy lines 1 through 4.

e Fields from record format B occupy lines 5 through 7.

¢ Fields from record format C occupy lines 8 through 10.

¢ Fields from record format D, which has the CLRL keyword specified for it,
occupy lines 5 through 9.

In the following illustration, record formats A, B, and C are displayed first. When
record format D is displayed, it replaces record formats B and C.

Lines
1
2
i Record Format A
o
6 Record Format B
T
8
9 Record Format C
10 |]
11
12
¢ Record format D is displayed
Lines
1
2
2 Record Format A
e
6
7
8 Record Format D
S I
10
11
12

RSLH700-0

Figure 3-3. Replacing Record Formats

If record format D did not have the OVERLAY keyword specified for it, the following
would have happened in the previous example:

* Record format A would also have been deleted.

e Lines 5 through 7 of record format B would have remained on the display. The
data in any fields of record format B overlaid by record format D would have
been changed. (see “Clearing a Specified Number of Lines” on page 3-13 for
more information).

Deciding the Order of Record Formats Written to the Display
To improve performance, records containing input fields should be sent to the
display station in the order in which they appear on the display.

In Figure 3-3, if record formats A and B both contain input fields and appear on the
same display, record format A should be sent to the display first.

Chapter 3. Working with Display Files in an Application ~ 3-9

Overlaying and Erasing Record Formats on a Display

To avoid erasing the existing display when your program displays a new record
format for output or to allow input, you can specify the OVERLAY keyword. The
OVERLAY keyword causes only those records that are completely or partially over-
lapping to be erased; all other records remain on the display.

Note: The OVERLAY keyword does not prevent the screen from being erased if it
is in effect for the first write operation after a file is opened unless the DDS
keyword ASSUME is specified for any record format in the display file.

You can use the OVERLAY keyword to display information from your application
that needs to be presented together but naturally falls into two or more pieces. For
example, you could use one record format in your application to present information
for a state at the top of a display and another record format to provide the informa-
tion for a particular region within that state.

To place two or more records on the display at the same time, separate the write
operations for your display from the read operations. Then, when you perform
each write operation, the system takes the data from the record that you have pro-
vided it, combines it with the information specified in the record format, and places
it on the display. You can lock the keyboard until the display is ready to perform
the read operations by doing one of the following:

e Specify the LOCK keyword on all the record formats
e Specify *YES for the Defer Write (DFRWRT) parameter for the display file

You can use multiple record formats when you want to present lists of information
in a subfile to the user. A subfile is a group of records that have the same record
format and are read from and written to a display station in one operation. For
more information about subfiles, see Chapter 4, “Displaying Groups of Records
Using Subfiles” on page 4-1.

To erase certain records from the display when you overlay records, use the
ERASE keyword with the OVERLAY keyword. The following diagram shows the
effect of the OVERLAY and ERASE keywords on an output operation:

Before n After
A A
Put D
5 with OVERLAY . D
Not Used
c c
Put D A
with OVERLAY
and ERASE C D
Not Used

RV2W032-1

3-10 Application Display Programming V4R1

Record format B is erased because record format D overlaps it, and record
format D is displayed. Record format D did not use all of the space record
format B previously used so it does not overlap record format C.

H Record format B is erased because record format D overlaps it and record
format C is erased because ERASE C is specified. Record format D is dis-
played, and part of the display is no longer in use.

Starting Your Record Format on a Specific Line
To start your record format on a specific line, use the starting line number (SLNO)
keyword. On the SLNO keyword, you can specify one of the following:

e The actual starting line number for the record format (a value from 1 to 27).
When you specify an actual line number, the system adjusts the line numbers
for all fields in a record by the specified value minus 1.

* A variable starting line number (*VAR), which allows you to specify a starting
line number value in your high-level language program at run time. Depending
on the value specified in your program, the following occurs:

Table 3-3. Results of SLNO(*VAR) Values

Value Specified Results
0 or no value specified A starting line number of 1 is assumed.
Value exceeds the number The system sends a message to the program and the 1/O

of lines on the screen or is a request is not performed.
negative value

The starting location for the A warning message (severity 10) is issued at file creation
field for at least one display time. At run time, an error message is issued if the screen
size is row 1, column 1 size being displayed contains a field starting in row 1,

column 1, and the variable starting line number is set to 1
by the program.

Each programming language provides a different way to set and add to the starting
line number. See the appropriate manual for the language you are using.

The system adjusts the line numbers for each field in the record format by the
specified value minus 1. If the resulting line number exceeds the screen size, the
field is not displayed. In addition, if any part of a field goes beyond the last line on
the screen, the field is not displayed.

The SLNO keyword cannot be used in a record format that contains the record-
level keywords ASSUME, KEEP, USRDFN, SFL, or SFLCTL, or in a display file
that contains the file level keyword PASSRCD.

However, the SLNO keyword may be used with several other DDS keywords:

e |f the CLRL keyword is used with the SLNO keyword and the CLRL keyword
specifies a number of lines to clear, clearing starts with the starting line number
on the SLNO keyword.

e If you use the SLNO(*VAR) keyword with the OVERLAY keyword but without
the CLRL keyword and then write the record several times, each time with a
different starting line number, the previous record is deleted before the new
record is displayed.

Chapter 3. Working with Display Files in an Applicaton 3-11

 If the SLNO keyword is used with the PUTOVR, PUTRETAIN, ERRMSG, or
ERRMSGID keyword in effect, the system checks the starting line number to
determine if the previous output operation to the record had the same starting
line number:

— If the starting line number is the same, the action specified by the
PUTOVR, PUTRETAIN, ERRMSG, or ERRMSGID keyword is performed.

— If the starting line numbers are not the same, the PUTOVR, PUTRETAIN,
ERRMSG, or ERRMSGID keyword is ignored, and the record format is dis-
played with the lines adjusted by the new value.

The following DDS shows an example of using the SLNO(*VAR) keyword:

P U PO SN JUIE SN NI P SO SN U SO : SRR T SO

A R ORDENT

A 1 36'ORDER ENTRY'

A 3 2'Enter customer number:'
A CUST 5 B +2

A 5 2'Enter order number:'
A ORDNBR 6 B +2

A 7 2'ITEM NUMBER'

A 7 18'DESCRIPTION'

A 7 44'QUANTITY'

A R LINITM OVERLAY

A SLNO(*VAR)

A CLRL(*NO)

A ITEM 6 00 9 2

A DESCRP 20 0 9 18

A QTYORD 3 00 9 44

A R INPFMT OVERLAY

A 23 2'Enter item number:'
A ITMNBR 6 OI +2

A +5'Enter Qty:'

A QTY 3 0I +2

Figure 3-4. Sample DDS Source Showing Use of the SLNO(*VAR) Keyword

In this example, the record format ORDENT contains the prompt for an Order Entry
display. When the user enters a customer number and an order number, the fol-
lowing occurs:

1. The program writes the record format INPFMT to the display, which allows the
user to enter an item number and quantity ordered.

2. After the user enters the item number and the quantity, the program retrieves
the description of the item from a file and writes the record format LINITM to
the display.

3. The program writes the INPFMT record format to the display to allow the user
to enter another item number.

The design of this display allows the user to enter the item number and quantity on
the same line. As a line item is entered, the program uses the LINITM record
format to build the order on the display. The SLNO(*VAR) keyword is used so the
program can add a line to the display each time the LINITM record format is
written. The CLRL(*NO) keyword has to be specified on the LINITM record format
so that the previous record is not deleted when a new record is written.

3-12 Application Display Programming V4R1

When the LINITM record format is first written to the display, the value of *VAR is 1
so the fields are displayed on line 9. On each successive output operation to this
record format, the program adds 1 to the starting line number so that a new line
item is added to the display.

After the user enters two item numbers and quantities, the display looks like this:

ORDER ENTRY
Enter customer number: 34785
Enter order number: 1J2340

ITEM NUMBER DESCRIPTION QUANTITY

96321 Pliers 115
86768 Saws 125
Enter item number: _ Enter Qty:

The SLNO keyword is most efficient when you want the user to always enter data
on the same line and yet build a display of previously entered records, as shown in
the preceding example. However, for a typical inquiry function where you want to
display more than one record at a time, the use of a subfile is more efficient.

Clearing a Specified Number of Lines

To clear a certain number of lines on the screen before you write a record format to
the screen, use the clear lines (CLRL) keyword. You can specify the CLRL
keyword even when the record contains no fields that are displayed. Clearing
begins with the starting line number, and the value specified on the CLRL keyword
determines the number of lines to be cleared (any value from 1 to 27). The starting
line number is determined as follows:

» |f the SLNO keyword is not specified, the field locations determine the starting
line number.

e |f the SLNO(nn) keyword is specified, nn is the starting line number.

e |If the SLNO(*VAR) keyword is specified, the starting line number defaults to 1
at the time the display file is created and can be changed by the application
program at the time it is run.

You can also specify the following values to clear specific lines:
Value Lines Cleared

*END All lines from the starting line to the end of the display

*NO Only the lines of the display that are used by the overlapping record
format

Chapter 3. Working with Display Files in an Applicaton ~3-13

*ALL All lines of the display. Since the default action is to clear all the lines of
the screen, you do not normally have to specify CLRL(*ALL) unless you
also specify a DDS keyword, such as USRDSPMGT, that changes this
default.

Note: When you use the CLRL keyword, you should specify *YES for the
RSTDSP parameter on the CRTDSPF or CHGDSPF command; otherwise,
data on the display may be lost if the file is suspended.

You can use the CLRL(*NO) keyword to prevent an overlapped record from being
deleted when the overlapping record is written to the display. If you use this
keyword, any records being displayed that are to be overlapped are not deleted
from the screen; the new record overlays them entirely or partially. There is a per-
formance advantage to using CLRL(*NO) if you have a display that contains con-
stants and data that is repeatedly sent to the screen. By sending the constants as
a separate format and by using CLRL(*NO) for the format containing only the data,
you can reduce the time required to send the record format to the display. For

example:
Lines
1
2
3 .
4 Record Format A (lines 1 through 4)
2 Record Format B (lines 5 through 8)
; Record Format C (lines 7 through 12)
P
10
11 |
12

RSLH701-0

If CLRL(*NO) is specified on record format C, all fields of record format B not over-
lapped by C remain on the screen when record format C is written to the screen. If
the OVERLAY or PUTOVR keyword were used for this same situation, record
format B would be deleted when record format C is written to the screen because
record format C overlaps record format B.

The following considerations apply to the CLRL keyword when used with other DDS
keywords:

e If the CLRL keyword is specified in a record format with input-capable fields,
any input-capable fields in the overlapped records are no longer input-capable.
Fields in all other record formats that are not overlapped remain input-capable.
If you do not want these fields to remain input-capable, you should use the
PROTECT keyword on the record format along with the CLRL(nn) keyword.

e Records with the CLRL keyword and with no input-capable fields are assumed
to be at line 0. Thus, if the CLRL(nn) keyword is specified in a record format
that has no input-capable fields, all records already on the display remain on
the display and their input-capable fields remain input-capable. Because
records that start at line O are not known to the system, the ROLLUP and
ROLLDOWN keywords do not work for these records. Also, these records may
not be cleared completely when they are overlapped by other records that have
the OVERLAY keyword specified. The lines needed for the overlapping record

3-14 Application Display Programming V4R1

are cleared whereas the lines not needed for the overlapping record remain on
the screen.

e The CLRL(nn) keyword is not allowed in a record format with the record-level
keywords ASSUME, KEEP, USRDFN, SFL, or SFLCTL, or in a display file with
the file level keyword PASSRCD.

e The CLRL(nn) keyword is ignored if either the ERRMSG or ERRMSGID
keyword is in effect.

e If the CLRL(nn) keyword is used and the PUTOVR or PUTRETAIN keyword is
in effect, the clearing of lines may conflict with the PUTOVR or PUTRETAIN
function. The PUTOVR or PUTRETAIN keyword requires that the fields being
overridden be on the display whereas the CLRL(nn) keyword may clear those
fields first. If a record becomes unavailable for input because of the CLRL(nn)
keyword, the input-capable fields remain input-capable if the PUTOVR keyword
is in effect. However, the system issues a message if the program attempts to
read such a record. Although the CLRL(nn), CLRL(*NO), and CLRL(*END)
keywords imply the OVERLAY keyword, the following example illustrates the
differences between the CLRL and OVERLAY keywords:

A R RECORD1

A FLD1 10 I 4 5

A FLD2 10 I 5 5

A 5 21'Enter employee number'
A R RECORD2A OVERLAY

A FLD3 1 B 5 2

A 6 2'Required field'

A 7 2'Enter 1, 2, or N'
A FLD4 19 0 8 2

A R RECORD2B CLRL(4)

A FLD5 1 B 5 2

A 6 2'Required field'

A 7 2'Enter 1, 2, or N'
A FLD6 19 0 8 2

A R RECORD3 OVERLAY

A FLD7 10 0 815

A

A

A . .

A FLD8 10 B 12 4

A R RECORD4 CLRL(*NO)

A FLD9 42 111 2

Figure 3-5. Sample DDS Source Showing Difference between CLRL and OVERLAY

The following results occur if the program performs the output operations on the
record format in the following order:

Chapter 3. Working with Display Files in an Applicaton ~ 3-15

Table 3-4. Results from CLRL Example

Order of Record

Formats Results

RECORD1 Lines 4 through 12 are deleted when RECORD2A is written to the
RECORD3 display because RECORD2A overlaps RECORD1 and RECORD3,
RECORD2A and only the OVERLAY keyword is specified for RECORD2A.
RECORD1 Lines 5 through 8 are cleared before RECORD2B is written to the
RECORD3 display because the CLRL(4) keyword is specified. FLD1 in
RECORD2B RECORD1 and any input-capable fields in RECORD3 (lines 9

through 12) remain on the screen but are no longer input-capable
because part of RECORD1 and RECORD3 is overlapped by

RECORDZ2B.
RECORD1 RECORD1 remains on the screen when RECORDS is written to the
RECORD3 screen because the OVERLAY keyword is specified in RECORD3.
RECORD4 When RECORDA4 is written to the screen, it uses part of line 11,
RECORD2A which is also used by RECORD3, and because CLRL(*NO) is

specified in RECORD4, RECORD3 remains on the screen.
However, the system is no longer aware that RECORD3 is on the
screen so when RECORD?2A is written, only lines 4 through 8 are
cleared; the part of RECORD3 below line 8 remains on the screen.

Rolling Data between Two Lines on a Display

If you are using a high-level language program, you can roll the data between two
lines on the display up or down by specifying the allow roll (ALWROL) keyword.
The lines vacated by the rolled data are set to nulls and another record format can
be written to those lines.

In your program, you must specify the following:

e The starting line number and the ending line number of the lines to be rolled.
The start and end line numbers define a window on the screen.

e The number of lines to be rolled. If the number of lines to be rolled is positive,
the data is rolled up. If the number of lines to be rolled is negative, the data is
rolled down.

o Whether the roll is to be up or down.

In the window, the lines of data are rolled up (or down) by the number of lines you
specified in your program. The data rolled off the window is gone. The input-
capable fields of any record format partially or completely within the window are no
longer input-capable. After the roll, your program cannot issue an input operation
to any record format within the window.

The following example shows a display before a program-controlled roll occurs, and
the same display after a program-controlled roll occurs. The following is specified
in the program:

e The starting line number is 8
¢ The ending line number is 18
e The number of lines to be rolled down is 6.

3-16 Application Display Programming V4R1

Display before the Roll Operation

UPDATE CUSTOMER ORDER RECORD

To end this program, press CF1

Enter your operator number:

Enter customer number:

Press CF3 to display option menu

Display after the Roll Down Operation

UPDATE CUSTOMER ORDER RECORD

To end this program, press CF1

Item number ordered: —

Quantity ordered:

Enter your operator number: 25
Enter customer number: 12345

Press CF3 to display option menu

Line 1
Line 3
Record
format
. 1
Line 8
Line 10
Line 12
RSLH165-0
Line 1

}Unchanged
Line 3

format

Line 9 Record
2

Line 11

Line 14
Line 16

Line 18

Previous
lines 8
through 12
after being
rolled down

RSLH171-0

The ALWROL keyword cannot be used with the file level keyword PASSRCD or
with the following record-level keywords: KEEP, ASSUME, USRDFN, SFL, or

SFLCTL.

If the ERRMSG, ERRMSGID, PUTOVR, or PUTRETAIN keyword is in effect for the
same output operation in which the ALWROL keyword is in effect, the system
issues message CPF5014. If an ERRMSG, ERRMSGID, PUTOVR, or record level

Chapter 3. Working with Display Files in an Applicaton ~3-17

PUTRETAIN keyword is not in effect, the message is not issued. However, if the
PUTRETAIN keyword is specified at the field level with option indicators, the
message (CPF5014) is issued if the option indicators for the PUTRETAIN keyword
are on or off.

Overriding the Attributes or the Content of a Field
To send only some of the data and attributes of a record to the display, use the
following keywords:

e Put with explicit override (PUTOVR)
e Override data (OVRDTA)
e Override attribute (OVRATR)

By sending less data or attributes, you can shorten the response time at the
display, especially for remotely attached displays.

When the PUTOVR keyword is specified, the following occurs:

e The display attributes are overridden for those fields with the OVRATR keyword
in effect.

* The data content is overridden for those fields with the OVRDTA keyword in
effect.

¢ The output operation functions as if the OVERLAY keyword were also in effect,
even if the OVERLAY keyword is not specified.

The PUTOVR keyword cannot be specified in a record format that contains the
PUTRETAIN keyword nor can it be used for subfile records.

The display attributes that can be overridden by the OVRATR keyword are:

CHECK(ER) End of Record
CHECK(ME) Mandatory enter
DSPATR(MDT) Set on modified data tag
DSPATR(PR) Protect
DSPATR(BL) Blink
DSPATR(CS) Column separator
DSPATR(HI) High intensity
DSPATR(ND) Nondisplay
DSPATR(PC) Position cursor
DSPATR(RI) Reverse image
DSPATR(UL) Underline

DUP Dup key capable

The following is an example of the PUTOVR keyword.

3-18 Application Display Programming V4R1

A R ITMRVW

A PUTOVR

A 1 35"ITEM REVIEW'

A 3 2'Item number:'

A ITMNBR 5 B +2

A 5 2'Item description:'
A ITMDSC 20 +2

A 10 OVRDTA

A 7 2'Item price:'

A ITMPRC 8 2 +2

A 15 OVRDTA

A 9 2'Warehouse Tocation:'
A WHSLOC 3 +2

A 20 OVRDTA

A 11 2'Quantity on hand:'
A QTYOH 50 +2

A 25 OVRDTA

A OVRATR

A N25 30 DSPATR(HI)

Figure 3-6. Sample DDS Source Showing Use of the PUTOVR Keyword

The DDS describes a display that allows the user to enter an item number, and to
review the item description, the item price, the warehouse location, and the quantity
on hand:

1. On the first output operation, all fields are sent to the display, and all option
indicators are off. The PUTOVR keyword is ignored because the record is not
already on the screen. On the first output operation, the current field values in
the program are displayed for the output fields. If your program has not set
any of these fields, the values will be whatever the high-level language used to
initialize the output buffer.

If an output-capable field must always have a specific value on the first output
operation, you can use the DFT or DFTVAL keywords to initialize the field to
that value. When used on an output-capable field with the PUTOVR and
OVRDTA keywords the DFT keyword causes the system to place the default
value rather than the program value on the display when the record is first
placed on the display.

2. The user enters an item number. The program sets on indicators 10, 15, 20,
and 25 and issues a write-read operation to display the output fields. On the
write operation, the PUTOVR keyword is in effect because the record is already
on the screen. Because the OVRDTA keyword is specified on the ITMDSC,
ITMPRC, WHSLOC, and QTYOH fields and because their option indicators are
on, these fields are the only data sent to the display.

If the user enters another item number and the data for a field already dis-
played does not change, the program sets off the option indicator and does not
display that field again. For example, assume that for the second item number,
the WHSLOC is the same as for the first item number. On the output operation
to display the information for the second item number, the program sets off
indicator 20. Therefore, the only fields sent to the display are ITMDSC,
ITMPRC, and QTYOH because indicators 10, 15, and 25 are on.

Chapter 3. Working with Display Files in an Applicaton ~3-19

For the QTYOH field, the program can change the attributes for the field without
changing the data by setting off indicator 25 and setting on indicator 30 before the
output operation.

You can use the option indicators on the OVRDTA keyword to control which fields
are sent to the display. If no option indicators are used, all fields with the OVRDTA
keyword specified are sent to the display on each output operation because the
OVRDTA keyword is in effect when the PUTOVR keyword is in effect. In the pre-
ceding example, if no option indicators were used, all four fields would be sent to
the display on each output operation. You can also use the same indicator to
control more than one field.

An alternative design for this same application is to use two record formats and
send the constants to the display in one record format and the variables in the
other record format. You would have to use the CLRL(*NO) keyword to prevent the
record format containing the constants from being erased. However, if the record
format is already on the display, the use of the PUTOVR keyword provides the
most efficient approach.

The following examples illustrate how to use the PUTOVR keyword for efficient
coding:

P TS PO SR SO SO ST S U SN - SR SO - PIUE TY S
R PROMPT
CFO3(91 'Return')
PUTOVR
ERASEINP
OVERLAY
1 28'Efficient Coding Example'
3 2'FLD1'
FLD1 5 I 3 7
5 2'FLD2'
5 7
OVRDTA
7 2'FLD3'
FLD3 5 7 7
15 OVRDTA
9 2'FLD4'
FLD4 5 9 7
OVRDTA
16 DSPATR(HI)
11 2'FLD5'
FLD5 5 11 7DFT('ABCDE")
OVRDTA
17 DSPATR(HI)
13 2'Constant 1'
OVRATR
18 DSPATR(BL)
15 2'Constant 2'
OVRATR
N19 DSPATR(ND)
17 2'Constant 3'
20 OVRATR DSPATR(RI)

FLD2 5

> > > T

Figure 3-7. Sample DDS Source Showing Efficient Use of PUTOVR Keyword

3-20 Application Display Programming V4R1

In the preceding example, the following happens:

1.

If the record format is not currently on the display, the PUTOVR, OVRATR, and
OVRDTA keywords are ignored when the record format is displayed. On sub-
sequent output operations when the record format is already on the display and
the PUTOVR keyword is in effect, only the fields or constants defined with the
OVRATR or OVRDTA keyword are sent to the display. The ERASEINP
keyword is used because it is the most efficient way to clear all input fields, and
the OVERLAY keyword is used because it is required with the ERASEINP
keyword.

. FLD1 is an input field that is cleared each time the record format is displayed.

. FLD2 is sent to the display each time the record format is displayed because

its associated OVRDTA keyword is unconditionally specified.

. FLD3 is sent to the display on the first output operation. On subsequent output

operations, FLD3 is not sent to the display unless indicator 15, which is used to
condition the OVRDTA keyword, is on.

. FLD4 is sent to the display on each output operation because its associated

OVRDTA keyword is unconditionally specified. When the OVRDTA keyword is
in effect, the attributes for the field are always sent to the display. Indicator 16
is used to control the DSPATR(HI) keyword for FLDA4.

. On the first output operation, the default value of ABCDE appears in FLD5. On

subsequent output operations, a value from the program is displayed in FLD5
because its associated OVRDTA keyword is unconditionally specified.
Indicator 17 is used to control the DSPATR(HI) keyword for FLD5.

. Constant 1 is always displayed, but it is only sent to the display on the first

output operation. However, the attributes for the field are sent to the display
each time the record format is written, and option indicator 18 is used to control
whether the field blinks.

. Constant 2 is sent to the display only on the first output operation. However,

the attributes for the field are sent to the display each time the record format is
written, and if option indicator 19 is off, Constant 2 will not be displayed.

. Constant 3 is sent to the display only on the first output operation. However,

the attributes for this field are not sent to the display on subsequent output
operations unless indicator 20 is on. If option indicator 20 is on when an output
operation is done, Constant 3 is displayed in reverse image, and it will continue
to appear in reverse image regardless of the status of indicator 20 on subse-
quent output operations.

The following example shows how the PUTOVR keyword can be used for an appli-
cation in which the user enters some information common to a group of records
and then repeatedly enters detailed information relating to specific records in the

group.

Chapter 3. Working with Display Files in an Applicaton ~3-21

P S DU OO SO SO FUIE TRy S TN - SO S ST SR S
R HEADING TEXT('Header Display')
SETOF(88 'ERASEINP CTL')
CFO3(91 'Return')
1 2'HEADING INFORMATION'
DSPATR(HI)
1 60'CF3-End of Program'
2 60'CF2-New heading'
HDING 5 I +2
R DETAIL TEXT('Detail display')
OVERLAY
PUTOVR
PROTECT
88 ERASEINP
CFO2(92 'New header')
8 2'DETAIL DISPLAY'
DSPATR(HI)
10 2'Input'
FLDA 5 I +2
12 2'Output’
FLDB 5 +2DFT(" ')
OVRDTA

> > > > T >>>>>>> >

Figure 3-8. Sample DDS Source Showing Another Use of PUTOVR Keyword

In the preceding example, the following happens:

1. The program displays the HEADING record format, and then performs an input
operation to the record format to receive the HDING field as input. The SETOF
keyword in the HEADING record format sets off indicator 88, which is used to
condition the ERASEINP keyword in the DETAIL record format.

2. The program then displays the DETAIL record format. Because the OVERLAY
keyword is in effect, the HEADING record format remains on the display. The
PROTECT keyword is also in effect so the input field (HDING) in the HEADING
record format is protected. Therefore, the user cannot change this field when
the DETAIL record format is displayed.

3. The ERASEINP keyword is conditioned by option indicator 88. Because indi-
cator 88 is off the first time the DETAIL record format is displayed, the
ERASEINP keyword is not in effect. On subsequent output operations, indi-
cator 88 is set on and the ERASEINP keyword is in effect. Therefore, FLDA is
cleared on subsequent output operations. The option indicator is used on the
ERASEINP keyword so that it is not in effect the first time the DETAIL record
format is displayed. Because the ERASEINP keyword is processed before the
PROTECT keyword, it would clear the HDING field in the HEADING record
format if it were in effect the first time the DETAIL record format is written.

4. FLDB is an output field that is sent to the display on each output operation
because the OVRDTA keyword is specified unconditionally. The DFT keyword
with a value of blanks is used so the field will not contain any data the first time
the DETAIL record is displayed for a group.

3-22 Application Display Programming V4R1

Erasing All Unprotected Input and Output/Input Fields on the

Display

To erase all unprotected input-capable fields, use the erase input (ERASEINP)
keyword. The ERASEINP keyword can only be used with the OVERLAY keyword.

To erase all unprotected input-capable fields that have their modified data tags on,
specify *MDTON for the ERASEINP keyword. To erase all unprotected input-
capable fields whether their modified data tags are on or not, specify *ALL for the
ERASEINP keyword.

The ERASEINP keyword can improve response time because it clears fields rather
than sends blanks to the display. If the fields erased at the display do not have
their modified data tags set on for the next read operation, data is returned for
those fields from the input save area. This is data saved by the system from the
previous return of the field from the display station.

You can use the INZINP keyword at the record level with ERASEINP(*ALL) and
PUTOVR to initialize the input save area without sending data for the cleared fields
to the display.

Resetting Modified Data Tags Associated with Records on the
Display

To reset the modified data tags, use the modified data tag off (MDTOFF) keyword.
The MDTOFF keyword, which can only be used with the OVERLAY keyword, is
processed before the next record is displayed.

To reset only the modified data tags of the unprotected fields, specify *UNPR for
the MDTOFF keyword. To reset the modified data tags of all input-capable fields,
specify *ALL for the MDTOFF keyword.

Keeping a Record or Field on a Display

The PUTRETAIN keyword is used to reduce the number of characters sent to the
display. This keyword can only be used with the OVERLAY keyword and can be
used to change only the display attributes of a field. Except for not sending data,
all other functions are supported when the PUTRETAIN keyword is specified.

Using the PUTRETAIN keyword at either the record format level or the field level
can cause fields from this record which were previously written to the display to
remain on the display even if they are not selected for this write operation. To
avoid this, you can use the PUTRETAIN keyword at the field level and define the
field twice: once with option indicators as you want it to appear in the display, and
once with no option indicators and as a constant with a value of blanks. If the first
field is not selected, the second field is. The second field is displayed so the
blanks erase the contents of the field that is not selected.

Note: The ERRMSG and ERRMSGID keywords function as if the PUTRETAIN
keyword were specified at the record format level. That is, no fields are
sent to the display, no field attributes for other fields are changed, and no
command keys are changed when the ERRMSG and ERRMSGID keywords
are in effect.

The following is an example of the PUTRETAIN keyword used at the record format
level. The following DDS describes a student search menu having three options.

Chapter 3. Working with Display Files in an Applicaton ~3-23

The option selected is highlighted. For example, if option 1 is selected, the char-
acter string 1. By number is highlighted.

P O P SO SO SO FUIE TR S TN - SO SN ST SRy S
A R SELECT OVERLAY
A PUTRETAIN ERASEINP
A N44 1 2'STUDENT SEARCH MENU'
A N44 3 10'1. By number'
A 10 DSPATR(HI)
A N44 4 10'2. By name'
A 11 DSPATR(HI)
A N44 5 10'3. By address'
A 12 DSPATR(HI)
A N44 10 2'Select the number of the item to
A search by:'
A INPUT 1 11047
A 44 DSPATR(RI)

Figure 3-9. Sample DDS Source Showing Use of the PUTRETAIN Keyword

The following happens:

1. On the first output operation, all fields are sent to the display, and all option
indicators are off. The PUTRETAIN keyword is ignored because the record is
not already on the display.

2. The user selects item 1, 2, or 3. When the program receives the input, it sets
on indicator 10, 11, or 12, depending on which item is chosen. If anything
other than item 1, 2, or 3 is chosen, the program sets on indicator 44.

On the next output operation, field 1, 2, or 3 is highlighted, or the input field is
in reverse image, depending on which indicator is on.

The data for all fields is not resent to the display but the field attributes are
resent. No data is sent for constants. To resend attributes for each output
field or constant, 4 bytes are needed. To resend attributes for each input-
capable field, 9 bytes are needed. By using the PUTRETAIN keyword, you
reduce the number of characters sent to the display by 96, from 138 to 42.
(These numbers do not include protocol control characters needed to frame
data.)

The ERASEINP keyword causes the user’s selection to be erased.

The following is an example of the PUTRETAIN keyword used at the field level.
Here, the PUTRETAIN keyword is used to keep input that is not valid and to reduce
the number of characters sent to the display. The following DDS describes a
display containing an item’s name, color, shape, and size, and asks for quantity.
The user can change the values for color, shape, and size.

3-24 Application Display Programming V4R1

+

P S DU OO SO SO FUIE TRy S TN - SO S ST SR S

A R CHANGE OVERLAY

A 1 2'CHANGE MENU'

A N43 3 2'Change the underlined fields to
A change the description.'
A 4 2'Item:'

A ITEM 20 0 4 12

A 44 PUTRETAIN

A 5 2'Quantity:'

A QTY 4Y 0I 5 12

A 44 PUTRETAIN

A 09 DSPATR(BL PC)

A 6 2'Color:'

A COLOR 10 B 612

A 44 PUTRETAIN

A 10 DSPATR(BL PC)

A 7 2'Shape:'’

A SHAPE 10 B 712

A 44 PUTRETAIN

A 11 DSPATR(BL PC)

A 8 2'Size:'

A SIZE 10 B 812

A 44 PUTRETAIN

A 12 DSPATR(BL PC)

A 44 9 2'Choice:'

A 44 CHOICE 20 0 9 12

A 15 9 12' '

Figure 3-10. Sample DDS Source Showing Use of the PUTRETAIN Keyword

The following happens:

1. On the first output operation, all indicators are off, so all the constants and the
fields except CHOICE and the constant field following CHOICE are sent to the
display.

2. The user enters a quantity. The program sets on indicator 43. When the next
output operation occurs, indicator 43 prevents the second constant field from
being resent.

3. When the user is to enter the quantity for another item, the program issues
another output operation. The attributes for the fields QTY, ITEM, COLOR,
SHAPE, and SIZE are sent to the display. Field selection prevents the
CHOICE field from being sent to the display.

At least one field, in this case QTY, must be kept to prevent the entire record
area from being erased.

4. If the user enters a quantity, color, shape, or size that is not valid, indicator 44
is set on so that the input fields (QTY, COLOR, SHAPE, and SIZE) are not
erased and so that the output field CHOICE is sent to the display. In addition,
the appropriate indicator, 9, 10, 11, or 12, is set on so that the input field in
error blinks and the cursor position is below the field. (The CHOICE field would
show the user valid choices for the field in error.)

5. The CHOICE field and a constant field of blanks are defined for the same
location. After the user enters valid data, indicator 15 is set on, indicator 44 is
set off, and the constant field initializes the CHOICE field to all blanks.

Chapter 3. Working with Display Files in an Applicaton ~ 3-25

Deferring the Write Operation Until a Read Request is Made

The DFRWRT parameter on the Create Display File (CRTDSPF) or Change
Display File (CHGDSPF) command allows you to specify how the system is to
handle write operations. If you specify DFRWRT(*NO), the program does not
regain control until the write operation has displayed the data and updated the
input/output feedback area.

If you specify the default of DFRWRT(*YES) for the file, the program regains
control after the output record is processed. The program can then use the record
area where the output was stored to start processing the next write or write-read
operation. The data is actually sent to the display only when a read or write-read
operation is issued or when the FRCDTA DDS keyword is in effect for a write-only
operation.

Using DFRWRT(*YES) on a display file improves systems performance; however,
DFRWRT(*YES) should not be used in the following circumstances:

e |f you want to find out immediately if the write operation was successful. An
error associated with a write operation for a file with DFRWRT(*YES) specified
is issued only when the data is actually sent to the display.

¢ |f the time between the write operation and the read or write-read is long. For
example, if the program does several database operations after the write oper-
ation (before it issues a read or write-read operation), the user will not see the
data while the database operations are performed.

 |If the file is closed after the write-only operation and the KEEP keyword is not
specified. If the display file has the DDS keyword KEEP specified in any of its
records, the data accumulated from the write-only operation is displayed when
the file is closed. However, if the KEEP keyword is not specified, the data may
never be displayed.

The DFRWRT parameter has no effect on the following:

e Write operations using user-defined data streams
* Write operations to display files that use program-described data
¢ Record formats for which the FRCDTA DDS keyword is in effect

Specifying Default Values for Fields

Both DFT and DFTVAL keywords are used to specify the default values to be dis-
played for fields. However, there are differences between the way the two are
used.

The DFT keyword can be used with constant, input, output, and output/input fields
and cannot be optioned. When it is used with output or output/input fields the
OVRDTA and PUTOVR keywords must also be specified. If the record is not on
the display, this combination of keywords will cause the default value to be placed
on the screen. If the record is already on the display, the PUTOVR keyword is in
effect and the data from the program appears on the display rather than the default
value.

The DFTVAL keyword can be used only on output and output/input fields and can
be optioned. If it is in effect on an output operation, the value from the keyword is
placed in the field, rather than the value from the program. If the record is on the
display and the PUTOVR and OVRDTA keywords are in effect, the program value
is used rather than the default value.

3-26 Application Display Programming V4R1

The DFT and DFTVAL keywords may not be specified on the same field.

Indicating Which Mode to Display Records

Some display stations, for example the 3180-2 display station, support an alternate
screen size. You can specify this alternate size using the DSPMOD keyword. The
DSPMOD keyword indicates, for a particular record, which mode is used to display
the record. Any record that does not have the DSPMOD keyword specified for it is
displayed in the default display mode. The default display mode is the first of the
*DS3 or *DS4 display sizes on the DSPSIZ keyword.

The DSPMOD keyword is only valid when both *DS3 and *DS4 are specified on the
DSPSIZ keyword. This keyword is valid only at the record level. Option indicators
are allowed. The DSPMOD keyword may not be duplicated in a record.

Note: The capability to display in 27 by 132 mode is allowed on 3180-2, 3197,
3477 Models FA, FC, FD, FE, FG, FW, and 3487 Models HE, HD, HW, HC
display stations attached to a local display station controller, or remotely
attached to a 5294 or 5394 controller. The DSPMOD keyword is ignored
unless these controllers are used.

For example, the following DDS would display RECORD1 in 27 by 132 mode, and
RECORD?2 in 24 by 80 mode (the default mode set up by the DSPSIZ keyword).
RECORDS3 will be displayed in 27 by 132 mode if option indicator 03 is on, or in 24
by 80 mode if option indicator 03 is not on.

P U FUTUE SN JUIE SN NI P ST SN U SO : SO U S

A DSPSIZ(*DS3 *DS4)
A R RECORD1 DSPMOD (*DS4)

A R RECORDZ

A R RECORD3

A 03 DSPMOD (*DS4)

Figure 3-11. Sample DDS Source Showing Use of the DSPMOD Keyword

The use of the DSPMOD keyword can cause the display mode to be changed dra-
matically. Caution should be used when specifying the DSPMOD keyword. When
a record with DSPMOD active causes the mode to be changed, all records cur-
rently on the display are cleared and deleted from the active record table. The
record with DSPMOD active is then sent to the display. The mode for this record is
maintained on the display as long as the DSPMOD keyword is active. Setting
DSPMOD off or a write operation to another record without DSPMOD causes the
display mode to be placed back in the primary display screen size for the display
station.

Using the previous sample DDS source, the DSPMOD keyword gives the following
results if records are written to the screen in the following order:

¢ RECORD1 is displayed in *DS4 mode.

e The display screen is cleared and RECORD? is displayed in *DS3 mode.

 |If indicator 03 is off, RECORD3 is displayed in *DS3 mode. RECORD2
remains on the display if the OVERLAY keyword is specified.

¢ |If indicator 03 is on, RECORD? is cleared and RECORD3 is displayed in *DS4
mode.

Chapter 3. Working with Display Files in an Applicaton ~3-27

Note: When changing display modes, the displayed subfile data is removed from
the display. However, the subfile data is not cleared from the subfile table.

The following keywords are ignored if the display modes have changed:

Table 3-5. Keywords Ignored If Display Modes Are Changed

Keywords Additional Information

ALWROL When a record is not on the screen, it cannot be rolled.

ASSUME The records with the ASSUME keyword remain on the screen
when the file is opened. When the display modes change, the
records on the screen are cleared. This is similar to specifying
the ASSUME keyword without the OVERLAY keyword. The
display size of the file with the KEEP keyword must equal the
display size of the file with the ASSUME keyword.

CLRL All lines will be cleared by a change in display mode.

ERASEINP/INZINP When the display modes change, the record is displayed with

ERRMSG PUTOVR not in effect, even if the record was on the screen

ERRMSGID before the display modes changed.

KEEP

OVERLAY

PROTECT

PUTOVR

PUTRETAIN -

SFLMSG

SFLMSGID

Positioning the Cursor after an Output Operation
You can specify where you want the cursor positioned after an output operation by
using the CSRLOC or DSPATR(PC) keyword.

On the record-level keyword CSRLOC, you can specify the names of two 3-byte
zoned decimal hidden fields that contain the exact line and position for the cursor
location. With the CSRLOC keyword, you can position the cursor outside the
record you are displaying.

The field-level keyword DSPATR(PC) positions the cursor at the first position of the
field after the record is written. However, if the OVERLAY keyword is specified at
the record level, the cursor position may be lost after subsequent write operations.

Note: The cursor is not positioned if the keyboard is unlocked before the output
operation.

If both the CSRLOC and DSPATR(PC) keywords are specified, the cursor is posi-
tioned by the CSRLOC keyword. If several fields have DSPATR(PC) keyword
specified, the cursor is positioned at the first field for which the DSPATR(PC)
keyword is specified.

If the CSRLOC and DSPATR(PC) keywords are not specified, the cursor is posi-
tioned at the first input-capable field on the display. If there is no input-capable
field, the cursor is positioned in the upper-left corner of the display. However, if the
CSRLOC and DSPATR(PC) keywords are not specified for records containing
input-capable fields, the cursor position may be lost if the record is suspended and
then restored. For example, the cursor position may be lost if the F1 (Help) key is
pressed after the record is displayed.

3-28 Application Display Programming V4R1

Other DDS functions can affect the write operation. For a write operation to a user-
defined data stream (USRDFN keyword), the functions performed are determined
by the user-supplied controls.

Returning the Cursor Position to an Application
You can determine where the cursor was positioned on input by using the
RTNCSRLOC (return cursor location) keyword.

This keyword may be specified in either of two formats:

¢ Return the name of the record and field in which the cursor is currently posi-
tioned. Optionally, a third parameter may be specified that will contain the rela-
tive cursor position within the field.

* Return the row and column position of the cursor relative to the display.
Optionally, two additional parameters return either of the following:

— The row and column position of the cursor relative to the active window (if
one exists)

— The location of the cursor at the beginning of a two event mouse button
call.

The parameters of these formats are described in the DDS Reference.

Returning the Cursor Position Within a Subfile to an Application

On input, you can determine where the cursor is located in a subfile by using the
SFLCSRRRN (subfile cursor relative record number) keyword. The relative record
number on which the cursor is positioned is returned in the hidden field specified as
the parameter on the keyword. The field must be defined in the record format as a
signed numeric (S in position 35) with a length of 5 with zero decimal places. Also,
it must be a hidden field (H in position 38).

Returning the Mode of a Subfile to an Application

You can use the SFLMODE (subfile mode) keyword to determine whether the
subfile was in folded or truncated mode on input. The mode parameter is required.
The SFLMODE keyword is only valid for subfile control records and the SFLCTL
keyword must be specified.

The field specified for the mode parameter is defined in the record format as a 1
character (A in position 35) hidden field (H in position 38). The field is returned
with a value of 0 if the subfile is folded and with a value of 1 if the subfile is trun-
cated. If SFLDROP (subfile drop) or SFLFOLD (subfile fold) is not specified on the
SFLCTL (subfile control) record, the value is always returned as O.

Initializing Output/Input Fields

Device support saves all data read from input-capable fields for records currently
on the display in a save area. The output/input fields within this save area are
updated on output operations.

For output operations, the following happens:

e Input-only fields are initialized to zeros (numeric fields), blanks (character
fields), or a default value (DFT keyword) from the display file.

e Qutput/input fields, hidden fields, and program-to-system fields are initialized to
the contents of the output buffer. If this output operation is caused by the ini-
tialize record function (INZRCD keyword), no output buffer is available.

Chapter 3. Working with Display Files in an Applicaton ~ 3-29

Output/input fields and hidden fields are initialized similar to input-only fields.
Output/input fields are input and output capable.
e Output-only fields are not part of the input buffer unless they are part of a
subfile record, in which case they are saved as if they were output/input fields.
e All response indicators for this record are set off.

Note: For input-capable fields, if the PUTRETAIN or ERASEINP keyword is in
effect, the save area for the field remains unchanged.

Neither the input nor the output buffer is changed during write operations.

Inviting Input to the Display

The invite operation is used to send a request for input to a display station and
return to the program without waiting for the input to arrive. This allows a program
to request input from one or more display stations but continue processing without
waiting for any of the display stations to respond. When the program is ready to
process the input, the data can be received from any of the invited display stations
by performing a read-from-invited-devices operation.

The invite operation is done by performing a write operation using a record format
with the INVITE DDS keyword in effect. Refer to the appropriate high-level lan-
guage manual to determine how to perform a write operation and how to use indi-
cators to control the INVITE DDS keyword.

Once a display station is invited, the valid operations to receive data from the
display station are the read-from-invited-devices operation and the read(wait) oper-
ation directed to a specific display station. Cancel invite is also a valid operation to
an invited display station.

Before a display station can be used for I/O operations in a multiple-device display
file, it must be acquired to the file. A program can direct the invite operation to any
display station currently acquired for the file.

If the multiple-device display file was created with DFRWRT(*YES) specified, an
output operation with the INVITE DDS keyword optioned on will cause the output
that has been postponed to be displayed on the screen before the display station is
invited.

If you want to invite a display station but have no data to send to it, perform the
output operation with a record format which contains the INVITE DDS keyword
optioned on but has no output-capable fields.

Multiple-display station display files are supported in ILE RPG*, ILE COBOL*, ILE
C*, and CL.

Inviting Input from CL Programs: The invite operation is available directly to CL
programs through CL commands:
e WAIT(*NO) on RCVF and SNDRCVF Commands:

WAIT(*NO) allows overlapping of I/O operations and the running program,
requests for input from more than one display, and receiving input as it is avail-
able. This provides support equivalent to the invite operation.

On a read operation with the no-wait option, the system sends the request to
the display and returns to the program. However, the requested record is not

3-30 Application Display Programming V4R1

available when control returns. The purpose of this operation is to make the
display station eligible to send input data while the program performs other
work.

To retrieve the record, issue a WAIT command. The WAIT command issues a
read-from-invited-devices operation. The program waits until data is available
from the display station or the WAITRCD time elapses. Then, the display
station name and any input data are passed to the user program. If more than
one read-with-no-wait operation has been issued (each to a different display)
and more than one completes, the WAIT command processes only the first
read-with-no-wait operation that is completed.

A WAIT command can be issued to process each of the other read-with-no-wait
operations. They are processed in the order of completion.

When a record containing the INVITE keyword is sent to the display, the opera-
tion is handled as a write-read operation with a no-wait option. The INVITE
DDS keyword is ignored on the write-read operation.

A write-read operation with a no-wait option is the same as a write followed by
a read-with-no-wait.

e ENDRCV Command.

The ENDRCV command is used to end a request for input made with the
WAIT(*NO) option. The ENDRCV command ends the input request even if
data is available from the display station. If data is being sent by the display
station when the ENDRCYV operation is performed, the data is lost. If the
display station is not invited, the application program is signaled with an error.

Reading Invited Input from the Display
The read-from-invited-devices operation provides a means of waiting for and
receiving data from any one of the invited display stations. This method of inviting
a display station and then reading from the invited display station is useful when
the application must control the amount of time spent waiting for the user to
respond. When the read-from-invited-devices operation is performed, the program
waits for the time interval specified on the WAITRCD keyword of the CRTDSPF,
CHGDSPF, or the OVRDSPF command. The wait can be ended in the following
ways:

» Data becomes available from an invited display station. The display station
name, the results of the operation, and any input data are passed to the
program. When data has been received, the display station is no longer invited
and must be invited again by an invite operation if more data is to be received
from the display station by a read-from-invited-devices operation.

* No-display station-invited signal. Indicates that none of the display stations
associated with the file are in the invited condition. Refer to the appropriate
high-level language manual for information on how this will be communicated to
the program.

e Job-ended-controlled signal. Indicates that the job that the program is running
in is being ended with the controlled option through the End Job (ENDJOB),
End System (ENDSYS), Power Down System (PWRDWNSYS), or End Sub-
system (ENDSBS) command. Refer to the appropriate high-level language
manual for information on how this will be communicated to the program. This
occurs only once in a process no matter how many multiple-device display files
are in use. All invited display stations remain invited.

Chapter 3. Working with Display Files in an Applicaton ~3-31

» No-invited-devices-have-data-available signal. This occurs when no display
stations associated with the file have data available, the WAITRCD time is
*IMMED, and none of the previous conditions apply. The invited display
stations remain invited. Refer to the appropriate high-level language manual
for information on how this will be communicated to the program.

e Time-out-on-wait-for-data-from-invited-devices signal. This occurs when the
WAITRCD value is a finite number of seconds, no data became available
during that interval, and none of the previous conditions apply. Refer to the
appropriate high-level language manual for information on how this will be com-
municated to the program. The invited display stations remain invited.

Also, ILE COBOL provides a means of performing the read-from-invited-devices
operation as if WAITRCD(*IMMED) had been specified. See the ILE COBOL
books for information on the NODATA phrase and its effect on the read-from-
invited-devices operation.

Understanding the Read-From-Invited-Devices

When the program is ready to process input from one of the invited display
stations, it can issue a read-from-invited-devices operation. This operation waits for
a specified time for input to arrive from one of the invited display stations. The time
limit can be specified when the display file is created and can subsequently be
changed or overridden. If no invited display stations respond within the time limit,
the program receives an indication that the time limit expired and can continue pro-
cessing. If an invited display station responds within the time limit, the program can
determine which display station responded and the record format used to process
the data. The other invited display stations remain invited and can be sending
data. The responding display station can also be invited again by another invite
operation.

A read operation can also be directed to a specific display station. This operation
will not complete until the specified display station responds with data. The display
station need not be invited for the read operation, but, if it is, the program will wait
for input and the display station is no longer invited.

* The read-from-invited-devices operation only accepts data from display stations
which are currently invited.

* |If more than one display station acquired to the display file has an invite out-
standing, a read-from-invited-devices operation will return the next available
record from one of the invited display stations. If records are received from
more than one display station before the read-from-invited-devices operation,
the other records will be kept for a subsequent read-from-invited-devices opera-
tion or for a subsequent read(wait) operation directed to a specific display
station.

* When a display station has responded and the input is received by the read-
from-invited-devices operation, that display station is no longer invited. It can
be invited again by another invite operation but this should not be done until all
the record formats on the display with input-capable fields have been read.

¢ A record format cannot be specified on the read-from-invited-devices operation.
The record format returned from a display is the same as the last record format
written to the display station.

e The timing function associated with the WAITRCD parameter may not force an
end to the wait if the system is processing the Help key. In the following

3-32 Application Display Programming V4R1

cases, the read-from-invited-devices function will not end until the user exits
from the help information:

— The system is displaying help that is defined by H specifications in the DDS
for the display file.

— The system is displaying help for a message when the display station is the
requester display station for the job and the display file specifies
MAXDEV(1).

You can force message help to end when the WAITRCD time ends by speci-
fying a value greater than 1 for the MAXDEV parameter on the CRTDSPF or
CHGDSPF command.

Reading-From-Invited-Devices from CL Programs: The read-from-invited-
devices operation is available directly to CL programs through CL commands. To
retrieve the record, issue a WAIT command. The WAIT command issues a read-
from-invited-devices operation. The program waits until data is available from the
display station or the WAITRCD time elapses. Then, the display station name and
any input data are passed to the user program. If more than one read-with-no-wait
operation has been issued (each to a different display) and more than one com-
pletes, the WAIT command processes only the first read-with-no-wait operation that
is completed.

A WAIT command can be issued to process each of the other read-with-no-wait
operations. They are processed in the order of completion.

When a record containing the INVITE keyword is sent to the display, the operation
is handled as a write-read operation with a no-wait option. The INVITE DDS
keyword is ignored on the write-read operation.

A write-read operation with a no-wait option is the same as a write followed by a
read-with-no-wait.

Reading Input from the Display
A read operation passes a record from the system to the program. The display
file record format contains the information necessary for the system to handle the
record. The user must perform a required action such as pressing the Enter key or
a function key to pass the data to the system. The read operation results in the
following:

Chapter 3. Working with Display Files in an Applicaton ~3-33

Read Operation

Program

R

5

Returns data

to program
Unlocks
keyboard Locks keyboard
(If locked) after user action AVAWOLL2

For input operations, the following happens in the order given:

1. For an input-only operation, all response indicators for this record are set off
and the read operation is issued.

2. Character fields received from the display are right- or left-justified and padded
with blanks or truncated as necessary. The default is left-justify, which can be
overridden using the AUTO or CHECK keyword.

3. Numeric fields received from the display have the following done to them:

a. If the field is negative, the zone portion of the units position is set to a D
(see “Handling Negative Numeric Input Data” on page 3-40).

b. All nonnumeric characters are removed and the numeric characters are
compressed.

c. Signed numeric fields are right-justified and numeric-only fields are decimal
aligned.

d. The field is padded with zeros or truncated as necessary.

e. Field validation is performed.

All fields received from the display whether they are part of the selected record or
not are handled in this way.

If any field validation errors are detected, a message is sent to the user so that the
error can be corrected. This process is repeated until there are no longer any
errors. The save area for the requested record is then copied into the input buffer.

Note: To process input data for a read operation with no record format name,
display station support uses the last record written to the display that con-
tains at least one of the following:

e Input-only fields
e OQutput/input fields
e Hidden fields

If no such format is on the display, display station support uses the last
format written to the display that did not contain these kinds of fields, for
example, an output-only record that specifies valid command keys. If no
such record exists on the display, an error message is returned to the
program.

3-34 Application Display Programming V4R1

A record does not have to be written to the display before it can be read by the
program with the INZRCD keyword. The system does this the same way an appli-
cation program performs an output operation with the exception of the following:

e For an output-only field, no user data is available so the field is initialized to
blanks. If the field is edited, the editing is ignored. If the BLKFOLD keyword is
specified, it is ignored.

e For an output/input field, no user data is available so the field is initialized to
blanks. If the field is edited, the editing is ignored. The field actually contains
null characters (hexadecimal zeros), which appear as blanks.

e For a constant or input-only field, the data does not normally come from the
output buffer so the field appears the same as when the program displays it
using a write operation.

e For a hidden field, the field is returned on a read operation as blanks (hex 40) if
the field is a character field or zeros (hex FO) if the field is a numeric field.

e For a message, there is no message data so the field is ignored.

e The LOGOUT keyword is ignored.

e The ERRMSG and ERRMSGID keywords are ignored because the record is
not already on the display.

e The SFLMSG and SFLMSGID keywords are ignored.

All other fields or keywords are processed as if they were selected on an output
operation.

Unlocking the Keyboard while the Program Is Processing Data
The keyboard can be unlocked so that data can be entered into input fields while
the program is processing previously entered input data with the UNLOCK keyword.

Normally, input fields are not erased until after the keyboard is unlocked. On a
read operation, input fields are erased after the keyboard is unlocked only if the
UNLOCK keyword is specified and the GETRETAIN keyword is not specified.

For the 5250 display station, the read operation with the UNLOCK keyword in effect
results in the following:

1. The 5250 display station does a hardware validity check on the fields. If no
errors are found, the following is done:

a. If the UNLOCK keyword is specified without the GETRETAIN keyword or if
the UNLOCK(*ERASE) keyword is specified, all input-capable fields that
are changed are cleared.

b. If the UNLOCK keyword is specified with the GETRETAIN keyword or if the
UNLOCK(*MDTOFF) keyword is specified, all modified data tags (MDTS)
are reset.

c. If the UNLOCK(*ERASE *MDTOFF) keyword is specified, all input-capable
fields that are changed are cleared and their MDTs are reset.

d. The cursor is repositioned to the field where the user can enter the next
record.

e. The keyboard is unlocked.

2. The system validity checks all the fields for all records on the display. If errors
are detected, normal error retry is performed. A user could be typing into the
next record when an error message is displayed.

Note: The error message could refer to data that is no longer on the display
because the data was erased.

Chapter 3. Working with Display Files in an Applicaton ~3-35

3. Control returns to the program.

Notes:

1. If an application program detects input errors and sends error messages to the
display, the messages may refer to input that has been typed over.

2. If the CHANGE keyword is specified and either the UNLOCK keyword is speci-
fied without the GETRETAIN keyword or with the UNLOCK(*ERASE) keyword
is specified, the associated response indicator is set on for the next input
record.

3. When a read operation with the UNLOCK keyword (and without the
GETRETAIN keyword) or the UNLOCK(*ERASE) keyword is used for a record
while a subfile is on the screen, subfile records may be returned to the program
on a subsequent get-next-changed operation to the subfile even though the
user did not enter data into the subfile record. It is recommended that you use
the UNLOCK(*ERASE *MDTOFF) keyword instead of the UNLOCK keyword
(without the GETRETAIN keyword) or the UNLOCK(*ERASE) keyword. If you
must use either of the latter, you should make sure that your high-level lan-
guage program compares for blanks to handle the possibility that an unmodified
field containing all blanks is returned to the program.

Keeping Input Data

Input data on a display can be kept after the user presses the Enter key with the
GETRETAIN keyword. The GETRETAIN keyword can only be used with the
UNLOCK keyword.

Setting an Indicator When Data Is Changed
A response indicator can be set on when data is entered into an input field or when
data is changed in an output/input field with the CHANGE keyword.

Initializing Records and Unlocking the Keyboard—Diagram
The following diagram shows the effect of INZRCD and UNLOCK keywords on an
input operation:

Before n After
B Not
Get A ot Used
with INZRCD
D N A
c Not Used
Get E
with INZRCD Not Used
and UNLOCK
™ E
Not Used

RV2W033-1

Note: Record formats A, D, and E occupy the same lines.

3-36 Application Display Programming V4R1

Record formats B, D, and C are erased if the OVERLAY keyword is not speci-
fied for record format A. Record format A is displayed with constants and ini-
tialized input fields. The keyboard is unlocked. The keyboard is locked after
the user satisfies the get operation.

H Record formats B, D, and C are erased if the OVERLAY keyword is not speci-
fied for record format E. Record format E is displayed with constants and ini-
tialized input fields. The keyboard is unlocked. After the user satisfies the
read operation, the contents of the input fields are erased and the keyboard is
unlocked again.

Note: Even though the UNLOCK keyword is specified, field validity checking, if
specified, and command key verification are performed. Therefore, a user
could be typing into the next record when an error message is sent to the
display.

Specifying Validity-Checking Functions
Two methods can be used to check the validity of data entered by the user:

¢ Have the system check the data before it is passed to the application program.
e Have all the input data passed to the application program, which checks the
validity of the data.

In either case, if errors are detected, a message is displayed informing the user of
the error so that it can be corrected. If you choose the second method for
detecting errors, see “Creating and Displaying Your Own Messages” on page 8-1
for information on how your program can display error messages. The rest of this
section gives more information on the first method, when the system detects the
errors before passing the data to your program.

The validity-checking functions you can specify in DDS are:

¢ Detecting fields in which at least one character must be entered (CHECK(ME)
keyword). Blanks are valid characters. This is referred to as mandatory enter.

e Detecting fields in which every position must contain a character (CHECK(MF)
keyword). Blanks are valid characters. This is referred to as mandatory fill.

¢ Detecting incorrect data types where character, numeric, or signed numeric
data is required.

» Detecting data that is not in the range specified for the field (RANGE keyword).

» Performing comparison checking between data entered and specified constant
value (COMP keyword).

e Comparing the data entered to a specific list of valid entries (VALUES
keyword).

e Detecting if a valid field or record name was entered in a character field
(CHECK(VN) keyword).

e Detecting if a valid object name was entered in a character field (CHECK(VNE)
keyword).

e Performing modulus 10 or 11 check digit verification (CHECK(M10) or
CHECK(M11) keyword). (Only one can be specified.)

» Allowing blank-key entries to be processed as if no entry had been made
(CHECK(AB) keyword). CHECK(AB)-Allow Blanks—is ignored if the subfile
keyword SFLROLVAL or SFLRCDNBR is also specified for the field.

e Detecting if a space, a plus sign, or a minus sign is embedded between
numeric digits in a numeric field. Also, detecting if a plus sign or minus sign
precede a numeric digit in a numeric field. To detect such cases, use the Vali-
date Numeric (VALNUM) keyword.

Chapter 3. Working with Display Files in an Applicaton ~3-37

The ERRSFL keyword can be used in addition to the validity checking keywords
CHECK(M10 M11 VN VNE), COMP, RANGE, and VALUES to allow more than one
of the error messages associated with the keywords to be displayed at one time.

When you specify the RANGE, COMP/CMP, VALUES, CHECK(VN), CHECK(VNE),
CHECK(M10), or CHECK(M11) keyword for validity checking and an error is
detected by one of these validity checking functions, the following happens:

1. The keyboard is locked.

2. All fields in error are displayed in reverse image. If a field in error has both the
underline (UL) display attribute and the highlight attribute (HI), its image is not
reversed, as this combination of attributes has the same effect as
DSPATR(ND).

3. The cursor is positioned at the beginning of the first field in error.

4. A system-supplied error message for the first field in error is displayed on the
error line,
or,

If you have chosen to provide your own error message for a field using the
CHKMSGID keyword and this is the first field in error, then your error message
is displayed on the error line.

If your controller is installed with the self-check feature (see the 5250 Functions
Reference), the controller performs validity checking for the CHECK(M10F) and
CHECK(M11F) keywords. Errors are detected when you attempt to move the
cursor from the input field rather than when you press the Enter key or a Command
Attention key. The Operator Error Code 00115, rather than a system-supplied or
user-specified message, is displayed in the lower left corner of the display. If the
USRDSPMGT keyword is also specified, CHECK(M10) and CHECK(M11) function
as CHECK(M10F) and CHECK(M11F).

If the RANGE, COMP, VALUES, CHECK(VN), or CHECK(VNE) keyword is speci-
fied for a field, and data is entered into that field, the field indicates that it has been
changed regardless of attempts by the user to restore the field after an error. If
blanks (for character fields) or zeros (for numeric fields) will fail the validity checking
function, use the CHECK(AB) keyword. This will satisfy the validity checking func-
tion.

When you specify validity checking for records that are part of a subfile, each field
in the record is validity checked before it is placed in the subfile from the display.
You cannot roll the records until all fields in error are corrected.

The system only performs validity checking on a field if the field is changed by the
user or if its modified data tag (MDT) is set on using DSPATR(MDT).

Notes:

1. If the user presses the Dup key, any validity checking for a field is ignored.
The DUP keyword lets the user use the Dup key.

2. The value for a numeric field for which the COMP, VALUES, or RANGE
keyword is specified is aligned based on the decimal positions specified for the
field and filled with zeros where necessary. If decimal positions were not
entered for the field, the decimal point is assumed to be to the right of the digit
to the extreme right in the value. For example, for a numeric field with length

3-38 Application Display Programming V4R1

of 5 and decimal positions of 2, the value 1.2 is interpreted as 001.20 and the
value 100 is interpreted as 100.00.

3. When you use the RANGE keyword for validity checking an input field and
blanks are entered in the input field, the value for the input field may not meet
the range requirements. Blanks are converted to zeros for numeric fields and
are passed as blanks for character fields. Use the field level keyword BLANKS
to determine when a field is displayed as all blanks. The response indicator on
the BLANKS keyword is set on if the user enters blanks.

Understanding the Limitations on the Number of Input-Capable

Fields

For a remote 5250 display station (a display station attached through a remote con-
troller), you can specify as many as 126 or 256 input fields on one display,
depending on the controller model. (The 5294 controller supports 126 input fields;
the 5394 controller supports 256 input fields.) Additionally, if either DSPATR(OID)
or DSPATR(SP) is specified, this maximum is reduced by 1 for each three
instances of these keywords. If fewer than three instances occur, it is still reduced
by one.

For a local 5250 display station (a display station attached through the local display
station controller), you can specify as many as 256 input fields. Also, if either
DSPATR(OID) or DSPATR(SP) is specified, this maximum is reduced by 1 for each
three instances of these keywords. In addition, any use of the magnetic stripe
reader on a local 5250 display station also reduces the maximum number of fields.
The maximum number of fields is calculated as follows:

256 - [3“;8 +% } rounded up to the next whole number

RSLH131-2

A is the number of DSPATR(OID) and DSPATR(SP) fields on the display and B is
the length of the longest expected magnetic stripe input where 125 data characters
is the maximum allowed. Magnetic stripe data not specified as DSPATR(OID) can
be entered into any input field.

If the maximum number of input fields is exceeded in any of the preceding cases,
message CPF5192 is issued to the using program.

No maximum-number-of-fields diagnostic is provided during display file creation
because the number of fields and record formats is not known until the program is
run.

When a subfile record is displayed, the actual number of input-capable fields sent
to the display is the number defined in the record multiplied by the number of
subfile records that are displayed.

For remotely attached 3270 displays, the limitation is 126 input fields.

For ASCII displays attached through a protocol converter, the limitations are the
same as the controller to which they are attached.

Chapter 3. Working with Display Files in an Applicaton ~3-39

Handling Negative Numeric Input Data
The negative sign in numeric input data can appear in three forms:

* Hex 60 if the sign is entered using the - (minus) key
e Hex D if the sign is entered using the Field Minus key
¢ Hex Dn if the sign is entered as an alphanumeric character with a D zone

The hex 60 is treated as a true minus sign if it is to the right of the least significant
digit.

The hex D zone is treated as a minus sign if it is the least significant digit. In
addition, it is treated as a significant digit with a value equal to the numeric portion.

Imbedded blanks (between significant digits) are changed to zeros before decimal
alignment.

Understanding How the System Reads Input from the Display

When a read operation is issued, the system reads all the records on a display.
However, only one record is passed to the program for each read operation. The
system saves all the other records in anticipation of more read operations.

If each read operation refers to a different record on the display, no action is
required of the user. However, if each read refers not to a different record on the
display but to the same record and if the RTNDTA keyword is not specified, the
user must perform an action such as pressing the Enter key or a CFnn key to start
the next read operation because each record entered is passed to the program only
once. If the RTNDTA keyword is specified, the user does not have to perform any
action because the same input buffer that was returned to the program on the pre-
vious read operation for the record is returned again.

The system saves the contents of input-capable fields for records that are active on
the display. This saved data is passed to the user program and can be altered by:

* Initializing the data with a constant on a write operation. A field can be initial-
ized with the value specified in a DFT keyword.

e Entering data through directly typing the data in or using a light pen to select
data. (The MDT for a field can be set on to simulate user input.)

e Entering data from a program on a write operation. This applies to output/input
fields (and output-only fields for subfiles).

 |nitializing the data with blanks (character fields) or zeros (numeric fields) on an
output operation for the same record unless the PUTRETAIN keyword is speci-
fied. This applies to input-only fields.

Writing Output and Reading Input at the Same Time
The write-read operation is a combination of a write operation and a read operation
to the same record format in one high-level language statement like the SNDRCVF
command in a CL program. It behaves as if you had specified a read operation
immediately following a write operation.

Some high-level languages have a write-read operation which writes information on
the display and reads the user response in one statement. For example, ILE RPG
has the execute format (EXFMT) operation. This kind of operation is useful if you
need to both present new information on the display and request information from
the user at the same time. You can also use a write operation followed by a read

3-40 Application Display Programming V4R1

operation to the same record format to simulate this operation in languages that do
not support a combined write-read operation.

When this operation is performed, the following happens:

1. The program calls the system display support giving it the data to show on the
display and the record format to use when writing and reading that data.

2. The system combines that data with the information it finds in the record format
and constructs the data stream to be sent to the display.

3. The data stream is then sent to the display and the keyboard is unlocked.

4. The user types the data in the fields which allow input and presses the Enter
key or some other function key.

5. The data is then sent from the display to the system. The system decodes it
and extracts only the information that the application program needs to know
and returns that data to the application program.

When you work with only one record format, this write-read style of working with it
is the most common. On the write portion of the operation, you provide the data
that the user will see. On the read portion, you receive data back that the user has
entered or changed.

Canceling Input That Was Not Waited For

The cancel-invite operation is used to cancel the input request issued to a display
station that was previously invited through the invite operation. The input request is
canceled by performing a write operation to the invited display station. One of the
following occurs:

» |If the write request is received before the user responds to the input request
from the invite operation, the input request is canceled and the record format
specified on the write operation is sent to the display station. If the record
format has the option indicator set on for the DDS keyword INVITE, the display
station is invited again.

 |f the write request is received after the user responds to the input request from
the invite operation, the input request is not canceled and the write operation
fails. The read-from-invited-devices operation or a read(wait) operation must be
issued to receive the available data.

Releasing a display station also implicitly cancels any input requests directed to the
display station. If the display station has data available, the data is lost.

Locking the Keyboard and Positioning the Cursor During 1/0O
Operations

The following lists what happens to the keyboard when a write, write-read, or read
operation is run:

Operation Keyboard

Write The keyboard is unlocked by default. If the LOCK keyword is
specified, the keyboard is not unlocked.

Write-Read The keyboard is unlocked.

Chapter 3. Working with Display Files in an Applicaton ~ 3-41

Operation Keyboard

Read The keyboard is unlocked (if locked) before display station user
action. After user action, the keyboard is locked by default. If the
UNLOCK keyword is specified, the keyboard is left unlocked.

Every time the keyboard is unlocked, the cursor is repositioned. In some cases,
many write operations between read operations can cause erratic cursor move-
ment. If the user starts typing before the last write operation, the cursor is reposi-
tioned when the keyboard is unlocked and this can cause confusion for the user.
You can prevent this by using the LOCK keyword. By using the LOCK keyword on
each write operation but the last, the keyboard remains locked until the last write
operation. This avoids erratic cursor movement, but prevents the user from starting
to type data.

Normally, a user action, such as pressing a valid command key, locks the key-
board.

To specify that the system unlock of the keyboard on the next input operation
should not occur, specify the retain lock status (RETLCKSTS) keyword. This
keyword prevents the loss of data when the input operation is started and data is
already being transmitted from the keyboard.

Note: Use the RETLCKSTS keyword only when the keyboard is already unlocked.

To position the cursor with the DSPATR(PC), CSRLOC, or
SFLRCDNBR(CURSOR) keyword, the keyboard must be locked. Only the fol-
lowing conditions on an output operation cause the keyboard to be locked and must
be present for the display station to position the cursor. (An output operation
normally unlocks the keyboard before it ends unless the LOCK keyword is specified
so these conditions lock the keyboard only momentarily.)

¢ Input-capable fields are erased (ERASEINP keyword).

* Modified data tags are reset (MDTOFF keyword).

* Any input-capable field is written to the display.

e The complete display is erased (a write operation without an OVERLAY

keyword).

e The 5250 format buffer is reset, which can be the result of:
— A record format with an input-capable field is overlaid or erased.
— A record format with a cursor location specification is overlaid or erased.
— The PROTECT keyword is specified on the record being written.

For the cursor positioning keyword to take effect, the keyboard must go from the
lock condition to an unlocked condition. That is, if the keyboard is unlocked prior to
the write operation, the cursor positioning keyword does not take effect immediately
on the write operation. However, there is one exception. If the keyboard is tempo-
rarily locked during an output operation, the cursor positioning keyword will be in
effect if the output operation unlocked the keyboard at the end.

In addition, if any of the preceding conditions happens on a write operation, the
keyboard must be unlocked before any user action either by the same operation or
by a following operation (it should be the last write operation).

A write operation to a subfile never unlocks the keyboard because no input or
output is sent to the display station.

3-42 Application Display Programming V4R1

Saving Previously Displayed Information

A display file may be opened to a display station even when another display file is
already using that display station. When an I/O operation is performed to the
second display file, the first display file is suspended.

When a display file is suspended, the information on the display can be saved
automatically by the system if you specify *YES for the RSTDSP parameter on the
Create Display File (CRTDSPF) or Change Display File (CHGDSPF) command.
The contents of a display file can then be restored when an 1/O operation is later
performed to that display file. If *NO is specified for the RSTDSP parameter, the
application program needs to rewrite the display to show it again.

The RSTDSP parameter lets you overlap a program call, keyboard input, and file
I/O processing, as shown in the following example:

Display File
Program 1 n DSPEILY
Write
Write
»| RCD Y1
Read..........
Display File
DSPFILX
» RCD X1

RV2W046-0

Program 1 issues a write operation to record format RCD Y1 in display file
DSPFILY, which activates display file DSPFILY.

H Program 1 issues a write operation to record format RCD X1 in display file
DSPFILX, which suspends display file DSPFILY and activates display file
DSPFILX. If RSTDSP(*YES) is specified for display file DSPFILY, the data
displayed on the display station is saved. If RSTDSP(*NO) is specified
instead, the data is lost and the program needs to write the information in RCD
Y1 again to show it.

Program 1 issues a read operation to record format RCD Y1, which suspends
display file DSPFILX and restores display file DSPFILY. If the RSTDSP(*YES)
parameter is specified for DSPFILY, then the data displayed on the display
station when DSPFILY is suspended can be restored.

When RSTDSP(*YES) is specified for a display file, and you are suspending and
restoring that display file because of operations to another display file, some dis-
plays may appear to flash on the screen briefly. If a display file has a record on
the display and an 1/O operation is done to a second display file, the first file is
suspended and its screen contents are saved. When returning to the first display
file, the display file and its screen contents are restored. If a write operation is

Chapter 3. Working with Display Files in an Applicaton ~ 3-43

done to a different record format in the display file, the restored display will flash
briefly before the output operation is complete. If you are going to completely
rewrite the display contents from your program when going back to the first file, use
RSTDSP(*NO).

You should specify *YES for the RSTDSP parameter in the following situations:
e When you are writing a record that has the following keywords in effect:

— CLRL

— OVERLAY
— PUTOVR

— PUTRETAIN
— ERRMSG
— ERRMSGID

You must ensure that the records that are on the display are the records that
these keywords apply to. If the display file is suspended, the data must be
restored to the screen so that the write operations to the record formats that
use these keywords are valid.

e When you perform multiple read operations to a record format on the display
without intervening write operations. If you should call a program while pro-
cessing the data that has been read and that program presents a display of its
own, the subsequent read operation done by your program restores the display

properly.

Saving and displaying data again requires significant system and data transmission
overhead. For a 1920-character 5250 display station, approximately 3000 charac-
ters are transmitted each time the display data is saved displayed again. To avoid
this overhead, write your application programs to do the following:

e Make the programs in the application share the same copy of the display file
among themselves by specifying SHARE(*YES) on the display file.

e Perform complete display rewrites each time the programs in the application
write to the display. A complete display rewrite occurs when a record is written
to the screen and the OVERLAY keyword is not used or implied.

Note: If complete display rewrites are not performed and if new input fields,
occupying positions on the screen above the currently displayed fields,
are sent to the display, the program receives a message (CPF5192).
This occurs because the 5250 display station requires that new input
fields sent to the display appear in lower positions than input fields cur-
rently on the display. In normal operations, data management performs
field processing to satisfy the 5250 requirement. See “Avoiding Record
Format Problems on the 5250 Display Station” on page 3-45.

When one program that uses a display file with the SHARE(*YES) parameter speci-
fied calls another program that uses the same display file, the display file is not
suspended even though both programs have opened the file. If the display file is
not shared, the system maintains separate copies of the display file for each
program and suspends and restores the display files separately.

Since system programs do not specify file sharing, you should specify
RSTDSP(*YES) on the CRTDSPF or CHGDSPF command if your program con-
tains a display file and calls system functions that present displays. System func-
tions that break into the normal path of an application, however, such as the

3-44 Application Display Programming V4R1

System Request Menu or the presentation of break messages, restore the display
without RSTDSP(*YES) specified.

To display saved display data again after a close operation is issued to a sus-
pended file, specify the KEEP keyword for a record format in the saved display
data.

Understanding the Effects of I/O Operations on Command Keys
Read and write operations may or may not affect how the function keys work:

e A write or write-read operation for which no input or output is sent to the
display does not affect which keys are valid. Examples of such operations are
a write operation or an update operation to a subfile record format.

 If a write or write-read operation displays a message by selecting either the
ERRMSG or ERRMSGID keyword, the command keys in effect on that output
operation are valid. Therefore, you can specify a different set of command
keys to be valid if an error occurs.

¢ If only one subfile record format is displayed and the subfile control record
format specifies a CAnn or CFnn key for the SFLDROP keyword, that key
remains valid for that function as long as the subfile is still on the display. In
addition, the key specified for the SFLENTER keyword remains valid until
another write or write-read operation is done. At the next output operation, the
specifications for that record apply.

¢ |f two subfile record formats are displayed and both specify the SFLDROP
keyword, only the last SFLDROP keyword is used. There can only be one
drop key at a time.

Avoiding Record Format Problems on the 5250 Display Station

Because of the characteristics of the 5250 display stations, certain record format
positioning and operational combinations can produce undesirable results. The fol-
lowing example illustrates a combination that can cause undesirable results and
explains how to avoid these results.

The displays produced and the DDS for the record formats follow:

Chapter 3. Working with Display Files in an Applicaton ~ 3-45

Enter all information regarding the subscriber:

Last name: First name: MI:
Street: Apt:
City: ~ state:— ZIP: -

DETAIL
record
format

CAl-Display state table, CA2-Display subscription table
RSLH166-0
Alabama AL Alaska AS Arkansas AK Arizona AK
California CA Delaware DE DST Columbia DC Florida DC STATES
Y-More state names, N-No more state names record
Enter all information regarding the subscriber: format
Last name: _Doe First name: John ML:E
Street: 112 EIm Apt: 3A
City: Anytown State: ZIP: -
DETAIL
record
format
CALl-Display state table, CA2-Display subscription table
RV2W047-0

3-46 Application Display Programming V4R1

A R RCDA

A FLD1 1 I 2 4DSPATR(PC)

Ax STATES record format follows

A R STATES OVERLAY

A SNAME1 12 0 1 2

A SCODE1 2 0 115

A SNAME2 12 0 118

A SCODE2 2 0 131

A SNAME3 12 0 1 34

A SCODE3 2 0 147

A SNAME4 12 0 150

A SCODE4 2 0 163

A

A

A . .

A SNAME8 12 0 250

A SCODES8 2 0 263

A 3 2'Y-More state names, N-No more +
A state names'

A MORESNAM 1 I 3 48VALUES('Y' 'N")

Ax DETAIL record format follows

A R DETAIL OVERLAY CA®1(11) CAG2(12)
A 4 2'Enter all information regarding +
A the subscriber:'

A 5 1'Last name:' DSPATR(HI)

A NAMEL 20 I 512

A 5 33'First name:' DSPATR(HI)
A NAMEF 13 I 545

A 5 59'MI:' DSPATR(HI)

A MI 1 I 563

A 6 1'Street:' DSPATR(HI)

A

A STREET 45 1 6 9

A 6 55'Apt:' DSPATR(HI)

A APT 4 1 6 60

A 7 1'City:' DSPATR(HI)

A CITY 15 1 7 7

A 7 23'State:' DSPATR(HI)

A SCODE 2 I 730

A 7 33'Zip:' DSPATR(HI)

A ZIP1 5 1 7 38

A 7 44'-"

A Z1P2 4 1 7 46

A

A

A .

A 10 1'CAl-Display state table, +
A CA2-Display subscription table'

Figure 3-12. Sample DDS to Show Record Format Problems

Assume that the DETAIL record format is on the screen, and the user is entering
data for a subscriber. Because the user does not know the state code for the state
to be entered, he or she presses the CAO1 key.

Chapter 3. Working with Display Files in an Applicaton ~ 3-47

Because CAO01 is defined as a CAnn key, no data is transmitted to the system
when the CAO1 key is pressed. The data, however, remains on the screen. The
program detects that the CAnn key was pressed because response indicator 11 is
set on. The program then displays the STATES record format.

Because the STATES record format is physically above the DETAIL record format,
the system must resend the field formats for the input fields in the DETAIL record
format. (The system would also resend the field formats if the STATES record
format contained only output-only fields and was replacing the RCDA record format.
In this case, the field formats are resent because a record format (RCDA) with a
specific cursor location is being removed.)

The following problems occur because the system resends the field formats for the
DETAIL record format:

e All the input fields in the DETAIL record format lose their modified data tags
(MDTs). When the program does the next read to the DETAIL record format
(for example, when the user presses the Enter key), none of the fields typed in
before the user pressed the CAO1 key are returned to the program. The
program cannot retrieve that typed data even though the data still remains on
the screen.

To avoid this problem:

— Avoid using a CAnn key.

— If you must use a CAnn key, avoid writing the format containing the CAnn
key to the screen and then writing another format that is physically placed
above the first format if both formats contain input-capable fields.

— Avoid writing a format to the screen that causes the removal of a format
containing a cursor location specification.

e The highlight attribute for the constant fields (except Last hame) is lost. The
system does not resend the field format for output-only fields. However, if an
output-only field immediately follows an input-capable field so that the leading
attribute character for the output field is in the same position as the ending attri-
bute character for the input-capable field, the attribute of the output field reverts
to normal.

To avoid this problem:

— Do not specify an output-only field with special display attributes imme-
diately following an input-capable field.

— If you must specify an output-only field with special display attributes imme-
diately following an input-capable field, avoid writing that format to the
screen and then writing another format that is physically placed above the
first format if both formats contain input-capable fields.

— Avoid writing a format to the screen that causes the removal of a format
containing a cursor location specification.

Note: The system needs to resend the attributes for the input-capable fields when
a subfile is rolled from a full page to a partial page, a partial page to a full
page, or a partial page to a partial page. The two problems mentioned
above may also occur when resending the field attributes.

3-48 Application Display Programming V4R1

Releasing an Acquired Display Station from 1/O Operations

The release operation makes a display station ineligible for any further I/O oper-
ations through a file. This operation is used in multiple display file applications or if
you are performing error recovery in your program. If the display station being
released is invited, the invite is ended. If the invited display station had data avail-
able, the data is lost. The release operation can only be performed on display
stations that are currently acquired to the file.

The release operation can also be used to recover from errors from acquire, 1/0,
and release operations. After a display station is released, it must be acquired
again with another acquire operation before any I/O operations can be directed to
it. If a program is written to recover from errors by releasing a display station and
then acquiring it again, a value other than *IMMED should be specified on the
WAITFILE keyword. This is because it takes the system a short time to transfer the
allocation of a display station description from a job, to the subsystem, and back
again.

Closing Display

Files

The close operation makes the display file ineligible for any further 1/0O operations
between the program and the system. Refer to the appropriate high-level language
manual for information on how to start the close operation.

If the display file is not being shared, the close operation also implicitly releases all
the display stations acquired to the file and deallocates any file resources allocated
by the open operation or the acquire operation.

If the close operation is successful, the only valid operation to the file is open. If
the close operation fails, the program should issue the close operation a second
time.

Mapping Display Operations to High-Level Language Operations

The following shows the 1/0O requests supported by the operating system and the
equivalent high-level language operations:

Table 3-6 (Page 1 of 2). Display File Operations Supported by the Operating System and the Equivalent High-
Level Language Commands

BASIC ILEC CL ILE COBOL ILE RPG
Operation Statements Functions Commands Statements Operations
Open OPEN fopen, _Ropen OPEN OPEN
Acquire _Racquire ACQUIRE ACQ
Release _Rrelease DROP REL
Get Attributes _Rdevatr ACCEPT POST
Write WRITE fwrite, SNDF WRITE WRITE,
_Rformat, _Rpgmdev, output
_Rwrite specifications
Read(wait) READ fread, RCVF WAIT(*YES) READ Primary or
_Rformat, _Rpgmdev, secondary
_Rreadn file input,
READ
Read READ RCVF WAIT(*NO) READ
Cancel Read ENDRCV

Chapter 3. Working with Display Files in an Applicaton ~ 3-49

Table 3-6 (Page 2 of 2). Display File Operations Supported by the Operating System and the Equivalent High-
Level Language Commands

BASIC ILE C CL ILE COBOL ILE RPG
Operation Statements Functions Commands Statements Operations
Wait WAIT
Invite fwritel, SNDF1 WRITEL WRITE?L
_Rformat, _Rpgmdev,
_Rwritel
Read from Invited _Rreadindv READ READ
Device
Cancel Invite fwrite, SNDF WRITE WRITE
_Rformat, _Rpgmdev,
_Rwrite
Write-Read(wait) _Rwriterd, _Rformat, SNDRCVF WAIT(*YES) EXFMT
_Rpgmdev
Write-Read(no-wait) SNDRCVF WAIT(*NO)
Close CLOSE, END fclose, _Rclose RETURN, RCLRSC CLOSE, CLOSE,
CANCEL, RETRN
STOP RUN

1 This is the write operation of a record format with the INVITE DDS keyword selected.

If an error occurs during an 1/O operation to a display file, the major/minor return
code field in the file dependent I/O feedback area may be used to help diagnose
the error and determine the error recovery action needed.

Sharing Display Files in the Same Job

By specifying the SHARE parameter on the CRTDSPF, CHGDSPF, and OVRDSPF
commands, you can specify that more than one program share the same path to
the data or the display station. Using the SHARE parameter allows more than one
program to share the file status, positions, and storage area, and can improve per-
formance by reducing the amount of main storage the job needs and by reducing
the time it takes to open and close the file.

Using the SHARE(*YES) parameter lets an open data path (ODP) be shared
between two or more programs running in the same job. An open data path is the
path through which all input/output operations for the file are performed. It con-
nects the program to a file. If not specified otherwise, every time a file is opened a
new open data path is built. You can specify that if a file is opened more than
once and an open data path is still active for it in the same job, the active ODP for
the file can be used with the current open of the file, and a new open data path
does not have to be created. This reduces the amount of time required to open the
file after the first open, and the amount of main storage required by the job.
SHARE(*YES) must be specified for the first open and other opens of the same file
for the open data path to be shared. Specifying SHARE(*YES) for other files
depends on the application.

Note: Most high-level language programs process an open or a close operation
independent of whether or not the file is being shared. You do not specify
that the file is being shared in the high-level language program. You indi-
cate that the file is being shared in the same job through the SHARE
parameter. The SHARE parameter is specified only on the create, change,
and override file commands. Refer to your appropriate language manual for
more information.

3-50 Application Display Programming V4R1

Understanding the Open Operation for Files Shared in a Job

The following items should be considered when opening a file that is shared in the
same job by specifying SHARE(*YES).

* You must make sure that when the shared file is opened for the first time in a
job, all the open options that are needed for subsequent opens of the file are
specified. If the open options specified for subsequent opens of a shared file
do not match those specified for the first open of a shared file, an error
message is sent to the program. (You can correct this by making changes to
your program to remove any incompatible options.)

For example, PGMA is the first program to open FILE1 in the job and PGMA
only needs to read the file. However, PGMA calls PGMB which will delete
records from the same shared file. Because PGMB will delete records from the
shared file, PGMA will have to open the file as if it, PGMA, is also going to
delete records. You can accomplish this by using the correct specifications in
the high-level language. (In order to accomplish this in some high-level lan-
guages, you may have to use file operation statements that are never run.) For
more details, see your appropriate language manual.

 If you did not specify a library name in the program or the override command
(*LIBL is used), the system assumes that the library list has not changed since
the last open of the same shared file with *LIBL specified. If the library list has
changed, you should specify the library name on the override command to
ensure that the correct file is opened.

* Overrides and program specifications specified on the first open of the shared
file are processed. Overrides and program specifications specified on subse-
guent opens, other than those that change the file name or the value specified
on the SHARE or LVLCHK parameters on the override command, are ignored.

Understanding the Input/Output Operation for Files Shared in a Job

The system uses the same input/output area for all programs sharing the file, so
the order of the operations is sequential regardless of which program does the
operation. For example, if Program A is reading records sequentially from a file
and it reads record 1 just before calling Program B, and Program B also reads the
file sequentially, Program B reads record 2 with the first read operation. If Program
B then ends and Program A reads the next record, it receives record 3. If the file
was not being shared, Program A would read record 1 and record 2, and Program
B would read record 1.

For display files, the display station remains in the same state as the last I/O opera-
tion.

For display and ICF files, programs other than the first program that opens the file
may acquire more display or program display stations or release display or program
display stations already acquired to the open data path. All programs sharing the
file have access to the newly acquired display stations, and do not have access to
any released display stations.

Chapter 3. Working with Display Files in an Applicaton ~3-51

Understanding the Close Operation for Files Shared in a Job

The processing done when a program closes a shared file depends on whether
there are other programs currently sharing the open data path. If there are other
programs, the main function that is performed is to detach the program requesting
the close from the file. All other programs sharing the file are still attached to the
ODP and can perform 1/O operations.

If the program closing the file is the last program sharing the file, then the close
operation performs all the functions it would if the file had not been opened with the
share option. This includes releasing any allocated resources for the file and
destroying the open data path.

The function provided by this last close operation is the function that is required for
recovering from certain run-time errors. If your application is written to recover from
such errors and it uses a shared file, this means that all programs that are attached
to the file when the error occurs will have to close the file. This may require
returning to previous programs in the program stack and closing the file in each
one of those programs.

3-52 Application Display Programming V4R1

Chapter 4. Displaying Groups of Records Using Subfiles

A subfile is a group of records that have the same record format and are read from
and written to a display station in one operation. The following sample display
shows an example of a subfile:

CUSTOMER NAME SEARCH

Search code: 41401

Prompt
NUMBER NAME ADDRESS cry STATE Record
Format
41401 Adam’s Home Repair 121 Golden Circle Chicago IL
41402 Jane’s Radio/TV 135 Ransam Drive St Paul MN
41403 Advanced Electronics 809 8th Street St Paul MN
41404 Riteway Repair 443 Western Lane New York NY .
41405 Fixtures, Inc. 607 9th Avenue Chicago IL Subfile
41406 Hall’s Electric 200 Main Street St Paul MN

RV2W049-0

— Information about DDS keywords

This chapter uses DDS keywords to describe subfiles. For more information
about specific DDS keywords, see the DDS Reference.

Recognizing Subfile Uses

Subfiles are useful when multiple records that are alike must be displayed. You
can describe a subfile so that the number of records to be displayed fits on one
display or exceeds the number of lines available on the display.

You can use subfiles for the following purposes:

e Display only, which allows the user to review the subfile records on the display
(for example, all the line items for a particular order number, or a group of
records containing customer names and addresses as shown on the previous
sample display).

e Display with selection, which allows the user to request more information about
one of the items on the display. On the first sample display of the following
example, the user can request the records for a particular customer by entering
the record number in the record number field. In the second sample display,
the user can request the records for a particular customer by placing an X in
the select number field.

© Copyright IBM Corp. 1997 4-1

Enter customer number: 41401
Enter record number:

RECORD NUMBER NAME ADDRESS CITY STATE
01 41401 Adam's Home Repair 121 Golden Circle Chicago IL
02 41402 Jane's Radio/TV 135 Ransom Drive St Paul MN
03 41403 Advanced Electronics 809 8th Street St Paul MN
04 41404 Riteway Repair 443 Western Lane New York NY
05 41405 Fixtures, Inc. 607 9th Avenue Chicago IL
06 41406 Hall's Electric 200 Main Street St Paul MN

Enter customer number: 41401

SELECT
RECORD NUMBER NAME ADDRESS CITY STATE
_ 41401 Adam's Home Repair 121 Golden Circle Chicago IL
_ 41402 Jane's Radio/TV 135 Ransom Drive St Paul MN
_ 41403 Advanced Electronics 809 8th Street St Paul MN
_ 41404 Riteway Repair 443 Western Lane New York NY
_ 41405 Fixtures, Inc. 607 9th Avenue Chicago IL
41406 Hall's Electronic 200 Main Street St Paul MN

e Changing information, which allows the user to change one or more of the
records in the subfile. The following sample display allows the user to change
the QTY and SHIP values:

UPDATE SHIP QUANTITY ON ORDERS
Order: 11589 Customer number: 11111 Customer name: Al'Supply

ITEM DESCRIPTION QTY SHIP LOCATION
25764 Pliers 10 10 RST
33624 Hammer 500 250 RST
49821 Pliers 200 200 RST
26837 Wire Cutters 50 25 RST

e Input only without validity checking, which allows the user to enter data as fast
as possible; or input only with validity checking, which allows the user to enter
data that is validity checked by the system or by the program for valid entries.
The following sample display shows subfiles for input only:

Enter order number: XXXXX
ITEM NUMBER QUANTITY
XXXXX XXX
XXXXX XXX
XXXXX XXX
XXXXX XXX
XXXXX XXX
XXXXX XXX
XXXXX XXX

e Combination of tasks, which can, for example, allow the user to change data as
well as to enter new records. In the following example, the user can change
existing names and addresses or enter new records.

CUSTOMER NAME SEARCH
Search code: 41401

NUMBER NAME ADDRESS CITY STATE
41401 Adam's Home Repair 121 Golden Circle Chicago IL
41402 Jane's Radio/TV 135 Ransom Drive St Paul MN
41403 Advanced Electronics 809 8th Street St Paul MN

¢ Displaying single-choice and multiple-choice selection lists. A single-choice
selection list is a potentially scrollable list from which the user can select one

4-2 Application Display Programming V4R1

item. A multiple-choice selection list is a potentially scrollable list from which
the user can select one or more items. For more information on selection lists,
see “Selection Lists—Overview” on page 6-24.

Panel Title

Single selection 1ist :

Choice text
Choice text
Choice text
Choice text
Choice text
More. ..

Multiple selection Tist :

Choice text
Choice text
Choice text
Choice text
Choice text

More. ..

RV3W077-0

Describing Subfiles in Your DDS Source

Each subfile you describe in your DDS source requires two types of record formats:
a subfile record format and a subfile control record format.

¢ The subfile record format defines the fields in one row of the subfile.

The high-level language program uses the subfile record format to read a
subfile, write new records to a subfile, and update the subfile. Operations to
the subfile record format are performed between the subfile and the high-level
language program; the display is not changed on operations to a subfile record
format.

The subfile (SFL) keyword is required on the subfile record format.

¢ The subfile control record format contains heading information and controls
subfile functions such as size, initialization, and clearing.

The high-level language program performs operations on the subfile control
record format to write the subfile to the display and to read the subfile from the
display.

The following DDS keywords are required on a subfile control record format:

— Subfile control (SFLCTL) keyword, which identifies the subfile control record
format for the subfile record format that immediately precedes it

— Subfile size (SFLSIZ) keyword, which specifies the size of the subfile

— Subfile page (SFLPAG) keyword, which specifies the size of the subfile
page

— Subfile display (SFLDSP) keyword, which specifies when to begin dis-
playing records in a subfile

Chapter 4. Displaying Groups of Records Using Subfiles 4-3

The DDS for the subfile record format must precede the DDS for the subfile control
record format.

Each subfile has two types of records:

¢ An active subfile record is a record that has been:

Added to a subfile by a write operation.

Initialized as active by the subfile initialize (SFLINZ) keyword.

Changed when a write or update operation with the subfile next changed
(SFLNXTCHG) keyword in effect was issued to the record.

Changed by the user.

¢ An inactive subfile record is a record that was:

— Not added to a subfile by the write operation.
— Initialized as inactive by the SFLINZ keyword and the subfile records not
active (SFLRNA) keyword.

You can also perform the following functions on subfiles:

Table 4-1 (Page 1 of 5). Optional Functions for Subfiles

Function DDS keyword Additional information

Allow a subfile to contain mes- Subfile message key See the DDS Reference for

sages from a program (SFLMSGKEY), more information about the

message queue subfile message subfile message keywords.
record

(SFLMSGRCD), and
subfile program
message queue

(SFLPGMQ)
Clear the subfile of all records Subfile clear The subfile is not erased from
before new records are written (SFLCLR) the display, however, until the
SFLDSP keyword is in effect
on the subfile control record. If
the SFLCLR keyword is speci-
fied for a subfile with no
records, it is ignored.
Control when to display a Subfile Display The SFLDSP and SFLDSPCTL
subfile control record Control keywords are the only
(SFLDSPCTL) or keywords that cause the con-
SFLDSP tents of the display to change.

The SFLDSPCTL keyword
must be in effect if an input
operation is done to retrieve
the status of a CFnn or CAnn
key even if no fields are dis-
played.

4-4 ppplication Display Programming V4R1

Table 4-1 (Page 2 of 5). Optional Functions for Subfiles

Function DDS keyword Additional information
Delete the subfile to allow Subfile delete Normally, subfiles should not
another subfile to be used or to (SFLDLT) be deleted by the program.

continue processing the display
file with no subfile used

When the file containing the
subfile is closed, the subfile is
deleted automatically by the
system. However, if the file is
shared and is still open by
another program, the subfile is
not deleted, and you must
delete it in your program. You
should only delete a subfile if
the maximum number of sub-
files are already being used
and you need to use another
one. The SFLDLT keyword is
ignored if the subfile does not
exist.

Display a page of a subfile by

Subfile record

If CURSOR is specified for the

a record number number SFLRCDNBR keyword, the
(SFLRCDNBR) cursor is placed in the subfile

record whose relative record
number is identified by the
contents of this field. The
cursor is positioned at the first
input-capable field in the
subfile record. If there is no
input-capable field, the cursor
is positioned at the first output-
only or constant field.

Display a plus sign (+) in the Subfile end The plus sign is replaced by a

lower corner at the extreme (SFLEND) or blank when the last record is

right of the subfile display area (SFLEND(*PLUS)) displayed. An option indicator

(page) when there are more must be specified with the

records than fit on the display SFLEND or SFLEND(*PLUS)
keyword.

Display the word 'More...' on Subfile end The word 'More..." is replaced

the line following the subfile SFLEND(*MORE) by the word 'Bottom' when the

display area (page) when there last record is displayed. An

are more records than fit on option indicator must be speci-

the display fied with the SFLEND(*MORE)
keyword.

Display a scroll bar next to a Subfile end For more information, see

subfile SFLEND(*SCRBAR) “Selection Lists—Overview” on
page 6-24.

Return the relative record Subfile scroll For more information, see

number of the record at the top (SFLSCROLL) “Selection Lists—Overview” on

of the current page of records

page 6-24.

Chapter 4. Displaying Groups of Records Using Subfiles 4-5

Table 4-1 (Page 3 of 5). Optional Functions for Subfiles

Function DDS keyword Additional information

Enable a command key to fold Subfile fold If the SFLFOLD keyword is

or truncate records in a subfile (SFLFOLD) or subfile specified, the initial display of
drop (SFLDROP) the records is folded. If the

SFLDROP keyword is speci-
fied, the initial display of the
records is automatically trun-
cated. Then the user can
press the command key to
display the truncated or folded
version, respectively, of the
subfile record. If the page size
equals the subfile size or the
subfile fits on one display line,
the specified keyword
(SFLFOLD or SFLDROP) is
ignored.

Both SFLFOLD and SFLDROP
can be used on the same
subfile. Optional indicators can
be used on these keywords.
The optional indicators are
used to determine which mode
the subfiles are initially dis-
played in. If both keywords
are optioned on or optioned
off, then the subfile is initially
displayed in folded mode. If
the keyword is optioned off, the
command key can still be used
to display the truncated or
folded version.

Enable the Enter key as the Subfile enter If more than one subfile using
Roll Up key and enable a (SFLENTER) SFLENTER is displayed at the
command key to return to the same time, the only CAnn or

high-level language program CFnn key in effect as an Enter

key is the CAnn or CFnn key
specified for SFLENTER on
the most recently displayed
subfile. The cursor position at
the time the Enter key is
pressed determines which
subfile is affected.

4-6 Application Display Programming V4R1

Table 4-1 (Page 4 of 5). Optional Functions for Subfiles

Function

DDS keyword

Additional information

Initialize a subfile with no
active records even though the
subfile is active

SFLINZ and subfile
records not active
(SFLRNA)

A record becomes active when
one of the following happens:

e An output operation is
issued to the subfile for a
specific record. The record
is not considered changed
unless the SFLNXTCHG
keyword is used.

¢ A user enters data into a
displayed record. The
record is considered active
and changed.

The records are displayed if
the SFLDSP keyword is in
effect. If default values were
specified for fields in the
records, they are included in
the display.

Initialize all records by the field
descriptions in the subfile
record format in the display file

SFLINZ

When the SFLINZ keyword is
in effect on an output operation
to the subfile control record
(SFLCTL), the system
assumes that all option indica-
tors on the subfile record are
off; therefore, only those option
indicators that are preceded by
N are in effect. The subfile
records are displayed if
SFLDSP is in effect on an
output operation. When the
SFLINZ keyword is in effect on
an output operation, the con-
tents of input-capable fields
without a default value are
handled as follows:

* Numeric fields are initial-
ized to zeros.

¢ Character fields are initial-
ized to blanks.

¢ Floating point fields are ini-
tialized to nulls.

Return a record to the program
when a get-next-changed oper-
ation is performed

Subfile next changed
(SFLNXTCHG)

The record is returned even if
the record was not changed by
the user

Roll by a specified number of
records instead of by page

Subfile roll value
(SFLROLVAL)

This field must have the key-
board shift attribute of signed
numeric with zero decimal
positions. It can be up to 4
digits long and must be defined
as an output/input or input-only
field.

Chapter 4. Displaying Groups of Records Using Subfiles

4-7

Table 4-1 (Page 5 of 5). Optional Functions for Subfiles

Function

DDS keyword

Additional information

Specify the number of spaces
between each record on a line
when more than one record is
displayed on a line

Subfile line (SFLLIN)

This keyword is used for a hor-
izontally displayed subfile. If
the display file supports more
than one screen size and the
SFLLIN keyword is to apply to
the secondary screen size in
addition to the default (or
primary) screen size, screen
size condition names must be
specified.

Write a message to the
message line on the display
when your program does an
output operation to the subfile
control record

Subfile message
(SFLMSG) and
subfile message 1D
(SFLMSGID)

See the DDS Reference for
more information about the
message keywords.

Determines where the cursor is
located in a subfile

Subfile cursor relative
record number
(SFLCSRRRN)

The relative record number on
which the cursor is positioned
is returned in the hidden field

specified as the parameter on
the keyword.

Specify cursor progression for
a subfile

Subfile cursor
progression
(SFLCSRPRG)

The SFLCSRPRG keyword
causes the cursor to move
from a field in a subfile record
to the same field in the next
displayed subfile record. For
more information, see “Defining
Cursor Progression for Entry
Fields” on page 2-17.

Determines whether the subfile
was in folded or truncated
mode

Subfile mode
(SFLMODE)

This is a required parameter
and is only valid for subfile
control records and the
SFLCTL keyword must be
specified.

Define a single-choice
selection list

Subfile single-choice
selection list
(SFLSNGCHC)

For more information, see
“Selection Lists—Overview” on
page 6-24.

Define a multiple-choice
selection list

Subfile multiple-
choice selection list
(SFLMLTCHC)

For more information, see
“Selection Lists—Overview” on
page 6-24.

Control the availability of
choices in a selection list

Subfile choice control
(SFLCHCCTL)

For more information, see
“Selection Lists—Overview” on
page 6-24.

Return all selected choices in a
selection list using the get-
next-changed operation

Subfile return
selected choice
(SFLRTNSEL)

For more information, see
“Selection Lists—Overview” on
page 6-24.

The DDS keywords can be specified in any order; however, the subfile record
format (SFL) must precede the subfile control record format (SFLCTL).

You can use option indicators to condition many of the DDS subfile keywords.

4-8 Application Display Programming V4R1

You can specify a maximum of 512 subfiles in a display file, since the maximum
number of record formats allowed in a display file is 1024. No more than 12 sub-
files can be active at the same time to the same display station. One or more
active subfiles can be displayed at the same time on the display station. A subfile
must contain at least one field that can be displayed, and the subfile record format
must not overlap the subfile control record format. If these records overlap, the
display file cannot be created.

All named fields in a subfile record, including fields that are not input-capable, are
returned to the program.

If any input data validity checking is specified for the subfile record, the validity
checking is performed before any roll function is performed. If the data fails validity
checking, the roll function is not performed.

When the relative record number of the record written to the subfile equals the
subfile size, the system sends the program a CPF5003 message indicating that the
subfile is full. (Not all records need to be active; that is, this message is sent even
if the only record written to the subfile was the last record in the subfile.) If the
subfile size does not equal the page size and the program then writes more records
to the subfile, the system automatically extends the subfile as additional records are
added. The program is not notified that the subfile has been extended. (A subfile
cannot be extended past 9999 records.) Also, if the subfile size equals the page
size, the program is not notified that the subfile is full unless the last record written
to the subfile occupies the last line available on the subfile display area.

Processing of an extended subfile is less efficient because the extended space is
not connected with the subfile. You can avoid extension by specifying a larger
subfile size, but you will be wasting space if the extended space is used very
seldom or never.

Figure 4-1 on page 4-10 illustrates the order in which some of the DDS keywords
used for subfile control are processed at run time:

Chapter 4. Displaying Groups of Records Using Subfiles 4-9

Initialize
subfile
(SFLINZ)

Yes Initialize
subfile

Yes Display
subfile

Subfile Delete
active subfile
Subfile Clear
active subfile
Subfile Display
active subfile

A

Exit

Figure 4-1. DDS Keyword Processing Order for Subfile Control

RSLH181-0

Using a Subfile in a Program

To use a subfile, you perform the following basic operations in your high-level lan-
guage program:

1. Initialize the subfile. One way to initialize the subfile is to read records from a
database file and write them to the subfile. Place the records in the subfile one
at a time until the subfile is full or until there are no more records.

4-10 Application Display Programming V4R1

Program File

Database . Subfile
File »

A 4

1/0 Area

RV2W029-3

2. Send the subfile to the display in one output operation using the subfile control
record format.

3. After the user reviews the records, changes them, or enters new records
(depending on the function of the subfile), read the subfile control record
format.

Program File Display
Subfile

RV2WO030-2

4. Process each record in the subfile individually, updating the database file or
writing new records to the database file as required. If the function of the
subfile is to update records, the program need only process the changed
records by using the READC operation in ILE RPG or the Read Subfile Next
Modified verb in ILE COBOL.

File
Program
Subfile
_ Data- -
“base _
—File - .
1/0 Area |«

RV2W031-2

A display file that uses subfiles may display only a portion of a subfile at a time.
The portion that is displayed is called a subfile page . The data entered into an
input-only field on a subfile display goes to the subfile when a function key (such as
a Roll key) is pressed. The field then displays a value in the subfile, and what
happens when the Enter key is pressed depends on the application code.

Note: In a READC operation in ILE RPG, the data is moved from the subfile to
the program. It does not remove it from the subfile, and it will continue to
be displayed in the input-only field as if the fields were initialized to that
value. Otherwise, it would appear that the subfile was empty when the data
was actually there.

Chapter 4. Displaying Groups of Records Using Subfiles 4-11

If the subfile is processed (for example, by an UPDAT operation in RPG),
then the data is removed from the subfile, and the input-only fields are
blanked out, reflecting the true condition of empty fields. This should be
done after the READC operation moves the data to the program.

Requesting I/O Operations for a Subfile

An 1/O request by a calling program to a subfile record format either writes a record
to a subfile or reads a record from a subfile but never causes actual I/O to the
display. To write subfile records to a display, the program must issue a request to
the subfile control record format.

The valid requests that can be made to a subfile depend on whether the request is
made to the subfile record format or the subfile control record format.

Requesting I/O Operations for a Subfile Record Format

By requesting the correct 1/O operation for a subfile record format, you can do the
following:

e Add a record (passed from a program) to a specified location in a subfile

* Update an active record that already exists in the subfile

* Read an active record at a specified location in the subfile

¢ Read the next changed record in the subfile that is greater than the relative
record number previously read with a get-relative or get-next-changed operation

Adding a Record at a Specified Location in a Subfile
The put-relative operation adds a record (passed from a program) at a specified
location in a subfile.

The location must be a valid relative record number in the subfile. The minimum
relative record number is always 1. If the subfile size equals the subfile page, the
maximum relative record number value is the subfile size value. If the subfile size
is greater than the subfile page, the maximum relative record number value is 9999
because the system automatically extends the subfile as required. In addition, the
relative record number cannot be the number of an active record already in the
subfile. The relative record number is ignored when field selection is specified for
the subfile record.

When a put-relative operation adds a record at the last record location (the subfile
size value) in the subfile, a subfile-full condition occurs (message CPF5003). Both
ILE RPG and ILE COBOL have special support for notifying the application
program of this condition. See the appropriate high-level language manual.

The contents of input-capable fields without a default value specified are handled
as follows:

¢ Numeric fields are initialized to zeros
e Character fields are initialized to blanks
* Floating point fields are initialized to nulls

4-12 Application Display Programming V4R1

Updating an Active Record in the Subfile
The update operation updates an active record that already exists in the subfile.

The active record must have been read before the update operation by a get
request (either get relative or get-next-changed). No other 1/O operations may be
performed on the subfile to be updated between the read and the update. In addi-
tion, the subfile being updated may not be displayed again between the read and
the update (for example, using subfile roll or SFLDROP processing).

Notes:

1. Some high-level languages do not allow I/O to any format in the display file
between the read and the update of a single subfile record in the display file.
Refer to the documentation for the high-level language you are using for more
information.

2. If field selection is specified for the subfile record, only the fields that were
selected when the record was placed in the subfile can be updated. Selecting
different fields will cause results that cannot be predicted.

Reading an Active Record at a Specified Location in the Subfile
The get-relative operation reads an active record at a specified location in the
subfile.

The location must be a valid relative record number in the subfile. The entire
record, including response indicators (defined at the file level and on fields in a
subfile record), input, output, output/input, and hidden fields, is passed to the
program, the relative record number is placed in the input/output feedback area,
and the record is no longer identified as a changed record. Response indicators
defined at the file level are always returned as off. Response indicators defined on
fields in a subfile record, such as the BLANKS or CHANGE keywords, are returned
as on or off depending on the information in the field at the time the get operation
was done.

If the record specified on the get-relative operation is not active, a not valid record
number condition occurs (message CPF5020). This condition becomes a record-
not-found condition in some high-level languages. See the appropriate high-level
language manual.

Notes:

1. The get-relative operation and get-next-changed operation both update the rela-
tive record number in the input/output feedback area. Subsequent get-next-
changed-record requests retrieve sequentially changed records greater than
this relative record number.

2. The get-relative and get-next-changed operations do not process input data for
overlapping fields in a subfile. The record returned to the program contains the
data already existing in the buffer prior to the read operation for overlapped
fields. If this is a problem, use the subfile initialize function to ensure all subfile
fields are cleared.

Chapter 4. Displaying Groups of Records Using Subfiles 4-13

Reading the Next Changed Record in a Subfile

The get-next-changed operation reads the next changed record in the subfile that
is greater than the relative record number previously read with a get-relative or get-
next-changed operation.

If the get-next-changed operation is used as the first read operation, the first
changed record in the subfile is read. The entire record, including response indica-
tors (defined at the file level and on fields in a subfile record), input, output,
output/input, and hidden fields, is passed to the program, the relative record
number is placed in the data management feedback area, and the record is reset to
a not changed record. Response indicators defined at the file level are always
returned as off. Response indicators defined on fields in a subfile record, such as
the BLANKS or CHANGE keywords, are returned as on or off depending on the
information in the fields at the time the get operation was done.

If there are no more changed records in the subfile, a message (CPF5037) indi-
cating that the last changed record has already been retrieved, is sent to the
program. See the appropriate high-level language manual for a description of how
this condition is reported to your program.

If a record retrieved by a get-next-changed operation is updated and the
SFLNXTCHG keyword is specified for an updated record, the updated record is set
again as a changed record. This allows the program to ensure that the user has
changed the record. For example, if the program detects an error in a record, it is
advantageous to require the user to correct the error. The use of the SFLNXTCHG
keyword allows the program to read that record again on a get-next-changed oper-
ation so it can continue to reject the record until the error has been corrected. The
next get-next-changed operation does not retrieve this updated record. The record
cannot be retrieved again with a get-next-changed operation until all the changed
records following it in the subfile have been processed. This is because the
changed records are accessed sequentially and the sequence does not start at the
beginning until after the message indicating that there are no more changed
records in the subfile has been sent to the program. A get-next-changed operation
following this message gets the first changed record in the subfile. Because no I/O
operation has been issued to the display, any changed record would be a record
that was processed using the SFLNXTCHG keyword.

Notes:

1. The get-relative operation and get-next-changed operation both update the rela-
tive record number in the input/output feedback area. Subsequent get-next-
changed-record requests retrieve sequentially changed records greater than
this relative record number.

2. The get-relative and get-next-changed operations do not process input data for
overlapping fields in a subfile. The record returned to the program contains the
data already existing in the buffer prior to the read operation for overlapped
fields. If this is a problem, use the subfile initialize function to ensure all subfile
fields are cleared.

4-14 Application Display Programming V4R1

Requesting I/O Operations for a Subfile Control Record Format

By requesting the correct 1/O operation for a subfile control record format, you can
do the following:

» Display subfile records

* Place the subfile records on the display into the subfile for processing by the
program

e Display and process subfile records at the same time

Displaying Subfile Records
You can display subfile records by issuing a write operation
record format.

to the subfile control

You can control the write operation using the following DDS keywords:

SFLDSP Display the subfile.

SFLDSPCTL Display the subfile control record.

SFLCLR Clear the subfile of active records.

SFLDLT Delete the subfile.

SFLINZ Initialize the subfile with active records, or if the SFLRNA keyword
is specified, with inactive records. When the subfile is initialized, all
option indicators in the subfile record are assumed to be off.

SFLEND Notify the user when the last available record is displayed.

SFLRCDNBR Display the specified page of the subfile.

Note: These keywords are described under “Describing Subfiles in Your DDS

Source” on page 4-3.

Placing Subfile Records on the Display for Processing

A read operation must be issued to a displayed record format in order for the
subfile records on the display to be placed into the subfile for processing by the
program. The subfile records from the display are placed in their corresponding
record positions in the subfile.

Displaying and Processing Subfile Records at the Same Time

The write-read operation is a single operation that combines the write and read
operations and is more efficient than a single write operation followed by a single
read operation.

Recognizing Subfile /0O Requests in High-Level Languages

Table 4-2 shows the 1/O requests supported by the system and the equivalent
high-level language operations:

Table 4-2 (Page 1 of 2). Subfile Operations Supported by the System and Equivalent HLL Commands

ILE C ILE RPG
Operation Function Operation ILE COBOL Statement BASIC Statement
Put Relative _Rwrited WRITE, WRITE SUBFILE WRITE REC =
output specifi-
cations
Update _Rupdate UPDAT REWRITE SUBFILE REWRITE REC =
Get Relative _Rreadd CHAIN READ SUBFILE READ REC =

Chapter 4. Displaying Groups of Records Using Subfiles 4-15

Table 4-2 (Page 2 of 2). Subfile Operations Supported by the System and Equivalent HLL Commands

ILE C ILE RPG
Operation Function Operation ILE COBOL Statement BASIC Statement
Get Next _Rreadnc READC READ SUBFILE NEXT MOD- READ MODIFIED
Changed IFIED
Write _Rwrite WRITE WRITE WRITE
Read _Rread READ READ READ
Write-Read _Rwriterd, EXFMT

_Rformat,

_Rpgmdev

Controlling the Appearance of Subfiles

Records in a subfile can be displayed either vertically or horizontally. In a vertically
displayed subfile, a record is displayed on one or more lines, with each record
beginning a new line (see Figure 4-2). In a horizontally displayed subfile, a record
is complete on one line, and more than one record is displayed on a line (see
Figure 4-3). You can specify that a subfile is to be displayed horizontally by using
the SFLLIN keyword to define the number of spaces between each subfile record
on a display line. Figure 4-4 on page 4-17 shows an example of a vertical subfile
and a horizontal subfile being displayed at the same time.

Record 1
Record 2
Record 3
Record 4

YV

A A A

Y v

y
Y

RSLH702-0

Figure 4-2. Vertically Displayed Subfile

Record 1 Record 5 Record 9

Record 2 Record 6 Record 10
Record 3 Record 7 Record 11
Record 4 Record 8 Record 12

RSLH703-0

Figure 4-3. Horizontally Displayed Subfile

4-16 Application Display Programming V4R1

Record 1 Record 5

Record 2 Record 6

Record 3 Record 7

Record 4 Record 8
I« Record A Bl
& Record B B
< Record C =
= Record D =
» Record E &

RSLH704-0

Figure 4-4. Horizontally and Vertically Displayed Subfiles Displayed at the Same Time

If a subfile is larger than the space allowed for the subfile on the screen, the user
can roll the display from one group of records in the subfile to another. Each group
of records displayed at the same time is called a page. When you create a display
file with a subfile, you must specify the size of the page for a subfile by specifying
the number of records in the page (SFLPAG keyword). Usually page size is based
on the number of lines available on the display. You must also specify the size of
the subfile by specifying the number of records in the subfile (SFLSIZ keyword).

Page size and subfile size can be the same; that is, all records in the subfile fit on
one page. When page size equals subfile size, variable-length subfile records are
supported. One record can take up only a single line while another record can take
up more than one display line. Each record is placed in the first record position
available in the subfile; this position is always a new line. In addition, the
SFLDROP and SFLROLVAL keywords are ignored by display station support when
page size equals subfile size.

For more information on page size and subfile size, see “Specifying Subfile Size
Equal to Page Size” on page 4-19 and “Specifying Subfile Size Not Equal to Page
Size” on page 4-21.

If records are to be displayed horizontally, the number of records to be displayed in
a subfile (SFLPAG keyword) is adjusted so that the last line on the screen can be
used to display a full line of records. For example, if the number of spaces
between each record on a line (SFLLIN keyword) is specified such that six records
fit on a line and 20 is specified for the page size (SFLPAG keyword), 20 is changed
to 24, which is the nearest multiple of six. The number of records in the subfile
(SFLSIZ keyword) is incremented by the same amount.

Note: For the initial display of a subfile, the more records placed in a subfile
before it is displayed, the slower the response time.

Displaying Horizontal Subfiles with Display Modes

You can use the display mode (DSPMOD) keyword to specify which of the two
modes (or display sizes), 24x80 or 27x132, you want to use for your display
station.

When changing display modes, the display is cleared but the data is not cleared
from the subfile. SFLDSP or SFLDSPCTL must be in effect for DSPMOD to be
active in the control record.

The following example shows how to specify DSPMOD with subfiles:

Chapter 4. Displaying Groups of Records Using Subfiles 4-17

P S DU OO SO SO FUIE TRy S TN - SO S ST SR S

A DSPSIZ(#DS4 *DS3)
A R SFLR SFL

A FLD1 8 01 5

A FLD2 7 1 116

A FLD3 7 B 124

A R SFLCTLR SFLCTL(SFLR)
A SFLDSP

A SFLDSPCTL

A SFLSIZ(60)

A SFLPAG(12)

A SFLLIN(4)

A *DS3 SFLLIN(6)

A 02 SFLEND

A 10 DSPMOD (#DS3)
A

A

Figure 4-5. Sample DDS Using DSPMOD with Subfiles

In the previous example, if the user’s program turns indicator 10 off and issues a
write-read operation to the subfile control record format (SFLCTLR), the subfile is
displayed as follows:

e In 27 by 132 (*DS4) mode, because indicator 10 for the DSPMOD keyword is
off.

e Horizontally, because SFLLIN is specified. The SFLLIN value indicates the
number of bytes between records. Because each record is 30 bytes long and
the space between each record is 4 bytes long, four records can be displayed
on one horizontal line, (4 x 30) + (3 x 4) = 132 bytes. The subfile is displayed
on three lines because SFLPAG(12) is specified.

The following example shows the subfile displayed in *DS4 mode.

RECORD 1 RECORD 4 RECORD 7 RECORD 10
RECORD 2 RECORD 5 RECORD 8 RECORD 11
RECORD 3 RECORD 6 RECORD 9 RECORD 12

If the user presses the Enter key, control is returned to the user’'s program. If the
user’s program turns on indicator 10 and then issues another write-read operation
to the subfile control record format (SFLCTLR), the subfile is displayed as follows:

e In 24 by 80 (*DS3) mode, because indicator 10 for the DSPMOD keyword is
on.

» Horizontally, because SFLLIN is specified for the *DS3 mode. If SFLLIN was
not specified for the *DS3 mode, the subfile would have been displayed verti-
cally. If the SFLLIN keyword is to be used for more than one screen size, a
screen size condition name for each secondary screen size is required.
Because each record is 30 bytes long and the space between each record is 6
bytes long, two records can be displayed on one horizontal line, (2 x 30) + 6 =
66 bytes). The subfile is displayed on six lines because SFLPAG(12) is speci-
fied. To ensure other records are not erased, the SFLPAG may need to be
specified for the secondary screen size.

4-18 Application Display Programming V4R1

The following example shows the subfile displayed in *DS3 mode.

RECORD 1 RECORD 7
RECORD 2 RECORD 8
RECORD 3 RECORD 9
RECORD 4 RECORD 10
RECORD 5 RECORD 11
RECORD 6 RECORD 12

Specifying Subfile Size Equal to Page Size

You must specify the size of the subfile and the number of subfile records to be
displayed at one time with the SFLSIZ and SFLPAG keywords. The use of subfile
size equals page size is recommended when the number of subfile records to be
displayed will fit on one page or when the number of records to be placed in the
subfile is unknown and large. It is not an efficient use of resources to retrieve
many database records to fill a large subfile if the user normally finds the needed
information on the first page.

When subfile size equals page size, the system does not automatically support the
use of the Roll Up and Roll Down keys. If you want the user to roll through the
subfile using these keys, you must specify the ROLLUP or ROLLDOWN keyword in
the subfile control record, and your program must handle the roll up or roll down
function.

For example, if a subfile is used to allow the user to search through a long list, you
can specify SFLSIZ equals SFLPAG and ROLLUP on the subfile control record:

P O P U SO SO FUIE TRy ST SN SO SEI ST TRy S
A R SFLCTLR SFLCTL(SFLRCD)
A SFLSIZ(16)
A SFLPAG(16)
A ROLLUP(20 'Rol11 Up")

Figure 4-6. Sample DDS Using SFLSIZ, SFLPAG, and ROLLUP Keywords

When the user presses the Roll Up key, indicator 20 is set on and control returns to
the program. In your program, you would:

» Clear the subfile (a write operation to the subfile control record with the
SFLCLR keyword in effect).

¢ Use the indicator to control a return to the logic that fills the subfile with another
page of records.

e Display the new subfile page.

You could also allow the display station user to press a CFnn key to return to the
start of the search. When the user presses the CFnn key, the associated indicator
is set on and control returns to the program. In your program, you would:

e Clear the subfile.

e Use the indicator to control a return to the logic that built the first subfile page
based on the search code entered. (The program needs to keep the original
search code in order to do this.)

Chapter 4. Displaying Groups of Records Using Subfiles 4-19

Using the ROLLDOWN keyword when subfile size equals page size requires more
lines of code in the program because the program must keep track of the record
position in the subfile and in the database file.

When the subfile size equals page size, you can use field selection and variable-
length records in the subfile. If you use field selection, consider the following:

e |f the fields are selected through the use of option indicators, the relative record
number is ignored and each record is placed in the first available record posi-
tion in the subfile.

e If a record is being updated, the field selection that does not match that on the
original output is ignored. For example, assume that FIELD1 and FIELD2 are
selected when the record is placed in the subfile. If the update selects FIELD2
and FIELD3, fields would overlay the original FIELD1 and FIELD2 fields, and
the results could not be predicted.

 |f field selection is specified on the subfile record, the number of records that
can be displayed on the screen depends on the number of fields selected.
When field selection is specified, the SFLPAG(value) keyword specifies the
number of screen lines available to display the subfile record. In other cases,
the SFLPAG(value) keyword specifies the number of subfile records that can
be displayed at one time.

e The SFLFOLD, SFLDROP, and SFLROLVAL keywords are ignored.

When variable-length records are used, each record in the subfile is displayed
beginning on the first available line on the page. If you use field selection for
variable-length records, each record can take up a different number of lines on the
display. Therefore, the number of records that actually fit in the subfile depends on
the field selection of each record written to the subfile. The following shows an
example of the DDS for a variable-length record:

P TS FUUT U SO SO SUE SN U SO UE SO PR T S
A R SFLRCD SFL
A ITMNBR 8Yo 6 2
A ITMDSC 15 6 11
A QTYOH 4 0 6 28
A LSTPC 7 2 639
A ALLOH 8Y 0 649
A SLSMO 10 2 663
A N80 SLSYR 12 2 7 7
A N80 CSTYR 12 2 +3

Figure 4-7. Sample DDS for a Variable-Length Record

When indicator 80 is on, each record in the subfile fits on one line. However, when
indicator 80 is off, each record uses two lines on the display.

Another typical use of variable-length records is where two or more entirely different
formats are used to make up one format. In this case, each field would be sepa-
rately conditioned by option indicators so that one record format might use multiple
lines while another format uses only one line.

4-20 Application Display Programming V4R1

Specifying Subfile Size Not Equal to Page Size

Subfile size not equal to page size should be used when a finite number of records
can be placed in the subfile and that number is small (for example, 50). The
SFLSIZ keyword specifies the subfile size. The system allocates space to contain
the subfile records based on the value specified for SFLSIZ. You should specify a
value equal to the number of records that you normally have in the subfile. If your
program places a record with a relative record number larger than the SFLSIZ
value into the subfile, the system extends the subfile to contain it (up to a maximum
of 9999 records).

When the subfile size is not equal to the page size, the use of the Roll Up and Roll
Down keys is automatically supported.

To inform the user that there are more records in the subfile, use the SFLEND
keyword on the subfile control record. When SFLEND is in effect (for example, the
option indicator is on), a + (plus sign) is placed in the lower position to the extreme
right of the screen on each page except the last page. On the last subfile page,
the + is replaced with a blank.

When the subfile size is not equal to page size, you can use the SFLROLVAL
keyword to allow the user to enter a value to specify how many records should be
rolled up or down when the appropriate key is pressed. If the SFLROLVAL
keyword is not used, the subfile is rolled by the SFLPAG value except for subfiles
using SFLFOLD or SFLDROP. If the SFLFOLD or SFLDROP keyword is used,
more records are displayed than the SFLPAG value when records are displayed in
the truncated format. For truncated records, the display rolls by the humber of
records displayed in the truncated format. When the SFLROLVAL keyword is used
and the Roll Up key is pressed, the uppermost record number in the displayed
subfile is added to the roll value to determine the new uppermost record number. If
this value is greater than the last record in the subfile, the last full page of records
is displayed. If the Roll Up key is pressed when the last subfile page is displayed
and the roll value is not less than the page size value, an error message is issued.
If the roll value is less than the page size value, the roll function is performed.

Variable-length records and field selection cannot be used when the subfile size is
not equal to the page size.

A technique to improve performance when you are using a multiple page subfile is
to write only one page of subfile records at a time but use the OS/400 support to
roll through the subfile. To do this, you need to define the ROLLUP keyword in
DDS with a response indicator and also use the SFLRCDNBR keyword. In your
program, you would write the records needed to fill one subfile page and then
display that page. When the user wants to see more records, he or she presses
the Roll Up key. The program then writes another page of records to the subfile,
places the relative record number of a record from the second page into the
SFLRCDNBR field, and displays the record.

The second page of subfile records is now displayed, and if the user presses the
Roll Down key, the roll down is handled by the system. If the user presses the Roll
Up key while the first page is displayed, the system will also handle the roll up.

The program is notified only when the user attempts to roll up beyond the records
currently in the subfile. The program would then handle any additional roll up
requests in the same manner as for the second page. When you use this tech-

Chapter 4. Displaying Groups of Records Using Subfiles 4-21

nigque, the subfile appears to be more than one page because of the use of the roll
keys. Yet, you can maintain good response time because the program only fills
one subfile page before writing it to the display.

Checking Validity on Subfile Data

In addition to the DDS validity checking keywords (CHECK, COMP/CMP, RANGE,
and VALUES), you can also do validity checking on subfile data in your program
and require the user to correct the error.

For example, assume that you are using a subfile for an order entry program and
you want to check the item number field to be sure it is a valid order number. You
also want to check the quantity ordered field to ensure there are enough items on
hand to fill the order. To do this, you can use the SFLNXTCHG keyword on the
subfile record (SFL) to allow your program to diagnose the errors and require the
user to correct them. The following DDS shows an example of using the
SFLNXTCHG keyword:

A R ORDENTD

A 1 30'ORDER ENTRY DISPLAY'

A 3 2'Enter customer number:'

A CUST 5 325

A R SFLRCD SFL

A 61 SFLNXTCHG

A LINNBR 2 7 4

A ITMNBR 5 B 7 9

A 40 DSPATR(RI PC)

A QTYORD 4 B 7 20

A 35 DSPATR(RI PC)

A R SFLCTLR SFLCTL(SFLRCD)

A SFLSIZ(5)

A SFLPAG(5)

A 55 SFLDSP

A 50 SFLDSPCTL

A 30 SFLCLR

A 10 SFLINZ

A 40 SFLMSG('Item number not valid' 40)
A 35 SFLMSG('Qty not available' 35)

Figure 4-8. Sample DDS Using the SFLNXTCHG Keyword

When the program detects an error, it sets on the indicator that conditions the
SFLNXTCHG keyword and issues a write operation to the subfile control record
with the SFLDSP keyword in effect. The field in error is displayed in reverse
image, and the cursor is positioned at that field. The associated error message is
also displayed. The user then corrects the error.

A decision you must make when using the SFLNXTCHG keyword is whether to
allow the user to change the subfile fields that were not in error. If you do not want
the display station user to change those fields you can protect them with the
DSPATR(PR) keyword. For those fields you do not want changed, the
DSPATR(PR) keyword must be in effect only when the SFLNXTCHG keyword is in
effect. If you allow the user to change the fields, you can:

4-22 Application Display Programming V4R1

e Define hidden fields for those fields that are to be checked.

* Move the data originally entered by the user into the hidden fields when an
error occurs on a subfile.

e Compare the data in the hidden fields to the fields just read to identify which
fields have been changed so you can update the records that have already
been processed when the user makes the changes.

Displaying Error Messages from Subfiles

You can use a subfile to display messages for multiple errors. The messages to be
placed in the subfile are on a program message queue. Each message written to
the subfile is displayed on a separate line and is truncated, if necessary. Each
message line contains an attribute character in position 1 that is displayed as a
blank, followed by the message text. For the 24 by 80 display mode, 76 characters
are displayed. For the 27 by 132 display mode, 128 characters are displayed.
Because both the message identifier and the message data are available from the
program message queue, message help and substitution text are supported for the
messages placed in a message subfile. If the SFLMSGRCD keyword is specified,
the SFLPGMQ and SFLMSGKEY keywords must also be specified.

The following shows an example of the DDS for a message subfile:

P TS FUOT ST SO SUUS: ST S SR SN SR SO PR Y S
A R MSGSFL SFL
A SFLMSGRCD(14)
A MSGKEY SFLMSGKEY
A PGMQ SFLPGMQ
A R MSGCTL SFLCTL(MSGSFL)
A SFLSIZ(8)
A SFLPAG(8)
A 50 SFLDSP
A 55 SFLDSPCTL
A 60 SFLINZ
A PGMQ SFLPGMQ
A NBR 4 OH SFLRCDNBR (CURSOR)
A

Figure 4-9. Sample DDS for a Message Subfile

The SFLRCDNBR(CURSOR) keyword is used to position the cursor at the first dis-
played character in the message subfile that is specified in the SFLRCDNBR field
so the Roll Up and Roll Down keys will apply to the message subfile.

For information on sending and receiving messages and on the program message

gueue, see the CL Programming book. Message subfiles are the only kind of sub-
files supported for CL programs and for ILE C programs.

Chapter 4. Displaying Groups of Records Using Subfiles ~ 4-23

Positioning the Cursor on the Displayed Subfile

The DSPATR(PC) keyword lets you position the cursor for each page of the subfile
record that is displayed. Write and update operations can be used to control
DSPATR(PC) for:

The initial display of subfile records. (A write or write-read operation to the
subfile control record when the SFLDSP and SFLDSPCTL keywords are used.)
Subfile records displayed using a roll key or a fold or truncate key (SFLDROP
or SFLFOLD keywords).

Positioning the Cursor Initially
The cursor is positioned by the first of the following conditions that applies:

The CSRLOC keyword on the subfile control record.

The DSPATR(PC) keyword within the records being displayed.

The DSPATR(PC) keyword within a field in the subfile control record.

The SFLRCDNBR(CURSOR) keyword within the subfile control record.

If nothing is specified, the cursor is positioned at the first input-capable field on
the display.

Note: If the keyboard is unlocked prior to the output operation that displays the

subfile, explicit cursor positioning is not performed.

Use the keywords in the following order:

The CSRLOC keyword can be used to position the cursor anywhere on the
screen.

The DSPATR(PC) keyword can be used to position the cursor at any field in
the first record displayed when the output operation specifies the SFLDSP
keyword.

The DSPATR(PC) keyword can be used to position the cursor at any field of
the subfile control record.

The SFLRCDNBR(CURSOR) keyword can be used to position the cursor at the
first input-capable field of the record whose record number is used to select
which page is to be displayed first. If no input fields exist, the cursor is posi-
tioned at the first selected output field in that record.

If neither the DSPATR(PC) nor SFLRCDNBR(CURSOR) keyword is used, the
cursor is positioned at the first input-capable field on the display.

Positioning the Cursor When a Roll Key Is Used

The positioning of the cursor when a roll key is used depends on whether the
DSPATR(PC) keyword is used:

If the DSPATR(PC) keyword is not used, the cursor is positioned at the same
location as when the roll key was pressed.

If the DSPATR(PC) keyword is used, the cursor is positioned at the first field in
the displayed subfile records with the DSPATR(PC) keyword in effect.

The following example illustrates both and shows part of the DDS for a subfile in
which records are displayed vertically. Customer number, name, address, city, and
state are displayed. A user can change customer name, address, city, and state.
Customer number cannot be changed,; it is an output field only. The DSPATR(PC)
keyword has been specified for the customer number field (CUST). Subfile size is
21 and page size is 7.

4-24 Application Display Programming V4R1

P S DU OO SO SO FUIE TRy S TN - SO S ST SR S
R SUBFIL1 SFL
TEXT('Subfile record')
CUST 5 4 3DSPATR(PC)
NAME 20 10CHECK(LC)
ADDR 20 32CHECK(LC)
CITY 20 54CHECK(LC)
STATE 2 76
R FILCTL1 SFLCTL(SUBFIL1)
50 SFLDSPCTL
55 SFLDSP
SFLSIZ(21)
SFLPAG(7)
60 SFLCLR
TEXT('Subfile control record')
OVERLAY
PROTECT
CAO3(98 'End of program')
2 'NUMBER'
10"'NAME'
32"'ADDRESS'
54'CITY'
76'STATE'

0 W W W

4
4
4
4

> > > T T >>>>>>>> > >

NN NN DN

Figure 4-10. Sample DDS Using the DSPATR(PC) Keyword

The initial display looks like this:

Cursor

NUMBER NAME ADDRESS CITY STATE
11394 Sorensen and Walton 500 5th Avenue New York NY
41395 Charland, Inc. 200 Madison Avenue New York NY
41316 Anderson’s Electric 950 2nd Avenue Atlanta GA
41397 Morem Motors 1300 Pine Street Atlanta GA
41398 Polt Electronics 240 Walters Place Chicago IL
41399 Clark’s TV 560 3rd Street Chicago IL
41400 Jim’s Repair 700 4th Avenue Chicago IL

RSLH709-0

The first seven records in the subfile are displayed and the cursor is positioned
under the customer number in the first record. The user moves the cursor to the
third record, updates the address for that customer, and moves the cursor to the
customer number of the fourth record:

Chapter 4. Displaying Groups of Records Using Subfiles ~ 4-25

Cursor Changed Field

\

~
NUMBER NAME ADDRESS CITY STATE
41394 Sorensen and Walton | 500 5th Avenue New York NY
41395 Charland, Inc. 200 Madison Avenue New York NY
41316 Anderson’s Electric 950 2nd Avenue Atlanta GA
41397 Morem Motors 1300 Pine Street Atlanta GA
41398 Polt Electronics 240 Walters Place Chicago IL
41399 Clark’s TV 560 3rd Street Chicago IL
41400 Jim’s Repair 700 4th Avenue Chicago IL
- /

RSLH183-0

Now the user presses the Roll Up key to display the next seven records. The
cursor is positioned under the customer number in the first record:

Cursor

NUMBER NAME ADDRESS CITY STATE
41401 Adam’s Home Repair 121 Golden Circle Chicago IL
41402 Jane’s Radio/TV 135 Ransam Drive St Paul MN
41403 Advanced Electronics 809 8th Street St Paul MN
41404 Riteway Repair 443 Western Lane New York NY
41405 Fixtures, Inc. 607 9th Avenue Chicago IL
41406 Hall’s Electric 200 Main Street St Paul MN
41407 Electric House 903 East Place Atlanta GA

RSLH184-0

If the DSPATR(PC) keyword had not been specified and the user pressed the Roll
Up key, the cursor would have been positioned at the fourth record under customer
number:

4-26 Application Display Programming V4R1

Cursor

|

NUMBER NAME ADDRESS CITY STATE
41401 Adam’s Home Repair 121 Golden Circle Chicago IL
41402 Jane’s Radio/TV 135 Ransam Drive St Paul MN
41403 Advanced Electronics 809 8th Street St Paul MN
41404 Riteway Repair 443 Western Lane New York NY
41405 Fixtures, Inc. 607 9th Avenue Chicago IL
41406 Hall’s Electric 200 Main Street St Paul MN
41407 Electric House 903 East Place Atlanta GA

RSLH185-0

Positioning the Cursor When a Fold or Truncate Key Is Used

When you use the SFLFOLD or SFLDROP keyword to assign a CFnn or CAnn key,
cursor positioning is handled the same way as described under “Positioning the
Cursor When a Roll Key Is Used” on page 4-24. The cursor is positioned as speci-
fied for all displayed records, including those folded. When you use the SFLFOLD
or SFLDROP keyword to assign a CFnn or CAnn key, the cursor is positioned only
for those fields displayed. Cursor positioning specifications for fields in the folded
portion of the record are ignored.

Positioning the Cursor and Rolling When Two or More Records Are

Displayed

When you display two or more records at the same time, the position of the cursor
determines the action taken when the user presses a roll key, regardless of which
record was written to the display last.

The cursor can be positioned in the roll-enabled area of the display or in the area
that is not roll-enabled of the display. A roll-enabled area is:

e A record without subfiles and with the ROLLUP/ROLLDOWN keyword in effect

e A subfile control record with the ROLLUP/ROLLDOWN keyword in effect

¢ A roll-enabled subfile, which is an active subfile with subfile size greater than
page size

¢ An active subfile with subfile size equal to page size and the
ROLLUP/ROLLDOWN keyword in effect for its subfile control record

Based on the location of the cursor, the action taken when the user presses a roll
key is as follows:

¢ |f the cursor is positioned in the roll-enabled area at a roll-enabled subfile or at
the subfile control record for a roll-enabled subfile, the subfile is rolled. If the

Chapter 4. Displaying Groups of Records Using Subfiles ~ 4-27

subfile is at the end of the subfile and the corresponding ROLLUP/ROLLDOWN
keyword is not in effect, the end-of-subfile message is sent to the user. If the
ROLLUP/ROLLDOWN keyword is in effect at the end of the subfile, control
returns to the program.

¢ |f the cursor is positioned in the roll-enabled area at a record without subfiles
with the ROLLUP/ROLLDOWN keyword in effect, at a subfile control record
with the ROLLUP/ROLLDOWN keyword in effect, or at an active subfile with
subfile size equal to page size and the ROLLUP/ROLLDOWN keyword in effect
for the subfile control record, control returns to the program.

 |f the cursor is not positioned in the roll-enabled area, the system attempts to
find the uppermost roll-enabled area on the display and perform the action indi-
cated, as listed previously. If there is no roll-enabled area on the display, the
command-key-not-valid message is sent to the user.

Note: Records that do not occupy display space (record formats with no fields,
with hidden, program-to-system, or message fields only, or with the
CLRL keyword specified and no input-capable fields; and message sub-
files) are assumed to be at line 0. Therefore, these records are consid-
ered to be uppermost on the display, and the system attempts to roll
them first.

The following examples illustrate what action is taken, based on the location of the
cursor, when two records are displayed and the user presses a roll key.

In the following example, control returns to the program if the corresponding
ROLLUP/ROLLDOWN keyword is in effect. This occurs because the cursor is posi-
tioned at a record without subfiles and with the ROLLUP/ROLLDOWN keyword in

effect.

NUMBER NAME ADDRESS CITY STATE

41394 Sorensen and Walton 500 5th Avenue New York NY

41395 Charland, Inc. 200 Madison Avenue New York NY Subfile

41316 Anderson’s Electric 950 2nd Avenue Atlanta GA with

41397 Morem Motors 1300 Pine Street Atlanta GA SFLSIZ>

41398 Polt Electronics 240 Walters Place Chicago IL + SFLPAG
Nonsubfile

Enter next customer number: Record with
ROLLUP/
ROLLDOWN
in Effect

\ RV2WO050-0

Cursor

In the following example, two subfiles with the subfile size greater than the page
size and their control records are displayed. The user positions the cursor in the

4-28 Application Display Programming V4R1

bottom subfile control record. The bottom subfile is rolled because the cursor is
positioned at a roll-enabled subfile in the roll-enabled area of the display.

NUMBER NAME ADDRESS CITY STATE
41401 Adam’s Home Repair 121 Golden Circle Chicago L
41402 Jane’s Radio/TV 135 Ransam Drive St Paul MN Subfile 1
41403 Advanced Electronics 809 8th Street St Paul MN with
41404 Riteway Repair 443 Western Lane New York NY SFLSIZ>
41405 Fixtures, Inc. 607 9th Avenue Chicago L+ SFLPAG
ORDER LINE TOTAL)
NUMBER NUMBER NUMBER DESCRIPITON QTY Price PRICE Sl_JEflle 2
Wit|
1401 35900 1 E35 Motor 10 15.00 150.00 SFLSIZ>
41401 35400 2 F60 Pump 25 20.00 500.00 SFLPAG
| RV2W051-0
Cursor
In the following example, a subfile with the subfile size equal to the page size and
the ROLLUP/ROLLDOWN keyword in effect is written to the display first. A record
without subfiles and without the ROLLUP/ROLLDOWN keyword in effect is then
written to the display. If the cursor is positioned at either the subfile record or the
second record, control returns to the program.
Cursor
UMBER NAME ADDRESS CITY STATE
41394 Sorensen and Walton 500 5th Avenue New York NY
41395 Charland, Inc. 200 Madison Avenue New York NY Subfile
41316 Anderson’s Electric 950 2nd Avenue Atlanta GA with
41397 Morem Motors 1300 Pine Street Atlanta GA SELSIZ>
41398 Polt Electronics 240 Walters Place Chicago IL + SELPAG
Nonsubfile
Enter next customer number: Record without
ROLLUP/
ROLLDOWN

RV2W052-0

Chapter 4. Displaying Groups of Records Using Subfiles

4-29

In the following example, the first subfile has a subfile size greater than the page
size but the ROLLUP/ROLLDOWN keyword is not specified. The second subfile
has a subfile size equal to the page size but the ROLLUP/ROLLDOWN keyword is
not specified. If the cursor is positioned at the second subfile, the first subfile is
rolled. In this position, the cursor is not in a roll-enabled area; therefore, the
system finds the uppermost roll-enabled area in the display and performs the roll

function.
NUMBER NAME ADDRESS CITY STATE
s . . Subfile with
41401 Adam’s Home Repair 121 Golden Circle Chicago IL SFELSIZ>
41402 Jane’s Radio/TV 135 Ransam Drive St Paul MN
) SFLPAG
41403 Advanced Electronics 809 8th Street St Paul MN .
. A and without
41404 Riteway Repair 443 Western Lane New York NY ROLLUP/
41405 Fixt Inc. Chi
Ixtures, Inc 607 9th Avenue Icago IL + ROLLDOWN
ORDER LINE TOTAL . .
NUMBER NUMBER NUMBER DESCRIPITON QTY Price PRICE Subfile with
SFLSIZ=
1401 35900 1 E35 Motor 10 1500 150.00 } SFLPAG
41401 35400 2 F60 Pump 25 20.00 500.00 and without
ROLLUP/
ROLLDOWN

I

RV2WO053-1
Cursor

In the following example, the subfile with a subfile size greater than the page size
and without ROLLUP/ROLLDOWN keyword is written to the display first. The
record without subfiles and with ROLLUP/ROLLDOWN keyword in effect is then
written to the display above the subfile. If the cursor is positioned within the subfile
record, the subfile is rolled. If the cursor is not positioned within the subfile record,
the subfile is not rolled and control returns to the program.

4-30 Application Display Programming V4R1

Identifiers Highlight Command Prompt Exit Help

==== Top-of-File ==== Select a Router identifier and press Enter.

RTYP CMGR

—=== Bottom-of-File ==== RTYP Type of router.

common user ID.

RTDN Default system name.
RMTN Name of Remote LU alias.
LCLN Name of Local LU alias.
MODN Mode name information.

Enter Esc=Cancel Fl=Help

RSLHO054-0

Understanding Subfile DDS and Program Logic—Example

The following shows the DDS that describes the customer name search subfile
shown earlier in this section. The DDS is followed by a description of the logic a
program would use to process this subfile.

Chapter 4. Displaying Groups of Records Using Subfiles 4-31

P S DU OO SO SO FUIE TRy S TN - SO S ST SR S

A=+ DISPLAY CUS220D CUSTOMER NAME SEARCH

A CFO3(99 'End of Program')
A R NAMESR OVERLAY

A 1 29'CUSTOMER NAME SEARCH'
A 3 2'Search code'

A SEARCH 5 1 315

A R SUBFIL1 SFL

A CUST 5 7 2

A NAME 20 B 7 9

A ADDR 20 B 7 31

A CITY 20 B 7 53

A STATE 2 B 775

A R FILCTL SFLCTL(SUBFIL1)

A 55 SFLDSPCTL

A 50 SFLDSP

A SFLSIZ(18)

A SFLPAG(6)

A 50 SFLEND

A 60 SFLCLR

A OVERLAY PROTECT
A RCDNBR 2 OH SFLRCDNBR (CURSOR)
A 45 5 2'NUMBER'

A 45 5 9'NAME'

A 45 5 31'ADDRESS'

A 45 5 53'CITY'

A 45 5 75'STATE'

Figure 4-11. Sample DDS Showing Customer Name Search Subfile

The following is an example of the logic a user program would use to process the
subfile just shown. A write-read operation is a combined input and output opera-

tion. A read is an input operation. A write is an output operation. See the appro-
priate high-level language manual for the operations that can be performed in the

high-level language program.

User Program

1. Opens a file and issues a write-read operation to the NAMESR record format to
prompt for a search code.

User

2. Enters a zip code in the search code field. The program uses the search code
field as a key field to find the first database record in the file with that key field.
The program will build the subfile using that record as the first record in the
subfile.

User Program

3. Obtains records (read operation) from the database file and places (write oper-
ation to SUBFIL1) them in the subfile one record at a time until the subfile is
full or there are no more records to place in the subfile.

4. When all records are in the subfile, issues a write-read operation to the subfile
control record format (FILCTL) with the following:

a. A + (plus sign) is displayed in the lower right corner of the screen when
there are more records than fit on one subfile page. Because the indicator

4-32 Application Display Programming V4R1

for the SFLEND keyword is on, the system replaces the + with a blank
when the last subfile page is displayed.

b. The indicator for the SFLDSP keyword is on, so the first subfile page is
displayed.

c. The indicator for the SFLDSPCTL keyword is on, so the subfile control
record is displayed.

d. The SFLRCDNBR(CURSOR) keyword is specified for a field. The program
placed a value of 1 in this field, so the subfile page that contains relative
record number 1 is displayed first and the cursor is positioned at the first
input field in that record. (If no input field exists, the cursor is positioned at
the first selected output field or constant in that record.)

e. The constant field (heading line) indicators are on, so the constants in the
subfile control record are displayed.

f. The OVERLAY and PROTECT keywords are in effect in the subfile control
record so that the prompt (NAMESR) can remain on the display without
being changed.

User

5.

Updates displayed records, using the roll keys to display different subfile
records as needed. Presses the Enter key after completing all updates to the
subfile.

User Program

6.

10.

11.

12.

Completes the input portion of the write-read operation to the subfile control
record format. In this example, the subfile control record does not contain any
input fields. The input portion of the write-read operation allows the display
station user to enter data into the subfile.

. Issues the get-next-changed operation to the subfile record to process the first

subfile record changed by the user.

. Uses each changed record to update the corresponding database file record.

. Repeats steps 7 and 8 until a no-more-modified-records condition exists for

step 7. When this condition is detected, step 10 is performed.

Issues a write-read operation to the prompt (NAMESR) to determine if the
program should end or display another group of database records. The
OVERLAY keyword is specified, so that the current display contents for the
subfile are left unchanged. If the user presses the CF1 key, which turns on
response indicator 99, the program will close the display file and end. If the
user enters another search code for another group of records to be displayed,
step 11 is performed.

Issues a write operation to the subfile control record (FILCTL) with the fol-
lowing:

a. The indicator for the SFLCLR keyword is on, so the subfile is cleared of all
records (the display is unchanged).

b. The indicator for the SFLDSP keyword is off, so the contents of the display
remains unchanged.

c. The indicator for the SFLDSPCTL keyword is off, so the subfile control
record is not displayed again.

Repeats steps 3 through 10. The subfile was cleared (SFLCLR keyword) in
step 11 so that new records can be placed in the subfile. The write operation
to the subfile control record in step 4 has the constant field indicator off so that
heading information is not sent to the display again. As long as the subfile

Chapter 4. Displaying Groups of Records Using Subfiles 4-33

control record remains on the display (no intervening write operations without
the OVERLAY keyword in effect have been performed), the fields do not have
to be sent to the display again.

4-34 Application Display Programming V4R1

Chapter 5. Defining Windows with Display Files

© Copyright IBM Corp. 1997

This chapter explains how to use the specialized DDS window keywords to create
windows in your applications. The DDS window keywords provide the simplest,
most flexible method of creating windows for a variety of purposes. For example,
they allow you to use subfiles to present data in windows, to have the system auto-
matically save and restore the underlying display, and to position data in the
window by referring to positions in the window itself instead of positions on the full
screen.

Use the DDS window keywords if your windows must use other DDS functions,
such as subfiles, display attributes, validity checking, and optioning. Also use the
DDS window keywords when the window contains multiple input fields, or if the
window location can be varied.

If you have help information defined with DDS and are using the HLPRCD keyword
to display it, the WINDOW keyword can be used to easily display the information in
a window.

The following sections describe the terminology used for windows, the functions of
the window keywords, and how to use the keywords for the following tasks:

* Creating windows

e Defining window borders

¢ Reading data from windows

e Changing window borders and contents

* Moving and duplicating windows

e Making two windows seem active at one time

¢ Making one window in a series stand out

e Removing windows

e Improving application performance by bypassing system save and restore oper-
ations

For examples on using the window keywords, see “Programming Examples” on
page 5-15.

For some applications, you might want to use a different method of creating
windows:

* Chapter 20, “Defining Online Help Information” on page 20-1 describes how to
create help windows with the user interface manager (UIM). The UIM uses a
different language from DDS. However, it automates many help window func-
tions for you and provides a simple way of adding online help information to
your existing applications.

e The IBM WindowToo0l/400 PRPQ, SC41-0050, describes how to create
windows with the WindowTool/400 PRPQ. Consider using this program if you
use windows primarily to construct application menus.

* Chapter 6, “Creating a Graphical Look for Displays” describes how to create
menu bars, pull-down menus, selection fields, continued-entry fields, and how
to use edit masks using DDS keywords.

5-1

Window Terminology

A window is information that overlays part of the display. The user can view infor-
mation inside the window and the portion of the display that is not overlayed by the
window. However, only the window is active; the user cannot work with the under-
lying display. When more than one window is displayed, only one window is active
at a time.

The active window is the window subject to the most recent input or output opera-
tion. The active window appears to be the topmost window on the display. It is the
only part of the display with which the work station user can interact.

A window remains on the display until your application or the system takes action
to remove it. Removing a window and overlaying a window are different oper-
ations. When a window is removed , it no longer exists on the display, and you can
no longer write to or read from it. When a window is overlayed by another
window, it might not be visible to the work station user; however, it is still available
for you to work with.

DDS Window Keywords

Four DDS keywords allow your applications to create and work with windows:

WINDOW (Window)
Creates a window on the display, changes the contents of an existing window,
or makes an existing but inactive window active again.

WDWBORDER (Window Border)
Specifies the color, display attributes, and characters of a window border.

WDWTITLE (Window Title)
Specifies the text, color, and display attributes for a title of a window. The title
is embedded in the top or bottom border of the window.

Note: Not all controllers support text in the bottom border of windows, nor the
left and right alignment of text in the top or bottom border.

RMVWDW (Remove Window)
Removes other windows from the display when a new window is displayed or
when an existing window is redisplayed as the active window.

USRRSTDSP (User Restore Display)
Prevents the OS/400 system from automatically saving and restoring the under-
lying display when windows are displayed and removed. In some situations,
save and restore operations are unnecessary; bypassing them speeds up your
application. You can also use the USRRSTDSP keyword to make an earlier
window in a series pop up and overlay later windows, and to make two windows
seem active at the same time.

For detailed reference information about each keyword, see the DDS Reference.

5-2 Application Display Programming V4R1

Window Representation and Hardware Configuration

Window borders appear differently, depending on the type of display station and
work station controller you are using.

For more information on how windows appear on different hardware configurations,
see “Hardware Configuration” on page 6-1.

Creating Windows

The record-level keyword WINDOW allows a record format to be displayed inside a
window. A maximum of 12 windows can be created on a display at one time.

To create a window, write a record that specifies a WINDOW keyword. The first
window record you write must be a window definition record specifying the window
size and its location on the display. The window definition record places the
window borders on the display. Then you can write the same window definition
record again or use one or more window reference records to complete the specifi-
cations for the window.

Window Definition Records

A window definition record is a record containing a WINDOW keyword that defines
the window size and location. Size and location attributes include the position of
the upper left corner of the window border and the number of rows and columns
within the window.

A window definition record must be the first record written for each window you
display. It is the record that actually creates the window and makes it visible on the
display. The record can contain the same types of fields or data found in any
typical record. It can also contain a WDWBORDER keyword defining the window
border. (The WDWBORDER keyword can also be used at the file level.)

You can supply all the specifications for the window in the window definition record.
You can supply additional specifications by writing the same window definition
record again, as you would when displaying an error message in the window. You
can also supply additional specifications by writing one or more window reference
records after you write the window definition record.

Window Reference Records

Window reference records provide additional data to be placed in the window.
They allow you to display more than one record format in a window.

Each window reference record contains a WINDOW keyword specifying the name
of the window definition record to which it applies. When the window reference
record is written, the window definition record being referred to must be on the
display. If the referenced record is not on the display, then a notify message
stating that the window does not exist is returned to the application.

Window reference records do not contain size and position attributes, and any
active WDWBORDER keywords are ignored.

Chapter 5. Defining Windows with Display Files 5-3

You can use as many window reference records as needed to complete the
window. However, you do not need to write any window reference records to
display a window. You can display a window using only a window definition record.

Window Size and Location

The following diagram shows the parts of a window that is created when a window
definition record is displayed:

——Left border attribute

——Left border

——Leading window attribute

First window column

——Last window column
—Right border attribute
—Right border
—Right continuation

attribute

v
Leeeiii it iiieeenanns R «Top border
L : AwwwwwwwwwwwwwwwwwwwB : R <«First window row
L : AwwwwwwwwwwwwwwwwwwwB : R
L : AwwwwwwwwwwwwwwwwwwwB : R
L : AwwwwwwwwwwwwwwwwwwwB : R
L : AwwwwwwwwwwwwwwwwwwwB : R
L : AwwwwwwwwwwwwwwwwwwwB : R
L : AwwwwwwwwwwwwwwwwwwwB : R
L : AwwwwwwwwwwwwwwwwwwwB : R
L : AwwwwwwwwwwwwwwwwwwwB : R
L : AwwwwwwwwwwwwwwwwwwwB : R
L : AwwwwwwwwwwwwwwwwwwwB : R
L : AwwwwwwwwwwwwwwwwwwwB : R <«-Last window row
L : AmmmmmmmmmmmmmmmmmmmB : R «-Message line
L:eeeeeeeeeeeneeneenee iR «Bottom border

Left border attribute

Top and bottom border

Right continuation attribute
Left and right border
Leading window attribute
Window area

Message line

Right border attribute

-

WS = e

This window is specified as having a depth of 13 rows (also known as lines) and a
width of 19 columns (also known as positions). The usable area inside the window
borders is 12 rows deep and 19 columns wide. Row 13 is reserved for messages;
it cannot contain fields.

With its border, the window actually takes up additional rows and columns on the
display. All windows take up two more rows, one each for the top and bottom
borders. Most windows also take up six more columns:

e Two for border attributes

* Two for border characters

¢ One for the leading window attribute

¢ One for the continuation attribute on the right.

5-4 Application Display Programming V4R1

Cursor Position

If a window starts and ends in the first and last columns of the full display, it takes
up only four more columns instead of six. If a window row overlays DBCS fields,
that row requires the six columns mentioned previously plus up to four more
columns for DBCS shift-out and shift-in characters on each side.

The window is positioned by the upper left corner of the border, which has a
starting row position equal to the top border row and a starting column position
equal to the left border column. Fields that do not fit within the window are diag-
nosed during file compilation. If the SLNO keyword is used and specifies the
starting line number, the DDS compiler flags any fields that do not fit within the
window. If *VAR is specified on the SLNO keyword and the run-time starting line
number does not allow the entire record to be displayed, an exception occurs.

The DDS compiler diagnoses window location problems when either the upper left
window line or upper left window position is specified as a constant. A run-time
error occurs if a dynamically positioned window does not fit on the display.

The special value, *DFT, can be specified in place of the start-line and start-
position parameters on the window keyword. *DFT indicates that the system will
determine the start line and start position of the window. The window is positioned
relative to the cursor location. The system uses the following sequence of rules to
position the window when *DFT is used:

1. If the window will fit below the cursor position on the display, it is placed there.
The top window border is positioned one row below the cursor. If possible, the
left window border is positioned in the same column as the cursor; if not, the
window is positioned as far to the left of the cursor as necessary for it to fit on
the display.

2. If the window will fit above the cursor position, it is placed there. The bottom
window border is positioned one row above the cursor. The window is posi-
tioned horizontally as described in step 1.

3. If the window will fit to the right of the cursor position, it is placed there. The
right window border is positioned in the next-to-last column of the display. If
possible, the top window border is positioned in the same row as the cursor; if
not, the window is positioned as far above that as necessary for it to fit on the
display.

4. If the window will fit to the left of the cursor position, it is placed there. The
right window border is positioned two columns to the left of the cursor. The
window is positioned vertically as described in step 3.

5. If the window cannot be positioned in any of the above areas, it is placed in the
bottom right corner of the display.

To position the cursor in a window, use the CSRLOC and DSPATR(PC) keywords
in the same way as for a full-screen display. The cursor is positioned with refer-
ence to the upper left corner of the usable area of the window.

If *FRSTCSR is specified on the WINDOW keyword, and the cursor is moved
outside the usable area of the active window, only the Print and Home command
function (CF) keys are active. If the work station user presses any other command
function (CF) key, the alarm sounds and the cursor is moved back to its position for
the previous write operation. *RSTCSR is the default.

Chapter 5. Defining Windows with Display Files 5-5

Note: On display stations attached to a controller that supports an enhanced inter-
face for nonprogrammable work stations, the cursor can be moved out of a
window only with a mouse when *RSTCSR is specified.

If *NORSTCSR is specified on the WINDOW keyword, the user may move the
cursor out of the active window and use any command function (CF) or command
attention (CA) key.

Error Messages
When windows exist on a display and *MSGLIN is specified on the WINDOW
keyword for the window, any error messages are displayed on the last usable line
of the active window. The last usable line in the window is reserved for error mes-
sages; no records are displayed there. If the error message is longer than the line,
it is truncated to fit. When windows exist on a display and *NOMSGLIN is specified
on the WINDOW keyword for the window, any error messages are displayed at the
bottom of the display or the location defined by the MSGLOC keyword.

Help is available through the Help key for error messages displayed in windows.

When messages reporting operational and keyboard errors, such as Function key
not allowed, are displayed, the keyboard is locked and the user must press the
Error Reset key to continue.

An informational message, stating that mismatching shift-out and shift-in characters
were sent to the display, is placed in the job log under the following circumstances:

e The base display has a DBCS field that spans more than one line.

e A window is displayed and part of the DBCS field from the base display is on
the window message line.

» A function key is pressed that results in an operational or keyboard error.

A few message-related keywords function differently when used for windows:

* The ERRSFL keyword is ignored. Its function is performed only when there are
no windows on the display.

e The MSGLOC keyword is ignored if *MSGLIN is specified on the WINDOW
keyword. Its function is performed only when there are no windows on the
display or when *NOMSGLIN is specified on the WINDOW keyword.

* Messages resulting from the ERRMSGID, ERRMSG, SFLMSG, SFLMSGID,
and DDS validity-checking keywords are displayed in the window but do not
lock the keyboard. Such messages do lock the keyboard when displayed on
full-screen displays.

Subfiles

A maximum of 24 subfiles can be active at any one time. A maximum of 12 sub-
files can be displayed on the base display or in a single window at any one time.

If a subfile is displayed in a window and the window is removed from the display,

the subfile is not deleted. The subfile remains active until the display file is closed
or you explicitly delete the subfile.

5-6 Application Display Programming V4R1

DDS Help Records

If a window definition record is written to the display as a DDS help record, the
current display is suspended as it normally is for application help, and the applica-
tion help record is written to the display as a window. To avoid errors when using
window records as help records, adhere to these requirements:

 Include the ASSUME keyword in the display file containing the help record. If
the ASSUME keyword is not present, the rest of the display is blank while the
help window is displayed.

¢ Use a value of *YES for the Restore Display (RSTDSP) parameter when cre-
ating, changing, or overriding the display file. When returning from help,
RSTDSP(*YES) restores the suspended display and puts the cursor back
where it was when the Help key was pressed.

* Use variable line and position values in your window definition record to allow
the operating system to position the help window dynamically, according to
cursor position. The system uses the same sequence of rules to position the
window as if *DFT were specified on the window keyword. These rules are
described in “Window Size and Location” on page 5-4. If the window definition
record specifies that only the line value or only the position value is variable,
the same rules are followed. However, the constant value is not changed.

Defining Window Borders

Border Defaults

You can use the system defaults for your window borders or define them using the
WDWBORDER keyword. This keyword specifies three border components: color,
display attributes, and characters. More than one WDWBORDER keyword can be
specified. You can use option indicators with the WDWBORDER keyword.

You can use the WDWBORDER keyword at the file level, where it applies to each
window definition record in the file, or on individual window definition records. If
you use it on window reference records, a warning message is issued when the file
is created.

The following sections describe window border defaults, how the system handles
multiple window border definitions, and how to use the WDWBORDER keyword to
define UIM help window borders.

When you do not use the WDWBORDER keyword, the system defaults are as
follows:

Border Element Default

Color Blue on color displays. On noncolor display
stations, this attribute is ignored.

Display attribute Normal (that is, no attributes such as high-
lighting or reverse image)

Top and bottom border character Period (.)

Left and right border character Colon (2)

Top left and right corner character Period (.)

Bottom left and right corner character Colon (3)

Chapter 5. Defining Windows with Display Files 5-7

Note: RUMBA/400 work stations and Infowindow* 1l display stations attached to a
controller that supports an enhanced interface have solid-line window
borders. For more information, see Table 6-1 on page 6-2.

Multiple Border Definitions

When the WDWBORDER keyword is specified at the file level and in a window
definition record, the parameter values of the keyword at the file and record level
are combined. If the parameter values conflict, the record-level parameter value is
used. For example, if the following is specified at the file level:

WDWBORDER ((*COLOR RED) (*DSPATR RI))

and the following is specified at the record level:

WINDOW(2 5 10 20) +
WDWBORDER ((*COLOR GRN) +
(*CHAR '........)

then the window border consists of green periods in reverse image.

If more than one WDWBORDER keyword is specified at the same level, the param-
eters for the keywords that are in effect are combined. If different values are speci-
fied for the same parameter, the parameter value of the first keyword in effect is
used. The values for individual components of the border are determined when a
window definition record is written. The border values are determined by the fol-
lowing hierarchy:

1. Start with system defaults.

2. Override the defaults with any file-level border specifications.

3. Override any file-level border specifications with record-level border specifica-
tions.

The process is similar when more than one WDWBORDER keyword is in effect at
the same level and the keywords specify the same WDWBORDER component
(color, attribute, or character). The first component value is used. For example,
assume that two WDWBORDER keywords are in effect at the file level:

WDWBORDER ((*COLOR GRN
*CHAR '........ "))
WDWBORDER((*CHAR "---|||-]"))

and the following is specified at the record level:
WDWBORDER ((*COLOR BLU))
then the border component values are determined as follows:

1. Start with the defaults for each component.

2. Override the character component and color component defaults with the file-
level values. Because the character component is specified more than once,
use the first character component value specified.

3. Override the file-level color value with the record-level value.

The window border is constructed using the record-level border color, the first file-
level border characters, and the default border display attributes.

If a single WDWBORDER keyword does not specify all three border components,
then those not specified use the values from any other WDWBORDER keywords in
effect; they do not use the defaults. In the preceding example, this is demonstrated
at the record level. Only the color component is specified. However, because the

5-8 Application Display Programming V4R1

character component is specified at the file level, the file-level value is used instead
of the default. Because the display attribute component is not specified at the
record or file level, the default is used.

UIM Help Window Borders

You can use the WDWBORDER keyword to specify the border attributes of help
windows created with UIM panel groups. Assume that you are using DDS for full-
screen displays and the UIM for help windows. If a window is on the display when
the Help key is pressed, the UIM help window has the same borders as the DDS
window. If no windows are active but the WDWBORDER keyword is specified at
the file level or at the record level of a nonwindow record currently on the display,
the system determines the border attribute and character values for the UIM help
window by combining the file-level, record-level, and default values. Assume that
no windows are currently displayed. First, a nonwindow record with the
WDWBORDER keyword specified is written to the display. A UIM help window is
then written to the display. The UIM help window borders use the attributes speci-
fied in the WDWBORDER keyword on the nonwindow record.

Defining a Window Title

Use the window title (WDWTITLE) keyword to specify the text, color, and display
attributes for a title of a window. The title is embedded in the top or bottom border
of the window. The length of the title can be up to the number of positions speci-
fied on the window-positions parameter specified on the associated window defi-
nition keyword.

Note: Some controllers do not support text in the bottom border of windows.

The WDWTITLE keyword must be specified on a record that contains a WINDOW
keyword (in the definition format). If a WINDOW keyword that refers to another
window is also specified, a warning message is issued.

Figure 5-1 shows an example of a window title.

NONWINDOW DISPLAY RECORD

WINDOW #1
CUSTOMER NO. nnnnnn :
NAME :

ADDRESS:
PHONE:

F12=CANCEL

F3=Xxxx FA=XXXXXXXX FE=XXxXXX XXXXX F7=Xxxx F12=CANCEL

Figure 5-1. Window Title—Display Example

Chapter 5. Defining Windows with Display Files 5-9

DDS for a Window Title—Example

P U PR SN JUIE S SR NP SUE SN U SO : SR U SO

A R RECORD1 WINDOW(6 15 18 51)

A NO1 WDWTITLE((*TEXT &TTL1) (*COLOR GRN))
A 01 WDWTITLE((*TEXT &TTL1) (*COLOR RED))
A FIELD1 5A B 2 2

A FIELD2 200 B 8 5

A TTL1 10A 0P

Ax

A R RECORD2 WINDOW(8 20 9 30)

A WDWTITLE((*TEXT &TTL2) +

A (*COLOR YLW) +

A (*DSPATR RI))

A FIELD3 5A B 2 2

A FIELD4 200 B 8 5

A TTL2 10A OP

Figure 5-2. DDS for a Window Title

If the window defined by RECORDL in Figure 5-2 is written to the display, the title
will be whatever text is contained within the TTL1 field. The title will appear cen-
tered in the top border of the window. If indicator 01 is set off, the text will be
green. If indicator 01 is set on, the text will be red.

If the window defined by RECORD?2 is written to the display, the the title will be
whatever text is contained within the TTL2 field. The title will appear centered in
the top border of the window. The title will be in reverse image and yellow.

Reading Data from Windows

When windows are on the display, you can receive input only from the active
window (that is, the last window written to the display). If your application reads a
window record and the window exists on the display but is not the active window,
then any windows subject to more recent input or output operations are removed.
The window containing the record to be read is restored, becoming the active
window. Then the record is read from the display.

If your application attempts to read a window record and the window does not exist
on the display, a notify message stating that the window does not exist is returned.
If the application attempts to read a window record and the window is on the
display but the record is not on the display, a message stating that the record is not
on the display is returned.

Changing Window Borders and Contents

To change the contents of a window already on the display, you must write that
window's window definition record or a window reference record specifying that
window to the display. To change the borders of a window already on the display,
you must write that window definition record to the display.

If a window definition record is written to the display and a window with that name

already exists on the display in the same position, a new window is not created.
The new record is considered a normal write operation to the existing window. If

5-10 Application Display Programming V4R1

the new record specifies different border attributes or characters, the new attributes
or characters are displayed when the record is written.

Moving and Duplicating Windows

If a window definition record is written to the display and a window with that name
already exists on the display in a different position, a new window is created. The
new window appears in the specified position and has the same name as the
existing window. To move the window, use the RMVWDW keyword in the window
definition record being written. The existing window with that name and any other
windows on the display are removed when the new window is written. In effect, the
window is moved. If you do not use the RMVWDW keyword, the same window
appears on the display in two different positions.

If a window reference record is written to the display and the specified window is on
the display, the record is written to the most recently created window with the spec-
ified name. To write to an earlier window with that name, use a window definition
record specifying the earlier window's location.

Making Two Windows Seem Active at Once

Although only one window can be truly active at a time, you can make two windows
appear to be active at once. You might use this to display two windows side by
side and allow the work station user to switch back and forth between them.

To make two windows appear active:

1. Set up function keys to perform the switching action for the work station user.
For example, you might provide one key to page through data in the first
window and another key to page through data in the second window.

2. Write the first window to the display.

3. Write the second window to the display using the USRRSTDSP keyword. The
USRRSTDSP keyword keeps the first window from being saved when the
second window is displayed. It keeps the second window from being removed
when the user returns to the first window and then keeps the first window from
being removed when the user returns to the second.

You can also use the USRRSTDSP keyword on the first window; it is not
required on the first window because using it on the second window keeps the
first window and all subsequent windows from being saved.

4. Be prepared to rebuild each window when the work station user presses the
keys that perform the switching action. Once the two windows are displayed,
you must rebuild each window whenever the user wants to move to it. The
USRRSTDSP keyword keeps both windows from being saved and restored, so
they must be rebuilt at every switch. In effect, the system does not know that
the previous window existed on the display.

For more information about the USRRSTDSP keyword, see “Improving Application
Performance” on page 5-13.

Chapter 5. Defining Windows with Display Files 5-11

Making One Window in a Series Stand Out

Assume that you display a series of windows that looks like this:

|

Now you want to return to Window 3 and make it appear to pop out of the series,
so that the display looks like this:

! |

: |

[«

To make Window 3 stand out without removing Windows 4 and 5 from the display,
take these steps:

1. Specify the USRRSTDSP keyword on Window 4 or any earlier window (that is,
Windows 1 through 3). The USRRSTDSP keyword prevents the previous
window and any subsequent windows from being saved.

2. Rebuild Window 3 so that it looks the way it did before Window 4 was first
displayed. Because USRRSTDSP was used, the display was not saved when
Window 4 was added to the display or at any later time. Thus, none of the
windows are removed from the display, and Window 3 appears to pop out of
the series.

For more information about the USRRSTDSP keyword, see “Improving Application
Performance” on page 5-13.

Removing Windows

When a window is removed, it no longer exists on the display, and you can no
longer write to or read from it. The window keywords provide you with several
different ways to remove windows. Which method you use depends on which
windows you want to remove and which operation you want to perform next. The
different methods are described in the following sections.

5-12 Application Display Programming V4R1

Removing All Windows
Remove all the windows on a display in one of these ways:

1. Write to a nonwindow record. This allows you to remove all existing windows
without displaying a new window.

2. Write to a window record that specifies the RMVWDW keyword. The
RMVWDW keyword causes all other windows on the display to be removed
when the specified window is displayed. If there are no other windows, the
RMVWDW keyword is ignored, and no error is returned.

Removing More Recent Windows

To remove more recent windows that are overlaying the window you want to make
active, read or write to the window you want to make active. Assume that Window
3 exists on the display but is not the active window. Windows 4, 5, and 6 were
subject to more recent write operations than Window 3; therefore, they overlay
Window 3. To remove Windows 4, 5, and 6 so that Window 3 is visible and is the
active window, read or write to Window 3.

Improving Application Performance

In some cases, you can improve application performance by using the
USRRSTDSP keyword to prevent the operating system from saving and restoring
the display. The following sections describe how the system performs the oper-
ations, and how and when to use the USRRSTDSP keyword.

System Save and Restore Operations
If you do not use the USRRSTDSP keyword, the operating system automatically
performs save and restore operations for your application. Before a window is dis-
played, the system saves the display, including any windows not being removed.
When windows are removed, the system restores the display.

If a new window is being created on the display, the record that is active when the
window is written is saved, and the entire display remains as background data.
Then the new window becomes active. The saved record can be a window record
or nonwindow record; the procedure is the same for both.

If a window record is written to the display to change or redisplay an existing
window, any more recent windows are removed without being saved, the target
window is restored, the new record is written, and the window becomes active.

If a nonwindow record is written to the display, any existing windows are removed
without being saved, the new record is written to the initial display, and the display
becomes active.

Response Time
The time needed for the system to perform save and restore operations depends
on your communications setup and on the window being displayed.

The slowest response time occurs during the read and save operations performed
when the first window is added to a display. Assume that the window is of average
size and complexity. If the work station is attached to the AS/400 system by a
twinaxial, local area network (LAN), or other high-speed communications line,

Chapter 5. Defining Windows with Display Files 5-13

response time is quick. If the work station is attached by a 2400-baud dedicated
line, it takes approximately 10 seconds to complete the read and save operations
and then display the window. If the line speed is increased to 9600 baud, it usually
takes about 2.5 seconds.

Other operations, such as saving the display before the second or third window is
added, or restoring the display after windows are removed, take less time.

For more information, including details about other window sizes, terminal types,
and line speeds, consult your marketing representative.

Bypassing System Save and Restore Operations

You can use the USRRSTDSP keyword to bypass system save and restore pro-
cessing and instead have your application rebuild the display only when necessary.
This technique can improve system performance and response time for the user of
the application. Consider using it when you display only one window at a time and
the windows are in a different display file, or when you display a series of windows
in which the user will not return to earlier windows, or when you want more than
one window to seem active at one time.

For example, under the following conditions, the system ordinarily performs two
save operations:

e Your application displays only one window at a time.
e The display file is created with RSTDSP(*YES).
e The first window record to overlay the display is located in a separate file.

The first save operation is performed when the display file is suspended. The
second save operation is performed because a window is being displayed.
USRRSTDSP eliminates the second, unnecessary save operation.

To bypass system save and restore processing, take these steps:

1. Create your own procedure to rebuild the display after a window is removed.
Be sure to include any data that the user enters and that must be redisplayed.

2. Specify the record-level USRRSTDSP keyword on the window following the first
window you do not want the system to save. The USRRSTDSP keyword
keeps the system from performing save and restore operations. The
USRRSTDSP keyword is allowed only on records containing the WINDOW
keyword; it is ignored on the window reference record.

Once the USRRSTDSP keyword is specified, it remains in effect, even if the
option indicator is set off, until you read or write to either the initial, windowless
display or the window that is two windows before the window on which the
USRRSTDSP keyword was specified.

Assume that six windows are on the display and the USRRSTDSP keyword
was specified on the fourth. To turn off USRRSTDSP and have the system
resume saving the display, you must write to the second window. As shown in
the diagram, the system has saved only the first two windows:

5-14 Application Display Programming V4R1

Display Files, Examples

1. Saved ‘

2. Saved ‘

3. Not saved ‘

4. USRRSTDSP; not saved ‘

5. Not saved ‘

6. Not saved

USRRSTDSP Keyword Processing and Interactions

The USRRSTDSP keyword interacts with other keywords and window-related func-
tions. Before using the keyword, you should understand the following (assume that
the USRRSTDSP keyword is in effect):

e |If a window record is written to a window that was saved (window 1 or 2 in the
above example), the saved display is restored, the current record is written to
the target window, and the target window becomes active. At this point, the
USRRSTDSP keyword is no longer in effect.

e |f a window definition record is written to a window that was not saved (window
3, 4, or 5 in the above example), it becomes a new window. It is merged with
the previous display image and written to the display. No windows are
removed.

e |If a window record is read from a window that was not saved (window 3, 4, or 5
in the above example), an error message is returned to the application.

 |If the initial display has been saved and the application writes to a window
record specifying the RMVWDW keyword, any existing windows are removed.
The new window is displayed on top of the initial display. The new window is
active, and USRRSTDSP is no longer in effect.

 |f the initial display is not saved and the application writes to a window record
that specifies the RMVWDW keyword, all existing windows are removed. The
new window is displayed on top of the initial display. The new window is
active, and USRRSTDSP is still in effect.

e If a nonwindow record is written to the display and USRRSTDSP is specified on
the first window, then the window is not removed, and the nonwindow record
may overlay all or part of the window.

Programming Examples

The following sections illustrate the basic functions of the window keywords. The
first example shows how to use a variety of window functions. It defines a full-
screen display and several windows in one display file. The second example
shows how to create windows for a full-screen display defined in a separate display
file. The third example shows how to simulate menu bar support.

Chapter 5. Defining Windows with Display Files 5-15

Display Files, Examples

Using Basic Window Functions

The following scenario demonstrates the basic functions of the window keywords.
The scenario is presented in three sections:

e The DDS used to define a full-screen display and windows
e The RPG program used to display the full-screen display and windows
e Discussion and illustration of the results

DDS Full-Screen Display and Window Definitions
The following DDS defines the initial display and two windows used in the scenario:

gy g)y sy *
Ax DISPLAY FILE - DEMOFM

A o e e *
Sy Sy S RS R S S Ry *
Ax FILE LEVEL KEYWORDS
g g g gy *
A DSPSIZ(24 80 *DS3)

A HELP

Ax*
gy *
A= RECORDS USED IN DEFINING INITIAL DISPLAY
gy Sy S Uy PR S Sy Ry, *
A R INITIAL

A CA03(03)

A CA04(04)

A CA06(06)

A CA07(07)

A CA12(12)

A CLRL(*ALL)

A 3 28'NONWINDOW DISPLAY RECORD'

A 6 1'FLD #1:'

A FLD48 30A B 6 9

A 6 43'FLD #2:'

A FLD49 15A B 6 51

A 10 1'FLD #3:'

A FLD50 30A B 10 9

A 10 43'FLD #4:'

A FLD51 15A B 10 51

A 23 1'F3=Xxxx'

A 23 13'F4=Xxxxxxxx"

A 23 29'F6=Xxxxx Xxxxx'

A 23 48'F7=Xxxx'

A 23 59'F12=CANCEL'

Ax
g g *
Ax RECORDS USED IN DEFINING WINDOW1

Ak e e e e e e e ———————— *
A R WINDOW1 WINDOW(7 3 11 33)

A No1 WDWBORDER((*COLOR GRN))

A o1 WDWBORDER ((*COLOR RED))

A 2 13'WINDOW #1'

A 4 2'CUSTOMER NO.'

A FLD1 6A 0 4 15

A 4 22':!

Ax

A R REC2WIN1 WINDOW (WINDOW1)

A OVERLAY

A CA12(12)

A 10 2'F12=CANCEL'

Ax

A R REC3WIN1 WINDOW(WINDOW1)

A OVERLAY

A 6 2'NAME:'

A FLD2 24A B 6 8

A 7 2'ADDRESS:'

A FLD3 21A B 711

A 8 2'PHONE:'

A FLD4 23A B 8 9

5-16 Application Display Programming V4R1

Display Files, Examples

Ax*
Sy Sy S S *
A= RECORDS USED IN DEFINING WINDOWZ

gy gy ey gy g gy g gy gy g S *
A R WINDOW2 WINDOW(9 25 11 32)

A*

A 2 12'WINDOW #2'

A FLD5 22A 0 4 6

A FLD6 25A 0 5 4

A FLD7 25A 0 6 4

A FLD8 25A 0 7 4

Ax

A R REC2WIN2 WINDOW(WINDOW2)

A OVERLAY

A CA12(12)

A 10 8'Xxxxxxx :'

A FLD9 6A B 10 18

Ax

gy gy ey gy g gy g gy gy g S *

RPG Display Program

This RPG program displays the full-screen display and windows defined in the pre-

ceding section. Steps 1 through 5 are explained in the sections following the
program.

F
Fx RPG PROGRAM - WINDEMO

F***

FDEMOFM CF E WORKSTN
C

Cx Step 1: Display Initial Display

C

C EXFMTINITIAL

C

C* Step 2: Display Window #1

C

C MOVE 'nnnnnn' FLD1
C WRITEWINDOW1

C WRITEREC2WIN1

C EXFMTREC3WIN1

C

C* Step 3: Display Window #2
C***
C MOVEL'Xxxxxxx 'TEMP16 16

MOVE 'xxxx x x'TEMP16

MOVELTEMP16 FLD5

MOVE 'xxxxxx' FLD5

o

*

MOVEL'xxxxxx x'FLD6
MOVEL'xx xxxx 'TEMP16
MOVE 'xxx xxxx'TEMP16
MOVELTEMP16 TEMP17 17
MOVE ' ' TEMP17
MOVE TEMP17 FLD6

*

MOVEL'xxxx xxx'FLD7
MOVEL'xxxx x x'TEMP16
MOVE 'x xxxx x'TEMP16
MOVELTEMP16 TEMP17
MOVE 'x' TEMP17
MOVE TEMP17 FLD7

*

MOVEL ' xxxxxxx 'FLD8
MOVEL'xxxx xxx'TEMP16
MOVE 'xx xxxxx'TEMP16
MOVELTEMP16 TEMP17
MOVE '.' TEMP17
MOVE TEMP17 FLD8

*

WRITEWINDOWZ
EXFMTREC2WIN2

OO OO0 0O 00

Chapter 5. Defining Windows with Display Files

5-17

Display Files, Examples

C

C* Step 4: Restore Window #1

C

C EXFMTREC3WINL

G e o ek ok ok e ek kR
C+ Step 5: Display Initial Display

g READ INITIAL 91
E* End The RPG Program
E SETON LR

C***

Step 1. Display Initial Display

The application creates the initial display without using a window keyword:

NONWINDOW DISPLAY RECORD

FLD #1: FLD #2:

FLD #3: FLD #4:

F3=Xxxx FA=XXXXXXXX FE=XXXXX XXXXX F7=Xxxx F12=CANCEL

Step 2: Display Window 1

The user types some data on the display and presses the Enter key. The applica-
tion writes to window definition record WINDOW1, which creates the window. Then
the application adds information to the window by writing to window reference
record REC2WIN1 and performing a write/read operation to window reference
record REC3WINL.

Before the window is displayed, the system performs a read screen immediate
operation to obtain the display image and saves the underlying display. The
system performs a read screen immediate operation only when the first window is
added to the display. It performs a save operation each time a window is created.

5-18 Application Display Programming V4R1

Display Files, Examples

NONWINDOW DISPLAY RECORD

FLD #1: DATA ENTERED HERE FLD #2: DATA ENTERED
: WINDOW #1 :
F: : FLD #4: DATA ENTERED
: CUSTOMER NO. nnnnnn : :
NAME :
ADDRESS:
PHONE :
F12=CANCEL
F3=Xxxx FA=XXXXXXXX FE=XXXXX XXXXX F7=Xxxx F12=CANCEL

Step 3: Display Window 2

The user types some information and presses the Enter key. The application writes
to window definition record WINDOW2. WINDOW?2 is not the active window, and it
is not currently on the display; therefore, the system saves the underlying display,
associating the saved data with WINDOW1. Then a new window is created. The
application adds information to the window by performing a write/read operation to
window record REC2WIN2.

NONWINDOW DISPLAY RECORD

FLD #1: DATA ENTERED HERE FLD #2: DATA ENTERED
WINDOW e e e e e e e
F : : D
CUSTOMER NO. nnnnn : WINDOW #2
NAME: MY NAME ; XXXXXXX XXXX X XXXXXXX
ADDRESS: MY ADDRES : XXXXXX XXX XXXX XXX XXXX
PHONE: MY PHONE : XXXX XXXXXXX X XX XXXX XX
: XXXXXXX XXXX XXXXX XXXXX.
F12=CANCEL

R : XXXXXXX ¢

F3=Xxxx FA=XXXXXXXX FE=XXXXX XXXXX F7=Xxxx F12=CANCEL

Step 4. Restore Window 1

The user types some data and presses the Enter key. The application performs a

write/read operation to window record REC3WIN1. The record format name speci-
fied on the WINDOW keyword, WINDOWL, is not the active window. However, the
window is currently on the display; therefore, the system restores the saved display
associated with WINDOWL1. The restore operation removes WINDOW?2, which was
written after WINDOW1. Then REC3WINL1 is written to the restored window.

Chapter 5. Defining Windows with Display Files 5-19

Display Files, Examples

NONWINDOW DISPLAY RECORD

FLD #1: DATA ENTERED HERE FLD #2: DATA ENTERED

: WINDOW #1 :
F: : FLD #4: DATA ENTERED
: CUSTOMER NO. nnnnnn : :

NAME: MY NAME
ADDRESS: MY ADDRESS
PHONE: MY PHONE

F12=CANCEL

F3=Xxxx FA=XXXXXXXX FE=XXXXX XXXXX F7=Xxxx F12=CANCEL

Step 5. Display Initial Display
The user presses the Enter key. The application performs a read operation to the
initial display, which automatically removes the last window from the display.

NONWINDOW DISPLAY RECORD

FLD #1: DATA ENTERED HERE FLD #2: DATA ENTERED

FLD #3: DATA ENTERED HERE FLD #4: DATA ENTERED

F3=Xxxx FA=XXXXXXXX FE=XXxXXX XXXXX F7=Xxxx F12=CANCEL

Defining Windows in a Separate Display File

The following sections show the DDS code for a full-screen display and window
and the procedural steps needed to use them. In contrast to the preceding
example, this example keeps the window records in a separate display file from the
file for the underlying display. This technique allows you to add windows for items,
such as help, to existing applications, without rewriting the display-file code for the
applications.

In the example, the application uses RSTDSP(*NO) to indicate that a save opera-

tion should not be done when a file is suspended. Because displaying a window
also performs a save operation, using RSTDSP(*NO) prevents two save operations

5-20 Application Display Programming V4R1

Display Files, Examples

from being performed. Because removing the window restores the screen that was
present prior to the window operation, the application is not required to rebuild the
display after window processing. For more information on the USRRSTDSP
keyword, see the notes at the end of the example.

DDS Full-Screen Display and Window Definitions

Ak e e e e e ——————— *
A* DISPLAY FILE DISPLAY1 (RSTDSP=NO DFRWRT=*YES)
gy *
A R REC1

A 2 21'FIRST RECORD IN FILE'

A 4 17'Current Customer #:'

A FIELD1 6A B 4 38

A*

A R REC2 OVERLAY CA03(03)

A 6 21'SECOND RECORD IN FILE'

A 8 17'Current Customer #:'

A FIELD2 6A B 8 39DSPATR(HI)

A 24 02'CAO3=EXIT'
g g g gy *

RPG Program Source
FDISPLAY1CF E

C WRITEREC1

C WRITEREC2

C RETRY TAG

C READ REC2 90
cC 03 GOTO END

C CALL '"WINPGM'

C GOTO RETRY

C END TAG

C SETON LR
gy gy *
A* DISPLAY FILE DISPLAY2 (RSTDSP=NO)
N A *
A R WINDOW1 WINDOW(7 4 11 25)

A Nol WDWBORDER ((*COLOR GRN))

A 01 WDWBORDER ((*COLOR RED))

A 2 9'Window #1'

A *

A R REC2WIN1 WINDOW (WINDOW1)

A CA12(12) OVERLAY

A 4 1'Customer No. nnnnnn:'

A 6 1'Name:'

A FIELD3 19A B 6 7

A 7 1'Address:'

A FIELD4 16A B 7 10

A 8 1'Phone:'

A FIELD5 18A B 8 8

A 10 1'F12=Cancel’
N s L *
Ax Dummy record to remove window from display before returning
gy gy gy gy gy g *
A R RMVWDW CLRL(*NO) OVERLAY FRCDTA
gy gy *

A* No I/0 will ever be done to this record. This record prevents the
Ax display from clearing.

N BN *
A R DUMMY ASSUME

A 1m 1" !

gy gy gy gy g *

Chapter 5. Defining Windows with Display Files 5-21

Display Files, Examples

RPG Program Source for WINPGM
FDISPLAYICF E

C WRITEWINDOW1

C EXFMTREC3WIN1

C WRITERMVWDW

C RETRN

C SETON LR

Step 1. Display Initial Display
The application opens display file DISPLAY1, performs a write operation to record
REC1, and performs a write/read operation to REC2.

FIRST RECORD IN FILE
Current Customer #:
SECOND RECORD IN FILE

Previous Customer #:

Step 2: Display a Window

The user enters data indicating that a window should be displayed. The application
opens window display file DISPLAY2. This can be done from a separate program
such as the one which displayed the screen in Step 1. The ASSUME keyword on
record DUMMY keeps the full-screen display from being cleared, and the system
marks display file DISPLAY2 as suspended. No I/O operation ever needs to be
performed to record DUMMY; it only needs to be present in the file.

The application performs a write operation to record WINDOW?1. Display file
DISPLAY1 is suspended; because of the RSTDSP(*NO) setting, no save is per-
formed. Display file DISPLAY2 is restored; because of the RSTDSP(*NO) setting,
no restore data is sent.

The application performs a write operation to record REC2WINL1.

5-22 Application Display Programming V4R1

Display Files, Examples

FIRST RECORD IN FILE
Current Customer #: XXXXXX

SECOND RECORD IN FILE
#: XXXXXX
Window #1

: Customer No. nnnnnn:
: Name:

: Address:
: Phone:

; F12=Cancel

Step 3: Return to the Initial Display

The user enters data indicating that the application should return to the initial
display file, DISPLAY1. The application performs a write operation to record
RMVWDW, which causes the system to remove all windows from the display.
Because the application does not close the DISPLAY?2 display file, and the
USRRSTDSP keyword is not specified, then removing the window restores the
initial display. The application is not required to rebuild the initial display. The
RMVWDW record should contain the FRCDTA keyword or specify DFRWRT(*NO)
when the display file is created.

The application performs a write operation to record REC1. Display file DISPLAY?2
is suspended; because of the RSTDSP(*NO) setting, no save operation is per-

formed. Display file DISPLAY1 is restored; because of the RSTDSP(*NO) setting,
no data is sent.

The application performs a write/read operation to record REC2.

Chapter 5. Defining Windows with Display Files 5-23

Display Files, Examples

FIRST RECORD IN FILE
Current Customer #:
SECOND RECORD IN FILE

Previous Customer #:

Additional notes on this example:

1. If the application closes DISPLAY2 in Step 3, then the application must rebuild
the initial display by performing a write operation to REC1 and then a write/read
operation to REC2. This can be avoided by specifying RSTDSP(*YES) for
DISPLAY1.

2. USRRSTDSP can be added to the window record in DISPLAY2. However, if
this is done, the user must either specify RSTDSP(*YES) for DISPLAY1, or
rebuild the initial display in Step 3. However, in Step 3, the application must
still write RMVWDW, or the borders of the window are not displayed properly
on the next write operation to the window.

3. The KEEP keyword should be added to the window format both of the following
conditions are true:

e The application closes DISPLAY2 in Step 3.

e No I/O is done to file DISPLAY1 prior to opening DISPLAY2 and displaying
the window again.

5-24 Application Display Programming V4R1

Chapter 6. Creating a Graphical Look for Displays

The graphical look is a change in what you see while you run DDS functions.
Instead of dotted windows, you have crisp window borders. Instead of typing
numbers in an option column to make a selection, you can use a mouse or mne-
monics. A mnemonic is an underlined character within the text of a choice that
you can type to select the choice. Instead of seeing option humbers, you can see
radio buttons or check boxes. A radio button is a circle that precedes a choice in
a single-choice selection field on a graphical display station. A check box is a
square box that precedes a choice in a multiple-choice selection field on a graph-
ical display station. You can click on radio buttons and check boxes to make
choices.

1. Undo ® tod
2. Mark
Undo
3. Copy
D Mark
] copy

RV2WO063-0

Figure 6-1. Radio Buttons and Check Boxes

In addition to a fresher look, the enhanced function includes menu bars and pull-
down menus. Instead of having to simulate a menu bar by using lengthy DDS
coding, you can use DDS keywords.

Factors Affecting the Graphical Look

The graphical functions described in this chapter appear differently, depending on
the hardware configuration you have and the value you specify on the enhanced
display (ENHDSP) parameter.

Hardware Configuration

© Copyright IBM Corp. 1997

Table 6-1 on page 6-2 and Table 6-2 on page 6-3 show how each graphical func-
tion appears on different configurations. Letters A through F in the tables identify
the configurations; these letters are referred to throughout this chapter.

6-1

Table 6-1. Functions Supported by Hardware Configurations A, B, and C

Hardware Configuration

A

B

C

Graphical User Inter-
face (GUI) Program-

InfoWindow I
Display Station 2
Attached to Con-

3477 Display Station
Attached to Controller

mable Work troller Supporting Supporting Enhanced
Function Stations 1 Enhanced Interface 3 Interface 3
Windows9 GUI4 windows and Character-based GUI5 Character windows and

possible improvement
in performance

and possible improve-
ment in performance

possible improvement in
performance

Selection fields and
menu bars

GUI4

Character-based GUI5

Mnemonics, bar
selection cursor

Selection lists

Bar selection cursor.
Possible check boxes
for multiple-choice
lists. Possible radio
buttons for single-

Bar selection cursor.
Possible check boxes
for multiple-choice
lists. Possible radio
buttons for single-

Bar selection cursor.
Input field to the left of
list.

choice lists. choice lists.
Continued-entry One field One field One field
fields
Edit masks Yes Yes Yes
Highlighting Yes Yes Yes
Cursor progression Yes Yes Yes
Word spill Yes8 Yes Yes
Simple hotspots Yes Yes No

Scroll bars

GUI 4 scroll bars

Character-based GUI

*MORE, *PLUS, or char-

5 scroll bars acter scroll
bars 6

Push buttons Yes Yes Yes
Auto-Selection Yes Yes Yes
Auto-Enter Yes Yes Yes
Programmable Yes8 Yes No

Mouse Buttons

Grid Lines? No No No

Notes:

1. For example, RUMBA/400 (Microsoft Windows** and OS/2*) and AIX* AS/400 Connection
Program/6000 Release 2.
2. InfoWindow Il display stations: 3486, 3487, 3488.

w

. Twinaxial controllers: 5494 Release 1.1, and features 6050, 2661, 9146, and 9148.

4. GUI includes solid-line window borders, selectable background colors, use of a pointer device (for
example, a mouse), mnemonic selection, bar selection cursor, radio buttons (for single-choice
selection fields), and check boxes (for multiple-choice selection fields).

5. Character-based GUI is similar to GUI except that in character-based GUI, constructs are created
using characters, and background colors are not selectable.

6. Scroll bars that appear on display stations without pointing devices are for display purposes only.

7. Grid lines are supported only on DBCS display stations. For the specific hardware required for grid

lines, see “Hardware Requirements for Grid Line Structures” on page 6-82.

8. RUMBA/400 does not currently support this function.

©

. RUMBA/400 does not currently support window footers.

6-2 Application Display Programming V4R1

Table 6-2. Functions Supported by Hardware Configurations D, E, and F

Function

Hardware Configuration

D E F
ASCII Display
5250 Display Station Attached Any Display Station

Station Attached
to Controller Sup-
porting Enhanced
Interface 1

to ASCII Controller
Supporting
Enhanced Inter-
face2

Attached to Con-
troller Not Sup-
porting Enhanced
Interface 3

Windows7?

Character windows
and possible
improvement in per-
formance

Character windows
and possible
improvement in per-
formance

Character windows

Selection fields
and menu bars

Bar selection cursor

Bar selection cursor

Entry field driven

Selection lists

Bar selection
cursor. Input field
to the left of list.

Bar selection
cursor. Input field
to the left of list.

Input field to the left
of list.

Continued-entry One field One field Multiple fields
fields

Edit masks Yes Yes Ignored
Highlighting Yes Yes Ignored
Cursor Yes Yes Ignored
progression

Word spillé Yes Yes Ignored
Simple hotspots No No No

Scroll bars

*MORE, *PLUS, or
character scroll bars

*MORE, *PLUS, or
character scroll bars

*MORE, *PLUS, or
character scroll

4 4 bars 4

Push buttons Yes Yes Yes
Auto-Selection Yes Yes No
Auto-Enter Yes Yes Yes
Programmable No No No
Mouse Buttons

Grid Lines5 No No No
Notes:

1. Twinaxial controllers: 5494 Release 1.1, and features 6050, 2661, 9146, and 9148.
2. ASCII controllers that support an enhanced interface: features 6041, 6141, 2637, 9145,

9147.

3. For example: 5250 display stations attached to 5294 and 5394 controllers or features
2638, 6040, and 6140; some programmable work stations emulating a controller with an
attached 5250 display station (for example, Client Access).

4. Scroll bars that appear on display stations without pointing devices are for display pur-

poses only.

5. Grid lines are supported only on DBCS display stations. For the specific hardware
required for grid lines, see “Hardware Requirements for Grid Line Structures” on

page 6-82.

6. RUMBA/400 does not currently support this function.
7. RUMBA/400 does not currently support window footers.

Chapter 6. Creating a Graphical Look for Displays ~ 6-3

Enhanced Display Parameter

The enhanced display (ENHDSP) parameter can be used with the CRTDSPF,
CHGDSPF, and OVRDSPF commands. Use this parameter to specify whether the
data being shown at a display station uses the enhanced capabilities available on
the display station.

Normally, DDS windows and CUA* graphical items are rendered using whatever
enhanced capabilities are available on the display station. For example, window
borders and menu-bar separators are presented graphically on a graphical display
station.

You can use ENHDSP(*NO) to cause all records defined in the display file to be
displayed in character-based mode, regardless of the capabilities of the display
station. When ENHDSP(*NO) is specified, hone of the enhanced capabilities that
may be available on a particular display station are used. That is, records display
just as they would on a display station in configuration F in Table 6-2 on page 6-3.

The default value for ENHDSP is *YES. Any enhanced capabilities of the display
station are taken advantage of automatically. If you specify ENHDSP(*YES) and
you use the default window border and menu-bar separator, the window border and
the menu-bar separator appear as solid lines. If the display station is attached to a
controller that does not support an enhanced interface for nonprogrammable work
stations, ENHDSP(*YES) is ignored. The records in the display file are displayed
on that display station in character-based mode (as if ENHDSP(*NO) were speci-
fied).

Writing records from files with ENHDSP(*YES) and files with ENHDSP(*NO) to

the same display. If the record (or records) displayed is from a file with
ENHDSP(*YES), the first write operation of a record (such as a window) from a file
with ENHDSP(*NO) causes all menu bars, pull-down menus, and other windows on
the display to change from graphical to character-based. The records from the file
with ENHDSP(*YES) are switched to the ENHDSP(*NO) mode of display.

If the record displayed is from a file with ENHDSP(*NO), a write operation of a
record (such as a window) from a file with ENHDSP(*YES) does not change the
presentation of any menu bars, pull-down menus, or other windows on the display.

Notes:

1. The system file that is used for UIM help is shipped with ENHDSP(*NO). If you
use UIM help with a file that has ENHDSP(*YES) specified, the display will
changes from graphical to character-based.

2. Some programmable work stations that support an enhanced interface ignore
the window border and menu-bar separator keywords.

3. If a window is written to the display station such that a border is in column 1,
column 80 (for display size 24 by 80), or column 132 (for display size 27 by
132), the window is always displayed as though ENHDSP(*NO) were specified.

6-4 Application Display Programming V4R1

DDS Keywords

The tasks in this chapter refer to the DDS keywords, but may not provide all the
details about them. For more information on each keyword, refer to the DDS Ref-
erence.

CCSID (Coded Character Set Identifier)
Specifies that a “G” type field supports UCS-2 Level 1 data instead of
DBCS-graphical data.

CHCACCEL (Choice Accelerator Text)
Specifies the text for the accelerator key on a single-choice selection field in a
pull-down record.

CHCAVAIL (Choice Color/Display Attribute when Available)
Specifies the color or display attributes to be used when displaying the available
choices in a menu bar or selection field.

CHCCTL (Choice Control)
Controls the availability of the choices for the field.

CHCSLT (Choice Color/Display Attribute when Selected)
Specifies the color or display attributes to be used when displaying a selected
choice in a menu bar.

CHCUNAVAIL (Choice Color/Display Attribute when Unavailable)
Specifies the color or display attributes to be used when displaying the unavail-
able choices in a selection field.

CHOICE (Selection Field Choice)
Defines a choice for a selection field.

CNTFLD (Continued-Entry Field)
Defines a field as a continued-entry field. Continued-entry fields are sets of
associated entry fields that are treated by the work station controller as a single-
entry field during field data entry and editing.

EDTMSK (Edit Mask)
Defines an edit mask for fields with EDTCDE or EDTWRD keywords.

ENTFLDATR (Entry-Field Attribute)
Defines the leading attribute of the field that changes to a specified attribute
whenever the cursor enters the field. When defined at both the field- and
record-level, the field-level specification is used for the field.

FLDCSRPRG (Cursor Progression Field)
Defines the next field that the cursor moves to when exiting this field.

GRDATR (Grid Line Attribute)
Defines the color and line-type attributes for grid line structures in the file or
record.

GRDBOX (Grid Box)
Defines the shape, positioning, and attributes of a box.

GRDCLR (Grid Clear)
Defines a rectangular area on a display within which all grid structures are
erased.

GRDLIN (Grid Line)
Defines the shape, positioning, and attributes of a grid line.

Chapter 6. Creating a Graphical Look for Displays ~ 6-5

GRDRCD (Grid Record)
Specifies that this record defines grid structures. No other display fields are
allowed on records with this keyword.

HLPID (Help Identifier)
Specifies an identifier for the constant in the help for a field.

HTML (Hyper Text Markup Language)
Specifies if a data stream is sent to an AS/400 5250 Workstation Gateway
display, the HTML tags are sent along with the data stream. These HTML tags
are processed on the HTML browser. This allows you to update applications to
use on the Internet through the World Wide Web.

MLTCHCFLD (Multiple-Choice Selection Field)
Defines a field as a multiple-choice selection field. A multiple-choice selection
field is a field that contains a fixed number of choices from which a user can
select multiple choices.

MNUBAR (Menu Bar)
Defines a menu bar. A menu bar is a horizontal list of choices that is followed
by a separator line.

MNUBARCHC (Menu-Bar Choice)
Defines a choice for a menu-bar field. A menu-bar choice represents a group of
related actions that the application user can select.

MNUBARDSP (Menu-Bar Display)
Displays the menu bar.

MNUBARSEP (Menu-Bar Separator)
Specifies the color, display attributes, or character used to form the menu-bar
separator line.

MNUBARSW (Menu-Bar Switch Key)
Assigns a CA key to the Switch-to-menu-bar key.

MNUCNL (Menu Cancel Key)
Assigns a CA key to be the cancel key for menu bars or pull-down menus.

MOUBTN (Programmable Mouse Button)
Allows an attention indicator (AID) to be associated with various pointer device
events.

PSHBTNCHC (Push Button Choice)
Defines a push button within a push button field.

PSHBTNFLD (Push Button Field)
Defines a field as a push button field. A push button field is a field that contains
a fixed number of push buttons. A push button is a button, labeled with text,
graphics, or both that represents an action that starts when a user selects the
push button.

PULLDOWN (Pull-Down Menu)
Defines a record as a pull-down menu for a menu bar.

SFLCSRPRG (Subfile Cursor Progression)
Causes the cursor to move to the same input field in the next subfile record
when exiting this field.

SFLCHCCTL (Subfile Choice Control)
Controls the availability of the choices in a selection list.

6-6 Application Display Programming V4R1

SFLEND (Subfile End)
Displays a plus sign (+) or text (More... or Bottom) in the lower right location of
the subfile. It can also display a scroll bar.

SFLMLTCHC (Subfile Multiple-Choice Selection List)
Defines a subfile as a multiple-choice selection list. A multiple-choice
selection list is a potentially scrollable list from which the user can select one
or more items.

SFLRCDNBR (Subfile Record Number)
Displays the page of the subfile containing the record whose relative record
number is in this field.

SFLRTNSEL (Subfile Return Selected Choice)
Returns all selected choices in a selection list using the get-next-changed oper-
ation.

SFLSCROLL (Subfile Scroll)
Returns the relative record number of the subfile record that is at the top of the
subfile when control is given to the application.

SFLSIZ (Subfile Size)
Specifies the number of records in the subfile.

SFLSNGCHC (Subfile Single-Choice Selection List)
Defines a subfile as a single-choice selection list. A single-choice selection
list is a potentially scrollable list from which the user can select one item.

SNGCHCFLD (Single-Choice Selection Field)
Defines a field as a single-choice selection field. A single-choice selection field
is a field that contains a fixed number of choices from which a user can select
one choice.

Creating Menu Bars

Figure 6-2 shows an example of a menu bar , which is a horizontal list of choices
that appears at the top of a display. An optional menu-bar separator appears
below the list. When you select a choice from the menu bar, a pull-down menu
appears. A pull-down menu is a group of actions associated with a menu-bar
choice.

‘ Edit View Options Help

Figure 6-2. Example of a Menu Bar

Defining the Menu-Bar Choices

A menu bar is a special type of record containing a MNUBAR keyword and one
menu-bar field. The menu-bar field is a numeric field containing one or more
MNUBARCHC keywords. The MNUBARCHC keywords define