
iSeries

UNIX-Type -- Resource Reservation Setup Protocol APIs

Version 5 Release 3

ERserver

���

iSeries

UNIX-Type -- Resource Reservation Setup Protocol APIs

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 53.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Resource Reservation Setup Protocol

APIs 1

APIs 2

Open List of QoS Monitor Data

(QgyOpenListQoSMonitorData) API 3

Authorities and Locks 3

Required Parameter Group 3

Omissible Parameter Group 4

Filter Format Section 4

Field Descriptions 5

QOSM0100 Format 6

QOSM0150 Format 6

QOSM0200 Format 7

QOSM0250 Format 7

QOSM0300 Format 8

QOSM0350 Format 8

AGGR0100 Format 9

AGGR0150 Format 10

AGGR0200 Format 10

AGGR0250 Format 10

AGGR0300 Format 11

AGGR0350 Format 11

INBC0100 Format 12

INBC0200 Format 12

Field Descriptions 13

Error Messages 15

Delete QoS Monitor Data

(QtoqDeleteQoSMonitorData) API 16

Authorities and Locks 16

Required Parameter Group 16

Error Messages 17

End QoS Monitor (QtoqEndQoSMonitor) API . . . 17

Authorities and Locks 17

Required Parameter Group 17

Error Messages 17

List Saved QoS Monitor Data

(QtoqListSavedQoSMonitorData) API 18

Authorities and Locks 18

Required Parameter Group 18

QTOQ0100 Format 19

Field Descriptions 19

Error Messages 19

Save QoS Monitor Data (QtoqSaveQoSMonitorData)

API 20

Authorities and Locks 20

Required Parameter Group 20

Error Messages 20

Start QoS Monitor (QtoqStartQoSMonitor) API . . 21

Authorities and Locks 21

Required Parameter Group 21

Error Messages 22

qtoq_accept()—Accept QoS Sockets Connection API 22

Parameters 22

Authorities 24

Return Values 24

Error Conditions 24

Error Messages 25

Usage Notes 25

Related Information 25

qtoq_close()—Close QoS Sockets Connection API . . 26

Parameters 26

Authorities 26

Return Values 26

Error Conditions 26

Error Messages 27

Usage Notes 27

Related Information 27

qtoq_connect()—Make QoS Sockets Connection API 27

Parameters 28

Authorities 29

Return Values 29

Error Conditions 29

Error Messages 31

Usage Notes 31

Related Information 31

qtoq_ioctl()—Set QoS Sockets Control Options API 32

Parameters 32

Authorities 33

Return Values 33

Error Conditions 33

Error Messages 35

Usage Notes 35

Related Information 36

rapi_dispatch()—Dispatch the RAPI

message-handling routine 36

Parameters 36

Authorities 36

Return Value 36

Error Conditions 36

Usage Notes 37

Related Information 37

rapi_fmt_adspec()—Format a RAPI Adspec 37

Parameters 37

Authorities 38

Return Value 38

Error Conditions 38

Usage Notes 38

Related Information 38

rapi_fmt_filtspec()—Format a RAPI Filter spec . . . 38

Parameters 39

Authorities 39

Return Value 39

Error Conditions 39

Usage Notes 39

Related Information 39

rapi_fmt_flowspec()—Format a RAPI Flowspec . . 40

Parameters 40

Authorities 40

Return Value 40

Error Conditions 40

Usage Notes 40

© Copyright IBM Corp. 1998, 2005 iii

Related Information 40

rapi_fmt_tspec()—Format a RAPI Tspec 41

Parameters 41

Authorities 41

Return Value 41

Error Conditions 41

Usage Notes 41

Related Information 42

rapi_getfd()—Get descriptor to wait on 42

Parameters 42

Authorities 42

Return Value 42

Error Conditions 42

Usage Notes 43

Related Information 43

rapi_release()—Release the currently active RAPI

reservation 43

Parameters 43

Authorities 43

Return Value 43

Error Conditions 44

Usage Notes 44

Related Information 44

rapi_reserve()—Make, modify, or delete a RAPI

reservation 44

Parameters 45

RAPI Styles 45

Authorities 46

Return Value 46

Error Conditions 46

Usage Notes 46

Related Information 46

rapi_sender()—Identify a RAPI sender 47

Parameters 47

Authorities 48

Return Value 48

Error Conditions 48

Usage Notes 48

Related Information 48

rapi_session()—Create a RAPI session 49

Parameters 49

Authorities 50

Return Value 50

Error Conditions 50

Usage Notes 50

Related Information 50

rapi_version()—Retrieve the current RAPI version 51

Parameters 51

Authorities 51

Return Value 51

Error Conditions 51

Usage Note 51

Related Information 51

Appendix. Notices 53

Trademarks 54

Terms and conditions for downloading and printing

publications 55

Code disclaimer information 56

iv iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

Resource Reservation Setup Protocol APIs

The resource reservation protocol (RSVP), along with the RAPI APIs, perform your integrated services

reservation. This protocol is part of the Quality of service (QoS) function that allows you to request

network priority and bandwidth for TCP/IP applications. The RSVP protocol is used to load rules to the

TCP/IP stack that controls these requests. These rules are called IntServ rules. QoS also allows the user to

define DiffServ rules that request special handling in the network for groups of applications or

connections. See Quality of service (QoS) for more information.

The six monitor APIs can be used to retrieve information on both IntServ and DiffServ rules.

Note: A thorough understanding of the RSVP protocol and the contents of Internet RFC 2205 is required

to be able to use the RAPI APIs correctly. These APIs will not function unless the proper sequencing of

events between the client and server is observed.

The Resource Reservation Setup Protocol APIs are:

v “Open List of QoS Monitor Data (QgyOpenListQoSMonitorData) API” on page 3 (Open List of QoS

Monitor Data) allows the user to gathering information related to QoS services.

v “Delete QoS Monitor Data (QtoqDeleteQoSMonitorData) API” on page 16 (Delete QoS Monitor Data)

allows the user to delete one or more sets of collected QoS monitor data.

v “End QoS Monitor (QtoqEndQoSMonitor) API” on page 17 (End QoS Monitor) allows the user to stop

gathering information related to QoS services.

v “List Saved QoS Monitor Data (QtoqListSavedQoSMonitorData) API” on page 18 (List Saved QoS

Monitor Data) allows the user to return a list of all collected monitor data that was saved previously.

v “Save QoS Monitor Data (QtoqSaveQoSMonitorData) API” on page 20 (Save QoS Monitor Data) allows

the user to save a copy of the collected QoS monitor data for future use.

v “Start QoS Monitor (QtoqStartQoSMonitor) API” on page 21 (Start QoS Monitor) allows the user to

gathering information related to QoS services.

v “qtoq_accept()—Accept QoS Sockets Connection API” on page 22 (Accept QoS Sockets Connection)

provides simplified Quality of Service support for connection-oriented sockets communications

between RSVP aware applications on a client and server.

v “qtoq_close()—Close QoS Sockets Connection API” on page 26 (Close QoS Sockets Connection) is

called to close the socket and Qos session that was created using the other qtoq_sockets-type APIs.

v “qtoq_connect()—Make QoS Sockets Connection API” on page 27 (Make QoS Sockets Connection)

provides simplified Quality of Service functionality for connection-oriented sockets communications

between RSVP aware applications on a client and server.

v “qtoq_ioctl()—Set QoS Sockets Control Options API” on page 32 (Set QoS Sockets Control Options)

provides simplified Quality of Service functionality for connectionless sockets communications between

RSVP aware applications on a client and server.

v “rapi_dispatch()—Dispatch the RAPI message-handling routine” on page 36 (Dispatch the RAPI

message handling routine defined in the rapi_session() call) dispatches the RAPI message-handling

routine defined in the rapi_session() call.

v “rapi_fmt_adspec()—Format a RAPI Adspec” on page 37 (Format a RAPI Adspec into a string suitable

for printing) formats a RAPI Adspec into a string suitable for printing by converting the RAPI Adspec

information that has been passed to the API into a string in the supplied buffer.

v “rapi_fmt_filtspec()—Format a RAPI Filter spec” on page 38 (Format a RAPI Filter spec into a string

suitable for printing) formats a RAPI Filter spec into a string suitable for printing by converting the

RAPI filtspec information that has been passed to the API into a string in the buffer that has been

passed to the API.

© Copyright IBM Corp. 1998, 2005 1

v “rapi_fmt_flowspec()—Format a RAPI Flowspec” on page 40 (Format a RAPI Flowspec into a string

suitable for printing) formats a RAPI Flowspec into a string suitable for printing by converting the

RAPI flowspec information that has been passed to the API into a character string in the buffer that

was passed to the API.

v “rapi_fmt_tspec()—Format a RAPI Tspec” on page 41 (Format a RAPI Tspec into a string suitable for

printing) formats a RAPI Tspec into a string suitable for printing by converting the RAPI Tspec

information that has been passed to the API into a string in the buffer that has been passed to the API.

v “rapi_getfd()—Get descriptor to wait on” on page 42 (Get a descriptor to wait on before dispatching

the RAPI message handling routine) returns the file descriptor associated with a successful

rapi_session() call.

v “rapi_release()—Release the currently active RAPI reservation” on page 43 (Release the currently active

RAPI reservation and close the open sessions) releases the RAPI reservation that is active currently and

closes the open sessions.

v “rapi_reserve()—Make, modify, or delete a RAPI reservation” on page 44 (Make, modify, or delete a

RAPI reservation) used to make, modify, or delete an RSVP reservation in the network.

v “rapi_sender()—Identify a RAPI sender” on page 47 (Identify a RAPI sender) identifies an RSVP sender

to potential receivers of the data.

v “rapi_session()—Create a RAPI session” on page 49 (Create a RAPI session) returns an API session ID

that is unique to this request.

v “rapi_version()—Retrieve the current RAPI version” on page 51 (Retrieve the current RAPI version)

returns the RAPI version currently being used by the RSVP agent.

 Top | UNIX-Type APIs | APIs by category

APIs

These are the APIs for this category.

2 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Open List of QoS Monitor Data (QgyOpenListQoSMonitorData) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 List information

Output Char(80)

4 Number of records to return

Input Binary(4)

5 Format name

Input Char(8)
 Omissible Parameter Group:

6 Filter

Input Char(*)

7 Error code

I/O Char(*)
 Service Program: QSYS/QTOQMONAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The Open List of QoS Monitor Data (QgyOpenListQoSMonitorData) API allows the user to gather

information related to QoS services. Each entry is returned according to the particular FORMAT or type

of filter selected. There are three types of data that can be retrieved: Instantaneous QoS Manager Data

(stack), accumulated QoS Manager Data, or an aggregate of the accumulated QoS Manager Data.

Authorities and Locks

Special Authority

NONE

Required Parameter Group

Receiver Variable

OUTPUT; CHAR(*)
The receiver variable that receives the information requested.

Length of receiver variable

INPUT; BINARY(4)
The length of the receiver variable.

List information

OUTPUT; CHAR(80)

Resource Reservation Setup Protocol APIs 3

The variable used to return status information about the list of QoS monitor data that was

opened. For a description of this parameter, see Format of Open List Information.

Number of returned records

INPUT; BINARY(4)
The number of records in the list to put into the receiver variable after filtering has been

performed.

Format name

INPUT; CHAR(8)

 The format of the space information to be returned. The format names supported are:

 QOSM0100 IntServ controlled load and IntServ controlled load with DiffServ markings.

QOSM0150 IntServ controlled load and IntServ controlled load with DiffServ markings. This format is used

with 8-byte counters.

QOSM0200 IntServ guaranteed rate and IntServ guaranteed rate with DiffServ markings.

QOSM0250 IntServ guaranteed rate and IntServ guaranteed rate with DiffServ markings. This format is used

with 8-byte counters.

QOSM0300 DiffServ per hop behavior.

QOSM0350 DiffServ per hop behavior. This format is used with 8-byte counters.

AGGR0100 IntServ controlled load and IntServ controlled load with DiffServ markings. Used for aggregated

trace data only.

AGGR0150 IntServ controlled load and IntServ controlled load with DiffServ markings. Used for aggregated

trace data only. This format is used with 8-byte counters.

AGGR0200 IntServ guaranteed rate and IntServ guaranteed rate with DiffServ markings. Used for aggregated

trace data only.

AGGR0250 IntServ guaranteed rate and IntServ guaranteed rate with DiffServ markings. Used for aggregated

trace data only. This format is used with 8-byte counters.

AGGR0300 DiffServ per hop behavior. Used for aggregated trace data only.

AGGR0350 DiffServ per hop behavior. Used for aggregated trace data only. This format is used with 8-byte

counters.

INBC0100 Connection information related to inbound IP policies.

INBC0200 Connection information related to URI inbound policies.

Omissible Parameter Group

Filter INPUT; CHAR(*)
The structure that defines which QoS filtered data is returned from the API.

Error code

I/O; CHAR(*)
The structure in which to return error information. For the format of the structure, see Error Code

Parameter .

Filter Format Section

The following information is used for the filtering format. For detailed descriptions of the fields in this

table, see “Field Descriptions” on page 13.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of filter

4 4 BINARY(4) Filter flag

8 8 CHAR(14) Start time

22 16 CHAR(14) End time

4 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

oli.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

36 24 BINARY(4) Policy flag

40 28 BINARY(4) System aggregation flag

44 2C CHAR(128) Policy name

172 AC CHAR(10) Saved collected name

Field Descriptions

End time. All data in the trace buffer between a given time interval. The format is

YYYYMMDDHHMMSS, and HH should be represented with a 24-hour clock. If this parameter is set to a

value, then the start time also must be set to some time less then the end time. This character string must

be set to x’00’ if not being used and other filtering parameters are needed.

Filter flag. Turns the filtering function on and off. The following values may be specified:

 0 Turns off filtering option. If 0, the data is taken from the QoS manager (instantaneous stack data -

QOSMxxxx format only).

1 Turns on filtering option. If 1, the data is taken from the trace buffer.

Length of filter. The length of the filtering structure.

Policy flag. Returns information for a specific policy for a given format. This option can be used in two

ways. If it is used, Policy name must be set to some value.

 1 Returns all entries for a specific policy within the user data for a given format. This option is used

with the QOSMxxxx formats.

2 Return an aggregated list of a specific policy for given format. This option is used with

AGGRxxxx formats.

The following values may be specified:

 0 Turns off the policy option.

1 Turns on the policy option. System aggregation must be 0.

Policy name. Returns a list of entries associated with a given name. This option can be used only when

the Policy flag is set to a value of 1. This character string must be set to x’00’ if not being used and other

filtering parameters are needed.

Start time. Returns all data in the trace buffer between a given time interval. The format is

YYYYMMDDHHMMSS, and HH should be represented with a 24-hour clock. If this parameter is set to a

value, the end time also must be set to some time greater than the start time. This character string must

be set to x’00’ if not being used and other filtering parameters are needed.

System aggregation flag. Returns a list of all aggregated policies within a given architecture. This filter

option can be used with any of the AGGRxxxx formats only. The following values may be specified:

 0 The system aggregation option is turned off. This value must be specified for QOSMxxxx formats.

1 The system aggregation option is turned on. Policy must be 0.

Resource Reservation Setup Protocol APIs 5

Saved collected name. The collection data the user wishes to retrieve. If this value is blanks, or not

supplied in the filter, then all data will be retrieved from the current data collection.

QOSM0100 Format

The QOSM0100 format includes the basic format of Integrated Services (IntServ) controlled load, and

IntServ controlled load with Differentiated Services (DiffServ) markings. For detailed descriptions of the

fields in this table, see “Field Descriptions” on page 13.

 Offset

Type Field Dec Hex

0 0 CHAR(128) Policy name

128 80 CHAR(14) Time stamp

142 8E CHAR(2) Reserved - alignment

144 90 BINARY(4) Protocol

148 94 CHAR(15) Source IP address (start) - dotted decimal

163 A3 CHAR(15) Destination IP address (start) - dotted decimal

178 B2 CHAR(15) Source IP address (end) - dotted decimal

193 C1 CHAR(15) Destination IP address (end) - dotted decimal

208 D0 BINARY(4) Source port (start)

212 D4 BINARY(4) Destination port (start)

216 D8 BINARY(4) Source port (end)

220 DC BINARY(4) Destination port (end)

224 E0 BINARY(4) Token bucket rate - bytes per second

228 E4 BINARY(4) Token bucket depth - bytes

232 E8 BINARY(4) Peak data rate - bytes per second

236 EC BINARY(4) Minimum policed unit - bytes

240 F0 BINARY(4) Maximum packet size - bytes

244 F4 BINARY(4) Total connections serviced - connections

248 F8 BINARY(4) Total packets transmitted - packets

252 FC BINARY(4) Total bytes transmitted - bytes

256 100 BINARY(4) Total in profile packets - packets

260 104 BINARY(4) Total in profile bytes - bytes

QOSM0150 Format

The QOSM0150 format includes the basic format of Integrated Services (IntServ) controlled load, and

IntServ controlled load with Differentiated Services (DiffServ) markings. For detailed descriptions of the

fields in this table, see “Field Descriptions” on page 13.

 Offset

Type Field Dec Hex

0 0 CHAR(128) Policy name

128 80 CHAR(14) Time stamp

142 8E CHAR(2) Reserved - alignment

144 90 BINARY(4) Protocol

6 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

Offset

Type Field Dec Hex

148 94 CHAR(15) Source IP address - dotted decimal

163 A3 CHAR(15) Destination IP address - dotted decimal

178 B2 CHAR(2) Reserved - alignment

180 B4 BINARY(4) Source port (start)

184 B8 BINARY(4) Destination port (start)

188 BC BINARY(4) Token bucket rate - kbits per second

192 C0 BINARY(4) Token bucket depth - kbits

196 C4 BINARY(4) Peak data rate - kbits per second

200 C8 BINARY(4) Minimum policed unit - kbits

204 CC BINARY(4) Maximum packet size -kbits

208 D0 BINARY(8) Total packets transmitted long - packets

216 D8 BINARY(8) Total kbits transmitted long - kbits

224 E0 BINARY(8) Total in profile packets long - packets

232 E8 BINARY(8) Total in profile kbits long - kbits

240 F0 BINARY(4) Duration - seconds

244 F4 BINARY(4) Policy handle identifier

248 F8 BINARY(4) Offset to additional information

252 FC BINARY(4) Length of additional information

QOSM0200 Format

The QOSM0200 format includes the basic format of IntServ guaranteed rate and IntServ guaranteed rate

with DiffServ markings (both). For detailed descriptions of the fields in this table, see “Field

Descriptions” on page 13.

 Offset

Type Field Dec Hex

0 0 Returns everything from QOSM0100

264 108 BINARY(4) Guaranteed rate - bytes per second

268 10C BINARY(4) Slack term - second

QOSM0250 Format

The QOSM0250 format includes the basic format of IntServ guaranteed rate and IntServ guaranteed rate

with DiffServ markings (both). For detailed descriptions of the fields in this table, see “Field

Descriptions” on page 13.

 Offset

Type Field Dec Hex

 Offset from format QOSM0150

0 0 BINARY(4) Guaranteed rate - kbits per second

4 4 BINARY(4) Slack term - second

Resource Reservation Setup Protocol APIs 7

QOSM0300 Format

The QOSM0300 format includes the basic format of DiffServ per hop behavior. For detailed descriptions

of the fields in this table, see “Field Descriptions” on page 13.

 Offset

Type Field Dec Hex

0 0 CHAR(128) Policy name

128 80 CHAR(14) Time stamp

142 8E CHAR(2) Reserved - alignment

144 90 BINARY(4) Priority

148 94 BINARY(4) Protocol

152 98 CHAR(15) Source IP address (start) - dotted decimal

167 A7 CHAR(15) Destination IP address (start) - dotted decimal

182 B6 CHAR(15) Source IP address (end) - dotted decimal

197 C5 CHAR(15) Destination IP address (end) - dotted decimal

212 D4 BINARY(4) Source port (start)

216 D8 BINARY(4) Destination port (start)

220 DC BINARY(4) Source port (end)

224 E0 BINARY(4) Destination port (end)

228 E4 BINARY(4) Token bucket rate - bytes per second

232 E8 BINARY(4) Token bucket depth - bytes

236 EC BINARY(4) Peak data rate - bytes per second

240 F0 CHAR(1) InDSCP

241 F1 CHAR(1) OutDSCP

242 F2 CHAR(2) Reserved - alignment

244 F4 BINARY(4) Total packets transmitted - packets

248 F8 BINARY(4) Total bytes transmitted - bytes

252 FC BINARY(4) Total in profile packets - packets

256 100 BINARY(4) Total in profile bytes - bytes

260 104 BINARY(4) Total active connections - connections

264 108 BINARY(4) Traffic profile

QOSM0350 Format

The QOSM0350 format includes the basic format of DiffServ per hop behavior. For detailed descriptions

of the fields in this table, see “Field Descriptions” on page 13.

 Offset

Type Field Dec Hex

0 0 CHAR(128) Policy name

128 80 CHAR(14) Time stamp

8 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

Offset

Type Field Dec Hex

142 8E CHAR(2) Reserved - alignment

144 90 BINARY(4) Priority

148 94 BINARY(4) Protocol

152 98 CHAR(15) Source IP address (start) - dotted decimal

167 A7 CHAR(15) Destination IP address (start) - dotted decimal

182 B6 CHAR(15) Source IP address (end) - dotted decimal

197 C5 CHAR(15) Destination IP address (end) - dotted decimal

212 D4 BINARY(4) Source port (start)

216 D8 BINARY(4) Destination port (start)

220 DC BINARY(4) Source port (end)

224 E0 BINARY(4) Destination port (end)

228 E4 BINARY(4) Token bucket rate - kbits per second

232 E8 BINARY(4) Token bucket depth - kbits

236 EC BINARY(4) Peak data rate - kbits per second

240 F0 CHAR(1) InDSCP

241 F1 CHAR(1) OutDSCP

242 F2 CHAR(2) Reserved - alignment

244 F4 BINARY(8) Total packets transmitted long - packets

252 FC BINARY(8) Total kbits transmitted long - kbits

260 104 BINARY(8) Total in profile packets long - packets

268 10C BINARY(8) Total in profile kbits long - kbits

276 114 BINARY(8) Total active connections long - connections

284 11C BINARY(4) Traffic profile

288 120 BINARY(4) Duration - seconds

292 124 BINARY(4) Policy handle identifier

AGGR0100 Format

The AGGR0100 format includes the basic format of IntServ controlled load and IntServ controlled load

with DiffServ markings, and is used for aggregated trace data only. For detailed descriptions of the fields

in this table, see “Field Descriptions” on page 13.

 Offset

Type Field Dec Hex

0 0 CHAR(128) Policy name

128 80 BINARY(4) Token bucket rate - bytes per second

132 84 BINARY(4) Total connects serviced - connections

136 88 BINARY(4) Total packets transmitted - packets

140 8C BINARY(4) Total bytes transmitted - bytes

144 90 BINARY(4) Total in profile packets - packets

148 94 BINARY(4) Total in profile bytes - bytes

Resource Reservation Setup Protocol APIs 9

Offset

Type Field Dec Hex

152 98 CHAR(14) Start time

166 A6 CHAR(14) End time

AGGR0150 Format

The AGGR0150 format includes the basic format of IntServ controlled load and IntServ controlled load

with DiffServ markings, and is used for aggregated trace data only. For detailed descriptions of the fields

in this table, see “Field Descriptions” on page 13.

 Offset

Type Field Dec Hex

0 0 CHAR(128) Policy name

128 80 BINARY(4) Token bucket rate - kbits per second

132 84 BINARY(4) Total connections serviced - connections

136 88 BINARY(8) Total packets transmitted long - packets

144 90 BINARY(8) Total kbits transmitted long - kbits

152 98 BINARY(8) Total in profile packets long - packets

160 A0 BINARY(8) Total in profile kbits long - kbits

168 A8 CHAR(14) Start time

182 B6 CHAR(14) End time

196 C4 BINARY(4) Offset to additional information

200 C8 BINARY(4) Length of additional information

AGGR0200 Format

The AGGR0200 format includes the basic format of IntServ guaranteed rate and IntServ guaranteed rate

with DiffServ markings, and is used for aggregated trace data only. For detailed descriptions of the fields

in this table, see “Field Descriptions” on page 13.

 Offset

Type Field Dec Hex

 Returns everything from AGGR0100

180 B4 BINARY(4) Guaranteed rate - bytes per second

184 B8 BINARY(4) Actual calculated rate - bytes per second

AGGR0250 Format

The AGGR0250 format includes the basic format of IntServ guaranteed rate and IntServ guaranteed rate

with DiffServ markings, and is used for aggregated trace data only. For detailed descriptions of the fields

in this table, see “Field Descriptions” on page 13.

10 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

Offset

Type Field Dec Hex

 Offset from format AGGR0150

0 0 BINARY(4) Guaranteed rate - kbits per second

4 4 BINARY(4) Actual calculated rate - kbits per second

AGGR0300 Format

The AGGR0300 Format includes the basic format of IntServ controlled load and IntServ controlled load

with DiffServ markings, and is used for aggregated trace data only. For detailed descriptions of the fields

in this table, see “Field Descriptions” on page 13.

 Offset

Type Field Dec Hex

0 0 CHAR(128) Policy name

128 80 BINARY(4) Token bucket rate - bytes per second

132 84 BINARY(4) Token bucket depth - bytes

136 88 CHAR(1) InDSCP

137 89 CHAR(1) OutDSCP

138 8A CHAR(2) Reserved - alignment

140 8C BINARY(4) Total active connections - connections

144 90 BINARY(4) Total packets transmitted - packets

148 94 BINARY(4) Total bytes transmitted - bytes

152 98 BINARY(4) Total in profile packets - packets

156 9C BINARY(4) Total in profile bytes - bytes

160 A0 BINARY(4) Traffic profile

164 A4 CHAR(14) Start time

178 B2 CHAR(14) End time

AGGR0350 Format

The AGGR0350 Format includes the basic format of IntServ controlled load and IntServ controlled load

with DiffServ markings, and is used for aggregated trace data only. For detailed descriptions of the fields

in this table, see “Field Descriptions” on page 13.

 Offset

Type Field Dec Hex

0 0 CHAR(128) Policy name

128 80 BINARY(4) Token bucket rate - kbits per second

132 84 BINARY(4) Token bucket depth - kbits

136 88 CHAR(1) InDSCP

137 89 CHAR(1) OutDSCP

138 8A CHAR(2) Reserved - alignment

140 8C BINARY(8) Total active connections long - connections

Resource Reservation Setup Protocol APIs 11

Offset

Type Field Dec Hex

148 94 BINARY(8) Total packets transmitted long - packets

156 9C BINARY(8) Total kbits transmitted long - kbits

164 A4 BINARY(8) Total in profile packets long - packets

172 AC BINARY(8) Total in profile kbits long - kbits

180 B4 BINARY(4) Traffic profile

184 B8 CHAR(14) Start time

198 C6 CHAR(14) End time

INBC0100 Format

The INBC0100 Format includes connection information related to inbound IP policies. For detailed

descriptions of the fields in this table, see “Field Descriptions” on page 13.

 Offset

Type Field Dec Hex

0 0 CHAR(128) Policy name

128 80 CHAR(14) Time stamp

142 8E CHAR(2) Reserved - alignment

144 90 BINARY(4) Priority

148 94 CHAR(15) Source IP address (start) - dotted decimal

163 A3 CHAR(15) Destination IP address (start) - dotted decimal

178 B2 CHAR(15) Source IP address (end) - dotted decimal

193 C1 CHAR(15) Destination IP address (end) - dotted decimal

208 D0 BINARY(4) Source port (start)

212 D4 BINARY(4) Destination port (start)

216 D8 BINARY(4) Source port (end)

220 DC BINARY(4) Destination port (end)

224 E0 BINARY(4) Average connection rate - connections per second

228 E4 BINARY(4) Connection burst - connections

232 E8 BINARY(4) Peak connection rate - connections per second

236 EC BINARY(4) Prioritized queue

240 F0 BINARY(8) Total connections transmitted - connections

248 F8 BINARY(8) Total in profile connections - connections

256 100 BINARY(4) Duration - seconds

260 104 BINARY(4) Policy handle identifier

INBC0200 Format

The INBC0200 Format includes connection information related to URI inbound policies. For detailed

descriptions of the fields in this table, see “Field Descriptions” on page 13.

12 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

Offset

Type Field Dec Hex

0 0 CHAR(128) Policy name

128 80 CHAR(14) Time stamp

142 8E CHAR(2) Reserved - alignment

144 90 BINARY(4) Priority

148 94 CHAR(15) Destination IP address (start) - dotted decimal

163 A3 CHAR(15) Destination IP address (end) - dotted decimal

178 B2 CHAR(2) Reserved - alignment

180 B4 BINARY(4) Destination port (start)

184 B8 BINARY(4) Average URI rate - URIs per second

188 BC BINARY(4) URI burst - number of URIs

192 C0 BINARY(4) Peak URI rate - URIs per second

196 C4 BINARY(4) Prioritized queue

200 C8 BINARY(8) Total URIs transmitted - number of URIs

208 D0 BINARY(8) Total in profile URIs - number of URIs

216 D8 BINARY(4) Duration - seconds

220 DC BINARY(4) Policy handle identifier

224 E0 CHAR(128) URI name

Field Descriptions

The field descriptions returned by this API for the various format types follows.

Actual calculated rate.. Actual calculated rate in bytes per second.

Average connection rate - connections per second. The average number of new requests (connections)

admitted per second.

Average URI rate - URIs per second. The average number of new URIs admitted per second.

Connection burst - number of connections. The maximum number of new requests (connections)

accepted concurrently.

Destination IP address (end). The end of destination IP address range. IP address is in dotted decimal

format.

Destination IP address (start). The start of the destination IP address range. IP address is in dotted

decimal format. This value will be used if only one destination IP address is selected

Destination port (end). The end of the destination port range.

Destination port (start) The start of the destination port range. This value is used if only one port is

selected

Duration. The Duration is the amount of time between the last query and the present qurey. This value is

only set for Collected date.

Resource Reservation Setup Protocol APIs 13

End time. The ending time over which the aggregation was performed.

Guaranteed rate - bytes per second. The guaranteed rate in bytes per second.

InDSCP. The field used to select the per hop behavior (PHB) a packet will experience at each node.

Maximum packet size - bytes. The largest datagram that conforms to the traffic specifications.

Minimum policed unit - bytes. The smallest number of bytes that will be removed from the token

bucket.

OutDSCP. The field used to select the per hop behavior (PHB) a packet will experience at each node.

Peak connection rate - connections per second. The maximum allowable rate at which the source can

inject connections into the network.

Peak data rate - bytes per second. The maximum rate at which the source and any reshaping point may

inject burst of traffic into the network.

Peak URI rate - URI per second. The maximum allowable rate at which the source can inject connections

into the network.

Policy handle identifier. Is a unique handle for any given policy.

Policy name. The name of the policy with which the data is associated.

Priority. The priority assigned to each rule loaded in the QoS Manager.

Prioritized queue - The order the listen queue of the server processes incoming connections.

Protocol. The message protocol. Protocols may include:

 6 TCP

17 UDP

255 RAW

Reserved - alignment. An ignored field.

Slack term - seconds. The difference between the desired delay and the delay obtained.

Source IP address (end). The end of the source IP address range. IP address is in dotted decimal format.

Source IP address (start). The start of the source IP address range. IP address is in dotted decimal format.

This value is used if only one source IP address is selected

Source port (end). The end of the source port range.

Source port (start). The start of the source port range. This value is used if only one port is selected

Start time. The starting time over which the aggregation was performed.

Time stamp. The date and time the data was retrieved from the QoS Manager. The time is formatted

with a 24-hour clock, and is in the format YYYYMMDDHHMMSS.

Token bucket depth - bytes. The number of tokens that can be stored in a given bucket.

14 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

Token bucket rate - bytes per second. The rate at which tokens can be sent into the network.

Total active connections. The total number of active connections.

Total active connections long - connections The total number of active connections. If this value is

greater then 4,294,967,295 then the counter will wrap and start back at 1.

Total bytes transmitted - bytes. The total number of bytes transmitted. If this value is greater then

4,294,967,295 then the counter will wrap and start back at 1.

Total bytes transmitted long - bytes The total number of bytes transmitted.

Total connections serviced - number of connections. The total number of connections serviced.

Total connections transmitted - number of connections The total number of bytes transmitted.

Total in profile bytes - bytes. The total number of bytes transmitted in the profile. If this value is greater

then 4,294,967,295 then the counter will wrap and start back at 1.

Total in profile bytes long - bytes The total number of bytes transmitted in profile.

Total in profile connections - connections. The total number of connection in the profile.

Total in profile packets - number of packets. The total number of in profile packets transmitted. If this

value is greater then 4,294,967,295 then the counter will wrap and start back at 1.

Total in profile packets long - number of packets The total number of in profile packets transmitted.

Total in profile URIs - number of URIs. Total number of in profile URIs transmitted.

Total packets transmitted - number of packets. The total number of packets transmitted. If this value is

greater then 4,294,967,295 then the counter will wrap and start back at 1.

Total packets transmitted long - number of packets The total number of packets transmitted.

Total URIs transmitted - number of URIs. The total number of URIs transmitted.

Traffic profile. The type of packet conditioning used on out-of-profile packets. The format may include:

 1 Marking

2 Shaping

3 Dropping

4 Single marking

URI burst - number of URIs. The maximum number of new pages accepted concurrently.

URI name. A string of characters that repersents the URI.

Error Messages

 Message ID Error Message Text

TCP9215 E QoS Monitor is active (not a valid state).

CPF0F03 E Error in retrieving the user space that was created by the caller.

CPF24B4 E Severe error while addressing parameter list.

CPF3C1E E Required parameter 1 omitted.

Resource Reservation Setup Protocol APIs 15

Message ID Error Message Text

CPF3C21 E Format name 1 is not valid.

CPF3CF1 E Error code parameter not valid.

CPF9802 E Not authorized to object 2 in 3.

CPF9810 E Library 1 not found.

CPF9820 E Not authorized to use library 1.

CPF9872 E Program or service program 1 in library 2 ended. Reason code 3.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Delete QoS Monitor Data (QtoqDeleteQoSMonitorData) API

 Required Parameter Group:

1 QoS collection name or names

Input Array of Char(10)

2 Length of QoS collection name or names

Input Binary(4)

3 Error code

I/O Char(*)
 Service Program: QSYS/QTOQMONAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The Delete QoS Monitor Data (QtoqDeleteQoSMonitorData) API allows the user to delete one or more

sets of collected QoS monitor data.

Authorities and Locks

Special Authority

*IOSYSCFG

Required Parameter Group

QoS collection name or names

INPUT; CHAR(*)

 The QoS collected name or names is an array of names the user wishes to delete.

Number of QoS collection name or names

INPUT; BINARY(4)

 The length of the QoS collection names array. This value should be in multiples of 10.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

16 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD

Error Messages

 Message ID Error Message Text

CPF3C1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF9810 E Library &1 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

End QoS Monitor (QtoqEndQoSMonitor) API

 Required Parameter Group:

1 Error Code

I/O Char(*)
 Service Program: QSYS/QTOQMONAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The End QoS Monitor (QtoqEndQoSMonitor) API allows the user to stop gathering information related

to QoS services.

Authorities and Locks

Special Authority

*IOSYSCFG

Required Parameter Group

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

TCP9216 E QoS Monitor is not active (not a valid state).

CPF24B4 E Severe error addressing parameter list.

CPF3C1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error (s) occurred during running of &1 API.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Resource Reservation Setup Protocol APIs 17

#TOP_OF_PAGE
unix.htm
aplist.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
unix.htm
aplist.htm

List Saved QoS Monitor Data (QtoqListSavedQoSMonitorData) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 List information

Output Char(80)

4 Number of records to return

Input Binary(4)

5 Format name

Input Char(8)

6 Error code

I/O Char(*)
 Service Program: QSYS/QTOQMONAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The List Saved QoS Monitor Data (QtoqListSavedQoSMonitorData) API allows the user to return a list

of all collected monitor data that was saved previously.

Authorities and Locks

Special Authority

NONE.

Required Parameter Group

Receiver Variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable.

List information

OUTPUT; CHAR(80)

 The variable used to return status information about the list of QoS monitor data that was

opened. For a description of this parameter, see Format of open list information.

Number of returned records

INPUT; BINARY(4)

 The number of records in the list to put into the receiver variable.

18 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

oli.htm

Format name

INPUT; CHAR(8)

 The format of the space information to be returned. The format name supported is:

 QTOQ0100 Returns a list of names which are user spaces that contains QoS Monitor Data.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

QTOQ0100 Format

The QTOQ0100 format includes the complete information for a saved QoS collected data object. For

detailed descriptions of the fields in this table, see Field Descriptions.

 Offset

Type Field Dec Hex

0 0 CHAR(10) QoS collection name

10 A CHAR(50) QoS collection description text

Field Descriptions

QoS collection description text. The QoS collection description text is a user-defined string of characters

that are associated with each QoS collected monitor data.

QoS collection name. The name of each QoS collected monitor data found.

Error Messages

 Message ID Error Message Text

CPF3C1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF9810 E Library &1 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

Resource Reservation Setup Protocol APIs 19

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#HEADER_8
#TOP_OF_PAGE
unix.htm
aplist.htm

Save QoS Monitor Data (QtoqSaveQoSMonitorData) API

 Required Parameter Group:

1 QoS collection name

Output Char(10)

2 Description text

Input Char(50)

3 Error code

I/O Char(*)
 Service Program: QSYS/QTOQMONAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The Save QoS Monitor Data (QtoqSaveQoSMonitorData) API allows the user to save a copy of the

collected QoS monitor data for future use. The user is allowed to apply a description text field to the

saved object of up to 50 characters. The actual name of the object is generated automatically by the API

and returned to the user.

Authorities and Locks

Special Authority

*IOSYSCFG

Required Parameter Group

QoS collection name

OUTPUT; CHAR(10)

 The QoS collection name automatically generated by the save command.

Description Text

INPUT; CHAR(50)

 A user-friendly description of the collected data object that the user wishes to save.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error code

parameter.

Error Messages

 Message ID Error Message Text

CPF3C1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF9810 E Library &1 not found.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

20 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

Start QoS Monitor (QtoqStartQoSMonitor) API

 Required Parameter Group:

1 Wrap

Input Binary(4)

2 Buffer size

Input Binary(4)

3 Granularity

Input Binary(4)

4 Error Code

I/O Char(*)
 Service Program: QSYS/QTOQMONAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The Start QoS Monitor (QtoqStartQoSMonitor) API allows the user to gathering information related to

QoS services.

Authorities and Locks

Special Authority

*IOSYSCFG

Required Parameter Group

Wrap INPUT; BINARY(4)

 Allows the user the option to continuously wrap the data buffer. The following values may be

specified:

 0 Do not wrap the buffer

1 Wrap the buffer

Buffer size

INPUT; BINARY(4)

 The size of the buffer that will contain the user data.

 Note: The buffer size is in kilobytes and can range from 16 to 16384.

Granularity

INPUT; BINARY(4)

 The interval in seconds to update the trace information.

Resource Reservation Setup Protocol APIs 21

#TOP_OF_PAGE
unix.htm
aplist.htm

Note: The granularity is in seconds and can range from 5 to 86400.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

TCP9215 E QoS Monitor is active (not a valid state).

CPF24B4 E Severe error addressing parameter list.

CPF3C1E E Required parameter &1 omitted.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error (s) occurred during running of &1 API.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

qtoq_accept()—Accept QoS Sockets Connection API

 Syntax

 #include <qtoqsapi.h>

 int qtoq_accept(

 int socket_descriptor,

 int req_type,

 struct sockaddr *address,

 int *address_length,

 qos_req *qos_data,

 unsigned int *qos_session,

 int *qos_descriptor,

)

 Service Program Name: QSYS/QTOQSAPI

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

The qtoq_accept() API provides simplified Quality of Service support for connection-oriented sockets

communications between RSVP aware applications on a client and server. The standard accept() sockets

call can be replaced with this API.

Parameters

socket_descriptor

(Input) Required

 An opened socket descriptor that has been bound to the IP address and port from which the

application will accept connection requests.

22 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
unix.htm
aplist.htm

req_type

Input) Required

 The type of QoS service being requested. The possible values are:

 REQ_SIGNAL_RET_EVENTS (1) Use normal RSVP signaling and return RSVP events to the calling program.

REQ_SIGNAL_NORET_EVENTS

(2)

Use normal RSVP signaling without returning events to the calling program.

REQ_NOSIGNAL (3) See if the RSVP rule for the requested connection has been defined as ″no

signaling.″ If yes, then load the requested rule.

address

(Output) Required

 Pointer to a sockaddr structure where the IP address and port of the client requesting the

connection will be stored.

Address_length

(Input/Output) Required

 Pointer to an integer where the size of the address variable is given to the API and the length of

the returned client address will be stored.

qos_data

(Input) Required

 Pointer to a qos_req data structure that defines the type of service being requested and the source

and destination addresses of the request.

 The qos_req data structure is defined as follows:

 typedef struct

{

int service; /* Values can be GUARANTEED_SERV (2)

 or CONTROLLED_LOAD_SERV (5) */

union

 {

 struct CL_spec /* Controlled-Load service */

 {

 float TB_Tspec_r; /* token bucket rate in bytes/sec */

 float TB_Tspec_b; /* token bucket depth in bytes */

 float TB_Tspec_p; /* token bucket peak in bytes/sec */

 unsigned long TB_Tspec_m; /* min policed unit in bytes */

 unsigned long TB_Tspec_M; /* max packet size in bytes */

 } CL_spec;

 struct Guar_spec /* Guaranteed service */

 {

 float Guar_R; /* guaranteed rate in bytes/sec */

 unsigned long Guar_S; /* slack term in microsecs */

 } Guar_spec;

 } spec_u;

} qos_spec_t;

typedef struct

 {

 struct sockaddr dest; /* Destination address/port */

 int d_length; /* Destination address length*/

 struct sockaddr source; /* Source address/port */

 int s_length; /* Source address length */

 int style; /* Style of Reservation. */

 qos_spec_t Spec; /* Flow info */

 unsigned char result; /* API status */

 } qos_req; /* End of QoS request structure */\

Resource Reservation Setup Protocol APIs 23

qos_session

(Output) Required

 Pointer to an integer value where the unique QoS session ID can be stored. This ID is required

for all future QoS API calls.

qos_descriptor

(Output) Optional

 Pointer to an integer where the value of the descriptor that the application can wait on for RSVP

events is stored. This value is set to NULL if it is not used.

Authorities

None.

Return Values

 0 if successful.

-1 if function failed. Errno indicates error reason.

Error Conditions

When qtoq_accept() fails errno can be set to one of the following:

[EBADF]

 Descriptor not valid.

[EFAULT]

 Bad address.

[ECONNABORTED]

 Connection ended abnormally. An accept() was issued on a socket for which receives have been

disallowed (due to a shutdown() call).

 This also could be encountered if time elapsed since a successful Rbind() is greater than the

margin allowed by the associated SOCKS server.

[EFAULT]

 Bad address. System detected an address that was not valid while attempting to access the

address or address_length parameters.

[EINTR]

 Interrupted function call.

[EINVAL]

 Parameter not valid. This error code indicates one of the following:

v The address_length parameter is set to a value that is less than zero, and the address

parameter is set to a value other than a NULL pointer.

v A listen() has not been issued against the socket referenced by the socket_descriptor parameter.

[EIO]

 Input/output error.

[EMFILE]

 Too many descriptions for this process.

24 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

[ENFILE]

 Too many descriptions in system.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

[ENOTSOCK]

 The specified descriptor does not reference a socket.

[EOPNOTSUPP]

 Operation not supported. The socket_descriptor parameter references a socket that does not

support the accept(). The accept() is valid only on sockets that are connection-oriented (for

example, type of SOCK_STREAM).

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EUNKNOWN]

 Unknown system state.

[EWOULDBLOCK]

Operation would have caused the thread to be suspended.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. The application program can choose to be signaled when RSVP events occur or allow the QoS server

to handle the events. If the server handles the events, the application program will not be informed if

the RSVP signaling fails or if the requested reservations have been changed by the network.

2. The REQ_NOSIGNAL request type will be honored only if a policy exists that matches the requested

connection and it is marked as a ″no signaling″ policy. Otherwise, an [ENOTSUPPORT] error will be

returned.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

Resource Reservation Setup Protocol APIs 25

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html
#TOP_OF_PAGE
unix.htm
aplist.htm

qtoq_close()—Close QoS Sockets Connection API

 Syntax

 #include <qtoqsapi.h>

 int qtoq_close(

 int socket_descriptor,

 int *qos_descriptor,

 unsigned int *qos_session,

)

 Service Program Name: QSYS/QTOQSAPI

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

qtoq_close() is called to close the socket and QoS session that was created using the other qtoq_

sockets-type APIs. It performs a standard sockets close(); on the socket descriptor, close the QoS session

for this connection and inform the QoS server that the connection should be closed and the rule

unloaded.

Parameters

socket_descriptor

(Input) Required

 The socket descriptor that was created to perform the TCP/IP communications for this

connection.

qos_descriptor

(Input) Optional

 Pointer to an integer for the value of the descriptor that the application used to wait on QoS

events.

qos_session

(Input) Required

 Pointer to an integer containing the QoS session ID that was returned when the QoS connection

was established.

Authorities

None.

Return Values

 0 if successful.

-1 if function failed. Errno indicates error reason.

Error Conditions

When this function call fails, the errno value is set to one of the following:

[EBADF]

26 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

Descriptor not valid.

[EIO]

 Input/output error.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

[EUNKNOWN]

 Unknown system state.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. The qtoq_close() API must be used in place of the normal close() sockets call in an application using

the QTOQ APIs. If it is not used, the results are unpredictable.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

qtoq_connect()—Make QoS Sockets Connection API

 Syntax

 #include <qtoqsapi.h>

 int qtoq_connect(

 int socket_descriptor,

 struct sockaddr *address,

 int address_length,

 int req_type,

 qos_conn_req *qos_data,

 unsigned int *qos_session,

 int *qos_descriptor,

)

 Service Program Name: QSYS/QTOQSAPI

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

Resource Reservation Setup Protocol APIs 27

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html
#TOP_OF_PAGE
unix.htm
aplist.htm

The qtoq_connect() API provides simplified Quality of Service functionality for connection-oriented

sockets communications between RSVP aware applications on a client and server. The standard connect()

sockets call can be replaced with this API.

Parameters

socket_descriptor

(Input) Required

 An opened socket descriptor that has been bound to the IP address and port from which the

application will accept connection requests.

destination_address

(Input) Required

 A pointer to a sockaddr structure containing the IP address and port of the server to connect to.

address_length

(Input) Required

 Integer containing the length of the destination address structure.

req_type

(Input) Required

 The type of QoS service being requested. The possible values are:

 REQ_SIGNAL_RET_EVENTS(1) Use normal RSVP signaling and return RSVP events to the calling program.

REQ_SIGNAL_NORET_EVENTS(2) Use normal RSVP signaling without returning events to the calling program.

qos_data

(Input) Required

 Pointer to a qos_conn_req data structure that defines the type of service being requested and the

source and destination addresses of the request.

 The qos_conn_req data structure is defined below:

 typedef struct

 {

 int service; ; /* Values can be GUARANTEED_SERV (2)

 or CONTROLLED_LOAD_SERV (5) */

 union

 {

 struct CL_spec /* Controlled-Load service */

 {

 float TB_Tspec_r; /* token bucket rate in bytes/sec */

 float TB_Tspec_b; /* token bucket depth in bytes */

 float TB_Tspec_p; /* token bucket peak in bytes/sec */

 unsigned long TB_Tspec_m; /* min policed unit in bytes */

 unsigned long TB_Tspec_M; /* max packet size in bytes */

 } CL_spec;

 struct Guar_spec /* Guaranteed service */

 {

 float Guar_R; /* guaranteed rate in bytes/sec */

 unsigned long Guar_S; /* slack term in microsecs */

 } Guar_spec;

 } spec_u;

 } qos_spec_t;

 typedef struct

 {

 struct sockaddr source; /* Source address/port */

 int s_length; /* Source address length */

28 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

int style; /* Style of Reservation. */

 qos_spec_t Spec; /* Flow info */

 unsigned char result; /* API status */

 } qos_conn_req; /* End of QoS connection request structure */

qos_session

(Output) Required

 Pointer to an integer value where the unique QoS session ID can be stored. This ID is required

for all future QoS API calls.

qos_descriptor

(Output) Optional

 Pointer to an integer where the value of the descriptor that the application can wait on for RSVP

events is stored. This value is set to NULL if it is not used.

Authorities

None.

Return Values

 0 if successful.

-1 if function failed. Errno indicates error reason.

Error Conditions

When this function call fails, the errno value is set to one of the following:

[EACCES]

 Permission denied. This error code indicates one of the following:

v The process does not have the appropriate privileges to connect to the address pointed to by

the destination_address parameter.

v The socket pointed to by socket_descriptor is using a connection-oriented transport service, and

the destination_address parameter specifies a TCP/IP limited broadcast address (internet

address of all ones).

[EADDRINUSE]

 Address already in use. This error code indicates one of the following:

v The socket_descriptor parameter points to a connection-oriented socket that has been bound to

a local address that contained no wildcard values, and the destination_address parameter

specified an address that matched the bound address.

v The socket_descriptor parameter points to a socket that has been bound to a local address that

contained no wildcard values, and the destination_address parameter (also containing no

wildcard values) specified an address that would have resulted in a connection with an

association that is not unique.

[EADDRNOTAVAIL]

 Address not available. This error code indicates one of the following:

v The socket_descriptor parameter points to a socket with an address family of AF_INET and

either a port was not available or a route to the address specified by the destination_address

parameter could not be found.

[EAFNOSUPPORT]

Resource Reservation Setup Protocol APIs 29

The type of socket is not supported in this protocol family. The address family specified in the

address structure pointed to by the destination_address parameter cannot be used with the socket

pointed to by the socket_descriptor parameter. This error also will be reported if the API is called

with a socket type that is not AF_INET and SOCK_DGRAM or SOCK_STREAM.

[EALREADY]

 Operation already in progress. A previous connect() function had already been issued for the

socket pointed to by the socket_descriptor parameter, and has yet to be completed. This error

code is returned only on sockets that use a connection-oriented transport service.

[EBADF]

 Descriptor not valid.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation. This error occurs when there is

no application that is bound to the address specified by the destination_address parameter.

[EFAULT]

 Bad address. The system detected an address that was not valid while attempting to access the

destination_address parameter.

[EHOSTUNREACH]

 A route to the remote host is not available.

[EINPROGRESS]

 Operation in progress. The socket_descriptor parameter points to a socket that is marked as non

blocking and the connection could not be completed immediately. This error code is returned

only on sockets that use a connection-oriented transport service.

[EINTR]

 Interrupted function call.

[EINVAL]

 Parameter not valid. This error code indicates one of the following:

v The address_length parameter specifies a length that is negative or not valid for the address

family.

v The AF_INET socket is of type SOCK_STREAM, and a previous connect() has already

completed unsuccessfully. Only one connection attempt is allowed on a connection-oriented

socket.

[EIO]

 Input/output error.

[EISCONN]

 A connection has already been established. This error code is returned only on sockets that use a

connection-oriented transport service.

[ENETUNREACH]

 Cannot reach the destination network. This error code indicates the following:

v For sockets that use the AF_INET address family, the address specified by the

destination_address parameter requires the use of a router, and the socket option

SO_DONTROUTE is currently set on.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

30 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

[ENOTDIR]

 Not a directory.

[EOPNOTSUPP]

 Operation not supported.

[ETIMEDOUT]

 A remote host did not respond within the timeout period. This error code is returned when

connection establishment times out. No connection is established. A possible cause may be that

the partner application is bound to the address specified by the destination_address parameter,

but the partner application has not yet issued a listen().

[EUNKNOWN]

 Unknown system state.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EPROTO]

 An underlying protocol error has occurred.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. The qtoq_connect() API can be used to replace the normal connect() sockets call in an application

using connection oriented sockets.

2. The application program can choose to be signaled when RSVP events occur or allow the QoS server

to handle the events. If the server handles the events, the application program will not be informed if

the RSVP signaling fails or if the requested reservations have been changed by the network.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

Resource Reservation Setup Protocol APIs 31

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html
#TOP_OF_PAGE
unix.htm
aplist.htm

qtoq_ioctl()—Set QoS Sockets Control Options API

 Syntax

 #include <qtoqsapi.h>

 int qtoq_ioctl(

 int descriptor,

 int req_type,

 qos_req *qos_data,

 unsigned int *qos_session,

 int *qos_descriptor,

)

 Service Program Name: QSYS/QTOQSAPI

 Default Public Authority: *EXCLUDE

 Threadsafe: Yes

The qtoq_ioctl() API provides simplified Quality of Service functionality for connectionless sockets

communications between RSVP aware applications on a client and server. This API can be used to initiate

RSVP signaling, as well as to determine the status of the RSVP connection. The NO SIGNALLING option

for loading RSVP rules also is supported.

Parameters

descriptor

(Input) Required

 An opened socket descriptor that has been bound to the IP address and port that the application

will use for connectionless communications.

req_type

(Input) Required

 The type of QoS service being requested. The possible values are:

 REQ_SIGNAL_RET_EVENTS(1) Use normal RSVP signaling and return RSVP events to the calling program.

REQ_SIGNAL_NORET_EVENTS(2) Use normal RSVP signaling without returning events to the calling program.

REQ_NOSIGNAL(3) Load specified QoS policy if admission control allows it.

REQ_GET_RSVP_DATA(4) Get the RSVP flowspec that has been returned as the result of an RSVP event.

This request is valid only if a previous REQ_SIGNAL_RET_EVENTS request has

been sent to the server.

qos_data

(Input) Required

 Pointer to a qos_req data structure that defines the type of service being requested and the source

and destination addresses of the request.

 The qos_req data structure is defined below:

 typedef struct

 {

 int service; ; /* Values can be GUARANTEED_SERV (2)

 or CONTROLLED_LOAD_SERV (5) */

 union

 {

32 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

struct CL_spec /* Controlled-Load service */

 {

 float TB_Tspec_r; /* token bucket rate in bytes/sec */

 float TB_Tspec_b; /* token bucket depth in bytes */

 float TB_Tspec_p; /* token bucket peak in bytes/sec */

 unsigned long TB_Tspec_m; /* min policed unit in bytes */

 unsigned long TB_Tspec_M; /* max packet size in bytes */

 } CL_spec;

 struct Guar_spec /* Guaranteed service */

 {

 float Guar_R; /* guaranteed rate in bytes/sec */

 unsigned long Guar_S; /* slack term in microsecs */

 } Guar_spec;

 } spec_u;

 } qos_spec_t;

typedef struct

 {

 struct sockaddr dest; /* Destination address/port */

 int d_length; /* Destination address length*/

 struct sockaddr source; /* Source address/port */

 int s_length; /* Source address length */

 int style; /* Style of Reservation. */

 qos_spec_t Spec; /* Flow info */

 unsigned char result; /* API status */

 } qos_req; /* End of QoS request structure */

qos_session

(Output) Required

 Pointer to an integer value where the unique QoS session ID can be stored. This ID is required

for all future QoS API calls.

qos_descriptor

(Output) Optional

 Pointer to an integer where the value of the descriptor that the application can wait on for RSVP

events is stored. this value is set to NULL if it is not used.

Authorities

None.

Return Values

 0 if successful.

-1 if function failed. Errno indicates error reason.

Error Conditions

When this function call fails, the errno value is set to one of the following:

[EACCES]

 Permission denied. This error code indicates one of the following:

v The process does not have the appropriate privileges to connect to the address pointed to by

the destination_address parameter.

v The socket pointed to by socket_descriptor is using a connection-oriented transport service,

and the destination_address parameter specifies a TCP/IP limited broadcast address (internet

address of all ones).

[EADDRINUSE]

Resource Reservation Setup Protocol APIs 33

Address already in use. This error code indicates one of the following:

v The socket_descriptor parameter points to a connection-oriented socket that has been bound to

a local address that contained no wildcard values, and the destination_address parameter

specified an address that matched the bound address.

v The socket_descriptor parameter points to a socket that has been bound to a local address that

contained no wildcard values, and the destination_address parameter (also containing no

wildcard values) specified an address that would have resulted in a connection with an

association that is not unique.

[EADDRNOTAVAIL]

 Address not available. This error code indicates one of the following:

v The socket_descriptor parameter points to a socket with an address family of AF_INET and

either a port was not available or a route to the address specified by the destination_address

parameter could not be found.

[EAFNOSUPPORT]

 The type of socket is not supported in this protocol family. The address family specified in the

address structure pointed to by destination_address parameter cannot be used with the socket

pointed to by the socket_descriptor parameter. This error also will be reported if the API is called

with a socket type that is not AF_INET and SOCK_DGRAM or SOCK_STREAM.

[EALREADY]

 Operation already in progress. A previous connect() function had already been issued for the

socket pointed to by the socket_descriptor parameter, and has yet to be completed. This error

code is returned only on sockets that use a connection-oriented transport service.

[EBADF]

 Descriptor not valid.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation. This error occurs when there is

no application that is bound to the address specified by the destination_address parameter.

[EFAULT]

 Bad address. The system detected an address which was not valid while attempting to access the

destination_address parameter.

[EHOSTUNREACH]

 A route to the remote host is not available.

[EINPROGRESS]

 Operation in progress. The socket_descriptor parameter points to a socket that is marked as non

blocking and the connection could not be completed immediately. This error code is returned

only on sockets that use a connection-oriented transport service.

[EINTR]

 Interrupted function call.

[EINVAL]

 Parameter not valid. This error code indicates one of the following:

v The address_length parameter specifies a length that is negative or not valid for the address

family.

v The AF_INET socket is of type SOCK_STREAM, and a previous connect() has already

completed unsuccessfully. Only one connection attempt is allowed on a connection-oriented

socket.

34 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

[EIO]

 Input/output error.

[EISCONN]

 A connection has already been established.

 This error code is returned only on sockets that use a connection-oriented transport service.

[ENETUNREACH]

 Cannot reach the destination network. This error code indicates the following:

v For sockets that use the AF_INET address family, the address specified by the

destination_address parameter requires the use of a router, and the socket option

SO_DONTROUTE is currently set on.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

[ENOTDIR]

 Not a directory.

[EOPNOTSUPP]

 Operation not supported.

[ETIMEDOUT]

 A remote host did not respond within the timeout period. This error code is returned when

connection establishment times out. No connection is established. A possible cause may be that

the partner application is bound to the address specified by the destination_address parameter,

but the partner application has not yet issued a listen().

[EUNKNOWN]

 Unknown system state.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EPROTO]

 An underlying protocol error has occurred.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. The application program can choose to be signaled when RSVP events occur or it can choose to allow

the QoS server to handle the events. If the server handles the events, the application program will not

be informed if the RSVP signaling failed or if the requested reservations was changed by the network.

Resource Reservation Setup Protocol APIs 35

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

rapi_dispatch()—Dispatch the RAPI message-handling routine

 Syntax

 #include <rapi.h>

 int rapi_dispatch(void)

 Service program name: QSYS/QTOQRAPI

Default public authority: *EXCLUDE

 Threadsafe: Yes

The rapi-dispatch() API dispatches the RAPI message-handling routine defined in the rapi_session() call.

The application should call this routine whenever a read event is signaled on a file descriptor returned by

the rapi_getfd() API call. This routine may be called at any time, but generally it has no effect unless

there is a pending event.

Calling this routine may result in one or more RAPI message-handling routines to the application from

any of the Open API sessions known to this instance of the library.

Parameters

None.

Authorities

None.

Return Value

Returns 0 if successful.

RAPI error code if it fails.

Error Conditions

[RAPI_ERR_NORSVP]

 RSVP server was not detected. Make sure the RSVP server is running.

[RAPI_ERR_MEMFULL]

 Unable to allocate memory. Check the system memory status.

[RAPI_ERR_INVAL]

36 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html
#TOP_OF_PAGE
unix.htm
aplist.htm

Error detected in the RSVP specifications being handled by the RAPI message-handling routine.

Usage Notes

The rapi_session() API must be called to create a valid session before this API is called. This API

typically is called to respond to an event received on the file descriptor returned by the rapi_getfd() API

call.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

rapi_fmt_adspec()—Format a RAPI Adspec

 Syntax

 #include <rapi.h>

 void rapi_fmt_addspec(

 rapi_adspec_t *pAdspec,

 char *pBuffer,

 int size

)

 Service program name: QSYS/QTOQRAPI

Default public authority: *EXCLUDE

 Threadsafe: Yes

The rapi_fmt_adspec() API formats a RAPI Adspec into a string suitable for printing by converting the

RAPI Adspec information that has been passed to the API into a string in the supplied buffer. The

Adspec is a data element in the RSVP ″path″ message that carries a package of OPWA advertising

information. This information contains data about the available end-to-end service available to the

receivers of data and can be used to predict what service is available. The output string is truncated if the

length of the string exceeds the buffer size.

Parameters

pAdspec

(Input) Required
A pointer to the Adspec to be formatted.

Resource Reservation Setup Protocol APIs 37

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html
http://www.opengroup.org/publications/catalog/c809.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

pBuffer

(Input/Output) Required
A pointer to the buffer to be used.

size (Input) Required
The length of the supplied buffer.

Authorities

None.

Return Value

None.

Error Conditions

None.

Usage Notes

This API can be used to format the contents of the Adspec information that has been to the API into a

string that can be displayed at the local output device.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

rapi_fmt_filtspec()—Format a RAPI Filter spec

 Syntax

 #include <rapi.h>

 void rapi_fmt_filtspec(

 rapi_filter_t *pFiltspec,

 char *pBuffer,

 int size)

 Service program name: QSYS/QTOQRAPI

Default public authority: *EXCLUDE

 Threadsafe: Yes

The rapi_fmt_filtspec() API formats a RAPI Filter spec into a string suitable for printing by converting

the RAPI filtspec information that has been passed to the API into a string in the buffer that has been

38 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html
http://www.opengroup.org/publications/catalog/c809.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

passed to the API. The filtspec defines the set of data packets that should receive the QoS defined in the

flowspec. The output string is truncated if the length exceeds the buffer size.

Parameters

pFiltspec

(Input) Required
A pointer to the filter spec structure to be formatted.

pBuffer

(Input/Output) Required
A pointer to the buffer to be used.

size (Input) Required
The length of the supplied buffer.

Authorities

None.

Return Value

None.

Error Conditions

None.

Usage Notes

This API can be used to format the contents of the filter spec information that has been passed to the API

into a string that can be displayed at the local output device.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Resource Reservation Setup Protocol APIs 39

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html
http://www.opengroup.org/publications/catalog/c809.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

rapi_fmt_flowspec()—Format a RAPI Flowspec

 Syntax

 #include <rapi.h>

 void rapi_fmt_flowspec(

 rapi_flowspec_t *pFlowspec,

 char *pBuffer,

 int size)

 Service program name: QSYS/QTOQRAPI

Default public authority: *EXCLUDE

 Threadsafe: Yes

The rapi_fmt_flowspec() API formats a RAPI Flowspec into a string suitable for printing by converting

the RAPI flowspec information that has been passed to the API into a character string in the buffer that

was passed to the API. The flowspec defines the QoS that is to be provided to the data flow. The output

string is truncated if the length of the string exceeds the buffer size.

Parameters

pFlowspec

(Input) Required
A pointer to the flowspec to be formatted.

pBuffer

(Input/Output) Required
A pointer to the buffer to be used.

size (Input) Required
The length of the supplied buffer.

Authorities

None.

Return Value

None.

Error Conditions

None.

Usage Notes

This API can be used to format the contents of the Flowspec information that has been passed to the API

into a string that can be displayed at the local output device.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

40 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html

Complete documentation of the RAPI APIs can be found at The Open Group.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

rapi_fmt_tspec()—Format a RAPI Tspec

 Syntax

 #include <rapi.h>

 void rapi_fmt_tspec(

 rapi_tspec_t *pTspec,

 char *pBuffer,

 int size)

 Service program name: QSYS/QTOQRAPI

Default public authority: *EXCLUDE

 Threadsafe: Yes

The rapi_fmt_tspec() formats a RAPI Tspec into a string suitable for printing by converting the RAPI

Tspec information that has been passed to the API into a string in the buffer that has been passed to the

API. The Tspec defines the traffic parameter set that defines a flow. The output string is truncated if the

length of the string exceeds the buffer size.

Parameters

pTspec (Input) Required
A pointer to the Tspec to be formatted.

pBuffer

(Input/Output) Required
A pointer to the buffer to be used.

size (Input) Required
The length of the supplied buffer.

Authorities

None.

Return Value

None.

Error Conditions

None.

Usage Notes

This API can be used to format the contents of the Tspec information that has been passed to the API into

a string that can be displayed at the local output device.

Resource Reservation Setup Protocol APIs 41

http://www.opengroup.org/publications/catalog/c809.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

rapi_getfd()—Get descriptor to wait on

 Syntax

 #include <rapi.h>

 int rapi_getfd(rapi_sid_t SessID)

 Service program name: QSYS/QTOQRAPI

Default public authority: *EXCLUDE

 Threadsafe: Yes

The rapi_getfd() API returns the file descriptor associated with a successful rapi_session() call. This

descriptor is valid until rapi_release() has been called. When a read event is signaled on this file

descriptor, the application should userapi_dispatch() to call the RAPI message-handling routine to handle

the event.

Parameters

SessID

(Input) Required
The session ID returned by a successful rapi_session() call.

Authorities

None.

Return Value

Returns a valid file descriptor if the SessID is valid.

Returns -1 if the SessID is not valid.

Error Conditions

None.

42 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html
http://www.opengroup.org/publications/catalog/c809.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Usage Notes

The returned file descriptor can be used to wait on a select() or poll() call; it also can be used to wait on a

select() call for a response from an API request. When the response is received, the rapi_dispatch() API

can be used to call the RAPI message-handling routine defined in the rapi_session() call.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

rapi_release()—Release the currently active RAPI reservation

 Syntax

 #include <rapi.h>

 int rapi_release(rapi_sid_t SessID)

 Service program name: QSYS/QTOQRAPI

Default public authority: *EXCLUDE

 Threadsafe: Yes

The rapi_release() API releases the RAPI reservation that is active currently and closes the open sessions.

This call is made implicitly if the application terminates without closing its RSVP sessions.

Parameters

SessID

(Input) Required
The session ID returned by a successful rapi_session() call.

Authorities

None.

Return Value

Returns 0 if successful.

Returns a RAPI error code if not successful.

Resource Reservation Setup Protocol APIs 43

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html
http://www.opengroup.org/publications/catalog/c809.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Error Conditions

[RAPI_ERR_BADSID]

 The session ID passed to the API did not correspond to a valid RAPI session.

[RAPI_ERR_NORSVP]

 The RSVP server was not detected. Make sure the server has been started.>

Usage Notes

1. The rapi_session() API must be called to establish a session ID to be used with the other RAPI APIs.

2. The RSVP server must be running before any of the RAPI APIs are called.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

rapi_reserve()—Make, modify, or delete a RAPI reservation

 Syntax

 #include <rapi.h>

 int rapi_reserve(

 rapi_sid_t SessID,

 int flags,

 rapi_addr_t *SessAddr,

 rapi_styleid_t style,

 rapi_stylex_t *style_ext,

 rapi_policy_t *RcvPol,

 int numFilt,

 rapi_filter_t *FspecLst,

 int numFlow,

 rapi_flowspec_t *Flowlst)

 Service program name: QSYS/QTOQRAPI

Default public authority: *EXCLUDE

 Threadsafe: Yes

The RSVP receiver uses the the rapi_reserve() API to make, modify, or delete an RSVP reservation in the

network. This call causes an RSVP RESERVE message to be sent to the sender through the network. This

API should be called after a PATH message has been received from the sender.

44 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html
http://www.opengroup.org/publications/catalog/c809.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

SessID

(Input) Required
Session ID returned by a successful rapi_session() call.

flags (Input) Required
Set to 0 if not used.
RAPI_REQ_CONFIRM 32

v Requests confirmation of the reservation by means of a confirmation RAPI message-handling

routine (type RAPI_RESV_CONFIRM).

SessAddr

(Input) Required
A pointer to a rapi_addr_t structure that defines the interface address to receive data for multicast

flows. If omitted or the host address is INADDR_ANY, the default interface is assumed. It is set

to 0 if not used.

style (Input) Required
A reservation style ID (see table below).

style_ext

(Input) Optional
A pointer to a style-dependent extension to the parameter list if there is one. Otherwise, it is

NULL.

RcvPol

(Input) Optional
A pointer to a policy data structure. It is set to NULL if not used.

NumFilt

(Input) Required
The number of filter specs. If the NumFilt parameter is 0, the FspecLst parameter is ignored.

FspecLst

(Input) Optional
A pointer to an area containing a sequential vector of RAPI filter spec objects. It is set to NULL if

not used.

numFlow

(Input) Required
The number of flow specs. If numFlow is zero, the call removes the current reservations for the

specified session and FSpecLst. The FlowLst parameter will be ignored.

FlowLst

(Input) Optional
A pointer to an area containing a sequential vector of RAPI flowspec objects. The number of

objects is specified in the numFlow parameter. If the numFlow parameter is 0, this input is

ignored and should be set to NULL.

RAPI Styles

 Style Type Style ID Description

Wildcard Filter(WF) RAPI_RSTYLE_WILDCARD The Flowspec_list parameter may be

empty (to delete the reservation) or

else point to a single flowspec. The

FilterSpec_list parameter may be

empty or it may point to a single

filter spec containing appropriate

wildcard(s).

Resource Reservation Setup Protocol APIs 45

Style Type Style ID Description

Fixed Filter(FF) RAPI_RSTYLE_FIXED FilterSpecNo must equal

FlowspecNo. Entries Flowspec_list

and FilterSpedc_list parameters will

correspond in pairs.

Shared Explicit(SE) _RSTYLE_SE The Flowspec_list parameter should

point to a single flowspec. The

FilterSpec_list parameter may point

to a list of any length.

Authorities

None.

Return Value

Returns 0 if successful.

RAPI error code if it fails.

Error Conditions

[RAPI_ERR_INVAL]

 One or more of the parameters that was passed to the API was not valid.

[RAPI_ERR_BADSID]

 The session ID that was passed to the API did not correspond to an active RAPI session.

[RAPI_ERR_NORSVP]

 The RSVP server was not detected. Make sure the RSVP server is running.

Usage Notes

If this call is successful, the application RAPI message-handling routine of type RAPI_RESV_ERROR or

RAPI_RESV_CONFIRM may be generated. A rejection of the reservation request or other failure is

reported by an RAPI message-handling routine of type API_RESV_ERROR. An error code of

RSPV_Err_NO_PATH indicates that the RSVP state from one or more of the senders specified in filter_list

has not yet propagated all the way to the receiver; it may also indicate that one or more of the specified

senders has closed its API session and that its RSVP state has been deleted from the routers.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

46 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html
http://www.opengroup.org/publications/catalog/c809.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

rapi_sender()—Identify a RAPI sender

 Syntax

 #include <rapi.h>

 int rapi_sender (

 rapi_sid_t SessID,

 int flags,

 rapi_addr_t *LocalAddr,

 rapi_filter_t *Filter,

 rapi_tspec_t *SndTspec,

 rapi_adspec_t *SndAdspec,

 rapi_policy_t *SndPol,

 int Ttl)

 Service program name: QSYS/QTOQRAPI

Default public authority: *EXCLUDE

 Threadsafe: Yes

The rapi_sender() API identifies an RSVP sender to potential receivers of the data. This API causes an

RSVP path message to be sent to the receiver defined by the SessID value obtained by a rapi_session call.

Parameters

SessID

(Input) Required
The session ID returned by a successful rapi_session() call. A session ID that is not valid will

cause the API to fail.

flags (Input) Required
Either a zero or the following flags may be used.

 2 TC_QOS_POLICE Turn traffic policing on.

4 TC_QOS_NOPOLICE Turn traffic policing off.

8 TC_QOS_SHAPE Turn traffic shaping on.

16 TC_QOS_NOSHAPE Turn traffic shaping off.

LocalAddr

(Input) Optional
A pointer to a rapi_addr_t structure defining the IP source address and, if needed, the source port

or flow label from which data will be sent. It is set to NULL if not used. The format of a

rapi_addr_t is implementation-dependent.

Filter (Input) Optional
A pointer to a RAPI filter spec structure defining the format of the data packets to be sent. It is

set to NULL if not used. If this parameter is NULL, a sender template is created internally from

the Dest and LocalAddr parameters. The Dest parameter was provided as part of the rapi_session()

call. If the Filter parameter is present, the LocalAddr parameter is ignored.

 If the session is using IPSEC, this parameter is required.

Resource Reservation Setup Protocol APIs 47

SndTspec

(Input) Required
A pointer to a Tspec that defines the traffic this sender will create.

SndAdspec

(Input) Optional
A pointer to a RAPI Adspec structure. It is set to NULL if not used.

SndPol

(Input) Optional
A pointer to a sender policy data structure. It is set to NULL if not used.

Ttl (Input) Required
The IP TTL (Time-to-Live) value for sending multicast data. It allows RSVP to send its control

messages with the same TTL scope as the data packets. It is set to 0 if not used.

Authorities

None.

Return Value

Returns 0 if successful.

A RAPI error code is returned if it fails.

Error Conditions

[RAPI_ERR_INVAL]

 A parameter that is not valid was passed to the API.

[RAPI_ERR_BADSID]

 The session ID passed to the API was valid.

[RAPI_ERR_NOTSPEC]

 No sender Tspec was defined for the API call.

[RAPI_ERR_NORSVP]

 The RSVP server did not respond to the API request. Make sure the RSVP server is running.

Usage Notes

1. The rapi_session() API must be called to establish a session ID to be used with the other RAPI API’s.
2. The RSVP server must be running before any of the RAPI APIs are called.
3. The formats of the parameter structures are defined in the <rapi.h> header file.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

48 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html
http://www.opengroup.org/publications/catalog/c809.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

rapi_session()—Create a RAPI session

 Syntax

 #include <rapi.h>

 rapi_sid_t rapi_session(

 rapi_addr_t *Dest,

 int Protid,

 int flags,

 rapi_event_rtn_t Event_rtn,

 void *Event_arg,

 int *errnop)

 Service program name: QSYS/QTOQRAPI

Default public authority: *EXCLUDE

 Threadsafe: Yes

The rapi_session() API returns an API session ID that is unique to this request. This ID is used in calling

the other RAPI APIs to identify which RSVP session is being requested.

Parameters

Dest (Input) Required
A pointer to a rapi_addr_t structure defining the destination IP address and a port number that is

the target of the data. The dest and protid parameters are used to identify an RSVP session. If the

protid specifies UDP or TCP transport, the port value identifies the appropriate transport port

number. The format of the rapi_addr_t structure is implementation-dependent.

Protid (Input) Required
The IP protocol ID for the session. This value can be either 17(UDP) or 6(TCP). If is is zero, then

17(UDP) is assumed.

flags (Input) Required
The flags value is set as follows:

 1 RAPI_USE_INTSERV Currently, the only flag supported. If this flag is set, IntServ formats

are used in the RAPI message-handling routines. I f this flag is not

set, the simplified format is used.

Event_rtn

(Input) Required
A pointer to a RAPI message-handling routine that is called to communicate RSVP errors and

state change events to the calling application. The RAPI message-handling routine is called when

the rapi_dispatch() API is called as the result of events. This pointer is used with select() or

poll(). This routine must be supplied by the application calling the API.

Event_arg

(Input/Output) Optional
An argument data that is passed to the RAPI message-handling routine function when it is called.

It is set to NULL if not used.

Resource Reservation Setup Protocol APIs 49

errnop (Input/Output) Required
A pointer to an integer in which a RAPI error code will be returned.

Authorities

None

Return Value

Successful completion of this function returns a nonzero session handle that can be used in further RAPI

calls for this session. If the call fails, it returns zero (RAPI_NULL_SID) and stores a RAPI error code in

the integer errnop parameter.

Error Conditions

[RAPI_ERR_NORSVP]

 The RSVP server did not respond to the API request. Make sure the RSVP server is running.

[RAPI_ERR_UNSUPPORTED]

 The flags parameter was set to an unsupported value.

[RAPI_ERR_SYSCALL]

 There was a problem calling a system function. Check the system errno for further information.

[RAPI_ERR_INVAL]

 A parameter that is not valid was used in the API call.

[RAPI_ERR_MAXSESS]

 The maximum number of available RAPI sessions has been exceeded.

Usage Notes

1. The rapi_session() API must be called to establish a session ID to be used with the other RAPI APIs.
2. The RSVP server must be running before any of the RAPI APIs are called.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

50 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html
http://www.opengroup.org/publications/catalog/c809.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

rapi_version()—Retrieve the current RAPI version

 Syntax

 #include <rapi.h>

 int rapi_version(void)

 Service program name: QSYS/QTOQRAPI

Default public authority: *EXCLUDE

 Threadsafe: Yes

The rapi_version() API returns the RAPI version currently being used by the RSVP agent.

Parameters

None.

Authorities

None.

Return Value

An integer representing the version number of the RAPI interface. The value defines a major and minor

number that is encoded as “100*major + minor”.

Error Conditions

None.

Usage Note

None.

Related Information

For a description of the RSVP protocol, see RFC 2205 on the RFC Pages for The Internet Engineering Task

Force.

Complete documentation of the RAPI APIs can be found at The Open Group.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Resource Reservation Setup Protocol APIs 51

http://www.ietf.org/rfc.html
http://www.ietf.org/rfc.html
http://www.opengroup.org/publications/catalog/c809.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

52 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 53

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

54 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 55

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

56 iSeries: UNIX-Type -- Resource Reservation Setup Protocol APIs

����

Printed in USA

	Contents
	Resource Reservation Setup Protocol APIs
	APIs
	Open List of QoS Monitor Data (QgyOpenListQoSMonitorData) API
	Authorities and Locks
	Required Parameter Group
	Omissible Parameter Group
	Filter Format Section
	Field Descriptions
	QOSM0100 Format
	QOSM0150 Format
	QOSM0200 Format
	QOSM0250 Format
	QOSM0300 Format
	QOSM0350 Format
	AGGR0100 Format
	AGGR0150 Format
	AGGR0200 Format
	AGGR0250 Format
	AGGR0300 Format
	AGGR0350 Format
	INBC0100 Format
	INBC0200 Format
	Field Descriptions
	Error Messages

	Delete QoS Monitor Data (QtoqDeleteQoSMonitorData) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	End QoS Monitor (QtoqEndQoSMonitor) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	List Saved QoS Monitor Data (QtoqListSavedQoSMonitorData) API
	Authorities and Locks
	Required Parameter Group
	QTOQ0100 Format
	Field Descriptions
	Error Messages

	Save QoS Monitor Data (QtoqSaveQoSMonitorData) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	Start QoS Monitor (QtoqStartQoSMonitor) API
	Authorities and Locks
	Required Parameter Group
	Error Messages

	qtoq_accept()—Accept QoS Sockets Connection API
	Parameters
	Authorities
	Return Values
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	qtoq_close()—Close QoS Sockets Connection API
	Parameters
	Authorities
	Return Values
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	qtoq_connect()—Make QoS Sockets Connection API
	Parameters
	Authorities
	Return Values
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	qtoq_ioctl()—Set QoS Sockets Control Options API
	Parameters
	Authorities
	Return Values
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	rapi_dispatch()—Dispatch the RAPI message-handling routine
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	rapi_fmt_adspec()—Format a RAPI Adspec
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	rapi_fmt_filtspec()—Format a RAPI Filter spec
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	rapi_fmt_flowspec()—Format a RAPI Flowspec
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	rapi_fmt_tspec()—Format a RAPI Tspec
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	rapi_getfd()—Get descriptor to wait on
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	rapi_release()—Release the currently active RAPI reservation
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	rapi_reserve()—Make, modify, or delete a RAPI reservation
	Parameters
	RAPI Styles
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	rapi_sender()—Identify a RAPI sender
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	rapi_session()—Create a RAPI session
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	rapi_version()—Retrieve the current RAPI version
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Note
	Related Information

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

