
iSeries

Work Management APIs

Version 5 Release 3

���

iSeries

Work Management APIs

Version 5 Release 3

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 417.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Work Management APIs 1

APIs 3

Change Current Job (QWCCCJOB) API 4

Required Parameter Group 4

Format for Variable Length Record 4

Field Descriptions 5

Key Identifiers 5

Key Identifier Descriptions 5

Error Messages 5

Change Job (QWTCHGJB) API 6

Authorities and Locks 6

Required Parameter Group 7

Optional Parameter Group 8

Formats for Variable Length Record 9

Field Descriptions for JOBC0100, JOBC0200,

JOBC0300 and JOBC0400 Formats 10

Valid Keys 10

Field Descriptions for Valid Keys 12

Format of job or thread identification information 24

Field Descriptions 25

Field Descriptions 26

Usage Notes 26

Error Messages 30

Change Job Pool (QWCCHGJP) API 31

Restrictions for Movement of Jobs 31

Authorities and Locks 31

Required Parameter Group 32

Format of the Function Information 32

Field Descriptions 32

Return Codes 33

Error Messages 33

Change Pool Attributes (QUSCHGPA) API 34

Authorities and Locks 35

Required Parameter Group 35

Optional Parameter Group 1 35

Optional Parameter Group 2 36

Optional Parameter Group 3 36

Optional Parameter Group 4 37

Error Messages 38

Example: Changing System Storage Pool

Attributes 39

Change Pool Tuning Information (QWCCHGTN)

API 39

Required Parameter Group 40

TUNI0100 Format 40

Field Descriptions 41

Error Messages 43

Change Subsystem Entry (QWDCSBSE) API . . . 44

Authorities and Locks 44

Required Parameter Group 44

Format for Variable Length Record 45

Field Descriptions 45

SBSE0500 Format (Prestart Job Entry) 46

Subsystem Entry Identifier for SBSE0500 Format 46

Attribute Keys for SBSE0500 Format 46

Field Descriptions of Attribute Keys for SBSE0500

Format 47

Error Messages 50

Control Thread (QTHMCTLT) API 51

Authorities and Locks 51

Required Parameter Group 52

CTLT0100 Format 53

Field Descriptions for CTLT0100 Format 53

Format of job or thread identification information 53

JIDF0100 Format 53

Field Descriptions for JIDF0100 Format 53

JIDF0200 Format 54

Field Descriptions for JIDF0200 Format 54

Error Messages 55

Control Trace (QWTCTLTR) API 56

Required Parameter 56

Optional Parameter 56

Error Messages 56

Create Job Structures (QWTCTJBS) API 57

Authorities and Locks 57

Required Parameter Group 57

Error Messages 58

Delete Job Structures (QWTDTJBS) API 58

Authorities and Locks 58

Required Parameter Group 59

Error Messages 59

Dump Flight Recorder (QWTDMPFR) API 59

Authorities and Locks 60

Optional Parameter Group 60

Usage Notes 60

Error Messages 60

Dump Lock Flight Recorder (QWTDMPLF) API . . 61

Required Parameter 61

Optional Parameter 62

Error Messages 62

List Active Subsystems (QWCLASBS) API 62

Authorities and Locks 62

Required Parameter Group 63

Format of the Generated List 63

Input Parameter Section 63

SBSL0100 Format 63

Field Descriptions 64

Error Messages 64

List Job (QUSLJOB) API 65

Authorities and Locks 65

Required Parameter Group 66

Optional Parameter Group 1 67

Optional Parameter Group 2 67

Optional Parameter Group 3 68

Format of the Generated List 68

Input Parameter Section 68

Header Section 69

JOBL0100 Format 69

JOBL0200 Format 69

Field Descriptions 70

Valid Keys 72

© Copyright IBM Corp. 1998, 2005 iii

Usage Notes 75

Error Messages 75

List Job Schedule Entries (QWCLSCDE) API . . . 76

Authorities and Locks 76

Required Parameter Group 76

Format of the Generated Lists 77

Input Parameter Section 78

Header Section 78

SCDL0100 Format 78

SCDL0200 Format 79

Field Descriptions 79

Error Messages 83

List Object Locks (QWCLOBJL) API 84

Authorities and Locks 84

Required Parameter Group 85

Optional Parameter Group 1 86

Optional Parameter Group 2 86

Format of the Generated List 87

Input Parameter Section 87

Header Section 87

OBJL0100 Format 88

Field Descriptions 88

Error Messages 91

List Subsystem Entries (QWDLSBSE) API 92

Authorities and Locks 92

Required Parameter Group 92

Format of the Generated List 93

Input Parameter Section 93

Header Section 94

SBSE0100 Format 94

SBSE0200 Format 94

SBSE0300 Format 95

SBSE0400 Format 95

SBSE0500 Format 95

SBSE0600 Format 96

SBSE0700 Format 96

Field Descriptions 96

Error Messages 102

List Subsystem Job Queues (QWDLSJBQ) API . . 103

Authorities and Locks 103

Required Parameter Group 103

Format of the Generated List 104

Input Parameter Section 104

Header Section 105

SJQL0100 Format 105

Field Descriptions 105

Error Messages 106

Move Job (QSPMOVJB) API 107

Restrictions for Movement of Jobs 108

Authorities and Locks 108

Required Parameter Group 109

Format of the Function Information 109

Field Descriptions 110

How to Specify Job Identifying Fields 111

Error Messages 111

Open List of Activation Attributes (QWVOLACT)

API 113

Authorities and Locks 114

Required Parameter Group 114

Optional Parameter Group 115

RACT0100 Format 115

Field Descriptions 116

Error Messages 116

Open List of Activation Group Attributes

(QWVOLAGP) API 117

Authorities and Locks 118

Required Parameter Group 118

RAGA0100 Format 119

Field Descriptions 120

Error Messages 121

Open List of Job Queues (QSPOLJBQ) API . . . 122

Performance Impacts 122

Authorities and Locks 122

Required Parameter Group 123

Filter Information 124

Format of Sort Information 124

Field Descriptions 124

Format of Receiver Variable 126

Field Descriptions 126

Error Messages 127

Open List of Jobs (QGYOLJOB) API 128

Authorities and Locks 129

Required Parameter Group 129

Optional Parameter Group 1 130

Optional Parameter Group 2 130

Format of Receiver Variable 131

OLJB0100 Format 131

OLJB0200 Format 131

OLJB0300 Format 132

Field Descriptions 132

Format of Receiver Variable Definition

Information 133

Field Descriptions 134

Format of Sort Information 134

Field Descriptions 134

Format of Job Selection Information 135

OLJS0100 Format 135

OLJS0200 Format 136

Field Descriptions 137

General Return Data 140

Field Descriptions 141

List of keys supported for format OLJB0200 . . 141

List of keys supported for format OLJB0300 . . 141

Field Descriptions 142

Usage Notes 142

Error Messages 142

Open List of Threads (QWCOLTHD) API 144

Authorities and Locks 145

Required Parameter Group 145

Format of Receiver Variable 146

Field Descriptions 147

Format of Receiver Variable Definition

Information 147

Field Descriptions 147

Format of Sort Information 148

Field Descriptions 148

Format of job identification information . . . 148

Field Descriptions 149

General Return Data 149

Field Descriptions 150

List of keys supported for format OLTH0100 150

Field Descriptions 151

iv iSeries: Work Management APIs

Error Messages 151

Retrieve Call Stack (QWVRCSTK) API 152

Authorities and Locks 152

Required Parameter Group 152

Format CSTK0100 153

Field Descriptions 154

Format of job identification information . . . 157

JIDF0100 Format 157

Field Descriptions 157

JIDF0200 Format 158

Field Descriptions 158

Error Messages 158

Retrieve Class Information (QWCRCLSI) API . . . 159

Authorities and Locks 159

Required Parameter Group 160

Format CLSI0100 160

Field Description 161

Error Messages 162

Retrieve Current Attributes (QWCRTVCA) API . . 163

Authorities and Locks 163

Required Parameter Group 163

RTVC0100 Format 164

Field Descriptions 164

RTVC0200 Format 165

Field Descriptions 165

RTVC0300 Format 166

Field Descriptions 166

Format of ASP Group Information Entry . . . 166

Field Descriptions 166

Valid Key Attributes 167

Key Field Descriptions 169

Error Messages 169

Retrieve Data Area (QWCRDTAA) API 170

Authorities and Locks 170

Required Parameter Group 170

Format of Data Returned 171

Field Descriptions 172

Usage Notes 172

Error Messages 172

Retrieve IPL Attributes (QWCRIPLA) API 173

Authorities and Locks 173

Required Parameter Group 173

Format IPLA0100 174

Field Description 174

Error Messages 176

Retrieve Job Description Information (QWDRJOBD)

API 177

Authorities and Locks 177

Required Parameter Group 177

JOBD0100 Format 178

Format of Initial ASP Group Information Entry 179

Field Descriptions 179

Error Messages 184

Retrieve Job Information (QUSRJOBI) API 185

Authorities and Locks 185

Required Parameter Group 186

Optional Parameter 1 187

Optional Parameter 2 187

Selecting a Job Information Format 187

JOBI0100 Format 188

JOBI0150 Format 189

JOBI0200 Format 189

JOBI0300 Format 190

JOBI0400 Format 191

Format of ASP Group Information Entry . . . 193

JOBI0500 Format 193

JOBI0600 Format 194

Format of Time Zone Information 195

JOBI0700 Format 195

JOBI0750 Format 196

Library array entry 197

JOBI0800 Format 197

JOBI0900 Format 198

JOBI1000 Format 199

Field Descriptions 200

Comparing Job Type and Subtype with the

Work with Active Job Command 202

Usage Notes 203

Error Messages 209

Retrieve Job Locks (QWCRJBLK) API 210

Authorities and Locks 210

Required Parameter Group 210

Optional Parameter Group 211

JBLK0100 Format 212

Field Descriptions 212

JBLK0200 Format 215

Field Descriptions 215

Lock filter format 218

JBFL0100 Format 219

Field Descriptions 219

Format of job or thread identification

information 220

JIDF0100 Format 221

Field Descriptions 221

JIDF0200 Format. 221

Field Descriptions 222

Error Messages 222

Retrieve Job Queue Information (QSPRJOBQ) API 223

Authorities and Locks 223

Required Parameter Group 224

JOBQ0100 Format 224

JOBQ0200 Format 225

Field Descriptions 226

Error Messages 228

Retrieve Job Status (QWCRJBST) API 228

Authorities and Locks 229

Required Parameter Group 229

Format of Returned Information 229

Field Description 230

Error Messages 230

Retrieve Lock Information (QWCRLCKI) API . . . 231

Authorities and Locks 231

Required Parameter Group 232

Format of Object Identification 233

LOBJ0100 Format 233

Field Descriptions 233

LOBJ0200 Format 234

Field Descriptions 234

Filter Format 235

LKFL0100 Format 235

Field Descriptions 235

Lock Information Format 236

Contents v

LCKI0100 Format 236

Header Section 236

Lock Information Entry Format 237

Key information format 237

Field Descriptions 237

Valid Keys 240

Holder ID 241

Job Format 241

Field Descriptions 241

Lock Space Format 242

Field Descriptions 242

Error Messages 242

Retrieve Lock Request Information (QWCRLRQI)

API 243

Authorities and Locks 243

Required Parameter Group 243

Format LRQI0100 244

Field Descriptions 244

Error Messages 246

Retrieve Lock Space Attributes (QTRXRLSA) API 247

Authorities and Locks 247

Required Parameter Group 247

Format of receiver information 248

RLSA0100 Format 248

Field Descriptions for RLSA0100 Format . . . 248

Error Messages 250

Retrieve Lock Space Locks (QTRXRLSL) API . . . 251

Authorities and Locks 251

Required Parameter Group 251

Format of receiver information 252

RLSL0100 Format 252

Field Descriptions for RLSL0100 Format . . . 253

Format of lock filters 255

RLSF0100 Format 255

Field Descriptions for RLSF0100 Format . . . 256

Error Messages 257

Retrieve Lock Space Record Locks (QTRXRLRL)

API 258

Authorities and Locks 258

Required Parameter Group 258

Format of receiver information 259

RLRL0100 Format 259

Field Descriptions for RLRL0100 Format . . . 260

Format of lock filters 261

RLRF0100 Format 261

Field Descriptions for RLRF0100 Format . . . 262

Error Messages 262

Retrieve Network Attributes (QWCRNETA) API 263

Authorities and Locks 263

Required Parameter Group 263

Format of Data Returned 264

Network Attribute Information Table 264

Field Descriptions 265

Valid Network Attributes 265

Network Attribute Field Descriptions 266

Error Messages 271

Retrieve Profile Exit Programs (QWTRTVPX) API 271

Authorities and Locks 271

Required Parameter Group 271

ATTN0100 Format 272

Field Descriptions 272

SREQ0100 Format 273

Field Descriptions 273

Error Messages 273

Retrieve Subsystem Information (QWDRSBSD) API 274

Authorities and Locks 274

Required Parameter Group 274

Optional Parameter 275

SBSI0100 Format 275

SBSI0200 Format 276

Field Descriptions 277

Error Messages 278

Retrieve Synchronization Object Information

(Qp0msRtvSyncObjInfo()) API 279

Authorities and Locks 280

Required Parameter Group 280

PMTX0100 Format - Retrieve pointer-based

mutexes associated with a job or thread . . . 282

PMTX0200 Format - Retrieve threads associated

with a pointer-based mutex 282

HMTX0100 Format - Retrieve handle-based

mutexes associated with a job or thread . . . 283

HMTX0200 Format - Retrieve threads associated

with a handle-based mutex 284

HCND0100 Format - Retrieve handle-based

conditions associated with a job or thread . . . 285

HCND0200 Format - Retrieve threads associated

with a handle-based condition 285

STOK0100 Format - Retrieve synchronization

tokens associated with a job or thread 286

STOK0200 Format - Retrieve threads associated

with a synchronization token 287

SEMA0100 Format - Retrieve semaphores

associated with a job, thread, or all semaphores . 288

SEMA0200 Format - Retrieve threads associated

with a semaphore 289

Receiver Format Field Descriptions 290

TIDF0100 Format - Job and Thread

Identification 296

TIDF0100 Format Field Descriptions 297

TIDF0200 Format - Synchronization Object

Identification 297

TIDF0200 Format Field Descriptions 298

OPTN0100 Format - Options for Receiver

Variable 299

OPTN0100 Format Field Descriptions 299

Error Messages 300

Example 300

Example Output 303

Retrieve System Status (QWCRSSTS) API 304

Authorities and Locks 304

Required Parameter Group 304

Optional Parameter Group 305

Format of Data Returned 306

SSTS0100 Format 306

SSTS0200 Format 306

SSTS0300 Format 307

SSTS0400 Format 308

SSTS0500 Format 309

Field Descriptions 310

Format of Pool Selection Information 316

Selection Field Descriptions 316

vi iSeries: Work Management APIs

Error Messages 316

Retrieve System Values (QWCRSVAL) API . . . 317

Authorities and Locks 317

Required Parameter Group 318

Format of Data Returned 318

System Value Information Table 319

Field Descriptions 319

Valid System Values 319

System Value Field Descriptions 323

Error Messages 347

Retrieve Thread Attribute (QWTRTVTA) API . . . 348

Authorities and Locks 348

Required Parameter Group 349

Format RTVT0100 350

Field Descriptions 351

RTVT0200 Format 352

Library array entry 353

ASP Group Information Entry 353

Field Descriptions 353

Format RTVT0300 355

Field Descriptions 356

Format of job or thread identification

information 357

JIDF0100 Format 357

Field Descriptions 357

JIDF0200 Format 358

Field Descriptions 358

Valid Keys 359

Keys for RTVT0100 359

Format of ASP Group Information 361

Format of ASP Group Information Entry . . . 362

Keys for RTVT0200 362

Keys for RTVT0300 362

Key Field descriptions 363

Usage Notes 363

Error Messages 363

Set Lock Flight Recorder (QWTSETLF) API . . . 364

Required Parameter 364

Optional Parameter 364

Error Messages 364

Set Profile Exit Programs (QWTSETPX) API . . . 365

Authorities and Locks 365

Required Parameter Group 366

Error Messages 366

Set Trace (QWTSETTR) API 367

Authorities and Locks 367

Required Parameter Group 368

Optional Parameter 368

Error Messages 368

Exit Programs 368

Auxiliary Storage Lower Limit Exit Program . . . 368

Authorities and Locks 369

Required Parameter 369

Job Notification Exit Point 369

Authorities and Locks 370

Required Parameter 370

Program Data 370

Field Descriptions 370

Data Queue Attributes 371

Format of Job Start and Job End Notification

Messages 371

Format of Job Queue Notification Messages . . 372

Field Descriptions 372

Usage Notes 373

Power Down System Exit Program 374

Authorities and Locks 374

Required Parameter 374

Preattention Program Exit Program 375

Authorities and Locks 375

Required Parameter 375

Pre-restricted State Exit Programs (EWCPRSEP) 376

Authorities and Locks 376

Required Parameter Group 376

PRSE0100 Format 377

Field Descriptions 377

PRSE0200 Format 377

Field Descriptions 378

Usage Notes 378

Presystem Request Program Exit Program 378

Authorities and Locks 379

Required Parameter Group 379

Optional Parameter Group 379

Program Data 380

Field Descriptions 380

Exit Program for Trace Job 380

Required Parameter 380

Format of Trace Record 380

Field Descriptions 381

Format of Program Flow Trace Record 381

Field Descriptions 381

Format of Data Trace Record 382

Format of Data Management Data Trace Record 383

Field Descriptions 383

Format of Message Handler Data Trace Record 383

Field Descriptions 384

Format of Command Analyzer Data Trace

Record 385

Field Descriptions 385

Format of Other Data Trace Record 386

Field Descriptions 386

Format of Suspend Trace Record 386

Field Descriptions 386

Format of Resume Trace Record 386

Field Descriptions 387

Concepts 387

Work Management API Attribute Descriptions . . 387

Attributes 387

Field Descriptions 391

Comparing Job Type, Subtype, and Enhanced

Job Type with the Work with Active Job

Command 416

Appendix. Notices 417

Trademarks 418

Terms and conditions for downloading and

printing publications 419

Code disclaimer information 420

Contents vii

viii iSeries: Work Management APIs

Work Management APIs

The work management APIs perform functions that are used in a wide variety of applications. These

APIs retrieve and manipulate:

v Jobs

v Subsystem storage pools

v Subsystem job queues

v Data areas

v Network attributes

v System status

v System values

v Flight recorders

The work management APIs are:

v “Change Current Job (QWCCCJOB) API” on page 4 (QWCCCJOB) changes information for the current

job.

v “Change Job (QWTCHGJB) API” on page 6 (QWTCHGJB) changes some of the attributes of a job.

v

“Change Job Pool (QWCCHGJP) API” on page 31 (QWCCHGJP) moves a job into another main

storage memory pool.

v “Change Pool Attributes (QUSCHGPA) API” on page 34 (QUSCHGPA) changes the size, activity level,

and paging option of system storage pools.

v “Change Pool Tuning Information (QWCCHGTN) API” on page 39 (QWCCHGTN) changes

information about tuning being performed on the system for the different storage pools.

v “Change Subsystem Entry (QWDCSBSE) API” on page 44 (QWDCSBSE) changes a subsystem entry in

the specified subsystem description.

v “Control Thread (QTHMCTLT) API” on page 51 (QTHMCTLT) holds, releases, or ends the specified

thread.

v “Control Trace (QWTCTLTR) API” on page 56 (QWTCTLTR) turns the trace function on and off.

v “Create Job Structures (QWTCTJBS) API” on page 57 (QWTCTJBS) creates the number of temporary job

structures that are passed on the call.

v “Delete Job Structures (QWTDTJBS) API” on page 58 (QWTDTJBS) deletes the number of temporary

job structures that are passed on the call to the API.

v “Dump Flight Recorder (QWTDMPFR) API” on page 59 (QWTDMPFR) dumps the contents of the

flight recorders for jobs that have them.

v “Dump Lock Flight Recorder (QWTDMPLF) API” on page 61 (QWTDMPLF) dumps the contents of the

lock flight recorder for the device that is specified in the parameter that is passed to the program.

v “List Active Subsystems (QWCLASBS) API” on page 62 (QWCLASBS) retrieves a list of active

subsystems.

v “List Job (QUSLJOB) API” on page 65 (QUSLJOB) lists some or all jobs on the system.

v “List Job Schedule Entries (QWCLSCDE) API” on page 76 (QWCLSCDE) lists the entries in the job

schedule QDFTJOBSCD.

v “List Object Locks (QWCLOBJL) API” on page 84 (QWCLOBJL) generates a list of locks for an object

or database file member. An object-level or member-level lock may be specified.

v “List Subsystem Entries (QWDLSBSE) API” on page 92 (QWDLSBSE) lists some of the different entries

in a subsystem description, such as routing entries.

© Copyright IBM Corp. 1998, 2005 1

v “List Subsystem Job Queues (QWDLSJBQ) API” on page 103 (QWDLSJBQ) lists the job queues for a

subsystem.

v “Move Job (QSPMOVJB) API” on page 107 (QSPMOVJB) moves jobs from one position to another

position within the same job queue or from one job queue to another job queue. Priority and status of

the job are affected by the user″s priority level and the status of the target job.

v “Open List of Activation Attributes (QWVOLACT) API” on page 113 (QWVOLACT) generates a list of

all the activation attributes that are associated with an activation group in a given job.

v “Open List of Activation Group Attributes (QWVOLAGP) API” on page 117 (QWVOLAGP) generates a

list of all the activation groups that are associated with a given job and their attributes.

v “Open List of Job Queues (QSPOLJBQ) API” on page 122 (QSPOLJBQ) generates a list of job queues on

the system.

v “Open List of Jobs (QGYOLJOB) API” on page 128 (QGYOLJOB) generates a list of jobs on the system.

v “Open List of Threads (QWCOLTHD) API” on page 144 (QWCOLTHD) generates a list of active

threads for the job specified in the Job identification parameter.

v “Retrieve Call Stack (QWVRCSTK) API” on page 152 (QWVRCSTK) returns the call stack information

for the specified thread.

v “Retrieve Class Information (QWCRCLSI) API” on page 159 (QWCRCLSI) returns the attributes of a

class object.

v “Retrieve Current Attributes (QWCRTVCA) API” on page 163 (QWCRTVCA) retrieves specific

attributes for the current thread.

v “Retrieve Data Area (QWCRDTAA) API” on page 170 (QWCRDTAA) retrieves the contents of a data

area.

v “Retrieve IPL Attributes (QWCRIPLA) API” on page 173 (QWCRIPLA) returns the settings of options

that are used during the IPL.

v “Retrieve Job Description Information (QWDRJOBD) API” on page 177 (QWDRJOBD) retrieves

information from a job description object.

v “Retrieve Job Information (QUSRJOBI) API” on page 185 (QUSRJOBI) retrieves information, such as job

attributes and performance data about a specific job.

v “Retrieve Job Locks (QWCRJBLK) API” on page 210 (QWCRJBLK) generates a list of objects that have

been locked by the job or thread that is specified in the job identification information input parameter.

v “Retrieve Job Queue Information (QSPRJOBQ) API” on page 223 (QSPRJOBQ) retrieves information

associated with a specified job queue.

v “Retrieve Job Status (QWCRJBST) API” on page 228 (QWCRJBST) returns status and job identification

information about the job that is identified by the job identifier parameter.

v “Retrieve Lock Information (QWCRLCKI) API” on page 231 (QWCRLCKI) generates a list of

information about lock holders of the item specified.

v “Retrieve Lock Request Information (QWCRLRQI) API” on page 243 (QWCRLRQI) takes as input a

lock request handle that was returned in other APIs and returns information about the program that

requested the lock.

v “Retrieve Lock Space Attributes (QTRXRLSA) API” on page 247 (QTRXRLSA) returns information for

the specified lock space.

v “Retrieve Lock Space Locks (QTRXRLSL) API” on page 251 (QTRXRLSL) generates a list of objects that

have been locked or that have lower level locks held by the specified lock space.

v “Retrieve Lock Space Record Locks (QTRXRLRL) API” on page 258 (QTRXRLRL) lets you generate a

list of record locks held by the specified lock space.

v “Retrieve Network Attributes (QWCRNETA) API” on page 263 (QWCRNETA) retrieves network

attributes.

v “Retrieve Profile Exit Programs (QWTRTVPX) API” on page 271 (QWTRTVPX) retrieves the profile exit

flags that have been designated to be called for the specified user ID. The API then places that

information into a single variable in the calling program.

2 iSeries: Work Management APIs

v “Retrieve Subsystem Information (QWDRSBSD) API” on page 274 (QWDRSBSD) retrieves information

about a specific subsystem.

v

“Retrieve Synchronization Object Information (Qp0msRtvSyncObjInfo()) API” on page 279

(Qp0msRtvSyncObjInfo()) retrieves status information for a synchronization object.

v “Retrieve System Status (QWCRSSTS) API” on page 304 (QWCRSSTS) retrieves a group of statistics

that represent the current status of the system.

v “Retrieve System Values (QWCRSVAL) API” on page 317 (QWCRSVAL) retrieves system values.

v “Retrieve Thread Attribute (QWTRTVTA) API” on page 348 (QWTRTVTA) retrieves job and thread

attributes that apply to the job or thread specified in the Job/Thread identification information

parameter.

v “Set Lock Flight Recorder (QWTSETLF) API” on page 364 (QWTSETLF) turns the lock flight recorder

on and off.

v “Set Profile Exit Programs (QWTSETPX) API” on page 365 (QWTSETPX) sets for the specified user ID

the profile exit programs to call.

v “Set Trace (QWTSETTR) API” on page 367 (QWTSETTR) starts the Trace Job (TRCJOB) command for

the job passed on the job and user name parameter at the earliest point while the job is starting.

The work management exit programs are:

v “Auxiliary Storage Lower Limit Exit Program” on page 368 is called when the available storage in the

system auxiliary storage pool (ASP) goes below the lower limit.

v “Job Notification Exit Point” on page 369 logs notification messages to data queues when an OS/400

job starts, ends, or is placed on a job queue.

v “Power Down System Exit Program” on page 374 is called when the Power Down System

(PWRDWNSYS) or End System (ENDSYS) command is used.

v “Preattention Program Exit Program” on page 375 is called when the user presses the System Attention

key.

v

“Pre-restricted State Exit Programs (EWCPRSEP)” on page 376 determines if a restricted state can be

reached.

v “Presystem Request Program Exit Program” on page 378 is called when the user presses the System

Request key.

v “Exit Program for Trace Job” on page 380 tailors the spooled file output from the Trace Job (TRCJOB)

command.

 Top | APIs by category

APIs

These are the APIs for this category.

Work Management APIs 3

#TOP_OF_PAGE
aplist.htm

Change Current Job (QWCCCJOB) API

 Required Parameter Group:

1 Changed job information

Input Char(*)

2 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Change Current Job (QWCCCJOB) API lets you change information for the current job. The user can

change the Cancel or the Exit keys.

Required Parameter Group

Changed job information

INPUT; CHAR(*)

 The information for the job that you want to change. The information must be in the following

format:

Number of variable length records

BINARY(4)

 Total number of all of the variable length records.

Variable length records

The fields of the job to change and the data used for the change. For the specific format

of the variable length record, see “Format for Variable Length Record.”

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format for Variable Length Record

The following table defines the format for the variable length records.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Key identifier

4 4 BINARY(4) Length of key data

8 8 CHAR(*) Key data

If the length of the data is longer than the key identifier’s data length, the data will be truncated at the

right. No message will be issued.

4 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

If the length of the data is smaller than the key identifier’s data length, the data will be padded with

blanks at the right. No message will be issued.

It is not an error to specify a key more than once. If duplicate keys are specified, the last specified value

for that key is used.

Each variable length record must be 4-byte aligned. If not, unpredictable results may occur.

Field Descriptions

Key data. The data used to change a specific field of the job.

Key identifier. The field of the job to change. Only specific fields of the job can be changed. See “Key

Identifiers” for the list of valid keys.

Length of key data. The length of the data used to change a specific field of the job.

Key Identifiers

The following table lists the valid keys for the key identifier area of the variable length record.

 Key ID Type Field Description

1 CHAR(1) Exit key

2 CHAR(1) Cancel key

Key Identifier Descriptions

Exit key. Whether the Exit key is set as pressed for the job. It must have a value of 0 or 1.

 0 The Exit key was not pressed.

1 The Exit key was pressed.

Note: The application or command that was called before this API determines how the key is set.

Cancel key. Whether the Cancel key is set as pressed for the job. It must have a value of 0 or 1.

 0 The Cancel key was not pressed.

1 The Cancel key was pressed.

Note: The application or command that was called before this API determines how the key is set.

Error Messages

 Message ID Error Message Text

CPF1863 E Length of value not valid.

CPF1867 E Value &1 in list not valid.

CPF1868 E Value &1 for number of records not valid.

CPF2199 E &2 not valid for key &1.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

Work Management APIs 5

Top | “Work Management APIs,” on page 1 | APIs by category

Change Job (QWTCHGJB) API

 Required Parameter Group:

1 Qualified job name

Input Char(26)

2 Internal job identifier

Input Char(16)

3 Format name

Input Char(8)

4 Job change information

Input Char(*)

5 Error code

I/O Char(*)
 Optional Parameter Group:

6 Job or Thread identification information

Input Char(*)

7 Format of job identification information

Input Char(8)
 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 26.

The Change Job (QWTCHGJB) API changes some of the attributes of a job or thread. The attributes

changed are determined by the job change information parameter.

The current value of most of the job attributes can be retrieved with the List Job (QUSLJOB) API, the

Open List of Jobs (QGYOLJOB) API, the Retrieve Current Attributes (QWCRTVCA) API, the Retrieve Job

Information (QUSRJOBI) API or the Retrieve Thread Attributes (QWTRTVTA) API.

If an error occurs, the error code will have a general failure error and the specific error will need to be

retrieved out of the job message queue of the job that issued this API call.

The QWTCHGJB API changes a list of attributes similar to the attributes changed with the Change Job

(CHGJOB) command.

Authorities and Locks

Job Authority

The API must be called from within the job that is being changed, or the caller of the API must

be running under a user profile that is the same as the job user identity of the job that is being

changed. Otherwise, the caller of the API must be running under a user profile that has job

control (*JOBCTL) special authority.

6 iSeries: Work Management APIs

#TOP
aplist.htm

The job user identity is the name of the user profile by which a job is known to other jobs. It is

described in more detail in the Work Management

book on the V5R1 Supplemental Manuals

Web site.

Job control (*JOBCTL) special authority is needed for the following attributes to be changed:

v Default wait time

v Purge

v Run priority

v Time slice

v Time slice end pool

Command Authority

*USE authority to the Change Accounting Code (CHGACGCDE) command is needed to change

the job accounting code attribute.

Object Authority

If changing the job queue,

*USE

authority is required for the object, and *EXECUTE

authority is required for the library. If changing the output queue, *READ authority is required

for the object, and *EXECUTE authority is required for the library. In addition, the caller must be

authorized to the output queue currently associated with the job that is being changed. If

changing the sort sequence table, *USE authority is required for the object, and *EXECUTE

authority is required for the library.

 If using the JOBC0300 format to change attributes that are retrieved from the job description,

*USE authority is required for the job description and *EXECUTE authority is required for the

library. If changing the ASP group information, *USE authority is required for all ASP devices in

the ASP group. If changing the current library or the initial library list, *USE authority is required

for the libraries.

Required Parameter Group

Qualified job name

INPUT; CHAR(26)

 The name of the job for which the attributes are to be changed. If this value is *INT, the internal

job identifier will be used. The qualified job name has three parts:

 Job name CHAR(10). A specific job name or one of the following special values:

* The job or thread in which this program is running. The rest of the qualified job name

parameter must be blank. This special value must be used when using the JOBC0200 or

JOBC0300 format.

*INT The internal job identifier locates the job. The user name and job number must be blank.

This is only valid for the JOBC0100 format.

*THREAD

The job information is specified in the Job or thread identification information (page 8)

parameter. This special value must be used when using the JOBC0400 format. The user

name, job number, and internal job identifier must be blank when using *THREAD. This

is valid for the JOBC0400 format only.

User name CHAR(10). A specific user profile name, or blanks when the job name is a special value.

Job number CHAR(6). A specific job number, or blanks when the job name is a special value.

Internal job identifier

INPUT; CHAR(16)

Work Management APIs 7

The internal identifier for the job. The QUSLJOB API creates this identifier. If you do not specify

*INT for the job name parameter, this parameter must be blanks. With this parameter, the system

can locate the job more quickly than with a fully qualified job name.

Format name

INPUT; CHAR(8)

 The format of the list of job or thread attributes to be changed. You must use one of the following

format names:

 JOBC0100 Basic change job list. To be used when changing the attributes of your job or the attributes of

another job. This format will not change any specific attributes of a thread. This format will

function the same way that the CHGJOB command works.

JOBC0200 Basic change job list for changing the attributes of your own thread. The special value of ’*’ must

be used for the job name. See “Field Descriptions for Valid Keys” on page 12 for the scope of each

of the valid key fields. If no scope is mentioned, the attribute is scoped to the job.

Note: The scope of selected attributes may change over time. Currently there are only a few

attributes that are scoped to the thread. The attributes that are not scoped to the thread will be

updated at the job level. This will affect all threads running under this job. As attributes become

scoped to the thread, attributes changed with this format will then be changed for the current

thread and will not affect other threads.

JOBC0300 Change select attributes to user profile values. This format is intended to be used after a swap

user profile. The special value of ’*’ must be used for the job name. This format will be

functionally similar to the Change Prestart Job (CHGPJ) command. See “Field Descriptions for

Valid Keys” on page 12 for the scope of each of the valid key fields. If no scope is mentioned, the

attribute is scoped to the job.

Note: The attributes for a thread will be updated at the job level if the specific attributes are not

currently defined at the thread level. Selected attributes may be moved to the thread level in a

later release.

JOBC0400 Change select attributes of a specific thread. The special value of ’*THREAD’ must be used for the

job name.

Job change information

INPUT; CHAR(*)

 The information for the job that you want to change. The information must be in the following

format:

Number of variable length records

BINARY(4). The total number of all the variable length records. If this value is less than 1,

an error message is returned.

Variable length records.

The attributes of the job to change and the data used for the change. For the specific

format of the variable length record, see “Formats for Variable Length Record” on page 9.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group

Job or thread identification information

INPUT; CHAR(*)

8 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

The information that is used to identify the thread within a job for which specified attributes are

to be changed. See “Format of job or thread identification information” on page 24 for details.

Format of job or thread identification information

INPUT; CHAR(8)

 The format of the job or thread identification information. The possible format names are:

 JIDF0100 See “Format of job or thread identification information” on page 24 for details on the job

identification information.

JIDF0200 See “Format of job or thread identification information” on page 24 for details on the job

identification information.

Note: If the thread handle is available, Format JIDF0200 provides a faster method of accessing a

thread that is not the current thread than Format JIDF0100.

Formats for Variable Length Record

The following tables define the format for the variable length records.

JOBC0100, JOBC0200 and JOBC0400 Format: The layout of the JOBC0100, JOBC0200 and JOBC0400

format is the same layout as the information returned with the List Job (QUSLJOB) API.

 Offset

Type Field Dec Hex

These fields repeat, in the order listed, for each key requested. BINARY(4) Length of

attribute

information

BINARY(4) Key

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of

data

CHAR(*) Data

CHAR(*) Reserved

JOBC0300 Format: The JOBC0300 format is for changing attributes to values specified in either the

current user profile or the initial user profile.

 Offset

Type Field Dec Hex

These fields repeat for each key requested. BINARY(4) Key

CHAR(10) Data

CHAR(2) Reserved

If the length of the data is longer than the key field’s data length, the data will be truncated at the right.

No message will be issued.

If the length of the data is smaller than the key field’s data length, the data will be padded with blanks at

the right. No message will be issued.

Work Management APIs 9

It is not an error to specify a key more than once. If duplicate keys are specified, the last specified value

for that key is used.

Each variable length record must be 4-byte aligned. If not, unpredictable results may occur.

Field Descriptions for JOBC0100, JOBC0200, JOBC0300 and

JOBC0400 Formats

Data. The data for the attribute that is to be changed. The data for the JOBC0100, JOBC0200, JOBC0300

and JOBC0400 formats is defined in the key list section.

Key. The key for the attribute to be changed. See “Valid Keys” for the list of valid keys.

Length of data. The length of the data for the key field.

Length of attribute information. The total length of input information for this attribute. This value is

used to increment to the next attribute in the list.

Reserved. An ignored field. This field must be blanks.

Type of data. The type of input data. This field is provided to maintain the same format layout that is

used in the List Job (QUSLJOB) API. This field will not cause any conversion to occur.

 B The input data is in binary format.

C The input data is in character format.

Valid Keys

The following table contains a list of the valid keys for the JOBC0100 and JOBC0200 formats. See “Field

Descriptions for Valid Keys” on page 12 for the descriptions of the valid key fields.

 Key Type Description

0201 CHAR(10) Break message handling

0302 BINARY(4) Coded character set ID

0303 CHAR(8) Country or region ID

0311 CHAR(10) Character identifier control

0318 CHAR(15) Client IP address - IPv4 (job)

0405 CHAR(4) Date format

0406 CHAR(1) Date separator

0408 CHAR(5) DDM conversation handling

0409 BINARY(4) Default wait

0410 CHAR(13) Device recovery action

0413 CHAR(8) Decimal format

0901 CHAR(10) Inquiry message reply

1001 CHAR(15) Job accounting code

1002 CHAR(7) Job date

1004 CHAR(20) Job queue name - qualified

1005 CHAR(2) Job queue priority

1006 CHAR(8) Job switches

10 iSeries: Work Management APIs

Key Type Description

1007 CHAR(10) Job message queue full action

1201 CHAR(8) Language ID

1202 CHAR(1) Logging level

1203 CHAR(10) Logging of CL programs

1204 BINARY(4) Logging severity

1205 CHAR(7) Logging text

1501 CHAR(20) Output queue name - qualified

1502 CHAR(2) Output queue priority

1601 CHAR(10) Print key format

1602 CHAR(30) Print text

1603 CHAR(10) Printer device name

1604 CHAR(4) Purge

1802 BINARY(4) Run priority (job)

1804 BINARY(4) Run priority (thread)

1901 CHAR(20) Sort sequence table - qualified

1902 CHAR(10) Status message handling

1911 CHAR(30) Server type

1920 CHAR(10) Schedule date

1921 CHAR(8) Schedule time

1922 CHAR(1) Server mode for Structured Query Language

1982 CHAR(10) Spooled file action

2001 CHAR(1) Time separator

2002 BINARY(4) Time slice

2003 CHAR(10) Time-slice end pool

The following table contains a list of the valid keys for the JOBC0300 format. See “Field Descriptions for

Valid Keys” on page 12 for the descriptions of the valid key fields.

 Key Type Description

0104 CHAR(10) ASP group information

0302 CHAR(10) Coded character set ID

0303 CHAR(10) Country or region ID

0310 CHAR(10) Current library

0311 CHAR(10) Character identifier control

0801 CHAR(10) Home directory

0910 CHAR(10) Initial library list

1001 CHAR(10) Job accounting code

1201 CHAR(10) Language ID

1210 CHAR(10) Locale

1501 CHAR(10) Output queue name

Work Management APIs 11

Key Type Description

1502 CHAR(10) Output queue priority

1602 CHAR(10) Print text

1603 CHAR(10) Printer device name

1901 CHAR(10) Sort sequence table

1902 CHAR(10) Status message handling

2701 CHAR(10) All keys for JOBC0300 format

The following table contains a list of the valid keys for the JOBC0400 format. See “Field Descriptions for

Valid Keys” for the descriptions of the valid key fields.

 Key Type Description

1804 BIN(4) Run priority (thread)

Field Descriptions for Valid Keys

All keys for JOBC0300 format. All the keys that are valid for the JOBC0300 format will be changed. The

list of keys is subject to change at a later time. If other attributes are added to this key in the future, no

change will be needed for them to take effect. If this key (2701) is specified, no other keys can be

specified. Even though specifying this key is similar to specifying a list of all the keys that are valid for

the JOBC0300 format, the error handling is different. Errors encountered when changing some of the

attributes will not cause the change request to fail, although a diagnostic message may be sent. Errors

with ASP group information (key 0104), Current library (key 0310), and Initial library list (key 0910) are

considered critical and will stop the change request. In general, errors that would prevent a job from

starting will cause the change request to fail. If multiple threads are active, attributes that cannot be

changed in a safe manner will be ignored and a diagnostic message will be sent. See the “Usage Notes”

on page 26 for a list of attributes that can be changed in a safe manner. The following keys will be

changed by this key:

 Key ID Key Name

0104 ASP group information

0302 Coded character set ID

0303 Country or region ID

0310 Current library

0311 Character identifier control

0801 Home directory

0910 Initial library list

1001 Job accounting code

1201 Language ID

1210 Locale

1501 Output queue name

1502 Output queue priority

1602 Print text

1603 Printer device name

1901 Sort sequence table

1902 Status message handling

12 iSeries: Work Management APIs

The attributes that can be set from the locale (coded character set ID and sort sequence table) based on

the locale job attributes field (that is retrieved out of the same user profile specified on the locale field)

take precedence over the values that are retrieved from the user profile.

This key is valid for the JOBC0300 format only. The possible values are:

 *INLUSR The value for the attributes is retrieved for the user profile under which this thread was initially

running.

*CURUSR The value for the attributes is retrieved for the user profile under which this thread is currently

running

ASP group information. The name of the auxiliary storage pool (ASP) group that is associated with this

thread. The ASP group name is the name of the primary ASP device within the ASP group. The libraries

in the independent ASPs in the new ASP group plus the libraries in the system ASP (ASP number 1) and

basic user ASPs (ASP numbers 2-32) form the library name space and all libraries in the library list of this

thread are required to be in the new library name space. Therefore, when the ASP group is updated, the

libraries in the system part of the library list, the product libraries, the current library and the libraries in

the user part of the library list will also be updated.

The libraries currently in the system part of the library list that are found in the system ASP or any

configured basic user ASP are used as the new system part of the library list. The product libraries that

are found in the system ASP or any configured basic user ASP are used as the new product libraries. If

the current library is being changed (either with key 0310 or key 2701), the value specified will be used.

Otherwise, the library name in the current library entry of the library list is used as the new current

library if the library is found in the system ASP or any configured basic user ASP. If the library name in

the current entry is not found in the system ASP or any basic user ASP, the current library entry will be

removed from the library list. If the user part of the library list is being changed (either with key 0910 or

key 2701), the value specified will be used. Otherwise, the libraries currently in the user part of the

library list that are found in the system ASP or any configured basic user ASP are used as the new user

part of the library list.

This key is valid for the JOBC0300 format only. The following values are possible:

 *INLUSR The ASP group information specified in the job description of the user profile under which this

thread was initially running is used.

*CURUSR The ASP group information specified in the job description of the current user profile for this

thread is used.

Break message handling. How this job handles break messages. This key isvalid for the JOBC0100 and

JOBC0200 formats only . The possible values are:

 *NORMAL The message queue status determines break message handling.

*HOLD The message queue holds break messages until a user or program requests them. The work station

user uses the Display Message (DSPMSG) command to display the messages; a program must

issue a Receive Message (RCVMSG) command to receive a message and handle it.

*NOTIFY The system notifies the job’s message queue when a message arrives. For interactive jobs, the

audible alarm sounds if there is one, and the message-waiting light comes on.

Character identifier control. The character identifier control for the job. This attribute controls the type of

CCSID conversion that occurs for display files, printer files, and panel groups. The *CHRIDCTL special

value must be specified on the CHRID command parameter on the create, change, or override command

for display files, printer files, and panel groups before this attribute will be used.

The possible values for the JOBC0100 and JOBC0200 formats are:

Work Management APIs 13

*DEVD The *DEVD special value performs the same function as on the CHRID command parameter for

display files, printer files, and panel groups.

*JOBCCSID The *JOBCCSID special value performs the same function as on the CHRID command parameter

for display files, printer files, and panel groups.

*SYSVAL The value in the QCHRIDCTL system value will be used.

*USRPRF The CHRIDCTL specified in the user profile under which this thread was initially running will be

used.

The possible values for the JOBC0300 format are:

 *INLUSR The CHRIDCTL specified in the user profile under which this thread was initially running is used.

*CURUSR The CHRIDCTL specified in the current user profile for this thread is used.

Client IP address - IPv4 (job). The IPv4 address of the client for which the thread of this server is

servicing currently. This key is valid for the JOBC0200 format only. A value of blanks indicates that the

thread is not currently servicing a client. A value of hexadecimal zeros is not allowed. An address is

expressed in standard dotted-decimal form www.xxx.yyy.zzz; for example, 130.99.128.1. This field is not

required to be an IP address. A change to this attribute in a secondary thread is possible, however, it is

essentially meaningless as only the attribute for the inital thread can be retrieved using the Retrieve Job

Information (QUSRJOBI) API. For further information on retrieving the Client IP address - IPv4 or IPv6

that has been implicity set by the operating system, see the “Retrieve Thread Attribute (QWTRTVTA)

API” on page 348 (QWTRTVTA) API.

Coded character set ID. The coded character set identifier used for this job.

The possible values for the JOBC0100 and JOBC0200 formats are:

 -1 The CCSID specified in the system value QCCSID is used.

-2 The CCSID specified in the user profile under which this thread was initially running is used.

coded-character-
set-identifier

Specify the CCSID.

The possible values for the JOBC0300 format are:

 *INLUSR The CCSID specified in the user profile under which this thread was initially running is used.

*CURUSR The CCSID specified in the current user profile for this thread is used.

Country or region ID. The country or region identifier associated with this job.

The possible values for the JOBC0100 and JOBC0200 formats are:

 *SYSVAL The system value QCNTRYID is used.

*USRPRF The country or region ID specified in the user profile under which this thread was initially

running is used.

country-or-
region-ID

Specify the country or region identifier to be used by the job.

The possible values for the JOBC0300 format are:

 *INLUSR The country or region ID specified in the user profile under which this thread was initially

running is used.

*CURUSR The country or region ID specified in the current user profile for this thread is used.

14 iSeries: Work Management APIs

Current library. The name of the current library that is associated with this thread. This key is valid for

the JOBC0300 format only. The following values are possible:

 *INLUSR The current library specified in the user profile under which this thread was initially running is

used.

*CURUSR The current library specified in the current user profile for this thread is used.

Date format. The format that the date is presented in. This key is only valid for the JOBC0100 and

JOBC0200 formats. The following values are possible:

 *SYS The system value, QDATFMT, is used.

*YMD The date format used is year, month, and day.

*MDY The date format used is month, day, and year.

*DMY The date format used is day, month, and year.

*JUL The date format used is Julian (year and day).

Date separator. The value used to separate days, months, and years when presenting a date. This key is

valid for the JOBC0100 and JOBC0200 formats only. The following values are possible:

 S The system value, QDATSEP is used.

’/’ A slash (/) is used for the date separator.

’-’ A dash (-) is used for the date separator.

’.’ A period (.) is used for the date separator.

’ ’ A blank is used for the date separator.

’,’ A comma (,) is used for the date separator.

DDM conversation handling. Specifies whether the connections using distributed data management

(DDM) protocols remain active when they are not being used. The connections include APPC

conversations, active TCP/IP connections or Opti-Connect connections. The DDM protocols are used in

Distributed Relational Database Architecture (DRDA) applications, DDM applications, or DB2

Multisystem applications. This key is only valid for the JOBC0100 and JOBC0200 formats. The following

values are possible:

 *KEEP The system keeps DDM connections active when there are no users, except for the following:

v The routing step ends on the source system. The routing step ends when the job ends or when

the job is rerouted to another routing step.

v The Reclaim Distributed Data Management Conversation (RCLDDMCNV) command or the

Reclaim Resources (RCLRSC) command runs.

v A communications failure or an internal failure.

v A DRDA connection to an application server not running on an iSeries server ends.

*DROP The system ends a DDM connection when there are no users. Examples include when an

application closes a DDM file, or when a DRDA application runs an SQL DISCONNECT

statement.

Decimal format. The type of zero suppression and the decimal point character. This key is only valid for

the JOBC0100 and JOBC0200 formats. The following values are possible:

 *SYSVAL The value in the system value, QDECFMT, is used as the decimal format for this job.

*BLANK Period for decimal, zero suppression.

J Comma for decimal, one leading zero.

I Comma for decimal, zero suppression.

Work Management APIs 15

Default wait. The default maximum time (in seconds) that a thread in the job waits for a system

instruction, such as a LOCK machine interface (MI) instruction, to acquire a resource. This default wait

time is used when a wait time is not otherwise specified for a given situation. Normally, this is the

amount of time the user is willing to wait for the system before the request is ended. If the job consists of

multiple routing steps, a change to this attribute during a routing step does not apply to subsequent

routing steps. The valid range is 1 through 9999999. A value of -1 specifies to change to no maximum

wait time. This key is valid for the JOBC0100 and JOBC0200 formats only.

Device recovery action. The action taken for interactive jobs when an I/O error occurs for the job’s

requesting program device. This key is valid for the JOBC0100 and JOBC0200 formats only. The possible

values are:

 *SYSVAL The value in the system value, QDEVRCYACN, is used as the device recovery action for this job.

*MSG Signals the I/O error message to the application and lets the application program perform error

recovery.

*DSCMSG Disconnects the job when an I/O error occurs. When the job reconnects, the system sends to the

application program an error message, that indicates that the job has reconnected and that the

work station device has recovered.

*DSCENDRQS Disconnects the job when an I/O error occurs. When the job reconnects, the system sends the End

Request (ENDRQS) command to return control to the previous request level.

*ENDJOB Ends the job when an I/O error occurs. The system sends to the job’s log and to the history log

(QHST) a message that indicates that the job ended because of a device error.

*ENDJOBNOLIST Ends the job when an I/O error occurs. There is no job log produced for the job. The system sends

to the QHST log a message that indicates that the job ended because of a device error.

Home directory. The name of the home directory for the integrated file system that is associated with this

thread. If the home directory associated with this thread was retrieved from the same user profile that is

being specified by either *INLUSR or *CURUSR, then the home directory will not be changed for this

thread, even if that user profile’s home directory has been changed. If you change the home directory, the

job’s current working directory will not change. This key is valid for the JOBC0300 format only. The

following values are possible:

 *INLUSR The home directory specified in the user profile under which this thread was initially running is

used.

*CURUSR The home directory specified in the current user profile for this thread is used.

Initial library list. The initial user part of the library list that is associated with this thread. This key is

only valid for the JOBC0300 format. The possible values are:

 *INLUSR The initial library list specified in the job description of the user profile under which this thread

was initially running is used.

*CURUSR The initial library list specified in the job description of the user profile under which this thread is

currently running is used.

Inquiry message reply. How the job answers inquiry messages. This key is only valid for the JOBC0100

and JOBC0200 formats. The possible values are:

 *RQD The job requires an answer for any inquiry messages that occur while this job is running.

*DFT The system uses the default message reply to answer any inquiry messages that are issued while

this job is running. The default reply is either defined in the message description or is the default

system reply.

*SYSRPYL The system reply list is checked to see if there is an entry for an inquiry message that was issued

while this job is running. If a match occurs, the system uses the reply value for that entry. If no

entry exists for that message, the system uses an inquiry message.

16 iSeries: Work Management APIs

Job accounting code. An identifier assigned to the job by the system to collect resource use information

for the job when job accounting is active. The user who is changing this field must have authority to the

CHGACGCDE CL command. If the user does not have the proper authority, this field is ignored and

processing continues.

The possible values for the JOBC0100 and JOBC0200 formats are:

 *BLANK The accounting code is changed to all blanks.

accounting-code Specify the 15-character accounting code used for the next accounting segment. The accounting

code may contain alphabetic or numeric characters.

The possible values for the JOBC0300 format are:

 *INLUSR The accounting code specified in the job description of the user profile under which this thread

was initially running is used.

*CURUSR The accounting code specified in the job description of the user profile under which this thread is

currently running is used.

Job date. The date that is assigned to the job. It is in the format CYYMMDD where C is the century, YY

is the year, MM is the month, and DD is the day. A 0 for the century flag indicates years 19xx and a 1

indicates years 20xx. This value will only be changed for jobs whose status is *JOBQ or *ACTIVE. This

key is only valid for the JOBC0100 and JOBC0200 formats.

Job message queue full action. The action to take when the message queue is full. This key is only valid

for the JOBC0100 and JOBC0200 formats. The possible values are:

 *SYSVAL The value specified for the QJOBMSGQFL system value is used.

*NOWRAP When the job message queue is full, do not wrap. This action causes the job to end.

*WRAP When the job message queue is full, wrap to the beginning and start filling again.

*PRTWRAP When the job message queue is full, wrap the message queue and print the messages that are

being overlaid because of the wrapping.

Job queue name - qualified. The qualified name of the job queue that the job is to be on. The format of

the qualified name is a 10-character simple object name followed by a 10-character library name. This

value is valid for jobs whose status is *JOBQ. For jobs with a status of *OUTQ or *ACTIVE, an error will

be signaled. This key is valid for the JOBC0100 and JOBC0200 formats only.

 Job queue name CHAR(10). The specific name of the job queue the job is to be on.

Library name CHAR(10). The name of the library where the job queue is located. This value must be

left-justified and padded with blanks. The possible values are:

*LIBL All libraries in the job’s library list are searched until the first match is found.

*CURLIB

The current library for the job is used to locate the job queue. If no library is specified as

the current library for the job, QGPL is used.

library-name

Specify the name of the library where the job queue is placed.

Job queue priority. The scheduling priority of the job compared to other jobs on the same job queue. The

highest priority is 0 and the lowest is 9. This value is valid for jobs whose status is *JOBQ or *ACTIVE.

For jobs with a status of *OUTQ, an error will be signaled. This key is only valid for the JOBC0100 and

JOBC0200 formats.

Work Management APIs 17

Job switches. The current setting of the job switches that are used by this job. Specify any combination of

eight 0’s, 1’s, or X’s to change the job switch settings. If a switch value is not being changed, enter an X

in the position that represents that switch. This key is only valid for the JOBC0100 and JOBC0200

formats.

Language ID. The language identifier that is associated with this job. The language identifier is used

when *LANGIDUNQ or *LANGIDSHR is specified on the sort sequence parameter. If the job CCSID is

65535, this parameter is also used to determine the value of the job default CCSID.

The possible values for the JOBC0100 and JOBC0200 formats are:

 *SYSVAL The system value QLANGID is used.

*USRPRF The language ID specified in the user profile under which this thread was initially running is

used.

language-ID Specify the language identifier to be used by the job.

The possible values for the JOBC0300 format are:

 *INLUSR The language ID specified in the user profile under which this thread was initially running is

used.

*CURUSR The language ID specified in the user profile under which this thread is currently running is used.

Locale. The path name of the locale that is assigned to the LANG environment variables. Several job

attributes can be set from the locale based on the values from the locale job attributes (locale job

attributes are retrieved from the same user profile as the locale). The attributes that can be changed are

CCSID, date format, date separator, sort sequence, time separator, and decimal format. This key is only

valid for the JOBC0300 format. The possible values are:

 *INLUSR The locale specified in the user profile under which this thread was initially running will be used.

*CURUSR The locale specified in the user profile under which this thread is currently running will be used.

Logging level. What type of information is logged. This key is valid for the JOBC0100 and JOBC0200

formats only. The possible values are:

 0 No messages are logged.

1 All messages sent to the job’s external message queue with a severity greater than or equal to the

message logging severity are logged. This includes the indications of job start, job end, and job

completion status.

2 The following information is logged:

v Logging level 1 information

v Request messages that result in a high-level message with a severity code greater than or equal

to the logging severity that caused the request message and all associated messages to be

logged.

Note: A high-level message is one that is sent to the program message queue of the program

that receives the request message. For example, QCMD is an IBM-supplied request processing

program that receives request messages.

3 The following information is logged:

v Logging level 1 and 2 information

v All request messages

v Commands run by a CL program are logged if it is allowed by the logging of CL programs job

attribute and the log attribute of the CL program.

18 iSeries: Work Management APIs

4 The following information is logged:

v All request messages and all messages with a severity greater than or equal to the message

logging severity, including trace messages.

v Commands run by a CL program are logged if it is allowed by the logging of CL programs job

attribute and the log attribute of the CL program.

Logging of CL programs. Whether or not commands are logged for CL programs that are run. The

possible values are *YES and *NO. This key is valid for the JOBC0100 and JOBC0200 formats only.

Logging severity. The severity level that is used in conjunction with the logging level to determine which

error messages are logged in the job log. The values range from 00 through 99. This key is valid for the

JOBC0100 and JOBC0200 formats only.

Logging text. The level of message text that is written in the job log when a message is logged according

to the logging level and logging severity. This key is valid for the JOBC0100 and JOBC0200 formats only.

The possible values are:

 *MSG Only the message text is written to the job log.

*SECLVL Both the message text and the message help (cause and recovery) of the error message are written

to the job log.

*NOLIST If the job ends normally, no job log is produced. If the job ends abnormally (if the job end code is

20 or higher), a job log is produced. The messages that appear in the job log contain both the

message text and the message help.

Output queue name. The name of the default output queue that is used for spooled output produced by

this job. The default output queue is only for spooled printer files that specify *JOB for the output queue.

The possible values for the JOBC0300 format are:

 *INLUSR The output queue specified in the job description of the user profile under which this thread was

initially running is used.

*CURUSR The output queue specified in the job description of the user profile under which this thread is

currently running is used.

Output queue name - qualified. The qualified name of the default output queue that is used for spooled

output produced by this job. The default output queue is only for spooled printer files that specify *JOB

for the output queue. The format of the qualified name is a 10-character simple object name followed by

a 10-character library name.

Output queue name.

CHAR(10). The specific name of the output queue that is used. If a special value is specified, it

must be the only value in the field.

 The possible values for the JOBC0100 and JOBC0200 formats are:

 *DEV The DEV parameter is determined by one of these printer file commands: Create Printer File

(CRTPRTF), Change Printer File (CHGPRTF), or Override with Printer File (OVRPRTF).

*WRKSTN The default output queue that is used with this job is the output queue that is assigned to the

work station associated with the job at the time the job is started.

*USRPRF The output queue name specified in the user profile under which this thread was initially running

is used.

output-queue-
name

The name and library of the default output queue that is used by the job. Specify the library name

last (left-adjusted and padded with blanks) preceded by the output queue name.

Output queue library name.

CHAR(10). The name of the library that contains the output queue. The library name must follow

Work Management APIs 19

the output queue name. The possible values are:

 *LIBL All libraries in the job’s library list are searched until the first match is found.

*CURLIB The current library for the job is used to locate the name of the spooled output queue. If no

library is specified as the current library for the job, QGPL is used.

library-name Specify the name of the library where the spooled output queue is located.

 Output queue priority. The output priority for spooled output files that this job produces. The highest

priority is 0, and the lowest is 9.

The possible CHAR(2) values for the JOBC0100 and JOBC0200 formats are:

 output-priority A value, ranging from 1 through 9, for the priority of the job’s output files. The output priority

specified cannot be higher than the priority specified in the user profile under which the job is

running.

The possible CHAR(10) values for the JOBC0300 format are:

 *INLUSR The output priority specified in the job description of the user profile under which this thread was

initially running is used.

*CURUSR The output priority specified in the job description of the user profile under which this thread is

currently running is used.

Printer device name. The printer device used for printing output from this job.

The possible values for the JOBC0100 and JOBC0200 formats are:

 *SYSVAL The value in the system value QPRTDEV is used as the printer device.

*WRKSTN The default printer device used with this job is the printer device assigned to the work station that

is associated with the job.

*USRPRF The printer device name specified in the user profile under which this thread was initially running

is used.

printer-device-
name

The name of the printer device that is used with this job.

The possible values for the JOBC0300 format are:

 *INLUSR The printer device that is specified in the job description of the user profile under which this

thread was initially running is used.

*CURUSR The printer device specified in the job description of the user profile under which this thread is

currently running is used.

Print key format. Whether border and header information is provided when the Print key is pressed.

This key is only valid for the JOBC0100 and JOBC0200 formats. The possible values are:

 *SYSVAL The value specified on the system value QPRTKEYFMT determines whether header or border

information is printed.

*NONE The border and header information is not included with output from the Print key.

*PRTBDR The border information is included with output from the Print key.

*PRTHDR The header information is included with output from the Print key.

*PRTALL The border and header information is included with output from the Print key.

20 iSeries: Work Management APIs

Print text. The line of text (if any) that is printed at the bottom of each page of printed output for the job.

The possible values for the JOBC0100 and JOBC0200 formats are:

 *SYSVAL The system value, QPRTTXT, is used.

*BLANK No text is printed on printed output.

print-text The character string that is printed at the bottom of each page. A maximum of 30 characters can

be entered.

The possible values for the JOBC0300 format are:

 *INLUSR The print text specified in the job description of the user profile under which this thread was

initially running is used.

*CURUSR The print text specified in the job description of the user profile under which this thread is

currently running is used.

Purge. Whether or not the job is eligible to be moved out of main storage and put into auxiliary storage

at the end of a time slice or when entering a long wait (such as waiting for a work station user’s

response). This attribute is ignored when more than one thread is active within the job. If the job consists

of multiple routing steps, a change to this attribute during a routing step does not apply to subsequent

routing steps. This key is valid for the JOBC0100 and JOBC0200 formats only. The possible values are:

 *YES The job is eligible to be moved out of main storage and put into auxiliary storage. A job with

multiple threads, however, is never purged from main storage.

*NO The job is not eligible to be moved out of main storage and put into auxiliary storage. When main

storage is needed, however, pages belonging to a thread in this job may be moved to auxiliary

storage. Then, when a thread in this job runs again, its pages are returned to main storage as they

are needed.

Run priority (job). The priority at which the job or thread competes for the processing unit relative to

other jobs and threads that are active at the same time. The run priority ranges from 1 (highest priority)

to 99 (lowest priority). This value represents the relative (not absolute) importance of the job or thread.

For example, a run priority of 25 is not twice as important as a run priority of 50. If the job consists of

multiple routing steps, a change to this attribute during a routing step does not apply to subsequent

routing steps. This key is valid for the JOBC0100 and JOBC0200 formats only. This key can be used to

change the current thread using the JOBC0200 format, but when changing a specific thread, the JOBC0400

format should be used with the Run priority (thread) key.

The possible values for the JOBC0100 format are:

 priority The run priority of the job is changed. The range of values is 1 (highest priority) to 99 (lowest

priority). The value may never be higher than the run priority for the job in which the thread is

running. If a priority higher than the job’s is entered, an error is returned. Changing the run

priority of the job affects the run priorities of all threads within the job. For example, the job is

running at priority 10, thread A within the job is running at priority 10, and thread B within the

job is running at priority 15. The priority of the job is changed to 20. The priority of thread A

would then be adjusted to 20 and the priority of thread B would be adjusted to 25.

The possible values for the JOBC0200 format are:

 -1 The run priority of the current thread will be set equal to the priority of the job. The thread cannot

have a lower priority than its corresponding job.

priority The run priority of the thread is changed. The range of values are the current job’s run priority

(highest priority) to 99 (lowest priority). If a priority that is higher than the job’s is entered, an

error is returned.

Work Management APIs 21

Run priority (thread). The run priority for the thread relative to the priority of the other threads that are

running in the system. The range of values are from 1 (highest priority) to 99 (lowest priority). The value

may never be higher than the run priority for the job in which the thread is running. If a priority higher

than the job’s is entered, an error is returned. This key is valid for the JOBC0200 and JOBC0400 format

only.

Schedule date. The date on which the submitted job becomes eligible to run.

If your system or your job is configured to use the Julian date format, *MONTHSTR and *MONTHEND

are calculated as if the system or job did not use the Julian date format. This key is only valid for the

JOBC0100 format. The possible values are:

 *CURRENT The submitted job becomes eligible to run on the current date.

*MONTHSTR The submitted job becomes eligible to run on the first day of the month. If you specify

*MONTHSTR and if today is the first day of the month and the time you specify on the schedule

time parameter has not passed, the job becomes eligible to run today. Otherwise, the job becomes

eligible on the first day of the next month.

*MONTHEND The submitted job becomes eligible to run on the last day of the month. If you specify

*MONTHEND and if today is the last day of the month and the time you specify on the schedule

time parameter has not passed, the job becomes eligible to run today. Otherwise, the job becomes

eligible on the last day of the next month.

*MON The job becomes eligible to run on Monday.

*TUE The job becomes eligible to run on Tuesday.

*WED The job becomes eligible to run on Wednesday.

*THU The job becomes eligible to run on Thursday.

*FRI The job becomes eligible to run on Friday.

*SAT The job becomes eligible to run on Saturday.

*SUN The job becomes eligible to run on Sunday.

date Specify a date in the format CYYMMDD where C is the century, YY is the year, MM is the month,

and DD is the day. A 0 for the century flag indicates years 19xx and a 1 indicates years 20xx.

Schedule time. The time on the scheduled date at which the job becomes eligible to run. This key is valid

for the JOBC0100 format only.

Note: Although the time can be specified to the second, the load on the system may affect the exact time

at which the job becomes eligible to run.

The possible values are:

 *CURRENT The job is submitted on the current time.

time The time you want the job to start. The time is specified in 24-hour format as follows:

Specify a string of 6 digits (HHMMSS) where HH equals hours, MM equals minutes, and SS

equals seconds. Valid values for HH range from 00 to 23. Valid values for MM and SS range from

00 to 59.

Server mode for Structured Query Language. Whether or not Structured Query Language (SQL)

statements should run in a separate server job. This key is only valid for the JOBC0200 format. The

possible values are:

 0 The SQL statements will not run in a separate server job.

1 The SQL statements will run in a separate server job. Each SQL connection will be allowed to run

with a different user profile and separate transaction scoping.

22 iSeries: Work Management APIs

Server type. The type of server represented by the job. This key is valid for the JOBC0200 format only. A

value of blanks indicates that the job is not part of a server. A value of hexadecimal zeros is not allowed.

IBM servers start with QIBM.

Sort sequence table. The sort sequence table to be used for string comparisons for this job. The possible

values for the JOBC0300 format are:

 *INLUSR The sort table specified in the user profile under which this thread was initially running is used.

*CURUSR The sort table specified in the user profile under which this thread is currently running is used.

Sort sequence table - qualified. The qualified name of the sort sequence table to be used for string

comparisons for this job. The format of the qualified name is a 10-character simple object name followed

by a 10-character library name. The sort sequence table consists of 2 parts:

Sort sequence table name

CHAR(10). The specific name of the sort sequence table. The possible values for the JOBC0100

and JOBC0200 formats are:

 *SYSVAL The system value QSRTSEQ is used.

*USRPRF The sort sequence table specified in the user profile under which this thread was initially running

is used.

*HEX A sort sequence table is not used. The hexadecimal values of the characters are used to determine

the sort sequence.

*LANGIDUNQ A unique-weight sort table is used.

*LANGIDSHR A shared-weight sort table is used.

table-name The name of the sort sequence table to be used with this job. The table name must be preceded by

the library name, left-adjusted, and padded with blanks.

Sort sequence library

CHAR(10). The sort sequence table library that is associated with this job. The possible values

are:

 *LIBL All libraries in the job’s library list are searched until the first match is found.

*CURLIB The current library for the job is searched. If no library is specified as the current library for the

job, the QGPL library is used.

library-name The name of the library to be searched. This must be specified after the sort sequence table name

and must be left-adjusted and padded with blanks.

 Spooled file action. Whether spooled files can be accessed through job interfaces once a job has

completed its normal activity.

 *KEEP

When the job completes its activity, as long as at least one spooled file for the job exists in the

system auxiliary storage pool (ASP 1) or in a basic user ASP (ASPs 2-32), the spooled files are kept

with the job and the status of the job is updated to indicate that the job has completed. If all

remaining spooled files for the job are in independent ASPs (ASPs 33-255), the spooled files will

be detached from the job and the job will be removed from the system.

*DETACH Spooled files are detached from the job when the job completes its activity.

*SYSVAL The job will take the spooled file action specified by the QSPLFACN system value.

Status message handling. Whether you want status messages displayed for this job. The possible values

for the JOBC0100 and JOBC0200 formats are:

 *SYSVAL The system value QSTSMSG is used.

Work Management APIs 23

*USRPRF The status message handling that is specified in the user profile under which this thread was

initially running is used.

*NONE This job does not display status messages.

*NORMAL This job displays status messages.

The possible values for the JOBC0300 format are:

 *INLUSR Status messages are shown or not shown as specified in the user profile under which this thread

was initial running.

*CURUSR Status messages are shown or not shown as specified in the current user profile under which this

thread is running.

Time separator. The value used to separate hours, minutes, and seconds when presenting a time. This

key is only valid for the JOBC0100 and JOBC0200 formats. The possible values are:

 S The time separator specified in the system value QTIMSEP is used.

’:’ A colon (:) is used for the time separator.

’.’ A period (.) is used for the time separator.

’ ’ A blank is used for the time separator.

’,’ A comma (,) is used for the time separator.

Time slice. The maximum amount of processor time (in milliseconds) given to each thread in this job

before other threads (in this job or in other jobs) are given the opportunity to run. The time slice

establishes the amount of time that is needed by a thread in the job to accomplish a meaningful amount

of processing. At the end of the time slice, the thread might be put in an inactive state so that other

threads can become active in the storage pool. If the job consists of multiple routing steps, a change to

this attribute during a routing step does not apply to subsequent routing steps. Valid values range from 1

through 9999999 (that is, 9 999 999 milliseconds or 9999.999 seconds). Although you can specify a value

of less than 8, the system takes a minimum of 8 milliseconds to run a process. If you display a job’s run

attributes, the time slice value is never less than 8. This key is valid for the JOBC0100 and JOBC0200

formats only.

Time-slice end pool. Whether you want interactive jobs moved to another main storage pool at the end

of the time slice. This key is only valid for the JOBC0100 and JOBC0200 formats. The possible values are:

 *SYSVAL The value in the system value, QTSEPOOL, is used.

*NONE The job does not move to another main storage pool when it reaches the end of the time slice.

*BASE The job moves to the base pool when it reaches the end of the time slice.

Format of job or thread identification information

Format JIDF0100 is the format of the information needed to identify the job and the thread for which the

thread’s attributes will be changed. This format supports several special values that can help in

identifying the thread.

Format JIDF0200 is the format of the information needed to identify the thread for which the thread’s

attributes will be changed. This format is to be used when referencing a specific thread for which you

already have the thread handle.

Note: If the thread handle is available, Format JIDF0200 provides a faster method of accessing a thread

that is not the current thread than Format JIDF0100.

JIDF0100 format.

24 iSeries: Work Management APIs

Offset

Type Field Dec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4) Thread indicator

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this

identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks.

With this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

 * The job that this program is running in. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread identifier. A value that uniquely identifies a thread within a job. If a thread identifier is specified,

a thread indicator must also be specified. If the thread indicator is not 0, this field must contain

hexadecimal zeros.

Thread indicator. A value that is used to specify the thread within the job. If a thread indicator is

specified, a thread identifier must be specified also. The following values are supported:

 0 Information from the thread identifier field should be used.

1 The thread that this program is running in currently should be used.

2 The initial thread of the identified job should be used.

Note: For all of the supported values, the combination of the internal job identifier, job name, job number,

and user name fields must also identify the job containing the thread.

User name. A specific user profile name, or blanks when the job name specified is a special value.

JIDF0200 format.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

Work Management APIs 25

Offset

Type Field Dec Hex

42 2A CHAR(2) Reserved

44 2C BINARY(4),

UNSIGNED

Thread handle

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this

identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks.

With this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

 * The job that this program is running in. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread handle. A value that addresses a particular thread within a job. While the thread identifier

uniquely identifies the thread within the job, the thread handle can improve performance when

referencing the thread. A valid thread handle must be specified. The thread handle is returned on several

other interfaces.

Thread identifier. A value which uniquely identifies a thread within a job. A valid thread identifier must

be specified.

User name. A specific user profile name, or blanks when the job name specified is a special value.

Usage Notes

How to determine the format to use

The JOBC0100 format is to be used to change an attribute that is scoped to the job. This format will

change the attribute for either the job that the request is issued from or for any other job that is on the

system.

The JOBC0200 format is to be used to change an attribute for the thread that the request is being issued

from. This will change the attribute at the thread level for attributes that are scoped to the thread and

will change the attribute at the job level for attributes that are scoped to the job. For attributes that are

scoped to the thread, there may be multiple threads active when the change is requested. The change will

only affect the current thread. The other active threads will not be affected by the change. The attributes

that are scoped to the job may only be changed if there are no secondary threads active, so as to not

affect other threads. If a job attribute needs to be changed by a secondary thread or while secondary

threads are active, the JOBC0100 format should be used.

The JOBC0300 format may be used after a set user profile has been done with the Set Profile (QWTSETP)

API. This format will perform job-initialization type activities. When a job is started, information for

various attributes is retrieved from the user profile that the job is starting under. This format will perform

a similar function for either the user profile that the thread is currently running under or for the user

26 iSeries: Work Management APIs

profile that the thread was initiated under. For attributes that are scoped to the thread, if this format is

called with multiple threads active, the change will only affect the current thread. Attributes that are

scoped to the job may only be changed if there are no secondary threads active.

The JOBC0400 format is to be used to change an attribute that is scoped to the thread. It allows changing

a thread other than the current thread as well as the current thread.

Considerations for attribute scope and thread safety

In the Attribute Scope and Thread Safety (page 29) table, the Attribute column shows the key identifier

and the text description for the attribute.

The Scope column shows whether the attribute is scoped to the job or to the thread. Attributes changed

with this API may be scoped to the job or to the current thread. Some attributes that are scoped to the job

could be moved to the thread level in a future release. If that were to occur, this API would be updated

to change the thread attribute.

The Format columns indicate whether the attributes are considered to be threadsafe when being changed

for that format.

The following describes the terminology used in the Format columns:

 Threadsafe In general threads terminology, indicates that an interface may be called safely from either an

initial thread or a secondary thread. For this particular API, threadsafe indicates that an attribute

can always be changed and can be considered correct.

The API may be called from the initial or secondary thread to change the attributes of the current

job or a different job. The job whose attributes are being changed may be either single threaded or

multithreaded.

Note: When attributes that are marked threadsafe and are scoped to the job are changed, the

change will affect all threads that are running under that job.

Single threaded

only

In general threads terminology, indicates that an interface may be called safely only while the job

is running single threaded (that is, no secondary threads are active). For this particular API, an

attribute marked as single threaded only indicates that the attribute can only be changed by that

format when changing one’s own attribute and there are no other threads active. The change will

not be allowed if the target job is multithreaded.

No The attribute may not be changed safely. The change will not be allowed if multiple threads are

active in the job calling this API or in the target job.

Blank The attribute is not supported for this request.

 Attribute Scope and Thread Safety

Attribute Scope JOBC0100 JOBC0200 JOBC0300 JOBC0400

0104: ASP group

information

Current thread Threadsafe

0201: Break message

handling

Job Threadsafe Single threaded

only

0302: Coded character set

ID

Job Threadsafe Single threaded

only

Single threaded

only

0303: Country or region ID Job Threadsafe Single threaded

only

Single threaded

only

0310: Current library Current thread Threadsafe

Work Management APIs 27

Attribute Scope and Thread Safety

Attribute Scope JOBC0100 JOBC0200 JOBC0300 JOBC0400

0311: Character identifier

control

Job Threadsafe Single threaded

only

Single threaded

only

0318: Client IP address -

IPv4 (job)

Job Initial thread

only1

0405: Date format Job Threadsafe Single threaded

only

0406: Date separator Job Threadsafe Single threaded

only

0408: DDM conversation Job No No

0409: Default wait Job Threadsafe Single threaded

only

0410: Device recovery

action

Job Threadsafe Single threaded

only

0413: Decimal format Job Threadsafe Single threaded

only

0801: Home directory Current thread Threadsafe

0901: Inquiry message

reply

Job Threadsafe Single threaded

only

0910: Initial library list Current thread Threadsafe

1001: Job accounting code Job No No No

1002: Job date Job Threadsafe Single threaded

only

1004: Job queue name -

qualified

Job Threadsafe Single threaded

only

1005: Job queue priority Job Threadsafe Single threaded

only

1006: Job switches Job Threadsafe Single threaded

only

1007: Job message queue

full action

Job Threadsafe Single threaded

only

1201: Language ID Job Threadsafe Single threaded

only

Single threaded

only

1202: Logging level Job Threadsafe Single threaded

only

1203: Logging of CL

programs

Job Threadsafe Single threaded

only

1204: Logging severity Job Threadsafe Single threaded

only

1205: Logging text Job Threadsafe Single threaded

only

1210: Locale Job No

1501: Output queue name Job Single threaded

only

1501: Output queue name -

qualified

Job Threadsafe Single threaded

only

28 iSeries: Work Management APIs

Attribute Scope and Thread Safety

Attribute Scope JOBC0100 JOBC0200 JOBC0300 JOBC0400

1502: Output queue

priority

Job Threadsafe Single threaded

only

Single threaded

only

1601: Print key format Job Threadsafe Single threaded

only

1602: Print text Job Threadsafe Single threaded

only

Single threaded

only

1603: Printer device name Job Threadsafe Single threaded

only

Single threaded

only

1604: Purge Job Threadsafe Single threaded

only

1802: Run priority (job) Job Threadsafe

1802: Run priority (job) Current thread Threadsafe

1804: Run priority (thread) Thread Threadsafe

1901: Sort sequence table Job Single threaded

only

1901: Sort sequence table -

qualified

Job Threadsafe Single threaded

only

1902: Status message

handling

Job Threadsafe Single threaded

only

Single threaded

only

1911: Server type Job Single threaded

only

1920: Schedule date Job No

1921: Schedule time Job No

1922: Server mode for

Structured Query

Language

Job Single threaded

only

1982: Spooled file action Job Threadsafe Single threaded

only

2001: Time separator Job Threadsafe Single threaded

only

2002: Time slice Job Threadsafe Single threaded

only

2003: Time-slice end pool Job Threadsafe Single threaded

only

2701: All keys for

JOBC0300 format

See the specific

keys in this

table

 See the specific

keys in this

table

1 A change to this attribute in a secondary thread is possible; however, it is essentially meaningless as only

the attribute for the inital thread can be retrieved using the Retrieve Job Information (QUSRJOBI) API. This

key has no correlation to the attribute set by the system. For further information on retrieving the Client IP

address - IPv4 or IPv6 that has been implicity set by the operating system, see the “Retrieve Thread

Attribute (QWTRTVTA) API” on page 348 (QWTRTVTA) API.

Work Management APIs 29

Error Messages

 Message ID Error Message Text

CPD0912 D Printer device &1 not found.

CPD1102 D Change to &1 only allowed for interactive jobs.

CPD1104 D Changing &1 to *WRKSTN only allowed for interactive jobs.

CPD1612 D Not able to allocate job description &1 in &2.

CPF1075 D Job description &1 in &2 is not found.

CPF1077 D Not authorized to job description &1 in library &2.

CPF1134 D Job &3/&2/&1 priority &4 exceeds priority limit &5.

CPF1135 D Job &3/&2/&1 output priority &4 exceeds priority limit &5.

CPF1144 D Job queue &1 in library &2 not found.

CPF1145 D Job queue &1 in library &2 not accessible.

CPF1146 D User &1 not authorized to job queue &2 in library &3.

CPF1156 D Job &3/&2/&1 job switch &4 not valid.

CPF1160 D Job priority not changed.

CPF1252 D Output queue &1 in library &2 not found.

CPF1253 D Output queue &1 in library &2 not accessible.

CPF1254 D User &1 not authorized to output queue &2 in library &3.

CPF1255 D Output queue library &2 not found.

CPF1264 E User profile for user name &1 not accessible.

CPF1317 E No response from subsystem for job &3/&2/&1.

CPF1321 E Job &1 user &2 job number &3 not found.

CPF1334 D BRKMSG(*NOTIFY) only valid for interactive jobs.

CPF1335 D Job queue not changed. Job &3/&2/&1 not batch job.

CPF1337 E &3/&2/&1 not authorized to change parameters.

CPF1339 D Job queue not changed. Job &3/&2/&1 not on job queue.

CPF1340 E Job control function not performed.

CPF1343 E Job &3/&2/&1 not valid job type for function.

CPF1344 E Not authorized to control job &3/&2/&1.

CPF1351 E Function check occurred in subsystem for job &3/&2/&1.

CPF1352 E Function not done. &3/&2/&1 in transition condition.

CPF1618 E Job description &1 in library &2 damaged.

CPF1635 D Requested change no longer allowed.

CPF1644 D Scheduled date and time not changed.

CPF1650 D Both scheduled date and time must be changed.

CPF1651 E Sort sequence table not accessed.

CPF180C E Function &1 not allowed.

CPF1846 D CHGJOB did not complete. System value not available.

CPF1854 E Value &1 for CCSID not valid.

CPF188F E Not authorized to change job accounting code.

CPF1893 E Errors occurred while changing job &3/&2/&1.

CPF1895 D Incorrect format specified with the internal job identifier.

CPF1896 D Incorrect job name specified.

CPF1897 D Data for key field &1 not valid.

CPF1898 D Key field &1 not valid.

CPF1899 D No other key allowed when specifying key &1.

CPF189A D Reserved field must be blanks.

CPF189B D Length field not valid.

CPF189C D &1 not valid for the data type field.

CPF189E D Key field &1 not valid with format &2.

CPF189F D Request not completed.

CPF18BF E Thread & not found.

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

30 iSeries: Work Management APIs

Message ID Error Message Text

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C88 E Number of variable length records &1 is not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFB8E9 E ASP group &1 not set for thread &2.

API introduced: V4R2

 Top | “Work Management APIs,” on page 1 | APIs by category

Change Job Pool (QWCCHGJP) API

 Required Parameter Group:

1 Function information

Input Char(*)

2 Length of function information

Input Binary(4)

3 Function information format

Input Char(8)

4 Error code

I/O Char(*)
 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Change Job Pool (QWCCHGJP) API moves a job into another main storage memory pool.

Restrictions for Movement of Jobs

The job can only be moved to a pool that is allocated by the subsystem the job is running in.

Authorities and Locks

v The requester must have *JOBCTL special authority if a source job name other than * is specified.

Work Management APIs 31

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Function information

INPUT; CHAR(*)

 The information that is associated with the job to be moved and the pool to which the job is to be

moved. See the “Format of the Function Information” for the format of this parameter.

Length of function information

INPUT; BINARY(4)

 The length of the function information in the function information parameter. The length for

format JOBP0100 is 40 bytes.

Function information format

INPUT; CHAR(8)

 The format of the function information that is being provided. The information is provided in the

function information parameter. They valid values are:

 JOBP0100 Format for the job name and pool id.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of the Function Information

JOBP0100 Format: The following table shows the information for the JOBP0100 format. For more details

about the fields in the following tables see, “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(10) Source job name

10 A CHAR(10) Source job user name

20 14 CHAR(6) Source job number

26 1A CHAR(10) Target pool type

36 24 BINARY(4) Target pool identifier

Field Descriptions

Source job name. The name of the job to be moved. The possible values are:

 * The job running the API is to be moved.

Name The name of the job to be moved.

Source job number. The number of the job to be moved. (Must be blank if * is specified for the source

job name.)

Source job user name. The user name of the job to be moved. (Must be blank if * is specified for the

source job name.)

Target pool identifier. The pool identifier for the pool into which the source job is to be moved. A Target

pool type of *SBS indicates this is the subsystem pool identifier, which is a value from 1 - 10.

32 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Target pool type. The type of pool the target pool identifier is referring to. Valid values are:

 *SBS This is for a subsystem pool identifier.

Return Codes

 Return code Explanation

0 Job was successfully moved.

100 Time out waiting for response from subsystem. The job

may or may not be moved.

200 Job was not moved. Job was not active or was between

routing steps.

201 Job was not moved. Job has transferred to another

subsystem before the request could be completed.

202 Job was not moved. Target pool is not allocated.

203 Job was not moved. Target pool is not allocated by the

subsystem the job in running in.

300 Job was not moved. Unknown reason.

Error Messages

 Message ID Error Message Text

CPF1001 E Wait time expired for system response.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

 API introduced: V5R3M0

 Top | “Work Management APIs,” on page 1 | APIs by category

Work Management APIs 33

#TOP
aplist.htm

Change Pool Attributes (QUSCHGPA) API

 Required Parameter Group:

1 System pool identifier

Input Binary(4)

2 New pool size

Input Binary(4)

3 New pool activity level

Input Binary(4)
 Optional Parameter Group 1:

4 Message logging

Input Char(1)

5 Error code

I/O Char(*)
 Optional Parameter Group 2:

6 Paging option

Input Char(10)
 Optional Parameter Group 3:
 Note: Group 3 is valid for shared pools only.

7 Priority

Input Binary(4)

8 Minimum pool size %

Input Binary(4)

9 Maximum pool size %

Input Binary(4)

10 Minimum faults

Input Binary(4)

11 Per-thread faults

Input Binary(4)

12 Maximum faults

Input Binary(4)

Optional Parameter Group 4:
Note: Group 4 is valid for shared pools only.

13 Minimum activity level

Input Binary(4)

14 Maximum activity level

Input Binary(4)

 Default Public Authority: *USE

34 iSeries: Work Management APIs

The Change Pool Attributes (QUSCHGPA) API changes the size, activity level, and paging options of any

system storage pool. In addition, QUSCHGPA changes the tuning parameters for system storage pools

that are also shared pools. A system storage pool identifier is returned with the Materialize Resource

Management Data (MATRMD) machine interface (MI) or Retrieve System Status (QWCRSSTS) API. (Note

that system pool identifiers differ from subsystem pool identifiers.) Depending on whether the base pool,

shared pool, or private subsystem pool is to be changed, the QUSCHGPA API determines the appropriate

command to use and then issues that command. This is similar to the function provided on the System

Status display, where you can change the system storage pool size and paging options interactively.

You can use the QUSCHGPA API to tune storage pools without having to know which subsystem

monitor allocated the pool. In addition, you do not have to determine whether or not a pool is a shared

storage pool, unless parameter group 3

or 4

is specified. The Work with System Status

(WRKSYSSTS), the Work with Subsystems (WRKSBS), and the Work with Shared Pools (WRKSHRPOOL)

commands provide similar functions.

Authorities and Locks

Subsystem Description Authority

*OBJOPR, *OBJMGT, and *READ

Subsystem Description Library Authority

*EXECUTE

Required Parameter Group

System pool identifier

INPUT; BINARY(4)

 This identifies which pool is to be changed. This number corresponds to the number returned on

option nine of the MATRMD MI instruction. This also corresponds to the identifier shown on the

Work with System Status display. This parameter is a value ranging from 1 through 64, where

pool 1 is the machine pool, and pool 2 is the base pool.

New pool size

INPUT; BINARY(4)

 The size of the pool in kilobytes, where one kilobyte is 1024 bytes. If you do not want the pool

size to be changed, you must specify a value of -1 for this parameter. The minimum value is 256

kilobytes.

Note: For compatibility with previous releases, a pool size of 32 through 255 kilobytes can be

specified. However, since the minimum pool size is 256 kilobytes, the pool will not be changed

when a size of 32 through 255 kilobytes is specified.

New pool activity level

INPUT; BINARY(4)

 The activity level for the pool. If you do not want the activity level to be changed, you must

specify a value of -1 for this parameter. You cannot change the activity level of the machine pool.

Optional Parameter Group 1

Message logging

INPUT; CHAR(1)

 Whether messages reporting that a change was made are written to the current job’s job log and

to the QHST message log. This affects the logging of change-related messages only; it does not

affect the logging of error messages. Valid values are:

Work Management APIs 35

Y Log change messages.

N Do not log change messages.

If this parameter is omitted, Y is used and change messages are logged.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Optional Parameter Group 2

Paging option

INPUT; CHAR(10)

 Whether the system should dynamically adjust the paging characteristics of the storage pool for

optimum performance. Valid values are:

 *SAME The paging option for the storage pool is not changed.

*FIXED The system will not dynamically adjust the paging characteristics; system default values are used.

*CALC The system will dynamically adjust the paging characteristics.

If this parameter is omitted, the paging option is not changed.

Optional Parameter Group 3

Note: Group 3 is valid for shared pools only.

Priority

INPUT; BINARY(4)

 The priority of this pool relative to the priority of the other storage pools. Valid values are 1

through 14. The priority for the *MACHINE pool must be 1. This value is used by the system if

the performance adjustment (QPFRADJ) system value is set to 2 or 3. If this parameter is omitted,

the priority value is not changed. If you want the system to calculate the priority, you must

specify -2 for this parameter. If you do not want this value to change, you may specify -1 for this

parameter.

Minimum pool size %

INPUT; BINARY(4)

 The minimum amount of storage to allocate to this storage pool (as a percentage of total main

storage), specified in hundredths. That is, a value of 1234 means 12.34 percent. This value cannot

be greater than the maximum pool size % parameter value. This value is used by the system if

the QPFRADJ system value is set to 2 or 3. If this parameter is omitted, the minimum size value

is not changed. If you want the system to calculate the minimum size, you must specify -2 for

this parameter. If you do not want this value to change, you may specify -1 for this parameter.

Maximum pool size %

INPUT; BINARY(4)

 The maximum amount of storage to allocate to this storage pool (as a percentage of total main

storage), specified in hundredths. That is, a value of 1234 means 12.34 percent. This value cannot

be less than the minimum pool size % parameter value. This value is used by the system if the

QPFRADJ system value is set to 2 or 3. If this parameter is omitted, the maximum size value is

not changed. If you want the system to calculate the maximum size, you must specify -2 for this

parameter. If you do not want this value to change, you may specify -1 for this parameter.

36 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Minimum faults

INPUT; BINARY(4)

 The minimum faults-per-second guideline to use for this storage pool, specified in hundredths.

That is, a value of 1234 means 12.34. This value is used by the system if the QPFRADJ system

value is set to 2 or 3. If this parameter is omitted, the minimum faults value is not changed. If

you want the system to calculate minimum faults, you must specify -2 for this parameter. If you

do not want this value to change, you may specify -1 for this parameter.

Per-thread faults

INPUT; BINARY(4)

 The faults per second for each active thread in this storage pool, specified in hundredths. That is,

a value of 1234 means 12.34. Each job is comprised of one or more threads. The system multiplies

this number by the number of active threads that it finds in the pool. This result is added to the

minimum faults parameter to calculate the faults-per-second guideline to use for this pool. This

value is used by the system if the QPFRADJ system value is set to 2 or 3. If this parameter is

omitted, the per-thread faults value is not changed. If you want the system to calculate per-thread

faults, you must specify -2 for this parameter. If you do not want this value to change, you may

specify -1 for this parameter.

Maximum faults

INPUT; BINARY(4)

 The maximum faults-per-second guideline to use for this storage pool, specified in hundredths.

That is, a value of 1234 means 12.34. The sum of minimum faults and per-thread faults must be

less than the value of the maximum faults parameter. This value is used by the system if the

QPFRADJ system value is set to 2 or 3. If this parameter is omitted, the maximum faults value is

not changed. If you want the system to calculate maximum faults, you must specify -2 for this

parameter. If you do not want this value to change, you may specify -1 for this parameter.

Optional Parameter Group 4

Note: Group 4 is valid for shared pools only.

Minimum activity level

INPUT; BINARY(4)

 The minimum value that this pool’s activity level can be set to by the performance adjuster when

the QPFRADJ system value is set to 2 or 3. Valid values are 1 through 32767. This value cannot

be greater than the maximum activity level parameter value. You cannot change the minimum

activity level for the machine pool. If this parameter is omitted, the minimum activity level is not

changed. If you want the system to calculate the minimum activity level, you must specify -2 for

this parameter. If you do not want this value to change, you may specify -1 for this parameter.

Maximum activity level

INPUT; BINARY(4)

 The maximum value that this pool’s activity level can be set to by the performance adjuster when

the QPFRADJ system value is set to 2 or 3. Valid values are 5 through 32767. This value cannot

be less than the minimum activity level parameter value. You cannot change the maximum

activity level for the machine pool. If this parameter is omitted, the maximum activity level is not

changed. If you want the system to calculate the maximum activity level, you must specify -2 for

this parameter. If you do not want this value to change, you may specify -1 for this parameter.

The following table summarizes the values you can specify for the system pool identifier, the new pool

size, and the new pool activity level.

Work Management APIs 37

System Pool Identifier New Pool Size New Pool Activity Level

1 (Machine pool) -1 or >= 256 -1

2 (Base pool) -1 or >= 256

1 -1 or 1 through 32 767

3 to 64 >= 256

1 1 through 32 767

1 For compatibility with previous releases, a pool size of 32 through 255 kilobytes can be specified. Since the

minimum pool size is 256 kilobytes, however, the pool will not be changed when a size of 32 through 255 kilobytes

is specified.

For pools 3 through 64, both size and pool activity level must be specified.

In some cases, pool size changes do not take effect immediately. For example, a save or restore operation

might be using some of the storage allocated to a pool, or the system might be using some of the storage

allocated to the base pool. The size is changed only when the storage being used is free again.

The base pool holds all unused main storage on the system that is not allocated to other shared or

private pools. As subsystems are started and allocate storage for their shared and private storage pools,

that storage comes from the base pool. The base pool (pool number 2) size is what is left after pool 1 and

pools 3 through 64 are subtracted from the total main storage. The QBASPOOL system value is a

minimum size, and it is not the actual size of the base pool. At this minimum size, the system does not

allow additional storage requests. For this reason, you must calculate the storage requirements for all

pools on the system, including the base pool, and then run this API.

Error Messages

 Message ID Error Message Text

CPF1001 E Wait time expired for system response.

CPF1076 E Specified value not allowed for system value &1.

CPF1078 E System value &1 not changed.

CPF113A E Sum of MINFAULT and JOBFAULT parameters exceeds MAXFAULT parameter.

CPF113B E Minimum size percentage exceeds maximum size percentage.

CPF113C E Parameter not valid for private pool.

CPF113E E Range of parameter &2 does not include &4.

CPF1165 E Specified parameter not allowed for *MACHINE pool.

CPF1619 E Subsystem description &1 in library &2 damaged.

CPF1691 E Active subsystem description may or may not have changed.

CPF1697 E Subsystem description &1 not changed.

CPF1879 E Paging option &1 not valid.

CPF1880 E Machine pool paging option cannot be changed.

CPF1881 E Changing private pool paging option not allowed.

CPF24B4 E Severe error while addressing parameter list.

CPF3CA0 E System pool &1 does not exist.

CPF3CA1 E Pool size &1 is not valid.

CPF3CA2 E Activity level &1 is not valid.

CPF3CA3 E Pool &1 is not in use.

CPF3CA4 E Changing machine pool activity level is not allowed.

CPF3CA5 E Both pool size and activity level are required.

CPF3CA6 E Message logging value &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

38 iSeries: Work Management APIs

Example: Changing System Storage Pool Attributes

See Code disclaimer information for information pertaining to code examples.

The following is an example of how to change system storage pool attributes using the QUSCHGPA API:

Pseudocode

 .

 .

 .

MATRMD (OPERAND1, OPERAND2);

DO /* Do loop for each pool in use */

 .

 . /* Calculate the desired pool size

 and activity level */

 .

END

DO /* Do loop for each pool in use */

CALL QUSCHGPA (POOLID, POOLSIZE, POOLACTLVL);

 /* Change pool attributes */

END

 .

 .

 .

API introduced: V1R3

 Top | “Work Management APIs,” on page 1 | APIs by category

Change Pool Tuning Information (QWCCHGTN) API

 Required Parameter Group:

1 System pool identifier

Input Binary(4)

2 Change request

Input Char(*)

3 Length of change request

Input Binary(4)

4 Format name

Input Char(8)

5 Error code

I/O Char(*)
 Default Public Authority: *EXCLUDE

 Threadsafe: No

Work Management APIs 39

aboutapis.htm#CODEDISCLAIMER
#TOP
aplist.htm

The Change Pool Tuning Information (QWCCHGTN) API changes information about tuning being

performed by the system for the different storage pools. The Materialize Resource Management Data

(MATRMD) machine interface (MI) instruction can be used to retrieve the current setting of the tuning

parameters.

Required Parameter Group

System pool identifier

INPUT; BINARY(4)

 The pool is to be changed. This number corresponds to the number returned on option 9 of the

Materialize Resource Management Data (MATRMD) MI instruction. This also corresponds to the

identifier shown on the Work with System Status display. This parameter is a value ranging from

2 through 64, where pool 2 is the base pool.

Change request

INPUT; CHAR(*)

 The variable containing the new tuning information. See “TUNI0100 Format” for the definition of

the fields for this parameter.

Length of change request

INPUT; BINARY(4)

 The length of the change request list. This area must be as large as the format specified.

Format name

INPUT; CHAR(8)

 The format of the information to be changed. The valid values are:

 TUNI0100 Tuning information for a storage pool.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

TUNI0100 Format

The following table shows the information that must be specified in the change request parameter when

format TUNI0100 is specified. For a detailed description of each field, see “Field Descriptions” on page

41.

 Offset

Type Field Dec Hex

0 0 CHAR(1) Type of tuning

1 1 CHAR(1) Change page handling

2 2 BINARY(4) Blocking factor for nondatabase objects

6 6 CHAR(1) Allow exchange operations (for class 1 objects in pool)

7 7 CHAR(1) Type of transfer from main storage to auxiliary storage (for class 1

objects in pool)

8 8 BINARY(4) Blocking factor for database (class 1) objects

12 C CHAR(1) Allow exchange operations (for class 2 objects in pool)

13 D CHAR(1) Type of transfer from main storage to auxiliary storage (for class 2

objects in pool)

40 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

14 E BINARY(4) Blocking factor for database (class 2) objects

18 12 CHAR(1) Allow exchange operations (for class 3 objects in pool)

19 13 CHAR(1) Type of transfer from main storage to auxiliary storage (for class 3

objects in pool)

20 14 BINARY(4) Blocking factor for database (class 3) objects

24 18 CHAR(1) Allow exchange operations (for class 4 objects in pool)

25 19 CHAR(1) Type of transfer from main storage (for class 4 objects in pool) to

auxiliary storage

26 1A BINARY(4) Blocking factor for database (class 4) objects

When tuning is requested (values 1, 2, or 3 for the type of tuning field), the system periodically

categorizes database objects into four different performance classes. The classes are:

 Class 1 Object access appears to be random. A disk access is required for nearly each record that is

accessed.

Class 2 Locality of reference detected. Several records are being accessed per disk access.

Class 3 High locality of reference detected. The object is being processed in a sequential manner;

references are highly clustered and large portions of the object are resident in main storage.

Class 4 The class of a database object is adjusted if the object’s size is small in comparison to the available

storage in the storage pool. This class adjustment involves adding 1 to the class number; therefore,

a class 3 database object (as defined above) would be treated as a class 4 if it were small in

comparison to the available storage in the storage pool.

Reference information for determining an object’s class is collected periodically. It is collected by storage

pool because an object’s class varies over time and by storage pool.

Note: When a new system pool is created as a result of starting a subsystem, the type of tuning and

change page handling attributes for the new system pool are initialized based on the type of storage pool

being created. For shared storage pools, the type of tuning and change page handling attributes are set

based on the paging option defined for the shared storage pool. For private storage pools, the type of

tuning attribute is set to indicate no tuning should be done and the change page handling attribute is set

to the system default value.

Field Descriptions

Allow exchange operations. The exchange operation used to reduce the working set size. This is done by

overlaying data that is already in main storage with new data this is being brought into main storage.

The values for this field are:

 0 Use the system default, which is 1 (allow exchange operations)

1 Allow exchange operations

2 Disable exchange operations

3 Disable exchange operations (The data that already exists in main storage should be a good

candidate to be replaced when additional storage is needed in the storage pool.)

The value specified for this field is ignored unless static tuning is specified for the type of tuning field.

Blocking factor for database objects. The amount of data that should be brought into main storage when

a request is made to read database objects from auxiliary storage. The values for this field are:

Work Management APIs 41

0 Use the system default, which is 4 (transfer data into main storage in 4KB blocks)

4 Transfer data into main storage in 4KB blocks

8 Transfer data into main storage in 8KB blocks

16 Transfer data into main storage in 16KB blocks

32 Transfer data into main storage in 32KB blocks

64 Transfer data into main storage in 64KB blocks

128 Transfer data into main storage in 128KB blocks

The system may need to issue multiple I/O operations to bring the data into main storage. The value

specified for the blocking factor for database objects field is ignored unless static tuning is specified for

the type of tuning field.

Blocking factor for nondatabase objects. The amount of data that should be brought into main storage

when a request is made to read nondatabase objects from auxiliary storage. The possible values for this

field are:

 0 Use the system default, which is 4 (transfer data into main storage in 4KB blocks)

4 Transfer data into main storage in 4KB blocks

8 Transfer data into main storage in 8KB blocks

16 Transfer data into main storage in 16KB blocks

32 Transfer data into main storage in 32KB blocks

The system may need to issue multiple I/O operations to bring the data into main storage. The value

specified for the blocking factor for nondatabase objects is ignored unless static tuning is specified for the

type of tuning field.

Change page handling. The method the system uses to determine when to write changed pages to

auxiliary storage. The values for this field are:

 0 Use the system default, which is 1 (Changed pages should be written to auxiliary storage when

there is a demand for pages in a storage pool.)

1 Changed pages should be written to auxiliary storage when there is a demand for pages in a

storage pool

2 In addition to writing changed pages on demand, periodically write changed pages to auxiliary

storage

Type of transfer from main storage to auxiliary storage. The method the system uses to process a

request to write an object to auxiliary storage. The values for this field are:

 0 Use the system default, which is 1 (When objects are changed, write the changes to auxiliary

storage. Indicate that the portion of the object that was written to auxiliary storage should be a

good candidate to be replaced when additional storage is needed in the storage pool.)

1 When objects are changed, write the changes to auxiliary storage. Indicate that the portion of the

object that was written to auxiliary storage should be a good candidate to be replaced when

additional storage is needed in the storage pool.

2 When objects are changed, write the changes to auxiliary storage.

3 Do not immediately write the changes to auxiliary storage. Indicate that the portion of the object

that was changed should be a good candidate to be replaced when additional storage is needed in

the storage pool.

4 Do not immediately write the changes to auxiliary storage.

The value specified for this field is ignored unless static tuning is specified for the type of tuning field.

Type of tuning. The method used by the system to tune the storage pool. The values for this field are:

42 iSeries: Work Management APIs

0 No tuning is being performed for this pool.

All values specified for the blocking factor, the allow exchange operations, and the type of transfer

from main storage to auxiliary storage fields are ignored. The system default values are used for

all these fields.

1 Static tuning is being performed for this pool. Static tuning implies that the values specified for

blocking factor, exchange operation, and transfers to auxiliary storage are not dynamically

adjusted by the system.

Values must be specified for the blocking factor, allow exchange operations, and type of transfer

from main storage to auxiliary storage for the storage pools.

2 Dynamic tuning of transfers into main storage is being performed. This indicates that the system

is dynamically adjusting the blocking factor and exchange operations.

Because the values for blocking factor and allow exchange operations are dynamically adjusted,

the values specified on the API are ignored. The value used for the transfer to auxiliary storage

field is set to ensure that requests to write data to auxiliary storage are processed immediately.

3 Dynamic tuning of transfers into main storage and to auxiliary storage is being performed. This

indicates that the system is dynamically adjusting the blocking factor, exchange operations, and

transfers to auxiliary storage.

Because the values for the blocking factor, allow exchange operations, and transfers to auxiliary

storage are dynamically adjusted, the values specified on the API are ignored.

Error Messages

 Message ID Error Message Text

CPF1001 E Wait time expired for system response.

CPF1870 E Value &1 for type of tuning not valid.

CPF1871 E Value &1 for change page handling not valid.

CPF1872 E Value &1 for blocking factor not valid.

CPF1873 E Value &1 for exchange operation not valid.

CPF1874 E Value &1 for transfer to auxiliary storage not valid.

CPF1875 E Value &1 for change request length not valid.

CPF1876 E Value &1 for pool number not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Work Management APIs,” on page 1 | APIs by category

Work Management APIs 43

#TOP
aplist.htm

Change Subsystem Entry (QWDCSBSE) API

 Required Parameter Group:

1 Qualified subsystem name

Input Char(20)

2 Change format name

Input Char(8)

3 Subsystem entry identifier

Input Char(*)

4 Change information

Input Char(*)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Change Subsystem Entry (QWDCSBSE) API changes a subsystem entry in the specified subsystem

description.

Authorities and Locks

Job Description Authority

*USE

Job Description Library Authority

*EXECUTE

Subsystem Description Authority

*OBJMGT, *USE

Subsystem Description Library Authority

*EXECUTE

User Profile Authority

*USE

Required Parameter Group

Qualified subsystem name

INPUT; CHAR(20)

 The subsystem description that contains the subsystem entry being changed. The first 10

characters contain the subsystem description name, and the second 10 characters contain the

library name. You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The job’s library list

Change format name

INPUT; CHAR(8)

44 iSeries: Work Management APIs

The format of the subsystem entry to change. You can use the following format:

 SBSE0500 Prestart job entry. For details, see “SBSE0500 Format (Prestart Job Entry)” on page 46.

Subsystem entry identifier

INPUT; CHAR(*)

 The subsystem entry that is to be changed. The identifier is specific to the entry type. For prestart

job entries, see “SBSE0500 Format (Prestart Job Entry)” on page 46 for details.

Change information

INPUT; CHAR(*)

 The information for the subsystem entry that you want to change. The information must be in the

following format:

Number of variable length records

BINARY(4)
The total number of all of the variable length records.

Variable length records

The attributes of the subsystem entry that are to be changed. Refer to “Format for

Variable Length Record” for more information.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format for Variable Length Record

The following table shows the layout of the variable length record. For a detailed description of each

field, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of variable length record

4 4 BINARY(4) Attribute key

8 8 BINARY(4) Length of data

12 C CHAR(*) Data

If the length of the data is longer than the key field’s data length, the data is truncated at the right. No

message is issued.

If the length of the data is shorter than the key field’s data length and the key contains binary data, an

error message is issued. If the key does not contain binary data, the field is padded with blanks.

It is not an error to specify a key more than once. If duplicate keys are specified, the last specified value

for that key is used.

Each variable length record must be 4-byte aligned. If not, unpredictable results may occur.

Field Descriptions

Attribute key. The attribute to be set. For prestart job entries, see “SBSE0500 Format (Prestart Job Entry)”

on page 46 for details.

Work Management APIs 45

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Data. The value to which a specific attribute is to be set.

Length of data. The length of the attribute value.

Length of variable length record. The length of the record including this field.

SBSE0500 Format (Prestart Job Entry)

This format changes a prestart job entry in the specified subsystem description. The associated subsystem

may be active when the prestart job entry is changed. Changes made to the entry when the subsystem is

active are reflected over time. Prestart jobs that are created after the API is issued use the new job-related

values.

Subsystem Entry Identifier for SBSE0500 Format

Qualified program name

CHAR(20)

 The qualified name of the program that identifies the prestart job entry being changed. The first

10 characters contain the program name, and the second 10 characters contain the library name.

You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The job’s library list

Attribute Keys for SBSE0500 Format

The following table shows the valid attribute keys for the attribute key field of the variable length record.

For a detailed description of each field, see “Field Descriptions of Attribute Keys for SBSE0500 Format”

on page 47.

 Key Type Field

1 CHAR(10) User profile name

2 CHAR(1) Start jobs

3 BINARY(4) Initial number of jobs

4 BINARY(4) Threshold

5 BINARY(4) Additional number of jobs

6 BINARY(4) Maximum number of jobs

7 CHAR(10) Job name

8 CHAR(20) Job description name

9 BINARY(4) Maximum number of uses

10 CHAR(1) Wait for job

11 BINARY(4) Pool identifier

12 CHAR(20) Class 1 name

13 BINARY(4) Class 1 number of jobs

14 CHAR(20) Class 2 name

15 BINARY(4) Class 2 number of jobs

16 CHAR(20) Thread resources affinity

18 CHAR(10) Resources affinity group

46 iSeries: Work Management APIs

Field Descriptions of Attribute Keys for SBSE0500 Format

Additional number of jobs. The additional number of prestart jobs that are started when the number of

prestart jobs drops below the threshold value. The value of this parameter must be less than the value of

the maximum number of jobs. Valid values range from 0-999.

Class 1 name. The name of a class under which the prestart jobs run. Two classes can be specified for a

prestart job entry, class 1 name and class 2 name. Each class defines the number of jobs that run under

that class. See class 1 number of jobs and class 2 number of jobs.

Jobs start under the first class specified until the number of jobs specified for the first class is reached.

After the allowed number of jobs specified for the first class is reached, jobs are started under the second

class.

The possible values are:

 *SBSD The class that has the same name as the subsystem description specified in the qualified

subsystem name is used for prestart jobs.

Qualified class

name

The name of the class used for prestart jobs. The first 10 characters contain the class name, and the

second 10 characters contain the library name. You can use these special values for the library

name:

*CURLIB

The job’s current library

*LIBL The job’s library list

If the class does not exist when the entry is added, a library qualifier must be specified because

the qualified class name is retained in the subsystem description.

Class 1 number of jobs. The maximum number of jobs to run that use the first class. If you specified the

maximum number of jobs key to be changed, the value for the number of jobs specified for this key

might need to be changed. If -3 or -4 is specified, the system recalculates the value for the number of jobs

to use the specified class. The possible values are:

 -3 *CALC: The system calculates how many prestart jobs use this class. If only one class is specified

and -3 is specified, all of the jobs use that class. If two classes are specified and -3 is specified for

both, the first class is the value of the maximum number of jobs divided by two, and the second

class is the value of the maximum number of jobs minus the value calculated for the first class. If

a specific number of jobs is specified for either class and -3 is specified for the other class, the

system calculates the difference between maximum number of jobs and the specific number of jobs

for the -3 designation.

-4 *MAXJOBS: All prestart jobs use the specified class.

number of jobs The number of jobs that use this class. The sum of the values specified for class 1 and class 2

number of jobs must equal the value of the maximum number of jobs. If you specify one of the

class number of job keys, you may also need to specify the maximum number of jobs keys.

Class 2 name. The name of a class under which the prestart jobs run. Two classes can be specified for a

prestart job entry, class 1 name and class 2 name. Each class defines the number of jobs that run under

that class. See class 1 number of jobs and class 2 number of jobs.

Jobs start under the first class specified until the number of jobs specified for the first class is reached.

After the allowed number of jobs specified for the first class is reached, jobs are started under the second

class.

The possible values are:

Work Management APIs 47

*NONE This value indicates that only one class is used.

*SBSD The class that has the same name as the subsystem description specified in the qualified

subsystem name is used for prestart jobs.

Qualified class

name

The name of the class being used for prestart jobs. The first 10 characters contain the class name,

and the second 10 characters contain the library name. You can use these special values for the

library name:

*CURLIB

The job’s current library

*LIBL The job’s library list

If the class does not exist when the entry is added, a library qualifier must be specified because

the qualified class name is retained in the subsystem description.

Class 2 number of jobs. The maximum number of jobs that use the second class. The possible values are:

 -3 *CALC: The system calculates how many prestart jobs use this class. If only one class is specified

and -3 is specified, all of the jobs use that class. If two classes are specified and -3 is specified for

both, the first class is the value of the maximum number of jobs divided by two, and the second

class is the value of the maximum number of jobs minus the value calculated for the first class. If

a specific number of jobs is specified for either class and -3 is specified for the other class, the

system calculates the difference between the maximum number of jobs and the specific number of

jobs for the -3 designation.

-4 *MAXJOBS: All prestart jobs use the specified class.

number of jobs The number of jobs that use this class. The sum of the values specified for class 1 and class 2

number of jobs must equal the value of the maximum number of jobs. If you specify one of the

class number of job keys, you may also need to specify the maximum number of jobs keys.

Initial number of jobs. The initial number of prestart jobs that are started when the subsystem specified

in the qualfified subsystem name is started. The value of this key must be less than or equal to the value

of the maximum number of jobs. The value of this key must be greater than or equal to the value of the

threshold. Valid values range from 1-9999.

Job description name. The name of the job description being used for the prestart job. If the job

description does not exist when the entry is changed, a library qualifier must be specified because the

qualified job description name is retained in the subsystem description.

 *USRPRF The job description name specified in the user profile for the prestart job entry is used.

*SBSD The job description that has the same name as the subsystem description for this prestart job entry

is used.

Qualified job

description name

The name of the job description being used for this prestart job. The first 10 characters contain the

job description name, and the second 10 characters contain the library name. You can use these

special values for the library name:

*CURLIB

The job’s current library

*LIBL The job’s library list

Job name. The name of the prestart job that is started.

 *PGM The job name is the same name as the qualified program name specified in the subsystem entry

identifier.

job-name The name of the prestart job.

48 iSeries: Work Management APIs

Maximum number of jobs. The maximum number of prestart jobs that can be active at the same time for

this prestart job entry. The value of this key must be greater than or equal to the value of the initial

number of jobs. The value of this key must be greater than the value of the additional number of jobs. If

the value specified for this key is changed, the value specified for one or both of the class number of job

keys might also need to be changed. The possible values follow:

 -1 *NOMAX: There is no maximum number of jobs that can be active at the same time.

maximum-jobs The maximum number of prestart jobs that can be active at the same time. Valid values range

from 1-9999.

Maximum number of uses. The maximum number of that can be handled by each prestart job before the

subsystem ends the job in a controlled manner. Jobs are ended in a controlled manner by issuing an

ENDJOB command with a value of *CNTRLD on the OPTION parameter.

 -1 *NOMAX: There is no maximum number of that a prestart job can handle before it is ended. If -1

is specified, the prestart jobs may end abnormally because the job has exceeded the allowed

maximum job log size, the maximum number of spooled files, the maximum processor unit time,

or the maximum temporary storage space required.

maximum-uses The maximum number of that a prestart job can handle before it is ended. Valid values range from

1 through 1000.

Pool identifier. The subsystem pool identifier under which the prestart jobs are run. Valid values range

from 1 through 10.

Resources affinity group. Specifies whether or not the prestart jobs started by this entry are grouped

together having affinity to the same set of processors and memory. The values allowed are:

 *NO Prestart jobs will not be grouped together. They will be spread across all the available system

resources.

*YES Prestart jobs will be grouped together such that they will have affinity to the same system

resources.

Start jobs. Whether prestart jobs are started when the subsystem is started. The possible values are:

 0 The prestart jobs are not started at the time the subsystem is started. The Start Prestart Jobs

(STRPJ) command must be used to start these prestart jobs.

1 The prestart jobs are started when the subsystem is started.

Thread resources affinity. Specifies whether or not secondary threads running in the prestart jobs are

grouped together with the initial thread, or spread across the system resources. The values allowed for

the first 10 characters are:

 *SYSVAL The thread resources affinity group and level will be retrieved from the QTHDRSCAFN system

value when the job starts.

*NOGROUP Secondary threads running in the prestart job will not necessarily have affinity to the same set of

processors and memory as the initial thread. They will be spread across all the available system

resources.

*GROUP Secondary threads running in the prestart job will all have affinity to the same set of processors

and memory as the initial thread.

The last 10 characters of this field specifies the degree to which the system tries to maintain the affinity

between threads and system resources. If *SYSVAL is specified in the first 10 characters, the last 10

characters must contain blanks. If *SYSVAL is not specified, the values allowed are:

Work Management APIs 49

*NORMAL A thread will use any processor or memory in the system if the resources it has affinity to are not

readily available.

*HIGH A thread will only use the resources it has affinity to, and will wait until they become available if

necessary.

Threshold. The number at which additional prestart jobs are started. When the pool of available prestart

jobs (jobs available to service is reduced below this number, more jobs (specified by the additional

number of jobs value) are started and added to the available pool. The value of this key must be less

than or equal to the value of the initial number of jobs. Valid values range from 1-9999.

User profile name. The user profile under which the prestart job is initiated. In addition, the current user

profile of the prestart job is set to this user whenever the job waits for a request to handle.

Note: When a prestart job is given a request to handle, the current user profile of the job is updated.

Refer to the Work Management

book on the V5R1 Supplemental Manuals Web site for information

on how this profile is determined. This change in current user profile is for authority checking only. None

of the other attributes of the user profile, such as the current library (CURLIB) or the initial program to

call (INLPGM), are given to the prestart job.

Wait for job. Whether program start requests wait for a prestart job to become available or are rejected if

a prestart job is not immediately available when the program start request is received. Refer to the

manual for the communications type being used to determine the timing considerations for program start

requests. The possible values follow:

 0 Program start requests are rejected if a prestart job is not immediately available when the program

start request is received.

1 Program start requests wait until a prestart job is available, or a prestart job is started to service

the request.

Error Messages

 Message ID Error Message Text

CPF1619 E Subsystem description &1 in library &2 damaged.

CPF1697 E Subsystem description &1 not changed.

CPF3C21 E Format name &1 is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C4D E Length &1 for key &2 not valid.

CPF3C81 E Value for key &1 not valid.

CPF3C82 E Key &1 not valid for API &2.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R3

 Top | “Work Management APIs,” on page 1 | APIs by category

50 iSeries: Work Management APIs

#TOP
aplist.htm

Control Thread (QTHMCTLT) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format of receiver information

Input Char(8)

4 Job or thread identification information

Input Char(*)

5 Format of job or thread identification information

Input Char(8)

6 Action

Input Binary(4)

7 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The Control Thread (QTHMCTLT) API holds, releases, or ends the specified thread.

End thread cannot be specified for the initial thread of a job. Hold thread or release thread cannot be

specified for the initial thread of a system job.

Authorities and Locks

Job Authority

If the action to be taken is hold thread or release thread, the caller of the API must be running

under a user profile that is the same as the job user identity of the job containing the thread for

which the specified action is to be taken. Otherwise, the caller of the API must be running under

a user profile that has job control (*JOBCTL) special authority, or be authorized to the Thread

Control function of Operating System/400 through iSeries Navigator’s Application

Administration support.

 If the action to be taken is end thread, the caller of the API must be running under a user profile

that has service (*SERVICE) special authority or be authorized to the Thread Control function of

Operating System/400 through iSeries Navigator’s Application Administration support.

The Change Function Usage Information (QSYCHFUI) API, with a function ID of

QIBM_SERVICE_THREAD, can be used to change the list of users that are allowed to end, hold,

or release a thread.

The job user identity is the name of the user profile by which a job is known to other jobs. It is

described in more detail in the Work Management

book on the V5R1 Supplemental Manuals

Web site.

Work Management APIs 51

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format of receiver information

INPUT; CHAR(8)

 The format of the information returned in the receiver variable. The format name is:

 CTLT0100 See “CTLT0100 Format” on page 53 for details on the information returned.

Job or thread identification information

INPUT; CHAR(*)

 The information that is used to identify the thread within a job for which an action is to be taken.

See “Format of job or thread identification information” on page 53 for details.

Format of job or thread identification information

INPUT; CHAR(8)

 The format of the job or thread identification information. The possible format names are:

 JIDF0100 See “JIDF0100 Format” on page 53 for details on the job identification information.

JIDF0200 See “JIDF0200 Format” on page 54 for details on the job identification information.

Note: If the thread handle is available, Format JIDF0200 provides a faster method of accessing a

thread that is not the current thread than Format JIDF0100.

Action

INPUT; BINARY(4)

 The action to be taken against the thread. The following actions are supported:

 1 Hold thread

2 Release thread

3 End thread

The end thread, hold thread, and release thread actions are asynchronous operations. A portion of

the action is done by the current thread, and the remainder of the action is done by the target

thread. When control is returned to the current thread, the action may not have been performed

in its entirety. Since some processing must be performed in the target thread, the action could be

delayed for some period of time if higher priority threads in this or other jobs prevent the target

thread from running.

End thread cannot be specified for the initial thread of a job. Hold thread or release thread cannot

be specified for the initial thread of a system job.

Error code

I/O; CHAR(*)

52 iSeries: Work Management APIs

The structure in which to return error information. For the format of the structure, see Error code

parameter.

CTLT0100 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 UNSIGNED

BINARY(4)

Hold count

Field Descriptions for CTLT0100 Format

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Hold count. The number of times the thread has been held prior to performing the action. The hold

count is the count of fully processed hold operations currently in effect for the thread. The count is

incremented by one for every hold operation that is processed for the thread. It is decremented by one

for every release operation. If the count is greater than 0, the thread was already held. Hold and release

operations that have not completed are not reflected in the count.

Format of job or thread identification information

The format of the information needed to identify the thread for which the specified action will be taken.

JIDF0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4) Thread indicator

48 30 CHAR(8) Thread identifier

Field Descriptions for JIDF0100 Format

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this

identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks.

With this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

 * The job in which this program is running. The job number and user name must contain blanks.

Work Management APIs 53

error.htm#HDRERRCOD
error.htm#HDRERRCOD

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread identifier. A value that uniquely identifies a thread within a job. If the thread indicator is not 0,

this field must contain hexadecimal zeros.

Thread indicator. A value that is used to specify the thread within the job for which the action is to be

taken. The following values are supported:

 0 Action should be taken for the thread specified in the thread identifier field.

1 Action should be taken for the thread that this program is running in currently. The combination

of the internal job identifier, job name, job number, and user name fields also must identify the job

containing the current thread.

2 Action should be taken for the initial thread of the identified job.

User name. A specific user profile name, or blanks when the job name specified is a special value.

JIDF0200 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C UNSIGNED

BINARY(4)

Thread handle

48 30 CHAR(8) Thread identifier

Field Descriptions for JIDF0200 Format

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this

identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks.

With this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

 * The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

54 iSeries: Work Management APIs

Thread handle. A value that is used to address a particular thread within a job. While the thread

identifier uniquely identifies the thread within the job, the thread handle can imporve performance when

referencing the thread. A valid thread handle must be specified. The thread handle is returned on several

other interfaces.

Thread identifier. A value that uniquely identifies a thread within a job. A valid thread identifier must be

specified.

User name. A specific user profile name, or blanks when the job name specified is a special value.

Error Messages

 Message ID Error Message Text

CPF1071 E No authority to job &3/&2/&1.

CPF136A E Job &3/&2/&1 not active.

CPF18BF E Thread &1 not found.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C55 E Job &3/&2/&1 does not exist.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFB431 E Ending the initial thread is not allowed.

CPFB438 E Holding the initial thread of a system job is not allowed.

CPFB439 E Releasing the initial thread of a system job is not allowed.

API introduced: V5R2

 Top | “Work Management APIs,” on page 1 | APIs by category

Work Management APIs 55

#TOP_OF_PAGE
aplist.htm

Control Trace (QWTCTLTR) API

 Required Parameter:

1 Control value

Input Char(10)
 Optional Parameter:

2 Error code

I/O Char(*)
 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Control Trace (QWTCTLTR) API turns the early trace function on and off. The value of *ON is

passed to the program to turn the early tracing on, and *OFF is passed to turn the early tracing off.

When the early trace function is turned on, the jobs that are set up by the Set Trace (QWTSETTR) API

begin tracing as soon as they are started. The tracing is stopped by turning it off with the Control Trace

(QWTCTLTR) API. When *OFF or *RESET is passed to the program, this causes the trace information for

the jobs to dump to spooled files.

The information set up by this API remains in effect during an initial program load (IPL).

This API should be used only when recommended by your IBM service representative.

Required Parameter

Control value

INPUT; CHAR(10)

 The value passed to turn the early trace function on or off. The valid values are:

 *ON Turns early tracing on.

*OFF Turns early tracing off and stops any trace activity started by this API.

*RESET Turns early tracing off, stops any trace activity started by this API, and clears the space that

contains the information that was set up by the QWTSETTR API.

Optional Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Error Messages

 Message ID Error Message Text

CPF119D E Value &1 specified for parameter not valid.

CPF24B4 E Severe error while addressing parameter list.

56 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Work Management APIs,” on page 1 | APIs by category

Create Job Structures (QWTCTJBS) API

 Required Parameter Group:

1 Current number of temporary job structures
available

Output Binary(4)

2 Current number of permanent job structures
available

Output Binary(4)

3 Number of temporary job structures to create

Input Binary(4)

4 Error Code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Create Job Structures (QWTCTJBS) API creates the number of temporary job structures that are

passed on the call. The current number of temporary and permanent job structures available are returned.

Authorities and Locks

Job Authority

*JOBCTL

Required Parameter Group

Current number of temporary job structures available

OUTPUT; BINARY(4)

 The number of temporary job structures that currently exist on the system that are not in use.

This number also includes any temporary job structures that are to be created on this call to the

API.

Current number of permanent job structures available

OUTPUT; BINARY(4)

 The number of permanent job structures that currently exist on the system that are not in use.

Number of temporary job structures to create

INPUT; BINARY(4)

Work Management APIs 57

#TOP
aplist.htm

The number of additional temporary job structures that the user would like to have created. The

valid range is 0-32000. If a number outside that range is passed, an error will be signaled. The

following special value can be passed:

 0 No additional temporary job structures are created. The current number of temporary and

permanent job structures are returned.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPE3002 E A range error occurred.

CPF222E E &1 special authority is required.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C20 E Error found by program &1.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R1

 Top | “Work Management APIs,” on page 1 | APIs by category

Delete Job Structures (QWTDTJBS) API

 Required Parameter Group:

1 Number of temporary job structures
to delete

Input Binary(4)

2 Error code

I/O Char(*)
 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Delete Job Structures (QWTDTJBS) API deletes the number of temporary job structures that are

passed on the call. The Create Job Structures (QWTCTJBS) API can be used to create temporary job

structures and retrieve the current number available.

Authorities and Locks

Job Authority

*JOBCTL

58 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP
aplist.htm

Required Parameter Group

Number of temporary job structures to delete

INPUT; BINARY(4)

 The number of temporary job structures that the user would like to have deleted. The valid range

is 1 through 32000. If a number outside that range is passed, an error will be signaled. If there are

fewer temporary job structures available than the number requested to be deleted, all available

job structures will be deleted and no error is signaled.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPE3002 E A range error occurred.

CPF222E E &1 special authority is required.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C20 E Error found by program &1.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R4

 Top | “Work Management APIs,” on page 1 | APIs by category

Dump Flight Recorder (QWTDMPFR) API

 Optional Parameter Group:

1 Qualified job name

Input Char(26)

 Default Public Authority: *USE

 Threadsafe: No

The Dump Flight Recorder (QWTDMPFR) API dumps the contents of flight recorders for jobs that have

them. A flight recorder is an object that stores trace information to record a history of what has

happened in system programs. The flight recorder contains only information that helps to identify the

flow of system programs and status information. The flight recorder for a job is a temporary object and is

not available after an IPL.

Work Management APIs 59

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP
aplist.htm

The following types of jobs have flight recorders:

v Subsystem monitors

v System jobs

You can use the QWTDMPFR API to collect information for your IBM service representative. This API

dumps the contents of job flight recorders to spooled files. You can then collect the files and submit them

to your IBM service representative for debugging.

Authorities and Locks

None.

Optional Parameter Group

Qualified job name

INPUT; CHAR(26)

 The name of the job whose flight recorder is to be dumped. The qualified job name has three

parts:

 Job name CHAR(10). A specific job name or one of the following special values:

*ACTIVE

The flight recorders for all active system jobs and all active subsystem monitor jobs is

dumped.

User name CHAR(10). A specific user profile name, or blanks when the job name is a special value.

Job number CHAR(6). A specific job number, or blanks when the job name is a special value.

Usage Notes

The QWTDMPFR API can be called with no parameters. This invocation dumps flight recorders for all

active system jobs and all active subsystem monitor jobs. This is usually the best choice. You can use a

Call Program (CALL) command from the Command Entry prompt.

CALL PGM(QSYS/QWTDMPFR)

The QWTDMPFR API can be called with one parameter. This allows you to dump the flight recorder for

a single job. The job does not need to be active, as long as there has not been an IPL since the job was

active. You can use a Call Program (CALL) command from the Command Entry prompt and use a job

name parameter. The qualified job name must be specified in upper case characters because the

command analyzer does not change character strings that appear between quote marks.

CALL PGM(QSYS/QWTDMPFR) PARM(’QTAPARB QSYS 001234’)

Error Messages

 Message ID Error Message Text

CPF1321 E Job &1 user &2 job number &3 not found.

CPF1332 E End of duplicate job names.

CPF24B4 E Severe error while addressing parameter list.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

60 iSeries: Work Management APIs

Message ID Error Message Text

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

API introduced: V2R2

 Top | “Work Management APIs,” on page 1 | APIs by category

Dump Lock Flight Recorder (QWTDMPLF) API

 Required Parameter Group:

1 Device name

Input Char(10)
 Optional Parameter Group:

2 Error code

I/O Char(*)

 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Dump Lock Flight Recorder (QWTDMPLF) API dumps the following information into spooled files:

v The contents of the lock flight recorder for the device specified in the parameter passed to the program

v QSYSARB job log

v QLUS job log

v Job logs of the active jobs that have used the device as indicated in the lock flight recorder data

v The history log (QHST)

v Device description of the device

v Controller description of the controller to which the device is attached

v Line description of the line to which the controller is attached

v A Work with Object Locks (WRKOBJLCK) listing for the device

v A Work with Configuration Status (WRKCFGSTS) listing for the controller

v The subsystem description of active subsystems that have touched the device

v Associated internal system objects

You can use the QWTDMPLF API to collect information for your IBM service representative.

Required Parameter

Device name

INPUT; CHAR(10)

Work Management APIs 61

#TOP
aplist.htm

The name of the device for which flight recorder information will be dumped.

Optional Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Error Messages

 Message ID Error Message Text

CPF119C E Value &1 specified for parameter is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Work Management APIs,” on page 1 | APIs by category

List Active Subsystems (QWCLASBS) API

 Required Parameter Group:

1 Qualified user space name

Input Char(20)

2 Format name

Input Char(8)

3 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The List Active Subsystems (QWCLASBS) API retrieves a list of active subsystems. QWCLASBS replaces

any existing data. It does not add the new list to an existing one. To retrieve more information about

active subsystems, see Retrieve Subsystem Information (QWDRSBSD) API.

Authorities and Locks

User Space Authority

*CHANGE

Library Authority

*EXECUTE

62 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP
aplist.htm
qwdrsbsd.htm#HDRRSBSD

User Space Lock

*EXCLRD

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The user space that receives the list, and the library in which it is located. The first 10 characters

contain the user space name. The second 10 characters contain the library name. You can use

these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Format name

INPUT; CHAR(8)

 The format to use for the list of active subsystems. You can use this format name:

 SBSL0100 Basic subsystem list. See “Format of the Generated List.”

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of the Generated List

The list of active subsystems that the QWCLASBS API returns into the user space consists of:

v A user area

v A generic header

v An input parameter section

v A list data section

The user area and generic header are described in User Space Format for List APIs. The remaining items

are described in the following sections. For detailed descriptions of the fields in the tables, see “Field

Descriptions” on page 64.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name

10 A CHAR(10) User space library specified

20 14 CHAR(8) Format name specified

SBSL0100 Format

This section is repeated for each active subsystem.

Work Management APIs 63

error.htm#HDRERRCOD
error.htm#HDRERRCOD
usf.htm

Offset

Type Field Dec Hex

0 0 CHAR(10) Subsystem description name

10 A CHAR(10) Subsystem description library name

Field Descriptions

Format name specified. The format name as specified in the call to the API.

Subsystem description library name. The name of the library in which the active subsystem description

resides.

Subsystem description name. The name of the active subsystem about which information is being

returned.

User space library specified. The library name or special value specified in the call to this API.

User space name. The name of the user space that receives the list.

Error Messages

 Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF8122 E &8 damage on library &4.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Work Management APIs,” on page 1 | APIs by category

64 iSeries: Work Management APIs

#TOP
aplist.htm

List Job (QUSLJOB) API

 Required Parameter Group:

1 Qualified user space name

Input Char(20)

2 Format name

Input Char(8)

3 Qualified job name

Input Char(26)

4 Status

Input Char(10)
 Optional Parameter Group 1:

5 Error Code

I/O Char(*)
 Optional Parameter Group 2:

6 Job type

Input Char(1)

7 Number of fields to return

Input Binary(4)

8 Key of fields to return

Input Array(*) of Binary(4)
 Optional Parameter Group 3:

9 Continuation handle

Input Char(48)

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 75

The List Job (QUSLJOB) API generates a list of all or some jobs on the system. The generated list replaces

any existing list in the user space.

The QUSLJOB API produces a list similar to the list produced by the Work with User Job (WRKUSRJOB)

command.

Authorities and Locks

User Space Authority

*CHANGE

Work Management APIs 65

Library Authority

*EXECUTE

User Space Lock

*EXCLRD

Job Authority

If format JOBL0200 is specified, then for each job for which information is retrieved, the caller of

the API must be running under a user profile that is the same as the job user identity of the job

for which the information is being retrieved. Otherwise, the caller of the API must be running

under a user profile that has job control (*JOBCTL) special authority.

 The job user identity is the name of the user profile by which a job is known to other jobs. It is

described in more detail in the Work Management

book on the V5R1 Supplemental Manuals

Web site.

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The user space that is to receive the generated list, and the library in which it is located. The first

10 characters contain the user space name, and the second 10 characters contain the library name.

You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Format name

INPUT; CHAR(8)

 The format of the job list to be returned. If format JOBL0200 is specified, the fields that were

selected by the caller will be returned for each job in the list. This format is slower than the

JOBL0100 format. The performance will vary depending on the number of fields selected.

You must use one of the following format names:

 JOBL0100 Basic job list.

JOBL0200 Basic job list with keyed return fields.

For more information, see “Format of the Generated List” on page 68.

Qualified job name

INPUT; CHAR(26)

 The name of the job to be included in the list. The qualified job name has three parts:

 Job name CHAR(10). A specific job name, a generic name, or one of the following special values:

* Only the job that this program is running in. The rest of the qualified job name parameter

must be blank.

*CURRENT

All jobs with the current job’s name.

*ALL All jobs. The rest of the job name parameter must be specified.

66 iSeries: Work Management APIs

User name CHAR(10). A specific user profile name, a generic name, or one of the following special values:

*CURRENT

Jobs with the current job’s user profile.

*ALL Jobs with the specified job name, regardless of the user name. The rest of the job name

parameter must be specified.

Job number CHAR(6). A specific job number or the following special value:

*ALL Jobs with the specified job name and user name, regardless of the job number. The rest of

the job name parameter must be specified.

Status INPUT; CHAR(10)

 The status of the jobs to be included in the list. The special values supported are:

 *ACTIVE Active jobs. This includes group jobs, system request jobs, and disconnected jobs.

*JOBQ Jobs currently on job queues.

*OUTQ Jobs that have completed running but still have output on an output queue.

*ALL All jobs, regardless of status.

Optional Parameter Group 1

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Optional Parameter Group 2

Job type

INPUT; CHAR(1)

 The type of job to be listed. Refer to “Comparing Job Type and Subtype with the Work with

Active Job Command” on page 202 in the Retrieve Job Information (QUSRJOBI) API for

information about how the job type field and the job subtype field equate to the type field in the

Work with Active Job (WRKACTJOB) command.

The possible values for this parameter are:

 * This value lists all job types.

A The job is an autostart job.

B The job is a batch job.

I The job is an interactive job.

M The job is a subsystem monitor job.

R The job is a spooled reader job.

S The job is a system job.

W The job is a spooled writer job.

X The job is the start-control-program-function (SCPF) system job.

Number of fields to return

INPUT; BINARY(4)

Work Management APIs 67

error.htm#HDRERRCOD
error.htm#HDRERRCOD

The number of fields to return in the JOBL0200 format. This parameter is only used for the

JOBL0200 format. If JOBL0100 is specified for the format name, the value must be zero.

Key of fields to be returned

INPUT; ARRAY(*) of BINARY(4)

 The list of the fields to be returned in the JOBL0200 format. For a list of the valid fields, see

“Valid Keys” on page 72. This parameter is used for the JOBL0200 format only. If JOBL0100 is

specified for the format name, the value must be zero.

Optional Parameter Group 3

Continuation handle

INPUT; CHAR(48)

 The value returned to the user in the header section when a partial list is returned. The possible

values are:

 blank This starts at the beginning of the list. This value is used if this parameter is omitted.

value The entries after this value matching the job name specified are returned in the list. For more

information on using this value to process a partial list, see Partial List Considerations.

Format of the Generated List

The job list consists of:

v A user area

v A generic header

v An input parameter section

v A header section

v A list data section

For details about the user area and generic header, see User Space Format for List APIs. For details about

the remaining items, see the following sections. For detailed descriptions of the fields in the list returned,

see “Field Descriptions” on page 70.

When you retrieve list entry information from a user space, you should use the entry size returned in the

generic header. The size of each entry may be padded at the end. If you do not use the entry size, the

result may not be valid. For examples of how to process lists, see API Examples.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name specified

10 A CHAR(10) User name specified

20 14 CHAR(6) Job number specified

26 1A CHAR(10) Status

36 24 CHAR(10) User space specified

46 2E CHAR(10) User space library specified

56 38 CHAR(8) Format name specified

64 40 CHAR(1) Job type specified

65 41 CHAR(3) Reserved

68 iSeries: Work Management APIs

usf.htm#HDRPARTLST
usf.htm
apiexmp.htm

Offset

Type Field Dec Hex

68 44 BINARY(4) Number of fields to return specified

72 48 ARRAY(*) of

BINARY(4)

Key of fields to return specified

* * CHAR(48) Continuation handle

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name used

10 A CHAR(10) User name used

20 14 CHAR(6) Job number used

26 1A CHAR(48) Continuation handle

JOBL0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name used

10 A CHAR(10) User name used

20 14 CHAR(6) Job number used

26 1A CHAR(16) Internal job identifier

42 2A CHAR(10) Status

52 34 CHAR(1) Job type

53 35 CHAR(1) Job subtype

54 36 CHAR(2) Reserved

JOBL0200 Format

 Offset

Type Field Dec Hex

0 0 CHAR(56) Everything in JOBL0100 format

56 38 CHAR(1) Job information status

57 39 CHAR(3) Reserved

60 3C BINARY(4) Number of fields returned

Work Management APIs 69

Offset

Type Field Dec Hex

These fields repeat, in

the order listed, for

each key selected.

BINARY(4) Length of field information returned

BINARY(4) Key field

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved

Field Descriptions

Data. The data returned for the key field.

Format name specified. The format name as specified in the call to the API.

Internal job identifier. A value sent to other APIs to speed the process of locating the job on the system.

Only APIs described in this topic use this identifier. The identifier is not valid following an initial

program load (IPL). If you attempt to use it after an IPL, an exception occurs.

Job information status. Whether the information was available for the job. The possible values are:

 blank The information was available.

A The user was not authorized to the job.

L The information was not available because the job was not accessible.

Job name specified. The name of the job as specified in the call to the API.

Job name used. The name of the job as identified to the system. For an interactive job, the system assigns

the job the name of the work station where the job started; for a batch job, you specify the name in the

command when you submit the job.

Job number specified. The job number as specified in the call to the API.

Job number used. The system-assigned job number.

Job subtype. Additional information about the job type (if any exists). Refer to “Comparing Job Type and

Subtype with the Work with Active Job Command” on page 202 in the Retrieve Job Information

(QUSRJOBI) API for information about how the job type field and the job subtype field equate to the

type field in the Work with Active Job (WRKACTJOB) command. The possible values are:

 blank The job has no special subtype.

D The job is a batch immediate job.

E The job started with a procedure start request.

F The job is an AS/400 Advanced 36 machine server job.

J The job is a prestart job.

P The job is a print driver job.

T The job is a System/36 multiple requester terminal (MRT) job.

U The job is an alternate spool user.

70 iSeries: Work Management APIs

Job type. The type of job. Refer to “Comparing Job Type and Subtype with the Work with Active Job

Command” on page 202 in the Retrieve Job Information (QUSRJOBI) API for information about how the

job type field and the job subtype field equate to the type field in the Work with Active Job

(WRKACTJOB) command. The possible values for this field are:

 A The job is an autostart job.

B The job is a batch job.

I The job is an interactive job.

M The job is a subsystem monitor job.

R The job is a spooled reader job.

S The job is a system job.

W The job is a spooled writer job.

X The job is the SCPF system job.

Job type specified. The job type as specified in the call to the API.

Key field. The field returned. See “Valid Keys” on page 72 for the list of valid keys.

Key of fields to return specified. The key of fields to return as specified in the call to the API.

Length of data. The length of the data returned for the field.

Length of field information returned. The total length of information returned for this field. This value

is used to increment to the next field in the list.

Number of fields returned. The number of fields returned to the application.

Number of fields to return specified. The number of fields to return as specified in the call to the API.

Reserved. An ignored field.

Status. The status of the job. The valid values are:

 *ACTIVE The job has started, and it can use system resources (processing unit, main storage, and so on).

This does not guarantee that the job is currently running, however. For example, an active job may

be in one of the following states where it is not in a position to use system resources:

v The Hold Job (HLDJOB) command holds the job; the Release the (RLSJOB) command allows the

job to run again.

v The Transfer Group Job (TFRGRPJOB) or Transfer Secondary Job (TFRSECJOB) command

suspends the job. When control returns to the job, the job can run again.

v The job is disconnected using the Disconnect Job (DSCJOB) command. When the interactive

user signs back on, thereby connecting back into the job, the job can run again.

v The job is waiting for any reason. For example, when the job receives the reply for an inquiry

message, the job can start running again.

*JOBQ The job is currently on a job queue. The job possibly was previously active and was placed back

on the job queue because of the Transfer Job (TFRJOB) or Transfer Batch Job (TFRBCHJOB)

command, or the job was never active because it was just submitted.

*OUTQ The job has completed running and has spooled output that has not yet printed.

Type of data. The type of data returned.

 C The data is returned in character format.

B The data is returned in binary format.

Work Management APIs 71

User name specified. The user name as specified in the call to the API.

User name used. The user profile under which the job is run. The user name is the same as the user

profile name and can come from several different sources depending on the type of job.

User space library specified. The name of the library containing the user space as specified in the call to

the API.

User space specified. The name of the user space as specified in the call to the API.

Valid Keys

The following table contains a list of the valid keys. The descriptions of all the valid key attributes are

described in “Work Management API Attribute Descriptions” on page 387.

 Key Type Description

0101 CHAR(4) Active job status

0102 CHAR(1) Allow multiple threads

0103 CHAR(4) Active job status for jobs ending

0201 CHAR(10) Break message handling

0301 CHAR(1) Cancel key

0302 BINARY(4) Coded character set ID

0303 CHAR(2) Country or region ID

0304 BINARY(4) Processing unit time used, if less than 2,147,483,647 milliseconds

0305 CHAR(10) Current user profile

0306 CHAR(1) Completion status

0307 BINARY(4) Current system pool identifier

0311 CHAR(10) Character identifier control

0312 BINARY(8), UNSIGNED Processing unit time used - total for the job

0313 BINARY(8), UNSIGNED Processing unit time used for database - total for the job

0401 CHAR(13) Date and time job became active

0402 CHAR(13) Date and time job entered system

0403 CHAR(8) Date and time job is scheduled to run

0404 CHAR(8) Date and time job was put on this job queue

0405 CHAR(4) Date format

0406 CHAR(1) Date separator

0407 CHAR(1) DBCS-capable

0408 CHAR(10) DDM conversation handling

0409 BINARY(4) Default wait

0410 CHAR(13) Device recovery action

0411 CHAR(10) Device name

0412 BINARY(4) Default coded character set identifier

0413 CHAR(1) Decimal format

0418 CHAR(13) Date and time job ended

0501 BINARY(4) End severity

0502 CHAR(1) End status

72 iSeries: Work Management APIs

Key Type Description

0503 CHAR(1) Exit key

0601 CHAR(10) Function name

0602 CHAR(1) Function type

0701 CHAR(1) Signed-on job

0702 CHAR(10) Group profile name

0703 CHAR(150) Group profile name - supplemental

0901 CHAR(10) Inquiry message reply

1001 CHAR(15) Job accounting code

1002 CHAR(7) Job date

1003 CHAR(20) Job description name - qualified

1004 CHAR(20) Job queue name - qualified

1005 CHAR(2) Job queue priority

1006 CHAR(8) Job switches

1007 CHAR(10) Job message queue full action

1008 BINARY(4) Job message queue maximum size

1012 CHAR(10) Job user identity

1013 CHAR(1) Job user identity setting

1014 BINARY(4) Job end reason

1015 CHAR(1) Job log pending

1016 BINARY(4) Job type - enhanced

1017 CHAR(8) Job local time

1201 CHAR(3) Language ID

1202 CHAR(1) Logging level

1203 CHAR(10) Logging of CL programs

1204 BINARY(4) Logging severity

1205 CHAR(10) Logging text

1301 CHAR(8) Mode name

1302 BINARY(4) Maximum processing unit time

1303 BINARY(4) Maximum temporary storage in kilobytes

1304 BINARY(4) Maximum threads

1305 BINARY(4) Maximum temporary storage in megabytes

1306 CHAR(10) Memory pool name

1307 CHAR(1) Message reply

1401 BINARY(4) Number of auxiliary I/O requests, if less than 2,147,483,647

1402 BINARY(4) Number of interactive transactions

1403 BINARY(4) Number of database lock waits

1404 BINARY(4) Number of internal machine lock waits

1405 BINARY(4) Number of nondatabase lock waits

1406 BINARY(8), UNSIGNED Number of auxiliary I/O requests

1501 CHAR(20) Output queue name - qualified

1502 CHAR(2) Output queue priority

Work Management APIs 73

Key Type Description

1601 CHAR(10) Print key format

1602 CHAR(30) Print text

1603 CHAR(10) Printer device name

1604 CHAR(10) Purge

1605 BINARY(4) Product return code

1606 BINARY(4) Program return code

1607 CHAR(8) Pending signal set

1608 BINARY(4) Process ID number

1801 BINARY(4) Response time total

1802 BINARY(4) Run priority (job)

1803 CHAR(80) Routing data

1901 CHAR(20) Sort sequence table - qualified

1902 CHAR(10) Status message handling

1903 CHAR(10) Status of job on the job queue

1904 CHAR(26) Submitter’s job name - qualified

1905 CHAR(20) Submitter’s message queue name - qualified

1906 CHAR(20) Subsystem description name - qualified

1907 BINARY(4) System pool identifier

1908 CHAR(10) Special environment

1909 CHAR(8) Signal blocking mask

1910 BINARY(4) Signal status

1911 CHAR(30) Server type

1982 CHAR(10) Spooled file action

2001 CHAR(1) Time separator

2002 BINARY(4) Time slice

2003 CHAR(10) Time-slice end pool

2004 BINARY(4) Temporary storage used in kilobytes

2005 BINARY(4) Time spent on database lock waits

2006 BINARY(4) Time spent on internal machine lock waits

2007 BINARY(4) Time spent on nondatabase lock waits

2008 BINARY(4) Thread count

2009 BINARY(4) Temporary storage used in megabytes

2020 CHAR(10) Time zone current abbreviated name

2021 CHAR(50) Time zone current full name

2022 CHAR(7) Time zone current message identifier

2023 BINARY(4) Time zone current offset

2024 CHAR(10) Time zone description name

2025 CHAR(20) Time zone message file name - qualified

2026 CHAR(1) Time zone Daylight Saving Time indicator

2101 CHAR(24) Unit of work ID

2102 BINARY(4) User return code

74 iSeries: Work Management APIs

Usage Notes

The conditions under which this API is threadsafe are the same as those described in the “Usage Notes”

on page 203 for the Retrieve Job Information (QUSRJOBI) API.

Error Messages

 Message ID Error Message Text

CPF1865 E Value &1 for job type not valid.

CPF1866 E Value &1 for number of fields to return not valid.

CPF1867 E Value &1 in list not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3CB1 E Value &1 for job status is not valid.

CPF3CB2 E Value specified for job parameter is not valid.

CPF3CF1 E Error code parameter not valid.

CPF3C20 E Error found by program &1.

CPF3C21 E Format name &1 is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R3

 Top | “Work Management APIs,” on page 1 | APIs by category

Work Management APIs 75

#TOP
aplist.htm

List Job Schedule Entries (QWCLSCDE) API

 Required Parameter Group:

1 Qualified user space name

Input Char(20)

2 Format name

Input Char(8)

3 Job schedule entry name

Input Char(10)

4 Continuation handle

Input Char(16)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The List Job Schedule Entries (QWCLSCDE) API lists the entries in the job schedule, QDFTJOBSCD. A

subset of the list can be created by using the job schedule entry name parameter. The generated list

replaces any existing list in the user space.

The QWCLSCDE API produces a list similar to the list produced by the Work with Job Schedule Entries

(WRKJOBSCDE) command.

Authorities and Locks

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

User Space Lock

*EXCLRD

Job Schedule Entry Authority

*USE if using format SCDL0100; *JOBCTL or the adder of the entry if using format SCDL0200

Job Schedule Authority

*USE

Job Schedule Library Authority

*EXECUTE

Job Schedule Lock

*SHRRD

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

76 iSeries: Work Management APIs

The user space that is to receive the created list. The first 10 characters contain the user space

name, and the second 10 characters contain the name of the library where the user space is

located. You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Format name

INPUT; CHAR(8)

 The content and format of the information returned for each member. The possible format names

are:

 SCDL0100 Basic job schedule entries list.

SCDL0200 Detailed job schedule entries list. This format requires more processing than the SCDL0100 format.

For more information, see “SCDL0100 Format” on page 78 or “SCDL0200 Format” on page 79.

Job schedule entry name

INPUT; CHAR(10)

 The job schedule entry about which to retrieve information. This can be used to create a subset of

job schedule entries by using the following values:

 *ALL All of the job schedule entries are returned in the list.

generic* All of the job schedule entries beginning with the generic value are returned in the list.

name The job schedule entries with the given name are returned in the list.

Continuation handle

INPUT; CHAR(16)

 The value returned to the user in the header section when a partial list is returned. The possible

values are:

 blank This will start at the beginning of the list.

value The entries after this value matching the job schedule entry name specified will be returned in the

list. For more information on using this value to process a partial list, see Partial list

considerations.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format of the Generated Lists

The file member list consists of:

v A user area

v A generic header

v An input parameter section

v A header section

v A list data section:

– SCDL0100 format

– SCDL0200 format

Work Management APIs 77

usf.htm#HDRPARTLST
usf.htm#HDRPARTLST
error.htm#HDRERRCOD
error.htm#HDRERRCOD

For details about the user area and generic header, see User space format for list APIs. For details about

the remaining items, see the following sections. For detailed descriptions of the fields in the list returned,

see “Field Descriptions” on page 79.

When you retrieve list entry information from a user space, you must use the entry size returned in the

generic header. The size of each entry may be padded at the end. If you do not use the entry size, the

result may not be valid. For examples of how to process lists, see API Examples.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name

10 A CHAR(10) User space library name

20 14 CHAR(8) Format name

28 1C CHAR(10) Job schedule entry name

44 2C CHAR(16) Continuation handle

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job schedule entry name used

10 A CHAR(16) Continuation handle

SCDL0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(1) Information status

1 1 CHAR(10) Job name

11 B CHAR(10) Entry number

21 15 CHAR(10) Scheduled date

31 1F CHAR(70) Scheduled days

101 65 CHAR(6) Scheduled time

107 6B CHAR(10) Frequency

117 75 ARRAY(5) of

CHAR(10)

Relative day of the month

167 A7 CHAR(10) Recovery action

177 B1 CHAR(10) Next submission date

187 BB CHAR(10) Status

197 C5 CHAR(10) Job queue name

207 CF CHAR(10) Job queue library name

217 D9 CHAR(10) User profile of entry adder

78 iSeries: Work Management APIs

usf.htm
apiexmp.htm

Offset

Type Field Dec Hex

227 E3 CHAR(10) Last submission date

237 ED CHAR(6) Last submission time

243 F3 CHAR(50) Text

293 125 CHAR(23) Reserved

SCDL0200 Format

 Offset

Type Field Dec Hex

0 0 Returns everything from format SCDL0100

316 13C CHAR(10) Job queue status

326 146 ARRAY(20) of

CHAR(10)

Dates omitted

526 20E CHAR(10) Job description name

536 218 CHAR(10) Job description library name

546 222 CHAR(10) User profile for submitted job

556 22C CHAR(10) Message queue name

566 236 CHAR(10) Message queue library name

576 240 CHAR(10) Save entry

586 24A CHAR(10) Last submission job name

596 254 CHAR(10) Last submission user name

606 25E CHAR(6) Last submission job number

612 26E CHAR(10) Last attempted submission date

622 26E CHAR(6) Last attempted submission time

628 274 CHAR(10) Status of last attempted submission

638 27E CHAR(2) Reserved

640 280 BINARY(4) Length of command string

644 284 CHAR(512) Command

Field Descriptions

Command. A command that runs in the submitted batch job if the routing program used when this batch

job is started is the IBM-supplied default routing program QCMD. Because this command is used for the

request data, this parameter takes the place of any value specified for the RQSDTA parameter in the job

description.

Continuation handle. The value used to process a partial list. This value is put in the header section

when a partial list is returned. For more information on processing a partial list, see Partial list

considerations.

Work Management APIs 79

usf.htm#HDRPARTLST
usf.htm#HDRPARTLST

Dates omitted. Specifies up to 20 dates when the job should not be submitted. The dates will be in the

format CYYMMDD, where C is the century, YY is the year, MM is the month, and DD is the day. A 0 for

the century flag indicates years 19xx and a 1 indicates years 20xx. If no omit dates are specified, this field

contains hexadecimal zeros.

Entry number. The entry number assigned to the job schedule entry. The entry number can range from

000001 through 999999.

Format name. The content and format of the information returned for each job schedule entry.

Frequency. How often the job schedule entry is to be submitted to run. Valid values are:

 *ONCE The job schedule entry does not repeat.

*WEEKLY The job schedule entry is submitted on the same day of each week at the scheduled time.

*MONTHLY The job schedule entry is submitted on the same day of each month at the scheduled time.

Information status. Whether or not the entry information could be successfully retrieved.

 blank No errors occurred. All information is returned for this entry.

A Insufficient authority to entry. Only the SCDL0100 information is returned for this entry. The rest

of the entry is blank.

L The entry is locked. Only the SCDL0100 information is returned for this entry. The rest of the

entry is blank.

Job description name. The name of the job description used for the job schedule entry.

 *USRPRF The job description in the user profile under which the job runs is used as the job description of

the job schedule entry.

job description

name

The name of the job description used for the job schedule entry.

Job description library name. The name of the library in which the job description is located.

Job name. The job name associated with the job schedule entry.

Job queue library name. The name of the library in which the specified job queue resides.

Job queue name. The name of the job queue where the job should be placed when it is submitted. Valid

values are:

 *JOBD The job is placed in the job queue named in the specified job description.

job queue name The name of the job queue where the job is placed when it is submitted.

Job queue status. The current status of the job queue. Valid values are:

 blank The job queue name specified *JOBD, the job queue could not be found, or the job queue is

damaged.

HLD The job queue is held. The job queue is not allocated to a subsystem.

RLS The job queue is released. The job queue is not allocated to a subsystem.

HLD/SBS The job queue is held. The job queue is allocated to a subsystem.

RLS/SBS The job queue is released. The job queue is allocated to a subsystem.

LOCKED The job queue is locked, and the status could not be obtained.

80 iSeries: Work Management APIs

Job schedule entry name used. The job name used to identify the job schedule entry.

Last attempted submission date. The date on which a job could have been last submitted. The value is

returned in the format CYYMMDD, where C is the century, YY is the year, MM is the month, and DD is

the day. A 0 for the century flag indicates years 19xx and a 1 indicates years 20xx. If no submission has

been attempted, this field contains hexadecimal zeros.

Last attempted submission time. The time at which a job could have been last submitted from this entry.

The value is returned in the format HHMMSS, where HH is hours, MM is minutes, and SS is seconds. If

no submission has been attempted, this field contains hexadecimal zeros.

Last submission date. The date on which a job was last submitted from this entry. The value is returned

in the format CYYMMDD, where C is the century, YY is the year, MM is the month, and DD is the day. A

0 for the century flag indicates years 19xx and a 1 indicates years 20xx. If there has been no previous

submission, this field contains hexadecimal zeros.

Last submission job name. The job name of the last job that was submitted from this entry. If there has

been no previous submission, this field contains blanks.

Last submission job number. The job number of the last job that was submitted from this entry. If there

has been no previous submission, this field contains blanks.

Last submission time. The time at which a job was last submitted from this entry. The value is returned

in the format HHMMSS, where HH is hours, MM is minutes, and SS is seconds. If there has been no

previous submission, this field contains hexadecimal zeros.

Last submission user name. The user name of the last job that was submitted from this entry. If there has

been no previous submission, this field contains blanks.

Length of command string. The length of the command string specified in the command field.

Message queue name. The name of the message queue, if any, to which a completion message is sent

when the job is submitted. A completion message is sent when the submitted job has completed running,

and error messages are sent if the Submit Job (SBMJOB) command fails for some reason. Valid values are:

 *USRPRF A completion message is sent to the message queue specified in the user profile associated with

the job schedule entry.

*NONE Messages are not sent to a user-specified message queue. In this case, completion messages are not

sent, but error messages are sent to the QSYSOPR message queue.

message queue

name

The name of the message queue where the messages are sent.

Message queue library name. The library in which the message queue is located.

Next submission date. The next date that a job from this entry is scheduled to be submitted. The next

submission date is returned in the format CYYMMDD, where C is the century, YY is the year, MM is the

month, and DD is the day. A 0 for the century flag indicates years 19xx and a 1 indicates years 20xx. If

this entry has a status of SAV, this field contains hexadecimal zeros.

Recovery action. The action that will happen if the job cannot be submitted at the designated time

because the system is powered down or the system is in the restricted state. The action specified by this

parameter then occurs when the system is IPLed or when the system comes out of the restricted state.

This parameter does not pertain to the situation where a job was held (by the user) when the designated

time elapsed and then released (by the user) at a later time. Also, the recovery action does not pertain to

timer events that elapse as a result of changes to the QTIME system value. Valid values are:

Work Management APIs 81

*SBMRLS Submit the job in the released state (RLS).

*SBMHLD Submit the job in the held state (HLD).

*NOSBM No job is submitted.

Relative day of the month. The relative day of the month the job should be submitted to run. A total of

five values can be returned. If no relative day of the month was specified, this area contains blanks. Valid

values are:

 1-5 The job should be submitted on the specified day of the week every first, second, third, fourth, or

fifth week of the month.

*LAST The job should be submitted on the last specified day of the week each month.

Reserved. An ignored field.

Save entry. Whether or not an entry that has FRQ(*ONCE) specified should be kept in the job schedule

after the job has been submitted.

 *NO This entry will not be kept after the job is submitted.

*YES This entry will be kept after the job is submitted.

Scheduled date. The date that the job will be submitted. Valid values are:

 *CURRENT The current date will be used.

*MONTHSTR The first day of the month will be used.

*MONTHEND The last day of the month will be used.

*NONE A scheduled date was not specified.

date An actual date in the format CYYMMDD, where C is the century, YY is the year, MM is the

month, and DD is the day. A 0 for the century flag indicates years 19xx and a 1 indicates years

20xx.

Scheduled days. The day of the week that the job will be submitted. A total of seven values can be

returned. Valid values are:

 *ALL The job will be submitted every day. This cannot be specified with any other values.

*NONE A scheduled day is not specified. This cannot be specified with any other values.

*MON The job will be submitted on Monday.

*TUE The job will be submitted on Tuesday.

*WED The job will be submitted on Wednesday.

*THU The job will be submitted on Thursday.

*FRI The job will be submitted on Friday.

*SAT The job will be submitted on Saturday.

*SUN The job will be submitted on Sunday.

Scheduled time. The time (on the scheduled date) when the job will be submitted to run. This value is

returned in the format HHMMSS, where HH is the hours, MM is the minutes, and SS is the seconds.

Status. The status of the job schedule entry. Valid values are:

 SCD The entry is scheduled.

HLD The entry is held.

SAV The entry is saved.

82 iSeries: Work Management APIs

Status of last attempted submission. The action that occurred the last time the system could have

submitted a job from this entry. Valid values are:

 0 Job not previously submitted.

1 Job successfully submitted.

2 Last job submission failed. Check the message queue for details.

3 Job not submitted due to held status.

4 Job submitted after scheduled time as specified by recovery action.

5 Job not submitted as specified by recovery action.

Text. Text that briefly describes the job schedule entry. If no text was specified, this field contains blanks.

User profile for submitted job. The user profile under which the job will be submitted. Valid values are:

 *JOBD The user profile named in the specified job description is used for the job.

user name The name of the user profile that is used for the job.

User profile of entry adder. The user profile that created this entry.

User space library name. The library name or special value specified in the call to this API.

User space name. The name of the user space that receives the list.

Error Messages

 Message ID Error Message Text

CPF1629 E Not authorized to job schedule &1.

CPF1632 E Job schedule entry &3 number &4 damaged.

CPF1637 E Job schedule &1 in library &2 in use.

CPF1640 E Job schedule &1 in library &2 does not exist.

CPF1641 E Job schedule &1 in library &2 damaged.

CPF1643 E Job schedule entry name not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF811A E User space &4 in &9 damaged.

CPF812C E Job schedule &4 in &9 damaged.

CPF8122 E &8 damage on library &4.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Work Management APIs,” on page 1 | APIs by category

Work Management APIs 83

#TOP
aplist.htm

List Object Locks (QWCLOBJL) API

 Required Parameter Group:

1 Qualified user space name

Input Char(20)

2 Format name

Input Char(8)

3 Qualified object name

Input Char(20)

4 Object type

Input Char(10)

5 Member name

Input Char(10)

6 Error code

I/O Char(*)
 Optional Parameter Group 1:

7 Path name

Input Char(*)

8 Path name length

Input Binary(4)
 Optional Parameter Group 2:

9 Qualified object ASP name

Input Char(10)
 Default Public Authority: *USE

 Threadsafe: No

The List Object Locks (QWCLOBJL) API generates a list of lock information about a specific object or

database file member and places the list into the specified user space. An object level or member level

lock may be specified. If it is a database file, you will get a lock on the member (if requested); otherwise,

the lock is on the object. This API provides information similar to that provided by the Work with Object

Lock (WRKOBJLCK) command.

Authorities and Locks

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

User Space Lock

*EXCLRD

84 iSeries: Work Management APIs

ASP device

*EXECUTE

Object library

*EXECUTE

 A user with *JOBCTL special authority is not required to have *EXECUTE authority to either the auxiliary

storage pool (ASP) device or the library containing the object.

If a path name is specified, *X authority is required for directories in the path reqardless of any special

authorities the user may have.

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The name of the existing user space that is to receive the created list. The first 10 characters

contain the user space name, and the second 10 characters contain the name of the library where

the user space is located. You can use these special values for the library name:

 *CURLIB The current library is used to locate the user space. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the user space.

Format name

INPUT; CHAR(8)

 The name of the format used to list object locks. You can specify this format:

 OBJL0100 The content and format of the lock information being returned. For more information, see

“OBJL0100 Format” on page 88.

Qualified object name

INPUT; CHAR(20)

 The name of the object whose locks are to be placed in the list. The first 10 characters contain the

object name, and the second 10 characters contain the name of the library where the object is

located.

If you want to use a path name instead of a qualified object name, use this special value for the

object name:

 *OBJPATH Use the optional parameters, path name and path name length, to specify the object name. When

this special value is specified, the member name field must be the special value *NONE and the

Object type field must be blanks.

You can use these special values for the library name:

 *CURLIB The current library is used to locate the object. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the object.

Object type

INPUT; CHAR(10)

Work Management APIs 85

The object type of operating system object for which the list of locks is returned. Specify the

predefined value that identifies the object type. See the CL Programming

book for more

information on allowed object types. If a path name has been specified, then this field must

contain blanks.

Member name

INPUT; CHAR(10)

 This parameter is valid only when a database file has been specified in the qualified object name

parameter. For other than database files, use *NONE. Possible values are a specific name or a

special value:

 *NONE No member locks are retrieved, but file level locks are retrieved. If the qualified object name is not

a database file, use this value. If a path name is being specified for the object name, use this value.

*FIRST The member locks for the first member in the named file are retrieved.

*ALL Member locks for all the members in the file are retrieved.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group 1

Path name

INPUT; CHAR(*)

 The path name of the object whose locks are to be placed in the list. Both absolute and relative

path names are allowed. The patterns ? and * are not allowed. The home directory of the user is

not resolved, thus a tilde (~) in the first character position is not treated as the home directory.

This parameter is assumed to be represented in the coded character set identifier (CCSID)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job. The path name delimiter must be a slash (/). If a

symbolic link is specified, the link is not followed.

Path name length

INPUT; BINARY(4)

 The length of the path name, in bytes.

Optional Parameter Group 2

Qualified object ASP name

INPUT; CHAR(10)

 The name of the ASP device where the object’s library is located. This parameter must be * if the

library portion of the qualified object name is *CURLIB or *LIBL. It also must be * if the qualified

object name is *OBJPATH. If the object is a library and either an ASP device name or *SYSBAS is

specified, the library portion of the qualified object name must be QSYS. The following special

values may be specified:

 * The ASPs that are currently part of the thread’s library name space will be searched to locate the

object.

*SYSBAS The system ASP and all basic ASPs will be searched to locate the object.

86 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Format of the Generated List

The file member list consists of:

v A user area

v A generic header

v An input parameter section

v A header section

v A list data section

For details about the user area and generic header, see User Space Format for List APIs. For details about

the remaining items, see the following sections. For detailed descriptions of the fields in the list returned,

see “Field Descriptions” on page 88.

When you retrieve list entry information from a user space, you must use the entry size returned in the

generic header. The size of each entry may be padded at the end. If you do not use the entry size, the

result may not be valid. For examples of how to process lists, see API Examples.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library name specified

20 14 CHAR(8) Format name specified

28 1C CHAR(10) Object name specified

38 26 CHAR(10) Object library name specified

48 30 CHAR(10) Object type specified

58 3A CHAR(10) Member name specified

68 44 BINARY(4) Offset to path name specified

72 48 BINARY(4) Length of path name specified

76 4C CHAR(10) Object library ASP name specified

 CHAR(*) Path name specified

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name used

10 A CHAR(10) User space library name used

20 14 CHAR(10) Object name used

30 1E CHAR(10) Object library name used

40 28 CHAR(10) Object type returned

50 32 CHAR(10) Extended object attribute returned

60 3C CHAR(10) Shared file name

70 46 CHAR(10) Shared file library name

Work Management APIs 87

usf.htm
apiexmp.htm

Offset

Type Field Dec Hex

80 50 BINARY(4) Offset to path name used

84 54 BINARY(4) Length of path name used

88 58 CHAR(10) Object ASP name used

98 62 CHAR(10) Object library ASP name used

 CHAR(*) Path name used

OBJL0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) Job user name

20 14 CHAR(6) Job number

26 1A CHAR(10) Lock state

36 24 BINARY(4) Lock status

40 28 BINARY(4) Lock type

44 2C CHAR(10) Member name

54 36 CHAR(1) Share

55 37 CHAR(1) Lock scope

56 38 CHAR(8) Thread identifier

Field Descriptions

Extended object attribute returned. The extended attribute of the object for which the list of locks is

returned, such as a program or a file type. Extended attributes further describe the object. For example,

an object type of *FILE may have an extended object attribute of PHY (physical file), LGL (logical file),

DSP (display file), SAV (save file), and so forth.

Format name specified. The name of the format used to list object locks.

Job name. The simple job name of the job that issued the lock request. The following special values also

may be returned:

 MACHINE The lock is held by an internal machine process. If this value is returned, the job number and job

user name will be blank.

*LCKSPC The lock is attached to a lock space. If this value is returned, the job number and job user name

will be blank.

*N The job name cannot be determined.

Job number. The system-assigned job number of the job that issued the lock request. The following

special value also may be returned:

 *N The job number cannot be determined.

88 iSeries: Work Management APIs

Job user name. The user name under which the job that issued the lock request is run. The user name is

the same as the user profile name and can come from several different sources depending on the type of

job. The following special value also may be returned:

 *N The job user name cannot be determined.

Length of path name specified. The length, in bytes, of the path name of the object that is specified on

the call to the API.

Length of path name used. The length, in bytes, of the path name of the object for which the locks are

placed in the list.

Lock scope. The scope of the lock. The possible values are:

 0 Job scope

1 Thread scope

2 Lock space scope

Lock state. The lock condition for the lock request. The possible values are:

 *NONE No lock exists.

*SHRRD Lock shared for read.

*SHRUPD Lock shared for update.

*SHRNUP Lock shared no update.

*EXCLRD Lock exclusive allow read.

*EXCL Lock exclusive no read.

Lock status. The status of the lock. The lock may be a single request or part of a multiple lock request for

which some other object specified in the request has been identified as unavailable. The possible values

are:

 1 The lock is currently held by the job or thread.

2 The job or thread is waiting for the lock (synchronous).

3 The job or thread has a lock request outstanding for the object (asynchronous).

Lock type. The lock type to be processed. The possible values are:

 1 Lock on the object

2 Lock on the member control block

3 Lock on the access path used to access a member’s data

4 Lock on the actual data within the member

Member name. The name of the file member for which the lock was requested. This field is blank if not

applicable to object type.

Member name specified. The member name of a database file specified on the call to the API.

Object ASP name used. The name of the ASP device that contains the object for which the locks are

placed in the list. The following special value also may be returned:

 *SYSBAS The object is located in the system ASP or a basic user ASP.

Work Management APIs 89

Object library ASP name specified. The name of the ASP device that contains the object specified on the

call to the API. The following special values may also be returned:

 * The ASPs that are currently part of the thread’s library name space will be searched to locate the

object.

*SYSBAS The object is located in the system ASP or a basic user ASP.

Object library ASP name used. The name of the ASP device that contains the library of the object for

which locks are placed in the list. The following special value may also be returned:

 *SYSBAS The library is located in the system ASP or a basic user ASP.

Object library name specified. The name of the library that contains the object specified on the call to

the API. This field is blank if a path name was specified as the object name.

Object library name used. The name of the library that contains the object whose locks are placed in the

list. This field is blank if a path name was specified as the object name.

Object name specified. The name of the object specified on the call to the API. This field will contain the

special value *OBJPATH if a path name is specified.

Object name used. The name of the object for which the locks are placed in the list. This field will

contain the special value *OBJPATH if a path name is specified.

Object type returned. The type of object for which locks are retrieved. This field will contain blanks if a

path name is specified.

Object type specified. The type of object for which the list of locks are requested. This field will contain

blanks if a path name is specified.

Offset to path name specified. The offset to the path name of the object that is specified on the call to

the API.

Offset to path name used. The offset to the path name of the object for which the locks are placed in the

list.

Path name specified. The path name of the object that is specified on the call to the API.

Path name used. The actual path name of the object for which the locks are placed in the list.

Share. Whether shared file member locks are associated with the file member.

 0 The file is not shared, the file is a physical file, or the field is not applicable to object type.

1 The file is shared.

Shared file library name. The name of the library that contains the shared file. This field is blank if not

applicable to object type or if there is no shared file. When this field has a value, it applies to all entries

in the list.

Shared file name. The name of one shared file whose members are locked. This field is blank if not

applicable to object type or if there is no shared file. When this field has a value, it applies to all entries

in the list.

90 iSeries: Work Management APIs

Thread identifier. The identifier of the thread that is holding a thread-scoped lock or waiting for a lock.

For locks that do not have a lock scope of thread scope, the hexadecimal value 00000000 is returned.

User space library name specified. The name of the library that contains the user space specified in the

call to the API.

User space library name used. The name of the library that contains the user space into which the

generated list is put.

User space name specified. The name of the user space specified in the call to the API.

User space name used. The user space used to return the list of object locks.

Error Messages

 Message ID Error Message Text

CPFA0AB E Object name not a directory.

CPFA0A3 E Path name resolution causes looping.

CPFA0A7 E Path name too long.

CPFA0A9 E Object not found.

CPFA09C E Not authorized to object.

CPF0935 E Cannot use member name for object type &2.

CPF0951 E QSYS only valid library for object type &2.

CPF18A0 D Object type field not valid.

CPF18A1 D Member name is not valid.

CPF18A2 D Path name parameters not specified.

CPF24B4 E Severe error while addressing parameter list.

CPF3141 E Member &1 not found.

CPF3CAA E List is too large for user space &1.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C1B E Object identifier not valid for lock type &1.

CPF3C1C E Lock type &1 not valid for file attribute &2.

CPF3C21 E Format name &1 is not valid.

CPF3C31 E Object type &1 is not valid.

CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9810 E Library &1 not found.

CPF9811 E Program &1 in library &2 not found.

CPF9812 E File &1 in library &2 not found.

CPF9820 E Not authorized to use library &1.

CPF9825 E Not authorized to device &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

 Top | “Work Management APIs,” on page 1 | APIs by category

Work Management APIs 91

#TOP_OF_PAGE
aplist.htm

List Subsystem Entries (QWDLSBSE) API

 Required Parameter Group:

1 Qualified user space name

Input Char(20)

2 List format

Input Char(8)

3 Qualified subsystem name

Input Char(20)

4 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The List Subsystem Entries (QWDLSBSE) API lists some of the different entries in a subsystem

description. See the format information for the types of entries available. QWDLSBSE replaces any data

that already exists in the user space.

Other subsystem information is available through the following APIs:

 QWDRSBSD Retrieve Subsystem Information

 QWDLSJBQ List Job Queue Entries

Authorities and Locks

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

User Space Lock

*EXCLRD

Subsystem Description Authority

*USE

Subsystem Description Library Authority

*EXECUTE

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

 The user space that receives the list, and the library in which it is located. The first 10 characters

contain the user space name, and the second 10 characters contain the library name. You can use

these special values for the library name:

 *CURLIB The job’s current library

*LIBL The job’s library list

92 iSeries: Work Management APIs

List format

INPUT; CHAR(8)

 The format of subsystem entries to list. You can use one of the following format names:

 SBSE0100 Routing entry list. For details, see “SBSE0100 Format” on page 94.

SBSE0200 Communications entry list. For details, see “SBSE0200 Format” on page 94.

SBSE0300 Remote locations entry list. For details, see “SBSE0300 Format” on page 95.

SBSE0400 Autostart job entry list. For details, see “SBSE0400 Format” on page 95.

SBSE0500 Prestart job entry list. For details, see “SBSE0500 Format” on page 95.

SBSE0600 Workstation name entry list. For details, see “SBSE0600 Format” on page 96.

SBSE0700 Workstation type entry list. For details, see “SBSE0700 Format” on page 96.

Qualified subsystem name

INPUT; CHAR(20)

 The subsystem description about which to retrieve information, and the library in which the

subsystem description is located. The first 10 characters contain the subsystem description name,

and the second 10 characters contain the library name. You can use these special values for the

library name:

 *CURLIB The job’s current library

*LIBL The job’s library list

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format of the Generated List

The list of entries that the QWDLSBSE API returns into the user space consists of:

v A user area

v A generic header

v An input parameter section

v A header section

v A list data section

The user area and generic header are described in User Space Format for List APIs. The remaining items

are described in the following sections. For detailed descriptions of the fields in the tables, see “Field

Descriptions” on page 96.

When you retrieve list entry information from a user space, you must use the entry size returned in the

generic header. The size of each entry may be padded at the end. If you do not use the entry size, the

result may not be valid. For examples of how to process lists, see API Examples.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name specified

10 A CHAR(10) User space library name specified

Work Management APIs 93

error.htm#HDRERRCOD
error.htm#HDRERRCOD
usf.htm
apiexmp.htm

Offset

Type Field Dec Hex

20 14 CHAR(8) Format name specified

28 1C CHAR(10) Subsystem name specified

38 26 CHAR(10) Subsystem library name specified

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) Subsystem name used

10 A CHAR(10) Subsystem library name used

SBSE0100 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Routing entry sequence number

4 4 CHAR(10) Routing entry program name

14 E CHAR(10) Routing entry program library name

24 18 CHAR(10) Routing entry class name

34 22 CHAR(10) Routing entry class library name

44 2C BINARY(4) Maximum active routing steps

48 30 BINARY(4) Routing entry pool identifier

52 34 BINARY(4) Compare start position

56 38 CHAR(80) Compare value

136 88 CHAR(10) Routing entry thread resources affinity group

146 92 CHAR(10) Routing entry thread resources affinity level

156 9C CHAR(10) Routing entry resources affinity group

SBSE0200 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Device

10 A CHAR(8) Mode

18 12 CHAR(10) Communication entry job description name

28 1C CHAR(10) Communication entry job description library name

38 26 CHAR(10) Default user

48 30 BINARY(4) Maximum active jobs

94 iSeries: Work Management APIs

SBSE0300 Format

 Offset

Type Field Dec Hex

0 0 CHAR(8) Remote location

8 8 CHAR(8) Mode

16 10 CHAR(10) Remote location entry job description name

26 1A CHAR(10) Remote location entry job description library name

36 24 CHAR(10) Default user

38 26 CHAR(2) Reserved

48 30 BINARY(4) Maximum active jobs

SBSE0400 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Autostart job name

10 A CHAR(10) Autostart job description name

20 14 CHAR(10) Autostart job description library name

SBSE0500 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Prestart job program name

10 A CHAR(10) Prestart job program library name

20 14 CHAR(10) User profile name

30 1E CHAR(1) Start jobs

31 1F CHAR(1) Wait for job

32 20 BINARY(4) Initial number of jobs

36 24 BINARY(4) Threshold

40 28 BINARY(4) Additional number of jobs

44 2C BINARY(4) Maximum number of jobs

48 30 BINARY(4) Maximum number of uses

52 34 BINARY(4) Pool identifier

56 38 CHAR(10) Prestart job name

66 42 CHAR(10) Prestart job description name

76 4C CHAR(10) Prestart job description library name

86 56 CHAR(2) Reserved

Work Management APIs 95

Offset

Type Field Dec Hex

88 58 CHAR(10) First class name

98 62 CHAR(10) First class library name

108 6C BINARY(4) Number of jobs to use first class

112 70 CHAR(10) Second class name

122 7A CHAR(10) Second class library name

132 84 BINARY(4) Number of jobs to use second class

136 88 CHAR(10) Prestart job thread resources affinity group

146 92 CHAR(10) Prestart job thread resources affinity level

156 9C CHAR(10) Prestart job resources affinity group

SBSE0600 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Workstation name

10 A CHAR(10) Job description name for workstation

20 14 CHAR(10) Job description library name for workstation

30 1E CHAR(10) Control job (allocation)

40 28 BINARY(4) Maximum active jobs

SBSE0700 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Workstation type

10 A CHAR(10) Job description name for type

20 14 CHAR(10) Job description library name for type

30 1E CHAR(10) Control job (allocation)

40 28 BINARY(4) Maximum active jobs

Field Descriptions

Additional number of jobs. The additional number of prestart jobs that are started when the number of

prestart jobs drops below the value specified for the threshold parameter.

Autostart job description library name. The name of the library in which the job description for the

autostart job entry resides.

Autostart job description name. The name of the job description for the autostart job entry about which

information is being returned.

96 iSeries: Work Management APIs

Autostart job name. The simple name of the job that is automatically started when the associated

subsystem is started.

Communication entry job description library name. The name of the library in which the

communications entry job description resides.

Communication entry job description name. The name of the job description used when a job is started

as a result of receiving a program start request and processed through this communications entry.

Possible special values follow:

 *USRPRF The job description name that is specified in the user profile of the user that made the program

start request is used for jobs that are processed through this communications entry.

Compare start position. The starting position for the routing data comparison. The comparison between

the compare value and the routing data begins with this position in the routing data character string, and

the last character position compared must be less than or equal to the length of the routing data used in

the comparison.

Compare value. A value that is compared with the routing data to determine whether this is the routing

entry that is used for starting a routing step. The special value *ANY means that any routing data is

considered a match.

Control job (allocation). How the workstations that are associated with this job entry are allocated.

Possible special values follow:

 *SIGNON The workstations are allocated when the subsystem is started if the workstation is not already in

use (signed on) in another subsystem. A sign-on prompt is displayed at each workstation that is

associated with this work entry. If a workstation becomes allocated to a different subsystem,

interactive jobs that are associated with the workstation are allowed to enter this subsystem

through the Transfer Job (TFRJOB) command.

*ENTER The workstations that are associated with this work entry are not allocated when the subsystem is

started. However, the interactive jobs that are associated with the workstations are allowed to

enter this subsystem through the Transfer Job (TFRJOB) command.

Default user. The name of the default user profile used for evoke requests that enter the subsystem

through this entry and contain no security information. Possible special values follow:

 *NONE No user profile is specified as the default.

*SYS All user program start requests are treated the same as *NONE. For program start requests that

are sent by system functions, the request runs under a predetermined user profile if a user profile

is not specified on the program start request.

Device. The name of the device description or the type of the device being used with this

communications entry. Possible special values follow:

 *ALL All communications device types are used with this communications entry.

*APPC All advanced program-to-program communications devices can be used with this communications

entry.

*ASYNC All asynchronous communications devices can be used with this communications entry.

*BSCEL All bisynchronous equivalency link communications devices can be used with this

communications entry.

*FINANCE All finance communications devices can be used with this communications entry.

*INTRA All intrasystem communications devices can be used with this communications entry.

*RETAIL All retail communications devices can be used with this communications entry.

*SNUF All SNA upline facility communications devices can be used with this communications entry.

Work Management APIs 97

First class library name. The name of the library in which the first class resides.

First class name. The name of one of the two classes that the prestart jobs run under. Jobs start by using

the first class that is specified until the number of jobs specified for the first class is reached. After the

number of jobs that are specified for the first class is reached, then jobs are started by using the second

class.

Format name specified. The format name as specified in the call to the API.

Initial number of jobs. The initial number of prestart jobs that are started when the subsystem is started.

Job description library name for type. The name of the library in which the job description for this

workstation type resides.

Job description library name for workstation. The name of the library in which the job description for

this workstation name resides.

Job description name for type. The name of the job description that is used for jobs started through this

type of workstation entry. The possible special value follows:

 *USRPRF The job description named in the user profile of the user that signs on at this type of workstation

is used for jobs started through this entry.

Job description name for workstation. The name of the job description that is used for jobs started

through this workstation name entry. The possible special value follows:

 *USRPRF The job description named in the user profile of the user that signs on at this workstation is used

for jobs started through this entry.

Maximum active jobs. The maximum number of jobs that can be active at the same time through this

entry. If the entry specifies *NOMAX, indicating that there is no maximum, this number is -1.

Maximum active routing steps. The maximum number of routing steps (jobs) that can be active at the

same time through this routing entry. If the routing entry specifies *NOMAX, indicating that there is no

maximum, this number is -1.

Maximum number of jobs. The maximum number of prestart jobs that can be active at the same time for

this prestart job entry. If the entry specifies *NOMAX, which indicates that there is no maximum, this

number is -1.

Maximum number of uses. The maximum number of requests that can be handled by each prestart job

in the pool before the job is ended. If the entry specifies *NOMAX, which indicates that there is no

maximum, this number is -1.

Mode. The mode name of the communications device. The possible special value follows:

 *ANY Any available modes defined to the communications device are allocated to the subsystem. If the

communications device does not have defined modes associated with it, the communications

device itself is allocated to the subsystem.

Number of jobs to use first class. The maximum number of jobs to run by using the first class. Possible

special values follow:

98 iSeries: Work Management APIs

-3 The system calculates how many prestart jobs use this class.

If only one class is specified and -3 is specified, all of the jobs use that class.

If two classes are specified and -3 is specified for both, the first class is the value of the maximum

number of jobs field divided by two, and the second class is the value of the maximum number of

jobs field minus the value that is calculated for the first class.

If a specific number of jobs is specified for either class and -3 is specified for the other class, the

system calculates the difference between maximum number of jobs and the specific number of jobs

for the -3 designation.

-4 All of the prestart jobs use the specified class.

Number of jobs to use second class. The maximum number of jobs to run by using the second class.

Possible special values follow:

 -3 The system calculates how many prestart jobs use this class.

If only one class is specified and -3 is specified, all of the jobs use that class.

If two classes are specified and -3 is specified for both, the first class is the value of the maximum

number of jobs field divided by two. The second class is the value of the maximum number of

jobs field minus the value that is calculated for the first class.

If a specific number of jobs is specified for either class and -3 is specified for the other class, the

system calculates the difference between maximum number of jobs and the specific number of jobs

for the -3 designation.

-4 All of the prestart jobs use the specified class.

Pool identifier. The name of the subsystem pool identifier in which the prestart jobs will run.

Prestart job resources affinity group. Specifies whether or not the prestart jobs started by this entry are

grouped together having affinity to the same set of processors and memory. The possible values are:

 *NO Prestart jobs will not be grouped together. They will be spread across all the available system

resources.

*YES Prestart jobs will be grouped together such that they will have affinity to the same system

resources.

Prestart job thread resources affinity group. Specifies whether or not secondary threads running in the

prestart jobs are grouped together with the initial thread, or spread across the system resources. The

possible values are:

 *SYSVAL The thread resources affinity group and level in the QTHDRSCAFN system value will be used

when the job starts.

*NOGROUP Secondary threads running in the prestart job will not necessarily have affinity to the same set of

processors and memory as the initial thread. They will be spread across all the available system

resources.

*GROUP Secondary threads running in the prestart job will all have affinity to the same set of processors

and memory as the initial thread.

Prestart job thread resources affinity level. The degree to which the system tries to maintain the affinity

between threads and system resources. When the prestart jobs thread resources affinity group is

*SYSVAL, this field will contain blanks. The possible special values are:

Work Management APIs 99

*NORMAL A thread will use any processor or memory in the system if the resources it has affinity to are not

readily available.

*HIGH A thread will only use the resources it has affinity to, and will wait until they become available if

necessary.

Prestart job description library name. The name of the library in which the job description for the

prestart job entry resides.

Prestart job description name. The name of the job description that is used for the prestart job entry. The

possible special value follows:

 *USRPRF The job description that has the same name as the user profile that is used.

Prestart job name. The name of the prestart job.

Prestart job program library name. The name of the library in which the prestart job program resides.

Prestart job program name. The program name that is used to match an incoming request with an

available prestart job.

Remote location. The name of the remote location for this entry.

Remote location entry job description library name. The name of the library in which the job

description resides.

Remote location entry job description name. The name of the job description used when a job is started

as a result of receiving a program start request and processed through this remote location entry. Possible

special values follow:

 *USRPRF The job description name that is specified in the user profile of the user that made the program

start request is used for jobs that are processed through this remote location entry.

Reserved. An ignored field.

Routing entry class library name. The name of the library in which the routing entry class resides.

Routing entry class name. The name of the class that is used when a routing step is started through this

routing entry.

Routing entry pool identifier. The pool identifier of the storage pool in which the routing entry program

is run.

Routing entry program library name. The name of the library in which the routing entry program

resides.

Routing entry program name. The name of the program that is started when a routing step is started

through this routing entry in the subsystem description. If *RTGDTA is returned, the program name is

taken from the routing data that was supplied and matched against this entry. The qualified program

name will be taken from the routing data in this case, where the program name is specified in positions

37 through 46 and the library name is taken from positions 47 through 56.

Routing entry resources affinity group. Specifies whether or not the jobs using this routing entry are

grouped together having affinity to the same set of processors and memory. The possible values are:

100 iSeries: Work Management APIs

*NO The jobs will not be grouped together. They will be spread across all the available system

resources.

*YES The jobs will be grouped together such that they will have affinity to the same system resources.

Routing entry sequence number. The sequence number of the routing entry.

Routing entry thread resources affinity group. Specifies whether or not secondary threads running in

jobs that started through this routing entry are grouped together with the initial thread, or spread across

the system resources. The possible values are:

 *SYSVAL The thread resources affinity group and level in the QTHDRSCAFN system value will be used

when the job starts.

*NOGROUP Secondary threads will not necessarily have affinity to the same set of processors and memory as

the initial thread. They will be spread across all the available system resources.

*GROUP Secondary threads will all have affinity to the same set of processors and memory as the initial

thread.

Routing entry thread resources affinity level. The degree to which the system tries to maintain the

affinity between threads and system resources. When the routing entry thread resources affinity group is

*SYSVAL, this field will contain blanks. The possible special values are:

 *NORMAL A thread will use any processor or memory in the system if the resources it has affinity to are not

readily available.

*HIGH A thread will only use the resources it has affinity to, and will wait until they become available if

necessary.

Second class library name. The name of the library in which the second class resides.

Second class name. One of the two classes that the prestart jobs run under. Jobs start by using the first

class that is specified until the number of jobs specified for the first class is reached. After the number of

jobs that are specified for the first class is reached, then jobs are started using the second class. The

possible special value follows:

 *NONE Only one class is used.

Start jobs. Whether the prestart jobs are started at the time the subsystem is started. Possible special

values follow:

 1 The prestart jobs are started at the time the subsystem is started.

0 The prestart jobs are not started at the time the subsystem is started. The Start Prestart Jobs

(STRPJ) command is used to start these prestart jobs.

Subsystem library name specified. The name or special value specified in the call to this API for the

library in which the subsystem description resides.

Subsystem library name used. The name of the library in which the subsystem description resides.

Subsystem name specified. The name of the subsystem specified in the call to this API.

Subsystem name used. The name of the subsystem about which information is being returned.

Work Management APIs 101

Threshold. The number at which additional prestart jobs are started. When the pool of available jobs

(jobs available to service a program start request) is reduced below this number, more jobs (specified on

the additional number of jobs field) are started and added to the available pool. This number is checked

after a prestart job is attached to a procedure start request.

User profile name. The name of the user profile under which the prestart job runs.

User space library name specified. The name specified for the library that contains the user space to

receive the generated list.

User space name specified. The name specified for the user space that is to receive the generated list.

Wait for job. Whether requests wait for a prestart job to become available or are rejected if a prestart job

is not immediately available when the request is received. Possible special values follow:

 1 Requests wait until there is an available prestart job, or until a prestart job is started, to handle the

request.

0 Requests are rejected if a prestart job is not immediately available when the request is received.

Workstation name. The name of the workstation that is used by the subsystem. A generic workstation

entry like DSP* is allowed.

Workstation type. The display device type. (See the TYPE keyword in the Communications Configuration

book on the V5R1 Supplemental Manuals Web site.

Possible special values follow:

 *ALL All workstation devices. This includes devices with 5250, ASCII, and 327x device types.

*ASCII ASCII display station.

*NONASCII All workstation devices that use a 5250 data stream. This includes the 327x device types.

*CONS System console display. This entry overrides a device type entry that specifies the same device

type as the device being used as the console.

Error Messages

 Message ID Error Message Text

CPF1605 E Cannot allocate subsystem description &1.

CPF1606 E Error during allocation of subsystem &1.

CPF1607 E Previous request pending for subsystem &1.

CPF1608 E Subsystem description &1 not found.

CPF1619 E Subsystem description &1 in library &2 damaged.

CPF1835 E Not authorized to subsystem description.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF811A E User space &4 in &9 damaged.

CPF8122 E &8 damage on library &4.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

102 iSeries: Work Management APIs

Message ID Error Message Text

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R7

 Top | “Work Management APIs,” on page 1 | APIs by category

List Subsystem Job Queues (QWDLSJBQ) API

 Required Parameter Group:

1 Qualified user space name

Input Char(20)

2 List format

Input Char(8)

3 Qualified subsystem name

Input Char(20)

4 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The List Subsystem Job Queues (QWDLSJBQ) API lists the job queues for a subsystem. It also gives the

job queue allocation status, indicating whether the specified subsystem is active and has allocated this job

queue or not. QWDLSJBQ replaces any data that already exists in the user space.

Authorities and Locks

User Space Authority

*CHANGE

User Space Library Authority

*EXECUTE

User Space Lock

*EXCLRD

Subsystem Description Authority

*USE

Subsystem Description Library Authority

*EXECUTE

Required Parameter Group

Qualified user space name

INPUT; CHAR(20)

Work Management APIs 103

#TOP
aplist.htm

The user space that receives the list, and the library in which it is located. The first 10 characters

contain the user space name, and the second 10 characters contain the library name. You can use

these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

List format

INPUT; CHAR(8)

 The format to use for the list of job queues. You can use the following format name:

 SJQL0100 Basic job queue list. For details, see “Format of the Generated List.”

Qualified subsystem name

INPUT; CHAR(20)

 The subsystem about which to retrieve information, and the library in which the subsystem

description is located. The first 10 characters contain the subsystem name, and the second 10

characters contain the library name. You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of the Generated List

The list of job queues that the QWDLSJBQ API returns into the user space consists of:

v A user area

v A generic header

v An input parameter section

v A header section

v A list data section

The user area and generic header are described in User Space Format for List APIs. For detailed

descriptions of the fields in the tables, see “Field Descriptions” on page 105.

Input Parameter Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) User space name

10 A CHAR(10) User space library name specified

20 14 CHAR(8) Format name specified

28 1C CHAR(10) Subsystem name

38 26 CHAR(10) Subsystem library name specified

104 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
usf.htm

Header Section

 Offset

Type Field Dec Hex

0 0 CHAR(10) Subsystem name used

10 A CHAR(10) Subsystem library name used

SJQL0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job queue name

10 A CHAR(10) Job queue library name

20 14 BINARY(4) Sequence number

24 18 CHAR(10) Allocation indicator

34 22 CHAR(2) Reserved

36 24 BINARY(4) Maximum active

40 28 BINARY(4) Maximum by priority 1

44 2C BINARY(4) Maximum by priority 2

48 30 BINARY(4) Maximum by priority 3

52 34 BINARY(4) Maximum by priority 4

56 38 BINARY(4) Maximum by priority 5

60 3C BINARY(4) Maximum by priority 6

64 40 BINARY(4) Maximum by priority 7

68 44 BINARY(4) Maximum by priority 8

72 48 BINARY(4) Maximum by priority 9

Field Descriptions

Allocation indicator. A value indicating whether or not the job queue is allocated to the specified

subsystem. Valid values are:

 *NO The subsystem has not allocated this job queue. Either this subsystem is inactive, or another

subsystem has allocated the job queue.

*YES The subsystem is active and has allocated this job queue.

Format name specified. The format name as specified in the call to the API.

Job queue library name. The name of the library in which the specified job queue resides.

Job queue name. The name of a job queue specified in a subsystem description job queue entry.

Maximum active. The maximum number of jobs that can be active at the same time through this job

queue entry.

Work Management APIs 105

Maximum by priority 1 through 9. The maximum number of jobs that can be active at the same time for

each priority level (1 through 9). A -1 in this field indicates that the value is *NOMAX.

Reserved. An ignored field.

Sequence number. The job queue entry sequence number. The subsystem uses this number to determine

the order in which job queues are processed. Jobs from the queue with the lowest sequence number are

processed first.

Subsystem library name specified. The name or special value specified in the call to this API for the

library in which the subsystem description resides.

Subsystem library name used. The name of the library in which the subsystem description resides.

Subsystem name. The name of the subsystem about which information is being returned.

Subsystem name used. The name of the subsystem about which information is being returned.

User space library name specified. The library name or special value specified in the call to this API.

User space name. The name of the user space that receives the list.

Error Messages

 Message ID Error Message Text

CPF1605 E Cannot allocate subsystem description &1.

CPF1606 E Error during allocation of subsystem &1.

CPF1607 E Previous request pending for subsystem &1.

CPF1608 E Subsystem description &1 not found.

CPF1619 E Subsystem description &1 in library &2 damaged.

CPF1835 E Not authorized to subsystem description.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF811A E User space &4 in &9 damaged.

CPF8122 E &8 damage on library &4.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Work Management APIs,” on page 1 | APIs by category

106 iSeries: Work Management APIs

#TOP
aplist.htm

Move Job (QSPMOVJB) API

 Required Parameter Group:

1 Function information

Input Char(*)

2 Length of function information

Input Binary(4)

3 Function information format

Input Char(8)

4 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Move Job (QSPMOVJB) API performs one of two functions. They are to:

v Move one job at a time to the top of a job queue

v Move a job after another job

The jobs are identified by the internal job identifier or by the qualified job name. See “How to Specify Job

Identifying Fields” on page 111 for the valid combinations of identifying jobs.

As a result of using this API, a job could:

v Change job queues

The job changes job queues when it is moved to the top of another job queue.

The job being moved resides on the job queue of the target job.

v Change priority

The job priority is changed to the requester’s highest schedule priority if the job is moved to the top of

a job queue.

 Requester’s priority = 2

 Job Priority

 New priority = 2 when moved here-------------->

 A 3

 B 5

The job priority will be changed to the priority of the target job if the requester’s highest schedule

priority is equal to or less than the target job.

 Requester’s priority = 2

 Job Priority

 C 3

 New priority = 3 when moved here------------->

 D 5

The job priority is changed to the requester’s highest schedule priority if:

– The requester’s priority is greater than the target job and

– The requester’s priority is greater or equal to the jobs it is moving ahead of.

Work Management APIs 107

Requester’s priority = 4

 Job Priority

 C 3

 New priority = 4 when moved here------------->

 D 5

 Requester’s priority = 4

 Job Priority

 E 3

 New priority = 4 when moved here------------->

 F 4

 The owner of the job moving must also be

 the owner of job F.

v Be held

A job in ready status is held when it is moved after a job that is held.

v Be released

A job in held status is released when it is moved to the top of a job queue.

A job in held status is released when it is moved after a job that is released.

Restrictions for Movement of Jobs

The Move Job API has restrictions that determine whether a job can be moved.

v Scheduled jobs cannot be referenced as the source job or the target job.

v The job to be moved must exist, be a batch job, and be on a job queue.

v The job queue must exist.

v If a job is held with hold spooled files specified, and the job is to be moved to the top of a queue, no

spooled file must exist for the job.

Authorities and Locks

Job Authorities: The requester is authorized to the job if one or more of the following conditions are

met.

v The requester is the owner of the job to be moved.

v The requester has *JOBCTL authority.

Job Queue Authority

Authority to the target job queue

*READ

Authority to the target job queue library

*EXECUTE

Job queue lock on which the source job resides

*EXCLRD

Job queue lock on which the target job resides

*EXCLRD

User Profile Highest Schedule Priority

v The requester must have a priority limit of at least x-1 (x being the priority of the job that will follow

after this job).

v If the requester has equal priority to a job that it is moving ahead of, the requester must own all of the

jobs it is moving ahead of at that priority level or have *JOBCTL authority.

108 iSeries: Work Management APIs

Required Parameter Group

Function information

INPUT; CHAR(*)

 The information that is associated with the job or jobs to be moved and the job queue to which

the jobs are to be moved. See the “Format of the Function Information” for the format of this

parameter.

Length of function information

INPUT; BINARY(4)

 The length of the function information in the function information parameter. The length depends

on the function format. Each format has a different (but fixed) length as shown in the specific

format tables. The minimum length for format MJOB0100 is 62 bytes; the minimum length for

format MJOB0200 is 84 bytes.

Function information format

INPUT; CHAR(8)

 The format of the function information that is being provided. The information is provided in the

function information parameter. They are:

 MJOB0100 Format for the function of *NEXT, which is moving one job at a time to the top of a job queue.

MJOB0200 Format for the function of *AFTER, which is moving a job after another job.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of the Function Information

MJOB0100 Format: The following table shows the information for the MJOB0100 format. For more

details about the fields in the following tables see, “Field Descriptions” on page 110.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Source job name

10 A CHAR(10) Source job user name

20 14 CHAR(6) Source job number

26 18 CHAR(16) Source internal job identifier

42 2A CHAR(10) Target job queue name

52 34 CHAR(10) Target job queue library name

MJOB0200 Format: The following table shows the information for the MJOB0200 format. For more

details about the fields in the following tables see, “Field Descriptions” on page 110.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Source job name

10 A CHAR(10) Source job user name

Work Management APIs 109

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

20 14 CHAR(6) Source job number

26 18 CHAR(16) Source internal job identifier

42 2A CHAR(10) Target job name

52 34 CHAR(10) Target job user name

62 3E CHAR(6) Target job number

68 44 CHAR(16) Target internal job identifier

Field Descriptions

Source internal job identifier. The internal identifier for the job to be moved. The identifier is not valid

following an initial program load (IPL). If you attempt to use it after an IPL, an exception occurs. This

field must be blank when a source job name is given. Use one of the following APIs to make the

identifier available:

 “List Job (QUSLJOB) API” on page 65

 “Retrieve Job Information (QUSRJOBI) API” on page 185

 There may be a performance advantage when identifying the source job by its internal identifier.

Source job name. The name of the job to be moved. The possible values are:

 *INT The job to be moved is identified by the internal job identifier.

Name The name of the job to be moved.

Source job number. The number of the job to be moved. It can optionally be blank when a source job

name or a source job user name or both are specified. This field must be blank when the source job name

is specified as *INT.

Source job user name. The user name of the job to be moved. It can optionally be blank when a source

job name is specified. This field must be blank when the source job name is specified as *INT.

Target internal job identifier. The internal identifier for the job after which the source job is to be moved.

The identifier is not valid following an initial program load (IPL). If you attempt to use it after an IPL, an

exception occurs. This field must be blank when a target job name is given. Use one of the following

APIs to make the identifier available:

 “List Job (QUSLJOB) API” on page 65

 “Retrieve Job Information (QUSRJOBI) API” on page 185

 There may be a performance advantage when identifying the target job by its internal identifier.

Target job name. The name of the job after which the source job is to be moved. The possible values are:

 *INT The target job is identified by the internal job identifier.

Name The name of the job after which the source job is to be moved.

Target job number. The number of the target job. It can optionally be blank when a target job name or

target job user name or both are specified. This field must be blank when the target job name is specified

as *INT.

110 iSeries: Work Management APIs

Target job queue library name. The name of the library that contains the job queue. This must be

specified when a target job queue name is given. The possible values are:

 *LIBL The library list is used to locate the job queue.

*CURLIB The current library is used to locate the job queue. If no library is specified as the current library

for the job, QGPL is used.

Name The library name.

Blanks No library name is given when the job queue name is *SAME.

Target job queue name. The name of the job queue to which the job is to move. The possible values are:

 *SAME The job will move to the top of the job queue on which it currently resides.

Name The name of the job queue to which the job is to move to the top of.

Target job user name. The user name of the target job. It can optionally be blank when a target job name

is specified. This field must be blank when the target job name is specified as *INT.

How to Specify Job Identifying Fields

This table illustrates the valid combinations of values for format MJOB0100.

 Qualified Job Name Internal Job

Identifier Job Queue Job Name User Name Job Number

Name Name Number Blanks Name

Name Name Blanks Blanks Name

Name Blanks Number Blanks Name

Name Blanks Blanks Blanks Name

*INT Blanks Blanks Internal job identifier Name

This table illustrates the valid combinations of values for format MJOB0200.

The qualified job name can use the same combinations of the qualified job name specified in format

MJOB0100.

 Source

Qualified Job Name

Source

Internal Job Identifier

Target

Qualified Job Name

Target

Internal Job Identifier

Qualified job name Blanks Qualified job name Blanks

Qualified job name Blanks *INT Internal Job identifier

*INT Internal Job identifier Qualified job name Blanks

*INT Internal Job identifier *INT Internal job identifier

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF33C1 E Job &3/&2/&1 not on job queue. Job not moved.

CPF3CF1 E Error code parameter not valid.

Work Management APIs 111

Message ID Error Message Text

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C42 E User name or job number is not blank.

CPF3C43 E Internal job identifier is not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C58 E Job name specified is not valid.

CPF3C90 E Literal value cannot be changed.

CPF33BA E Job queue &1 in library &2 is not valid.

CPF33B3 E Not authorized to job queue &1.

CPF33B4 E Not authorized to job &3/&2/&1. Job not moved.

CPF33B5 E Job &3/&2/&1 is not available for moving.

CPF33B6 E Job &3/&2/&1 held by HLDJOB command. Job not moved.

CPF33B7 E Job &3/&2/&1 specified more than once. Job not moved.

CPF33B8 E Priority required to move job &3/&2/&1 exceeds limit of user &9.

CPF33B9 E Priority required to move job &3/&2/&1 exceeds limit of user &9.

CPF3330 E Necessary resource not available.

CPF3343 E Duplicate job names found.

CPF8121 E &8 damage on job queue &4 in library &9.

CPF8122 E &8 damage on library &4.

CPF9801 E Object &2 in library &3 not found.

CPF9810 E Library &1 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

 Top | “Work Management APIs,” on page 1 | APIs by category

112 iSeries: Work Management APIs

#TOP
aplist.htm

Open List of Activation Attributes (QWVOLACT) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 List information

Output Char(80)

4 Number of records to return

Input Binary(4)

5 Format name

Input Char(8)

6 Activation group number

Input Binary(4)

7 Qualified job name

Input Char(26)

8 Internal job identifier

Input Char(16)

9 Error code

I/O Char(*)

 Optional Parameter Group:

10 64 bit activation group number

Input Binary(8)

 Default Public Authority: *USE

 Threadsafe: No

The Open List of Activation Attributes (QWVOLACT) API generates a list of all the activation attributes

that are associated with an activation group in a given job. The QWVOLACT API places the list into a

receiver variable. You can access additional records by using the Get List Entries (QGYGTLE) API. On

successful completion of the QWVOLACT API, a handle is returned in the list information parameter.

You may use this handle on subsequent calls to the following APIs:

 Get List Entries (QGYGTLE)

 Find Entry Number in List (QGYFNDE)

 Close List (QGYCLST)

Work Management APIs 113

The records returned by QWVOLACT include an information status field that describes the completeness

and validity of the information. Be sure to check the information status field before using any other

information returned.

Authorities and Locks

Job Authority

*JOBCTL if the job for which activation group attributes are being retrieved has a user profile

different from that of the job that calls the QWVOLACT API.

 For additional information on these authorities, see the iSeries Security Reference

book.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is used to return the activation attributes that you requested.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable.

List information

OUTPUT; CHAR(80)

 Information about the list of activation attributes that were opened. For a description of the

layout of this parameter, see Format of Open List Information.

Number of records to return

INPUT; BINARY(4)

 The number of records in the list to put into the receiver variable.

Format name

INPUT; CHAR(8)

 The format of the information to be returned in the receiver variable. You must use the following

format name:

 RACT0100 This format is described in “RACT0100 Format” on page 115.

Activation group number

INPUT; BINARY(4)

The number of the activation group that will be used to locate the activations whose attributes

are to be returned. You can use these special values for the activation group number:

 -1 The activation attributes for all activation groups are returned.

-2 Retrieve the activation group number from the optional ’64 bit activation group number’

parameter.

Qualified job name

INPUT; CHAR(26)

 The job name, the job user profile, and the job number of the job for which you want to return

activation attributes.

 CHAR 1-10 The job name

CHAR 11-20 The user profile

114 iSeries: Work Management APIs

oli.htm

CHAR 21-26 The job number

You can use these special values for the qualified job name:

 * The job in which this program is running. The rest of the qualified job name parameter must be

blank.

*INT The internal job identifier locates the job. The rest of the qualified job name parameter must be

blank.

Internal job identifier

INPUT; CHAR(16)

 The internal name for the job. The List Job (QUSLJOB) API creates this identifier. If you do not

specify *INT for the qualified job name parameter, this parameter must contain blanks.

If your application already has this information available from the QUSLJOB API, the

QWVOLACT API can locate the job more quickly with this information than with a job name.

However, if you call QUSLJOB solely to obtain this parameter for use by QWVOLACT, you

would get poorer performance than by using a job name in calling QWVOLACT.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group

64 bit activation group number

INPUT; BINARY(8)

 The number of the activation group that will be used to locate the activations whose attributes

are to be returned. This parameter will only be honored if -2 is specified for the required

activation group parameter. Unlike the activation group parameter, this parameter has no special

values.

RACT0100 Format

The following table shows the information returned in each record in the receiver variable for the

RACT0100 format. For a detailed description of each field, see “Field Descriptions” on page 116.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Activation group name

10 A CHAR(6) Reserved

16 10 BINARY(4) Activation group number

20 14 BINARY(4) Reserved

24 18 BINARY(4) Activation number

28 1C BINARY(4) Static storage size

32 20 CHAR(10) Program name

42 2A CHAR(10) Program library

52 34 CHAR(1) Program type

53 35 CHAR(11) Reserved

64 40 BINARY(8) Activation group number long

Work Management APIs 115

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

72 48 BINARY(8) Activation number long

Field Descriptions

Activation number. The activation number of the activation listed. This is the last 32 bits of a 64 bit

internal number that uniquely identifies the activation within the job. The full 64 bit value can be

retrieved using the ″Activation number long″ field.

Activation number long. The 64 bit activation number of the activation listed. This is an internal number

that uniquely identifies the activation within the job.

Activation group name. The name of the activation group that contains the attributes listed. Possible

values follow:

 *DFTACTGRP The activation group is one of the default activation groups.

*UNNAMED The activation group does not have a name.

Activation group number. The activation group number of the activation group listed. This is the last

32 bits of a 64 bit internal number that uniquely identifies the activation group within the job. The full 64

bit value can be retrieved using the ″Activation group number long″ field.

Activation group number long. The 64 bit activation group number of the activation group listed. This is

an internal number that uniquely identifies the activation group within the job.

Program library. The name of the library that contains the program that this activation is for. Possible

values follow:

 *N The program no longer exists in the system.

Program name. The name of the program that this activation is for. Possible values follow:

 *N The program no longer exists in the system.

Program type. The type of call that this activation is for. Possible values follow:

 0 The type was a program or *PGM.

1 The type was a service program or *SRVPGM.

Reserved. An ignored field.

Static storage size. The total amount of static storage allocated to the activation in bytes.

Error Messages

 Message ID Error Message Text

CPF0941 E Job &3/&2/&1 no longer in system.

CPF1071 E No authority to job &3/&2/&1.

CPF136A E Job &3/&2/&1 not active.

CPF136B E Job &3/&2/&1 in use.

116 iSeries: Work Management APIs

Message ID Error Message Text

CPF136C E Value &2 for activation group number not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF2401 E Not authorized to library &1.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0027 E &1 is not valid for number of records to return.

API introduced: V4R2

 Top | “Work Management APIs,” on page 1 | APIs by category

Open List of Activation Group Attributes (QWVOLAGP) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 List information

Output Char(80)

4 Number of records to return

Input Binary(4)

5 Format name

Input Char(8)

6 Qualified job name

Input Char(26)

7 Internal job identifier

Input Char(16)

8 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

Work Management APIs 117

#TOP
aplist.htm

The Open List of Activation Group Attributes (QWVOLAGP) API generates a list of all the activation

groups that are associated with a given job and their attributes. The QWVOLAGP API places the list into

a receiver variable. You can access additional records by using the Get List Entries (QGYGTLE) API. On

successful completion of the QWVOLAGP API, a handle is returned in the list information parameter.

You may use this handle on subsequent calls to the following APIs:

 Get List Entries (QGYGTLE)

 Find Entry Number in List (QGYFNDE)

 Close List (QGYCLST)

 The records returned by the QWVOLAGP API include an information status field that describes the

completeness and validity of the information. Be sure to check the information status field before using

any other information returned.

Authorities and Locks

Job Authority

v *JOBCTL if the job for which activation group attributes are being retrieved has a user profile

different from that of the job that calls the QWVOLAGP API.

For additional information on these authorities, see the iSeries Security Reference

book.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is used to return the activation group attributes that was requested.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable.

List information

OUTPUT; CHAR(80)

 Information about the list of activation group attributes that were opened. For a description of

the layout of this parameter, see Format of Open List Information.

Number of records to return

INPUT; BINARY(4)

 The number of records in the list to put into the receiver variable.

Format name

INPUT; CHAR(8)

 The format of the information to be returned in the receiver variable. You must use the following

format name:

 RAGA0100 This format is described in “RAGA0100 Format” on page 119.

Qualified job name

INPUT; CHAR(26)

 The job name, the job user profile, and the job number of the job for which you want to return

activation group attributes.

 CHAR 1-10 The job name

118 iSeries: Work Management APIs

oli.htm

CHAR 11-20 The user profile

CHAR 21-26 The job number

You can use these special values for the qualified job name:

 * The job in which this program is running. The rest of the qualified job name parameter must be

blank.

*INT The internal job identifier locates the job. The rest of the qualified job name parameter must be

blank.

Internal job identifier

INPUT; CHAR(16)

 The internal name for the job. The List Job (QUSLJOB) API creates this identifier. If you do not

specify *INT for the qualified job name parameter, this parameter must contain blanks.

If your application already has this information available from the List Job (QUSLJOB) API, the

QWVOLAGP API can locate the job more quickly with this information than with a job name.

However, if you call QUSLJOB solely to obtain this parameter for use by QWVOLAGP, you

would get poorer performance than by using a job name in calling QWVOLAGP.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

RAGA0100 Format

The following table shows the information returned in the list data section of the receiver variable for the

RAGA0100 format. For a detailed description of each field, see “Field Descriptions” on page 120.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Activation group name

10 A CHAR(6) Reserved

16 10 BINARY(4) Activation group number

20 14 BINARY(4) Number of activations

24 18 BINARY(4) Number of heaps

28 1C BINARY(4) Static storage size

32 20 BINARY(4) Heap storage size

36 24 CHAR(10) Root program name

46 2E CHAR(10) Root program library

56 38 CHAR(1) Root program type

57 39 CHAR(1) Activation group state

58 3A CHAR(1) Shared activation group indication

59 3B CHAR(1) In-use indicator

60 3C CHAR(4) Reserved

64 40 BINARY(8) Activation group number long

72 48 CHAR(8) Reserved

Work Management APIs 119

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Field Descriptions

Activation group name. The name of the activation group that contains the attributes listed. Possible

values follow:

 *DFTACTGRP The activation group is one of the default activation groups.

*UNNAMED The activation group does not have a name.

Activation group number. The activation group number of the activation group listed. This is the last

32 bits of a 64 bit internal number that uniquely identifies the activation group within the job. The full 64

bit value can be retrieved using the ″Activation group number long″ field.

Activation group number long. The 64 bit activation group number of the activation group listed. This is

an internal number that uniquely identifies the activation group within the job.

Activation group state. The state of the activation group. Possible values follow:

 0 The activation group is in user state.

1 The activation group is in system state.

Heap storage size. The total amount of heap storage that is allocated to the activation group in bytes.

In-use indicator. Whether the activation group is eligible to be reclaimed. An activation group can be

reclaimed by the Reclaim Activation Group (RCLACTGRP) command. Possible values follow:

 0 The activation group is not in use and is eligible to be reclaimed.

1 The activation group is in use and cannot be reclaimed.

Note: It is not recommended to reclaim eligible activation groups if you are not familiar with that

activation group. Other activation groups may have references to the activation group that you are

reclaiming. For example, a program of one activation group could be bound to a service program that

belongs to another activation group. If you reclaim the service program’s activation group and then call

the program, you will get a destroyed object error when the service program is referred to.

Number of activations. The total number of program activations in this activation group.

Number of heaps. The total number of heaps that are allocated by this activation group.

Reserved. An ignored field.

Root program library. The name of the library that contains the program that caused this activation

group to be created. The possible value follows:

 *N The program no longer exists in the system.

Note: When the activation group is the default activation group, there is no root program. Blanks are

returned in this case.

Root program name. The name of the program that caused this activation group to be created. The

possible value follows:

 *N The program no longer exists in the system.

120 iSeries: Work Management APIs

Note: When the activation group is the default activation group, there is no root program. Blanks are

returned in this case.

Root program type. The type of program that caused this activation group to be created. Possible values

follow:

 N The program no longer exists in the system.

0 The type is a program or *PGM.

1 The type is a service program or *SRVPGM.

2 The type is a Java program.

Note: When the activation group is the default activation group, there is no root program. A blank is

returned in this case.

Shared activation group indication. Whether the activation group is shared or not. A shared activation

group is an activation group that belongs to more than one job at the same time. Possible values follow:

 0 The activation group is not shared with other jobs.

1 The activation group is shared with other jobs.

Static storage size. The total amount of static storage allocated to the activation group in bytes.

Error Messages

 Message ID Error Message Text

CPF0941 E Job &3/&2/&1 no longer in system.

CPF1071 E No authority to job &3/&2/&1.

CPF136A E Job &3/&2/&1 not active.

CPF136B E Job &3/&2/&1 in use.

CPF136C E Value &2 for activation group number not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF2401 E Not authorized to library &1.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0027 E &1 is not valid for number of records to return.

API introduced: V4R2

 Top | “Work Management APIs,” on page 1 | APIs by category

Work Management APIs 121

#TOP
aplist.htm

Open List of Job Queues (QSPOLJBQ) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format of receiver variable

Input Char(8)

4 List information

Output Char(80)

5 Filter information

Input Char(*)

6 Sort information

Input Char(*)

7 Number of records to return

Input Binary(4)

8 Error Code

I/O Char(*)
 Default Public Authority: *USE Threadsafe: Yes

The Open List of Job Queues (QSPOLJBQ) API generates a list of job queues on the system. The list can

include all job queues on the system, all job queues for a specified library list, the allocated job queues

for a specified active subsystem, or the defined job queues for a specified active subsystem (this would

include both the allocated job queues and the job queues the subsystem could not allocate), or all the

allocated job queues for all the active subsystems. The filtered list can then be sorted depending on the

value of the sort parameter. When requesting job queue information for all job queues on the system or

for a specific job queue within a library, if the signed-on user is not authorized to the library of the job

queue, information for that job queue in not returned by this API. When requesting the job queue

information for job queues defined to an active subsystem, all job queue information will be returned

with out regard to the users authority to the subsystem. Upon successful completion of this API, a handle

is returned in the list information parameter. You may use this handle on subsequent calls to the

following APIs:

 Get List Entries (QGYGTLE)

 Find List Entry (QGYFNDE)

 Close List (QGYCLST)

Performance Impacts

Sorting on one or more values of job queue name, job queue library name, job queue status, subsystem

name, subsystem library name, number of jobs on job queue, sequence number, maximum active, current

active or description takes more processing power and time.

Authorities and Locks

Job Queue Library Authority

*EXECUTE

122 iSeries: Work Management APIs

Job Queue Lock

This API gets an *EXCLRD lock on the job queue.

Subsystem Description Lock

This API gets an *EXCLRD lock on the subsystem description.

 This API does not check the caller’s authority to the subsystem description or subsystem description

library when retrieving the subsystem description information.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable used to return the job queue information.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable.

Format of receiver variable

INPUT; CHAR(8)

 The format of the job queue information being returned. You can specify the following:

 OJBQ0100 Contains the basic information about the job queue. For

more information about the OJBQ0100 format, see

“Format of Receiver Variable” on page 126.

List information

OUTPUT; CHAR(80)

 Information about the list created by this program. For a description of the layout of this

parameter, see Format of open list information.

Filter information

INPUT; CHAR(*)

 The information in this parameter is used for filtering the list of job queue information. For more

information about the filter information, see “Filter Information” on page 124.

Sort information

INPUT; CHAR(*)

 Information on what fields within the record of information to sort. See “Format of Sort

Information” on page 124 for a description of the layout of this parameter. Note that when

sorting is requested, the entire list has to be built and sorted before any records can be returned.

Number of records to return

INPUT; BINARY(4)

 The number of records in the list to put into the receiver variable.

If -1 is specified for this parameter, the entire list is built synchronously.

If 0 is specified for this parameter, the entire list is built asynchronously in a server job.

If a positive number of records to return is specified, at least that many records are built

synchronously and the remainder are built asynchronously in a server job.

Error code

I/O; CHAR(*)

Work Management APIs 123

oli.htm

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Filter Information

The following table shows the format of the filter information parameter. For detailed descriptions of the

fields in the table, see Field Descriptions.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of filter information

4 4 CHAR(10) Job queue name

14 E CHAR(10) Job queue library name

24 18 CHAR(10) Active subsystem name

34 22 CHAR(*) Reserved

Format of Sort Information

For more details about the fields in the following table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of keys to sort on

Offsets vary. These

fields repeat for each

sort key field.

BINARY(4) Sort key field starting position

BINARY(4) Sort key field length

BINARY(2) Sort key field data type

CHAR(1) Sort order

CHAR(1) Reserved

Note: If the last three fields (sort key field data type, sort order, and the reserved field) are not used, then

they must be set to hexadecimal zeros. This causes all the data to be treated as character data, and it is

sorted in ascending order.

Field Descriptions

Active subsystem name. The active subsystem name whose job queue information is to be returned. A

simple active subsystem name or one of the following special values may be specified.

 simple name A simple name of an active subsystem. The job queue name field must be set to special value

*ALLOCATED or *DEFINED.

*ALL All allocated job queues for all active subsystems on the system are returned. The Job queue name

field must be set to the special value *ALLOCATED.

blanks The active subsystem name field is ignored. Only the job queue name field is used.

If the active subsystem field is used, the job queue name field must be set to the correct special value and

the job queue library name field must be set to blanks.

Job queue name. The job queue about which to retrieve information. A simple job queue name, a generic

job queue name, or a special value may be specified.

124 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

The following values require the active subsystem name field to be blank.

 simple name A simple name of a job queue.

generic name A generic name for job queues.

*ALL All job queues are returned.

When the active subsystem name field is set to a simple subsystem name, then one of the following

special values must be used:

 *ALLOCATED Only the job queues that have been allocated by the active subsystem are returned.

*DEFINED The job queues that are defined to the active subsystem. This includes the job queues that have

been allocated by the subsystem.

When the active subsystem name field is set to *ALL, the following special value must be used:

 *ALLOCATED Only the job queues that have been allocated by the active subsystem name are returned.

Job queue library name. The library in which the job queue is located. A specific library name or a

special value may be specified.

The following values apply only when the job queue name field is set to a simple job queue name, a

generic job queue name, or the special value *ALL.

 simple name A simple name of a library.

*ALL All libraries on the system are searched.

*ALLUSR All user defined libraries to which the user is authorized are searched. For information on the

libraries included, see *ALLUSR in Generic library names.

*CURLIB The job’s current library is searched.

*LIBL The library list for the job is searched.

*USRLIBL The libraries in the user portion of the job’s library list are searched.

When the job queue name field is set to *ALLOCATED or *DEFINED the the job queue library field must

be blanks.

Length of filter information. The length of the filter information. An error message is returned if the

length of filter information is not set correctly.

Number of keys to sort on. The number of fields within the record structure on which to sort. If 0 is

specified, the list is not sorted.

Reserved. Must be set to hexadecimal zeros.

Sort key field data type. Data type of field to sort. See the Sort (QLGSORT) API for information on the

list of data types available.

Sort key field length. The length of the field on which to sort.

Sort key field starting position. Within the record of information, the starting position of the field on

which to sort.

Sort order. Whether the list should be sorted in ascending or descending order according to the key. See

the Sort (QLGSORT) API for information on the sort order special values.

Work Management APIs 125

genericlibname.htm#ALLUSR
QLGSORT.htm
QLGSORT.htm

Format of Receiver Variable

The following tables describe the order and format of the data returned in the receiver variable.

OJBQ0100 Format

For more details about the fields in the following table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job queue name

10 A CHAR(10) Job queue library name

20 14 CHAR(1) Job queue status

21 15 CHAR(10) Subsystem name

31 15 CHAR(10) Subsystem library name

41 29 CHAR(3) Reserved

44 2C BINARY(4) Number of jobs on job queue

48 30 BINARY(4) Sequence number

52 34 BINARY(4) Maximum active

56 38 BINARY(4) Current active

60 3C CHAR(50) Description

Field Descriptions

Current active. The number of jobs currently running in the active subsystem from this job queue. This

field is -1 if the job queue is not allocated, is damaged, does not exist, or the job queue has not been

allocated by the subsystem that was specified in the active subsystem field in the filter parameter.

Description. The text description for this job queue. This field will be blank if the job queue is defined to

an active subsystem, but has not been created or the job queue is damaged.

Job queue library name. The name of the library in which the job queue is located.

Job queue name. The name of the job queue.

Job queue status. The current status of the job queue. The possible values are:

 0 The job queue is currently held. No jobs can become active from this job queue.

1 The job queue is released. Jobs can become active from this queue.

2 The job queue is damaged.

3 The job queue is defined to the active subsystem, but has not been created. No jobs can become

active from this job queue until it is created.

Maximum active. The maximum number of jobs that can be active in the subsystem from this job queue

at one time. A -1 in this field indicates that the value is *NOMAX. This field is -2 if the job queue has not

been defined to an active subsystem or the job queue is damaged.

Number of jobs on job queue. The total number of jobs currently waiting to run on this job queue. This

field ise -1 if the job queue is defined to the active subsystem, but has not been created or the job queue

is damaged.

Reserved. A reserved field.

126 iSeries: Work Management APIs

Sequence number. The job queue entry sequence number. The subsystem uses this number to determine

the order in which the job queues are processed. Jobs from the job queue with the lowest sequence

number in the job queue are selected first. This field is -1 if the job queue has not been defined to an

active subsystem or the job queue is damaged.

Subsystem name. The name of the subsystem to which this job queue is allocated. If the job queue has

been allocated by a different subsystem than was specified in the filter parameter, the subsystem name

will identify the subsystem to which the job queue is allocated. This field is blank if the job queue is not

allocated, is damaged, or does not exist.

Subsystem library name. The library in which the subsystem description resides. This field will be blank

if the job queue is not allocated, damaged or does not exist.

Error Messages

 Message ID Error Message Text

CPF1054 E No subsystem &1 active.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9804 E Object &2 in library &3 damaged.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9871 E Error occurred while processing.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0024 E &1 is not valid for number of keys to sort on.

GUI0025 E &1 is not valid for sort key field starting position.

GUI0026 E &1 is not valid for sort key field length.

GUI0027 E &1 is not valid for number of records to return.

GUI0119 E Reserved field in sort information not valid.

GUI0120 E Order field in sort information not valid.

GUI0150 E Subsystem key must be specified.

GUI0152 E &1 is not valid for length of filter information.

API introduced: V5R1

 Top | “Work Management APIs,” on page 1 | APIs by category

Work Management APIs 127

#TOP
aplist.htm

Open List of Jobs (QGYOLJOB) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format name

Input Char(8)

4 Receiver variable definition information

Output Char(*)

5 Length of receiver variable definition information

Input Binary(4)

6 List Information

Output Char(80)

7 Number of records to return

Input Binary(4)

8 Sort information

Input Char(*)

9 Job selection information

Input Char(*)

10 Size of job selection information

Input Binary(4)

11 Number of fields to return

Input Binary(4)

12 Key of fields to be returned

Input Array(*) of Binary(4)

13 Error Code

I/O Char(*)
 Optional Parameter Group 1:

14 Job selection format name

Input Char(8)
 Optional Parameter Group 2:

15 Reset status statistics

Input Char(1)

16 General return data

Output Char(*)

17 Length of general return data

Input Binary(4)
 Default Public Authority: *USE

128 iSeries: Work Management APIs

The Open List of Jobs (QGYOLJOB) API generates a list of jobs on the system. The list is based on

specified selection criteria. The filtered list may then be sorted depending on the value of the sort

parameter. Upon successful completion of this API, a handle is returned in the list information parameter.

You may use this handle on subsequent calls to the following APIs:

 Get List Entries (QGYGTLE)

 Find List Entry (QGYFNDE)

 Close List (QGYCLST)

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is used to return the job information.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. This must be large enough to hold at least one record of

information.

Format name

INPUT; CHAR(8)

 The format of the job list to be returned. If format OLJB0200 is specified, the fields that are

selected by the caller are returned for each job in the list. This format is slower than the OLJB0100

format. The performance varies depending on the number of fields selected.

The possible format names follow:

 OLJB0100 Basic job list.

OLJB0200 Basic job list with keyed return fields.

OLJB0300 Active job list with keyed return fields.

See “Format of Receiver Variable” on page 131 for more information.

Receiver variable definition information

OUTPUT; CHAR(*)

 The variable that is used to return the description of how the keyed portion of the list is returned

in the receiver variable. This variable is not filled in if the OLJB0100 format is used. See “Format

of Receiver Variable Definition Information” on page 133 for a description of the layout of this

parameter.

Length of receiver variable definition information

INPUT; BINARY(4)

 The length of the receiver variable definition information. This must be large enough to hold the

information for all key fields that are specified in the key of fields to be returned parameter.

List Information

OUTPUT; CHAR(80)

 Information about the list that is created by this program. For a description of the layout of this

parameter, see Format of Open List Information.

Work Management APIs 129

oli.htm

Number of records to return

INPUT; BINARY(4)

 The number of records in the list to put into the receiver variable after filtering and sorting have

been done.

Sort information

INPUT; CHAR(*)

 Information on what fields within the record of information to sort. See “Format of Sort

Information” on page 134 for a description of the layout of this parameter.

Job selection information

INPUT; CHAR(*)

 Information that is used for selecting which jobs to include in the list. See “Format of Job

Selection Information” on page 135 for a description on the layout of this parameter.

Size of job selection information

INPUT; BINARY(4)

 The size, in bytes, of the job selection information parameter. The minimum value required for

this parameter is 60 (or 108 with selection format OLJS0200).

Number of fields to return

INPUT; BINARY(4)

 The number of fields to return. If this parameter is 0, the key of fields to be returned parameter is

not used, the receiver variable definition information parameter is not modified, and the length of

receiver variable definition information must be 0. This field must be set to 0 when the format is

set to OLJB0100.

Key of fields to be returned

INPUT; ARRAY(*) of BINARY(4)

 The list of the fields to be returned. For a list of the valid key fields, see “Valid Keys” on page 72.

For a list of valid key fields allowed on the OLJB0300 format, see “List of keys supported for

format OLJB0300” on page 141.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group 1

Job selection format name

INPUT; CHAR(8)

 The format of the job selection information input. If this parameter is not specified, the OLJS0100

format is used. The possible format names follow:

 OLJS0100 Basic selection information.

OLJS0200 Additional selection information.

See the “Format of Job Selection Information” on page 135 for more information.

Optional Parameter Group 2

Optional Parameter Group 2 applies only when the format is OLJB0300.

Reset status statistics

INPUT; CHAR(1)

130 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

The elapsed time and all the key fields that are based on the elapsed time are reset to zero. If a

format other than OLJB0300 is specified, this field needs to be zero. The default value for this

field is zero. The following special values may be specified:

 0 The elapsed time and the key fields based on the elapsed time are not reset.

1 The elapsed time and the key fields based on the elapsed time are reset back to zero.

General return data

OUTPUT; CHAR(*)

 General output information that applies to the OLJB0300 format. See “General Return Data” on

page 140 for a description of the data returned. This field is used only if the Length of general

return data is greater than 8.

Length of general return data

INPUT; BINARY(4)

 The length of the general output information. The general output information field must be a

minimum of 8 bytes or 0 when the format is not OLJB0300. The default value for this field is 0.

Format of Receiver Variable

The following tables describe the order and format of the data that is returned in the receiver variable.

OLJB0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name used

10 A CHAR(10) User name used

20 14 CHAR(6) Job number used

26 1A CHAR(16) Internal job identifier

42 2A CHAR(10) Status

52 34 CHAR(1) Job type

53 35 CHAR(1) Job subtype

54 36 CHAR(2) Reserved

OLJB0200 Format

 Offset

Type Field Dec Hex

0 0 CHAR(56) Everything in OLJB0100 format

56 38 CHAR(1) Job information status

57 39 CHAR(3) Reserved

This information

repeats for each key

selected.

CHAR(*) or

BINARY(4)

Data

Work Management APIs 131

OLJB0300 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name used

10 A CHAR(10) User name used

20 14 CHAR(6) Job number used

26 1A CHAR(4) Active job status

30 1E CHAR(1) Job type

31 1F CHAR(1) Job subtype

32 20 BINARY(4) Total length of data returned

36 24 CHAR(4) Reserved

This information

repeats for each key

selected.

CHAR(*) or

BINARY(4)

Data

Field Descriptions

Active job status. The active status of the initial thread of the job. For the list of possible values, see the

active job status field under “Field Descriptions” on page 137.

Data. The data returned for the key field.

Internal job identifier. A value that is sent to other APIs to speed the process of locating the job on the

system. Only APIs that are described in this topic use this identifier. The identifier is not valid following

an initial program load (IPL). If you attempt to use it after an IPL, an exception occurs.

Job information status. Whether the information was available for the job. The possible values follow:

 blank The information was available.

L The information was not available because the job was not accessible.

Job name used. The name of the job as identified to the system. For an interactive job, the system assigns

the job the name of the workstation where the job started. For a batch job, you specify the name in the

command when you submit the job.

Job number used. The system-assigned job number.

Job subtype. Additional information about the job type (if any exists). Refer to “Comparing Job Type and

Subtype with the Work with Active Job Command” on page 202 in the Retrieve Job Information

(QUSRJOBI) API for information about how the job type field and the job subtype field equate to the

type field in the Work with Active Job (WRKACTJOB) command. The possible values follow:

 blank The job has no special subtype.

D The job is a batch immediate job.

E The job started with a procedure start request.

F The job is an iSeries Advanced 36 machine server job.

J The job is a prestart job.

P The job is a print driver job.

T The job is a System/36 multiple requester terminal (MRT) job.

U The job is an alternate spool user.

132 iSeries: Work Management APIs

Job type. The type of job. Refer to Comparing Job Type and Subtype with the Work with Active Job

Command in the Retrieve Job Information (QUSRJOBI) API for information about how the job type field

and the job subtype field equate to the type field in the Work with Active Job (WRKACTJOB) command.

The possible values for this field follow:

 A The job is an autostart job.

B The job is a batch job.

I The job is an interactive job.

M The job is a subsystem monitor job.

R The job is a spooled reader job.

S The job is a system job.

W The job is a spooled writer job.

X The job is the start-control program-function (SCPF) system job.

blank The job has no type. A possible reason is the job was not found.

Reserved. An ignored field.

Status. The status of the job. The valid values follow:

 *ACTIVE The job has started, and it can use system resources (processing unit, main storage, and so on).

This value does not guarantee that the job is currently running, however. For example, an active

job may be in one of the following states where it is not in a position to use system resources:

v The Hold Job (HLDJOB) command holds the job; the Release Job (RLSJOB) command allows the

job to run again.

v The Transfer Group Job (TFRGRPJOB) or Transfer Secondary Job (TFRSECJOB) command

suspends the job. When control returns to the job, the job can run again.

v The job is disconnected using the Disconnect Job (DSCJOB) command. When the interactive

user signs back on, thereby connecting back into the job, the job can run again.

v The job is waiting for any reason. For example, when a job receives a reply to an inquiry

message, the job can start running again.

*JOBQ The job is currently on a job queue. The job may have been previously active and was placed back

on the job queue because of the Transfer Job (TFRJOB) or Transfer Batch Job (TFRBCHJOB)

command, or the job was never active because it was just submitted.

*OUTQ The job has completed running and has spooled output that has not yet printed.

blank The job has no status. A possible reason is the job was not found.

Total length of data returned. The length of the data portion of the returned data. This includes the sum

of all the keyed data for the job.

User name used. The user profile under which the job is run. The user name is the same as the user

profile name and can come from several different sources depending on the type of job.

Format of Receiver Variable Definition Information

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of fields returned

Work Management APIs 133

#HDRWRKJOB
#HDRWRKJOB

Offset

Type Field Dec Hex

These fields repeat, in

the order listed, for

each key selected.

BINARY(4) Length of field information returned

BINARY(4) Key field

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of data

BINARY(4) Displacement to data

Field Descriptions

Displacement to data. The displacement from the beginning of the job record to the value for this key.

Key field. The field returned. See “Valid Keys” on page 72 in the List Job (QUSLJOB) API for the list of

valid keys supported for the OLJB0200 format. See “List of keys supported for format OLJB0300” on page

141 for the list of valid keys supported for the OLJB0300 format.

Length of data. The length of the data returned for the field.

Length of field information returned. The total length of definition information returned for this field.

This value is used to increment to the next field in the list.

Number of fields returned. The number of fields in each record that is returned to the application.

Reserved. An ignored field.

Type of data. The type of data that is returned.

 C The data is returned in character format.

B The data is returned in binary format.

Format of Sort Information

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of keys to sort on

Offsets vary. These

fields repeat for each

sort key field.

BINARY(4) Sort key field starting position

BINARY(4) Sort key field length

BINARY(2) Sort key field data type

CHAR(1) Sort order

CHAR(1) Reserved

Field Descriptions

Number of keys to sort on. The number of fields within the record structure to sort on. If 0 is specified,

the list is not sorted.

134 iSeries: Work Management APIs

The following special value is supported for format OLJB0200 only. Also, the job selection information

must be set to return only the jobs that are waiting to run from a single job queue.

 -1 The list of jobs that are waiting to run on the specified job queue are returned in the order they

will be selected off the job queue to become active. When this special value is used, the job queue

priority (1005), data and time job was put on this job queue (0404), and the date and time job is

scheduled to run (0403) keys must be included in the list of key fields to return.

The following special value is supported for format OLJB0300 only.

 -2 The list of active jobs is returned grouped by subsystem, with each subsystem monitor job

followed by the jobs that are running in that subsystem. The jobs are sorted alphabetically by

subsystem name, and then by job name within the subsystem. This sort order is similar to the way

the jobs are displayed on the Work with Active Jobs (WRKACTJOB SEQ(*SBS)) display. When this

special value is used, the subsystem description name (1906) key must be included in the list of

key fields to return.

Reserved. Reserved field. This field must be set to hexadecimal or binary zero.

Sort key field data type. The data type of the field to sort on. Refer to the key data type field in the Sort

(QLGSORT) API for information on the list of data types available.

Sort key field length. The length of the field to sort on.

Sort key field starting position. Within the record of information, the starting position of the field to sort

on. A value of 1 represents the first position within the record.

Sort order. Whether the list should be sorted in ascending or descending order according to the key.

 1 Sort in ascending order.

2 Sort in descending order.

Format of Job Selection Information

The organization of the job selection information parameter is shown below. A description of the fields in

the parameter follows the table.

OLJS0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name

10 0A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(1) Job type

27 1B CHAR(1) Reserved (ignored)

28 1C BINARY(4) Offset to primary job status array

32 20 BINARY(4) Number of primary job status entries

36 24 BINARY(4) Offset to active job status array

40 28 BINARY(4) Number of active job status entries

Work Management APIs 135

QLGSORT.htm

Offset

Type Field Dec Hex

44 2C BINARY(4) Offset to jobs on job queue status array

48 30 BINARY(4) Number of jobs on job queue status entries

52 34 BINARY(4) Offset to job queue names array

56 38 BINARY(4) Number of job queue names entries

The offsets to these

fields are specified in

the previous offset

variables.

ARRAY(*) of

CHAR(10)

Primary job status

ARRAY(*) of

CHAR(4)

Active job status

ARRAY(*) of

CHAR(10)

Jobs on job queue status

ARRAY(*) of

CHAR(20)

Job queue names

OLJS0200 Format

 Offset

Type Field Dec Hex

0 0 CHAR(60) Everything in fixed portion of OLJS0100 format

60 3C BINARY(4) Offset to current user profile array

64 40 BINARY(4) Number of current user profile entries

68 44 BINARY(4) Offset to server type array

72 48 BINARY(4) Number of server type entries

76 4C BINARY(4) Offset to the active subsystem array

80 50 BINARY(4) Number of active subsystem entries

84 54 BINARY(4) Offset to the memory pool array

88 58 BINARY(4) Number of memory pool entries

92 5C BINARY(4) Offset to the job type - enhanced array

96 60 BINARY(4) Number of job type - enhanced entries

100 64 BINARY(4) Offset to the qualified job name array

104 68 BINARY(4) Number of qualified job name entries

136 iSeries: Work Management APIs

Offset

Type Field Dec Hex

The offsets to these

fields are specified in

the previous offset

variables.

ARRAY(*) Arrays from OLJS0100 format

ARRAY(*) of

CHAR(10)

Current user profile

ARRAY(*) of

CHAR(30)

Server type

ARRAY(*) of

CHAR(10)

Active subsystem

ARRAY(*) of

BINARY(4)

Memory pool

ARRAY(*) of

BINARY(4)

Job type - enhanced

ARRAY(*) of

CHAR(26)

Qualified job name

Field Descriptions

Active job status. The active status of the initial threads of the jobs to be included in the list. The possible

values are the same as those described for the Retrieve Job Information (QUSRJOBI) API in the “Usage

Notes” on page 203 for that API. (For compatibility with previous releases, the CLDW status can be

specified in the active job status array. The CLDW status is not returned, however, for any jobs.)

Active subsystem. The active subsystem under which the job is currently running.

Current user profile. The user profile under which the initial thread of the job is currently running. This

name may differ from the user portion of the job name. The current user profile is blank for jobs that are

not active.

Job name. A specific job name, a generic name, or one of the following special values:

 * Only the job in which this program is running. The user name and job name fields must be blank.

*CURRENT All jobs with the current job’s name.

*ALL All jobs. The user name and job type fields must be specified.

blank This field must be blank when using the Qualified job name array.

Job number. A specific job number or one of the following special values:

 *ALL Jobs with the specified job name and user name, regardless of the job number. The job name and

user name fields must be specified.

blank This field must be blank when using the Qualified job name array.

Job queue names. The job queue names. Jobs on these job queues are included in the list. The first 10

characters contain the job queue name, and the last 10 characters contain the library name.

Jobs on job queue status. The status of the jobs on the job queue to be included in the list. The possible

values follow:

 SCD This job will run as scheduled.

HLD This job is being held on the job queue.

RLS This job is ready to be selected.

Work Management APIs 137

Job type. The type of job to be listed. The possible values follow:

 * This value lists all job types.

A The job is an autostart job.

B The job is a batch job.

I The job is an interactive job.

M The job is a subsystem monitor job.

R The job is a spooled reader job.

S The job is a system job.

W The job is a spooled writer job.

X The job is the SCPF system job.

Job type - enhanced. The type of job to be listed. This field combines the Job type and Job Subtype fields.

The possible values are:

 0110 Autostart job.

0200 All the batch job types.

0210 Batch job.

0220 Batch immediate job.

0230 Batch - System/36 multiple requester terminal (MRT) job.

0240 Batch - Alternate spool user

0310 Communications job - procedure start request job.

0900 All interactive type jobs.

0910 Interactive job.

0920 Interactive job - Part of group.

0930 Interactive job - Part of system request pair.

0940 Interactive job - Part of system request pair and part of a group.

1600 All prestart jobs.

1610 Prestart job.

1620 Prestart batch job.

1630 Prestart communications job.

1810 Reader job.

1910 Subsystem job.

1920 System job.

2310 Writer job.

Memory pool. The identifier of the system memory pool in which the job started running. The identifier

is a number in the range of 1 - 64.

Number of active job status entries. The number of entries that are specified for the active job status

array. If this value is 0, no filtering is done on active job status. The offset to active job status array and

the active job status array fields are not used. If the value is not 0, the primary job status array must

include an array entry of *ACTIVE or the number of primary job status array entries should be specified

as 0 to indicate that no filtering is done on the primary job status.

Number of active subsystem entries. The number of entries that are specified for the active subsystem

array. If this value is 0, no filtering is done on active subsystems, and the offset to the active subsystem

array and the active subsystem array fields are not used. This value must be 0 when format OLJB0100 or

OLJB0200 is specified.

Number of current user profile entries. The number of entries that are specified for the current user

profile array. If this value is 0, no filtering is done on the current user profile, and the offset to current

user profile array and the current user profile array fields are not used.

138 iSeries: Work Management APIs

Number of job queue names entries. The number of entries that is specified for the job queue names

array. If this value is 0, no filtering is done on the job queue names. The offset to job queue names array

and the job queue names array fields are not used. If this value is not 0, the primary job status array

must include an array entry of *JOBQ or the number of primary job status array entries should be

specified as 0 to indicate that no filtering is done on the primary job status. This value must be 0 when

format OLJB0300 is specified.

Number of jobs on job queue status entries. The number of entries that are specified for the jobs on job

queue status array. If this value is 0, no filtering is done on the jobs on job queue status array. The offset

to jobs on job queue status array and the jobs on job queue status array fields are not used. If this value

is not 0, the primary job status array must include an array entry of *JOBQ or the number of primary job

status array entries should be specified as 0 to indicate that no filtering is done on the primary job status.

This value must be 0 when format OLJB0300 is specified.

Number of job type - enhanced entries. The number of entries that are specified for the job type -

enhanced array. If this value is 0, no filtering is done on the job type - enhanced array. The offset to job

type - enhanced array and the job type - enhanced array fields are not used.

Number of memory pool entries. The number of entries that are specified for the memory pool name

array. If this value is 0, no filtering is done on memory pool, and the offset to the memory pool name

array and the memory pool name array fields are not used. This value must be 0 when format OLJB0100

or OLJB0200 is specified.

Number of primary job status entries. The number of entries that are specified for the primary job status

array. If 0 is specified, no filtering is done on the primary job status, and the offset to primary job status

array and the primary job status array fields are not used. This value must be 0 when format OLJB0300 is

specified.

Number of qualified job name entries. The number of entries that are specified for the qualified job

name array. If 0 is specified, no filtering is done on the qualified job name, and the offset to qualified job

name array and the qualified job name array fields are not used. This value must be 0 when format

OLJB0300 is specified. This value must be 0 when anything other than blanks are specified in the job

name, user name, or job number fields. The same number of jobs will be returned in the list of returned

jobs. For jobs that are not found, the Status, Job type, and Job subtype fields will be set to blanks and the

Job information status field will be set to ’L’.

Number of server type entries. The number of entries that is specified for the server type array. If this

value is 0, no filtering is done on the server type. Also, the offset to server type array and the server type

array fields are not used.

Offset to active job status array. The offset in characters (bytes) from the beginning of the job selection

information structure to the beginning of the active job status array.

Offset to active subsystem array. The offset in characters (bytes) from the beginning of the job selection

information structure to the beginning of the active subsystem array.

Offset to current user profile array. The offset in characters (bytes) from the beginning of the job

selection information structure to the beginning of the current user profile array.

Offset to job queue names array. The offset in characters (bytes) from the beginning of the job selection

information structure to the beginning of the job queue names array.

Offset to jobs on job queue status array. The offset in characters (bytes) from the beginning of the job

selection information structure to the beginning of the jobs on job queue status array.

Work Management APIs 139

Offset to job type - enhanced array. The offset in characters (bytes) from the beginning of the job

selection information structure to the beginning of the job type - enhanced array.

Offset to memory pool array. The offset in characters (bytes) from the beginning of the job selection

information structure to the beginning of the memory pool name array.

Offset to primary job status array. The offset in characters (bytes) from the beginning of the job selection

information structure to the beginning of the primary job status array.

Offset to qualified job name array. The offset in characters (bytes) from the beginning of the job

selection information structure to the beginning of the qualified job name array.

Offset to server type array. The offset in characters (bytes) from the beginning of the job selection

information structure to the beginning of the server type array.

Primary job status. The primary status of the jobs to be included in the list. The possible special values

follow:

 *ACTIVE Active jobs. This includes group jobs, system request jobs, and disconnected jobs.

*JOBQ Jobs that are currently on job queues.

*OUTQ Jobs that have completed running but still have output on an output queue.

Qualified job name. The qualfied job name. The first 10 characters are the job name. The second 10

characters are the user name of the job. The last 6 characters are the job number.

Reserved (ignored). An ignored field.

Reserved (must be 0). Reserved field. This field must be set to zero.

Server type. The type of server represented by the job. Servers provided by IBM start with QIBM. A

server type, a generic value, or one of the following special values can be specified:

 *ALL All jobs with a server type.

*BLANK All jobs without a server type.

User name. A specific user profile name, a generic name, or one of the following special values:

 *CURRENT Jobs that use the current job’s user profile.

*ALL Jobs that use the specified job name, regardless of the user name. The job name and job number

fields must be specified.

blank This field must be blank when using the Qualified job name array.

General Return Data

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(8),

UNSIGNED

Elapsed time

16 10 CHAR(*) Reserved

140 iSeries: Work Management APIs

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Elapsed time. The time, in milliseconds, that has elapsed between the measurement start time and the

current system time. This value is 0 the first time this API is called by this job. The measurement start is

set the first time this API is called and when the Reset status statistics is set to reset the elapsed time.

Reserved. An ignored field.

List of keys supported for format OLJB0200

The list of possible keys is the same as that described for the List Job (QUSLJOB) API.

List of keys supported for format OLJB0300

 Key Type Description

103 CHAR(4) Active job status for jobs ending

305 CHAR(10) Current user profile

312 BINARY(8), UNSIGNED Processing unit time used - total for the job

313 BINARY(8), UNSIGNED Processing unit time used for database - total for the job

314 BINARY(4) Processing unit used - percent used during the elapsed time (job)

315 BINARY(8), UNSIGNED Processing unit used - time during the elapsed time (job)

316 BINARY(4) Processing unit used for database - percent used during the elapsed

time (job)

317 BINARY(8), UNSIGNED Processing unit used for database - time during the elapsed time

(job)

402 CHAR(13) Date and time job entered system

414 BINARY(8), UNSIGNED Disk I/O count during the elapsed time (job)

415 BINARY(8), UNSIGNED Disk I/O count - total for the job

416 BINARY(8), UNSIGNED Disk I/O count during the elapsed time - asynchronous I/O (job)

417 BINARY(8), UNSIGNED Disk I/O count during the elapsed time - synchronous I/O (job)

502 CHAR(1) End status

601 CHAR(10) Function name

602 CHAR(1) Function type

904 BINARY(4) Interactive response time - total during the elapsed time

905 BINARY(4) Interactive transactions - count during the elapsed time

1012 CHAR(10) Job user identity

1014 BINARY(4) Job end reason

1015 CHAR(1) Job log pending

1016 BINARY(4) Job type - enhanced

1306 CHAR(10) Memory pool name

1307 CHAR(1) Message reply

Work Management APIs 141

Key Type Description

1609 BINARY(8), UNSIGNED Page fault count during the elapsed time (job)

1802 BINARY(4) Run priority (job)

1906 CHAR(20) Subsystem description name - qualified

1911 CHAR(30) Server type

1982 CHAR(10) Spooled file action

2008 BINARY(4) Thread count

Field Descriptions

The field descriptions are in “Work Management API Attribute Descriptions” on page 387.

Usage Notes

The conditions under which this API is threadsafe are the same as those described in the “Usage Notes”

on page 203 for the Retrieve Job Information (QUSRJOBI) API.

Error Messages

 Message ID Error Message Text

CPF1865 E Value &1 for job type not valid.

CPF1866 E Value &1 for number of fields to return not valid.

CPF1867 E Value &1 in list not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C39 E Value for reserved field not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CB1 E Value &1 for job status is not valid.

CPF3CB2 E Value specified for job parameter is not valid.

CPF3CF1 E Error code parameter not valid.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0024 E &1 is not valid for number of keys to sort on.

GUI0025 E &1 is not valid for sort key field starting position.

GUI0026 E &1 is not valid for sort key field length.

GUI0027 E &1 is not valid for number of records to return.

GUI0049 E Key 1903 for status of jobs on job queues is not specified.

GUI0052 E &1 is not valid for active status.

GUI0119 E Reserved field in sort information not valid.

GUI0120 E Order field in sort information not valid.

GUI0121 E Printer name cannot be specified when format LSPL0100 is requested.

GUI0122 E Number of primary job status entries not valid.

GUI0123 E Active status key must be specified.

GUI0124 E Primary status array must include *ACTIVE.

GUI0125 E Status of job on job queue key must be specified.

GUI0126 E Primary status array must include *JOBQ.

GUI0127 E Number of job queue names not valid.

GUI0128 E Job queue name key must be specified.

GUI0129 E Number of active job status entries not valid.

GUI0130 E Number of jobs on job queue status entries not valid.

GUI0131 E &2 is not valid for length of job selection criteria.

GUI0132 E &2 is not valid for length of receiver variable definition information.

142 iSeries: Work Management APIs

Message ID Error Message Text

GUI0133 E Format OLJB0200 must be specified.

GUI0134 E &2 not valid for length of job selection information.

GUI0137 E Current user key must be specified.

GUI0138 E Server type key must be specified.

GUI0139 E Number of current users not valid.

GUI0140 E Number of server types not valid.

GUI0142 E Format OLJB0300 valid for active jobs only.

GUI0143 E Number of memory pool names not valid.

GUI0144 E Number of active subsystem names not valid.

GUI0145 E All optional parameters must be specified.

GUI0146 E Filter information not correct for format OLJB0200.

GUI0147 E Required keys not specified.

GUI0148 E Number of job type enhanced values not valid.

GUI0149 E &1 is not valid for number of keys to sort on.

GUI0150 E Subsystem key must be specified.

GUI0151 E Job type enhanced key must be specified.

API introduced: V4R1

 Top | “Work Management APIs,” on page 1 | APIs by category

Work Management APIs 143

#TOP
aplist.htm

Open List of Threads (QWCOLTHD) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format name

Input Char(8)

4 Receiver variable definition information

Output Char(*)

5 Length of receiver variable definition information

Input Binary(4)

6 Job identification information

Input Char(*)

7 Format of job identification information

Input Char(8)

8 List Information

Output Char(80)

9 Number of records to return

Input Binary(4)

10 Sort information

Input Char(*)

11 Number of fields to return

Input Binary(4)

12 Key of fields to be returned

Input Array(*) of Binary(4)

13 Reset status statistics

Input Char(1)

14 General return data

Output Char(*)

15 Length of general return data

Input Binary(4)

16 Error Code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes.

144 iSeries: Work Management APIs

The Open List of Threads (QWCOLTHD) API generates a list of active threads for the job specified in the

Job identification parameter. The list may be sorted depending on the value of the sort parameter. Upon

successful completion of this API, a handle is returned in the list information parameter. You may use

this handle on subsequent calls to the following APIs:

 Get List Entries (QGYGTLE)

 Find List Entry (QGYFNDE)

 Close List (QGYCLST)

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is used to return the list of active thread information.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable.

Format name

INPUT; CHAR(8)

 The format of the thread list to be returned. The performance varies depending on the number of

fields selected. The possible format names follow:

 OLTH0100 List of active threads with keyed return fields.

See “Format of Receiver Variable” on page 146 for more information.

Receiver variable definition information

OUTPUT; CHAR(*)

 The variable that is used to return the description of how the keyed portion of the list is returned

in the receiver variable. See “Format of Receiver Variable Definition Information” on page 147 for

a description of the layout of this parameter.

Length of receiver variable definition information

INPUT; BINARY(4)

 The length of the receiver variable definition information. This must be large enough to hold the

information for all key fields that are specified in the key of fields to be returned parameter.

Job identification information

INPUT; CHAR(*)

 The information that is used to identify the job for which the list of threads is to be returned. See

“Format of job identification information” on page 148 for details.

Format of job identification information

INPUT; CHAR(8)

 The format of the job identification information. The possible format name is:

 JIDF0100 See “Format of job identification information” on page 148 for details on the job identification

information.

Work Management APIs 145

List Information

OUTPUT; CHAR(80)

 Information about the list that is created by this program. For a description of the layout of this

parameter, see Format of open list information.

Number of records to return

INPUT; BINARY(4)

 The number of records in the list to put into the receiver variable after sorting has been done.

Sort information

INPUT; CHAR(*)

 Information on what fields within the record of information to sort. See “Format of Sort

Information” on page 148 for a description of the layout of this parameter.

Number of fields to return

INPUT; BINARY(4)

 The number of fields to return. If this parameter is 0, the key of fields to be returned parameter is

not used, the receiver variable definition information parameter is not modified, and the length of

receiver variable definition information must be 0.

Key of fields to be returned

INPUT; ARRAY(*) of BINARY(4)

 The list of the fields to be returned. For a list of the valid key fields, see “List of keys supported

for format OLTH0100” on page 150.

Reset status statistics

INPUT; CHAR(1)

 The elapsed time and all the key fields that are based on the elapsed time are reset to zero. The

following special values may be specified:

 0 The elapsed time and the key fields based on the elapsed time are not reset.

1 The elapsed time and the key fields based on the elapsed time are reset back to zero.

General return data

OUTPUT; CHAR(*)

 General output information that applies to the list of threads returned. See “General Return Data”

on page 149 for a description of the data returned.

Length of general return data

INPUT; BINARY(4)

 The length of the general output information. The general output information field must be a

minimum of 8 bytes.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Receiver Variable

The following tables describe the order and format of the data that is returned in the receiver variable.

146 iSeries: Work Management APIs

oli.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD

OLTH0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(8) Thread identifier

8 8 BINARY(4),

UNSIGNED

Thread handle

12 C BINARY(4) Total length of data returned

16 F CHAR(*) Reserved

This information

repeats for each key

selected.

CHAR(*) or

BINARY(4)

Data

Field Descriptions

Data. The data returned for the key field.

Reserved. An ignored field.

Thread handle. A value that is used to address a particular thread within a job. A valid thread handle

must be specified. The thread handle is returned on several other interfaces.

Thread identifier. A value that is used to uniquely identify a thread within a job. A valid thread

identifier must be specified.

Total length of data returned. The length of the data portion of the returned data. This includes the sum

of all the keyed data for the list of threads.

Format of Receiver Variable Definition Information

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of fields returned

These fields repeat, in

the order listed, for

each key selected.

BINARY(4) Length of field information returned

BINARY(4) Key field

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of data

BINARY(4) Displacement to data

Field Descriptions

Displacement to data. The displacement from the beginning of the thread record in the receiver variable

to the value for this key.

Key field. The field returned. See “List of keys supported for format OLTH0100” on page 150 for the list

of valid keys supported for the OLTH0100 format.

Length of data. The length of the data returned for the field.

Work Management APIs 147

Length of field information returned. The total length of definition information returned for this field.

This value is used to increment to the next field in the list.

Number of fields returned. The number of fields in each record that is returned to the application.

Reserved. An ignored field.

Type of data. The type of data that is returned.

 C The data is returned in character format.

B The data is returned in binary format.

Format of Sort Information

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of keys to sort on

Offsets vary. These

fields repeat for each

sort key field.

BINARY(4) Sort key field starting position

BINARY(4) Sort key field length

BINARY(2) Sort key field data type

CHAR(1) Sort order

CHAR(1) Reserved

Field Descriptions

Number of keys to sort on. The number of fields within the record structure on which to sort. If 0 is

specified, the list is not sorted.

Reserved. Reserved field. This field must be set to hexadecimal or binary zero.

Sort key field data type. Data type of field to sort. Refer to the Sort (QLGSORT) API for information on

the list of data types available.

Sort key field length. The length of the field on which to sort.

Sort key field starting position. Within the record of information, the starting position of the field to sort

on. A value of 1 represents the first position within the record.

Sort order. Whether the list should be sorted in ascending or descending order according to the key.

 1 Sort in ascending order.

2 Sort in descending order.

Format of job identification information

The format of the information needed to identify the job for which the list of threads will be returned.

148 iSeries: Work Management APIs

QLGSORT.htm

JIDF0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4) Thread indicator

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this

identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks.

With this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

 * The job that this program is running in. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hex zeros.

Thread identifier. An unused field on this API. This field must contain hex zeros.

Thread indicator. An unused field on this API. This field must contain hex zeros.

User name. A specific user profile name, or blanks when the job name specified is a special value.

General Return Data

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(8),

UNSIGNED

Elapsed time

16 10 CHAR(10) Job name used

26 1A CHAR(10) User name used

36 24 CHAR(6) Job number used

42 2A CHAR(16) Internal job identifier

58 3A CHAR(*) Reserved

Work Management APIs 149

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Elapsed time. The time, in milliseconds, that has elapsed between the measurement start time and the

current system time. This value is 0 the first time this API is called by this job. The measurement start is

set the first time this API is called and when the Reset status statistics is set to reset the elapsed time.

Internal job identifier. A value that is sent to other APIs to speed the process of locating the job on the

system. The identifier is not valid following an initial program load (IPL). If you attempt to use it after an

IPL, an exception occurs.

Job name used. The name of the job as identified to the system. For an interactive job, the system assigns

the job the name of the workstation where the job started. For a batch job, you specify the name in the

command when you submit the job.

Job number used. The system-assigned job number.

Reserved. An ignored field.

User name used. The user profile under which the job is started. The user name is the same as the user

profile name and can come from several different sources depending on the type of job.

List of keys supported for format OLTH0100

 Key Type Description

305 CHAR(10) Current user profile

319 BINARY(8),

UNSIGNED

Processing unit time used - total for the thread

320 BINARY(8),

UNSIGNED

Processing unit time used for database - total for the thread

321 BINARY(4) Processing unit used - percent during the elapsed time (thread)

322 BINARY(8),

UNSIGNED

Processing unit used - time during the elapsed time (thread)

323 BINARY(4) Processing unit used for database - percent used during the elapsed time

(thread)

324 BINARY(8),

UNSIGNED

Processing unit time used for data base - time during the elapsed time

(thread)

419 BINARY(8),

UNSIGNED

Disk I/O count during the elapsed time (thread)

420 BINARY(8),

UNSIGNED

Disk I/O count - total for the thread

421 BINARY(8),

UNSIGNED

Disk I/O count during the elapsed time - asynchronous I/O (thread)

422 BINARY(8),

UNSIGNED

Disk I/O count during the elapsed time - synchronous I/O (thread)

1610 BINARY(8),

UNSIGNED

Page fault count during the elapsed time (thread)

1804 BINARY(4) Run priority (thread)

150 iSeries: Work Management APIs

Key Type Description

2010 CHAR(4) Thread status

2011 CHAR(1) Thread type

When the length of the data returned for a key is not a multiple of 4 bytes, the length of the field

information returned is adjusted so that the next key begins on a 4-byte boundary. This adjustment

should be considered when calculating the starting position of a key field to sort on.

Field Descriptions

The field descriptions are in “Work Management API Attribute Descriptions” on page 387.

Error Messages

 Message ID Error Message Text

CPF136A E Job &3/&2/&1 not active.

CPF1866 E Value &1 for number of fields to return not valid.

CPF1867 E Value &1 in list not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9F81 E API &1 requires too much information to be collected prior to sorting.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0024 E &1 is not valid for number of keys to sort on.

GUI0025 E &1 is not valid for sort key field starting position.

GUI0026 E &1 is not valid for sort key field length.

GUI0027 E &1 is not valid for number of records to return.

GUI0119 E Reserved field in sort information not valid.

GUI0120 E Order field in sort information not valid.

GUI0132 E &2 is not valid for length of receiver variable definition information.

GUI0149 E &1 is not valid for number of keys to sort on.

API introduced: V5R2

 Top | “Work Management APIs,” on page 1 | APIs by category

Work Management APIs 151

#TOP_OF_PAGE
aplist.htm

Retrieve Call Stack (QWVRCSTK) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format of receiver information

Input Char(8)

4 Job identification information

Input Char(*)

5 Format of job identification information

Input Char(8)

6 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Call Stack (QWVRCSTK) API returns the call stack information for the specified thread. The

first call stack entry returned corresponds to the most recent call in the thread.

Authorities and Locks

Job Authority

The API must be called within the thread for which the call stack is being retrieved, or the caller

of the API must be running under a user profile that is the same as the job user identity of the

job containing the thread for which the call stack is being retrieved. Otherwise, the caller of the

API must be running under a user profile that has job control (*JOBCTL) special authority

or

GUI thread control authority.

 The job user identity is the name of the user profile by which a job is known to other jobs. It is

described in more detail in the Work Management

book on the V5R1 Supplemental Manuals

Web site.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold. For example, this may mean that

the value in the number of call stack entries returned field doesn’t match the value in the number

of call stack entries for thread field.

Length of receiver variable

INPUT; BINARY(4)

152 iSeries: Work Management APIs

The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format of receiver information

INPUT; CHAR(8)

 The format of the information returned in the receiver variable. The possible format name is:

 CSTK0100 See “Format CSTK0100” for details on the call stack information returned.

Job identification information

INPUT; CHAR(*)

 The information that is used to identify the thread within a job for which call stack information is

to be returned. See “Format of job identification information” on page 157 for details.

Format of job identification information

INPUT; CHAR(8)

 The format of the job identification information. The possible format names are:

 JIDF0100 See “Format of job identification information” on page 157 for details on the job identification

information.

JIDF0200 See “Format of job identification information” on page 157 for details on the job identification

information.

Note: If the thread handle is available, Format JIDF0200 provides a faster method of accessing a

thread that is not the current thread than Format JIDF0100.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format CSTK0100

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of call stack entries for thread

12 C BINARY(4) Offset to call stack entry information

16 10 BINARY(4) Number of call stack entries returned

20 14 CHAR(8) Returned thread identifier

28 1C CHAR(1) Information status

29 1D CHAR(*) Reserved

Work Management APIs 153

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

These fields repeat, in

the order listed, for the

number of call stack

entries.

BINARY(4) Length of this call stack entry

BINARY(4) Displacement to statement identifiers

BINARY(4) Number of statement identifiers

BINARY(4) Displacement to the procedure name

BINARY(4) Length of procedure name

BINARY(4) Request level

CHAR(10) Program name

CHAR(10) Program library name

BINARY(4) MI instruction number

CHAR(10) Module name

CHAR(10) Module library name

CHAR(1) Control boundary

CHAR(3) Reserved

BINARY(4),

UNSIGNED

Activation group number

CHAR(10) Activation group name

CHAR(2) Reserved

CHAR(10) Program ASP name

CHAR(10) Program library ASP name

BINARY(4) Program ASP number

BINARY(4) Program library ASP number

BINARY(8),

UNSIGNED

Activation group number long

CHAR(*) Reserved

ARRAY(*) of

CHAR(10)

Statement identifiers

CHAR(*) Procedure name

Field Descriptions

Activation group name. The name of the activation group within which the program or procedure is

running. Possible special values are:

 *DFTACTGRP The activation group does not have a specific name. The activation group is one of the default

activation groups for the system.

*NEW The activation group does not have a specific name. The activation group was created when the

program was called.

Activation group number. The number of the activation group within which the program or procedure is

running. This is an internal number that uniquely identifies the activation group within the job.

It is

recomended that the activation group number long be used to uniquely identify the activation group. The

value returned in this field may become invalid due to the presision of the storage.

154 iSeries: Work Management APIs

Activation group number long. The number of the activation group within which the program or

procedure is running. This is an internal number that uniquely identifies the activation group within the

job.

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Control boundary. Whether a control boundary is active for a particular program or procedure. Possible

values are:

 0 No control boundary is active.

1 A control boundary is active.

Displacement to procedure name. The displacement in bytes from the beginning of the call stack entry to

the procedure name. This field is zero if the program at this call stack entry is not an ILE program.

Displacement to statement identifiers. The displacement in bytes from the beginning of the call stack

entry to the array of statement identifiers. This field is zero if the number of statement identifiers is zero.

Information status. Whether the call stack entry information could be successfully retrieved.

 blank No errors occurred. All information is returned in each entry.

I The information in each entry is not complete. The request level, control boundary, activation

group number and activation group name fields could not be retrieved. The request level and

activation group number are zero and the control boundary and activation group name are blank

in each entry.

N The call stack entry information could not be retrieved. No entries are returned.

Length of procedure name. The length of the procedure name. This field is zero if the program at this

call stack entry is not an ILE program.

Length of this call stack entry. The length of this call stack entry.

MI instruction number. The current machine instruction number in the program. This field is not

meaningful for integrated language environment (ILE) procedures. A zero is returned for ILE procedures.

Module library name. The name of the library in which the module is located. The following special

values may be returned:

 *N The module library name is unavailable. Either the program has been destroyed or the library

containing the program is locked.

blanks The program at this call stack entry is not an ILE program.

Module name. The module containing the integrated language environment (ILE) procedure. The

following special values may be returned:

 *N The module name is unavailable. Either the program has been destroyed or the library containing

the program is locked.

blanks The program at this call stack entry is not an ILE program.

Number of call stack entries for thread. The number of call stack entries that are associated with this

thread. A zero is returned if the call stack could not be retrieved.

Work Management APIs 155

Number of call stack entries returned. The number of call stack entries returned in the receiver variable.

Number of statement identifiers. The number of statement identifiers returned. This field is zero if the

program or procedure was not created with debugging tables.

Offset to call stack entry information. The offset in bytes from the beginning of the receiver variable to

the first call stack entry.

Procedure name. The name of the procedure at this level of the call stack.

Program ASP name. The name of the auxiliary storage pool (ASP) device in which the program is

located. The following special values also may be returned:

 *SYSBAS The program is located in the system ASP or a basic user ASP.

*N The name of the ASP cannot be determined.

Program ASP number. The numeric identifier of the ASP containing the program. The following values

may be returned:

 1 The library is located in the system ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP device cannot be determined.

Program library ASP name. The name of the ASP in which the program library is located. The following

special values also may be returned:

 *SYSBAS The program library is located in the system ASP or a basic user ASP.

*N The name of the ASP cannot be determined.

Program library ASP number. The numeric identifier of the ASP containing the program library. The

following values may be returned:

 1 The library is located in the system ASP or in a basic user ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP device cannot be determined.

Program library name. The name of the library in which the program is located. The following special

values may be returned:

 *N The program library name is unavailable. The library containing the program has been destroyed

or is locked.

blanks The program is not located in a library.

Program name. The name of the program at this level of the call stack. This can be any type of program

object, including objects of type *PGM and *SRVPGM. The following special value may be returned:

 *N The program is unavailable. Either the program has been destroyed or the library containing the

program is locked.

Request level. The level of the request-processing program or procedure. A zero is returned if the

program or procedure has not received a request message.

156 iSeries: Work Management APIs

Reserved. An unused field.

Returned thread identifier. A value which uniquely identifies the thread within the job.

Statement identifiers. The high-level language statement identifier. If this field contains the character

representation of a number, the number is right-adjusted in the field and padded on the left with zeros

(for example, ’0000000246’). If the call stack entry is for an integrated language environment (ILE)

procedure, more than one statement identifier may exist because of the compilers used for ILE languages.

Format of job identification information

The format of the information needed to identify the thread for which call stack information will be

returned.

JIDF0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4) Thread indicator

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this

identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks.

With this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

 * The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread identifier. A value which uniquely identifies a thread within a job. If the thread indicator is not 0,

this field must contain hex zeros.

Thread indicator. A value which is used to specify the thread within the job for which information is to

be retrieved. The following values are supported:

 0 Specifies that information should be retrieved for the thread specified in the thread identifier field.

1 Specifies that information should be retrieved for the thread that this program is currently running

in. The combination of the internal job identifier, job name, job number, and user name fields must

also identify the job containing the current thread.

2 Specifies that information should be retrieved for the initial thread of the identified job.

Work Management APIs 157

User name. A specific user profile name, or blanks when the job name specified is a special value.

JIDF0200 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4),

UNSIGNED

Thread handle

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this

identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks.

With this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

 * The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread handle. A value which addresses a particular thread within a job. While the thread identifier

uniquely identifies the thread within the job, the thread handle can improve performance when

referencing the thread. A valid thread handle must be specified. The thread handle is returned on several

other interfaces.

Thread identifier. A value which uniquely identifies a thread within a job. A valid thread identifier must

be specified.

User name. A specific user profile name, or blanks when the job name specified is a special value.

Error Messages

 Message ID Error Message Text

CPF136A E Job &3/&2/&1 not active.

CPF18BF E Thread &1 not found.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

158 iSeries: Work Management APIs

Message ID Error Message Text

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid

CPF3C3C E Value for parameter &1 not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C55 E Job &3/&2/&1 does not exist.

CPF3C57 E Not authorized to retrieve job information.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

 Top | “Work Management APIs,” on page 1 | APIs by category

Retrieve Class Information (QWCRCLSI) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format of class information

Input Char(8)

4 Qualified class name

Input Char(20)

5 Error Code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Class Information (QWCRCLSI) API returns the attributes of a class object. A class contains

the job run attributes for jobs that use this class. This API provides support similar to the Display Class

(DSPCLS) command.

Authorities and Locks

Class *USE

Class Library

*EXECUTE

Work Management APIs 159

#TOP
aplist.htm

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format of class information

INPUT; CHAR(8)

 The format of the class information being returned. The format names that can be used are as

follows:

 CLSI0100 This format returns all of the class information. See “Format CLSI0100” for details.

Qualified class name

INPUT; CHAR(20)

 The class name whose attributes are to be retrieved. The first 10 characters contain the class

name, and the second 10 characters contain the library name. You can use these special values for

the library name:

 *CURLIB The job’s current library

*LIBL The job’s library list

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format CLSI0100

The following information is returned by this API when format CLSI0100 is used:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Class name

18 12 CHAR(10) Class library name

28 1C BINARY(4) Run priority

32 20 BINARY(4) Time slice

36 24 BINARY(4) Eligible for purge

40 28 BINARY(4) Default wait time

44 2C BINARY(4) Maximum CPU time

160 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

48 30 BINARY(4) Maximum temporary storage in kilobytes

52 34 BINARY(4) Maximum number of threads

56 38 CHAR(50) Text

106 6A CHAR(2) Reserved

108 6C BINARY(4) Maximum temporary storage in megabytes

Field Description

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Class library name. The name of the library in which the class resides.

Class name. The name of the class about which information is returned.

Default wait time. The default maximum time (in seconds) that a thread in a job waits for a system

instruction, such as the LOCK machine interface (MI) instruction, to acquire a resource. This default wait

time is used when a wait time is not otherwise specified for a given situation. Normally, this would be

the amount of time the user would be willing to wait for the system before the request is ended. A value

of -1 is returned for *NOMAX, which indicates there is no maximum wait time.

Eligible for purge. Whether or not the job is eligible to be moved out of main storage and put into

auxiliary storage at the end of a time slice or when beginning a long wait (such as waiting for a work

station user’s response). This attribute is ignored when more than one thread is active within the job. The

possible values are:

 0 The job is not eligible to be moved out of main storage and put into auxiliary storage. When main

storage is needed, however, pages belonging to a thread in this job may be moved to auxiliary

storage. Then, when a thread in the job runs again, its pages are returned to main storage as they

are needed.

1 The job is eligible to be moved out of main storage and put into auxiliary storage. A job with

multiple threads, however, is never purged from main storage.

Maximum CPU time. The maximum processing unit time (in milliseconds) that the job can use. If the job

consists of multiple routing steps, this is the maximum processing unit time that the routing step can use.

If the maximum time is exceeded, the job is ended. A value of -1 is returned for *NOMAX, which

indicates there is no limit on the processing unit time.

Maximum number of threads. The maximum number of threads that a job using this class can run with

at any time. If multiple threads are initiated simultaneously, this value may be exceeded. If this maximum

value is exceeded, the excess threads will be allowed to run to their normal completion. Initiation of

additional threads will be inhibited until the maximum number of threads in the job drops below this

maximum value. A value of -1 is returned for *NOMAX, which indicates there is no maximum number of

threads. Depending on the resources used by the threads and the resources available on the system, the

initiation of additional threads may be inhibited before the maximum is reached.

Maximum temporary storage in kilobytes. The maximum amount of auxiliary storage (in kilobytes) that

the job can use. If the job consists of multiple routing steps, this is the maximum temporary storage that

Work Management APIs 161

the routing step can use. This temporary storage is used for storage that is required by the programs

running in the job and by internal system objects created while the programs are running. (It does not

include storage in the QTEMP library.) If the maximum temporary storage is exceeded, the job is ended.

This does not apply to the use of permanent storage, which is controlled through the user profile. A value

of -1 is returned for *NOMAX, which indicates the system maximum is used.

Maximum temporary storage in megabytes. The maximum amount of auxiliary storage (in megabytes)

that the job can use. If the job consists of multiple routing steps, this is the maximum temporary storage

that the routing step can use. This temporary storage is used for storage that is required by the programs

running in the job and by internal system objects created while the programs are running. (It does not

include storage in the QTEMP library.) If the maximum temporary storage is exceeded, the job is ended.

This does not apply to the use of permanent storage, which is controlled through the user profile. A value

of -1 is returned for *NOMAX, which indicates the system maximum is used.

Reserved. This field is ignored.

Run priority. A value that represents the priority at which the job competes for the processing unit

relative to other jobs that are active at the same time. The run priority ranges from 0 (highest priority) to

99 (lowest priority). This value is the highest run priority allowed for any thread within the job.

Individual threads may have a lower priority.

Text. The text description of the class.

Time slice. The maximum amount of processor time, in milliseconds, given to each thread in a job before

other threads in the job or other jobs are given the opportunity to run. The time slice establishes the

amount of time needed by a thread in the job to accomplish a meaningful amount of processing. At the

end of the time slice, the thread might be put in an inactive state so that other threads can become active

in the storage pool.

Error Messages

 Message ID Error Message Text

CPF1029 E No authority to library &1.

CPF1039 E Class library &1 not found.

CPF1065 E Class &1 in library &2 not found.

CPF1067 E Cannot allocate library &1.

CPF1068 E Cannot allocate class &1 in library &2.

CPF1098 E No authority to class &1 in library &2.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R3

 Top | “Work Management APIs,” on page 1 | APIs by category

162 iSeries: Work Management APIs

#TOP
aplist.htm

Retrieve Current Attributes (QWCRTVCA) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format name

Input Char(8)

4 Number of attributes to return

Input Binary(4)

5 Key of attributes to be returned

Input Array(*) of Binary(4)

6 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Conditional; see “Valid Key Attributes” on page 167.

The Retrieve Current Attributes (QWCRTVCA) API retrieves job and thread attributes that apply to the

thread in which this API is called. If a thread attribute exists, it is retrieved. If a thread attribute does not

exist, the job attribute for the job in which this thread is running is retrieved.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is used to return the thread attributes.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable.

Format name

INPUT; CHAR(8)

 The format of the attribute list to return. The possible format names follow:

 RTVC0100 Basic retrieve format

RTVC0200 Library list information

RTVC0300 ASP group information

See “RTVC0100 Format” on page 164, “RTVC0200 Format” on page 165, and “RTVC0300 Format”

on page 166 for more information.

Work Management APIs 163

Number of attributes to return

INPUT; BINARY(4)

 The number of attributes to return in the specified format.

Key of attributes to be returned

INPUT; ARRAY(*) of BINARY(4)

 The list of the attributes to be returned in the specified format. For a list of the valid key

attributes, see “Valid Key Attributes” on page 167.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

RTVC0100 Format

The following table describes the order and format of the data that is returned in the receiver variable for

format RTVC0100. See “Valid Key Attributes” on page 167 for threadsafe information.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of attributes returned

These fields repeat, in

the order listed, for

each key requested.

BINARY(4) Length of attribute information returned

BINARY(4) Key

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved

Field Descriptions

Data. The data returned for the key field.

Key. The attribute returned. See “Valid Key Attributes” on page 167 for the list of valid keys.

Length of attribute information returned. The total length of information returned for this attribute. This

value is used to increment to the next entry in the list.

Length of data. The length of the data returned for the field.

Number of attributes returned. The number of attributes returned to the application.

Reserved. An ignored field.

Type of data. The type of output data. This field is provided to maintain the same format layout that is

used in the Change Job (QWTCHGJB) API.

 C The output data is in character format.

B The output data is in binary format.

164 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

RTVC0200 Format

The RTVC0200 format returns library list information. Retrieval of the library list information is

threadsafe. The format returns the actual length instead of the total length because all libraries may not

exist.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 BINARY(4) Number of libraries in SYSLIBL

12 C BINARY(4) Number of product libraries

16 10 BINARY(4) Current library existence

20 14 BINARY(4) Number of libraries in USRLIBL

See note See note Array(*) of CHAR(11) Library list (for each library in the list)

Note: The decimal and hexadecimal offsets depend on the number of libraries you have in the various parts of your

library lists and on keys requested. The data is left-justified and padded with blanks on the right. The array is

sequential. See the CL Programming

book for the total number of libraries that can be returned to you.

Field Descriptions

Current library existence. Whether the current library exists or not. This value will be zero if the current

library was not requested.

 0 No current library exists.

1 A current library exists.

Number of bytes available. All of the available bytes for use in your application.

The actual length depends on how many libraries are in the library list.

Number of bytes returned. The number of bytes returned to the user. This may be some but not all of

the bytes available.

Number of libraries in SYSLIBL. The number of libraries in the system part of the thread’s library list.

This value will be zero if system libraries were not requested.

Number of libraries in USRLIBL. The number of libraries in the thread’s user library list. This value will

be zero if user libraries were not requested.

Number of product libraries. The number of product libraries found in the thread’s library list. This

value will be zero if product libraries were not requested.

Library list (for each library in the list). The list of all libraries requested. A blank is in the last position

of each name. The number of libraries in the list will depend on the keys requested and the actual

number of libraries in each portion of the library list. The order of the library list is:

v System library list

v Product libraries

v Current library

v User library list

Work Management APIs 165

RTVC0300 Format

The RTVC0300 format returns auxiliary storage pool (ASP) group information. Retrieval of the ASP group

information is threadsafe.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 BINARY(4) Offset to ASP group information

12 C BINARY(4) Number of entries in ASP group information

16 10 BINARY(4) Length of one ASP group information entry

See note See note Array(*) of CHAR(*) ASP group information entry (See “Format of ASP Group

Information Entry” for more information.)

Note: This field repeats for each ASP group information entry. For additional information, see the Control Language

(CL) information for the Set ASP Group (SETASPGRP) command.

Field Descriptions

ASP group information entry. The auxiliary storage pool (ASP) group information requested. This does

not include the system ASP or the basic user ASP.

Length of one ASP group information entry. The length of one ASP group information entry.

Number of ASP group information entries The number of ASP group information entries being

returned.

Number of bytes available. The number of available bytes for use by your application.

Number of bytes returned. The number of bytes returned to the user. This may be some but not all of

the bytes available.

Offset to ASP group information The offset in characters (bytes) from the beginning of the receiver to

the first ASP group information entry.

Format of ASP Group Information Entry

The ASP group information entry describes the data that is returned for each ASP group of the RTVC0300

format.

 Offset

Type Field Dec Hex

These fields repeat for each entry returned in the list. CHAR(10) ASP

group

name

CHAR(*) Reserved

Field Descriptions

ASP group name The name of the ASP group. This is the name of the primary ASP device in an ASP

group.

166 iSeries: Work Management APIs

Valid Key Attributes

The following table contains a list of the valid keys for format RTVC0100. In addition, the table indicates

whether the attributes are threadsafe. See “Key Field Descriptions” on page 169 for the descriptions of the

valid key attributes.

Key Type Description

Threadsafe
(See Note)

0102 CHAR(1) Allow multiple threads Yes

0201 CHAR(10) Break message handling Yes

0301 CHAR(1) Cancel key Yes

0302 BINARY(4) Coded character set ID Yes

0303 CHAR(2) Country or region ID Yes

0305 CHAR(10) Current user profile Yes

0307 BINARY(4) Current system pool identifier Yes

0311 CHAR(10) Character identifier control Yes

0401 CHAR(13) Date and time job became active Yes

0402 CHAR(13) Date and time job entered system Yes

0403 CHAR(8) Date and time job was scheduled to run Yes

0405 CHAR(4) Date format Yes

0406 CHAR(1) Date separator Yes

0407 CHAR(1) DBCS-capable Yes

0408 CHAR(10) DDM conversation handling Yes

0409 BINARY(4) Default wait Yes

0410 CHAR(13) Device recovery action Yes

0412 BINARY(4) Default coded character set identifier Yes

0413 CHAR(1) Decimal format Yes

0501 BINARY(4) End severity Yes

0502 CHAR(1) End status Yes

0503 CHAR(1) Exit key Yes

0702 CHAR(10) Group profile name Yes

0703 CHAR(150) Group profile name - supplemental Yes

0901 CHAR(10) Inquiry message reply Yes

0902 CHAR(16) Internal job ID Yes

0903 CHAR(1) Initial thread Yes

1001 CHAR(15) Job accounting code Yes

1002 CHAR(7) Job date Yes

1004 CHAR(20) Job queue name - qualified Yes

1005 CHAR(2) Job queue priority Yes

1006 CHAR(8) Job switches Yes

1007 CHAR(10) Job message queue full action Yes

1008 BINARY(4) Job message queue maximum size Yes

1009 CHAR(26) Job name Yes

Work Management APIs 167

Key Type Description

Threadsafe
(See Note)

1010 CHAR(1) Job type Yes

1011 CHAR(1) Job subtype Yes

1017 CHAR(8) Job local time Yes

1201 CHAR(3) Language ID Yes

1202 CHAR(1) Logging level Yes

1203 CHAR(10) Logging of CL programs Yes

1204 BINARY(4) Logging severity Yes

1205 CHAR(10) Logging text Yes

1304 BINARY(4) Maximum threads Yes

1501 CHAR(20) Output queue name - qualified Yes

1502 CHAR(2) Output queue priority Yes

1601 CHAR(10) Print key format Yes

1602 CHAR(30) Print text Yes

1603 CHAR(10) Printer device name Yes

1604 CHAR(10) Purge Yes

1802 BINARY(4) Run priority Yes

1901 CHAR(20) Sort sequence table - qualified Yes

1902 CHAR(10) Status message handling Yes

1904 CHAR(26) Submitter’s job name - qualified Yes

1905 CHAR(20) Submitter’s message queue name - qualified Yes

1907 BINARY(4) System pool identifier Yes

1982 CHAR(10) Spooled file action Yes

2001 CHAR(1) Time separator Yes

2002 BINARY(4) Time slice Yes

2003 CHAR(10) Time-slice end pool Yes

2008 BINARY(4) Thread count Yes

2020 CHAR(10) Time zone current abbreviated name Yes

2021 CHAR(50) Time zone current full name Yes

2022 CHAR(7) Time zone current message identifier Yes

2023 BINARY(4) Time zone current offset Yes

2024 CHAR(10) Time zone description name Yes

2025 CHAR(20) Time zone message file name - qualified Yes

2026 CHAR(1) Time zone Daylight Saving Time indicator Yes

Note:If this value is blank, the attribute is not threadsafe.

The following table contains a list of the valid keys for format RTVC0200. In addition, the table indicates

whether the attributes are threadsafe. See “Key Field Descriptions” on page 169 for the descriptions of the

valid key attributes.

168 iSeries: Work Management APIs

Key Type Description

Threadsafe
(See Note)

0310 CHAR(11) Current library Yes

1660 Array(*) of CHAR(11) Product libraries Yes

1980 Array(*) of CHAR(11) System library list Yes

2110 Array(*) of CHAR(11) User library list Yes

2702 Array(*) of CHAR(11) All portions of the library list for format

RTVC0200

Yes

Note: If this value is blank, the attribute is not threadsafe.

The following table contains a list of the valid keys for format RTVC0300. In addition, the table indicates

whether the attributes are threadsafe. See “Key Field Descriptions” for the descriptions of the valid key

attributes.

Key Type Description

Threadsafe
(See Note)

0104 CHAR(*) ASP group information Yes

Key Field Descriptions

Most field descriptions for this API are in “Work Management API Attribute Descriptions” on page 387,

except the following:

All portions of the library list for format RTVC0200. All portions of the library list will be returned.

Current system pool identifier. The identifier of the system-related pool from which this thread’s main

storage currently is being allocated. These identifiers are not the same as those specified in the subsystem

description, but are the same as the system pool identifiers shown on the system status display. If a

thread reaches the end of its time slice, the pool this thread is running in can be switched based on the

job’s time-slice end pool value. The current system pool identifier returned by this API will be the actual

pool in which the thread currently is running.

Run priority. The priority at which this thread currently is running, relative to other threads on the

system. The run priority ranges from 0 (highest priority) to 99 (lowest priority). The value may never be

higher than the run priority for the job in which this thread is running. Since this API is intended for

retrieving the current value of an attribute, the run priority of the thread is returned, even though the

1802 key represents the run priority of the job on other interfaces. To obtain the run priority of the job,

use the 1802 key on the “Retrieve Thread Attribute (QWTRTVTA) API” on page 348 (QWTRTVTA) API.

Error Messages

 Message ID Error Message Text

CPF1866 E Value &1 for number of fields to return not valid.

CPF1867 E Value &1 in list not valid.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Work Management APIs 169

API introduced: V4R2

 Top | “Work Management APIs,” on page 1 | APIs by category

Retrieve Data Area (QWCRDTAA) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Qualified data area name

Input Char(20)

4 Starting position

Input Binary(4)

5 Length of data

Input Binary(4)

6 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 172

The Retrieve Data Area (QWCRDTAA) API allows you to retrieve the contents of a data area. Distributed

data management (DDM) data areas are supported by this API. In other words, this API can retrieve a

data area value from a data area that exists on a remote OS/400.

Authorities and Locks

Library Authority

*EXECUTE

Data Area Authority

*USE

Data Area Lock

*SHRRD

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold. For the format, see “Format of Data

Returned” on page 171.

170 iSeries: Work Management APIs

#TOP
aplist.htm

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable described in “Format of Data Returned.” If the length is larger

than the size of the receiver variable, the results may not be predictable. The minimum length is 8

bytes.

Qualified data area name

INPUT; CHAR(20)

 The first 10 characters contain the data area name, and the second 10 characters contain the name

of the library where the data area is located.

When one of the special values is specified, the library name must be blank. The special values

for the data area are:

 *LDA Local data area

*GDA Group data area

*PDA Program initialization parameter data area

The special values supported for the library name are:

 *LIBL The library list.

*CURLIB The job’s current library.

Starting position

INPUT; BINARY(4)

 The first byte of the data area to be retrieved. A value of 1 will identify the first character in the

data area. The maximum value allowed for the starting position is 2000. A value of -1 will return

all the characters in the data area.

Length of data

INPUT; BINARY(4)

 The length of the data area substring to be retrieved. The length of data parameter must be

greater than 0. If the length of data parameter is greater than the size of the data area, the

receiver variable is padded with blanks.

The length of data parameter added to the starting position minus one must be between the

substring starting position and the data area end; otherwise, CPF1089 (Substring specified for

data area not valid) is issued. If you have a small data area and only want the fixed portion of

the data returned, you must code -1 for the starting position.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Data Returned

The receiver variable holds the information returned for the data area. The following table shows the

format of the receiver variable.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes available

4 4 BINARY(4) Bytes returned

8 8 CHAR(10) Type of value returned

Work Management APIs 171

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

18 12 CHAR(10) Library name

28 1C BINARY(4) Length of value returned

32 20 BINARY(4) Number of decimal positions

36 24 CHAR(*) Value

Field Descriptions

Bytes available. The length of all data available to return. All available data is returned if enough space

is provided.

Bytes returned. The length of all data actually returned. If the data is truncated because the receiver

variable was not sufficiently large to hold all of the data available, this value will be less than the bytes

available.

Length of value returned. The length of the value that was returned.

Library name. The name of the library where the data area was found. This field will be blank if one of

the special values was specified for the first ten characters of the qualified data area name.

Number of decimal positions. The number of decimal positions.

Type of value returned. The following values may be returned.

 *CHAR A character data area.

*DEC A decimal data area. The value returned will be a packed decimal value.

*LGL A logical data area.

Value. The contents of the data area.

Usage Notes

This API is threadsafe, except in the following situations:

v The retrieval of DDM data areas in a job that allows multiple threads is not threadsafe.

v The retrieval of DDM data areas will not be allowed when more than one thread is active in a job.

Error Messages

 Message ID Error Message Text

CPF101A E Operation on DDM data area &1 in &2 failed.

CPF1015 E Data area &1 in &2 not found.

CPF1016 E No authority to data area &1 in &2.

CPF1021 E Library &1 not found for data area &2.

CPF1022 E No authority to library &1 data area &2.

CPF1046 E DTAARA(*GDA) not valid because job not group job.

CPF1063 E Cannot allocate data area &1 in library &2.

CPF1067 E Cannot allocate library &1.

CPF1072 E DTAARA(*PDA) not valid because job not prestart job.

CPF1088 E Starting position outside of data area.

CPF1089 E Substring specified for data area not valid.

CPF180B E Function &1 not allowed.

172 iSeries: Work Management APIs

Message ID Error Message Text

CPF1863 E Length of value not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Work Management APIs,” on page 1 | APIs by category

Retrieve IPL Attributes (QWCRIPLA) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format of IPL attributes

Input Char(8)

4 Error Code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Retrieve IPL Attributes (QWCRIPLA) API returns the settings of attributes that are used during the

IPL. This API provides support similar to the Display IPL Attributes (DSPIPLA) command.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

Work Management APIs 173

#TOP
aplist.htm

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format of IPL attributes

INPUT CHAR(8)
The format of the IPL attributes being returned. The format names that can be used are as

follows:

 IPLA0100 This format returns all of the IPL attributes. See format IPLA0100 for details.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format IPLA0100

The following information is returned by this API when format IPLA0100 is used:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(1) Restart type

9 9 CHAR(1) Keylock position

10 A CHAR(1) Hardware diagnostics

11 B CHAR(1) Compress job tables

12 C CHAR(1) Check job tables

13 D CHAR(1) Rebuild product directory

14 E CHAR(1) Mail Server Framework recovery

15 F CHAR(1) Clear job queues

16 10 CHAR(1) Clear output queues

17 11 CHAR(1) Clear incomplete job logs

18 12 CHAR(1) Start print writers

19 13 CHAR(1) Start system to restricted state

20 14 CHAR(1) Display status

21 15 CHAR(1) Start TCP/IP

Field Description

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Check job tables. When to perform particular damage checks on the job tables.

 0 The job table checks are performed during abnormal IPLs only.

1 The job table checks are performed during all IPLs.

2 The job table checks are performed synchronously during all IPLs.

174 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Clear incomplete job logs. Whether or not to delete the job logs for jobs that were active at the time of

the last system power down. This value is reset to 0 after each IPL.

 0 The job logs are produced after the IPL.

1 The job logs are deleted during the IPL.

Clear job queues. Whether or not to clear the jobs from all job queues. This value is reset to 0 after each

IPL.

 0 The job queues are not cleared.

1 The job queues are cleared during the IPL.

Clear output queues. Whether or not to clear all output queues. If you clear the output queues, all

spooled output is removed from the system. This value is reset to 0 after each IPL.

 0 The output queues are not cleared.

1 The output queues are cleared during the IPL.

Compress job tables. When the job tables should be compressed to remove excess unused entries.

 0 The job tables are compressed during abnormal IPLs only.

1 The job tables are compressed during all IPLs.

2 The job tables are not compressed during any IPL.

3 The job tables are compressed during normal IPLs only.

Display status. When the status of OS/400 IPL steps is displayed on the console during IPL. Status is not

displayed during install IPLs or when the console is not powered on.

 0 Status is displayed during attended OS/400 IPLs and abnormal OS/400 IPLs.

1 Status is not displayed during OS/400 IPLs.

2 Status is displayed during attended OS/400 IPLs.

3 Status is displayed during abnormal OS/400 IPLs.

4 Status is displayed during all OS/400 IPLs, except as noted above.

Hardware diagnostics. Whether or not certain hardware diagnostics should be performed during the IPL.

 0 All hardware diagnostics are run.

1 The minimum set of hardware diagnostics is run.

Keylock position. The keylock position.

 0 The keylock position is set to auto.

1 The keylock position is set to manual.

2 The keylock position is set to normal.

3 The keylock position is set to secure.

Mail Server Framework recovery. Whether or not Mail Server Framework recovery should be done

during IPL. The possible values are:

Work Management APIs 175

0 Mail Server Framework recovery is not done during IPL. Recovery is done when Mail Server

Framework starts.

1 Mail Server Framework recovery is done during abnormal IPLs.

Rebuild product directory. When the product directory information is rebuilt.

 0 The product directory information is rebuilt during abnormal IPLs only.

1 The product directory information is rebuilt during all IPLs.

2 The product directory information is not rebuilt during IPL.

3 The product directory information is rebuilt during normal IPLs only.

Restart type. The type of restart operation to perform when the Power Down System (PWRDWNSYS)

command is used with RESTART(*YES).

 0 All portions of the system, including the hardware, are restarted.

1 The operating system is restarted. The hardware is restarted only if you apply a PTF that requires

a hardware restart. This value can reduce the time required to restart the system.

Start print writers. Whether or not print writers should be started at the time of the IPL. This value is

reset to 1 after each IPL.

 0 The print writers are not started at IPL time.

1 The print writers are started at IPL time.

Start system to restricted state. Whether or not the system should be started in the restricted state. If the

system is started in the restricted state, only the system console is active. This value is reset to 0 after

each IPL.

 0 The system is not started in the restricted state.

1 The system is started in the restricted state.

Start TCP/IP. Whether the STRTCP command is submitted automatically at the completion of IPL and

when the controlling subsystem is restarted from the restricted state. The STRTCP command is not

submitted during install IPLs or when the system is starting to the restricted state. See the STRTCP

command help for more information.

 0 The system does not automatically submit the STRTCP command at the completion of IPL.

1 The system automatically submits the STRTCP command at the completion of IPL.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

176 iSeries: Work Management APIs

API introduced: V4R2

 Top | “Work Management APIs,” on page 1 | APIs by category

Retrieve Job Description Information (QWDRJOBD) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format name

Input Char(8)

4 Qualified job description name

Input Char(20)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Job Description Information (QWDRJOBD) API retrieves information from a job description

object and places it into a single variable in the calling program. The amount of information returned

depends on the size of the variable. The information returned is the same information returned by the

Display Job Description (DSPJOBD) command.

Authorities and Locks

Job Description Object Authority

*USE

Library Authority

*EXECUTE

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the information requested. You can specify the size of this area to

be smaller than the format requested if you specify the length of receiver variable parameter

correctly. As a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. If this value is larger than the actual size of the receiver

variable, the result may not be predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

Work Management APIs 177

#TOP
aplist.htm

The format of the job description information to be returned. You can use this format:

 JOBD0100 Basic job description information. For details, see “JOBD0100 Format.”

Qualified job description name

INPUT; CHAR(20)

 The name of the job description whose contents are to be retrieved. The first 10 characters contain

the name of the job description, and the second 10 characters contain the name of the library

where the job description is located. You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

JOBD0100 Format

The following table describes the information that is returned in the receiver variable for the JOBD0100

format. For detailed descriptions of the fields, see “Field Descriptions” on page 179.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Job description name

18 12 CHAR(10) Job description library name

28 1C CHAR(10) User name

38 26 CHAR(8) Job date

46 2E CHAR(8) Job switches

54 36 CHAR(10) Job queue name

64 40 CHAR(10) Job queue library name

74 4A CHAR(2) Job queue priority

76 4C CHAR(10) Hold on job queue

86 56 CHAR(10) Output queue name

96 60 CHAR(10) Output queue library name

106 6A CHAR(2) Output queue priority

108 6C CHAR(10) Printer device name

118 76 CHAR(30) Print text

148 94 BINARY(4) Syntax check severity

152 98 BINARY(4) End severity

156 9C BINARY(4) Message logging severity

160 A0 CHAR(1) Message logging level

161 A1 CHAR(10) Message logging text

171 AB CHAR(10) Logging of CL programs

178 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

181 B5 CHAR(10) Inquiry message reply

191 BF CHAR(13) Device recovery action

204 CC CHAR(10) Time-slice end pool

214 D6 CHAR(15) Accounting code

229 E5 CHAR(80) Routing data

309 135 CHAR(50) Text description

359 167 CHAR(1) Reserved

360 168 BINARY(4) Offset to initial library list

364 16C BINARY(4) Number of libraries in initial library list

368 170 BINARY(4) Offset to request data

372 174 BINARY(4) Length of request data

376 178 BINARY(4) Job message queue maximum size

380 17C CHAR(10) Job message queue full action

390 186 CHAR(10) CYMD job date

400 190 CHAR(10) Allow multiple threads

410 19A CHAR(10) Spooled file action

420 1A4 BINARY(4) Offset to initial ASP group information

424 1A8 BINARY(4) Number of initial ASP group information entries

428 1AC BINARY(4) Length of one initial ASP group information entry

432 1B0 CHAR(10) DDM conversation

442 1BA CHAR(*) Reserved

* * ARRAY (*) of

CHAR(11)

Initial library list

* * CHAR(*) Request data

 Array(*) of CHAR(*) Initial ASP group information entry

Format of Initial ASP Group Information Entry

The initial auxiliary storage pool (ASP) group information entry describes the data that is returned for

each group in the job description’s initial ASP group.

 Offset

Type Field Dec Hex

The fields repeat for

each entry returned in

the initial ASP group

information.

CHAR(10) ASP group name

CHAR(*) Reserved

Field Descriptions

Accounting code. An identifier assigned to jobs that use this job description. This code is used to collect

system resource use information. If the special value *USRPRF is specified, the accounting code used for

jobs using this job description is obtained from the job’s user profile.

Work Management APIs 179

Allow multiple threads. Whether or not the job is allowed to run with multiple user threads. This

attribute does not prevent the operating system from creating system threads in the job. The possible

values are *YES and *NO. This attribute is not allowed to be changed once a job starts. This attribute

applies to autostart jobs, prestart jobs, batch jobs submitted from job schedule entries, and jobs started by

using the Submit Job (SBMJOB) and Batch Job (BCHJOB) commands. This attribute is ignored when

starting all other types of jobs. This attribute should be set to *YES only in job descriptions that are used

exclusively with functions that create multiple user threads.

ASP group name. The name of the ASP group. This is the name of the primary ASP device in an ASP

group or the name of an ASP device description. This specifies the initial ASP group setting for jobs

using this job description.

Bytes available. The length of all data available to return. All available data is returned if enough space

is provided.

Bytes returned. The length of all data actually returned. If the data is truncated because the receiver

variable was not sufficiently large to hold all of the data available, this value will be less than the bytes

available.

CYMD job date. The date that will be assigned to jobs using this job description when they are started.

The possible values are:

 *SYSVAL The value in the QDATE system value is used at the time the job is started.

job-date The date to be used at the time the job is started. The format of the field returned in CYYMMDD

where C is the century, YY is the year, MM is the month, and DD is the day. A 0 for the century

indicates years 19xx and a 1 indicates years 20xx. The field is padded on the right with blanks.

DDM conversation. Whether the Distributed Data Management conversations are kept or dropped

when they are not being used. The possible values are:

 *KEEP The system keeps DDM conversation connections active when there are no users.

*DROP The system ends a DDM-allocated conversation when there are no users.

Device recovery action. The action to take when an I/O error occurs for the interactive job’s requesting

program device. The possible values are:

 *SYSVAL The value in the system value QDEVRCYACN at the time the job is started is used as the device

recovery action for this job description.

*MSG Signals the I/O error message to the application and lets the application program perform error

recovery.

*DSCMSG Disconnects the job when an I/O error occurs. When the job reconnects, the system sends a

message to the application program, indicating the job has reconnected and that the workstation

device has recovered.

*DSCENDRQS Disconnects the job when an I/O error occurs. When the job reconnects, the system sends the End

Request (ENDRQS) command to return control to the previous request level.

*ENDJOB Ends the job when an I/O error occurs. A message is sent to the job’s log and to the history log

(QHST). This message indicates that the job ended because of a device error.

*ENDJOBNOLIST Ends the job when an I/O error occurs. There is no job log produced for the job. The system sends

a message to the history log (QHST). This message indicates that the job ended because of a

device error.

End severity. The message severity level of escape messages that can cause a batch job to end. The batch

job ends when a request in the batch input stream sends an escape message, whose severity is equal to or

greater than this value, to the request processing program. The possible values are from 0 through 99.

180 iSeries: Work Management APIs

Hold on job queue. Whether jobs using this job description are put on the job queue in the hold

condition. The possible values are *YES and *NO.

Initial ASP group information. The list of initial ASP groups for jobs that use this job description. This

does not include the system ASP or basic user ASPs.

Initial library list. The initial library list that is used for jobs that use this job description. Only the

libraries in the user portion of the library list are included.

Note: The data is an array of 11-byte entries, each entry consisting of a 10-byte library name that is

left-justified with a blank pad at the end. The 11-byte entries can be easily used in CL commands. The

number of libraries in the initial library list tells how many entries are contained in the array.

Inquiry message reply. How inquiry messages are answered for jobs that use this job description.

 *RQD The job requires an answer for any inquiry messages that occur while the job is running.

*DFT The system uses the default message reply to answer any inquiry messages issued while the job is

running. The default reply is either defined in the message description or is the default system

reply.

*SYSRPYL The system reply list is checked to see if there is an entry for an inquiry message issued while the

job is running. If a match occurs, the system uses the reply value for that entry. If no entry exists

for that message, the system uses an inquiry message.

Job date. The date that will be assigned to jobs using this job description when they are started. The

possible values are:

 *SYSVAL The value in the QDATE system value is used at the time the job is started.

job-date The date to be used at the time the job is started. This date is in the format specified for the

DATFMT job attribute.

Job description library name. The name of the library in which the job description resides.

Job description name. The name of the job description about which information is being returned.

Job message queue maximum size. The maximum size (in megabytes) of the job message queue. The

possible values are:

 0 The maximum size set by system value QJOBMSGMX at the time the job is started.

2-64 The maximum size of the job message queue in megabytes.

Job message queue full action. The action taken when the job message queue becomes full. The possible

values are:

 *SYSVAL The value is specified by the system value QJOBMSGQFL.

*NOWRAP When the message queue becomes full, do not wrap. This action will cause the job to end.

*WRAP When the message queue becomes full, wrap to the beginning and start filling again.

*PRTWRAP When the message queue becomes full, wrap the job queue and print the messages that are being

overlaid.

Job queue library name. The library of the job queue into which batch jobs using this job description are

placed.

Job queue name. The name of the job queue into which batch jobs using this job description are placed.

Work Management APIs 181

Job queue priority. The scheduling priority of each job that uses this job description. The highest priority

is 1 and the lowest priority is 9.

Job switches. The initial settings for a group of eight job switches used by jobs that use this job

description. These switches can be set or tested in a program and used to control a program’s flow. The

possible values are ’0’ (off) and ’1’ (on).

Length of one initial ASP group information entry. The length of one initial ASP group information

entry. Zero indicates that jobs using this job description do not have an initial ASP group.

Length of request data. The length of all available request data, in bytes. If the receiver variable was not

sufficiently large to hold all of the request data available, the amount of request data actually returned

may be less than this value.

Logging of CL programs. Whether or not commands are logged for CL programs that are run. The

possible values are *YES and *NO.

Message logging level. The type of information logged. Possible types are:

 0 No messages are logged.

1 All messages sent to the job’s external message queue with a severity greater than or equal to the

message logging severity are logged. This includes the indication of job start, job end and job

completion status.

2 The following information is logged:

v Level 1 information.

v Request messages that result in a high-level message with a severity code greater than or equal

to the logging severity cause the request message and all associated messages to be logged.

Note: A high-level message is one that is sent to the program message queue of the program

that receives the request message. For example, QCMD is an IBM-supplied request processing

program that receives request messages.

3 The following information is logged:

v Level 1 and 2 information.

v All request messages.

v Commands run by a CL program are logged if it is allowed by the logging of CL programs job

attribute and the log attribute of the CL program.

4 The following information is logged:

v All request messages and all messages with a severity greater than or equal to the message

logging severity, including trace messages.

v Commands run by a CL program are logged if it is allowed by the logging of CL programs job

attribute and the log attribute of the CL program.

Message logging severity. The severity level that is used in conjunction with the logging level to

determine which error messages are logged in the job log. The possible values are from 0 through 99.

Message logging text. The level of message text that is written in the job log when a message is logged

according to the logging level and logging severity. The possible values are:

 *MSG Only the message text is written to the job log.

*SECLVL Both the message text and the message help (cause and recovery) of the error message are written

to the job log.

*NOLIST If the job ends normally, no job log is produced. If the job ends abnormally (if the job end code is

20 or higher), a job log is produced. The messages that appear in the job log contain both the

message text and the message help.

182 iSeries: Work Management APIs

Number of initial ASP group information entries. The number of entries in the job description’s initial

ASP group information. Zero indicates that jobs using this job description do not have an initial ASP

group.

Number of libraries in initial library list. The number of libraries in the user portion of the initial

library list.

Offset to initial ASP group information. The offset in characters (bytes) from the beginning of the

structure to the first ASP group information entry. Zero indicates that jobs using this job description do

not have an initial ASP group.

Offset to initial library list. The offset from the beginning of the structure to the start of the initial

library list.

Offset to request data. The offset from the beginning of the structure to the start of the request data.

Output queue library name. The name of the library in which the output queue resides.

Output queue name. The name of the default output queue that is used for spooled output produced by

jobs that use this job description.

 *USRPRF The output queue name for jobs using this job description is obtained from the user profile of the

job at the time the job is started.

*DEV The output queue with the same name as the printer device for this job description is used.

*WRKSTN The output queue name is obtained from the device description from which this job is started.

output-queue-
name

The name of the output queue for this job description.

Output queue priority. The output priority for spooled files that are produced by jobs using this job

description. The highest priority is 1, and the lowest priority is 9.

Print text. The line of text (if any) that is printed at the bottom of each page of printed output for jobs

using this job description. If the special value *SYSVAL is specified, the value in the system value

QPRTTXT is used for jobs using this job description.

Printer device name. The name of the printer device or the source for the name of the printer device that

is used for all spooled files created by jobs that use this job description.

 *USRPRF The printer device name is obtained from the user profile of the job at the time the job is started.

*SYSVAL The value in the system value QPRTDEV at the time the job is started is used as the printer device

name.

*WRKSTN The printer device name is obtained from the work station where the job was started.

printer-device-
name

The name of the printer device that is used with this job description.

Request data. The request data that is placed as the last entry in the job’s message queue for jobs that

use this job description. The possible values are:

 *NONE No request data is placed in the job’s message queue.

*RTGDTA The data specified in the routing data parameter is placed as the last entry in the job’s message

queue.

request-data The request data to use for jobs that use this job description.

Reserved. An ignored field.

Work Management APIs 183

Routing data. The routing data that is used with this job description to start jobs. The possible values are:

 QCMDI The default routing data QCMDI is used by the IBM-supplied interactive subsystem to route the

job to the IBM-supplied control language processor QCMD in the QSYS library.

*RQSDTA Up to the first 80 characters of the request data specified in the request data field are used as the

routing data for the job.

routing-data The routing data to use for jobs that use this job description.

Spooled file action. Specifies whether spooled files can be accessed through job interfaces once a job has

completed its normal activity.

 *KEEP When the job completes its activity, as long as at least one spooled file for the job exists in the

system auxiliary storage pool (ASP 1) or in a basic user ASP (ASPs 2-32), the spooled files are kept

with the job and the status of the job is updated to indicate that the job has completed. If all

remaining spooled files for the job are in independent ASPs (ASPs 33-255), the spooled files will

be detached from the job and the job will be removed from the system.

*DETACH Spooled files are detached from the job when the job completes its activity.

*SYSVAL The jobs using this job description will take the spooled file action specified by the QSPLFACN

system value.

Syntax check severity. Whether requests placed on the job’s message queue are checked for syntax as CL

commands, and the message severity that causes a syntax error to end processing of a job. The possible

values are:

 -1 The request data is not checked for syntax as CL commands. This is equivalent to *NOCHK.

0-99 Specifies the lowest message severity that causes a running job to end. The request data is checked

for syntax as CL commands, and, if a syntax error occurs that is greater than or equal to the error

message severity specified here, the running of the job that contains the erroneous command is

suppressed.

Text description. The user text, if any, used to briefly describe the job description.

Time-slice end pool. Whether interactive jobs using this job description should be moved to another

main storage pool when they reach time-slice end. The possible values are:

 *SYSVAL The system value is used.

*NONE The job is not moved when it reaches time-slice end.

*BASE The job is moved to the base pool when it reaches time-slice end.

User name. The name of the user profile associated with this job description. If *RQD is specified, a user

name is required to use the job description.

Error Messages

 Message ID Error Message Text

CPF1618 E Job description &1 in library &2 damaged.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

184 iSeries: Work Management APIs

Message ID Error Message Text

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9807 E One or more libraries in library list deleted.

CPF9808 E Cannot allocate one or more libraries on library list.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Work Management APIs,” on page 1 | APIs by category

Retrieve Job Information (QUSRJOBI) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format name

Input Char(8)

4 Qualified job name

Input Char(26)

5 Internal job identifier

Input Char(16)
 Optional Parameter Group 1:

6 Error code

I/O Char(*)
 Optional Parameter Group 2:

7 Reset performance statistics

Input Char(1)
 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 203.

The Retrieve Job Information (QUSRJOBI) API retrieves specific information about a job.

Authorities and Locks

The following authority restrictions apply only when the API is called for format names JOBI0700,

JOBI0750, JOBI0800, JOBI0900. All other format names have no authority restrictions.

Work Management APIs 185

#TOP
aplist.htm

Job Authority

When calling this API for format names JOBI0700, JOBI0750, JOBI0800, and JOBI0900, the API

must be called from within the job for which the information is being retrieved or the caller of

the API must be running under a user profile that is the same as the job user identity of the job

for which the information is being retrieved or the caller of the API must be running under a

user profile that has job control (*JOBCTL) special authority.

 The job user identity is the name of the user profile by which a job is known to other jobs. It is

described in more detail in the Work Management

book on the V5R1 Supplemental Manuals

Web site.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the information requested. You can specify the size of this area to

be smaller than the format requested as long as you specify the length parameter correctly. As a

result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. If the length is larger than the size of the receiver variable, the

results may not be predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of the job information to be returned. The format names supported are:

 JOBI0100 Basic performance information

JOBI0150 Additional performance information

JOBI0200 WRKACTJOB information

JOBI0300 Job queue and output queue information

JOBI0400 Job attribute information

JOBI0500 Message logging information

JOBI0600 Active job information

JOBI0700 Library list information

JOBI0750 Extended library list information

JOBI0800 Active job signal information

JOBI0900 Active job SQL information

JOBI1000 Elapsed performance statistics

Refer to “Selecting a Job Information Format” on page 187 for details of each of the formats.

Qualified job name

INPUT; CHAR(26)

 The name of the job for which information is to be returned. The qualified job name has three

parts:

 Job name CHAR(10). A specific job name or one of the following special values:

* The job that this program is running in. The rest of the qualified job name parameter

must be blank.

*INT The internal job identifier locates the job. The user name and job number must be blank.

User name CHAR(10). A specific user profile name, or blanks when the job name is a special value or *INT.

Job number CHAR(6). A specific job number, or blanks when the job name specified is a special value or *INT.

186 iSeries: Work Management APIs

Internal job identifier

INPUT; CHAR(16)

 The internal identifier for the job. The List Job API, QUSLJOB, creates this identifier. If you do not

specify *INT for the job name parameter, this parameter must contain blanks. With this

parameter, the system can locate the job more quickly than with a job name.

Optional Parameter 1

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Optional Parameter 2

Reset performance statistics

INPUT; CHAR(1)

 The elapsed time and all fields that are part of the JOBI1000 format, which are based on the

elapsed time, will be reset to zero. This field must be zero if other formats are specified. The

default value for this field is zero. The following special values may be specified:

 0 The performance statistics will not be reset. The elapsed time will be incremented and the fields in

the JOBI1000 format will be recalculated based on the elapsed time interval.

1 The elapsed time and the fields in the JOBI1000 format will be reset to zero.

Selecting a Job Information Format

All formats may be called against multithreaded jobs; that is, single threaded Job A may retrieve job

information about multithreaded Job B. Refer to 203 for thread safety information when calling these

formats from within a multithreaded job.

The following section presents some of the performance characteristics of the different formats (primarily

JOBI0100, JOBI0150, and JOBI0200). When formats return some of the same information, the performance

effects are discussed. When a format contains information not available in other formats, performance is

not discussed.

 JOBI0100 This format returns basic performance information about a job. It is faster than the JOBI0150

format and the JOBI0200 format (which also contain performance information). The reason that

this format is faster is that it does not touch as many objects, causing less paging when retrieving

information about the job.

JOBI0150 This format returns additional performance information, and is slower than the JOBI0100 format.

It is similar to the JOBI0200 format, but is faster than that format because there is less paging

involved in retrieving the information.

JOBI0200 This format returns information equivalent to that found on the Work with Active Jobs

(WRKACTJOB) command.

JOBI0300 This format returns job queue and output queue information for a job, as well as information

about the submitter’s job if the job is a submitted batch job.

JOBI0400 This format primarily returns job attribute types of information, but has other types of information

as well.

JOBI0500 This format returns message logging information.

JOBI0600 This format returns information about active jobs only. It is intended to supplement the JOBI0400

format. It retrieves information from several additional objects associated with the job, and

therefore, it causes additional paging.

JOBI0700 This format returns library list information for an active job.

Work Management APIs 187

error.htm#HDRERRCOD
error.htm#HDRERRCOD

JOBI0750 This format returns library list information for an active job plus additional information about

each library returned.

JOBI0800 This format returns signal information for an active job.

JOBI0900 This format returns SQL information for an active job.

JOBI1000 This format returns elapsed performance statistics. Performance values returned are based on an

elapsed time (returned as part of this format).

Each format returns information that is only valid for the status of certain jobs. For example, the

JOBI0200 format only returns information for active jobs. Because the job status can change between the

time the list is generated and the time the Retrieve Job Information API is called, you must design your

application to handle this.

When requesting information about a job that has an unknown or incorrect job status for the format

requested, the API returns the current status of the job and sets the remainder of the fields for that format

to zeros and blanks. When requesting information about a job that is not valid, the API returns the job’s

status as blanks and sets the remainder of the fields for that format to zeros and blanks. Therefore, you

should check the returned status of the job before processing the data. Each format description specifies

each status for which the API returns complete information.

JOBI0100 Format

The JOBI0100 format information is valid for active jobs and jobs on queues. For jobs on queues, this

format returns zeros or blanks for the attributes. If the Change Job (CHGJOB) command was run against

a job on a *JOBQ, the attributes returned are the attributes specified on the CHGJOB command. If the job

status changes to *OUTQ, the status field returned is *OUTQ and the API returns no information other

than the number of bytes returned, the number of bytes available, the qualified job name, the job type,

the job subtype, and the internal job identifier.

The JOBI0100 format returns the following job information. For details about the fields listed, see “Field

Descriptions” on page 200.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(2) Reserved

64 40 BINARY(4) Run priority (job)

68 44 BINARY(4) Time slice

72 48 BINARY(4) Default wait

76 4C CHAR(10) Purge

188 iSeries: Work Management APIs

JOBI0150 Format

The JOBI0150 format is valid for active jobs only. If the job status changes to *OUTQ or *JOBQ, the status

field is set appropriately, and no information other than the number of bytes returned, the number of

bytes available, the qualified job name, the job type, the job subtype, and the internal job identifier is

returned.

The JOBI0150 format returns the following job information. For details about the fields listed, see “Field

Descriptions” on page 200.

 Offset

Type Field Dec Hex

0 0 Returns everything from format JOBI0100

86 56 CHAR(10) Time-slice end pool

96 60 BINARY(4) Processing unit time used, if less than 2,147,483,647 milliseconds

100 64 BINARY(4) System pool identifier

104 68 BINARY(4) Maximum processing unit time

108 6C BINARY(4) Temporary storage used in kilobytes

112 70 BINARY(4) Maximum temporary storage in kilobytes

116 74 BINARY(4) Thread count

120 78 BINARY(4) Maximum threads

124 7C BINARY(4) Temporary storage used in megabytes

128 80 BINARY(4) Maximum temporary storage in megabytes

132 84 CHAR(4) Reserved

136 88 BINARY(8),

UNSIGNED

Processing unit time used - total for the job

JOBI0200 Format

The JOBI0200 format is only valid for active jobs and is similar to the information supported by the Work

with Active Jobs (WRKACTJOB) command. If the job status has changed to *OUTQ or *JOBQ, the status

field is set appropriately, and no information other than the number of bytes returned, the number of

bytes available, the qualified job name, the job type, the job subtype, and the internal job identifier is

returned.

The JOBI0200 format returns the following job information. For details about the fields listed, see “Field

Descriptions” on page 200.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

Work Management APIs 189

Offset

Type Field Dec Hex

61 3D CHAR(1) Job subtype

62 3E CHAR(10) Subsystem description name

72 48 BINARY(4) Run priority (job)

76 4C BINARY(4) System pool identifier

80 50 BINARY(4) Processing unit time used, if less than 2,147,483,647 milliseconds

84 54 BINARY(4) Number of auxiliary I/O requests, if less than 2,147,483,647

88 58 BINARY(4) Number of interactive transactions

92 5C BINARY(4) Response time total

96 60 CHAR(1) Function type

97 61 CHAR(10) Function name

107 6B CHAR(4) Active job status

111 6F BINARY(4) Number of database lock waits

115 73 BINARY(4) Number of internal machine lock waits

119 77 BINARY(4) Number of nondatabase lock waits

124 7C BINARY(4) Time spent on database lock waits

127 7F BINARY(4) Time spent on internal machine lock waits

131 83 BINARY(4) Time spent on nondatabase lock waits

135 87 CHAR(1) Reserved

136 88 BINARY(4) Current system pool identifier

140 8C BINARY(4) Thread count

144 90 BINARY(8),

UNSIGNED

Processing unit time used - total for the job

152 98 BINARY(8),

UNSIGNED

Number of auxiliary I/O requests

160 A0 BINARY(8),

UNSIGNED

Processing unit time used for database - total for the job

168 A8 BINARY(8),

UNSIGNED

Page faults

176 B0 CHAR(4) Active job status for jobs ending

180 B4 CHAR(10) Memory pool name

190 BE CHAR(1) Message reply

JOBI0300 Format

This format returns job queue and output queue information for a job, as well as information about the

submitter’s job. This information is valid for any job status. The JOBI0300 format returns the following

job information. For details about the fields listed, see “Field Descriptions” on page 200.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

190 iSeries: Work Management APIs

Offset

Type Field Dec Hex

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(10) Job queue name

72 48 CHAR(10) Job queue library name

82 52 CHAR(2) Job queue priority

84 54 CHAR(10) Output queue name

94 5E CHAR(10) Output queue library name

104 68 CHAR(2) Output queue priority

106 6A CHAR(10) Printer device name

116 74 CHAR(10) Submitter’s job name

126 7E CHAR(10) Submitter’s user name

136 88 CHAR(6) Submitter’s job number

142 8E CHAR(10) Submitter’s message queue name

152 98 CHAR(10) Submitter’s message queue library name

162 A2 CHAR(10) Status of job on the job queue

172 AC CHAR(8) Date and time job was put on this job queue

180 B4 CHAR(7) Job date

JOBI0400 Format

This format primarily returns job attribute types of information, but has other types of information as

well. This format is valid for any job status. The JOBI0400 format returns the following job information.

For details about the fields listed, see “Field Descriptions” on page 200.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(13) Date and time job entered system

Work Management APIs 191

Offset

Type Field Dec Hex

75 4B CHAR(13) Date and time job became active

88 58 CHAR(15) Job accounting code

103 67 CHAR(10) Job description name

113 71 CHAR(10) Job description library name

123 7B CHAR(24) Unit of work ID

147 93 CHAR(8) Mode name

155 9B CHAR(10) Inquiry message reply

165 A5 CHAR(10) Logging of CL programs

175 AF CHAR(10) Break message handling

185 B9 CHAR(10) Status message handling

195 C3 CHAR(13) Device recovery action

208 D0 CHAR(10) DDM conversation handling

218 DA CHAR(1) Date separator

219 DB CHAR(4) Date format

223 DF CHAR(30) Print text

253 FD CHAR(10) Submitter’s job name

263 107 CHAR(10) Submitter’s user name

273 111 CHAR(6) Submitter’s job number

279 117 CHAR(10) Submitter’s message queue name

289 121 CHAR(10) Submitter’s message queue library name

299 12B CHAR(1) Time separator

300 12C BINARY(4) Coded character set ID

304 130 CHAR(8) Date and time job is scheduled to run

312 138 CHAR(10) Print key format

322 142 CHAR(10) Sort sequence table name

332 14C CHAR(10) Sort sequence library

342 156 CHAR(3) Language ID

345 159 CHAR(2) Country or region ID

347 15B CHAR(1) Completion status

348 15C CHAR(1) Signed-on job

349 15D CHAR(8) Job switches

357 165 CHAR(10) Job message queue full action

367 16F CHAR(1) Reserved

368 170 BINARY(4) Job message queue maximum size

372 174 BINARY(4) Default coded character set identifier

376 178 CHAR(80) Routing data

456 1C8 CHAR(1) Decimal format

457 1C9 CHAR(10) Character identifier control

467 1D3 CHAR(30) Server type

497 1F1 CHAR(1) Allow multiple threads

192 iSeries: Work Management APIs

Offset

Type Field Dec Hex

498 1F2 CHAR(1) Job log pending

499 1F3 CHAR(1) Reserved

500 1F4 BINARY(4) Job end reason

504 1F8 BINARY(4) Job type - enhanced

508 1FC CHAR(13) Date and time job ended

521 209 CHAR(1) Reserved

522 20A CHAR(10) Spooled file action

532 214 BINARY(4) Offset to ASP group information

536 218 BINARY(4) Number of entries in ASP group information

540 21C BINARY(4) Length of one ASP group information entry

544 220 CHAR(10) Time zone description name

This field repeats for

each ASP group

information entry.

CHAR(*) ASP group information entry (See “Format of ASP Group

Information Entry” for more information.)

Format of ASP Group Information Entry

The ASP group information entry describes the data that is returned for each ASP group in the ASP

group information of the JOBI0400 format. For details about the fields listed, see “Field Descriptions” on

page 200.

 Offset

Type Field Dec Hex

The fields repeat for each ASP group. CHAR(10) ASP group

name

CHAR(*) Reserved

JOBI0500 Format

This format returns message logging information. This format is valid for any job status. The JOBI0500

format returns the following job information. For details about the fields listed, see “Field Descriptions”

on page 200.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

Work Management APIs 193

Offset

Type Field Dec Hex

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(2) Reserved

64 40 BINARY(4) End severity

68 44 BINARY(4) Logging severity

72 48 CHAR(1) Logging level

73 49 CHAR(10) Logging text

JOBI0600 Format

The JOBI0600 format returns information about active jobs. If the job status changes to *JOBQ or *OUTQ,

the status field is set appropriately, and no information other than the number of bytes returned, the

number of bytes available, the qualified job name, the job type, the job subtype, and the internal job

identifier is returned.

The JOBI0600 format returns the following job information. For details about the fields listed, see “Field

Descriptions” on page 200.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(8) Job switches

70 46 CHAR(1) End status

71 47 CHAR(10) Subsystem description name

81 51 CHAR(10) Subsystem description library name

91 5B CHAR(10) Current user profile

101 65 CHAR(1) DBCS-capable

102 66 CHAR(1) Exit key

103 67 CHAR(1) Cancel key

104 68 BINARY(4) Product return code

108 6C BINARY(4) User return code

112 70 BINARY(4) Program return code

116 74 CHAR(10) Special environment

126 7E CHAR(10) Device name

194 iSeries: Work Management APIs

Offset

Type Field Dec Hex

136 88 CHAR(10) Group profile name

146 92 ARRAY(15) of

CHAR(10)

Group profile name - supplemental

296 128 CHAR(10) Job user identity

306 132 CHAR(1) Job user identity setting

307 133 CHAR(15) Client IP address - IPv4

322 142 CHAR(2) Reserved

324 144 BINARY(4) Offset to time zone information

328 148 BINARY(4) Length of time zone information

 CHAR(*) Time zone information (See “Format of Time Zone Information”

for more information.)

Format of Time Zone Information

The following table describes the data that is returned for the time zone information of the JOBI0600

format. For details about the fields listed, see “Field Descriptions” on page 200.

 Offset

Type Field Dec Hex

 CHAR(10) Time zone description name

CHAR(1) Reserved

CHAR(1) Time zone Daylight Saving Time indicator

BINARY(4) Time zone current offset

CHAR(50) Time zone current full name

CHAR(10) Time zone current abbreviated name

CHAR(7) Time zone current message identifier

CHAR(10) Time zone message file name

CHAR(10) Time zone message file library

CHAR(*) Reserved

JOBI0700 Format

The JOBI0700 format returns library list information for active jobs only. The format returns the actual

length instead of the total length because all libraries may not exist. The JOBI0700 format returns the

following job information. For details about the fields listed, see “Field Descriptions” on page 200.

Work Management APIs 195

Offset

Type Field Dec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(2) Reserved

64 40 BINARY(4) Number of libraries in SYSLIBL

68 44 BINARY(4) Number of product libraries

72 48 BINARY(4) Current library existence

76 4C BINARY(4) Number of libraries in USRLIBL

See note See note Array(*) of CHAR(11) System library list

See note See note Array(*) of CHAR(11) Product libraries

See note See note Array(*) of CHAR(11) Current library

See note See note Array(*) of CHAR(11) User library list

Note: The decimal and hexadecimal offsets depend on the number of libraries you have in the various parts of your

library lists. The data is left-justified with a blank pad at the end. The array is sequential. It is an array or data

structure. See the Control Language information for the total number of libraries that can be returned to you.

JOBI0750 Format

The JOBI0750 format returns library list information for active jobs only along with additional

information about each library. The JOBI0750 format returns the following library information for the

active job. For details about the fields listed, see “Field Descriptions” on page 200.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(2) Reserved

64 40 BINARY(4) Offset to libraries in system library list

196 iSeries: Work Management APIs

Offset

Type Field Dec Hex

68 44 BINARY(4) Number of libraries in system library list

72 48 BINARY(4) Offset to product libraries

76 4C BINARY(4) Number of product libraries

80 50 BINARY(4) Offset to current library

84 54 BINARY(4) Number of current libraries

88 58 BINARY(4) Offset to libraries in user library list

92 5C BINARY(4) Number of libraries in user library list

96 60 BINARY(4) Length of one library array entry

See note See note Array(*) of CHAR(*) System library list (See “Library array entry” for format of library

array entry.)

See note See note Array(*) of CHAR(*) Product libraries (See “Library array entry” for format of library

array entry.)

See note See note Array(*) of CHAR(*) Current library (See “Library array entry” for format of library

array entry.)

See note See note Array(*) of CHAR(*) User library list (See “Library array entry” for format of library

array entry.)

Note: The decimal and hexadecimal offsets depend on the number of libraries you have in the various parts of your

library lists. The data is left-justified with a blank pad at the end. The array is sequential. It is an array or data

structure. See CL Programming

book for the total number of libraries that can be returned.

Library array entry

The library array entry describes the data that is returned for each library entry in the array of libraries

on the JOBI0750 format. The name of the library as well as some extended information about the library

is returned with this format. For details about the fields listed, see “Field Descriptions” on page 200.

 Offset

Type Field Dec Hex

The fields repeat for each library object returned in the array. CHAR(10) Library name

CHAR(50) Library text description

BINARY(4) Library ASP number

CHAR(10) Library ASP name

CHAR(*) Reserved

JOBI0800 Format

The JOBI0800 format is only valid for active jobs. If the job status has changed to *OUTQ or *JOBQ, the

status field is set appropriately, and no information other than the number of bytes returned, the number

of bytes available, the qualified job name, and the internal job identifier is returned. If the signal status is

0, not enabled for signals, this format returns zeros or blanks for the attributes.

The JOBI0800 format returns the following job information. For details about the fields listed, see “Field

Descriptions” on page 200.

Work Management APIs 197

Offset

Type Field Dec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(2) Reserved

64 40 BINARY(4) Signal status

68 44 CHAR(8) Signal blocking mask

76 4C CHAR(8) Pending signal set

84 54 BINARY(4) Offset to signal monitor data

88 58 BINARY(4) Number of signal monitors

92 5C BINARY(4) Process ID number

96 60 Array(*) of CHAR(32) Signal monitor data (for each signal monitor)

These fields repeat for

each signal monitor.

BINARY(4) Signal number

BINARY(4) Signal action

BINARY(4) Default signal action

BINARY(4) Maximum number of signals retained

BINARY(4) Current number of pending signals

CHAR(12) Reserved

JOBI0900 Format

The JOBI0900 format is only valid for active jobs. If the job status has changed to *OUTQ or *JOBQ, the

status field is set appropriately, and no information other than the number of bytes returned, the number

of bytes available, the qualified job name, and the internal job identifier is returned. If the number of SQL

open cursors is 0 and no SQL statements have ever been issued in the job, this format returns zeros or

blanks for the attributes.

Note: Synchronization is not performed when you change or retrieve SQL data. If you try to retrieve SQL

data for your own job and your job is not running multithreaded, then the retrieved data should be

correct. If, however, you are retrieving SQL data for your own job and your job is running multithreaded

or if you are retrieving data for a different job, the SQL data may not be correct because the SQL data is

being changed at the same time that you are retrieving it.

The JOBI0900 format returns the following job information. For details about the fields listed, see “Field

Descriptions” on page 200.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of bytes returned

198 iSeries: Work Management APIs

Offset

Type Field Dec Hex

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(1) Server mode for Structured Query Language

63 3F CHAR(1) Reserved

64 40 BINARY(4) Offset to SQL open cursor data

68 44 BINARY(4) Size of SQL open cursor data

72 48 BINARY(4) Number of SQL open cursors

76 4C BINARY(4) Offset to current SQL statement

80 50 BINARY(4) Length of current SQL statement

84 54 BINARY(4) Status of current SQL statement

88 58 BINARY(4) CCSID of current SQL statement

92 5C CHAR(18) Relational Database name

110 6E CHAR(10) SQL statement object name

120 78 CHAR(10) SQL statement library name

130 82 CHAR(10) SQL statement object type

* * Array(*) of CHAR(80) SQL open cursor data

These fields repeat for

each SQL open cursor

CHAR(10) Object name for SQL cursor

CHAR(10) Object library for SQL cursor

CHAR(10) Object type for SQL cursor

CHAR(18) SQL cursor name

CHAR(18) SQL statement name

See note CHAR(*) Current SQL statement

Note: The decimal and hexadecimal offsets depend on the number of SQL open cursors returned in the array. The

maximum length of an SQL statement is 32765 bytes.

JOBI1000 Format

The JOBI1000 format is valid for active jobs only. This format returns performance statistics for the active

job based on an elapsed time interval. The first call of this format for the specified job returns zeros for

each attribute returned. Upon consecutive calls for the specified job, the values returned for each attribute

are calculated based on the time that has elapsed since the last call. The amount of time that has elapsed

is returned as part of this format. If the job status has changed to *OUTQ or *JOBQ, the status field is set

appropriately, and no information other than the number of bytes returned, the number of bytes

available, qualified job name, job type, and the job subtype is returned.

For details about the fields listed, see “Field Descriptions” on page 200.

Work Management APIs 199

Offset

Type Field Dec Hex

0 0 BINARY(4) Number of bytes returned

4 4 BINARY(4) Number of bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(16) Internal job identifier

50 32 CHAR(10) Job status

60 3C CHAR(1) Job type

61 3D CHAR(1) Job subtype

62 3E CHAR(2) Reserved

64 40 BINARY(8),

UNSIGNED

Elapsed time

72 48 BINARY(8),

UNSIGNED

Disk I/O count during the elapsed time (job)

80 50 BINARY(8),

UNSIGNED

Disk I/O count during the elapsed time - asynchronous I/O (job)

88 58 BINARY(8),

UNSIGNED

Disk I/O count during the elapsed time - synchronous I/O (job)

96 60 BINARY(4) Interactive response time - total during the elapsed time

100 64 BINARY(4) Interactive transactions - count during the elapsed time

104 68 BINARY(4) Processing unit used - percent used during the elapsed time (job)

108 6C BINARY(4) Processing unit used for database - percent used during the

elapsed time (job)

112 70 BINARY(8),

UNSIGNED

Processing unit used - time during the elapsed time (job)

120 78 BINARY(8),

UNSIGNED

Processing unit used for database - time during the elapsed time

(job)

128 80 BINARY(8),

UNSIGNED

Lock wait time - time during the elapsed time

136 88 BINARY(8),

UNSIGNED

Page fault count during the elapsed time (job)

Field Descriptions

Most field descriptions for this API are in “Work Management API Attribute Descriptions” on page 387.

Those field descriptions not found in the Work Management API Attribute Descriptions are listed below.

All fields are scoped to the job unless specifically noted. See 203 for complete details.

ASP group information entry. Specifies information about an auxiliary storage pool (ASP) group.

ASP group name. The name of the auxiliary storage pool (ASP) group. This is the name of the primary

ASP in an ASP group or the name of an ASP device description. The following special values may also be

returned:

200 iSeries: Work Management APIs

*N The name of the ASP group cannot be determined.

Length of one ASP group information entry. The length of an ASP group information entry. Zero

indicates that an ASP group is not being used. Zero is also returned if the job status has changed to

*OUTQ.

Length of one library array entry. The length of one entry in a library list array.

Length of time zone information. The length of the time zone information.

Library ASP name. The name of the ASP device that contains the library. The following special values

may also be returned:

 *SYSBAS The library is located in the system ASP or in a basic user ASP.

*N The name of the ASP device cannot be determined.

Library ASP number. The numeric identifier of the ASP containing the library. The following values may

be returned:

 1 The library is located in the system ASP.

2-32 The library is located in a basic ASP.

33-255 The library is located in an independent ASP.

-1 The ASP number cannot be determined.

Library name. The name of the library object.

Library text description. The text description of the library object. This field is blank if no text

description is specified.

Number of current libraries. The number of current libraries in the library list of the initial thread.

Number of entries in ASP group information. The number of entries in the ASP group information.

Zero indicates that an ASP group is not being used. Zero is also returned if the job status has changed to

*OUTQ.

Number of libraries in system library list. The number of libraries in the system part of the library list

of the initial thread.

Number of libraries in user library list. The number of libraries in the user library list of the initial

thread.

Number of product libraries. The number of product libraries in the library list of the initial thread.

Offset to ASP group information. The offset from the start of the format to the start of the ASP group

information. Zero indicates that an ASP group is not being used. Zero is also returned if the job status

has changed to *OUTQ.

Offset to current library. The offset from the start of the format to the start of the current library.

Offset to libraries in system library list. The offset from the start of the format to the start of the system

library list.

Work Management APIs 201

Offset to libraries in user library list. The offset from the start of the format to the start of the user

library list.

Offset to product libraries. The offset from the start of the format to the start of the product libraries.

Offset to time zone information. The offset from the start of the format to the start of the time zone

information.

Time zone information. Specifies information about the time zone description.

SQL statement object name. The name of the object which contains the last SQL statement executed in

the job. When the current SQL statement belongs to an SQL User Defined Function or an SQL Stored

Procedure, the object name will be the external program name. The name will contain blanks when the

SQL statement name is blank or when the SQL statement does not exist within a permanent object.

SQL statement library name. The library name for the SQL statement object. The name will contain

blanks when the SQL statement name is blank or when the SQL statement does not exist within a

permanent object.

SQL statement object type. The object type will be set when the SQL statement object name is not

blanks. The following values may be returned:

 *PGM The current SQL statement resides within a program.

*SRVPGM The current SQL statement resides within a service program.

*SQLPKG The current SQL statement resides within an SQL package.

Comparing Job Type and Subtype with the Work with Active Job

Command

The following table compares the job type and job subtype fields returned by the QUSRJOBI API to the

type field on the Work with Active Job (WRKACTJOB) command.

 WRKACTJOB and QUSRJOBI API Comparison

Job Type Field Job Type Job Subtype

ASJ (Autostart) A blank

BCH (Batch) B blank

BCI (Batch immediate) B D

EVK (Started by a program start request) B E

INT (Interactive) I blank

M36 (AS/400 Advanced 36 machine server) B F

MRT (Multiple requester terminal) B T

PJ (Prestart job) B J

PDJ (Print driver job) W P

RDR (Reader) R blank

SYS (System) S or X blank

202 iSeries: Work Management APIs

WRKACTJOB and QUSRJOBI API Comparison

Job Type Field Job Type Job Subtype

SBS (Subsystem monitor) M blank

WTR (Writer) W blank

blank (Alternative user subtype—not an active job) B U

Usage Notes

Considerations for Attribute Scope and Thread Safety: This API is primarily intended for retrieving job

attributes, but it also retrieves some attributes for the initial thread.

The Scope column of Attribute Scope and Thread Safety table that follows shows whether the attribute is

scoped to the job or to the thread. If any attributes currently scoped to the job are moved to the thread

level in the future, then this API will be changed to retrieve the value for the initial thread. This API

cannot be used to retrieve attributes for a secondary thread.

The Threadsafe Access column of this table indicates whether retrieving a copy of the attribute is

considered to be a threadsafe operation. When retrieving an attribute is not threadsafe, a partially

updated value can be returned. When retrieving an attribute is threadsafe, the returned value is the value

that was in effect at the time the value was retrieved but, by the time the returned value is used, the

current value and the returned value could be different.

Yes: For this particular API, Yes indicates that an attribute can always be retrieved and can be considered

correct, which includes thread safety. The API may be called from an initial or secondary thread to

retrieve the attributes of the current job or a different job. The job whose attributes are being retrieved

may be either single threaded or multithreaded.

Conditional; reason 1, same job: An attribute marked with this value can be safely retrieved from either

an initial thread or a secondary thread, but can only be considered to be completely correct when

retrieving one’s own attribute. When retrieving the attribute from another job, the value retrieved may

not be completely correct if the other job is changing the attribute while it is being retrieved.

Conditional; reason 2, initial thread: An attribute marked with this value can only be considered to be

completely correct when retrieving one’s own attribute and you are running in the initial thread. When

retrieving the attribute from another job, you may be running in either an initial thread or a secondary

thread, but in either case the value retrieved may not be completely correct if the other job is changing

the attribute while it is being retrieved.

Conditional; reason 3, single threaded: An attribute marked with this value can only be considered to be

completely correct when retrieving one’s own attribute and you are running single threaded. When

retrieving the attribute from another job, you may be running in either an initial thread or a secondary

thread, but in either case the value retrieved may not be completely correct if the other job is changing

the attribute while it is being retrieved.

Conditional; reason 4, active job: An attribute marked with this value can only be considered to be

completely correct when retrieving the attribute of an active job. The API may be called from an initial or

secondary thread to retrieve the attributes of the current job or a different job. The job whose attributes

are being retrieved may be either single threaded or multithreaded. However, if the job whose attribute is

being retrieved is on a job queue, the value retrieved may not be completely correct if the attribute is

being changed while it is being retrieved.

Work Management APIs 203

#TBLRJBCOMP

Conditional; reason 5, not during prestart receive: An attribute marked with this value can be

considered to be correct with the following exception. The value may not be completely correct if the

attribute is being retrieved for a prestart job while the prestart job is receiving a new request. The API

may be called from an initial or secondary thread to retrieve the attributes of the current job or a different

job. The job whose attributes are being retrieved may be either single threaded or multithreaded.

No: An attribute marked with this value is not threadsafe, nor is it safe for retrieval when running single

threaded. The value retrieved may not be completely correct if the value is being changed while it is

being retrieved.

N/A; do not use: Thread safety is not applicable (N/A). The User return code field is the most recent

return code set by any thread within the job. Many operating system functions run C code and change

the value of the user return code. Changes to this field occur at times that cannot be predicted or

controlled by user programming, even when the job is single-threaded. To receive a value returned by a

called program, it is better to provide a parameter to receive the value than to rely on this User return

code field that is scoped to the job.

 Attribute Scope and Thread Safety

Attribute Scope

Threadsafe Access

Active job status Initial thread No

Active job status for jobs ending Initial thread No

Allow multiple threads Initial thread Yes

ASP group information entry Initial thread Yes

Break message handling Job Yes

Cancel key Job Yes

CCSID of current SQL statement Job No

Character identifier control Job Yes

Client IP address - IPv4 Initial thread Conditional; reason 2

Coded character set ID Job Yes

Completion status Job Yes

Country or region ID Job Yes

Current library existence Initial thread Yes

Current library Initial thread Yes

Current number of pending signals Job Yes

Current system pool identifier Initial thread Yes

Current user profile Initial thread Conditional; reason 2

Date and time job became active Job Yes

Date and time job ended Job Yes

Date and time job entered system Job Yes

Date and time job is scheduled to run Job Yes

Date and time the job was put on this job queue Job No

Date format Job Yes

Date separator Job Yes

DBCS-capable Job Yes

DDM conversation handling Job Yes

Decimal format Job Yes

204 iSeries: Work Management APIs

Attribute Scope and Thread Safety

Attribute Scope

Threadsafe Access

Default coded character set identifier Job Yes

Default signal action Job Yes

Default wait Job Yes

Device name Job Yes

Device recovery action Job Yes

Disk I/O count during the elapsed time - asynchronous

I/O (job)

Job Yes

Disk I/O count during the elapsed time - synchronous

I/O (job)

Job Yes

Disk I/O count during the elapsed time (job) Job Yes

Elapsed time Job Yes

End severity Job Yes

End status Job Yes

Exit key Job Yes

Function name Initial thread No

Function type Initial thread No

Group profile name Initial thread Conditional; reason 2

Group profile name - supplemental Initial thread Conditional; reason 2

Inquiry message reply Job Yes

Interactive response time - total during the elapsed time Job Yes

Interactive transactions - count during the elapsed time Job Yes

Internal job identifier Job Yes

Job accounting code Job Conditional; reason 1

Job date Job Yes

Job description library name Job Yes

Job description name Job Yes

Job end reason Job Yes

Job local time Job Yes

Job log pending Job Yes

Job message queue full action Job Yes

Job message queue maximum size Job Yes

Job name Job Yes

Job number Job Yes

Job queue library name Job Conditional; reason 3

Job queue name Job Conditional; reason 3

Job queue priority Job Yes

Job status Job Yes

Job subtype Job Yes

Job switches Job Conditional; reason 4

Job type Job Yes

Work Management APIs 205

Attribute Scope and Thread Safety

Attribute Scope

Threadsafe Access

Job type - enhanced Job Yes

Job user identity Job Yes

Job user identity setting Job Yes

Language ID Job Yes

Length of current SQL statement Job No

Lock wait time - time during the elapsed time Job Yes

Logging level Job Yes

Logging of CL programs Job Yes

Logging severity Job Yes

Logging text Job Yes

Maximum number of signals retained Job Yes

Maximum processing unit time Routing step Yes

Maximum temporary storage in kilobytes Routing step Yes

Maximum temporary storage in megabytes Routing step Yes

Maximum threads Job Yes

Memory pool name Job Yes

Message reply Job Yes

Mode name Job Yes

Number of auxiliary I/O requests Job Yes

Number of auxiliary I/O requests, if less than

2,147,483,647

Job Yes

Number of database lock waits Initial thread Yes

Number of interactive transactions Initial thread Yes

Number of internal machine lock waits Initial thread Yes

Number of libraries in SYSLIBL Initial thread Yes

Number of libraries in USRLIBL Initial thread Yes

Number of nondatabase lock waits Initial thread Yes

Number of product libraries Initial thread Yes

Number of signal monitors Job Yes

Number of SQL open cursors Job No

Object library for SQL cursor Job No

Object name for SQL cursor Job No

Object type for SQL cursor Job No

Offset to current SQL statement Job No

Offset to SQL open cursor data Job No

Offset to signal monitor data Job Yes

Output queue library name Job Conditional; reason 3

Output queue name Job Conditional; reason 3

Output queue priority Job Yes

Page fault count during the elapsed time (job) Job Yes

206 iSeries: Work Management APIs

Attribute Scope and Thread Safety

Attribute Scope

Threadsafe Access

Pending signal set Job Yes

Process ID number Job Yes

Print key format Job Yes

Print text Job Conditional; reason 3

Printer device name Job Conditional; reason 3

Processing unit time used - total for the job Job Yes

Processing unit time used for database - total for the job Job Yes

Processing unit time used, if less than 2,147,483,647

milliseconds

Job Yes

Processing unit used - percent used during the elapsed

time (job)

Job Yes

Processing unit used - time during the elapsed time

(job)

Job Yes

Processing unit used for database - percent used during

the elapsed time (job)

Job Yes

Processing unit used for database - time during the

elapsed time (job)

Job Yes

Product libraries Initial thread Yes

Product return code Job Yes

Program return code Job No

Purge Job Yes

Relational Database name Job No

Response time total Initial thread Yes

Run priority (job) Job Yes

Server mode for Structured Query Language Job No

Server type Job Conditional; reason 3

Signal action Job Yes

Signal blocking mask Initial thread Yes

Signal monitor data Job Yes

Signal number Job Yes

Signal status Job Yes

Signed-on job Job Yes

Size of SQL open cursor data Job No

Sort sequence Job Conditional; reason 3

Sort sequence library Job Conditional; reason 3

Special environment Job Yes

Spooled file action Job Yes

SQL cursor name Job No

SQL open cursor data Job No

SQL statement library name Job No

SQL statement object name Job No

Work Management APIs 207

Attribute Scope and Thread Safety

Attribute Scope

Threadsafe Access

SQL statement object type Job No

SQL statement name Job No

Status message handling Job Yes

Status of current SQL statement Job No

Status of job on the job queue Job Yes

Submitter’s job name Job Yes

Submitter’s job number Job Yes

Submitter’s message queue library name Job Yes

Submitter’s message queue name Job Yes

Submitter’s user name Job Yes

Subsystem description library name Job Yes

Subsystem description name Job Yes

System library list Initial thread Yes

System pool identifier Job Yes

Temporary storage used in kilobytes Job Yes

Temporary storage used in megabytes Job Yes

Thread count Job Yes

Time separator Job Yes

Time slice Job Conditional; reason 4

Time-slice end pool Job Yes

Time spent on database lock waits Initial thread Yes

Time spent on internal machine lock waits Initial thread Yes

Time spent on nondatabase lock waits Initial thread Yes

Time zone current abbreviated name Job Yes

Time zone current full name Job Yes

Time zone current message identifier Job Yes

Time zone current offset Job Yes

Time zone Daylight Saving Time indicator Job Yes

Time zone description name Job Yes

Time zone message file library Job Yes

Time zone message file name Job Yes

Unit of work ID Job Conditional; reason 5

User library list Initial thread Yes

User name Job Yes

User return code Job

N/A; do not use

208 iSeries: Work Management APIs

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C20 E Error found by program &1.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C54 E Job &3/&2/&1 currently not available.

CPF3C55 E Job &3/&2/&1 does not exist.

CPF3C57 E Not authorized to retrieve job information.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

CPF9820 E Not authorized to use library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V1R3

 Top | “Work Management APIs,” on page 1 | APIs by category

Work Management APIs 209

#TOP_OF_PAGE
aplist.htm

Retrieve Job Locks (QWCRJBLK) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format of receiver information

Input Char(8)

4 Job or thread identification information

Input Char(*)

5 Format of job or thread identification information

Input Char(8)

6 Error code

I/O Char(*)
 Optional Parameter Group:

7 Lock filters

Input Char(*)

8 Format of lock filters

Input Char(8)
 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Job Locks (QWCRJBLK) API generates a list of objects that have been locked or have lower

level locks by the job or thread that is specified in the job or thread identification information input

parameter.

Authorities and Locks

Job Authority

The API must be called from within the job for which the information is being retrieved, or the

caller of the API must be running under a user profile that is the same as the job user identity of

the job for which the information is being retrieved. Otherwise, the caller of the API must be

running under a user profile that has job control (*JOBCTL) special authority.

 The job user identity is the name of the user profile by which a job is known to other jobs. It is

described in more detail in the Work Management

book on the V5R1 Supplemental Manuals Web

site.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

210 iSeries: Work Management APIs

The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold. For example, this may mean that

the number of locked object entries available in the receiver variable doesn’t match the value in

the number of locked object entries returned.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of the receiver variable parameter may

be specified up to the size of the receiver variable specified in the user program. If the length of

the receiver variable specified is larger then the allocated size of the receiver variable specified in

the user program, the results are not predictable. The minimum length is 8 bytes.

Format of receiver information

INPUT; CHAR(8)

 The format of the information returned in the receiver variable. The possible format names are:

 JBLK0100 Object level lock format. See “JBLK0100 Format” on page 212 for details on the list of objects that

this job or thread has locked.

JBLK0200 All object lock format. See “JBLK0200 Format” on page 215 for details on the list of objects and

members that this job or thread has locked.

Job or thread identification information

INPUT; CHAR(*)

 The information that is used to identify the job or thread for which the job lock information is to

be returned. See “Format of job or thread identification information” on page 220 for details.

Format of job or thread identification information

INPUT; CHAR(8)

 The format of the job or thread identification information. The possible format names are:

 JIDF0100 This format is used to retrieve the locks that a job and threads are holding or waiting to hold. See

“JIDF0100 Format” on page 221 for details on the job or thread identification information.

JIDF0200 This format is used to retrieve the locks that a specific thread is holding or waiting to hold. See

“JIDF0200 Format.” on page 221 for details on the job or thread identification information.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group

Lock filters

INPUT;CHAR(*)

 Filters used for the lock information that is returned. See the “Lock filter format” on page 218 for

further information.

Format of lock filters

INPUT; CHAR(8)

Work Management APIs 211

error.htm#HDRERRCOD
error.htm#HDRERRCOD

The format of the lock filters used on the returned data. The possible format name is:

 JBFL0100 Lock filter format. See “JBFL0100 Format” on page 219 for details on the filters contained in this

format.

JBLK0100 Format

This format is used to return only OS/400 external objects that are locked.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of locked object entries available

12 C BINARY(4) Offset to list of locked objects

16 10 BINARY(4) Number of locked object entries returned

20 14 BINARY(4) Length of locked object entry

24 18 * Reserved

These fields repeat, in

the order listed.

CHAR(10) Object name

CHAR(10) Object library name

CHAR(10) Object type

CHAR(10) Extended object attributes

CHAR(10) Lock state

CHAR(2) Reserved

BINARY(4) Lock status

BINARY(4) Member locks

BINARY(4) Lock count

CHAR(1) Lock scope

CHAR(3) Reserved

CHAR(8) Thread identifier

BINARY(4)

UNSIGNED

Thread handle

CHAR(20) Lock space identifier

CHAR(10) Object ASP name

CHAR(10) Object library ASP name

BINARY(4) Object ASP number

BINARY(4) Object library ASP number

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned. Only complete entries are returned.

212 iSeries: Work Management APIs

Extended object attributes. The extended attributes of an object. Extended attributes further describe the

object. For example, an object type of *PGM may have a value of RPG (RPG program) or CLP (CL

program). This field will be blank if there is no extended attribute associated with the object type.

Length of locked object entry. The length of each locked object entry.

Lock count. The number of identical locks on this entity.

Lock scope. The scope of the lock. The lock may be a job scope lock, a thread scope lock, or a lock space

scope lock. Lower level locks are returned and can occur when a member of a file is locked, but the file

itself is not locked. The possible values are:

 Blank The object is not locked, but there are locks on lower level objects.

0 Job scope.

1 Thread scope.

2 Lock space scope.

Lock space identifier. When the lock scope field indicates a lock space scope lock, this field contains the

identifier of the lock space for which the lock is being waited on. Otherwise, this field is blank.

Lock state. The lock condition for the lock request. Lower level locks are returned and can occur when a

member of a file is locked but the file itself is not locked. The possible values are:

 Blank The object is not locked but there are locks on lower level objects.

*SHRRD Lock shared for read.

*SHRUPD Lock shared for update.

*SHRNUP Lock shared, no update.

*EXCLRD Lock exclusive, read allowed.

*EXCL Lock exclusive, no read allowed.

Lock status. The status of the lock request. Lower level locks are returned and can occur when a member

of a file is locked but the file itself is not locked. Possible values are:

 0 The object is not locked but there are locks on lower level objects.

1 The lock on this object currently is held by the job or thread.

2 The job or thread is waiting to get the lock on this object (synchronous).

3 The job or thread has a lock request outstanding for this object (asynchronous). The lock may be a

single request or part of a multiple lock request for which some other object specified in the

request has been identified as unavailable.

Member locks. The number of member locks for a database file. If the object is not a database file, 0 is

returned.

Number of locked object entries available. The number of locked object entries that are held by this job

and specified threads.

Number of locked object entries returned. The number of locked object entries that are returned.

Object ASP name. The name of the auxiliary storage pool (ASP) containing the object that is locked.

The following special values also may be returned:

 *SYSBAS The object is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Work Management APIs 213

Object ASP number. The numeric identifier of the ASP containing the locked object. The following

values may be returned:

 1 The object is located in the system ASP.

2-32 The object is located in a basic user ASP.

33-255 The object is located in an independent ASP.

-1 The ASP number cannot be determined.

Object library ASP name. The name of the ASP containing the library of the locked object.

The following specials value also may be returned:

 *SYSBAS The object’s library is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Object library ASP number. The numeric identifier of the ASP containing the library of the locked object.

The following values may be returned:

 1 The library is located in the system ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP number cannot be determined.

Object library name. The name of the library containing the locked object.

The following special value also may be returned:

 *N The name of the library cannot be determined.

Object name. The name of the object that is locked.

The following special value also may be returned:

 *N The name of the object cannot be determined.

Object type. The object type. For a list of all the available external OS/400 object types, see the Control

Language (CL) topic.

Offset to list of locked objects. The offset in bytes from the beginning of the receiver variable to the first

entry.

Reserved. An unused field.

Thread handle. A value that addresses a particular thread within a job holding a thread scope lock or the

thread waiting for a lock; otherwise, this is zero. While the thread identifier uniquely identifies the thread

within the job, the thread handle can improve performance when referencing the thread.

Thread identifier. A value that uniquely identifies a thread within a job holding a thread scope lock or

the thread waiting for a lock; otherwise, hexadecimal zeros are returned.

214 iSeries: Work Management APIs

JBLK0200 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of locked object entries available

12 C BINARY(4) Offset to list of locked objects

16 10 BINARY(4) Number of locked object entries returned

20 14 BINARY(4) Length of locked object entry

24 18 * Reserved

These fields repeat, in

the order listed.

BINARY(4) Type of entity

CHAR(30) Extended object name

CHAR(10) Object library name

CHAR(10) Object ASP name

CHAR(10) Object library ASP name

BINARY(4) Object ASP number

BINARY(4) Object library ASP number

CHAR(10) Object type

CHAR(10) Extended object attributes

CHAR(10) Member name

CHAR(1) Member lock type

CHAR(3) Reserved

CHAR(10) Lock state

BINARY(4) Lock status

BINARY(4) Member locks

BINARY(4) Lock count

CHAR(1) Lock scope

CHAR(3) Reserved

BINARY(8)

UNSIGNED

Space location lock offset

CHAR(8) Thread identifier

BINARY(4)

UNSIGNED

Thread handle

CHAR(20) Lock space identifier

CHAR(64) Object lock handle

CHAR(64) Lock request handle

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned. Only complete entries are returned.

Work Management APIs 215

Extended object attributes. The extended attributes of an object. Extended attributes further describe the

object. For example, an object type of *PGM may have a value of RPG (RPG program) or CLP (CL

program). This field will be blank if there is no extended attribute associated with the object type.

Extended object name. The name of the object that is locked. This field will be blank if the name is for

an internal system object or an internal system object space location, and the user does not have *JOBCTL

special authority. If the lock is on a database member then the object name will be the name of the file

that owns the member. If the member lock type is member or access path, then the file that owns the

member may be either a physical file or a logical file. If the member lock type is data, then the file that

owns the member will be a physical file. If the lock is on a lock space then the name will be the lock

space id for that lock space.

The following special value also may be returned:

 *N The name of the object cannot be determined.

Length of locked object entry. The length of each locked object entry.

Lock count. The number of identical locks on this entity.

Lock request handle. A handle to lock request information. Using the Retrieve Lock Request Information

(QWCRLRQI) API and passing in this handle you can retrieve additional information about the program

that requested this lock. A value of hexadecimal zero is returned when additional information cannot be

retrieved. This value is a temporary value that can expire. See the QWCRLRQI API for additional

information.

Lock scope. The scope of the lock. The lock may be a job scope lock, a thread scope lock, or a lock space

scope lock. Lower level locks are returned and can occur when a member of a file is locked but the file

itself is not locked. The possible values are:

 Blank The object is not locked but there are locks on lower level objects.

0 Job scope.

1 Thread scope.

2 Lock space scope.

Lock space identifier. When the lock scope field indicates a lock space scope lock, this field will contain

the identifier of the lock space for which the lock is being waited on. Otherwise, this field is blank.

Lock state. The lock condition for the lock request. Lower level locks are returned and can occur when a

member of a file is locked but the file itself is not locked. Possible other values are:

 Blank The object is not locked, but there are locks on lower level objects.

*SHRRD Lock shared for read.

*SHRUPD Lock shared for update.

*SHRNUP Lock shared, no update.

*EXCLRD Lock exclusive, read allowed.

*EXCL Lock exclusive, no read allowed.

Lock status. The status of the lock request. Possible values are:

 0 The object is not locked but there are locks on lower level objects.

1 The lock on this object currently is held by the job or thread.

2 The job or thread is waiting to get the lock on this object (synchronous).

216 iSeries: Work Management APIs

3 The job or thread has a lock request outstanding for this object (asynchronous). The lock may be a

single request or part of a multiple lock request for which some other object specified in the

request has been identified as unavailable.

Member locks. The number of member locks for a database file. If the object is not a database file, 0 is

returned.

Member lock type. If the lock is on a member then this field indicates the type of member lock,

otherwise it will be blank. Possible values are:

 Blank The object type is not a member

0 The lock is a member lock

1 The lock is a data lock.

2 The lock is an access path lock.

Member name. The name of the member that has a lock held or waiting on it. If the type of entity is not

a member object then this field is blank. The following special value also can be returned:

 *N The name of the object cannot be determined.

Number of locked object entries available. The number of locked object entries that are held by this job

and specified threads.

Number of locked object entries returned. The number of locked object entries that are returned.

Object ASP name. The name of the Auxiliary Storage Pool (ASP) that contains the object that is locked.

The following special values also may be returned:

 *SYSBAS The object is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Object ASP number. The numeric identifier of the ASP containing the locked object. The following

values may be returned:

 1 The object is located in the system ASP.

2-32 The object is located in a basic user ASP.

33-255 The object is located in an independent ASP.

-1 The ASP number cannot be determined.

Object library ASP name. The name of the ASP containing the library of the locked object.

The following specials value also may be returned:

 *SYSBAS The object’s library is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Object library ASP number. The numeric identifier of the ASP containing the library of the locked object.

The following values may be returned:

 1 The library is located in the system ASP.

2-32 The library is located in a basic user ASP.

Work Management APIs 217

33-255 The library is located in an independent ASP.

-1 The ASP number cannot be determined.

Object library name. The name of the library containing the locked object. This field will be blank if the

type of entity is an internal system object or is an internal system object space location.

The following special value also may be returned:

 *N The name of the library cannot be determined.

Object lock handle. An identifier that can be input to Retrieve Lock Information (QWCRLCKI) API to

find additional information about other holders of locks on this object. Hexadecimal zeros are returned

when additional information cannot be retrieved. The object lock handle is a temporary value that can

expire. See the QWCRLCKI API for additional information.

Object type. The object type. For a list of all the available external OS/400 object types, see External

object types in the Control Language (CL) topic. For a list of all internal system object types, see Internal

object types. Note that if the lock is on a database member the object type will be *FILE.

Offset to list of locked objects. The offset in bytes from the beginning of the receiver variable to the first

entry.

Reserved. An unused field.

Space location lock offset. A value in bytes to the location in the space that is locked. For objects that are

not space location locks this value will be zero.

Thread handle. A value which addresses a particular thread within a job holding a thread scope lock or

the thread waiting for a lock, otherwise this is zero. While the thread identifier uniquely identifies the

thread within the job, the thread handle can improve performance when referencing the thread.

Thread identifier. A value which uniquely identifies a thread within a job holding a thread scope lock or

the thread waiting for a lock; otherwise, hexadecimal zeros are returned.

Type of entity. This is a value that will identify the type of entity for which the lock information is

returned.

The following values may be returned:

 1 OS/400 external object

2 Member object

3 Internal system object

4 OS/400 external object space location

5 Internal system object space location

6 Lock space object

999 Unknown type

Lock filter format

The format of the lock filter used on the returned lock information.

218 iSeries: Work Management APIs

conObject.htm
conObject.htm

JBFL0100 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Filter size

4 4 BINARY(4) Filter lock state

8 8 BINARY(4) Filter lock scope

12 C BINARY(4) Filter lock status

16 10 CHAR(1) Include OS/400 external objects flag

17 11 CHAR(1) Include member objects flag

18 12 CHAR(1) Include internal system objects flag

19 13 CHAR(1) Include OS/400 external object space locations flag

20 14 CHAR(1) Include internal system object space locations flag

21 15 CHAR(1) Include lock space objects flag

22 16 CHAR(1) Include unknown entities flag

23 17 CHAR(10) Filter object name

33 21 CHAR(10) Filter object library name

43 2B CHAR(10) Filter object library ASP name

Field Descriptions

Filter lock scope: This value is used to filter information that is returned so that it contains only

information about locks that have a certain lock scope.

 0 Do not filter on lock scope

1 Return only the job scope locks

2 Return only the thread scope locks

3 Return only the lock space scope locks

Default Do not filter on lock scope.

Filter lock state: This value is used to filter information that is returned so that it contains only

information about locks that have a certain lock state.

 0 Do not filter on lock state

1 Return only the shared locks

2 Return only the exclusive locks

Default Do not filter on lock state.

Filter lock status: This value is used to filter information that is returned so that it contains only

information about locks that have a certain lock status.

 0 Do not filter on lock status

1 Return only locks with a status of held

2 Return only locks with a status of waiting

3 Return only locks with a status of requested.

Default Do not filter on lock status.

Work Management APIs 219

Filter object library ASP name: The name of the library’s Auxiliary Storage Pool (ASP) to be filtered on.

Special value of *SYSBAS can be specified. A blank field will cause no filtering to be done on this field.

The default is not to filter on this field.

Filter object library name: This is the library name to be filtered on. A blank field will cause no filtering

to be done on this field. The default is not to filter on this field.

Filter object name: Only locks on the specified object will be returned. In the case of database files, locks

on members of the file may also be returned. A blank field will cause no filtering to be done on this field.

The default is not to filter on this field.

Filter size: The size of the filter information passed. Valid values are:

 4 No filtering will be performed. The default values will be used for each filter.

53 All filters will be required

Include internal system objects flag: A value of 1 in this field allows internal system object locks to be

returned. A value of 0 will cause these values to be excluded from the return data. Note this field is only

valid for the JBLK0200 format. The default is to exclude internal system objects.

Include internal system object space locations flag: A value of 1 in this field allows internal system

object space location locks to be returned A value of 0 will cause these values to be excluded from the

return data. Note this field is only valid for the JBLK0200 format. The default is to exclude internal

system object space locations.

Include lock space objects flag: A value of 1 in this field will allow lock space objects locks to be

returned. A value of 0 will cause these values to be excluded from the return data. Note this field is only

valid for the JBLK0200 format. The default is to include lock space objects.

Include member objects flag: A value of 1 in this field will allow member objects locks to be returned. A

value of 0 will cause these values to be excluded from the return data. Note this field is only valid for the

JBLK0200 format. The default is to include member objects.

Include OS/400 external objects flag: A value of 1 in this field will allow OS/400 external object locks to

be returned. A value of 0 will cause these objects to be excluded from the return data. Note this field is

only valid for the JBLK0200 format. The default is to include OS/400 external objects.

Include OS/400 external object space locations flag: A value of 1 in this field will allow OS/400 external

space locations locks to be returned. A value of 0 will cause these values to be excluded from the return

data. Note this field is only valid for the JBLK0200 format. The default is exclude OS/400 external object

space locations.

Include Unknown types flag: A value of 1 in this field allows locks that are of an unknown entity type

to be returned. A value of 0 causes these values to be excluded from the return data. This field is valid

for the JBLK0200 format only. The default is exclude unknown types.

Format of job or thread identification information

The format of the information needed to identify the job or thread whose locked object information is

returned.

220 iSeries: Work Management APIs

JIDF0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4) Thread indicator

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this

identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks.

With this parameter, the system can locate the job more quickly than with the job name.

Job name. A specific job name or one of the following special values:

 * The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread identifier. A value that uniquely identifies a thread within a job. A valid thread identifier must be

specified.

Thread indicator. The value that is used to specify the thread within the job for which information is to

be retrieved. The following values are supported:

 0 Information should be retrieved for the thread specified in the thread identifier field.

1 Information should be retrieved for the thread in which this program is running currently.

2 Information should be retrieved for the initial thread of the identified job.

3 Information should be retrieved for the job and its associated threads.

Note: For all supported values, the combination of the internal job identifier, job name, job number, and

user name fields must identify the job containing the thread or threads.

User name. A specific user profile name, or blanks when the job name specified is a special value.

JIDF0200 Format.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

Work Management APIs 221

Offset

Type Field Dec Hex

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4),

UNSIGNED

Thread handle

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this

identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks.

With this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

 * The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread handle. An unused field on this API. This field must contain hex zeros.

Thread identifier. A value that uniquely identifies a thread within a job. A valid thread identifier must be

specified.

User name. A specific user profile name, or blanks when the job name specified is a special value.

Error Messages

 Message ID Error Message Text

CPF136A E Job &3/&2/&1 not active.

CPF18BF E Thread &1 not found.

CPF24B4 E Severe error while addressing parameter list.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C55 E Job &3/&2/&1 does not exist.

CPF3C57 E Not authorized to retrieve job information.

CPF3C58 E Job name specified is not valid.

222 iSeries: Work Management APIs

Message ID Error Message Text

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3C90 E Literal value cannot be changed.

API introduced: V5R1

 Top | “Work Management APIs,” on page 1 | APIs by category

Retrieve Job Queue Information (QSPRJOBQ) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format name

Input Char(8)

4 Qualified job queue name

Input Char(20)

5 Error Code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Job Queue Information (QSPRJOBQ) API retrieves information associated with a specified

job queue.

Authorities and Locks

Job Queue Library Authority

The caller needs *EXECUTE authority to the job queue library.

Job Queue Authority

The caller needs one of the following:

v *READ authority to the job queue.

v Job control special authority (*JOBCTL) if the job queue is operator controlled (OPRCTL(*YES)).

v Spool control special authority (*SPLCTL).

Job Queue Lock

This API gets an *EXCLRD lock on the job queue.

Subsystem Description Lock

This API gets an *EXCLRD lock on the subsystem description.

 This API does not check the caller’s authority to the subsystem description or subsystem description

library when retrieving the subsystem description information.

Work Management APIs 223

#TOP
aplist.htm

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the information requested.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided by the receiver variable parameter. The amount of

data returned is truncated if it is too small. A length of less than 8 is not valid.

Format name

INPUT; CHAR(8)

 The content and format of the queue information being returned. The valid format names are:

 JOBQ0100 Basic job queue information. See “JOBQ0100 Format” to view the information returned for this

format.

JOBQ0200 Detailed job queue information. See “JOBQ0200 Format” on page 225 to view the information

returned for this format.

Qualified job queue name

INPUT; CHAR(20)

 The name of the job queue for which information is returned. The first 10 characters contain the

queue name, and the second 10 characters contain the name of the library in which the queue

resides.

The following special values are supported for the library name:

 *LIBL The library list used to locate the job queue.

*CURLIB The current library for the job is used to locate the job queue.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

JOBQ0100 Format

The following table shows the information returned for the JOBQ0100 format. For more details about the

fields in the following table, see “Field Descriptions” on page 226.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Job queue name

18 12 CHAR(10) Job queue library name

28 1C CHAR(10) Operator controlled

38 26 CHAR(10) Authority to check

48 30 BINARY(4) Number of jobs

52 34 CHAR(10) Job queue status

62 3E CHAR(10) Subsystem name

224 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

72 48 CHAR(50) Text description

122 7A CHAR(10) Subsystem library name

132 84 BINARY(4) Sequence number

136 88 BINARY(4) Maximum active

140 8C BINARY(4) Current active

JOBQ0200 Format

The following table shows the information returned for the JOBQ0200 format. For more details about the

fields in the following table see, “Field Descriptions” on page 226.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Job queue name

18 12 CHAR(10) Job queue library name

28 1C CHAR(10) Operator controlled

38 26 CHAR(10) Authority to check

48 30 BINARY(4) Number of jobs

52 34 CHAR(10) Job queue status

62 3E CHAR(10) Subsystem name

72 48 CHAR(10) Subsystem library name

82 52 CHAR(50) Text description

132 84 BINARY(4) Sequence Number

136 88 BINARY(4) Maximum active

140 8C BINARY(4) Current active

144 90 BINARY(4) Maximum active jobs with priority 1

148 94 BINARY(4) Maximum active jobs with priority 2

152 98 BINARY(4) Maximum active jobs with priority 3

156 9C BINARY(4) Maximum active jobs with priority 4

160 A0 BINARY(4) Maximum active jobs with priority 5

164 A4 BINARY(4) Maximum active jobs with priority 6

168 A8 BINARY(4) Maximum active jobs with priority 7

172 AC BINARY(4) Maximum active jobs with priority 8

176 B0 BINARY(4) Maximum active jobs with priority 9

180 B4 BINARY(4) Active jobs with priority 0

184 B8 BINARY(4) Active jobs with priority 1

188 BC BINARY(4) Active jobs with priority 2

192 C0 BINARY(4) Active jobs with priority 3

196 C4 BINARY(4) Active jobs with priority 4

Work Management APIs 225

Offset

Type Field Dec Hex

200 C8 BINARY(4) Active jobs with priority 5

204 CC BINARY(4) Active jobs with priority 6

208 D0 BINARY(4) Active jobs with priority 7

212 D4 BINARY(4) Active jobs with priority 8

216 D8 BINARY(4) Active jobs with priority 9

220 DC BINARY(4) Released jobs on queue with priority 0

224 E0 BINARY(4) Released jobs on queue with priority 1

228 E4 BINARY(4) Released jobs on queue with priority 2

232 E8 BINARY(4) Released jobs on queue with priority 3

236 EC BINARY(4) Released jobs on queue with priority 4

240 F0 BINARY(4) Released jobs on queue with priority 5

244 F4 BINARY(4) Released jobs on queue with priority 6

248 F8 BINARY(4) Released jobs on queue with priority 7

252 FC BINARY(4) Released jobs on queue with priority 8

256 100 BINARY(4) Released jobs on queue with priority 9

260 104 BINARY(4) Scheduled jobs on queue with priority 0

264 108 BINARY(4) Scheduled jobs on queue with priority 1

268 10C BINARY(4) Scheduled jobs on queue with priority 2

272 110 BINARY(4) Scheduled jobs on queue with priority 3

276 114 BINARY(4) Scheduled jobs on queue with priority 4

280 118 BINARY(4) Scheduled jobs on queue with priority 5

284 11C BINARY(4) Scheduled jobs on queue with priority 6

288 120 BINARY(4) Scheduled jobs on queue with priority 7

292 124 BINARY(4) Scheduled jobs on queue with priority 8

296 128 BINARY(4) Scheduled jobs on queue with priority 9

300 12C BINARY(4) Held jobs on queue with priority 0

304 130 BINARY(4) Held jobs on queue with priority 1

308 134 BINARY(4) Held jobs on queue with priority 2

312 138 BINARY(4) Held jobs on queue with priority 3

316 13C BINARY(4) Held jobs on queue with priority 4

320 140 BINARY(4) Held jobs on queue with priority 5

324 144 BINARY(4) Held jobs on queue with priority 6

328 148 BINARY(4) Held jobs on queue with priority 7

332 14C BINARY(4) Held jobs on queue with priority 8

336 150 BINARY(4) Held jobs on queue with priority 9

Field Descriptions

Active jobs with priority 0 through 9. The number of jobs that are active for each priority level (0

through 9). If the subsystem name and subsystem library name are blank, then this field is 0.

226 iSeries: Work Management APIs

Authority to check. Whether the user must be the owner of the queue in order to control the queue by

holding or releasing the queue. The possible values are:

 *OWNER Only the owner of the job queue can control the queue.

*DTAAUT Any user with *READ, *ADD, or *DELETE authority to the job queue can control the queue.

Bytes available. Total format data length.

Bytes returned. Length of the data returned.

Job queue library name. The name of the library that contains the job queue.

Job queue name. The name of the job queue.

Job queue status. The status of the job queue. The status may be one of the following values:

 RELEASED The queue is released.

HELD The queue is held.

Maximum active. The maximum number of jobs that can be active at the same time through this job

queue entry. A -1 in this field indicates that the value is *NOMAX.

Maximum active jobs with priority 1 through 9. The maximum number of jobs that can be active at the

same time for each priority level (1 through 9). A -1 in this field indicates that the value is *NOMAX. If

the subsystem name and subsystem library name are blank, then this field is 0.

Number of jobs. The number of jobs in the queue.

Operator controlled. Whether a user who has job control authority is allowed to control this job queue

and manage the jobs on the queue.

 *YES Users with job control authority can control the queue and manage the jobs on the queue.

*NO This queue and its jobs cannot be controlled by users with job control authority unless they also

have other special authority.

Released jobs on queue with priority 0 through 9. The number of jobs currently sitting on the job queue

in *RELEASED status for each priority level (0 through 9).

Scheduled jobs on queue with priority 0 through 9. The number of jobs currently sitting on the job

queue in *SCHEDULED status for each priority level (0 through 9).

Sequence number. The job queue entry sequence number. The subsystem uses this number to determine

the order in which job queues are processed. Jobs from the queue with the lowest sequence number are

processed first.

Subsystem name. The name of the subsystem that can receive jobs from this job queue. If there is no

name, then this queue is not associated with an active subsystem, and no job can be processed.

Subsystem library name. The library in which the subsystem description resides. If there is no name,

then this queue is not associated with with an active subsystem and no job can be processed.

Text description. Text that briefly describes the job queue.

 *BLANK There is no text description of the job queue.

Work Management APIs 227

Error Messages

 Message ID Error Message Text

CPF1608 E Subsystem description &1 not found.

CPF2207 E Not authorized to use object &1 in library &3 type *&2.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3307 E Job queue &1 in &2 not found.

CPF3330 E Necessary resource not available.

CPF8121 E &8 damage on job queue &4 in library &9.

CPF8122 E &8 damage on library &4.

CPF9820 E Not authorized to use library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “Work Management APIs,” on page 1 | APIs by category

Retrieve Job Status (QWCRJBST) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Job identifier

Input Char(*)

4 Format of job identifier

Input Char(8)

5 Error Code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Job Status (QWCRJBST) API returns status and job identification information about the job

that is identified by the job identifier parameter. The QWCRJBST API retrieves this information faster

than other APIs. It should be considered for use in performance critical applications where the returned

information is required.

228 iSeries: Work Management APIs

#TOP
aplist.htm

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Job identifier

INPUT CHAR(*)

 The identifier of the job for which the information is to be retrieved. The job can be identified in

one of three ways: job number only, internal job number, or fully qualified job name. The next

parameter specifies which format of job identifier is being used.

Format of job identifier

INPUT CHAR(8)

 The format of the job identifier being provided. The format names that can be used are as

follows:

 JOBS0100 The job identifier is a 6-character job number. It is possible that more than one job may have the

same job number. This API returns the requested information for only the first job that has the

specified job number. No indication is returned to show if more than one job has the same job

number.

JOBS0200 The job identifier is a 16-character internal job number. The internal job number is obtained

through the List Job (QUSLJOB) API or as output to this API.

JOBS0300 The job identifier is a 26-character fully qualified job name.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format of Returned Information

The information returned from this API has the following format:

 Offset

Type Field Dec Hex

0 0 Binary(4) Bytes returned

4 4 Binary(4) Bytes available

8 8 CHAR(10) Job status

18 12 CHAR(16) Internal job identifier

34 22 CHAR(26) Fully qualified job name

Work Management APIs 229

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Field Description

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Fully qualified job name. The fully qualified job name consisting of three parts. The first 10 characters

contain the job name. The next 10 characters contain the user name. The last 6 characters contain the job

number.

Internal job identifier. A value sent to other APIs to speed the process of locating the job on the system.

Only APIs described in this book use this identifier. The identifier is not valid following an initial

program load (IPL). If you attempt to use it after an IPL, an exception occurs.

Job status. Possible values that can be returned for job status are as follows:

 *ACTIVE The job has started, and it can use system resources (processing unit, main storage, and so on).

This does not guarantee that the job is currently running, however. For example, an active job may

be in one of the following states where it cannot use system resources:

v The Hold Job (HLDJOB) command holds the job; the Release Job (RLSJOB) command allows the

job to run again.

v The Transfer Group Job (TFRGRPJOB) command or the Transfer Secondary Job (TFRSECJOB)

command suspends the job. When control returns to the job, the job can run again.

v The job is disconnected using the Disconnect Job (DSCJOB) command. When the interactive

user signs back on, thereby connecting back into the job, the job can run again.

v The job is waiting for any reason. For example, with an inquiry message, the job can start

running again when it receives the reply.

*JOBQ The job currently is on a job queue. The job may have been previously active and was placed back

on the job queue because of the Transfer Job (TFRJOB) command or the Transfer Batch Job

(TFRBCHJOB) command, or the job was never active because it was just submitted.

*OUTQ The job has completed running and has spooled output that has not yet printed.

*ERROR Either a job with the specified job identifier does not exist, or an error was encountered while

attempting to determine its status.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C20 E Error found by program &1.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C54 E Job &3/&2/&1 currently not available.

CPF3C55 E Job &3/&2/&1 does not exist.

230 iSeries: Work Management APIs

Message ID Error Message Text

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R6

 Top | “Work Management APIs,” on page 1 | APIs by category

Retrieve Lock Information (QWCRLCKI) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format name

Input Char(8)

4 Object identification

Input Char(*)

5 Object identification format

Input Char(8)

6 Number of key fields to be returned

Input Binary(4)

7 Key of fields to be returned

Input Array(*) of Binary(4)

8 Filters

Input Char(*)

9 Filter format

Input Char(8)

10 Error code

I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Lock Information (QWCRLCKI) API generates a list of information about lock holders of the

item specified.

Authorities and Locks

Object Library Authority

*EXECUTE

Work Management APIs 231

#TOP
aplist.htm

Object Library ASP Device Authority

*EXECUTE

 Note: If the user does not have *EXECUTE authority to the object’s library and *EXECUTE authority to

the object library’s ASP device, the user must have *JOBCTL authority

or GUI thread control authority.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold. For example, this may mean that

the number of lock information entries returned in the receiver variable doesn’t match the value

in the number of lock information entries available.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of the receiver variable parameter may

be specified up to the size of the receiver variable specified in the user program. If the length of

the receiver variable specified is larger then the allocated size of the receiver variable specified in

the user program, the results are not predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The name of the format used to retrieve lock information. You can specify this format:

 LCKI0100 Lock Information Format. See “LCKI0100 Format” on page 236 for more information.

Object identification

INPUT; CHAR(*)

 The information that is used to identify the entity that may be locked. See “Format of Object

Identification” on page 233 for more information.

Object identification format

INPUT; CHAR(8)

 The format of the entity identification information. Possible format names are:

 LOBJ0100 Object name. See “LOBJ0100 Format” on page 233 for more information on this format.

LOBJ0200 Object lock handle. See “LOBJ0200 Format” on page 234 for more information on this format.

Number of key fields to be returned

INPUT; BINARY(4)

 The number of key fields to be returned in the LCKI0100 format. If the lock holder type returned

is a lock space then the values returned in the key fields will be blank or zero.

Key of fields to be returned.

INPUT; ARRAY(*) of BINARY(4)

 The list of fields returned in the LCKI0100 format. For a list of valid fields, see “Valid Keys” on

page 240.

Filters INPUT;CHAR(*)

232 iSeries: Work Management APIs

Filters used for the lock information that is returned. See the “Filter Format” on page 235 for

further information.

Filter format

INPUT; CHAR(8)

 The format of the lock filter used on the returned data. The possible format name is:

 LKFL0100 See “LKFL0100 Format” on page 235 for details on the filters contained in this format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Object Identification

The formats for the object identification are specified.

LOBJ0100 Format

An external object is specified in this format. See the field descriptions for restrictions that may exist.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Object identification size

4 4 CHAR(10) Object name specified

14 E CHAR(10) Object library name specified

24 18 CHAR(10) Object library ASP name specified

34 22 CHAR(10) Object type specified

44 2C CHAR(10) Member name

54 36 CHAR(2) Reserved

56 38 BINARY(4) Record lock indicator

60 3C UNSIGNED

BINARY(4)

Relative record number

Field Descriptions

Member name. Lock information is retrieved on the specified member of a database file. This is valid

only when a database file has been specified for object parameters. For other than database files, use

*NONE. Special values used are:

 *NONE No member locks are retrieved, but file level locks are retrieved. If the qualified object name is not

a database file, use this value.

Object identification size. The amount of data provided for the LOBJ0100 format. This field must be set

to 64.

Object library ASP name specified. The name of the auxiliary storage pool (ASP) device that contains

the object’s library. This parameter must be * if the library portion of the qualified object name is

*CURLIB or *LIBL. Special values used are:

Work Management APIs 233

error.htm#HDRERRCOD
error.htm#HDRERRCOD

* The current thread’s library name space will be searched.

*SYSBAS The system ASP and defined basic user ASPs will be searched.

Object library name specified. The name of the library where the object is located. You can use these

special values for the library name:

 *CURLIB The current library is used to locate the object. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the object.

Object name specified. The name of the external OS/400 object whose lock information entries are to be

placed in the list.

Object type specified. The type of OS/400 object. For a list of all the available external OS/400 object

types, see the Control Language (CL) topic.

Record lock indicator. The indicator that controls the retrieval of record locks that may exist if the object

specified is a file and member. If the object specified is not a database file and member or the special

value of *ALL is specified for member, then the value 0 must be used for this field. One of the following

values are required for this field.

 0 No record lock information is retrieved.

1 The record lock information in the specified file and member will be returned.

Relative record number. The record number in the specified database file and member for which lock

information is to be returned. If the object specified is not a database file and member, the value 0 must

be used for this field. The following special value is allowed:

 0 Record lock information for all records in the member should be returned.

Reserved. This field must be set to hexadecimal zeros.

LOBJ0200 Format

This format is used to find locks where a handle was passed that has been returned in a previous lock

call to the Retrieve Job Locks “Retrieve Job Locks (QWCRJBLK) API” on page 210 API. This call must

have been made in the same thread for the handle to be valid. The following fields are used if LOBJ0200

input format is specified.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Object handle size

4 4 CHAR(64) Object lock handle

Field Descriptions

Object lock handle. A value that identifies the object that is stored from a previous API call. The handle

is a temporary value. A storage limitation will allow a thread to create up to 1 million valid handles.

Once the storage limit has been reached the oldest handle information will be overwritten. This can cause

a handle to no longer be valid.

234 iSeries: Work Management APIs

Object identification size. The amount of data provided for the LOBJ0200 format. This field must be set

to 68.

Filter Format

The format of the lock filter used on the returned lock information.

LKFL0100 Format

 Offset

Type Field Dec Hex

0 0 BINARY(4) Filter size

4 4 BINARY(4) Filter lock state

8 8 BINARY(4) Filter lock scope

12 C BINARY(4) Filter lock status

16 10 CHAR(1) Filter lock holder type

17 11 CHAR(1) Filter member lock type

Field Descriptions

Filter lock holder type. Filters information that is returned so it contains only information about a type

of lock holder.

 0 Do not filter on holder type.

1 Return only locks with a holder type of job or thread.

2 Return only locks with a holder type of lock space.

Default Do not filter on holder type.

Filter lock scope. Filters information that is returned so it contains only information about locks that

have a certain lock scope.

 0 Do not filter on lock scope.

1 Return only the job scope locks.

2 Return only the thread scope locks.

3 Return only the lock space scope locks.

Default Do not filter on lock scope.

Filter lock state. Filters information that is returned so it contains only information about locks that have

a certain lock state.

 0 Do not filter on lock state.

1 Return only the shared locks.

2 Return only the exclusive locks.

Default Do not filter on lock state.

Filter lock status. Filters information that is returned so it contains only information about locks that

have a certain lock status.

 0 Do not filter on lock status.

1 Return only locks with a status of held.

2 Return only locks with a status of waiting.

Work Management APIs 235

3 Return only locks with a status of requested.

Default Do not filter on lock status.

Filter member lock type. Filters information that is returned so it contains only information about locks

that have a certain member lock type.

 0 Do not filter on member lock type.

1 Return only locks with member lock type of member.

2 Return only locks with member lock type of data.

3 Return only locks with member lock type of access path.

Default Do not filter on member lock type.

Filter size. The size of the filter information passed. Valid values are:

 4 No filtering will be performed.

18 All filters will be required.

Lock Information Format

The formats for the lock information.

LCKI0100 Format

Header Section

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Type of entity

12 C CHAR(30) Extended object name returned

42 2A CHAR(10) Object library name returned

52 34 CHAR(10) Object ASP name returned

62 3E CHAR(10) Object library ASP name returned

72 48 BINARY(4) Object ASP number returned

76 4C BINARY(4) Object library ASP number returned

80 50 CHAR(10) Object type returned

90 5A CHAR(10) Extended object attribute returned

100 64 BINARY(4) Number of lock information entries available

104 68 BINARY(4) Offset to list of lock information entries

108 6C BINARY(4) Number of lock information entries returned

112 70 BINARY(4) Length of lock information entry

236 iSeries: Work Management APIs

Lock Information Entry Format

 Offset

Type Field Dec Hex

These fields repeat, in

the order listed.

CHAR(10) Lock state

CHAR(2) Reserved

BINARY(4) Lock status

CHAR(1) Lock scope

CHAR(3) Reserved

CHAR(20) Lock space identifier

CHAR(64) Lock request handle

BINARY(4) Lock count

CHAR(10) Member name returned

CHAR(1) Member lock type

CHAR(1) Reserved

BINARY(4) Relative record number

BINARY(4) Displacement from lock information to holder identification

BINARY(4) Displacement from lock information to key information

BINARY(4) Number of keys returned

BINARY(4) Holder type

CHAR(*) Holder identification

Key information format

 Offset

Type Field Dec Hex

These fields repeat, in

the order listed, for

each key selected.

BINARY(4) Length of field information returned

BINARY(4) Key field

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned. Only complete lock information entries are

returned.

Data. The data returned for the key field.

Work Management APIs 237

Displacement from lock information to holder identification. The byte displacement from the start of

the current lock information entry to the holder identification.

Displacement from lock information to key information. The byte displacement from the start of the

current lock information entry to the key information requested.

Extended object attribute returned. The extended attribute of the object for which the list of locks is

returned, such as a program or a file type. Extended attributes further describe the object. For example,

an object type of *FILE may have an extended object attribute of PHY (physical file), LGL (logical file),

DSP (display file), SAV (save file), and so forth.

Extended object name returned. The name of the object for which the lock information entries are placed

in the list. This field will be blank if the name is for an internal system object or an internal system object

space location, and the user does not have *JOBCTL special authority.

Holder identification. This field contains information about the lock holder. This can be either a qualified

job name as described in “Job Format” on page 241 specifier or a lock space identifier as described in

“Lock Space Format” on page 242 specifier.

Holder type. This value is set to indicate what type of holder is holding or is waiting to hold a lock on

the specified object.

 0 The lock holder is a job or thread. See the “Job Format” on page 241 for more information.

1 The lock holder is a lock space. See the “Lock Space Format” on page 242 for more information.

Key field. The field returned. See “Valid Keys” on page 240 for the list of valid keys.

Length of data. The length of the data returned for the field.

Length of field information returned. The total length of information returned for this field. This value

is used to increment to the next field in the list.

Length of lock information entry. The length of a lock information entry. This value is used to increment

to the next entry.

Lock count. The number of identical locks.

Lock request handle. This value is used to identify a handle to lock request process information. Using

the Retrieve Lock Request Information (QWCRLRQI) API and passing in this handle you can retrieve

additional information about the program that requested this lock. See “Retrieve Lock Request

Information (QWCRLRQI) API” on page 243 for additional information

Lock scope. The scope of the lock. The possible values are:

 0 Job scope

1 Thread scope

2 Lock space scope

Lock space identifier. This field contains a value only when the lock scope value is lock space scope and

the lock is being waited on by a thread. This field will then contain the lock space ID value for which the

lock is being waited on.

Lock state. The lock condition for the lock request. The possible values are:

 *SHRRD Lock shared for read.

238 iSeries: Work Management APIs

*SHRUPD Lock shared for update.

*SHRNUP Lock shared no update.

*EXCLRD Lock exclusive allow read.

*EXCL Lock exclusive no read.

*RECRD Lock is a record shared read lock

*RECUP Lock is a record exclusive update lock.

*RECINT Lock is a record shared internal lock

Lock status. The status of the lock. The lock may be a single request or part of a multiple lock request for

which some other object specified in the request has been identified as unavailable. The possible values

are:

 1 The lock is currently held by the job or thread.

2 The job or thread is waiting for the lock (synchronous).

3 The job or thread has a lock request outstanding for the object (asynchronous).

Member lock type. If the lock is on a member then this field indicates the type of member lock,

otherwise it will be blank. The possible values are:

 Blank The object type is not a member

1 Lock on the member control block

2 Lock on the actual data within the member

3 Lock on the access path used to access a member’s data

Member name returned. The name of the member that lock information is being returned for. Blanks will

be returned if the object is not a member of a database file.

Number of keys returned. The number of keys that were returned.

Number of lock information entries available. The number of lock information entries that were found.

Number of lock information entries returned. The number of lock information entries that are returned.

Object ASP name returned. The name of the ASP in which the object is located. The following special

values may also be returned:

 *SYSBAS The object is located in the system ASP or a basic user ASP.

*N The name of the ASP cannot be determined.

Object ASP number returned. The numeric identifier of the ASP containing the locked object. The

following values may be returned:

 1 The object is located in the system ASP.

2-32 The object is located in a basic user ASP.

33-255 The object is located in an independent ASP.

-1 The ASP number cannot be determined.

Object library ASP name returned. The name of the ASP in which the object’s library is located. The

following special values may also be returned:

 *SYSBAS The library is located in the system ASP or a basic user ASP.

*N The name of the ASP cannot be determined.

Work Management APIs 239

Object library ASP number returned. The numeric identifier of the ASP device containing the object’s

library. The following special values may also be returned:

 1 The library is located in the system ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP number cannot be determined.

Object library name returned. The name of the library that contains the object whose lock information

entries are placed in the list.

Object type returned. The type of object for which locks are retrieved. For a list of all the available

external OS/400 object types, see External object types in the Control Language (CL) topic. For a list of all

internal system object types, see Internal object types.

Offset to list of lock information entries. The offset in bytes from the beginning of the receiver variable

to the first entry.

Relative record number. The relative record number for which record lock information is being returned.

If this is not a record lock then this value will be zero.

Reserved. An unused field.

Type of data. The type of data returned.

 C The data is returned in character format.

B The data is returned in binary format.

Type of entity. This is a value that will identify the type of entity for which the lock information is

returned. The following values may be returned:

 1 OS/400 external object

2 Member object

3 OS/400 external object space location

4 Internal system object

5 Internal system object space location

Valid Keys

The following table contains a list of valid keys.

See “Field Descriptions” on page 391 in the Work Management API Attributes Descriptions for the

descriptions of the valid key fields. All fields are scoped to the job unless specifically noted. See

Considerations for Attribute Scope and Thread Safety in the Work Management API Attributes

Descriptions for complete information.

Note: If the holder type is a lock space holder then character fields will contain blanks and the binary

fields will be zero.

 Key Type Description

0101 CHAR(4) Active job status

0103 CHAR(4) Active job status for jobs ending

0502 CHAR(1) End status

240 iSeries: Work Management APIs

conObject.htm
WMAttrDesc.htm#HDRRJBSCPE

Key Type Description

0601 CHAR(10) Function name

0602 CHAR(1) Function type

0902 CHAR(16) Internal job identifier

1014 BINARY(4) Job end reason

1307 CHAR(1) Message reply

2010 CHAR(4) Thread status

Holder ID

This field contains an identifier for the job or lock space that is holding or waiting to hold a lock on the

specified object or space location.

Job Format

For a job, the returned data in this field will be in this format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Holder identification size

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(8) Thread identifier

42 2A CHAR(2) Reserved

44 2C UNSIGNED

BINARY(4)

Thread handle

Field Descriptions

Holder identification size. The size of the holder identification.

Job name. The simple job name of the job that issued the lock request. If the job name is MACHINE and

the job user name entry is blank, the lock is held by an internal machine process.

Job number. The system assigned job number of the job that issued the lock request. This value will be

blank if the job name is MACHINE and the user name entry is blank.

Thread handle. A value which addresses a particular thread within a job holding a thread scope lock or

the thread waiting for a lock, otherwise this is zero. While the thread identifier uniquely identifies the

thread within the job, the thread handle can improve performance when referencing the thread.

Thread identifier. A value which uniquely identifies a thread within a job holding a thread scope lock or

the thread waiting for a lock, otherwise this is zero.

Reserved. This field will be blank.

User name. The user name under which the job that issued the lock request is started. If the job name is

MACHINE and the lock is held by an internal machine process then this field will be blank.

Work Management APIs 241

Lock Space Format

For a lock space the returned data in this field will be in this format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Holder identification size

4 4 CHAR(20) Holder lock space identifier

Field Descriptions

Holder identification size. The size of the holder identification.

Holder lock space identifier. The identifier of the lock space that holds a lock.

Reserved. A blank field.

Error Messages

 Message ID Error Message Text

CPF0951 E QSYS only valid library for object type &2.

CPF18C2 E Value for handle has expired.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C31 E Object type &1 is not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF2 E Error(s) occurred while running API &1.

CPF9801 E Object &1 type &3 not found in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R2

 Top | “Work Management APIs,” on page 1 | APIs by category

242 iSeries: Work Management APIs

#TOP
aplist.htm

Retrieve Lock Request Information (QWCRLRQI) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format of lock request information

Input Char(8)

4 Lock request handle

Input Char(64)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Lock Request Information (QWCRLRQI) API takes as input a lock request handle that was

returned in other APIs and returns information about the program that requested the lock. This API must

be called from the same thread that called the API that returned the lock request handle.

The handle is a temporary value. A storage limitation will allow a thread to create up to 1 million valid

handles. Once the storage limit has been reached the oldest handle information will be overwritten. This

can cause a handle to no longer be valid.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of the receiver variable parameter may

be specified up to the size of the receiver variable specified in the user program. If the length of

the receiver variable specified is larger then the allocated size of the receiver variable specified in

the user program, the results are not predictable. The minimum length is 8 bytes.

Format of lock request information

INPUT; CHAR(8)

Work Management APIs 243

The format of the information returned in the receiver variable. The possible format names are:

 LRQI0100 Lock request information. See “Format LRQI0100” for details.

Lock request handle

INPUT; CHAR(64)

 This contains the handle that will be used to locate the lock request information. This value is

created by a previous call to another lock API. The previous lock API call must have been made

by the current thread. This value is a temporary value and may become invalid.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format LRQI0100

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Offset to statement identifiers

16 10 BINARY(4) Number of statement identifiers returned

20 14 BINARY(4) Offset to procedure name

24 18 BINARY(4) Length of procedure name

28 1C CHAR(10) Program name

38 26 CHAR(10) Program library name

48 30 CHAR(10) Program ASP name

58 3A CHAR(10) Program library ASP name

68 44 BINARY(4) Program ASP number

72 48 BINARY(4) Program library ASP number

76 4C BINARY(4) MI instruction number

80 50 CHAR(10) Module name

90 5A CHAR(10) Module library name

* * ARRAY OF CHAR(10) Statement identifiers

* * CHAR(*) Procedure name

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned. Only complete fields are returned.

Length of procedure name. The length of the procedure name in bytes. This field is zero if the program

is not an ILE program.

244 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

MI instruction number. The current machine instruction number in the program. This field is not

meaningful for integrated language environment (ILE) procedures. A zero is returned for ILE procedures.

Module library name. The name of the library in which the module is located. The following special

values may be returned:

 *N The module library name is unavailable. Either the program has been destroyed or the library

containing the program is locked.

blanks The program is not an ILE program.

Module name. The module containing the integrated language environment (ILE) procedure. The

following special values may be returned:

 *N The module name is unavailable. Either the program has been destroyed or the library containing

the program is locked.

blanks The program is not an ILE program.

Number of statement identifiers returned. The actual number of statement identifiers returned.

Offset to procedure name. The offset in bytes from the beginning of the receiver variable to the

procedure name. This value will be zero if the program is not an ILE program.

Offset to statement identifiers. The offset in bytes from the beginning of the receiver variable to the

statement identifiers. This value will be zero if no statement identifiers are returned.

Procedure name. The name of the procedure.

Program ASP name. The name of the auxiliary storage pool (ASP) device in which the program is

located. The following special values may also be returned:

 *SYSBAS The program is located in the system ASP or a basic user ASP.

*N The name of the ASP cannot be determined.

Program ASP number. The numeric identifier of the ASP containing the program. The following values

may be returned:

 1 The library is located in the system ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP device cannot be determined.

Program library ASP name. The name of the ASP in which the program library is located. The following

special values may also be returned:

 *SYSBAS The program library is located in the system ASP or a basic user ASP.

*N The name of the ASP cannot be determined.

Program library ASP number. The numeric identifier of the ASP containing the program library. The

following values may be returned:

 1 The library is located in the system ASP or in a basic user ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

Work Management APIs 245

-1 The ASP device cannot be determined.

Program library name. The name of the library in which the program is located. The following special

value may be returned:

 *N The program library name is unavailable. The library containing the program has been destroyed

or is locked.

Program name. The name of the program. This can be any type of program object, including objects of

type *PGM and *SRVPGM. The following special value may be returned:

 *N The program is unavailable. Either the program has been destroyed or the library containing the

program is locked.

Statement identifiers. The high-level language statement identifier. If this field contains the character

representation of a number, the number is right-adjusted in the field and padded on the left with zeros

(for example, ’0000000246’). If the lock is for an integrated language environment (ILE) procedure, more

than one statement identifier may exist because of the compilers used for ILE languages.

Error Messages

 Message ID Error Message Text

CPF18C2 E Object lock handle or lock request handle not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error occured during running of &1 API.

API introduced: V5R2

 Top | “Work Management APIs,” on page 1 | APIs by category

246 iSeries: Work Management APIs

#TOP_OF_PAGE
aplist.htm

Retrieve Lock Space Attributes (QTRXRLSA) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format of receiver information

Input Char(8)

4 Lock space identifier

Input Char(20)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Lock Space Attributes (QTRXRLSA) API returns information for the specified lock space. A

lock space is an internal object that is used by other objects to hold object and record locks.

Authorities and Locks

Job authority

The caller of the API must be running under a user profile that has job control (*JOBCTL) special

authority.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the lock space attributes. The size of this variable is specified in the

length of receiver variable parameter.

See “Format of receiver information” on page 248 for details on the format of the receiver

information.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format of receiver information

INPUT; CHAR(8)

 The format of the information returned in the receiver variable. The format name is:

 RLSA0100 Lock space attributes. See “RLSA0100 Format” on page 248 for details.

Work Management APIs 247

Lock space identifier

INPUT; CHAR(20)

 The identifier of the lock space for which attributes are to be returned.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format of receiver information

The format of the information returned in the receiver variable.

RLSA0100 Format

The following information is returned for the RLSA0100 format. For detailed descriptions of the fields in

the table, see “Field Descriptions for RLSA0100 Format” for RLSA0100 Format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Lock space type

12 C BINARY(4) Lock space state

16 10 BINARY(8) Lock wait time

24 18 BINARY(8) Active state timer

32 20 BINARY(4) Number of threads with lock space attached

36 24 BINARY(4) Maximum number of threads with lock space attached

40 28 CHAR(8) Reserved

48 30 CHAR(30) Lock space name

78 4E CHAR(10) Lock space library name

88 58 CHAR(10) Lock space ASP name

98 62 CHAR(10) Lock space library ASP name

108 6C BINARY(4) Lock space ASP number

112 70 BINARY(4) Lock space library ASP number

Field Descriptions for RLSA0100 Format

Active state timer. The maximum amount of time, in seconds, that a lock space can remain in the active

state before it is switched to the disabled state. The following special value may be returned:

 0 The active state timer is disabled for the lock space.

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

248 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Lock space ASP name. The name of the auxiliary storage pool (ASP) that contains the lock space. The

following special values also may be returned:

 *SYSBAS The lock space is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Lock space ASP number. The numeric identifier of the ASP containing the lock space. The following

values may be returned:

 1 The lock space is located in the system ASP.

2-32 The lock space is located in a basic user ASP.

33-255 The lock space is located in an independent ASP.

-1 The ASP number cannot be determined.

Lock space library ASP name. The name of the auxiliary storage pool (ASP) that contains the library. The

following special values also may be returned:

 *SYSBAS The library is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Lock space library ASP number. The numeric identifier of the ASP containing the library. The following

values may be returned:

 1 The library is located in the system ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP number cannot be determined.

Lock space library name. The name of the library that contains the lock space.

Lock space name. The name of the lock space.

Lock space state. The current state of the lock space. The lock space state is used to determine whether

object and record locks can be obtained or held by the lock space. The possible values are:

 0 Inactive. The lock space cannot hold object or record locks.

1 Active. The lock space can hold object or record locks.

2 Disabled. The lock space can hold object or record locks, but new object or record locks cannot be

obtained.

Lock space type. The type of object that is using the lock space to hold object and record locks. The

possible values are:

 1 Lock space used for UDB-managed commitment definitions.

2 Lock space used for externally managed commitment definitions with job scoped locks.

3 Lock space used for externally managed commitment definitions with lock space scoped locks.

-1 The lock space type cannot be determined.

Lock wait time. The maximum anount of time, in seconds, that a thread is allowed to wait for an object

or record lock that is to be held by the lock space. The following special values may be returned:

 0 The lock wait time for the lock space is ignored. The lock wait time specified on the lock request

is used.

Work Management APIs 249

-1 The lock wait is indefinite.

-2 The lock request will return immediately if the lock cannot be obtained.

Maximum number of threads with lock space attached. The maximum number of threads to which the

lock space can be attached concurrently. The following special value may be returned:

 -1 There is no limit to the number of threads to which the lock space can be attached.

Number of threads with lock space attached. The number of threads to which the lock space is currently

attached.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFBDD1 E Lock space &1 not found.

CPFBDD2 E No authority to lock space &1.

API introduced: V5R2

 Top | “Work Management APIs,” on page 1 | APIs by category

250 iSeries: Work Management APIs

#TOP_OF_PAGE
aplist.htm

Retrieve Lock Space Locks (QTRXRLSL) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format of receiver information

Input Char(8)

4 Lock space identifier

Input Char(20)

5 Lock filters

Input Char(*)

6 Format of lock filters

Input Char(8)

7 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Lock Space Locks (QTRXRLSL) API generates a list of objects that have been locked or that

have lower level locks held by the specified lock space. Locks that are being waited for on behalf of a

lock space are not returned. Use the Retrieve Job Locks (QWCRJBLK) or Retrieve Lock Information

(QWCRLCKI) API to retrieve locks that are being waited for by a thread on behalf of a lock space.

Authorities and Locks

Job Authority

The caller of the API must be running under a user profile that has job control (*JOBCTL) special

authority.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold. For example, this may mean that

the number of locked object entries available in the receiver variable do not match the value in

the number of locked object entries returned.

See “Format of receiver information” on page 252 for details on the format of the receiver

information.

Length of receiver variable

INPUT; BINARY(4)

Work Management APIs 251

The length of the receiver variable provided. The length of the receiver variable parameter may

be specified up to the size of the receiver variable specified in the user program. If the length of

the receiver variable specified is larger then the allocated size of the receiver variable specified in

the user program, the results are not predictable. The minimum length is 8 bytes.

Format of receiver information

INPUT; CHAR(8)

 The format of the information returned in the receiver variable. The format name is:

 RLSL0100 The object and member lock format. See “RLSL0100 Format” for details on the list of objects and

members that this lock space has locked.

Lock space identifier

INPUT; CHAR(20)

 The identifier of the lock space for which record locks are to be returned.

Lock filters

INPUT;CHAR(*)

 Filters used for the lock information that is returned. See “Format of lock filters” on page 255 for

further information.

Format of lock filters

INPUT; CHAR(8)

 The format of the lock filters used on the returned data. The format name is:

 RLSF0100 Lock filter format. See “RLSF0100 Format” on page 255 for details on the filters contained in this

format.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format of receiver information

The format of the information returned in the receiver variable.

RLSL0100 Format

This format is used to return objects and members that are locked. For detailed descriptions of the fields

in the table, see “Field Descriptions for RLSL0100 Format” on page 253 for RLSL0100 Format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of locked object entries available

16 10 BINARY(4) Offset to list of locked objects

12 C BINARY(4) Number of locked object entries returned

20 14 BINARY(4) Length of locked object entry

252 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Each locked object returned will have the following structure.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Type of entity

4 4 CHAR(30) Extended object name

34 22 CHAR(10) Object library name

44 2C CHAR(10) Object ASP name

54 36 CHAR(10) Object library ASP name

64 40 BINARY(4) Object ASP number

68 44 BINARY(4) Object library ASP number

72 48 CHAR(10) Object type

82 52 CHAR(10) Extended object attributes

92 5C CHAR(10) Member name

102 66 CHAR(1) Member lock type

103 67 CHAR(3) Reserved

106 6A CHAR(10) Lock state

116 74 BINARY(4) Lock status

120 78 BINARY(4) Member locks

124 7C BINARY(4) Lock count

128 80 CHAR(64) Object lock handle

192 C0 CHAR(64) Lock request handle

Field Descriptions for RLSL0100 Format

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned. Only complete entries are returned.

Extended object attributes. The extended attributes of an object. Extended attributes further describe the

object. For example, an object type of *PGM may have a value of RPG (RPG program) or CLP (CL

program). This field will be blank if there is no extended attribute associated with the object type.

Extended object name. The name of the object that is locked. If the lock is on a database member, the

object name is the name of the file that owns the member to which the lock applies. If the member lock

type is member or access path, the file that owns the member may be either a physical file or a logical

file. If the member lock type is data, the file that owns the member is a physical file. The following

special value also may be returned:

 *N The name of the object cannot be determined.

Length of locked object entry. The length of each locked object entry.

Lock count. The number of identical locks on this entity.

Lock request handle. A handle to lock request information. Using the Retrieve Lock Request Information

(QWCRLRQI) API and passing in this handle, you can retrieve additional information about the program

Work Management APIs 253

that requested this lock. A value of hexadecimal zero is returned when additional information cannot be

retrieved. This value is a temporary value that can expire. See the “Retrieve Lock Request Information

(QWCRLRQI) API” on page 243 (QWCRLRQI) API for additional information.

Lock state. The lock condition for the lock request. Lower level locks are returned and can occur when a

member of a file is locked, but the file itself is not locked. Possible other values are:

 Blank The object is not locked, but there are locks on lower level objects.

*SHRRD Lock shared for read.

*SHRUPD Lock shared for update.

*SHRNUP Lock shared, no update.

*EXCLRD Lock exclusive, read allowed.

*EXCL Lock exclusive, no read allowed.

Lock status. The status of the lock request. Possible values are:

 0 The object is not locked, but there are locks on lower level objects.

1 The lock on this object currently is held by the lock space.

Member locks. The number of member locks for a database file. If the object is not a database file, 0 is

returned.

Member lock type. If the lock is on a member, this field indicates the type of member lock; otherwise, it

is blank. Possible values are:

 Blank The object type is not a member.

0 The lock is a member lock.

1 The lock is a data lock.

2 The lock is an access path lock.

Member name. The name of the member that has a lock held or waiting on it. If the type of entity is not

a member object, this field is blank. The following special value also may be returned:

 *N The name of the object cannot be determined.

Number of locked object entries available. The number of locked object entries that are held by this lock

space.

Number of locked object entries returned. The number of locked object entries that are returned.

Object ASP name. The name of the auxiliary sptorage pool (ASP) that contains the object that is locked.

The following special values also may be returned:

 *SYSBAS The object is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Object ASP number. The numeric identifier of the ASP containing the locked object. The following

values may be returned:

 1 The object is located in the system ASP.

2-32 The object is located in a basic user ASP.

33-255 The object is located in an independent ASP.

-1 The ASP number cannot be determined.

254 iSeries: Work Management APIs

Object library ASP name. The name of the ASP containing the library of the locked object. The following

specials value also may be returned:

 *SYSBAS The object’s library is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Object library ASP number. The numeric identifier of the ASP containing the library of the locked object.

The following values may be returned:

 1 The library is located in the system ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP number cannot be determined.

Object library name. The name of the library containing the locked object. This field will be blank if the

type of entity is an internal system object or is an internal system object space location. The following

special value also may be returned:

 *N The name of the library cannot be determined.

Object lock handle. An identifier that can be input to Retrieve Lock Information (QWCRLCKI) API to

find additional information about other holders of locks on this object. A value of hexadecimal zero is

returned when additional information cannot be retrieved. The object lock handle is a temporary value

that can expire. See the QWCRLCKI API for additional information.

Object type. The object type. For a list of all the available external OS/400 object types, see the Control

Language (CL) topic.

Offset to list of locked objects. The offset in bytes from the beginning of the receiver variable to the first

entry.

Reserved. An unused field.

Type of entity. A value that identifies the type of entity for which the lock information is returned. The

following values may be returned:

 1 OS/400 external object

2 Member object

3 Internal system object

Format of lock filters

The format of the lock filters used on the returned lock information.

RLSF0100 Format

The following information is to be specified for the RLSF0100 format. For detailed descriptions of the

fields in the table, see “Field Descriptions for RLSF0100 Format” on page 256 for RLSF0100 Format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Filter size

Work Management APIs 255

Offset

Type Field Dec Hex

4 4 BINARY(4) Filter lock state

8 8 CHAR(1) Include OS/400 external objects flag

9 9 CHAR(1) Include member objects flag

10 A CHAR(1) Include internal system objects flag

11 B CHAR(1) Include lock space objects flag

12 C CHAR(1) Include unknown entities flag

13 D CHAR(1) Reserved

14 E CHAR(10) Filter object name

24 18 CHAR(10) Filter object library name

34 22 CHAR(10) Filter object library ASP name

Field Descriptions for RLSF0100 Format

Filter lock state. Filters information that is returned so that it only contains information about locks that

have a certain lock state. The default is do not filter on lock state value.

 0 Do not filter on lock state value.

1 Return only the shared locks.

2 Return only the exclusive locks.

Filter object library ASP name. The name of the library’s auxiliary storage pool (ASP) on which to filter.

A special value of *SYSBAS can be specified. A blank field will cause no filtering to be done on this field.

The default is to not filter on this field.

Filter object library name. This is the library name on which to filter. A blank field will cause no filtering

to be done on this field. The default is to not filter on this field.

Filter object name. Only locks on the specified object are returned. In the case of database files, members

of the file also may be returned. A blank field will cause no filtering to be done on this field. The default

is to not filter on this field.

Filter size. The size of the filter information passed. Valid values are:

 4 No filtering will be performed. The default values will be used for each filter.

44 All filters will be required.

Include internal system objects flag. A value of 1 in this field allows internal system object locks to be

returned. A value of 0 causes these values to be excluded from the return data. The default is to exclude

internal system objects.

Include lock space objects flag. A value of 1 in this field allows lock space objects locks to be returned.

A value of 0 causes these values to be excluded from the return data. The default is to include lock space

objects.

Include member objects flag. A value of 1 in this field allows member objects locks to be returned. A

value of 0 causes these values to be excluded from the return data. The default is to include member

objects.

256 iSeries: Work Management APIs

Include OS/400 external objects flag. A value of 1 in this field allows OS/400 external object locks to be

returned. A value of 0 causes these objects to be excluded from the return data. The default is to include

OS/400 external objects.

Include unknown types flag. A value of 1 in this field allows locks that are of an unknown entity type to

be returned. A value of 0 causes these values to be excluded from the return data. The default is to

exclude unknown types.

Reserved. An unused field.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFBDD1 E Lock space &1 not found.

CPFBDD2 E No authority to lock space &1.

API introduced: V5R2

 Top | “Work Management APIs,” on page 1 | APIs by category

Work Management APIs 257

#TOP_OF_PAGE
aplist.htm

Retrieve Lock Space Record Locks (QTRXRLRL) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format of receiver information

Input Char(8)

4 Lock space identifier

Input Char(20)

5 Lock filters

Input Char(*)

6 Format of lock filters

Input Char(8)

7 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Lock Space Record Locks (QTRXRLRL) API lets you generate a list of record locks held by

the specified lock space. Record locks that are being waited for on behalf of a lock space are not returned.

Use the Retrieve Job Record Locks (QDBRJBRL) or Retrieve Lock Information (QWCRLCKI) API to

retrieve record locks that are being waited for by a thread on behalf of a lock space.

Lock information is returned for local physical files only. The Retrieve Lock Space Record Locks API

places the list in the specified receiver variable.

Authorities and Locks

Job authority

The caller of the API must be running under a user profile that has job control (*JOBCTL) special

authority.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the list of record locks. The size of this variable is specified in the

length of receiver variable parameter.

See “Format of receiver information” on page 259 for details on the format of the receiver

information.

Length of receiver variable

INPUT; BINARY(4)

258 iSeries: Work Management APIs

The number of bytes that are provided in the Receiver variable parameter. At least 16 bytes must

be provided. If the size of the receiver variable provided is less than the length of the list that is

available, the list will be truncated; this can be determined by examining the first two fields in

the receiver variable, the number of record locks returned, and the number of record locks

available. If the receiver variable length specified is greater than the actual receiver variable, the

results are unpredictable.

Format of receiver information

INPUT; CHAR(8)

 The format of the information returned in the receiver variable. The format name is:

 RLRL0100 Record lock list. See “RLRL0100 Format” for details.

Lock space identifier

INPUT; CHAR(20)

 The identifier of the lock space for which record locks are to be returned.

Lock filters

INPUT;CHAR(*)

 Filters used for the lock information that is returned. See “Format of lock filters” on page 261 for

further information.

Format of lock filters

INPUT; CHAR(8)

 The format of the lock filters used on the returned data. The possible format name is:

 RLRF0100 Lock filter format. See “RLRF0100 Format” on page 261 for details.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format of receiver information

The format of the information returned in the receiver variable.

RLRL0100 Format

The following information is returned for the RLRL0100 format. For detailed descriptions of the fields in

the table, see “Field Descriptions for RLRL0100 Format” on page 260 for RLRL0100 Format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of record locks available

12 C BINARY(4) Number of record locks returned

16 10 BINARY(4) Offset to list of record locks

20 14 BINARY(4) Size of information for each record lock returned

Work Management APIs 259

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Each record lock returned will have the following structure.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Database file name

10 A CHAR(10) Database file library name

20 14 CHAR(10) Database member name

30 1E CHAR(1) Reserved

31 1F CHAR(1) Lock state

32 20 UNSIGNED

BINARY(4)

Relative record number

36 24 CHAR(10) Database file ASP name

46 2E CHAR(10) Database file library ASP name

56 38 BINARY(4) Database file ASP number

60 3C BINARY(4) Database file library ASP number

Field Descriptions for RLRL0100 Format

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned. Only complete entries are returned.

Database file library ASP name. The name of the auxiliary storage pool (ASP) that contains the library.

The following special values also may be returned:

 *SYSBAS The library is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

Database file library ASP number. The numeric identifier of the ASP containing the library. The

following values may be returned:

 1 The library is located in the system ASP.

2-32 The library is located in a basic user ASP.

33-255 The library is located in an independent ASP.

-1 The ASP number cannot be determined.

Database file library name. The name of the library that contains the file.

Database file name. The name of the file.

Database member name. The name of the member.

Database file ASP name. The name of the auxiliary storage pool (ASP) that contains the file. The

following special values also may be returned:

 *SYSBAS The file is located in the system ASP or a basic user ASP.

*N The name of the ASP device cannot be determined.

260 iSeries: Work Management APIs

Database file ASP number. The numeric identifier of the ASP containing the file. The following values

may be returned:

 1 The file is located in the system ASP.

2-32 The file is located in a basic user ASP.

33-255 The file is located in an independent ASP.

-1 The ASP number cannot be determined.

Lock state. The state of the lock. The possible values are:

 0 Shared Read.

1 Exclusive Update.

2 Shared Internal.

Number of record locks available. The number of record lock structures that are available to be returned.

If this field is the same as the number of record locks returned field, all the record lock information has

been returned.

Number of record locks returned. The number of record lock structures that were returned to the caller

of the API. If enough space is provided in the receiver variable, all record locks are returned. If there is

more record lock information than can fit in the space provided, the number of record locks returned is

less than the number of record locks available.

Offset to list of record locks. The byte offset from the beginning of the receiver variable to the first

record lock information structure.

Relative record number. The relative record number for which record lock information is being returned.

Reserved. An unused field.

Size of information for each lock returned. The number of bytes of each of the returned lock

information structures. In future releases, the amount of information returned for each lock may be

expanded, so this value should be used to move from one lock structure to another.

Format of lock filters

The format of the lock filters used on the returned lock information.

RLRF0100 Format

The following information is to be specified for the RLRF0100 format. For detailed descriptions of the

fields in the table, see “Field Descriptions for RLRF0100 Format” on page 262 for RLFL100 Format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Filter size

4 4 BINARY(4) Filter lock state

8 8 CHAR(10) Filter file name

18 12 CHAR(10) Filter file member name

28 1C CHAR(10) Filter file library name

38 26 CHAR(10) Filter file library ASP name

Work Management APIs 261

Field Descriptions for RLRF0100 Format

Filter lock state. Filters information that is returned so that it contains only information about locks that

have a certain lock state. The default is do not filter on lock state value.

 0 Do not filter on lock state value

1 Return only the shared locks

2 Return only the exclusive locks

Filter file library ASP name. The name of the library’s auxiliary storage pool (ASP) on which to filter. A

special value of *SYSBAS can be specified. A blank field will cause no filtering to be done on this field.

The default is to not filter on this field.

Filter file library name. The library name on which to filter. A blank field will cause no filtering to be

done on this field. The default is to not filter on this field.

Filter file member name. The member name on which to filter. A blank field will cause no filtering to be

done on this field. The default is to not filter on this field.

Filter file name. The file name on which to filter. A blank field will cause no filtering to be done on this

field. The default is to not filter on this field.

Filter size. The size of the filter information passed. Valid values are:

 4 No filtering will be performed. The default values will be used for each filter.

48 All filters will be required.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFBDD1 E Lock space &1 not found.

CPFBDD2 E No authority to lock space &1.

API introduced: V5R2

 Top | “Work Management APIs,” on page 1 | APIs by category

262 iSeries: Work Management APIs

#TOP_OF_PAGE
aplist.htm

Retrieve Network Attributes (QWCRNETA) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Number of network attributes to retrieve

Input Binary(4)

4 Network attribute names

Input Array(*) of Char(10)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Network Attributes (QWCRNETA) API lets you retrieve network attributes.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the information requested. For the format, see “Format of Data

Returned” on page 264.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable described in “Format of Data Returned” on page 264. If the

length is larger than the size of the receiver variable, the results may not be predictable. The

minimum length is 28 bytes.

Number of network attributes to retrieve

INPUT; BINARY(4)

 The total number of network attributes to be retrieved.

Network attribute names

INPUT: ARRAY(*) of CHAR(10)

 The names of the network attributes to be retrieved. This can be a list of network attribute names

where each name is 10 characters.

Error code

I/O; CHAR(*)

Work Management APIs 263

The structure in which to return error information. For the format of the structure, see Error code

parameter.

Format of Data Returned

The receiver variable holds the information returned about each network attribute.

The receiver variable has three logical parts:

1. The first field specifies the number of network attributes returned.

2. The next fields give the offsets to the network attributes returned. There is one offset field for each

network attribute returned.

3. Next are the network attribute information tables for the network attributes returned. There is one

network attribute information table for each network attribute.

The following table shows the format of the receiver variable. The offset fields are repeated until the

offsets for all the network attributes returned are listed; the network attribute information table for each

network attribute is repeated in the same way. For a detailed description of each field, see the “Field

Descriptions” on page 265.

The format of the receiver variable is:

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of network attributes returned

4 4 ARRAY(*) of

BINARY(4)

Offset to network attribute information table

* * CHAR(*) Network attribute information table

Note: Each network attribute in the table is represented by the standard network attribute information table

described in “Network Attribute Information Table.”

To determine the length of the receiver variable, the following calculation should be done. For each

network attribute to be returned, get the length of the data returned for the network attribute and add 24.

After adding the values for each network attribute, add 4. This calculation takes into account the data

alignment that needs to be done; therefore, this value is a worst-case estimate.

Network Attribute Information Table

The following table shows the format of the network attribute information table.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Network attribute

10 A CHAR(1) Type of data

11 B CHAR(1) Information status

12 C BINARY(4) Length of data

16 10 CHAR(*) Data

264 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Field Descriptions

Data. The data returned for the network attribute.

Information status. Whether the information was available for the network attribute.

 blank The information was available.

L The information was not available because the network attribute was locked.

Length of data. The length of the data returned for the network attribute. If this value is 0, the network

attribute was not available.

Network attribute. The network attribute to be retrieved. See “Valid Network Attributes” for the list of

valid network attributes.

Number of network attributes returned. The number of network attributes returned to the application.

Offset to network attribute information table. The offset from the beginning of the structure to the start

of the network attribute information.

Type of data. The type of data returned.

 blank The data was not available.

C The data is returned in character format.

B The data is returned in binary format.

Valid Network Attributes

For a detailed description of each field, see the “Network Attribute Field Descriptions” on page 266.

 Network attribute Type Description

ALRBCKFP CHAR(16) Alert backup focal point

ALRCTLD CHAR(10) Alert controller

ALRDFTFP CHAR(10) Alert focal point

ALRFTR CHAR(20) Alert filter

ALRHLDCNT BINARY(4) Alert hold count

ALRLOGSTS CHAR(7) Alert logging status

ALRPRIFP CHAR(10) Alert primary focal point

ALRRQSFP CHAR(16) Alert focal point to request

ALRSTS CHAR(10) Alert status

ALWADDCLU CHAR(10) Allow add to cluster

ALWANYNET CHAR(10) Allow AnyNet support

ALWHPRTWR CHAR(10) Allow HPR tower support

ALWVRTAPPN CHAR(10) Allow virtual APPN support

VRTAUTODEV BINARY(4) Autocreate APPC device limit

DDMACC CHAR(20) DDM request access

DFTCNNLST CHAR(10) Default ISDN connection list

DFTMODE CHAR(8) Default mode

DFTNETTYPE CHAR(10) ISDN network type

Work Management APIs 265

Network attribute Type Description

DTACPR BINARY(4) Data compression

DTACPRINM BINARY(4) Intermediate data compression

HPRPTHTMR CHAR(40) HPR path switch timers

JOBACN CHAR(10) Job action

LCLCPNAME CHAR(8) Local control point

LCLLOCNAME CHAR(8) Local location

LCLNETID CHAR(8) Local network ID

MAXINTSSN BINARY(4) Maximum sessions

MAXHOP BINARY(4) Maximum hop count

MDMCNTRYID CHAR(2) Modem country or region ID

MSGQ CHAR(20) Message queue

NETSERVER CHAR(85) Server network ID

NODETYPE CHAR(8) APPN node type

NWSDOMAIN CHAR(8) Network server domain

OUTQ CHAR(20) Output queue

PNDSYSNAME CHAR(8) Pending system name

PCSACC CHAR(20) Client Access

RAR BINARY(4) Addition resistance

SYSNAME CHAR(8) Current system name

Network Attribute Field Descriptions

Addition resistance. The Advanced Peer-to-Peer Networking (APPN) function routes addition resistance

for an APPN node type of *NETNODE or *BEXNODE.

Alert backup focal point. Identifies the system that provides alert focal point services if the local system

is unavailable and ALRPRIFP is *YES. The backup focal point is only used by systems in the primary

sphere of control. The first eight characters are the control point name and the last eight characters are

the network ID. *NONE means no backup focal point is defined.

Alert controller. The name of the controller to be used for alerts in a system service control point -

physical unit (SSCP-PU) session. This controller is ignored if the system has a focal point (in which case

the node is in another system’s sphere of control). *NONE means no alert controller is defined.

Alert filter. The name of the filter object that is used by the alert manager when processing alerts.

*NONE means no alert filter is being used. The first ten characters are the filter name and the last ten

characters are the library name.

Alert focal point. Whether or not the system is an alert default focal point.

 *NO The system is not an alert default focal point.

*YES The system is defined to be an alert default focal point and provides focal point services to all

nodes in the network that are not being serviced by another focal point.

Alert focal point to request. Specifies the name of the system that is requested to provide focal point

services. If a focal point is already defined for the entry point, it is taken away when the new focal point

is requested. *NONE means no focal point is requested.

266 iSeries: Work Management APIs

Alert hold count. The maximum number of alerts to be created before the alerts are sent over the System

Service Control Point - Physical Unit (SSCP-PU) session. Alerts are held by the system until this number

of alerts have been created. If the Alert Controller (ALRCTLD) network attribute is being used to send

alerts (SSCP-PU session), alerts will be sent automatically regardless of the ALRHLDCNT network

attribute when a switched connection is made for other reasons.

Alert logging status. Specifies which alerts are to be logged:

 *LOCAL Only locally created alerts are logged.

*RCV Only Alerts received from other nodes are logged.

*ALL Both locally created alerts and incoming alerts are logged.

*NONE No alerts are logged.

Alert primary focal point. Whether or not the system is an alert primary focal point.

 *NO The system is not an alert primary focal point.

*YES The system is defined to be an alert primary focal point and provides focal point services to all

nodes in the network that are explicitly defined in the sphere of control.

Alert status. Alert status controls the creation of local alerts. The following is a list of values and their

meanings:

 *ON Alerts are created by a system for all changeable conditions except unattended conditions.

*UNATTEND Alerts are created by the system for all alert conditions including those which have the alert

indicator in the message description set to *UNATTEND.

*OFF Alerts are not created by the system.

Allow add to cluster. Whether this system will allow another system to add it as a node in a cluster. The

following is a list of values and their meanings:

 *NONE No other system can add this system as a node in a cluster.

*ANY Any other system can add this system as a node in a cluster.

*RQSAUT Any other system can add this system as a node in a cluster only after the cluster add request has

been authenticated.

Allow AnyNet(R) support. The AnyNet support value is used for the UNIX-type APIs that use the

AF_INET address family. The following is a list of values and their meanings:

 *NO The system does not allow AF_INET support to be used over an SNA connection.

*YES The system allows AF_INET (AnyNet) support to be used over an SNA connection.

Allow HPR tower support. The HPR transport tower support value is used for APPN session traffic. The

following is a list of values and their meanings:

 *NO The system does not allow HPR transport tower support to be used with APPN session traffic.

*YES The system allows HPR transport tower support to be used with APPN session traffic.

Allow virtual APPN support. The virtual APPN support value is used to specify whether or not APPC

sessions and devices are allowed to use virtual APPN controllers.

 *NO The system does not allow APPC sessions or devices to use virtual APPN controllers. If sessions

are using HPR transport tower support, they will use virtual APPN controllers regardless of this

setting.

Work Management APIs 267

*YES The system does allow APPC sessions or devices to use virtual APPN controllers.

Autocreate APPC device limit. The specification for the APPC device limit used for autocreation of

devices on virtual APPN controllers.

APPN node type. The Advanced Peer-to-Peer Networking (APPN) node type can have the following

values:

 *ENDNODE The node does not provide network services to other nodes, but may participate in the APPN

network by using the services of an attached network server, or may operate in a peer

environment similar to migration end nodes.

*NETNODE The node provides intermediate routing, route selection services, and distributed directory services

for local users and to end nodes and migration end nodes that it is serving.

*BEXNODE The node performs as a branch extender node. The node performs as an end node in the backbone

APPN network, and performs as a network node server to end nodes within its local domain.

Client Access. The way in which the system processes Client Access requests from other systems.

 *REJECT The system rejects every request from Client Access.

*OBJAUT Normal object authorizations are checked for the Client Access request. For example, authorization

to retrieve data from a database file for a transfer function request is checked.

*REGFAC The system uses the system’s registration facility to determine which exit program (if any) to run.

If no exit program is defined for an exit point and this value is specified, *OBJAUT is used.

program library The name of a user-written validation program that is called each time a Client Access application

request comes from a personal computer. The program is passed two parameters: the first

describes the PC request (the name of the application and type request); the second is used by the

program to indicate to the Client Access application whether or not this PC request should be

handled. The first 10 characters are the program name, and the last 10 characters are the library

name.

Current system name. The current system name that appears on displays.

Data compression. Whether data compression is used when the system is an SNA end node (the node

containing either a primary or secondary LU). This field is used by mode descriptions that specify

*NETATR for data compression. The following values are valid:

 0 Data compression is not allowed on the session.

-1 Data compression is requested on the session by the local system. However, the request can be

refused or changed to a lower compression level by the remote system. Data compression is

allowed on the session if requested by the remote system.

-2 Data compression is allowed on the session by the local system if requested by a remote system.

The local system does not request that compression be used.

-3 Data compression is required on the session. If the remote system does not change the levels of

compression to the local system’s exact requested levels, the session is not established. The data

compression levels that the local system requires are the specified levels.

line speed If either the receiving or sending link has a line speed equal to or less than this specified line

speed, this value indicates the need for compression by requesting that the remote systems

compress the session data. Otherwise, this value does not indicate to the remote systems that there

is a need to compress the data. Possible values range from 1 through 2 147 483 647 bits per

second.

If data compression is requested by the remote system, the data compression levels used by the session

are the lower of the requested levels and the configured levels (INDTACPR and OUTDTACPR).

268 iSeries: Work Management APIs

DDM request access. The system processes distributed data management (DDM) and Distributed

Relational Database Architecture (DRDA) requests from other systems as follows:

 *REJECT The system does not allow DDM or DRDA requests from remote systems. This system can still use

DDM or DRDA, however, to access files or SQL tables on remote systems.

*OBJAUT All requests are allowed and controlled by the object authorization on the system.

program library The name of a user-written validation program that is called each time a DDM request is made

from a remote system. This program indicates to DDM whether the request should proceed or be

ended. System security still applies. The first ten characters are the program name and the last ten

characters are the library name.

Default ISDN connection list. The name of the default integrated services digital network (ISDN)

connection list object.

The operating system no longer uses this network attribute. Changes made to

this network attribute have no effect.

Default mode. The default mode name for the system.

HPR path switch timers. The settings for the amount of time, in minutes, to allow for a path switch

attempt of a Rapid Transport Protocol (RTP) connection. Four positional values exist to specify the time

allowed based on the type of session traffic. Each positional timer will consist of 10 characters within the

40-character field. A description of each element within the field is given below:

Network priority timer (characters 1-10)

The first element is the network priority timer, which specifies the amount of time in minutes to

allow for a path switch attempt of an RTP connection that has network transmission priority or

*NONE.

High priority timer (characters 11-20)

The second element is the high priority timer, which specifies the amount of time in minutes to

allow for a path switch attempt of an RTP connection that has high transmission priority or

*NONE.

Medium priority timer (characters 21-30)

The third element is the medium priority timer, which specifies the amount of time in minutes to

allow for a path switch attempt of an RTP connection that has medium transmission priority or

*NONE.

Low priority timer (characters 31-40)

The fourth element is the low priority timer, which specifies the amount of time in minutes to

allow for a path switch attempt of an RTP connection that has low transmission priority or

*NONE.

 Intermediate data compression. The level of data compression to request when the iSeries server is an

SNA intermediate node. The following are valid values:

 0 Does not indicate to the remote systems that there is a need to compress the data.

-1 Indicates the need for compression by requesting that the remote systems compress the session

data.

line speed If either the receiving or sending link has a line speed equal to or less than this specified line

speed, this value indicates the need for compression by requesting that the remote systems

compress the session data. Otherwise, this value does not indicate to the remote systems that there

is a need to compress the data. Possible values range from 1 through 2 147 483 647 bits per

second.

ISDN network type. The type of integrated services digital network (ISDN) to which the system is

attached.

The operating system no longer uses this network attribute. Changes made to this network

attribute have no effect.

Work Management APIs 269

Job action. The action that is taken for any input stream received through the SNA distribution services

(SNADS) network by the system.

 *REJECT The input stream is rejected by the system. This action allows users to secure their system from

input streams received through the network.

*FILE The input stream is filed in the queue of network files received for the user to whom it was sent.

That user may then look at the input stream, end it, receive it, or submit it to a job queue.

*SEARCH The table of network job entries is searched to determine the action to be taken for the input

stream.

Local control point. The local control point name for the system.

Local location. The default local location name for the system.

Local network ID. The local network ID assigned to the system.

Maximum hop count. The maximum number of times in an SNA distribution services (SNADS) network

that a distribution queue entry originating at this node may be received and routed on the path to its

final destination. If this number is exceeded, the distribution queue entry is ended. When the distribution

queue entry is ended, a feedback status is sent back to the sender if it was requested.

Maximum sessions. The maximum number of advanced program-to-program communications (APPC)

intermediate sessions for an Advanced Peer-to-Peer Networking (APPN) node type of *NETNODE or

*BEXNODE.

Message queue. The name of the message queue to which messages received through the SNA

distribution services (SNADS) network are sent for:

v Users who have no message queue specified in their user profile

v Users whose message queue is not available

The first 10 characters are the message queue name, and the last 10 characters are the library name.

Modem country or region ID. The country or region identifier associated with a modem.

This defines the country or region-specific default characteristics for modems that are internal to OS/400

I/O adapters. This value must be configured correctly to ensure proper operation and, in some countries

or regions, meet legal requirements. The adapter will fail the vary on of the line if the modem country or

region ID is not set.

Network server domain. The LAN server domain to which all Integrated Netfinity(R) Servers (also known

as file server I/O processor and FSIOP) on the system belong.

Output queue. The name of the output queue to which spooled files received through the SNA

distribution services (SNADS) network are sent for users whose output queue is not available. The first

10 characters are the output queue name, and the last 10 characters are the library name.

Pending system name. The pending system name (if a change is pending). This will contain blanks if no

change is pending.

Server network ID. The network node server of an Advanced Peer-to-Peer Networking (APPN) network

(up to a maximum of five) for an APPN node type of *ENDNODE. The list is not used for an APPN

node type of *NETNODE or *BEXNODE.

270 iSeries: Work Management APIs

Error Messages

 Message ID Error Message Text

CPF1860 E Value &1 in list not valid.

CPF1861 E Length of the receiver variable not valid.

CPF1862 E Number of values to retrieve not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Work Management APIs,” on page 1 | APIs by category

Retrieve Profile Exit Programs (QWTRTVPX) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format name

Input Char(8)

4 User ID

Input Char(10)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Profile Exit Programs (QWTRTVPX) API retrieves the profile exit flags, based on the format,

that have been designated to be called for the specified user ID. The QWTRTVPX API then places that

information into a single variable in the calling program. The amount of information placed in the

variable depends on the size of the variable.

Authorities and Locks

User ID Authority

*READ

Required Parameter Group

Receiver variable

OUTPUT CHAR(*)

Work Management APIs 271

#TOP
aplist.htm

The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of the profile exit program information to be returned. You can use this format:

 ATTN0100 Preattention information. For details, see “ATTN0100 Format.”

SREQ0100 Presystem request information. For details, see “SREQ0100 Format” on page 273.

User ID

INPUT; CHAR(10)

 The user ID being retrieved. Valid values are as follows:

 *CURRENT The user ID of the job that is currently running.

User ID name The 10-character name that is entered.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

ATTN0100 Format

The following table describes the information that is returned in the receiver variable for the ATTN0100

format. For detailed descriptions of the fields, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Entries returned

4 4 BINARY(4) Entries available

 ARRAY (*) of

BINARY(4)

Array of entries

Field Descriptions

Array of entries An array of entries where the first entry corresponds to exit program number one for the

exit point QIBM_QWT_PREATTNPGMS and format ATTN0100 in the registration facility. The second

entry in the array corresponds to exit program number 2 and so on. The possible returned values are as

follows:

 0 No, do not call this exit program.

1 Yes, call this exit program.

272 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Entries available The number of possible entries being returned. All available data is returned if enough

space is provided.

Entries returned The actual number of entries that is being returned. If the data is truncated because the

receiver variable is not large enough to hold all of the data available, this value is less than the entries

available.

SREQ0100 Format

The following table describes the information that is returned in the receiver variable for the SREQ0100

format. For detailed descriptions of the fields, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Entries returned

4 4 BINARY(4) Entries available

 ARRAY (*) of

BINARY(4)

Array of entries

Field Descriptions

Array of entries An array of entries where the first entry corresponds to exit program number one for the

exit point QIBM_QWT_SYSREQPGMS and format SREQ0100 in the registration facility. The second entry

in the array corresponds to exit program number 2 and so on. The possible returned values are as

follows:

 0 No, do not call this exit program.

1 Yes, call this exit program.

Entries available The number of possible entries being returned. All available data is returned if enough

space is provided.

Entries returned The actual number of entries that is being returned. If the data is truncated because the

receiver variable is not large enough to hold all of the data available, this value is less than the entries

available.

Error Messages

 Message ID Error Message Text

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF2217 E Not authorized to user profile &1.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R6

 Top | “Work Management APIs,” on page 1 | APIs by category

Work Management APIs 273

#TOP
aplist.htm

Retrieve Subsystem Information (QWDRSBSD) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format name

Input Char(8)

4 Qualified subsystem name

Input Char(*)

5 Error code

I/O Char(*)
 Optional Parameter:

6 Number of qualified subsystem libraries

Input Binary(4)
 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Subsystem Information (QWDRSBSD) API retrieves information about one or more specific

subsystems or all active subsystems.

Authorities and Locks

Subsystem Description Authority

*USE

Library Authority

*EXECUTE

Subsystem Description Lock

*EXCLRD

 The subsystem description authority and library authority are not required when *ACTIVE is specified

for the qualified subsystem name parameter.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable to receive the subsystem information. This area must be large enough to

accommodate the information specified.

Length of receiver variable

INPUT; BINARY(4)

274 iSeries: Work Management APIs

The length of the receiver variable. The length must be at least 8 bytes. If the variable is not long

enough to hold the subsystem information, the data is truncated.

Format name

INPUT; CHAR(8)

 The format of the subsystem information. You can use this format:

 SBSI0100 Basic subsystem information. For details, see “SBSI0100 Format.”

SBSI0200 Multiple subsystems information. For details, see “SBSI0200 Format” on page 276. This format

name must be specified if *ACTIVE is specified in the first 10 characters of the qualified

subsystem name or if the number of qualified subsystem names parameter is greater than 1.

Qualified subsystem name

INPUT; ARRAY(*) of CHAR(20)

 An array of CHAR(20) values giving the names of the subsystems about which to retrieve

information and the library in which the subsystem description is located. The number of

qualified subsystem names parameter specifies how many elements are in this array.

The first 10 characters contain the subsystem name. You can use the following special value for

the subsystem name:

 *ACTIVE Return information about all active subsystems. If *ACTIVE is specified for the first 10 characters:

v SBSI0200 must be specified for the format name parameter.

v the value in the second 10 characters must be blank.

The second 10 characters contain the library name. You can use one of these special values for the

library name:

 *CURLIB The job’s current library

*LIBL The library list

If *ACTIVE is specified in the first 10 characters, the value in the second 10 characters must be

blank.

If information for a subsystem description is requested more than once in the array, the receiver

variable will not contain duplicate information for that subsystem description.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter

Number of qualified subsystem names

INPUT; BINARY(4)

 The number of names specified in the qualified subsystem name parameter. If this parameter is

not specified, the number of names specified defaults to 1. If this parameter is specified, the

number specified must be in the range 1 to 65535. If a number greater than 1 is specified,

SBSI0200 must be specified for the format name parameter.

SBSI0100 Format

The following table shows the information returned in the receiving variable for the SBSI0100 format. For

a detailed description of each field, see “Field Descriptions” on page 277.

Work Management APIs 275

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Subsystem description name

18 12 CHAR(10) Subsystem description library name

28 1C CHAR(10) Subsystem status

38 26 CHAR(10) Sign-on device file name

48 30 CHAR(10) Sign-on device file library name

58 3A CHAR(10) Secondary language library name

68 44 BINARY(4) Maximum active jobs

72 48 BINARY(4) Currently active jobs

76 4C BINARY(4) Number of storage pools defined

Offsets vary. These five

fields repeat, in the

order listed, for each

pool defined for the

subsystem.

BINARY(4) Pool ID

CHAR(10) Pool name

CHAR(6) Reserved

BINARY(4) Pool size

BINARY(4) Pool activity level

SBSI0200 Format

The following table shows the information returned in the receiving variable for the SBSI0200 format. For

a detailed description of each field, see “Field Descriptions” on page 277.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Offset to first subsystem entry

12 C BINARY(4) Number of subsystem entries returned

16 10 BINARY(4) Size of a subsystem entry

20 14 CHAR(*) Reserved

Offsets vary. These

fields repeat, in the

order listed, for each

subsystem.

CHAR(10) Subsystem description name

CHAR(10) Subsystem description library name

CHAR(12) Subsystem extended status

BINARY(4) Maximum active jobs

BINARY(4) Currently active jobs

CHAR(10) Subsystem monitor job name

CHAR(10) Subsystem monitor job user

CHAR(6) Subsystem monitor job number

CHAR(50) Subsystem description text

CHAR(*) Reserved

276 iSeries: Work Management APIs

Field Descriptions

Bytes available. The total length of all data available.

Bytes returned. The length of the data actually returned. The number of bytes returned is always less

than or equal to both the number of bytes available and the receiving variable length.

Currently active jobs. The number of jobs currently active in the subsystem. This number includes held

jobs but excludes jobs that are disconnected or suspended because of a transfer secondary job or a transfer

group job. If the subsystem status is *INACTIVE, this number is 0.

Maximum active jobs. The maximum number of jobs that can run or use resources in the subsystem at

one time. If the subsystem description specifies *NOMAX, indicating that there is no maximum, this

number is -1.

Number of subsystem entries returned. The number of subsystems for which entries are returned. This

number determines how many times the entire set of fields describing a subsystem is repeated.

Number of storage pools defined. The number of storage pools defined for the subsystem. The

maximum number of storage pools for a subsystem is currently 10. This number determines how many

times the pool ID, pool name, pool size, pool activity level, and reserved fields are repeated. Those five

fields are repeated as a group for each pool defined for the subsystem.

Offset to first subsystem entry. The number of bytes from the first byte of the receiver variable to the

information for the first subsystem.

Pool activity level. The maximum number of jobs that can be active in the pool at one time. If the pool

name indicates a system-defined pool, the number returned is 0.

Pool ID. The pool ID for the subsystem pool.

Pool name. The name of the subsystem pool. If the pool is user-defined, the value of this field is

*USERPOOL. If the pool is system-defined, the value is one of these names:

 *BASE The system base pool, which can be shared with other subsystems. The QBASPOOL system value

defines the base pool’s minimum size. The base pool contains all main storage not allocated to

other pools. The QBASACTLVL system value defines its activity level.

*INTERACT The shared pool used for interactive work.

*NOSTG No storage size or activity level is assigned to this storage pool.

*SHRPOOL1-
*SHRPOOL60

Shared pools.

*SPOOL The shared pool for spooling writers.

The Change Shared Storage Pool (CHGSHRPOOL) command specifies the size and activity level of

shared pools.

Pool size. If the pool name is *USERPOOL, the amount of storage, in kilobytes, that the pool attempts to

allocate. If the pool has any other name, the value of this field is 0.

Reserved. An ignored field.

Secondary language library name. The name of the subsystem’s secondary language library.

Work Management APIs 277

Sign-on device file library name. The name of the library in which the sign-on device file resides.

Size of a subsystem entry. The number of bytes in the entry for a subsystem.

Subsystem description library name. The name of the library in which the subsystem description

resides.

Subsystem description name. The name of the subsystem about which information is being returned.

Subsystem description text. The text description of the subsystem description. The field is blank if there

is no text description.

Subsystem extended status. Possible values that can be returned for subsystem extended status are:

 *ACTIVE The subsystem is running.

*ENDING An ENDSBS command has been issued for the subsystem or an ENDSYS command has been

issued, but the subsystem is still running.

*INACTIVE The subsystem is not running.

*RESTRICTED An ENDSBS command for the controlling subsystem, an ENDSYS *ALL command, or an ENDSYS

command has placed the controlling subsystem in a restricted condition.

*STARTING A STRSBS command has been issued for the subsystem, but it is still in the process of being

started.

Subsystem monitor job name. The name for the subsystem monitor job as identified to the system. The

field is blank if the subsystem extended status field is *INACTIVE.

Subsystem monitor job number. The system-assigned number for the subsystem monitor job. The field is

blank if the subsystem extended status field is *INACTIVE.

Subsystem monitor job user. The name of the user profile under which the subsystem monitor job is

running. The field is blank if the subsystem extended status field is *INACTIVE.

Subsystem status. Possible values that can be returned for subsystem status are:

 *ACTIVE The subsystem is running.

*INACTIVE The subsystem is not running.

Error Messages

 Message ID Error Message Text

CPF1605 E Cannot allocate subsystem description &1.

CPF1606 E Error during allocation of subsystem &1.

CPF1607 E Previous request pending for subsystem &1.

CPF1608 E Subsystem description &1 not found.

CPF1619 E Subsystem description &1 in library &2 damaged.

CPF1835 E Not authorized to subsystem description.

CPF187A E List of active subsystems not available.

CPF1877 E Incorrect format specified.

CPF1878 E Library name not valid for subsystem &1.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C3A E Value for parameter &2 for API &1 not valid.

278 iSeries: Work Management APIs

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF8122 E &8 damage on library &4.

CPF9807 E One or more libraries in library list deleted.

CPF9810 E Library &1 not found.

CPF9820 E Not authorized to use library &1.

CPF9830 E Cannot assign library &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “Work Management APIs,” on page 1 | APIs by category

Retrieve Synchronization Object Information (Qp0msRtvSyncObjInfo())

API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format of receiver information

Input Char(8)

4 Target identification

Input Char(*)

5 Format of target identification

Input Char(8)

6 Options variable

Input Char(*)

7 Format of options variable

Input Char(8)

8 Error Code

I/O Char(*)
 Service Program Name: QP0MSRTVSO

 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Synchronization Object Information API (Qp0msRtvSyncObjInfo()) retrieves status

information for a synchronization object.

Work Management APIs 279

#TOP
aplist.htm

Authorities and Locks

Job Authority

The API must be called from within the job for which the information is being retrieved, or the

caller of the API must be running under a user profile that is the same as the job user identity of

the job for which the information is being retrieved. Otherwise, the caller of the API must be

running under a user profile that has job control (*JOBCTL) special authority.

The job user identity is the name of the user profile by which a job is known to other jobs. It is

described in more detail in the Work Management

book on the V5R1 Supplemental Manuals

Web site.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the information requested. The number of synchronization object

descriptions that are available may exceed the receiver variable capacity. As a result, the receiver

variable structure contains only the data that the structure can hold. For example, this may mean

that the number of synchronization object entries returned field in the receiver variable does not

match the value in the number of synchronization object entries available field.

Length of receiver variable

INPUT; BINARY(4)

 The size of the receiver variable structure. If the size provided in the length of receiver variable

parameter is larger than the size of the receiver variable allocated in the user program, the results

are not predictable. The minimum size is 8 bytes.

Format of receiver variable

INPUT; CHAR(8)

 The format of the information returned in the receiver variable. The possible format names are:

 PMTX0100 Pointer-based mutex format. See “PMTX0100 Format - Retrieve pointer-based mutexes associated

with a job or thread” on page 282 for details on the list of threads associated with a pointer-based

mutex that can be obtained for a specified job or thread.

PMTX0200 Pointer-based mutex format. See “PMTX0200 Format - Retrieve threads associated with a

pointer-based mutex” on page 282 for details on the list of waiting threads that can be obtained

for a specified pointer-based mutex.

HMTX0100 Handle-based mutex format. See “HMTX0100 Format - Retrieve handle-based mutexes associated

with a job or thread” on page 283 for details on the list of threads associated with a handle-based

mutex that can be obtained for a specified job or thread.

HMTX0200 Handle-based mutex format. See “HMTX0200 Format - Retrieve threads associated with a

handle-based mutex” on page 284 for details on the list of waiting threads that can be obtained for

a specified handle-based mutex.

HCND0100 Handle-based condition format. See “HCND0100 Format - Retrieve handle-based conditions

associated with a job or thread” on page 285 for details on the list of threads associated with a

handle-based condition that can be obtained for a specified job or thread.

HCND0200 Handle-based condition format. See “HCND0200 Format - Retrieve threads associated with a

handle-based condition” on page 285 for details on the list of waiting threads that can be obtained

for a specified handle-based condition.

STOK0100 Synchronization token format. See “STOK0100 Format - Retrieve synchronization tokens associated

with a job or thread” on page 286 for details on the list of threads associated with a

synchronization token that can be obtained for a specified job or thread.

280 iSeries: Work Management APIs

STOK0200 Synchronization token format. See “STOK0200 Format - Retrieve threads associated with a

synchronization token” on page 287 for details on the list of waiting threads that can be obtained

for a specified synchronization token.

SEMA0100 Semaphore format. See “SEMA0100 Format - Retrieve semaphores associated with a job, thread, or

all semaphores” on page 288 for details on the list of threads associated with a semaphore that can

be obtained for a specified job, a specified thread or system wide.

SEMA0200 Semaphore format. See “SEMA0200 Format - Retrieve threads associated with a semaphore” on

page 289 for details on the list of waiting threads that can be obtained for a specified semaphore.

Target identification information

INPUT; CHAR(*)

 The structure that identifies target information for the specified receiver format. See Format of

target identification information (page 281) for details.

Format of target identification information

INPUT; CHAR(8)

 The formats listed below provide job or thread identification information or synchronization

object identification information to the appropriate receiver formats. The possible format names

are:

 TIDF0000 This format is used with the SEMA0100 format when information is retrieved system wide. When

this format is specified, a null pointer is passed as the Target identification parameter.

TIDF0100 This format is used when a list of threads associated with a synchronization object for a job or

thread is retrieved. This format specifies information for the PMTX0100, HMTX0100, HCND0100,

and STOK0100 formats. This format is also used when the SEMA0100 format does not return

system wide information. See “TIDF0100 Format - Job and Thread Identification” on page 296 for

details on the fields of the structure used with this format.

TIDF0200 This format is used when waiting thread descriptions for a synchronization object are retrieved.

This format specifies information for the PMTX0200, HMTX0200, HCND0200, STOK0200, and

SEMA0200 formats. See “TIDF0200 Format - Synchronization Object Identification” on page 297

for details on the fields of the structure used with this format.

Options variable

INPUT; CHAR(*)

 The options available for receiver formats. The Options variable data structure is described in

Format of options variable information (page 281).

Format of options variable

INPUT; CHAR(8)

 The format of the information in the options variable. The possible formats are:

 OPTN0000 This format is used with the PMTX0200, HMTX0200, HCND0200, STOK0200, and SEMA0200

formats. When the OPTN0000 is specified, a null pointer is passed as the Options parameter.

OPTN0100 This format is used to specify the type of the Options variable for the PMTX0100, HMTX0100,

HCND0100, STOK0100, and SEMA0100 formats. See “OPTN0100 Format - Options for Receiver

Variable” on page 299 for details on Options variable fields.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Work Management APIs 281

error.htm#HDRERRCOD
error.htm#HDRERRCOD

PMTX0100 Format - Retrieve pointer-based mutexes associated with a

job or thread

This format is used to retrieve information for pointer-based mutexes associated with one or all threads

of a job. The following table shows the receiver variable fields returned with the PMTX0100 format. For a

detailed description of each field, see “Receiver Format Field Descriptions” on page 290.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of threads in job

12 C BINARY(4) Number of mutex descriptions available

16 10 BINARY(4) Number of mutex descriptions returned

20 14 BINARY(4)

UNSIGNED

Offset to mutex descriptions

24 18 BINARY(4) Length of mutex descriptions

28 1C CHAR(4) Reserved

32 20 CHAR(*) Pointer-based mutex description

These fields repeat for

each thread associated

with a pointer-based

mutex.

CHAR(8) Thread identifier associated with mutex

BINARY(4) Number of thread descriptions for identified thread

BINARY(4) Description sequence value for the thread associated with the

mutex

PTR(OPN) Mutex reference

CHAR(16) Mutex name

CHAR(8) Mutex owner thread identifier

CHAR(8) Mutex owner thread unique value

CHAR(10) Mutex owner job name

CHAR(10) Mutex owner user name

CHAR(6) Mutex owner job number

CHAR(1) Mutex state

CHAR(1) Reserved

BINARY(4) Number of threads waiting on mutex

PMTX0200 Format - Retrieve threads associated with a pointer-based

mutex

This format is used to retrieve information for waiting threads associated with a specified pointer-based

mutex. The following table shows the receiver variable fields returned with the PMTX0200 format. For a

detailed description of each field, see “Receiver Format Field Descriptions” on page 290.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of threads waiting on mutex

282 iSeries: Work Management APIs

Offset

Type Field Dec Hex

12 C BINARY(4) Number of waiting thread descriptions available

16 10 BINARY(4) Number of waiting thread descriptions returned

20 14 BINARY(4)

UNSIGNED

Offset to waiting thread descriptions

24 18 BINARY(4) Length of waiting thread descriptions

28 1C CHAR(4) Reserved

32 20 CHAR(16) Mutex name

48 30 CHAR(8) Mutex owner thread identifier

56 38 CHAR(8) Mutex owner thread unique value

64 40 CHAR(10) Mutex owner job name

74 4A CHAR(10) Mutex owner user name

84 54 CHAR(6) Mutex owner job number

90 5A CHAR(6) Reserved

96 60 CHAR(*) Description of thread waiting for mutex

These fields repeat for

each thread waiting on

the specified

pointer-based mutex.

CHAR(8) Waiter thread identifier

CHAR(8) Waiter thread unique value

CHAR(10) Waiter thread job name

CHAR(10) Waiter thread user name

CHAR(6) Waiter thread job number

CHAR(6) Reserved

HMTX0100 Format - Retrieve handle-based mutexes associated with a

job or thread

This format is used to retrieve information for handle-based mutexes associated with one or all threads of

a job. The following table shows the receiver variable fields returned with the HMTX0100 format. For a

detailed description of each field, see “Receiver Format Field Descriptions” on page 290.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of threads in job

12 C BINARY(4) Number of mutex descriptions available

16 10 BINARY(4) Number of mutex descriptions returned

20 14 BINARY(4)

UNSIGNED

Offset to mutex descriptions

24 18 BINARY(4) Length of mutex descriptions

28 1C CHAR(4) Reserved

32 20 CHAR(*) Handle-based mutex description

Work Management APIs 283

Offset

Type Field Dec Hex

These fields repeat for

each thread associated

with a handle-based

mutex .

CHAR(8) Thread identifier associated with mutex

BINARY(4) Number of thread descriptions for identified thread

BINARY(4) Description sequence value for the thread associated with the

mutex

PTR(OPN) Mutex reference

CHAR(8) Mutex owner thread identifier

CHAR(8) Mutex owner thread unique value

CHAR(10) Mutex owner job name

CHAR(10) Mutex owner user name

CHAR(6) Mutex owner job number

CHAR(1) Mutex state

CHAR(5) Reserved

BINARY(8) Mutex key

BINARY(4) Number of threads waiting on mutex

CHAR(4) Reserved

HMTX0200 Format - Retrieve threads associated with a handle-based

mutex

This format is used to retrieve information for waiting threads associated with a specified handle-based

mutex. The following table shows the receiver variable fields returned with the HMTX0200 format. For a

detailed description of each field, see “Receiver Format Field Descriptions” on page 290.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of threads waiting on mutex

12 C BINARY(4) Number of waiting thread descriptions available

16 10 BINARY(4) Number of waiting thread descriptions returned

20 14 BINARY(4)

UNSIGNED

Offset to waiting thread descriptions

24 18 BINARY(4) Length of waiting thread descriptions

28 1C CHAR(4) Reserved

32 20 CHAR(8) Mutex creator program

40 28 BINARY(8) Mutex key

48 30 CHAR(8) Mutex owner thread identifier

56 38 CHAR(8) Mutex owner thread unique value

64 40 CHAR(10) Mutex owner job name

74 4A CHAR(10) Mutex owner user name

84 54 CHAR(6) Mutex owner job number

284 iSeries: Work Management APIs

Offset

Type Field Dec Hex

90 5A CHAR(6) Reserved

96 60 CHAR(*) Description of thread waiting for mutex

These fields repeat for

each thread waiting on

the specified

handle-based mutex.

CHAR(8) Waiter thread identifier

CHAR(8) Waiter thread unique value

CHAR(10) Waiter thread job name

CHAR(10) Waiter thread user name

CHAR(6) Waiter thread job number

CHAR(6) Reserved

HCND0100 Format - Retrieve handle-based conditions associated with

a job or thread

This format is used to retrieve information for handle-based conditions associated with one or all threads

of a job. The following table shows the receiver variable fields returned with the HCND0100 format. For

a detailed description of each field, see “Receiver Format Field Descriptions” on page 290.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of threads in job

12 C BINARY(4) Number of condition descriptions available

16 10 BINARY(4) Number of condition descriptions returned

20 14 BINARY(4)

UNSIGNED

Offset to condition descriptions

24 18 BINARY(4) Length of condition descriptions

28 1C CHAR(4) Reserved

32 20 CHAR(*) Handle-based condition description

These fields repeat for

each thread associated

with a handle-based

condition .

PTR(OPN) Condition reference

CHAR(8) Thread identifier associated with condition

BINARY(8) Condition Key

BINARY(4) Number of threads waiting on condition

CHAR(12) Reserved

HCND0200 Format - Retrieve threads associated with a handle-based

condition

This format is used to retrieve information for waiting threads associated with a specified handle-based

condition. The following table shows the receiver variable fields returned with the HCND0200 format.

For a detailed description of each field, see “Receiver Format Field Descriptions” on page 290.

Work Management APIs 285

Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of threads waiting on condition

12 C BINARY(4) Number of waiting thread descriptions available

16 10 BINARY(4) Number of waiting thread descriptions returned

20 14 BINARY(4)

UNSIGNED

Offset to waiting thread descriptions

24 18 BINARY(4) Length of waiting thread descriptions

28 1C CHAR(4) Reserved

32 20 CHAR(8) Condition creator program

40 28 BINARY(8) Condition key

48 30 CHAR(*) Description of thread waiting for condition

These fields repeat for

each thread waiting on

the specified

handle-based condition.

CHAR(8) Waiter thread identifier

CHAR(8) Waiter thread unique value

CHAR(10) Waiter thread job name

CHAR(10) Waiter thread user name

CHAR(6) Waiter thread job number

CHAR(6) Reserved

STOK0100 Format - Retrieve synchronization tokens associated with a

job or thread

This format is used to retrieve information for synchronization tokens associated with one or all threads

of a job. The following table shows the receiver variable fields returned with the STOK0100 format. For a

detailed description of each field, see “Receiver Format Field Descriptions” on page 290.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of threads in job

12 C BINARY(4) Number of token descriptions available

16 10 BINARY(4) Number of token descriptions returned

20 14 BINARY(4)

UNSIGNED

Offset to token descriptions

24 18 BINARY(4) Length of token descriptions

28 1C CHAR(4) Reserved

32 20 CHAR(*) Token description

286 iSeries: Work Management APIs

Offset

Type Field Dec Hex

These fields repeat for

each thread associated

with a synchronization

token .

CHAR(8) Thread identifier associated with token

BINARY(4) Number of thread descriptions for identified thread

BINARY(4) Description sequence value for the thread associated with the

token

PTR(OPN) Token reference

CHAR(8) Token owner thread identifier

CHAR(8) Token owner thread unique value

CHAR(10) Token owner job name

CHAR(10) Token owner user name

CHAR(6) Token owner job number

CHAR(1) Token state

CHAR(5) Reserved

BINARY(4) Number of threads waiting on token

CHAR(12) Reserved

STOK0200 Format - Retrieve threads associated with a

synchronization token

This format is used to retrieve information for waiting threads associated with a specified

synchronization token. The following table shows the receiver variable fields returned with the STOK0200

format. For a detailed description of each field, see “Receiver Format Field Descriptions” on page 290.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of threads waiting on token

12 C BINARY(4) Number of waiting thread descriptions available

16 10 BINARY(4) Number of waiting thread descriptions returned

20 14 BINARY(4)

UNSIGNED

Offset to waiting thread descriptions

24 18 BINARY(4) Length of waiting thread descriptions

28 1C CHAR(4) Reserved

32 20 CHAR(8) Token creator program

40 28 BINARY(8) Token unique value

48 30 CHAR(8) Token owner thread identifier

56 38 CHAR(8) Token owner thread unique value

64 40 CHAR(10) Token owner job name

74 4A CHAR(10) Token owner user name

84 54 CHAR(6) Token owner job number

90 5A CHAR(6) Reserved

Work Management APIs 287

Offset

Type Field Dec Hex

96 60 CHAR(*) Description of thread waiting for token

These fields repeat for

each thread waiting on

the specified

synchronization token.

CHAR(8) Waiter thread identifier

CHAR(8) Waiter thread unique value

CHAR(10) Waiter thread job name

CHAR(10) Waiter thread user name

CHAR(6) Waiter thread job number

CHAR(6) Reserved

SEMA0100 Format - Retrieve semaphores associated with a job,

thread, or all semaphores

This format is used to retrieve information for semaphores associated with one or all threads of a job or

all semaphores on a system. The following table shows the receiver variable fields returned with the

SEMA0100 format. For a detailed description of each field, see “Receiver Format Field Descriptions” on

page 290.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of semaphore descriptions available

12 C BINARY(4) Number of semaphore descriptions returned

16 10 BINARY(4)

UNSIGNED

Offset to semaphore descriptions

20 14 BINARY(4) Length of semaphore descriptions

24 18 CHAR(8) Reserved

32 20 CHAR(10) Semaphore associated job name

42 2A CHAR(10) Semaphore associated user name

52 34 CHAR(6) Semaphore associated job number

58 3A CHAR(2) Reserved

60 3C BINARY(4) Number of threads in job associated with semaphore

64 40 CHAR(*) Semaphore description

288 iSeries: Work Management APIs

Offset

Type Field Dec Hex

These fields repeat for

each thread associated

with a semaphore.

CHAR(8) Thread identifier associated with semaphore

CHAR(8) Reserved

PTR(OPN) Semaphore reference

CHAR(16) Semaphore title

CHAR(8) Semaphore creator program

BINARY(8) Semaphore key

BINARY(4) Number of threads waiting on semaphore

BINARY(4) Semaphore count value

BINARY(4) Semaphore maximum count

CHAR(1) Semaphore type

CHAR(1) Semaphore unlinked status

CHAR(2) Reserved

SEMA0200 Format - Retrieve threads associated with a semaphore

This format is used to retrieve information for waiting threads associated with a specified semaphore.

The following table shows the receiver variable fields returned with the SEMA0200 format. For a detailed

description of each field, see “Receiver Format Field Descriptions” on page 290.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of threads waiting on semaphore

12 C BINARY(4) Number of waiting thread descriptions available

16 10 BINARY(4) Number of waiting thread descriptions returned

20 14 BINARY(4)

UNSIGNED

Offset to waiting thread descriptions

24 18 BINARY(4) Length of waiting thread descriptions

28 1C CHAR(4) Reserved

32 20 CHAR(16) Semaphore title

48 30 CHAR(8) Semaphore creator program

56 38 BINARY(8) Semaphore key

64 40 BINARY(4) Semaphore count value

68 44 BINARY(4) Semaphore maximum count

72 48 CHAR(1) Semaphore type

73 49 CHAR(1) Semaphore unlinked status

74 4A CHAR(2) Reserved

76 4C CHAR(8) Last semaphore post operation thread identifier

84 54 CHAR(8) Last semaphore post operation thread unique value

Work Management APIs 289

Offset

Type Field Dec Hex

92 5C CHAR(10) Last semaphore post operation job name

102 66 CHAR(10) Last semaphore post operation user name

112 70 CHAR(6) Last semaphore post operation job number

118 76 CHAR(8) Last semaphore wait operation thread identifier

126 7E CHAR(8) Last semaphore wait operation thread unique value

134 86 CHAR(10) Last semaphore wait operation job name

144 90 CHAR(10) Last semaphore wait operation user name

154 9A CHAR(6) Last semaphore wait operation job number

160 A0 CHAR(*) Description of thread waiting for semaphore

These fields repeat for

each thread waiting on

the specified

semaphore.

CHAR(8) Waiter thread identifier

CHAR(8) Waiter thread unique value

CHAR(10) Waiter thread job name

CHAR(10) Waiter thread user name

CHAR(6) Waiter thread job number

CHAR(6) Reserved

Receiver Format Field Descriptions

Bytes available. The number (in bytes) of all data that can be returned. All available data is returned if

enough space in the receiver variable is provided.

Bytes returned. The number (in bytes) of data returned in the receiver variable. Only complete

descriptions are returned.

Condition creator program. The first 8 characters of the name of the program module that created the

condition. This field is for debug purposes only and should not be used for building applications based

on its contents.

Condition key. A unique system-wide value that is assigned to a handle-based condition for sharing

between jobs. If a condition was created without a key, this field contains binary 0.

Condition reference. A replica of a handle-based condition. Additional information for the condition

replica returned in this field can be retrieved using this API and the HCND0200 format.

Description of thread waiting for condition. Structure that contains a description of a thread waiting on

the specified condition. This structure is repeated as needed to describe all threads waiting on the

specified condition. Only complete descriptions are returned.

Description of thread waiting for mutex. Structure that contains a description of a thread waiting on the

specified mutex. This structure is repeated as needed to describe all threads waiting on the specified

mutex. Only complete descriptions are returned.

Description of thread waiting for semaphore. Structure that contains a description of a thread waiting

on the specified semaphore. This structure is repeated as needed to describe all threads waiting on the

specified semaphore. Only complete descriptions are returned.

290 iSeries: Work Management APIs

Description of thread waiting for token. Structure that contains a description of a thread waiting on the

specified token. This structure is repeated as needed to describe all threads waiting on the specified

token. Only complete descriptions are returned.

Description sequence value for the thread associated with the mutex. The sequence number of a

description in the range of the total number of descriptions for a thread identifier. This value can be used

in the form ″M of N descriptions″, in which M is the description sequence value for the thread and N is

the total number of descriptions for the thread.

Description sequence value for the thread associated with the token. The sequence number of a

description in the range of the total number of descriptions for a thread identifier. This value can be used

in the form ″M of N descriptions″, in which M is the description sequence value for the thread and N is

the total number of descriptions for the thread.

Handle-based condition description. Contains fields that describe a handle-based condition associated

with the specified job or thread. This structure is repeated as needed to include all available handle-based

condition descriptions. Only complete descriptions are returned.

Handle-based mutex description. Contains fields that describe a handle-based mutex associated with the

specified job or thread. This structure is repeated as needed to include all available handle-based mutex

descriptions. Only complete descriptions are returned.

Last semaphore post operation job name. The job name for the job containing the thread that last

incremented the semaphore count. If this field is all blanks, the semaphore has not been successfully

posted while waking another thread waiting on the semaphore or the thread that performed the last post

operation has ended, and the API could not collect this information.

Last semaphore post operation job number. The job number for the job containing the thread that last

incremented the semaphore count.. If this field is all blanks, the semaphore has not been successfully

posted while waking another thread waiting on the semaphore or the thread that performed the last post

operation has ended, and the API could not collect this information.

Last semaphore post operation thread identifier. A job-specific thread identifier for the thread that last

incremented the semaphore count. If this field is binary 0, the semaphore has not been successfully

posted while waking another thread waiting on the semaphore or the thread that performed the last post

operation has ended, and the API could not collect this information.

Last semaphore post operation thread unique value. A system-wide unique value that identifies the

specific thread that last incremented the semaphore count. If this field is binary 0, the semaphore has not

been successfully posted. This field cannot be used as input on any other API, but may be useful for

debug purposes.

Last semaphore post operation user name. The user name for the job containing the thread that last

incremented the semaphore count. If this field is all blanks, the semaphore has not been successfully

posted while waking another thread waiting on the semaphore or the thread that performed the last post

operation has ended, and the API could not collect this information.

Last semaphore wait operation job name. The job name for the job containing the thread that last

decremented the semaphore count. If this field is all blanks, the semaphore has not been successfully

decremented after waiting for another thread to post to the semaphore, or the thread that performed the

last wait operation has ended, and the API could not collect this information.

Last semaphore wait operation job number. The job number for the job containing the thread that last

decremented the semaphore count. If this field is all blanks, the semaphore has not been successfully

decremented after waiting for another thread to post to the semaphore, or the thread that performed the

last wait operation has ended, and the API could not collect this information.

Work Management APIs 291

Last semaphore wait operation thread identifier. A job-specific thread identifier that identifies the

specific thread within the job that last decremented the semaphore count. If this field is binary 0, the

semaphore has not been successfully decremented after waiting for another thread to post to the

semaphore or the thread that performed the last wait operation has ended, and the API could not collect

this information.

Last semaphore wait operation thread unique value. A system-wide unique value that identifies the

specific thread that last decremented the semaphore count. If this field is binary 0, the semaphore has not

been successfully decremented after waiting for another thread to post to the semaphore. This field

cannot be used as input on any other API, but may be useful for debug purposes.

Last semaphore wait operation user name. The user name for the job containing the thread that last

decremented the semaphore count. If this field is all blanks, the semaphore has not been successfully

decremented after waiting for another thread to post to the semaphore or the thread that performed the

last wait operation has ended, and the API could not collect this information.

Length of condition descriptions. Size (in bytes) of one condition description returned by this call. Only

complete descriptions are returned.

Length of mutex descriptions. Size (in bytes) of one mutex description returned by this call. Only

complete descriptions are returned.

Length of semaphore descriptions. Size (in bytes) of one semaphore description returned by this call.

Only complete descriptions are returned.

Length of token descriptions. Size (in bytes) of one synchronization token description returned by this

call. Only complete descriptions are returned.

Length of waiting thread descriptions. Size (in bytes) of one waiting thread description returned by this

call. Only complete descriptions are returned.

Mutex creator program. The first 8 characters of the name of the program module that created the mutex.

This field is for debug purposes only and should not be used for building applications based on its

contents.

Mutex key. A unique system-wide value that is assigned to a handle-based mutex for sharing between

jobs. If a handle-based mutex was created without a key, this field contains binary 0.

Mutex name. The field containing the mutex name may have the following formats:

1. 16 characters, left-justified, and padded to the right with blanks.

2. ″UNNAMED_″ + first 8 characters of the program that created the mutex (if the mutex is created

without a name)

Mutex owner job name. Job name associated with a job that contains the thread that holds the lock on a

pointer-based or handle-based mutex. If the Mutex owner job name is blanks, the mutex is not locked or

the thread that holds the lock on the mutex has ended.

Mutex owner job number. Job number associated with a job that contains the thread that holds the lock

on a pointer-based or handle-based mutex. If the Mutex owner job number is blanks, the mutex is not

locked or the thread that holds the lock on the mutex has ended.

Mutex owner thread identifier. Job-specific thread identifier for a thread that holds the lock on a lock on

a pointer-based or handle-based mutex. If the mutex owner thread identifier field contains binary 0, the

mutex is not locked or the thread that holds the lock on the mutex has ended.

292 iSeries: Work Management APIs

Mutex owner thread unique value. A system-wide unique value identifying a thread that holds the lock

on a pointer-based or handle-based mutex. This field should be used for debug purposes only.

Mutex owner user name. User name for job associated with a job that contains the thread that holds the

lock on a pointer-based or handle-based mutex. If the Mutex owner user name is blanks, the mutex is not

locked or the thread that holds the lock on the mutex has ended.

Mutex reference. A mutex address or a replica of a mutex. Additional information for the mutex

reference returned in this field can be retrieved using this API and the PMTX0200 format for

pointer-based mutexes or the HMTX0200 format for handle-based mutexes.

Mutex state. Indicates mutex status. Possible values follow:

 ’0’ Locked by thread.

’1’ Thread is waiting for the mutex.

Number of condition descriptions available. Total number of descriptions available to describe all

conditions associated with one or more threads.

Number of condition descriptions returned. Number of condition descriptions returned by this call.

Number of mutex descriptions available. Total number of descriptions available to describe all

pointer-based or handle-based mutexes associated with one or more threads.

Number of mutex descriptions returned. Number of pointer-based or handle-based mutex descriptions

returned by this call.

Number of semaphore descriptions available. Total number of descriptions available to describe all

semaphores of the specified type for the specified job or thread or for the entire system.

Number of semaphore descriptions returned. Number of semaphore descriptions returned by this call.

Number of thread descriptions for identified thread. Total number of descriptions available for the

identified thread.

Number of threads in job. Total number of active threads in the specified job at the time of the call. This

number is not applicable when information is retrieved for a single thread and contains binary 0 in this

case.

Number of threads waiting on condition. The number of threads that are currently waiting for the

condition to be set.

Number of threads waiting on mutex. The number of threads currently waiting for the mutex to become

unlocked.

Number of threads waiting on semaphore. The number of threads that are currently waiting for the

semaphore to be posted.

Number of threads waiting on token. The number of threads that are currently waiting for the token to

be unlocked.

Number of token descriptions available. Total number of descriptions available to describe all

synchronization tokens associated with one or more threads.

Work Management APIs 293

Number of token descriptions returned. Number of synchronization token descriptions returned by this

call. Only complete descriptions are returned.

Number of waiting thread descriptions available. Number of descriptions available to describe all

threads waiting on the associated synchronization object.

Number of waiting thread descriptions returned. Number of waiting thread descriptions returned by

this call. Only complete descriptions are returned.

Offset to condition descriptions. The length (in bytes) from the start of the structure to the location of

the condition descriptions. If the receiver does not contain enough space for at least one description, this

field contains binary 0.

Offset to mutex descriptions. The length (in bytes) from the start of the structure to the location of the

mutex descriptions. If the receiver does not contain enough space for at least one description, this field

contains binary 0.

Offset to semaphore descriptions. The length (in bytes) from the start of the structure to the location of

the semaphore descriptions. If the receiver does not contain enough space for at least one description, this

field contains binary 0.

Offset to token descriptions. The length (in bytes) from the start of the structure to the location of the

token descriptions. If the receiver does not contain enough space for at least one description, this field

contains binary 0.

Offset to waiting thread descriptions. The length (in bytes) from the start of the structure to the location

of the waiting thread descriptions. If the receiver does not contain enough space for at least one

description, this field contains binary 0.

Pointer-based mutex description. Contains fields that describe a pointer-based mutex associated with a

thread. This structure is repeated as needed to include all available pointer-based mutex descriptions.

Only complete descriptions are returned.

Reserved. An unused field. This field contains binary 0.

Semaphore associated job name. Job name associated with the identified semaphore. This field contains

blanks when all semaphores are retrieved on a system.

Semaphore associated job number. Job number associated with the identified semaphore. This field

contains blanks when all semaphores are retrieved on a system.

Semaphore associated user name. User name associated with the identified semaphore. This field

contains blanks when all semaphores are retrieved on a system.

Semaphore count value. The current count value for the semaphore specified.

Semaphore creator program. The first 8 characters of the name of the program module that created the

semaphore. This field is for debug purposes only and should not be used for building applications based

on its contents.

Semaphore description. Contains fields that describe a semaphore associated with the specified job or

thread. This structure is repeated as needed to include all available semaphore descriptions. Only

complete descriptions are returned.

Semaphore key. A system-wide unique value that is assigned to name-based semaphores for sharing

between jobs. The field is not applicable to pointer-based semaphores and is set to binary 0 in this case.

294 iSeries: Work Management APIs

Semaphore maximum count. The maximum count for the semaphore specified at creation.

Semaphore reference. A replica of a semaphore. Additional information for the semaphore replica

returned in this field can be retrieved using this API and the SEMA0200 format.

Semaphore title. Semaphore description text specified during semaphore creation.

Semaphore type. Indicates the type of semaphore. Possible values follow:

 ’0’ Pointer-based semaphore

’1’ Name-based semaphore

Semaphore unlinked status. Indicates whether a name-based semaphore is linked or unlinked. The field

does not apply to pointer-based semaphores and contains binary 0 in this case. Possible values follow:

 ’0’ Linked

’1’ Unlinked

Thread identifier associated with condition. A job-specific thread identifier that specifies a thread in a

job that is associated with a handle-based condition.

Thread identifier associated with mutex. A job-specific thread identifier that specifies a thread in a job

that is associated with a pointer-based or handle-based mutex.

Thread identifier associated with semaphore. A job-specific thread identifier that specifies a thread in a

job that is associated with a semaphore. This field is not applicable when all semaphores on a system are

retrieved and contains binary 0 for this case.

Thread identifier associated with token. A job-specific thread identifier that specifies a thread in a job

that is associated with a synchronization token.

Token creator program. The first 8 characters of the name of the program module that is associated with

the thread that first waited on the token. This field is for debug purposes only and should not be used

for building applications based on its contents.

Token description. Contains fields that describe a synchronization token associated with a thread. This

structure is repeated as needed to include all available synchronization token descriptions. Only complete

descriptions are returned.

Token owner job name. Job name associated with a job that contains the thread that holds the lock on a

synchronization token. If token owner job name is all blanks, the token is not locked or the thread that

holds the lock on the token has ended.

Token owner job number. Job number associated with a job that contains the thread that holds the lock

on a synchronization token. If token owner job number is all blanks, the token is not locked or the thread

that holds the lock on the token has ended.

Token owner thread identifier. A job-specific thread identifier for a thread that holds the lock on a

synchronization token. If token owner thread identifier is binary 0, the token is not locked or the thread

that holds the lock on the token has ended.

Token owner thread unique value. A system-wide unique value identifying the thread that holds the

lock on a synchronization token. If token owner unique thread value is binary 0, the token is not locked.

This field should be used for debug purposes only.

Work Management APIs 295

Token owner user name. User name associated with a job that contains the thread that holds the lock on

a synchronization token. If token owner user name is all blanks, the token is not locked or the thread that

holds the lock on the token has ended.

Token reference. A synchronization token address or a replica of a synchronization token. Additional

information for the synchronization token reference returned in this field can be retrieved using this API

and the STOK0200 format.

Token state. Indicates synchronization token status. Possible values follow:

 ’0’ Locked by thread

’1’ Thread is waiting for token

Token unique value. A system-wide unique value that identifies a token.

Waiter thread job name. Job name associated with a job containing the thread waiting on a

synchronization object. If waiter thread job name is all blanks, the thread waiting on the synchronization

object has ended, and the API could not collect this information. This is a normal state for threads that

have waited on a synchronization object successfully and ended.

Waiter thread job number. Job number associated with a job containing the thread waiting on a

synchronization object. If waiter thread job number is all blanks, the thread waiting on the

synchronization object has ended, and the API could not collect this information. This is a normal state

for threads that have waited on a synchronization object successfully and ended.

Waiter thread identifier. A job-specific thread identifier that specifies a thread waiting on a

synchronization object. If the waiter thread identifier field contains binary 0, the thread waiting on the

synchronization object the has ended, and the API could not collect this information. This is a normal

state for threads that have waited on a synchronization object successfully and ended.

Waiter thread unique value. A system-wide unique value identifying a thread waiting on a

synchronization object. This field should be used for debug purposes only.

Waiter thread user name. User name associated with a job containing the thread waiting on a

synchronization object. If waiter thread user name is all blanks, the thread waiting on the synchronization

object has ended, and the API could not collect this information. This is a normal state for threads that

have waited on a synchronization object successfully and ended.

TIDF0100 Format - Job and Thread Identification

This format is used to identify a job or thread. A job can be identified by an Internal job identifier or the

Job name, User name, and Job number fields. For a detailed description of each field, see “TIDF0100

Format Field Descriptions” on page 297.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job Name

10 A CHAR(10) User Name

20 14 CHAR(6) Job Number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4) Thread indicator

48 30 CHAR(8) Thread identifier

296 iSeries: Work Management APIs

TIDF0100 Format Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this

identifier. If you do not specify *INT for the Job name parameter, this parameter must contain binary 0.

With this parameter, the system can locate the job more quickly than with the Job name, Job number, and

User name.

Job name. A specific job name or one of the following special values:

 ″* ″ The job in which this program is running. The Job number and User name must contain binary 0.

″*INT ″ The Internal job identifier locates the job. The Job number and User name must contain binary 0.

Job number. A specific job number or binary 0 when the Job name specified is a special value.

Reserved. An unused field. This field must contain binary 0.

Thread identifier. A value that uniquely identifies a thread within a job. Because a thread identifier is

job-specific, the Job name, User name, and Job Number or the Internal job identifier must also be

provided to identify a thread.

Thread indicator. A value that is used to specify the thread or job for which information is to be

retrieved. The following values are supported:

 ’0’ Specified Thread. Information should be retrieved for the thread specified in the Thread identifier

field. A valid Job name, Job number, and User name or a valid Internal job identifier must also be

provided to identify the job containing the specified thread.

’1’ Issuing Thread. Information should be retrieved for the thread in which this program is running

currently. No additional information is required. The Job name, Job number, User name, Internal

job identifier, and Thread identifier fields of this structure must contain binary 0.

’2’ Initial Thread of Specified Job. Information should be retrieved for the initial thread of the

identified job. A valid Job name, Job number, and User name or a valid Internal job identifier must

be provided in the fields of this structure. No Thread identifier information is required, and this

field must contain binary 0. If all name-based semaphores for a job are to be retrieved, this option

must be specified.

’3’ All Threads of Specified Job. Information should be retrieved for the job and its associated

threads. A valid Job name, Job number, and User name or a valid Internal job identifier must be

provided in the fields of this structure. No Thread identifier information is required, and this field

must contain binary 0.

Note: For all supported values, the combination of the Internal job identifier, Job name, Job number, User

name, and Thread identifier fields must identify the job containing the specified thread or threads.

User name. A specific user profile name or binary 0 when the Job name specified is a special value.

TIDF0200 Format - Synchronization Object Identification

This format is used to identify a synchronization object and any required job information associated with

the synchronization object. For a detailed description of each field, see “TIDF0200 Format Field

Descriptions” on page 298.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job Name

Work Management APIs 297

Offset

Type Field Dec Hex

10 A CHAR(10) User Name

20 14 CHAR(6) Job Number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(1) Reference specification

43 2B CHAR(1) Job specification

44 2C CHAR(4) Reserved

48 30 OPN(PTR) Reference address

TIDF0200 Format Field Descriptions

Internal job identifier. The internal identifier for the job used with the STOK0200 format when the

address of a synchronization token is indicated in the Reference specification field. The List Job

(QUSLJOB) API returns this identifier. If you do not specify *INT for the Job name parameter, this

parameter must contain binary 0. With this parameter, the system can locate the job more quickly than

with the Job name, Job number, and User name. This field is not applicable to all other formats and must

contain binary 0 in these cases.

Job name. A specific job name or one of the special values in the table below used with the STOK0200

format when the address of a synchronization token is indicated in the Reference specification field. This

field is not applicable to all other formats and the STOK0200 format when replica addresses are provided.

The field must contain binary 0 in these cases.

 ″* ″ The job in which this program is running. The Job number and User name must contain binary 0.

″*INT ″ The Internal job identifier locates the job. The Job number and User name must contain binary 0.

Job number. A specific job number used with the STOK0200 format when the address of a

synchronization token is indicated in the Reference specification field. If the Job name field contains one

of the special values * or *INT, this field must contain binary 0. This field is not applicable to all other

formats and to the STOK0200 format when replica addresses are provided. The field must contain binary

0 in these cases.

Job specification. Specifies that a specific job will be provided for the STOK0200 format when

information is to be retrieved for a synchronization token in another process. This field is not applicable

to all other formats and to the STOK0200 format when replica addresses are provided. This field must

contain binary 0 in these cases.

 ’0’ Retrieve information for the token from the issuing thread’s job. No additional information is

required for this option. The Job name, User name, Job number, and Internal Job Identifier fields

must contain binary 0.

’1’ Retrieve information for the token from the job specified with the Job name, User name, and Job

number or Internal Job Identifier fields of this structure.

Reference address. The address of a synchronization object or the address of the replica of a

synchronization object.

Reference specification. Selects address of a synchronization object or the address of a replica of a

synchronization object. This field is only applicable to the STOK0200 format. The possible values of this

field are:

298 iSeries: Work Management APIs

’0’ The address of a synchronization token is provided in the Reference address field.

’1’ The address of a replica of a synchronization token is provided Reference address field.

Reserved. An unused field. This field must contain binary 0.

User name. A specific user profile name used for the STOK0200 format when the address of a

synchronization object is indicated in the Reference specification field. If the Job name field contains one

of the special values ’* ’ or ’*INT ’, this field must contain binary 0. This field is not applicable to all

other formats and to the STOK0200 format when replica addresses are provided. The field must contain

binary 0 in these cases.

OPTN0100 Format - Options for Receiver Variable

This format is used to control data retrieved in the Receiver variable. For a detailed description of each

field, see “OPTN0100 Format Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(1) References

1 1 CHAR(1) Thread status

2 2 CHAR(1) Semaphore filter

3 3 CHAR(1) Semaphore selection

4 4 CHAR(12) Reserved

OPTN0100 Format Field Descriptions

References. Selects addresses or replicas for the synchronization object associated with the format. If

addresses are selected, only those synchronization objects that the issuing thread has addressability to can

be retrieved. If replicas are selected, all synchronization objects for the specified thread or threads are

retrieved. The following values are allowed:

 ’0’ Return replicas of synchronization objects.

’1’ Return addresses of synchronization objects.

Note: This field is used only with the PMTX0100 and STOK0100 formats. For the HMTX0100,

HCND0100, and SEMA0100 formats replicas are always returned. If the field does not apply to the

current request, this field must contain binary 0.

Reserved. An unused field. This field must contain binary 0.

Semaphore filter. Retrieves information for semaphores associated with a specified job or thread, all

semaphores system wide, or all name-based semaphores in a job. This field is used only with the

SEMA0100 format and must contain binary 0 for all other formats. The following values are allowed:

 ’0’ Retrieve information for the thread or job specified in the Target identification structure with the

TIDF0100 format.

’1’ Retrieve system-wide semaphore information using the Target identification structure with the

TIDF0000 format.

’2’ Retrieve information for all name-based semaphores in a job. A Job name, User name, and Job

number or an Internal Job Identifier must be specified in the Target identification structure with

the TIDF0100 format. The Thread Indicator field of the Target identification structure must indicate

that information should be retrieved for a specified job (’2’).

Work Management APIs 299

Note: For all other formats, this field must contain binary 0.

Semaphore selection. Selects type of semaphore information to be retrieved for the SEMA0100 format

when Semaphore Filter is ’0’ or ’1’. For all other formats this field must contain binary 0. The following

values are allowed:

 ’0’ Retrieve information for name-based semaphores. The Semaphore filter field must indicate that

information should be retrieved for a specified thread or job (’0’) or system wide (’1’).

’1’ Retrieve information for pointer-based semaphores. The Semaphore filter field must indicate that

information should be retrieved for a specified thread or job (’0’) or system wide (’1’).

’2’ Retrieve information for pointer-based and name-based semaphores. The Semaphore filter field

must indicate that information should be retrieved for a specified thread or job (’0’) or system

wide (’1’).

Note: This field is not applicable when the Semaphore filter field indicates that information should be

retrieved for all name-based semaphores in a job. If the field does not apply to the current request, the

field must contain binary 0.

Thread status. Selects status of mutexes or tokens that are retrieved. The following values are allowed:

 ’0’ Retrieve descriptions of mutexes or tokens that are locked or waited upon by a thread.

’1’ Retrieve descriptions of mutexes or tokens that are waited upon by a thread.

Note: This field is used only with the PMTX0100, HMTX0100, and STOK0100 formats. If the field does

not apply to the current request, the field must contain binary 0.

Error Messages

 Message ID Error Message Text

CPE3021 The value specified for the argument is not correct.

CPE3027 Operation not permitted.

CPE3404 No space available.

CPE3408 The address used for an argument was not correct.

CPE3525 Object is too large to process.

CPE3463 The synchronization object was destroyed, or the object no longer exists.

Example

See Code disclaimer information for information pertaining to code examples.

#include "qp0msrtvso.H"

#include <qusec.h> /*Error code structures */

#include <string.h>

#include <stdio.h>

#include <mih/crtmtx.h>

#include <mih/lockmtx.h>

#include <mih/desmtx.h>

#include <mih/unlkmtx.h>

#include <except.h>

/***/

/* Description: This program creates and locks two pointer-based */

/* mutexes. It then calls Qp0msRtvSyncObjInfo() with the PMTX0100 */

/* format to retrieve a list of consisting of the two mutexes. The */

/* program uses one of the mutex addresses as the input of */

/* Qp0msRtvSyncObjInfo() with the PMTX0200 format to retrieve */

/* additional information about that mutex. */

300 iSeries: Work Management APIs

aboutapis.htm#CODEDISCLAIMER

/***/

int main (int argc, char *argv[]) {

 char pmutex1[32];

 char pmutex2[32];

 char pointer[16];

 Qp0ms_TIDF0200 target2;

 memset(&target2, 0, sizeof(Qp0ms_TIDF0200));

 _OPENPTR address_of_mutex;

 /* Creation of pointer-based mutex */

 _Mutex_Create_T pmtx_options;

 memset(&pmtx_options, 0x00, sizeof(_Mutex_Create_T));

 int result;

 result = _CRTMTX((_Mutex_T *) pmutex1, &pmtx_options);

 result = _CRTMTX((_Mutex_T *) pmutex2, &pmtx_options);

 /* Lock pointer-based mutexes */

 _Mutex_Lock_T lock_template;

 _LOCKMTX((_Mutex_T *) pmutex1, &lock_template);

 _LOCKMTX((_Mutex_T *) pmutex2, &lock_template);

 /**** Create Qp0msRtvSyncObjInfo parameters ****/

 // This call allocates space for 1 mutex description

 char * receiver = new char[sizeof(Qp0ms_PMTX0100_List_t) + 1*sizeof(Qp0ms_PMtxDesc_t)];

 int length = sizeof(Qp0ms_PMTX0100_List_t) + 1*sizeof(Qp0ms_PMtxDesc_t);

 Qus_EC_t err_code;

 /**** Initialize options structure ****/

 Qp0ms_OPTN0100_t options;

 memset(&options, 0x00, sizeof(Qp0ms_OPTN0100_t));

 options.References = ’0’;

 options.Thread_Status = ’0’;

 /**** Initialize target structure ****/

 Qp0ms_TIDF0100_t target;

 memset(&target, 0x00, sizeof(Qp0ms_TIDF0100_t));

 target.Thread_Indicator = ’1’;

 /**** Initialize error code structure ****/

 memset(&err_code, 0x00, sizeof(Qus_EC_t));

 err_code.Bytes_Provided = sizeof(Qus_EC_t);

 /* Call Retrieve Synchronization Object Information API */

 Qp0msRtvSyncObjInfo(receiver, &length, "PMTX0100", &target, "TIDF0100",

 &options, "OPTN0100", &err_code);

 Qp0ms_PMtxDesc_t * Mutex_Desc = (Qp0ms_PMtxDesc_t *)((char *) receiver +

 ((Qp0ms_PMTX0100_List_t *) receiver)->Desc_Offset);

 printf("********************Results of Qp0msRtvSyncObjInfo() *************\n");

 if (err_code.Bytes_Available != 0)

 printf("This call failed with error %7.7s\n", err_code.Exception_Id);

 else {

 printf("Bytes Returned %d\n", ((Qp0ms_PMTX0100_List *) receiver)->Bytes_Returned);

 printf("Bytes Available %d\n", ((Qp0ms_PMTX0100_List *) receiver)->Bytes_Available);

 printf("Number of Threads %d\n", ((Qp0ms_PMTX0100_List *) receiver)->Num_Threads);

 printf("Number of Descriptions Available %d\n", ((Qp0ms_PMTX0100_List *) receiver)->Num_Desc_Available);

 printf("Number of Descriptions Returned %d\n", ((Qp0ms_PMTX0100_List *) receiver)->Num_Desc_Returned);

 }

Work Management APIs 301

for (int i = 0; i < ((Qp0ms_PMTX0100_List *) receiver)->Num_Desc_Returned; ++i) {

 if (err_code.Bytes_Available != 0)

 printf("This call failed with error %7.7s\n", err_code.Exception_Id);

 else{

 printf("Mutex information %d\n", i);

 printf("Mutex state: %d\n", Mutex_Desc[i].Mutex_State);

 printf("Mutex Name: %16.16s\n", Mutex_Desc[i].Mutex_Name);

 printf("Mutex Owner Job Information\n");

 printf("Job Name: %10.10s\n", Mutex_Desc[i].Owner_Job_Name);

 printf("Job Number: %6.6s\n", Mutex_Desc[i].Owner_Job_Num);

 printf("User Name: %10.10s\n", Mutex_Desc[i].Owner_User_Name);

 int * tid = (int *) &Mutex_Desc[i].Owner_Thread_Id[0];

 printf("Mutex Owner Thread ID: %4.4x", *tid);

 printf("%4.4x\n", *(tid+1));

 int * thr_uval = (int *) &Mutex_Desc[i].Owner_Thread_Val[0];

 printf("Mutex Owner Thread Unique Value: %4.4x", *thr_uval);

 printf("%4.4x\n", *(thr_uval+1));

 printf("Number of threads waiting on this mutex: %d\n", Mutex_Desc[i].Num_Waiters);

 memcpy(&address_of_mutex, &Mutex_Desc[i].Mutex, sizeof(_OPENPTR));

 address_of_mutex = (_OPENPTR) Mutex_Desc[i].Mutex;

 void * test = Mutex_Desc[i].Mutex;

 memcpy(&test, &Mutex_Desc[i].Mutex, sizeof(void *));

 test = Mutex_Desc[i].Mutex;

 memcpy(pointer, &Mutex_Desc[i].Mutex, 16);

 memcpy(&address_of_mutex, pointer, 16);

 target2.Ref_Address = &Mutex_Desc[i].Mutex;

 if (((Qp0ms_PMTX0100_List_t *) receiver)->Bytes_Available >

 ((Qp0ms_PMTX0100_List_t *) receiver)->Bytes_Returned){

 printf("More descriptions available.\n");

 }

 }

 }

 delete receiver;

 /* Initialize receiver */

 receiver = new char[sizeof(Qp0ms_PMTX0200_List_t) + sizeof(Qp0ms_Waiters)];

 /* Initialize length */

 length = sizeof(Qp0ms_PMTX0200_List_t) + sizeof(Qp0ms_Waiters);

 /* Initialize error code */

 memset(&err_code, 0, sizeof(Qus_EC_t));

 err_code.Bytes_Provided = sizeof(Qus_EC_t);

 /* Call Retrieve Synchronization Object Information API */

 Qp0msRtvSyncObjInfo(receiver, &length, "PMTX0200", &target2, "TIDF0200", NULL, "OPTN0000", &err_code);

 if (err_code.Bytes_Available != 0)

 printf("This call failed with error %7.7s\n", err_code.Exception_Id);

 else {

 printf("Bytes Returned %d\n", ((Qp0ms_PMTX0200_List *) receiver)->Bytes_Returned);

 printf("Bytes Available %d\n", ((Qp0ms_PMTX0200_List *) receiver)->Bytes_Available);

 printf("Number of Threads %d\n", ((Qp0ms_PMTX0200_List *) receiver)->Num_Threads_Waiting);

 printf("Number of Descriptions Available %d\n", ((Qp0ms_PMTX0200_List *) receiver)->Num_Desc_Available);

 printf("Number of Descriptions Returned %d\n", ((Qp0ms_PMTX0200_List *) receiver)->Num_Desc_Returned);

 printf("Mutex Name: %16.16s\n", ((Qp0ms_PMTX0200_List *) receiver)->Mutex_Name);

 int * tid = (int *) &((Qp0ms_PMTX0200_List *) receiver)->Owner_Thread_Id[0];

 printf("Mutex Owner Thread ID: %4.4x", *tid);

 printf("%4.4x\n", *(tid+1));

 int * thr_uval = (int *) &((Qp0ms_PMTX0200_List *) receiver)->Owner_Thread_Val[0];

 printf("Mutex Owner Thread Unique Value: %4.4x", *thr_uval);

 printf("%4.4x\n", *(thr_uval+1));

302 iSeries: Work Management APIs

printf("Owner Job Name: %10.10s\n", ((Qp0ms_PMTX0200_List *) receiver)->Owner_Job_Name);

 printf("Owner Job Number: %6.6s\n", ((Qp0ms_PMTX0200_List *) receiver)->Owner_Job_Num);

 printf("Owner User Name: %10.10s\n", ((Qp0ms_PMTX0200_List *) receiver)->Owner_User_Name);

 Qp0ms_Waiters * waiters = (Qp0ms_Waiters *) ((int) receiver +

 ((Qp0ms_PMTX0200_List *) receiver)->Desc_Offset);

 for(int i = 0; i < ((Qp0ms_PMTX0200_List *) receiver)->Num_Desc_Returned; ++i) {

 int * atid = (int *) &waiters[i].Thread_Id[0];

 printf("Mutex %d, Associated Thread ID: %4.4x", i, *atid);

 printf("%4.4x\n", *(atid+1));

 int * athr_uval = waiters[i].Thread_Val;

 printf("Mutex %d Associated Thread Unique Value: %4.4x", i, *athr_uval);

 printf("%4.4x\n", *(athr_uval+1));

 printf("Mutex %d Associated Job Name\n", i, waiters[i].Job_Name);

 printf("Mutex %d Associated User Name\n", i, waiters[i].User_Name);

 printf("Mutex %d Associated Job Number\n", i, waiters[i].Job_Number);

 }

 }

 /* Clean up */

 _UNLKMTX((_Mutex_T *) pmutex1);

 _UNLKMTX((_Mutex_T *) pmutex2);

 _Mutex_Destroy_Opt_T destroy_opt;

 _DESMTX((_Mutex_T *) pmutex1, &destroy_opt);

 _DESMTX((_Mutex_T *) pmutex2, &destroy_opt);

 delete receiver;

}

Example Output

********************Results of Qp0msRtvSyncObjInfo() *************

Bytes Returned 128

Bytes Available 224

Number of Threads 0

Number of Descriptions Available 2

Number of Descriptions Returned 1

Mutex information 0

Mutex state: 240

Mutex Name: UNNAMED_I0_EXAMP

Mutex Owner Job Information

Job Name: QPADEV0004

Job Number: 023786

User Name: USER1

Mutex Owner Thread ID: 00000060

Mutex Owner Thread Unique Value: b003f000df03000

Number of threads waiting on this mutex: 0

More descriptions available.

Bytes Returned 96

Bytes Available 96

Number of Threads 0

Number of Descriptions Available 0

Number of Descriptions Returned 0

Mutex Name: UNNAMED_I0_EXAMP

Mutex Owner Thread ID: 00000060

Mutex Owner Thread Unique Value: b003f000df03000

Owner Job Name: QPADEV0004

Owner Job Number: 023786

Owner User Name: USER1

Work Management APIs 303

API introduced: V5R3

 Top | “Work Management APIs,” on page 1 | APIs by category

Retrieve System Status (QWCRSSTS) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format name

Input Char(8)

4 Reset status statistics

Input Char(10)

5 Error Code

I/O Char(*)
 Optional Parameter Group:

6 Pool selection information

Input Char(*)

7 Size of pool selection information

Input Binary(4)

 Default Public Authority: *USE

 Threadsafe: No

The Retrieve System Status (QWCRSSTS) API allows you to retrieve a group of statistics that represents

the current status of the system.

Authorities and Locks

None.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that will receive the system status information being retrieved. For the format, see

“Format of Data Returned” on page 306.

Length of receiver variable

INPUT; BINARY(4)

304 iSeries: Work Management APIs

#TOP
aplist.htm

The length of the receiver variable described in “Format of Data Returned” on page 306. If the

length is larger than the size of the receiver variable, the results may not be predictable. The

minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of the information to be returned. You must use one of the following format names:

 SSTS0100 Basic system status information about the signed-on users and batch jobs in the system. The

information returned in this format is similar to the basic display of the Display System Status

(DSPSYSSTS) command.

SSTS0200 System status information. The information returned in this format is similar to the disk

information of the intermediate or advanced display of the DSPSYSSTS command.

SSTS0300 System status information. The information returned in this format is similar to the pool

information of the intermediate or advanced display of the DSPSYSSTS command.

SSTS0400 Pool status information. The information returned in this format is the SSTS0300 format

information and additional pool information. The pool selection information parameter must be

used when this format is used.

SSTS0500 Pool subsystem information. The information returned in this format is a list of active subsystems

using a pool. The pool selection information parameter must be used to select one system pool

when this format is used.

For more information about these formats, see “Format of Data Returned” on page 306.

Reset status statistics

INPUT; CHAR(10)

 Whether the status statistics and elapsed time are reset to zero, as if this were the first call to the

API. The statistics will be reset before new information is gathered. This parameter will also reset

the status statistics on the DSPSYSSTS and Work with System Status (WRKSYSSTS) commands.

This parameter is ignored for format SSTS0100 and format SSTS0500.

 *YES Statistics will be reset to zero.

*NO Statistics will not be reset to zero.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Optional Parameter Group

Pool selection information

INPUT; CHAR(*)

 Information that is used for selecting which pools to include in the list. This parameter only

applies to the SSTS0400 and SSTS0500 formats. See “Format of Pool Selection Information” on

page 316 for a description on the layout of this parameter. If this optional parameter is specified,

the Size of pool selection information parameter must also be specified.

Size of pool selection information

INPUT; BINARY(4)

 The size, in bytes, of the pool selection information parameter. If the value of this parameter is 0,

the pool selection information is not used. The valid values for this parameter are 0, 20, or 24. If

this parameter is not specified, the Size of pool selection information is defaulted to 0.

Work Management APIs 305

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Format of Data Returned

The receiver variable holds the system status information returned.

SSTS0100 Format

The following table shows the information returned for the SSTS0100 format. For a detailed description of

each field see “Field Descriptions” on page 310.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes available

4 4 BINARY(4) Bytes returned

8 8 CHAR(8) Current date and time

16 10 CHAR(8) System name

24 18 BINARY(4) Users currently signed on

28 1C BINARY(4) Users temporarily signed off (disconnected)

32 20 BINARY(4) Users suspended by system request

36 24 BINARY(4) Users suspended by group jobs

40 28 BINARY(4) Users signed off with printer output waiting to print

44 2C BINARY(4) Batch jobs waiting for messages

48 30 BINARY(4) Batch jobs running

52 34 BINARY(4) Batch jobs held while running

56 38 BINARY(4) Batch jobs ending

60 3C BINARY(4) Batch jobs waiting to run or already scheduled

64 40 BINARY(4) Batch jobs held on a job queue

68 44 BINARY(4) Batch jobs on a held job queue

72 48 BINARY(4) Batch jobs on an unassigned job queue

76 4C BINARY(4) Batch jobs ended with printer output waiting to print

SSTS0200 Format

The following table shows the information returned for the SSTS0200 format. For a detailed description of

each field, see the “Field Descriptions” on page 310.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes available

4 4 BINARY(4) Bytes returned

8 8 CHAR(8) Current date and time

16 10 CHAR(8) System name

24 18 CHAR(6) Elapsed time

30 1E CHAR(1) Restricted state flag

31 1F CHAR(1) Reserved

32 20 BINARY(4) % processing unit used

36 24 BINARY(4) Jobs in system

306 iSeries: Work Management APIs

Offset

Type Field Dec Hex

40 28 BINARY(4) % permanent addresses

44 2C BINARY(4) % temporary addresses

48 30 BINARY(4) System ASP

52 34 BINARY(4) % system ASP used

56 38 BINARY(4) Total auxiliary storage

60 3C BINARY(4) Current unprotected storage used

64 40 BINARY(4) Maximum unprotected storage used

68 44 BINARY(4) % DB capability

72 48 BINARY(4) Main storage size

76 4C BINARY(4) Number of partitions

80 50 BINARY(4) Partition identifier

84 54 BINARY(4) Reserved

88 58 BINARY(4) Current processing capacity

92 5C CHAR(1) Processor sharing attribute

93 5D CHAR(3) Reserved

96 60 BINARY(4) Number of processors

100 64 BINARY(4) Active jobs in system

104 68 BINARY(4) Active threads in system

108 6C BINARY(4) Maximum jobs in system

112 70 BINARY(4) % temporary 256MB segments used

116 74 BINARY(4) % temporary 4GB segments used

120 78 BINARY(4) % permanent 256MB segments used

124 7C BINARY(4) % permanent 4GB segments used

128 80 BINARY(4) % current interactive performance

132 84 BINARY(4) % uncapped CPU capacity used

136 88 BINARY(4) % shared processor pool used

SSTS0300 Format

The following table shows the information returned for the SSTS0300 format. For a detailed description of

each field, see the “Field Descriptions” on page 310.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes available

4 4 BINARY(4) Bytes returned

8 8 CHAR(8) Current date and time

16 10 CHAR(8) System name

24 18 CHAR(6) Elapsed time

30 1E CHAR(2) Reserved

32 20 BINARY(4) Number of pools

Work Management APIs 307

Offset

Type Field Dec Hex

36 24 BINARY(4) Offset to pool information

40 28 BINARY(4) Length of pool information entry

44 2C CHAR(*) Reserved

Offsets vary. These

fields repeat, in the

order listed, for each

pool allocated by the

system.

BINARY(4) System pool

BINARY(4) Pool size

BINARY(4) Reserved size

BINARY(4) Maximum active threads

BINARY(4) Database faults

BINARY(4) Database pages

BINARY(4) Nondatabase faults

BINARY(4) Nondatabase pages

BINARY(4) Active to wait

BINARY(4) Wait to ineligible

BINARY(4) Active to ineligible

CHAR(10) Pool name

CHAR(10) Subsystem name

CHAR(10) Subsystem library name

CHAR(10) Paging option

SSTS0400 Format

The following table shows the information returned for the SSTS0400 format. For a detailed description of

each field, see the “Field Descriptions” on page 310.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes available

4 4 BINARY(4) Bytes returned

8 8 CHAR(8) Current date and time

16 10 CHAR(8) System name

24 18 CHAR(6) Elapsed time

30 1E CHAR(2) Reserved

32 20 BINARY(4) Main storage size

36 24 BINARY(4) Minimum machine pool size

40 28 BINARY(4) Minimum base pool size

44 2C BINARY(4) Number of pools

48 30 BINARY(4) Offset to pool information

52 34 BINARY(4) Length of pool information entry

56 38 CHAR(*) Reserved

Note: The following fields repeat, in the order listed, for the number of pools returned.

 BINARY(4) System pool

308 iSeries: Work Management APIs

Offset

Type Field Dec Hex

 BINARY(4) Pool size

 BINARY(4) Reserved size

 BINARY(4) Maximum active threads

 BINARY(4) Database faults

 BINARY(4) Database pages

 BINARY(4) Nondatabase faults

 BINARY(4) Nondatabase pages

 BINARY(4) Active to wait

 BINARY(4) Wait to ineligible

 BINARY(4) Active to ineligible

 CHAR(10) Pool name

 CHAR(10) Subsystem name

 CHAR(10) Subsystem library name

 CHAR(10) Paging option

 BINARY(4) Defined size

 BINARY(4) Current threads

 BINARY(4) Current ineligible threads

 BINARY(4) Tuning priority

 BINARY(4) Tuning minimum pool size %

 BINARY(4) Tuning maximum pool size %

 BINARY(4) Tuning minimum faults

 BINARY(4) Tuning per-thread faults

 BINARY(4) Tuning maximum faults

 CHAR(50) Description

 CHAR(1) Status

 CHAR(1) Reserved

 BINARY(4) Tuning minimum activity level

 BINARY(4) Tuning maximum activity level

 CHAR(*) Reserved

SSTS0500 Format

The following table shows the information returned for the SSTS0500 format. For a detailed description of

each field, see the “Field Descriptions” on page 310.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes available

4 4 BINARY(4) Bytes returned

8 8 CHAR(8) Current date and time

16 10 CHAR(8) System name

Work Management APIs 309

Offset

Type Field Dec Hex

24 18 BINARY(4) System pool

28 1C BINARY(4) Number of subsystems available

32 20 BINARY(4) Number of subsystems returned

36 24 BINARY(4) Offset to subsystem information

40 28 BINARY(4) Length of subsystem information entry

44 32 CHAR(10) Pool name

54 36 CHAR(*) Reserved

Note: The following fields repeat, in the order listed, for the number of subsystems returned.

 CHAR(10) Subsystem name

 CHAR(10) Subsystem library name

 CHAR(*) Reserved

Field Descriptions

% current interactive performance. The percentage of interactive performance assigned to this logical

partition. This value is a percentage of the total interactive performance available to the entire physical

system. For example, a value of 41 in binary would be 41 percent.

% DB capability. The percentage of processor database capability (in tenths) that was used during the

elapsed time. Database capability is the maximum CPU utilization available for database processing on

this server. -1 is returned if this server does not report the amount of CPU used for database processing.

For example, a value of 411 in binary would be 41.1 percent.

% permanent addresses. The percentage (in thousandths) of the maximum possible addresses for

permanent objects that have been used. For example, a value of 41123 in binary would be 41.123 percent.

% permanent 256MB segments used. The percentage (in thousandths) of the maximum possible

permanent 256MB segments that have been used. For example, a value of 41123 in binary would be

41.123 percent.

% permanent 4GB segments used. The percentage (in thousandths) of the maximum possible permanent

4GB segements that have been used. For example, a value of 41123 in binary would be 41.123 percent.

% processing unit used. The average (in tenths) of the elapsed time during which the processing units

were in use. For example, a value of 411 in binary would be 41.1 percent.

For an uncapped partition,

this is the percentage (in tenths) of the configured uncapped shared processing capacity for the partition

that was used during the elapsed time. This percentage could be greater than 100% for an uncapped

partition.

% shared processor pool used. The percentage (in tenths) of the total shared processor pool capacity

used by all partitions using the pool during the elapsed time. -1 is returned if this partition does not

share processors. For example, a value of 411 in binary would be 41.1 percent.

% system ASP used. The percentage (in ten thousandths) of the system storage pool currently in use. For

example, a value of 41123 in binary would be 4.1123 percent.

% temporary addresses. The percentage (in thousandths) of the maximum possible addresses for

temporary objects that have been used. For example, a value of 41123 in binary would be 41.123 percent.

310 iSeries: Work Management APIs

% temporary 256MB segments used. The percentage (in thousandths) of the maximum possible

temporary 256MB segments that have been used. For example, a value of 41123 in binary would be

41.123 percent.

% temporary 4GB segments used. The percentage (in thousandths) of the maximum possible temporary

4GB segments that have been used. For example, a value of 41123 in binary would be 41.123 percent.

% uncapped CPU capacity used. The percentage (in tenths) of the uncapped shared processing

capacity for the partition that was used during the elapsed time. -1 is returned if this partition can not

use more than its configured processing capacity. For example, a value of 411 in binary would be 41.1

percent.

Active jobs in system. The number of jobs active in the system (jobs that have been started, but have not

yet ended), including both user and system jobs.

Active threads in system. The number of initial and secondary threads in the system (threads that have

been started, but have not yet ended), including both user and system threads.

Active to ineligible. The rate (in tenths), in transitions per minute, of transitions of threads from an

active condition to an ineligible condition. For example, a value of 123 in binary would be 12.3 transitions

per minute.

Active to wait. The rate (in tenths), in transitions per minute, of transitions of threads from an active

condition to a waiting condition. For example, a value of 123 in binary would be 12.3 transitions per

minute.

Batch jobs ended with printer output waiting to print. The number of completed batch jobs that

produced printer output that is waiting to print.

Batch jobs ending. The number of batch jobs that are in the process of ending due to one of the

following conditions:

v The job finishes processing normally.

v The job ends before its normal completion point and is being removed from the system.

Batch jobs held on a job queue. The number of batch jobs that were submitted, but were held before

they could begin running.

Batch jobs held while running. The number of batch jobs that had started running, but are now held.

Batch jobs on a held job queue. The number of batch jobs on job queues that have been assigned to a

subsystem, but are being held.

Batch jobs on an unassigned job queue. The number of batch jobs on job queues that have not been

assigned to a subsystem.

Batch jobs running. The number of batch jobs currently running on the system.

Batch jobs waiting for messages. The number of batch jobs waiting for a reply to a message before they

can continue to run.

Batch jobs waiting to run or already scheduled. The number of batch jobs on the system that are

currently waiting to run, including those that were submitted to run at a future date and time. Jobs on

the job schedule that have not been submitted are not included.

Work Management APIs 311

Bytes available. The length of all data available to return. All available data is returned if enough space

is provided.

Bytes returned. The length of the data actually returned. The number of bytes returned is always less

than or equal to both the number of bytes available and the receiving variable length.

Current date and time. The date and time when the status was gathered. This is in system timestamp

format.

Current ineligible threads. The number of ineligible threads in the pool’s activity level.

Current processing capacity. The amount (in hundredths) of current processing capacity of the partition.

For a partition sharing physical processors, this attribute represents the share of the physical processors in

the pool it is executing. For example, a value of 233 means that the partition’s current processing capacity

is equivalent to 2.33 physical processors. If the current number of processors in the partition is four, each

virtual processor has 0.58 the computing capacity of a physical processor in the physical machine. For a

partition using dedicated processors, the value represents the number of virtual processors that are

currently active in the partition. For example, a partition using four dedicated processors will return a

value of 400 for the current processing capacity.

Current threads. The number of threads currently using the pool’s activity level.

Current unprotected storage used. The current amount of storage in use for temporary objects. This

value is in millions (M) of bytes.

Database faults. The rate (in tenths), shown in page faults per second, of database page faults against

pages containing either database data or access paths. A page fault is a program notification that occurs

when a page that is marked as not in main storage is referred to by an active program. An access path is

the means by which the system provides a logical organization to the data in a database file. For

example, a value of 123 in binary would be 12.3 page faults per second.

Database pages. The rate (in tenths), in pages per second, at which database pages are brought into the

storage pool. A page is a 4096-byte block of information that is transferable between auxiliary storage and

main storage. For example, a value of 123 in binary would be 12.3 pages per second.

Defined size. The size of the pool, in kilobytes, as defined in the shared pool, subsystem description, or

system value QMCHPOOL. -1 will be returned for pools without a defined size.

Description. The description of the shared pool. This field is blank for private pools defined in subsystem

descriptions.

Elapsed time. The time that has elapsed between the measurement start time and the current system

time. This value is in the format HHMMSS where HH is the hour, MM is the minute, and SS is the

second.

Jobs in system. The total number of user jobs and system jobs that are currently in the system. The total

includes:

v All jobs on job queues waiting to be processed.

v All jobs currently active (being processed).

v All jobs that have completed running but still have output on output queues to be produced.

Length of pool information entry. The length of the information returned for each pool. If the receiver

variable was not sufficiently large to hold all of the pool information, the amount of pool information

returned may be less than this value.

312 iSeries: Work Management APIs

Length of subsystem information entry. The length of the information returned for each subsystem. If

the receiver variable was not sufficiently large to hold all of the information, the amount of information

returned may be less than this value.

Main storage size. The amount of main storage, in kilobytes, in the system. On a partitioned system, the

main storage size can change while the system is active.

Maximum active threads. The maximum number of threads that can be active in the pool at any one

time.

Maximum jobs in system. The maximum number of jobs that are allowed on the system. When the

number of jobs reaches this maximum, you can no longer submit or start more jobs on the system. The

total includes:

v All jobs on job queues waiting to be processed.

v All jobs currently active (being processed).

v All jobs that have completed running but still have output on output queues to be produced.

Maximum unprotected storage used. The largest amount of storage for temporary objects used at any

one time since the last IPL. This value is in millions (M) of bytes.

Minimum base pool size. The minimum size, in kilobytes, for the base pool. This value is the

QBASPOOL system value.

Minimum machine pool size. The minimum size, in kilobytes, for the machine pool. This value is the

minimum size required by the machine for the machine pool.

Nondatabase faults. The rate (in tenths), in page faults per second, of nondatabase page faults against

pages other than those designated as database pages. For example, a value of 123 in binary would be 12.3

page faults per second.

Nondatabase pages. The rate (in tenths), in pages per second, at which nondatabase pages are brought

into the storage pool. For example, a value of 123 in binary would be 12.3 pages per second.

Number of partitions. The number of partitions on the system. This includes partitions that are currently

powered on (running) and partitions that are powered off.

Number of pools. The number of pools allocated when the information was gathered. This number may

be larger than the number of pools information is returned for if the receiver variable is not large enough.

Number of processors. The number of processors that are currently active in this partition.

Number of subsystems available. The number of subsystems using the pool.

Number of subsystems returned. The number of subsystems returned in the receiver variable.

Offset to pool information. The offset from the beginning of the structure to the start of the pool

information.

Offset to subsystem information. The offset from the beginning of the structure to the start of the

subsystem information.

Paging option. Whether the system will dynamically adjust the paging characteristics of the storage pool

for optimum performance. The following special values may be returned.

 *FIXED The system does not dynamically adjust the paging characteristics.

Work Management APIs 313

*CALC The system dynamically adjusts the paging characteristics.

USRDFN The system does not dynamically adjust the paging characteristics for the storage pool but uses

values that have been defined through an API.

Partition identifier. The identifier for the current partition in which the API is running.

Pool name. The name of this storage pool. The name may be a number, in which case it is a private pool

associated with a subsystem. The following special values may be returned.

 *MACHINE The specified pool definition is defined to be the machine pool.

*BASE The specified pool definition is defined to be the base system pool, which can be shared with

other subsystems.

*INTERACT The specified pool definition is defined to be the shared pool used for interactive work.

*SPOOL The specified pool definition is defined to be the shared pool used for spooled writers.

*SHRPOOL1-

*SHRPOOL60

The specified pool definition is defined to be a shared pool.

Pool size. The amount of main storage, in kilobytes, in the pool.

Processor sharing attribute. This attribute indicates whether this partition is sharing processors. If the

value indicates the partition does not share physical processors, then this partition uses only dedicated

processors. If the value indicates the partition shares physical processors, then this partition uses physical

processors from a shared pool of physical processors. The following values are returned:

 0 Partition does not share processors

1 Partition shares processors (capped). The partition is limited to using its configured capacity.

2 Partition shares processors (uncapped). The partition can use more than its configured capacity.

Reserved. An ignored field.

Reserved size. The amount of storage, in kilobytes, in the pool reserved for system use (for example, for

save/restore operations). The system calculates this amount by using storage pool sizes and activity

levels.

Restricted state flag. Whether the system is in restricted state. The following values are returned:

 0 System is not in restricted state.

1 System is in restricted state.

Status.The status of the pool:

 0 Active

1 Inactive

Subsystem library name. The library containing the subsystem description. This field will be blank for

shared pools (formats SSTS0300 and SSTS0400).

Subsystem name. The subsystem with which this storage pool is associated. This field will be blank for

shared pools (formats SSTS0300 and SSTS0400).

System ASP. The storage capacity of the system auxiliary storage pool (ASP1). This value is in millions

(M) of bytes.

314 iSeries: Work Management APIs

System name. The name of the system where the statistics were collected.

System pool. The system-related pool identifier for each of the system storage pools that currently has

main storage allocated to it.

Total auxiliary storage. The total auxiliary storage (in millions of bytes) on the system.

Tuning maximum activity level. The maximum value that the shared pool’s activity level can be set to

by the performance adjuster when the QPFRADJ system value is set to 2 or 3. This field is 0 for private

pools defined in subsystem descriptions.

Tuning maximum faults. The maximum page faults per second (in hundredths) to use as a guideline for

the shared storage pool. For example, a value of 1234 would be 12.34 page faults per second. This field is

0 for private pools defined in subsystem descriptions.

Tuning maximum pool size %. The maximum amount of storage to allocate to the shared storage pool

(as a percentage of total main storage). The value returned is in hundredths. For example, a value of 1234

would be 12.34 percent. This field is 0 for private pools defined in subsystem descriptions.

Tuning minimum activity level. The minimum value that the shared pool’s activity level can be set to

by the performance adjuster when the QPFRADJ system value is set to 2 or 3. This field is 0 for private

pools defined in subsystem descriptions.

Tuning minimum faults. The minimum page faults per second (in hundredths) to use as a guideline for

the shared storage pool. For example, a value of 1234 would be 12.34 page faults per second. This field is

0 for private pools defined in subsystem descriptions.

Tuning minimum pool size %. The minimum amount of storage to allocate to the shared storage pool

(as a percentage of total main storage). The value returned is in hundredths. For example, a value of 1234

would be 12.34 percent. This field is 0 for private pools defined in subsystem descriptions.

Tuning per-thread faults. The page faults per second (in hundredths) for each active thread to use as a

guideline for the shared storage pool. For example, a value of 1234 would be 12.34 page faults per

second. This field is 0 for private pools defined in subsystem descriptions.

Tuning priority. The priority of the shared storage pool used by the system when making automatic

performance adjustments. This field is 0 for private pools defined in subsystem descriptions.

Users currently signed on. The number of users currently signed on the system. System request jobs and

group jobs are not included in this number.

Users signed off with printer output waiting to print. The number of sessions that have ended with

printer output files waiting to print.

Users suspended by group jobs. The number of user jobs that have been temporarily suspended by

group jobs so that another job may be run.

Users suspended by system request. The number of user jobs that have been temporarily suspended by

system request jobs so that another job may be run.

Users temporarily signed off (disconnected). The number of jobs that have been disconnected due to

either the selection of option 80 (Temporary sign-off) or the entry of the Disconnect Job (DSCJOB)

command.

Work Management APIs 315

Wait to ineligible. The rate (in tenths), in transitions per minute, of transitions of threads from a waiting

condition to an ineligible condition. For example, a value of 123 in binary would be 12.3 transitions per

minute.

Format of Pool Selection Information

 Offset

Type Field Dec Hex

0 0 CHAR(10) Type of pool

10 A CHAR(10) Shared pool name

20 14 BINARY(4) System pool identifier

Selection Field Descriptions

Shared pool name.This is used to select a shared pool when type of pool is *SHARED. The possible

values are:

 *ALL All shared pools are returned.

*MACHINE The machine pool is returned.

*BASE The base pool is returned.

*INTERACT The shared pool used for interactive work is returned.

*SPOOL The shared pool used for spool writers is returned.

*SHRPOOL1-60 The specified shared pool is returned.

When *ALL is specified the pools are returned in the order *MACHINE, *BASE, *INTERACT, *SPOOL,

and *SHRPOOL1-60. This field must be blank when *SYSTEM is specified for type of pool.

System pool identifier.This is used to select an active system pool when type of pool is *SYSTEM. The

possible values are:

 -1 All active pools are returned.

1 - 64 The specified active pool is returned. If the pool is not active, CPF186B is sent.

When -1 is specified only the active pools are returned in system pool identifier order. This field must be

0 when *SHARED is specified for type of pool.

Type of pool.The type of pools to include in the list. The possible special values follow:

 *SHARED The shared pools identified by the shared pool name field in the selection information. The other

selection fields are not used. The selection information size must be a minimum of 20.

*SYSTEM The system pools identified by the system pool identifier field in the selection information. The

other selection fields are not used. The selection information size must be a minimum of 24.

The pool selection information parameter only applies to the SSTS0400 and SSTS0500 formats.

When other formats are used, the size of pool selection information parameter must be 0 or not

specified.

Error Messages

 Message ID Error Message Text

CPF1E99 E Unexpected error occurred.

316 iSeries: Work Management APIs

Message ID Error Message Text

CPF186A E Selection information not allowed with format &1.

CPF186B E Pool &1 not active.

CPF186C E Selection information required with format &1.

CPF1869 E Value &1 for reset status statistics not valid.

CPF187A E List of active subsystems not available.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C1D E Length specified in parameter &1 not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C3A E Value for parameter &2 for API &1 not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF980A E &1 routine in &2 module detected an exception. The exception return code was &3.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Work Management APIs,” on page 1 | APIs by category

Retrieve System Values (QWCRSVAL) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Number of system values to retrieve

Input Binary(4)

4 System value names

Input Array(*) of Char(10)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve System Values (QWCRSVAL) API lets you retrieve system values.

Authorities and Locks

You must have either all object (*ALLOBJ) or audit (*AUDIT) special authority to retrieve the values for

QAUDCTL, QAUDENDACN, QAUDFRCLVL, QAUDLVL, QAUDLVL2, and QCRTOBJAUD.

Work Management APIs 317

#TOP
aplist.htm

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is to receive the information requested. For the format, see “Format of Data

Returned.”

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable described in the “Format of Data Returned.” If the length is

larger than the size of the receiver variable, the results may not be predictable. The minimum

length is 28 bytes.

Number of system values to retrieve

INPUT; BINARY(4)

 The total number of system values to retrieve.

System value names

INPUT; ARRAY(*) of CHAR(10)

 The names of the system values to be retrieved. This can be a list of system value names where

each name is 10 characters.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Data Returned

The receiver variable holds the information returned about each system value.

The receiver variable has three logical parts:

1. The first field specifies the number of system values returned.

2. The next fields give the offsets to the system values returned. There is one offset field for each system

value returned.

3. Next are the system value information tables for the system values returned. There is one system

value information table for each system value.

The following table shows the format of the receiver variable. The offset fields are repeated until the

offsets for all the system values returned are listed; the system value information table for each system

value is repeated in the same way. For a detailed description of each field, see the “Field Descriptions” on

page 319.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of system values returned

4 4 ARRAY(*) of

BINARY(4)

Offset to system value information table

* * CHAR(*) System value information table. This field is repeated for each

system value returned.

Note: Each system value in the table is represented by the standard system value information table described in

“System Value Information Table” on page 319.

318 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

To determine the length of the receiver variable, the following calculation should be done. For each

system value to be returned, get the length of the data returned for the system value and add 24. After

adding the lengths for each system value, add 4. This calculation takes into account the data alignment

that needs to be done; therefore, this value is a worst-case estimate.

System Value Information Table

The following table shows the format of the system value information table.

 Offset

Type Field Dec Hex

0 0 CHAR(10) System value

10 A CHAR(1) Type of data

11 B CHAR(1) Information status

12 C BINARY(4) Length of data

16 10 CHAR(*) Data

Field Descriptions

Data. The data returned for the system value.

Information status. Whether the information was available for the system value.

 blank The information was available.

L The information was not available because the system value was locked.

Offset to system values information table. The offset from the beginning of the structure to the start of

the system value information.

Length of data. The length of the data returned for the system value. If the information was not

available, the length will be zero.

System value. The system value to be retrieved. See “Valid System Values” for the list of valid system

values.

Number of system values returned. The number of system values returned to the application.

Type of data. The type of data returned.

 C The data is returned in character format.

B The data is returned in binary format.

blank The data is not available.

Valid System Values

For a detailed description of each field, see “System Value Field Descriptions” on page 323. To find more

detailed information about each system value, see OS/400 system values in the Systems management

topic.

 System value Type Description

QABNORMSW CHAR(1) Previous end of system indicator

Work Management APIs 319

System value Type Description

QACGLVL ARRAY(8) of CHAR(10) Accounting level

QACTJOB BINARY(4) Active jobs

QADLACTJ BINARY(4) Additional active jobs

QADLSPLA BINARY(4) Additional storage

QADLTOTJ BINARY(4) Additional total jobs

QALWOBJRST ARRAY(15) of CHAR(10) Allow object restore options

QALWUSRDMN ARRAY(50) of CHAR(10) Allow user domain

QASTLVL CHAR(10) Assistance level

QATNPGM CHAR(20) Attention program

QAUDCTL ARRAY(5) of CHAR(10) Auditing control

QAUDENDACN CHAR(10) Auditing end action

QAUDFRCLVL BINARY(4) Auditing force level

QAUDLVL ARRAY(16) of CHAR(10) Auditing level

QAUDLVL2 ARRAY(99) of CHAR(10) Auditing level extension

QAUTOCFG CHAR(1) Automatic configuration indicator

QAUTORMT CHAR(1) Automatic configuration for remote

controllers

QAUTOSPRPT CHAR(1) Automatic system disabled reporting

QAUTOVRT BINARY(4) Automatic configuration for virtual devices

QBASACTLVL BINARY(4) Base activity level

QBASPOOL BINARY(4) Base pool minimum size

QBOOKPATH ARRAY(5) of CHAR(63) Book and bookshelf search path

QCCSID BINARY(4) Coded character set identifier

QCENTURY CHAR(1) Century indicator

QCFGMSGQ CHAR(20) Configuration message queue

QCHRID CHAR(20) Character set and code page

QCHRIDCTL CHAR(10) Character identifier control

QCMNARB CHAR(10) Communication arbiters

QCMNRCYLMT CHAR(20) Communications recovery limit

QCNTRYID CHAR(2) Country or region identifier

QCONSOLE CHAR(10) Console name

QCRTAUT CHAR(10) Create authority

QCRTOBJAUD CHAR(10) Create object auditing

QCTLSBSD CHAR(20) Controlling subsystem

QCURSYM CHAR(1) Currency symbol

QDATE CHAR(7) System date

QDATETIME CHAR(20) System date and time

QDATFMT CHAR(3) Date format

QDATSEP CHAR(1) Date separator

QDAY CHAR(3) Day

QDAYOFWEEK CHAR(4) Day of the week

320 iSeries: Work Management APIs

System value Type Description

QDBFSTCCOL CHAR(10) Database file statistics collection

QDBRCVYWT CHAR(1) Database recovery wait

QDECFMT CHAR(1) Decimal format

QDEVNAMING CHAR(10) Device naming convention

QDEVRCYACN CHAR(20) Device recovery action

QDSCJOBITV CHAR(10) Disconnect job interval

QDSPSGNINF CHAR(1) Sign-on information

QDYNPTYADJ CHAR(1) Dynamic priority adjustment

QDYNPTYSCD CHAR(1) Dynamic priority scheduler

QENDJOBLMT BINARY(4) End job limit

QFRCCVNRST CHAR(1) Force conversion on restore

QHOUR CHAR(2) Hour

QHSTLOGSIZ BINARY(4) History log size

QIGC CHAR(1) DBCS installed

QIGCCDEFNT CHAR(20) Double-byte coded font name

QIGCFNTSIZ BINARY(4) Double-byte coded font point size

QINACTITV CHAR(10) Inactive job time-out

QINACTMSGQ CHAR(20) Inactive message queue

QIPLDATTIM CHAR(13) Automatic IPL date and time

QIPLSTS CHAR(1) IPL status

QIPLTYPE CHAR(1) IPL type

QJOBMSGQFL CHAR(10) Job message queue full

QJOBMSGQMX BINARY(4) Job message queue maximum size

QJOBMSGQSZ BINARY(4) Job message queue initial size

QJOBMSGQTL BINARY(4) Maximum job message queue initial size

QJOBSPLA BINARY(4) Initial spooling size

QKBDBUF CHAR(10) Keyboard buffer

QKBDTYPE CHAR(3) Keyboard type

QLANGID CHAR(3) Language identifier

QLEAPADJ BINARY(4) Leap year adjustment

QLIBLCKLVL CHAR(1) Library locking level

QLMTDEVSSN CHAR(1) Limit device session

QLMTSECOFR CHAR(1) Limit security officer

QLOCALE CHAR(2080) Locale path name

QMAXACTLVL BINARY(4) Maximum activity level

QMAXJOB BINARY(4) Maximum number of jobs

QMAXSGNACN CHAR(1) Maximum sign-on action

QMAXSIGN CHAR(6) Maximum not valid sign-on

QMAXSPLF BINARY(4) Maximum spooled files per job

QMCHPOOL BINARY(4) Machine pool size

QMINUTE CHAR(2) Minute

Work Management APIs 321

System value Type Description

QMLTTHDACN CHAR(1) Multithreaded job action

QMODEL CHAR(4) System model

QMONTH CHAR(2) Month

QPASTHRSVR CHAR(10) Pass-through servers

QPFRADJ CHAR(1) Performance adjustment

QPRBFTR CHAR(20) Problem filter

QPRBHLDITV BINARY(4) Problem hold interval

QPRCMLTTSK CHAR(1) Processor multitasking

QPRCFEAT CHAR(4) Processor feature code

QPRTDEV CHAR(10) Printer device

QPRTKEYFMT CHAR(10) Print key format

QPRTTXT CHAR(30) Print text

QPWDEXPITV CHAR(6) Days password valid

QPWDLMTAJC CHAR(1) Limit adjacent digits

QPWDLMTCHR CHAR(10) Limit characters

QPWDLMTREP CHAR(1) Limit repeat characters

QPWDLVL BINARY(4) Password level

QPWDMAXLEN BINARY(4) Maximum password length

QPWDMINLEN BINARY(4) Minimum password length

QPWDPOSDIF CHAR(1) Limit character positions

QPWDRQDDGT CHAR(1) Required password digits

QPWDRQDDIF CHAR(1) Duplicate password

QPWDVLDPGM CHAR(20) Password validation program

QPWRDWNLMT BINARY(4) Power down limit

QPWRRSTIPL CHAR(1) Power restore IPL

QQRYDEGREE CHAR(10) Parallel processing degree

QQRYTIMLMT CHAR(10) Query processing time limit

QRCLSPLSTG CHAR(10) Reclaim spool storage

QRETSVRSEC CHAR(1) Retain server security data

QRMTIPL CHAR(1) Remote IPL

QRMTSRVATR CHAR(1) Remote service attribute

QRMTSIGN CHAR(20) Remote sign-on

QSAVACCPTH CHAR(1) Save access paths

QSCANFS ARRAY(20) of CHAR(10) Scan file systems

QSCANFSCTL ARRAY(20) of CHAR(10) Scan file systems control

QSCPFCONS CHAR(1) IPL action with console problem

QSECOND CHAR(2) Second

QSECURITY CHAR(2) Security level

QSETJOBATR ARRAY(16) of CHAR(10) Set job attributes from locale

QSFWERRLOG CHAR(10) Software error log

QSHRMEMCTL CHAR(1) Shared memory control

322 iSeries: Work Management APIs

System value Type Description

QSPCENV CHAR(10) Special environment

QSPLFACN CHAR(10) Spooled file action

QSRLNBR CHAR(8) Serial number

QSRTSEQ CHAR(20) Sort sequence table

QSRVDMP CHAR(10) Service dump

QSTGLOWACN CHAR(10) Auxiliary storage lower limit action

QSTGLOWLMT BINARY(4) Auxiliary storage lower limit

QSTRPRTWTR CHAR(1) Start printer writer

QSTRUPPGM CHAR(20) Startup program name

QSTSMSG CHAR(10) Status messages

QSVRAUTITV BINARY(4) Server authentication interval

QSYSLIBL ARRAY(15) of CHAR(10) System library list

QTHDRSCADJ CHAR(1) Thread resources adjustment

QTHDRSCAFN CHAR(20) Thread resources affinity

QTIMADJ CHAR(30) Time adjustment

QTIME CHAR(9) System time

QTIMSEP CHAR(1) Time separator

QTIMZON CHAR(10) Time zone

QTOTJOB BINARY(4) Total jobs

QTSEPOOL CHAR(10) Time-slice end pool

QUPSDLYTIM CHAR(20) UPS delay time

QUPSMSGQ CHAR(20) UPS message queue

QUSEADPAUT CHAR(10) Use adopted authority

QUSRLIBL ARRAY(25) of CHAR(10) User library list

QUTCOFFSET CHAR(5) Coordinated universal time offset

QVFYOBJRST CHAR(1) Verify object on restore

QYEAR CHAR(2) Year

System Value Field Descriptions

Accounting level. QACGLVL is the accounting level. The possible values are:

 *NONE No accounting information is written to a journal.

*JOB Job resource use is written to a journal.

*PRINT The resources used for spooled and nonspooled print files are written to a journal.

Active jobs. QACTJOB is the initial number of active jobs for which auxiliary storage is to be allocated

during IPL.

Additional active jobs. QADLACTJ specifies the additional number of active jobs for which auxiliary

storage is to be allocated when the initial number of active jobs (the system value QACTJOB) is reached.

Additional storage. QADLSPLA specifies the additional storage to add to the spooling control block.

Work Management APIs 323

Additional total jobs. QADLTOTJ specifies the additional number of jobs for which auxiliary storage is

to be allocated when the initial number of jobs (the system value QTOTJOB) is reached.

Allow object restore options. QALWOBJRST specifies a list of security options that are used when

restoring objects to the system.

 *ALL Allow all objects to be restored regardless of whether or not they have security-sensitive attributes

or validation errors.

*NONE Does not allow objects with security-sensitve attributes to be restored.

*ALWSYSSTT Allow programs, service programs, and modules with the system-state and inherit-state attribute

to be restored.

*ALWPGMADP Allow programs and service programs with the adopt attribute to be restored.

*ALWPTF Allow system-state and inherit-state programs, service programs, modules that adopt authority,

objects that have the S_ISUID(set-user-ID) attribute enabled, and objects that have the

S-ISGID(set-group-ID) attribute enabled to be restored to the system during PTF install.

*ALWSETUID Allow restore of files that have the S_ISUID (set-user-ID) attribute enabled.

*ALWSETGID Allow restore of files that have the S_ISGID (set-group-ID) attribute enabled.

*ALWVLDERR Allow objects with validation errors to be restored.

Allow user domain. QALWUSRDMN is the allow user domain system value. It specifies a list of library

names that can contain user domain objects.

 *ALL All libraries and integrated file system directories on the system can contain user domain objects.

*DIR Any SOM object in a directory in the integrated file system can contain user domain objects. *DIR

does not apply to the QSYS and QDLS file systems. *DIR is mutually exclusive with *ALL.

Library names A list of library names that can contain user domain objects.

Assistance level. QASTLVL is the assistance level system value. The value specifies the level of assistance

available to users of the system.

 *BASIC Operational Assistant level of system displays is available.

*INTERMED Intermediate level of system displays is available.

*ADVANCED Advanced level of system displays is available.

Attention program. QATNPGM is the attention program system value. The first 10 characters contain the

program name and the last 10 characters contain the library name. The following special values are

allowed:

 *ASSIST The Operational Assistant main menu appears when the Attention key is pressed.

*NONE No attention program is called when the Attention key is pressed.

Auditing control. The QAUDCTL system value is the on/off switch for object- and user-level auditing.

The values allowed are:

*NOTAVL The user is not authorized to retrieve the current auditing value. You cannot change the system

value to not available (*NOTAVL).

*NONE No security auditing is done on the system. No security auditing is done on the system.

*OBJAUD Actions against objects that have an object audit value other than *NONE will be audited. An

object’s audit value is set through the Change Audit (CHGAUD) command or the Change Object

Audit (CHGOBJAUD) command.

*AUDLVL The actions specified in the QAUDLVL

and QAUDLVL2 system values

will be logged to the

security journal. Also actions specified by a user profile’s action auditing values will be audited. A

user profile’s action auditing values are set through the AUDLVL parameter on the Change User

Audit (CHGUSRAUD) command.

324 iSeries: Work Management APIs

*NOQTEMP No auditing of most objects in QTEMP is done. You must specify *NOQTEMP with either

*OBJAUD or *AUDLVL. You can not specify *NOQTEMP by itself.

Auditing end action. The QAUDENDACN system value indicates the action to be taken if auditing data

cannot be written to the security auditing journal. These are the allowable values for the QAUDENDACN

system value:

*NOTAVL The user is not authorized to retrieve the current auditing value. You cannot change the system

value to not available (*NOTAVL).

*NOTIFY The action that caused the audit to be attempted will continue after notification of failure to send

the journal entry to the security auditing journal is sent to the QSYSOPR and QSYSMSG message

queues.

*PWRDWNSYS The system ends with a system reference code (SRC) if sending of the audit data to the security

audit journal fails. The system will then be brought up in a restricted state on the following IPL.

Auditing force level. The QAUDFRCLVL system value indicates to the system the number of auditing

journal entries written to the security auditing journal before the auditing data is written to auxiliary

storage. The following values are allowed:

-1 The user is not authorized to retrieve the current auditing value. You cannot change the system

value to -1.

0 The system will write the journal entries to auxiliary storage only when the system determines the

journal entries should be written based on internal system processing.

1-100 The system will write the journal entries to auxiliary storage when this number of journal entries

has been written to the security auditing journal.

Auditing level. QAUDLVL is the security auditing level. This system value controls the level of action

auditing on the system.

If the QAUDLVL system value contains the value *AUDLVL2, then the values in the QAUDLVL2

system value will also be used. If the QAUDLVL system value does not contain the value *AUDLVL2,

then the values in the QAUDLVL2 will be ignored.

The values allowed are:

*AUDLVL2 Both QAUDLVL and QAUDLVL2 system values will be

used to determine the security actions to be audited.

Note:

v If you wish to use the QAUDLVL2 system value

exclusively, set the QAUDLVL system value to

*AUDLVL2 and add your auditing values to the

QAUDLVL2 system value.

v If you wish to use both system values you can set your

values in the QAUDLVL system value along with the

*AUDLVL2 value, then add any additional values to

the QAUDLVL2 system value.

*AUTFAIL Authorization failures are audited.

*CREATE All object creations are audited. Objects created into

library QTEMP are not audited.

*DELETE All deletions of external objects on the system are

audited. Objects deleted from library QTEMP are not

audited.

*JOBDTA Actions that affect a job are audited.

*NETBAS Network base functions are audited.

Work Management APIs 325

*NETCLU Actions that affect a cluster resource group are audited.

*NETCMN Networking and communications functions are audited.

Note: *NETCMN is composed of several values to

allow you to better customize your auditing. If you

specify all of the values, you will get the same auditing

as if you specified *NETCMN. The following values make

up *NETCMN.

v *NETBAS

v *NETCLU

v *NETFAIL

v *NETSCK

*NETFAIL Network failures are audited.

*NETSCK Sockets tasks are audited.

*NONE No security action auditing will occur on the system.

*NOTAVL The user is not authorized to retrieve the current auditing

value. You cannot change the system value to not

available (*NOTAVL).

*OBJMGT Generic object tasks are audited.

*OFCSRV Auditing of OfficeVision licensed program.

*OPTICAL All optical functions are audited.

*PGMADP Adopting authority from a program owner is audited.

*PGMFAIL Integrity violations (for example, blocked instruction,

validation value failure, and domain violation) are

audited.

*PRTDTA Printing functions are audited.

*SAVRST Save and restore information is audited.

*SECCFG Security configuration is audited.

*SECDIRSRV Changes or updates when doing directory service

functions are audited.

*SECIPC Changes to interprocess communications are audited.

*SECNAS Network authentication service actions are audited.

*SECRUN Security run time functions are audited.

*SECSCKD Socket descriptors are audited.

*SECURITY All security-related functions are audited.

Note: *SECURITY is composed of several values to

allow you to better customize your auditing. If you

specify all of the values, you will get the same auditing

as if you specified *SECURITY. The following values

make up *SECURITY.

v *SECCFG

v *SECDIRSRV

v *SECIPC

v *SECNAS

v *SECRUN

v *SECSCKD

v *SECVFY

v *SECVLDL

*SECVFY Use of verification functions are audited.

*SECVLDL Changes to validation list objects are audited.

*SERVICE Use of the system service tools by a user will be audited.

*SPLFDTA Spool file auditing.

*SYSMGT Use of system management functions by an audited user

will be audited.

326 iSeries: Work Management APIs

Auditing level extension. QAUDLVL2 is the security auditing level extension. This system value is

required when more than sixteen auditing values are needed. Specifying *AUDLVL2 as one of the values

in the QAUDLVL system value will cause the system to also look for auditing values in the QAUDLVL2

system value.

If the QAUDLVL system value contains the value *AUDLVL2, then the values in the QAUDLVL2 system

value will also be used. If the QAUDLVL system value does not contain the value *AUDLVL2, then the

values in the QAUDLVL2 will be ignored.

The values allowed are:

 *AUTFAIL Authorization failures are audited.

*CREATE All object creations are audited. Objects created into

library QTEMP are not audited.

*DELETE All deletions of external objects on the system are

audited. Objects deleted from library QTEMP are not

audited.

*JOBDTA Actions that affect a job are audited.

*NETBAS Network base functions are audited.

*NETCLU Actions that affect a cluster resource group are audited.

*NETCMN Networking and communications functions are audited.

Note: *NETCMN is composed of several values to allow

you to better customize your auditing. If you specify all

of the values, you will get the same auditing as if you

specified *NETCMN. The following values make up

*NETCMN.

v *NETBAS

v *NETCLU

v *NETFAIL

v *NETSCK

*NETFAIL Network failures are audited.

*NETSCK Sockets tasks are audited.

*NONE No auditing values are contained in this system value.

Note:

v If you wish to use the QAUDLVL2 system value

exclusively, set the QAUDLVL system value to

*AUDLVL2 and add your auditing values to the

QAUDLVL2 system value.

v If you wish to use both system values you can set your

values in the QAUDLVL system value along with the

*AUDLVL2 value, then add any additional values to

the QAUDLVL2 system value.

*NOTAVL The user is not authorized to retrieve the current auditing

value. You cannot change the system value to not

available (*NOTAVL).

*OBJMGT Generic object tasks are audited.

*OFCSRV Auditing of OfficeVision licensed program.

*OPTICAL All optical functions are audited.

*PGMADP Adopting authority from a program owner is audited.

*PGMFAIL Integrity violations (for example, blocked instruction,

validation value failure, and domain violation) are

audited.

*PRTDTA Printing functions are audited.

*SAVRST Save and restore information is audited.

*SECCFG Security configuration is audited.

Work Management APIs 327

*SECDIRSRV Changes or updates when doing directory service

functions are audited.

*SECIPC Changes to interprocess communications are audited.

*SECNAS Network authentication service actions are audited.

*SECRUN Security run time functions are audited.

*SECSCKD Socket descriptors are audited.

*SECURITY All security-related functions are audited.

Note: *SECURITY is composed of several values to allow

you to better customize your auditing. If you specify all

of the values, you will get the same auditing as if you

specified *SECURITY. The following values make up

*SECURITY.

v *SECCFG

v *SECDIRSRV

v *SECIPC

v *SECNAS

v *SECRUN

v *SECSCKD

v *SECVFY

v *SECVLDL

*SECVFY Use of verification functions are audited.

*SECVLDL Changes to validation list objects are audited.

*SERVICE Use of the system service tools by a user will be audited.

*SPLFDTA Spool file auditing.

*SYSMGT Use of system management functions by an audited user

will be audited.

Automatic configuration for remote controllers. QAUTORMT allows the configuration of remote

controllers. The possible values are:

 0 Automatic configuration is off.

1 Automatic configuration is on.

Automatic system disabled reporting. The QAUTOSPRPT system value controls the automatic problem

reporting ability. The value allows the system to automatically report a problem. The possible values are:

 0 Automatic system disabled reporting is off.

1 Automatic system disabled reporting is on.

Automatic IPL date and time. QIPLDATTIM is the system value for the date and time to automatically

do an IPL of the system. It specifies a date and time when an automatic IPL should occur. The special

value *NONE indicates that no timed automatic IPL is desired. The format of the field returned is

CYYMMDDHHMMSS, where C is the century, YY is the year, MM is the month, DD is the day, HH is the

hour, MM is the minute, and SS is the second. A 0 for the century flag indicates years 19xx, and a 1

indicates years 20xx.

Automatic configuration for virtual device. QAUTOVRT is the system value for automatic configuration

of virtual devices. This is the number of virtual devices that the user wants to have automatically

configured. The possible values are:

 0-32500 The number of virtual devices that the user wants to have automatically configured.

328 iSeries: Work Management APIs

32767 There is no maximum number of virtual devices that the user wants to have automatically

configured.

-1 The program registered for the Virtual Device Selection (QIBM_QPA_DEVSEL) exit point is called

when a virtual device description needs to be selected or automatically created by the system. If

the program registered for the exit point does not exist or if it returns with an error, the system

will handle the situation as if the QAUTOVRT system value is set to 0.

Automatic configuration indicator. The QAUTOCFG system value automatically configures devices. The

value specifies whether devices that are added to the system are configured automatically.

 0 Automatic configuration is off.

1 Automatic configuration is on.

Auxiliary storage lower limit. QSTGLOWLMT is the percentage (in 10 thousandths) of the system

auxiliary storage pool that remains available when the critical storage lower limit is reached. For

example, a value of 50000 in binary would be 5.0000.

Auxiliary storage lower limit action. QSTGLOWACN is the action taken when the auxiliary storage

lower limit (QSTGLOWLMT system value) is reached. The possible actions are:

 *MSG Message CPI099C is sent to the QSYSMSG and the QSYSOPR message queues. (This message is

also sent for each of the following actions.)

*CRITMSG Message CPI099B is sent to the user who is specified by the Critical messages to user service

attribute. Service attributes can be changed by using the Change Service Attributes (CHGSRVA)

command.

*REGFAC A job is submitted to run any exit programs that are registered for the

QIBM_QWC_QSTGLOWACN exit point.

*ENDSYS The system is ended and left in the restricted state.

*PWRDWNSYS The system is powered down immediately and restarted.

Base activity level. QBASACTLVL is the base-storage-pool activity level. This value indicates how many

system and user jobs can compete at the same time for storage in the base storage pool.

Base pool minimum size. QBASPOOL is the minimum size of the base storage pool. The base pool

contains all main storage not allocated by other pools. QBASPOOL is specified in kilobytes.

Book and bookshelf search path. QBOOKPATH specifies which directories should be searched for books.

Century indicator. QCENTURY specifies the century value for the system date. The possible values are:

 0 Indicates years 19xx.

1 Indicates years 20xx.

Character identifier control. QCHRIDCTL specifies the character identifier control for the job. This

attribute controls the type of CCSID conversion that occurs for display files, printer files, and panel

groups. The *CHRIDCTL special value must be specified on the CHRID command parameter on the

create, change, or override command for display files, printer files, and panel groups before this attribute

will be used. The possible values are:

 *DEVD The *DEVD special value performs the same function as on the CHRID command parameter for

display files, printer files, and panel groups.

*JOBCCSID The *JOBCCSID special value performs the same function as on the CHRID command parameter

for display files, printer files, and panel groups.

Work Management APIs 329

Character set and code page. QCHRID is the default character set and code page. The QCHRID system

value is retrieved as a single character value; the first 10 characters contain the character set identifier

right-justified. For example, the value 101 would be retrieved as 0000000101. The last 10 characters

contain the code page identifier right-justified. For example, the value 37 would be retrieved as

0000000037.

Coded character set identifier. QCCSID is the system value for coded character set identifiers.

Communication arbiters. QCMNARB specifies the number of communication arbiter jobs. The possible

values are:

 *CALC The operating system calculates the number of communication arbiter jobs.

0-99 The number of communication arbiter jobs.

Communications recovery limit. QCMNRCYLMT is the system value for communications recovery

limits. The QCMNRCYLMT system value is retrieved as a 20-character value; the first 10 characters

contain the count limit right-justified. For example, the value 7 would be retrieved as 0000000007. The

last 10 characters contain the time interval right-justified. For example, the value 117 would be retrieved

as 0000000117.

Configuration message queue. QCFGMSGQ is the configuration message queue system value. This

message queue can be used to receive messages associated with configuration objects, such as lines and

controllers. The first 10 characters contain the message queue name and the last 10 characters contain the

library name.

Console name. QCONSOLE is the console name. This value specifies the name of the display device that

is the console.

Controlling subsystem. QCTLSBSD is the controlling subsystem description. The controlling subsystem is

the first subsystem to start after an IPL. The value of QCTLSBSD is a 20-character list of up to two

10-character values in which the first is the subsystem description name and the second is the library

name.

Coordinated universal time offset. QUTCOFFSET is the system value indicating the difference in hours

and minutes between Coordinated Universal Time (UTC), also known as Greenwich mean time, and the

current local system time.

v

+hhmm means that the current system time is hh hours and mm minutes ahead of UTC.

v -hhmm means that the current system time is hh hours and mm minutes behind UTC.

Country or region identifier. QCNTRYID is the system value for the country or region identifier. This

value specifies the country or region identifier to be used as the default on the system.

Create authority. QCRTAUT is the create authority system value. This value allows the default public

authority for the create (CRTxxx) commands to be set system-wide. The values allowed are:

 *CHANGE Allows you to change the contents of an object.

*ALL Allows you to read, change, delete, and manage the security of an object.

*USE Allows you to create an object, to display the contents of an object, or to refer to the contents of an

attached object when a command being requested must access attached objects and their contents.

*EXCLUDE Allows no access to an object.

Create object auditing. The QCRTOBJAUD system value indicates the default auditing value for new

objects created into a library on the system. These are the allowable values for the QCRTOBJAUD system

value.

330 iSeries: Work Management APIs

*NOTAVL The user is not authorized to retrieve the current auditing value. You cannot change the system

value to not available (*NOTAVL).

*NONE No auditing entries are sent for this object when it is used or changed.

*USRPRF Auditing entries are sent for this object when it is used or changed by a user who is currently

being audited. If the user who uses or changes this object is not being audited, no auditing entries

are sent. To audit a user, you must use the Change User Auditing (CHGUSRAUD) command to

change the user profile to that user profile.

*CHANGE Auditing entries are sent for this object when it is changed.

*ALL Auditing entries are sent for this object when it is used or changed.

Currency symbol. QCURSYM is the system value for the currency symbol. QCURSYM can be any

character except blank, hyphen (-), ampersand (&), asterisk (*), or zero (0).

Database file statistics collection. QDBFSTCCOL is the system value that specifies the type of statistic

collection requests that will be allowed to be processed in the background by the database statistics

system job, QDBFSTCCOL. Statistic collections which are requested by either a user or automatically by

the database manager to be processed in the foreground are not affected by this system value. The values

for QDBFSTCCOL can be:

 *NONE No database file statistics collections are allowed to be processed by the database statistics system

job.

*USER Only user requested database file statistics collections are allowed to be processed by the database

statistics system job.

*SYSTEM Only automatically generated statistic collections requested by the database manager are allowed

to be processed by the database statistics system job.

*ALL All user requested database statistics collections and statistic collections automatically requested

by the database manager are allowed to be processed by the database statistics system job.

Database recovery wait. QDBRCVYWT is the database recovery wait indicator. QDBRCVYWT can be:

 0 Does not wait for database recovery to complete before completing the IPL.

1 Waits for database recovery to complete before completing the IPL.

Date format. QDATFMT is the system date format. This system value can be YMD, MDY, DMY, or JUL

(Julian format), where Y equals year, M equals month, and D equals day.

Date separator. QDATSEP is the character separator for dates. QDATSEP can be slash (/), hyphen (-),

period (.), comma (,), or blank.

Day. QDAY is the system value for the day of the month or year (if the date format is Julian). For Julian

dates only, QDAY is a 3-character value (001 through 366).

Day of the week. QDAYOFWEEK specifies the day of the week. This value may not be set correctly if

your system is not using the Gregorian calendar. The possible values are:

 *SUN Sunday

*MON Monday

*TUE Tuesday

*WED Wednesday

*THU Thursday

*FRI Friday

*SAT Saturday

Work Management APIs 331

Days password valid. QPWDEXPITV is the system value for the password expiration interval. It controls

the number of days that passwords are valid by keeping track of the number of days since you changed

your password or created a user profile. The possible values are:

 *NOMAX A password can be used an unlimited number of days.

1-366 The number of days before the password cannot be used.

DBCS installed. QIGC is the DBCS version indicator. This value specifies if the DBCS version of the

system is installed. QIGC can be:

 0 A DBCS version is not installed.

1 A DBCS version is installed.

Decimal format. QDECFMT is the decimal format. QDECFMT must be one of the following characters:

 blank Uses a period for a decimal point, a comma for a 3-digit grouping character, and zero-suppress to

the left of the decimal point.

J Uses a comma for a decimal point and a period for a 3-digit grouping character. The

zero-suppression character is in the second position (rather than the first) to the left of the decimal

notation. Balances with zero values to the left of the comma are written with one leading zero

(0,04). The J entry also overrides any edit codes that might suppress the leading zero.

I Uses a comma for a decimal point, a period for a 3-digit grouping character, and zero-suppress to

the left of the decimal point.

Device naming convention. QDEVNAMING is the device naming convention. This value specifies what

naming convention is used when the system automatically creates device descriptions. QDEVNAMING

must be one of the following values:

 *NORMAL Naming conventions should follow iSeries standards.

*S36 Naming conventions should follow System/36 standards.

*DEVADR Device names are derived from the device address.

Device recovery action. QDEVRCYACN specifies what action to take when an I/O error occurs for an

interactive job’s work station. The values for QDEVRCYACN are:

 *MSG Signals the I/O error message to the user’s application program.

*DSCENDRQS Disconnects the job. When signing on again, a cancel request function is performed to return

control of the job back to the last request level.

*DSCMSG Disconnects the job. When signing on again, an error message is sent to the user’s application.

*ENDJOB Ends the job. A job log is produced for the job.

*ENDJOBNOLIST Ends the job. A job log is not produced for the job.

Disconnect job interval. QDSCJOBITV indicates the length of time, in minutes, an interactive job can be

disconnected before it is ended. The values for QDSCJOBITV are:

 5-1440 The range of the disconnect interval.

*NONE There is no disconnect interval.

Double-byte coded font name. QIGCCDEFNT is the system value for the double-byte coded font name.

QIGCCDEFNT is a 20-character list of up to two values in which the first 10 characters contain the coded

font name and the last 10 characters contain the library name. *NONE means no coded font is identified

to the system.

332 iSeries: Work Management APIs

Double-byte coded font point size. QIGCFNTSIZ is the system value for the double-byte coded font

point size. The values for QIGCFNTSIZ are:

 0 There is no defined double-byte coded font point size.

1-9999 The double-byte coded font point size in tenths. For example, a value of 9999 in binary would be

999.9.

Duplicate password. QPWDRQDDIF controls duplicate passwords. The possible values are:

 0 A password can be the same as any previously used password (except the immediately preceding

password).

1 A password must be different from the previous 32 passwords.

2 A password must be different from the previous 24 passwords.

3 A password must be different from the previous 18 passwords.

4 A password must be different from the previous 12 passwords.

5 A password must be different from the previous 10 passwords.

6 A password must be different from the previous 8 passwords.

7 A password must be different from the previous 6 passwords.

8 A password must be different from the previous 4 passwords.

Dynamic priority adjustment. The QDYNPTYADJ system value controls the dynamic priority

adjustment. Possible values are as follows:

 0 Dynamic priority adjustment is off.

1 Dynamic priority adjustment is on.

Dynamic priority scheduler. The QDYNPTYSCD system value controls the dynamic priority scheduler

algorithm. The value allows the use of the dynamic priority scheduler. Possible values are as follows:

 0 Dynamic priority scheduler is off.

1 Dynamic priority scheduler is on.

End job limit. The QENDJOBLMT system value is the maximum time for application clean up during

immediate ending of a job. QENDJOBLMT is numeric and is specified in seconds.

Force conversion on restore. QFRCCVNRST is the system value that allows you to specify whether or

not to convert the following object types during a restore: program (*PGM), service program

(*SRVPGM), SQL package (*SQLPKG), and module (*MODULE). The possible values for QFRCCVNRST

are as follows:

 0 Do not convert anything.

1 Objects with validation errors will be converted.

2 Objects requiring conversion to be used on the current version of the operating system and objects

with validation errors will be converted.

3 Objects suspected of having been tampered with, objects containing validation errors, and objects

requiring conversion to be used by the current version of the operating system will be converted.

4 Objects that contain sufficient creation data to be converted and do not have valid digital

signatures will be converted.

5 Objects that contain sufficient creation data will be converted.

6 All objects that do not have valid digital signatures will be converted.

7 All objects will be converted.

Any object that should be converted but cannot be converted will not be restored.

Work Management APIs 333

History log size. QHSTLOGSIZ is the maximum number of records for each version of the history log.

Hour. QHOUR is the system value for the hour of the day. Hours are based on a 24-hour clock. Its value

can range from 00 through 23.

Inactive job time-out. QINACTITV specifies the inactive job time-out interval in minutes. It specifies

when the system takes action on inactive interactive jobs. QINACTITV must be one of the following

values:

 *NONE The system does not check for inactive interactive jobs.

5-300 The number of minutes a job can be inactive before action is taken.

Inactive message queue. QINACTMSGQ is the system value for the inactive message queue.

QINACTMSGQ is a 20-character list of up to two 10-character values where the first is the message

queue name and the second is the library name. The following special values are allowed.

 *DSCJOB The interactive job is disconnected, as is any secondary or group job associated with it.

*ENDJOB The interactive job is ended, along with any secondary job and any group job associated with it.

Initial spooling size. QJOBSPLA specifies the initial size of the spooling control block for a job.

IPL action with console problem. QSCPFCONS is the IPL action with a console problem indicator. This

value specifies whether the IPL is to continue unattended or ends when the console is not operational

when performing an attended IPL. QSCPFCONS can be:

 0 End system.

1 Continue the IPL unattended.

IPL status. QIPLSTS is the IPL status indicator. This value indicates what form of IPL has occurred.

 0 Operator panel IPL.

1 Automatic IPL after power restored.

2 Restart IPL.

3 Time-of-day IPL.

4 Remote IPL.

IPL type. QIPLTYPE indicates the type of IPL to perform. This value specifies the type of IPL performed

when the system is powered on manually with the key in the normal position. QIPLTYPE can be:

 0 Unattended.

1 Attended with dedicated service tools.

2 Attended with console in debug mode.

Job message queue full. QJOBMSGQFL specifies if the job message queue should be allowed to wrap.

 *NOWRAP When the job message queue is full, do not wrap. This action causes the job to end.

*WRAP When the job message queue is full, wrap to the beginning and start filling again.

*PRTWRAP When the job message queue is full, wrap the message queue and print the messages that are

being overlaid because of the wrapping.

Job message queue initial size. QJOBMSGQSZ specifies the initial size of the job message queue.

QJOBMSGQSZ is numeric and is specified in kilobytes.

334 iSeries: Work Management APIs

Job message queue maximum size. QJOBMSGQMX specifies the maximum size of the job message

queue. QJOBMSGQMX is numeric and is specified in megabytes.

Keyboard buffer. QKBDBUF specifies whether the type-ahead feature and Attention key buffering option

should be used.

 *TYPEAHEAD The type-ahead feature is turned on, and the Attention key buffering option is turned off.

*NO The type-ahead feature and the Attention key buffering option are turned off.

*YES The type-ahead feature and the Attention key buffering option are turned on.

Keyboard type. QKBDTYPE specifies the language character set for the keyboard.

Language identifier. QLANGID is the system value for the language identifier. This system value

specifies the language identifier to be used as the default for the system.

Leap year adjustment. QLEAPADJ is the system value for leap year adjustment. It is used to adjust the

system calendar algorithm for the leap year in different calendar systems.

Library locking level. The QLIBLCKLVL system value controls whether libraries in a job’s library search

list are locked by that job. The *SHRRD locks prevent other jobs from deleting or renaming the libraries.

System jobs, subsystem monitor jobs, and secondary threads do not lock libraries in their library search

list. A change to this system value takes effect for all jobs that become active after the change. The

shipped value is 1. The possible values are as follows:

 0 Libraries in a user job’s library search list are not locked.

1 Libraries in a user job’s library search list are locked by that job.

Limit adjacent digits. QPWDLMTAJC limits adjacent digits in a password. It specifies whether adjacent

digits are allowed in passwords. The possible values are:

 0 Adjacent digits are allowed in passwords.

1 Adjacent digits are not allowed in passwords.

Limit character positions. Limit password character positions. This system value controls the position of

characters in a new password. This prevents the user from specifying the same character in a password

corresponding to the same position in the previous password.

A change to this system value takes effect the next time a password is changed. The shipped value is 0.

 0 The same characters can be used in a position corresponding to the same position in the previous

password.

1 The same character cannot be used in a position corresponding to the same position in the

previous password.

Limit characters. QPWDLMTCHR limits the use of certain characters in a password. The possible values

are:

 *NONE There are no restricted characters.

restricted-
characters

Up to 10 restricted characters can be specified. Valid characters are A through Z, 0 through 9, and

special characters such as number sign (#), dollar ($), underscore (—), or at sign (@).

Note: This system value is ignored if the system is operating at QPWDLVL (password level) 2 or 3.

Work Management APIs 335

Limit device session. QLMTDEVSSN is the system value for limiting device sessions. It controls whether

a user can sign-on at more than one work station.

 0 A user can sign-on at more than one device.

1 A user cannot sign-on at more than one device.

Limit repeat characters. QPWDLMTREP limits the use of repeating characters in a password. The

possible values are:

 0 Characters can be used more than once.

1 Characters cannot be used more than once.

2 Characters can be used more than once but cannot be repeated consecutively.

Limit security officer. QLMTSECOFR is the system value for limiting QSECOFR device access. It controls

whether users with *ALLOBJ or *SERVICE special authority need explicit authority to specific work

stations. The possible values are:

 0 A user with *ALLOBJ or *SERVICE special authority can sign-on any device.

1 A user with *ALLOBJ or *SERVICE special authority can sign-on only at a device to which they

have explicit authority.

Locale path name. The QLOCALE system value specifies the locale object that is to be used. The possible

values include a valid path name or one of the following special values:

 *NONE No locale object is specified.

*C A predefined locale object is to be used.

*POSIX A predefined locale object is to be used.

The locale name is returned in UCS-2 in the following format:

 BINARY(4) CCSID of the returned locale path name

CHAR(2) Country or region ID

CHAR(3) Language ID

CHAR(3) Reserved field

BINARY(4) Flag byte

BINARY(4) Number of bytes in the locale path name

CHAR(2) Locale delimiter

CHAR(10) Reserved field

CHAR(2048) Locale path name

Note: If the locale name is either the special value *C or *POSIX, a length of 1 is returned. If *NONE is

specified, a length of 0 is returned. These values are returned in the default CCSID of the job.

Machine pool size. QMCHPOOL is the size of the machine storage pool. The machine storage pool

contains shared machine and OS/400 licensed programs. QMCHPOOL is specified in kilobytes.

Maximum activity level. QMAXACTLVL is the maximum activity level of the system. This is the number

of jobs that can compete at the same time for main storage and processor resources.

Maximum number of jobs. QMAXJOB specifies the maximum number of jobs allowed on the system.

Maximum password length. QPWDMAXLEN specifies the maximum length of a password. It controls

the maximum number of characters in a password. The possible values are:

336 iSeries: Work Management APIs

1-128 The maximum number of characters that can be specified for a password. If the system is

operating at QPWDLVL (password level) 0 or 1, the valid range is 1-10. If the system is operating

at QPWDLVL 2 or 3, the valid range is 1-128.

Maximum job message queue initial size. QJOBMSGQTL is the maximum initial size of the job message

queue. QJOBMSGQTL is numeric and is specified in kilobytes.

Maximum not valid sign-on. QMAXSIGN specifies the maximum number of incorrect sign-on attempts

allowed. The possible values are:

 1-25 The maximum number of sign-on attempts allowed.

*NOMAX There is no maximum number of sign-on attempts.

Maximum sign-on action. QMAXSGNACN specifies the maximum sign-on attempts action or how the

system reacts when the maximum number of consecutive incorrect sign-on attempts (the system value

QMAXSIGN) is reached. The possible values are:

 1 Varies off the device if limit is reached.

2 Disables the user profile if limit is reached.

3 Varies off the device and disables the user profile if the limit is reached.

Maximum spooled files per job. QMAXSPLF specifies the maximum number of spooled files that can be

created per job. A job can have more than the maximum number of spooled files specified by this system

value if the spooled files existed before the system value was set to a lower number.

Minimum password length. QPWDMINLEN specifies the minimum length of a password. It controls the

minimum number of characters in a password. The possible values are:

 1-128 The minimum number of characters that can be specified for a password. If the system is

operating at QPWDLVL (password level) 0 or 1, the valid range is 1-10. If the system is operating

at QPWDLVL 2 or 3, the valid range is 1-128.

Minimum problem retention. QPRBHLDITV allows you to specify the minimum number of days a

problem is kept in the problem log. The range for this system value is 0 through 999 days.

Minute. QMINUTE is the system value for the minute of the hour. Its value can range from 00 through

59.

Month. QMONTH is the system value for the month of the year. It will be blank if the date format

specified in system value QDATFMT is Julian (JUL). Its value can range from 1 through 12.

Multithreaded job action. QMLTTHDACN is the system value for multithreaded job action. This value

controls the action to be taken when a function that may not be threadsafe is called in a multithreaded

job. The possible values are:

 1 Perform the function that is not threadsafe without sending a message.

2 Perform the function that is not threadsafe and send an informational message.

3 Do not perform the function that is not threadsafe.

Parallel processing degree. QQRYDEGREE specifies the parallel processing option, which will also

determine the types of parallel processing allowed. There are two types of parallel processing:

input/output (I/O) parallel processing and symmetric multiprocessing (SMP). With I/O parallel

processing, the database manager can use multiple tasks for each query to do the I/O processing. The

Work Management APIs 337

central processing unit (CPU) processing will still be done serially. With SMP the CPU and I/O

processing is assigned to tasks that run the query in parallel. Actual CPU parallelism requires a system

with multiple processors. SMP parallelism can only be used if the system feature DB2 Symmetric

Multiprocessing for OS/400 is installed.

 *NONE No parallel processing is allowed for database query processing.

*IO Any number of tasks may be used when the database query optimizer chooses to use I/O parallel

processing for queries. SMP parallel processing is not allowed.

*OPTIMIZE The query optimizer can choose to use any number of tasks for either I/O or SMP parallel

processing to process the query. Use of parallel processing and the number of tasks used is

determined with respect to the following:

v The number of processors available in the system

v This job’s share of the amount of active memory available in the pool in which the job is run

v Whether the expected elapsed time for the query is limited by CPU processing or I/O resources

*MAX The query optimizer can choose to use either I/O or SMP parallel processing to process the query.

The choices made by the query optimizer will be similar to those made for the value *OPTIMIZE

except the optimizer will assume that all active memory in the pool can be used to process the

query.

Pass-through servers. QPASTHRSVR specifies the number of target display-station pass-through server

jobs that are available to process iSeries display-station pass-through, iSeries Access work station function

(WSF), and other 5250 emulation programs on programmable workstations. The possible values are:

 *CALC The operating system calculates the number of server jobs.

0-100 The number of server jobs.

Password level. QPWDLVL specifies the level of password support on the system. The possible values

are:

 0 User profile passwords with a length of 1-10 characters are supported.

1 User profile passwords with a length of 1-10 characters are supported. iSeries NetServer

passwords for Windows 95/98/ME clients will be removed from the system.

2 User profile passwords with a length of 1-128 characters are supported.

3 User profile passwords with a length of 1-128 characters are supported. iSeries NetServer

passwords for Windows 95/98/ME clients will be removed from the system.

Note: If this system value has been changed since the last IPL, this value is not the password level the

system is currently using. This value will be in effect after the next IPL.

Password validation program. QPWDVLDPGM provides the ability for a user-written program to do

additional validation on passwords. The possible values are:

 *NONE A validation program is not used.

*REGFAC The password validation program name will be retrieved from the registration facility.

program-
specification

The first 10 characters contain the name of the validation program and the last 10 characters

contain the library name where the validation program is located. This option can only be used if

the system is operating at QPWDLVL (password level) 0 or 1.

Password validation program. QPWDVLDPGM provides the ability for a user-written program to do

additional validation on passwords. The first 10 characters contain the name of the program and the last

10 characters contain the library name. *NONE means a validation program is not used.

338 iSeries: Work Management APIs

Performance adjustment. QPFRADJ indicates whether the system should adjust values during IPL and

dynamically for system pool sizes and activity levels.

 0 No performance adjustment.

1 Performance adjustment at IPL.

2 Performance adjustment at IPL and dynamically.

3 Dynamic performance adjustment.

Position characters. QPWDPOSDIF controls the position of characters in a new password. This prevents

the user from specifying the same character in a password corresponding to the same position in the

previous password. The possible values are:

 0 The same characters can be used in a position corresponding to the same position in the previous

password.

1 The same characters cannot be used in a position corresponding to the same position in the

previous password.

Power down limit. QPWRDWNLMT is the maximum amount of time an immediate power down can

take before processing is ended (abnormal end).

Power restore IPL. QPWRRSTIPL specifies whether the system should automatically do an IPL when

utility power is restored after a power failure. The possible values are:

 0 Automatic IPL is not allowed.

1 Automatic IPL is allowed.

Previous end of system indicator. QABNORMSW is the previous end of system indicator. The possible

values are:

 0 Previous end of system was normal.

1 Previous end of system was abnormal.

Print key format. QPRTKEYFMT specifies whether border and header information is provided when the

Print key is pressed. The possible values are:

 *NONE The border and header information is not included with output from the Print key.

*PRTBDR The border information is included with output from the Print key.

*PRTHDR The header information is included with output from the Print key.

*PRTALL The border and header information is included with output from the Print key.

Print text. QPRTTXT is the print text. This system value is used to print up to 30 characters of text on

the bottom of listings and separator pages.

Printer device. QPRTDEV is the default printer device description. This value specifies the default printer

for the system.

Problem filter. QPRBFTR specifies the name of the filter object that the service activity manager uses

when processing problems. QPRBFTR is a 20-character list of up to two 10-character values in which the

first value is the problem filter name and the second is the library name. *NONE means no problem filter

is in use.

Work Management APIs 339

Problem hold interval. QPRBHLDITV allows you to specify the minimum number of days a problem is

kept in the problem log. After this time interval, the problem can be deleted using the Delete Problem

(DLTPRB) command. The time interval starts as soon as it is put into the log.

Processor feature. QPRCFEAT is the processor feature. It is the processor feature-code level of the system.

Processor multitasking. The QPRCMLTTSK system value controls processor multitasking. Possible values

are as follows:

 0 Processor multitasking is off.

1 Processor multitasking is on.

2 Processor multitasking is set to System-controlled.

Query processing time limit. QQRYTIMLMT specifies a limit that is compared to the estimated number

of elapsed seconds that a query requires to run in order to determine if a database query is allowed to

start.

 *NOMAX There is no maximum number of estimated elapsed seconds.

0-2147352578 The number of seconds that is compared to the estimated number of elapsed seconds required to

run a query. If the estimated elapsed seconds is greater than this value, the query is not started.

Reclaim spool storage. QRCLSPLSTG is reclaim spool storage system value. It allows for the automatic

removal of empty spool database members. The values allowed are:

 *NOMAX The maximum retention interval.

*NONE No retention interval.

1-366 Number of days empty spool database members are kept for new spooled file use.

Remote service attribute. The QRMTSRVATR system value controls the remote service problem analysis

ability. The value allows the system to be analyzed from a remote system. The values for QRMTSRVATR

are as follows:

 0 Remote service attribute is off.

1 Remote service attribute is on.

Remote IPL. QRMTIPL is the remote power on and IPL indicator. This value specifies if remote power on

and IPL can be started over a telephone line. The possible values are:

 0 Remote power on and IPL are not allowed.

1 Remote power on and IPL are allowed.

Remote sign-on. QRMTSIGN specifies how the system handles remote sign-on requests. The user can

specify a program and library to decide which remote sessions will be allowed and which user profiles

can be automatically signed on from which locations. The first 10 characters contain the program name,

and the last 10 characters contain the library name. QRMTSIGN can have the following values:

 *FRCSIGNON All remote sign-on sessions are required to go through normal sign-on processing.

*SAMEPRF When the source and target user profile names are the same, the sign-on may be bypassed for

remote sign-on attempts.

*VERIFY After verifying that the user has access to the system, the system allows the user to bypass the

sign-on.

*REJECT No remote sign-on is allowed.

340 iSeries: Work Management APIs

Required password digits. QPWDRQDDGT specifies whether a digit is required in a new password. The

possible values are:

 0 A numeric digit is not required in new passwords.

1 A numeric digit is required in new passwords.

Retain server security data. QRETSVRSEC specifies whether security-related information for

IBM-provided client/server applications is retained. The possible values are:

 0 Do not retain the security-related information.

1 Retain the security-related information.

Save access paths. The QSAVACCPTH system value specifies whether to save logical file access paths

that are dependent on the physical files that are being saved. The possible values are:

 0 Do not save access paths.

1 Save access paths.

Scan file systems. The QSCANFS system value specifies the integrated file systems in which objects will

be scanned when exit programs are registered with any of the integrated file system scan-related exit

points. For more information on the integrated file system scan-related exit points, see the Integrated file

system information in the Files and file systems topic. The values allowed are:

 *NONE No integrated file system objects will be scanned.

*ROOTOPNUD Objects of type *STMF that are in *TYPE2 directories in the Root(/), QOpensys, and User-defined

file systems will be scanned.

Scan file systems control. The QSCANFSCTL system value controls the integrated file system scanning

on the system when exit programs are registered with any of the integrated file system scan-related exit

points. These controls apply to integrated file system objects in file systems covered by the QSCANFS

(Scan file systems) system value. For more information on the integrated file system scan-related exit

points, see the Integrated file system information in the Files and file systems topic. The values allowed

are:

 *NONE No controls are being specified for the integrated file system scan-related exit points.

*ERRFAIL If there are errors when calling the exit program (for example, program not found, or the exit

program signals an error), the system will fail the request which triggered the exit program call. If

this is not specified, the system will skip the exit program and treat it as if the object was not

scanned.

*FSVRONLY Only accesses through the file servers will be scanned. For example, accesses through Network

File System will be scanned as well as other file server methods. If this is not specified, all

accesses will be scanned.

*NOFAILCLO The system will not fail the close requests with an indication of scan failure, even if the object

failed a scan which was done as part of the close processing. Also, this value will override the

*ERRFAIL specification for the close processing, but not for any other scan-related exit points.

Work Management APIs 341

*NOPOSTRST After objects are restored, they will not be scanned just because they were restored. If the object

attribute is that “the object will not be scanned”, the object will not be scanned at any time. If the

object attribute is that “the object will be scanned only if it has been modified since the last time it

was scanned”, the object will only be scanned if it is modified after being restored.

If *NOPOSTRST is not specified, objects will be scanned at least once after being restored. If the

object attribute is that “the object will not be scanned”, the object will be scanned once after being

restored. If the object attribute is that “the object will be scanned only if it has been modified since

the last time it was scanned”, the object will be scanned after being restored because the restore

will be treated as a modification to the object.

In general, it may be dangerous to restore objects without scanning them at least once. It is best to

use this option only when you know that the objects were scanned before they were saved or they

came from a trusted source.

*NOWRTUPG The system will not attempt to upgrade the access for the scan descriptor passed to the exit

program to include write access. If this is not specified, the system will attempt to do the write

access upgrade.

*USEOCOATR The system will use the specification of the “object change only” attribute to only scan the object if

it has been modified (not also because scan software has indicated an update). If this is not

specified, this ″object change only″ attribute will not be used, and the object will be scanned after

it is modified and when scan software indicates an update.

Second. QSECOND is the system value for the second of the minute. Its value can range from 00 through

59.

Security level. QSECURITY is the system security level indicator. The possible values are:

 10 The system does not require a password to sign-on. The user has access to all system resources.

20 The system requires a password to sign-on. The user has access to all system resources.

30 The system requires a password to sign-on, and users must have authority to access objects and

system resources.

40 The system requires a password to sign-on, and users must have authority to access objects and

system resources. Programs that try to access objects through interfaces that are not supported will

fail.

50 The system requires a password to sign-on, and users must have authority to access objects and

system resources. Security and integrity of the QTEMP library and user domain (*USRxxx) objects

are enforced. (Use system value QALWUSRDMN to change which libraries allow *USRxxx

objects.) Programs fail if they try to pass unsupported parameter values to supported interfaces or

if they try to access objects through interfaces that are not supported.

Note: If this system value has been changed since the last IPL, this value is not the security level the

system is currently using. This value will be in effect after the next IPL.

Serial number. QSRLNBR is the system serial number. An example of a serial number is 1001003.

Server authentication interval. QSVRAUTITV is the system value for the server authentication interval.

The server authentication interval specifies the time interval of the server authentication in minutes. The

following values are allowed:

 1-108000 The authentication of the token expires at the end of the interval specified.

Service dump. QSRVDMP specifies whether service dumps for unmonitored escape messages are created.

The values that are allowed are:

 *DMPALLJOB Service dumps will be created for all jobs.

342 iSeries: Work Management APIs

*DMPSYSJOB Service dumps will be created for only system jobs, not user jobs.

*DMPUSRJOB Service dumps are created for only user jobs, not system jobs. System jobs include the system

arbiter, subsystem monitors, LU services process, spool readers and writers, and the

start-control-program-function (SCPF) job.

*NONE Do not request dumps in any jobs.

Set job attributes from locale. The QSETJOBATR system value specifies the job attributes that are to be

set from the job’s locale. The possible values for QSETJOBATR are as follows:

 *NONE No attributes are set, or use any combination of the following:

*CCSID Coded character set identifier

*DATFMT Date format

*DATSEP Date separator

*DECFMT Decimal format

*SRTSEQ Sort sequence

*TIMSEP Time separator

Shared memory control. QSHRMEMCTL specifies whether or not users are allowed to use shared

memory or mapped memory that has write capability. The allowed values are:

 0 Users are not allowed to use shared memory or mapped memory that has write capability.

1 Users are allowed to use shared memory or mapped memory that has write capability.

Sign-on information. QDSPSGNINF is the system value for displaying sign-on information. The possible

values are:

 0 The sign-on information is not displayed.

1 The sign-on information is displayed.

Software error log. QSFWERRLOG specifies whether software errors should be logged by the system.

The allowed values are:

 *LOG Software errors are logged.

*NOLOG No logging occurs.

Sort sequence table. QSRTSEQ is the name of the table used for the sort sequence. The first 10 characters

contain the name of the table, and the last 10 characters contain the library name. The values for

QSRTSEQ are:

 *HEX No sort sequence table is used. The hexadecimal values of the characters are used to determine

the sort sequence.

*LANGIDSHR The sort sequence table used can contain the same weight for multiple characters. The shared

weight sort table associated with the language specified in the LANGID parameter is used.

*LANGIDUNQ The sort sequence table used must contain a unique weight for each character in the code page,

and it is the unique weight sort table associated with the language specified in the LANGID

parameter.

sort sequence table

name

The name and library of the sort sequence table to be used.

Special environment. QSPCENV specifies the system environment used as the default for all users. The

possible values are:

Work Management APIs 343

*NONE You enter the iSeries environment when you sign-on.

*S36 You enter the System/36 environment when you sign-on.

Spooled file action. QSPLFACN specifies whether spooled files can be accessed through job interfaces

once a job has completed its normal activity.

 *KEEP

When the job completes its activity, as long as at least one spooled file for the job exists in the

system auxiliary storage pool (ASP 1) or in a basic user ASP (ASPs 2-32), the spooled files are kept

with the job and the status of the job is updated to indicate that the job has completed. If all

remaining spooled files for the job are in independent ASPs (ASPs 33-255), the spooled files will

be detached from the job and the job will be removed from the system.

*DETACH Spooled files are detached from the job when the job completes its activity.

Start printer writer. QSTRPRTWTR specifies whether printer writers are started at IPL. QSTRPRTWTR

can be:

 0 Do not start printer writers.

1 Start printer writers.

Startup program name. QSTRUPPGM is the startup program. This value specifies the name of the

program called from an autostart job when the controlling subsystem is started. The first 10 characters

contain the program name, and the last 10 characters contain the library name. *NONE means the

autostart job ends normally without calling a program.

Status messages. QSTSMSG specifies whether or not the status messages are displayed. The values

allowed are:

 *NORMAL Status messages are displayed.

*NONE Status messages are not displayed.

System date. QDATE is the system date. QDATE is composed of the following system values:

QCENTURY, QYEAR, QMONTH, and QDAY. The format of the field returned is CYYMMDD where C is

the century, YY is the year, MM is the month, and DD is the day. A 0 for the century flag indicates years

19xx, and a 1 indicates years 20xx.

System date and time. QDATETIME is the date and time for the local system time as a single value.

Retrieving this value is similar to retrieving QDATE and QTIME in a single operation. The format of the

field returned is YYYYMMDDHHNNSSXXXXXX where YYYY is the year, MM is the month, DD is the

day, HH is the hours, NN is the minutes, SS is the seconds, and XXXXXX is the microseconds.

System library list. QSYSLIBL is the system part of the library list. The list can contain as many as 15

names.

System model. QMODEL is the system model number. It is the number or letters used to identify the

model of the system.

System time. QTIME is the system value for the time of day. QTIME is composed of the following

system values: QHOUR, QMINUTE, and QSECOND. QTIME has the format HHMMSSXXX, where HH

equals hours, MM equals minutes, SS equals seconds, and XXX equals milliseconds.

Thread resources adjustment. QTHDRSCADJ specifies whether or not the system should make

adjustments to the affinity of threads currently running in the system. If some system resources are being

344 iSeries: Work Management APIs

utilized more than others, the system may reassign some of the threads running on the more heavily

used resources to have affinity to the less used resources. The values allowed are:

 ’0’ No automatic adjustment of threads is made by the system. Threads will continue to have affinity

to the resources which they are currently assigned to until they end or until this system value is

changed.

’1’ The system dynamically makes adjustments of threads’ affinity to the system’s resources. It does

not change the grouping or level of affinity in the threads.

Thread resources affinity. QTHDRSCAFN specifies whether or not secondary threads are grouped

together with the initial thread. If they are grouped together, they will have affinity to, or a preference

for, the same set of processors and memory, which may affect performance. The first 10 characters contain

a special value indicating how the threads will be grouped. The values allowed are:

 *NOGROUP Secondary threads are not grouped with the initial thread. They are spread across all the available

system resources.

*GROUP Secondary threads are grouped with the initial thread.

The last 10 characters contain a special value that indicates to what degree the system tries to maintain

the affinity of threads to the system resources that they are internally assigned to. The values allowed are:

 *NORMAL A thread will use any processor or memory in the system if the resources it has affinity to are not

readily available.

*HIGH A thread will only use the resources it has affinity to, and will wait until they become available if

necessary.

Time adjustment. QTIMADJ can be used to identify software that adjusts the system clock to keep it

synchronized with an external time source. This value should be maintained by time adjustment software

and is intended as an aid to prevent having multiple time adjustment applications conflict with each

other. There are no checks perfomed by the system to verify this value or that software is or is not

performing time adjustments. IBM time adjustment offerings will use identifiers that start with QIBM

such as ’QIBM_OS400_SNTP’. Other software suppliers should follow a similiar naming convention of

company name and product name.

Time adjustment software should check QTIMADJ prior to starting. If QTIMADJ has an identifier for

other time adjustment software, then the software being started should notify the user of this potential

conflict and confirm that this time adjustment software should be started. When QTIMADJ is *NONE the

software should update QTIMADJ to identify that it is now responsible for adjusting the system clock.

Time adjustment software should check QTIMADJ again prior to ending. QTIMADJ should be set to

*NONE only if the current value identifies this time adjustment software that is ending. The shipped

value is *NONE. The allowed values are:

 *NONE Indicates that time adjustment software has not been identified.

Identifier Identify the software that will be used to adjust the system clock.

Time separator. QTIMSEP is the character separator for time. QTIMSEP must be one of the following

values: colon (:), period (.), comma (,), or blank.

Time-slice end pool. QTSEPOOL is the time-slice end pool. This value specifies whether interactive jobs

should be moved to another main storage pool when they reach time-slice end. The values allowed are:

 *NONE Jobs are not moved to the base storage pool when time-slice end is reached.

Work Management APIs 345

*BASE Jobs are moved to the base pool when time-slice end is reached.

Time zone. QTIMZON specifies the name of the time zone description used to calculate local system

time.

Total jobs. QTOTJOB specifies the initial number of jobs for which auxiliary storage is allocated during

IPL.

UPS delay time. The uninterruptible-power-supply (UPS) delay time specifies the amount of time that

elapses before the system automatically powers down following a power failure. When a change in

power activates the UPS, messages are sent to the UPS message queue (the system value QUPSMSGQ).

This system value is meaningful only if your system has a battery power unit or has an uninterruptible

power supply attached.

A change to this system value takes effect the next time there is a power failure. The shipped value is

*CALC. The allowed values are:

 *BASIC Powers only the PRC, IOP cards, and Load Source direct-access storage device. The appropriate

wait time, in seconds, is calculated. (This should be used only if you have the battery power unit

or an uninterruptible power supply without every rack being connected.)

Note: All other values indicate that all racks have an uninterruptible power supply.

*CALC Calculates the appropriate wait time. In a secondary partition, the calculated wait time, rather

than *CALC, is returned.

*NOMAX Starts no action.

0 Automatically powers down the system.

1-99999 Powers down the system after the specified number of seconds.

The QUPSDLYTIM system value is in the form of a two-item list. The first item is the value the user

specified on the CHGSYSVAL command. The second item is the delay time, which is either what the user

specified, or, if *CALC or *BASIC is specified, the calculated delay time.

UPS message queue. The QUPSMSGQ system value is the message queue that is to receive

uninterruptible-power-supply messages. QUPSMSGQ is a 20-character list of up to two values in which

the first 10 characters contain the message queue name, and the last 10 characters contain the library

name.

Use adopted authority. QUSEADPAUT specifies an authorization list that is used to control who can

create, change, and update programs and service programs with the use adopted authority

(USEADPAUT) attribute of *YES. The possible values are:

 *NONE All users can create, change, and update programs and service programs that use adopted

authority.

authorization list

name

The name of an authorization list that a user must have at least *USE authority to in order to

create, change, and update programs and service programs that use adopted authority. Authority

to the authorization list cannot come from adopted authority.

User library list. QUSRLIBL is the default for the user part of the library list. The list can contain as

many as 25 names.

Verify object on restore. QVFYOBJRST is the system value for verify object on restore. This value is used

to specify the policy to be used for object signature verification during a restore operation. This value

applies to objects of types: *CMD, *PGM, *SRVPGM, *SQLPKG and *MODULE. It also applies to *STMF

objects which contain Java programs. The possible values are:

346 iSeries: Work Management APIs

1 Do not verify signatures on restore. Restore all objects regardless of their signature.

2 Verify signatures on restore. Restore unsigned commands and user-state objects. Restore signed

commands and user-state objects, even if the signatures are not valid. Restore inherit-state and

system-state objects only if they have valid signatures.

3 Verify signatures on restore. Restore unsigned commands and user-state objects. Restore signed

commands and user-state objects only if the signatures are valid. Restore inherit-state and

system-state objects only if they have valid signatures.

4 Verify signatures on restore. Do not restore unsigned commands and user-state objects. Restore

signed commands and user-state objects, even if the signatures are not valid. Restore inherit-state

and system-state objects only if they have valid signatures.

5 Verify signatures on restore. Do not restore unsigned commands and user-state objects. Restore

signed user-state objects only if the signatures are valid. Restore inherit-state and system-state

objects only if they have valid signatures.

Year. QYEAR is the system value that specifies the last 2 digits for the year. Its value can range from 0

through 99.

Error Messages

 Message ID Error Message Text

CPF1860 E Value &1 in list not valid.

CPF1861 E Length of the receiver variable not valid.

CPF1862 E Number of values to retrieve not valid.

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Work Management APIs,” on page 1 | APIs by category

Work Management APIs 347

#TOP_OF_PAGE
aplist.htm

Retrieve Thread Attribute (QWTRTVTA) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format of receiver information

Input Char(8)

4 Job or thread identification information

Input Char(*)

5 Format of job identification information

Input Char(8)

6 Number of fields to return

Input Binary(4)

7 Key of fields to return

Input Array(*) of Binary(4)

8 Reset performance statistics

Input Char(1)

9 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 363.

The Retrieve Thread Attribute (QWTRTVTA) API retrieves job and thread attributes that apply to the job

or thread specified in the job or thread identification information parameter.

Authorities and Locks

The following authority restrictions apply only when the API is called for format name RTVT0200. All

other format names have no authority restrictions.

Job Authority

When calling this API for format name RTVT0200, one of the following conditions must be met:

v The API must be called from within the job for which the information is being retrieved.

v The caller of the API must be running under a user profile that is the same as the job user

identity of the job for which the information is being retrieved. The job user identity is the

name of the user profile by which a job is known to other jobs. It is described in more detail in

the Work Management

book on the V5R1 Supplemental Manuals Web site.

v The caller of the API must be running under a user profile that has job control (*JOBCTL)

special authority.

348 iSeries: Work Management APIs

v The caller of the API must be authorized to the Thread Control function of Operating

System/400 through iSeries Navigator’s Application Administration support. The Change

Function Usage Information (QSYCHFUI) API, with a function ID of

QIBM_SERVICE_THREAD, can be used to change the list of users that are allowed to retrieve

information about a thread.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is used to return the attribute information for the specified thread.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of receiver variable parameter may be

specified up to the size of the receiver variable specified in the user program. If the length of

receiver variable parameter specified is larger than the allocated size of the receiver variable

specified in the user program, the results are not predictable. The minimum length is 8 bytes.

Format of receiver information

INPUT; CHAR(8)

 The format of the information returned in the receiver variable. The possible format name is:

 RTVT0100 See “Format RTVT0100” on page 350 for details on the job or thread attribute information

returned.

RTVT0200 Library list information. See “RTVT0200 Format” on page 352 for details on the library

information returned for the thread.

RTVT0300 Elapsed performance statistics. See “Format RTVT0300” on page 355 for details on the

performance statistics returned for the specified thread.

Job or thread identification information

INPUT; CHAR(*)

 The information that is used to identify the job or thread within a job for which attribute

information is to be returned. See “Format of job or thread identification information” on page

357 for details.

Format of job or thread identification information

INPUT; CHAR(8)

 The format of the job or thread identification information. The possible format names are:

 JIDF0100 See “Format of job or thread identification information” on page 357 for details on the job

identification information.

JIDF0200 See “Format of job or thread identification information” on page 357 for details on the job

identification information.

Note: If the thread handle is available, Format JIDF0200 provides a faster method of accessing a

thread that is not the current thread than Format JIDF0100.

Number of fields to return

INPUT; BINARY(4)

 The number of fields to return in the specified format.

Key of fields to be returned

INPUT; ARRAY(*) of BINARY(4)

Work Management APIs 349

qsychfui.htm
qsychfui.htm

The list of fields to be returned in the specified format. For a list of valid fields, see “Valid Keys”

on page 359.

Reset status statistics

INPUT; CHAR(1)

 The elapsed time and all the key fields that are based on the elapsed time are reset to zero. If a

format other than RTVT0300 is specified, this field needs to be zero. The following special values

may be specified:

 0 The elapsed time and the key fields based on the elapsed time are not reset.

1 The elapsed time and the key fields based on the elapsed time are reset back to zero.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format RTVT0100

The RTVT0100 format returns job or thread attribute information for the specified thread. For the list of

keys that are valid for job attributes and thread attributes, see “Keys for RTVT0100” on page 359.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(2) Reserved

36 24 BINARY(4),

UNSIGNED

Returned thread handle

40 28 CHAR(8) Returned thread identifier

48 30 CHAR(10) Job status

58 3A CHAR(2) Reserved

60 3C BINARY(4) Offset to key fields

64 40 BINARY(4) Number of fields returned

68 44 CHAR(*) Reserved

These fields repeat, in

the order listed, for the

number of key field

returned.

BINARY(4) Length of field information returned

BINARY(4) Key field

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved

350 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Data. The data returned for the key field.

Job name. The name of the job as identified to the system. For an interactive job, the system assigns the

job the name of the work station where the job started; for a batch job, you specify the name in the

command when you submit the job.

Job number. The system-assigned job number.

Job status. The status of the job. The valid values are:

 *ACTIVE The job has started, and it can use system resources (processing unit, main storage, and so on).

This does not guarantee that the job is currently running, however. For example, an active job may

be in one of the following states where it is not in a position to use system resources:

v The Hold Job (HLDJOB) command holds the job; the Release the (RLSJOB) command allows the

job to run again.

v The Transfer Group Job (TFRGRPJOB) or Transfer Secondary Job (TFRSECJOB) command

suspends the job. When control returns to the job, the job can run again.

v The job is disconnected using the Disconnect Job (DSCJOB) command. When the interactive

user signs back on, thereby connecting back into the job, the job can run again.

v The job is waiting for any reason. For example, when the job receives the reply for an inquiry

message, the job can start running again.

*JOBQ The job is currently on a job queue. The job possibly was previously active and was placed back

on the job queue because of the Transfer Job (TFRJOB) or Transfer Batch Job (TFRBCHJOB)

command, or the job was never active because it was just submitted.

*OUTQ The job has completed running and has spooled output that has not yet printed.

Key field. The field returned. See “Valid Keys” on page 359 for the list of valid keys.

Length of data. The length of the data returned for the field.

Length of field information returned. The total length of information returned for this field. This value

is used to increment to the next field in the list.

Number of fields returned. The number of fields returned to the application.

Offset to key fields. The offset in characters (bytes) from the beginning of the receiver to the key fields

array entry.

Reserved. An ignored field.

Returned thread handle. A value which addresses a particular thread within the job. While the thread

identifier uniquely identifies the thread within the job, the thread handle can improve performance when

referencing the thread. This field will be 0 when called to return attributes for a job.

Returned thread identifier. A value which uniquely identifies the thread within the job. This field will be

0 when called to return attributes for a job.

Type of data. The type of data returned.

Work Management APIs 351

C The data is returned in character format.

B The data is returned in binary format.

User name. The user profile under which the job is started. The user name is the same as the user profile

name and can come from several different sources depending on the type of job.

RTVT0200 Format

The RTVT0200 format returns library list information for the specified thread. The special value of -1 for

the thread indicator field (part of the JIDF0100 format) may not be used. For the list of keys that are valid

for this format, see “Keys for RTVT0200” on page 362.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(2) Reserved

36 24 BINARY(4),

UNSIGNED

Returned thread handle

40 28 CHAR(8) Returned thread identifier

48 30 BINARY(4) Offset to libraries in system library list

52 34 BINARY(4) Number of system libraries

56 38 BINARY(4) Offset to libraries in product library list

60 3C BINARY(4) Number of product libraries

64 40 BINARY(4) Offset to current library

68 44 BINARY(4) Number of current libraries

72 48 BINARY(4) Offset to libraries in user library list

76 4C BINARY(4) Number of user libraries

80 50 BINARY(4) Length of one library array entry

84 54 BINARY(4) Offset to ASP group information

88 58 BINARY(4) Number of ASP group information entries

92 5C BINARY(4) Length of one ASP group information entry

See note Array(*) of CHAR(*) System library list (See “Library array entry” on page 353 for

format of library array entry.)

Array(*) of CHAR(*) Product libraries (See “Library array entry” on page 353 for format

of library array entry.)

Array(*) of CHAR(*) Current library (See “Library array entry” on page 353 for format

of library array entry.)

Array(*) of CHAR(*) User library list (See “Library array entry” on page 353 for format

of library array entry.)

Array(*) of CHAR(*) ASP group information entry (See “ASP Group Information Entry”

on page 353 for format of ASP group information entry.)

352 iSeries: Work Management APIs

Offset

Type Field Dec Hex

Note: The decimal and hexadecimal offsets depend on the number of libraries you have in the various parts of your

library lists and on keys requested. The data is left-justified and padded with blanks on the right. The array is

sequential. See the CL Programming

book for the total number of libraries that can be returned to you.

Library array entry

The library array entry describes the data that is returned for each library entry in the array of libraries.

The name of the library as well as some extended information about the library is returned with this

format.

For details about the fields listed, see “Field Descriptions.”

 Offset

Type Field Dec Hex

The fields repeat for each library object returned in the array. CHAR(10) Library name

CHAR(50) Library text description

BINARY(4) Library ASP number

CHAR(10) Library ASP name.

CHAR(*) Reserved

ASP Group Information Entry

The ASP group information entry describes the data that is returned for each ASP group. The name of the

ASP group is returned with this format. For details about the fields listed, see “Field Descriptions”

 Offset

Type Field Dec Hex

These fields repeat for each ASP group returned. CHAR(10) ASP group

name

CHAR(*) Reserved

Field Descriptions

ASP group information. The list of Auxiliary Storage Pool (ASP) group information for the current

thread. This information does not include the system ASP or the basic user ASPs.

ASP group name. The name of an ASP group being used by the thread. This is the name of the primary

ASP device in an ASP group.

Bytes available. All of the available bytes for use in your application.The actual length depends on how

many libraries are in the library list.

Bytes returned. The number of bytes returned to the user. This may be some but not all of the bytes

available.

Work Management APIs 353

Current library. The name of the current library for the specified thread. If no current library exists, the

number of current libraries field is zero and this field has no entry in the list.

Job name. The name of the job as identified to the system. For an interactive job, the system assigns the

job the name of the work station where the job started; for a batch job, you specify the name in the

command when you submit the job.

Job number. The system-assigned job number.

Length of one ASP group information entry. The length of an entry in the ASP group information. Zero

indicates that ASP group information is not being returned.

Length of one library array entry. The length of an entry in one of the library list entries.

Library ASP name. The name of the ASP in which the library is located. The following special values

may also be returned:

 *SYSBAS The library is located in the system ASP or a basic ASP.

*N The name of the ASP cannot be determined.

Library ASP number. The numeric identifier of the ASP device containing the object’s library. The

following values may be returned:

 1 The library is located in the system ASP.

2-32 The library is located in a basic ASP.

33-255 The library is located in an independent ASP.

-1 The ASP device cannot be determined.

Library name. The name of the library object.

Library text description. The text description of the library object. This field is blank if no text

description is specified.

Number of ASP group information entries. The number of elements in entries in the ASP group

information. Zero indicates that ASP group information is not being returned.

Number of current libraries. The number of libraries in the current part of the library list of the specified

thread.

Number of product libraries. The number of product libraries found in the library list of the specified

thread.

Number of system libraries. The number of libraries in the system part of the thread’s library list. This

value will be zero if system libraries were not requested.

Number of user libraries. The number of libraries in the thread’s user library list. This value will be zero

if user libraries were not requested.

Offset to ASP group information. The offset in characters (bytes) from the beginning of the receiver to

the first ASP group information entry. Zero indicates that ASP group information is not being returned.

Offset to current library. The offset in characters (bytes) from the beginning of the receiver to the current

library array entry.

354 iSeries: Work Management APIs

Offset to libraries in product library list. The offset in characters (bytes) from the beginning of the

receiver to the first product library array entry.

Offset to libraries in system library list. The offset in characters (bytes) from the beginning of the

receiver to the first system library array entry.

Offset to libraries in user library list. The offset in characters (bytes) from the beginning of the receiver

to the first user library array entry.

Product libraries. The libraries that contain product information for the specified thread. If no product

libraries exist, the number of product libraries field is zero and this field has no entry in the list.

Reserved. An ignored field.

Returned thread handle. A value which addresses a particular thread within the job. While the thread

identifier uniquely identifies the thread within the job, the thread handle can improve performance when

referencing the thread.

Returned thread identifier. A value which uniquely identifies the thread within the job.

System library list. The system portion of the library list of the specified thread.

User library list. The user portion of the library list for the specified thread.

User name. The user profile under which the job is started. The user name is the same as the user profile

name and can come from several different sources depending on the type of job.

Format RTVT0300

The RTVT0300 format returns performance statistics information, calculated over an elapsed time, for the

specified thread. The special value of -1 for the thread indicator field (part of the JIDF0100 format) may

not be used. For the list of keys that are valid for this format, see “Keys for RTVT0300” on page 362.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(10) Job name

18 12 CHAR(10) User name

28 1C CHAR(6) Job number

34 22 CHAR(2) Reserved

36 24 BINARY(4),

UNSIGNED

Returned thread handle

40 28 CHAR(8) Returned thread identifier

48 30 BINARY(8),

UNSIGNED

Elapsed time

56 38 BINARY(4) Offset to key fields

60 3C BINARY(4) Number of fields returned

64 40 CHAR(*) Reserved

Work Management APIs 355

Offset

Type Field Dec Hex

These fields repeat, in

the order listed, for the

number of key field

returned.

BINARY(4) Length of field information returned

BINARY(4) Key field

CHAR(1) Type of data

CHAR(3) Reserved

BINARY(4) Length of data

CHAR(*) Data

CHAR(*) Reserved

Field Descriptions

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Data. The data returned for the key field.

Elapsed time. The time, in milliseconds, that has elapsed between the measurement start time and the

current system time. This value is 0 the first time this API is called by this job. The measurement start is

set the first time this API is called and when the reset status statistics is set to reset the elapsed time.

Job name. The name of the job as identified to the system. For an interactive job, the system assigns the

job the name of the work station where the job started; for a batch job, you specify the name in the

command when you submit the job.

Job number. The system-assigned job number.

Key field. The field returned. See “Valid Keys” on page 359 for the list of valid keys.

Length of data. The length of the data returned for the field.

Length of field information returned. The total length of information returned for this field. This value

is used to increment to the next field in the list.

Number of fields returned. The number of fields returned to the application.

Reserved. An ignored field.

Returned thread handle. A value which addresses a particular thread within the job. While the thread

identifier uniquely identifies the thread within the job, the thread handle can improve performance when

referencing the thread.

Returned thread identifier. A value which uniquely identifies the thread within the job.

Type of data. The type of data returned.

 C The data is returned in character format.

B The data is returned in binary format.

356 iSeries: Work Management APIs

User name. The user profile under which the job is started. The user name is the same as the user profile

name and can come from several different sources depending on the type of job.

Format of job or thread identification information

Format JIDF0100 is the format of the information needed to identify the job or the thread for which the

job or thread’s attributes will be returned. This format is to be used for returning job or thread

information. This format supports several special values that can help in identifying the thread.

Format JIDF0200 is the format of the information needed to identify the thread for which the thread’s

attributes will be returned. This format is to be used when referencing a specific thread that you already

have the identification information for.

Note: If the thread handle is available, Format JIDF0200 provides a faster method of accessing a thread

that is not the current thread than Format JIDF0100.

JIDF0100 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4) Thread indicator

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this

identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks.

With this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

 * The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread identifier. A value that uniquely identifies a thread within a job. If a thread identifier is specified,

a thread indicator must also be specified. If the thread indicator is not 0, this field must contain

hexadecimal zeros.

Thread indicator. A value that is used to specify the thread within the job for which information is to be

retrieved. If a thread indicator is specified, a thread identifier must also be specified. The following

values are supported:

Work Management APIs 357

-1 Information should be retrieved for the job. The value for the fields requested will be retrieved

from the job. If the value requested only resides in a thread, the value for the initial thread will be

returned. For example, the Current user field only resides in the thread and the initial thread

value will be returned. The returned thread identifier and the returned thread handle will be

returned as hexadecimal zeros.

0 Information should be retrieved for the thread specified in the thread identifier field. If the value

requested only resides in a job, the value for the job containing the thread will be returned.

1 Information should be retrieved for the thread that this program is currently running in. If the

value requested only resides in a job, the value for the job containing the thread will be returned.

2 Information should be retrieved for the initial thread of the identified job. If the value requested

only resides in a job, the value for the job containing the thread will be returned.

Note: For all of the supported values, the combination of the internal job identifier, job name, job number

and user name fields must also identify the job containing the thread.

User name. A specific user profile name, or blanks when the job name specified is a special value.

JIDF0200 Format

 Offset

Type Field Dec Hex

0 0 CHAR(10) Job name

10 A CHAR(10) User name

20 14 CHAR(6) Job number

26 1A CHAR(16) Internal job identifier

42 2A CHAR(2) Reserved

44 2C BINARY(4),

UNSIGNED

Thread handle

48 30 CHAR(8) Thread identifier

Field Descriptions

Internal job identifier. The internal identifier for the job. The List Job (QUSLJOB) API returns this

identifier. If you do not specify *INT for the job name parameter, this parameter must contain blanks.

With this parameter, the system can locate the job more quickly than with a job name.

Job name. A specific job name or one of the following special values:

 * The job in which this program is running. The job number and user name must contain blanks.

*INT The internal job identifier locates the job. The job number and user name must contain blanks.

Job number. A specific job number, or blanks when the job name specified is a special value.

Reserved. An unused field. This field must contain hexadecimal zeros.

Thread handle. A value that addresses a particular thread within a job. While the thread identifier

uniquely identifies the thread within the job, the thread handle can improve performance when

referencing the thread. A valid thread handle must be specified. The thread handle is returned on several

other interfaces.

358 iSeries: Work Management APIs

Thread identifier. A value which uniquely identifies a thread within a job. A valid thread identifier must

be specified.

User name. A specific user profile name, or blanks when the job name specified is a special value.

Valid Keys

The following tables indicate the valid keys for the formats specified.

Keys for RTVT0100

The following table contains a list of the valid keys for format RTVT0100. See “Key Field descriptions” on

page 363 for the descriptions of the valid key attributes. This table contains the keys that are valid for job

attributes and thread attributes.

The Scope column defines the location of the attribute. The attribute is either scoped to the job or to the

thread. If a job scoped attribute is requested for a thread, the value from the job containing the thread

will be returned. If a thread scoped attribute is requested for a job, the value from the initial thread will

be returned.

 Key Type Description Scope

0101 CHAR(4) Active job status Job

0102 CHAR(1) Allow multiple threads Job

0103 CHAR(4) Active job status for jobs ending Job

0104 CHAR(*) ASP group information Thread

0201 CHAR(10) Break message handling Job

0302 BINARY(4) Coded character set ID Job

0303 CHAR(2) Country or region ID Job

0305 CHAR(10) Current user profile Thread

0311 CHAR(10) Character identifier control Job

0312 BINARY(8), UNSIGNED Processing unit time used - total for the job Job

0313 BINARY(8), UNSIGNED Processing unit time used for database - total for the

job

Job

0319 BINARY(8), UNSIGNED Processing unit time used - total for the thread Thread

0320 BINARY(8), UNSIGNED Processing unit time used for database - total for the

thread

Thread

0326 CHAR(45) Client IP address - IPv4 or IPv6 Thread

0401 CHAR(13) Date and time job became active Job

0402 CHAR(13) Date and time job entered system Job

0403 CHAR(8) Date and time job is scheduled to run Job

0404 CHAR(8) Date and time job was put on this job queue Job

0405 CHAR(4) Date format Job

0406 CHAR(1) Date separator Job

0407 CHAR(1) DBCS-capable Job

0408 CHAR(10) DDM conversation handling Job

0409 BINARY(4) Default wait Job

0410 CHAR(13) Device recovery action Job

0412 BINARY(4) Default coded character set identifier Job

Work Management APIs 359

Key Type Description Scope

0413 CHAR(1) Decimal format Job

0415 BINARY(8), UNSIGNED Disk I/O count - total for the job Job

0418 CHAR(13) Date and time job ended Job

0420 BINARY(8), UNSIGNED Disk I/O count - total for the thread Thread

0501 BINARY(4) End severity Job

0502 CHAR(1) End status Job

0504 CHAR(10) Extended object attribute of entity thread is waiting on Thread

0601 CHAR(10) Function name Job

0602 CHAR(1) Function type Job

0702 CHAR(10) Group profile name Thread

0703 CHAR(150) Group profile name - supplemental Thread

0901 CHAR(10) Inquiry message reply Job

1001 CHAR(15) Job accounting code Job

1002 CHAR(7) Job date Job

1003 CHAR(20) Job description name - qualified Job

1004 CHAR(20) Job queue name - qualified Job

1005 CHAR(2) Job queue priority Job

1006 CHAR(8) Job switches Job

1007 CHAR(10) Job message queue full action Job

1008 BINARY(4) Job message queue maximum size Job

1010 CHAR(1) Job type Job

1011 CHAR(1) Job subtype Job

1012 CHAR(10) Job user identity Job

1013 CHAR(1) Job user identity setting Job

1014 BINARY(4) Job end reason Job

1015 CHAR(1) Job log pending Job

1016 BINARY(4) Job type - enhanced Job

1017 CHAR(8) Job local time Job

1201 CHAR(3) Language ID Job

1202 CHAR(1) Logging level Job

1203 CHAR(10) Logging of CL programs Job

1204 BINARY(4) Logging severity Job

1205 CHAR(10) Logging text Job

1206 CHAR(10) Library of entity thread is waiting on Thread

1302 BINARY(4) Maximum processing unit time Job

1304 BINARY(4) Maximum threads Job

1305 BINARY(4) Maximum temporary storage in megabytes Job

1306 CHAR(10) Memory pool name Job

1307 CHAR(1) Message reply Job

1407 CHAR(30) Name of entity thread is waiting on Thread

1501 CHAR(20) Output queue name - qualified Job

360 iSeries: Work Management APIs

Key Type Description Scope

1502 CHAR(2) Output queue priority Job

1503 CHAR(10) Object type of entity thread is waiting on Thread

1601 CHAR(10) Print key format Job

1602 CHAR(30) Print text Job

1603 CHAR(10) Printer device name Job

1802 BINARY(4) Run priority (job) Job

1804 BINARY(4) Run priority (thread) Thread

1805 CHAR(10) Resources affinity group Job

1901 CHAR(20) Sort sequence table - qualified Job

1902 CHAR(10) Status message handling Job

1903 CHAR(10) Status of job on the job queue Job

1904 CHAR(26) Submitter’s job name - qualified Job

1906 CHAR(20) Subsystem description name - qualified Job

1908 CHAR(10) Special environment Job

1911 CHAR(30) Server type Job

1982 CHAR(10) Spooled file action Job

2001 CHAR(1) Time separator Job

2002 BINARY(4) Time slice Job

2008 BINARY(4) Thread count Job

2009 BINARY(4) Temporary storage used in megabytes Job

2010 CHAR(4) Thread status Thread

2011 CHAR(1) Thread type Thread

2012 BINARY(4) Thread hold count Thread

2013 CHAR(20) Thread resources affinity Thread

2015 BINARY(4) Type of entity thread is waiting on Thread

2020 CHAR(10) Time zone current abbreviated name Job

2021 CHAR(50) Time zone current full name Job

2022 CHAR(7) Time zone current message identifier Job

2023 BINARY(4) Time zone current offset Job

2024 CHAR(10) Time zone description name Job

2025 CHAR(20) Time zone message file name - qualified Job

2026 CHAR(1) Time zone Daylight Saving Time indicator Job

Format of ASP Group Information

The ASP group information describes the data that is returned for key 104 from the RTVT0100 format.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of entries in ASP group information

4 4 BINARY(4) Length of one ASP group information entry

Work Management APIs 361

Offset

Type Field Dec Hex

This field repeats for

each ASP group

information entry.

CHAR(*) ASP group information entry (See “Format of ASP Group

Information Entry” for more information.)

Format of ASP Group Information Entry

The ASP group information entry describes the data that is returned for each ASP group. The name of the

ASP group is returned with this format.

 Offset

Type Field Dec Hex

These fields repeat for each ASP group returned. CHAR(10) ASP group

name

CHAR(*) Reserved

Keys for RTVT0200

The following table contains a list of the valid keys for format RTVT0200. See “Key Field descriptions” on

page 363 for the descriptions of the valid key attributes.

All the library keys are scoped to the thread. See “Library array entry” on page 353 for format of library

array entry. These keys are valid only when retrieving the library list of a specific thread. The special

value of -1 for the thread indicator field (part of the JIDF0100 format) may not be used. The job or thread

identification format must specify a specific valid thread.

 Key Type Description

0104 CHAR(*) ASP group information (thread)

0310 CHAR(*) Current library

1660 Array(*) of CHAR(*) Product libraries

1980 Array(*) of CHAR(*) System library list

2110 Array(*) of CHAR(*) User library list

2703 Array(*) of CHAR(*) All portions of the library list for format RTVT0200

Keys for RTVT0300

The following table contains a list of the valid keys for format RTVT0300. See “Key Field descriptions” on

page 363 for the descriptions of the valid key attributes. All keys specified in this table are scoped to the

thread. The special value of -1 for the thread indicator field (part of the JIDF0100 format) may not be

used. The job or thread identification format must specify a specific valid thread.

 Key Type Description

0321 BINARY(4) Processing unit used - percent during the elapsed time

(thread).

0322 BINARY(8), UNSIGNED Processing unit used - time during the elapsed time

(thread).

362 iSeries: Work Management APIs

Key Type Description

0323 BINARY(4) Processing unit used for database - percent used during the

elapsed time (thread).

0324 BINARY(8), UNSIGNED Processing unit used for database - time during the elapsed

time (thread) .

0419 BINARY(8), UNSIGNED Disk I/O count during the elapsed time (thread).

0421 BINARY(8), UNSIGNED Disk I/O count during the elapsed time - asynchronous

I/O (thread).

0422 BINARY(8), UNSIGNED Disk I/O count during the elapsed time - synchronous I/O

(thread).

1610 BINARY(8), UNSIGNED Page fault count during the elapsed time (thread).

Key Field descriptions

The descriptions of all the valid key attributes are described in “Work Management API Attribute

Descriptions” on page 387.

Usage Notes

The conditions under which this API is threadsafe are as follows:

v Retrieving the attributes from a job - see “Retrieve Job Information (QUSRJOBI) API” on page 185

(QUSRJOBI) API for details on thread safety.

v Retrieving the attribute for a specific thread - this is thread safe.

Error Messages

 Message ID Error Message Text

CPF136A E Job &3/&2/&1 not active.

CPF1866 E Value &1 for number of fields to return not valid.

CPF1867 E Value &1 in list not valid.

CPF18BF E Thread &1 not found.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C20 E Error found by program &1.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C3B E Value for parameter &2 for API &1 not valid.

CPF3C3C E Value for parameter &1 not valid.

CPF3C51 E Internal job identifier not valid.

CPF3C52 E Internal job identifier no longer valid.

CPF3C53 E Job &3/&2/&1 not found.

CPF3C54 E Job &3/&2/&1 currently not available.

CPF3C55 E Job &3/&2/&1 does not exist.

CPF3C57 E Not authorized to retrieve job information.

CPF3C58 E Job name specified is not valid.

CPF3C59 E Internal identifier is not blanks and job name is not *INT.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

API introduced: V5R2

 Top | “Work Management APIs,” on page 1 | APIs by category

Work Management APIs 363

#TOP_OF_PAGE
aplist.htm

Set Lock Flight Recorder (QWTSETLF) API

 Required Parameter:

1 Set value

Input Char(4)
 Optional Parameter:

2 Error code

I/O Char(*)
 Default Public Authority: *EXCLUDE

 Threadsafe: No

The Set Lock Flight Recorder (QWTSETLF) API turns the lock flight recorder on and off. The value of

*ON is passed to the program to turn the lock flight recorder on, and *OFF is passed to turn the lock

flight recorder off.

When the lock flight recorder is turned on, the system will begin logging successful lock operations on

devices in the lock flight recorder for the device being locked.

This API should be used only when recommended by your IBM service representative.

Required Parameter

Set value

INPUT; CHAR(4)

 The value passed to turn the lock flight recorder on or off. The valid values are:

 *ON Turn flight recorder on.

*OFF Turn flight recorder off.

Optional Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Error Messages

 Message ID Error Message Text

CPF119B E Value &1 specified for parameter is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF8100 E All CPF81xx messages could be returned. xx is from 01 to FF.

CPF9800 E All CPF98xx messages could be signaled. xx is from 01 to FF.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

364 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

API introduced: V2R2

 Top | “Work Management APIs,” on page 1 | APIs by category

Set Profile Exit Programs (QWTSETPX) API

 Required Parameter Group:

1 Number of entries

Input Binary(4)

2 Exit program flags

Input Array(*) of Binary(4)

3 Format

Input Char(8)

4 User ID

Input Char(10)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Set Profile Exit Programs (QWTSETPX) API sets for the specified user ID the profile exit programs to

call based on the format value. The value ATTN0100 sets the exit flags for attention key processing. The

value SREQ0100 sets the flags for system request processing. For the specified user ID, each of the eight

exit program flags may be set to the following:

 0 No, do not call this exit program.

1 Yes, call this exit program.

-1 Same, do not change the value.

If all the values are set to 0 (No), no new actions are taken during the attention key processing or system

request processing.

Each exit program flag that is set to 1 (Yes) by this API corresponds to the exit program number of the

exit programs that are registered in the registration facility for the QIBM_QWT_PREATTNPGMS exit

point or the QIBM_QWT_SYSREQPGMS exit point.

When attention key processing is activated by a job that is running under the specified user ID, only the

exit programs that have a 1 (Yes) for that exit program flag are called.

When system request key processing is activated by a job that is running under the specified user ID,

only the exit programs that have a 1 (Yes) for that exit program flag are called.

Authorities and Locks

User ID Authority

*CHANGE

Work Management APIs 365

#TOP
aplist.htm

Required Parameter Group

Number of entries

INPUT; BINARY(4)

 The number of exit program flags that are being passed in. The maximum number of flags is 8,

and the minimum number of flags is 1.

Exit program flags

INPUT; ARRAY(*) of BINARY(4)

 An array of a number of elements. The number of array elements must match the number of

entries. The valid values for the array elements are as follows:

 0 No, do not call this exit program.

1 Yes, call this exit program.

-1 Do not change the value.

The first element of the array corresponds to exit program number one for the exit point that is in

the registration facility. The second array element corresponds to exit program number two and

so on.

Format

INPUT; CHAR(8)

 The format that is to be updated. Valid values are as follows:

 ATTN0100 The preattention program processing flags are to be updated.

SREQ0100 The presystem request program processing flags are to be updated.

User ID

INPUT; CHAR(10)

 The user ID name being updated. Valid values are as follows:

 *CURRENT The user ID of the job that is currently running is used.

User ID name The 10-character name that is entered is used.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF1666 E Number of entries not in valid range.

CPF2204 E User profile &1 not found.

CPF2213 E Not able to allocate user profile &1.

CPF2217 E Not authorized to user profile &1.

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R6

 Top | “Work Management APIs,” on page 1 | APIs by category

366 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP
aplist.htm

Set Trace (QWTSETTR) API

 Required Parameter Group:

1 Job name

Input Char(10)

2 User name

Input Char(10)
 Optional Parameter:

3 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Set Trace (QWTSETTR) API starts a Trace Job (TRCJOB) command for the job passed on the

parameter at the earliest point while the job is starting. This allows tracing of jobs early in the life of a job

to help debug problems that could not have been done earlier because a user could not enter the

command until the job was actually started.

The QWTSETTR API sets up the information about the job so that when that job is started a trace will

begin.

The QWTSETTR API can be called multiple times to set up traces for multiple jobs. When the tracing is

finished, the Control Trace (QWTCTLTR) API should be called using the *RESET value for the control

value parameter to clear out all the job names. The Control Trace (QWTCTLTR) API must be called to

turn on this trace activity.

The information set up by the QWTSETTR API will be in effect during an initial program load (IPL).

The information set up by the QWTSETTR API does not work for active jobs, but only for jobs that have

not started yet.

If a job ends while the trace activity is running for that job, the trace information will be dumped to a

spooled file.

The Trace Job (TRCJOB) command is issued in the job as if a user had typed in the command; therefore,

the user (user name parameter) must have authorization to the TRCJOB command for this to work

properly.

This API should be used only when recommended by an IBM service representative for collecting

information for problems that occur early in job initiation.

Authorities and Locks

The user (user name parameter) must have authorization to the TRCJOB command for this to work

properly.

Work Management APIs 367

Required Parameter Group

Job Name

INPUT; CHAR(10)

 The name of the job that will be traced.

User Name

INPUT; CHAR(10)

 The name of the user that will be traced.

Optional Parameter

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R3

 Top | “Work Management APIs,” on page 1 | APIs by category

Exit Programs

These are the Exit Programs for this category.

Auxiliary Storage Lower Limit Exit Program

 Required Parameter: None

 Exit Point Name: QIBM_QWC_QSTGLOWACN

 Exit Point Format Name: STGL0100

The Auxiliary Storage Lower Limit exit program is called when the available storage in the system

auxiliary storage pool (ASP) goes below the lower limit. The exit program is called only if the

QSTGLOWACN system value is set to *REGFAC. The lower limit is specified by the QSTGLOWLMT

system value.

When the storage lower limit is reached, the operating system submits a job that calls the user-written

exit program through the registration facility. There are no input or output parameters.

This exit point supports any number of exit programs. (For information about adding an exit program to

an exit point, see the Registration Facility APIs.)

368 iSeries: Work Management APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP
aplist.htm
reg1.htm

If available storage in the system ASP is still below the auxiliary storage lower limit after the exit

program has completed, another job is submitted to call the exit program after half an hour. (Changing

the QSTGLOWACN and QSTGLOWLMT system values can cause the exit program to run again during

this time.) Otherwise, the exit program will be called when available storage goes below the limit again.

The job is submitted to run in the QSYSWRK subsystem (using the QSYSJOBD job description) under the

QPGMR user profile. No other action is taken if the job does not run.

Notes:

1. The Auxiliary Storage Lower Limit exit point ignores any return codes or error messages that are sent

from the exit programs.
2. It is recommended that the Auxiliary Storage Lower Limit exit program exist in a library in the

system ASP or in a basic user ASP. It will not be found if it exists in a library in an independent ASP.

Authorities and Locks

User Profile Authority

All object (*ALLOBJ) and security administrator (*SECADM) special authorities are needed to add

exit programs to the registration facility or to remove exit programs from the registration facility.

Required Parameter

None.

Exit program introduced: V4R2

 Top | “Work Management APIs,” on page 1 | APIs by category

Job Notification Exit Point

 Required Parameter: None

QSYSINC Member Name: EJOBNTFY

 Exit Point Name: QIBM_QWT_JOBNOTIFY

 Exit Point Format Name: NTFY0100

The Job Notification exit point can be used to log notification messages to data queues when OS/400 jobs

go through the following transitions:

v A job is placed on a job queue.

v A job starts.

v A job ends.

The QIBM_QWT_JOBNOTIFY exit point registers a data queue and library, rather than an exit program

and library. The program data that is associated with the data queue must contain the notification type,

subsystem description, and subsystem description library.

The information will be retrieved from the registration facility when the subsystem starts, so the data

queues must be registered before starting the subsystem. Any queues added to the registration facility

after a subsystem is started will not be retrieved until the next time the subsystem starts.

The length of

the data queue(s) is retrieved by the subsystem when it is started. If a data queue is deleted and

Work Management APIs 369

#TOP_OF_PAGE
aplist.htm

recreated with a different length, the subsystem must be restarted in order to use the new data queue

size. Otherwise, it will continue sending the same size message.

While multiple subsystems can use the same data queue, each subsystem is limited to using a maximum

of eight data queues. If more than eight data queues are registered for a subsystem, the specific data

queues that will be selected are undefined.

If a job is submitted to a job queue

or ended from a job queue

that is not allocated by an active

subsystem, a job queue notification message will be sent to a default data queue of QSYSDTAQ in library

QSYS.

Use the Create Data Queue (CRTDTAQ) command to create any data queues to be used by this function,

including the QSYSDTAQ mentioned previously. See “Data Queue Attributes” on page 371 for additional

information about the attributes of the data queues.

For the format of the job start and job end notification messages, see “Format of Job Start and Job End

Notification Messages” on page 371. For the format of the job queue notification messages, see “Format

of Job Queue Notification Messages” on page 372.

Authorities and Locks

None.

Required Parameter

None.

Program Data

When you register the data queue, the following is required for the program data.

 Offset

Type Field Dec Hex

0 0 CHAR(4) Notification type

4 4 CHAR(10) Subsystem description

14 E CHAR(10) Subsystem description library

Field Descriptions

Notification type. The type of notifications that are to be sent to the data queue. The following values are

supported:

 0001 Job start notifications are sent to this data queue.

0002 Job end notifications are sent to this data queue.

0003 Job start and job end notifications are sent to this data queue.

0004 Job queue notifications are sent to this data queue.

0005 Job start and job queue notifications are sent to this data queue.

0006 Job end and job queue notifications are sent to this data queue.

0007 Job start, job end, and job queue notifications are sent to this data queue.

Subsystem description. The name of the subsystem description for which this data queue is to be used.

The following special value is supported:

370 iSeries: Work Management APIs

*ANY The data queue is used for all subsystems. When this value is specified, the subsystem description

library is ignored.

Subsystem description library. The name of the library that contains the subsystem description. The

following special value is supported:

 *ANY The data queue is used for any subsystems that match the subsystem description name, regardless

of the library.

Data Queue Attributes

The following table lists several data queue attributes and the required values for the data queues that

are used by this exit point.

 Attribute Value

Maximum entry length

144 or greater

Sequence *KEYED

Key length 4

As shown in the previous table, the data queue entries are received by key. The following keys are used

with these data queues:

 0001 Data queue message is a job start notification message.

0002 Data queue message is a job end notification message.

0004 Data queue message is a job queue notification message.

The ″Maximum entry length″ is suggested to be set to 144 or greater. However, the exit point will send

as much message data as there is room for in the data queue if the ″Maximum entry length″ is less than

144.

Format of Job Start and Job End Notification Messages

For more information about this format, see “Field Descriptions” on page 372.

 Offset

Type Field Dec Hex

0 0 CHAR(10) Message identifier

10 A CHAR(2) Message format

12 C CHAR(16) Internal job identifier

28 1C CHAR(26) Qualified job name

54 36 CHAR(20)

Qualified job queue name

74 4A CHAR(8) Time-stamp job entered system

82 52 CHAR(8) Time-stamp job started

90 5A CHAR(8) Time-stamp job ended

98 62 CHAR(1) Job type

99 63 CHAR(1) Job subtype

Work Management APIs 371

Offset

Type Field Dec Hex

100 64 BINARY(4) Job end severity code

104 68 BINARY(8) Processing time used

112 70 CHAR(32) Reserved

Format of Job Queue Notification Messages

For more information about this format, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(10) Message identifier

10 A CHAR(2) Message format

12 C CHAR(16) Internal job identifier

28 1C CHAR(26) Qualified job name

54 36 CHAR(20) Qualified job queue name

74 4A CHAR(8) Time-stamp job entered system

82 52 CHAR(16) Reserved

98 62 CHAR(1) Job type

99 63 CHAR(1) Job subtype

100 64 CHAR(44) Reserved

Field Descriptions

Internal job identifier. An input value to other APIs to increase the speed of locating the job on the

system. Only OS/400 APIs use this identifier. The identifier is not valid following an initial program load

(IPL). If you attempt to use it after an IPL, an exception occurs.

Job end severity code. The return code of the job when it ended. See the CPF1164 message text for

possible job ending codes and their meaning. This field will contain hex zeros when a job start

notification message is sent.

Job subtype. Additional information about the job type (if any exists). The possible values are:

 blank The job has no special subtype or is not a valid job.

D The job is an immediate job.

E The job started with a procedure start request.

F The job is an AS/400(R) Advanced 36(R) machine server

job.

J The job is a prestart job.

P The job is a print driver job.

T The job is a System/36 multiple requester terminal (MRT)

job.

U Alternate spool user.

Job type. The type of job. The possible values for this field are:

372 iSeries: Work Management APIs

blank The job is not a valid job.

A The job is an autostart job.

B The job is a batch job.

I The job is an interactive job.

M The job is a subsystem monitor job.

R The job is a spooled reader job.

S The job is a system job.

W The job is a spooled writer job.

X The job is the SCPF system job.

Refer to “Comparing Job Type, Subtype, and Enhanced Job Type with the Work with Active Job

Command” on page 416 for information about how the job type field and the job subtype field equate to

the type field in the Work with Active Job (WRKACTJOB) command.

Message format. The format of the data in the job notification message. This field is always set to 01 for

job start and job end notification messages, and is always set to 02 for job queue notification messages.

Message identifier. The type of message that is represented by this data queue entry. This field is always

set to *JOBNOTIFY.

Processing time used. The amount of processing unit time used by the job, in milliseconds. This field

will contain hex zeros when a job start notification message is sent.

Qualified job name. The name of the job that is associated with this notification message. The format of

the qualified job name is a 10-character simple job name, a 10-character user name, and a 6-character job

number. Each portion of the qualified job name is left-justified and padded with blanks on the right.

Qualified job queue name. The name of the job queue that the job was placed on, and the name of the

library that contains the job queue. The format of the qualified name is a 10-character simple object name

followed by a 10-character library name. Each portion of the qualified job queue name is left-justified and

padded with blanks on the right.

This field is only filled in for job end notification messages when a

job is ended from a job queue, and for job queue notification messages.

Reserved. An ignored field.

Time-stamp job ended. The date and time the job completed running on the system. This is in system

time-stamp format. This field will contain hex zeros when a job start notification message is sent.

Time-stamp job entered system. The date and time the job entered the system. This is in system

time-stamp format.

Time-stamp job started. The date and time the job began to run on the system. This is in system

time-stamp format.

Usage Notes

1. The notification messages may not be logged to the data queue if a DDM data queue is specified for

this exit point.
2. It is recommended that the data queue exist in a library in the system auxiliary storage pool (ASP) or

in a basic user ASP. It will not be found if it exists in a library in an independent ASP.

3.

The Convert Date and Time Format (QWCCVTDT) API can be used to convert date and time

values from one format to another format.

4.

When a job is ended from a job queue, the time-stamp job entered system and processing time used

fields will contain hex zeros, unless the job has previously run and transferred to the job queue.

Work Management APIs 373

Exit program introduced: V3R7

 Top | “Work Management APIs,” on page 1 | APIs by category

Power Down System Exit Program

 Required Parameter: None

 Exit Point Name: QIBM_QWC_PWRDWNSYS

 Exit Point Format Name: PWRD0100

The Power Down System exit program is called when the Power Down System (PWRDWNSYS) or End

System (ENDSYS) command is used.

When a user issues the PWRDWNSYS or ENDSYS command, the operating system calls the user-written

exit program through the registration facility. The user-written exit program is not called if the system is

already in restricted state, if the system is currently on auxiliary power, if the system is ending because

the storage lower limit is reached with an action of *ENDSYS or *PWRDWNSYS, or if the system is a

secondary partition and is powering down because the primary partition is powering down. There are no

input or output parameters.

This exit point supports one exit program. (For information about adding an exit program to an exit

point, see the Registration Facility APIs.)

Notes:

1. The Power Down System exit point ignores any return codes or error messages that are sent from the

exit program.

2. It is recommended that the Power Down System exit program exist in a library in the system

auxiliary storage pool (ASP) or in a basic user ASP. It might not be found if it exists in a library in an

independent ASP.

Authorities and Locks

User Profile Authority

All object (*ALLOBJ) and security administrator (*SECADM) special authorities are needed to add

exit programs to the registration facility or to remove exit programs from the registration facility.

Required Parameter

None.

Exit program introduced: V4R2

 Top | “Work Management APIs,” on page 1 | APIs by category

374 iSeries: Work Management APIs

#TOP_OF_PAGE
aplist.htm
reg1.htm
#TOP_OF_PAGE
aplist.htm

Preattention Program Exit Program

 Required Parameter: None

 Exit Point Name: QIBM_QWT_PREATTNPGMS

 Exit Point Format Name: ATTN0100

The Preattention Program exit program is called when the user presses the System Attention key.

When a user presses the System Attention key, the operating system calls the user-written exit program

through the registration facility. There are no input or output parameters. After the exit programs from

the registration facility are called, the system attention program is called.

This exit point supports eight exit programs. (For information about adding an exit program to an exit

point, see the Registration Facility APIs.)

Before any of the exit programs in the registration facility are called, the user profile for each user

intending to use this function will need to be updated. The Set Profile Exit Program (QWTSETPX) API

will need to be called. This API will set for the requested user profile which of the eight allowed exit

programs to call. The user can have none or all eight possible exit programs called. No exit programs will

be called until the QWTSETPX API is called to set the values in the user profile. To display which exit

programs will be called for a particular user, the Retrieve Profile Exit Program (QWTRTVPX) API can be

called. (For more information about both of these APIs, see the “Work Management APIs,” on page 1.)

Notes:

1. The Preattention Program exit point ignores any return codes or error messages that are sent from the

exit programs.

2. It is recommended that the Preattention Program exit program exist in a library in the system

auxiliary storage pool (ASP) or in a basic user ASP. It might not be found if it exists in a library in an

independent ASP.

Authorities and Locks

User Profile Authority

All object (*ALLOBJ) and security administrator (*SECADM) special authorities are needed to add

exit programs to the registration facility or to remove exit programs from the registration facility.

Required Parameter

None.

Exit program introduced: V3R7

 Top | “Work Management APIs,” on page 1 | APIs by category

Work Management APIs 375

reg1.htm
#TOP_OF_PAGE
aplist.htm

Pre-restricted State Exit Programs (EWCPRSEP)

 Required Parameter Group:

1 Return information

Output Char(*)

2 Format of return information

Input Char(8)

3 Action

Input Char(1)

4 Delay time

Input Binary(4)
 QSYSINC Member Name: EWCPRSEP

 Exit Point Name: QIBM_QWC_PRERESTRICT

 Exit Point Format Name: PRER0100

 Exit Point Formats:PRSE0100,PRSE0200

The Pre-restricted State Exit Programs (EWCPRSEP) will provide a method for the system to determine if

a restricted state can be reached. The Action field will have values which will be used to determine what

the exit program should do. This exit program will be called from the ENDSYS or ENDSBS *ALL

programs. A Check action will be used to determine if the restricted state can be safely reached and how

much time might be required. An Execute action will be used to instruct the exit program to perform its

pre-restricted state work. The Execute action will be run in a separate job to allow multiple exit programs

to be run at the same time.

Authorities and Locks

User Profile Authority

*ALLOBJ and *SECADM special authorities are required to add and remove exit programs to the

QIBM_QWC_PRERESTRICT exit point.

Required Parameter Group

Return information

OUTPUT CHAR(*)

 The return information that receives the information requested.

Format of the return information.

INPUT; CHAR(8)

 The format of the profile exit program information to be returned. The following formats may be

passed to the exit program.:

 PRSE0100 Pre restricted state check. For details, see “PRSE0100 Format” on page 377.

PRSE0200 Pre restricted state execute or cancel. For details, see “PRSE0200 Format” on page 377.

376 iSeries: Work Management APIs

Action.

INPUT; CHAR(1)

 The type of exit program call being made. The following actions may be requested:

 1 Check The exit program should determine if a restricted state can be reached.

2 Execute The exit program should start the process of entering a pre restricted state.

3 Cancel Another exit program is not able to enter a restricted state at this time. The exit program should

reset any preliminary actions it may have made.

Delay time.

INPUT; BINARY(4)

 The time specified for the delay when jobs are ended. The possible values are:

 -1 The jobs are ended in an immediate manner (*IMMED).

-2 *NOLIMIT is specified for a controlled end.

delay time The delay time entered on the ENDSYS or ENDSBS command for a controlled end. This value can

range from 0 to 99999 seconds.

PRSE0100 Format

The following table describes the information that is located in the return information for the PRSE0100

format. For detailed descriptions of the fields, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Return information length

4 4 BINARY(4) Status flag

8 8 BINARY(4) Wait time

Field Descriptions

Return information The length of the returned information. This must be set to 12.

Status flag A value returned to the exit point to indicate whether a restricted state can be reached. The

possible returned values are as follows:

 0 No, a restricted stat can not be reached at this time.

1 Yes, a restricted state can be reached.

Wait time The number of seconds that will be needed to reach a preliminary restricted state. Note a

maximum value of 3600 seconds (1 hour) is used to achieve a preliminary restricted state. Any jobs that

have not reach that state by the maximum time allowed will be terminated and the system will enter a

restricted state.

PRSE0200 Format

The following table describes the information that is returned in the receiver variable for the PRSE0200

format. For detailed descriptions of the fields, see “Field Descriptions” on page 378.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Return information length

Work Management APIs 377

Field Descriptions

Return information. The length of the returned information. This must be set to 4.

Usage Notes

The exit program will be called with a cancel action if another exit program returns a zero status value.

Once the exit program is called with an execute action it will either be allowed to complete its task or it

will be terminated if the wait time is exceeded. If the ENDSYS or ENDSBS *ALL command is canceled at

this point, the program will not be terminated. If the command is run again, then the exit program will

have to handle this situation where the execute task may have already occurred or is currently being run

in another job. The exit point program will also have to be able to handle any race conditions that may

occur if more than one command is executed.

The exit program will not be called if an ENDSYS is called and the system is using auxiliary power.

Errors detected by the exit point (unable to call exit program, invalid status flag, and so on) will be

treated as if a status flag value of 1 was returned.

Exit program introduced: V5R3

 Top | “Work Management APIs,” on page 1 | APIs by category

Presystem Request Program Exit Program

 Required Parameter:

1 System Request menu display flag

I/O Binary(4)
 Optional Parameter:

2 System Request user option data

I/O CHAR(128)

 Exit Point Name: QIBM_QWT_SYSREQPGMS

 Exit Point Format Name: SREQ0100

The Presystem Request Program exit program is called when the user presses the System Request key.

When a user presses the System Request key, the operating system calls the user-written exit program

through the registration facility. There are two parameters used for input and output. After the exit

programs from the registration facility are called, the System Request menu is called based on the value

that is returned in the System Request menu display flag. This is the first parameter. The second

parameter contains the data the user entered on the System Request user option line. When the user

presses the the System Request key an input line is displayed at the bottom of the screen. This allows the

user to enter one of the option numbers and relevant parameter data for any of the options for the

378 iSeries: Work Management APIs

#TOP
aplist.htm

Systems Request menu. All data keyed into the input line, including option numbers, will be passed to

the exit programs. This data will be passed and received from each of the exit programs called. This

allows one program to modify the data and pass it to the next program called. This data will be passed

to the user exit program in the CCSID of the job. The data that the last Presystem Request program

returns will the data that is passed to the System Request menu. Normal error checking will be

performed on the data at that time.

This exit point supports eight exit programs. (For information about adding an exit program to an exit

point, see the Registration Facility APIs.)

Before any of the exit programs in the registration facility are called, the user profile for each user

intending to use this function needs to be updated. The Set Profile Exit Program (QWTSETPX) API needs

to be called. This API will set for the requested user profile which of the eight allowed exit programs to

call. The user can have from zero to all eight possible exit programs called. No exit programs will be

called until the QWTSETPX API is called to set the values in the user profile. To display which exit

programs will be called for a particular user, the Retrieve Profile Exit Program (QWTRTVPX) API can be

called. (For more information about both of these APIs, see the “Work Management APIs,” on page 1.)

Notes:

1. It is recommended that a command line is not displayed from a presystem request exit program.

There may be functions that do not work as expected when issued from this type of command line.
2. The Presystem Request exit point ignores any error messages that are sent from the exit programs. If

multiple exit program are registered, all programs will be called regardless of errors that may occur.
3. The user-registered exit program will be called with only the first parameter unless the Pass user

option data flag in the Program data section is turned on. If this flag is turned on, the user exit

program will be called with both of the parameters.
4. It is recommended that the Presystem Request exit program exist in a library in the system auxiliary

storage pool (ASP) or in a basic user ASP. It might not be found if it exists in a library in an

independent ASP.

Authorities and Locks

User Profile Authority

All object (*ALLOBJ) and security administrator (*SECADM) special authorities are needed to add

exit programs to the registration facility or to remove exit programs from the registration facility.

Required Parameter Group

System Request menu display flag

I/O; BINARY(4)

 Whether to display the System Request menu after the exit programs from the registration facility

have been called. The default value of 1 means that the menu will be displayed. Any other value

will mean not to display the menu. This value will be passed to all the exit programs. The value

returned from the last program called is the value that will be used to determine if the menu

should be displayed.

Optional Parameter Group

System Request user option data

I/O; CHAR(128)

 The user-entered data from the System Request user option field. The default is all blanks.

Work Management APIs 379

reg1.htm

Program Data

When you register the exit program, the following is required to enable passing of the System Request

option data for the program data field.

 Offset

Type Field Dec Hex

0 0 CHAR(1) Pass user option data flag

Field Descriptions

Pass user option data flag. This flag determines how many parameters need to be passed on the call to

the user exit program. If the flag is set to a 1, then both of the parameters will be passed on the call to

the exit program. If the flag is any other value, only the first parameter will be passed.

Exit program introduced: V3R7

 Top | “Work Management APIs,” on page 1 | APIs by category

Exit Program for Trace Job

 Required Parameter Group:

1 Trace record

Input Char(*)
 QSYSINC Member Name: EPDTRCJB

The Trace Job (TRCJOB) command prints trace records. If specified, the TRCJOB command calls a

user-written program before printing the trace record. TRCJOB passes the trace record to the user-written

program. If the user-written program changes the first two characters of the trace record to blanks or

binary zeros, TRCJOB will not print the record.

See the online help for more information on the TRCJOB command.

Required Parameter

Trace record

INPUT; CHAR(*)

 The format of the trace record depends on the trace record type.

Format of Trace Record

 Offset

Type Field Dec Hex

0 0 CHAR(1) Trace record type

1 1 CHAR(*) Trace record data

380 iSeries: Work Management APIs

#TOP_OF_PAGE
aplist.htm

Field Descriptions

Trace record type. This identifies the type of trace record:

 X’00’ Program flow

X’01’ Data

X’02’ Suspend

X’03’ Resume

Trace record data. The format of the trace record data depends on the type of trace record.

Format of Program Flow Trace Record

 Offset

Type Field Dec Hex

0 0 CHAR(1) Program flow type

1 1 CHAR(8) Time stamp

9 9 CHAR(10) Program name

19 13 CHAR(10) Program library name

29 1D BINARY(2) Call stack counter

31 1F BINARY(2) Number of deleted records

33 21 CHAR(2) New instruction number

35 23 CHAR(2) Old instruction number

37 25 CHAR(4) CPU time used

41 29 BINARY(4) Number of database pages read

45 2D BINARY(4) Number of nondatabase pages read

49 31 BINARY(4) Number of pages written

53 35 BINARY(2) Number of transfers to wait state

55 37 CHAR(10) ILE module name

65 41 CHAR(10) ILE module library name

75 4B CHAR(256) Procedure name

331 14B BINARY(4) Offset to long procedure name

335 14F BINARY(4) Length of long procedure name

* * CHAR(*) Long procedure name

Field Descriptions

Call stack counter. The location in the call stack where the program received control.

CPU time used. The CPU time the program used.

ILE module library name. The name of the library containing the ILE module that received control.

ILE module name. The name of the ILE module that received control.

Length of long procedure name. The length of the name of the procedure that received control.

Work Management APIs 381

Long procedure name. The name of the procedure that received control. This field is filled regardless of

the procedure name length.

New instruction number. The machine interface instruction number where the program received control.

Number of database pages read. The number of database pages that were read into main storage.

Number of deleted records. The number of successive records the exit program deleted.

Number of nondatabase pages read. The number of pages not associated with database that were read

into main storage.

Number of pages written. The number of pages written from main storage to auxiliary storage.

Number of transfers to wait state. The number of transitions transferred to ineligible wait state.

Offset to long procedure name. The offset to the field that holds the procedure name

Old instruction number. The machine interface instruction number from which the program released

control.

Procedure name. The name of the procedure that received control. This field is filled only if the

procedure name is less than or equal to 256 bytes in length.

Program flow type. How the program received control:

 X’01’ Another program called this program.

X’02’ Another program transferred control to this program.

X’03’ An event occurred, and this program is the event handler.

X’04’ An exception occurred, and this program is the exception handler.

X’05’ An exception occurred, and this is the internal or branch point exception handler.

X’06’ An internal exception handler returned to this program.

X’07’ This is a call to the exit program.

X’08’ This program called another program, and the other program returned control to this program.

X’09’ This program ended because it resignaled an exception.

X’0A’ An external exception handler returned to this program.

X’0B’ The end phase of the process is ended, ending this program.

X’0C’ An exception occurred for which no handler was specified.

X’0E’ A recursion level lower than this one was ended, causing this recursion level to end.

X’0F’ The call was canceled.

Program library name. The name of the library containing the program that received control.

Program name. The name of the program that received control.

Reserved. An ignored field.

Time stamp. The time when the event occurred.

Format of Data Trace Record

The data source field of the data trace record can be used to identify the correct format. There are four

data trace record formats:

v Data management

v Message handler

382 iSeries: Work Management APIs

v Command analyzer

v Other

Format of Data Management Data Trace Record

 Offset

Type Field Dec Hex

0 0 CHAR(1) Data source

1 1 CHAR(8) Time stamp

9 9 CHAR(10) Internal file name

19 13 CHAR(10) Actual file name

29 1D CHAR(10) Actual file library name

39 27 CHAR(10) Device description name

49 31 CHAR(10) Program device name

Field Descriptions

Actual file library name. The name of the library the actual file is in. This will be *N if the file is an

inline data file.

Actual file name. The name of the file that was used. This name will be different from the internal file

name if the internal file was overridden.

Data source. Shows which function the data is from:

 X’01’ Open file

X’02’ Close file

X’0B’ Acquire device

X’0C’ Release device

Device description name. For a device file, this is the device description name of the first device in the

file. For a database file, this is the name of the member. For an inline data file, this is *N.

Internal file name. The name of the file in the program.

Program device name. The program device name of the device in the device file.

Time stamp. The time when the event occurred.

Format of Message Handler Data Trace Record

 Offset

Type Field Dec Hex

0 0 CHAR(1) Data source

1 1 CHAR(8) Time stamp

9 9 CHAR(1) Trace record type

10 A CHAR(7) Message identifier

17 11 CHAR(1) Message type

Work Management APIs 383

Offset

Type Field Dec Hex

18 12 BINARY(2) Message severity

20 14 CHAR(10) Message queue name

30 1E BINARY(2) Call stack number

32 20 CHAR(256) Procedure name

288 120 CHAR(10) ILE module name

298 12A CHAR(10) ILE module library name

308 134 CHAR(1) Message queue type

309 135 CHAR(2) Reserved

311 137 BINARY(4) Offset to long procedure name

315 13B BINARY(4) Length of long procedure name

* * CHAR(*) Long procedure name

Field Descriptions

Call stack number. The location in the call stack that the message handling function was called.

Data source. The function the data is from:

 X’03’ Send message

X’04’ Reply to message

X’05’ Default exception handler

X’06’ Send status message

ILE module library name. The name of the library that contains the ILE module that sent or received the

message.

ILE module name. The name of the ILE module that sent or received the message.

Length of procedure name. The length of the name of the procedure that sent or received the message.

Long procedure name. The name of the procedure that sent or received the message. This field is filled

regardless of the procedure name length.

Message identifier. The identifier of the message that was handled.

Message queue name. The name of the message queue the message was sent to or received from.

Message queue type. The type of message queue the message was sent to:

 Q The message was sent to a standard message queue.

blank The message was sent to a nonstandard message queue.

Message severity. The severity of the message as defined in the message description.

Message type. The type of message that was handled:

 X’01’ Completion

384 iSeries: Work Management APIs

X’02’ Diagnostic

X’03’ Scope

X’04’ Informational

X’05’ Inquiry

X’06’ Sender’s copy

X’07’ Reply

X’08’ Request

X’09’ Control

X’0A’ Command

X’0B’ Status

X’0C’ Reserved

Offset to long procedure name. The offset to the field that holds the procedure name.

Procedure name. The name of the procedure that sent or received the message. This field is filled only if

the procedure name is less than or equal to 256 bytes in length.

Reserved. An ignored field.

Time stamp. The time when the event occurred.

Trace record type. The message handler program that traced the data:

 X’03’ SNDMSG

X’04’ Default exception handler

X’05’ Send status message

X’06’ Reply to SNGMSG

Format of Command Analyzer Data Trace Record

 Offset

Type Field Dec Hex

0 0 CHAR(1) Data source

1 1 CHAR(8) Time stamp

9 9 CHAR(10) Command name

19 13 CHAR(10) Command library name

29 1D CHAR(10) Command processing program name

39 27 CHAR(10) Command processing program library name

Field Descriptions

Command name. The name of the command that was called.

Command library name. The name of the library containing the command that was called.

Command processing program library name. The name of the library the command processing program

is in.

Command processing program name. The name of the command processing program.

Work Management APIs 385

Data source. The function the data is from:

 X’07’ Command processor

X’08’ Call program

X’0A’ Control language compiler

Time stamp. The time when the event occurred.

Format of Other Data Trace Record

Not all data trace records are formatted for a specific function.

 Offset

Type Field Dec Hex

0 0 CHAR(1) Data source

1 1 CHAR(8) Time stamp

9 9 CHAR(300) Data

Field Descriptions

Data. The data that is being traced.

Data source. The function the data is from.

Time stamp. The time when the event occurred.

Format of Suspend Trace Record

 Offset

Type Field Dec Hex

0 0 CHAR(1) Data source

1 1 CHAR(8) Time stamp

Field Descriptions

Data source. The function that was suspended.

Time stamp. The time when the event occurred.

Format of Resume Trace Record

 Offset

Type Field Dec Hex

0 0 CHAR(1) Data source

1 1 CHAR(8) Time stamp

386 iSeries: Work Management APIs

Field Descriptions

Data source. The function was that resumed.

Time stamp. The time when the event occurred.

Exit program introduced: V3R1

 Top | “Work Management APIs,” on page 1 | APIs by category

Concepts

These are the concepts for this category.

Work Management API Attribute Descriptions

The purpose of this document is to provide one place that describes all the Job and Thread attributes that

are used in all the Work Management APIs. The list of attributes encompasses the following APIs:

Retrieve Job Information (QUSRJOBI)

List Job (QUSLJOB)

Retrieve Current Attribute (QWCRTVCA)

Open List of Jobs (QGYOLJOB)

Retrieve Thread Attribute (QWTRTVTA)

Open List of Threads (QWCOLTHD)

Attributes

The following are the list of attributes that have keys associated with them.

 Key Type Description

0101 CHAR(4) Active job status

0102 CHAR(1) Allow multiple threads

0103 CHAR(4) Active job status for jobs ending

0104 See APIs for details ASP group information

0201 CHAR(10) Break message handling

0301 CHAR(1) Cancel key

0302 BINARY(4) Coded character set ID

0303 CHAR(2) Country or region ID

0304 BINARY(4) Processing unit time used, if less than 2,147,483,647 milliseconds

0305 CHAR(10) Current user profile

0306 CHAR(1) Completion status

0307 BINARY(4) Current system pool identifier

0310 See APIs for details Current library

0311 CHAR(10) Character identifier control

0312 BINARY(8), UNSIGNED Processing unit time used - total for the job

0313 BINARY(8), UNSIGNED Processing unit time used for database - total for the job

0314 BINARY(4) Processing unit used - percent used during the elapsed time (job)

Work Management APIs 387

#TOP_OF_PAGE
aplist.htm

Key Type Description

0315 BINARY(8), UNSIGNED Processing unit used - time during the elapsed time (job)

0316 BINARY(4) Processing unit used for database - percent used during the elapsed

time (job)

0317 BINARY(8), UNSIGNED Processing unit used for database - time during the elapsed time

(job)

0318 CHAR(15) Client IP address - IPv4

0319 BINARY(8), UNSIGNED Processing unit time used - total for the thread

0320 BINARY(8), UNSIGNED Processing unit time used for database - total for the thread

0321 BINARY(4) Processing unit used - percent during the elapsed time (thread)

0322 BINARY(8), UNSIGNED Processing unit used - time during the elapsed time (thread)

0323 BINARY(4) Processing unit used for database - percent used during the elapsed

time (thread)

0324 BINARY(8), UNSIGNED Processing unit used for database - time during the elapsed time

(thread)

0326 CHAR(45) Client IP address - IPv4 or IPv6

0401 CHAR(13) Date and time job became active

0402 CHAR(13) Date and time job entered system

0403 CHAR(8) Date and time job is scheduled to run

0404 CHAR(8) Date and time job was put on this job queue

0405 CHAR(4) Date format

0406 CHAR(1) Date separator

0407 CHAR(1) DBCS-capable

0408 CHAR(10) DDM conversation handling

0409 BINARY(4) Default wait

0410 CHAR(13) Device recovery action

0411 CHAR(10) Device name

0412 BINARY(4) Default coded character set identifier

0413 CHAR(1) Decimal format

0414 BINARY(8), UNSIGNED Disk I/O count during the elapsed time (job)

0415 BINARY(8), UNSIGNED Disk I/O count - total for the job

0416 BINARY(8), UNSIGNED Disk I/O count during the elapsed time - asynchronous I/O (job)

0417 BINARY(8), UNSIGNED Disk I/O count during the elapsed time - synchronous I/O (job)

0418 CHAR(13) Date and time job ended

0419 BINARY(8), UNSIGNED Disk I/O count during the elapsed time (thread)

0420 BINARY(8), UNSIGNED Disk I/O count - total for the thread

0421 BINARY(8), UNSIGNED Disk I/O count during the elapsed time - asynchronous I/O

(thread)

0422 BINARY(8), UNSIGNED Disk I/O count during the elapsed time - synchronous I/O (thread)

0501 BINARY(4) End severity

0502 CHAR(1) End status

0503 CHAR(1) Exit key

0504 CHAR(10) Extended object attribute of entity thread is waiting on

388 iSeries: Work Management APIs

Key Type Description

0601 CHAR(10) Function name

0602 CHAR(1) Function type

0701 CHAR(1) Signed-on job

0702 CHAR(10) Group profile name

0703 CHAR(150) Group profile name - supplemental

0901 CHAR(10) Inquiry message reply

0902 CHAR(16) Internal job identifier

0903 CHAR(1) Initial thread

0904 BINARY(4) Interactive response time - total during the elapsed time

0905 BINARY(4) Interactive transactions - count during the elapsed time

1001 CHAR(15) Job accounting code

1002 CHAR(7) Job date

1003 CHAR(20) Job description name - qualified

1004 CHAR(20) Job queue name - qualified

1005 CHAR(2) Job queue priority

1006 CHAR(8) Job switches

1007 CHAR(10) Job message queue full action

1008 BINARY(4) Job message queue maximum size

1009 CHAR(26) Job name

1010 CHAR(1) Job type

1011 CHAR(1) Job subtype

1012 CHAR(10) Job user identity

1013 CHAR(1) Job user identity setting

1014 BINARY(4) Job end reason

1015 CHAR(1) Job log pending

1016 BINARY(4) Job type - enhanced

1017 CHAR(8) Job local time

1201 CHAR(3) Language ID

1202 CHAR(1) Logging level

1203 CHAR(10) Logging of CL programs

1204 BINARY(4) Logging severity

1205 CHAR(10) Logging text

1206 CHAR(10) Library of entity thread is waiting on

1301 CHAR(8) Mode name

1302 BINARY(4) Maximum processing unit time

1303 BINARY(4) Maximum temporary storage in kilobytes

1304 BINARY(4) Maximum threads

1305 BINARY(4) Maximum temporary storage in megabytes

1306 CHAR(10) Memory pool name

1307 CHAR(1) Message reply

1401 BINARY(4) Number of auxiliary I/O requests, if less than 2,147,483,647

Work Management APIs 389

Key Type Description

1402 BINARY(4) Number of interactive transactions

1403 BINARY(4) Number of database lock waits

1404 BINARY(4) Number of internal machine lock waits

1405 BINARY(4) Number of nondatabase lock waits

1406 BINARY(8), UNSIGNED Number of auxiliary I/O requests

1407 CHAR(30) Name of entity thread is waiting on

1501 CHAR(20) Output queue name - qualified

1502 CHAR(2) Output queue priority

1503 CHAR(10) Object type of entity thread is waiting on

1601 CHAR(10) Print key format

1602 CHAR(30) Print text

1603 CHAR(10) Printer device name

1604 CHAR(10) Purge

1605 BINARY(4) Product return code

1606 BINARY(4) Program return code

1607 CHAR(8) Pending signal set

1608 BINARY(4) Process ID number

1609 BINARY(8), UNSIGNED Page fault count during the elapsed time (job)

1610 BINARY(8), UNSIGNED Page fault count during the elapsed time (thread)

1660 See APIs for details Product libraries

1801 BINARY(4) Response time total

1802 BINARY(4) Run priority (job)

1803 CHAR(80) Routing data

1804 BINARY(4) Run priority (thread)

1805 CHAR(10) Resources affinity group

1901 CHAR(20) Sort sequence table - qualified

1902 CHAR(10) Status message handling

1903 CHAR(10) Status of job on the job queue

1904 CHAR(26) Submitter’s job name - qualified

1905 CHAR(20) Submitter’s message queue name - qualified

1906 CHAR(20) Subsystem description name - qualified

1907 BINARY(4) System pool identifier

1908 CHAR(10) Special environment

1909 CHAR(8) Signal blocking mask

1910 BINARY(4) Signal status

1911 CHAR(30) Server type

1980 See APIs for details System library list

1982 CHAR(10) Spooled file action

2001 CHAR(1) Time separator

2002 BINARY(4) Time slice

2003 CHAR(10) Time-slice end pool

390 iSeries: Work Management APIs

Key Type Description

2004 BINARY(4) Temporary storage used in kilobytes

2005 BINARY(4) Time spent on database lock waits

2006 BINARY(4) Time spent on internal machine lock waits

2007 BINARY(4) Time spent on nondatabase lock waits

2008 BINARY(4) Thread count

2009 BINARY(4) Temporary storage used in megabytes

2010 CHAR(4) Thread status

2011 CHAR(1) Thread type

2012 BINARY(4) Thread hold count

2013 CHAR(20) Thread resources affinity

2015 BINARY(4) Type of entity thread is waiting on

2020 CHAR(10) Time zone current abbreviated name

2021 CHAR(50) Time zone current full name

2022 CHAR(7) Time zone current message identifier

2023 BINARY(4) Time zone current offset

2024 CHAR(10) Time zone description name

2025 CHAR(20) Time zone message file name - qualified

2026 CHAR(1) Time zone Daylight Saving Time indicator

2101 CHAR(24) Unit of work ID

2102 BINARY(4) User return code

2110 See APIs for details User library list

2702 See APIs for details All portions of the library list for format RTVC0200

2703 See APIs for details All portions of the library list for format RTVT0200

Field Descriptions

The following section describes the fields returned in further detail. For details on the thread safety of a

particular attribute see the thread safety section in the API being used. The fields are listed in

alphabetical order.

Active job status. The active status of the initial thread of the job. Only one status is returned. The

possible values are:

 no status A blank status field represents a job that is in transition or is not active.

BSCA Waiting in a pool activity level for the completion of an I/O operation to a binary synchronous

device.

BSCW Waiting for the completion of an I/O operation to a binary synchronous device.

CMNA Waiting in a pool activity level for the completion of an I/O operation to a communications

device.

CMNW Waiting for the completion of an I/O operation to a communications device.

CMTW Waiting for the completion of save-while-active checkpoint processing in another job.

CNDW Waiting on handle-based condition.

CPCW Jobs waiting for the completion of a CPI Communications call.

DEQA Waiting in the pool activity level for completion of a dequeue operation.

DEQW Waiting for completion of a dequeue operation. For example, QSYSARB and subsystem monitors

generally wait for work by waiting for a dequeue operation.

Work Management APIs 391

DKTA Waiting in a pool activity level for the completion of an I/O operation to a diskette unit.

DKTW Waiting for the completion of an I/O operation to a diskette unit.

DLYW The Delay Job (DLYJOB) command delays the job for a time interval to end, or for a specific delay

end time. The function field shows either the number of seconds the job is to delay (999999), or

the specific time when the job is to resume running.

DSC Disconnected from a work station display.

DSPA Waiting in a pool activity level for input from a work station display.

DSPW Waiting for input from a work station display.

END The job has been ended with the *IMMED option, or its delay time has ended with the *CNTRLD

option.

EOFA Waiting in the activity level to try a read operation again on a database file after the end-of-file

has been reached.

EOFW Waiting to try a read operation again on a database file after the end-of-file has been reached.

EOJ Ending for a reason other than running the End Job (ENDJOB) or End Subsystem (ENDSBS)

command, such as SIGNOFF, End Group Job (ENDGRPJOB), or an exception that is not handled.

EVTW Waiting for an event. For example, QLUS and SCPF generally wait for work by waiting for an

event.

GRP Suspended by a Transfer Group Job (TFRGRPJOB) command.

HLD Held.

HLDT Held due to suspended thread.

ICFA Waiting in a pool activity level for the completion of an I/O operation to an intersystem

communications function file.

ICFW Waiting for the completion of an I/O operation to an intersystem communications function file.

INEL Ineligible and not currently in the pool activity level.

JVAA Waiting in a pool activity level for a Java program operation to complete.

JVAW Waiting for a Java program operation to complete.

LCKW Waiting for a lock.

LSPA Waiting in a pool activity level for a lock space to be attached.

LSPW Waiting for a lock space to be attached.

MLTA Waiting in a pool activity level for the completion of an I/O operation to multiple files.

MLTW Waiting for the completion of an I/O operation to multiple files.

MSGW Waiting for a message from a message queue.

MTXW Waiting for a mutex. A mutex is a synchronization function that is used to allow multiple jobs or

threads to serialize their access to shared data.

MXDW Waiting for the completion of an I/O operation to a mixed device file.

OPTA Waiting in a pool activity level for the completion of an I/O operation to an optical device.

OPTW Waiting for the completion of an I/O operation to an optical device.

OSIW Jobs waiting for the completion of an OSI Communications Subsystem for OS/400 operation.

PRTA Waiting in a pool activity level for output to a printer to complete.

PRTW Waiting for output to a printer to be completed.

PSRW A prestart job waiting for a program start request.

RUN Currently running in the pool activity level.

SELW Waiting for a selection to complete.

SEMW Waiting for a semaphore. A semaphore is a synchronization function that is used to allow multiple

jobs or threads to serialize their access to shared data.

SIGS Stopped as the result of a signal

SIGW Waiting for a signal

SRQ The suspended half of a system request job pair.

SVFA Waiting in a pool activity level for completion of a save file operation.

SVFW Waiting for completion of a save file operation.

TAPA The job is waiting in a pool activity level for completion of an I/O operation to a tape device.

TAPW Waiting for completion of an I/O operation to a tape device.

THDW Waiting for another thread to complete an operation.

TIMA Waiting in a pool activity level for a time interval to end.

TIMW Waiting for a time interval to end.

392 iSeries: Work Management APIs

Active job status for jobs ending. When the active job status field is END or EOJ, this field contains the

status of what the initial thread is doing currently. This field is blank if the job is not ending currently.

See the active job status field for the list of possible values. For example, the active job status would be

EOJ, but the job could be waiting on a lock that could keep the job from ending. The active job status for

jobs ending field would then be LCKW.

Allow multiple threads. Whether this job allows multiple user threads. This attribute does not prevent

the operating system from creating system threads in the job. Possible values are:

 0 This job does not allow multiple user threads.

1 This job allows multiple user threads.

All portions of the library list for format RTVT0200. All portions of the library list will be returned.

ASP group information. The list of ASP group information for the current thread. This information does

not include the system ASP or the basic user ASPs.

Break message handling. How this job handles break messages. The possible values are:

 *NORMAL The message queue status determines break message handling.

*HOLD The message queue holds break messages until a user or program requests them. The work station

user uses the Display Message (DSPMSG) command to display the messages; a program must

issue a Receive Message (RCVMSG) command to receive a message and handle it.

*NOTIFY The system notifies the job’s message queue when a message arrives. For interactive jobs, the

audible alarm sounds if there is one, and the message-waiting light comes on.

Cancel key. Whether the user pressed the cancel key.

 0 The user did not press the cancel key.

1 The user did press the cancel key.

Note: The application or command that was called before this API determines how the key is set.

CCSID of current SQL statement. The CCSID of the current SQL statement string that is returned.

Character identifier control. The character identifier control for the job. This attribute controls the type of

CCSID conversion that occurs for display files, printer files, and panel groups. The *CHRIDCTL special

value must be specified on the CHRID command parameter on the create, change, or override command

for display files, printer files, and panel groups before this attribute will be used.

 *DEVD The *DEVD special value performs the same function as on the CHRID command parameter for

display files, printer files, and panel groups.

*JOBCCSID The *JOBCCSID special value performs the same function as on the CHRID command parameter

for display files, printer files, and panel groups.

Client IP address - IPv4. The IPv4 address of the client for which this server is doing work. An address

is expressed in standard IPv4 dotted-decimal form www.xxx.yyy.zzz (for example, 130.99.128.1). This field

is not guaranteed to be an IP address. This field will be blank if the address is not explicitly set to a value

by the Change Job (QWTCHGJB) API. For additional usage information of the Client IP address, see the

“Retrieve Thread Attribute (QWTRTVTA) API” on page 348 (QWTRTVTA) API.

Client IP address - IPv4 or IPv6. The IPv4 or IPv6 address of the client for which the specified thread of

this server most recently communicated with over sockets. If this field is requested for a job, the value

from the initial thread of the job will be returned. If a sockets connection has not been established in the

Work Management APIs 393

initial thread, this field will be blank. An IPv4 address is expressed in standard dotted-decimal form

www.xxx.yyy.zzz (for example, 130.99.128.1). An IPv6 address always has at least one occurrence of a

colon (’:’) in the format. Some possible IPv6 address formats would be: ::x (for example, ::1) or

::w.xxx.y.zzz (for example, ::9.130.4.169). For further IPv6 examples and explanation, refer to the Usage

Notes section in the Convert IPv4 and IPv6 Addresses Between Text and Binary Form (inet_pton) API.

This field is implicitly set by the operating system.

Coded character set ID. The coded character set identifier used for this job.

Completion status. The completion status of the job.

 blank The job has not completed.

0 The job completed normally.

1 The job completed abnormally.

Country or region ID. The country or region identifier associated with this job.

Current library. The name of the current library for the thread. If no current library exists, the current

library existence field is zero and this field has no entry in the list. If this field is requested for a job, the

value for the initial thread of the job will be returned.

Current library existence. The current library existence field:

 0 No current library exists.

1 A current library exists.

Current number of pending signals. The number of signals that have been received for a signal monitor

but whose signal action has not been taken.

Current SQL statement. The SQL statement that is running currently or was last run in the job.

Current system pool identifier. The identifier of the system-related pool from which main storage is

currently being allocated for the job’s initial thread. These identifiers are not the same as those specified

in the subsystem description, but are the same as the system pool identifiers shown on the system status

display. If a thread reaches its time-slice end, the pool the thread is running in can be switched based on

the job’s time-slice end pool value. The current system pool identifier returned will be the actual pool in

which the initial thread of the job is running.

Current user profile. The user profile that the thread for which information is being retrieved is currently

running under. This name may differ from the user portion of the job name. If this field is requested for a

job, the value for the initial thread of the job will be returned.

Date and time job became active. When the job began to run on the system. This is blank if the job did

not become active. It is in the format CYYMMDDHHMMSS, where:

 C Century, where 0 indicates years 19xx and 1 indicates years 20xx.

YY Year

MM Month

DD Day

HH Hour

MM Minute

SS Second

394 iSeries: Work Management APIs

inet_pton.htm

Date and time job ended. When the job completed running on the system, in the CYYMMDDHHMMSS

format described for the date and time job became active field.

Date and time job entered system. When the job was placed on the system, in the CYYMMDDHHMMSS

format described for the date and time job became active field.

Date and time job is scheduled to run. Date and time the job is scheduled to become active. This field is

returned as hexadecimal zeros if the job is not a scheduled job. The format for this field is the system

time-stamp format.

Date and time job was put on this job queue. This is the date and time this job was put on this job

queue. It is in system timestamp format. This field will contain blanks if the job was not on a job queue.

Date format. The format that the date is presented in. The following values are possible:

 *YMD Year, month, and day format

*MDY Month, day, and year format

*DMY Day, month, and year format

*JUL Julian format (year and day)

Date separator. The value used to separate days, months, and years when presenting a date. The

following values are possible:

 ’/’ A slash (/) is used for the date separator.

’-’ A dash (-) is used for the date separator.

’.’ A period (.) is used for the date separator.

’ ’ A blank is used for the date separator.

’,’ A comma (,) is used for the date separator.

DBCS-capable. Whether the job is DBCS-capable.

 0 The job is not DBCS-capable.

1 The job is DBCS-capable.

DDM conversation handling. Specifies whether connections using distributed data management (DDM)

protocols remain active when they are not being used. The connections include APPC conversations,

active TCP/IP connections or Opti-Connect connections. The DDM protocols are used in Distributed

Relational Database Architecture(TM) (DRDA(R)) applications, DDM applications, or DB2 Multisystem

applications. The following values are possible:

 *KEEP The system keeps DDM connections active when there are no users, except for the following:

v The routing step ends on the source system. The routing step ends when the job ends or when

the job is rerouted to another routing step.

v The Reclaim Distributed Data Management Conversation (RCLDDMCNV) command or the

Reclaim Resources (RCLRSC) command runs.

v A communications failure or an internal failure occurs.

v A DRDA connection to an application server not running on the system ends.

*DROP The system ends a DDM connection when there are no users. Examples include when an

application closes a DDM file, or when a DRDA application runs a SQL DISCONNECT statement.

Decimal format. The decimal format used for this job. The following values are possible:

Work Management APIs 395

blank Uses a period for a decimal point, a comma for a 3-digit grouping character, and zero-suppress to

the left of the decimal point.

J Uses a comma for a decimal point and a period for a 3-digit grouping character. The

zero-suppression character is in the second position (rather than the first) to the left of the decimal

notation. Balances with zero values to the left of the comma are written with one leading zero

(0,04). The J entry also overrides any edit codes that might suppress the leading zero.

I Uses a comma for a decimal point, a period for a 3-digit grouping character, and zero-suppress to

the left of the decimal point.

Default coded character set identifier. The default coded character set identifier used for this job. This

field contains zeros if the job is not an active job.

Default signal action. The action to be taken by a signal when the signal action specifies that the signal

should be handled using the default signal action. Possible values are as follows:

 0 End the job

1 Cancel the request

2 Ignore the signal (discard)

3 Stop the job

4 Continue the job if stopped

5 Signal exception

Default wait. The default maximum time (in seconds) that a thread in the job waits for a system

instruction, such as a LOCK machine interface (MI) instruction, to acquire a resource. A value of -1 is

returned if the value is *NOMAX.

Device name. The name of the device as identified to the system. For an interactive job, the device where

the job started; for all other jobs types it will be blanks.

Device recovery action. The action taken for interactive jobs when an I/O error occurs for the job’s

requesting program device. The possible values are:

 *MSG Signals the I/O error message to the application and lets the application program perform error

recovery.

*DSCMSG Disconnects the job when an I/O error occurs. When the job reconnects, the system sends an error

message to the application program, indicating the job has reconnected and that the work station

device has recovered.

*DSCENDRQS Disconnects the job when an I/O error occurs. When the job reconnects, the system sends the End

Request (ENDRQS) command to return control to the previous request level.

*ENDJOB Ends the job when an I/O error occurs. A message is sent to the job’s log and to the history log

(QHST) indicating the job ended because of a device error.

*ENDJOBNOLIST Ends the job when an I/O error occurs. There is no job log produced for the job. The system sends

a message to the QHST log indicating the job ended because of a device error.

Disk I/O count during the elapsed time (job). The number of disk I/O operations performed by the job

during the elapsed time. This is the sum of the asynchronous and synchronous disk I/O.

Disk I/O count during the elapsed time (thread). The number of disk I/O operations performed by the

specified thread during the elapsed time. This is the sum of the asynchronous and synchronous disk I/O.

Disk I/O count during the elapsed time - asynchronous I/O (job). The number of asynchronous

(physical) disk I/O operations performed by the job during the elapsed time. This value is the sum of the

asynchronous database and nondatabase reads and writes.

396 iSeries: Work Management APIs

Disk I/O count during the elapsed time - asynchronous I/O (thread). The number of asynchronous

(physical) disk I/O operations performed by the specified thread during the elapsed time. This value is

the sum of the asynchronous database and nondatabase reads and writes.

Disk I/O count during the elapsed time - synchronous I/O (job). The number of synchronous (physical)

disk I/O operations performed by the job during the elapsed time. This value is the sum of the

synchronous database and nondatabase reads and writes.

Disk I/O count during the elapsed time - synchronous I/O (thread). The number of synchronous

(physical) disk I/O operations performed by the specified thread during the elapsed time. This value is

the sum of the synchronous database and nondatabase reads and writes.

Disk I/O count - total for the job. The total number of disk I/O operations performed by the job across

all routing steps. This is the sum of the asynchronous and synchronous disk I/O.

Disk I/O count - total for the thread. The total number of disk I/O operations performed by the

specified thread. This is the sum of the asynchronous and synchronous disk I/O.

Elapsed time. The time, in milliseconds, that has elapsed between the measurement start time and the

current system time. This value is 0 the first time this API is called by this job. The measurement start is

set the first time this API is called and when the reset status statistics is set to reset the elapsed time.

End severity. The message severity level of escape messages that can cause a batch job to end. The batch

job ends when a request in the batch input stream sends an escape message, whose severity is equal to or

greater than this value, to the request processing program.

End status. Whether the system issued a controlled cancelation. The possible values are:

 1 The system, the subsystem in which the job is running, or the job itself is canceled.

0 The system, subsystem, or job is not cancelled.

blank The job is not running.

Exit key. Whether the user pressed the exit key.

 0 The user did not press the exit key.

1 The user did press the exit key.

Note: The application or command that was called before this API determines how the key is set.

Extended object attribute of entity thread is waiting on. The extended attribute of the object, such as a

program or file type, that the thread is waiting on. Extended attributes further describe the object. For

example, an object type of *PGM may have a value of RPG(RPG program) or CLP(CL program), and an

object type of *FILE may have a value of PF(physical file), LF(logical file), DSPF(display file), SAVF(save

file), and so on. This field may blank if there is no extended attribute associated with the object type, or

the type of entity the thread is waiting on is not an OS/400 external object or an OS/400 external object

space location. If this field is requested for a job, the value for the initial thread of the job will be

returned.

Function name.

Additional information (as described in the function type field) about the last

high-level function initiated by the initial thread.

Function type.

This is the last high-level function initiated by the initial thread. This field may not be

cleared when a function is completed. The possible values are:

 blank The system is not doing a logged function.

Work Management APIs 397

C

A command is running interactively, or it is in a batch input stream, or it was requested from a

system menu. Commands in CL programs or REXX procedures are not logged. The function name

field contains the name of the command and is only updated when a command is processed.

D The initial thread of the job is processing a Delay Job (DLYJOB) command. The function name

contains the number of seconds the job is delayed (up to 999999 seconds), or the time when the

job is to resume processing (HH:MM:SS), depending on how you specified the command.

G The Transfer Group Job (TFRGRPJOB) command suspended the job. The function name field

contains the group job name for that job.

I The initial thread of the job is rebuilding an index (access path). The function name field contains

the name of the logical file whose index is rebuilt.

J

The initial thread of the job is running a Java Virtual Machine (JVM). The function name field

contains the name of the java class.

L The system logs history information in a database file. The function name field contains the name

of the log (QHST is the only log currently supported).

M The job is a multiple requester terminal (MRT) job if the job type is BATCH and the subtype is

MRT, or it is an interactive job attached to an MRT job if the job type is interactive. See job type,

subtype, or field for how to determine what type of job this is.

For MRT jobs, the function name field contains information in the following format:

v CHAR(2): The number of requesters currently attached to the MRT job.

v CHAR(1): The field is reserved for a / (slash).

v CHAR(2): The maximum number (MRTMAX) of requesters.

v CHAR(1): Reserved.

v CHAR(3): The never-ending program (NEP) indicator. If an MRT is also an NEP, the MRT stays

active even if there are no requesters of the MRT. A value of NEP indicates a never-ending

program. A value of blanks indicates that it is not a never-ending program.

v CHAR(1): Reserved.

For interactive jobs attached to an MRT, the function name field contains the name of the MRT

procedure.

N The initial thread of the job is currently at a system menu. The function name field contains the

name of the menu.

O The job is a subsystem monitor that is performing input/output (I/O) operations to a work

station. The function name field contains the name of the work station device to which the

subsystem is performing an input/output operation.

P The initial thread of the job is running a program. The function name field contains the name of

the program.

R The initial thread of the job is running a procedure. The function name field contains the name of

the procedure.

398 iSeries: Work Management APIs

* This does a special function. For this value, the function name field contains one of the following

values:

v ADLACTJOB: Auxiliary storage is being allocated for the number of active jobs specified in the

QADLACTJ system value. This may indicate that the system value for the initial number of

active jobs is too low.

v ADLTOTJOB: Auxiliary storage is being allocated for the number of jobs specified in the

QADLTOTJ system value.

v CMDENT: The Command Entry display is being used.

v COMMIT: A commit operation is being performed.

v DIRSHD: Directory shadowing.

v DLTSPLF: The system is deleting a spooled file.

v DUMP: A dump is in process.

v JOBIDXRCY: A damaged job index is being recovered.

v JOBLOG: The system is producing a job log.

v PASSTHRU: The job is a pass-through job.

v RCLSPLSTG: Empty spooled database members are being deleted.

v ROLLBACK: A rollback operation is being performed.

v SPLCLNUP: Spool cleanup is in process.

Group profile name. The name of the group profile that is associated with the initial thread. The user’s

group authority is used if no specific authority is granted for the user. The value *NONE is returned if no

group profile name is found.

Group profile name - supplemental. The name of the group profile associated with the initial thread.

The user’s group authority is used if no specific authority is granted for the user. Up to 15 supplemental

group profile names may be specified. Blanks are returned if no supplemental group profile names are

found.

Initial thread. Whether this thread is the initial thread of this job.

 0 This thread is not the initial thread.

1 This thread is the initial thread.

Inquiry message reply. How the job answers inquiry messages:

 *RQD The job requires an answer for any inquiry messages that occur while this job is running.

*DFT The system uses the default message reply to answer any inquiry messages issued while this job is

running. The default reply is either defined in the message description or is the default system

reply.

*SYSRPYL The system reply list is checked to see if there is an entry for an inquiry message issued while this

job is running. If a match occurs, the system uses the reply value for that entry. If no entry exists

for that message, the system uses an inquiry message.

Interactive response time - total during the elapsed time. The total interactive response time for the

initial thread, in hundredth of seconds, for the job during the elapsed time. This value does not include

the time used by the machine, by the attached input/output (I/O) hardware, and by the transmission

lines for sending and receiving data. This field is 0 for noninteractive jobs.

Interactive transactions - count during the elapsed time. The number of user interactions, such as

pressing the Enter key or a function key, for the job during the elapsed time for the initial thread. This

value is returned for interactive jobs only.

Work Management APIs 399

Internal job identifier. A value input to other APIs to increase the speed of locating the job on the

system. Only APIs described in this manual use this identifier. The identifier is not valid following an

initial program load (IPL). If you attempt to use it after an IPL, an exception occurs.

Job accounting code. An identifier assigned to the job by the system to collect resource use information

for the job when job accounting is active.

Job date. This is the date to be used for the job. It is in the format CYYMMDD where C is the century,

YY is the year, MM is the month, and DD is the day. A 0 for the century flag indicates years 19xx and a 1

indicates years 20xx. This value is for jobs whose status is *JOBQ or *ACTIVE. For jobs with a status of

*OUTQ, the value for this field is blank.

 *SYSVAL This job will use the system date.

Job description library name. The library containing the job description.

Job description name. A CHAR(10) representation of the set of job-related attributes used for one or

more jobs on the system. These attributes determine how the job is run on the system. Multiple jobs can

also use the same job description.

Job description name - qualified. A CHAR(20) representation of the set of job-related attributes used for

one or more jobs on the system. These attributes determine how the job is run on the system. Multiple

jobs can also use the same job description. The format of the qualified name is a 10-character simple

object name followed by a 10-character library name. The data is left-justified and padded with blanks on

the right.

Job end reason. The most recent action that caused the job to end. The possible values are:

 0 Job not ending.

1 Job ending in normal manner.

2 Job ended while it was still on a job queue.

3 System ended abnormally.

4 Job ending normally after a controlled end was requested.

5 Job ending immediately.

6 Job ending abnormally.

7 Job ended due to the CPU limit being exceeded.

8 Job ended due to the storage limit being exceeded.

9 Job ended due to the message severity level being exceeded.

10 Job ended due to the disconnect time interval being exceeded.

11 Job ended due to the inactivity time interval being exceeded.

12 Job ended due to a device error.

13 Job ended due to a signal.

14 Job ended due to an unhandled error.

Job local time. The current local time of the job expressed as an 8 byte time-of-day timestamp. The time

zone current offset for this job has been applied to this time value.

Job log pending. If the system fails while the job was active or the job ends abnormally, the job log may

not be written yet. This flag remains on until the job log has been written. The possible values are:

 0 Job log is not pending.

1 Job log is pending and waiting to be written.

400 iSeries: Work Management APIs

Job message queue full action. The action to take when the message queue is full. The values are:

 *NOWRAP When the job message queue is full, do not wrap. This action causes the job to end.

*WRAP When the job message queue is full, wrap to the beginning and start filling again.

*PRTWRAP When the job message queue is full, wrap the message queue and print the messages that are

being overlaid because of the wrapping.

Job message queue maximum size. The maximum size (in megabytes) that the job message queue can

become. The range is 2 to 64.

Job name. The name of the job as identified to the system. For an interactive job, the system assigns the

job the name of the work station where the job started; for a batch job, you specify the name in the

command when you submit the job.

Job number. The system-generated job number.

Job queue library name. The name of the library where the job queue is located.

Job queue name. The CHAR(10) representation of the name of the job queue that the job is currently on,

or that the job was on if it is currently active. This value is for jobs whose status is *JOBQ or *ACTIVE.

For jobs with a status of *OUTQ, the value for this field is blank.

Job queue name - qualified. The CHAR(20) representation of the name of the job queue that the job is

currently on, or that the job was on if it is currently active. This value is for jobs whose status is *JOBQ

or *ACTIVE. For jobs with a status of *OUTQ, the value for this field is blank. The format of the qualified

name is a 10-character simple object name followed by a 10-character library name. The data is

left-justified and padded with blanks on the right.

Job queue priority. The scheduling priority of the job compared to other jobs on the same job queue. The

highest priority is 0 and the lowest is 9. This value is for jobs whose status is *JOBQ or *ACTIVE. For

jobs with a status of *OUTQ, the value for this field is blank.

Job status. The status of the jobs. The special values are:

 *ACTIVE Active jobs. This includes group jobs, system request jobs, and disconnected jobs.

*JOBQ Jobs that are currently on job queues.

*OUTQ Jobs that have completed running but still have output on an output queue.

Job subtype. Additional information about the job type (if any exists). The possible values are:

 blank The job has no special subtype or is not a valid job.

D The job is an immediate job.

E The job started with a procedure start request.

F The job is an AS/400(R) Advanced 36(R) machine server job.

J The job is a prestart job.

P The job is a print driver job.

T The job is a System/36 multiple requester terminal (MRT) job.

U Alternate spool user.

Job switches. The current setting of the job switches used by this job. This value is returned for all job

types.

Work Management APIs 401

Job type. The type of job. The possible values for this field are:

 blank The job is not a valid job.

A The job is an autostart job.

B The job is a batch job.

I The job is an interactive job.

M The job is a subsystem monitor job.

R The job is a spooled reader job.

S The job is a system job.

W The job is a spooled writer job.

X The job is the SCPF system job.

Refer to “Comparing Job Type, Subtype, and Enhanced Job Type with the Work with Active Job

Command” on page 416 for information about how the job type field and the job subtype field equate to

the type field in the Work with Active Job (WRKACTJOB) command.

Job type - enhanced. The type of job. This field combines the job type and job subtype fields. The

possible values are:

 0110 Autostart job

0210 Batch job

0220 Batch immediate job

0230 Batch - System/36 multiple requester terminal (MRT) job

0240 Batch - alternate spool user

0310 Communications job - procedure start request job

0910 Interactive job

0920 Interactive job - Part of group

0930 Interactive job - Part of system request pair

0940 Interactive job - Part of system request pair and part of a group

1610 Prestart job

1620 Prestart batch job

1630 Prestart communications job

1810 Reader job

1910 Subsystem job

1920 System job (all system jobs including SCPF)

2310 Writer job (including both spool writers and print drivers)

Job user identity. The user profile name by which the job is known to other jobs on the system. The job

user identity is used for authorization checks when other jobs on the system attempt to operate against

the job. For more detail on how the job user identity is set and used, refer to the Set Job User Identity

(QWTSJUID) API in the Security part. For jobs that are on a job queue or have completed running, the

job user identity is same as the user name from the qualified job name. This field will return blanks for

these jobs. A value of *N is returned if the job user identity is set, but the user profile to which it is set no

longer exists.

Job user identity setting. An indicator of the method by which the job user identity was set. Possible

values are as follows:

 o The job is currently running single threaded and the job user identity is the name of the user

profile under which the job is currently running. This value is also returned for jobs that are on a

job queue or have completed running. This has the same meaning as a value of *DEFAULT on the

Display Job Status Attributes display.

402 iSeries: Work Management APIs

1 The job user identity was explicitly set by an application using one of the Set Job User Identity

APIs, QWTSJUID or QwtSetJuid(). The job may be running either single threaded or

multithreaded. This has the same meaning as a value of *APPLICATION on the Display Job Status

Attributes display.

2 The job is currently running multithreaded and the job user identity was implicitly set by the

system when the job became multithreaded. It was set to the name of the user profile that the job

was running under when it became multithreaded. This has the same meaning as a value of

*SYSTEM on the Display Job Status Attributes display.

Language ID. The language identifier associated with this job.

Length of current SQL statement. The length of the current SQL statement. Zero indicates that a current

SQL statement could not be returned. This can occur if an SQL statement has never been issued in the

job, if the job is ending, if the program or package that contained the SQL statement no longer exists, or

if the API is unable to access the SQL statement.

Library name. The name of the library object.

Library of entity thread is waiting on. The library name of the entity that the thread is waiting on. This

field may be blank if the type of entity the thread is waiting on is not an OS/400 external object, a

member object, an OS/400 external object space location, a lock space, or if there is no library associated

with the particular type of entity. If the type of entity the thread is waiting on is a member object, this

field will return the library name of the file that contains the member. If this field is requested for a job,

the value for the initial thread of the job will be returned.

Library text description. The text description of the library object. This field is blank if no text

description is specified.

Lock wait time - time during the elapsed time. The amount of time (in milliseconds) that the initial

thread has to wait to obtain database, nondatabase, and internal machine locks during the elapsed time.

Logging level. What type of information is logged. The possible values are:

 0 No messages are logged.

1 All messages sent to the job’s external message queue with a severity greater than or equal to the

message logging severity are logged. This includes the indication of job start, job end and job

completion status.

2 The following information is logged:

v Level 1 information

v Request messages that result in a high-level message with a severity code greater than or equal

to the logging severity cause the request message and all associated messages to be logged.

Note: A high-level message is one that is sent to the program message queue of the program

that receives the request message. For example, QCMD is an IBM-supplied request processing

program that receives request messages.

3 The following information is logged:

v Level 1 and 2 information

v All request messages

v Commands run by a CL program are logged if it is allowed by the logging of CL programs job

attribute and the log attribute of the CL program.

4 The following information is logged:

v All request messages and all messages with a severity greater than or equal to the message

logging severity, including trace messages.

v Commands run by a CL program are logged if it is allowed by the logging of CL programs job

attribute and the log attribute of the CL program.

Work Management APIs 403

Logging of CL programs. Whether or not commands are logged for CL programs that are run. The

possible values are *YES and *NO.

Logging severity. The severity level that is used in conjunction with the logging level to determine which

error messages are logged in the job log. The values range from 00 through 99.

Logging text. The level of message text that is written in the job log when a message is logged according

to the logging level and logging severity. The possible values are:

 *MSG Only the message text is written to the job log.

*SECLVL Both the message text and the message help (cause and recovery) of the error message are written

to the job log.

*NOLIST If the job ends normally, no job log is produced. If the job ends abnormally (the job end code is 20

or higher), a job log is produced. The messages that appear in the job log contain both the

message text and the message help.

Maximum number of signals retained. The number of signals that are kept for a signal monitor when

the signal action is blocked.

Maximum processing unit time. The maximum processing unit time (in milliseconds) that the job can

use. If the job consists of multiple routing steps, this is the maximum processing unit time that the

current routing step can use. If the maximum time is exceeded, the job is ended. A value of -1 is returned

for *NOMAX. A zero is returned if the job is not active.

Maximum temporary storage in kilobytes. The maximum amount of auxiliary storage (in kilobytes) that

the job can use. If the job consists of multiple routing steps, this is the maximum temporary storage that

the routing step can use. This temporary storage is used for storage required by the program itself and by

implicitly created internal system objects used to support the routing step. (It does not include storage in

the QTEMP library.) If the maximum temporary storage is exceeded, the job is ended. This does not

apply to the use of permanent storage, which is controlled through the user profile. A value of -1 is

returned for *NOMAX.

Maximum temporary storage in megabytes. The maximum amount of auxiliary storage (in megabytes)

that the job can use. If the job consists of multiple routing steps, this is the maximum temporary storage

that the routing step can use. This temporary storage is used for storage required by the program itself

and by implicitly created internal system objects used to support the routing step. (It does not include

storage in the QTEMP library.) If the maximum temporary storage is exceeded, the job is ended. This

does not apply to the use of permanent storage, which is controlled through the user profile. A value of

-1 is returned for *NOMAX.

Maximum threads. The maximum number of threads that a job can run with at any time. If multiple

threads are initiated simultaneously, this value may be exceeded. If this maximum value is exceeded, the

excess threads will be allowed to run to their normal completion. Initiation of additional threads will be

inhibited until the maximum number of threads in the job drops below this maximum value. A value of

-1 is returned for *NOMAX.

Note: Depending on the resources used by the threads and the resources available on the system, the

initiation of additional threads may be inhibited before this maximum value is reached.

Memory pool name. The name of the memory pool in which the job started running. The name may be a

number, in which case it is a private pool associated with a subsystem. The following special values may

be returned.

 *MACHINE This job is running in the machine pool.

*BASE This job is running in the base system pool, which can be shared with other subsystems.

*INTERACT This job is running in the shared pool used for interactive work.

404 iSeries: Work Management APIs

*SPOOL This job is running in the shared pool for spooled writers.

*SHRPOOL1 -

*SHRPOOL60

This job is running in the identified shared pool.

01 - 99 This job is running in the identified private pool. This value is right-adjusted and padded with

blanks.

Message reply. Whether the job is waiting for a reply to a specific message. The field applies only when

the active job status or active job status for job ending is MSGW. Possible values are:

 0 The job currently is not in message wait status.

1 The job is waiting for a reply to a message.

2 The job is not waiting for a reply to a message.

Mode name. The mode name of the advanced program-to-program communications device that started

the job. Possible values are:

 *BLANK The mode name is *BLANK.

blank The mode name is blanks.

Mode name The name of the mode.

Name of entity thread is waiting on. The name of the entity that the thread is waiting on. The format of

the name will vary based on the type of entity the thread is waiting on.

For an OS/400 external object, an internal system object, an OS/400 external object space location, or an

internal system object space location, the format of the name will be as follows(however, an OS/400

external object and an OS/400 external object space location will only return up to a ten character name):

 Offset

Type Field Dec Hex

0 0 CHAR(30) Extended name

For a member object, the format of the name will be as follows:

 Offset

Type Field Dec Hex

0 0 CHAR(10) File

10 A CHAR(10) Member

20 14 CHAR(10) Reserved

For a lock space object, the format of the name will be as follows:

 Offset

Type Field Dec Hex

0 0 CHAR(20) Lock space ID

20 14 CHAR(10) Reserved

This field will be blank if the type of entity the thread is waiting on is unknown or the thread is not

waiting. This field will also be blank if the name is for an internal system object or an internal system

Work Management APIs 405

object space location and the user does not have *JOBCTL special authority. If this field is requested for a

job, the value for the initial thread of the job will be returned.

Number of auxiliary I/O requests. The number of auxiliary I/O requests performed by the job across all

routing steps. This includes both database and nondatabase paging. This is an unsigned BINARY(8)

value.

Number of auxiliary I/O requests, if less than 2,147,483,647. The number of auxiliary I/O requests

performed by the job across all routing steps. This includes both database and nondatabase paging. If the

number of auxiliary I/O requests is greater than or equal to 2,147,483,647, a value of -1 is returned. Use

the Number of auxiliary I/O requests field to retrieve values that are greater than or equal to

2,147,483,647.

Number of bytes available. All of the available bytes for use in your application. Note: When you

request format JOBI0700 for the Retrieve Job Information (QUSRJOBI) API, the actual length depends on

how many libraries are in the library list.

Number of bytes returned. The number of bytes returned to the user. This may be some but not all of

the bytes available.

Number of database lock waits. The number of times that the initial thread had to wait to obtain a

database lock. (These performance attributes may be a cumulative job total in a future release.)

Number of interactive transactions. The count of operator interactions, such as pressing the Enter key or

a function key. This field is zero for jobs that have no interactions.

Number of internal machine lock waits. The number of times that the initial thread had to wait to

obtain an internal machine lock. (These performance attributes may be a cumulative job total in a future

release.)

Number of libraries in SYSLIBL. The number of libraries in the system part of the library list of the

initial thread.

Number of libraries in USRLIBL. The number of libraries in the user library list of the initial thread.

Number of nondatabase lock waits. The number of times that the initial thread had to wait to obtain a

nondatabase lock. (These performance attributes may be a cumulative job total in a future release.)

Number of product libraries. The number of product libraries found in the library list of the initial

thread.

Number of signal monitors. The number of signal monitors that are present for the job.

Number of SQL open cursors. The number of SQL cursors that are currently open for the job.

Object library for SQL cursor. The name of the library the object is in that contains the associated SQL

open cursor.

Object name for SQL cursor. The name of the object that contains the associated SQL open cursor.

Object type for SQL cursor. The type of object with which the SQL cursor is associated.

Object type of entity thread is waiting on. The object type of the entity the thread is waiting on. This

field may be blank if the type of entity that the thread is waiting on is not a defined OS/400 external

object, a member object, an internal system object, an OS/400 external object space location, or an internal

system object space location. For a list of all the available external OS/400 object types, see External

406 iSeries: Work Management APIs

object types in the Control Language (CL) topic. For a list of all internal system object types, see Internal

object types. If this field is requested for a job, the value for the initial thread of the job will be returned.

Offset to current SQL statement. The offset from the start of the format to the start of the current SQL

statement.

Offset to SQL open cursor data. The offset from the start of the format to the start of the SQL open

cursor data.

Offset to signal monitor data. The offset from the start of the format to the start of the signal monitor

data.

Output queue library name. The name of the library containing the output queue.

Output queue name. The name of the default output queue that is used for spooled output produced by

this job. The default output queue is only for spooled printer files that specify *JOB for the output queue.

Output queue name - qualified. The qualified name of the default output queue that is used for spooled

output produced by this job and the name of the library that contains the output queue. The default

output queue is only for spooled printer files that specify *JOB for the output queue. The format of the

qualified name is a 10-character simple object name followed by a 10-character library name. The data is

left-justified and padded with blanks on the right.

Output queue priority. The output priority for spooled output files that this job produces. The highest

priority is 0, and the lowest is 9.

Page fault count during the elapsed time (job). The number of times an active program referenced an

address that is not in main storage for the current routing step of the specified job during the elapsed

time.

Page fault count during the elapsed time (thread). The number of times an active program referenced an

address that is not in main storage for the specified thread during the elapsed time.

Page faults. The number of times an active program referenced an address that is not in main storage

during the current routing step of the specified job.

Pending signal set. A bit field that is used to determine the set of signals that have been received but not

acted upon by a signal monitor. The nth bit in the pending signal set represents the nth signal monitor

defined for the job. If a bit within the pending signal set has a value of 1, then a signal is present but has

not been acted upon yet.

Print key format. Whether border and header information is provided when the Print key is pressed.

 *NONE The border and header information is not included with output from the Print key.

*PRTBDR The border information is included with output from the Print key.

*PRTHDR The header information is included with output from the Print key.

*PRTALL The border and header information is included with output from the Print key.

Print text. The line of text (if any) that is printed at the bottom of each page of printed output for the job.

Printer device name. The printer device used for printing output from this job.

Process ID number. A unique UNIX-style process ID number (PID) that is associated with the current

routing step of the job. A value of 1 indicates that the PID has not been set.

Work Management APIs 407

conObject.htm
conObject.htm

Processing unit time used for database - total for the job. The amount of processing unit time (in

milliseconds) that the job used for processing data base requests across all routing steps. This is an

unsigned BINARY(8) value.

Processing unit time used for database - total for the thread.The amount of processing unit time (in

milliseconds)that the specified thread used for processing database requests across all routing steps. This

is an unsigned BINARY(8) value.

Processing unit time used, if less than 2,147,483,647 milliseconds. The amount of processing unit time

(in milliseconds) that the job used. If the processing unit time used is greater than or equal to

2,147,483,647 milliseconds, a value of -1 is returned. Use the Processing unit time used - total for the job

field to retrieve values that are greater than or equal to 2,147,483,647.

Processing unit time used - total for the job. The amount of processing unit time (in milliseconds) that

the job used across all routing steps. This is an unsigned BINARY(8) value.

Processing unit time used - total for the thread.The amount of processing unit time (in milliseconds)

used by the specified thread. This is an unsigned BINARY(8) value.

Processing unit used for database - percent used during the elapsed time (job). The percentage of

processing unit used for database processing during the elapsed time by the specified job. For

multiple-processor systems, this is the average across processors.

Processing unit used for database - percent used during the elapsed time (thread). The percentage of

processing unit used for database processing during the elapsed time by the specified thread. For

multiple-processor systems, this is the average across processors.

Processing unit used for database - time during the elapsed time (job). The amount of processing unit

time (in milliseconds) used for database processing during the elapsed time by the specified job.

Processing unit used for database - time during the elapsed time (thread). The amount of processing

unit time (in milliseconds) used for database processing during the elapsed time by the specified thread.

Processing unit used - percent during the elapsed time (job). The percentage of processing time used

during the elapsed time. For multiple-processor systems, this is the average across processors.

Processing unit used - percent during the elapsed time (thread). The percentage of processing time used

during the elapsed time by the specified thread. For multiple-processor systems, this is the average across

processors.

Processing unit used - time during the elapsed time (job). The amount of processing unit time (in

milliseconds) used during the elapsed time by the specified job.

Processing unit used - time during the elapsed time (thread). The amount of processing unit time (in

milliseconds) used during the elapsed time by the specified thread.

Product libraries. The libraries that contain product information for the thread. If requesting this field for

a job, the information for the initial thread of the job will be returned. If this field is defined as a

CHAR(11), a blank will be in the last position of the name.

Product return code. The return code set by the compiler for Integrated Language Environment (ILE)

languages. Refer to the appropriate ILE-conforming language manual for possible values. This field is

scoped to the job and represents the most recent return code set by any thread within the job.

408 iSeries: Work Management APIs

Program return code. If the job contains any RPG, COBOL, data file utility (DFU), or sort utility

programs, the completion status of the last program that has finished running is shown; otherwise, a

value of zero is shown.

Purge. Whether or not the job is eligible to be moved out of main storage and put into auxiliary storage

at the end of a time slice or when it is beginning a long wait (such as waiting for a work station user’s

response). This attribute is ignored when more than one thread is active within the job. The possible

values are:

 *YES The job is eligible to be moved out of main storage and put into auxiliary storage. A job with

multiple threads, however, is never purged from main storage.

*NO The job is not eligible to be moved out of main storage and put into auxiliary storage. When main

storage is needed, however, pages belonging to a thread in the job may be moved to auxiliary

storage. Then, when a thread in the job runs again, its pages are returned to main storage as they

are needed.

blank Not used for job types *JOBQ or *OUTQ, or for invalid jobs.

Relational Database name. The name used to uniquely identify a data source or relational database.

Reserved. An ignored field.

Resources affinity group. Specifies whether or not the job is grouped together with other jobs on the

same set of processors and memory. The Resources affinity group (RSCAFNGRP) parameter on the Add

Routing Entry (ADDRTGE) or Add Prestart Job Entry (ADDPJE) commands determines how jobs are

grouped. The possible values are:

 *NO The job is not grouped with other jobs. They are spread across all the available system resources.

*YES The job is in the same affinity group as other jobs.

Response time total. The total amount of response time for the initial thread, in milliseconds. This value

does not include the time used by the machine, by the attached input/output (I/O) hardware, and by the

transmission lines for sending and receiving data. This field is zero for jobs that have no interactions. A

value of -1 is returned if the field is not large enough to hold the actual result.

Routing data. The routing data that is used to determine the routing entry that identifies the program to

start for the routing step.

Run priority (job). The priority at which the job is currently running, relative to other jobs on the system.

The run priority ranges from 0 (highest priority) to 99 (lowest priority).

Run priority (thread). The run priority for the thread relative to the priority of the other threads that are

running in the system. This is displayed as a number ranging from 0 (highest priority) to 99 (lowest

priority). The value may never be higher than the run priority for the job in which the thread is running.

Server mode for Structured Query Language. Whether or not Structured Query Language (SQL)

statements should run in a separate server job. The possible values are:

 0 The SQL statements will not run in a separate server job.

1 The SQL statements will run in a separate server job. Each SQL connection will be allowed to run

with a different user profile and separate transaction scoping.

Server type. The type of server represented by the job. A value of blanks indicates that the job is not part

of a server.

Work Management APIs 409

Signal action. The action to be taken when a signal is received for a signal monitor. Possible values are as

follows:

 -1 The signal associated with this signal monitor is not supported.

0 Handle the signal using the signal default action.

1 Ignore the signal (discard).

2 Handle the signal by running the signal catching function.

Signal blocking mask. A bit field that is used to represent the set of signals whose signal actions are to

be held for the initial thread of the job. The nth bit in the signal blocking mask represents the nth signal

monitor defined for the initial thread. If a bit within the signal blocking mask has a value of 1, then the

signal action is blocked and the signal is held.

Signal monitor data. The signal information for a given signal monitor for the job. This information

consists of the signal number, signal action, default signal action, maximum number of signals to be

retained, and the current number of signals pending.

Signal number. A numeric value assigned to the signal monitor. This value is used to locate the signal

monitor for the job when a signal is sent to the job.

Signal status. A numerical value used to determine if the job is enables to receive signals from another

job or the system.

 0 The job is not enabled for signals. This job cannot receive signals from another job or system.

1 The job is enabled for signals. This job can receive signals from another job or system.

Signed-on job. Whether the job is a to be treated like a signed-on user on the system.

 0 The job should be treated like a signed-on user.

1 The job should not be treated like a signed-on user.

Size of SQL open cursor data. The size of a single entry for a given SQL cursor for the job. This

information consists of the object name, object library, object type, SQL cursor name, and SQL statement

name.

Sort sequence library. The sort sequence library associated with this job.

Sort sequence table name. The sort sequence table associated with this job. Possible values are:

 *HEX No sort sequence table is used. The hexadecimal values of the characters are used to determine

the sort sequence.

*LANGIDSHR The sort sequence table used can contain the same weight for multiple characters, and it is the

shared weight sort table associated with the language specified in the LANGID parameter.

*LANGIDUNQ The sort sequence table used must contain a unique weight for each character in the code page,

and it is the unique weight sort table associated with the language specified in the LANGID

parameter.

Sort sequence table - qualified. The qualified name of the sort sequence table associated with this job.

The format of the qualified name is a 10-character sort sequence table name followed by a 10-character

library name. The data is left-justified and padded with blanks on the right. If the sort sequence table

name is a special value, the library name is blank.

Special environment. Whether the job is running in a particular environment. Possible values are:

410 iSeries: Work Management APIs

*NONE The job is not running in any special environment.

*S36 The job is running in the System/36 environment.

blank This job is not currently active.

Spooled file action. Whether spooled files are accessed through job interfaces after the job has completed

is normal activity. The possible values are:

 *KEEP

When the job completes its activity, as long as at least one spooled file for the job exists in the

system auxiliary storage pool (ASP 1) or in a basic user ASP (ASPs 2-32), the spooled files are kept

with the job and the status of the job is updated to indicate that the job has completed. If all

remaining spooled files for the job are in independent ASPs (ASPs 33-255), the spooled files will

be detached from the job and the job will be removed from the system.

*DETACH The spooled files are detached from the job when the job completes its activity.

SQL cursor name. The name of the SQL cursor.

SQL open cursor data. The SQL cursor information for a given SQL cursor for the job. This information

consists of the object name, object library, object type, SQL cursor name, and SQL statement name.

SQL statement name. The name of the SQL statement that is associated with the SQL cursor.

Status message handling. Whether you want status messages displayed for this job. The possible values

are:

 *NONE This job does not display status messages.

*NORMAL This job displays status messages.

Status of current SQL statement. The status of the current SQL statement. The possible values are:

 0 The SQL statement returned is running currently.

1 The SQL statement returned has completed.

Status of job on the job queue. The status of this job on the job queue.

 blank This job was not on a job queue.

SCD This job will run as scheduled.

HLD This job is being held on the job queue.

RLS This job is ready to be selected.

Submitter’s job name. The job name of the submitter’s job. If the job has no submitter, this field is blank.

Submitter’s job name - qualified. The qualified job name of the submitter’s job. The format of the

qualified job name is a 10-character simple job name, a 10-character user name, and a 6-character job

number. If the job has no submitter, this field is blank.

Submitter’s job number. The job number of the submitter’s job. If the job has no submitter, this field is

blank.

Submitter’s message queue library name. The name of the library that contains the message queue. If

the job has no submitter, this field is blank.

Submitter’s message queue name. The name of the message queue where the system sends a completion

message when a batch job ends. If the job has no submitter, this field is blank.

Work Management APIs 411

Submitter’s message queue name - qualified. The qualified name of the message queue where the

system sends a completion message when a batch job ends and the name of the library that contains the

message queue. If the job has no submitter, this field is blank. The format of the qualified name is a

10-character simple object name followed by a 10-character library name. The data is left-justified and

padded with blanks on the right.

Submitter’s user name. The user name of the submitter. If the job has no submitter, this field is blank.

Subsystem description library name. The library that contains the subsystem description. This value is

only for jobs whose status is *ACTIVE. For jobs with a status of *OUTQ or *JOBQ, the value for this field

is blank.

Subsystem description name. The name of the subsystem in which an active job is running. This value is

only for jobs whose status is *ACTIVE. For jobs with status of *OUTQ or *JOBQ, the value for this field is

blank.

Subsystem description name - qualified. The qualified name of the subsystem in which an active job is

running. The format of the qualified name is a 10-character simple object name followed by a

10-character library name. This value is only for jobs whose status is *ACTIVE. For jobs with status of

*OUTQ or *JOBQ, the value for this field is blank.

System library list. The system portion of the library list of the thread. If requesting this field for a job,

the information for the initial thread of the job will be returned. If this field is defined as a CHAR(11), a

blank will be in the last position of the name.

System pool identifier. The identifier of the system-related pool from which the job’s main storage is

allocated. These identifiers are not the same as those specified in the subsystem description, but are the

same as the system pool identifiers shown on the system status display. This is the pool that the threads

in the job start in. Also see the Current system pool identifier field for more information.

Temporary storage used in kilobytes. The amount of auxiliary storage (in kilobytes) that is currently

allocated to this job.

Note: This value will reach a maximum of 2 147 483 647 kilobytes. If the actual temporary storage

used is larger than that value, this field will return 2 147 483 647 kilobytes. It is recommended that the

temporary storage used in megabytes field be used to get over this limit.

Temporary storage used in megabytes. The amount of auxiliary storage (in megabytes) that is currently

allocated to this job. This is an unsigned BINARY(4) value.

Thread count. The count of the current number of active threads in the process at the time of the

materialization. An active thread may be either actively running, suspended, or waiting for a resource.

Thread hold count. The count of the number of times that the specified thread has been held using the

hold thread interface. If this field is requested for a job, the value for the initial thread of the job will be

returned.

Thread resources affinity. Specifies whether or not secondary threads are grouped together with the

initial thread when they are started. If they are grouped together, they will have affinity to, or a

preference for, the same set of processors and memory, which may affect performance. The first 10

characters contain a special value indicating how the threads will be grouped. The possible values are:

 *NOGROUP Secondary threads are not grouped with the initial thread. They are spread across all the available

system resources.

*GROUP Secondary threads are grouped with the initial thread.

412 iSeries: Work Management APIs

The last 10 characters contain a special value that indicates to what degree the system tries to maintain

the affinity of threads to the system resources that they are internally assigned to. The possible values are:

 *NORMAL A thread will use any processor or memory in the system if the resources it has affinity to are not

readily available.

*HIGH A thread will only use the resources it has affinity to, and will wait until they become available if

necessary.

Thread status. The current status of the thread. If this field is requested for a job, the value for the initial

thread of the job will be returned. The status of a thread may be one of the following values:

 Blank The status of the thread is unknown.

CMTW The thread is waiting for the completion of save-while-active checkpoint processing in another job.

This wait is necessary to prevent a partial commitment control transaction from being saved to the

media.

CNDW The thread is waiting for a condition.

DEQA The thread is waiting for completion of a dequeue operation in the pool activity level.

DEQW The thread is waiting for completion of a dequeue operation. For example, a server may wait for

work by waiting for a dequeue operation

EVTW The thread is waiting for an event.

HLD The thread is in a job that is being held.

HLDT The thread is being held.

INEL The thread is ineligible and not currently in the pool activity level.

JVAA The thread is waiting for completion of a Java program operation in the pool activity level.

JVAW The thread is waiting for completion of a Java program operation.

LCKW The thread is waiting for a lock.

LSPA The thread is waiting for a lock space to be attached while in a pool activity level.

LSPW The thread is waiting for a lock space to be attached.

MTXW The thread is in a mutex wait. A mutex is a synchronization function that is used to allow

multiple threads to serialize their access to shared data.

RUN The thread is currently running in the activity level.

SELW The thread is in a select wait. More information on the select() function is in the Sockets APIs

chapter in the System API Reference, SC41-5801.

SEMW The thread is waiting for a semaphore. A semaphore is a synchronization function that is used to

allow multiple jobs or threads to serialize their access to shared data.

SIGS The thread has been held by a signal.

SIGW The thread is waiting for a signal.

THDW The thread is waiting for another thread to complete an operation.

TIMA The thread is waiting, in the activity level, for a time interval to end.

TIMW The thread is waiting for a time interval to end.

Thread type. The thread type indicates how the thread was created. If this field is requested for a job, the

value for the initial thread of the job will be returned. The type of a thread may be one of the following

values:

 0 The thread was created either as the initial thread of the job or explicitly by the application.

1 The thread was created by an operating system function.

Time separator. The value used to separate hours, minutes, and seconds when presenting a time. The

following values are possible:

 ’:’ A colon (:) is used for the time separator.

’.’ A period (.) is used for the time separator.

Work Management APIs 413

’ ’ A blank is used for the time separator.

’,’ A comma (,) is used for the time separator.

Time slice. The maximum amount of processor time (in milliseconds) given to each thread in this job

before other threads in this job and in other jobs are given the opportunity to run. The time slice

establishes the amount of time needed by a thread in this job to accomplish a meaningful amount of

processing. At the end of the time slice, the thread might be put in an inactive state so that other threads

can become active in the storage pool. Values retrieved range from 8 through 9999999 (that is, 9 999 999

milliseconds or 9999.999 seconds). Although you can specify a value of less than 8, the system takes a

minimum of 8 milliseconds to run a process.

Time-slice end pool. Whether you want a thread in an interactive job moved to another main storage

pool at the end of its time slice. The possible values are:

 *NONE A thread in the job does not move to another main storage pool when it reaches the end of its

time slice.

*BASE A thread in the job moves to the base pool when it reaches the end of its time slice.

Time spent on database lock waits. The cumulative amount of time, in milliseconds, that the initial

thread has had to wait to obtain database locks. (These performance attributes may be a cumulative job

total in a future release.)

Time spent on internal machine lock waits. The cumulative amount of time, in milliseconds, that the

initial thread has had to wait to obtain internal machine locks. (These performance attributes may be a

cumulative job total in a future release.)

Time spent on nondatabase lock waits. The cumulative amount of time, in milliseconds, that the initial

thread has had to wait to obtain nondatabase locks. (These performance attributes may be a cumulative

job total in a future release.)

Time zone current abbreviated name. The abbreviated, or short, name for the time zone. This field will

contain either the standard or Daylight Saving Time abbreviated name depending on whether or not

Daylight Saving Time is in effect. If the time zone description uses a message to specify the current

abbreviated name and the message cannot be retrieved, this field returns *N. This can occur when the

caller of the API is not authorized to the message file or its library, the message file cannot be found or

the message does not exist in the message file.

Time zone current full name. The full, or long, name for the time zone. This field will contain either the

standard or Daylight Saving Time full name depending on whether or not Daylight Saving Time is in

effect. If the time zone description uses a message to specify the current full name and the message

cannot be retrieved, this field returns *N. This can occur when the caller of the API is not authorized to

the message file or its library, the message file cannot be found or the message does not exist in the

message file.

Time zone current message identifier. The identifier of the message that contains the current full and

abbreviated names. The message identifier could be *NONE if a message was not specified when the

time zone description was created.

Time zone current offset. The offset, in minutes, used to calculate local job time. This value has been

adjusted for Daylight Saving Time, if necessary.

414 iSeries: Work Management APIs

Time zone Daylight Saving Time indicator. The indicator that is used to specify whether or not Daylight

Saving Time is being observed. Valid values that are returned are:

 0 Daylight Saving Time is not being observed (Standard Time).

1 Daylight Saving Time is being observed.

Time zone description name. The name of the time zone description that is used to calculate local job

time.

Time zone message file name - qualified. The qualified name of the message file used to retrieve the

Standard Time message and the Daylight Saving Time message. The format of the qualified name is a

10-character simple object name followed by a 10-character library name. The library name may contain

*LIBL which means that the library list is searched to locate the message file. The message file name and

the library name are left-justified and padded with blanks on the right. If a message was not specified

when the time zone description was created or last changed, this field returns *NONE.

Type of entity thread is waiting on. The type of entity, such as an OS/400 external object, that the thread

is waiting on. If this field is requested for a job, the value for the initial thread of the job will be returned.

The type of entity may be one of the following values:

 -1 Thread is not waiting

1 OS/400 external object

2 Member object

3 Internal system object

4 OS/400 external object space location

5 Internal system object space location

6 Lock space object

999 Unknown type

Unit of work ID. The unit of work ID is used to track jobs across multiple systems. If a job is not

associated with a source or target system using advanced program-to-program communications (APPC),

this information is not used. Every job on the system is assigned a unit of work ID. The unit-of-work

identifier is made up of:

 Location name CHAR(8). The name of the source system that originated the APPC job.

Network ID CHAR(8). The network name associated with the unit of work.

Instance CHAR(6). The value that further identifies the source of the job. This is shown as hexadecimal

data.

Sequence number CHAR(2). A value that identifies a checkpoint within the application program.

User library list. The user portion of the library list for the thread. If requesting this field for a job, the

information for the initial thread of the job will be returned. If this field is defined as a CHAR(11), a

blank will be in the last position of the name.

User name. The user name of the job, which is the same as the name of the user profile under which the

job was started. It can come from several different sources depending on the type of job. This may be

different than the user profile under which the job is currently running. See the Current user profile field

for more information.

User return code. The user-defined return code set by ILE high-level language constructs. An example is

the program return code in the C language. This field is scoped to the job and represents the most recent

return code set by any thread within the job.

Do not use this field. Many operating system functions

Work Management APIs 415

run C code and change the value of the user return code. Changes to this field occur at times that cannot

be predicted or controlled by user programming, even when the job is single-threaded. To receive a value

returned by a called program, it is better to provide a parameter to receive the value than to rely on this

User return code field that is scoped to the job.

Comparing Job Type, Subtype, and Enhanced Job Type with the Work

with Active Job Command

The following table compares the job type, job subtype, and enhanced job type fields returned by the

QUSRJOBI API to the type field on the Work with Active Job (WRKACTJOB) command.

 WRKACTJOB and QUSRJOBI API Comparison

Job Type Field Job Type Job Subtype

Enhanced
Job Type

ASJ (Autostart) A blank 0110

BCH (Batch) B blank 0210

BCI (Batch immediate) B D 0220

EVK (Started by a program start request) B E 0310

INT (Interactive) I blank 0910, 0920, 0930, or

0940

M36 (AS/400 Advanced 36 machine server) B F blank

MRT (Multiple requester terminal) B T 0230

PJ (Prestart job) B J 1610, 1620, or 1630

PDJ (Print driver job) W P 2310

RDR (Reader) R blank 1810

SYS (System) S or X blank 1920

SBS (Subsystem monitor) M blank 1910

WTR (Writer) W blank 2310

blank (Alternative user subtype—not an active job) B U 240“End of change”>

 Top | “Work Management APIs,” on page 1 | APIs by category

416 iSeries: Work Management APIs

#TOP_OF_PAGE
aplist.htm

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 417

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

418 iSeries: Work Management APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 419

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

420 iSeries: Work Management APIs

����

Printed in USA

	Contents
	Work Management APIs
	APIs
	Change Current Job (QWCCCJOB) API
	Required Parameter Group
	Format for Variable Length Record
	Field Descriptions
	Key Identifiers
	Key Identifier Descriptions
	Error Messages

	Change Job (QWTCHGJB) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Formats for Variable Length Record
	Field Descriptions for JOBC0100, JOBC0200, JOBC0300 and JOBC0400 Formats
	Valid Keys
	Field Descriptions for Valid Keys
	Format of job or thread identification information
	Field Descriptions
	Field Descriptions
	Usage Notes
	Error Messages

	Change Job Pool (QWCCHGJP) API
	Restrictions for Movement of Jobs
	Authorities and Locks
	Required Parameter Group
	Format of the Function Information
	Field Descriptions
	Return Codes
	Error Messages

	Change Pool Attributes (QUSCHGPA) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Optional Parameter Group 3
	Optional Parameter Group 4
	Error Messages
	Example: Changing System Storage Pool Attributes

	Change Pool Tuning Information (QWCCHGTN) API
	Required Parameter Group
	TUNI0100 Format
	Field Descriptions
	Error Messages

	Change Subsystem Entry (QWDCSBSE) API
	Authorities and Locks
	Required Parameter Group
	Format for Variable Length Record
	Field Descriptions
	SBSE0500 Format (Prestart Job Entry)
	Subsystem Entry Identifier for SBSE0500 Format
	Attribute Keys for SBSE0500 Format
	Field Descriptions of Attribute Keys for SBSE0500 Format
	Error Messages

	Control Thread (QTHMCTLT) API
	Authorities and Locks
	Required Parameter Group
	CTLT0100 Format
	Field Descriptions for CTLT0100 Format
	Format of job or thread identification information
	JIDF0100 Format
	Field Descriptions for JIDF0100 Format
	JIDF0200 Format
	Field Descriptions for JIDF0200 Format
	Error Messages

	Control Trace (QWTCTLTR) API
	Required Parameter
	Optional Parameter
	Error Messages

	Create Job Structures (QWTCTJBS) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Delete Job Structures (QWTDTJBS) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Dump Flight Recorder (QWTDMPFR) API
	Authorities and Locks
	Optional Parameter Group
	Usage Notes
	Error Messages

	Dump Lock Flight Recorder (QWTDMPLF) API
	Required Parameter
	Optional Parameter
	Error Messages

	List Active Subsystems (QWCLASBS) API
	Authorities and Locks
	Required Parameter Group
	Format of the Generated List
	Input Parameter Section
	SBSL0100 Format
	Field Descriptions
	Error Messages

	List Job (QUSLJOB) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Optional Parameter Group 3
	Format of the Generated List
	Input Parameter Section
	Header Section
	JOBL0100 Format
	JOBL0200 Format
	Field Descriptions
	Valid Keys
	Usage Notes
	Error Messages

	List Job Schedule Entries (QWCLSCDE) API
	Authorities and Locks
	Required Parameter Group
	Format of the Generated Lists
	Input Parameter Section
	Header Section
	SCDL0100 Format
	SCDL0200 Format
	Field Descriptions
	Error Messages

	List Object Locks (QWCLOBJL) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Format of the Generated List
	Input Parameter Section
	Header Section
	OBJL0100 Format
	Field Descriptions
	Error Messages

	List Subsystem Entries (QWDLSBSE) API
	Authorities and Locks
	Required Parameter Group
	Format of the Generated List
	Input Parameter Section
	Header Section
	SBSE0100 Format
	SBSE0200 Format
	SBSE0300 Format
	SBSE0400 Format
	SBSE0500 Format
	SBSE0600 Format
	SBSE0700 Format
	Field Descriptions
	Error Messages

	List Subsystem Job Queues (QWDLSJBQ) API
	Authorities and Locks
	Required Parameter Group
	Format of the Generated List
	Input Parameter Section
	Header Section
	SJQL0100 Format
	Field Descriptions
	Error Messages

	Move Job (QSPMOVJB) API
	Restrictions for Movement of Jobs
	Authorities and Locks
	Job Queue Authority
	User Profile Highest Schedule Priority

	Required Parameter Group
	Format of the Function Information
	Field Descriptions
	How to Specify Job Identifying Fields
	Error Messages

	Open List of Activation Attributes (QWVOLACT) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	RACT0100 Format
	Field Descriptions
	Error Messages

	Open List of Activation Group Attributes (QWVOLAGP) API
	Authorities and Locks
	Required Parameter Group
	RAGA0100 Format
	Field Descriptions
	Error Messages

	Open List of Job Queues (QSPOLJBQ) API
	Performance Impacts
	Authorities and Locks
	Required Parameter Group
	Filter Information
	Format of Sort Information
	Field Descriptions
	Format of Receiver Variable
	OJBQ0100 Format

	Field Descriptions
	Error Messages

	Open List of Jobs (QGYOLJOB) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Format of Receiver Variable
	OLJB0100 Format
	OLJB0200 Format
	OLJB0300 Format
	Field Descriptions
	Format of Receiver Variable Definition Information
	Field Descriptions
	Format of Sort Information
	Field Descriptions
	Format of Job Selection Information
	OLJS0100 Format
	OLJS0200 Format
	Field Descriptions
	General Return Data
	Field Descriptions
	List of keys supported for format OLJB0200
	List of keys supported for format OLJB0300
	Field Descriptions
	Usage Notes
	Error Messages

	Open List of Threads (QWCOLTHD) API
	Authorities and Locks
	Required Parameter Group
	Format of Receiver Variable
	OLTH0100 Format

	Field Descriptions
	Format of Receiver Variable Definition Information
	Field Descriptions
	Format of Sort Information
	Field Descriptions
	Format of job identification information
	JIDF0100 Format

	Field Descriptions
	General Return Data
	Field Descriptions
	List of keys supported for format OLTH0100
	Field Descriptions
	Error Messages

	Retrieve Call Stack (QWVRCSTK) API
	Authorities and Locks
	Required Parameter Group
	Format CSTK0100
	Field Descriptions
	Format of job identification information
	JIDF0100 Format
	Field Descriptions
	JIDF0200 Format
	Field Descriptions
	Error Messages

	Retrieve Class Information (QWCRCLSI) API
	Authorities and Locks
	Required Parameter Group
	Format CLSI0100
	Field Description
	Error Messages

	Retrieve Current Attributes (QWCRTVCA) API
	Authorities and Locks
	Required Parameter Group
	RTVC0100 Format
	Field Descriptions
	RTVC0200 Format
	Field Descriptions
	RTVC0300 Format
	Field Descriptions
	Format of ASP Group Information Entry
	Field Descriptions
	Valid Key Attributes
	Key Field Descriptions
	Error Messages

	Retrieve Data Area (QWCRDTAA) API
	Authorities and Locks
	Required Parameter Group
	Format of Data Returned
	Field Descriptions
	Usage Notes
	Error Messages

	Retrieve IPL Attributes (QWCRIPLA) API
	Authorities and Locks
	Required Parameter Group
	Format IPLA0100
	Field Description
	Error Messages

	Retrieve Job Description Information (QWDRJOBD) API
	Authorities and Locks
	Required Parameter Group
	JOBD0100 Format
	Format of Initial ASP Group Information Entry
	Field Descriptions
	Error Messages

	Retrieve Job Information (QUSRJOBI) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter 1
	Optional Parameter 2
	Selecting a Job Information Format
	JOBI0100 Format
	JOBI0150 Format
	JOBI0200 Format
	JOBI0300 Format
	JOBI0400 Format
	Format of ASP Group Information Entry
	JOBI0500 Format
	JOBI0600 Format
	Format of Time Zone Information
	JOBI0700 Format
	JOBI0750 Format
	Library array entry
	JOBI0800 Format
	JOBI0900 Format
	JOBI1000 Format
	Field Descriptions
	Comparing Job Type and Subtype with the Work with Active Job Command
	Usage Notes
	Error Messages

	Retrieve Job Locks (QWCRJBLK) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	JBLK0100 Format
	Field Descriptions
	JBLK0200 Format
	Field Descriptions
	Lock filter format
	JBFL0100 Format
	Field Descriptions
	Format of job or thread identification information
	JIDF0100 Format
	Field Descriptions
	JIDF0200 Format.
	Field Descriptions
	Error Messages

	Retrieve Job Queue Information (QSPRJOBQ) API
	Authorities and Locks
	Required Parameter Group
	JOBQ0100 Format
	JOBQ0200 Format
	Field Descriptions
	Error Messages

	Retrieve Job Status (QWCRJBST) API
	Authorities and Locks
	Required Parameter Group
	Format of Returned Information
	Field Description
	Error Messages

	Retrieve Lock Information (QWCRLCKI) API
	Authorities and Locks
	Required Parameter Group
	Format of Object Identification
	LOBJ0100 Format
	Field Descriptions
	LOBJ0200 Format
	Field Descriptions
	Filter Format
	LKFL0100 Format
	Field Descriptions
	Lock Information Format
	LCKI0100 Format
	Header Section
	Lock Information Entry Format
	Key information format
	Field Descriptions
	Valid Keys
	Holder ID
	Job Format
	Field Descriptions
	Lock Space Format
	Field Descriptions
	Error Messages

	Retrieve Lock Request Information (QWCRLRQI) API
	Authorities and Locks
	Required Parameter Group
	Format LRQI0100
	Field Descriptions
	Error Messages

	Retrieve Lock Space Attributes (QTRXRLSA) API
	Authorities and Locks
	Required Parameter Group
	Format of receiver information
	RLSA0100 Format
	Field Descriptions for RLSA0100 Format
	Error Messages

	Retrieve Lock Space Locks (QTRXRLSL) API
	Authorities and Locks
	Required Parameter Group
	Format of receiver information
	RLSL0100 Format
	Field Descriptions for RLSL0100 Format
	Format of lock filters
	RLSF0100 Format
	Field Descriptions for RLSF0100 Format
	Error Messages

	Retrieve Lock Space Record Locks (QTRXRLRL) API
	Authorities and Locks
	Required Parameter Group
	Format of receiver information
	RLRL0100 Format
	Field Descriptions for RLRL0100 Format
	Format of lock filters
	RLRF0100 Format
	Field Descriptions for RLRF0100 Format
	Error Messages

	Retrieve Network Attributes (QWCRNETA) API
	Authorities and Locks
	Required Parameter Group
	Format of Data Returned
	Network Attribute Information Table
	Field Descriptions
	Valid Network Attributes
	Network Attribute Field Descriptions
	Error Messages

	Retrieve Profile Exit Programs (QWTRTVPX) API
	Authorities and Locks
	Required Parameter Group
	ATTN0100 Format
	Field Descriptions
	SREQ0100 Format
	Field Descriptions
	Error Messages

	Retrieve Subsystem Information (QWDRSBSD) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter
	SBSI0100 Format
	SBSI0200 Format
	Field Descriptions
	Error Messages

	Retrieve Synchronization Object Information (Qp0msRtvSyncObjInfo()) API
	Authorities and Locks
	Required Parameter Group
	PMTX0100 Format - Retrieve pointer-based mutexes associated with a job or thread
	PMTX0200 Format - Retrieve threads associated with a pointer-based mutex
	HMTX0100 Format - Retrieve handle-based mutexes associated with a job or thread
	HMTX0200 Format - Retrieve threads associated with a handle-based mutex
	HCND0100 Format - Retrieve handle-based conditions associated with a job or thread
	HCND0200 Format - Retrieve threads associated with a handle-based condition
	STOK0100 Format - Retrieve synchronization tokens associated with a job or thread
	STOK0200 Format - Retrieve threads associated with a synchronization token
	SEMA0100 Format - Retrieve semaphores associated with a job, thread, or all semaphores
	SEMA0200 Format - Retrieve threads associated with a semaphore
	Receiver Format Field Descriptions
	TIDF0100 Format - Job and Thread Identification
	TIDF0100 Format Field Descriptions
	TIDF0200 Format - Synchronization Object Identification
	TIDF0200 Format Field Descriptions
	OPTN0100 Format - Options for Receiver Variable
	OPTN0100 Format Field Descriptions
	Error Messages
	Example
	Example Output

	Retrieve System Status (QWCRSSTS) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Format of Data Returned
	SSTS0100 Format
	SSTS0200 Format
	SSTS0300 Format
	SSTS0400 Format
	SSTS0500 Format
	Field Descriptions
	Format of Pool Selection Information
	Selection Field Descriptions
	Error Messages

	Retrieve System Values (QWCRSVAL) API
	Authorities and Locks
	Required Parameter Group
	Format of Data Returned
	System Value Information Table
	Field Descriptions
	Valid System Values
	System Value Field Descriptions
	Error Messages

	Retrieve Thread Attribute (QWTRTVTA) API
	Authorities and Locks
	Required Parameter Group
	Format RTVT0100
	Field Descriptions
	RTVT0200 Format
	Library array entry
	ASP Group Information Entry
	Field Descriptions
	Format RTVT0300
	Field Descriptions
	Format of job or thread identification information
	JIDF0100 Format
	Field Descriptions
	JIDF0200 Format
	Field Descriptions
	Valid Keys
	Keys for RTVT0100
	Format of ASP Group Information
	Format of ASP Group Information Entry
	Keys for RTVT0200
	Keys for RTVT0300
	Key Field descriptions
	Usage Notes
	Error Messages

	Set Lock Flight Recorder (QWTSETLF) API
	Required Parameter
	Optional Parameter
	Error Messages

	Set Profile Exit Programs (QWTSETPX) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Set Trace (QWTSETTR) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter
	Error Messages

	Exit Programs
	Auxiliary Storage Lower Limit Exit Program
	Authorities and Locks
	Required Parameter

	Job Notification Exit Point
	Authorities and Locks
	Required Parameter
	Program Data
	Field Descriptions
	Data Queue Attributes
	Format of Job Start and Job End Notification Messages
	Format of Job Queue Notification Messages
	Field Descriptions
	Usage Notes

	Power Down System Exit Program
	Authorities and Locks
	Required Parameter

	Preattention Program Exit Program
	Authorities and Locks
	Required Parameter

	Pre-restricted State Exit Programs (EWCPRSEP)
	Authorities and Locks
	Required Parameter Group
	PRSE0100 Format
	Field Descriptions
	PRSE0200 Format
	Field Descriptions
	Usage Notes

	Presystem Request Program Exit Program
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Program Data
	Field Descriptions

	Exit Program for Trace Job
	Required Parameter
	Format of Trace Record
	Field Descriptions
	Format of Program Flow Trace Record
	Field Descriptions
	Format of Data Trace Record
	Format of Data Management Data Trace Record
	Field Descriptions
	Format of Message Handler Data Trace Record
	Field Descriptions
	Format of Command Analyzer Data Trace Record
	Field Descriptions
	Format of Other Data Trace Record
	Field Descriptions
	Format of Suspend Trace Record
	Field Descriptions
	Format of Resume Trace Record
	Field Descriptions

	Concepts
	Work Management API Attribute Descriptions
	Attributes
	Field Descriptions
	Comparing Job Type, Subtype, and Enhanced Job Type with the Work with Active Job Command

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

