
iSeries

UNIX-Type -- XA APIs

Version 5 Release 3

ERserver

���

iSeries

UNIX-Type -- XA APIs

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 43.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

XA APIs 1

Restrictions 2

XA APIs for Transaction Scoped Locks 3

Notes 4

APIs 4

xa_close()— Close an XA Resource Manager

(Transaction Scoped ,Locks) 5

Parameters 5

Authorities 5

Return Value 5

Error Messages 6

Related Information 6

Example 6

xa_commit()— Commit an XA Transaction Branch

(Transaction Scoped Locks 6

Parameters 7

Authorities 7

Return Value 7

Error Messages 8

Related Information 8

Example 8

xa_complete()—Test Completion of Asynchronous XA

Request (Transaction Scoped Locks) 9

Parameters 9

Authorities 9

Return Value 9

Error Messages 10

Related Information 10

xa_end()—End Work on an XA Transaction Branch

(Transaction Scoped Locks) 10

Parameters 10

Authorities 11

Return Value 11

Error Messages 12

Related Information 12

Example 12

xa_forget()— Forget an XA Transaction Branch

(Transaction Scoped Locks) 13

Parameters 13

Authorities 13

Return Value 13

Error Messages 14

Related Information 14

Example 14

xa_open()—Open an XA Resource Manager

(Transaction Scoped Locks) 14

Parameters 15

Authorities 15

Return Value 15

Error Messages 15

Usage Notes 15

Related Information 17

Example 17

xa_prepare()— Prepare to Commit an XA

Transaction Branch (Transaction Scoped Locks) . . 18

Parameters 18

Authorities 18

Return Value 18

Error Messages 19

Related Information 19

Example 20

xa_recover()— Recover XA Transaction Branches

(Transaction Scoped Locks) 20

Parameters 20

Authorities 21

Return Value 21

Error Messages 21

Related Information 21

Example 21

xa_rollback()— Roll Back an XA Transaction Branch

(Transaction Scoped Locks) 22

Parameters 22

Authorities 22

Return Value 22

Error Messages 23

Related Information 23

Example 24

xa_start()— Start an XA Transaction Branch

(Transaction Scoped Locks) 24

Parameters 24

Authorities 25

Return Value 25

Error Messages 26

Related Information 26

Example 26

xa_start_2()—Start an XA Transaction Branch,

Extended Version (Transaction Scoped Locks) . . . 27

Example 27

XA APIs for Job Scoped Locks 28

Notes 29

Restrictions for XA APIs for Job Scoped Locks . . 30

APIs 32

db2xa_close()—Close an XA Resource Manager (Job

Scoped Locks) 32

Example 32

db2xa_commit()—Commit an XA Transaction

Branch (Job Scoped Locks) 33

Example 33

db2xa_complete()—Test Completion of

Asynchronous XA Request (Job Scoped Locks) . . . 34

db2xa_end()—End Work on an XA Transaction

Branch (Job Scoped Locks) 34

Example 35

db2xa_forget()—Forget an XA Transaction Branch

(Job Scoped Locks) 35

Example 35

db2xa_open()—Open an XA Resource Manager (Job

Scoped Locks) 36

Authorities 36

Usage Notes 36

SQLHOLD Values 37

Example 39

© Copyright IBM Corp. 1998, 2005 iii

db2xa_prepare()—Prepare to Commit an XA

Transaction Branch (Job Scoped Locks) 39

Example 40

db2xa_recover()—Recover XA Transaction Branches

(Job Scoped Locks) 40

Example 40

db2xa_rollback()—Roll Back an XA Transaction

Branch (Job Scoped Locks) 41

Example 41

db2xa_start()—Start an XA Transaction Branch (Job

Scoped Locks) 42

Appendix. Notices 43

Trademarks 44

Terms and conditions for downloading and printing

publications 45

Code disclaimer information 46

iv iSeries: UNIX-Type -- XA APIs

XA APIs

DB2(R) UDB for iSeries(TM) provides two sets of XA APIs:

v “XA APIs for Transaction Scoped Locks” on page 3

v “XA APIs for Job Scoped Locks” on page 28

Before you use the XA APIs, you should read the following publications, which describe the X/Open

Distributed Transaction Processing model in detail.

v X/Open Guide, February 1996, Distributed Transaction Processing: Reference Model, Version 3

(ISBN:1-85912-170-5, G504), The Open Group.

v X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA Specification

(ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

v X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction

Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

The model consists of five basic components:

v An application program, which defines transaction boundaries and specifies actions that constitute a

transaction.

v Resource managers, such as databases or file access systems, which provide access to resources.

v A transaction manager, which assigns identifiers to transactions, monitors their progress, and takes

responsibility for transaction completion and for coordinating failure recovery.

v Communications resource managers, which control communications between distributed applications

within or across transaction manager domains.

v A communications protocol, which provides the underlying communications between distributed

applications. The protocol is supported by protected resource managers.

This section explains the use of DB2 UDB for iSeries as an X/Open-compliant resource manager, and

therefore is concerned only with the first three components of this model. More specifically, it documents

the XA interface, which is the portion of the XA Distributed Transaction Processing model that transaction

managers and resource managers use to communicate. The XA interface is a bidirectional interface, which

consists of a set of UNIX(R)-type APIs.

The XA specification requires the resource manager to provide a switch that gives the transaction

manager access to these APIs. The switch allows an administrator to change the set of resource managers

that are linked with a program without having to recompile the application. This switch is a data

structure that contains the resource manager’s name, non-null pointers to the resource manager’s APIs, a

flag, and a version word.

DB2 UDB for iSeries provides a switch for each set of XA APIs. Each switch is exported by the

QTNXADTP service program. The switch for the XA APIs for Transaction Scoped Locks is called

xa_switch. The switch for the XA APIs for Job Scoped Locks is called db2xa_switch. The flags in each

switch provide information about the resource manager including the facts that migration of associations

is not supported and asynchronous requests are not allowed. They also contain an array of procedure

pointers that give addressability to the XA APIs. The XA APIs are typically called by a transaction

manager using these pointers rather than by name. This precludes the transaction manager from having

to know the actual function names and from having to link to the service program that actually contains

the functions.

The XA specification requires each resource manager to provide a header file that defines data structures

and constants common to the operation of transaction managers and resource managers. The DB2 UDB

© Copyright IBM Corp. 1998, 2005 1

for iSeries XA resource manager ships two header files in file H, library QSYSINC. Member XA contains a

header file that is compatible with the XA architecture. Member QTNXADTP contains a header file that is

not compatible with the XA architecture. Some of the structure and variable names in header file

QTNXADTP have the prefix “db2.” Either file can be used, but it is recommended that the XA header file

be used rather than the QTNXADTP header file. The examples at the end of the XA APIs assume you use

the XA header file.

If you are running XA transactions against a database that resides on the local system, you should use

the XA APIs for Transaction Scoped Locks. These APIs have fewer restrictions than the XA APIs for Job

Scoped Locks, and provide better performance in the following situations:

v If multiple SQL connections are ever used to work on a single XA transaction branch.

v If a single SQL connection is used to work on multiple, concurrent XA transaction branches.

In these situations, a separate job must be started to run XA transaction branches when the XA APIs for

Job Scoped Locks are used.

If you are running against a database that resides on a remote system, the XA APIs for Job Scoped Locks

must be used.

See Commitment Control for additional information on commitment control and XA transactions.

Restrictions

Transactions that require the use of an XA resource manager must be performed in SQL server jobs. An

SQL server job is a job whose server mode for Structured Query Language attribute has been set to *YES.

Use the Change Job (QWTCHGJOB) API to control the setting of this attribute. The xa_open() and

db2xa_open() APIs will set the server mode attribute to *YES if the attribute has not already been set. For

additional information about SQL server job, see DB2 UDB for iSeries SQL Programming Concepts in the

Information Center and the question on What is CLI Server Mode? in the DB2 Universal Database for

iSeries SQL CLI Frequently Asked Questions.

X/Open applications are only allowed to use SQL interfaces to access resources managed by DB2 UDB

for iSeries. Both the embedded and call level interface (CLI) SQL interfaces are supported. Local relational

databases may be used by the application when running with the XA APIs for Transaction Scoped Locks

or the XA APIs for Job Scoped Locks. Local databases include those defined for an Indpendent ASP.

Remote relational databases may be used by the application only when running with the XA APIs for Job

Scoped Locks. When using a remote relational database, the RDB connection method must be Distributed

Unit of Work (*DUW), and the remote location may be defined for either TCP/IP or SNA LU6.2

connections.

The following interfaces are not supported for use by an X/Open application:

v Control language (CL) or high-level language (HLL) interfaces for local files or distributed data

management (DDM) files.

v The Process Extended Dynamic SQL (QSQPRCED) API.

v The Query (QQQQRY) API.

v The commitment control API interfaces documented in the Journal and Commit APIs part.

It is expected that most transaction managers will use the same user profile for all SQL connections. If the

xa_open or db2xa_open APIs are used before the connections are started, this can be accomplished by

specifying the same user profile for the *xainfo parameter of each xa_open() or db2xa_open() API call. XA

applications generally do not use the resource manager’s native security mechanisms to limit access to

data. Rather, this is done at the application or transaction manager level.

 Top | UNIX-Type APIs | APIs by category

2 iSeries: UNIX-Type -- XA APIs

http://www.as400.ibm.com/db2/clifaq.htm#HEADER_3
#TOP_OF_PAGE
unix.htm
aplist.htm

XA APIs for Transaction Scoped Locks

The following XA APIs for Transaction Scoped Locks are provided by the DB2(R) UDB for iSeries(TM) XA

resource manager for use by a transaction manager:

v “xa_close()— Close an XA Resource Manager (Transaction Scoped ,Locks)” on page 5 (Close an XA

Resource Manager (Transaction Scoped Locks)) closes a currently open resource manager in the thread

of control.

v “xa_commit()— Commit an XA Transaction Branch (Transaction Scoped Locks” on page 6 (Commit an

XA Transaction Branch (Transaction Scoped Locks)) commits the work associated with *xid.

v “xa_complete()—Test Completion of Asynchronous XA Request (Transaction Scoped Locks)” on page 9

(Test Completion of Asynchronous XA Request) waits for the completion of an asynchronous operation.

v “xa_end()—End Work on an XA Transaction Branch (Transaction Scoped Locks)” on page 10 (End Work

on an XA Transaction Branch (Transaction Scoped Locks)) is called when when an application thread of

control finishes or needs to suspend work on a transaction branch.

v “xa_forget()— Forget an XA Transaction Branch (Transaction Scoped Locks)” on page 13 (Forget an XA

Transaction Branch (Transaction Scoped Locks)) is called to forget about a heuristically completed

transaction branch.

v “xa_open()—Open an XA Resource Manager (Transaction Scoped Locks)” on page 14 (Open an XA

Resource Manager (Transaction Scoped Locks)) is called to open the XA resource manager and to

prepare it for use in the XA distributed transaction environment.

v “xa_prepare()— Prepare to Commit an XA Transaction Branch (Transaction Scoped Locks)” on page 18

(Prepare to Commit an XA Transaction Branch (Transaction Scoped Locks)) is called to request that a

resource manager prepare for commitment any work performed on behalf of *xid.

v “xa_recover()— Recover XA Transaction Branches (Transaction Scoped Locks)” on page 20 (Recover XA

Transaction Branches (Transaction Scoped Locks)) is called during recovery to obtain a list of

transaction branches that are currently in a prepared or heuristically completed state.

v “xa_rollback()— Roll Back an XA Transaction Branch (Transaction Scoped Locks)” on page 22 (Roll

Back an XA Transaction Branch (Transaction Scoped Locks)) is called to roll back work performed on

behalf of the transaction branch.

v “xa_start()— Start an XA Transaction Branch (Transaction Scoped Locks)” on page 24 (Start an XA

Transaction Branch (Transaction Scoped Locks)) informs a resource manager that an application may do

work on behalf of a transaction branch.

v “xa_start_2()—Start an XA Transaction Branch, Extended Version (Transaction Scoped Locks)” on page

27 (Start an XA Transaction Branch, Extended Version (Transaction Scoped Locks)) informs a resource

manager that an application may do work on behalf of a transaction branch.

The following example shows the interactions between the application program, transaction manager, and

the XA resource manager during a typical transaction branch when the XA APIs for Transaction Scoped

Locks are used. The actual interactions that occur during a transaction will vary depending on factors

such as the following:

v Whether the transaction is committed or rolled back

v Whether the one- or two-phase commit protocol is used with the XA resource manager

v Whether multiple threads are used to perform the work of a transaction branch

Refer to the X/Open XA Specification for details.

Example Using XA APIs for Transaction Scoped Locks

 HLL XA XA

 Application Transaction Resource

 Program Manager Manager

XA APIs 3

1. tx_open ----------> xa_open ------------->

 <---------- <-----------

 XID xxx

2. tx_begin ---------> xa_start ------------>

 <---------- <-----------

3. <SQL work> ------------------------------>

 <---------------------------------

4. .

 .

 .

5. tx_commit --------> xa_end -------------->

 <-----------

6. xa_prepare ---------->

 <-----------

7. xa_commit ----------->

 <---------- <-----------

Notes

1. The application uses the X/Open Transaction Demarcation (TX) tx_open() interface to open all the

resource managers that are linked with the transaction manager. The transaction manager uses the

xa_open() interface to open an instance of the XA resource manager. The transaction manager may

open multiple XA resource managers that will participate in XA transactions. The transaction manager

assigns a resource manager identifier (ID) to each resource manager instance. The resource manager

ID uniquely identifies the instance within the thread of control in which the application is running.

2. The application uses the TX tx_begin() interface to begin a transaction. For each resource manager

that will participate in XA transactions, the transaction manager generates a transaction branch

identifier (XID) and uses the XA xa_start() interface to start a transaction branch.

3. The application uses SQL interfaces to access resources managed by DB2 UDB for iSeries.

4. The application continues its transaction. It may access other resource managers as appropriate.

5. When the transaction has been completed, the application uses the TX tx_commit() interface to

commit the work. The transaction manager uses the XA xa_end() interface to end the transaction

branch.

6. The transaction manager uses the XA xa_prepare() interface to prepare the resources for commitment.

7. The transaction manager uses the XA xa_commit() interface to commit the resources after all the

resource managers involved in the transaction have successfully prepared their resources for

commitment. When the commit operation is complete, the application can begin another transaction

using the TX tx_begin() interface.

 Top | UNIX-Type APIs | APIs by category

APIs

These are the APIs for this category.

4 iSeries: UNIX-Type -- XA APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

xa_close()— Close an XA Resource Manager (Transaction Scoped

,Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_close_entry(char *xa_info,

 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_close() to close a currently open resource manager in the thread of

control. After this call, the resource manager cannot participate in global transactions on behalf of the

calling thread until it is reopened.

Parameters

xa_info

(Input) A pointer to a 256-byte, null-terminated character string that contains information used to

close the resource manager. No information is currently allowed in this string. It must be a null

string or contain only blanks with a null terminator.

rmid (Input) An integer value that the transaction manager generated when calling xa_open(). The

rmid identifies the resource manager.

flags (Input) The following are valid settings of flags.

 TMNOFLAGS: 0x00000000L Perform the close operation normally.

Authorities

None

Return Value

 -6 [XAER_PROTO]

xa_close() was not successful. The function was called in an improper context.

-5 [XAER_INVAL]

xa_close() was not successful. Incorrect arguments were specified.

-3 [XAER_RMERR]

xa_close() was not successful. The resource manager detected an error when it closed the resource.

-2 [XAER_ASYNC]

xa_close() was not successful. The resource manager does not support asynchronous operations.

0 [XA_OK]

xa_close() was successful.

XA APIs 5

Error Messages

The following messages may be sent from this function.

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

v X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA Specification

(ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

v X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction

Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

Example

See Code disclaimer information for information pertaining to code examples.

#include <xa.h>

main() {

 char *xa_info;

 int rmid;

 long flags;

 int retcode;

 extern struct xa_switch_t xa_switch;

 retcode =

 xa_switch.xa_close_entry(xa_info, rmid, flags);

}

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

xa_commit()— Commit an XA Transaction Branch (Transaction Scoped

Locks

 Syntax

 #include <xa.h>

 int xa_switch.xa_commit_entry(XID *xid,

 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_commit() to commit the work associated with *xid. All changes that were

made to resources managed by DB2 UDB for iSeries during the transaction branch are made permanent.

6 iSeries: UNIX-Type -- XA APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

xid (Input) A pointer to the transaction branch identifier. This identifier was generated by the

transaction manager when the transaction branch was started.

rmid (Input) An integer value that the transaction manager generated when calling xa_open(). The

rmid identifies the resource manager.

flags (Input) Following are the valid settings of flags.

 TMNOWAIT: 0x10000000L Do not commit the transaction if a blocking condition exists.

 TMONEPHASE: 0x40000000L Use the one-phase commit optimization for the specified transaction

branch.

 TMNOFLAGS: 0x00000000L Use if no other flags are set.

Authorities

None

Return Value

The following values may be returned only if TMONEPHASE(0x40000000L) was set in the flags

parameter.

 100 [XA_RBROLLBACK]

The transaction branch was rolled back for an unspecified reason.

101 [XA_RBCOMMFAIL]

A communications failure occurred within the resource manager.

102 [XA_RBDEADLOCK]

A deadlock condition was detected within the resource manager.

103 [XA_RBINTEGRITY]

The resource manager detected a violation of the integrity of its resources.

104 [XA_RBOTHER]

The resource manager rolled back the transaction branch for a reason not on this list.

105 [XA_RBPROTO]

A protocol error occurred in the resource manager.

106 [XA_RBTIMEOUT]

A timeout occurred in the resource manager.

107 [XA_RBTRANSIENT]

A transient error was detected in the resource manager.

The following values may be returned for all flags settings.

 -7 [XAER_RMFAIL]

An error occurred that makes the resource manager unavailable.

-6 [XAER_PROTO]

xa_commit() was not successful. Function was called in an improper context.

-5 [XAER_INVAL]

xa_commit() was not successful. Incorrect arguments were specified.

XA APIs 7

-4 [XAER_NOTA]

The specified xid is not known by the resource manager.

-3 [XAER_RMERR]

xa_commit() was not successful. The resource manager detected an error when committing the

transaction branch.

-2 [XAER_ASYNC]

xa_commit() was not successful. The resource manager does not support asynchronous operations.

0 [XA_OK]

xa_commit() was successful.

4 [XA_RETRY]

The resource manager is unable to commit the transaction branch at this time.

TMNOWAIT(0x10000000L) was set and a blocking condition exists. All resources held on behalf of

*xid remain in a prepared state. The transaction manager should issue xa_commit() again at a later

time.

5 [XA_HEURMIX]

Work on the transaction branch was partially committed and partially rolled back.

6 [XA_HEURRB]

Work on the transaction branch was heuristically rolled back.

7 [XA_HEURCOM]

Work on the transaction branch was heuristically committed.

8 [XA_HEURHAZ]

Work on the transaction branch may have been heuristically completed.

Error Messages

The following messages may be sent from this function.

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

v X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA Specification

(ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

v X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction

Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

Example

See Code disclaimer information for information pertaining to code examples.

#include <xa.h>

main() {

 XID *xid;

 int rmid;

 long flags;

 int retcode;

 extern struct xa_switch_t xa_switch;

8 iSeries: UNIX-Type -- XA APIs

aboutapis.htm#CODEDISCLAIMER

retcode =

 xa_switch.xa_commit_entry(xid, rmid, flags);

}

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

xa_complete()—Test Completion of Asynchronous XA Request

(Transaction Scoped Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_complete_entry(int *handle,

 int *retval, int rmid, long flags)

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_complete() to wait for the completion of an asynchronous operation.

Asynchronous operations are not supported by the DB2 UDB for iSeries resource manager. This function

is provided only for compliance with the X/Open XA Specification.

Parameters

handle

(Input) A pointer to an integer value returned by an XA function that had TMASYNC specified.

retval (Output) A pointer to the integer return value of the asynchronous function.

rmid (Input) An integer value that the transaction manager generated when calling xa_open(). The

rmid identifies the resource manager.

flags (Input) The follow are valid settings of flags.

 TMMULTIPLE: 0x00400000L Test completion of any outstanding asynchronous operation.

 TMNOWAIT: 0x10000000L Test for completion without blocking.

 TMNOFLAGS: 0x00000000L Use if no other flags are set.

Authorities

None

Return Value

 -6 [XAER_PROTO]

xa_complete() was not successful. TMUSEASYNC 0x00000004L was not set in the flags element of

the XA resource manager’s xa_switch_t structure. Asynchronous operations are not supported.

XA APIs 9

#TOP_OF_PAGE
unix.htm
aplist.htm

Error Messages

The following messages may be sent from this function.

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

v X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA Specification

(ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

v X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction

Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

 API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

xa_end()—End Work on an XA Transaction Branch (Transaction

Scoped Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_end_entry(XID *xid, int rmid,

 long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_end() when an application thread of control finishes or needs to suspend

work on a transaction branch. When xa_end() successfully returns, the calling thread of control is no

longer associated with the transaction branch, but the branch still exists.

If the TMSUSPEND flag is not specified, all SQL cursors used while the thread was associated with this

transaction branch are closed. Files left open by a procedure, trigger or function that used legacy file

access methods are closed regardless of flag settings.

Parameters

*xid (Input) A pointer to the transaction branch identifier. This identifier was generated by the

transaction manager when the transaction branch was started.

rmid (Input) An integer value that the transaction manager generated when calling xa_open(). The

rmid identifies the resource manager.

flags (Input) The following are valid settings of flags. One, and only one, of TMSUSPEND,

TMSUCCESS, or TMFAIL must be set.

10 iSeries: UNIX-Type -- XA APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

TMSUSPEND: 0x02000000L Suspend a transaction branch on behalf of the calling thread. The

transaction manager must resume or end the suspended association in the current thread.

 TMSUCCESS: 0x04000000L The portion of work has succeeded.

 TMFAIL: 0x20000000L The portion of work has failed.

Authorities

None

Return Value

The following return codes indicate that the resource manager has marked the work performed on this

transaction branch as rollback-only.

 100 [XA_RBROLLBACK]

The transaction branch was marked rollback-only for an unspecified reason.

101 [XA_RBCOMMFAIL]

A communications failure occurred within the resource manager.

102 [XA_RBDEADLOCK]

A deadlock condition was detected within the resource manager.

103 [XA_RBINTEGRITY]

The resource manager detected a violation of the integrity of its resources.

104 [XA_RBOTHER]

The resource manager marked the transaction branch rollback-only for a reason not on this list.

105 [XA_RBPROTO]

A protocol error occurred in the resource manager.

106 [XA_RBTIMEOUT]

A timeout occurred in the resource manager.

107 [XA_RBTRANSIENT]

A transient error was detected by the resource manager.

Other return codes:

 -7 [XAER_RMFAIL]

An error occurred that makes the resource manager unavailable.

-6 [XAER_PROTO]

Function was called in an improper context.

-5 [XAER_INVAL]

Incorrect arguments were specified.

-4 [XAER_NOTA]

The specified *xid is not known by the resource manager.

-3 [XAER_RMERR]

xa_end() was not successful. The resource manager detected an error when ending the transaction

branch.

-2 [XAER_ASYNC]

xa_end() was not successful. The resource manager does not support asynchronous operations.

XA APIs 11

0 [XA_OK]

xa_end() was successful.

9 [XA_NOMIGRATE]

The resource manager was unable to prepare the transaction context for migration. The resource

manager has suspended the association. The transaction manager can resume the association in

the current thread only.

Error Messages

The following messages may be sent from this function.

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

v X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA Specification

(ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

v X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction

Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

Example

See Code disclaimer information for information pertaining to code examples.

#include <xa.h>

main() {

 XID *xid;

 int rmid;

 long flags;

 int retcode;

 extern struct xa_switch_t xa_switch;

 retcode =

 xa_switch.xa_end_entry(xid, rmid, flags);

}

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

12 iSeries: UNIX-Type -- XA APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

xa_forget()— Forget an XA Transaction Branch (Transaction Scoped

Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_forget_entry(XID *xid,

 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_forget() to forget about a heuristically completed transaction branch. After

this call, the *xid is no longer valid.

Parameters

*xid (Input) A pointer to the transaction branch identifier. This identifier was generated by the

transaction manager when the transaction branch was started.

rmid (Input) An integer value that the transaction manager generated when calling xa_open(). The

rmid identifies the resource manager.

flags (Input) The following are valid settings of flags.

 TMNOFLAGS: 0x00000000L Perform the forget operation normally.

Authorities

None

Return Value

 -7 [XAER_RMFAIL]

An error occurred that makes the resource manager unavailable.

-6 [XAER_PROTO]

xa_forget() was not successful. Function was called in an improper context.

-5 [XAER_INVAL]

xa_forget() was not successful. Incorrect arguments were specified.

-4 [XAER_NOTA]

The specified xid is not known by the resource manager.

-3 [XAER_RMERR]

xa_forget() was not successful. The resource manager detected an error when forgetting the

transaction branch.

-2 [XAER_ASYNC]

xa_forget() was not successful. The resource manager does not support asynchronous operations.

0 [TM_OK]

xa_forget() was successful.

XA APIs 13

Error Messages

The following messages may be sent from this function.

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

v X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA Specification

(ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

v X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction

Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

Example

See Code disclaimer information for information pertaining to code examples.

#include <xa.h>

main() {

 XID *xid;

 int rmid;

 long flags;

 int retcode;

 extern struct xa_switch_t xa_switch;

 retcode =

 xa_switch.xa_forget_entry(xid, rmid, flags);

}

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

xa_open()—Open an XA Resource Manager (Transaction Scoped

Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_open_entry(char *xa_info,

 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

14 iSeries: UNIX-Type -- XA APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

A transaction manager calls xa_open() to open the XA resource manager and to prepare it for use in the

XA distributed transaction environment. This function must be called before any other resource manager

(xa_) calls are made.

Parameters

*xa_info

(Input) A pointer to a null-terminated string that contains information used to initialize the

resource manager. See the Usage Notes for details on what this string should contain.

rmid (Input) A number generated by the transaction manager to identify this instance of the XA

resource manager. This resource manager identifier is passed to the other XA functions to identify

which instance of the resource manager for which the function is called.

flags (Input) The following are valid settings of flags.

 TMNOFLAGS: 0x00000000L Perform the open operation normally.

Authorities

None

Return Value

 -6 [XAER_PROTO]

xa_open() was not successful. Function was called in an improper context.

-5 [XAER_INVAL]

xa_open() was not successful. Incorrect arguments were specified.

-3 [XAER_RMERR]

xa_open() was not successful. The resource manager detected an error when opening the resource

manager.

-2 [XAER_ASYNC]

xa_open() was not successful. The resource manager does not support asynchronous operations.

0 [TM_OK]

xa_open() was successful.

Error Messages

The following messages may be sent from this function.

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

v A pointer to the xa_info character string is passed on the xa_open() function. The character string

contains information required by the XA resource manager. This information affects the behavior of

DB2 UDB for iSeries when running as an XA resource manager. The xa_info string is a series of

keyword specifications, each of which consists of:

– A keyword.

XA APIs 15

– The ’=’ character.

– A keyword value.

For example:

TMNAME=YourTM RDBNAME=SYSABC lockwait=300

v The restrictions on the data in the xa_info character string are:

– There must be no blanks between the keyword and the ’=’ or between the ’=’ and the keyword

value.

– The xa_info string must neither begin nor end with the ’=’ character.

– There must be at least one blank between each keyword specification.

– Keywords and keyword values, except the PASSWORD keyword value, are not case-sensitive;

keyword values on system displays or messages are shown in uppercase. The PASSWORD keyword

value is case-sensitive.

– If the PASSWORD keyword is specified, its value is assumed to be represented in the job default

CCSID of the job that calls the xa_open() function.

– The xa_info string is limited to 1024 bytes and must be null-terminated. Note that this is longer than

the 256 byte maximum architected in the XA Specification, however the longer length is required for

iSeries long password support. If a null byte (’00’x) is not found in the first 1024 bytes,

[XAER_INVAL] is returned.

– The xa_info string value is treated as character data and is not converted.

– The return value [XAER_INVAL] will be returned if a keyword is specified that is not documented

in xainfo String Keywords and Values (page 16).

xainfo String Keywords and Values

 Keyword Name Keyword Value

LOCKWAIT The maximum number of seconds that the system will wait on any lock request during

transaction branches started by this thread. Lock wait time values that are specified by other

system interfaces will be used only if they are smaller than this value.

If not specified, lock wait time values specified by other system interfaces are used. The

maximum value that may be specified is 999999999.

PASSWORD The password to be used in conjunction with the user when accessing the relational database.

This value is used only if the USER keyword is also specified. If specified, the password value is

assumed to be represented in the job default CCSID of the job that calls the db2_xaopen() API. If

the specified password value contains any null bytes (’00’x) or blanks (’40’x), the PWDLEN

keyword must also be specified. The length of the password value must not exceed 512 bytes.

If this keyword is not specified, PASSWORD defaults to 10 blanks.

PWDLEN The length, in bytes, of the password. This value must not exceed 512. This keyword must be

specified if the value specified for the PASSWORD keyword contains any null bytes (’00’x) or

blanks (’40’x). If specified, the keyword must appear before the PASSWORD keyword.

If this keyword is not specified, the length of the specified PASSWORD value is determined by

the location of the first null byte (’00’x) or blank (’40’x) following the PASSWORD keyword. If

the PASSWORD keyword is not specified, the value specified for this keyword is ignored.

16 iSeries: UNIX-Type -- XA APIs

Keyword Name Keyword Value

RDBNAME A 1- to 18-character name identifying the relational database that the transaction manager will

use for XA transaction branches in this thread. If there is an entry in the relational database

directory with Remote Location value *LOCAL, then special value *LOCAL may be used to

identify that database.

This is a required keyword. If this keyword is not specified, [XAER_INVAL] is returned.

Once a thread calls xa_open() with a particular rmid and RDBNAME combination, the rmid may

not be used on subsequent xa_open() calls unless the same RDBNAME value is used. Likewise,

the RDBNAME value may not be used on subsequent xa_open() calls unless the same rmid is

used. If a subsequent call is made with the same rmid and RDBNAME combination, but other

values in the xa_info string are different, the values on the first call remain in effect and a

CPI836A informational message is sent to the joblog.

TMNAME A 1- to 10-character name identifying the XA transaction manager. Information is only significant

for transaction managers that might require special processing and have worked with the XA

resource manager to implement support. This value is displayed on the Display Commitment

Definition Status panel when the commitment definition has been opened to act as an XA

resource manager. Non-IBM applications must not use a name that starts with the letter Q. The

name must adhere to iSeries naming conventions.

If this keyword is not specified, TMNAME defaults to blanks.

USER A 1- to 10-character user profile to be used when accessing the relational database.

This value will only be used if a user identifier and password is not specified on the Structured

Query Language connection operation that follows the xa_open() request. If USER is not specified

and no user profile is specified on the connection operation, the user profile for the connection

defaults to the current user profile for the job that makes the connection.

If this keyword is not specified, USER defaults to blanks.

Related Information

v X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA Specification

(ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

v X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction

Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

Example

See Code disclaimer information for information pertaining to code examples.

#include <xa.h>

main() {

 char xa_info[1024]=

 "tmname=mytranmgr rdbname=myrdb";

 int rmid;

 long flags;

 int retcode;

 extern struct xa_switch_t xa_switch;

 retcode =

 xa_switch.xa_open_entry(xa_info, rmid, flags);

}

XA APIs 17

aboutapis.htm#CODEDISCLAIMER

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

xa_prepare()— Prepare to Commit an XA Transaction Branch

(Transaction Scoped Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_prepare_entry(XID *xid,

 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_prepare() to request that a resource manager prepare for commitment any

work performed on behalf of *xid. The resource manager places all resources used in the transaction

branch in a state that the changes can be made permanently when it later receives the xa_commit()

request. All associations for *xid must have been ended by calling xa_end() prior to the prepare request.

Parameters

*xid (Input) A pointer to transaction branch identifier. This identifier was generated by the transaction

manager when the transaction branch was started.

rmid (Input) An integer value that the transaction manager generated when calling xa_open(). The

rmid identifies the resource manager.

flags (Input) The following are valid settings of flags.

 TMNOFLAGS: 0x00000000L Perform the prepare operation normally.

Authorities

None

Return Value

The following return codes indicate that the resource manager has rolled back the work done on this

transaction branch.

 100 [XA_RBROLLBACK]

The transaction branch was rolled back for an unspecified reason.

101 [XA_RBCOMMFAIL]

A communications failure occurred within the resource manager.

102 [XA_RBDEADLOCK]

A deadlock condition was detected within the resource manager.

103 [XA_RBINTEGRITY]

The resource manager detected a violation of the integrity of its resources.

18 iSeries: UNIX-Type -- XA APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

104 [XA_RBOTHER]

The resource manager rolled back the transaction branch for a reason not on this list.

105 [XA_RBPROTO]

A protocol error occurred in the resource manager.

106 [XA_RBTIMEOUT]

A time-out occurred in the resource manager.

107 [XA_RBTRANSIENT]

A transient error was detected in the resource manager.

All other return codes:

 -7 [XAER_RMFAIL]

An error occurred that makes the resource manager unavailable.

-6 [XAER_PROTO]

xa_prepare() was not successful. Function was called in an improper context.

-5 [XAER_INVAL]

xa_prepare() was not successful. Incorrect arguments were specified.

-4 [XAER_NOTA]

The specified xid is not known by the resource manager.

-3 [XAER_RMERR]

xa_prepare() was not successful. The resource manager detected an error when preparing the

transaction branch.

-2 [XAER_ASYNC]

xa_prepare() was not successful. The resource manager does not support asynchronous operations.

0 [XA_OK]

xa_prepare() was successful.

3 [XA_RDONLY]

The transaction branch was read-only and has been committed.

Error Messages

The following messages may be sent from this function.

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

v X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA Specification

(ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

v X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction

Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

XA APIs 19

Example

See Code disclaimer information for information pertaining to code examples.

#include <xa.h>

main() {

 XID *xid;

 int rmid;

 long flags;

 int retcode;

 extern struct xa_switch_t xa_switch;

 retcode =

 xa_switch.xa_prepare_entry(xid, rmid, flags);

}

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

xa_recover()— Recover XA Transaction Branches (Transaction Scoped

Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_recover_entry(XID *xids,

 long count, int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_recover() during recovery to obtain a list of transaction branches that are

currently in a prepared or heuristically completed state. Multiple calls to this function can be made in a

single recovery scan. The flags parameter defines when a recovery scan should start or end.

Parameters

*xids (Input) A pointer to an array into which the resource manager places XIDs for transaction

branches in prepared or heuristically completed states.

count (Input) The number of xids that fit into the xids array.

rmid (Input) An integer value that the transaction manager generated when calling xa_open(). The

rmid identifies the resource manager.

flags (Input) The following are valid settings of flags. TMSTARTRSCAN: 0x01000000L Start a recovery

scan and position the cursor to the start of the list. XIDs are returned from that point.

 TMENDRSCAN: 0x00800000L End a recovery scan after returning the XIDs. If this flag is used

with the TMSTARTRSCAN flag, then a single xa_recover() call starts and ends the recovery scan.

 TMNOFLAGS: 0x00000000L Continue a recovery scan. XIDs are returned starting at the current

cursor position.

20 iSeries: UNIX-Type -- XA APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

Authorities

None

Return Value

 -6 [XAER_PROTO]

xa_recover() was not successful. Function was called in an improper context.

-5 [XAER_INVAL]

xa_recover() was not successful. Incorrect arguments were specified.

-3 [XAER_RMERR]

xa_recover() was not successful. The resource manager detected an error determining the XIDs to

return.

>= 0 The total number of XIDs returned in the xids array.

Error Messages

The following messages may be sent from this function.

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

v X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA Specification

(ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

v X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction

Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

Example

See Code disclaimer information for information pertaining to code examples.

#include <xa.h>

main() {

 XID xids[10];

 int rmid;

 long count=10;

 long flags=TMSTARTRSCAN+TMENDRSCAN;

 int retcode;

 extern struct xa_switch_t xa_switch;

 retcode =

 xa_switch.xa_recover_entry(xids, count,

 rmid, flags);

}

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

XA APIs 21

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

xa_rollback()— Roll Back an XA Transaction Branch (Transaction

Scoped Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_rollback_entry(XID *xid,

 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_rollback() to roll back work performed on behalf of the transaction

branch. A transaction branch is capable of being rolled back until is has been successfully committed.

Parameters

*xid (Input) A pointer to the transaction branch identifier. This identifier was generated by the

transaction manager when the transaction branch was started.

rmid (Input) An integer value that the transaction manager generated when calling xa_open(). The

rmid identifies the resource manager.

flags (Input) The following are valid settings of flags.

 TMNOFLAGS: 0x00000000L Perform the rollback operation normally.

Authorities

None

Return Value

The following return codes indicate that the resource manager rolled back the work done on this

transaction branch. These values are typically returned when the transaction branch was previously

marked rollback-only.

 100 [XA_RBROLLBACK]

The transaction branch was rolled back for an unspecified reason.

101 [XA_RBCOMMFAIL]

A communications failure occurred within the resource manager.

102 [XA_RBDEADLOCK]

A deadlock condition was detected within the resource manager.

103 [XA_RBINTEGRITY]

The resource manager detected a violation of the integrity of its resources.

104 [XA_RBOTHER]

The resource manager rolled back the transaction branch for a reason not on this list.

105 [XA_RBPROTO]

A protocol error occurred in the resource manager.

22 iSeries: UNIX-Type -- XA APIs

106 [XA_RBTIMEOUT]

A timeout occurred in the resource manager.

107 [XA_RBTRANSIENT]

A transient error was detected in the resource manager.

The following return codes may be returned for any flags setting.

 -7 [XAER_RMFAIL]

An error occurred that makes the resource manager unavailable.

-6 [XAER_PROTO]

xa_rollback() was not successful. Function was called in an improper context.

-5 [XAER_INVAL]

xa_rollback() was not successful. Incorrect arguments were specified.

-4 [XAER_NOTA]

The specified xid is not known by the resource manager.

-3 [XAER_RMERR]

xa_rollback() was not successful. The resource manager detected an error when rolling back the

transaction.

-2 [XAER_ASYNC]

xa_rollback() was not successful. The resource manager does not support asynchronous

operations.

0 [XA_OK]

xa_rollback() was successful.

5 [XA_HEURMIX]

Work on the transaction branch was partially committed and partially rolled back.

6 [XA_HEURRB]

Work on the transaction branch was heuristically rolled back.

7 [XA_HEURCOM]

Work on the transaction branch was heuristically committed.

8 [XA_HEURHAZ]

Work on the transaction branch may have been heuristically completed.

Error Messages

The following messages may be sent from this function.

 CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

v X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA Specification

(ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

XA APIs 23

v X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction

Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

Example

See Code disclaimer information for information pertaining to code examples.

#include <xa.h>

main() {

 XID *xid;

 int rmid;

 long flags;

 int retcode;

 extern struct xa_switch_t xa_switch;

 retcode =

 xa_switch.xa_rollback_entry(xid, rmid, flags);

}

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

xa_start()— Start an XA Transaction Branch (Transaction Scoped

Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_start_entry(XID *xid,

 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_start() to inform a resource manager that an application may do work on

behalf of a transaction branch. The calling thread becomes associated with the transaction branch.

Parameters

*xid (Input) A pointer to the transaction branch identifier for the transaction branch that is to be

associated with this thread.

rmid (Input) An integer value that the transaction manager generated when calling xa_open(). The

rmid identifies the resource manager.

flags (Input) Following are the valid settings of flags.

 TMJOIN: 0x00200000L Caller is joining an existing transaction branch.

 TMRESUME: 0x08000000L Caller is resuming association with a suspended transaction branch.

 TMNOWAIT: 0x10000000L Do not associate the transaction branch with the thread if a blocking

condition exists.

24 iSeries: UNIX-Type -- XA APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

TMNOFLAGS: 0x00000000L To be used when no other flags are set.

Authorities

None

Return Value

The following return codes may be returned for any flags setting.

 -8 [XAER_DUPID]

Neither TMRESUME nor TMJOIN were specified, and the xid already exists within the resource

manager.

-7 [XAER_RMFAIL]

An error occurred that makes the resource manager unavailable.

-6 [XAER_PROTO]

xa_start() was not successful. Function was called in an improper context.

-5 [XAER_INVAL]

xa_start() was not successful. Incorrect arguments were specified.

-4 [XAER_NOTA]

TMRESUME or TMJOIN was specified, and the xid is not known by the resource manager.

-3 [XAER_RMERR]

xa_start() was not successful. The resource manager detected an error when associating the

transaction branch with the thread.

-2 [XAER_ASYNC]

xa_start() was not successful. The resource manager does not support asynchronous operations.

0 [XA_OK]

xa_start() was successful.

4 [XA_RETRY]

TMNOWAIT was set in flags and a blocking condition exists. The thread was not associated with

the transaction branch.

The following return codes indicate that TMJOIN or TMRESUME was specified, and the specified

transaction branch was not associated with the thread and is marked rollback-only.

 100 [XA_RBROLLBACK]

The transaction branch was marked rollback-only for an unspecified reason.

101 [XA_RBCOMMFAIL]

A communications failure occurred within the resource manager.

102 [XA_RBDEADLOCK]

A deadlock condition was detected within the resource manager.

103 [XA_RBINTEGRITY]

The resource manager detected a violation of the integrity of its resources.

104 [XA_RBOTHER]

The transaction branch was marked rollback-only for a reason not on this list.

105 [XA_RBPROTO]

A protocol error occurred in the resource manager.

XA APIs 25

106 [XA_RBTIMEOUT]

A timeout occurred in the resource manager.

107 [XA_RBTRANSIENT]

A transient error was detected in the resource manager.

Error Messages

The following messages may be sent from this function.

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

v X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA Specification

(ISBN:1-872630-24-3, C193 or XO/CAE/91/300), The Open Group.

v X/Open CAE Specification, April 1995, Distributed Transaction Processing: The TX (Transaction

Demarcation) Specification (ISBN:1-85912-094-6, C504), The Open Group.

Example

See Code disclaimer information for information pertaining to code examples.

#include <xa.h>

main() {

 XID *xid;

 int rmid;

 long flags;

 int retcode;

 extern struct xa_switch_t xa_switch;

 retcode =

 xa_switch.xa_start_entry(xid, rmid, flags);

}

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

26 iSeries: UNIX-Type -- XA APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

xa_start_2()—Start an XA Transaction Branch, Extended Version

(Transaction Scoped Locks)

 Syntax

 #include <xa.h>

 int xa_switch.xa_start_2_entry(XID *xid,

 int rmid, XACTL *ctl, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls xa_start_2() to inform a resource manager that an application may do work

on behalf of a transaction branch. The calling thread becomes associated with the transaction branch.

For additional information about parameters, authorities required, return values, and error conditions, see

the “xa_start()— Start an XA Transaction Branch (Transaction Scoped Locks)” on page 24 API.

The xa_start_2() function is the same as the xa_start() function, with one additional parameter, ctl.

*ctl (Input) A pointer to the following structure.

 struct xactl_t {

 long flags; /* valid element flags */

 TRANSACTION_TIMEOUT timeout; /* timeout value */

};

Following are the valid settings of ctl->flags.

 XAOPTS_TIMEOUT: 0x00000001L Timeout value is present.

 XAOPTS_NOFLAGS: 0x00000000L To be used when no optional values are set.

 ctl->timeout is the number of seconds before which the resource manager can timeout and

rollback the transaction. Type TRANSACTION_TIMEOUT is declared in header file xa.h.

Example

See Code disclaimer information for information pertaining to code examples.

#include <xa.h>

main() {

 XID *xid;

 int rmid;

 XACTL ctl;

 long flags;

 int retcode;

 extern struct xa_switch_t xa_switch;

 retcode =

 xa_switch.xa_start_2_entry(xid, rmid, &ctl, flags);

}

XA APIs 27

aboutapis.htm#CODEDISCLAIMER

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

XA APIs for Job Scoped Locks

The XA APIs for Job Scoped Locks are:

v “db2xa_close()—Close an XA Resource Manager (Job Scoped Locks)” on page 32 (Close an XA resource

manager (Job Scoped Locks)) is called to close a currently open resource manager in the thread of

control.

v “db2xa_commit()—Commit an XA Transaction Branch (Job Scoped Locks)” on page 33 (Commit an XA

transaction branch (Job Scoped Locks)) is called to commit the work associated with *xid.

v “db2xa_complete()—Test Completion of Asynchronous XA Request (Job Scoped Locks)” on page 34

(Test completion of an asynchronous XA request (Job Scoped Locks)) is called to wait for the

completion of an asynchronous operation.

v “db2xa_end()—End Work on an XA Transaction Branch (Job Scoped Locks)” on page 34 (End work on

an XA transaction branch (Job Scoped Locks)) is called when an application thread of control finishes

or needs to suspend work on a transaction branch.

v “db2xa_forget()—Forget an XA Transaction Branch (Job Scoped Locks)” on page 35 (Forget an XA

transaction branch (Job Scoped Locks)) is called to forget about a heuristically completed transaction

branch.

v “db2xa_open()—Open an XA Resource Manager (Job Scoped Locks)” on page 36 (Open an XA resource

manager (Job Scoped Locks)) is called to open the XA resource manager and to prepare it for use in the

XA distributed transaction environment.

v “db2xa_prepare()—Prepare to Commit an XA Transaction Branch (Job Scoped Locks)” on page 39

(Prepare to commit an XA transaction branch (Job Scoped Locks)) is called to request that a resource

manager prepare for commitment any work performed on behalf of *xid.

v “db2xa_recover()—Recover XA Transaction Branches (Job Scoped Locks)” on page 40 (Recover XA

transaction branches (Job Scoped Locks)) is called during recovery to obtain a list of transaction

branches that are currently in a prepared or heuristically completed state.

v “db2xa_rollback()—Roll Back an XA Transaction Branch (Job Scoped Locks)” on page 41 (Roll back an

XA transaction branch (Job Scoped Locks)) is called to roll back work performed on behalf of the

transaction branch.

v “db2xa_start()—Start an XA Transaction Branch (Job Scoped Locks)” on page 42 (Start an XA

transaction branch (Job Scoped Locks)) is called to inform a resource manager that an application may

do work on behalf of a transaction branch.

The following exit functions must be provided by a transaction manager for use by the XA resource

manager when the XA APIs for Job Scoped Locks are used:

v ax_reg() (Exit program to dynamically register an XA resource manager)

v ax_unreg() (Exit program to dynamically unregister an XA resource manager)

The following example shows the interactions between the application program, transaction manager, and

the XA resource manager during a typical transaction when the XA APIs for Job Scoped Locks are used.

The actual interactions that occur during a transaction will vary depending on factors such as the

following:

v Whether the transaction is committed or rolled back

v Whether the one- or two-phase commit protocol is used with the XA resource manager

v Whether multiple threads are used to perform the work of a transaction branch

Refer to the X/Open XA Specification for details.

28 iSeries: UNIX-Type -- XA APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
xaxreg.htm
xaxunreg.htm

Example Using XA APIs for Job Scoped Locks

 HLL XA XA

 Application Transaction Resource

 Program Manager Manager

1. tx_open ----------> db2xa_open ---------->

 <---------- <-----------

2. tx_begin --------->

 <----------

3. <SQL work> ------------------------------>

4. <----------- Call ax_reg

 XID xxx

 ----------->

 <---------------------------------

 .

5. .

 .

6. tx_commit --------> db2xa_end ----------->

 <-----------

7. db2xa_prepare ------->

 <-----------

8. db2xa_commit -------->

 <---------- <-----------

Notes

1. The application uses the X/Open Transaction Demarcation (TX) tx_open() interface to open all the

resource managers that are linked with the transaction manager. The transaction manager uses the

db2xa_open() interface to open an instance of the XA resource manager. The transaction manager may

open multiple XA resource managers that will participate in XA transactions. The transaction manager

assigns a resource manager identifier (ID) to each resource manager instance. The resource manager

ID uniquely identifies the instance within the thread of control in which the application is running.

An instance of the XA resource manager can be thought of as an SQL connection to the relational

database specified on the *xainfo parameter of the db2xa_open() API.

2. The application uses the TX tx_begin() interface to begin a transaction.

3. The application uses SQL interfaces to access resources managed by DB2(R) UDB for iSeries(TM).

4. The XA resource manager uses the XA ax_reg() interface to dynamically register itself with the

transaction manager. The transaction manager returns a transaction branch identifier (XID) that

uniquely identifies the transaction branch.

5. The application continues its transaction. It may access other resource managers as appropriate.

6. When the transaction has been completed, the application uses the TX tx_commit() interface to

commit the work. The transaction manager uses the XA db2xa_end() interface to end the transaction

branch.

7. The transaction manager uses the XA db2xa_prepare() interface to prepare the resources for

commitment.

8. The transaction manager uses the XA db2xa_commit() interface to commit the resources after all the

resource managers involved in the transaction have successfully prepared their resources for

commitment. When the commit operation is complete, the application can begin another transaction

using the TX tx_begin() interface.

XA APIs 29

Restrictions for XA APIs for Job Scoped Locks

When using the XA APIs for Job Scoped Locks, an application that uses the CLI SQL interfaces must use

a single connection to perform all work for a transaction branch. This means that if the XA join function

is used so that multiple threads work on a single transaction branch, all the joining threads must use the

same CLI connection for that work. Since CLI connection handles cannot be shared across jobs, this

means that the XA join function can be used only by threads within a single job when using the CLI. This

restriction does not apply when the application uses embedded SQL, or when the XA APIs for

Transaction Scoped Locks are used.

When used with the XA APIs for Job Scoped Locks, some aspects of SQL Server Mode behavior are

affected. Traditional SQL Server Mode usage within an application makes a one to one correlation

between a connection to the database in the application and to a QSQSRVR prestart job in the QSYSWRK

subsystem. All SQL requests made in the application using that connection are executed in the correlated

QSQSRVR job. When the connection is closed, the job is recycled and returned to the prestart job pool.

With XA, an application has the ability to start and use separate transaction branches over a single

database connection.When the XA APIs for Job Scoped Locks are used to start a new transaction branch

using a connection that was earlier used for a different transaction branch that has not yet been

completed (committed or rolled back), the new transaction branch is assigned its own QSQSRVR job. This

means a single connection can be related to multiple QSQSRVR jobs. When a transaction branch that

requires a new QSQSRVR job completes, that QSQSRVR job is dissociated from the connection, recycled

and returned to the prestart job pool.

If embedded SQL is used and the native DB2 UDB for iSeries security mechanisms are used, the

transaction manager must ensure that all work on a transaction branch is performed by jobs or threads

using the same user profile. In other words, if the XA join function is used, every joining thread or job

must use the same user profile as the thread or job that started the transaction branch; otherwise, a

security exposure will exist. This security consideration does not exist when using the XA APIs for

Transaction Scoped Locks because the one to one correlation between the connection and the QSQSRVR

job is always maintained, regardless of what transaction branch is being worked on.

While this model works well for isolating transactions, the environment may provide some extra work on

behalf of the application. Since separate and distinct jobs are in use for each transaction branch, any

job/process-scoped resources setup while under one transaction branch will be unavailable once the

application has switched to a different transaction branch. A list of the known limitations and restrictions

when using this support is included below. This list is not guaranteed to be comprehensive.

The following example demonstrates a scenario where these restrictions may be encountered.

 1. db2xa_open()

 2. SQL Connect. This may be skipped if connection is to start implicitly when the first embedded SQL

request is made.

 3. Set up to have ax_reg() return TM_OK for XID1 when SQL work is requested.

 4. SQL statements to perform work. The first statement causes transaction branch XID1 to be created.

The work for XID1 is done within SQL Server Mode Job: xxxxxx/QUSER/QSQSRVR).

 5. db2xa_end() with flag TMSUSPEND for XID1.

 6. Set up to have ax_reg() return TM_OK for XID2 when SQL work is requested.

 7. SQL statements to perform work. The first statement causes transaction branch XID2 to be created.

The work for XID2 is done within SQL Server Mode Job: yyyyyy/QUSER/QSQSRVR).

 8. db2xa_end() with flag TMSUCCESS for XID2.

 9. Set up to have ax_reg() return TM_RESUME for XID1 when SQL work is requested.

10. SQL statements to perform work . The first statement causes transaction branch XID1 to be resumed.

The work for XID1 is done within SQL Server Mode Job: xxxxxx/QUSER/QSQSRVR).

11. db2xa_end() with flag TMSUCCESS for XID1.

30 iSeries: UNIX-Type -- XA APIs

12. db2xa_prepare() XID1. This may be requested from any thread.

13. db2xa_commit() XID1. This may be requested from any thread.

14. db2xa_prepare() XID2. This may be requested from any thread.

15. db2xa_commit() XID2. This may be requested from any thread.

SQL prepared statements

When an application prepares an SQL statement, the resulting statement is stored in a job-scoped system

space. This means that, for the example above, statements prepared while working on transaction branch

XID1 are not available while working on transaction branch XID2, because the SQL work for the two

transaction branches is done in separate QSQSRVR jobs. If the application attempts to use a prepared

statement that is not available, the failure symptom would be SQLCODE = -518. (SQL0518 - Prepared

statement &1 not found.)

SQL Cursors

SQL cursors are also job-scoped resources, so they are not available to the application after switching to a

new transaction branch. If an application opens an SQL cursor and changes transaction branches, the

cursor may remain open in the QSQSRVR job related to the previous transaction branch depending on

how that branch was ended (see “SQLHOLD Values” on page 37). However, the cursor will not be

available while working on the new transaction branch. If and when the original transaction branch is

resumed, open cursors related to that transaction branch would again become available. Attempting to

reference a cursor while executing under a transaction branch other than the one under which the cursor

was opened, will result in a failure of SQLCODE = -501. (SQL0501 - Cursor &1 not open.)

Result Sets

When calling a stored procedure that returns result set(s), the application needs to take care to fully

process the result sets before changing to a different transaction branch. SQL CLI services that return

information about the status of a result set, could return incorrect information if not used in this manner.

Examples of SQL CLI APIs that return information based on interim results are SQLNumResultCols(),

SQLDescribeCol(), SQLColAttributes() and SQLDescribeParam().

SQL CLI APIs like SQLFetch() and SQLFetchScroll(), which deal directly with the SQL result set cursor,

would fail with SQLCODE = -502. (SQL0502 - Cursor &1 already open.)

SET PATH statement

The SET PATH SQL statement allows the application to designate a path to use for unqualified library

access to SQL stored procedures, SQL triggers and SQL UDFs within a dynamic statement. The path is a

job-scoped resource, and therefore not available after changing transaction branches. The application

should repeat any SET PATH statements after a transaction branch change, if the path will still be

needed.

Other SQL considerations

Applications should not change transaction branches while running within an SQL Stored Procedure, an

SQL User Defined Function (UDF) or an SQL Trigger program. Results would be unpredictable and no

anticipated failure information is available.

Embedded SQL applications that use the QSQCHGDC() system API to set up the Dynamic Default

Connection will not function correctly because the QSQCHGDC() will not affect the SQL Server Mode

job. This has always been a restriction of the SQL Server Mode environment. If encountered, the failure

symptom seen by the application would be SQLCODE = -204. (&1 in &2 type *&3 not found.)

XA APIs 31

Note that SQL CLI users that set the default library using the SQLSetConnectAttr() API with the

SQL_ATTR_DBC_DEFAULT_LIB connection attribute will continue to work. SQL CLI connection

attributes are still in place after moving to a different transacation branch.

 Top | UNIX-Type APIs | APIs by category

APIs

These are the APIs for this category.

db2xa_close()—Close an XA Resource Manager (Job Scoped Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_close_entry(char *xa_info,

 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_close() to close a currently open resource manager in the thread of

control. After this call, the resource manager cannot participate in global transactions on behalf of the

calling thread until it is reopened.

For additional information about parameters, authorities required, return values, and error conditions, see

the “xa_close()— Close an XA Resource Manager (Transaction Scoped ,Locks)” on page 5 API.

Example

See Code disclaimer information for information pertaining to code examples.

#include <xa.h>

main() {

 char *xa_info;

 int rmid;

 long flags;

 int retcode;

 extern struct xa_switch_t db2xa_switch;

 retcode =

 db2xa_switch.xa_close_entry(xa_info, rmid, flags);

}

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

32 iSeries: UNIX-Type -- XA APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

db2xa_commit()—Commit an XA Transaction Branch (Job Scoped

Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_commit_entry(XID *xid,

 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_commit() to commit the work associated with *xid. All changes that

were made to resources managed by DB2 UDB for iSeries during the transaction branch are made

permanent.

For additional information about parameters, authorities required, return values, and error conditions, see

the “xa_commit()— Commit an XA Transaction Branch (Transaction Scoped Locks” on page 6 API.

Example

See Code disclaimer information for information pertaining to code examples.

#include <xa.h>

main() {

 XID *xid;

 int rmid;

 long flags;

 int retcode;

 extern struct xa_switch_t db2xa_switch;

 retcode =

 db2xa_switch.xa_commit_entry(xid, rmid, flags);

}

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

XA APIs 33

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

db2xa_complete()—Test Completion of Asynchronous XA Request

(Job Scoped Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_complete_entry(int *handle,

 int *retval, int rmid, long flags)

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_complete() to wait for the completion of an asynchronous operation.

Asynchronous operations are not supported by the DB2 UDB for iSeries resource manager. This function

is provided only for compliance with the X/Open XA Specification.

For additional information about parameters, authorities required, return values, and error conditions, see

the “xa_complete()—Test Completion of Asynchronous XA Request (Transaction Scoped Locks)” on page

9 API.

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

db2xa_end()—End Work on an XA Transaction Branch (Job Scoped

Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_end_entry(XID *xid, int rmid,

 long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_end() when an application thread of control finishes or needs to

suspend work on a transaction branch. When db2xa_end() successfully returns, the calling thread of

control is no longer associated with the transaction branch, but the branch still exists.

SQL cursors used while the thread was associated with this transaction branch may be closed. Refer to

the SQLHOLD keyword description in the usage notes of the “db2xa_open()—Open an XA Resource

Manager (Job Scoped Locks)” on page 36 API for details.

34 iSeries: UNIX-Type -- XA APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

For additional information about parameters, authorities required, return values, and error conditions, see

the “xa_end()—End Work on an XA Transaction Branch (Transaction Scoped Locks)” on page 10 API.

Example

See Code disclaimer information for information pertaining to code examples.

#include <xa.h>

main() {

 XID *xid;

 int rmid;

 long flags;

 int retcode;

 extern struct xa_switch_t db2xa_switch;

 retcode =

 db2xa_switch.xa_end_entry(xid, rmid, flags);

}

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

db2xa_forget()—Forget an XA Transaction Branch (Job Scoped Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_forget_entry(XID *xid,

 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_forget() to forget about a heuristically completed transaction branch.

After this call, the *xid is no longer valid.

For additional information about parameters, authorities required, and error conditions, see the

“xa_forget()— Forget an XA Transaction Branch (Transaction Scoped Locks)” on page 13 API.

Example

See Code disclaimer information for information pertaining to code examples.

#include <xa.h>

main() {

 XID *xid;

 int rmid;

 long flags;

 int retcode;

 extern struct xa_switch_t db2xa_switch;

 retcode =

 db2xa_switch.xa_forget_entry(xid, rmid, flags);

}

XA APIs 35

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm
aboutapis.htm#CODEDISCLAIMER

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

db2xa_open()—Open an XA Resource Manager (Job Scoped Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_open_entry(char *xa_info,

 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_open() to open the XA resource manager and to prepare it for use in

the XA distributed transaction environment. This function must be called before any other resource

manager (db2xa_) calls are made.

For additional information about parameters, authorities required, return values, and error conditions, see

the “xa_open()—Open an XA Resource Manager (Transaction Scoped Locks)” on page 14 API.

Authorities

In addition to those documented for the “xa_open()—Open an XA Resource Manager (Transaction Scoped

Locks)” on page 14 API, the following authorities are required.

Exit Program Authority (specified via the xa_info parameter SRVPGM keyword)

*USE

Exit Program Library Authority (specified via the xa_info parameter SRVPGM keyword)

*EXECUTE

Journal Authority (if specified via the xa_info parameter DFTJRN keyword)

*OBJOPR *ADD

Journal Library Authority (if specified via the xa_info parameter DFTJRN keyword)

*EXECUTE

Usage Notes

The usage notes for the “xa_open()—Open an XA Resource Manager (Transaction Scoped Locks)” on

page 14 API apply to this API with the following differences.

v Additional xa_info keywords shown in xainfo String Keywords and Values (page 36) are allowed.

v The LOCKWAIT xa_info keyword is not allowed.

xainfo String Keywords and Values

36 iSeries: UNIX-Type -- XA APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Keyword Name Keyword Value

DFTJRN Default Journal. See the online help for the DFTJRN keyword of the STRCMTCTL CL command

for a description of the effect of this keyword. The journal should be specified as the journal’s

library, concatenated with a ’/’, concatenated with the journal’s name (for example, MYLIB/MYJRN).

Both the library and journal name must follow iSeries conventions for naming system objects.

The special value *NONE is supported for default journal.

The special value *LIBL is accepted for the library portion of the default journal and is the

default if the library portion is not specified.

If this keyword is not specified, no default journal is used.

If this keyword is specified but unresolvable, [XAER_INVAL] is returned.

OMTJRNE Omit Journal Entries. See the online help for the OMTJRNE keyword of the STRCMTCTL CL

command for a description of the effect of this keyword.

N Corresponds to the STRCMTCTL OMTJRNE value *NONE.

L Corresponds to the STRCMTCTL OMTJRNE value *LUWID.

If this keyword is not specified, OMTJRNE defaults to N.

SQLHOLD SQL HOLD value. Whether SQL cursors are closed during some XA operations. Refer to

“SQLHOLD Values” for detailed information about this keyword.

If this keyword is not specified, SQLHOLD defaults to A.

SRVPGM The name of a library qualified service program that contains functions ax_reg() and ax_unreg()

to be called by the resource manager to register and unregister itself with the transaction

manager. The service program should be specified as the program’s library, concatenated with a

’/’, concatenated with the program’s name (for example, TMLIB/TMPGM). Both the library and

program name must follow iSeries conventions for naming system objects.

The special value *LIBL is supported for the library portion of the service program and is the

default if the library portion is not specified.

This is a required keyword. If this keyword is not specified, or is unresolvable, [XAER_INVAL] is

returned.

See ax_reg()—Exit Program to Dynamically Register an XA Resource Manager and

ax_unreg()—Exit Program to Dynamically Unregister an XA Resource Manager for details on

these service functions.

SQLHOLD Values

This section documents how the SQLHOLD keyword value affects SQL cursors during the following XA

operations (other XA operations do not affect cursors):

v db2xa_end() unless the TMSUSPEND flag is specified

v db2xa_commit()

v db2xa_rollback()

This applies only to cursors associated with the connection that is used for the transaction branch affected

by the XA operation. As shown below, cursors declared WITH HOLD are treated differently in some

cases than those not declared WITH HOLD. Note that cursors can be declared WITH HOLD only when

embedded SQL is used. CLI cursors are not declared WITH HOLD.

XA APIs 37

xaxreg.htm
xaxunreg.htm

A Cursors are affected by XA operations as follows:

v db2xa_end() with the TMSUCCESS or TMFAIL flag:

– All cursors are closed.

v db2xa_commit():

– Cursors are not affected since db2xa_end() already closed them.

v db2xa_rollback():

– Cursors are not affected since db2xa_end() already closed them.

E Cursors are affected by XA operations as follows:

v db2xa_end() with the TMSUCCESS or TMFAIL flag:

– Cursors declared WITH HOLD are held open.

– Cursors not declared WITH HOLD are closed.

v db2xa_commit():

– Cursors declared WITH HOLD are held open.

– Cursors not declared WITH HOLD are closed.

v db2xa_rollback():

– All cursors are closed.

L Cursors are affected by XA operations as follows:

v db2xa_end() with the TMSUCCESS or TMFAIL flag:

– All cursors are held open.

v db2xa_commit():

– If the relational database resides on an iSeries system:

- All cursors are left open.

– If the relational database does not reside on an iSeries system:

- Cursors declared WITH HOLD are left open.

- Cursors not declared WITH HOLD are closed.

v db2xa_rollback():

– If the relational database resides on an iSeries system:

- All cursors are left open.

– If the relational database does not reside on an iSeries system:

- All cursors are closed.

N Cursors are affected by XA operations as follows:

v db2xa_end() with the TMSUCCESS or TMFAIL flag:

– All cursors are held open.

v db2xa_commit():

– Cursors declared WITH HOLD are held open.

– Cursors not declared WITH HOLD are closed.

v db2xa_rollback():

– All cursors are closed.

38 iSeries: UNIX-Type -- XA APIs

Y Cursors are affected by XA operations as follows:

v db2xa_end() with the TMSUCCESS or TMFAIL flag:

– All cursors are held open.

v db2xa_commit():

– If the relational database resides on an iSeries system:

- All cursors are left open.

– If the relational database does not reside on an iSeries system:

- The db2xa_commit() operation will fail. This value should not be used with relational

databases that do not reside on an iSeries system.

v db2xa_rollback():

– If the relational database resides on an iSeries system:

- All cursors are left open.

– If the relational database does not reside on an iSeries system:

- The db2xa_rollback() operation will fail. This value should not be used with relational

databases that do not reside on an iSeries system.

Example

See Code disclaimer information for information pertaining to code examples.

#include <xa.h>

main() {

 char xa_info[1024]=

 “tmname=mytranmgr srvpgm=tmlib/tmserv rdbname=myrdb”;

 int rmid;

 long flags;

 int retcode;

 extern struct xa_switch_t db2xa_switch;

 retcode =

 db2xa_switch.xa_open_entry(xa_info, rmid, flags);

}

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

db2xa_prepare()—Prepare to Commit an XA Transaction Branch (Job

Scoped Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_prepare_entry(XID *xid,

 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

XA APIs 39

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

A transaction manager calls db2xa_prepare() to request that a resource manager prepare for commitment

any work performed on behalf of *xid. The resource manager places all resources used in the transaction

branch in a state that the changes can be made permanently when it later receives the db2xa_commit()

request. All associations for *xid must have been ended by calling db2xa_end() prior to the prepare

request.

For additional information about parameters, authorities required, return values, and error conditions, see

the “xa_prepare()— Prepare to Commit an XA Transaction Branch (Transaction Scoped Locks)” on page

18 API.

Example

See Code disclaimer information for information pertaining to code examples.

#include <xa.h>

main() {

 XID *xid;

 int rmid;

 long flags;

 int retcode;

 extern struct xa_switch_t db2xa_switch;

 retcode =

 db2xa_switch.xa_prepare_entry(xid, rmid, flags);

}

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

db2xa_recover()—Recover XA Transaction Branches (Job Scoped

Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_recover_entry(XID *xids,

 long count, int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_recover() during recovery to obtain a list of transaction branches that

are currently in a prepared or heuristically completed state. Multiple calls to this function can be made in

a single recovery scan. The flags parameter defines when a recovery scan should start or end.

For additional information about parameters, authorities required, return values, and error conditions, see

the “xa_recover()— Recover XA Transaction Branches (Transaction Scoped Locks)” on page 20 API.

Example

See Code disclaimer information for information pertaining to code examples.

40 iSeries: UNIX-Type -- XA APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm
aboutapis.htm#CODEDISCLAIMER

#include <xa.h>

main() {

 XID xids[10];

 int rmid;

 long count=10;

 long flags=TMSTARTRSCAN+TMENDRSCAN;

 int retcode;

 extern struct xa_switch_t db2xa_switch;

 retcode =

 db2xa_switch.xa_recover_entry(xids, count,

 rmid, flags);

}

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

db2xa_rollback()—Roll Back an XA Transaction Branch (Job Scoped

Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_rollback_entry(XID *xid,

 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_rollback() to roll back work performed on behalf of the transaction

branch. A transaction branch is capable of being rolled back until is has been successfully committed.

For additional information about parameters, authorities required, return values, and error conditions, see

the “xa_rollback()— Roll Back an XA Transaction Branch (Transaction Scoped Locks)” on page 22 API.

Example

See Code disclaimer information for information pertaining to code examples.

#include <xa.h>

main() {

 XID *xid;

 int rmid;

 long flags;

 int retcode;

 extern struct xa_switch_t db2xa_switch;

 retcode =

 db2xa_switch.xa_rollback_entry(xid, rmid, flags);

}

XA APIs 41

#TOP_OF_PAGE
unix.htm
aplist.htm
aboutapis.htm#CODEDISCLAIMER

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

db2xa_start()—Start an XA Transaction Branch (Job Scoped Locks)

 Syntax

 #include <xa.h>

 int db2xa_switch.xa_start_entry(XID *xid,

 int rmid, long flags);

 Default Public Authority: *USE

 Service Program: QTNXADTP

 Threadsafe: Yes

A transaction manager calls db2xa_start() to inform a resource manager that an application may do work

on behalf of a transaction branch. When using the XA APIs for Job Scoped Locks, the XA resource

manager does not use this function. It dynamically registers work done on behalf of a transaction by

using the ax_reg() function. This function is provided only for compliance with the X/Open XA

Specification.

For additional information about parameters, authorities required, return values, and error conditions, see

the “xa_start()— Start an XA Transaction Branch (Transaction Scoped Locks)” on page 24 API.

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

42 iSeries: UNIX-Type -- XA APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 43

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

44 iSeries: UNIX-Type -- XA APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 45

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

46 iSeries: UNIX-Type -- XA APIs

����

Printed in USA

	Contents
	XA APIs
	Restrictions
	XA APIs for Transaction Scoped Locks
	Notes

	APIs
	xa_close()— Close an XA Resource Manager (Transaction Scoped ,Locks)
	Parameters
	Authorities
	Return Value
	Error Messages
	Related Information
	Example

	xa_commit()— Commit an XA Transaction Branch (Transaction Scoped Locks
	Parameters
	Authorities
	Return Value
	Error Messages
	Related Information
	Example

	xa_complete()—Test Completion of Asynchronous XA Request (Transaction Scoped Locks)
	Parameters
	Authorities
	Return Value
	Error Messages
	Related Information

	xa_end()—End Work on an XA Transaction Branch (Transaction Scoped Locks)
	Parameters
	Authorities
	Return Value
	Error Messages
	Related Information
	Example

	xa_forget()— Forget an XA Transaction Branch (Transaction Scoped Locks)
	Parameters
	Authorities
	Return Value
	Error Messages
	Related Information
	Example

	xa_open()—Open an XA Resource Manager (Transaction Scoped Locks)
	Parameters
	Authorities
	Return Value
	Error Messages
	Usage Notes
	Related Information
	Example

	xa_prepare()— Prepare to Commit an XA Transaction Branch (Transaction Scoped Locks)
	Parameters
	Authorities
	Return Value
	Error Messages
	Related Information
	Example

	xa_recover()— Recover XA Transaction Branches (Transaction Scoped Locks)
	Parameters
	Authorities
	Return Value
	Error Messages
	Related Information
	Example

	xa_rollback()— Roll Back an XA Transaction Branch (Transaction Scoped Locks)
	Parameters
	Authorities
	Return Value
	Error Messages
	Related Information
	Example

	xa_start()— Start an XA Transaction Branch (Transaction Scoped Locks)
	Parameters
	Authorities
	Return Value
	Error Messages
	Related Information
	Example

	xa_start_2()—Start an XA Transaction Branch, Extended Version (Transaction Scoped Locks)
	Example

	XA APIs for Job Scoped Locks
	Notes
	Restrictions for XA APIs for Job Scoped Locks

	APIs
	db2xa_close()—Close an XA Resource Manager (Job Scoped Locks)
	Example

	db2xa_commit()—Commit an XA Transaction Branch (Job Scoped Locks)
	Example

	db2xa_complete()—Test Completion of Asynchronous XA Request (Job Scoped Locks)
	db2xa_end()—End Work on an XA Transaction Branch (Job Scoped Locks)
	Example

	db2xa_forget()—Forget an XA Transaction Branch (Job Scoped Locks)
	Example

	db2xa_open()—Open an XA Resource Manager (Job Scoped Locks)
	Authorities
	Usage Notes
	SQLHOLD Values
	Example

	db2xa_prepare()—Prepare to Commit an XA Transaction Branch (Job Scoped Locks)
	Example

	db2xa_recover()—Recover XA Transaction Branches (Job Scoped Locks)
	Example

	db2xa_rollback()—Roll Back an XA Transaction Branch (Job Scoped Locks)
	Example

	db2xa_start()—Start an XA Transaction Branch (Job Scoped Locks)

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

