
iSeries

WebSphere
®

Development

Studio

ILE

C/C++

Compiler

Reference

Version

5

SC09-4816-03

ERserver

���

iSeries

WebSphere
®

Development

Studio

ILE

C/C++

Compiler

Reference

Version

5

SC09-4816-03

ERserver

���

Note!

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

165.

Fourth

Edition

(April

2004)

This

edition

applies

to

Version

5,

Release

3,

Modification

Level

0,

of

IBM

WebSphere

Development

Studio

for

iSeries

(program

5722–WDS),

ILE

C/C++

compilers,

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

Changes

or

additions

to

the

text

and

illustrations

are

indicated

by

a

vertical

line

to

the

left

of

the

change

or

addition.

Order

publications

through

your

IBM

representative

or

the

IBM

branch

office

serving

your

locality.

Publications

are

not

stocked

at

the

address

given

below.

IBM

welcomes

your

comments.

You

can

send

them

to:

compinfo@ca.ibm.com

Include

the

title

and

order

number

of

this

book,

and

the

page

number

or

topic

related

to

your

comment.

Please

be

sure

to

include

your

e-mail

address

if

you

want

a

reply.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1993,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

This

Book

.

.

.

.

.

.

.

.

.

.

. v

Who

Should

Use

This

Guide

.

.

.

.

.

.

.

.

. v

Prerequisite

and

Related

Information

.

.

.

.

.

. v

Install

Licensed

Program

Information

.

.

.

.

.

. v

A

Note

About

Examples

.

.

.

.

.

.

.

.

.

. v

Control

Language

Commands

.

.

.

.

.

.

.

. v

How

to

Read

the

Syntax

Diagrams

.

.

.

.

.

.

. vi

How

to

Send

Your

Comments

.

.

.

.

.

.

.

. viii

Chapter

1.

Preprocessor

Directives

.

.

. 1

Preprocessor

Overview

.

.

.

.

.

.

.

.

.

.

. 1

Preprocessor

Directive

Format

.

.

.

.

.

.

.

. 2

Macro

Directives

and

Operators

(#define,

#undef,

#,

##)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

#define

(Defining

and

Expanding

a

Macro)

.

.

. 2

#undef

(Undefining

a

Macro)

.

.

.

.

.

.

.

. 5

#

Operator

.

.

.

.

.

.

.

.

.

.

.

.

.

. 6

##

Operator

(Macro

Concatenation)

.

.

.

.

.

. 7

Preprocessor

Error

Directive

(#error)

.

.

.

.

.

. 8

File

Inclusion

(#include)

.

.

.

.

.

.

.

.

.

. 8

Using

the

#include

Directive

When

Compiling

Source

in

an

Integrated

File

System

File

.

.

.

. 10

Conditional

Compilation

Directives

.

.

.

.

.

. 11

#if,

#elif

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

#ifdef

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

#ifndef

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

#else

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

#endif

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Line

Control

(#line)

.

.

.

.

.

.

.

.

.

.

.

. 15

Null

Directive

(#)

.

.

.

.

.

.

.

.

.

.

.

. 16

Pragma

Directives

(#pragma)

.

.

.

.

.

.

.

. 16

Chapter

2.

Predefined

Macros

.

.

.

.

. 17

ANSI/ISO

Standard

Predefined

Macros

.

.

.

.

. 17

ILE

C/C++

Predefined

Macros

.

.

.

.

.

.

.

. 18

Chapter

3.

ILE

C/C++

Pragmas

.

.

.

. 21

argopt

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 23

argument

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 25

cancel_handler

.

.

.

.

.

.

.

.

.

.

.

.

. 27

chars

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 28

checkout

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

comment

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 30

convert

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 31

datamodel

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 32

define

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

descriptor

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 35

disable_handler

.

.

.

.

.

.

.

.

.

.

.

.

. 37

disjoint

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 38

enum

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 39

exception_handler

.

.

.

.

.

.

.

.

.

.

.

. 43

hashome

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 46

implementation

.

.

.

.

.

.

.

.

.

.

.

.

. 47

info

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 48

inline

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 49

ishome

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 50

isolated_call

.

.

.

.

.

.

.

.

.

.

.

.

.

. 51

linkage

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 52

map

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 54

mapinc

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 55

margins

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 58

namemangling

.

.

.

.

.

.

.

.

.

.

.

.

. 59

noargv0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 60

noinline

(function)

.

.

.

.

.

.

.

.

.

.

.

. 61

nomargins

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 62

nosequence

.

.

.

.

.

.

.

.

.

.

.

.

.

. 63

nosigtrunc

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 64

pack

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 65

Related

Operators

and

Specifiers

.

.

.

.

.

. 66

Examples

.

.

.

.

.

.

.

.

.

.

.

.

.

. 67

page

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 71

pagesize

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 72

pointer

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

priority

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 74

sequence

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 75

strings

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 76

weak

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 77

Chapter

4.

Control

Language

Commands

.

.

.

.

.

.

.

.

.

.

.

.

. 79

Control

Language

Command

Syntax

.

.

.

.

.

. 79

Control

Language

Command

Options

.

.

.

.

. 86

MODULE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

PGM

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 86

SRCFILE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 87

SRCMBR

.

.

.

.

.

.

.

.

.

.

.

.

.

. 88

SRCSTMF

.

.

.

.

.

.

.

.

.

.

.

.

.

. 89

TEXT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 90

OUTPUT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 91

OPTION

.

.

.

.

.

.

.

.

.

.

.

.

.

. 92

CHECKOUT

.

.

.

.

.

.

.

.

.

.

.

.

. 98

OPTIMIZE

.

.

.

.

.

.

.

.

.

.

.

.

. 101

INLINE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 102

MODCRTOPT

.

.

.

.

.

.

.

.

.

.

.

. 104

DBGVIEW

.

.

.

.

.

.

.

.

.

.

.

.

. 105

DEFINE

.

.

.

.

.

.

.

.

.

.

.

.

.

. 106

LANGLVL

.

.

.

.

.

.

.

.

.

.

.

.

. 107

ALIAS

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 108

SYSIFCOPT

.

.

.

.

.

.

.

.

.

.

.

.

. 109

LOCALETYPE

.

.

.

.

.

.

.

.

.

.

.

. 110

FLAG

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 111

MSGLMT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 112

REPLACE

.

.

.

.

.

.

.

.

.

.

.

.

. 113

USRPRF

.

.

.

.

.

.

.

.

.

.

.

.

.

. 114

AUT

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 115

TGTRLS

.

.

.

.

.

.

.

.

.

.

.

.

.

. 116

ENBPFRCOL

.

.

.

.

.

.

.

.

.

.

.

. 118

PFROPT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 119

PRFDTA

.

.

.

.

.

.

.

.

.

.

.

.

.

. 120

TERASPACE

.

.

.

.

.

.

.

.

.

.

.

. 121

©

Copyright

IBM

Corp.

1993,

2004

iii

STGMDL

.

.

.

.

.

.

.

.

.

.

.

.

.

. 124

DTAMDL

.

.

.

.

.

.

.

.

.

.

.

.

. 125

RTBND

.

.

.

.

.

.

.

.

.

.

.

.

.

. 126

PACKSTRUCT

.

.

.

.

.

.

.

.

.

.

.

. 127

ENUM

.

.

.

.

.

.

.

.

.

.

.

.

.

. 128

MAKEDEP

.

.

.

.

.

.

.

.

.

.

.

.

. 129

PPGENOPT

.

.

.

.

.

.

.

.

.

.

.

.

. 130

PPSRCFILE

.

.

.

.

.

.

.

.

.

.

.

.

. 131

PPSRCMBR

.

.

.

.

.

.

.

.

.

.

.

.

. 132

PPSRCSTMF

.

.

.

.

.

.

.

.

.

.

.

.

. 133

INCDIR

.

.

.

.

.

.

.

.

.

.

.

.

.

. 134

CSOPT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 135

LICOPT

.

.

.

.

.

.

.

.

.

.

.

.

.

. 136

DFTCHAR

.

.

.

.

.

.

.

.

.

.

.

.

. 137

TGTCCSID

.

.

.

.

.

.

.

.

.

.

.

.

. 138

TEMPLATE

.

.

.

.

.

.

.

.

.

.

.

.

. 139

TMPLREG

.

.

.

.

.

.

.

.

.

.

.

.

. 141

WEAKTMPL

.

.

.

.

.

.

.

.

.

.

.

. 142

Chapter

5.

Using

the

ixlc

Command

to

Invoke

the

C/C++

Compiler

.

.

.

.

. 143

Using

ixlc

on

a

Windows

Client

.

.

.

.

.

.

. 143

Using

ixlc

in

Qshell

.

.

.

.

.

.

.

.

.

.

. 143

ixlc

Command

and

Options

Syntax

.

.

.

.

.

. 143

ixlc

Command

Options

.

.

.

.

.

.

.

.

.

. 144

Chapter

6.

Using

ixlclink

to

Create

Programs

.

.

.

.

.

.

.

.

.

.

.

.

. 153

ixlclink

Command

Options

.

.

.

.

.

.

.

.

. 154

Chapter

7.

I/O

Considerations

.

.

.

. 157

Data

Management

Operations

on

Record

Files

.

. 157

Data

Management

Operations

on

Stream

Files

.

. 157

C

Streams

and

File

Types

.

.

.

.

.

.

.

.

. 157

DDS-to-C/C++

Data

Type

Mapping

.

.

.

.

.

. 157

Appendix.

Control

Characters

.

.

.

. 161

Bibliography

.

.

.

.

.

.

.

.

.

.

.

. 163

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

Programming

Interface

Information

.

.

.

.

.

. 166

Trademarks

and

Service

Marks

.

.

.

.

.

.

. 166

Industry

Standards

.

.

.

.

.

.

.

.

.

.

. 167

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 169

iv

ILE

C/C++

Compiler

Reference

About

This

Book

This

book

contains

reference

information

on:

v

Using

preprocessor

statements

in

your

program.

v

Macros

defined

by

the

ILE

C/C++

compiler.

v

Pragmas

recognized

by

the

ILE

C/C++

compiler.

v

Command

lines

options

for

both

native

iSeries

and

Qshell

working

environments.

v

I/O

considerations

for

the

iSeries

environment.

Who

Should

Use

This

Guide

This

guide

is

for

programmers

who

are

familiar

with

the

C

and

C++

programming

languages

and

who

plan

to

use

the

ILE

C/C++

compiler

to

build

new

or

maintain

existing

ILE

C/C++

applications.

You

need

experience

in

using

applicable

iSeries
™

menus

and

displays

or

Control

Language

(CL)

commands.

You

also

need

knowledge

of

ILE

as

explained

in

the

ILE

Concepts

manual.

Prerequisite

and

Related

Information

Use

the

iSeries

Information

Center

as

your

starting

point

for

looking

up

iSeries

and

AS/400

Advanced

Series

technical

information.

You

can

access

the

Information

Center

from

the

following

Web

site:
http://www.ibm.com/eserver/iseries/infocenter

The

iSeries

Information

Center

contains

advisors

and

important

topics

such

as

CL

commands,

system

application

programming

interfaces

(APIs),

logical

partitions,

clustering,

Java™

,

TCP/IP,

Web

serving,

and

secured

networks.

It

also

includes

links

to

related

IBM®

Redbooks

and

Internet

links

to

other

IBM

Web

sites

such

as

the

Technical

Studio

and

the

IBM

home

page.

Other

information

is

listed

in

the

“Bibliography”

on

page

163.

Install

Licensed

Program

Information

On

systems

that

will

be

making

use

of

the

ILE

C/C++

compiler,

the

QSYSINC

library

must

be

installed.

A

Note

About

Examples

Examples

illustrating

the

use

of

the

ILE

C/C++

compiler

are

written

in

a

simple

style.

The

examples

do

not

demonstrate

all

of

the

possible

uses

of

C

or

C++

language

constructs.

Some

examples

are

only

code

fragments

and

do

not

compile

without

additional

code.

Control

Language

Commands

If

you

need

prompting,

type

the

CL

command

and

press

F4

(Prompt).

If

you

need

online

help

information,

press

F1

(Help)

on

the

CL

command

prompt

display.

CL

commands

can

be

used

in

either

batch

or

interactive

mode,

or

from

a

CL

program.

©

Copyright

IBM

Corp.

1993,

2004

v

For

more

information

about

CL

commands,

see

the

CL

and

APIs

section

in

the

Programming

category

at

the

iSeries

400
®

Information

Center

Web

site:

http://publib.boulder.ibm.com/pubs/html/as400/infocenter.htm

You

need

object

authority

to

use

CL

commands.

For

more

information

on

object

authority,

see

the

Basic

System

Security

and

Planning

section

in

the

System

Administration,

Availability,

and

Maintenance

category

at

the

Information

Center

Web

site.

How

to

Read

the

Syntax

Diagrams

v

Read

the

syntax

diagrams

from

left

to

right,

from

top

to

bottom,

following

the

path

of

the

line.

The

��───

symbol

indicates

the

beginning

of

a

command,

directive,

or

statement.

The

───�

symbol

indicates

that

the

command,

directive,

or

statement

syntax

is

continued

on

the

next

line.

The

�───

symbol

indicates

that

a

command,

directive,

or

statement

is

continued

from

the

previous

line.

The

───��

symbol

indicates

the

end

of

a

command,

directive,

or

statement.

Diagrams

of

syntactical

units

other

than

complete

commands,

directives,

or

statements

start

with

the

�───

symbol

and

end

with

the

───�

symbol.

Note:

In

the

following

diagrams,

statement

represents

a

C

or

C++

command,

directive,

or

statement.

v

Required

items

appear

on

the

horizontal

line

(the

main

path).

��

statement

required_item

��

v

Optional

items

appear

below

the

main

path.

��

statement

optional_item

��

v

If

you

can

choose

from

two

or

more

items,

they

appear

vertically,

in

a

stack.

If

you

must

choose

one

of

the

items,

one

item

of

the

stack

appears

on

the

main

path.

��

statement

required_choice1

required_choice2

��

If

choosing

one

of

the

items

is

optional,

the

entire

stack

appears

below

the

main

path.

��

statement

optional_choice1

optional_choice2

��

The

item

that

is

the

default

appears

above

the

main

path.

��

statement

default_item

alternate_item

��

vi

ILE

C/C++

Compiler

Reference

v

An

arrow

returning

to

the

left

above

the

main

line

indicates

an

item

that

can

be

repeated.

��

statement

�

repeatable_item

��

A

repeat

arrow

above

a

stack

indicates

that

you

can

make

more

than

one

choice

from

the

stacked

items,

or

repeat

a

single

choice.

v

Keywords

appear

in

nonitalic

letters

and

should

be

entered

exactly

as

shown

(for

example,

extern).

Variables

appear

in

italicized

lowercase

letters

(for

example,

identifier).

They

represent

user-supplied

names

or

values.

v

If

punctuation

marks,

parentheses,

arithmetic

operators,

or

other

such

symbols

are

shown,

you

must

enter

them

as

part

of

the

syntax.

The

following

syntax

diagram

example

shows

the

syntax

for

the

#pragma

comment

directive.

See

“Pragma

Directives

(#pragma)”

on

page

16

for

information

on

the

#pragma

directive.

�1�

This

is

the

start

of

the

syntax

diagram.

�2�

The

symbol

#

must

appear

first.

�3�

The

keyword

pragma

must

appear

following

the

#

symbol.

�4�

The

keyword

comment

must

appear

following

the

keyword

pragma.

�5�

An

opening

parenthesis

must

be

present.

�6�

The

comment

type

must

be

entered

only

as

one

of

the

types

indicated:

compiler,

date,

timestamp,

copyright,

or

user.

�7�

A

comma

must

appear

between

the

comment

type

copyright

or

user,

and

an

optional

character

string.

�8�

A

character

string

must

follow

the

comma.

The

character

string

must

be

enclosed

in

double

quotation

marks.

�9�

A

closing

parenthesis

is

required.

�10�

This

is

the

end

of

the

syntax

diagram.

The

following

examples

of

the

#pragma

comment

directive

are

syntactically

correct

according

to

the

diagram

shown

above:

#pragma

comment(date)

#pragma

comment(user)

#pragma

comment(copyright,"This

text

will

appear

in

the

module")

�1�

�2�

�3�

�4�

�5�

�6�

�9�

�10�

��─#──pragma──comment──(─┬─────compiler────────────────────────┬──)─��

│

│

├─────date────────────────────────────┤

│

│

├─────timestamp───────────────────────┤

│

│

└──┬──copyright──┬──┬─────────────────┤

│

│

│

│

└──user───────┘

└──,─"characters"─┘

�7�

�8�

About

This

Book

vii

How

to

Send

Your

Comments

Your

feedback

is

important

in

helping

to

provide

the

most

accurate

and

high-quality

information.

IBM

welcomes

any

comments

about

this

book

or

any

other

iSeries

documentation.

v

If

you

prefer

to

send

comments

by

mail,

use

the

following

address:

IBM

Canada

Ltd.

Laboratory

Information

Development

2G/KB7/1150/TOR

1150

Eglinton

Avenue

East

Toronto,

Ontario,

Canada

M3C

1H7

If

you

are

mailing

a

readers’

comment

form

from

a

country

other

than

the

United

States,

you

can

give

the

form

to

the

local

IBM

branch

office

or

IBM

representative

for

postage-paid

mailing.

v

If

you

prefer

to

send

comments

electronically,

use

one

of

these

e-mail

addresses:

–

Comments

on

books:

torrcf@ca.ibm.com
–

Comments

on

the

iSeries

400

Information

Center:

RCHINFOC@us.ibm.com

Be

sure

to

include

the

following:

v

The

name

of

the

book

v

The

publication

number

of

the

book

v

The

page

number

or

topic

to

which

your

comment

applies.

viii

ILE

C/C++

Compiler

Reference

Chapter

1.

Preprocessor

Directives

This

chapter

describes

the

C/C++

preprocessor

directives.

Preprocessor

Overview

Preprocessing

is

a

preliminary

operation

on

C

and

C++

files

before

they

are

passed

to

the

compiler.

Preprocessing

lets

you:

v

Replace

tokens

in

the

current

file

with

specified

replacement

tokens

v

Imbed

files

within

the

current

file

v

Conditionally

compile

sections

of

the

current

file

v

Generate

diagnostic

messages

v

Change

the

line

number

of

the

next

line

of

source

and

change

the

file

name

of

the

current

file

v

Apply

machine-specific

rules

to

specified

sections

of

code

A

token

is

a

series

of

characters

delimited

by

white

space.

The

only

white

space

allowed

on

a

preprocessor

directive

is

the

space,

horizontal

tab,

vertical

tab,

form

feed,

and

comments.

The

new-line

character

can

also

separate

preprocessor

tokens.

The

preprocessed

source

program

file

must

be

a

valid

C

or

C++

program.

The

preprocessor

is

controlled

by

the

following

directives:

#define

Defines

a

preprocessor

macro.

#undef

Removes

a

preprocessor

macro

definition.

#error

Defines

text

for

a

compile-time

error

message.

#include

Inserts

text

from

another

source

file.

#if

Conditionally

suppresses

portions

of

source

code,

depending

on

the

result

of

a

constant

expression.

#ifdef

Conditionally

includes

source

text

if

a

macro

name

is

defined.

#ifndef

Conditionally

includes

source

text

if

a

macro

name

is

not

defined.

#else

Conditionally

includes

source

text

if

the

previous

#if,

#ifdef,

#ifndef,

or

#elif

test

fails.

#elif

Conditionally

includes

source

text

if

the

previous

#if,

#ifdef,

#ifndef,

or

#elif

test

fails,

depending

on

the

value

of

a

constant

expression.

#endif

Ends

conditional

text.

#line

Supplies

a

line

number

for

compiler

messages.

#pragma

Specifies

implementation-defined

instructions

to

the

compiler.

©

Copyright

IBM

Corp.

1993,

2004

1

Preprocessor

Directive

Format

Preprocessor

directives

begin

with

the

#

token

followed

by

a

preprocessor

keyword.

The

#

token

must

appear

as

the

first

character

that

is

not

white

space

on

a

line.

The

#

is

not

part

of

the

directive

name

and

can

be

separated

from

the

name

with

white

spaces.

A

preprocessor

directive

ends

at

the

new-line

character

unless

the

last

character

of

the

line

is

the

\

(backslash)

character.

If

the

\

character

appears

as

the

last

character

in

the

preprocessor

line,

the

preprocessor

interprets

the

\

and

the

new-line

character

as

a

continuation

marker.

The

preprocessor

deletes

the

\

(and

the

following

new-line

character)

and

splices

the

physical

source

lines

into

continuous

logical

lines.

Except

for

some

#pragma

directives,

preprocessor

directives

can

appear

anywhere

in

a

program.

Macro

Directives

and

Operators

(#define,

#undef,

#,

##)

A

macro

is

a

literal

name

that

can

be

assigned

a

value.

Before

a

program

is

compiled,

the

preprocessor

substitutes

occurences

of

each

macro

in

program

source

code

with

that

macro’s

assigned

value.

Macros

can

be

predefined

by

the

operating

system

or

the

compiler.

See

Chapter

2,

“Predefined

Macros,”

on

page

17

for

more

information

on

these.

Macros

can

also

be

defined

in

program

source

code,

as

described

below.

#define

(Defining

and

Expanding

a

Macro)

The

preprocessor

define

directive

directs

the

preprocessor

to

replace

all

subsequent

occurrences

of

a

macro

with

specified

replacement

tokens.

The

define

directive

has

the

form:

��

#

define

identifier

�

,

(

)

identifier

�

identifier

character

��

The

define

directive

can

contain

an

object-like

definition

or

a

function-like

definition.

Object-Like

Macros

An

object-like

macro

definition

replaces

a

single

identifier

with

the

specified

replacement

tokens.

The

following

object-like

definition

causes

the

preprocessor

to

replace

all

subsequent

instances

of

the

identifier

COUNT

with

the

constant

1000:

#define

COUNT

1000

If

the

statement

int

arry[COUNT];

2

ILE

C/C++

Compiler

Reference

appears

after

this

definition

and

in

the

same

file

as

the

definition,

the

preprocessor

would

change

the

statement

to

int

arry[1000];

in

the

output

of

the

preprocessor.

Other

definitions

can

make

reference

to

the

identifier

COUNT:

#define

MAX_COUNT

COUNT

+

100

The

preprocessor

replaces

each

subsequent

occurrence

of

MAX_COUNT

with

COUNT

+

100,

which

the

preprocessor

then

replaces

with

1000

+

100.

If

a

number

that

is

partially

built

by

a

macro

expansion

is

produced,

the

preprocessor

does

not

consider

the

result

to

be

a

single

value.

For

example,

the

following

will

not

result

in

the

value

10.2

but

in

a

syntax

error.

#define

a

10

a.2

Using

the

following

also

results

in

a

syntax

error:

#define

a

10

#define

b

a.11

Identifiers

that

are

partially

built

from

a

macro

expansion

may

not

be

produced.

Therefore,

the

following

example

contains

two

identifiers

and

results

in

a

syntax

error:

#define

d

efg

abcd

Function-Like

Macros

A

function-like

macro

definition

replaces

a

single

identifier

with

the

result

of

a

specified

function.

Defining:

An

identifier

is

followed

by

a

parenthesized

parameter

list

and

the

replacement

tokens.

The

parameters

are

imbedded

in

the

replacement

code.

White

space

cannot

separate

the

identifier

(which

is

the

name

of

the

macro)

and

the

left

parenthesis

of

the

parameter

list.

A

comma

must

separate

each

parameter.

For

portability,

you

should

not

have

more

than

31

parameters

for

a

macro.

Invoking:

An

identifier

is

followed

by

a

list

of

arguments

in

parentheses.

A

comma

must

separate

each

argument.

Once

the

preprocessor

identifies

a

function-like

macro

invocation,

argument

substitution

takes

place.

A

parameter

in

the

replacement

code

is

replaced

by

the

corresponding

argument.

Any

macro

invocations

contained

in

the

argument

itself

are

completely

replaced

before

the

argument

replaces

its

corresponding

parameter

in

the

replacement

code.

The

following

line

defines

the

macro

SUM

as

having

two

parameters

a

and

b

and

the

replacement

tokens

(a

+

b):

#define

SUM(a,b)

(a

+

b)

This

definition

would

cause

the

preprocessor

to

change

the

following

statements

(if

the

statements

appear

after

the

previous

definition):

c

=

SUM(x,y);

c

=

d

*

SUM(x,y);

Chapter

1.

Preprocessor

Directives

3

In

the

output

of

the

preprocessor,

these

statements

would

appear

as:

c

=

(x

+

y);

c

=

d

*

(x

+

y);

Use

parentheses

to

ensure

correct

evaluation

of

replacement

text.

For

example,

the

definition:

#define

SQR(c)

((c)

*

(c))

requires

parentheses

around

each

parameter

c

in

the

definition

in

order

to

correctly

evaluate

an

expression

like:

y

=

SQR(a

+

b);

The

preprocessor

expands

this

statement

to:

y

=

((a

+

b)

*

(a

+

b));

Without

parentheses

in

the

definition,

the

correct

order

of

evaluation

is

not

preserved,

and

the

preprocessor

output

is:

y

=

(a

+

b

*

a

+

b);

Arguments

of

the

#

and

##

operators

are

converted

before

replacement

of

parameters

in

a

function-like

macro.

The

number

of

arguments

in

a

macro

invocation

must

be

the

same

as

the

number

of

parameters

in

the

corresponding

macro

definition.

Commas

in

the

macro

invocation

argument

list

do

not

act

as

argument

separators

when

they

are:

v

in

character

constants

v

in

string

literals

v

surrounded

by

parentheses

Once

defined,

a

preprocessor

identifier

remains

defined

and

in

scope

independent

of

the

scoping

rules

of

the

language.

The

scope

of

a

macro

definition

begins

at

the

definition

and

does

not

end

until

a

corresponding

undef

directive

is

encountered.

If

there

is

no

corresponding

undef

directive,

the

scope

of

the

macro

definition

lasts

until

the

end

of

the

compilation

unit.

A

recursive

macro

is

not

fully

expanded.

For

example,

the

definition

#define

x(a,b)

x(a+1,b+1)

+

4

expands

x(20,10)

to

x(20+1,10+1)

+

4

rather

than

trying

to

expand

the

macro

x

over

and

over

within

itself.

After

the

macro

x

is

expanded,

it

is

a

call

to

function

x().

A

definition

is

not

required

to

specify

replacement

tokens.

The

following

definition

removes

all

instances

of

the

token

debug

from

subsequent

lines

in

the

current

file:

#define

debug

4

ILE

C/C++

Compiler

Reference

You

can

change

the

definition

of

a

defined

identifier

or

macro

with

a

second

preprocessor

define

directive

only

if

the

second

preprocessor

define

directive

is

preceded

by

a

preprocessor

undef

directive.

The

undef

directive

nullifies

the

first

definition

so

that

the

same

identifier

can

be

used

in

a

redefinition.

Within

the

text

of

the

program,

the

preprocessor

does

not

scan

character

constants

or

string

constants

for

macro

invocations.

Example:

#define

directive

The

following

program

contains

two

macro

definitions

and

a

macro

invocation

that

refers

to

both

of

the

defined

macros:

/**

**

This

example

illustrates

#define

directives.

**/

#include

<stdio.h>

#define

SQR(s)

((s)

*

(s))

#define

PRNT(a,b)

\

printf("value

1

=

%d\n",

a);

\

printf("value

2

=

%d\n",

b)

;

int

main(void)

{

int

x

=

2;

int

y

=

3;

PRNT(SQR(x),y);

return(0);

}

After

being

interpreted

by

the

preprocessor,

this

program

is

replaced

by

code

equivalent

to

the

following:

#include

<stdio.h>

int

main(void)

{

int

x

=

2;

int

y

=

3;

printf("value

1

=

%d\n",

(

(x)

*

(x)

)

);

printf("value

2

=

%d\n",

y);

return(0);

}

The

program

produces

the

following

output:

value

1

=

4

value

2

=

3

#undef

(Undefining

a

Macro)

The

preprocessor

undef

directive

causes

the

preprocessor

to

end

the

scope

of

a

preprocessor

definition.

The

undef

directive

has

the

form:

Chapter

1.

Preprocessor

Directives

5

��

#

undef

identifier

��

If

the

identifier

is

not

currently

defined

as

a

macro,

undef

is

ignored.

Example:

#undef

directive

The

following

directives

define

BUFFER

and

SQR:

#define

BUFFER

512

#define

SQR(x)

((x)

*

(x))

The

following

directives

nullify

these

definitions:

#undef

BUFFER

#undef

SQR

Any

occurrences

of

the

identifiers

BUFFER

and

SQR

that

follow

these

undef

directives

are

not

replaced

with

any

replacement

tokens.

Once

the

definition

of

a

macro

has

been

removed

by

an

undef

directive,

the

identifier

can

be

used

in

a

new

define

directive.

#

Operator

The

#

(single

number

sign)

operator

converts

a

parameter

of

a

function-like

macro

into

a

character

string

literal.

For

example,

if

macro

ABC

is

defined

using

the

following

directive:

#define

ABC(x)

#x

all

subsequent

invocations

of

the

macro

ABC

would

be

expanded

into

a

character

string

literal

containing

the

argument

passed

to

ABC.

For

example:

Invocation

Result

of

Macro

Expansion

ABC(1)

"1"

ABC(Hello

there)

"Hello

there"

The

#

operator

should

not

be

confused

with

the

null

directive.

Use

the

#

operator

in

a

function-like

macro

definition

according

to

the

following

rules:

v

A

parameter

following

#

operator

in

a

function-like

macro

is

converted

into

a

character

string

literal

containing

the

argument

passed

to

the

macro.

v

White-space

characters

that

appear

before

or

after

the

argument

passed

to

the

macro

are

deleted.

v

Multiple

white-space

characters

imbedded

within

the

argument

passed

to

the

macro

are

replaced

by

a

single

space

character.

v

If

the

argument

passed

to

the

macro

contains

a

string

literal

and

if

a

\

(backslash)

character

appears

within

the

literal,

a

second

\

character

is

inserted

before

the

original

\

when

the

macro

is

expanded.

v

If

the

argument

passed

to

the

macro

contains

a

"

(double

quotation

mark)

character,

a

\

character

is

inserted

before

the

"

when

the

macro

is

expanded.

v

The

conversion

of

an

argument

into

a

string

literal

occurs

before

macro

expansion

on

that

argument.

6

ILE

C/C++

Compiler

Reference

v

If

more

than

one

##

operator

or

#

operator

appears

in

the

replacement

list

of

a

macro

definition,

the

order

of

evaluation

of

the

operators

is

not

defined.

v

If

the

result

of

the

macro

expansion

is

not

a

valid

character

string

literal,

the

behavior

is

undefined.

Example:

#

operator

The

following

examples

demonstrate

the

use

of

the

#

operator:

#define

STR(x)

#x

#define

XSTR(x)

STR(x)

#define

ONE

1

Invocation

Result

of

Macro

Expansion

STR(\n

"\n"

’\n’)

"\n

\"\\n\"

’\\n’"

STR(ONE)

"ONE"

XSTR(ONE)

"1"

XSTR("hello")

"\"hello\""

##

Operator

(Macro

Concatenation)

The

##

(double

number

sign)

operator

concatenates

two

tokens

in

a

macro

invocation

(text

and/or

arguments)

given

in

a

macro

definition.

If

a

macro

XY

was

defined

using

the

following

directive:

#define

XY(x,y)

x##y

the

last

token

of

the

argument

for

x

is

concatenated

with

the

first

token

of

the

argument

for

y.

For

example,

Invocation

Result

of

Macro

Expansion

XY(1,

2)

12

XY(Green,

house)

Greenhouse

Use

the

##

operator

according

to

the

following

rules:

v

The

##

operator

cannot

be

the

very

first

or

very

last

item

in

the

replacement

list

of

a

macro

definition.

v

The

last

token

of

the

item

in

front

of

the

##

operator

is

concatenated

with

first

token

of

the

item

following

the

##

operator.

v

Concatenation

takes

place

before

any

macros

in

arguments

are

expanded.

v

If

the

result

of

a

concatenation

is

a

valid

macro

name,

it

is

available

for

further

replacement

even

if

it

appears

in

a

context

in

which

it

would

not

normally

be

available.

v

If

more

than

one

##

operator

and/or

#

operator

appears

in

the

replacement

list

of

a

macro

definition,

the

order

of

evaluation

of

the

operators

is

not

defined.

Example:

##

operator

The

following

examples

demonstrate

the

use

of

the

##

operator:

#define

ArgArg(x,

y)

x##y

#define

ArgText(x)

x##TEXT

#define

TextArg(x)

TEXT##x

Chapter

1.

Preprocessor

Directives

7

#define

TextText

TEXT##text

#define

Jitter

1

#define

bug

2

#define

Jitterbug

3

Invocation

Result

of

Macro

Expansion

ArgArg(lady,

bug)

ladybug

ArgText(con)

conTEXT

TextArg(book)

TEXTbook

TextText

TEXTtext

ArgArg(Jitter,

bug)

3

Preprocessor

Error

Directive

(#error)

A

preprocessor

error

directive

causes

the

preprocessor

to

generate

an

error

message

and

causes

the

compilation

to

fail.

The

error

directive

has

the

form:

��

#

error

�

character

��

Use

the

error

directive

as

a

safety

check

during

compilation.

For

example,

if

your

program

uses

preprocessor

conditional

compilation

directives,

put

error

directives

in

the

source

file

to

prevent

code

generation

if

a

section

of

the

program

is

reached

that

should

be

bypassed.

For

example,

the

directive

#error

Error

in

TESTPGM1

-

This

section

should

not

be

compiled

generates

the

following

error

message:

Error

in

TESTPGM1

-

This

section

should

not

be

compiled

File

Inclusion

(#include)

A

preprocessor

include

directive

causes

the

preprocessor

to

replace

the

directive

with

the

contents

of

the

specified

file.

The

include

directive

has

the

form:

��

#include

<filename>

"filename"

��

The

following

table

indicates

the

search

path

compiler

takes

for

source

physical

files.

See

the

default

file

names

and

search

paths

below.

Filename

Member

File

Library

mbr

mbr

default

file

default

search

file/mbr1

mbr

file

default

search

mbr.file

mbr

file

default

search

lib/file/mbr

mbr

file

lib

lib/file(mbr)

mbr

file

lib

8

ILE

C/C++

Compiler

Reference

Filename

Member

File

Library

Note:

1

If

the

include

file

format

<file/mbr.h>

is

used,

the

compiler

searches

for

mbr

in

the

file

in

the

library

list

first.

If

mbr

is

not

found,

then

the

compiler

searches

for

mbr.h

in

the

same

file

in

the

library

list.

Only

″h″

or

″H″

are

allowed

as

member

name

extensions.

If

library

and

file

are

not

specified,

the

preprocessor

uses

a

specific

search

path

depending

on

which

delimiter

surrounds

the

filename.

The

<

>

delimiter

specifies

the

name

as

a

system

include

file.

The

"

"

delimiter

specifies

the

name

as

a

user

include

file.

The

following

describes

the

search

paths

for

the

#include

directive

used

by

the

compiler.
v

Default

File

Names

When

the

Library

and

File

are

not

Named

(member

name

only):

Include

Type

Default

File

Name

<

>

QCSRC

"

"

The

source

file

of

the

root

source

member,

where

root

source

member

is

the

library,

file,

and

member

determined

by

the

SRCFILE

option

of

the

Create

Module

or

Create

Bound

Program

commands.
v

Default

Search

Paths

When

the

Filename

is

not

Library

Qualified:

Include

Type

Search

Path

<

>

Searches

the

current

library

list

(*LIBL)

"

"

Checks

the

library

containing

the

root

source

member;

if

not

found

there,

the

compiler

searches

the

user

portion

of

the

library

list,

using

either

the

filename

specified

or

the

file

name

of

the

root

source

member

(if

no

filename

is

specified);

if

not

found,

the

compiler

searches

the

library

list

(*LIBL)

using

the

specified

filename.
v

Search

Paths

When

the

Filename

is

Library

Qualified

(lib/file/mbr):

Include

Type

Search

Path

<

>

Searches

for

lib/file/mbr

only

"

"

Searches

for

the

member

in

the

library

and

file

named.

If

not

found,

searches

the

user

portion

of

the

library

list,

using

the

file

and

member

names

specified.

User

includes

are

treated

the

same

as

system

includes

when

the

*SYSINCPATH

option

has

been

specified

with

the

Create

Module

or

Create

Bound

Program

commands.

The

preprocessor

resolves

macros

on

a

#include

directive.

After

macro

replacement,

the

resulting

token

sequence

must

consist

of

a

file

name

enclosed

in

either

double

quotation

marks

or

the

characters

<

and

>.

For

example:

#define

MONTH

<july.h>

#include

MONTH

Chapter

1.

Preprocessor

Directives

9

Usage

If

there

are

a

number

of

declarations

used

by

several

files,

you

can

place

all

these

definitions

in

one

file

and

#include

that

file

in

each

file

that

uses

the

definitions.

For

example,

the

following

file

defs.h

contains

several

definitions

and

an

inclusion

of

an

additional

file

of

declarations:

You

can

embed

the

definitions

that

appear

in

defs.h

with

the

following

directive:

#include

"defs.h"

One

of

the

ways

you

can

combine

the

use

of

preprocessor

directives

is

demonstrated

in

the

following

example.

A

#define

is

used

to

define

a

macro

that

represents

the

name

of

the

C

or

C++

standard

I/O

header

file.

A

#include

is

then

used

to

make

the

header

file

available

to

the

C

or

C++

program.

Using

the

#include

Directive

When

Compiling

Source

in

an

Integrated

File

System

File

You

can

use

the

SRCSTMF

keyword

to

specify

an

Integrated

File

System

file

at

compile

time.

The

#include

processing

differs

from

source

physical

file

processing

in

that

the

library

list

is

not

searched.

The

search

path

specified

by

the

INCLUDE

environment

variable

(if

it

is

defined),

and

the

compiler’s

default

search

path

are

used

to

resolve

header

files.

The

compiler’s

default

include

path

is

/QIBM/include.

#include

files

use

the

delimiters

″″

or

<>.

When

attempting

to

open

the

include

file,

the

compiler

searches

in

turn

each

directory

in

the

search

path

until

the

file

is

found

or

all

search

directories

have

been

exhausted.

The

algorithm

to

search

for

include

files

is:

/*

defs.h

*/

#define

TRUE

1

#define

FALSE

0

#define

BUFFERSIZE

512

#define

MAX_ROW

66

#define

MAX_COLUMN

80

int

hour;

int

min;

int

sec;

#include

"mydefs.h"

#define

IO_HEADER

<stdio.h>

.

.

.

#include

IO_HEADER

/*

equivalent

to

specifying

#include

<stdio.h>

*/

.

.

.

10

ILE

C/C++

Compiler

Reference

For

more

information,

refer

to

Using

the

ILE

C/C++

Stream

Functions

With

the

iSeries

Integrated

File

System

in

WebSphere

Development

Studio:

ILE

C/C++

Programmer’s

Guide.

Conditional

Compilation

Directives

A

preprocessor

conditional

compilation

directive

causes

the

preprocessor

to

conditionally

suppress

the

compilation

of

portions

of

source

code.

These

directives

test

a

constant

expression

or

an

identifier

to

determine

which

tokens

the

preprocessor

should

pass

on

to

the

compiler

and

which

tokens

should

be

bypassed

during

preprocessing.

The

directives

are:

v

#if

v

#ifdef

v

#ifndef

v

#elif

v

#else

v

#endif

The

preprocessor

conditional

compilation

directive

spans

several

lines:

v

The

condition

specification

line

v

Lines

containing

code

that

the

preprocessor

passes

on

to

the

compiler

if

the

condition

evaluates

to

a

nonzero

value

(optional)

v

The

#elif

line

(optional)

v

Lines

containing

code

that

the

preprocessor

passes

on

to

the

compiler

if

the

condition

evaluates

to

a

nonzero

value

(optional)

v

The

#else

line

(optional)

v

Lines

containing

code

that

the

preprocessor

passes

on

to

the

compiler

if

the

condition

evaluates

to

zero

(optional)

v

The

preprocessor

#endif

directive

For

each

if,

ifdef,

and

ifndef

directive,

there

are

zero

or

more

elif

directives,

zero

or

one

else

directive,

and

one

matching

endif

directive.

All

the

matching

directives

are

considered

to

be

at

the

same

nesting

level.

You

can

nest

conditional

compilation

directives.

In

the

following

directives,

the

first

#else

is

matched

with

the

#if.

#ifdef

MACNAME

/*

tokens

added

if

MACNAME

is

defined

*/

#

if

TEST

<=10

/*

tokens

added

if

MACNAME

is

defined

and

TEST

<=

10

*/

#

else

/*

tokens

added

if

MACNAME

is

defined

and

TEST

>

10

*/

if

file

is

fully

qualified

(a

slash

/

starts

the

name)

then

attempt

to

open

the

fully

qualified

file

else

if

""

is

delimiter,

check

job’s

current

directory

if

not

found:

loop

through

the

list

of

directories

specified

in

the

INCLUDE

environment

variable

and

then

the

default

include

path

until

the

file

is

found

or

the

end

of

the

include

path

is

encountered

endif

Chapter

1.

Preprocessor

Directives

11

#

endif

#else

/*

tokens

added

if

MACNAME

is

not

defined

*/

#endif

Each

directive

controls

the

block

immediately

following

it.

A

block

consists

of

all

the

tokens

starting

on

the

line

following

the

directive

and

ending

at

the

next

conditional

compilation

directive

at

the

same

nesting

level.

Each

directive

is

processed

in

the

order

in

which

it

is

encountered.

If

an

expression

evaluates

to

zero,

the

block

following

the

directive

is

ignored.

When

a

block

following

a

preprocessor

directive

is

to

be

ignored,

the

tokens

are

examined

only

to

identify

preprocessor

directives

within

that

block

so

that

the

conditional

nesting

level

can

be

determined.

All

tokens

other

than

the

name

of

the

directive

are

ignored.

Only

the

first

block

whose

expression

is

nonzero

is

processed.

The

remaining

blocks

at

that

nesting

level

are

ignored.

If

none

of

the

blocks

at

that

nesting

level

has

been

processed

and

there

is

an

else

directive,

the

block

following

the

else

directive

is

processed.

If

none

of

the

blocks

at

that

nesting

level

has

been

processed

and

there

is

no

else

directive,

the

entire

nesting

level

is

ignored.

#if,

#elif

The

if

and

elif

directives

compare

the

value

of

the

expression

to

zero.

If

the

constant

expression

evaluates

to

a

nonzero

value,

the

tokens

that

immediately

follow

the

condition

are

passed

on

to

the

compiler.

If

the

expression

evaluates

to

zero

and

the

conditional

compilation

directive

contains

a

preprocessor

elif

directive,

the

source

text

located

between

the

elif

and

the

next

elif

or

else

directive

is

selected

by

the

preprocessor

to

be

passed

on

to

the

compiler.

The

elif

directive

cannot

appear

after

the

else

directive.

All

macros

are

expanded,

any

defined()

expressions

are

processed

and

all

remaining

identifiers

are

replaced

with

the

token

0.

��

#

if

elif

constant_expression

�

token_sequence

��

The

expressions

that

are

tested

must

be

integer

constant

expressions

with

the

following

properties:

v

No

casts

are

performed.

v

Arithmetic

is

performed

using

long

int

values.

v

The

expression

can

contain

defined

macros.

No

other

identifiers

can

appear

in

the

expression.

v

The

constant

expression

can

contain

the

unary

operator

defined.

This

operator

can

be

used

only

with

the

preprocessor

keyword

if

or

elif.

The

following

expressions

evaluate

to

1

if

the

identifier

is

defined

in

the

preprocessor,

otherwise

to

0:

defined

identifier

defined(identifier)

12

ILE

C/C++

Compiler

Reference

For

example:

#if

defined(TEST1)

||

defined(TEST2)

Note:

If

a

macro

is

not

defined,

a

value

of

0

(zero)

is

assigned

to

it.

In

the

following

example,

TEST

must

be

a

macro

identifier:

#if

TEST

>=

1

printf("i

=

%d\n",

i);

printf("array[i]

=

%d\n",

array[i]);

#elif

TEST

<

0

printf("array

subscript

out

of

bounds

\n");

#endif

#ifdef

The

ifdef

directive

checks

for

the

existence

of

macro

definitions.

If

the

identifier

specified

is

defined

as

a

macro,

the

tokens

that

immediately

follow

the

condition

are

passed

on

to

the

compiler

after

a

newline.

The

ifdef

directive

has

the

form:

��

#

ifdef

identifier

�

token_sequence

��

The

following

example

defines

MAX_LEN

to

be

75

if

EXTENDED

is

defined

for

the

preprocessor.

Otherwise,

MAX_LEN

is

defined

to

be

50.

#ifdef

EXTENDED

#

define

MAX_LEN

75

#else

#

define

MAX_LEN

50

#endif

#ifndef

The

ifndef

directive

checks

for

the

existence

of

macro

definitions.

If

the

identifier

specified

is

not

defined

as

a

macro,

the

tokens

that

immediately

follow

the

condition

are

passed

on

to

the

compiler

after

a

newline.

The

ifndef

directive

has

the

form:

��

#

ifndef

identifier

�

token_sequence

��

An

identifier

must

follow

the

#ifndef

keyword.

The

following

example

defines

MAX_LEN

to

be

50

if

EXTENDED

is

not

defined

for

the

preprocessor.

Otherwise,

MAX_LEN

is

defined

to

be

75.

#ifndef

EXTENDED

#

define

MAX_LEN

50

#else

#

define

MAX_LEN

75

#endif

Chapter

1.

Preprocessor

Directives

13

#else

If

the

condition

specified

in

the

if,

ifdef,

or

ifndef

directive

evaluates

to

0,

and

the

conditional

compilation

directive

contains

an

else

directive,

the

source

text

located

between

the

else

and

the

endif

directives

is

selected

by

the

preprocessor

to

be

passed

on

to

the

compiler.

The

else

directive

has

the

form:

��

#

else

�

token_sequence

��

#endif

The

endif

directive

ends

the

conditional

compilation

directive.

It

has

the

form:

��

#

endif

��

Examples:

Conditional

compilation

directives

The

following

example

shows

how

you

can

nest

preprocessor

conditional

compilation

directives:

#if

defined(TARGET1)

#

define

SIZEOF_INT

16

#

ifdef

PHASE2

#

define

MAX_PHASE

2

#

else

#

define

MAX_PHASE

8

#

endif

#elif

defined(TARGET2)

#

define

SIZEOF_INT

32

#

define

MAX_PHASE

16

#else

#

define

SIZEOF_INT

32

#

define

MAX_PHASE

32

#endif

The

following

program

contains

preprocessor

conditional

compilation

directives:

/**

**

This

example

contains

preprocessor

**

conditional

compilation

directives.

**/

#include

<stdio.h>

int

main(void)

{

static

int

array[

]

=

{

1,

2,

3,

4,

5

};

int

i;

for

(i

=

0;

i

<=

4;

i++)

{

array[i]

*=

2;

#if

TEST

>=

1

printf("i

=

%d\n",

i);

printf("array[i]

=

%d\n",

array[i]);

#endif

14

ILE

C/C++

Compiler

Reference

}

return(0);

}

Line

Control

(#line)

A

preprocessor

line

control

directive

supplies

line

numbers

for

compiler

messages.

It

causes

the

compiler

to

view

the

line

number

of

the

next

source

line

as

the

specified

number.

The

line

directive

has

the

form:

��

#

line

decimal_constant

"

file_name

"

characters

��

In

order

for

the

compiler

to

produce

meaningful

references

to

line

numbers

in

preprocessed

source,

the

preprocessor

inserts

line

directives

where

necessary

(for

example,

at

the

beginning

and

after

the

end

of

included

text).

A

file

name

specification

enclosed

in

double

quotation

marks

can

follow

the

line

number.

If

you

specify

a

file

name,

the

compiler

views

the

next

line

as

part

of

the

specified

file.

If

you

do

not

specify

a

file

name,

the

compiler

views

the

next

line

as

part

of

the

current

source

file.

The

token

sequence

on

a

line

directive

is

subject

to

macro

replacement.

After

macro

replacement,

the

resulting

character

sequence

must

consist

of

a

decimal

constant,

optionally

followed

by

a

file

name

enclosed

in

double

quotation

marks.

Example:

line

directive

You

can

use

#line

control

directives

to

make

the

compiler

provide

more

meaningful

error

messages.

The

following

program

uses

#line

control

directives

to

give

each

function

an

easily

recognizable

line

number:

/**

**

This

example

illustrates

#line

directives.

**/

#include

<stdio.h>

#define

LINE200

200

int

main(void)

{

func_1();

func_2();

}

#line

100

func_1()

{

printf("Func_1

-

the

current

line

number

is

%d\n",_

LINE

_);

}

#line

LINE200

Chapter

1.

Preprocessor

Directives

15

func_2()

{

printf("Func_2

-

the

current

line

number

is

%d\n",_

LINE

_);

}

This

program

produces

the

following

output:

Func_1

-

the

current

line

number

is

102

Func_2

-

the

current

line

number

is

202

Null

Directive

(#)

The

null

directive

performs

no

action.

It

consists

of

a

single

#

on

a

line

of

its

own.

The

null

directive

should

not

be

confused

with

the

#

operator

or

the

character

that

starts

a

preprocessor

directive.

Example:

#

(null)

directive

If

MINVAL

is

a

defined

macro

name,

no

action

is

performed.

If

MINVAL

is

not

a

defined

identifier,

it

is

defined

1.

#ifdef

MINVAL

#

#else

#define

MINVAL

1

#endif

Pragma

Directives

(#pragma)

A

pragma

is

an

implementation-defined

instruction

to

the

compiler.

It

has

the

general

form:

��

#

pragma

�

character_sequence

��

where

character_sequence

is

a

series

of

characters

giving

a

specific

compiler

instruction

and

arguments,

if

any.

Unless

specifically

noted

otherwise,

character

sequences

in

pragma

directives

are

not

case

sensitive.

For

example,

the

following

two

pragma

directives

are

functionally

equivalent:

#pragma

convert(37)

#pragma

CoNvErT(37)

The

character_sequence

on

a

pragma

is

subject

to

macro

substitutions.

For

example,

#define

XX_ISO_DATA

isolated_call(LG_ISO_DATA)

//

...

#pragma

XX_ISO_DATA

More

than

one

pragma

construct

can

be

specified

on

a

single

pragma

directive.

The

compiler

ignores

unrecognized

pragmas.

ILE

C/C++

pragmas

are

described

in

Chapter

3,

“ILE

C/C++

Pragmas,”

on

page

21.

16

ILE

C/C++

Compiler

Reference

Chapter

2.

Predefined

Macros

The

ILE

C/C++

compiler

recognizes

the

predefined

macros

described

in

this

chapter.

v

“ANSI/ISO

Standard

Predefined

Macros”

v

“ILE

C/C++

Predefined

Macros”

on

page

18

ANSI/ISO

Standard

Predefined

Macros

The

ILE

C/C++

compiler

recognizes

the

following

macros

defined

by

the

ANSI/ISO

Standard.

Unless

otherwise

specified,

macros

when

defined

have

a

value

of

1.

__DATE__

A

character

string

literal

containing

the

date

when

the

source

file

was

compiled.

The

date

will

be

in

the

form:

"Mmm

dd

yyyy"

where:

v

Mmm

represents

the

month

in

an

abbreviated

form

(Jan,

Feb,

Mar,

Apr,

May,

Jun,

Jul,

Aug,

Sep,

Oct,

Nov,

or

Dec).

v

dd

represents

the

day.

If

the

day

is

less

than

10,

the

first

d

will

be

a

blank

character.

v

yyyy

represents

the

year.

__FILE__

Defined

as

a

character

string

literal

containing

the

name

of

the

source

file.

__LINE__

Defined

to

be

an

integer

representing

the

current

source

line

number.

__STDC__

Defined

if

the

C

compiler

conforms

to

the

ANSI

standard.

This

macro

is

undefined

if

the

language

level

is

set

to

anything

other

than

ANSI.

__TIME__

Defined

as

a

character

string

literal

containing

the

time

when

the

source

file

was

compiled.

The

time

will

be

in

the

form:

"hh:mm:ss"

where:

v

hh

represents

the

hour.

v

mm

represents

the

minutes.

v

ss

represents

the

seconds.

__cplusplus

Defined

when

compiling

a

C++

program,

indicating

that

the

compiler

is

a

C++

compiler.

Note

that

this

macro

has

no

trailing

underscores.

This

macro

is

not

defined

for

C.

Notes:

1.

Predefined

macro

names

cannot

be

the

subject

of

a

#define

or

#undef

preprocessor

directive.

2.

The

predefined

ANSI/ISO

Standard

macro

names

consist

of

two

underscore

(__)

characters

immediately

preceding

the

name,

the

name

in

uppercase

letters,

and

two

underscore

characters

immediately

following

the

name.

©

Copyright

IBM

Corp.

1993,

2004

17

3.

The

value

of

__LINE__

will

change

during

compilation

as

the

compiler

processes

subsequent

lines

of

your

source

program.

4.

The

value

of

__FILE__,

and

__TIME__

will

change

as

the

compiler

processes

any

#include

files

that

are

part

of

your

source

program.

5.

You

can

also

change

__LINE__

and

__FILE__

using

the

#line

preprocessor

directive.

Examples

The

following

printf()

statements

will

display

the

values

of

the

predefined

macros

__LINE__,

__FILE__,

__TIME__,

and

__DATE__

and

will

print

a

message

indicating

the

program’s

conformance

to

ANSI

standards

based

on

__STDC__:

Related

Information

v

“#define

(Defining

and

Expanding

a

Macro)”

on

page

2

v

“#undef

(Undefining

a

Macro)”

on

page

5

v

“Line

Control

(#line)”

on

page

15

ILE

C/C++

Predefined

Macros

The

ILE

C/C++

compiler

provides

the

predefined

macros

described

in

this

section.

These

macros

are

defined

when

their

corresponding

pragmas

are

invoked

in

program

source,

or

when

their

corresponding

compiler

options

for

the

Create

Module

and

Create

Bound

Program

commands

are

specified.

Unless

otherwise

specified,

macros

when

defined

have

a

value

of

1.

__ANSI__

Defined

when

the

LANGLVL(*ANSI)

compiler

option

is

in

effect.

When

this

macro

is

defined,

the

compiler

allows

only

language

constructs

that

conform

to

the

ANSI/ISO

C

and

C++

standards.

__ASYNC_SIG__

Defined

when

the

SYSIFCOPT(*ASYNCSIGNAL)

compiler

option

is

in

effect.

Defined

when

TERASPACE(*YES

*TSIFC)

STGMDL(*TERASPACE)

DTAMDL(*LLP64)

RTBND(*LLP64)

is

in

effect.

_CHAR_SIGNED

Defined

when

the

#pragma

chars(signed)

directive

is

in

effect,

or

when

the

DFTCHAR

compiler

option

is

set

to

*SIGNED.

If

this

macro

is

defined,

the

default

character

type

is

signed.

_CHAR_UNSIGNED

Defined

when

the

#pragma

chars(unsigned)

directive

is

in

effect,

or

when

the

DFTCHAR

compiler

option

is

set

to

*UNSIGNED.

Indicates

default

character

type

is

unsigned.

#include

<stdio.h>

#ifdef

__STDC__

#

define

CONFORM

"conforms"

#else

#

define

CONFORM

"does

not

conform"

#endif

int

main(void)

{

printf("Line

%d

of

file

%s

has

been

executed\n",

__LINE__,

__FILE__);

printf("This

file

was

compiled

at

%s

on

%s\n",

__TIME__,

__DATE__);

printf("This

program

%s

to

ANSI

standards\n",

CONFORM);

}

18

ILE

C/C++

Compiler

Reference

__cplusplus98__interface__

Defined

by

C++

compiler

when

the

LANGLVL(*ANSI)

compiler

option

is

specified.

__EXTENDED__

Defined

when

the

LANGLVL(*ANSI)

compiler

option

is

not

in

effect.

When

this

macro

is

defined,

the

compiler

allows

language

extensions

provided

by

the

ILE

C/C++

compiler

implementation.

__FUNCTION__

Indicates

the

name

of

the

function

currently

being

compiled.

For

C++

programs,

expands

to

the

actual

function

prototype.

__HHW_AS400__

Indicates

that

the

host

hardware

is

an

iSeries

processor.

__HOS_OS400__

Indicates

that

the

host

operating

system

is

OS/400.

__IBMCPP__

Indicates

the

version

number

of

the

ILE

C/C++

compiler.

__IFS_IO__

Defined

when

SYSIFCOPT(*IFSIO)

or

SYSIFCOPT(*IFS64IO)

is

specified

on

the

Create

Module

or

Create

Bound

Program

commands.

__IFS64_IO__

Defined

when

SYSIFCOPT(*IFS64IO)

is

specified

on

the

Create

Module

or

Create

Bound

Program

commands.

When

this

macro

is

defined,

_LARGE_FILES

and

_LARGE_FILE_API

are

also

defined

in

the

relevant

IBM-supplied

header

files.

__ILEC400__

Defined

only

by

the

compiler.

You

can

use

this

macro

in

source

code

that

is

compiled

for

several

platforms.

Mark

code

that

is

to

be

compiled

only

for

the

iSeries

platform

with

#ifdef

__ILEC400__

or,

#if

defined(__ILEC400__)

preprocessor

directives.

__ILEC400_TGTVRM__

Defined

by

the

compiler

as

an

integral

value

that

maps

to

the

version/release/modification

of

the

OS/400®

that

the

module

or

program

being

compiled

is

intended

to

run

on.

The

target

release,

VxRyMz,

translates

to

an

__ILEC400_TGTVRM__

value

of

xyz,

where

x,

y,

and

z

are

integer

values.

For

example,

a

target

release

of

V3R7M0

will

cause

the

macro

to

have

an

integral

value

of

370.

_LARGE_FILES

Defined

when

the

SYSIFCOPT(*IFS64IO)

compiler

option

is

in

effect

and

system

header

file

types.h

is

included.

_LARGE_FILE_API

Defined

when

the

SYSIFCOPT(*IFS64IO)

compiler

option

is

in

effect

and

system

header

file

types.h

is

included.

__LLP64_IFC__

Defined

when

the

DTAMDL(*LLP64)

compiler

option

is

in

effect.

__LLP64_RTBND__

Defined

when

the

RTBND(*LLP64)

compiler

option

is

in

effect.

__OS400__

This

macro

is

always

defined

when

the

compiler

is

used

with

the

OS/400

operating

system.

__OS400_TGTVRM__

Defined

only

by

the

compiler

as

an

integral

value

that

maps

to

the

version/release/modification

of

the

OS/400®

that

the

module

or

program

being

compiled

is

intended

to

run

on.

The

target

release,

VxRyMz,

translates

to

an

__OS400_TGTVRM__

value

of

xyz,

where

x,

y,

and

z

are

integer

values.

Chapter

2.

Predefined

Macros

19

__POSIX_LOCALE__

Defined

when

the

LOCALETYPE(*LOCALE)

or

LOCALETYPE(*LOCALEUCS2)

compiler

options

are

specified.

__RTTI_DYNAMIC_CAST__

Defined

when

the

OPTION(*RTTIALL)

or

OPTION(*RTTICAST)

compiler

options

are

specified,

for

C++

programs

only.

This

macro

is

not

defined

for

C.

__SRCSTMF__

Defined

when

the

SRCSTMF

compiler

option

specifies

the

location

of

the

source

file

being

compiled.

__TERASPACE__

Defined

when

the

TERASPACE(*YES

*TSIFC)

compiler

option

is

specified.

__THW_AS400__

Indicates

that

the

target

hardware

is

an

iSeries

processor.

__TIMESTAMP__

A

character

string

literal

containing

the

date

and

time

when

the

source

file

was

last

changed.

The

date

and

time

will

be

in

the

form:

"Day

Mmm

dd

hh:mm:ss

yyyy"

where:

Day

represents

the

day

of

the

week

(Mon,

Tue,

Wed,

Thu,

Fri,

Sat,

or

Sun).

Mmm

represents

the

month

in

an

abbreviated

form

(Jan,

Feb,

Mar,

Apr,

May,

Jun,

Jul,

Aug,

Sep,

Oct,

Nov,

or

Dec).

dd

represents

the

day.

If

the

day

is

less

than

10,

the

first

d

will

be

a

blank

character.

hh

represents

the

hour.

mm

represents

the

minutes.

ss

represents

the

seconds.

yyyy

represents

the

year.

Note:

Other

compilers

may

not

supported

this

macro.

If

the

macro

is

supported

on

other

compilers,

the

date

and

time

values

may

be

different

than

those

that

are

shown

here.

__TOS_OS400__

Indicates

that

the

target

operating

system

is

OS/400.

__UCS2__

Defined

when

LOCALETYPE(*LOCALEUCS2)

is

specified

on

the

Create

Module

or

Create

Bound

Program

commands.

__UTF32__

Defined

when

LOCALETYPE(*LOCALEUTF)

is

specified

on

the

Create

Module

or

Create

Bound

Program

commands.

__wchar_t

Defined

by

the

standard

header

file

stddef.h.

Defined

by

the

C++

compiler.

20

ILE

C/C++

Compiler

Reference

Chapter

3.

ILE

C/C++

Pragmas

The

ILE

C/C++

Compiler

recognizes

the

following

pragmas:

Pragma

Name

Valid

with

Valid

with

“argopt”

on

page

23

U

U

“argument”

on

page

25

U

“cancel_handler”

on

page

27

U

U

“chars”

on

page

28

U

U

“checkout”

on

page

29

U

“comment”

on

page

30

U

U

“convert”

on

page

31

U

“datamodel”

on

page

32

U

U

“define”

on

page

34

U

“descriptor”

on

page

35

U

U

“disable_handler”

on

page

37

U

U

“disjoint”

on

page

38

U

“enum”

on

page

39

U

U

“exception_handler”

on

page

43

U

U

“hashome”

on

page

46

U

“implementation”

on

page

47

U

“info”

on

page

48

U

“inline”

on

page

49

U

“ishome”

on

page

50

U

“isolated_call”

on

page

51

U

“linkage”

on

page

52

U

“map”

on

page

54

U

U

“mapinc”

on

page

55

U

“margins”

on

page

58

U

“namemangling”

on

page

59

U

“noargv0”

on

page

60

U

“noinline

(function)”

on

page

61

U

“nomargins”

on

page

62

U

“nosequence”

on

page

63

U

“nosigtrunc”

on

page

64

U

“pack”

on

page

65

U

U

“page”

on

page

71

U

“pagesize”

on

page

72

U

“pointer”

on

page

73

U

U

©

Copyright

IBM

Corp.

1993,

2004

21

Pragma

Name

Valid

with

Valid

with

“priority”

on

page

74

U

“sequence”

on

page

75

U

“strings”

on

page

76

U

U

“weak”

on

page

77

U

22

ILE

C/C++

Compiler

Reference

argopt

��

#pragma

argopt

(

function_name

)

typedef_of_function_name

typedef_of_function_ptr

function_ptr

��

Description

Argument

Optimization

(argopt)

is

a

pragma

which

may

improve

run-time

performance.

Applied

to

a

bound

procedure,

optimizations

can

be

achieved

by:

v

Passing

space

pointer

parameters

in

to

general-purpose

registers

(GPRs).

v

Storing

a

space

pointer

returned

from

a

function

in

to

a

GPR.

Parameters

function_name

Specifies

the

name

of

the

function

for

which

optimized

procedure

parameter

passing

is

to

be

specified.

The

function

can

be

either

a

static

function,

an

externally-defined

function,

or

a

function

defined

in

the

current

compilation

unit

that

will

be

called

from

outside

the

current

compilation

unit.

typedef_of_function_name

Specifies

the

name

of

the

typedef

of

the

function

for

which

optimized

procedure

parameter

passing

is

to

be

specified.

typedef_of_function_ptr

Specifies

the

name

of

the

typedef

of

the

function

pointer

for

which

optimized

procedure

parameter

passing

is

to

be

specified.

function_ptr

Specifies

the

name

of

the

function

pointer

for

which

optimized

procedure

parameter

passing

is

to

be

specified.

Notes

on

Usage

Specifying

#pragma

argopt

directive

does

not

guarantee

that

your

program

will

be

optimized.

Participation

in

argopt

is

dependent

on

the

translator.

Do

not

specify

#pragma

argopt

together

with

#pragma

descriptor

for

the

same

declaration.

The

compiler

supports

using

only

one

or

the

other

of

these

pragmas

at

a

time.

A

function

must

be

declared

(prototyped),

or

defined

before

it

can

be

named

in

a

#pragma

argopt

directive.

Void

pointers

will

not

be

optimized

since

they

are

not

space

pointers.

Use

of

#pragma

argopt

is

not

supported

in

struct

declarations.

The

#pragma

argopt

cannot

be

specified

for

functions

which

have

OS-linkage

or

built-in

linkage

(for

functions

which

have

a

#pragma

linkage

(function_name,

OS)

directive

or

#pragma

linkage(function_name,

builtin)

directive

associated

with

them,

and

vice

versa).

Chapter

3.

ILE

C/C++

Pragmas

23

The

#pragma

argopt

will

be

ignored

for

functions

which

are

named

as

handler

functions

in

#pragma

exception_handler

or

#pragma

cancel_handler

directives,

and

error

handling

functions

such

as

signal()

and

atexit().

The

#pragma

argopt

directive

cannot

be

applied

to

functions

with

a

variable

argument

list.

#pragma

argopt

scoping

The

#pragma

argopt

is

placed

where

the

function,

the

function

pointer,

typedef

of

a

function

pointer

or

typedef

of

a

function

is

visible

(can

be

used)

within

a

region

of

the

program

code

called

its

scope.

#pragma

argopt

scope

is

determined

its

placement

in

the

code.

An

error

will

be

issued

when

#pragma

argopt

is

not

within

the

scope

of

the

declaration.

The

#pragma

argopt

directive

can

fall

within

file,

block,

or

structure

scope.

#include

<stdio.h>

long

func3(long

y)

{

printf("In

func3()\n");

printf("hex=%x,integer=%d\n",y,

y);

}

#pragma

argopt

(func3)

/*

file

scope

of

function

*/

int

main(void)

{

int

i,

a=0;

typedef

long

(*func_ptr)

(long);

#pragma

argopt

(func_ptr)

/*

block

scope

of

typedef

*/

/*

of

function

pointer

*/

struct

funcstr

{

long

(*func_ptr2)

(long);

#pragma

argopt

(func_ptr2)

/*

struct

scope

of

function

*/

/*

pointer

*/

};

struct

funcstr

func_ptr3;

for

(i=0;

i<99;

i++)

{

a

=

i*i;

if

(i

==

7)

{

func_ptr3.func_ptr2(

i

);

}

}

return

i;

}

24

ILE

C/C++

Compiler

Reference

argument

��

#

pragma

argument

(

function_name

,

OS

)

,

nowiden

,

VREF

,

nowiden

,

nowiden

��

Description

Specifies

the

argument

passing

and

receiving

mechanism

to

be

used

for

the

procedure

or

typedef

named

by

function_name.

This

pragma

identifies

procedures

as

externally

bound-procedures

only.

The

procedure

may

be

defined

in

and

called

from

the

same

source

as

the

pragma

argument

directive.

If

the

pragma

argument

directive

is

specified

in

the

same

compilation

unit

as

the

definition

of

the

procedure

named

in

that

directive,

the

arguments

to

that

procedure

will

be

received

using

the

method

specified

in

that

pragma

directive.

For

information

on

making

calls

to

external

programs,

see

pragma

“linkage”

on

page

52.

Parameters

function_name

Specifies

the

name

of

the

externally-bound

procedure.

OS

OS

indicates

that

arguments

are

passed,

or

received

(if

the

pragma

directive

is

in

the

same

compilation

unit

as

the

procedure

definition),

using

the

OS-Linkage

argument

method.

Non-address

arguments

are

copied

to

temporary

locations

and

widened

(unless

nowiden

has

been

specified),

and

the

address

of

the

copy

is

passed

to

the

called

procedure.

Arguments

that

are

addresses

or

pointers

are

passed

directly

to

the

called

procedure.

VREF

VREF

is

similar

to

OS-linkage

with

the

exception

that

address

arguments

are

also

passed

and

received

using

the

OS-Linkage

method.

nowiden

Specifies

that

the

arguments

are

not

widened

before

they

are

passed

or

received.

This

parameter

can

be

used

by

itself

without

specifying

an

argument

type.

For

example,

#pragma

argument

(myfunc,

nowiden),

indicates

that

procedure

myfunc

will

pass

and

receive

its

arguments

with

the

usual

by-value

method,

but

unwidened.

Notes

on

Usage

This

pragma

controls

how

parameters

are

passed

to

bound-procedures

and

how

they

are

received.

The

function

name

specified

in

the

#pragma

argument

directive

can

be

defined

in

the

current

compilation

unit.

The

#pragma

argument

directive

must

precede

the

function

it

names.

Chapter

3.

ILE

C/C++

Pragmas

25

Specifying

a

#pragma

argument

directive

in

the

same

compilation

unit

as

the

affected

procedure

tells

the

compiler

that

the

procedure

is

to

receive

(as

well

as

to

send)

its

arguments

as

specified

in

the

pragma

argument

directive.

This

is

useful

for

ILE

C

written

bound-procedures

specified

in

a

pragma

argument.

The

user

must

ensure

that

if

the

call

to

the

procedure

and

the

definition

are

in

separate

compilation

units,

the

pragma

argument

directives

must

match

in

regards

to

their

passing

method

(

OS,

VREF,

and

nowiden).

For

example,

in

the

two

source

files

below,

the

address

of

a

temporary

copy

of

the

argument

will

be

passed

to

foo

in

Program

1.

Program

2,

foo

will

receive

the

address

of

the

temporary

copy,

dereference

it,

and

assign

that

value

to

the

parameter

a.

If

the

two

pragma

directives

differ,

behavior

is

undefined.

Program

1

Program

2

#pragma

argument(

foo,

OS,

nowiden)

void

foo(char);

void

main()

{

foo(10);

}

#pragma

argument(

foo,

OS,

nowiden

)

void

foo(

char

a

)

{

a++;

}

Warnings

are

issued,

and

the

#pragma

argument

directive

is

ignored

if

any

of

the

following

occurs:

v

The

#pragma

argument

directive

does

not

precede

the

declaration

or

definition

of

the

named

function

in

the

compilation

unit.

v

The

function_name

in

the

directive

is

not

the

name

of

a

procedure

or

a

typedef

of

a

procedure.

v

A

typedef

named

in

the

directive

has

been

used

in

the

declaration

or

definition

of

a

procedure

before

being

used

in

the

directive.

v

A

#pragma

argument

directive

has

already

been

specified

for

this

function.

v

A

#pragma

linkage

directive

or

_System

keyword

has

already

been

specified

for

this

function.

v

The

function

has

already

been

called

prior

to

the

#pragma

argument

directive.

26

ILE

C/C++

Compiler

Reference

cancel_handler

��

#

pragma

cancel_handler

(

function_name

,

0

)

,

com_area

��

Description

Specifies

that

the

function

named

is

to

be

enabled

as

a

user-defined

ILE

cancel

handler

at

the

point

in

the

code

where

the

#pragma

cancel_handler

directive

is

located.

Any

cancel

handler

that

is

enabled

by

a

#pragma

cancel_handler

directive

is

implicitly

disabled

when

the

call

to

the

function

containing

the

directive

is

finished.

The

call

is

removed

from

the

call

stack,

if

the

handler

has

not

been

explicitly

disabled

by

the

#pragma

disable_handler

directive.

Parameters

function_name

Specifies

the

name

of

the

function

to

be

used

as

a

user-defined

ILE

cancel

handler.

com_area

Used

to

pass

information

to

the

exception

handler.

If

no

com_area

is

required,

specify

zero

as

the

second

parameter

of

the

directive.

If

a

com_area

is

specified

on

the

directive,

it

must

be

a

variable

of

one

of

the

following

data

types:

integral,

float,

double,

struct,

union,

array,

enum,

pointer,

or

packed

decimal.

The

com_area

should

be

declared

with

the

volatile

qualifier.

It

cannot

be

a

member

of

a

structure

or

a

union.

See

the

Run-Time

Library

Reference

for

information

about

<except.h>

and

the

typedef

_CNL_Hndlr_Parms_T,

a

pointer

which

is

passed

to

the

cancel

handler.

Notes

on

Usage

The

handler

function

can

take

only

16-byte

pointers

as

parameters.

This

#pragma

directive

can

only

occur

at

a

C

language

statement

boundary

and

inside

a

function

definition.

The

compiler

issues

an

error

message

if

any

of

the

following

occurs:

v

The

directive

occurs

outside

a

C

function

body

or

inside

a

C

statement.

v

The

handler

function

is

not

declared

or

defined.

v

The

identifier

that

is

named

as

the

handler

function

is

not

a

function.

v

The

com_area

variable

is

not

declared.

v

The

com_area

variable

does

not

have

a

valid

object

type.

See

the

WebSphere

Development

Studio:

ILE

C/C++

Programmer’s

Guide

for

examples

and

more

information

about

using

the

#pragma

cancel_handler

directive.

Chapter

3.

ILE

C/C++

Pragmas

27

chars

��

#

pragma

chars

unsigned

(

signed

)

��

Description

Specifies

that

the

compiler

is

to

treat

all

char

objects

as

signed

or

unsigned.

This

pragma

must

appear

before

any

C

code

or

directive

(except

for

the

#line

directive)

in

a

source

file.

Parameters

unsigned

All

char

objects

are

treated

as

unsigned

integers.

signed

All

char

objects

are

treated

as

signed

integers.

28

ILE

C/C++

Compiler

Reference

checkout

��

#

pragma

checkout

(

suspend

)

resume

��

Description

Specifies

whether

or

not

the

compiler

should

give

compiler

information

when

a

CHECKOUT

setting

other

than

*NONE

is

specified

for

the

Create

Module

or

Create

Bound

Program

commands.

Parameters

suspend

Specifies

that

the

compiler

suspend

informational

messages.

resume

Specifies

that

the

compiler

resume

informational

messages.

Notes

on

Usage

#pragma

checkout

directives

can

be

nested.

This

means

that

a

#pragma

checkout

(suspend)

directive

will

have

no

effect

if

a

previously

specified

#pragma

checkout

(suspend)

directive

is

still

in

effect.

This

is

also

true

for

the

#pragma

checkout

resume

directive.

Example

/*

Assume

CHECKOUT(*PPTRACE)

had

been

specified

*/

#pragma

checkout(suspend)

/*

No

CHECKOUT

diagnostics

are

performed

*/

...

#pragma

checkout(suspend)

/*

No

effect

*/

...

#pragma

checkout(resume)

/*

No

effect

*/

...

#pragma

checkout(resume)

/*

CHECKOUT(*PPTRACE)

diagnostics

continue

*/

Chapter

3.

ILE

C/C++

Pragmas

29

comment

��

#

pragma

comment

(

compiler

)

date

timestamp

copyright

user

,

″

characters

″

��

Description

Emits

a

comment

into

the

program

or

service

program

object.

This

can

be

shown

by

DSPPGM

or

DSPSRVPGM

with

DETAIL(*COPYRIGHT).

This

pragma

must

appear

before

any

C

code

or

directive

(except

for

the

#line

directive)

in

a

source

file.

Parameters

Valid

settings

for

the

comment

pragma

can

be:

compiler

The

name

and

version

of

the

compiler

is

emitted

into

the

end

of

the

generated

program

object.

date

The

date

and

time

of

compilation

is

emitted

into

the

end

of

the

generated

program

object.

timestamp

The

last

modification

date

and

time

of

the

source

is

emitted

into

the

end

of

the

generated

program

object.

copyright

The

text

that

is

specified

by

characters

is

placed

by

the

compiler

into

the

generated

program

object

and

is

loaded

into

memory

when

the

program

is

run.

user

The

text

specified

by

characters

is

placed

by

the

compiler

into

the

generated

object.

However,

it

is

not

loaded

into

memory

when

the

program

is

run.

Notes

on

Usage

The

copyright

and

user

comment

types

are

virtually

the

same

for

the

ILE

C/C++

compiler.

One

has

no

advantage

over

the

other.

The

maximum

number

of

characters

in

the

text

portion

of

a

#pragma

comment(copyright)

or

#pragma

comment(user)

directive

is

256.

The

maximum

number

of

#pragma

comment

directives

that

can

appear

in

a

single

compilation

unit

is

1024.

30

ILE

C/C++

Compiler

Reference

convert

��

#

pragma

convert

(

ccsid

)

��

Description

Specifies

the

Coded

Character

Set

Identifier

(CCSID)

to

use

for

converting

the

string

literals

from

that

point

onward

in

a

source

file

during

compilation.

The

conversion

continues

until

the

end

of

the

source

file

or

until

another

#pragma

convert

directive

is

specified.

Use

#pragma

convert

(0)

to

disable

the

previous

#pragma

convert

directive.

The

CCSID

of

the

string

literals

before

conversion

is

the

same

CCSID

as

the

root

source

member.

CCSIDs

905

and

1026

are

not

supported.

The

CCSID

can

be

either

EBCDIC

or

ASCII.

Parameters

ccsid

Specifies

the

coded

character

set

identifier

to

use

for

converting

the

strings

and

literals

in

the

source

file.

The

value

may

range

between

0

and

65535.

See

the

ILE

C/C++

Run-Time

Library

Functions

manual

for

more

information

about

code

pages.

Notes

on

Usage

The

run-time

library

functions

that

parse

format

strings

(such

as

printf()

and

scanf())

cannot

use

ASCII

format

strings.

Therefore,

all

format

strings

must

be

in

EBCDIC.

String

and

character

constants

that

are

specified

in

hex,

for

example

(0xC1),

are

not

converted.

Substitution

characters

will

not

be

used

when

converting

to

a

target

CCSID

that

does

not

contain

the

same

symbol

set

as

the

source

CCSID.

The

compilation

will

fail.

If

a

CCSID

with

the

value

65535

is

specified,

the

CCSID

of

the

root

source

member

is

assumed.

If

the

source

file

CCSID

value

is

65535,

the

job

CCSID

is

assumed

for

the

source

file.

If

the

file

CCSID

is

65535

and

the

job

CCSID

is

not

65535,

the

job

CCSID

is

assumed

for

the

file

CCSID.

If

the

file

is

65535

and

the

job

is

also

65535,

but

the

system

CCSID

value

is

not

65535,

the

system

CCSID

value

is

assumed

for

the

file

CCSID.

If

the

file,

job

and

system

CCSID

values

are

65535,

CCSID

037

is

assumed.

If

the

LOCALETYPE(*LOCALEUCS2)

option

is

specified

for

the

Create

Module

or

Create

Bound

Program

commands,

wide-character

literals

are

not

converted.

See

Using

Unicode

Support

for

Wide-Character

Literals

in

WebSphere

Development

Studio:

ILE

C/C++

Programmer’s

Guide

for

more

information.

Chapter

3.

ILE

C/C++

Pragmas

31

datamodel

��

#

pragma

datamodel

P128

(

LLP64

)

pop

��

Description

Specifies

a

data

model

to

apply

to

a

section

of

code.

The

data

model

setting

determines

the

interpretation

of

pointer

types

in

absence

of

an

explicit

modifier.

This

pragma

overrides

the

data

model

specified

by

the

DTAMDL

compiler

command

line

option.

Parameters

P128,

p128

Default

setting.

If

specified,

sizes

of

int,

long,

and

pointer

types

in

program

code

following

this

pragma

are

4,

4,

and

16

bytes

respectively,

until

another

pragma

datamodel

setting

is

specified.

If

the

RTBND(*LLP64)

option

is

in

effect,

pointer

types

in

code

sections

affected

by

this

pragma

will

be

8

bytes

in

size.

LLP64,

llp64

If

specified,

sizes

of

int,

long,

and

pointer

types

in

program

code

following

this

pragma

are

4,

4,

and

8

bytes

respectively,

until

another

pragma

datamodel

setting

is

specified.

pop

Restores

the

previous

data

model

setting.

If

there

is

no

previous

data

model

setting,

the

setting

specifed

by

the

DTAMDL

compiler

command

line

option

is

used.

Note

on

Usage

This

pragma

and

its

settings

are

case-sensitive

when

used

in

C++

programs.

Specifying

#pragma

datamodel(LLP64)

or

#pragma

datamodel(llp64)

has

effect

only

when

the

TERASPACE(*YES)

compiler

option

is

also

specified.

The

data

model

specified

by

this

pragma

remains

in

effect

until

another

data

model

is

specified,

or

until

#pragma

datamodel(pop)

is

specified.

Example

This

pragma

is

recommended

for

wrapping

header

files,

without

having

to

add

pointer

modifiers

to

pointer

declarations.

For

example:

//

header

file

blah.h

#pragma

datamodel(P128)

//

Pointers

are

now

16-byte

char*

Blah(int,

char

*);

#pragma

datamodel(pop)

//

Restore

previous

setting

of

datamodel

You

can

also

specify

data

models

using

the

__ptr64

and

__ptr128

pointer

modifiers.

These

modifers

override

the

DTAMDL

compiler

option,

and

the

#pragma

datamodel

setting

for

a

specific

pointer

declaration.

32

ILE

C/C++

Compiler

Reference

The

__ptr64

modifier

should

only

be

used

if

the

TERASPACE(*YES)

compiler

option

is

also

specified.

The

__ptr128

modifier

can

be

used

at

any

time.

The

following

example

shows

the

declarations

of

a

process

local

pointer

and

a

tagged

space

pointer:

char

*

__ptr64

p;

//

an

8-byte,

process

local

pointer

char

*

__ptr128

t;

//

a

16-byte,

tagged

space

pointer

For

more

information,

see

Using

Teraspace

in

WebSphere

Development

Studio:

ILE

C/C++

Programmer’s

Guide,

and

Teraspace

and

single-level

store

in

ILE

Concepts.

Chapter

3.

ILE

C/C++

Pragmas

33

define

��

#

pragma

define

(

template_class_name

)

��

Description

The

#pragma

define

directive

forces

the

definition

of

a

template

class

without

actually

defining

an

object

of

the

class.

The

pragma

can

appear

anywhere

that

a

declaration

is

allowed.

It

is

used

when

organizing

your

program

for

the

efficient

or

automatic

generation

of

template

functions.

34

ILE

C/C++

Compiler

Reference

descriptor

��

#

pragma

descriptor

(

void

function_name

(

od_specifiers

)

)

��

od_specifiers:

""

void

*

�

,

""

void

*

Description

An

operational

descriptor

is

an

optional

piece

of

information

that

is

associated

with

a

function

argument.

This

information

is

used

to

describe

an

argument’s

attributes,

for

example,

its

data

type

and

length.

The

#pragma

descriptor

directive

is

used

to

identify

functions

whose

arguments

have

operational

descriptors.

Operational

descriptors

are

useful

when

passing

arguments

to

functions

that

are

written

in

other

languages

that

may

have

a

different

definition

of

the

data

types

of

the

arguments.

For

example,

C

defines

a

string

as

a

contiguous

sequence

of

characters

ended

by

and

including

the

first

null

character.

In

another

language,

a

string

may

be

defined

as

consisting

of

a

length

specifier

and

a

character

sequence.

When

passing

a

string

from

a

C

function

to

a

function

written

in

another

language,

an

operational

descriptor

can

be

provided

with

the

argument

to

allow

the

called

function

to

determine

the

length

and

type

of

the

string

being

passed.

The

ILE

C/C++

compiler

generates

operational

descriptors

for

arguments

that

are

passed

to

a

function

specified

in

a

#pragma

descriptor

directive.

The

generated

descriptor

contains

the

descriptor

type,

data

type,

and

length

for

each

argument

that

is

identified

as

requiring

an

operational

descriptor.

The

information

in

an

operational

descriptor

can

be

retrieved

by

the

called

function

using

the

ILE

APIs

CEEGSI

and

CEEDOD.

For

more

information

about

CL

commands,

see

the

CL

and

APIs

section

in

the

Programming

category

at

the

iSeries

400

Information

Center

Web

site:

http://publib.boulder.ibm.com/pubs/html/as400/infocenter.htm

For

the

operational

descriptor

to

determine

the

correct

string

length

when

passed

through

a

function,

the

string

has

to

be

initialized.

The

ILE

C

compiler

supports

operational

descriptors

for

describing

strings.

Note:

A

character

string

in

ILE

C/C++

is

defined

by

using

any

one

of

the

following:

v

char

string_name[n]

v

char

*

string_name

v

A

string

literal

Parameters

Chapter

3.

ILE

C/C++

Pragmas

35

function_name

The

name

of

the

function

whose

arguments

require

operational

descriptors.

od_specifiers

A

list

of

symbols,

that

consists

of

″″,

void,

or

*,

separated

by

commas,

that

specify

which

of

a

function’s

arguments

are

to

have

operational

descriptors.

An

od_specifier

list

is

similar

to

the

argument

list

of

a

function

except

that

an

od_specifier

list

for

a

function

can

have

fewer

specifiers

than

its

argument

list.

v

If

a

string

operational

descriptor

is

required

for

an

argument,

″″

or

*

should

be

specified

in

the

equivalent

position

for

the

od_specifier

parameter.

v

If

an

operational

descriptor

is

not

required

for

an

argument

then

void

is

specified

for

that

parameter

in

the

equivalent

position

for

the

od_specifier

list.

Notes

on

Usage

Do

not

specify

#pragma

descriptor

together

with

#pragma

argopt

for

the

same

declaration.

The

compiler

supports

using

only

one

or

the

other

of

these

pragmas

at

a

time.

The

compiler

issues

a

warning

and

ignores

the

#pragma

descriptor

directive

if

any

of

the

following

conditions

occur:

v

The

identifier

specified

in

the

pragma

directive

is

not

a

function.

v

The

function

is

already

specified

in

another

pragma

descriptor.

v

The

function

is

declared

as

static.

v

The

function

has

already

been

specified

in

a

#pragma

linkage

directive.

v

The

function

specified

is

a

user

entry

procedure,

for

example,

main().

v

The

function

is

not

prototyped

before

its

#pragma

descriptor

directive.

v

A

call

to

the

function

occurs

before

its

#pragma

descriptor

directive.

When

using

operational

descriptors

consider

the

following:

v

Operational

descriptors

are

only

generated

for

functions

that

are

called

by

their

function

name.

Functions

that

are

called

by

function

pointer

do

not

have

operational

descriptors

generated.

v

Operational

descriptors

are

not

allowed

for

C++

function

declaration.

v

If

there

are

fewer

od_specifiers

than

function

arguments,

the

remaining

od_specifiers

default

to

void.

v

If

a

function

requires

a

variable

number

of

arguments,

the

#pragma

descriptor

directive

can

specify

that

operational

descriptors

are

to

be

generated

for

the

required

arguments

but

not

for

the

variable

arguments.

v

It

is

not

valid

to

do

pointer

arithmetic

on

a

literal

or

array

while

it

is

also

used

as

an

argument

that

requires

an

operational

descriptor,

unless

explicitly

cast

to

char

*.

For

example,

if

F

is

a

function

that

takes

as

an

argument

a

string,

and

F

requires

an

operational

descriptor

for

this

argument,

then

the

argument

on

the

following

call

to

F

is

not

valid:

F(a

+

1)

where

″a″

is

defined

as

char

a[10].

36

ILE

C/C++

Compiler

Reference

disable_handler

��

#

pragma

disable_handler

��

Description

Disables

the

handler

most

recently

enabled

by

either

the

exception_handler

or

cancel_handler

pragma.

This

directive

is

only

needed

when

a

handler

has

to

be

explicitly

disabled

before

the

end

of

a

function.

This

is

done

since

all

enabled

handlers

are

implicitly

disabled

at

the

end

of

the

function

in

which

they

are

enabled.

Notes

on

Usage

This

pragma

can

only

occur

at

a

C

language

statement

boundary

and

inside

a

function

definition.

The

compiler

issues

an

error

message

if

the

#pragma

disable_handler

is

specified

when

no

handler

is

currently

enabled.

Chapter

3.

ILE

C/C++

Pragmas

37

disjoint

��

#

pragma

disjoint

�

�

�

�

�

(

*

identifier

,

*

identifier

)

��

Description

This

directive

informs

the

compiler

that

none

of

the

identifiers

listed

shares

the

same

physical

storage,

which

provides

more

opportunity

for

optimizations.

If

any

identifiers

actually

share

physical

storage,

the

pragma

may

cause

the

program

to

give

incorrect

results.

An

identifier

in

the

directive

must

be

visible

at

the

point

in

the

program

where

the

pragma

appears.

The

identifiers

in

the

disjoint

name

list

cannot

refer

to

any

of

the

following:

v

a

member

of

a

structure,

or

union

v

a

structure,

union,

or

enumeration

tag

v

an

enumeration

constant

v

a

typedef

name

v

a

label

Example

int

a,

b,

*ptr_a,

*ptr_b;

#pragma

disjoint(*ptr_a,

b)

//

*ptr_a

never

points

to

b

#pragma

disjoint(*ptr_b,

a)

//

*ptr_b

never

points

to

a

one_function()

{

b

=

6;

*ptr_a

=

7;

//

Assignment

does

not

alter

the

value

of

b

another_function(b);

//

Argument

"b"

has

the

value

6

}

Because

external

pointer

ptr_a

does

not

share

storage

with

and

never

points

to

the

external

variable

b,

the

assignment

of

7

to

the

object

that

ptr_a

points

to

will

not

change

the

value

of

b.

Likewise,

external

pointer

ptr_b

does

not

share

storage

with

and

never

points

to

the

external

variable

a.

The

compiler

can

assume

that

the

argument

of

another_function

has

the

value

6

and

will

not

reload

the

variable

from

memory.

38

ILE

C/C++

Compiler

Reference

enum

��

#pragma

enum

(

1

)

2

4

int

small

pop

system_default

user_default

��

Description

Specifies

the

number

of

bytes

the

compiler

uses

to

represent

enumerations.

The

pragma

affects

all

subsequent

enum

definitions

until

the

end

of

the

compilation

unit

or

until

another

#pragma

enum

directive

is

encountered.

If

more

than

one

pragma

is

used,

the

most

recently

encountered

pragma

is

in

effect.

This

pragma

overrides

the

ENUM

compiler

option,

described

on

page

128.

Parameters

1,

2,

4

Specifies

that

enumerations

be

stored

in

1,

2,

or

4-byte

containers.

The

sign

of

the

container

is

determined

by

the

range

of

values

in

the

enumeration,

but

preference

is

given

to

signed

when

the

range

permits

either.

int

Causes

enumerations

to

be

stored

in

the

ANSI

C

or

C++

Standard

representation

of

an

enumeration,

which

is

4-bytes

signed.

In

C++

programs,

the

int

container

may

become

4-bytes

unsigned

if

a

value

in

the

enumeration

exceeds

231-1,

as

per

the

ANSI

C++

Standard.

small

Causes

subsequent

enumerations

to

be

placed

into

the

smallest

possible

container,

given

the

values

in

the

enumeration.

The

sign

of

the

container

is

determined

by

the

range

of

values

in

the

enumeration,

but

preference

is

given

to

unsigned

when

the

range

permits

either.

pop

Selects

the

enumeration

size

previously

in

effect,

and

discards

the

current

setting.

system_default

Selects

the

default

enumeration

size,

which

is

the

small

option.

user_default

Selects

the

enumeration

size

specified

by

the

ENUM

compiler

option.

The

value

ranges

that

can

be

accepted

by

the

enum

settings

are

shown

below:

Range

of

Element

Values

Enum

Options

small

(default)

1

2

4

int

0

..

127

1

byte

unsigned

1

byte

signed

2

bytes

signed

4

bytes

signed

4

bytes

signed

0

..

255

1

byte

unsigned

1

byte

unsigned

2

bytes

signed

4

bytes

signed

4

bytes

signed

-128

..

127

1

byte

signed

1

byte

signed

2

bytes

signed

4

bytes

signed

4

bytes

signed

Chapter

3.

ILE

C/C++

Pragmas

39

0

..

32767

2

bytes

unsigned

ERROR

2

bytes

signed

4

bytes

signed

4

bytes

signed

0

..

65535

2

bytes

unsigned

ERROR

2

bytes

unsigned

4

bytes

signed

4

bytes

signed

-32768

..

32767

2

bytes

signed

ERROR

ERROR

4

bytes

signed

4

bytes

signed

0

..

2147483647

4

bytes

unsigned

ERROR

ERROR

4

bytes

signed

4

bytes

signed

0

..

4294967295

4

bytes

unsigned

ERROR

ERROR

4

bytes

unsigned

C++

4

bytes

unsigned

C

ERROR

-2147483648

..

2147483647

4

bytes

signed

ERROR

4

bytes

signed

4

bytes

signed

4

bytes

signed

Examples

The

examples

below

show

various

uses

of

the

#pragma

enum

and

compiler

options:

1.

You

cannot

change

the

storage

allocation

of

an

enum

by

using

#pragma

enum

within

the

declaration

of

an

enum.

The

following

code

segment

generates

a

warning

and

the

second

occurrence

of

the

enum

option

is

ignored:

#pragma

enum

(

small

)

enum

e_tag

{

a,

b,

#pragma

enum

(

int

)

/*

error:

cannot

be

within

a

declaration

*/

c

}

e_var;

#pragma

enum

(

pop

)

/*

second

pop

isn’t

required

*/

2.

The

range

of

enum

constants

must

fall

within

the

range

of

either

unsigned

int

or

int

(signed

int).

For

example,

the

following

code

segments

contain

errors:

#pragma

enum

(

small

)

enum

e_tag

{

a=-1,

b=2147483648

/*

error:

larger

than

maximum

int

*/

}

e_var;

#pragma

enum

(

pop

)

3.

The

enum

constant

range

does

not

fit

within

the

range

of

an

unsigned

int.

#pragma

enum

(

small

)

enum

e_tag

{

a=0,

b=4294967296

/*

error:

larger

than

maximum

int

*/

}

e_var;

#pragma

enum

(

pop

)

4.

One

use

for

the

pop

option

is

to

pop

the

enumeration

size

set

at

the

end

of

an

include

file

that

specifies

an

enumeration

storage

different

from

the

default

in

the

main

file.

For

example,

the

following

include

file,

small_enum.h,

declares

various

minimum-sized

enumerations,

then

resets

the

specification

at

the

end

of

the

include

file

to

the

last

value

on

the

option

stack:

#ifndef

small_enum_h

#define

small_enum_h

/*

*

File

small_enum.h

*

This

enum

must

fit

within

an

unsigned

char

type

*/

#pragma

enum

(

small

)

enum

e_tag

{a,

b=255};

enum

e_tag

u_char_e_var;

/*

occupies

1

byte

of

storage

*/

40

ILE

C/C++

Compiler

Reference

/*

Pop

the

enumeration

size

to

whatever

it

was

before

*/

#pragma

enum

(

pop

)

#endif

The

following

source

file,

int_file.c,

includes

small_enum.h:

/*

*

File

int_file.c

*

Defines

4

byte

enums

*/

#pragma

enum

(

int

)

enum

testing

{ONE,

TWO,

THREE};

enum

testing

test_enum;

/*

various

minimum-sized

enums

are

declared

*/

#include

"small_enum.h"

/*

return

to

int-sized

enums.

small_enum.h

has

popped

the

enum

size

*/

enum

sushi

{CALIF_ROLL,

SALMON_ROLL,

TUNA,

SQUID,

UNI};

enum

sushi

first_order

=

UNI;

The

enumerations

test_enum

and

first_order

both

occupy

4

bytes

of

storage

and

are

of

type

int.

The

variable

u_char_e_var

defined

in

small_enum.h

occupies

1

byte

of

storage

and

is

represented

by

an

unsigned

char

data

type.

5.

If

the

code

fragment

below

is

compiled

with

the

ENUM

=

*SMALL

option:

enum

e_tag

{a,

b,

c}

e_var;

the

range

of

enum

constants

is

0

through

2.

This

range

falls

within

all

of

the

ranges

described

in

the

table

above.

Based

on

priority,

the

compiler

uses

predefined

type

unsigned

char.

6.

If

the

code

fragment

below

is

compiled

with

the

ENUM

=

*SMALL

option:

enum

e_tag

{a=-129,

b,

c}

e_var;

the

range

of

enum

constants

is

-129

through

-127.

This

range

only

falls

within

the

ranges

of

short

(signed

short)

and

int

(signed

int).

Because

short

(signed

short)

is

smaller,

it

will

be

used

to

represent

the

enum.

7.

If

you

compile

a

file

myprogram.c

using

the

command:

CRTBNDC

MODULE(MYPROGRAM)

SRCMBR(MYPROGRAM)

ENUM(*SMALL)

all

enum

variables

within

your

source

file

will

occupy

the

minimum

amount

of

storage,

unless

#pragma

enum

directives

override

the

ENUM

option.

8.

If

you

compile

a

file

yourfile.c

that

contains

the

following

lines:

enum

testing

{ONE,

TWO,

THREE};

enum

testing

test_enum;

#pragma

enum

(

small

)

enum

sushi

{CALIF_ROLL,

SALMON_ROLL,

TUNA,

SQUID,

UNI};

enum

sushi

first_order

=

UNI;

#pragma

enum

(

int

)

enum

music

{ROCK,

JAZZ,

NEW_WAVE,

CLASSICAL};

enum

music

listening_type;

using

the

command:

CRTBNDC

MODULE(YOURFILE)

SRCMBR(YOURFILE)

Chapter

3.

ILE

C/C++

Pragmas

41

the

enum

variables

test_enum

and

first_order

will

be

minimum-sized

(that

is,

each

will

only

occupy

1

byte

of

storage).

The

other

enum

variable,

listening_type,

will

be

of

type

int

and

occupy

4

bytes

of

storage.

42

ILE

C/C++

Compiler

Reference

exception_handler

��

#

pragma

exception_handler

(

function_name

label

,

0

,

com_area

�

�

,

class1

,

class2

,

ctl_action

,

msgid_list

)

��

Description

Enables

a

user-defined

ILE

exception

handler

at

the

point

in

the

code

where

the

#pragma

exception_handler

is

located.

Any

exception

handlers

enabled

by

#pragma

exception_handler

that

are

not

disabled

using

#pragma

disable_handler

are

implicitly

disabled

at

the

end

of

the

function

in

which

they

are

enabled.

Parameters

function

Specifies

the

name

of

the

function

to

be

used

as

a

user-defined

ILE

exception

handler.

label

Specifies

the

name

of

the

label

to

be

used

as

a

user-defined

ILE

exception

handler.

The

label

must

be

defined

within

the

function

where

the

#pragma

exception_handler

is

enabled.

When

the

handler

gets

control,

the

exception

is

implicitly

handled

and

control

resumes

at

the

label

defined

by

the

handler

in

the

invocation

containing

the

#pragma

exception_handler

directive.

The

call

stack

is

canceled

from

the

newest

call

to,

but

not

including,

the

call

containing

the

#pragma

exception_handler

directive.

The

label

can

be

placed

anywhere

in

the

statement

part

of

the

function

definition,

regardless

of

the

position

of

the

#pragma

exception_handler.

com_area

Used

for

the

communications

area.

If

no

com_area

should

be

specified,

zero

is

used

as

the

second

parameter

of

the

directive.

If

a

com_area

is

specified

on

the

directive,

it

must

be

a

variable

of

one

of

the

following

data

types:

integral,

float,

double,

struct,

union,

array,

enum,

pointer,

or

packed

decimal.

The

com_area

should

be

declared

with

the

volatile

qualifier.

It

cannot

be

a

member

of

a

structure

or

a

union.

class1,

class2

Specifies

the

first

four

bytes

and

the

last

four

bytes,

respectively,

of

the

exception

mask.

The

<except.h>

header

file

describes

the

values

that

you

can

use

for

the

class

masks.

It

also

contains

macro

definitions

for

these

values.

class1

and

class2

have

to

evaluate

to

integer

constant

expressions

after

any

necessary

macro

expansions.

You

can

monitor

for

the

valid

class2

values

of:

v

_C2_MH_ESCAPE

v

_C2_MH_STATUS

v

_C2_MH_NOTIFY,

and

v

_C2_FUNCTION_CHECK.

ctl_action

Specifies

an

integer

constant

to

indicate

what

action

should

take

Chapter

3.

ILE

C/C++

Pragmas

43

place

for

this

exception

handler.

If

handler

is

a

function,

the

default

value

is

_CTLA_INVOKE.

If

handler

is

a

label,

the

default

value

is

_CTLA_HANDLE.

This

parameter

is

optional.

The

following

are

valid

exception

control

actions

that

are

defined

in

the

<except.h>

header

file:

#define

name

Defined

value

and

action

_CTLA_INVOKE

Defined

to

1.

This

control

action

will

cause

the

function

named

on

the

directive

to

be

invoked

and

will

not

handle

the

exception.

If

the

exception

is

not

explicitly

handled,

processing

will

continue.

This

is

valid

for

functions

only.

_CTLA_HANDLE

Defined

to

2.

The

exception

is

handled

and

messages

are

logged

prior

to

calling

the

handler.

The

exception

will

no

longer

be

active

when

the

handler

gets

control.

Exception

processing

ends

when

the

exception

handler

returns.

This

is

valid

for

functions

and

labels.

_CTLA_HANDLE_NO_MSG

Defined

to

3.

The

exception

is

handled

but

messages

are

not

logged

prior

to

calling

the

handler.

The

exception

will

no

longer

be

active

when

the

handler

gets

control.

Exception

messages

are

not

logged.

Msg_Ref_Key

in

the

typedef

_INTRPT_Hndlr_Parms_T

is

set

to

zero.

Exception

processing

ends

when

the

exception

handler

returns.

This

is

valid

for

functions

and

labels.

_CTLA_IGNORE

Defined

to

131.

The

exception

is

handled

and

messages

are

logged.

Control

is

not

passed

to

the

handler

function

named

on

the

directive

and

exception

will

no

longer

be

active.

Execution

resumes

at

the

instruction

immediately

following

the

instruction

that

caused

the

exception.

This

is

valid

for

functions

only.

_CTLA_IGNORE_NO_MSG

Defined

to

132.

The

exception

is

handled

and

messages

are

not

logged.

Control

is

not

passed

to

the

handler

function

named

on

the

directive

and

exception

will

no

longer

be

active.

Execution

resumes

at

the

instruction

immediately

following

the

instruction

that

caused

the

exception.

This

is

valid

for

functions

only.

msgid_list

Specifies

an

optional

string

literal

that

contains

the

list

of

message

identifiers.

The

exception

handler

will

take

effect

only

when

an

exception

occurs

whose

identifiers

match

one

of

the

identifiers

on

the

list

of

message

identifiers.

The

list

is

a

series

of

7-character

message

identifiers

where

the

first

three

characters

are

the

message

prefix

and

the

last

four

are

the

message

number.

Each

message

identifier

is

separated

by

one

or

more

spaces

or

commas.

This

parameter

is

optional,

but

if

it

is

specified,

ctl_action

must

also

be

specified.

For

the

exception

handler

to

get

control,

the

selection

criteria

for

class1

and

class2

must

be

satisfied.

If

the

msgid_list

is

specified,

the

exception

must

also

match

at

least

one

of

the

message

identifiers

in

the

list,

based

on

the

following

criteria:

v

The

message

identifier

matches

the

exception

exactly.

44

ILE

C/C++

Compiler

Reference

v

A

message

identifier,

whose

two

rightmost

characters

are

00,

will

match

any

exception

identifier

that

has

the

same

five

leftmost

characters.

For

example,

a

message

identifier

of

CPF5100

will

match

any

exceptions

whose

message

identifier

begins

with

CPF51.

v

A

message

identifier,

whose

four

rightmost

characters

are

0000,

will

match

any

exception

identifier

that

has

the

same

prefix.

For

example,

a

message

identifier

of

CPF0000

will

match

any

exception

whose

message

identifier

has

the

prefix

CPF

(CPF0000

to

CPF9999).

v

If

msgid_list

is

specified,

but

the

exception

that

is

generated

is

not

one

specified

in

the

list,

the

exception

handler

will

not

get

control.

Notes

on

Usage

The

handler

function

can

take

only

16-byte

pointers

as

parameters.

The

macro

_C1_ALL,

defined

in

the

<except.h>

header

file,

can

be

used

as

the

equivalent

of

all

the

valid

class1

exception

masks.

The

macro

_C2_ALL,

defined

in

the

<except.h>

header

file,

can

be

used

as

the

equivalent

of

all

four

of

the

valid

class2

exception

masks.

You

can

use

the

binary

OR

operator

to

monitor

for

different

types

of

messages.

For

example,

#pragma

exception_handler(myhandler,

my_comarea,

0,

_C2_MH_ESCAPE

|

\

_C2_MH_STATUS

|

_C2_MH_NOTIFY,

_CTLA_IGNORE,

"MCH0000")

will

set

up

an

exception

monitor

for

three

of

the

four

class2

exception

classes

that

can

be

monitored.

The

compiler

issues

an

error

message

if

any

of

the

following

occurs:

v

The

directive

occurs

outside

a

C

function

body

or

inside

a

C

statement.

v

The

handler

that

is

named

is

not

a

declared

function

or

a

defined

label.

v

The

com_area

variable

has

not

been

declared

or

does

not

have

a

valid

object

type.

v

Either

of

the

exception

class

masks

is

not

a

valid

integral

constant

v

The

ctl_action

is

one

of

the

disallowed

values

when

the

handler

that

is

specified

is

a

label

(_CTLA_INVOKE,

_CTLA_IGNORE,

_CTLA_IGNORE_NO_MSG).

v

The

msgid_list

is

specified,

but

the

ctl_action

is

not.

v

A

message

in

the

msgid_list

is

not

valid.

Message

prefixes

that

are

not

in

uppercase

are

not

considered

valid.

v

The

messages

in

the

string

are

not

separated

by

a

blank

or

comma.

v

The

string

is

not

enclosed

in

“

”

or

is

longer

than

4

KB.

See

the

WebSphere

Development

Studio:

ILE

C/C++

Programmer’s

Guide

for

examples

and

more

information

about

using

the

#pragma

exception_handler

directive.

Chapter

3.

ILE

C/C++

Pragmas

45

hashome

��

#

pragma

hashome

(

className

)

AllInlines

��

Description

Informs

the

compiler

that

the

specified

class

has

a

home

module

that

will

be

specified

by

#pragma

ishome.

This

class’s

virtual

function

table,

along

with

certain

inline

functions,

will

not

be

generated

as

static.

Instead,

they

will

be

referenced

as

externals

in

the

compilation

unit

of

the

class

in

which

#pragma

ishome

was

specified.

Parameters

className

Specifies

the

name

of

a

class

that

requires

the

above

mentioned

external

referencing.

className

must

be

a

class

and

it

must

be

defined.

AllInlines

specifies

that

all

inline

functions

from

within

className

should

be

referenced

as

being

external.

This

argument

is

case

insensitive.

A

warning

will

be

produced

if

there

is

a

#pragma

ishome

without

a

matching

#pragma

hashome.

See

also

“ishome”

on

page

50.

46

ILE

C/C++

Compiler

Reference

implementation

��

#

pragma

implementation

(

string_literal

)

��

Description

The

#pragma

implementation

directive

tells

the

compiler

the

name

of

the

file

containing

the

function-template

definitions

that

correspond

to

the

template

declarations

in

the

include

file

which

contains

the

pragma.

This

pragma

can

appear

anywhere

that

a

declaration

is

allowed.

It

is

used

when

organizing

your

program

for

the

efficient

or

automatic

generation

of

template

functions.

Chapter

3.

ILE

C/C++

Pragmas

47

info

��

�

#

pragma

info

(

all

)

none

restore

nogroup

,

group

��

Description

This

pragma

can

be

used

to

control

which

diagnostic

messages

are

produced

by

the

compiler.

Parameters

all

Generates

all

diagnostic

messages

while

this

pragma

is

in

effect.

none

Turns

off

all

diagnostic

messages

while

this

pragma

is

in

effect.

restore

Restores

the

previous

setting

of

pragma

info.

nogroup

Suppresses

all

diagnostic

messages

associated

with

a

specified

diagnostic

group.

To

turn

off

a

specific

group

of

messages,

prepend

the

group

name

with

″no″.

For

example,

nogen

will

suppress

CHECKOUT

messages.

Valid

group

names

are

listed

below.

group

Generates

all

diagnostic

messages

associated

with

the

specified

diagnostic

group.

Valid

group

names

are:

lan

Display

information

about

the

effects

of

the

language

level

gnr

Generate

messages

if

the

compiler

creates

temporary

variables

cls

Display

information

about

class

use

eff

Warn

about

statements

with

no

effect

cnd

Warn

about

possible

redundancies

or

problems

in

conditional

expressions

rea

Warn

about

unreachable

statements

par

List

the

function

parameters

that

are

not

used

por

List

the

non-portable

usage

of

the

C/C++

language

trd

Warn

about

the

possible

truncation

or

loss

of

data

use

Check

for

unused

auto

or

static

variables

use

Check

for

unused

auto

or

static

variables

gen

List

the

general

CHECKOUT

messages

48

ILE

C/C++

Compiler

Reference

inline

��

#

pragma

inline

(

function_name

)

��

Description

The

#pragma

inline

directive

specifies

that

function_name

is

to

be

inlined.

The

pragma

can

appear

anywhere

in

the

source,

but

must

be

at

file

scope.

The

pragma

has

no

effect

if

the

INLINE(*ON)

parameter

is

not

specified

on

the

Create

Module

or

Create

Bound

Program

commands.

If

#pragma

inline

is

specified

for

a

function,

the

inliner

will

force

the

function

specified

to

be

inlined

on

every

call.

The

function

will

be

inlined

in

both

selective

(*NOAUTO)

and

automatic

(*AUTO)

INLINE

mode.

Inlining

replaces

function

calls

with

the

actual

code

of

the

function.

It

reduces

function

call

overhead,

and

exposes

more

code

to

the

optimizer,

allowing

more

opportunities

for

optimization.

Notes

on

Usage

v

Inlining

takes

place

only

if

compiler

optimization

is

set

to

level

30

or

higher.

v

Directly

recursive

functions

will

not

be

inlined.

Indirectly

recursive

functions

will

be

inlined

until

direct

recursion

is

encountered.

v

Functions

calls

with

variable

argument

lists

will

not

be

inlined

if

arguments

are

encountered

in

the

variable

portion

of

the

argument

list.

v

If

a

function

is

called

through

a

function

pointer,

then

inlining

will

not

occur.

v

The

pragma

inline

directive

will

be

ignored

if

function_name

is

not

defined

in

the

same

compilation

unit

that

contains

the

pragma.

v

A

function’s

definition

will

be

discarded

if

all

of

the

following

are

true:

–

The

function

is

static.

–

The

function

has

not

had

its

address

taken.

–

The

function

has

been

inlined

everywhere

it

is

called.

This

action

can

decrease

the

size

of

the

module

and

program

object

where

the

function

is

used.

See

the

″Function

Call

Performance″

in

the

WebSphere

Development

Studio:

ILE

C/C++

Programmer’s

Guide

for

more

information

on

function

inlining.

Chapter

3.

ILE

C/C++

Pragmas

49

ishome

��

#

pragma

ishome

(

className

)

��

Description

Informs

the

compiler

that

the

specified

class’s

home

module

is

the

current

compilation

unit.

The

home

module

is

where

items,

such

as

the

virtual

function

table,

are

stored.

If

an

item

is

referenced

from

outside

of

the

compilation

unit,

it

will

not

be

generated

outside

its

home.

The

advantage

of

this

is

the

minimization

of

code.

Parameters

className

Specifies

the

literal

name

of

the

class

whose

home

will

be

the

current

compilation

unit.

A

warning

will

be

produced

if

there

is

a

#pragma

ishome

without

a

matching

#pragma

hashome.

See

also

“hashome”

on

page

46.

50

ILE

C/C++

Compiler

Reference

isolated_call

��

#

pragma

isolated_call

=

function

��

Description

Lists

a

function

that

does

not

have

or

rely

on

side

effects,

other

than

those

implied

by

its

parameters.

Parameters

function

Specifies

a

primary

expression

that

can

be

an

identifier,

operator

function,

conversion

function,

or

qualified

name.

An

identifier

must

be

of

type

function

or

a

typedef

of

function.

If

the

name

refers

to

an

overloaded

function,

all

variants

of

that

function

are

marked

as

isolated

calls.

Notes

on

Usage

The

pragma

informs

the

compiler

that

the

function

listed

does

not

have

or

rely

on

side

effects,

other

than

those

implied

by

its

parameters.

Functions

are

considered

to

have

or

rely

on

side

effects

if

they:

v

Access

a

volatile

object

v

Modify

an

external

object

v

Modify

a

static

object

v

Modify

a

file

v

Access

a

file

that

is

modified

by

another

process

or

thread

v

Allocate

a

dynamic

object,

unless

it

is

released

before

returning

v

Release

a

dynamic

object,

unless

it

was

allocated

during

the

same

invocation

v

Change

system

state,

such

as

rounding

mode

or

exception

handling

v

Call

a

function

that

does

any

of

the

above

Essentially,

any

change

in

the

state

of

the

run-time

environment

is

considered

a

side

effect.

Modifying

function

arguments

passed

by

pointer

or

by

reference

is

the

only

side

effect

that

is

allowed.

Functions

with

other

side

effects

can

give

incorrect

results

when

listed

in

#pragma

isolated_call

directives.

Marking

a

function

as

isolated_call

indicates

to

the

optimizer

that

external

and

static

variables

cannot

be

changed

by

the

called

function

and

that

pessimistic

references

to

storage

can

be

deleted

from

the

calling

function

where

appropriate.

Instructions

can

be

reordered

with

more

freedom,

resulting

in

fewer

pipeline

delays

and

faster

execution

in

the

processor.

Multiple

calls

to

the

same

function

with

identical

parameters

can

be

combined,

calls

can

be

deleted

if

their

results

are

not

needed,

and

the

order

of

calls

can

be

changed.

The

function

specified

is

permitted

to

examine

non-volatile

external

objects

and

return

a

result

that

depends

on

the

non-volatile

state

of

the

run-time

environment.

The

function

can

also

modify

the

storage

pointed

to

by

any

pointer

arguments

passed

to

the

function,

that

is,

calls

by

reference.

Do

not

specify

a

function

that

calls

itself

or

relies

on

local

static

storage.

Listing

such

functions

in

the

#pragma

isolated_call

directive

can

give

unpredictable

results.

Chapter

3.

ILE

C/C++

Pragmas

51

linkage

��

#

pragma

linkage

(

program_name

,

typedef_name

OS

)

,

nowiden

��

Description

Identifies

a

given

function

or

function

typedef

as

being

an

external

program

subject

to

OS/400

parameter

passing

conventions.

This

pragma

allows

calls

only

to

external

programs.

For

information

on

making

calls

to

bound

procedures,

see

#pragma

“argument”

on

page

25.

Parameter

program_name

Specifies

the

name

of

an

external

program.

The

external

name

must

be

specified

in

uppercase

characters

and

be

no

longer

than

10

characters

in

length,

unless

the

#pragma

map

directive

is

specified

to

meet

OS/400

program

naming

conventions.

However,

if

the

name

specified

in

#pragma

map

is

too

long,

it

will

be

truncated

to

255

characters

during

#pragma

linkage

processing.

typedef_name

Specifies

a

typedef

affected

by

this

pragma.

OS

Specifies

that

the

external

program

is

called

using

OS/400

calling

conventions.

nowiden

If

specified,

arguments

are

not

widened

before

they

are

copied

and

passed.

Notes

on

Usage

This

pragma

lets

an

iSeries

program

call

an

external

program.

The

external

program

can

be

written

in

any

language.

The

pragma

can

be

applied

to

functions,

function

types,

and

function

pointer

types.

If

it

is

applied

to

a

function

typedef,

the

effect

of

the

pragma

also

applies

to

all

functions

and

new

typedefs

declared

using

that

original

typedef.

This

directive

can

appear

either

before

or

after

the

program

name

(or

type)

is

declared.

However,

the

program

cannot

have

been

called,

nor

a

type

been

used

in

a

declaration,

before

the

pragma

directive.

The

function

or

function

pointer

can

only

return

either

an

int

or

a

void.

Arguments

on

the

call

are

passed

according

to

the

following

OS/400

argument-passing

conventions:

v

Non-address

arguments

are

copied

to

temporary

locations,

widened

(unless

nowiden

has

been

specified)

and

the

address

of

the

copy

is

passed

to

the

called

program.

v

Address

arguments

are

passed

directly

to

the

called

program.

52

ILE

C/C++

Compiler

Reference

The

compiler

issues

a

warning

message

and

ignores

the

#pragma

linkage

directive

if:

v

The

program

is

declared

with

a

return

type

other

than

int

or

void.

v

The

function

contains

more

than

256

parameters.

v

Another

pragma

linkage

directive

has

already

been

specified

for

the

function

or

function

type.

v

The

function

has

been

defined

in

the

current

compilation

unit.

v

The

specified

function

has

already

been

called,

or

the

type

already

used

in

a

declaration.

v

#pragma

argopt

or

#pragma

argument

has

already

been

specified

for

the

named

function

or

type.

v

The

object

named

in

the

pragma

directive

is

not

a

function

or

function

type.

v

The

name

of

the

object

specified

in

the

pragma

directive

must

not

exceed

10

characters,

or

the

name

will

be

truncated.

Chapter

3.

ILE

C/C++

Pragmas

53

map

��

#

pragma

map

(

name1

,

″

name2

″

)

��

Description

Specifies

that

the

compiler

is

to

replace

the

external

symbol

(that

is

used

in

your

C

source)

name1

with

the

external

symbol

name2.

Case

significance

is

preserved

only

for

those

systems

that

support

case

distinction

for

external

symbols.

The

#pragma

map

directive

supports

library-qualified

external

program

names.

See

“linkage”

on

page

52

for

more

information.

54

ILE

C/C++

Compiler

Reference

mapinc

��

#

pragma

mapinc

(

″include_name″

,

�

�

�

*LIBL/

″

file_name

(

*ALL

)

″

*CURLIB/

format_name

library_name/

�

�

,

″options″

,

d

z

″

″

_P

1BYTE_CHAR

p

�

�

)

,

″union_type_name″

,

″prefix_name″

��

Description

Indicates

that

data

description

specifications

(DDS)

are

to

be

included

in

a

module.

The

directive

identifies

the

file

and

DDS

record

formats,

and

provides

information

on

the

fields

to

be

included.

This

pragma,

along

with

its

associated

include

directive,

causes

the

compiler

to

automatically

generate

typedefs

from

the

record

formats

that

are

specified

in

the

external

file

descriptions.

Parameters

include_name

This

is

the

name

that

you

refer

to

on

the

#include

directive

in

the

source

program.

library_name

This

is

the

name

of

the

library

that

contains

the

externally

described

file

file_name

This

is

the

name

of

the

externally

described

file.

format_name

This

is

a

required

parameter

which

indicates

the

DDS

record

format

that

is

to

be

included

in

your

program.

You

can

include

more

than

one

record

format

(format1

format2),

or

all

the

formats

in

a

file

(*ALL).

options

The

possible

options

are:

input

Fields

declared

as

either

INPUT

or

BOTH

in

the

DDS

are

included

in

the

typedef

structure.

Response

indicators

are

included

in

the

input

structure

when

the

keyword

INDARA

is

not

specified

in

the

external

file

description

(DDS

source)

for

device

files.

output

Fields

declared

as

either

OUTPUT

or

BOTH

in

DDS

are

included

in

the

typedef

structure.

Option

indicators

are

included

in

the

output

structure

Chapter

3.

ILE

C/C++

Pragmas

55

when

the

keyword

INDARA

is

not

specified

in

the

external

file

description

(DDS

source)

for

device

files.

both

Fields

declared

as

INPUT,

OUTPUT,

or

BOTH

in

DDS

are

included

in

the

typedef

structure.

Option

and

response

indicators

are

included

in

both

structures

when

the

keyword

INDARA

is

not

specified

in

the

external

file

description

(DDS

source)

for

device

files.

key

Fields

that

are

declared

as

keys

in

the

external

file

description

are

included.

This

option

is

only

valid

for

database

files

and

DDM

files.

indicators

A

separate

99-byte

structure

for

indicators

is

created

when

the

indicator

option

is

specified.

This

option

is

only

valid

for

device

files.

lname

This

option

allows

the

use

of

file

names

of

up

to

128

characters

in

length.

If

the

file

name

has

more

than

10

characters

then

the

name

will

be

converted

to

an

associated

short

name.

The

short

name

will

be

used

to

extract

the

external

file

definition.

When

the

file

has

a

short

name

of

10

characters

or

less

the

name

is

not

converted

to

an

associated

short

name.

Record

field

names

up

to

30

characters

in

length

will

be

generated

in

the

typedefs

by

the

compiler.

lvlchk

A

typedef

of

an

array

of

struct

is

generated

(type

name

_LVLCHK_T)

for

the

level

check

information.

A

pointer

to

an

object

of

type

_LVLCHK_T

is

also

generated

and

is

initialized

with

the

level

check

information

(format

name

and

level

identifier).

nullflds

If

there

is

at

least

one

null-capable

field

in

the

record

format

of

the

DDS,

a

null

map

typedef

is

generated

containing

a

character

field

for

every

field

in

the

format.

With

this

typedef,

the

user

can

specify

which

fields

are

to

be

considered

null

(set

value

of

each

null

field

to

1,

otherwise

set

to

zero).

Also,

if

the

key

option

is

used

along

with

option

nullflds,

and

there

is

at

least

one

null-capable

key

field

in

the

format,

an

additional

typedef

is

generated

containing

a

character

field

for

every

key

field

in

the

format.

For

physical

and

logical

files

you

can

specify

input,

both,

key,

lvlchk,

and

nullflds.

For

device

files

you

can

specify

input,

output,

both,

indicator,

and

lvlchk.

The

data

type

can

be

one

or

more

of

the

following

and

must

be

separated

by

spaces.

d

Packed

decimal

data

type.

p

Packed

fields

from

DDS

are

declared

as

character

fields.

56

ILE

C/C++

Compiler

Reference

z

Zoned

fields

from

DDS

are

declared

as

character

fields.

This

is

the

default

because

the

compiler

does

not

have

a

zoned

data

type.

_P

Packed

structure

is

generated.

1BYTE_CHAR

Generates

a

single

byte

character

field

for

one

byte

characters

that

are

defined

in

DDS.

"

"

Default

values

of

d

and

z

are

used.

union_type_name

A

union

definition

of

the

included

type

definitions

is

created

with

the

name

union_type_name_t.

This

parameter

is

optional.

prefix_name

Specifies

the

first

part

of

the

generated

typedef

structure

name.

If

the

prefix

is

not

specified,

the

library

and

file_name

are

used.

Notes

on

Usage

See

Using

Externally

Described

Files

in

a

Program

in

WebSphere

Development

Studio:

ILE

C/C++

Programmer’s

Guide

for

more

information

about

using

the

#pragma

mapinc

directive

with

externally

described

files.

Chapter

3.

ILE

C/C++

Pragmas

57

margins

��

#

pragma

margins

(

left

margin

,

right

margin

)

*

��

Description

Specifies

the

left

and

right

margins

to

be

used

as

the

first

and

last

column,

respectively,

when

scanning

the

records

of

the

source

member

where

the

#pragma

directive

occurs.

The

margin

setting

applies

only

to

the

source

member

in

which

it

is

located

and

has

no

effect

on

any

source

members

named

on

include

directives

in

the

member.

Parameters

left

margin

Must

be

a

number

greater

than

zero

but

less

than

32

754.

The

left

margin

should

be

less

than

the

right

margin.

right

margin

Must

be

a

number

greater

than

zero

but

less

than

32

754,

or

an

asterisk

(*).

The

right

margin

should

be

greater

than

the

left

margin.

The

compiler

scans

between

the

left

margin

and

the

right

margin.

The

compiler

scans

from

the

left

margin

specified

to

the

end

of

the

input

record,

if

an

asterisk

is

specified

as

the

value

of

right

margin.

Notes

on

Usage

The

#pragma

margins

directive

takes

effect

on

the

line

following

the

directive

and

remains

in

effect

until

another

#pragma

margins

or

nomargins

directive

is

encountered

or

the

end

of

the

source

member

is

reached.

The

#pragma

margins

and

#pragma

sequence

directives

can

be

used

together.

If

these

two

#pragma

directives

reserve

the

same

columns,

the

#pragma

sequence

directive

has

priority,

and

the

columns

are

reserved

for

sequence

numbers.

For

example,

if

the

#pragma

margins

directive

specifies

margins

of

1

and

20,

and

the

#pragma

sequence

directive

specifies

columns

15

to

25

for

sequence

numbers,

the

margins

in

effect

are

1

and

14,

and

the

columns

reserved

for

sequence

numbers

are

15

to

25.

If

the

margins

specified

are

not

in

the

supported

range

or

the

margins

contain

non-numeric

values,

a

warning

message

is

issued

during

compilation

and

the

directive

is

ignored.

See

also

pragmas

“nomargins”

on

page

62

and

“sequence”

on

page

75.

58

ILE

C/C++

Compiler

Reference

namemangling

��

#

pragma

namemangling

(

ansi

compat

v3

v5

,

num_chars

��

Description

Sets

the

maximum

length

for

external

symbol

names

generated

from

C++

source

code.

Parameters

ansi

The

name

mangling

scheme

complies

with

the

C++

standard.

If

you

specify

ansi

but

do

not

specify

a

size,

the

default

maximum

is

64000

characters.

compat

The

name

mangling

scheme

is

the

same

as

in

versions

of

the

compiler

prior

to

V5R1M0.

The

default

maximum

is

255

characters.

Use

this

scheme

for

compatibility

with

link

modules

created

with

earlier

versions

of

the

compiler.

v3

This

option

is

the

same

as

compat,

described

above.

v5

The

name

mangling

scheme

is

the

same

as

used

in

the

V5R1M0

and

V5R2M0

versions

of

the

compiler.

The

default

maximum

is

64000

characters.

Use

this

scheme

for

compatibility

with

link

modules

created

with

earlier

versions

of

the

compiler.

num_chars

Optionally

specifies

a

maximum

length

for

external

symbol

names

generated

from

C++

source

code.

Note

on

Usage

This

pragma

has

effect

only

when

the

RTBND(*DEFAULT)

compiler

option

is

in

effect.

Chapter

3.

ILE

C/C++

Pragmas

59

noargv0

��

#

pragma

noargv0

��

Description

Specifies

that

the

source

program

does

not

make

use

of

argv[0].

This

pragma

can

improve

performance

of

applications

that

have

a

large

number

of

small

C

programs,

or

a

small

program

that

is

called

many

times.

Notes

on

Usage

The

#pragma

noargv0

must

appear

in

the

compilation

unit

where

the

main()

function

is

defined,

otherwise

it

is

ignored.

argv[0]

will

be

NULL

when

the

noargv0

pragma

directive

is

in

effect.

Other

arguments

in

the

argument

vector

will

not

be

affected

by

this

directive.

If

the

#pragma

noargv0

directive

is

not

specified,

argv[0]

will

contain

the

name

of

the

program

that

is

currently

running.

60

ILE

C/C++

Compiler

Reference

noinline

(function)

��

#

pragma

noinline

(

function_name

)

��

Description

Specifies

that

a

function

will

not

be

inlined.

The

settings

on

the

INLINE

parameter

of

the

Create

Module

or

Create

Bound

Program

commands

will

be

ignored

for

this

function_name.

Notes

on

Usage

The

first

pragma

specified

will

be

the

one

that

is

used.

If

#pragma

inline

is

specified

for

a

function

after

#pragma

noinline

has

been

specified

for

it,

a

warning

will

be

issued

to

indicate

that

#pragma

noinline

has

already

been

specified

for

that

function.

The

#pragma

noinline

directive

can

only

occur

at

file

scope.

The

pragma

will

be

ignored,

and

a

warning

that

is

issued

if

it

is

not

found

at

file

scope.

Chapter

3.

ILE

C/C++

Pragmas

61

nomargins

��

#

pragma

nomargins

��

Description

Specifies

that

the

entire

input

record

is

to

be

scanned

for

input.

Notes

on

Usage

The

#pragma

nomargins

directive

takes

effect

on

the

line

following

the

directive

and

remains

in

effect

until

a

#pragma

margins

directive

is

encountered

or

the

end

of

the

source

member

is

reached.

See

also

pragma

“margins”

on

page

58.

62

ILE

C/C++

Compiler

Reference

nosequence

��

#

pragma

nosequence

��

Description

Specifies

that

the

input

record

does

not

contain

sequence

numbers.

Notes

on

Usage

The

#pragma

nosequence

directive

takes

effect

on

the

line

following

the

directive

and

remains

in

effect

until

a

#pragma

sequence

directive

is

encountered

or

the

end

of

the

source

member

is

reached.

See

also

pragma

“sequence”

on

page

75.

Chapter

3.

ILE

C/C++

Pragmas

63

nosigtrunc

��

#

pragma

nosigtrunc

��

Description

Specifies

that

no

exception

is

generated

at

run

time

when

overflow

occurs

with

packed

decimals

in

arithmetic

operations,

assignments,

casting,

initialization,

or

function

calls.

This

directive

suppresses

the

signal

that

is

raised

in

packed

decimal

overflow.

The

#pragma

nosigtrunc

directive

can

only

occur

at

filescope.

A

warning

message

will

be

issued

if

the

#pragma

nosigtrunc

directive

is

encountered

at

function,

block

or

function

prototype

scope,

and

the

directive

will

be

ignored.

Notes

on

Usage

This

#pragma

directive

has

file

scope

and

must

be

placed

outside

a

function

definition;

otherwise

it

is

ignored.

A

warning

message

may

still

be

issued

during

compilation

for

some

packed

decimal

operations

if

overflow

is

likely

to

occur.

See

WebSphere

Development

Studio:

ILE

C/C++

Programmer’s

Guide

for

more

information

about

packed

decimal

errors.

64

ILE

C/C++

Compiler

Reference

pack

��

#

pragma

pack

(

)

1

2

4

8

16

default

system

pop

reset

��

Description

The

#pragma

pack

directive

specifies

the

alignment

rules

to

use

for

the

members

of

the

structure,

union,

or

(C++

only)

class

that

follows

it.

In

C++,

packing

is

performed

on

declarations

or

types.

This

is

different

from

C,

where

packing

is

also

performed

on

definitions.

You

can

also

use

the

PACKSTRUCT

option

with

the

Create

Module

or

Create

Bound

Program

commands

to

cause

packing

to

be

performed

along

specified

boundaries.

See

“PACKSTRUCT”

on

page

127

for

more

information.

Parameters

1,

2,

4,

8,

16

Structures

and

unions

are

packed

along

the

specified

byte

boundaries.

default

Selects

the

alignment

rules

specified

by

compiler

option

PACKSTRUCT.

system

Selects

the

default

iSeries

alignment

rules.

pop,

reset

Selects

the

alignment

rules

previously

in

effect,

and

discards

the

current

rules.

This

is

the

same

as

specifying

#pragma

pack

(

).

In

the

examples

that

follow,

the

words

struct

or

union

can

be

used

in

place

of

class.

The

#pragma

pack

settings

are

stack

based.

All

pack

values

are

pushed

onto

a

stack

as

the

user’s

source

code

is

parsed.

The

value

on

the

top

of

that

stack

is

the

current

packing

value.

When

a

#pragma

pack

(reset),

#pragma

pack(pop),

or

#pragma

pack()

directive

is

given,

the

top

of

the

stack

is

popped

and

the

next

element

in

the

stack

becomes

the

new

packing

value.

If

the

stack

is

empty,

the

value

of

the

PACKSTRUCT

compiler

option,

if

specified,

is

used.

If

not

specified,

the

default

setting

of

NATURAL

alignment

is

used.

The

setting

of

the

PACKSTRUCT

compiler

option

is

overridden

by

the

#pragma

pack

directive,

but

always

remains

on

the

bottom

of

the

stack.

The

keyword

_Packed

has

the

highest

precedence

with

respect

to

packing

options,

and

cannot

be

overridden

by

the

#pragma

pack

directive

or

the

PACKSTRUCT

compiler

option.

By

default,

all

members

use

their

natural

alignment.

Members

cannot

be

aligned

on

values

greater

than

their

natural

alignment.

Char

types

can

only

be

aligned

along

1-byte

boundaries.

Short

types

can

only

be

aligned

along

1

or

2-byte

boundaries,

and

int

types

can

be

aligned

along

on

1,

2,

or

4-byte

boundaries.

Chapter

3.

ILE

C/C++

Pragmas

65

All

16-byte

pointers

will

be

aligned

on

a

16-byte

boundary.

_Packed,

PACKSTRUCT,

and

#pragma

pack

cannot

alter

this.

8-byte

teraspace

pointers

may

have

any

alignment,

although

8-byte

alignment

is

preferred.

Related

Operators

and

Specifiers

__align

Specifier

The

__align

specifier

lets

you

specify

the

alignment

of

a

Data

Item

or

a

ILE

C/C++

aggregate

(such

as

a

struct

or

union

for

ILE

C,

as

well

as

classes

for

ILE

C++).

However,

__align

does

not

affect

the

alignment

of

members

within

an

aggregate,

only

the

alignment

of

the

aggregate

as

a

whole.

Also,

because

of

restrictions

for

certain

members

of

an

aggregate,

such

as

16-byte

pointers,

the

alignment

of

an

aggregate

is

not

guaranteed

to

be

aligned

in

memory

on

the

boundary

specified

by

__align.

For

example,

an

aggregate

that

has

a

16-byte

pointer

as

its

only

member

cannot

have

any

other

alignment

other

than

16-byte

alignment

because

all

16-byte

pointers

must

be

aligned

on

the

16-byte

boundary.

��

declarator

__align

(

)

identifer

;

1

2

4

8

16

��

��

struct_specifier

__align

(

)

{

struct_declaration_list

}

;

1

identifer

2

4

8

16

��

You

can

also

use

the

__align

specifier

to

explicitly

specify

alignment

when

declaring

or

defining

data

items,

as

shown

in

some

of

the

examples

that

follow.

The

__align

specifier:

v

Can

only

be

used

with

declarations

of

first-level

variables

and

aggregate

definitions.

It

ignores

parameters

and

automatics.

v

Cannot

be

used

on

individual

elements

within

an

aggregate

definition,

but

it

can

be

used

on

an

aggregate

definition

nested

within

another

aggregate

definition.

v

Cannot

be

used

in

the

following

situations:

–

Individual

elements

within

an

aggregate

definition.

–

Variables

declared

with

incomplete

type.

–

Aggregates

declared

without

definition.

–

Individual

elements

of

an

array.

–

Other

types

of

declarations

or

definitions,

such

as

function

and

enum.

–

Where

the

size

of

variable

alignment

is

smaller

than

the

size

of

type

alignment.

__Packed

Specifier

_Packed

can

be

associated

with

struct,

union,

and

in

C++,

class

definitions.

It

has

the

same

effect

as

#pragma

pack(1).

The

following

are

examples

of

legal

and

illegal

usages

of

_Packed.

In

these

examples,

the

keywords

struct,

union,

and

class

can

be

used

interchangeably.

66

ILE

C/C++

Compiler

Reference

_Packed

class

SomeClass

{

/*

...

*/

};

//

OK

typedef

_Packed

union

AnotherClass

{}

PUnion;

//

OK

typedef

_Packed

struct

{}

PAnonStruct;

//

Illegal,

struct

must

be

named

_Packed

SomeClass

someObject;

//

Illegal,

specifier

_Packed

must

be

//

associated

with

class

definition.

_Packed

struct

SomeStruct

{

};

//

OK

_Packed

union

SomeUnion

{

};

//

OK

__alignof

Operator

unary-expression:

__alignof

unary-expression

__alignof

(

type-name

)

The

__alignof

operator

returns

the

alignment

of

its

operand,

which

may

be

an

expression

or

the

parenthesized

name

of

a

type.

The

alignment

of

the

operand

would

be

determined

according

to

the

alignment

rule

on

a

specific

platform.

However,

it

should

not

be

applied

to

an

expression

that

has

function

type

or

an

incomplete

type,

to

the

parenthesized

name

of

such

a

type,

or

to

an

expression

that

designates

a

bit-field

member.

The

type

of

the

result

of

this

operator

should

be

size_t.

Examples

In

the

examples

that

follow,

the

words

union

and

class

could

be

used

in

place

of

the

word

struct.

1.

Popping

the

#pragma

pack

Stack

Specifying

#pragma

pack

(pop),

#pragma

pack

(reset),

or

#pragma

pack()

pops

the

stack

by

one

and

resets

the

alignment

requirements

to

the

state

that

was

active

before

the

previous

#pragma

pack

was

seen.

For

example,

//

Default

alignment

requirements

used

.

.

#pragma

pack

(4)

struct

A

{

};

#pragma

pack

(2)

struct

B

{

};

struct

C

{

};

#pragma

pack

(reset)

struct

D

{

};

#pragma

pack

()

struct

E

{

};

#pragma

pack

(pop)

struct

F

{

};

When

struct

A

is

mapped,

its

members

are

aligned

according

to

#pragma

pack(4).

When

struct

B

and

struct

C

are

mapped,

their

members

are

aligned

according

to

pragma

pack(2).

The

#pragma

pack

(reset)

pops

the

alignment

requirements

specified

by

#pragma

pack(2)

and

resets

the

alignment

requirements

as

specified

by

#pragma

pack(4).

When

struct

D

is

mapped,

its

members

are

aligned

according

to

pragma

pack(4).

The

#pragma

pack

()

pops

the

alignment

requirements

specified

by

#pragma

pack(4)

and

resets

the

alignment

requirements

to

the

default

values

used

at

the

beginning

of

the

file.

Chapter

3.

ILE

C/C++

Pragmas

67

When

struct

E

is

mapped,

its

members

are

aligned

as

specified

by

the

default

alignment

requirements

(specified

on

the

command

line)

active

at

the

beginning

of

the

file.

The

#pragma

pack

(pop)

has

the

same

affect

as

the

previous

#pragma

pack

directives

in

that

it

pops

the

top

value

from

the

pack

stack.

However,

the

default

pack

value,

as

specified

in

the

PACKSTRUCT

compiler

option,

cannot

be

removed

from

the

pack

stack.

That

default

value

is

used

to

align

struct

F.

2.

__align

&

#pragma

pack

__align(16)

struct

S

{int

i;};

/*

sizeof(struct

S)

==

16

*/

struct

S1

{struct

S

s;

int

a;};

/*

sizeof(struct

S1)

==

32

*/

#pragma

pack(2)

struct

S2

{struct

S

s;

int

a;}

s2;

/*

sizeof(struct

S2)

==

32

*/

/*

offsetof(S2,

s1)

==

0

*/

/*

offsetof(S2,

a)

==

16

*/

3.

#pragma

pack

In

this

example,

since

the

data

types

are

by

default

packed

along

boundaries

smaller

than

those

specified

by

#pragma

pack

(8),

they

are

still

aligned

along

the

smaller

boundary

(alignof(S2)

=

4).

#pragma

pack(2)

struct

S

{

/*

sizeof(struct

S)

==

48

*/

char

a;

/*

offsetof(S,

a)

==

0

*/

int*

b;

/*

offsetof(S,

b)

==

16

*/

char

c;

/*

offsetof(S,

c)

==

32

*/

short

d;

/*

offsetof(S,

d)

==

34

*/

}S;

/*

alignof(S)

==

16

*/

struct

S1

{

/*

sizeof(struct

S1)

==

10

*/

char

a;

/*

offsetof(S1,

a)

==

0

*/

int

b;

/*

offsetof(S1,

b)

==

2

*/

char

c;

/*

offsetof(S1,

c)

==

6

*/

short

d;

/*

offsetof(S1,

d)

==

8

*/

}S1;

/*

alignof(S1)

==

2

*/

#pragma

pack(8)

struct

S2

{

/*

sizeof(struct

S2)

==

12

*/

char

a;

/*

offsetof(S2,

a)

==

0

*/

int

b;

/*

offsetof(S2,

b)

==

4

*/

char

c;

/*

offsetof(S2,

c)

==

8

*/

short

d;

/*

offsetof(S2,

d)

==

10

*/

}S2;

/*

alignof(S2)

==

4

*/

4.

PACKSTRUCT

Compiler

Option

If

the

following

is

compiled

with

PACK

STRUCTURE

set

to

2:

struct

S1

{

/*

sizeof(struct

S1)

==

10

*/

char

a;

/*

offsetof(S1,

a)

==

0

*/

int

b;

/*

offsetof(S1,

b)

==

2

*/

char

c;

/*

offsetof(S1,

c)

==

6

*/

short

d;

/*

offsetof(S1,

d)

==

8

*/

}S1;

/*

alignof(S1)

==

2

*/

5.

#pragma

pack

If

the

following

is

compiled

with

PACK

STRUCTURE

set

to

4:

#pragma

pack(1)

struct

A

{

//

this

structure

is

packed

along

1-byte

boundaries

char

a1;

int

a2;

}

#pragma

pack(2)

struct

B

{

//

this

class

is

packed

along

2-byte

boundaries

int

b1;

68

ILE

C/C++

Compiler

Reference

float

b2;

float

b3;

};

#pragma

pack(pop)

//

this

brings

pack

back

to

1-byte

boundaries

struct

C

{

int

c1;

char

c2;

short

c3;

};

#pragma

pack(pop)

//

this

brings

pack

back

to

the

compile

option,

struct

D

{

//

4-byte

boundaries

int

d1;

char

d2;

};

6.

__align

int

__align(16)

varA;

/*

varA

is

aligned

on

a

16-byte

boundary

*/

7.

__Packed

struct

A

{

/*

sizeof(A)

==

24

*/

int

a;

/*

offsetof(A,

a)

==

0

*/

long

long

b;

/*

offsetof(A,

b)

==

8

*/

short

c;

/*

offsetof(A,

c)

==

16

*/

char

d;

/*

offsetof(A,

d)

==

18

*/

};

_Packed

struct

B

{

/*

sizeof(B)

==

15

*/

int

a;

/*

offsetof(B,

a)

==

0

*/

long

long

b;

/*

offsetof(B,

b)

==

4

*/

short

c;

/*

offsetof(B,

c)

==

12

*/

char

d;

/*

offsetof(B,

d)

==

14

*/

};

Layout

of

struct

A,

where

*

=

padding:

|a|a|a|a|*|*|*|*|b|b|b|b|b|b|b|b|c|c|d|*|*|*|*|*|

Layout

of

struct

B,

where

*

=

padding:

|a|a|a|a|b|b|b|b|b|b|b|b|c|c|d|

8.

__alignof

struct

A

{

char

a;

short

b;

};

struct

B

{

char

a;

long

b;

}

varb;

int

var;

In

the

code

sample

above:

v

__alignof(struct

A)

=

2

v

__alignof(struct

B)

=

4

v

__alignof(var)

=

4

v

__alignof(varb.a)

=

1
__align(16)

struct

A

{

int

a;

int

b;

};

Chapter

3.

ILE

C/C++

Pragmas

69

#pragma

pack(1)

struct

B

{

long

a;

long

b;

};

struct

C

{

struct

{

short

a;

int

b;

}

varb;

}

var;

In

the

code

sample

above:

v

__alignof(struct

A)

=

16

v

__alignof(struct

B)

=

4

v

__alignof(var)

=

4

v

__alignof(var.varb.a)

=

4

70

ILE

C/C++

Compiler

Reference

page

��

#

pragma

page

(

)

n

��

Description

Skips

n

pages

of

the

generated

source

listing.

If

n

is

not

specified,

the

next

page

is

started.

Chapter

3.

ILE

C/C++

Pragmas

71

pagesize

��

#

pragma

pagesize

(

)

n

��

Description

Sets

the

number

of

lines

per

page

to

n

for

the

generated

source

listing.

The

pagesize

pragma

may

not

affect

the

option

listing

page

(sometimes

called

the

Prolog).

72

ILE

C/C++

Compiler

Reference

pointer

��

#

pragma

pointer

(

typedef_name

,

pointer_type

)

��

Description

Allows

the

use

of

iSeries

pointer

types:

v

space

pointer

v

system

pointer

v

invocation

pointer

v

label

pointer

v

suspend

pointer

v

open

pointer

A

variable

that

is

declared

with

a

typedef

that

is

named

in

the

#pragma

pointer

directive

has

the

pointer

type

associated

with

typedef_name

in

the

directive.

The

<pointer.h>

header

file

contains

typedefs

and

#pragma

directives

for

these

pointer

types.

Including

this

header

file

in

your

source

code

allows

you

to

use

these

typedefs

directly

for

declaring

pointer

variables

of

these

types.

Parameters

pointer_type

which

can

be

one

of:

SPCPTR

Space

pointer

OPENPTR

Open

pointer

SYSPTR

System

pointer

INVPTR

Invocation

pointer

LBLPTR

Label

code

pointer

SUSPENDPTR

Suspend

pointer

Notes

on

Usage

The

compiler

issues

a

warning

and

ignores

the

#pragma

pointer

directive

if

any

of

the

following

errors

occur:

v

The

pointer

type

that

is

named

in

the

directive

is

not

one

of

SPCPTR,

SYSPTR,

INVPTR,

LBLPTR,

SUSPENDPTR,

or

OPENPTR.

v

The

typedef

named

is

not

declared

before

the

#pragma

pointer

directive.

v

The

identifier

that

is

named

as

the

first

parameter

of

the

directive

is

not

a

typedef.

v

The

typedef

named

is

not

a

typedef

of

a

void

pointer.

v

The

typedef

named

is

used

in

a

declaration

before

the

#pragma

pointer

directive.

The

typedef

named

must

be

defined

at

file

scope.

See

WebSphere

Development

Studio:

ILE

C/C++

Programmer’s

Guide

for

more

information

about

using

iSeries

pointers.

Chapter

3.

ILE

C/C++

Pragmas

73

priority

��

#

pragma

priority

(

n

)

��

Description

The

#pragma

priority

directive

specifies

the

order

in

which

static

objects

are

to

be

initialized

at

run

time.

The

value

n

is

an

integer

literal

in

the

range

of

INT_MIN

to

INT_MAX.

The

default

value

is

0.

A

negative

value

indicates

a

higher

priority;

a

positive

value

indicates

a

lower

priority.

The

first

1024

priorities

(INT_MIN

to

INT_MIN

+

1023)

are

reserved

for

use

by

the

compiler

and

its

libraries.

The

#pragma

priority

can

appear

anywhere

in

the

source

file

many

times.

However,

the

priority

of

each

pragma

must

be

greater

than

the

previous

pragma’s

priority.

This

is

necessary

to

ensure

that

the

run-time

static

initialization

occurs

in

the

declaration

order.

Example

//File

one

called

First.C

#pragma

priority

(1000)

class

A

{

public:

int

a;

A()

{return;}

}

a;

#pragma

priority

(3000)

class

C

{

public:

int

c;

C()

{return;}

}

c;

class

B

{

public:

int

b;

B()

{return;}

};

extern

B

b;

main()

{

a.a=0;

b.b=0;

c.c=0;

}

//File

two

called

Second.C

#pragma

priority

(2000)

class

B

{

public:

int

b;

B()

{return;}

}

b;

In

this

example,

the

execution

sequence

of

the

run-time

static

initialization

is:

1.

Static

initialization

with

priority

1000

from

file

First.C

2.

Static

initialization

with

priority

2000

from

file

Second.C

3.

Static

initialization

with

priority

3000

from

file

First.C

74

ILE

C/C++

Compiler

Reference

sequence

��

#

pragma

sequence

(

left_column

,

right_column

)

*

��

Description

Specifies

the

columns

of

the

input

record

that

are

to

contain

sequence

numbers.

The

column

setting

applies

only

to

the

source

setting

in

which

it

is

located

and

has

no

effect

on

any

source

members

named

on

include

directives

in

the

member.

Parameters

left

column

Must

be

greater

than

zero

but

less

than

32

754.

The

left

column

should

be

less

than

the

right

column.

right

column

Must

be

greater

than

zero

but

less

than

32

754.

The

right

column

should

be

greater

than

or

equal

to

the

left

column.

An

asterisk

(*)

that

is

specified

as

the

right

column

value

indicates

that

sequence

numbers

are

contained

between

left

column

and

the

end

of

the

input

record.

Notes

on

Usage

The

#pragma

sequence

directive

takes

effect

on

the

line

following

the

directive.

It

remains

in

effect

until

another

#pragma

sequence

or

#pragma

nosequence

directive

is

encountered

or

the

end

of

the

source

member

is

reached.

The

#pragma

margins

and

#pragma

sequence

directives

can

be

used

together.

If

these

two

#pragma

directives

reserve

the

same

columns,

the

#pragma

sequence

directive

has

priority,

and

the

columns

are

reserved

for

sequence

numbers.

For

example,

if

the

#pragma

margins

directive

specifies

margins

of

1

and

20

and

the

#pragma

sequence

directive

specifies

columns

15

to

25

for

sequence

numbers,

the

margins

in

effect

are

1

and

14,

and

the

columns

reserved

for

sequence

numbers

are

15

to

25.

If

the

margins

specified

are

not

in

the

supported

range

or

the

margins

contain

non-numeric

values,

a

warning

message

is

issued

during

compilation

and

the

directive

is

ignored.

See

also

pragmas

“nosequence”

on

page

63

and

“margins”

on

page

58.

Chapter

3.

ILE

C/C++

Pragmas

75

strings

��

#

pragma

strings

(

readonly

)

writeable

��

Description

Specifies

that

the

compiler

may

place

strings

into

read-only

memory

or

must

place

strings

into

writeable

memory.

Strings

are

writeable

by

default.

This

pragma

must

appear

before

any

C

or

C++

code

in

a

file.

Note:

This

pragma

will

override

the

*STRDONLY

option

on

the

Create

Module

or

Create

Bound

Program

commands.

76

ILE

C/C++

Compiler

Reference

weak

��

#

pragma

weak

(

identifier

)

=

identifier2

��

Description

Identifies

an

identifier

to

the

compiler

as

being

a

weak

global

symbol.

Parameters

identifier

Specifies

the

name

of

an

identifier

considered

to

be

a

weak

global

symbol.

identifier2

If

identifer2

is

specified,

then

identifier

is

considered

to

be

a

weak

global

symbol

whose

value

is

the

same

as

identifier2.

For

this

pragma

to

have

effect,

identifier2

must

be

defined

in

the

same

compilation

unit.

This

pragma

can

appear

anywhere

in

a

program,

and

identifies

a

specified

identifier

as

being

a

weak

global

symbol.

Identifier

should

not

be

defined,

but

it

may

be

declared.

If

it

is

declared,

and

identifier2

is

specified,

identifier

must

be

of

a

type

compatible

to

that

of

identifier2.

Example.

#pragma

weak

func1

=

func2

Chapter

3.

ILE

C/C++

Pragmas

77

78

ILE

C/C++

Compiler

Reference

Chapter

4.

Control

Language

Commands

This

chapter

discusses

the

Control

Language

(CL)

commands

that

are

used

with

the

ILE

C/C++

compiler.

Syntax

diagrams

and

parameter

description

tables

are

provided.

This

table

describes

the

CL

commands

that

are

used

with

the

ILE

C/C++

compiler.

Table

1.

Control

Language

Commands

Action

Command

Description

Create

C

Module

CRTCMOD

Creates

a

module

object

(*MODULE)

based

on

the

source

you

provide.

Create

C++

Module

CRTCPPMOD

Create

Bound

C

Program

CRTBNDC

Creates

a

program

object

(*PGM)

based

on

the

source

you

provide.

Create

Bound

C++

Program

CRTBNDCPP

CL

commands

and

their

parameters

can

be

entered

in

either

uppercase

or

lowercase.

In

this

manual,

they

are

always

shown

in

uppercase.

For

example:

CRTCPPMOD

MODULE(ABC/HELLO)

SRCSTMF(’/home/usr/hello.C’)

OPTIMIZE(40)

ILE

C/C++

language

statements

must

be

entered

exactly

as

shown.

For

example,

fopen,

_Ropen,

because

the

ILE

C/C++

compiler

is

case-sensitive.

Variables

appear

in

lowercase

italic

letters,

for

example,

file-name,

characters,

and

string.

They

represent

user-supplied

names

or

values.

Language

statements

may

contain

punctuation

marks,

parentheses,

arithmetic

operators,

or

other

such

symbols.

You

must

enter

them

exactly

as

shown

in

the

syntax

diagram.

You

can

also

invoke

the

compiler

and

its

options

through

the

Qshell

command

line

environment.

For

more

information

on

Qshell

command

and

option

formats,

see

Chapter

5,

“Using

the

ixlc

Command

to

Invoke

the

C/C++

Compiler,”

on

page

143.

Control

Language

Command

Syntax

The

syntax

diagrams

in

this

section

show

all

parameters

and

options

of

the

CRTCMOD,

CRTCPPMOD,

CRTBNDC,

and

CRTBNDCPP

commands,

and

the

default

values

for

each

option.

In

most

cases

the

keywords

are

identical

for

any

of

the

commands.

Differences

are

noted

where

they

exist.

For

detailed

descriptions

of

each

option,

see

“Control

Language

Command

Options”

on

page

86.

Syntax

Diagram

��

(1)

*CURLIB/

CRTCMOD

MODULE(

module-name

)

(2)

library-name/

CRTCPPMOD

(1)

*CURLIB/

CRTBNDC

PGM(

program-name

)

(2)

library-name/

CRTBNDCPP

�

©

Copyright

IBM

Corp.

1993,

2004

79

�

(5)

(2)

(4)

QCPPSRC

(1)

(3)

*LIBL/

QCSRC

SRCFILE(

)

*CURLIB/

source-file-name

library-name/

�

�

(7)

*PGM

(6)

*MODULE

SRCMBR(

)

member-name

SRCSTMF(

)

path-name

�

�

*SRCMBRTXT

TEXT(

*BLANK

)

'

description

'

�

�

*NONE

OUTPUT(

*PRINT

)

filename

*BLANK

*BLANK

TITLE

title

SUBTITLE

subtitle

�

�

OPTION(

OPTION

Details

)

CHECKOUT(

CHECKOUT

Details

)

�

�

10

OPTIMIZE(

20

)

30

40

INLINE(

INLINE

Details

)

�

�

(8)

*NOKEEPILDTA

MODCRTOPT(

)

*KEEPILDTA

*NONE

DBGVIEW(

*ALL

)

*STMT

*SOURCE

*LIST

�

�

�

*NONE

DEFINE(

'

name

'

)

'

name

=

value

'

*EXTENDED

LANGLVL(

*ANSI

)

(2)

*LEGACY

�

�

*ANSI

ALIAS(

*NOANSI

)

*ADDRTAKEN

*NOADDRTAKEN

*ALLPTRS

*NOALLPTRS

*TYPEPTR

*NOTYPEPTR

�

80

ILE

C/C++

Compiler

Reference

�

(4)

*IFS64IO

(3)

(1)

*NOIFSIO

*NOASYNCSIGNAL

SYSIFCOPT(

)

*IFSIO

(1)

*ASYNCSIGNAL

�

�

*LOCALE

LOCALETYPE(

*LOCALEUCS2

)

(1)

*CLD

*LOCALEUTF

0

FLAG(

10

)

20

30

�

�

*NOMAX

30

MSGLMT(

0

32767

0

)

10

20

*YES

REPLACE(

*NO

)

�

�

(9)

*USER

USRPRF(

*OWNER

)

*LIBCRTAUT

AUT(

*CHANGE

)

*USE

*ALL

*EXCLUDE

authorization-list-name

�

�

*CURRENT

TGTRLS(

*PRV

)

release-level

�

�

*PEP

ENBPFRCOL(

)

*ENTRYEXIT

*ALLPRC

*FULL

*NONLEAF

�

�

*SETFPCA

*NOSTRDONLY

PFROPT(

)

*NOSETFPCA

*STRDONLY

*NOCOL

PRFDTA(

*COL

)

�

�

*NO

*NOTSIFC

TERASPACE(

*YES

)

*TSIFC

*SNGLVL

STGMDL(

*TERASPACE

)

*INHERIT

�

�

*P128

DTAMDL(

*LLP64

)

*DEFAULT

RTBND(

*LLP64

)

�

Chapter

4.

Control

Language

Commands

81

�

*NATURAL

PACKSTRUCT(

1

)

2

4

8

16

*SMALL

ENUM(

1

)

2

4

*INT

�

�

*NODEP

MAKEDEP(

file-name

)

�

�

*NONE

PPGENOPT(

)

*DFT

*GENLINE

*RMVCOMMENT

*NORMVCOMMENT

*NOGENLINE

*RMVCOMMENT

*GENLINE

*NOGENLINE

*NORMVCOMMENT

�

�

(8)

*CURLIB/

PPSRCFILE(

file-name

)

library-name/

�

�

(8)

*MODULE

PPSRCMBR(

membername

)

(8)

PPSRCSTMF(

)

pathname

*SRCSTMF

�

�

�

*NONE

INCDIR(

directory-name

)

�

�

*NONE

CSOPT(

)

'

compiler-service-options-string

'

�

�

*NONE

LICOPT(

)

'

Licensed-Internal-Code-Options-String

'

�

�

*UNSIGNED

DFTCHAR(

*SIGNED

)

*SOURCE

TGTCCSID(

*JOB

)

*HEX

coded-character-set-identifier

�

�

(2)

(8)

(10)

*NONE

TEMPLATE(

TEMPLATE

Details

)

�

82

ILE

C/C++

Compiler

Reference

�

(2)

(8)

(10)

*NONE

TMPLREG(

*DFT

)

’

path-name

’

�

�

(2)

(10)

*YES

WEAKTMPL(

*NO

)

��

OPTION

Details:

(1)

*NOAGR

(1)

*AGR

(2)

*NOBITSIGN

(2)

*BITSIGN

(1)

*DIGRAPH

(1)

*NODIGRAPH

*NOEVENTF

*EVENTF

�

�

*NOEXPMAC

*EXPMAC

*NOFULL

*FULL

(8)

*GEN

(8)

*NOGEN

*NOINCDIRFIRST

*INCDIRFIRST

�

�

*LOGMSG

*NOLOGMSG

(2)

*LONGLONG

(2)

*NOLONGLONG

(2)

*NORTTI

(2)

*RTTIALL

(2)

*RTTITYPE

(2)

*RTTICAST

�

�

(1)

(8)

*NOPPONLY

(1)

(8)

*PPONLY

(1)

*NOSECLVL

(1)

*SECLVL

*NOSHOWINC

*SHOWINC

�

�

(1)

*NOSHOWSKP

(1)

*SHOWSKP

*SHOWSRC

*NOSHOWSRC

*NOSHOWSYS

*SHOWSYS

*NOSHOWUSR

*SHOWUSR

�

�

*STDINC

*NOSTDINC

*NOSTDLOGMSG

*STDLOGMSG

(1)

*NOSTRUCREF

(1)

*STRUCREF

*NOSYSINCPATH

*SYSINCPATH

�

�

*NOXREF

*XREF

*NOXREFREF

*XREFREF

Chapter

4.

Control

Language

Commands

83

CHECKOUT

Details:

*NONE

*ALL

*USAGE

(2)

*NOCLASS

(2)

*CLASS

*NOCOND

*COND

(1)

*NOCONST

(1)

*CONST

�

�

*NOEFFECT

*EFFECT

(1)

*NOENUM

(1)

*ENUM

(1)

*NOEXTERN

(1)

*EXTERN

*NOGENERAL

*GENERAL

�

�

(1)

*NOGOTO

(1)

*GOTO

(1)

*NOINIT

(1)

*INIT

(2)

*NOLANG

(2)

*LANG

*NOPARM

*PARM

�

�

*NOPORT

*PORT

(1)

*NOPPCHECK

(1)

*PPCHECK

(1)

*NOPPTRACE

(1)

*PPTRACE

*NOREACH

*REACH

�

�

(2)

*NOTEMP

(2)

*TEMP

*NOTRUNC

*TRUNC

*NOUNUSED

*UNUSED

INLINE

Details:

*OFF

*ON

*NOAUTO

*AUTO

INLINE

Details

(continued)

INLINE

Details

(continued):

250

1-65535

*NOLIMIT

2000

1-65535

*NOLIMIT

*NO

*YES

TEMPLATE

Details:

*TEMPINC

1

*NO

directory-pathname

1

65535

*WARN

*ERROR

84

ILE

C/C++

Compiler

Reference

Notes:

1 C

compiler

only

2 C++

compiler

only

3 C

compiler

default

setting

4 C++

compiler

default

setting

5 All

parameters

preceding

this

point

can

be

specified

positionally

6 Create

Module

command

only

7 Create

Bound

Program

command

only

8 Create

Module

command

only

9 Create

Bound

Program

command

only

10 Applicable

only

when

using

the

Integrated

File

System

(IFS)

Chapter

4.

Control

Language

Commands

85

Control

Language

Command

Options

The

following

pages

describe

the

keywords

for

the

CRTCMOD,

CRTCPPMOD,

CRTBNDC,

and

CRTBNDCPP

commands.

In

most

cases

the

keywords

are

identical

for

any

of

the

commands.

Differences

are

noted

where

they

exist.

The

term

object

is

used

throughout

the

descriptions,

and

will

have

one

of

two

meanings:

v

If

you

are

using

the

CRTCMOD

or

CRTCPPMOD

commands,

object

means

module

object.

v

If

you

are

using

the

CRTBNDC

or

CRTBNDCPP

commands,

object

means

program

object.

MODULE

Valid

only

on

the

CRTCMOD

and

CRTCPPMOD

commands.

Specifies

the

module

name

and

library

for

the

compiled

ILE

C

or

C++

module

object.

*CURLIB/

MODULE(

module-name

)

library-name/

*CURLIB

This

is

the

default

library

value.

The

object

is

stored

in

the

current

library.

If

a

job

does

not

have

a

current

library,

QGPL

is

used.

library-name

Enter

the

name

of

the

library

where

the

object

is

to

be

stored.

module-name

Enter

a

name

for

the

module

object.

PGM

Valid

only

on

the

CRTBNDC

and

CRTBNDCPP

commands.

Specifies

the

program

name

and

library

for

the

compiled

ILE

C

or

C++

program

object.

*CURLIB/

PGM(

program-name

)

library-name/

*CURLIB

This

is

the

default

library

value.

The

object

is

stored

in

the

current

library.

If

a

job

does

not

have

a

current

library,

QGPL

is

used.

library-name

Enter

the

name

of

the

library

where

the

object

is

to

be

stored.

program-name

Enter

a

name

for

the

program

object.

86

ILE

C/C++

Compiler

Reference

SRCFILE

Specifies

the

source

physical

file

name

and

library

of

the

file

that

contains

the

ILE

C

or

C++

source

code

that

you

want

to

compile.

(3)

(4)

QCPPSRC

(1)

(2)

*LIBL/

QCSRC

SRCFILE(

)

*CURLIB/

source-file-name

library-name/

Notes:

1 C

Compiler

only

2 C

Compiler

default

setting

3 C++

Compiler

only

4 C++

Compiler

default

setting

*LIBL

This

is

the

default

library

value.

The

library

list

is

searched

to

find

the

library

where

the

source

file

is

located.

*CURLIB

The

current

library

is

searched

for

the

source

file.

If

a

job

does

not

have

a

current

library,

QGPL

is

used.

library-name

Enter

the

name

of

the

library

that

contains

the

source

file.

QCSRC

The

default

name

for

the

source

physical

file

that

contains

the

member

with

the

ILE

C

source

code

that

you

want

to

compile.

QCPPSRC

The

default

name

for

the

source

physical

file

that

contains

the

member

with

the

ILE

C++

source

code

that

you

want

to

compile.

source-file-name

Enter

the

name

of

the

file

that

contains

the

member

with

the

ILE

C

or

C++

source

code.

Chapter

4.

Control

Language

Commands

87

SRCMBR

Specifies

the

name

of

the

member

that

contains

the

ILE

C

or

C++

source

code.

(2)

*PGM

(1)

*MODULE

SRCMBR(

)

member-name

Notes:

1 Create

Module

command

only

2 Create

Bound

Program

command

only

*MODULE

Valid

only

with

the

CRTCMOD

or

CRTCPPMOD

commands.

The

module

name

that

is

supplied

on

the

MODULE

parameter

is

used

as

the

source

member

name.

This

is

the

default

when

a

member

name

is

not

specified.

*PGM

Valid

only

with

the

CRTBNDC

or

CRTBNDCPP

commands.

The

program

name

that

is

supplied

on

the

PGM

parameter

is

used

as

the

source

member

name.

This

is

the

default

when

a

member

name

is

not

specified.

member-name

Enter

the

name

of

the

member

that

contains

the

ILE

C

or

C++

source

code.

88

ILE

C/C++

Compiler

Reference

SRCSTMF

Specifies

the

path

name

of

the

stream

file

containing

the

ILE

C

or

C++

source

code

that

you

want

to

compile.

SRCSTMF(

)

path-name

The

path

name

can

be

either

absolutely

or

relatively

qualified.

An

absolute

path

name

starts

with

’/’;

a

relative

path

name

starts

with

a

character

other

than

’/’.

If

absolutely

qualified,

then

the

path

name

is

complete.

If

relatively

qualified,

the

path

name

is

completed

by

pre-pending

the

job’s

current

working

directory

to

the

path

name.

Notes:

1.

The

SRCMBR

and

SRCFILE

parameters

cannot

be

specified

with

the

SRCSTMF

parameter.

2.

If

SRCSTMF

is

specified,

then

the

following

compiler

options

are

ignored:

v

INCDIR(

)

v

OPTION(*INCDIRFIRST)

v

TEXT(*SRCMBRTXT)

v

OPTION(*STDINC)

v

OPTION(*SYSINCPATH)
3.

The

SRCSTMF

parameter

is

not

supported

in

a

mixed-byte

environment.

Chapter

4.

Control

Language

Commands

89

TEXT

Allows

you

to

enter

text

that

describes

the

object

and

its

function.

*SRCMBRTXT

TEXT(

*BLANK

)

'

description

'

*SRCMBRTXT

Default

setting.

The

text

description

that

is

associated

with

the

source

file

member

is

used

for

the

compiled

object.

If

the

source

file

is

an

inline

file

or

a

device

file,

this

field

is

blank.

*BLANK

Specifies

that

no

text

appears.

description

Enter

descriptive

text

no

longer

than

50

characters,

and

enclose

it

in

single

quotation

marks.

The

quotation

marks

are

not

part

of

the

50-character

string.

Quotation

marks

are

supplied

when

the

CRTCMOD

or

CRTCPPMOD

prompt

screens

are

used.

90

ILE

C/C++

Compiler

Reference

OUTPUT

Specifies

if

the

compiler

listing

is

required

or

not.

*NONE

OUTPUT(

*PRINT

)

filename

*BLANK

*BLANK

TITLE

title

SUBTITLE

subtitle

*NONE

Does

not

generate

the

compiler

listing.

When

a

listing

is

not

required,

use

this

default

to

improve

compile-time

performance.

When

*NONE

is

specified,

the

following

listing-related

options

are

ignored

if

they

are

specified

on

the

OPTION

keyword:

*AGR,

*EXPMAC,

*FULL,

*SECLVL,

*SHOWINC,

*SHOWSKP,

*SHWSRC,

*SHOWSYS,

*SHOWUSR,

*SHWSRC,

*STRUCREF,

*XREF,

or

*XREFREF.

*PRINT

Generate

the

compiler

listing

as

a

spool

file.

The

spool

file

name

in

WRKSPLF

will

have

the

same

name

as

the

object

(program

or

module)

being

created.

filename

The

compiler

listing

is

saved

in

the

file

name

specified

by

this

string.

The

listing

name

must

be

in

Integrated

File

System

(IFS)

format,

for

example

/home/mylib/listing/hello.lst.

A

data

management

file

listing

in

library

mylib

should

be

specified

as

/QSYS.LIB/mylib.lib/listing.file/hello.mbr.

If

the

string

does

not

begin

with

a

″/″,

it

will

be

considered

a

subdirectory

of

the

current

directory

or

library.

If

the

file

does

not

exist,

the

file

will

be

created.

Data

authority

*WX

is

required

to

create

an

IFS

listing.

Data

authority

*WX,

object

authority

*OBJEXIST

and

*OBJALTER

are

required

to

create

a

data

management

file

listing

via

IFS.

TITLE

Specifies

the

title

for

the

compiler

listing.

Possible

TITLE

values

are:

*BLANK

No

title

is

generated.

title

Specify

a

title

string

(maximum

98

characters)

for

the

listing.

SUBTITLE

Specifies

the

subtitle

for

the

compiler

listing.

Possible

SUBTITLE

values

are:

*BLANK

No

title

is

generated.

subtitle

Specify

a

subtitle

string

(maximum

98

characters)

for

the

listing

file.

Chapter

4.

Control

Language

Commands

91

OPTION

Specifies

the

options

to

use

when

the

ILE

C

or

C++

source

code

is

compiled.

You

can

specify

them

in

any

order,

separated

by

a

blank

space.

Unless

noted

otherwise

in

the

option

descriptions,

when

an

option

is

specified

more

than

once,

or

when

two

options

conflict,

the

last

one

that

is

specified

is

used.

OPTION(

OPTION

Details

)

OPTION

Details:

(1)

*NOAGR

(1)

*AGR

(2)

*NOBITSIGN

(2)

*BITSIGN

(1)

*DIGRAPH

(1)

*NODIGRAPH

*NOEVENTF

*EVENTF

�

�

*NOEXPMAC

*EXPMAC

*NOFULL

*FULL

(3)

*GEN

(3)

*NOGEN

*NOINCDIRFIRST

*INCDIRFIRST

�

�

*LOGMSG

*NOLOGMSG

(2)

*LONGLONG

(2)

*NOLONGLONG

(2)

*NORTTI

(2)

*RTTIALL

(2)

*RTTITYPE

(2)

*RTTICAST

�

�

(1)

(3)

*NOPPONLY

(1)

(3)

*PPONLY

(1)

*NOSECLVL

(1)

*SECLVL

*NOSHOWINC

*SHOWINC

�

�

(1)

*NOSHOWSKP

(1)

*SHOWSKP

*SHOWSRC

*NOSHOWSRC

*NOSHOWSYS

*SHOWSYS

*NOSHOWUSR

*SHOWUSR

�

�

*STDINC

*NOSTDINC

*NOSTDLOGMSG

*STDLOGMSG

(1)

*NOSTRUCREF

(1)

*STRUCREF

*NOSYSINCPATH

*SYSINCPATH

�

�

*NOXREF

*XREF

*NOXREFREF

*XREFREF

92

ILE

C/C++

Compiler

Reference

Notes:

1 C

compiler

only

2 C++

compiler

only

3 Create

Module

command

only

The

possible

options

are:

*NOAGR

Accepted

but

ignored

by

the

C++

compiler.

Default

setting.

Does

not

generate

an

aggregate

structure

map

in

the

compiler

listing.

*AGR

Accepted

but

ignored

by

the

C++

compiler.

Generates

an

aggregate

structure

map

in

the

compiler

listing.

This

map

provides

the

layout

of

all

structures

in

the

source

program,

and

shows

whether

variables

are

padded

or

not.

OUTPUT(*PRINT)

must

be

specified.

The

*AGR

option

overrides

the

*STRUCREF

option.

*NOBITSIGN

Default

setting.

Bitfields

are

unsigned.

*BITSIGN

Bitfields

are

signed.

*NODIGRAPH

Default

setting.

Digraph

character

sequences

are

not

recognized

by

the

compiler.

Syntax

errors

may

result

if

digraphs

are

encountered

with

this

setting

in

effect.

*DIGRAPH

Digraph

character

sequences

can

be

used

to

represent

characters

not

found

on

some

keyboards.

Digraph

character

sequences

appearing

in

character

or

string

literals

are

not

replaced

during

preprocessing.

*NOEVENTF

Default

setting.

Does

not

create

an

event

file

for

use

by

CoOperative

Development

Environment/400

(CODE/400).

*EVENTF

Creates

an

event

file

for

use

by

CoOperative

Development

Environment/400

(CODE/400).

The

event

file

is

created

as

a

member

in

file

EVFEVENT

in

the

library

where

the

created

module

or

program

object

is

to

be

stored.

If

the

file

EVFEVENT

does

not

exist,

it

is

automatically

created.

The

event

file

member

name

is

the

same

as

the

name

of

the

object

being

created.

An

Event

File

is

normally

created

when

you

create

a

module

or

program

from

within

CODE/400.

CODE/400

uses

this

file

to

provide

error

feedback

integrated

with

the

CODE/400

editor.

*NOEXPMAC

Default

setting.

Does

not

expand

the

macros

in

the

source

section

of

the

listing

or

in

the

debug

listing

view.

*EXPMAC

Expands

all

macros

in

the

source

section

of

a

listing

view.

If

this

suboption

is

specified

together

with

DBGVIEW(*ALL)

or

DBGVIEW(*LIST),

the

compiler

issues

an

error

message

and

stops

compilation.

Chapter

4.

Control

Language

Commands

93

*NOFULL

Default

setting.

Does

not

shows

all

compiler-ouput

information

in

the

listing

or

in

the

debug

listing

view.

*FULL

Shows

all

compiler-ouput

information

in

the

listing

or

in

the

debug

listing

view.

This

setting

turns

on

all

listing-related

options.

If

*FULL

is

specified,

you

can

turn

off

an

individual

listing

option

by

specifying

the

*NO

setting

for

that

option

after

the

*FULL

option.

If

this

suboption

is

specified

together

with

DBGVIEW(*ALL)

or

DBGVIEW(*LIST),

the

compiler

issues

an

error

message

and

stops

compilation.

*GEN

Valid

only

with

the

CRTCMOD

and

CRTCPPMOD

commands.

Default

setting.

All

phases

of

the

compilation

process

are

carried

out.

Specifying

OPTION(*PPONLY)

overrides

the

PPGENOPT(*NONE)

and

OPTION(*GEN)

option

settings.

Instead,

the

following

settings

are

implied:

v

PPGENOPT(*DFT)

PPSRCFILE(QTEMP/QACZEXPAND)

PPSRCMBR(*MODULE)

for

a

data

management

source

file,

or,

v

PPGENOPT(*DFT)

PPSRCSTMF(*SRCSTMF)

for

an

IFS

source

file.

*NOGEN

Valid

only

with

the

CRTCMOD

and

CRTCPPMOD

commands.

Compilation

stops

after

syntax

checking.

No

object

is

created.

*NOINCDIRFIRST

Default

setting.

The

compiler

searches

for

user

include

files

in

the

root

source

directory

first,

and

then

in

the

directories

specified

by

the

INCDIR

option.

*INCDIRFIRST

The

compiler

searches

for

user

include

files

as

follows:

1.

If

you

specify

a

directory

in

the

INCDIR

parameter,

the

compiler

searches

for

file_name

in

that

directory.

2.

If

more

than

one

directory

is

specified,

the

compiler

searches

the

directories

in

the

order

that

they

appear

on

the

command

line.

3.

Searches

the

directory

where

your

current

root

source

file

resides.

4.

If

the

INCLUDE

environment

variable

is

defined,

the

compiler

searches

the

directories

in

the

order

they

appear

in

the

INCLUDE

path.

5.

If

the

*NOSTDINC

compiler

option

is

not

chosen,

search

the

default

include

directory

/QIBM/include.

*LOGMSG

Default

setting.

Compilation

messages

are

put

into

the

job

log.

When

you

specify

this

option

and

the

FLAG

parameter,

messages

with

the

severity

specified

on

the

FLAG

parameter

(and

higher)

are

placed

in

the

job

log.

When

you

specify

this

option

and

a

maximum

number

of

messages

on

the

MSGLMT

parameter,

compilation

stops

when

the

number

of

messages,

at

the

specified

severity,

have

been

placed

in

the

job

log.

*NOLOGMSG

Does

not

put

the

compilation

messages

into

the

job

log.

*LONGLONG

Default

setting.

The

compiler

recognizes

and

uses

the

longlong

data

type.

94

ILE

C/C++

Compiler

Reference

*NOLONGLONG

The

compiler

does

not

recognize

the

longlong

data

type.

*NORTTI

Default

setting.

The

compiler

does

not

generate

information

needed

for

Run-Time

Type

Information

(RTTI)

typeid

and

dynamic_cast

operators.

*RTTIALL

The

compiler

generates

the

information

needed

for

the

RTTI

typeid

and

dynamic_cast

operators.

*RTTITYPE

The

compiler

generates

the

information

needed

for

the

RTTI

typeid

operator,

but

the

information

for

the

dynamic_cast

operator

is

not

generated.

*RTTICAST

The

compiler

generates

the

information

needed

for

the

RTTI

dynamic_cast

operator,

but

the

information

for

the

typeid

operator

is

not

generated.

*NOPPONLY

Valid

only

with

the

CRTCMOD

command.

Default

setting.

The

compiler

runs

the

entire

compile

sequence

when

*GEN

is

left

as

the

default

for

OPTION.

Specifying

PPGENOPT

with

any

setting

other

than

*NONE

overrides

the

OPTION(*NOPPONLY)

and

OPTION(*GEN)

option

settings.

Note:

The

PPGENOPT

compiler

option

replaces

OPTION(*NOPPONLY).

Support

for

OPTION(*NOPPONLY)

may

be

removed

in

future

releases.

*PPONLY

Valid

only

with

the

CRTCMOD

command.

The

preprocessor

is

run

and

the

output

is

saved

in

the

source

file

QACZEXPAND

in

library

QTEMP.

The

member-name

is

the

same

as

the

name

specified

on

the

MODULE

parameter.

The

rest

of

the

compilation

sequence

is

not

run.

When

the

job

is

submitted

in

batch

mode,

the

output

is

deleted

once

the

job

is

complete.

If

you

specify

SRCSTMF,

then

the

compiler

saves

the

output

in

a

stream

file

in

your

current

directory.

The

file

name

is

the

same

as

the

file

on

SRCSTMF

with

a

″.i″

extension.

Specifying

OPTION(*PPONLY)

overrides

the

PPGENOPT(*NONE)

and

OPTION(*GEN)

option

settings.

Instead,

the

following

settings

are

implied:

v

PPGENOPT(*DFT)

PPSRCFILE(QTEMP/QACZEXPAND)

PPSRCMBR(*MODULE)

for

a

data

management

source

file,

or,

v

PPGENOPT(*DFT)

PPSRCSTMF(*SRCSTMF)

for

an

IFS

source

file.

Note:

The

PPGENOPT

compiler

option

replaces

OPTION(*PPONLY).

Support

for

OPTION(*PPONLY)

may

be

removed

in

future

releases.

*NOSECLVL

Default

setting.

Does

not

generate

the

second-level

message

text

in

the

listing.

*SECLVL

Generates

the

second-level

message

text

in

the

listing.

OUTPUT(*PRINT)

must

be

specified.

*NOSHOWINC

Default

setting.

Does

not

expand

the

user

include

files

or

the

system

include

files

in

the

source

listing

or

in

the

debug

listing

view.

*SHOWINC

Expands

both

the

user-include

files

and

the

system-include

files

in

the

source

Chapter

4.

Control

Language

Commands

95

section

of

the

listing

or

in

the

debug

listing

view.

OUTPUT(*PRINT)

or

DBGVIEW(*ALL,

*SOURCE,

or

*LIST)

must

be

specified.

This

setting

turns

on

the

*SHOWUSR

and

*SHOWSYS

settings,

but

those

settings

can

be

overridden

by

specifying

*NOSHOWUSR

and/or

*NOSHOWSYS

after

*SHOWINC.

*NOSHOWSKP

Default

setting.

Does

not

include

the

statements

that

the

preprocessor

has

ignored

in

the

source

section

of

the

listing

or

in

the

debug

listing

view.

The

preprocessor

ignores

statements

as

a

result

of

a

preprocessor

directive

evaluating

to

false

(zero).

*SHOWSKP

Includes

all

statements

in

the

source

listing

or

in

the

debug

listing

view,

regardless

of

whether

or

not

the

preprocessor

has

skipped

them.

OUTPUT(*PRINT)

or

DBGVIEW(*ALL

or

*LIST)

must

be

specified.

*SHOWSRC

Default

setting.

Shows

the

source

statements

in

the

source

listing

or

in

the

debug

listing

view.

OUTPUT(*PRINT)

or

DBGVIEW(*ALL,

*SOURCE,

or

*LIST)

must

be

specified.

*NOSHOWSRC

Does

not

show

the

source

statements

in

the

source

listing

or

in

the

debug

listing

view.

The

*EXPMAC,*SHOWINC,*SHOWUSR,*SHOWSYS

and

*SHOWSKP

listing

options

can

override

this

setting

if

specifed

after

the*NOSHOWSRC

option.

*NOSHOWSYS

Default

setting.

Does

not

expand

the

system

include

files

on

the

#include

directive

in

the

source

listing

or

in

the

debug

listing

view.

*SHOWSYS

Expands

the

system

include

files

on

the

#include

directive

in

the

source

listing

or

in

the

debug

listing

view.

An

OUTPUT

option,

or

DBGVIEW

parameter

value

of

*ALL,

*SOURCE

or

*LIST

must

be

specified.

System

include

files

on

the

#include

directive

are

enclosed

in

angle

brackets

(<

>).

*NOSHOWUSR

Default

setting.

Does

not

expand

the

user

include

files

on

the

#include

directive

in

the

source

listing

or

in

the

debug

listing

view.

*SHOWUSR

Expands

the

user

include

files

on

the

#include

directive

in

the

source

listing

or

in

the

debug

listing

view.

OUTPUT(*PRINT)

or

DBGVIEW(*ALL,

*SOURCE,

or

*LIST)

must

be

specified.

User-include

files

on

the

#include

directive

are

enclosed

in

double

quotation

marks

(″

″).

Use

this

option

to

print

the

typedef

that

is

generated

when

you

use

#pragma

mapinc

in

your

ILE

C

or

C++

program

to

process

externally

described

files.

*STDINC

Default

setting.

The

compiler

includes

the

default

include

path

(/QIBM/include

for

IFS

source

stream

files;

QSYSINC

for

data

management

source

file

members)

at

the

end

of

the

search

order.

*NOSTDINC

The

compiler

removes

the

default

include

path

(/QIBM/include

for

IFS

source

stream

files;

QSYSINC

for

data

management

source

file

members)

from

the

search

order.

96

ILE

C/C++

Compiler

Reference

*NOSTDLOGMSG

Default

setting.

The

compiler

does

not

produce

stdout

compiler

messages.

*STDLOGMSG

The

compiler

will

produce

stdout

compiler

messages

when

working

in

the

Qshell

environment.

This

option

has

no

effect

when

compiling

with

TGTRLS(*PRV).

*NOSTRUCREF

Default

setting.

Does

not

generate

an

aggregate

structure

map

of

all

referenced

struct

or

union

variables

in

the

compiler

listing.

*STRUCREF

Generates

an

aggregate

structure

map

of

all

referenced

struct

or

union

variables

in

the

compiler

listing.

This

map

provides

the

layout

of

all

referenced

structures

in

the

source

program,

and

shows

whether

variables

are

padded

or

not.

*NOSYSINCPATH

Default

setting.

The

search

path

for

user

includes

is

not

affected.

*SYSINCPATH

Changes

the

search

path

of

user

includes

to

the

system

include

search

path.

In

function

this

option

is

equivalent

to

changing

the

double-quotes

in

the

user

#include

directive

(#include

″file_name″)

to

angle

brackets

(#include

<file_name>).

*NOXREF

Does

not

generate

the

cross-reference

table

in

the

listing.

This

is

the

default.

*XREF

Generates

the

cross-reference

table

that

contains

a

list

of

the

identifiers

in

the

source

code

together

with

the

line

number

in

which

they

appear.

An

OUTPUT

option

must

be

specified.

The

*XREF

option

overrides

the

*XREFREF

option.

*NOXREFREF

Default

setting.

Does

not

generate

the

cross-reference

table

in

the

listing.

*XREFREF

Generates

the

cross-reference

table,

including

only

referenced

identifers

and

variables

in

the

source

code,

together

with

the

line

number

in

which

they

appear.

An

OUTPUT

option

must

be

specified.

The

*XREF

option

overrides

the

*XREFREF

option.

Chapter

4.

Control

Language

Commands

97

CHECKOUT

Specifies

options

you

may

select

to

generate

informational

messages

that

indicate

possible

programming

errors.

When

you

specify

an

option

more

than

once,

or

when

two

options

conflict,

the

last

one

that

is

specified

is

used.

Note:

CHECKOUT

may

produce

many

messages.

To

prevent

these

messages

from

going

to

the

job

log

specify

OPTION(*NOLOGMSG)

and

the

source

listing

option

OUTPUT(*PRINT).

CHECKOUT(

CHECKOUT

Details

)

CHECKOUT

Details:

*NONE

*ALL

*USAGE

(1)

*NOCLASS

(1)

*CLASS

*NOCOND

*COND

(2)

*NOCONST

(2)

*CONST

�

�

*NOEFFECT

*EFFECT

(2)

*NOENUM

(2)

*ENUM

(2)

*NOEXTERN

(2)

*EXTERN

*NOGENERAL

*GENERAL

�

�

(2)

*NOGOTO

(2)

*GOTO

(2)

*NOINIT

(2)

*INIT

(1)

*NOLANG

(1)

*LANG

*NOPARM

*PARM

�

�

*NOPORT

*PORT

(2)

*NOPPCHECK

(2)

*PPCHECK

(2)

*NOPPTRACE

(2)

*PPTRACE

*NOREACH

*REACH

�

�

(1)

*NOTEMP

(1)

*TEMP

*NOTRUNC

*TRUNC

*NOUNUSED

*UNUSED

Notes:

1 C++

compiler

only

2 C

compiler

only

The

possible

options

are:

*NONE

Default

setting.

Disables

all

of

the

options

for

CHECKOUT.

*ALL

Enables

all

of

the

options

for

CHECKOUT.

*USAGE

98

ILE

C/C++

Compiler

Reference

v

Equivalent

to

specifying

*ENUM,

*EXTERN,

*INIT,

*PARM,

*PORT,

*GENERAL,

and

*TRUNC.

All

other

CHECKOUT

options

are

disabled.

v

Equivalent

to

specifying

*COND.

All

other

CHECKOUT

options

are

disabled.

*NOCLASS

Default

setting.

Does

not

display

info

about

class

use.

*CLASS

Display

info

about

class

use.

*NOCOND

Default

setting.

Does

not

warn

about

possible

redundancies

or

problems

in

conditional

expressions.

*COND

Warn

about

possible

redundancies

or

problems

in

conditional

expressions.

*NOCONST

Default

setting.

Does

not

warn

about

operations

involving

constants.

*CONST

Warn

about

operations

involving

constants.

*NOEFFECT

Default

setting.

Does

not

warn

about

statements

with

no

effect.

*EFFECT

Warn

about

statements

with

no

effect.

*NOENUM

Default

setting.

Does

not

list

the

usage

of

enumerations.

*ENUM

Lists

the

usage

of

enumerations.

*NOEXTERN

Default

setting.

Does

not

list

the

unused

variables

that

have

external

declarations.

*EXTERN

Lists

the

unused

variables

that

have

external

declarations.

*NOGENERAL

Default

setting.

Does

not

list

the

general

CHECKOUT

messages.

*GENERAL

Lists

the

general

CHECKOUT

messages.

*NOGOTO

Default

setting.

Does

not

list

the

occurrence

and

usage

of

goto

statements.

*GOTO

Lists

the

occurrence

and

usage

of

goto

statements.

*NOINIT

Default

setting.

Does

not

list

the

automatic

variables

that

are

not

explicitly

initialized.

*INIT

Lists

the

automatic

variables

that

are

not

explicitly

initialized.

Chapter

4.

Control

Language

Commands

99

*NOLANG

Default

setting.

Does

not

display

information

about

the

effects

of

the

language

level.

*LANG

Display

information

about

the

effects

of

the

language

level.

*NOPARM

Default

setting.

Does

not

list

the

function

parameters

that

are

not

used.

*PARM

Lists

the

function

parameters

that

are

not

used.

*NOPORT

Default

setting.

Does

not

list

the

non-portable

usage

of

the

C

or

C++

language.

*PORT

Lists

the

non-portable

usage

of

the

C

or

C++

language.

*NOPPCHECK

Default

setting.

Does

not

list

the

preprocessor

directives.

*PPCHECK

Lists

all

preprocessor

directives.

*NOPPTRACE

Default

setting.

Does

not

list

the

tracing

of

include

files

by

the

preprocessor.

*PPTRACE

Lists

the

tracing

of

include

files

by

the

preprocessor.

*NOREACH

Default

setting.

Does

not

warn

about

unreachable

statements.

*REACH

Warn

about

unreachable

statements.

*NOTEMP

Default

setting.

Does

not

display

information

about

temporary

variables.

*TEMP

Display

information

about

temporary

variables.

*NOTRUNC

Default

setting.

Does

not

warn

about

the

possible

truncation

or

loss

of

data.

*TRUNC

Warn

about

the

possible

truncation

or

loss

of

data.

*NOUNUSED

Default

setting.

Does

not

check

for

unused

auto

or

static

variables.

*UNUSED

Check

for

unused

auto

or

static

variables.

100

ILE

C/C++

Compiler

Reference

OPTIMIZE

Specifies

the

level

of

the

object’s

optimization.

10

OPTIMIZE(

20

)

30

40

10

Default

setting.

Generated

code

is

not

optimized.

This

level

has

the

shortest

compile

time.

20

Some

optimization

is

performed

on

the

code.

30

Full

optimization

is

performed

on

the

generated

code.

40

All

optimizations

done

at

level

30

are

performed

on

the

generated

code.

In

addition,

code

is

eliminated

from

procedure

prologue

and

epilogue

routines

that

enable

instruction

trace

and

call

trace

system

functions.

Eliminating

this

code

enables

the

creation

of

leaf

procedures.

A

leaf

procedure

contains

no

calls

to

other

procedures.

Procedure

call

performance

to

a

leaf

procedure

is

significantly

faster

than

to

a

normal

procedure.

Chapter

4.

Control

Language

Commands

101

INLINE

Allows

the

compiler

to

consider

replacing

a

function

call

with

the

called

function’s

instructions.

Inlining

a

function

eliminates

the

overhead

of

a

call

and

can

result

in

better

optimization.

Small

functions

that

are

called

many

times

are

good

candidates

for

inlining.

Note:

When

specifying

an

INLINE

option,

all

preceding

INLINE

options

must

also

be

specified,

including

their

defaults.

INLINE(

)

*OFF

*ON

*NOAUTO

*AUTO

INLINE

Details

INLINE

Details

(continued):

250

1-65535

*NOLIMIT

2000

1-65535

*NOLIMIT

*NO

*YES

The

possible

INLINE

options

are:

Inliner

Specifies

whether

or

not

inlining

is

to

be

used.

*OFF

Default

setting.

Specifies

that

inlining

will

not

be

performed

on

the

compilation

unit.

*ON

Specifies

that

inlining

will

be

performed

on

the

compilation

unit.

If

a

debug

listing

view

is

specified,

the

inliner

is

turned

off.

Mode

Specifies

whether

or

not

the

inliner

should

attempt

to

automatically

inline

functions

depending

on

their

Threshold

and

Limit.

*NOAUTO

Specifies

that

only

the

functions

that

have

been

specified

with

the

#pragma

inline

directive

should

be

considered

candidates

for

inlining.

This

is

a

default.

*AUTO

Specifies

that

the

inliner

should

determine

if

a

function

can

be

inlined

based

on

the

specified

Threshold

and

Limit.

The

#pragma

noinline

directive

overrides

*AUTO.

Threshold

Specifies

the

maximum

size

of

a

function

that

can

be

a

candidate

for

automatic

inlining.

The

size

is

measured

in

Abstract

Code

Units.

Abstract

Code

Units

are

proportional

in

size

to

the

executable

code

in

the

function;

C

and

C++

code

is

translated

into

Abstract

Code

Units

by

the

compiler.

102

ILE

C/C++

Compiler

Reference

250

Specifies

a

threshold

of

250.

This

is

the

default.

1-65535

Specifies

a

threshold

from

1

to

65535.

*NOLIMIT

Defines

the

threshold

as

the

maximum

size

of

the

program.

Limit

Specifies

the

maximum

relative

size

a

function

can

grow

before

auto-inlining

stops.

2000

Specifies

a

limit

of

2000.

This

is

the

default.

1-65535

Specifies

a

limit

from

1

to

65535.

*NOLIMIT

Limit

is

defined

as

the

maximum

size

of

the

program.

System

limits

may

be

encountered.

Report

Specifies

whether

or

not

to

produce

an

inliner

report

with

the

compiler

listing.

*NO

The

inliner

report

is

not

produced.

This

is

the

default.

*YES

The

inliner

report

is

produced.

OUTPUT(*PRINT)

must

be

specified

to

produce

the

inliner

report.

Chapter

4.

Control

Language

Commands

103

MODCRTOPT

Valid

only

with

the

CRTCMOD

and

CRTCPPMOD

commands.

Specifies

the

options

to

use

when

the

*MODULE

object

is

created.

You

can

specify

these

options

in

any

order,

separated

by

spaces.

When

an

option

is

specified

more

than

once,

or

when

two

options

conflict,

the

last

one

specified

is

used.

(1)

*NOKEEPILDTA

MODCRTOPT(

)

*KEEPILDTA

Notes:

1 Create

Module

command

only

*NOKEEPILDTA

Default

setting.

Intermediate

language

data

is

not

stored

with

the

*MODULE

object.

*KEEPILDTA

Intermediate

language

data

is

stored

with

the

*MODULE

object.

104

ILE

C/C++

Compiler

Reference

DBGVIEW

Specifies

which

level

of

debugging

is

available

for

the

created

program

object.

It

also

specifies

which

source

views

are

available

for

source-level

debugging.

Requesting

a

debug

listing

view

will

turn

inlining

off.

*NONE

DBGVIEW(

*ALL

)

*STMT

*SOURCE

*LIST

The

possible

options

are:

*NONE

Default

setting.

Disables

all

of

the

debug

options

for

debugging

the

compiled

object.

*ALL

Enables

all

of

the

debug

options

for

debugging

the

compiled

object

and

produces

a

source

view,

as

well

as

a

listing

view.

If

this

suboption

is

specified

together

with

OPTION(*FULL)

or

OPTION(*EXPMAC),

the

compiler

issues

an

error

message

and

stops

compilation.

*STMT

Allows

the

compiled

object

to

be

debugged

using

program

statement

numbers

and

symbolic

identifiers.

Note:

To

debug

an

object

using

the

*STMT

option

you

need

a

spool

file

listing.

*SOURCE

Generates

the

source

view

for

debugging

the

compiled

object.

The

OPTION(*NOSHOWINC,

*SHOWINC,

*SHOWSYS,

*SHOWUSR)

determines

the

content

of

the

source

view

that

is

created.

Note:

The

root

source

should

not

be

modified,

renamed

or

moved

after

the

module

has

been

created.

It

must

be

in

the

same

library/file/member,

in

order

to

use

this

view

for

debugging.

*LIST

Generates

the

listing

view

for

debugging

the

compiled

object.

The

listing

options

(*EXPMAC,

*NOEXPMAC,

*SHOWINC,

*SHOWUSR,

*SHOWSYS,

*NOSHOWINC,

*SHOWSKP,

*NOSHOWSKP)

specified

on

the

OPTION

keyword

determine

the

content

of

the

listing

view

created,

as

well

as

the

spool

file

listing.

If

this

suboption

is

specified

together

with

OPTION(*FULL)

or

OPTION(*EXPMAC),

the

compiler

issues

an

error

message

and

stops

compilation.

Chapter

4.

Control

Language

Commands

105

DEFINE

Specifies

preprocessor

macros

that

take

effect

before

the

file

is

processed

by

the

compiler.

The

format

DEFINE(macro)

is

equivalent

to

specifying

DEFINE(’macro=1’).

�

*NONE

DEFINE(

'

name

'

)

'

name

=

value

'

*NONE

Default

setting.

No

macro

is

defined.

name

or

name=value

A

maximum

of

32

macros

may

be

defined,

and

the

maximum

length

of

a

macro

is

80

characters.

Enclose

each

macro

in

single

quotation

marks.

The

quotation

marks

are

not

part

of

the

80

character

string

and

are

not

required

when

the

CRTCMOD

or

CRTCPPMOD

prompt

screens

are

used.

Single

quotation

marks

are

required

for

case-sensitive

macros.

Separate

macros

with

blank

spaces.

If

value

is

not

specified,

the

compiler

assigns

a

value

of

1

to

the

macro.

Note:

Macros,

that

are

defined

in

the

command,

override

any

macro

definition

of

the

same

name

in

the

source.

A

warning

message

is

generated

by

the

compiler.

Function-like

macros

such

as

#define

max(a,b)

((a)>;(b):(a)?(b))

cannot

be

defined

on

the

command.

106

ILE

C/C++

Compiler

Reference

LANGLVL

Specifies

which

group

of

library

function

prototypes

are

included

when

the

source

is

compiled.

When

no

LANGLVL

is

specified,

the

language

level

defaults

to

*EXTENDED.

*EXTENDED

LANGLVL(

*ANSI

)

(1)

*LEGACY

Notes:

1 C++

compiler

only

*EXTENDED

Default

setting.

Defines

the

preprocessor

variable

__EXTENDED__

and

undefines

other

language-level

variables.

ISO

standard

C

and

C++,

and

the

IBM

language

extensions

and

system-specific

features

are

available.

This

parameter

should

be

used

when

all

the

functions

of

ILE

C

or

C++

are

to

be

available.

*ANSI

Defines

the

preprocessor

variables

__ANSI__

and

__STDC__

for

C

and

C++

compilations,

__cplusplus98__interface__

for

C++

compilations

only,

and

undefines

other

language-level

variables.

Only

ISO

standard

C

and

C++

is

available.

*LEGACY

Undefines

other

language-level

variables.

Allow

constructs

compatible

with

older

levels

of

the

C++

language.

Chapter

4.

Control

Language

Commands

107

ALIAS

Specifies

the

aliasing

assertion

to

be

applied

in

the

module

created.

*ANSI

ALIAS(

*NOANSI

)

*ADDRTAKEN

*NOADDRTAKEN

*ALLPTRS

*NOALLPTRS

*TYPEPTR

*NOTYPEPTR

*ANSI

Default

setting.

The

module

or

program

created

will

only

allow

pointers

to

point

to

an

object

of

the

same

type.

*NOANSI

The

module

or

program

created

will

not

use

the

*ANSI

aliasing

rules.

*ADDRTAKEN

The

module

or

program

created

will

have

its

class

of

variables

disjoint

from

pointers

unless

their

address

is

taken.

*NOADDRTAKEN

The

module

or

program

created

will

not

use

the

*ADDRTAKEN

aliasing

rules.

*ALLPTRS

The

module

or

program

created

will

not

allow

any

two

pointers

to

be

aliased.

*NOALLPTRS

The

module

or

program

created

will

not

use

the

*ALLPTRS

aliasing

rules.

*TYPEPTR

The

module

or

program

created

will

not

allow

any

two

pointers

of

different

types

to

be

aliased.

*NOTYPEPTR

The

module

or

program

created

will

not

use

the

*TYPEPTR

aliasing

rules.

108

ILE

C/C++

Compiler

Reference

SYSIFCOPT

Specifies

which

integrated

file

system

options

will

be

used

for

C

or

C++

stream

I/O

operations

in

the

module

that

is

created.

(2)

*IFS64IO

(1)

(3)

*NOIFSIO

*NOASYNCSIGNAL

SYSIFCOPT(

)

*IFSIO

(3)

*ASYNCSIGNAL

Notes:

1 C

compiler

default

setting

2 C++

compiler

default

setting

3 C

compiler

only

*IFS64IO

Default

setting

for

the

C++

compiler.

The

object

that

is

created

will

use

64–bit

Integrated

File

System

APIs

that

support

C

and

C++

stream

I/O

operations

on

files

greater

than

two

gigabytes

in

size.

Using

this

option

is

equivalent

to

specifying

SYSIFCOPT(*IFSIO

*IFS64IO).

*NOIFSIO

Default

setting

for

the

C

compiler.

The

object

that

is

created

will

use

the

iSeries

Data

Management

file

system

for

C

and

C++

stream

I/O

operations.

*IFSIO

The

object

that

is

created

will

use

the

Integrated

File

System

APIs

for

C

and

C++

stream

I/O

operations

on

files

up

to

two

gigabytes

in

size.

*NOASYNCSIGNAL

Default

setting.

Does

not

enable

run-time

mapping

of

synchronous

signalling

functions

to

asynchronous

signalling

functions.

*ASYNCSIGNAL

Enable

run-time

mapping

of

synchronous

signalling

functions

to

asynchronous

signalling

functions.

Specifying

this

option

causes

C

run-time

environment

to

map

the

synchronous

signal()

and

raise()

functions

to

the

asynchronous

sigaction()

and

kill()

functions

respectively.

Chapter

4.

Control

Language

Commands

109

LOCALETYPE

Specifies

the

type

of

locale

support

to

be

used

by

the

object

that

is

created.

*LOCALE

LOCALETYPE(

*LOCALEUCS2

)

(1)

*CLD

*LOCALEUTF

Notes:

1 C

compiler

only

*LOCALE

Default

setting.

Objects

compiled

with

this

option

use

the

locale

support

provided

with

the

ILE

C/C++

compiler

and

run

time,

using

locale

objects

of

type

*LOCALE.

This

option

is

only

valid

for

programs

that

run

on

V3R7

and

later

releases

of

the

OS/400®

operating

system.

*LOCALEUCS2

Objects

compiled

with

this

option

store

wide-character

literals

in

two-byte

form

in

the

UNICODE

CCSID

(13488).

*CLD

Objects

compiled

with

this

option

use

the

locale

support

provided

with

earlier

releases

of

the

ILE

C

compiler

and

run

time,

using

locale

objects

of

type

*CLD.

*LOCALEUTF

Module

and

program

objects

created

with

this

option

use

the

locale

support

provided

by

*LOCALE

objects.

Wide-character

types

will

contain

four-byte

utf-32

values.

Narrow

character

types

will

contain

utf-8

values.

110

ILE

C/C++

Compiler

Reference

FLAG

Specifies

the

level

of

messages

that

are

to

be

displayed

in

the

listing.

Only

the

first-level

text

of

the

message

is

included

unless

OPTION(*SECLVL)

is

specified.

0

FLAG(

10

)

20

30

0

Default

setting.

All

messages

starting

at

the

informational

level

are

displayed.

10

All

messages

starting

at

the

warning

level

are

displayed.

20

All

messages

starting

at

the

error

level

are

displayed.

30

All

messages

starting

at

the

severe

error

level

are

displayed.

Chapter

4.

Control

Language

Commands

111

MSGLMT

Specifies

the

maximum

number

of

messages

at

a

given

severity

that

can

occur

before

compilation

stops.

*NOMAX

30

MSGLMT(

0

32767

0

)

10

20

*NOMAX

Default

setting.

Compilation

continues

regardless

of

the

number

of

messages

that

have

occurred

at

the

specified

message

severity

level.

0

32767

Specifies

the

maximum

number

of

messages

that

can

occur

at,

or

above,

the

specified

message

severity

level

before

compilation

stops.

The

valid

range

is

0

to

32

767.

30

Default

setting.

Specifies

that

message-limit

messages

at

severity

30

can

occur

before

compilation

stops.

0

Specifies

that

message-limit

messages

at

severity

0

to

30

can

occur

before

compilation

stops.

10

Specifies

that

message-limit

messages

at

severity

10

to

30

can

occur

before

compilation

stops.

20

Specifies

that

message-limit

messages

at

severity

20

to

30

can

occur

before

compilation

stops.

112

ILE

C/C++

Compiler

Reference

REPLACE

Specifies

whether

the

existing

version

of

the

object

is

to

be

replaced

by

the

current

version.

*YES

REPLACE(

*NO

)

*YES

Default

setting.

The

existing

object

is

replaced

by

the

new

version.

The

old

version

is

moved

to

the

library,

QRPLOBJ,

and

renamed

based

on

the

system

date

and

time.

The

text

description

of

the

replaced

object

is

changed

to

the

name

of

the

original

object.

The

old

object

is

deleted

at

the

next

IPL

if

it

has

not

been

deleted.

*NO

The

existing

object

is

not

replaced.

When

an

object

with

the

same

name

exists

in

the

specified

library,

a

message

is

displayed

and

compilation

stops.

Chapter

4.

Control

Language

Commands

113

USRPRF

Valid

only

with

the

CRTBNDC

and

CRTBNDCPP

commands.

Specifies

the

user

profile

that

is

used

when

the

compiled

ILE

C

or

C++

program

object

is

run,

including

the

authority

that

the

program

object

has

for

each

object.

The

profile

of

either

the

program

owner

or

the

program

user

is

used

to

control

which

objects

are

used

by

the

program

object.

(1)

*USER

USRPRF(

*OWNER

)

Notes:

1 Create

Bound

Program

command

only

*USER

Default

setting.

The

profile

of

the

user

that

is

running

the

program

object

is

used.

*OWNER

The

collective

sets

of

object

authority

in

the

user

profiles

of

both

the

program

owner

and

the

program

user

are

used

to

find

and

access

objects

during

the

program

object’s

processing

time.

Objects

that

are

created

by

the

program

are

owned

by

the

program’s

user.

114

ILE

C/C++

Compiler

Reference

AUT

Specifies

the

object

authority

to

users

who

do

not

have

specific

authority

to

the

object.

The

user

may

not

be

on

the

authorization

list,

or

whose

group

has

no

specific

authority

to

the

object.

*LIBCRTAUT

AUT(

*CHANGE

)

*USE

*ALL

*EXCLUDE

authorization-list-name

*LIBCRTAUT

Default

setting.

Public

authority

for

the

object

is

taken

from

the

CRTAUT

keyword

of

the

target

library

(the

library

that

contains

the

created

object).

This

value

is

determined

when

the

object

is

created.

If

the

CRTAUT

value

for

the

library

changes

after

the

object

is

created,

the

new

value

does

not

affect

any

existing

objects.

*CHANGE

Provides

all

data

authority

and

the

authority

to

perform

all

operations

on

the

object

except

those

that

are

limited

to

the

owner

or

controlled

by

object

authority

and

object

management

authority.

The

object

can

be

changed,

and

basic

functions

can

be

performed

on

it.

*USE

Provides

object

operational

authority,

read

authority,

and

authority

for

basic

operations

on

the

object.

Users

without

specific

authority

are

prevented

from

changing

the

object.

*ALL

Provides

authority

for

all

operations

on

the

object

except

those

that

are

limited

to

the

owner

or

controlled

by

authorization

list

management

authority.

Any

user

can

control

the

object’s

existence,

specify

its

security,

and

perform

basic

functions

on

it,

but

cannot

transfer

its

ownership.

*EXCLUDE

Users

without

special

authority

cannot

access

the

object.

authorization-list-name

Enter

the

name

of

an

authorization

list

of

users

and

authorities

to

which

the

module

object

is

added.

The

object

is

secured

by

this

authorization

list,

and

the

public

authority

for

the

object

is

set

to

*AUTL.

The

authorization

list

must

exist

on

the

system

when

the

command

is

issued.

Chapter

4.

Control

Language

Commands

115

TGTRLS

Specifies

the

release

level

of

the

operating

system

for

the

object

that

is

being

created.

*CURRENT

TGTRLS(

*PRV

)

release-level

*CURRENT

Default

setting.

The

object

is

used

on

the

release

of

the

operating

system

that

is

running

on

your

system.

For

example,

when

V2R3M5

is

running

on

your

system,

*CURRENT

indicates

you

want

to

use

the

object

on

a

system

with

Version

2

Release

3

Modification

5

installed.

You

can

also

use

the

object

on

a

system

with

any

subsequent

release

of

the

operating

system

that

is

installed.

Note:

If

V2R3M5

is

running

on

your

system,

and

you

intend

to

use

the

object

you

are

creating

on

a

system

with

V2R3M0

installed,

specify

TGTRLS(V2R3M0),

not

TGTRLS(*CURRENT).

*PRV

The

object

is

used

on

the

previous

release

of

the

operating

system.

For

example,

if

V2R3M5

is

being

run

on

the

your

system,

specify

*PRV

if

you

want

to

use

the

object

you

are

creating

on

a

system

with

V2R2M0

installed.

You

can

also

use

the

object

on

a

system

with

any

subsequent

release

of

the

operating

system

that

is

installed.

release-level

Specify

the

release

in

the

format

VxRxMx.

The

object

can

be

used

on

a

system

with

the

specific

release

or

with

any

subsequent

release

of

the

installed

operating

system.

Values

depend

on

the

current

version,

release,

and

modification

level,

and

they

change

with

each

new

release.

If

you

specify

a

release-level

that

is

earlier

than

the

earliest

release

level

supported

by

this

command,

you

will

receive

an

error

message

indicating

the

earliest

supported

release.

Compiling

for

an

operating

system

release

earlier

than

V5R1M0

may

cause

some

settings

of

the

following

compiler

options

to

be

ignored:

v

“CHECKOUT”

on

page

98

v

“OPTION”

on

page

92

v

“OUTPUT”

on

page

91

v

“PRFDTA”

on

page

120

The

following

options

are

ignored

completely

when

compiling

for

an

operating

system

release

earlier

than

V5R1M0:

v

“CSOPT”

on

page

135

v

“DFTCHAR”

on

page

137

v

“DTAMDL”

on

page

125

v

“ENUM”

on

page

128

v

“INCDIR”

on

page

134

v

“LICOPT”

on

page

136

v

“MAKEDEP”

on

page

129

v

“PACKSTRUCT”

on

page

127

116

ILE

C/C++

Compiler

Reference

v

“PPGENOPT”

on

page

130

v

“STGMDL”

on

page

124

v

“TGTCCSID”

on

page

138

Chapter

4.

Control

Language

Commands

117

ENBPFRCOL

Specifies

whether

performance

data

measurement

code

should

be

generated

in

the

object.

The

collected

data

that

can

be

used

by

the

system

performance

tool

to

profile

an

application’s

performance.

Generating

performance

measurement

code

in

an

object

will

result

in

slightly

larger

objects

and

may

affect

performance.

*PEP

ENBPFRCOL(

)

*ENTRYEXIT

*ALLPRC

*FULL

*NONLEAF

*PEP

Default

setting.

Performance

statistics

are

only

gathered

on

the

entry

and

exit

of

the

program

entry

procedure.

Choose

this

value

when

you

want

to

gather

overall

performance

information

for

an

application.

This

support

is

equivalent

to

the

support

that

was

formerly

provided

with

the

TPST

tool.

*ENTRYEXIT

*NONLEAF

Performance

statistics

are

gathered

on

the

entry

and

exit

of

all

the

program’s

procedures

that

are

not

leaf

procedures.

This

includes

the

program

PEP

routine.

This

choice

is

useful

if

you

want

to

capture

information

on

routines

that

call

other

routines

in

your

application.

*ENTRYEXIT

*ALLPRC

Performance

statistics

are

gathered

on

the

entry

and

exit

of

all

the

object’s

procedures

(including

those

that

are

leaf

procedures).

This

includes

the

program

PEP

routine.

This

choice

is

useful

if

you

want

to

capture

information

on

all

routines.

Use

this

option

when

you

know

that

all

the

programs

called

by

your

application

were

compiled

with

either

the

*PEP,

*ENTRYEXIT

or

*FULL

option.

Otherwise,

if

your

application

calls

other

objects

that

are

not

enabled

for

performance

measurement,

the

performance

tool

will

charge

their

use

of

resources

against

your

application.

This

would

make

it

difficult

to

determine

where

resources

are

actually

being

used.

*FULL

*NONLEAF

Performance

statistics

are

gathered

on

entry

and

exit

of

all

procedures

that

are

not

leaf

procedures.

Statistics

are

gathered

before

and

after

each

call

to

an

external

procedure.

*FULL

*ALLPRC

Performance

statistics

are

gathered

on

the

entry

and

exit

of

all

procedures

that

includes

leaf

procedures.

Also,

statistics

are

gathered

before

and

after

each

call

to

an

external

procedure.

Use

this

option

if

your

application

will

call

other

objects

that

were

not

compiled

with

either

*PEP,

*ENTRYEXIT

or

*FULL.

This

option

allows

the

performance

tools

to

distinguish

between

resources

that

are

used

by

your

application

and

those

used

by

objects

it

calls

(even

if

those

objects

are

not

enabled

for

performance

measurement).

This

option

is

the

most

expensive,

but

allows

for

selectively

analyzing

various

programs

in

an

application.

*NONE

No

performance

data

will

be

collected

for

this

object.

Use

this

parameter

when

no

performance

information

is

needed,

and

a

smaller

object

size

is

desired.

118

ILE

C/C++

Compiler

Reference

PFROPT

Specifies

various

options

available

to

boost

performance.

You

can

specify

them

in

any

order,

separated

by

one

or

more

blanks.

When

an

option

is

specified

more

than

once,

or

when

two

options

conflict,

the

last

option

specified

is

used.

*SETFPCA

*NOSTRDONLY

PFROPT(

)

*NOSETFPCA

*STRDONLY

*SETFPCA

Default

setting.

Causes

the

compiler

to

set

the

floating-point

computational

attributes

to

achieve

the

ANSI

semantics

for

floating-point

computations.

*NOSETFPCA

No

computational

attributes

will

be

set.

This

option

is

used

when

the

object

being

created

does

not

have

any

floating-point

computations

in

it.

*NOSTRDONLY

Specifies

that

the

compiler

must

place

strings

into

writable

memory.

This

is

the

default.

*STRDONLY

Specifies

that

the

compiler

may

place

strings

into

read-only

memory.

Chapter

4.

Control

Language

Commands

119

PRFDTA

Specifies

whether

program

profiling

should

be

turned

on

for

the

module

or

program.

Profiling

can

lead

to

better

performance

of

your

programs

or

service

programs

by

improving

the

use

of

cache

lines

and

memory

pages

in

ILE

applications.

*NOCOL

PRFDTA(

*COL

)

Note:

You

cannot

profile

a

stand-alone

*MODULE

object.

*NOCOL

Default

setting.

The

collection

of

profiling

data

is

not

enabled.

The

module

will

not

collect

profiling

data

when

it

is

included

in

a

program

or

service

program

object.

*COL

The

collection

of

profiling

data

is

enabled.

The

module

will

collect

profiling

data

when

it

is

included

in

a

program

or

service

program

object.

Use

this

option

to

generate

code

that

will

collect

data

at

object

creation

time.

This

data

will

consist

of

the

number

of

times

basic

blocks

within

procedures

are

executed,

as

well

as

the

number

of

times

procedures

are

called.

Note:

*COL

has

an

effect

only

when

the

optimization

level

of

the

module

is

*FULL

(30)

or

greater.

120

ILE

C/C++

Compiler

Reference

TERASPACE

Specifies

whether

the

created

object

can

recognize

and

work

with

addresses

that

reference

teraspace

storage

locations.

*NO

*NOTSIFC

TERASPACE(

*YES

)

*TSIFC

*NO

Default

setting.

The

created

object

cannot

recognize

teraspace

storage

addresses.

*YES

The

created

object

can

handle

teraspace

storage

addresses,

including

parameters

passed

from

other

teraspace-enabled

programs

and

service

programs.

*NOTSIFC

The

compiler

will

not

use

teraspace

versions

of

storage

functions,

such

as

malloc(

)

or

shmat(

).

This

is

the

default

if

TERASPACE(*YES)

is

specified.

*TSIFC

The

compiler

will

use

teraspace

versions

of

storage

functions,

such

as

malloc(

)

or

shmat(

),

without

requiring

changes

to

the

program

source

code.

The

compiler

defines

the

__TERASPACE__

macro,

and

maps

certain

storage

function

names

to

their

teraspace-enabled

equivalents.

For

example,

selecting

this

compiler

option

causes

the

malloc(

)

storage

function

to

be

mapped

to

_C_TS_malloc(

).

The

DTAMDL

(see

page

125)

and

STGMDL

(see

page

124)

compiler

options

can

be

used

together

with

the

TERASPACE

compiler

option.

Valid

combinations

of

these

options

are

shown

in

the

following

tables,

along

with

the

effects

of

selecting

those

combinations.

Chapter

4.

Control

Language

Commands

121

DTAMDL(*P128)

STGMDL

(*SNGLVL)

(*TERASPACE)

(*INHERIT)

v

Module/program

is

designed

to

use

single-level

store

working

storage.

v

Generated

code

supports

execution

using:

–

single-level

store

working

storage

–

single-level

store

dynamic

storage

v

Working

storage

can

only

be

accessed

using

16–byte

space

pointers.

v

Default

pointer

size

is

16

bytes.

v

Module/program

is

designed

to

use

teraspace

working

storage.

v

Generated

code

supports

execution

using:

–

teraspace

working

storage

–

single-level

store

dynamic

storage

–

teraspace

dynamic

storage

v

Working

storage

can

be

accessed

using

either:

–

process

local

pointers

–

16–byte

space

pointers

v

Default

pointer

size

is

16

bytes.

v

Depending

on

the

storage

model

of

the

calling

program,

the

module

is

designed

to

use

either:

–

single-level

store

working

storage

–

teraspace

working

storage

v

Depending

on

the

storage

model

of

the

calling

program,

generated

code

supports

execution

using:

–

single-level

store

working

storage

–

teraspace

working

storage

–

single-level

store

dynamic

storage

–

teraspace

dynamic

storage

v

Default

pointer

size

is

16

bytes.

TERASPACE(*NO)

Default

setting

Invalid

combination

Invalid

combination

TERASPACE(*YES

*NOTSIFC)

v

Generated

code

also

supports

execution

using

teraspace

v

Default

is

to

use

single-level

store

version

of

dynamic

storage

interfaces.

v

Default

is

to

use

single-level

store

version

of

dynamic

storage

interfaces.

v

Default

is

to

use

single-level

store

version

of

dynamic

storage

interfaces.

TERASPACE(*YES

*TSIFC)

v

Generated

code

also

supports

execution

using

teraspace.

v

Default

is

to

use

teraspace

version

of

dynamic

storage

interfaces.

v

__TERASPACE__

macro

is

defined.

v

Default

is

to

use

teraspace

version

of

dynamic

storage

interfaces.

v

__TERASPACE__

macro

is

defined.

v

Default

is

to

use

teraspace

version

of

dynamic

storage

interfaces.

v

__TERASPACE__

macro

is

defined.

122

ILE

C/C++

Compiler

Reference

To

make

the

most

effective

use

of

teraspace,

you

should

specify

the

following

combination

of

options:

TERASPACE(*YES

*TSIFC)

STGMDL(*TERASPACE)

DTAMDL(*LLP64)

For

more

information

about

teraspace

storage,

see

Using

Teraspace

in

WebSphere

Development

Studio:

ILE

C/C++

Programmer’s

Guide,

and

Teraspace

and

single-level

store

in

ILE

Concepts.

DTAMDL(*LLP64)

STGMDL

(*SNGLVL)

(*TERASPACE)

(*INHERIT)

v

Module/program

is

designed

to

use

single-level

store

working

storage.

v

Generated

code

supports

execution

using:

–

single-level

store

working

storage

–

single-level

store

dynamic

storage

–

teraspace

v

Working

storage

can

only

be

accessed

using

16–byte

space

pointers.

v

Default

pointer

size

is

8

bytes.

v

Module/program

is

designed

to

use

teraspace

working

storage.

v

Generated

code

supports

execution

using:

–

teraspace

working

storage

–

single-level

store

dynamic

storage

–

teraspace

dynamic

storage

v

Working

storage

can

be

accessed

using

either:

–

process

local

pointers

–

16–byte

space

pointers

v

Default

pointer

size

is

8

bytes.

v

Depending

on

the

storage

model

of

the

calling

program,

the

module

is

designed

to

use

either:

–

single-level

store

working

storage

–

teraspace

working

storage

v

Depending

on

the

storage

model

of

the

calling

program,

generated

code

supports

execution

using:

–

single-level

store

working

storage

–

teraspace

working

storage

–

single-level

store

dynamic

storage

–

teraspace

dynamic

storage

v

Working

storage

can

be

accessed

using

either:

–

(conditionally)

process

local

pointers

–

16–byte

space

pointers

v

Default

pointer

size

is

8

bytes.

TERASPACE(*NO)

Invalid

combination

Invalid

combination

Invalid

combination

TERASPACE(*YES

*NOTSIFC)

v

Default

is

to

use

single-level

storage

version

of

dynamic

storage

interfaces.

v

__LLP64_IFC__

macro

is

defined.

v

Default

is

to

use

single-level

storage

version

of

dynamic

storage

interfaces.

v

__LLP64_IFC__

macro

is

defined.

v

Default

is

to

use

single-level

storage

version

of

dynamic

storage

interfaces.

v

__LLP64_IFC__

macro

is

defined.

TERASPACE(*YES

*TSIFC)

v

Default

is

to

use

teraspace

version

of

dynamic

storage

interfaces.

v

__TERASPACE__

and

__LLP64_IFC__

macros

are

defined.

Recommended

settings

for

most

effective

use

of

teraspace

v

Default

is

to

use

teraspace

version

of

dynamic

storage

interfaces.

v

__TERASPACE__

and

__LLP64_IFC__

macros

are

defined.

v

Default

is

to

use

teraspace

version

of

dynamic

storage

interfaces.

v

__TERASPACE__

and

__LLP64_IFC__

macros

are

defined.

Chapter

4.

Control

Language

Commands

123

STGMDL

Specifies

the

type

of

storage

(static

and

automatic)

that

the

module

object

will

use.

*SNGLVL

STGMDL(

*TERASPACE

)

*INHERIT

*SNGLVL

Default

setting.

The

module

or

program

will

use

the

traditional

single

level

storage

model.

Static

and

automatic

storage

for

the

object

are

allocated

from

single-level

store,

and

can

only

be

accessed

using

16-byte

pointers.

The

module

may

optionally

access

teraspace

dynamic

storage

if

the

TERASPACE(*YES)

option

is

specified.

*TERASPACE

The

module

or

program

will

use

the

teraspace

storage

model.

This

is

a

new

storage

model

that

provides

up

to

a

1-terabyte

local

address

space

for

a

single

job.

Static

and

automatic

storage

for

the

object

are

allocated

from

teraspace

and

can

be

accessed

using

either

8-byte

or

16-byte

pointers.

*INHERIT

Valid

only

with

the

CRTCMOD

and

CRTCPPMOD

commands.

The

module

created

can

use

either

single

level

or

teraspace

storage.

The

type

of

storage

used

will

depend

on

the

type

of

storage

required

by

the

caller.

Use

of

STGMDL(*TERASPACE)

or

STGMDL(*INHERIT)

together

with

TERASPACE(*NO)

will

be

flagged

as

an

error

by

the

compiler,

and

compilation

will

stop.

The

STGMDL(*TERASPACE)

and

STGMDL(*INHERIT)

settings

are

ignored

if

used

together

with

the

TGTRLS

compiler

option

and

a

target

release

earlier

than

V5R1M0

is

specified.

For

more

information

about

valid

combinations

for

the

STGMDL,

TERASPACE,

and

DTAMDL

compiler

options,

see

“TERASPACE”

on

page

121.

For

more

information

about

the

types

of

storage

available

on

iSeries

systems,

see

Teraspace

and

single-level

store

in

ILE

Concepts.

124

ILE

C/C++

Compiler

Reference

DTAMDL

Specifies

how

pointer

types

will

be

interpreted

in

absence

of

an

explicit

modifier.

The

__ptr64

and

__ptr128

type

modifiers

and

the

datamodel

pragma

override

the

setting

of

the

DTAMDL

compiler

option.

*P128

DTAMDL(

*LLP64

)

*P128

Default

setting.

The

size

of

int,

long,

and

pointer

data

types

are

4,

4,

and

16

bytes

respectively.

*LLP64

The

size

of

int,

long,

and

pointer

data

types

are

4,

4,

and

8

bytes

respectively,

and

the

compiler

will

define

the

macro

__LLP64_IFC__.

Use

of

DTAMDL(*LLP64)

together

with

TERASPACE(*NO)

will

be

flagged

as

an

error

by

the

compiler,

and

compilation

will

stop.

DTAMDL(*LLP64)

is

ignored

if

the

TGTRLS

compiler

option

specifies

a

target

release

earlier

than

V5R1M0.

See

pragma

“datamodel”

on

page

32

for

more

information.

For

more

information

about

valid

combinations

for

the

STGMDL,

TERASPACE,

and

DTAMDL

compiler

options,

see

“TERASPACE”

on

page

121.

Chapter

4.

Control

Language

Commands

125

RTBND

Specifies

the

run-time

binding

directory

for

the

object

created.

*DEFAULT

RTBND(

*LLP64

)

*DEFAULT

Default

setting.

The

object

created

will

use

the

default

binding

directory.

*LLP64

The

object

created

will

use

the

64-bit

run-time

binding

directory

and

the

compiler

will

define

the

macro

__LLP64_RTBND__.

This

suboption

is

valid

only

when

TGTRLS(*CURRENT)

is

in

effect,

otherwise

the

compiler

will

issue

an

error

message

and

stop

the

compilation.

126

ILE

C/C++

Compiler

Reference

PACKSTRUCT

Specifies

the

alignment

rules

to

use

for

members

of

structures,

unions

and

classes

in

the

source

code.

PACKSTRUCT

sets

the

packing

value

to

be

used

for

the

members

of

structures,

but

not

for

the

structures

themselves.

If

the

data

types

are

by

default

packed

along

boundaries

smaller

than

those

specified

by

#pragma

pack,

they

are

still

aligned

along

the

smaller

boundaries.

For

example:

v

Type

char

is

always

aligned

along

a

1-byte

boundary.

v

16-byte

pointers

will

be

aligned

on

a

16-byte

boundary.

PACKSTRUCT,

_Packed,

and

#pragma

pack

cannot

alter

this.

v

8-byte

pointers

can

have

any

alignment,

but

8-byte

alignment

is

preferred.

For

more

information

on

packing

and

alignment,

see

pragma

“pack”

on

page

65.

*NATURAL

PACKSTRUCT(

1

)

2

4

8

16

*NATURAL

Default

setting.

The

natural

alignment

for

the

members

of

structures

is

used.

1

Structures

and

unions

are

packed

along

1-byte

boundaries.

2

Structures

and

unions

are

packed

along

2-byte

boundaries.

4

Structures

and

unions

are

packed

along

4-byte

boundaries.

8

Structures

and

unions

are

packed

along

8-byte

boundaries.

16

Structures

and

unions

are

packed

along

16-byte

boundaries.

Chapter

4.

Control

Language

Commands

127

ENUM

Specifies

the

number

of

bytes

the

compiler

uses

to

represent

enumerations.

This

becomes

the

default

enumeration

size

for

the

object.

A

#pragma

enum

directive

overrides

this

compile

option.

*SMALL

ENUM(

1

)

2

4

*INT

*SMALL

Default

setting.

Use

the

smallest

possible

size

for

an

enum,

as

appropriate

to

the

given

enum

value.

1

Make

all

enum

variables

1

byte

in

size,

signed

if

possible

2

Make

all

enum

variables

2

bytes

in

size,

signed

if

possible

4

Make

all

enum

variables

4

bytes

in

size,

signed

if

possible

*INT

v

Use

the

ANSI

C

Standard

enum

size

(

4-bytes

signed).

v

Use

the

ANSI

C++

Standard

enum

size

(

4-bytes

signed;

unless

the

enumeration

value

>

231-1).

128

ILE

C/C++

Compiler

Reference

MAKEDEP

Creates

an

output

file

containing

targets

suitable

for

inclusion

in

a

description

file

for

the

Qshell

make

command.

*NODEP

MAKEDEP(

file-name

)

*NODEP

Default

setting.

The

option

is

disabled

and

no

file

is

created.

file-name

Specifies

an

IFS

path

indicating

the

location

and

name

of

the

resulting

output

file.

The

output

file

contains

a

line

for

the

input

file

and

an

entry

for

each

include

file.

It

has

the

general

form:

file_name.o:file_name.c

file_name.o:include_file_name

Include

files

are

listed

according

to

the

search

order

rules

for

the

#include

preprocessor

directive.

If

an

include

file

is

not

found,

it

is

not

added

to

the

output

file.

Files

with

no

include

statements

produce

output

files

containing

one

line

that

lists

only

the

input

file

name.

Chapter

4.

Control

Language

Commands

129

PPGENOPT

Valid

only

with

the

CRTCMOD

or

CRTCPPMOD

commands.

Lets

you

specify

outputs

generated

by

the

preprocessor.

*NONE

PPGENOPT(

)

*DFT

*GENLINE

*RMVCOMMENT

*NORMVCOMMENT

*NOGENLINE

*RMVCOMMENT

*GENLINE

*NOGENLINE

*NORMVCOMMENT

*NONE

Default

setting.

No

outputs

are

generated

by

the

preprocessor.

Selecting

this

option

disables

the

PPSRCFILE,

PPSRCMBR,

and

PPSRCSTMF

options.

*DFT

Equivalent

to

specifying

PPGENOPT(*RMVCOMMENT

*GENLINE).

*RMVCOMMENT

Preserves

comments

during

preprocessing.

*NORMVCOMMENT

Does

not

preserve

comments

during

preprocessing.

*NOGENLINE

Suppresses

#line

directives

in

the

preprocessor

output.

*GENLINE

Produces

#line

directives

in

the

preprocessor

output.

Notes:

1.

Specifying

the

PPGENOPT

compiler

option

with

any

setting

other

than

*NONE

forces

the

input

of

either

of

the

following:

v

PPSRCFILE

and

PPSRCMBR

v

PPSRCSTMF

and

SRCSTMF
2.

Specifying

PPGENOPT

with

any

setting

other

than

*NONE

overrides

the

OPTION(*NOPPONLY)

and

OPTION(*GEN)

option

settings.

3.

Specifying

OPTION(*PPONLY)

overrides

the

PPGENOPT(*NONE)

and

OPTION(*GEN)

option

settings.

Instead,

the

following

settings

are

implied:

v

PPGENOPT(*DFT)

PPSRCFILE(QTEMP/QACZEXPAND)

PPSRCMBR(*MODULE)

for

a

data

management

source

file.

v

PPGENOPT(*DFT)

PPSRCSTMF(*SRCSTMF)

for

an

IFS

source

file.
4.

The

PPGENOPT

compiler

option

is

ignored

if

the

TGTRLS

compiler

option

specifies

a

target

release

earlier

than

V5R1M0.

130

ILE

C/C++

Compiler

Reference

PPSRCFILE

Valid

only

with

the

CRTCMOD

or

CRTCPPMOD

commands.

This

option

is

used

together

with

the

PPGENOPT

option

to

define

where

the

preprocessor

output

object

is

stored.

(1)

*CURLIB/

PPSRCFILE(

file-name

)

library-name/

Notes:

1 Create

Module

command

only

*CURLIB

Default

setting.

The

object

is

stored

in

the

current

library.

If

a

job

does

not

have

a

current

library,

QGPL

is

used.

library-name

The

name

of

the

library

where

the

preprocessor

output

is

stored.

file-name

The

physical

file

name

under

which

the

preprocessor

output

is

stored.

The

file

is

created

if

it

does

not

already

exist.

Notes:

1.

The

PPSRCMBR

and

PPSRCFILE

options

cannot

be

specified

with

the

PPSRCSTMF

option.

2.

Specifying

OPTION(*PPONLY)

for

a

data

management

file

implies

the

following

settings:

v

PPGENOPT(*DFT)

PPSRCFILE(QTEMP/QACZEXPAND)

PPSRCMBR(*MODULE)

Chapter

4.

Control

Language

Commands

131

PPSRCMBR

Valid

only

with

the

CRTCMOD

or

CRTCPPMOD

commands.

This

option

is

used

together

with

the

PPGENOPT

option

to

define

the

name

of

the

member

where

preprocessor

output

is

stored.

(1)

*MODULE

PPSRCMBR(

membername

)

Notes:

1 Create

Module

command

only

*MODULE

The

module

name

that

is

supplied

on

the

MODULE

parameter

is

used

as

the

source

member

name.

This

is

the

default

when

a

member

name

is

not

specified.

member-name

Enter

the

name

of

the

member

that

will

contain

the

preprocessor

output.

Notes:

1.

The

PPSRCMBR

and

PPSRCFILE

options

cannot

be

specified

with

the

PPSRCSTMF

option.

2.

Specifying

OPTION(*PPONLY)

for

a

data

management

file

implies

the

following

settings:

v

PPGENOPT(*DFT)

PPSRCFILE(QTEMP/QACZEXPAND)

PPSRCMBR(*MODULE)

132

ILE

C/C++

Compiler

Reference

PPSRCSTMF

Valid

only

with

the

CRTCMOD

or

CRTCPPMOD

commands.

This

option

is

used

together

with

the

PPGENOPT

option

to

define

the

IFS

stream

path

name

where

preprocessor

output

is

stored.

(1)

PPSRCSTMF(

)

pathname

*SRCSTMF

Notes:

1 Create

Module

command

only

path-name

Enter

the

IFS

path

of

the

file

that

will

contain

the

preprocessor

output.

The

path

name

can

be

either

absolutely

or

relatively

qualified.

An

absolute

path

name

starts

with

’/’;

a

relative

path

name

starts

with

a

character

other

than

’/’.

If

absolutely

qualified,

then

the

path

name

is

complete.

If

relatively

qualified,

the

path

name

is

completed

by

pre-pending

the

job’s

current

working

directory

to

the

path

name.

*SRCSTMF

If

this

setting

is

chosen,

you

must

also

select

the

SRCSTMF

command

option.

Preprocessor

output

is

saved

to

the

current

directory

under

the

same

base

filename

specified

by

the

SRCSTMF

command

option,

but

with

a

filename

extension

of

.i.

Notes:

1.

The

PPSRCMBR

and

PPSRCFILE

options

cannot

be

specified

with

the

PPSRCSTMF

option.

2.

The

SRCSTMF

parameter

is

not

supported

in

a

mixed-byte

environment.

3.

Specifying

OPTION(*PPONLY)

for

an

IFS

file

implies

the

following

settings:

v

PPGENOPT(*DFT)

PPSRCSTMF(*SRCSTMF)

Chapter

4.

Control

Language

Commands

133

INCDIR

Lets

you

redefine

the

path

used

to

locate

include

header

files

when

compiling

a

source

stream

file.

This

option

is

ignored

if

the

source

file’s

location

is

not

defined

as

an

IFS

path

with

the

SRCSTMF

compiler

option,

or

if

the

full

absolute

path

name

is

specified

on

the

#include

directive.

�

*NONE

INCDIR(

directory-name

)

*NONE

Default

setting.

No

directories

are

inserted

at

the

start

of

the

default

user

include

path.

directory-name

Specifies

a

directory

name

to

be

inserted

at

the

start

of

the

default

user

include

path.

More

than

one

directory

name

can

be

entered.

Directories

are

inserted

at

the

start

of

the

default

user

include

path

in

the

order

they

are

entered.

134

ILE

C/C++

Compiler

Reference

CSOPT

This

option

lets

you

specify

one

or

more

compiler

service

options.

Valid

option

strings

will

be

described

in

PTF

cover

letters

and

release

notes.

*NONE

CSOPT(

)

'

compiler-service-options-string

'

*NONE

Default

setting.

No

compiler

service

options

selected.

compiler-servicing-options-string

Specified

compiler

service

options

are

used

when

creating

a

module

object.

Chapter

4.

Control

Language

Commands

135

LICOPT

Specifies

one

or

more

Licensed

Internal

Code

compile-time

options.

This

parameter

allows

individual

compile-time

options

to

be

selected,

and

is

intended

for

the

advanced

programmer

who

understands

the

potential

benefits

and

drawbacks

of

each

selected

type

of

compiler

option.

*NONE

LICOPT(

)

'

Licensed-Internal-Code-Options-String

'

The

possible

options

are:

*NONE

Default

setting.

No

compile-time

optimization

is

selected.

Licensed-Internal-Code-options-string

The

selected

Licensed

Internal

Code

compile-time

options

are

used

when

creating

the

module/program

object.

Certain

options

may

reduce

your

ability

to

debug

the

created

module/program.

See

the

ILE

Concepts

Book

for

more

information

about

LICOPT

options.

136

ILE

C/C++

Compiler

Reference

DFTCHAR

Instructs

the

compiler

to

treat

all

variables

of

type

char

as

either

signed

or

unsigned.

*UNSIGNED

DFTCHAR(

*SIGNED

)

*UNSIGNED

Default

setting.

Treats

all

variables

declared

as

type

char

as

type

unsigned

char.

The

_CHAR_UNSIGNED

macro

is

defined.

*SIGNED

Treats

all

variables

declared

as

type

char

as

type

signed

char,

and

defines

the

_CHAR_SIGNED

macro.

This

setting

is

ignored

if

the

TGTRLS

option

specifies

a

target

release

earlier

than

V5R1M0.

Chapter

4.

Control

Language

Commands

137

TGTCCSID

Specifies

the

target

coded

character

set

identifier

(CCSID)

of

the

created

object.

The

object’s

CCSID

identifies

the

coded

character

set

identifier

in

which

the

module’s

character

data

is

stored.

This

includes

character

data

used

to

describe

literals,

comments

and

identifier

names

described

by

the

source,

with

the

exception

of

identifier

names

for

CCSIDs

5026,

930

and

290.

If

an

ASCII

CCSID

is

entered,

the

compiler

issues

an

error

message

and

assumes

a

CCSID

of

37.

If

an

ASCII

CCSID

is

entered,

the

compiler

issues

no

error

message.

Translation

occurs

to

the

ASCII

CCSID

but

the

created

module

has

a

CCSID

of

65535.

The

TGTCCSID

option

will

also

determine

the

CCSID

of

character

values

used

in

listings.

However,

listings

sent

to

a

spool

file

will

be

in

the

job’s

CCSID

because

that

is

the

CCSID

of

the

spool

file.

This

option

is

ignored

when

targeting

a

compile

for

a

release

previous

to

V5R1.

*SOURCE

TGTCCSID(

*JOB

)

*HEX

coded-character-set-identifier

*SOURCE

Default

setting.

The

CCSID

of

the

root

source

file

is

used.

*JOB

The

CCSID

of

the

current

job

is

used.

*HEX

The

CCSID

65535

is

used,

indicating

that

character

data

is

treated

as

bit

data

and

is

not

converted.

coded-character-set-identifier

Specifies

a

specific

CCSID

to

be

used.

138

ILE

C/C++

Compiler

Reference

TEMPLATE

Specifies

options

to

customize

C++

template

generation.

(1)

(2)

(3)

*NONE

TEMPLATE(

TEMPLATE

Details

)

TEMPLATE

Details:

*TEMPINC

1

*NO

directory-pathname

1

65535

*WARN

*ERROR

Notes:

1 C++

compiler

only

2 Create

Module

command

only

3 Applicable

only

when

using

the

Integrated

File

System

(IFS)

The

possible

options

are:

*NONE

No

automatic

template

instantiation

file

is

created.

The

compiler

instantiates

all

templates

whose

full

implementation

is

known

if

an

object

of

that

template

class

is

defined,

or

if

a

call

is

made

to

that

template

function

within

the

module.

If

the

full

implementation

is

not

known

(for

example,

you

have

a

template

class

definition,

but

not

the

definition

of

the

methods

of

that

template

class),

that

template

is

not

instantiated

within

the

module.

Note:

This

can

cause

code

duplication

in

program

executables

where

template

specifications

are

used

in

more

than

one

module.

*TEMPINC

Templates

are

generated

into

a

directory

named

tempinc

which

is

created

in

the

directory

where

the

root

source

file

was

found.

If

the

source

file

is

not

a

stream

file,

a

file

named

TEMPINC

will

be

created

in

the

library

where

the

source

file

resides.

The

TEMPLATE(*TEMPINC)

and

TMPLREG

options

are

mutually

exclusive.

directory-pathname

Same

as

*TEMPLATE(*TEMPINC),

except

that

template

instantiation

files

are

generated

to

a

specified

directory

location.

The

directory

path

can

be

relative

to

the

current

directory,

or

it

can

be

an

absolute

directory

path.

If

the

specified

directory

does

not

exist,

it

is

created.

Note:

An

error

condition

results

if

the

specified

directory

path

contains

a

directory

that

does

not

exist,

for

example,

TEMPLATE(/source/subdir1/tempinc)

when

subdir1

does

not

exist.

1

65535

Specifies

the

maximum

number

of

template

include

files

to

be

generated

by

the

Chapter

4.

Control

Language

Commands

139

*TEMPLATE(*TEMPINC)

option

for

each

header

file.

If

not

specified,

this

setting

defaults

to

1.

The

maximum

value

for

this

setting

is

65535.

*NO

Default

setting

if

TEMPLATE(*NONE)

is

not

in

effect.

If

specified,

the

compiler

does

not

parse

to

reduce

the

number

of

errors

issued

in

code

written

for

previous

versions

of

the

compiler.

Note:

Regardless

of

the

setting

of

this

and

the

next

two

options,

error

messages

are

produced

for

problems

that

appear

outside

implementations.

For

example,

errors

found

during

the

parsing

or

semantic

checking

of

constructs

such

as

the

following,

always

cause

error

messages:

v

return

type

of

a

function

template

v

parameter

list

of

a

function

template

v

member

list

of

a

class

template

v

base

specifier

of

a

class

template

*WARN

Parses

template

implementations

and

issues

warning

messages

for

semantic

errors.

Error

messages

are

also

issued

for

errors

found

while

parsing.

*ERROR

Treats

problems

in

template

implementations

as

errors,

even

if

the

template

is

not

instantiated.

140

ILE

C/C++

Compiler

Reference

TMPLREG

Valid

only

with

the

CRTCPPMOD

command.

Maintains

a

record

of

all

templates

as

they

are

encountered

in

the

source

and

ensures

that

only

one

instantiation

of

each

template

is

made.

The

TMPLREG

and

TEMPLATE(*TEMPINC)

parameters

are

mutually

exclusive.

(1)

(2)

(3)

*NONE

TMPLREG(

*DFT

)

’

path-name

’

Notes:

1 C++

compiler

only

2 Create

Module

command

only

3 Applicable

only

when

using

the

Integrated

File

System

(IFS)

The

possible

options

are:

*NONE

Default

setting.

Do

not

use

the

template

registry

file

to

keep

track

of

template

information.

*DFT

If

the

source

file

is

a

stream

file,

the

template

registry

file

is

created

in

the

source

directory

with

the

default

name

’templateregistry’.

If

the

source

file

is

not

a

stream

file,

a

file

QTMPLREG

with

the

member

QTMPLREG

will

be

created

in

the

library

where

the

source

resides.

path-name

Specifies

a

path

name

for

the

stream

file

in

which

to

store

the

template

registry

information.

Chapter

4.

Control

Language

Commands

141

WEAKTMPL

Specifies

whether

or

not

weak

definitions

are

used

for

static

members

of

a

template

class.

Weakly

defined

static

members

of

a

template

class

will

prevent

the

collisions

of

multiple

definitions

in

a

program

or

service

program.

(1)

(2)

*YES

WEAKTMPL(

*NO

)

Notes:

1 C++

compiler

only

2 Applicable

only

when

using

the

Integrated

File

System

(IFS)

The

possible

options

are:

*YES

Default

setting.

Weak

definitions

will

be

used

for

static

members

of

a

template

class.

*NO

Weak

definitions

will

not

be

used

for

static

members

of

a

template

class.

Some

programs

require

strong

static

data

members

when

they

are

linked

to

other

modules.

You

can

override

the

default

only

at

compilation

time.

142

ILE

C/C++

Compiler

Reference

Chapter

5.

Using

the

ixlc

Command

to

Invoke

the

C/C++

Compiler

The

ixlc

command

lets

you

invoke

the

compiler

and

specify

compiler

options

from

a

Windows

client

or

iSeries

Qshell

command

line.

Module

binder

commands

can

be

specified.

The

ixlc

command

can

be

used

together

with

AIX

or

Windows

make

files

to

control

compilation.

Using

ixlc

on

a

Windows

Client

When

using

the

Windows

client

version

of

ixlc,

you

can:

v

Compile

source

files

residing

on

your

Windows

client

without

first

having

to

transfer

them

to

an

iSeries

system.

Header

files,

however,

must

reside

on

the

iSeries

system.

v

Compile

data

management

source

code

residing

on

an

iSeries

system.

v

Compile

IFS

source

code

residing

on

an

iSeries

system.

You

must

install

the

CODE

component

of

IBM

WebSphere

Development

Studio

Client

for

iSeries

if

you

want

to

use

ixlc

from

the

command

line

of

a

Windows

client.

The

ixlc

and

ixlclink

commands

require

you

to

sign

on

to

the

iSeries

system.

If

you

set

a

default

host

together

with

a

valid

user

ID

and

password

in

the

Communication

Daemon,

you

will

not

have

to

sign

on

every

time

you

want

to

use

these

commands.

Using

ixlc

in

Qshell

When

using

the

iSeries

version

of

ixlc

on

the

″green

screen″

Qshell

command

line,

you

can:

v

Compile

data

management

source

code

residing

on

an

iSeries

system.

v

Compile

IFS

source

code

residing

on

an

iSeries

system.

v

Use

header

files

residing

on

the

iSeries

system.

ixlc

Command

and

Options

Syntax

Basic

syntax

for

the

ixlc

command

is:

��

ixlc

-?

-c

-+

pgm_source

�

compiler_opts

�

�

-B

″

binder_cmd

″

��

where:

©

Copyright

IBM

Corp.

1993,

2004

143

ixlc

Basic

compiler

command

invocation.

By

default,

the

ixlc

command

instructs

the

compiler

to

create

a

bound

program.

-?

Specifying

this

flag

displays

help

for

the

ixlc

command.

-c

Specifying

this

flag

instructs

the

compiler

to

create

a

module.

-+

Specifying

this

flag

invokes

the

C++

compiler.

pgm_source

Specifies

the

name

of

the

program

source

file

being

compiled.

You

can

compile

an

IFS

source

program

or

data

management

source

program

by

providing

the

source

name

as:

qsys.lib/.../name.mbr

Alternately,

you

can

also

compile

a

data

management

source

program

by

using

the

-qsrcfile(library/file)

and

-qsrcmbr(member)

Qshell

compiler

options

to

identify

the

location

of

the

program

source.

compiler_opts

Specifies

the

ixlc

name

of

an

ILE

C/C++

compiler

option.

-B″binder_cmd″

Specifies

a

binder

command

and

options.

For

example:

-B"CRTPGM

PGM(library/target)

MODULE(...)"

Notes

on

Usage

1.

ixlc

commands

and

options

are

case

sensitive.

2.

It

is

possible

to

specify

conflicting

options

when

invoking

the

compiler.

If

this

occurs,

options

specified

later

on

the

command

line

will

override

options

specified

earlier.

For

example,

invoking

the

compiler

by

specifying

:

ixlc

hello.c

-qgen

-qnogen

is

equivalent

to

specifying:

ixlc

hello.c

-qnogen

3.

Some

option

settings

are

cumulative,

and

can

be

specified

more

than

once

on

the

command

line

without

cancelling

out

earlier

specifications

of

that

same

option.

These

options

include:

v

settings

within

the

OPTION

compiler

option

group

v

settings

within

the

CHECKOUT

compiler

option

group

v

ALIAS

compiler

option

v

DEFINE

compiler

option

v

PPGENOPT

compiler

option

ixlc

Command

Options

The

table

below

shows

the

mappings

of

Create

Module

and

Create

Bound

Program

compiler

options

to

their

ixlc

equivalents.

Compiler

options

may

have

language

and

usage

restrictions

that

are

not

shown

in

this

table.

For

information

on

such

restrictions,

refer

to

the

reference

information

for

that

option.

Create

Module/Create

Bound

Program

Options

Option

Settings

ixlc

Equivalents

and

Notes

“MODULE”

on

page

86,

“PGM”

on

page

86

[*CURLIB/

|

libraryname/]name

-o[*CURLIB/

|

libraryname/]name

If

library

is

not

specified,

the

target

object

goes

to

the

current

library

as

specified

by

the

current

user

profile.

If

the

user

does

not

have

a

current

library,

QGPL

is

assumed.

144

ILE

C/C++

Compiler

Reference

Create

Module/Create

Bound

Program

Options

Option

Settings

ixlc

Equivalents

and

Notes

“SRCFILE”

on

page

87

[*LIBL/

|

*CURLIB/

|

libraryname/]

filename

-qsrcfile=[*LIBL/

|

*CURLIB/

|

libraryname/]

filename

“SRCMBR”

on

page

88

*MODULE

|

mbrname

-qsrcmbr=mbrname

“SRCSTMF”

on

page

89

pathname

(none,

uses

default

pathname)

“TEXT”

on

page

90

*SRCMBRTEXT

|

*BLANK

|

text

-qtext="text"

“OUTPUT”

on

page

91

*NONE

-qnoprint

*PRINT

-qprint

filename

-qoutput="filename"

Chapter

5.

Using

the

ixlc

Command

to

Invoke

the

C/C++

Compiler

145

Create

Module/Create

Bound

Program

Options

Option

Settings

ixlc

Equivalents

and

Notes

“OPTION”

on

page

92

*AGR

|

*NOAGR

-qagr

*BITSIGN

|

*NOBITSIGN

-qbitfields=signed

-qbitfields=unsigned

*DIGRAPH

|

*NODIGRAPH

-qdigraph

-qnodigraph

*EVENTF

|

*NOEVENTF

-qeventf

-qnoeventf

*EXPMAC

|

*NOEXPMAC

-qexpmac

-qnoexpmac

*FULL

|

*NOFULL

-qfull

-qnofull

*GEN

|

*NOGEN

-qgen

-qnogen

*INCDIRFIRST

|

*NOINCDIRFIRST

-qidirfirst

*LOGMSG

|

*NOLOGMSG

-qlogmsg

-qnologmsg

*LONGLONG

|

*NOLONGLONG

-qlonglong

-qnolonglong

*NORTTI

|

*RTTIALL

|

*RTTITYPE

|

*RTTICAST

-qnortti

-qrtti=all

-qrtti=typeinfo

-qrtti=dynamiccast

*PPONLY

|

*NOPPONLY

-qpponly

*SECLVL

|

*NOSECLVL

-qseclvl

-qnoseclvl

*SHOWINC

|

*NOSHOWINC

-qshowinc

-qnoshowinc

*SHOWSKP

|

*NOSHOWSKP

-qshowskp

-qnoshowskp

*SHOWSRC

|

*NOSHOWSRC

-qsource

-qnosource

*SHOWSYS

|

*NOSHOWSYS

-qshowsys

-qnoshowsys

*SHOWUSR

|

*NOSHOWUSR

-qshowusr

*STDINC

|

*NOSTDINC

-qstdinc

-qnostdinc

*STDLOGMSG

|

*NOSTDLOGMSG

-qstdlogmsg

-qnostdlogmsg

*STRUCREF

|

*NOSTRUCREF

-qrefagr

*SYSINCPATH

|

*NOSYSINCPATH

-qsysincpath

-qnosysincpath

*XREF

|

*NOXREF

-qxref=full

-qxref

*XREFREF

|

*NOXREFREF

-qattr=full

-qattr

146

ILE

C/C++

Compiler

Reference

Create

Module/Create

Bound

Program

Options

Option

Settings

ixlc

Equivalents

and

Notes

“CHECKOUT”

on

page

98

*NONE

|

*USAGE

|

*ALL

-qinfo=cnd

-qinfo=all

*CLASS

|

*NOCLASS

-qinfo=cls

*COND

|

*NOCOND

-qinfo=cnd

*CONST

|

*NOCONST

-qinfo=cns

*EFFECT

|

*NOEFFECT

-qinfo=eff

*ENUM

|

*NOENUM

-qinfo=enu

*EXTERN

|

*NOEXTERN

-qinfo=ext

*GENERAL

|

*NOGENERAL

-qinfo=gen

*GOTO

|

*NOGOTO

-qinfo=got

*INIT

|

*NOINIT

-qinfo=ini

*LANG

|

*NOLANG

-qinfo=lan

*PARM

|

*NOPARM

-qinfo=par

*PORT

|

*NOPORT

-qinfo=por

*PPCHECK

|

*NOPPCHECK

-qinfo=ppc

*PPTRACE

|

*NOPPTRACE

-qinfo=ppt

*REACH

|

*NOREACH

-qinfo=rea

*TEMP

|

*NOTEMP

-qinfo=gnr

*TRUNC

|

*NOTRUNC

-qinfo=trd

*UNUSED

|

*NOUNUSED

-qinfo=use

“OPTIMIZE”

on

page

101

10

|

20

|

30

|

40

-qoptimize=10

-qoptimize=20

-qoptimize=30

-qoptimize=40

-O

-O

is

equivalent

to

specifying

-qoptimize=40

Chapter

5.

Using

the

ixlc

Command

to

Invoke

the

C/C++

Compiler

147

Create

Module/Create

Bound

Program

Options

Option

Settings

ixlc

Equivalents

and

Notes

“INLINE”

on

page

102

*OFF

-qnoinline

*ON

*NOAUTO

|

*AUTO

250

|

1-65535

|

*NOLIMIT

2000

|

1-65535

|

*NOLIMIT

*NO

|

*YES

-qinline="opt1

opt2

opt3

opt4"

where:

v

opt1

is

one

of:

–

noauto

–

auto

v

opt2

is

one

of:

–

250

–

1–65536

–

*NOLIMIT

v

opt3

is

one

of:

–

2000

–

1–65536

–

*NOLIMIT

v

opt4

is

one

of:

–

norpt

–

rpt

One

selection

from

each

option

group

must

be

specified.

Selections

must

be

separated

with

a

space.

For

example:

-qinline="auto

400

3000

rpt"

“MODCRTOPT”

on

page

104

*KEEPILDATA

|

*NOKEEPILDATA

-qildta

-qnoildta

“DBGVIEW”

on

page

105

*NONE

|

*ALL

|

*STMT

|

*SOURCE

|

*LIST

-qdbgview=none

-qdbgview=all

-qdbgview=stmt

-qdbgview=source

-qdbgview=list

-g

-g

is

equivalent

to

specifying

-qdbgview=all

“DEFINE”

on

page

106

*NONE

|

name

|

name=value

-Dname

Defines

name

with

a

value

of

1.

“LANGLVL”

on

page

107

*EXTENDED

|

*ANSI

|

*LEGACY

-qlanglvl=extended

-qlanglvl=ansi

-qlanglvl=compat366

“ALIAS”

on

page

108

*ANSI

|

*NOANSI

|

*ADDRTAKEN

|

*NOADDRTAKEN

|

*ALLPTRS

|

*NOALLPTRS

|

*TYPEPTR

|

*NOTYPEPTR

-qalias=ansi

-qalias=noansi

-qalias=addrtaken

-qalias=noaddrtaken

-qalias=allptrs

-qalias=noallptrs

-qalias=typeptr

-qalias=notypeptr

148

ILE

C/C++

Compiler

Reference

Create

Module/Create

Bound

Program

Options

Option

Settings

ixlc

Equivalents

and

Notes

“SYSIFCOPT”

on

page

109

*NOIFSIO

|

**IFSIO

|

*IFS64IO

-qnoifsio

-qifsio

-qifsio=64

*ASYNCSIGNAL

|

*NOASYNCSIGNAL

-qasyncsignal

-qnoasyncsignal

“LOCALETYPE”

on

page

110

*LOCALE

|

*LOCALEUCS2

|

*LOCALEUTF

|

*CLD

-qlocale=locale

-qlocale=localeucs2

-qlocale=localeutf

-qlocale=cld

“FLAG”

on

page

111

0

|

10

|

20

|

30

-qflag=0

-qflag=10

-qflag=20

-qflag=30

“MSGLMT”

on

page

112

*NOMAX

|

0-32767

30

|

0

|

10

|

20

-qmsglmt="limit

severity"

where:

limit

can

be

*nomax

or

any

integer

from

0-32767,

and

severity

can

be

any

one

of

0,

10,

20,

or

30.

The

default

is:

-qmsglmt="*nomax

30"

“REPLACE”

on

page

113

*YES

|

*NO

-qreplace

-qnoreplace

“USRPRF”

on

page

114

*USER

|

*OWNER

-quser

-qowner

“AUT”

on

page

115

*LIBCRTAUT

|

*CHANGE

|

*USE

|

*ALL

|

*EXCLUDE

-qaut=libcrtaut

-qaut=change

-qaut=use

-qaut=all

-qaut=exclude

“TGTRLS”

on

page

116

*CURRENT

|

*PRV

|

release_lvl

-qtgtrls=*current

-qtgtrls=*prv

-qtgtrls=VxRxMx

“ENBPFRCOL”

on

page

118

*PEP

-qenbpfrcol=pep

*ENTRYEXIT

*NONLEAF

-qenbpfrcol=entryexitnonleaf

*ENTRYEXIT

*ALLPRC

-qenbpfrcol=entryexitallprc

*FULL

*NONLEAF

-qenbpfrcol=fullnonleaf

*FULL

*ALLPRC

-qenbpfrcol=fullallprc

“PFROPT”

on

page

119

*SETFPCA

|

*NOSETFPCA

-qsetfpca

-qnosetfpca

*NOSTRDONLY

|

*STRDONLY

-qnoro

-qro

“PRFDTA”

on

page

120

*NOCOL

|

*COL

-qnoprofile

-qprofile

-qprfdta=*NOCOL

-qprfdta=*COL

“TERASPACE”

on

page

121

*NO

-qteraspace=no

*YES

*NOTSIFC

-qteraspace=notsifc

*YES

*TSIFC

-qteraspace=tsifc

Chapter

5.

Using

the

ixlc

Command

to

Invoke

the

C/C++

Compiler

149

Create

Module/Create

Bound

Program

Options

Option

Settings

ixlc

Equivalents

and

Notes

“STGMDL”

on

page

124

*SNGLVL

|

*TERASPACE

|

*INHERIT

-qstoragemodel=snglvl

-qstoragemodel=teraspace

-qstoragemodel=inherit

“DTAMDL”

on

page

125

*P128

|

*LLP64

-qdatamodel=P128

-qdatamodel=LLP64

“RTBND”

on

page

126

*DEFAULT

|

*LLP64

-qrtbnd

-qrtbnd=llp64

“PACKSTRUCT”

on

page

127

1

|

2

|

4

|

8

|

16

|

*NATURAL

-qalign=1

-qalign=2

-qalign=4

-qalign=8

-qalign=16

-qalign=natural

“ENUM”

on

page

128

1

|

2

|

4

|

*INT

|

*SMALL

-qenum=1

-qenum=2

-qenum=4

-qenum=int

-qenum=small

“MAKEDEP”

on

page

129

*NODEP

|

filename

-Mmakefile

“PPGENOPT”

on

page

130

*NONE

|

*DFT

-P

*RMVCOMMENT

|

*NORMVCOMMENT

-qppcomment

-qnoppcomment

*GENLINE

|

*NOGENLINE

-qppline

-qnoppline

“PPSRCFILE”

on

page

131

*CURLIB/filename

-qppsrcfile=*CURLIB/filename

libraryname/filename

-qppsrcfile=libraryname/filename

filename

-qppsrcfile=filename

“PPSRCMBR”

on

page

132

*MODULE

|

mbrname

-qppsrcmbr=*module

-qppsrcmbr=mbrname

“PPSRCSTMF”

on

page

133

pathname

|

*SRCSTMF

-qppfile=filename

-qppfile=*srcstmf

“INCDIR”

on

page

134

*NONE

|

pathname

-Ipathname

When

used

on

the

command

line,

specifies

directories

on

an

iSeries

system.

Include

environment

variables

are

overwritten.

“CSOPT”

on

page

135

string

-qcsopt=string

“LICOPT”

on

page

136

*NONE

|

string

-qlicopt=string

“DFTCHAR”

on

page

137

*SIGNED

|

*UNSIGNED

-qchar=signed

-qchar=unsigned

“TGTCCSID”

on

page

138

*SOURCE

|

*JOB

|

*HEX

|

ccsid#

-qtgtccsid=source

-qtgtccsid=job

-qtgtccsid=hex

-qtgtccsid=ccsid#

“TEMPLATE”

on

page

139

*NONE

|

pathname

-qnotempinc

-qtempinc=pathname

1

-

65535

-qtempmax=1-65535

*NO

|

*WARN

|

*ERROR

-qtmplparse=no

-qtmplparse=warn

-qtmplparse=error

150

ILE

C/C++

Compiler

Reference

Create

Module/Create

Bound

Program

Options

Option

Settings

ixlc

Equivalents

and

Notes

“TMPLREG”

on

page

141

*DFT

|

*NONE

-qtmplreg

-qnotmplreg

“WEAKTMPL”

on

page

142

*YES

|

*NO

-qweaktmpl

-qnoweaktmpl

Chapter

5.

Using

the

ixlc

Command

to

Invoke

the

C/C++

Compiler

151

152

ILE

C/C++

Compiler

Reference

Chapter

6.

Using

ixlclink

to

Create

Programs

The

ixlclink

command

lets

you

invoke

the

OS/400

Create

Program

(CRTPGM)

and

Create

Service

Program

(CRTSRVPGM)

commands

from

a

personal

computer

workstation.

Command

parameters

are

passed

by

ixlclink

to

the

OS/400

CRTPGM

or

CRTSRVPGM

programs,

which

in

turn

bind

modules

residing

on

an

iSeries

system

into

an

ILE

program

or

service

program.

You

must

install

the

CODE

component

of

IBM

WebSphere

Development

Studio

Client

for

iSeries

if

you

want

to

use

the

ixlclink

command

from

the

command

line

of

a

Windows

client.

Examples

of

ixlclink

Usage

1.

The

following

ixlclink

command

invokes

the

OS/400

CRTPGM

command

to

create

a

program.

c:\>ixlclink

-qpgm=usr/simple

-qgen

-qnodupproc

-qmodule=usr/simplec

"-qtext=’simple

c

program’

"

It

is

equivalent

to

issuing

the

following

CL

command:

CRTPGM

PGM(usr/simple)

module(usr/simplec)

text(’simple

c

program’

)

option(

*gen

*nodupproc)

2.

The

following

ixlclink

command

invokes

the

OS/400

CRTSRVPGM

command

to

create

a

service

program.

c:\>ixlclink

-qsrvpgm=usr/simple

"-qbnddir=temp/a

temp/c"

-qgen

-qnodupproc

-qmodule=usr/simplec

"-qtext=’simple

service

program’

"

is

equivalent

to

issuing

the

following

CL

command:

CRTSRVPGM

SRVPGM(usr/simple)

bnddir(temp/a

temp/b)

module(usr/simplec)

text(’simple

service

program’

)

option(

*gen

*nodupproc)

3.

If

the

command

line

parameter

includes

one

or

more

spaces,

you

need

to

use

″

″

to

enclose

the

parameter.

For

example:

"-qbnddir=temp/a

temp/b"

is

seen

by

CL

as:

bnddir(temp/a

temp/b)

4.

If

you

want

to

use

*

as

part

of

a

string,

you

need

to

use

’

’

to

enclose

the

string.

For

example:

-qtext=’*blank’

is

seen

by

CL

as:

-qtext=*blank

5.

If

there

is

space

in

a

string

associated

with

a

command

line

parameter,

you

need

to

use

’

’

to

quote

the

string

and

″

″

to

quote

the

command

line.

For

example:

"-qtext=’simple

c’"

is

seen

by

CL

as:

©

Copyright

IBM

Corp.

1993,

2004

153

text(’simple

c’)

For

more

information

on

creating

programs

or

service

programs,

see

Creating

a

Program

and

Creating

a

Service

Program

in

WebSphere

Development

Studio:

ILE

C/C++

Programmer’s

Guide.

ixlclink

Command

Options

Most

CRTPGM

and

CRTSRVPGM

command

options

have

ixlclink

counterparts,

as

listed

in

the

table

below:

CRTPGM

and

CRTSRVPGM

Command

Options

Option

Settings

ixlclink

Equivalents

(none)

(none)

-?

Displays

help

for

the

ixlclink

command.

PGM

[*CURLIB/

|

libraryname/]name

-qpgm=[*CURLIB/

|

libraryname/]name

SRVPGM

[*CURLIB/

|

libraryname/]name

-qsrvpgm=[*CURLIB/

|

libraryname/]name

MODULE

[*LIBL/

|

*CURLIB/

|

*USRLIBL/

|

libraryname/]

*PGM

|

*SRVPGM

|*ALL

|

name

-qmodule=[*LIBL/

|

*CURLIB/

|

*USRLIBL/

|

libraryname/]*PGM

|

*SRVPGM

*ALL

|

name

TEXT

*ENTMODTEXT

|

*BLANK

|

text

-qtext="text"

ENTMOD

[*LIBL/

|

*CURLIB/

|

*USRLIBL/

|

libraryname/]

*FIRST

|

*ONLY

|*PGM

|

modulename

-qentmod=[*LIBL/

|

*CURLIB/

|

*USRLIBL/

|

libraryname/]*FIRST

|

*ONLY

|

*PGM

|

modulename

BNDSRVPGM

[*LIBL/

|

libraryname/]*NONE

|

*ALL

|

srv_pgmname

-qbndsrvpgm==[*LIBL/

|

libraryname/]*NONE

|

*ALL

|

srv_pgmname

BNDDIR

[*LIBL/

|

*CURLIB/

|

*USRLIBL/

|

libraryname/]

*NONE

|

dir

-qbnddir=

=[*LIBL/

|

*CURLIB/

|

*USRLIBL/

|

libraryname/]*NONE

|

dir

ACTGRP

*NEW

|

*CALLER

|

actgrpname

-qactgrp=*NEW

-qactgrp=*CALLER

-qactgrp=actgrpname

OPTION

*GEN

|

*NOGEN

-qgen

-qnogen

*DUPPROC

|

*NODUPPROC

-qdupproc

-qnodupproc

*DUPVAR

|

*NODUPVAR

-qdupvar

-qnodupvar

*WARN

|

*NOWARN

-qwarn

-qnowarn

*RSLVREF

|

*NORSLVREF

-qrslvref

-qnorslvref

DETAIL

*NONE

|

*BASIC

|

*EXTENDED

|

*FULL

-qdetail=*NONE

-qdetail=*BASIC

-qdetail=*EXTENDED

-qdetail=*FULL

ALWUPD

*YES

|

*NO

-qalwupd

-qnoalwupd

ALWLIBUPD

*YES

|

*NO

-qalwlibupd

-qnoalwlibupd

154

ILE

C/C++

Compiler

Reference

CRTPGM

and

CRTSRVPGM

Command

Options

Option

Settings

ixlclink

Equivalents

REPLACE

*YES

|

*NO

-qreplace

-qnoreplace

USRPRF

*USER

|

*OWNER

-qusrprf=*USER

-qusrprf=*OWNER

AUT

*LIBCRTAUT

|

*CHANGE

|

*USE

|

*ALL

|

*EXCLUDE

-qaut=*libcrtaut

-qaut=*all

-qaut=*change

-qaut=*use

-qaut=*exclude

TGTRLS

*CURRENT

|

*PRV

|

release_lvl

-qtgtrls=*current

-qtgtrls=*prv

-qtgtrls=VxRxMx

ALWRINZ

*YES

|

*NO

-qalwrinz

-qnoalwrinz

EXPORT

*SRCFILE

|

*ALL

-qexport=*srcfile

-qexport=*all

SRCFILE

[*LIBL/

|

*CURLIB/

|

libraryname/]

QSRVSRC

|

filename

-qsrcfile=[*LIBL/

|

*CURLIB/

|

libraryname/]

QSRVSRC

|

filename

SRCMBR

*SRVPGM

|

membername

-qsrcmbr=membername

-qsrcmbr=*SRVPGM

For

more

information

about

CRTPGM

or

CRTSRVPGM

programs

and

syntax,

see

CRTPGM

(Create

Program)

Command

Description

and

CRTSRVPGM

(Create

Service

Program)

Command

Description,

available

on

the

Web

from

the

iSeries

400

Information

Center

at:

http://www.ibm.com/eserver/iseries/infocenter

After

selecting

your

geographic

location

along

with

language

and

operating

system

level,

select

Programming

->

CL

->

Alphabetical

List

of

Commands

from

the

contents

menu.

Alternately,

use

the

search

function

to

search

for

the

terms

CRTPGM

and

CRTSRVPGM.

Chapter

6.

Using

ixlclink

to

Create

Programs

155

156

ILE

C/C++

Compiler

Reference

Chapter

7.

I/O

Considerations

This

chapter

provides

information

on:

v

Data

Management

Operations

on

Record

Files

v

Data

Management

Operations

on

Stream

Files

v

C

Streams

and

File

Types

v

DDS-to-C/C++

Data

Type

Mappings

Data

Management

Operations

on

Record

Files

For

more

information

about

data

management

operations

and

ILE

C/C++

functions

available

for

record

files,

see

the

File

Systems

and

Management

section

in

the

Database

and

File

Systems

category

at

the

iSeries

400

Information

Center

Web

site:

http://publib.boulder.ibm.com/pubs/html/as400/infocenter.htm

Data

Management

Operations

on

Stream

Files

To

use

stream

files

(type=record)

with

record

I/O

functions

you

must

cast

the

FILE

pointer

to

an

RFILE

pointer.

For

more

information

about

data

management

operations

and

ILE

C/C++

functions

available

for

stream

files,

see

the

File

Systems

and

Management

section

in

the

Database

and

File

Systems

category

at

the

iSeries

400

Information

Center

Web

site:

http://publib.boulder.ibm.com/pubs/html/as400/infocenter.htm

C

Streams

and

File

Types

The

following

table

summarizes

which

file

types

are

supported

as

streams.

Table

2.

Processing

C

Stream

and

File

Types

Stream

Database

Diskette

Tape

Printer

Display

ICF

DDM

Save

TEXT

Yes

No

No

Yes

No

No

Yes

No

BINARY:

Character

at

a

time

Yes

No

No

Yes

No

No

Yes

No

BINARY:

Record

at

a

time

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

DDS-to-C/C++

Data

Type

Mapping

The

following

table

shows

DDS

data

types

and

the

corresponding

ILE

C/C++

declarations

that

are

used

to

map

fields

from

externally

described

files

to

your

ILE

C/C++

program.

The

ILE

C/C++

compiler

creates

fields

in

structure

definitions

based

on

the

DDS

data

types

in

the

externally

described

file.

©

Copyright

IBM

Corp.

1993,

2004

157

Table

3.

DDS-to-C/C++

Data

Type

Mappings

DDS

Data

Type

Length

Decimal

Position

C/C++

Declaration

Indicator

1

0

char

INxx_INyy[n];

for

unused

indicators

xx

through

yy

char

INxx;

for

used

indicator

xx

A

-

alphanumeric

1-32766

none

char

field[n];

(where

n

=

1

to

32766)

A

-

alphanumeric

variable

length

VARLEN

keyword

1-32740

none

_Packed

struct

{

short

len;

char

data[n];

}

field;

where

n

is

the

maximum

length

of

field

B

-

binary

1-4

0

short

int

field;

B

-

binary

1-4

1-4

char

field[2];

B

-

binary

5-9

0

int

field;

B

-

binary

5-9

1-9

char

field[4];

H

-

hexadecimal

1

none

char

field;

H

-

hexadecimal

2-32766

none

char

field[n];

(where

n

=

2

to

32766)

H

-

hexadecimal

variable

length

VARLEN

keyword

1-32740

none

_Packed

struct

{

short

len;

char

data[n];

}

field;

where

n

is

the

maximum

length

of

field

G

-

graphic

variable

length

VARLEN

keyword

4-1000

none

_Packed

struct

{

short

len;

wchar_t

data[n];

}

field;

(where

n

=

4

to

1000)

P

-

packed

decimal

1-31

0-31

decimal

(n,p)

where

n

is

length

and

p

is

decimal

position

on

option

d

S

-

zoned

decimal

1-31

0-31

char

field[n];

(where

n

=

1

to

31)

F

-

floating

point

�1�

�1�

float

field;

F

-

floating

point

�1�

�1�

double

field;

J

-

DBCS

only

4-32766

none

char

field[n];

(where

n

=

4

to

32766

and

n

is

an

even

number)

E

-

DBCS

either

4

-

32766

none

char

field[n];

(where

n

=

4

to

32766

and

n

is

an

even

number)

O

-

DBCS

open

4

-

32766

none

char

field[n];

(where

n

=

4

to

32766)

J

-

DBCS

only

variable

length

VARLEN

keyword

4-32740

none

_Packed

struct

{

short

len;

char

data[n];

}

field;

(where

n

=

4

to

32740

and

n

is

an

even

number)

E

-

DBCS

either

variable

length

VARLEN

keyword

4-32740

none

_Packed

struct

{

short

len;

char

data[n];

}

field;

(where

n

=

4

to

32740

and

n

is

an

even

number)

O

-

DBCS

open

variable

length

VARLEN

keyword

4-32740

none

_Packed

struct

{

short

len;

char

data[n];

}

field;

(where

n

=

4

to

32740)

T

-

time

8

none

char

field[8];

L

-

date

6,

8,

or

10

none

char

field[n];

(where

n

=

6,

8

or

10)

Z

-

time

stamp

26

none

char

field[26];

Note:

�1�The

C

declaration

(float

or

double)

is

based

on

what

is

specified

in

the

FLTPCN

(floating-point

precision)

keyword

in

the

DDS:

*SINGLE

(default)

is

float,

*DOUBLE

is

double.

158

ILE

C/C++

Compiler

Reference

You

can

find

more

information

in

the

DDS

Reference,

available

in

PDF

and

HTML

formats

from

the

iSeries

400

Information

Center

Web

site

at:

http://publib.boulder.ibm.com/pubs/html/as400/infocenter.htm

Chapter

7.

I/O

Considerations

159

160

ILE

C/C++

Compiler

Reference

Appendix.

Control

Characters

The

following

table

identifies

the

internal

hexadecimal

representation

of

operating

system

control

sequences

used

by

the

ILE

C/C++

compiler

and

library.

Table

4.

Internal

Hexadecimal

Representation

Print

representation

Internal

representation

NUL

(null)

0x00

SOH

(start

of

heading)

0x01

STX

(start

of

text)

0x02

ETX

(end

of

text)

0x03

SEL

(select)

0x04

HT

(horizontal

tab)

0x05

RNL

(required

new

line)

0x06

DEL

(delete)

0x07

GE

(graphic

escape)

0x08

SPS

(superscript)

0x09

RPT

(repeat)

0x0a

VT

(vertical

tab)

0x0b

FF

(form

feed)

0x0c

CR

(carriage

return)

0x0d

SO

(shift

out)

0x0e

SI

(shift

in)

0x0f

DLE

(data

link

escape)

0x10

DC1

(device

control

1)

0x11

DC2

(device

control

2)

0x12

DC3

(device

control

3)

0x13

RES/ENP

(restore

or

enable

presentation)

0x14

NL

(new

line)

0x15

BS

(backspace)

0x16

POC

(program-operator

communication)

0x17

CAN

(cancel)

0x18

EM

(end

of

medium)

0x19

UBS

(unit

backspace)

0x1a

CU1

(customer

use

1)

0x1b

IFS

(interchange

file

separator)

0x1c

IGS

(interchange

group

separator)

0x1d

IRS

(interchange

record

separator)

0x1e

IUS/ITB

(interchange

unit

separator

or

intermediate

transmission

block)

0x1f

DS

(digit

select)

0x20

©

Copyright

IBM

Corp.

1993,

2004

161

Table

4.

Internal

Hexadecimal

Representation

(continued)

Print

representation

Internal

representation

SOS

(start

of

significance)

0x21

FS

(field

separator)

0x22

WUS

(word

underscore)

0x23

BYP/INP

(bypass

or

inhibit

presentation)

0x24

LF

(line

feed)

0x25

ETB

(end

of

transmission

block)

0x26

ESC

(escape)

0x27

SA

(set

attributes)

0x28

SM/SW

(set

mode

or

switch)

0x2a

CSP

(control

sequence

prefix)

0x2b

MFA

(modify

field

attribute)

0x2c

ENQ

(enquiry)

0x2d

ACK

(acknowledge)

0x2e

BEL

(bell)

0x2f

SYN

(synchronous

idle)

0x32

IR

(index

return)

0x33

PP

(presentation

position)

0x34

TRN

0x35

NBS

(numeric

backspace)

0x36

EOT

(end

of

transmission)

0x37

SBS

(subscript)

0x38

IT

(indent

tab)

0x39

RFF

(required

form

feed)

0x3a

CU3

(customer

use

3)

0x3b

DC4

(device

control

4)

0x3c

NAK

(negative

acknowledge)

0x3d

SUB

(substitute)

0x3f

(blank

character)

0x40

162

ILE

C/C++

Compiler

Reference

Bibliography

For

additional

information

about

topics

related

to

ILE

C/C++

programming,

refer

to

the

following

IBM

publications:

v

CL

Programming,

SC41-5721-05,

provides

a

wide-ranging

discussion

of

iSeries

programming

topics

including

a

general

discussion

on

objects

and

libraries,

CL

programming,

controlling

flow

and

communicating

between

programs,

working

with

objects

in

CL

programs,

and

creating

CL

programs.

Other

topics

include

predefined

and

impromptu

messages

and

message

handling,

defining

and

creating

user-defined

commands

and

menus,

application

testing,

including

debug

mode,

breakpoints,

traces,

and

display

functions.

v

GDDM

Programming

Guide,

SC41-0536-00,

provides

information

about

using

OS/400

graphical

data

display

manager

(GDDM®)

to

write

graphics

application

programs.

Includes

many

example

programs

and

information

to

help

users

understand

how

the

product

fits

into

data

processing

systems.

v

GDDM

Reference,

SC41-3718-00,

provides

information

about

using

OS/400

graphical

data

display

manager

(GDDM)

to

write

graphics

application

programs.

This

manual

provides

detailed

descriptions

of

all

graphics

routines

available

in

GDDM.

Also

provides

information

about

high-level

language

interfaces

to

GDDM.

v

WebSphere

Development

Studio:

ILE

C/C++

Programmer’s

Guide,

SC09-2712-05,

provides

programming

information

about

the

ILE

C/C++

compiler.

It

includes

programming

considerations

for

interlanguage

program

and

procedure

calls,

locales,

handling

exceptions,

database,

and

device

files.

Examples

are

provided

and

performance

tips

for

programming

are

also

discussed.

v

WebSphere

Development

Studio:

C/C++

Language

Reference,

SC09-4815-00,

provides

reference

information

about

the

ILE

C/C++

compiler,

including

elements

of

the

language,

statements,

and

preprocessor

directives.

Examples

are

provided

and

considerations

for

programming

are

also

discussed.

v

ILE

C/C++

Run-Time

Library

Functions,

SC41-5607-01,

provides

reference

information

about

C

for

AS/400

library

functions,

including

Standard

C

library

functions

and

C

for

AS/400

library

extensions.

Examples

are

provided

and

considerations

for

programming

are

also

discussed.

v

ILE

Concepts,

SC41-5606-06,

explains

concepts

and

terminology

pertaining

to

the

Integrated

Language

Environment

architecture

of

the

OS/400

licensed

program.

Topics

covered

include

creating

modules,

binding,

running

programs,

debugging

programs,

and

handling

exceptions.

v

System

API

Programming,

SC41-5800-00,

provides

information

for

the

experienced

application

and

system

programmers

who

want

to

use

the

OS/400

application

programming

interfaces

(APIs).

Provides

getting

started

and

examples

to

help

the

programmer

use

APIs.

©

Copyright

IBM

Corp.

1993,

2004

163

164

ILE

C/C++

Compiler

Reference

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

of

IBM’s

intellectual

property

rights

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

Director

of

Licensing,

Intellectual

Property

&

Licensing

International

Business

Machines

Corporation,

North

Castle

Drive,

MD

-

NC119

Armonk,

New

York

10504-1785,

U.S.A.

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

“AS

IS”

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independent

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

Lab

Director

IBM

Canada

Ltd.

Laboratory

B3/KB7/8200/MKM

©

Copyright

IBM

Corp.

1993,

2004

165

8200

Warden

Avenue

Markham,

Ontario

L6G

1C7

Canada

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

This

publication

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

Programming

Interface

Information

This

book

is

intended

to

help

you

create

Integrated

Language

Environment

C

and

C++

programs.

It

contains

information

necessary

to

use

the

Integrated

Language

Environment

C/C++

compiler

and

documents

general-use

programming

interfaces

and

associated

guidance

information

provided

by

the

Integrated

Language

Environment

C/C++

compiler.

Trademarks

and

Service

Marks

The

following

terms

are

trademarks

of

the

International

Business

Machines

Corporation

in

the

United

States

or

other

countries

or

both:

400

GDDM

AFP

IBM

AIX

IBMLink

Application

System/400

Integrated

Language

Environment

AS/400

iSeries

AS/400e

Operating

System/400

C/400

OS/400

CICS/400

RPG/400

COBOL/400

SAA

DB2

SQL/400

Eserver

WebSphere

Java

and

all

Java-based

trademarks

are

trademarks

of

Sun

Microsystems,

Inc.

in

the

United

States,

other

countries,

or

both.

Microsoft

and

Windows

are

trademarks

of

Microsoft

Corporation

in

the

United

States,

other

countries,

or

both.

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and/or

other

countries.

Other

company,

product,

and

service

names

may

be

trademarks

or

service

marks

of

others.

166

ILE

C/C++

Compiler

Reference

Industry

Standards

The

Integrated

Language

Environment

C/C++

compiler

and

run-time

library

are

designed

according

to

the

ANSI

for

C

Programming

Languages

-

C

ANSI/ISO

9899-1990

standard,

and

the

November

1997

ANSI

C++

Draft

Standard.

Notices

167

168

ILE

C/C++

Compiler

Reference

Index

Special

characters
__ANSI__

18

__ASYNC_SIG__

18

__CHAR_SIGNED__

18

__CHAR_UNSIGNED__

18

__cplusplus

17

__cplusplus98__interface__

19

__DATE__

17

__EXTENDED__

19

__FILE__

17

__FUNCTION__

19

__HHW_AS400__

19

__HOS_OS400__

19

__IBMCPP__

19

__IFS_IO__

19

__IFS64_IO__

19

__ILEC400__

19

__ILEC400_TGTVRM__

19

__LINE__

17

__LLP64_IFC__

19

__LLP64_RTBND__

19

__OS400__

19

__OS400_TGTVRM__

19

__POSIX_LOCALE__

20

__RTTI_DYNAMIC_CAST__

20

__SRCSTMF__

20

__STDC__

17

__TERASPACE__

20

__THW_AS400__

20

__TIME__

17

__TIMESTAMP__

20

__TOS_OS400__

20

__UCS2__

20

__UTF32__

20

__wchar_t

20

_LARGE_FILE_API

19

_LARGE_FILES

19

\

continuation

character

2

#

preprocessor

directive

character

2

#

preprocessor

operator

6

A
argopt

pragma

23

argument

optimization
scoping

24

argument

pragma

25

C
cancel_handler

pragma

27

chars

pragma

28

checkout

pragma

29

comment

pragma

30

conditional

compilation

preprocessor

directives

11,

12

continuation

character

2

control

characters

161

Control

Language

commands

79

CRTBNDC

79

Control

Language

commands

(continued)
CRTBNDCPP

79

CRTCMOD

79

CRTCPPMOD

79

options

86

ALIAS

108

AUT

115

CHECKOUT

98

CSOPT

135

DBGVIEW

105

DEFINE

106

DFTCHAR

137

DTAMDL

125

ENBPFRCOL

118

ENUM

128

FLAG

111

INCDIR

134

INLINE

102

LANGLVL

107

LICOPT

136

LOCALETYPE

110

MAKEDEP

129

MODCRTOPT

104

MODULE

86

MSGLMT

112

OPTIMIZE

101

OPTION

92

OUTPUT

91

PACKSTRUCT

127

PFROPT

119

PGM

86

PPGENOPT

130

PPSRCFILE

131

PPSRCMBR

132

PPSRCSTMF

133

PRFDTA

120

REPLACE

113

RTBND

126

SRCFILE

87

SRCMBR

88

SRCSTMF

89

STGMDL

124

SYSIFCOPT

109

TEMPLATE

139

TERASPACE

121

TEXT

90

TGTRLS

116

TMPLREG

141

USRPRF

114

WEAKTMPL

142

convert

pragma

31

Create

Bound

C

Program

command

79

options

86

Create

Bound

C++

Program

command

79

options

86

Create

C

Module

command

79

options

86

Create

C++

Module

command

79

options

86

Create

Program

command

(CRTPGM)

153

Create

Service

Program

command

(CRTSRVPGM)

153

CRTBNDC

79

options

86

CRTBNDCPP

79

options

86

CRTCMOD

79

options

86

CRTCPPMOD

79

options

86

CRTPGM

153

CRTSRVPGM

153

D
data

management

operation
record

files

157

stream

files

157

data

model

32

datamodel

pragma

32

define

pragma

34

define

preprocessor

directive

2

defined

unary

operator

12

defined,

preprocessor

operator

12

definitions
macro

2

descriptor

pragma

35

disable_handler

pragma

37

disjoint

pragma

38

E
elif

preprocessor

directive

12

else

preprocessor

directive

14

endif

preprocessor

directive

14

enum

pragma

39

error

preprocessor

directive

8

exception_handler

pragma

43

F
file

inclusion

8

file

naming

conventions

8

file

type

157

format

2

function-like

macro

3

H
hashome

pragma

46

I
if

preprocessor

directive

12

ifdef

preprocessor

directive

13

ifndef

preprocessor

directive

13

implementation

pragma

47

©

Copyright

IBM

Corp.

1993,

2004

169

include

preprocessor

directive

8

indentation

of

code

2

info

pragma

48

inline

pragma

49

ishome

pragma

50

isolated_call

pragma

51

ixlc
command

143

command

options

144

ixlclink

153

ixlclink

options

154

L
line

preprocessor

directive

15

linkage

pragma

52

M
macro

definition

2,

3

invocation

3

macro

preprocessor

directives

2

macros

17

__ANSI__

18

__ASYNC_SIG__

18

__CHAR_SIGNED__

18

__CHAR_UNSIGNED__

18

__cplusplus

17

__cplusplus98__interface__

19

__EXTENDED__

19

__FUNCTION__

19

__HHW_AS400__

19

__HOS_OS400__

19

__IBMCPP__

19

__IFS_IO__

19

__IFS64_IO__

19

__ILEC400__

19

__ILEC400_TGTVRM__

19

__LLP64_IFC__

19

__LLP64_RTBND__

19

__OS400__

19

__OS400_TGTVRM__

19

__POSIX_LOCALE__

20

__RTTI_DYNAMIC_CAST__

20

__SRCSTMF__

20

__TERASPACE__

20

__THW_AS400__

20

__TIMESTAMP__

20

__TOS_OS400__

20

__UCS2__

20

__UTF32__

20

__wchar_t

20

_LARGE_FILE_API

19

_LARGE_FILES

19

DATE

17

FILE

17

LINE

17

STDC

17

TIME

17

map

pragma

54

mapinc

pragma

55

margins

pragma

58

N
namemangling

pragma

59

naming

files

8

noargv0

pragma

60

noinline

pragma

61

nomargins

pragma

62

nosequence

pragma

63

nosigtrunc

pragma

64

null

preprocessor

directive

16

number

sign

(#)

2

preprocessor

directive

character

2

preprocessor

operator

6

O
object-like

macro

2

operational

descriptor

pragma

35

operator

6

operator

1

7

operators
preprocessor

#

6

##

7

P
pack

pragma

65

page

pragma

71

pagesize

pragma

72

pointer

pragma

73

pound

sign

(#)

2

preprocessor

directive

character

2

preprocessor

operator

6

pragma

23

argopt

23

argument

25

cancel_handler

27

chars

28

checkout

29

comment

30

convert

31

datamodel

32

define

34

disable_handler

37

disjoint

38

enum

39

exception_handler

43

hashome

46

implementation

47

info

48

inline

49

ishome

50

isolated_call

51

linkage

52

map

54

mapinc

55

margins

58

namemangling

59

noargv0

60

noinline

61

nomargins

62

nosequence

63

nosigtrunc

64

operational

descriptor

35

pack

65

page

71

pragma

(continued)
pagesize

72

pointer

73

priority

74

sequence

75

strings

76

work

77

predefined

macros

17

preprcocessor

directive

1

tokens

1

white

space

1

preprcocessor

directives

1

preprocessor

directive

2

conditional

compilation

11

define

2

elif

12

else

14

endif

14

error

8

if

12

ifdef

13

ifndef

13

include

8

line

15

null

16

preprocessor

operator
#

6

##

7

priority

pragma

74

Q
Qshell

143

S
sequence

pragma

75

single

level

storage

model

121

space

character

2

splice

preprocessor

directive

##

7

stream

type

157

strings

pragma

76

structures
packing

using

#pragma

pack

65

T
templates

pragma

define

34

pragma

implementation

47

teraspace

121

tokens

1

U
undef

preprocessor

directive

5

unions
packing

using

#pragma

pack

65

W
white

space

1,

2,

6

work

pragma

77

170

ILE

C/C++

Compiler

Reference

���

Program

Number:

5722–WDS

SC09-4816-03

	Contents
	About This Book
	Who Should Use This Guide
	Prerequisite and Related Information
	Install Licensed Program Information
	A Note About Examples
	Control Language Commands
	How to Read the Syntax Diagrams
	How to Send Your Comments

	Chapter 1. Preprocessor Directives
	Preprocessor Overview
	Preprocessor Directive Format
	Macro Directives and Operators (#define, #undef, #, ##)
	#define (Defining and Expanding a Macro)
	Object-Like Macros
	Function-Like Macros

	#undef (Undefining a Macro)
	# Operator
	## Operator (Macro Concatenation)

	Preprocessor Error Directive (#error)
	File Inclusion (#include)
	Using the #include Directive When Compiling Source in an Integrated File System File

	Conditional Compilation Directives
	#if, #elif
	#ifdef
	#ifndef
	#else
	#endif

	Line Control (#line)
	Null Directive (#)
	Pragma Directives (#pragma)

	Chapter 2. Predefined Macros
	ANSI/ISO Standard Predefined Macros
	ILE C/C++ Predefined Macros

	Chapter 3. ILE C/C++ Pragmas
	argopt
	argument
	cancel_handler
	chars
	checkout
	comment
	convert
	datamodel
	define
	descriptor
	disable_handler
	disjoint
	enum
	exception_handler
	hashome
	implementation
	info
	inline
	ishome
	isolated_call
	linkage
	map
	mapinc
	margins
	namemangling
	noargv0
	noinline (function)
	nomargins
	nosequence
	nosigtrunc
	pack
	Related Operators and Specifiers
	__align Specifier
	__Packed Specifier
	__alignof Operator

	Examples

	page
	pagesize
	pointer
	priority
	sequence
	strings
	weak

	Chapter 4. Control Language Commands
	Control Language Command Syntax
	Control Language Command Options
	MODULE
	PGM
	SRCFILE
	SRCMBR
	SRCSTMF
	TEXT
	OUTPUT
	OPTION
	CHECKOUT
	OPTIMIZE
	INLINE
	MODCRTOPT
	DBGVIEW
	DEFINE
	LANGLVL
	ALIAS
	SYSIFCOPT
	LOCALETYPE
	FLAG
	MSGLMT
	REPLACE
	USRPRF
	AUT
	TGTRLS
	ENBPFRCOL
	PFROPT
	PRFDTA
	TERASPACE
	STGMDL
	DTAMDL
	RTBND
	PACKSTRUCT
	ENUM
	MAKEDEP
	PPGENOPT
	PPSRCFILE
	PPSRCMBR
	PPSRCSTMF
	INCDIR
	CSOPT
	LICOPT
	DFTCHAR
	TGTCCSID
	TEMPLATE
	TMPLREG
	WEAKTMPL

	Chapter 5. Using the ixlc Command to Invoke the C/C++ Compiler
	Using ixlc on a Windows Client
	Using ixlc in Qshell
	ixlc Command and Options Syntax
	ixlc Command Options

	Chapter 6. Using ixlclink to Create Programs
	ixlclink Command Options

	Chapter 7. I/O Considerations
	Data Management Operations on Record Files
	Data Management Operations on Stream Files
	C Streams and File Types
	DDS-to-C/C++ Data Type Mapping

	Appendix. Control Characters
	Bibliography
	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

	Index

