
Infoprint Fonts

Creating User-defined Characters

G544-5854-00

IBM

Infoprint Fonts

Creating User-defined Characters

G544-5854-00

IBM

Note!
Before using this information and the product it supports, read the information in “Notices” on page 45.

First Edition (December 2002)

This edition of IBM Infoprint Fonts: Creating User-defined Characters applies to IBM Infoprint Fonts for
Multiplatforms, Version 1 Release 1 Modification 0, program number 5648–E77; and to all subsequent releases of
this product until otherwise indicated in new releases or technical newsletters.

Requests for IBM publications should be made to your IBM representative or to the IBM branch office serving your
locality. If you request publications from the address given below, your order will be delayed because publications
are not stocked there. Many of the IBM Printing Systems Division publications are available from the web page
listed below.

Internet
Visit our home page at: http://www.ibm.com/printers

A Reader’s Comments form is provided at the back of this publication. If the form has been removed, you can send
comments by fax to 1-800-524-1519 (USA only) or 1-303-924-6873; by E-mail to printpub@us.ibm.com; or by mail to:

IBM Printing Systems Division
Department H7FE Building 004M
Information Development
PO Box 1900
Boulder CO 80301-9191 USA

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring
any obligation to you.

© Copyright International Business Machines Corporation 2002. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

Chapter 1. Introduction 1
Contents of this publication 1
Related publications 1

Chapter 2. CMaps, CIDFonts, and
CID-keyed fonts 3
CMaps 3

Format 3
Referring to another CMap 8

CIDFonts 8
Adding CIDFonts. 8
Part 1: PostScript program 8
Part 2: Data section 11
Closing the CIDFont 11

How CMaps and CIDFonts work together 11
Character collection compatibility 12
Keeping the same CMap and changing the
CIDFont 12
Keeping the same CIDFont and changing the
CMap 12
Putting the pieces together 13

Rearranged fonts 13
Comments. 15
Component font files 15
Mapping the base font. 15
Adding user-defined characters. 16

Chapter 3. Creating user-defined
characters 17
Deciding where to add the UDC 18

Designing the new UDC 19
Preparing to use FontLab 19
Designing the UDC. 20
Finishing in FontLab 30

Creating and modifying the UDC code page . . . 30
Modifying the rearranged CMap file 31
Checking the ATMDATA.DAT file 34
Creating or modifying the Type Transformer batch
file 34
Running the Type Transformer batch job 35
Modifying the coded font (simulation fonts only). . 35

Coded font values of Japanese simulation fonts 35
Coded font values of Korean simulation fonts . . 38
Coded font values of Simplified Chinese
simulation fonts 39
Coded font values of Traditional Chinese
simulation fonts 39

Installing font objects in your font library 40
Troubleshooting 40

Chapter 4. Converting AFP raster UDCs
to Type 1 outline UDCs 41
Converting from AFP raster format to Windows 3.1
UDC format 41
Converting from Windows 3.1 format to TrueType
format 42

On Windows 95, Windows 98, or Windows NT® 42
On Windows 2000 43

Converting from TrueType format to Type 1 format 43

Notices 45
Trademarks 47

Index 49

© Copyright IBM Corp. 2002 iii

iv Creating User-defined Characters

Figures

1. A rectangular codespace range: 4141 to 68FE 6
2. One CMap and two CIDFonts or two CMaps

and one CIDFont. 12
3. CMap for a rearranged font:

JHMNUDCH.CMP 14
4. Combining two existing characters to make a

UDC 21
5. Default view after opening a VFB file 23
6. Glyph window of selected code point 24
7. Options window 24

8. Character 6941 25
9. Temporary character at decimal 16 26

10. Dialog box for transform 26
11. Dialog box used for scaling 27
12. Scaled character at decimal 16 27
13. Make bold window 28
14. After adjusting the weight 28
15. After adding the second character to the first 29
16. Completed character 29
17. Encoding export window 30

© Copyright IBM Corp. 2002 v

vi Creating User-defined Characters

Tables

1. Mapping character codes to CIDs 7
2. DBCS font sections reserved for UDCs . . . 17
3. How DBCS font sections are used 18
4. Character codes where you can create UDCs 18
5. FontLab file names and alias names 19
6. Examples of FontLab file names. 20
7. Maximum ascender and minimum descender

values 25
8. Japanese Gothic simulated by Heisei Kaku

Gothic 35
9. Japanese Heisei Kaku Gothic simulated by

Heisei Kaku Gothic 36

10. Japanese Round Gothic simulated by Heisei
Maru Gothic 36

11. Japanese Mincho simulated by Heisei Mincho 37
12. Japanese Heisei Mincho simulated by Heisei

Mincho 38
13. Korean Gothic simulated by Gothic 38
14. Korean Mincho simulated by Myengjo . . . 39
15. Simplified Chinese Gothic simulated by Hei 39
16. Simplified Chinese Song simulated by Song 39
17. Traditional Chinese Gothic simulated by Sung 39
18. Traditional Chinese Ming simulated by Sung 39
19. Code conversion table 41

© Copyright IBM Corp. 2002 vii

viii Creating User-defined Characters

Chapter 1. Introduction

Type Transformer, a part of IBM® Infoprint® Fonts, is a program that transforms
IBM Type 1 format and CID-keyed format outline fonts into fonts that can be used
with IBM’s advanced function printers. The following utilities are included with
Type Transformer to enable you to add user-defined characters (UDCs) to the
Japanese, Korean, Simplified Chinese, and Traditional Chinese fonts in IBM
Infoprint Fonts:
v The FontLab graphic character editor
v The AFP™ Font Editor for code pages and coded fonts
v Sample code pages and batch files
v The AFP2FON utility, which converts raster fonts to outline fonts
v The CID2EPS utility, which extracts a a character from a font and presents it as

an EPS image
v The DUVRMARK utility, which changes the date and time stamp or capture

setting of a font

Notes:

1. Type Transformer was formerly part of AFP Font Collection.
2. Adobe Type 1 format outline fonts are hereafter referred to as Type 1 fonts.

Adobe CID-keyed format outline fonts, also called Type 0 format fonts, are
hereafter referred to as CID-keyed fonts.

This publication should be used by the font administrator when adding UDCs to
double-byte character set (DBCS) fonts for IBM’s advanced function printers. You
should have a background in using Windows and an understanding of how fonts
are used for printing on advanced function printers. You may need help from the
system programmer.

After you install IBM Infoprint Fonts, you may need to set up your host system for
Type Transformer.

Contents of this publication
This publication contains the following information:
v Chapter 1, “Introduction” briefly describes Type Transformer, explains how this

publication is organized, and lists some related publications.
v Chapter 2, “CMaps, CIDFonts, and CID-keyed fonts” on page 3 describes the

format and contents of CMaps and CIDFonts, the two parts of CID-keyed fonts,
and explains how a CMap and CIDFont work together.

v Chapter 3, “Creating user-defined characters” on page 17 contains detailed
instructions for adding a user-defined character to a CID-keyed font.

v Chapter 4, “Converting AFP raster UDCs to Type 1 outline UDCs” on page 41
explains how to convert a user-defined character from raster format to Type 1
outline format.

Related publications
For a list of related IBM publications and CD-ROMs, please see IBM Infoprint Fonts:
Font Summary, G544-5846.

These Adobe Systems Incorporated publications describe Adobe fonts:

© Copyright IBM Corp. 2002 1

v Adobe CMap and CIDFont Files Specification, Technical Specification #5014, Version
1.0, (Mountain View, CA: Adobe Systems Incorporated, 16 October 1995)

v Adobe Type 1 Font Format, Version 1.1 (Reading, MA: Addison-Wesley Publishing
Company, Inc., 1990), ISBN 0-201-57044-0

v PostScript Language Reference Manual, 2nd edition (Reading, MA: Addison-Wesley
Publishing Company, Inc., 1990), ISBN 0-201-18127-4

FontLab User’s Guide describes how to use FontLab to design a character.

2 Creating User-defined Characters

Chapter 2. CMaps, CIDFonts, and CID-keyed fonts

Before you can create user-defined characters (UDCs), you must understand the
CID-keyed fonts to which you will add your characters. This chapter:
v Describes the format and contents of CMaps and CIDFonts, the two parts of

CID-keyed fonts
v Explains how a CMap and CIDFont work together

CMaps
A CMap is an ASCII text file that contains PostScript language instructions for
mapping character codes to CIDs.

Format
A complete CMap contains the following sections:
v Header comments
v Initialization
v Identification
v Writing mode
v Codespace definitions
v Mapping information
v Closing code

Header comments
To ensure correct processing in all environments, every CMap file must begin with
the comment characters %! (percent sign and exclamation point). Comment lines
after the first begin with the characters %% (two percent signs).

A typical CMap comment section looks like this:
%!PS-Adobe-3.0 Resource-CMap
%%DocumentNeededResources: procset (CIDInit)
%%IncludeResource: procset (CIDInit)
%%BeginResource: CMap (CS-2093-H)
%%Title: (CS-2093-H IBM Japan2 0)
%%CreationDate: 2002-08-27 00:00:56
%%Version: 1
%%Copyright: (c) Copyright 2002 IBM Corporation, all rights reserved.

This comment:
%!PS-Adobe-3.0 Resource-CMap

identifies the file as a CMap that conforms to the conventions of PostScript Version
3.0.

These comments:
%%DocumentNeededResources: procset (CIDInit)
%%IncludeResource: procset (CIDInit)

identify a system support file, called CIDInit, to spoolers and parsers. The
%%DocumentNeededResources comment indicates that CIDInit is a required
external resource. The %%IncludeResource comment indicates that if CIDInit is not
available in the PostScript interpreter, it should be included inline.

© Copyright IBM Corp. 2002 3

This comment:
%%BeginResource: CMap (CS-2093-H)

informs spoolers and parsers that this file is a CMap resource named CS-2093-H.
There is a corresponding %%EndResource comment at the end of the file.

This comment:
%%Title: (CS-2093-H IBM Japan2 0)

states the CMap name (CS-2093-H), registry name (IBM), ordering name (Japan2),
and supplement number (0).

This comment:
%%CreationDate: 2002-08-27 00:00:56

gives the date and time the CMap was created.

This comment:
%%Version: 1

states the version number. This is the same as the version number in the
identification section of the CMap.

This comment:
%%Copyright: (c) Copyright 2002 IBM Corporation, all rights reserved.

is the copyright statement.

Initializing the CMap
The next three lines initialize the CMap:
/CIDInit /Procset findresource begin

12 dict begin

begincmap

The findresource begin operator directs the system to find the CIDInit file. There is
a matching end operator near the end of the CMap file.

The begin operator defines a PostScript language dictionary. This one contains 12
elements in order to allow for VM processing.

The begincmap operator defines the CMap. There is a matching endcmap operator
near the end of the CMap file.

4 Creating User-defined Characters

Identifying the CMap
The next section identifies the character collection on which the CMap is based, the
name of the CMap, and the version and type of the CMap:
/CIDSystemInfo 3 dict dup begin

/Registry (IBM) def
/Ordering (Japan2) def
/Supplement 0 def

end def

/CMapName /CS-2093-H def
/CMapVersion 1 def
/CMapType 0 def

/XUID [116 10 14204] def

The first group of def operators identifies the character collection: JapanIBM,
created by IBM, initial ordering. The character collection must have the same
registry and ordering as the character collection on which the CIDFont is based.

The CMapName line gives the name of the CMap. This is the same name as in the
header comments.

The CMapVersion and CMapType comments identify the version and type of the
CMap. The version is the same version as in the header comments.

CMapName and CMapType are required. CMapVersion is optional.

The XUID is an array of numbers that together form a unique identifier for the
CMap. The first number identifies the organization that created the CMap: 116 is
IBM. XUID is optional.

Writing direction
The next section indicates whether the CID-keyed font is written horizontally from
left to right (0) or vertically from top to bottom (1):
/WMode 0 def

The WMode value in the CMap overrides the WMode value in the CIDFont.

Codespace definitions
The next group of sections defines the range of valid input character codes. This
example shows a single codespace definition section:
3 begincodespacerange
<4040> <68FE>
<B341> <DAFE>
<DC41> <ECFE>

endcodespacerange

The first line indicates that this section defines three valid ranges of character
codes. The next three lines define the ranges by giving the beginning and end of
each range as hexadecimal values.

You can define single-byte and double-byte character codes in the same CMap; but
IBM recommends creating two separate CMaps.

Single-byte codespace ranges are linear; any value from the beginning to the end of
the range, inclusive, is valid.

Chapter 2. CMaps, CIDFonts, and CID-keyed fonts 5

Double-byte codespace ranges are rectangular. It is easiest to visualize what this
means by writing out a range of double-byte values in a block, as in Figure 1. The
beginning and end of the range define the corners of a highlighted rectangle of
valid codes.

In other words, a value is not necessarily valid because it is greater than the
beginning value and less than the end value. The first byte must fall between the
first bytes of the beginning and end values; and the second byte must fall between
the second bytes of the beginning and end values. 67A0 is valid because 67 is
between 41 and 68 and A0 is between 41 and FE. 6820 is not valid because,
although 68 is between 41 and 68, 20 is not between 41 and FE.

Each codespace definition section ends with an endcodespacerange operator.

A single codespace definition section can define up to 100 codespace ranges. If you
need more than 100 definitions, code multiple definition sections.

Codespace ranges cannot overlap.

Mapping information
The next group of sections is the heart of the CMap: the character mappings. This
example shows the beginning and end of a single mapping section:
100 BEGINCIDRANGE
<4040> <4040> 633
<4141> <4158> 1035
<4161> <4178> 1011
<4180> <41A0> 1092
<41B1> <41BA> 8092...
<43A1> <43A1> 665
<43A2> <43A2> 980
<43A3> <43A3> 983
ENDCIDRANGE

The first line indicates that this section defines 100 mapping ranges. The next 100
lines, of which only the first 5 and the last 3 are shown, each define a mapping
range by defining the beginning and end of a range of character codes and the
beginning of the range of CIDs that are assigned in sequence to those codes. For
example, this line:
<41B1> <41BA> 8092

translates into this mapping:

4000...4020...4040 4041...4060...4080...40A0...40C0...40E0...40FE 40FF
4100...4120...4140 4141...4160...4180...41A0...41C0...41E0...41FE 41FF
4200...4220...4240 4241...4260...4280...42A0...42C0...42E0...42FE 42FF
4300...4320...4340 4341...4360...4380...43A0...43C0...43E0...43FE 43FF...
6600...6620...6640 6641...6660...6680...66A0...66C0...66E0...66FE 66FF
6700...6720...6740 6741...6760...6780...67A0...67C0...67E0...67FE 67FF
6800...6820...6840 6841...6860...6880...68A0...68C0...68E0...68FE 68FF
6900...6920...6940 6941...6960...6980...6969...69C0...69E0...69FE 69FF

Figure 1. A rectangular codespace range: 4141 to 68FE

6 Creating User-defined Characters

Table 1. Mapping character codes to CIDs

Character code CID

41B1 8092

41B2 8093

41B3 8094

41B4 8095

41B5 8096

41B6 8097

41B7 8098

41B8 8099

41B9 8100

41BA 8101

Each mapping definition section ends with an endcidrange operator.

A single mapping definition section can define up to 100 mapping ranges. If you
need more than 100 definitions, code multiple definition sections.

Mapping ranges, unlike codespace ranges, can overlap. The last mapping in the
CMap overrides all preceding mappings for that character code.

Every character code mapped must fall within a valid codespace.

All the character codes in a range are mapped to the same character, 1, not a range
beginning with 1.

Closing the CMap
The final section in the CMap establishes the CMap resource and closes the CMap
file:
endcmap
CMapName currentdict /CMap defineresource pop
end
end
%%EndResource
%%EOF

The endcmap operator corresponds to the begincmap operator in the initialization
section.

This line:
CMapName currentdict /CMap defineresource pop

explicitly states the encoding for the CMap file, defines the file as a CMap
resource, and pops it off the stack.

The two end operators correspond to the dict begin operator and the findresource
begin operator in the initialization section.

The %%EndResource comment defines the end of the file to parsers and spoolers.

The %%EOF comment formally signals the end of the file.

Chapter 2. CMaps, CIDFonts, and CID-keyed fonts 7

Referring to another CMap
If you want to create a CMap that differs from an existing CMap in only a few
mappings, you can refer to the existing CMap instead of copying it. Let’s look at a
CMap that refers to the previous one. The base CMap is for a horizontal Japanese
font. This one is for the corresponding vertical Japanese font, which differs from
the horizontal font only in the characters sensitive to writing direction. For
example, the vertical font has top and bottom parentheses instead of left and right
parentheses.

The comment section contains a line that refers to the base CMap:
%%IncludeResource: CMap CS-2093-H

The identification section contains a usecmap operator:
/CS-2093-H usecmap

This operator tells the PostScript interpreter to use the mappings in CS-2093-H,
except where this CMap overrides them.

The mapping section contains only the mappings that differ from the base CMap.

CIDFonts
A CIDFont is a PostScript font resource that contains character descriptions
identified by CID.

A CIDFont has two parts. The first part is a PostScript program that defines a
dictionary object called a CIDFont resource. This part resides on the host.

The second part contains the actual character descriptions, the data that determines
the appearance of printed characters. This part can reside either on the host or on
disk, tape, or CD-ROM.

Adding CIDFonts
Type Transformer locates CIDFonts by the path name in the ATMDATA.DAT file.
You can use Edit ATMDATA.DATin the Options menu to change the path name.

Part 1: PostScript program
Part 1 of a CIDFont contains the following sections:
v Header comments
v Initialization
v Identification
v Font box
v More identification
v Other PostScript information

Header comments
To ensure correct processing in all environments, every CIDFont file must begin
with the comment characters %! (percent sign and exclamation point). Comment
lines after the first begin with the characters %% (two percent signs).

A typical CIDFont comment section looks like this:

8 Creating User-defined Characters

%!PS-Adobe-3.0 Resource-CIDFont
%%DocumentNeededResources: ProcSet CIDInit
%%IncludeResource: ProcSet CIDInit
%%BeginResource: CIDFont (HeiseiMinchoW3)
%%Title: (HeiseiMinchoW3 IBM Japan2 0)
%%Version: 1

This comment:
%!PS-Adobe-3.0 Resource-CIDFont

identifies the file as a CIDFont that conforms to the conventions of PostScript
Version 3.0.

These comments:
%%DocumentNeededResources: ProcSet CIDInit
%%IncludeResource: ProcSet CIDInit

identify a system support file, called CIDInit, to spoolers and parsers. VM uses this
file to process CIDFonts. The %%DocumentNeededResources comment indicates
that CIDInit is a required external resource. The %%IncludeResource comment
indicates that if CIDInit is not available in the PostScript interpreter, it should be
included inline.

This comment:
%%BeginResource: CIDFont (HeiseiMinchoW3)

informs spoolers and parsers that this file is a CIDFont named HeiseiMinchoW3.
There is a corresponding %%EndResource comment at the end of the file.

This comment:
%%Title: (HeiseiMinchoW3 IBM Japan2 0)

states the CIDFont name (HeiseiMinchoW3), registry name (IBM), ordering name
(Japan2), and supplement number (0).

This comment:
%%Version: 1

states the version number. This is the same as the version number in the
identification section of the CIDFont.

Initializing the CIDFont
The next two lines initialize the CIDFont:
/CIDInit /Procset findresource begin
20 dict begin

The findresource begin operator directs the system to find the CIDInit file. There is
a matching end operator near the end of the CIDFont file.

The begin operator defines a PostScript language dictionary and pushes it onto the
dictionary stack. A CIDFont is a PostScript dictionary.

Identifying the CIDFont
The next section identifies the character collection on which the CIDFont is based,
the name of the CIDFont, and the version and type of the CIDFont:

Chapter 2. CMaps, CIDFonts, and CID-keyed fonts 9

/CIDFontName /HeiseiMinchoW3 def
/CIDFontVersion 1 def
/CIDFontType 0 def

/CIDSystemInfo 3 dict dup begin
/Registry (IBM) def
/Ordering (Japan2) def
/Supplement 0 def

end def

The CIDFontName line gives the name of the CIDFont. This is the same name as
in the header comments.

The CIDFontVersion and CIDFontType lines identify the version and type of the
CIDFont. The version is the same version as in the header comments. The type for
the CIDFonts described in this publication is always 0.

CIDFontName and CIDFontType are required. CIDFontVersion is optional.

The CIDSystemInfo group of def operators identifies the character collection:
Japan2, created by IBM, initial ordering. The character collection must be
compatible with the character collection on which the CIDFont is based.

Font bounded box
The next section contains one required line defining a bounded box large enough
to enclose any of the characters in the CIDFont. The array of four numbers gives
the coordinates of the box corners, at 1000 units per em.
/FontBBox [−26 −200 1000 900] def

For more information about FontBBox, see the PostScript Language Reference Manual.

Another identification number
The XUID is an array of numbers that together form a unique identifier for the
CIDFont:
/XUID [116 11 10108] def

The first number identifies the organization that created the CMap: 116 is IBM.

XUID is optional.

Other PostScript information
The rest of Part 1 may contain other information for human readers or for
PostScript programs using the font. This information is not read by the PostScript
interpreter.

This example shows a FontInfo dictionary:
/FontInfo 2 dict dup begin
/Notice ((c) Copyright IBM 2002. All rights reserved.) def
/FullName (HeiseiMinchoW3) def

end readonly def

For an explanation of the entries in a FontInfo dictionary, or for other entries that
you may see in Part 1 of a CIDFont, see the PostScript Language Reference Manual.

10 Creating User-defined Characters

Part 2: Data section
The data section of a CIDFont begins with a %%BeginData comment and a
StartData operator and ends with an %%EndData comment:
%%BeginData: 3437606 Binary Bytes
(Binary) 3437579 StartData...
%%EndData

The comments indicate the beginning and end of the data section to parsers and
spoolers. The BeginData comment also indicates whether the data is in ASCII or
binary format, and how many bytes of data there are. The StartData operator
indicates the data format and number of bytes to PostScript.

Between the StartData operator and the %%EndData comment, the data section
contains four blocks:
v A CIDMap contains information about the location of each character description

in the CIDFont and the corresponding font dictionaries.
v One or more SubrMaps contain information about the location of the

subroutines used by the character descriptions.
v One or more subroutines may be used by the character descriptions.
v The character descriptions, or glyph data, determine the appearance of the

printed characters.

Closing the CIDFont
The CIDFont ends with these two comments:
%%EndResource
%%EOF

The %%EndResource comment defines the end of the file to parsers and spoolers.

The %%EOF comment formally signals the end of the file.

How CMaps and CIDFonts work together
An Adobe CID-keyed font includes one CMap and one CIDFont. You can create
many different CID-keyed fonts by pairing the same CMap with different
CIDFonts, or the other way around.

Type Transformer differs a little from Adobe practice in this respect. A Type
Transformer batch file can match a single CIDFont to several CMaps at once:
v One CMap containing horizontal double-byte characters and double-byte

characters that are not sensitive to writing direction (the horizontal CMap). This is
the only required CMap.

v One CMap containing vertical double-byte characters (the vertical CMap)
v Several CMaps containing single-byte characters: katakana, half-width

characters, and romaji

Adobe practice, by contrast, would be to create two related fonts, one horizontal
and one vertical. The horizontal font would have one CMap containing single-byte
characters, double-byte characters that are not sensitive to writing direction, and
horizontal characters. The vertical font would have one CMap referring to the
horizontal font’s CMap and replacing only the SWD characters (see “Referring to
another CMap” on page 8).

Chapter 2. CMaps, CIDFonts, and CID-keyed fonts 11

Character collection compatibility
Both parts of a CID-keyed font, the CMap and the CIDFont, must use compatible
character collections. Every ordered character collection is uniquely identified by a
combination of three identifiers:
v The registry name identifies the company that issued the ordering, for example,

IBM.
v The ordering name identifies an ordered character collection, for example, Japan2.
v The supplement number identifies the level of the ordering. A supplement number

of 0 means that this is the initial ordering; 1 means that new characters have
been added to supplement 0, beginning with the next available CID, and so on.

The registry and ordering in the version control sections of the CIDFont and CMap
must match. The supplement may vary, but if it does, some character codes may
map to a CID of 0.

Keeping the same CMap and changing the CIDFont
You can use a single CMap with different CIDFont resource files to obtain different
glyphs for the same character set. For example, you can associate a CMap for
IBM’s Japan2 ordered character collection with Heisei Mincho, Heisei Gothic, and
Heisei Maru Gothic CIDFont resources.

Each pairing of one CMap and one CIDFont is a distinct CID-keyed font.

Figure 2 shows characters from two CMaps, each associated with two different
CIDFonts. In a given CMap, the same character code is always mapped to the
same CID and always indicates the same character, but changing the CIDFont
changes the glyph printed to represent that character.

Keeping the same CIDFont and changing the CMap
You can use different CMaps with the same CIDFont resource. Here are some cases
when you might want to do this:

Figure 2. One CMap and two CIDFonts or two CMaps and one CIDFont. This figure was
created by Adobe Systems, Inc.

12 Creating User-defined Characters

v Different platforms have different system-specific character sets. The CMap for
each platform contains only the characters in that platform’s character set; while
the CIDFont is based on a character collection that is a union of all the character
sets. The common CIDFont makes the CID-keyed font portable from one
platform to another.

v You need variations of a font. For example, you need a horizontal and a vertical
version of a Japanese font. In this case, the horizontal and vertical CMaps are
identical except for characters that are sensitive to writing direction.

Note: Type Transformer treats such a pair of horizontal and vertical CMaps and
one CIDFont as a single font. In Adobe terminology, they are two separate
fonts.

Figure 2 on page 12 shows glyphs from two CIDFont resources, each associated
with two CMaps. In a given CIDFont, the same CID is always mapped to the same
character descriptions, but changing the CMap means that the CID may no longer
map to the same character code. Figure 2 on page 12 shows some differences in
mapping:
v Character code 82A8 is mapped to the same CID in CMap1 and CMap2.
v Character code 57 is mapped to a proportionally spaced Roman character in

CMap1 and to a half-width Roman character in CMap1. The two CMaps are
intended for different platforms. One platform does not support half-width
characters.

v Character codes 8179 and 817A are mapped to left and right parentheses in
CMap1, for a horizontal font, and to top and bottom parentheses in CMap2, for
a vertical font.

v Character codes 8D7B and E1E6 show character swapping. One CMap places the
new version of the character in the primary code position (the one used most
often) and maintains the old version in a secondary position, the other makes
the old version primary and places the new version in secondary position.

v Character code 92CD maps to different characters in each CMap.
v Character code 81F6 is mapped to the dagger symbol in CMap1 and to the

default notdef character in CMap2. CMap2 may be based on an earlier character
collection that does not include the dagger symbol.

Putting the pieces together
Adobe associates a CMap and CIDFont to create a CID-keyed font by giving the
font a name that includes the name of both component files, joined with a single
or, preferably, double hyphen. The PostScript findfont operator locates the CMap
and CIDFont and puts them togther.

Type Transformer associates one or more CMaps and a CIDFont by naming them
in the same batch file (see the sample files on the IBM Infoprint Fonts: Type
Transformer and Utilities for Windows® CD-ROM.

Rearranged fonts
A rearranged font combines characters from two or more other fonts. The most
common reason to create one is to add user-defined characters to a font.

Figure 3 on page 14 shows an example of a CMap for a rearranged font. This font
adds user-defined characters to Japanese Heisei Mincho.

Chapter 2. CMaps, CIDFonts, and CID-keyed fonts 13

%!PS-Adobe-3.0 Resource-Font
%ADOResourceSubCategory: RearrangedFont
%%DocumentNeededResources: procset CIDInit
%%+ font (IBDH0300)
%%IncludeResource: procset CIDInit (IBDH0300)
%%BeginResource: (JHMNUDCH)
%%Version: 1

/CIDInit /ProcSet findresource
begin
%ADOStartRearrangedFont
/JHMNUDCH

[/CS-2093-H
/HeiseiMinchoUDC42Horiz
/HeiseiMinchoUDC69Lo
/HeiseiMinchoUDC69Hi

] beginrearranged font

0 usefont
11 begincidrange

<6a41> <6a4b> 8009
<6a4c> <6a60> 8038
<6a61> <6a7c> 8138
<6a7d> <6a96> 8197
<6a97> <6a9f> 8286
<6aa0> <6ab4> 7560
<6ab5> <6ab5> 8091
<6ab6> <6abf> 8102
<6ac0> <6acf> 7585
<6ad0> <6adf> 7940
<6ae0> <6afe> 8321
endcidrange

1 usefont
2 beginbfrange
<424d> <424d> 44
<425d> <425d> 60
endbfrange

2 usefont
1 beginbfrange
<6941> <699f> 32
endbfrange

3 usefont
1 beginbfrange
<69a0> <69fe> 32
endbfrange

endrearranged font
end
%%EndResource
%%EOF

Figure 3. CMap for a rearranged font: JHMNUDCH.CMP

14 Creating User-defined Characters

Comments
The comment lines:
%!PS-Adobe-3.0 Resource-Font
%ADOResourceSubCategory: RearrangedFont
%%DocumentNeededResources: procset CIDInit
%%+ font (IBDH0300)
%%IncludeResource: procset CIDInit (IBDH0300)
%%BeginResource: (JHMNUDCH)
%%Version: 1

indicate that this is a PostScript font file, specifically a rearranged font, tell spoolers
and parsers to make sure that the font file IBDH0300 is available, and tell spoolers
and parsers that the name of this file is JHMNUDCH.

Component font files
These lines:
[/CS-2093-H
/HeiseiMinchoUDC42Horiz
/HeiseiMinchoUDC69Lo
/HeiseiMinchoUDC69Hi

] beginrearranged font

name the fonts that contribute to this rearranged font file. The first font is the
template: it is the basis for the rearranged font. Characters from the other fonts are
added to the characters in the template or replace characters in the template.

In the rest of the file, the fonts will be referred to by number in the order they are
named, starting with 0:
0 CS-2093-H
1 HeiseiMinchoUDC42Horiz
2 HeiseiMinchoUDC69Lo
3 HeiseiMinchoUDC69Hi

Only CS-2093-H is named in the comments. It is the only complete font file. The
others are skeleton files containing only the UDCs you created.

Mapping the base font
This line:

0 usefont

indicates that the next lines refer to font 0, IBDH0300.0

These lines:
11 begincidrange

<6a41> <6a4b> 8009
<6a4c> <6a60> 8038
<6a61> <6a7c> 8138
<6a7d> <6a96> 8197
<6a97> <6a9f> 8286
<6aa0> <6ab4> 7560
<6ab5> <6ab5> 8091
<6ab6> <6abf> 8102
<6ac0> <6acf> 7585
<6ad0> <6adf> 7940
<6ae0> <6afe> 8321
endcidrange

Chapter 2. CMaps, CIDFonts, and CID-keyed fonts 15

are the same kind of mapping section as in a regular CMap (see “Mapping
information” on page 6). They name the character codes from IBDH0300 that are
used in the rearranged font and map them to CIDs.

Adding user-defined characters
These lines:

1 usefont
2 beginbfrange
<424d> <424d> 44
<425d> <425d> 60
endbfrange

indicate that the rearranged font is now using font 1, HeiseiMinchoUDC42Horiz
(Heisei Mincho, user-defined characters from code page section 42 for horizontal
writing). Characters starting at character code 424D in IDBH0300, and continuing
through 424D (one character), are replaced with the character from
HeiseiMinchoUDC42Horiz whose decimal encoding is 44 (equivalent to X'2C'). In
the same way, the characters from 425D to 425D (again, one character) in
IDBH0300 are replaced with the character from HeiseiMinchoUDC42Horiz whose
decimal encoding is 60 (equivalent to X'2C').

You derive the hexadecimal encoding from the second byte of the character code
like this:
v For low second bytes (X'9F' or less), subtract X'21' from the second byte. For

example:
X'41' − X'21' = X'20'
X'8C' − X'21' = X'6B'

v For high second bytes (X'A0' or greater), subtract X'80' from the second byte. For
example:
X'A0' − X'80' = X'20'
X'DD' − X'80' = X'5D'

If you use the decimal equivalent of the hexadecimal encoding, omit the angle
brackets around it.

16 Creating User-defined Characters

Chapter 3. Creating user-defined characters

Type Transformer allows you to create user-defined characters (UDCs). UDCs are
created in Type 1 outline format.

You can create UDCs in two places:
v In the sections containing characters that are sensitive to writing direction

(SWD). For all languages, these are sections 41–44. These sections also contain
resident characters.

v In the sections reserved for UDCs. These sections vary by language:

Table 2. DBCS font sections reserved for UDCs

Language Sections reserved for UDCs

Japanese 69–89

Korean D4–DD

Simplified Chinese 76–80

Traditional Chinese C2–E2

Any characters you create in these sections must not be SWD.

You make your UDCs accessible for printing by creating a rearranged font CMap
file. Because rearranged font CMaps can include characters in both CID-keyed and
Type 1 formats, you can add Type 1 UDCs to a CID-keyed font.

To add a user-defined character to a font, use the procedure in this chapter as a
guideline. You may create many UDCs at a time, but for simplicity, this example
shows the creation of a single UDC.

You will perform the following steps:
1. Decide where to add the UDC
2. Design the new UDC

a. Prepare to use FontLab
b. Design the UDC
c. Finish in FontLab

3. Create and modify a UDC code page
4. Modify the rearranged CMap file
5. Check the ATMDATA.DAT file
6. Create or modify a Type Transformer batch file
7. Run a Type Transformer DB
8. Modify the Coded Font (simulation fonts only)
9. Install font objects in your font library

Note: If a UDC already exists in raster format, and you want to add the same
UDC to an outline font, you may be able to convert the existing UDC
instead of recreating it. Follow the instructions in Chapter 4, “Converting
AFP raster UDCs to Type 1 outline UDCs” on page 41, then return to this
chapter at “Creating and modifying the UDC code page” on page 30.

© Copyright IBM Corp. 2002 17

Deciding where to add the UDC
Table 3 shows how DBCS font sections are used: which sections contain resident
characters, which sections contain SWD characters, and which sections are
available for UDCs.

Table 3. How DBCS font sections are used

Language

Resident font
characters; SWD;
UDCs allowed

Resident font
characters; not SWD;
UDCs not allowed

No resident font
characters; not SWD;
UDCs allowed

Japanese 41–44 45–68, B3–DA,
DC–EC

69–89

Korean 41–44 45–4E, 50–6C, 84–D3 D4–DD

Simplified Chinese
(GB)

41–44 45-46, 48-6C 76–7F

Simplified Chinese
(GB18030)

41–44 45–75, 81–EF, F6–F8,
FB–FC

76–80

Traditional Chinese 41–44 45–49, 4C–91 C2–E2

Within a section where UDCs are allowed, select the character code where you
want to add the UDC. This may be either an unused character code or a character
you want to replace. If you are adding a new UDC at an unused character code,
select the lowest value available.

Character codes are the same as the code points in the primary code page used
with the font. Table 4 shows the character codes you can use; and the following
publications show code pages:
v IBM Infoprint Fonts: Japanese Font Library Technical Reference, S544-5849
v IBM Infoprint Fonts: Korean Font Library Technical Reference, S544-5850
v IBM Infoprint Fonts: Simplified Chinese Font Library Technical Reference, S544-5851
v IBM Infoprint Fonts: Traditional Chinese Font Library Technical Reference, S544-5852

Table 4. Character codes where you can create UDCs

Language First byte (section) Second byte (low) Second byte (high)

Japanese X'41'–X'44' X'41'–X'9F' X'A0'–X'FE'

X'69'–X'88' X'41'–X'9F' X'A0'–X'FE'

X'89' X'41'–X'9F' X'A0'–X'BD'

Korean X'41'–X'44' X'41'–X'9F' X'A0'–X'FE'

X'D4'–X'DD' X'41'–X'7F'
X'81'–X'9F'

X'A0'–X'FD'

Simplified Chinese
(GB)

X'41'–X'44' X'41'–X'9F' X'A0'–X'FE'

X'76'–X'7F' X'41'–X'7F'
X'81'–X'9F'

X'A0'–X'FD'

Simplified Chinese
(GB18030)

X'41'–X'44' X'41'–X'9F' X'A0'–X'FE'

X'76'–X'7F' X'41'–X'7F'
X'81'–X'9F'

X'A0'–X'FD'

X'80' X'41'–X'7F'
X'81'–X'9F'

Traditional Chinese X'41'–X'44' X'41'–X'9F' X'A0'–X'FE'

X'C2'–X'E2' X'41'–X'7F'X'81'–X'9F' X'A0'–X'FD'

18 Creating User-defined Characters

Characters whose second byte is in the range of X'41'–X'9F' are called “low”
characters. Characters whose second byte is in the range of X'A0'–X'FE' are called
“high” characters. It is important to know whether a character is low or high when
selecting FontLab objects.

Designing the new UDC
The instructions in this section explain how to use FontLab to design a new UDC.
If the UDC already exists in raster format, and you want to add the same UDC to
an outline font, you may be able to convert the existing UDC instead of recreating
it. Follow the instructions in Chapter 4, “Converting AFP raster UDCs to Type 1
outline UDCs” on page 41, then return to this chapter at “Creating and modifying
the UDC code page” on page 30.

Preparing to use FontLab
1. Determine the name of the FontLab file where you will create the UDC, and

the alias name of the font (the Type 1 full name as it will appear in the
rearranged font CMap):

Table 5. FontLab file names and alias names

Font
FontLab VFB file
name Alias name

Japanese Heisei Kaku
Gothic

JHKGdssn.VFB HeiseiKakuGothicUDCssddddddnn
HeiseiKakuGothicUDCssnn

Japanese Heisei Maru
Gothic

JHMGdssn.VFB HeiseiMaruGothicUDCssddddddnn
HeiseiMaruGothicUDCssnn

Japanese Heisei Mincho JHMNdssn.VFB HeiseiMinchoUDCssddddddnn
HeiseiMinchoUDCssnn

Korean Gothic HKG2dssn.VFB GothicKG2UDCssddddddnn
GothicKG2UDCssnn

Korean Myengjo HSM2dssn.VFB MyengjoSM2UDCssddddddnn
MyengjoSM2UDCssnn

Simplified Chinese Fang
Song

SFSGdssn.VFB FangSongSCUDCssddddddnn
FangSongSCUDCssnn

Simplified Chinese Hei SHEIdssn.VFB HeiSCUDCssddddddnn
HeiSCUDCssnn

Simplified Chinese Kai SKAIdssn.VFB KaiSCUDCssddddddnn
KaiSCUDCssnn

Simplified Chinese Song SSNGdssn.VFB SongSCUDCssddddddnn
SongSCUDCssnn

Traditional Chinese Kai TKAIdssn.VFB KaiTCUDCssddddddnn
KaiTCUDCssnn

Traditional Chinese Sung TSNGdssn.VFB SungTCUDCssddddddnn
SungTCUDCssnn

where:

d in the FontLab file name indicates the writing direction: H (horizontal), V
(vertical), or B (both).

dddddd
in the alias name for sections 41–44 indicates the writing direction: Horiz or
Vert. The alias name for sections 45 and up does not indicate the writing
direction, because no SWD characters are allowed in these sections.

Chapter 3. Creating user-defined characters 19

ss in both names is the first byte of the character code (the same as the code
page section number).

n in the FontLab file name is L for low second bytes (X'9F' or less), or H for
high second bytes (X'A0' or greater).

nn in the alias name is Lo for low second bytes or Hi for high second bytes.

Table 6 shows an example for each language. Note that both horizontal and
vertical versions of SWD characters are being created.

Table 6. Examples of FontLab file names

Language Typeface
Character
code

Writing
direction FontLab file name Alias name

Japanese Heisei Gothic 4142 Horizontal JHKGH41L.VFB HeiseiKakuGothicUDC41HorizLo

Vertical JHKGV41L.VFB HeiseiKakuGothicUDC41VertLo

Korean Myengjo D5AB Not SWD HSM2BD5H.VFB MyengjoSM2UDCD5Hi

Simplified
Chinese

Fang Song 7650 Not SWD SFSGB76L.VFB FangSongSCUDC76Lo

Traditional
Chinese

Kai 43A0 Horizontal TKAIH43H.VFB KaiTCUDC43HorizHi

Vertical TKAIV43V.VFB KaiTCUDC43VertHi

2. Determine the FontLab encoding for the character.
v For low characters (second byte X'9F' or less), subtract X'21' from the second

byte, then convert the result to decimal. For example:
X'41'–X'21' = X'20' = 32
X'8C'–X'21' = X'6B' = 107

v For high characters (second byte X'A0' or greater), subtract X'80' from the
second byte, then convert the result to decimal. For example:
X'A0'–X'80' = X'20' = 32
X'DD'–X'80' = X'5D' = 93

Designing the UDC
The following steps show how you might design a character. For complete
instructions, see FontLab User’s Guide.

1. Decide if any other characters can be used as a starting point.

Figure 4 on page 21 shows what you want to do in this example. You will
combine the 4562 and 46AA characters from IBDH0300 to form a new
Japanese character, in the Heisei Mincho typeface. (4562 and 46AA are
hexadecimal character codes.)
In fact, a character that looks like the desired result already exists at character
code 45C1. You will create a duplicate for practice at character code 6941, the
lowest character code available for Japanese UDCs that are not sensitive to
writing direction.

20 Creating User-defined Characters

You need to create EPS images of 4562 and 46AA so that they can be imported
into FontLab at the appropriate location. You do this by using CID2EPS (see
IBM Infoprint Fonts: Introduction to Type Transformer and Utilities for Windows) to
extract images of the characters from a font.

You must determine:
v The CIDFont file name.

The IBM-supplied CIDFont files for DBCS fonts are listed in IBM Infoprint
Fonts: Font Summary. The CIDFont file for Japanese Heisei Mincho is
IBJHMNW3.CID.

v The CMap name.
– If you know the character code (the code point) for the character you

want to extract, use the IBM-supplied CMap associated with that code
page. These CMaps are listed in IBM Infoprint Fonts: Font Summary. Use
the horizontal CMap for horizontal characters and characters that are not
sensitive to writing direction. Use the vertical CMap for vertical
characters. In this example, for a non-SWD Japanese character, you can
use IBDH0300.CMP.

– If you know the character identifier (CID), use one of the special
IBM-supplied CMaps that contain all the characters for one language:

Language CMap
Japanese IBJPNALL.CMP
Korean IBKORALL.CMP
Simplified Chinese (GB) IBCHSALL.CMP
Simplified Chinese (GB18030)

ILCHSALL.CMP
Traditional Chinese IBCHTALL.CMP

In these special CMaps, the character code is always the same as the
CID.

– If you don’t know either the character code or the CID, look through one
of the following until you find an image of the character:
- IBM Infoprint Fonts: Japanese Font Library Technical Reference
- IBM Infoprint Fonts: Korean Font Library Technical Reference
- IBM Infoprint Fonts: Simplified Chinese Font Library Technical Reference
- IBM Infoprint Fonts: Traditional Chinese Font Library Technical Reference

Figure 4. Combining two existing characters to make a UDC. Where 4562, 46AA, and 6941
are code points, and 03284 and 03827 are CID numbers.

Chapter 3. Creating user-defined characters 21

If you find the character in a code page, the character code in the CMap
associated with that code page is the same as the code point. If you find
the character in the “Characters” chapter, the number printed under it is
the CID.

Use CID2EPS to create the image of a character with the following parameter
(see IBM Infoprint Fonts: Introduction to Type Transformer and Utilities for
Windows).

Either of these parameters creates an image of character code 4562 (CID 3284):
CIDFont Name: IBJHMNW3.CID
CMap Name: IBDH0300.CMP
Code: 4562 (hexadecimal)

CIDFont Name: IBJHMNW3.CID
CMap Name: IBJPNALL.CMP
Code: 3284 (decimal)

Either of these parameters creates an image of 46AA (CID 3827):
CIDFont Name: IBJHMNW3.CID
CMap Name: IBDH0300.CMP
Code: 46AA (hexadecimal)

CIDFont Name: IBJHMNW3.CID
CMap Name: IBJPNALL.CMP
Code: 3927 (decimal)

CID2EPS creates an image called 03284.EPS and 03827.EPS in this example.

If you extracted the character by character code, you may not know the CID.
To determine the CID, find the character code (code point) in the code page
images in one of the following:
v IBM Infoprint Fonts: Japanese Font Library Technical Reference
v IBM Infoprint Fonts: Korean Font Library Technical Reference
v IBM Infoprint Fonts: Simplified Chinese Font Library Technical Reference
v IBM Infoprint Fonts: Traditional Chinese Font Library Technical Reference

The alphanumeric identifier under the character is the graphic character global
identifier (GCGID). The mapping tables in the online information on the IBM
Infoprint Fonts CD-ROM map GCGIDs (in the third column) to CIDs (in the
first column).

2. Open the VFB file.

VFB files are predefined Type 1 outlines in FontLab 3.0 internal format. They
are stored in the d:\DUVTT\lang\xxxx directory, where:

d is the drive.

lang
is CHS (Simplified Chinese), CHT (Traditional Chinese), JAPAN, or
KOREA.

xxxx
indicates the typeface in both the directory name and the file name:

22 Creating User-defined Characters

SFSG Simplified Chinese Fang Song
SHEI Simplified Chinese Hei
SKAI Simplified Chinese Kai
SSNG Simplified Chinese Song
TKAI Traditional Chinese Kai
TSNG Traditional Chinese Sung
JHKG Japanese Heisei Kaku Gothic
JHMG Japanese Heisei Maru Gothic
JHMN Japanese Heisei Mincho
HKG2 Korean Gothic
HSM2 Korean Myengjo

For each section in which UDCs are permitted, there are two VFB files, Lo
(code points up to 9F) and Hi (code points A0 and up).

FontLab uses the VFB files as input and creates PFB files, actual Type 1
outlines, as output. You will now add your character to a VFB input file.

Use Table 5 on page 19 to determine the name of the VFB file to open. In this
example, it is JHMNB69L.VFB.

Start FontLab and select File –> Open to get to the VFB files. When you select
JHMNB69L.VFB, a window like the one in Figure 5 appears.

3. Move to the desired location.

Select the code point where you wish to add the character, then click the
character on the Font window. The default window changes to show the code
point you selected, and a window like Figure 6 on page 24 appears.
In this example, select code point 6941, or FontLab encoding 32 in the lower
part of section 69. (For how to derive 32 from 6941, see step 2 in “Preparing to
use FontLab” on page 19.)

Figure 5. Default view after opening a VFB file

Chapter 3. Creating user-defined characters 23

4. Delete the predefined glyph. Select Edit –> Select All..., then Edit –> Delete.
The predefined glyph is deleted.

5. Check the Rescale parameter. You must now make sure that the new
character will not be rescales when you import it. Select Tools –> Options to
open a window that looks like Figure 7.

Select the General tab and verify that the Do not rescale EPS files (on import
or export) is checked.

6. Paste one of the EPS files into the new location.

Select Glyph –>Import from EPS.... A file selection window is displayed.
Select the 03827.EPS file. The window changes to look like Figure 8 on
page 25.

Figure 6. Glyph window of selected code point

Figure 7. Options window

24 Creating User-defined Characters

7. Draw guidelines for the maximum ascender and minimum descender
values.

You must be careful that the finished new character does not extend above the
maximum ascender value or below the minimum descender value in Table 7.
If the character exceeds these values, when you print it in vertical text, it will
overlap the characters above and below.

Table 7. Maximum ascender and minimum descender values

Language Ascender Descender

Japanese 880 −120

Korean 880 −120

Simplified Chinese 880 −120

Traditional Chinese 880 −120

Draw some guidelines to remind yourself where the limits are. Before
drawing guidelines, you must set view options. Select View –> Show Layers,
then check Guidelines.

On the Tools palette, select Edit to put the mouse pointer in Edit mode. Go to
the horizontal ruler at the top of the Edit window (under the window’s title
bar). Holding the left mouse button down, drag a horizontal guideline from
the ruler until the Y coordinate in the lower left corner of the window
matches the value of the maximum ascender. Draw another guideline for the
minimum descender. You may need to change the magnification of the
window to achieve the accuracy needed to place the guideline. To do this,
select View –> Zoom.

You must be careful that the finished new character does not extend metrics
value 1,000. The guidelines of metrics are shown as gray dotted lines on
Figure 8. It is not applied for the UDC in sections 41–44.

Figure 8. Character 6941. Character code 32 after 03827.EPS is pasted in.

Chapter 3. Creating user-defined characters 25

8. Paste the second EPS file into a work area.

Move to a unassigned character position, which you will use as a work area
for changing the second character before you add it to the first one. In all
sections, high or low, character positions decimal 31 and below, and decimal
128 and above, are unassigned.
To do this, double-click an unassigned character in the Font window twice, in
this example decimal 16.
Select Glyph –> Import from EPS.... A file selection window is displayed.
Select the 03284.EPS file. The window changes to look like Figure 9.

9. Scale the image.

In this example, you have to scale the second image so that it is the right size
to combine with the first image.
Select Tools –> Transform.... A window like Figure 10 appears.

Select Contour –> Scale.... A window like Figure 11 on page 27 appears. Turn
off Proportional Scale and scale the character 50% in the Horizontal direction
and 40% in the vertical scale. These numbers were derived by measuring the
character and estimating how much it needed to change to match the target.
You can experiment until you are satisfied.

Figure 9. Temporary character at decimal 16. Character code 16 after 03284.EPS is pasted
in.

Figure 10. Dialog box for transform

26 Creating User-defined Characters

After scaling is complete, the character looks like Figure 12.

10. Adjust the weight.

Because you scaled one character and not the other, the weights of the two
characters are not equal. You must adjust the weight of the added character to
match the weight of the original character.
Select Tools –> Transform. A windows like Figure 10 on page 26 appears.
Select Effects –> Bold.... A window like Figure 13 on page 28 appears. In this
window, you can set different Horizontal and Vertical weights.
To estimate the needed adjustments, click the right mouse button at points on
either side of a stroke that you want to measure. X and Y coordinates for the
point are shown in the lower right corner of the screen. In this example, try 18
for horizontal weight and 9 for vertical weight. You can experiment until you
are satisfied.

Figure 11. Dialog box used for scaling

Figure 12. Scaled character at decimal 16

Chapter 3. Creating user-defined characters 27

After you adjust the weight, you see a window like Figure 14.

11. Cut the character.

Select the complete character, then select Edit –> Select All. Then select Edit
–> Cut to put the character on the clipboard.

12. Move back to the new character.

Now move back to character 6941 by double-clicking a character in the Font
window.

13. Add the second character.

Add the cut character to the displayed character. Select Edit –> Paste. After
adding the character, you see a window that looks like Figure 15 on page 29.
The added character has been placed on top of the original character. The
added character is still selected.
Attention: Be careful not to select a point. If you do, you will lose your
selection of the whole added character and you will not be able to move it.

Figure 13. Make bold window

Figure 14. After adjusting the weight

28 Creating User-defined Characters

14. Move the added character.

The added character is not in the right position, so you must move it.
Click on the contour of the added character and drag it to the right position.
Attention: If you deselect the added character before you move it to the
right position, you can undo the previous operation by clicking the Undo
button in the Glyph window.
The character is completed as shown in Figure 16.

15. Clean up.

Now clean up the temporary work area in decimal character 16. Move to
decimal character 16 in the Font window. It looks empty because you cut the
character you had there to the clipboard, but it contains white space. Select
Edit –> Delete.

Figure 15. After adding the second character to the first

Figure 16. Completed character

Chapter 3. Creating user-defined characters 29

Finishing in FontLab
Before you exit FontLab, you must check the Type 1 font parameters and export
the new font.
1. Select File –> FontInfo. The Font Information window appears.

Select Metrics and Dimensions –> Key dimensions and verify that:
v The cap height is equal to the maximum ascender.
v The X-height is approximately equal to half the cap height.

Select the Names and Copyright tab and verify that the weight is appropriate
for the font as follows:

Type 1 weight Font
Medium Japanese Heisei Kaku Gothic
SemiLight Japanese Heisei Maru Gothic
Light Japanese Heisei Mincho
Medium Korean Gothic
Medium Korean Myengjo
ExtraLight Simplified Chinese Fang Song
SemiBold Simplified Chinese Hei
Medium Simplified Chinese Kai
Medium Simplified Chinese Song
Medium Traditional Chinese Kai
Light Traditional Chinese Sung

On the Names and Copyright tab, select Copyright information and verify
that Created by is set to your company name.

Select the Version tab and verify that the version number has been updated to
indicate a change in the Type 1 font.

2. Export the new font. Select File –> Generate font..., then select Type1 binary
(*.pfb) as the file type. The file name is the same as the VFB file you opened, in
this example JHMNB69L, with an extension of PFB. This file is the actual new
Type 1 font. When Figure 17 appears, check Do not make changes, export font
as it is.

Creating and modifying the UDC code page
You need to create a UDC code page in order to print UDCs.
1. To avoid overriding existing code pages, save all existing code pages by

copying them to a new directory.
2. Copy the appropriate sample UDC code page on the IBM Infoprint Fonts: Type

Transformer and Utilities for Windows CD-ROM to your code page directory.
Give the copy the same name as the primary code page.

Figure 17. Encoding export window

30 Creating User-defined Characters

The sample UDC code pages are:
d:\AFPFONTS\CHS\T10837U
d:\AFPFONTS\CHS\T1K837U
d:\AFPFONTS\CHT\T10835U
d:\AFPFONTS\JAPAN\T10300U
d:\AFPFONTS\JAPAN\T1K300U
d:\AFPFONTS\KOREA\T10834U
d:\AFPFONTS\KOREA\T1K834U

The sample UDC code pages are predefined to refer to all possible code points.
3. Now that you have a UDC code page, you must modify it. Use the AFP Font

Editor to convert the code page to a flat file (see IBM Infoprint Fonts:
Introduction to Type Transformer and Utilities for Windows, G544-5853).

4. Edit the flat file and remove all code points except the one you want to use for
your UDC.

5. Use the AFP Font Editor to reconvert the flat file to a code page.

Modifying the rearranged CMap file
You need to modify the appropriate rearranged font CMap file supplied with Type
Transformer. The file name is d:\DUVTT\lang\xxxx\xxxxUDCn.CMP, where:

d is the drive.

lang
is CHS (Simplified Chinese), CHT (Traditional Chinese), JAPAN, or KOREA.

xxxx
indicates the typeface in both the directory name and the file name:
SFSG Simplified Chinese Fang Song
SHEI Simplified Chinese Hei
SKAI Simplified Chinese Kai
SSNG Simplified Chinese Song
TKAI Traditional Chinese Kai
TSNG Traditional Chinese Sung
JHKG Japanese Heisei Kaku Gothic
JHMG Japanese Heisei Maru Gothic
JHMN Japanese Heisei Mincho
HKG2 Korean Gothic
HSM2 Korean Myengjo

n is the writing direction: H (horizontal) or V (vertical).

Note: If you are creating characters that are SWD, modify both the horizontal
and vertical files. If you are creating characters that are not SWD,
modify only the horizontal file.

Type 1 fonts for the sections where UDCs are permitted are identified in the CMap
files. Comment flags (%, the percent sign) are used to cause sections not to be
included in a rearranged font. You must make sure that any characters you added
are included.

Chapter 3. Creating user-defined characters 31

v For SWD sections 41–44:

1. Remove the comment flag from the section you modified. For example, if you
added two characters for horizontal writing to the lower part of section 42 of
Korean Gothic, edit HKG2UDCH and remove the comment flags from the
modified section and from all preceding sections. If you modified a low
section, do not remove the comment flag from the corresponding high
section. For example, change:
%ADOStartRearrangedFont
/HKG2UDCH
[/IBDH0834

% /GothicKG2UDC41HorizLo
% /GothicKG2UDC41HorizHi
% /GothicKG2UDC42HorizLo
% /GothicKG2UDC42HorizHi
% /GothicKG2UDC43HorizLo
% /GothicKG2UDC43HorizHi
% /GothicKG2UDC44HorizLo
% /GothicKG2UDC44HorizHi

to:
%ADOStartRearrangedFont
/HKG2UDCH
[/IBDH0834
/GothicKG2UDC41HorizLo
/GothicKG2UDC41HorizHi
/GothicKG2UDC42HorizLo

% /GothicKG2UDC42HorizHi
% /GothicKG2UDC43HorizLo
% /GothicKG2UDC43HorizHi
% /GothicKG2UDC44HorizLo
% /GothicKG2UDC44HorizHi

2. Add your character to the mapping section by creating an entry between
beginbfrange and endbfrange. For example, if you added characters with
decimal encodings 44 and 60 at 424D and 425D, change the existing
mapping:
%---
% Section 42
%---
% 3 usefont
% 1 beginbfrange
% <4241> <429f> 32
% endbfrange
% 4 usefont
% 1 beginbfrange
% <42a0> <42fe> 32
% endbfrange

to look like this:
%---
% Section 42
%---
3 usefont
2 beginbfrange
<424d> <424d> 44
<425d> <425d> 60

% endbfrange
% 4 usefont
% 1 beginbfrange
% <42a0> <42fe> 32
% endbfrange

32 Creating User-defined Characters

Do not simply remove the comment flags from the whole section. Note that
because you modified two character code ranges, you must change the value
at the beginning of the beginbfrange line from 1 to 2. Remember that angle
brackets around a number indicate a hexadecimal value. The angle brackets
around 44 and 60 are omitted because these are decimal encodings.

v For reserved UDC sections other than 41–44:

1. Add a comment flag to every section after the one you modified, except that
if you modified a low section, do not comment out the corresponding high
section. For example, if you added a character to the lower part of section 69
of Japanese Heisei Mincho, change:
%ADOStartRearrangedFont
/JHMNUDCH
[/CS-K2093-H
/HeiseiMinchoUDC69Lo
/HeiseiMinchoUDC69Hi
/HeiseiMinchoUDC70Lo
/HeiseiMinchoUDC70Hi
/HeiseiMinchoUDC71Lo
/HeiseiMinchoUDC71Hi
/HeiseiMinchoUDC72Lo
/HeiseiMinchoUDC72Hi

(sections 73Lo through 87Hi omitted)

/HeiseiMinchoUDC88Lo
/HeiseiMinchoUDC88Hi
/HeiseiMinchoUDC89Lo
/HeiseiMinchoUDC89Hi

to:
%ADOStartRearrangedFont
/JHMNUDCH
[/CS-K2093-H
/HeiseiMinchoUDC69Lo
/HeiseiMinchoUDC69Hi

% /HeiseiMinchoUDC70Lo
% /HeiseiMinchoUDC70Hi
% /HeiseiMinchoUDC71Lo
% /HeiseiMinchoUDC71Hi
% /HeiseiMinchoUDC72Lo
% /HeiseiMinchoUDC72Hi

(sections 73Lo through 87Hi omitted)

% /HeiseiMinchoUDC88Lo
% /HeiseiMinchoUDC88Hi
% /HeiseiMinchoUDC89Lo
% /HeiseiMinchoUDC89Hi

2. The rearranged CMaps already specify all the mappings for UDCs in the
sections reserved for UDCs, so you do not have to change the mappings.

See “Rearranged fonts” on page 13 for a discussion of rearranged font files.

If you want to create a rearranged CMap that refers to another CMap, modify the
CMap name. This line:
[/CS-K2093-H

specifies the basis for the rearranged font. If you want to change the basis from
IBDHK300.CMP to IBDH0300.CMP, change the CMap name to:
[/CS-2093-H

Chapter 3. Creating user-defined characters 33

Checking the ATMDATA.DAT file
Check that the values in the ATMDATA.DAT file are correct. The ATMDATA.DAT
file maps the font name in the rearranged file (the alias name) to the file names in
your file system. The alias name is to the left of the > (greater than) sign and the
fully qualified file name is to the right.

Use Type Transformer DB to check and edit the ATMDATA.DAT. Select Options –>
Edit ATMDATA.DAT....

Creating or modifying the Type Transformer batch file
If you input values from the panel of Type Transformer DB, skip this section.

Type Transformer supplies sample batch files called
d:\DUVTT\lang\xxxx_kfet.DBT, where:

d is the drive.

lang
is CHS (Simplified Chinese), CHT (Traditional Chinese), JAPAN, or KOREA.

xxxx
is the typeface:
SFSG Simplified Chinese Fang Song
SHEI Simplified Chinese Hei
SKAI Simplified Chinese Kai
SSNG Simplified Chinese Song
TKAI Traditional Chinese Kai
TSNG Traditional Chinese Sung
JHKG Japanese Heisei Kaku Gothic
JHMG Japanese Heisei Maru Gothic
JHMN Japanese Heisei Mincho
HKG2 Korean Gothic
HSM2 Korean Myengjo

k indicates the character set: _ (Simplified Chinese GB, Traditional Chinese,
Japanese, or Korean KS), K (Simplified Chinese GB18030), or U (Korean Full
Hangul).

f indicates the format: R (raster) or O (outline).

e indicates what kind of font the batch file creates: B (base), E (extension), or X
(extended base).

t indicates the type: C (DBCS Core) or S (DBCS Simulation).

In the Type Transformer batch file:
1. In the raster extended base batch files (xxxxkRXt.DBT) only, change the values

of the CFNAME keywords from nnnX to nnn0. This change allows the coded
fonts to reference font objects that have already been created.

2. Specify the UDC code page on the CPNAME keyword.
3. Specify the rearranged font CMap file on the HCMAPFILE keyword.
4. If you are generating outline font character sets, set the OLNEXT keyword to

YES.
5. For outline base and extended base fonts, set the CAPTURE keyword to YES.
6. If you are generating raster font character sets, set the SECTION keyword to

the sections you are modifying.

34 Creating User-defined Characters

7. If you don’t want to override any existing font objects, change the FONTPATH
value.

8. If you don’t want to override existing coded fonts, change the CFNAME,
CFNAMESB, or FONTPATH keywords.

9. If appropriate, change the BOXSIZE or POINTSIZE value.

Running the Type Transformer batch job
Refer to the Type Transformer help information for running the Type Transformer
batch job.

Modifying the coded font (simulation fonts only)
If you are not creating outline font UDCs that are used with DBCS Simulation
fonts, skip this section.

You need to modify the coded font in order to print outline font UDCs in the
correct position with DBCS simulation fonts as follows:
1. Use the AFP Font Editor to convert the coded font to a flat file (see IBM

Infoprint Fonts: Introduction to Type Transformer and Utilities for Windows).
2. Use the AFP Font Editor to edit the flat file.
3. Use the AFP Font Editor to reconvert the flat file to a coded font.

Coded font values of Japanese simulation fonts
Table 8. Japanese Gothic simulated by Heisei Kaku Gothic

Coded font HCI VCI HBO VBO

XZG16F 16 16 2 1

XZG20F 20 24 3 1

XZG24F 24 30 3 1

XZG32F 32 32 2 1

XZG36F 36 36 3 0

XZG40F 40 40 3 0

XZG48F 48 48 4 1

XZG64F 64 64 5 1

XZH12V 12 30 3 0

XZH16V 16 32 2 0

XZH18V 18 36 2 0

XZH20V 20 40 2 0

XZH24V 24 48 3 0

XZH32V 32 64 2 0

Notes:

1. XZGbxB and XZGbxX take the same value as XZGbxF.

2. XZHbxD, XZHbxJ, XZHbxN, XZHbxO, and XZHbxU take the same value as XZHbxV.

Chapter 3. Creating user-defined characters 35

Table 9. Japanese Heisei Kaku Gothic simulated by Heisei Kaku Gothic

Coded font HCI VCI HBO VBO

XZE24F 24 24 2 1

XZE26F 26 26 2 1

XZE32F 32 32 2 1

XZE36F 36 36 3 1

XZE3XF 32 32 2 1

XZE40F 40 40 4 1

XZE44F 44 44 4 1

XZE48F 48 48 4 2

XZE52F 52 52 6 2

XZE64F 64 64 4 2

XZF12V 12 24 3 0

XZF13C 13 26 3 0

XZF16V 16 32 3 1

XZF18V 18 36 3 0

XZF1XV 16 32 2 1

XZF20V 20 40 3 0

XZF22V 22 44 3 0

XZF24V 24 48 3 0

XZF26V 26 52 3 0

XZF32V 32 64 4 0

Notes:

1. XZEbxB takes the same value as XZEbxF.

2. XZFbxD, XZFbxJ,XZFbxO, and XZFbxU take the same value as XZFbxV.

Table 10. Japanese Round Gothic simulated by Heisei Maru Gothic

Coded font HCI VCI HBO VBO

XZR36F 36 36 3 1

XZR40F 40 40 3 1

XZR48F 48 48 4 1

XZR64F 64 64 4 0

XZS18V 18 36 1 0

XZS20V 20 40 4 0

XZS24V 24 48 4 0

XZS32V 32 64 2 0

Notes:

1. XZRbxB and XZRbxX take the same value as XZRbxF.

2. XZSbxD, XZSbxJ, XZSbxO, and XZSbxU take the same value as XZSbxV.

36 Creating User-defined Characters

Table 11. Japanese Mincho simulated by Heisei Mincho

Coded font HCI VCI HBO VBO

XZM16F 16 16 2 1

XZM24F 24 24 2 1

XZM26F 26 26 3 1

XZM32F 32 32 2 1

XZM36F 36 36 3 2

XZM40F 40 40 4 2

XZM44F 44 44 4 2

XZM48F 48 48 5 2

XZM52F 52 52 5 2

XZM64F 64 64 4 2

XZZ24F 24 24 2 1

XZN12V 12 24 2 0

XZN13V 13 26 2 0

XZN16V 16 32 2 0

XZN18V 18 36 2 0

XZN20V 20 40 4 0

XZN22V 22 44 3 0

XZN24V 24 48 3 0

XZN26V 26 52 4 0

XZN32V 32 64 2 1

XZY12V 12 24 2 1

Notes:

1. XZNbxB and XZMbxX take the same value as XZMbxF.

2. XZZbxB takes the same value as XZZbxF.

3. XZNbxD, XZNbxJ, XZNbxN, XZNbxO, and XZNbxY take the same value as XZNbxV.

4. XZYbxD, XZYbxJ, XZYbxN, XZYbxO, and XZYbxU take the same value as XZYbxV.

Chapter 3. Creating user-defined characters 37

Table 12. Japanese Heisei Mincho simulated by Heisei Mincho

Coded font HCI VCI HBO VBO

XZK16F 16 16 2 1

XZK24F 24 24 2 1

XZK26F 26 26 3 1

XZK32F 32 32 2 1

XZK36F 36 36 4 2

XZK3XF 32 32 3 1

XZK40F 40 40 3 2

XZK44F 44 44 5 2

XZK48F 48 48 4 2

XZK52F 52 52 6 2

XZK64K 64 64 6 2

XZL12V 12 24 2 0

XZL13V 13 26 2 0

XZL16V 16 32 2 0

XZL18V 18 36 2 0

XZL1XV 16 32 2 0

XZL20V 20 40 2 0

XZL22V 22 44 3 0

XZL24V 24 48 4 0

XZL26V 26 52 3 0

XZL32V 32 64 4 0

Notes:

1. XZKbxB takes the same value as XZKbxF.

2. XZLbxD, XZLbxJ, XZLbxN, XZLbxO, and XZLbxU take the same value as ZXLbxV.

Coded font values of Korean simulation fonts
Table 13. Korean Gothic simulated by Gothic

Coded font HCI VCI HBO VBO

XAG16K 16 16 2 1

XZG24K 24 30 3 1

XZH08K 8 16 1 0

XZH12K 12 30 3 0

Note: XZGbxL takes the same value as XZGbxK.

38 Creating User-defined Characters

Table 14. Korean Mincho simulated by Myengjo

Coded font HCI VCI HBO VBO

XZM24K 24 24 3 1

XZM32K 32 32 3 1

XZM36K 36 36 3 1

XZM40K 40 40 4 2

XZM48K 48 48 5 2

XZM64K 64 64 7 2

XZN12K 12 24 3 0

XZN16K 16 32 3 1

XZN18K 18 36 4 1

XZN20K 20 40 4 0

XZN24K 24 48 5 0

XZN32K 32 64 7 1

Note: XZMbxL takes the same value as XZMbxK.

Coded font values of Simplified Chinese simulation fonts
Table 15. Simplified Chinese Gothic simulated by Hei

Coded font HCI VCI HBO VBO

XZG16P 16 16 2 1

Table 16. Simplified Chinese Song simulated by Song

Coded font HCI VCI HBO VBO

XZS26P 26 26 3 1

XZS32P 32 32 4 1

XZS40P 40 40 5 1

Coded font values of Traditional Chinese simulation fonts
Table 17. Traditional Chinese Gothic simulated by Sung

Coded font HCI VCI HBO VBO

XZG16T 16 16 2 1

Table 18. Traditional Chinese Ming simulated by Sung

Coded font HCI VCI HBO VBO

XZM24T 24 24 2 1

XZM32T 32 32 4 1

XZM40T 40 40 5 1

Chapter 3. Creating user-defined characters 39

Installing font objects in your font library
In order to print your new UDCs, you must install the following font objects in
your font library:
v The modified code page (raster fonts only)
v The new character set
v Any coded fonts you created

Troubleshooting
If you can’t print the UDCs you created, here are some possible causes and
solutions:
v If you added your UDC to the wrong part of the section, it will appear at a

location you don’t expect. Check that you added it to the low or high part of the
section, whichever you intended.

v The ATMDATA.DAT file may not be complete. Check that all your CMaps (base
and rearranged) are listed in the ATMDATA.DAT file and that all alias names
are included and spelled right.

v Your batch file may not ask for the UDC to be created. Check the keyword
combinations of FONT240, FONTOLN and OLNEXT to make sure that you are
asking for the right section. Remember that if you request both raster and
outline fonts, only outline fonts are created.
If you are creating raster fonts, make sure that you set the FCSCREATE keyword
to YES.

v You may not have installed all the modified font objects in your font library.
Check these objects:
– The modified code page (raster fonts only)
– The new character set
– Any coded fonts you created

40 Creating User-defined Characters

Chapter 4. Converting AFP raster UDCs to Type 1 outline
UDCs

You can convert certain UDCs from AFP raster format to Type 1 outline format. To
do this, you must perform the following steps:
1. Use the AFP2FON utility to convert the UDCs to Windows 3.1 UDC format.
2. Use the Windows End User Defined Character (EUDC) editor to convert the

Windows 3.1 UDCs to TrueType format.
3. Use FontLab to convert the TrueType UDCs to Type 1 outline format.

Converting from AFP raster format to Windows 3.1 UDC format
The AFP2FON utility converts font sections that contain UDCs from AFP raster
format to Windows 3.1 UDC format. It supports Japanese, Simplified Chinese, and
Traditional Chinese UDCs, with the following limitations:
v Input AFP raster UDCs should be the output of FROM, PMF or FLSF. The

AFP2FON utility does not officially support the fonts generated by Type
Transformer as input.

v Because the EBCDIC UDC range is bigger than the Windows UDC range, some
host UDCs are mapped to code points outside the Windows UDC range. To
avoid confusion, AFP2FON does not process these UDCs.

Table 19 shows how AFP2FON maps code points.

Table 19. Code conversion table

Language Host code range PC code range
Number of
characters

Japanese X'6941'–X'72EA' X'F040'–X'F9FC' 1,880

Simplified Chinese X'7641'–X'78FE' X'AAA1'–X'AFFE' 564

X'7941'–X'7C9F' X'F8A1'–X'FEFE' 658

X'7CA0'–X'7FF8' Not converted 672

Traditional Chinese
(Big5)

X'C241'–X'C661' X'FA40'–X'FEFE' 785

X'C662'–X'D64' X'8E40'–X'A0FE' 2,983

X'D649'–X'E0EA' X'8140'–X'8DFE' 2,041

X'E0EB'–X'E2FD' Not converted 395

To use the AFP2FON utility, follow these steps:
1. Prepare the following resources:
v Font resources.

The coded font, character set, and code page for any font section that you
want to convert must be in the same directory. If any of these files are not
present, AFP2FON returns an error and quits the process. For example, if
you want to convert sections 69 and 71 of X0G24F, the following resources
must be in your font resource directory:

© Copyright IBM Corp. 2002 41

X0G24F Coded font
C0G24F69 Character set for section 69
C0G24F71 Character set for section 71
T1G24F69 Code page for section 69
T1G24F71 Code page for section 71

If you do not want to convert a specific section, move the character set and
code page for that section to another directory. AFP2FON skips this section
and tries to continue conversion

v Disk space.

During the conversion process, AFP2FON generates work files in your
output directory. Make sure that the output directory has enough disk space
for both the work files and the converted font sections.

2. Start AFP2FON.
3. Select Language.
4. Specify the coded font that you want to convert. Click the Browse button and

select the drive, directory, and coded font name. Click OK.
5. Specify the file path for the output font. Click the Browse button and select the

drive, directory, and output font name (extension .FON). Click OK.
6. Click Convert to start conversion.
v Messages from AFP2FON utility are displayed in the AFP2FON process

message field.
v A completion message pops up when the conversion is complete.
v If the conversion terminates because of an error, an error message pops up.

Detect the error, referring to the messages in the AFP2FON process message
field, and try again. One possible error is an invalid input font.

7. To save the messages into a file, click the File Msg button. Specify a drive,
directory, and log file name (extension .MSG). Click Save.

Converting from Windows 3.1 format to TrueType format
You must now use the Windows EUDC editor to convert the .FON file from
Windows 3.1 UDC format to TrueType format. The process varies according to the
version of Windows you are using.

On Windows 95, Windows 98, or Windows NT ®

For more information about this process, refer to the help information of the
Windows EUDC Editor.
1. To start the Windows EUDC Editor, select Start –> Program –>Accessories –>

EUDC Editor.
2. To specify the font that you will use the UDCs with, select File –> Select Font.
v To use the UDCs with all fonts, select the Standard EUDC check box.
v To use the UDCs with a specific font, check the UDC considered typeface

check box, select Connected font, and specify the font name.

Click OK.
3. To import the .FON file into the EUDC, select File –> Import. Select the .FON

file and click OK.
4. Save the .FON file as a TrueType font. A file with the extension .TTE is created

in your system font directory. On Windows NT, if you selected the Standard
EUDC check box, the True Type font file is called
C:\WINNT40\FONTS\EUDC.TTE.

42 Creating User-defined Characters

5. To exit the Windows EUDC Editor, select File –> Exit.

On Windows 2000
For more information about this process, refer to the help information of the
Windows EUDC Editor.
1. To start the Windows EUDC Editor, select Start –> Program –>Accessories –>

EUDC Editor.
2. To specify the font that you will use the UDCs with, select File –> Link Font.
v To use the UDCs with all fonts, select the Link to all fonts check box.
v To use the UDCs with a specific font, check the Link to a specified font

check box and specify the font name.

Click OK.
3. To import the .FON file into the EUDC, select File –> Import Bitmap Font.

Select the .FON file and click OK.
4. Save the .FON file as a TrueType font. A file with the extension .TTE is created

in your system font directory. If you selected the Link to all fonts check box,
the True Type font file is called C:\WINNT\FONTS\EUDC.TTE.

5. To exit the Windows EUDC Editor, select File –> Exit.

Converting from TrueType format to Type 1 format
Finally, you must use FontLab to convert the .TTE file from TrueType format to
Type 1 format. To do this, follow these steps:
1. Make a copy of the .TTE file with the extension .TTF.
2. Start FONTLAB.EXE.
3. Select File –> Open; then select the .TTF file.
4. To save the file in Type 1 format, select File –> Save As. In the Select File Type

field, select Type1 Binary. Specify a file name with the extension .PFB. Click
Save.

Now go to “Creating and modifying the UDC code page” on page 30 to complete
the process for creating UDCs.

Chapter 4. Converting AFP raster UDCs to Type 1 outline UDCs 43

44 Creating User-defined Characters

Notices

Chapter 2, “CMaps, CIDFonts, and CID-keyed fonts” is based on Adobe CMap and
CIDFont Files Specification, Technical Specification #5014 (Mountain View, CA:
Adobe Systems Incorporated, 16 October 1995).

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property rights may
be used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) described in this publication at any time without
notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

© Copyright IBM Corp. 2002 45

IBM World Trade Asia Corporation
Licensing
2–31 Roppongi 3–chome, Minato-ku
Tokyo 106, Japan

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Department 11PA Building 002S
PO Box 1900
Boulder CO 80301 USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee. The licensed program described in this
document and all licensed material available for it are provided by IBM under
terms of the IBM Customer Agreement, IBM International Program License
Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to

46 Creating User-defined Characters

IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

For online versions of this book, we authorize you to:
v Copy, modify, and print the documentation contained on the media, for use

within your enterprise, provided you reproduce the copyright notice, all
warning statements, and other required statements on each copy or partial copy.

v Transfer the original unaltered copy of the documentation when you transfer the
related IBM product (which may be either machines you own, or programs, if
the program’s license terms permit a transfer). You must, at the same time,
destroy all other copies of the documentation.

You are responsible for payment of any taxes, including personal property taxes,
resulting from this authorization.

Your failure to comply with the terms above terminates this authorization. Upon
termination, you must destroy your machine readable documentation.

Trademarks
The following terms, used in this publication, are trademarks or registered
trademarks of the IBM Corporation in the United States or other countries or both:

AFP
IBM®

Infoprint®

Microsoft®, Windows, and Windows NT are trademarks of Microsoft Corporation
in the United States, other countries, or both.

Other company, product, or service names may be the trademarks or service marks
of others.

Notices 47

48 Creating User-defined Characters

Index

A
AFP Font Editor 31, 35
AFP raster fonts

converting to Type 1 41
converting to Windows 3.1 41

AFP2FON utility 41
alias name 19
ascender, maximum height 25
ATMDATA command 8
ATMDATA.DAT file

checking 34
updating 8

B
batch file

CMap and CIDFont in 13
creating 34
modifying 34
sample 13

batch job 35
bibliography 1
books, related 1
bounded box definition 10

C
character code 18
character collection

ordering name 12
registry name 12
supplement number 12

character identifier (CID) 22
character mapping 6
characters

high 19
low 19
resident 18
SWD 18

CID (character identifier) 22
CID-keyed font

adding 8
naming 13

CID2EPS utility 21
CIDFont

adding 8
bounded box definition 10
closing 11
compatible with CMap 10, 12
contents 8
data section 11
FontInfo dictionary in 10
header comments 8
identifying 9
in batch file 13
initializing 9
pairing with CMap 11
with different CMaps 12

CMap
character mapping 6

CMap (continued)
closing 7
codespace definitions 5
compatible with CIDFont 5, 12
contents 3
example of rearranged 13
format 3
header comments 3
horizontal 11
identifying 5
in batch file 13
initializing 4
modifying rearranged for UDCs 31
pairing with CIDFont 11
referring to another CMap 8
vertical 11
with different CIDFonts 12
writing direction 5

code pages
adding UDCs 30
primary 18
sample UDC 30

codespace definitions 5
commands

ATMDATA 8
compatibility

CMap and CIDFont 5, 12
compatibility, CMap and CIDFont 10

D
debugging 40
descender, minimum depth 25
designing UDCs with FontLab 20
diagnosis 40

E
encoding, FontLab 20
End User Defined Character (EUDC)

editor
on Windows 2000 43
on Windows 95, 98, NT 42

errors 40
EUDC (End User Defined Character)

editor
on Windows 2000 43
on Windows 95, 98, NT 42

F
files

ATMDATA.DAT
checking 34
updating 8

batch
CMap and CIDFont in 13
creating 34
modifying 34
sample 13

files (continued)
VFB 22

font library 40
font sections

allowing UDCs 18
containing SWD characters 18

FontInfo dictionary, example 10
FontLab

converting TrueType to Type 1 43
designing UDCs 20
encoding 20
preparation 19
references 2
Type 1 font parameters 30

fonts
rearranged

definition 13
modifying CMap 31

references 1
simulation 35
terminology 1

G
GCGID (graphic character global

identifier) 22
graphic character global identifier

(GCGID) 22

H
high characters 19
horizontal CMap 11

I
identifying a CIDFont 9
identifying a CMap 5
initializing a CIDFont 9
initializing a CMap 4

L
low characters 19

N
notices 45

O
ordering name, character collection 12
outline fonts

converting from AFP 41

© Copyright IBM Corp. 2002 49

P
PostScript

information in CIDFont 10
references 2

primary code page 18
problems 40
publications, related 1

R
raster fonts

converting to outline 41
converting to Windows 3.1 41

rearranged CMap
example 13
modifying for UDCs 31

rearranged font
definition 13
modifying CMap 31

registry name, character collection 12
related books 1
resident characters 18

S
scaling 26
sensitive to writing direction (SWD)

characters 18
simulation fonts 35
supplement number, character

collection 12
SWD (sensitive to writing direction)

characters 18

T
trademarks 47
troubleshooting 40
TrueType fonts

converting from Windows 3.1
on Windows 2000 43
on Windows 95, 98, NT 42

converting to Type 1 43
Type 1 fonts

converting from AFP 41
converting from TrueType 43

Type Transformer
batch file

CMap and CIDFont in 13
creating 34
modifying 34
sample 13

introduction 1
utilities 1

U
UDCs (user-defined characters)

adding to code page 30
ascender 25
character code 18
checking ATMDATA.DAT file during

creation 34
converting from AFP to Type 1 41
creating batch file 34

UDCs (user-defined characters)
(continued)

descender 25
designing 20
errors 40
FontLab encoding 20
FontLab parameters 30
installing objects in font library 40
introduction 17
modifying batch file 34
modifying rearranged CMap 31
preparing to use FontLab 19
running batch job 35
scaling 26
weight 27
where to create 18

user-defined characters (UDCs)
adding to code page 30
ascender 25
character code 18
checking ATMDATA.DAT file during

creation 34
converting from AFP to Type 1 41
creating batch file 34
descender 25
designing 20
errors 40
FontLab encoding 20
FontLab parameters 30
installing objects in font library 40
introduction 17
modifying batch file 34
modifying rearranged CMap 31
preparing to use FontLab 19
running batch job 35
scaling 26
weight 27
where to create 18

utilities
AFP Font Editor 31, 35
AFP2FON 41
CID2EPS 21
supplied with Type Transformer 1

V
vertical CMap 11
VFB files 22

W
weight 27
Windows 3.1 fonts

converting from AFP 41
converting to TrueType

on Windows 2000 43
on Windows 95, 98, NT 42

writing direction
characters sensitive to 18
specified in CMap 5

50 Creating User-defined Characters

Readers’ Comments — We’d Like to Hear from You

Infoprint Fonts
Creating User-defined Characters

Publication No. G544-5854-00

Overall, how satisfied are you with the information in this book?

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Overall satisfaction h h h h h

How satisfied are you that the information in this book is:

Very Satisfied Satisfied Neutral Dissatisfied Very
Dissatisfied

Accurate h h h h h

Complete h h h h h

Easy to find h h h h h

Easy to understand h h h h h

Well organized h h h h h

Applicable to your tasks h h h h h

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? h Yes h No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments in any
way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Readers’ Comments — We’d Like to Hear from You
G544-5854-00

G544-5854-00

IBMR
Cut or Fold
Along Line

Cut or Fold
Along Line

Fold and Tape Please do not staple Fold and Tape

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
IBM Printing Systems Division
Department H7FE, Building 004M
Information Development
P.O. Box 1900
Boulder, CO USA 80301-9817

_ _

_ _

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_
_

_

IBMR

Program Number: 5648–E77

Printed in U.S.A.

G544-5854-00

	Contents
	Figures
	Tables
	Chapter 1. Introduction
	Contents of this publication
	Related publications

	Chapter 2. CMaps, CIDFonts, and CID-keyed fonts
	CMaps
	Format
	Header comments
	Initializing the CMap
	Identifying the CMap
	Writing direction
	Codespace definitions
	Mapping information
	Closing the CMap

	Referring to another CMap

	CIDFonts
	Adding CIDFonts
	Part 1: PostScript program
	Header comments
	Initializing the CIDFont
	Identifying the CIDFont
	Font bounded box
	Another identification number
	Other PostScript information

	Part 2: Data section
	Closing the CIDFont

	How CMaps and CIDFonts work together
	Character collection compatibility
	Keeping the same CMap and changing the CIDFont
	Keeping the same CIDFont and changing the CMap
	Putting the pieces together

	Rearranged fonts
	Comments
	Component font files
	Mapping the base font
	Adding user-defined characters

	Chapter 3. Creating user-defined characters
	Deciding where to add the UDC
	Designing the new UDC
	Preparing to use FontLab
	Designing the UDC
	Finishing in FontLab

	Creating and modifying the UDC code page
	Modifying the rearranged CMap file
	Checking the ATMDATA.DAT file
	Creating or modifying the Type Transformer batch file
	Running the Type Transformer batch job
	Modifying the coded font (simulation fonts only)
	Coded font values of Japanese simulation fonts
	Coded font values of Korean simulation fonts
	Coded font values of Simplified Chinese simulation fonts
	Coded font values of Traditional Chinese simulation fonts

	Installing font objects in your font library
	Troubleshooting

	Chapter 4. Converting AFP raster UDCs to Type 1 outline UDCs
	Converting from AFP raster format to Windows 3.1 UDC format
	Converting from Windows 3.1 format to TrueType format
	On Windows 95, Windows 98, or Windows NT®
	On Windows 2000

	Converting from TrueType format to Type 1 format

	Notices
	Trademarks

	Index
	Readers’ Comments — We'd Like to Hear from You

