
iSeries

UNIX-Type -- Process-Related APIs

Version 5 Release 3

���

iSeries

UNIX-Type -- Process-Related APIs

Version 5 Release 3

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 75.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Process-Related APIs 1

APIs 2

getopt()—Get Flag Letters from Argument Vector . . 2

Parameters 2

Authorities 3

Return Value 3

Error Conditions 3

Example 3

getpgrp()—Get Process Group ID 4

Parameters 4

Authorities 4

Return Value 4

Error Conditions 5

Usage Notes 5

Related Information 5

Example 5

getpid()—Get Process ID 5

Parameters 5

Authorities 5

Return Value 5

Error Conditions 6

Usage Notes 6

Related Information 6

Example 6

getppid()—Get Process ID of Parent Process 6

Parameters 6

Authorities 6

Return Value 7

Error Conditions 7

Related Information 7

Example 7

getrlimit()—Get resource limit 7

Parameters 8

Authorities and Locks 8

Return Value 8

Error Conditions 8

Related Information 8

Example 9

pipe()—Create an Interprocess Channel 9

Parameters 10

Authorities 10

Return Value 10

Error Conditions 10

Usage Notes 11

Related Information 11

Example 11

QlgSpawn()—Spawn Process (using NLS-enabled

path name) 12

Parameters 12

Usage Notes 13

Related Information 13

Example 13

QlgSpawnp()—Spawn Process with Path (using

NLS-enabled file name) 18

Parameters 19

Usage Notes 19

Related Information 19

Example 19

Qp0wChkChld()—Check Status for Child Processes 19

Parameters 20

Authorities 21

Return Value 21

Usage Notes 22

Related Information 22

Qp0wChkPgrp()—Check Status for Process Group 22

Parameters 22

Authorities 23

Return Value 24

Usage Notes 24

Related Information 24

Qp0wChkPid()—Check Status for Process ID . . . 25

Parameters 25

Authorities 26

Return Value 26

Usage Notes 27

Related Information 27

Qp0wGetJobID()—Get Qualified Job Name and ID

for Process ID 27

Parameters 27

Authorities 28

Return Value 28

Related Information 29

Qp0wGetPgrp()—Get Process Group ID 29

Parameters 29

Authorities 29

Return Value 29

Error Conditions 29

Usage Notes 29

Related Information 29

Qp0wGetPid()—Get Process ID 30

Parameters 30

Authorities 30

Return Value 30

Error Conditions 30

Usage Notes 30

Related Information 30

Qp0wGetPidNoInit()—Get Process ID without

Initializing for Signals 31

Parameters 31

Authorities 31

Return Value 31

Error Conditions 31

Usage Notes 31

Related Information 31

Qp0wGetPPid()—Get Process ID of Parent Process 32

Parameters 32

Authorities 32

Return Value 32

Error Conditions 32

Usage Notes 32

Related Information 32

© Copyright IBM Corp. 1998, 2005 iii

Qp0zPipe()—Create Interprocess Channel with

Sockets 33

Parameters 33

Authorities 33

Return Value 33

Error Conditions 33

Usage Notes 34

Related Information 35

Qp0zSystem()—Run a CL Command 35

Parameters 35

Authorities 35

Return Value 35

Related Information 36

Example 36

Output: 36

setpgid()—Set Process Group ID for Job Control . . 36

Parameters 36

Authorities 37

Return Value 37

Error Conditions 37

Usage Notes 37

Related Information 37

setrlimit()—Set resource limit 38

Parameters 38

Authorities and Locks 39

Return Value 39

Error Conditions 39

Related Information 39

Example 39

spawn()—Spawn Process 40

Parameters 40

Authorities 43

Return Value 43

Error Conditions 43

Usage Notes 45

Attributes Inherited 50

Related Information 51

Example 52

spawnp()—Spawn Process with Path 52

Parameters 52

Authorities 55

Return Value 55

Error Conditions 55

Usage Notes 57

Attributes Inherited 62

Related Information 63

Example 64

ulimit()—Get and set process limits 64

Parameters 64

Authorities and Locks 65

Return Value 65

Error Conditions 65

Related Information 65

Example 65

wait()—Wait for Child Process to End 66

Parameters 66

Authorities 67

Return Value 67

Error Conditions 67

Usage Notes 68

Related Information 68

Example 68

waitpid()—Wait for Specific Child Process 69

Parameters 69

Authorities 70

Return Value 70

Error Conditions 70

Usage Notes 71

Related Information 71

Example 71

Concepts 72

About Shell Scripts 72

Appendix. Notices 75

Trademarks 76

Terms and conditions for downloading and printing

publications 77

Code disclaimer information 78

iv iSeries: UNIX-Type -- Process-Related APIs

Process-Related APIs

The process-related APIs perform process-related or other general operations. These APIs are C language

functions that can be used in ILE C programs.

The process-related APIs are:

v “getopt()—Get Flag Letters from Argument Vector” on page 2 (Get flag letters from argument vector)

returns the next flag letter in the argv list that matches a letter in optionstring.

v “getpgrp()—Get Process Group ID” on page 4 (Get process group ID) returns the process group ID of

the calling process.

v “getpid()—Get Process ID” on page 5 (Get process ID) returns the process ID of the calling process.

v “getppid()—Get Process ID of Parent Process” on page 6 (Get process ID of parent process) returns the

parent process ID of the calling process.

v “getrlimit()—Get resource limit” on page 7 (Get resource limit) returns the resource limit for the

specified resource.

v “pipe()—Create an Interprocess Channel” on page 9 (Create interprocess channel) creates a data pipe

and places two file descriptors, one each into the arguments fildes[0] and fildes[1], that refer to the

open file descriptions for the read and write ends of the pipe, respectively.

v “QlgSpawn()—Spawn Process (using NLS-enabled path name)” on page 12 (Spawn process (using

NLS-enabled path name)) creates a child process that inherits specific attributes from the parent.

v “QlgSpawnp()—Spawn Process with Path (using NLS-enabled file name)” on page 18 (Spawn process

with path (using NLS-enabled file name)) creates a child process that inherits specific attributes from

the parent.

v “Qp0wChkChld()—Check Status for Child Processes” on page 19 (Check status for child processes)

returns the status and process table entry information for the child processes of the specified process

ID.

v “Qp0wChkPgrp()—Check Status for Process Group” on page 22 (Check status for process group)

returns the status and process table entry information for the processes that are members of the process

group identified by pid in the structure QP0W_PID_Entry_T.

v “Qp0wChkPid()—Check Status for Process ID” on page 25 (Check status for process ID) returns the

status and process table entry information for the process specified by the process ID pid.

v “Qp0wGetJobID()—Get Qualified Job Name and ID for Process ID” on page 27 (Get qualified job name

and ID for process ID) returns the qualified job name and internal job identifier for the process whose

process ID matches pid.

v “Qp0wGetPgrp()—Get Process Group ID” on page 29 (Get process group ID) returns the process group

ID of the calling process.

v “Qp0wGetPid()—Get Process ID” on page 30 (Get process ID) returns the process ID of the calling

process.

v “Qp0wGetPidNoInit()—Get Process ID without Initializing for Signals” on page 31 (Get process ID

without initializing for signals) returns the process ID of the calling process without enabling the

process to receive signals.

v “Qp0wGetPPid()—Get Process ID of Parent Process” on page 32 (Get process ID of parent process)

returns the parent process ID of the calling process.

v “Qp0zPipe()—Create Interprocess Channel with Sockets” on page 33 (Create interprocess channel with

sockets) creates a data pipe that can be used by two processes.

v “Qp0zSystem()—Run a CL Command” on page 35 (Run a CL command) spawns a new process, passes

CLcommand to the CL command processor in the new process, and waits for the command to

complete.

© Copyright IBM Corp. 1998, 2005 1

v “setpgid()—Set Process Group ID for Job Control” on page 36 (Set process group ID for job control) is

used to either join an existing process group or create a new process group within the session of the

calling process.

v “setrlimit()—Set resource limit” on page 38 (Set resource limit) sets the resource limit for the specified

resource.

v “spawn()—Spawn Process” on page 40 (Spawn process) creates a child process that inherits specific

attributes from the parent.

v “spawnp()—Spawn Process with Path” on page 52 (Spawn process with path) creates a child process

that inherits specific attributes from the parent.

v “ulimit()—Get and set process limits” on page 64 (Get and set process limits) provides a way to get

and set process resource limits.

v “wait()—Wait for Child Process to End” on page 66 (Wait for child process to end) suspends processing

until a child process has ended.

v “waitpid()—Wait for Specific Child Process” on page 69 (Wait for specific child process) allows the

calling thread to obtain status information for one of its child processes.

For additional information, see “About Shell Scripts” on page 72.

 Top | UNIX-Type APIs | APIs by category

APIs

These are the APIs for this category.

getopt()—Get Flag Letters from Argument Vector

 Syntax

 #include <unistd.h>

 int getopt(int argc, char * const argv[],

 const char *optionstring);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

 Threadsafe: No

The getopt() function returns the next flag letter in the argv list that matches a letter in optionstring. The

optarg external variable is set to point to the start of the flag’s parameter on return from getopt()

getopt() places the argv index of the next argument to be processed in optind. The optind variable is

external. It is initialized to 1 before the first call to getopt().

getopt() can be used to help a program interpret command line flags that are passed to it.

Parameters

argc (Input) The number of parameters passed by the function.

argv (Input) The list of parameters passed to the function.

2 iSeries: UNIX-Type -- Process-Related APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

optionstring

(Input) A string of flag letters. The string must contain the flag letters that the program using

getopt() recognizes. If a letter is followed by a colon, the flag is expected to have an argument or

group of arguments, which can be separated from it by blank spaces.

 The special flag ″—″ (two hyphens) can be used to delimit the end of the options. When this flag

is encountered, the ″—″ is skipped and EOF is returned. This flag is useful in delimiting

arguments beginning with a hyphen that are not options.

Authorities

None.

Return Value

 EOF getopt() processed all flags (that is, up to the first argument that is not a flag).

’?’ getopt() encountered a flag letter that was not included in optionstring. The variable optopt is set to

the real option found in argv regardless of whether the flag is in optionstring of not. An error

message is printed to stderr. The generation of error messages can be suppressed by setting opterr

to 0.

Error Conditions

The getopt() function does not return an error.

Example

See Code disclaimer information for information pertaining to code examples.

The following example processes the flags for a command that can take the mutually exclusive flags a

and b, and the flags f and o, both of which require parameters.

#include <unistd.h>

int main(int argc, char *argv[])

{

 int c;

 extern int optind;

 extern char *optarg;

 .

 .

 .

 while ((c = getopt(argc, argv, "abf:o:")) != EOF)

 {

 switch (c)

 {

 case ’a’:

 if (bflg)

 errflg++;

 else

 aflg++;

 break;

 case ’b’:

 if (aflg)

 errflg++;

 else

 bflg++;

 break;

 case ’f’:

 ifile = optarg;

 break;

 case ’o’:

Process-Related APIs 3

aboutapis.htm#CODEDISCLAIMER

ofile = optarg;

 break;

 case ’?’:

 errflg++;

 } /* case */

 if (errflg)

 {

 fprintf(stderr, "usage: . . . ");

 exit(2);

 }

 } /* while */

 for (; optind < argc; optind++)

 {

 if (access(argv[optind], R_OK))

 {

 .

 .

 .

 }

 } /* for */

} /* main */

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

getpgrp()—Get Process Group ID

 Syntax

 #include <sys/types.h>

 #include <unistd.h>

 pid_t getpgrp(void);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The getpgrp() function returns the process group ID of the calling process.

Parameters

None

Authorities

None.

Return Value

 pid_t The value returned by getpgrp() is the process group ID of the calling process.

4 iSeries: UNIX-Type -- Process-Related APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Error Conditions

The getpgrp() function is always successful and does not return an error.

Usage Notes

The getpgrp() function enables a process for signals if the process is not already enabled for signals. For

details, see Qp0sEnableSignals()—Enable Process for Signals.

Related Information

v The <sys/types.h> file (see Header Files for UNIX-Type Functions)

v The <unistd.h> file (see Header Files for UNIX-Type Functions)

v “Qp0wGetPgrp()—Get Process Group ID” on page 29—Get Process Group ID

Example

See Code disclaimer information for information pertaining to code examples.

For an example of using this function, see the child program in Using the Spawn Process and Wait for

Child Process APIs

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

getpid()—Get Process ID

 Syntax

 #include <sys/types.h>

 #include <unistd.h>

 pid_t getpid(void);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The getpid() function returns the process ID of the calling process.

Parameters

None

Authorities

None.

Return Value

 pid_t The value returned by getpid() is the process ID of the calling process.

Process-Related APIs 5

sigesig.htm
unix13.htm
unix13.htm
aboutapis.htm#CODEDISCLAIMER
apiexuspro.htm
apiexuspro.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Error Conditions

The getpid() function is always successful and does not return an error.

Usage Notes

The getpid() function enables a process for signals if the process is not already enabled for signals. For

details, see Qp0sEnableSignals()—Enable Process for Signals.

Related Information

v The <sys/types.h> file (see Header Files for UNIX-Type Functions)

v The <unistd.h> file (see Header Files for UNIX-Type Functions)

v Qp0sDisableSignals()—Disable Process for Signals

v Qp0sEnableSignals()—Enable Process for Signals

v “Qp0wGetPid()—Get Process ID” on page 30—Get Process ID

v “Qp0wGetPidNoInit()—Get Process ID without Initializing for Signals” on page 31—Get Process ID

without Initializing for Signals

Example

See Code disclaimer information for information pertaining to code examples.

For an example of using this function, see the child program in Using the Spawn Process and Wait for

Child Process APIs

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

getppid()—Get Process ID of Parent Process

 Syntax

 #include <sys/types.h>

 #include <unistd.h>

 pid_t getppid(void);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The getppid() function returns the parent process ID of the calling process.

Parameters

None

Authorities

None.

6 iSeries: UNIX-Type -- Process-Related APIs

sigesig.htm
unix13.htm
unix13.htm
sigdsig.htm
sigesig.htm
aboutapis.htm#CODEDISCLAIMER
apiexuspro.htm
apiexuspro.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Return Value

 pid_t The value returned by getppid() is the process ID of the parent process for the calling process. A

process ID value of 1 indicates that there is no parent process associated with the calling process.

Error Conditions

The getppid() function is always successful and does not return an error.

Related Information

v The <sys/types.h> file (see Header Files for UNIX-Type Functions)

v The <unistd.h> file (see Header Files for UNIX-Type Functions)

v “Qp0wGetPPid()—Get Process ID of Parent Process” on page 32—Get Process ID of Parent Process

Example

See Code disclaimer information for information pertaining to code examples.

For an example of using this function, see the child program in Using the Spawn Process and Wait for

Child Process APIs

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

getrlimit()—Get resource limit

 Syntax

 #include <sys/resource.h>

 int getrlimit(int resource, struct rlimit *rlp);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The getrlimit() function returns the resource limit for the specified resource. A resource limit is a way for

the operating system to enforce a limit on a variety of resources used by a process. A resource limit is

represented by a rlimit structure. The rlim_cur member specifies the current or soft limit and the

rlim_max member specifies the maximum or hard limit.

The getrlimit() function supports the following resources:

 RLIMIT_FSIZE

(0)

The maximum size of a file in bytes that can be created by a process.

RLIMIT_NOFILE

(1)

The maximum number of file descriptors that can be opened by a process.

RLIMIT_CORE

(2)

The maximum size of a core file in bytes that can be created by a process.

Process-Related APIs 7

unix13.htm
unix13.htm
aboutapis.htm#CODEDISCLAIMER
apiexuspro.htm
apiexuspro.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

RLIMIT_CPU (3) The maximum amount of CPU time in seconds that can be used by a process.

RLIMIT_DATA

(4)

The maximum size of a process’ data segment in bytes.

RLIMIT_STACK

(5)

The maximum size of a process’ stack in bytes.

RLIMIT_AS (6) The maximum size of a process’ total available storage in bytes.

The value of RLIM_INFINITY is considered to be larger than any other limit value. If the value of the

limit is RLIM_INFINITY, then a limit is not enforced for that resource. The getrlimit() function always

returns RLIM_INFINITY for the following resources: RLIMIT_AS, RLIMIT_CORE, RLIMIT_CPU,

RLIMIT_DATA, and RLIMIT_STACK.

Parameters

resource

(Input)

 The resource to get the limits for.

*rlp (Output)

 Pointer to a struct rlim_t where the values of the hard and soft limits are returned.

Authorities and Locks

None.

Return Value

 0 getrlimit() was successful.

-1 getrlimit() was not successful. The errno variable is set to indicate the error.

Error Conditions

If getrlimit() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 An invalid parameter was found.

 An invalid resource was specified.

Related Information

v The <sys/resource.h> file (see Header Files for UNIX-Type Functions)

v “setrlimit()—Set resource limit” on page 38—Set resource limit

v “ulimit()—Get and set process limits” on page 64—Get and set process limits

8 iSeries: UNIX-Type -- Process-Related APIs

unix13.htm

Example

See Code disclaimer information for information pertaining to code examples.

#include <sys/resource.h>

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

int main (int argc, char *argv[])

{

 struct rlimit limit;

 /* Set the file size resource limit. */

 limit.rlim_cur = 65535;

 limit.rlim_max = 65535;

 if (setrlimit(RLIMIT_FSIZE, &limit) != 0) {

 printf("setrlimit() failed with errno=%d\n", errno);

 exit(1);

 }

 /* Get the file size resource limit. */

 if (getrlimit(RLIMIT_FSIZE, &limit) != 0) {

 printf("getrlimit() failed with errno=%d\n", errno);

 exit(1);

 }

 printf("The soft limit is %llu\n", limit.rlim_cur);

 printf("The hard limit is %llu\n", limit.rlim_max);

 exit(0);

}

Example Output:

The soft limit is 65535

The hard limit is 65535

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

pipe()—Create an Interprocess Channel

 Syntax

 #include <unistd.h>

 int pipe(int fildes[2]);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The pipe() function creates a data pipe and places two file descriptors, one each into the arguments

fildes[0] and fildes[1], that refer to the open file descriptions for the read and write ends of the pipe,

respectively. Their integer values will be the two lowest available at the time of the pipe() call. The

O_NONBLOCK and FD_CLOEXEC flags will be clear on both descriptors. NOTE: these flags can,

however, be set by the fcntl() function.

Process-Related APIs 9

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

Data can be written to the file descriptor fildes[1] and read from file descriptor fildes[0]. A read on the file

descriptor fildes[0] will access data written to the file descriptor fildes[1] on a first-in-first-out basis. File

descriptor fildes[0] is open for reading only. File descriptor fildes[1] is open for writing only.

The pipe() function is often used with the spawn() function to allow the parent and child processes to

send data to each other.

Upon successful completion, pipe() will update the access time, change time, and modification time of

the pipe.

Parameters

fildes[2]

(Output) An integer array of size 2 that will receive the pipe descriptors.

Authorities

None.

Return Value

 0 pipe() was successful.

-1 pipe() was not successful. The errno variable is set to indicate the error.

Error Conditions

If pipe() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EMFILE]

 Too many open files for this process.

 An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of

OPEN_MAX can be retrieved using the sysconf() function.

 The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENFILE]

 Too many open files in the system.

 A system limit has been reached for the number of files that are allowed to be concurrently open

in the system.

 The entire system has too many other file descriptors already open.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

10 iSeries: UNIX-Type -- Process-Related APIs

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Usage Notes

1.

If this function is called by a thread executing one of the scan-related exit programs (or any of its

created threads), the descriptors that are returned are scan descriptors. See Integrated File System

Scan on Open Exit Programs and Integrated File System Scan on Close Exit Programs for more

information. If a process is spawned, these scan descriptors are not inherited by the spawned process

and therefore cannot be used in that spawned process. Therefore, in this case, the descriptors returned

by pipe() function will only work within the same process.

Related Information

v The <unistd.h> file (see Header Files for UNIX-Type Functions)

v The <fcntl.h> file (see Header Files for UNIX-Type Functions)

v fcntl()—Perform File Control Command

v fstat()—Get File Information by Descriptor

v “Qp0zPipe()—Create Interprocess Channel with Sockets” on page 33—Create Interprocess Channel

with Sockets

v read()—Read from Descriptor

v “spawn()—Spawn Process” on page 40—Spawn Process

v write()—Write to Descriptor

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a pipe, writes 10 bytes of data to the pipe, and then reads those 10 bytes

of data from the pipe.

#include <stdio.h>

#include <unistd.h>

#include <string.h>

void main()

{

 int fildes[2];

 int rc;

 char writeData[10];

 char readData[10];

 int bytesWritten;

 int bytesRead;

 memset(writeData,’A’,10);

 if (-1 == pipe(fildes))

 {

 perror("pipe error");

 return;

 }

 if (-1 == (bytesWritten = write(fildes[1],

 writeData,

 10)))

 {

 perror("write error");

 }

Process-Related APIs 11

ifsopenexit.htm
ifsopenexit.htm
ifscloseexit.htm
unix13.htm
unix13.htm
fcntl.htm
fstat.htm
read.htm
write.htm
aboutapis.htm#CODEDISCLAIMER

else

 {

 printf("wrote %d bytes\n",bytesWritten);

 if (-1 == (bytesRead = read(fildes[0],

 readData,

 10)))

 {

 perror("read error");

 }

 else

 {

 printf("read %d bytes\n",bytesRead);

 }

 }

 close(fildes[0]);

 close(fildes[1]);

 return;

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgSpawn()—Spawn Process (using NLS-enabled path name)

 Syntax

 #include <spawn.h>

 #include <qlg.h>

 pid_t QlgSpawn(const Qlg_Path_Name_T *path,

 const int fd_count,

 const int fd_map[],

 const struct inheritance *inherit,

 char * const argv[],

 char * const envp[]);

 Service Program Name: QP0ZSPWN

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 13.

The QlgSpawn() function, like the spawn() function, creates a child process that inherits specific

attributes from the parent. The difference is that for the path parameter, the QlgSpawn() function takes a

pointer to a Qlg_Path_Name_T structure, while the spawn() function takes a pointer to a character string

in the CCSID of the job.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, and return values, see “spawn()—Spawn

Process” on page 40—Spawn Process.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a specific path name or a pointer

12 iSeries: UNIX-Type -- Process-Related APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

to a specific path name of an executable file that will run in the new (child) process. For more

information on the Qlg_Path_Name_T structure, see Path name format.

Usage Notes

See “spawn()—Spawn Process” on page 40—Spawn Process for a complete discussion of usage

information for QlgSpawn(). In addition, the following should be noted specifically for QlgSpawn().

1. Shell scripts are supported; however, the interpreter path in the shell script itself cannot be a

Qlg_Path_Name_T structure.

Related Information

v The <qlg.h> file (see Header Files for UNIX-Type Functions)

v “spawn()—Spawn Process” on page 40—Spawn Process

v “QlgSpawnp()—Spawn Process with Path (using NLS-enabled file name)” on page 18—Spawn Process

with Path (using NLS-enabled file name)

Example

See Code disclaimer information for information pertaining to code examples.

Parent Program

The following ILE C for OS/400 program can be created in any library. This parent program assumes the

corresponding child program will be created with the name CHILD in the library QGPL. Call this parent

program with no parameters to run the example.

/***/

/***/

/* */

/* FUNCTION: This program acts as a parent to a child program. */

/* */

/* LANGUAGE: ILE C for OS/400 */

/* */

/* APIs USED: QlgSpawn(), waitpid(), */

/* QlgCreat(), QlgUnlink(), QlgOpen() */

/* */

/***/

/***/

#include <errno.h>

#include <fcntl.h>

#include <spawn.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <sys/wait.h>

#include <unistd.h>

#include <qlg.h>

#include <Qp0lstdi.h>

#define ARGV_NUM 6

#define ENVP_NUM 1

#define CHILD_PGM "QGPL/CHILD"

#define spwpath "/QSYS.LIB/QGPL.LIB/CHILD.PGM"

#define fpath "A_File"

typedef struct pnstruct

{

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This size must be >= the path */

 /* name length or this must be a */

Process-Related APIs 13

pns.htm
unix13.htm
aboutapis.htm#CODEDISCLAIMER

/* pointer to the path name. */

};

/* This is a parent program that will use QlgSpawn() to start a */

/* child. A file is created that is written to, both by the parent */

/* and the child. The end result of the file will look something */

/* like the following: */

/* Parent writes Child writes */

/* ------------- --------------------------------------- */

/* 1 argv[0] getppid() getpgrp() getpid() */

/* The parent uses waitpid() to wait for the child to return and to */

/* retrieve the resulting status of the child when it does return. */

int main(int argc, char *argv[])

{

 int rc; /* API return code */

 int fd, fd_read; /* parent file descriptors */

 char fd_str[4]; /* file descriptor string */

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 const char Path_Name_Del_const[2]= "/";

 struct pnstruct f_path_name; /* file pathname */

 int buf_int; /* write(), read() buffer */

 char buf_pgm_name[22]; /* read() program name buffer */

 struct pnstruct spw_path; /* QlgSpawn() *path */

 int spw_fd_count = 0; /* QlgSpawn() fd_count */

 struct inheritance spw_inherit; /* QlgSpawn() *inherit */

 char *spw_argv[ARGV_NUM]; /* QlgSpawn() *argv[] */

 char *spw_envp[ENVP_NUM]; /* QlgSpawn() *envp[] */

 int seq_num; /* sequence number */

 char seq_num_str[4]; /* sequence number string */

 pid_t pid; /* parent pid */

 char pid_str[11]; /* parent pid string */

 pid_t pgrp; /* parent process group */

 char pgrp_str[11]; /* parent process group string */

 pid_t spw_child_pid; /* QlgSpawn() child pid */

 pid_t wt_child_pid; /* waitpid() child pid */

 int wt_stat_loc; /* waitpid() *stat_loc */

 int wt_pid_opt = 0; /* waitpid() option */

 /* Get the pid and pgrp for the parent. */

 pid = getpid();

 pgrp = getpgrp();

 /* Format the pid and pgrp value into null-terminated strings. */

 sprintf(pid_str, "%d", pid);

 sprintf(pgrp_str, "%d", pgrp);

 /* Initialize Qlg_Path_Name_T parameters */

 memset(&f_path_name,0x00,sizeof(struct pnstruct));

 f_path_name.qlg_struct.CCSID = 37;

 memcpy(f_path_name.qlg_struct.Country_ID,US_const,2);

 memcpy(f_path_name.qlg_struct.Language_ID,Language_const,3);

 f_path_name.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 f_path_name.qlg_struct.Path_Length = sizeof(fpath)-1;

 memcpy(f_path_name.qlg_struct.Path_Name_Delimiter,

 Path_Name_Del_const,1);

 memcpy(f_path_name.pn,fpath,sizeof(fpath)-1);

 /* Create a file and maintain the file descriptor. */

 fd = QlgCreat((Qlg_Path_Name_T *)&f_path_name, S_IRWXU);

 if (fd == -1)

 {

 printf("FAILURE: QlgCreat() with errno = %d\n",errno);

 return -1;

 }

 /* Format the file descriptor into null-terminated string. */

 sprintf(fd_str, "%d", fd);

14 iSeries: UNIX-Type -- Process-Related APIs

/* Initialize Qlg_Path_Name_T parameters */

 memset(&spw_path,0x00,sizeof(struct pnstruct));

 spw_path.qlg_struct.CCSID = 37;

 memcpy(spw_path.qlg_struct.Country_ID,US_const,2);

 memcpy(spw_path.qlg_struct.Language_ID,Language_const,3);

 spw_path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 spw_path.qlg_struct.Path_Length = sizeof(spwpath)-1;

 memcpy(spw_path.qlg_struct.Path_Name_Delimiter,

 Path_Name_Del_const,1);

 memcpy(spw_path.pn,spwpath,sizeof(spwpath)-1);

 /* Write a ’1’ out to the file. */

 seq_num = 1;

 sprintf(seq_num_str, "%d", seq_num);

 buf_int = seq_num;

 write(fd, &buf_int, sizeof(int));

 /* Set the QlgSpawn() child arguments for the child. */

 /* NOTE: The child will always get argv[0] in the */

 /* LIBRARY/PROGRAM notation, but the QlgSpawn() argv[0] */

 /* (spw_argv[0] in this case) must be non-NULL in order */

 /* to allow additional arguments. For this example, the */

 /* CHILD_PGM was chosen. */

 /* NOTE: The parent pid and the parent process group are */

 /* passed to the child for demonstration purposes only. */

 spw_argv[0] = CHILD_PGM;

 spw_argv[1] = pid_str;

 spw_argv[2] = pgrp_str;

 spw_argv[3] = seq_num_str;

 spw_argv[4] = fd_str;

 spw_argv[5] = NULL;

 /* This QlgSpawn() will use simple inheritance for file */

 /* descriptors (fd_map[] value is NULL). */

 memset(&spw_inherit,0x00,sizeof(spw_inherit));

 spw_envp[0] = NULL;

 spw_child_pid = QlgSpawn((Qlg_Path_Name_T *)&spw_path,

 spw_fd_count, NULL, &spw_inherit, spw_argv, spw_envp);

 if (spw_child_pid == -1)

 {

 printf("FAILURE: QlgSpawn() with errno = %d\n",errno);

 close(fd);

 QlgUnlink((Qlg_Path_Name_T *)&f_path_name);

 return -1;

 }

 /* The parent no longer needs to use the file descriptor, so */

 /* it can close it, now that it has issued QlgSpawn(). */

 rc = close(fd);

 if (rc != 0)

 printf("FAILURE: close(fd) with errno = %d\n",errno);

 /* NOTE: The parent can continue processing while the child is */

 /* also processing. In this example, though, the parent will */

 /* simply wait until the child finishes processing. */

 /* Issue waitpid() in order to wait for the child to return. */

 wt_child_pid = waitpid(spw_child_pid,&wt_stat_loc,wt_pid_opt);

 if (wt_child_pid == -1)

 {

 printf("FAILURE: waitpid() with errno = %d\n",errno);

 close(fd);

 QlgUnlink((Qlg_Path_Name_T *)&f_path_name);

 return -1;

 }

 /* Check to ensure the child did not encounter an error */

Process-Related APIs 15

/* condition. */

 if (WIFEXITED(wt_stat_loc))

 {

 if (WEXITSTATUS(wt_stat_loc) != 1)

 printf("FAILURE: waitpid() exit status = %d\n",

 WEXITSTATUS(wt_stat_loc));

 }

 else

 printf("FAILURE: unknown child status\n");

 /* Open the file for read to verify what the child wrote. */

 fd_read = QlgOpen((Qlg_Path_Name_T *)&f_path_name, O_RDONLY);

 if (fd_read == -1)

 {

 printf("FAILURE: open() for read with errno = %d\n",errno);

 QlgUnlink((Qlg_Path_Name_T *)&f_path_name);

 return -1;

 }

 /* Verify what child wrote. */

 rc = read(fd_read, &buf_int, sizeof(int));

 if ((rc != sizeof(int)) || (buf_int != 1))

 printf("FAILURE: read()\n");

 memset(buf_pgm_name,0x00,sizeof(buf_pgm_name));

 rc = read(fd_read, buf_pgm_name, strlen(CHILD_PGM));

 if ((rc != strlen(CHILD_PGM)) ||

 (strcmp(buf_pgm_name,CHILD_PGM) != 0))

 printf("FAILURE: read() child argv[0]\n");

 rc = read(fd_read, &buf_int, sizeof(int));

 if ((rc != sizeof(int)) || (buf_int != pid))

 printf("FAILURE: read() child getppid()\n");

 rc = read(fd_read, &buf_int, sizeof(int));

 if ((rc != sizeof(int)) || (buf_int != pgrp))

 printf("FAILURE: read() child getpgrp()\n");

 rc = read(fd_read, &buf_int, sizeof(int));

 if ((rc != sizeof(int)) || (buf_int != spw_child_pid) ||

 (buf_int != wt_child_pid))

 printf("FAILURE: read() child getpid()\n");

 /* Attempt one more read() to ensure there is no more data. */

 rc = read(fd_read, &buf_int, sizeof(int));

 if (rc != 0)

 printf("FAILURE: read() past end of data\n");

 /* The parent no longer needs to use the read() file descriptor, */

 /* so it can close it. */

 rc = close(fd_read);

 if (rc != 0)

 printf("FAILURE: close(fd_read) with errno = %d\n",errno);

 /* Clean up by performing unlink(). */

 rc = QlgUnlink((Qlg_Path_Name_T *)&f_path_name);

 if (rc != 0)

 {

 printf("FAILURE: QlgUnlink() with errno = %d\n",errno);

 return -1;

 }

 printf("completed successfully\n");

 return 0;

}

Child Program

16 iSeries: UNIX-Type -- Process-Related APIs

The following ILE C for OS/400 program must be created with the name CHILD in the library QGPL in

order to be found by the parent program. This program is not to be called directly, as it is run through

the use of QlgSpawn() in the parent program.

/***/

/***/

/* */

/* FUNCTION: This program acts as a child to a parent program. */

/* */

/* LANGUAGE: ILE C for OS/400 */

/* */

/* APIs USED: getpid(), getppid(), getpgrp() */

/* */

/***/

/***/

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <unistd.h>

/* This is a child program that gets control from a parent program */

/* that issues QlgSpawn(). This particular child program expects */

/* the following 5 arguments (all are null-terminated strings): */

/* argv[0] - child program name */

/* argv[1] - parent pid (for demonstration only) */

/* argv[2] - parent process group (for demonstration only) */

/* argv[3] - sequence number */

/* argv[4] - parent file descriptor */

/* If the child program encounters an error, it returns with a */

/* value greater than 50. If the parent uses wait() or waitpid(), */

/* this return value can be interrogated using the WIFEXITED and */

/* WEXITSTATUS macros on the resulting wait() or waitpid() */

/* *stat_loc field. */

int main(int argc, char *argv[])

{

 pid_t p_pid; /* parent pid argv[1] */

 pid_t p_pgrp; /* parent process group argv[2] */

 int seq_num; /* parent sequence num argv[3] */

 int fd; /* parent file desc argv[4] */

 int rc; /* API return code */

 pid_t pid; /* getpid() - child pid */

 pid_t ppid; /* getppid() - parent pid */

 pid_t pgrp; /* getpgrp() - process group */

 /* Get the pid, ppid, and pgrp for the child. */

 pid = getpid();

 ppid = getppid();

 pgrp = getpgrp();

 /* Verify 5 parameters were passed to the child. */

 if (argc != 5)

 return 60;

 /* Since the parameters passed to the child using QlgSpawn() are */

 /* pointers to strings, convert the parent pid, parent process */

 /* group, sequence number, and the file descriptor from strings */

 /* to integers. */

 p_pid = atoi(argv[1]);

 p_pgrp = atoi(argv[2]);

 seq_num = atoi(argv[3]);

 fd = atoi(argv[4]);

 /* Verify the getpid() value of the parent is the same as the */

 /* getppid() value of the child. */

 if (p_pid != ppid)

 return 61;

Process-Related APIs 17

/* If the sequence number is 1, simple inheritance was used in */

 /* this case. First, verify the getpgrp() value of the parent */

 /* is the same as the getpgrp() value of the child. Next, the */

 /* child will use the file descriptor passed in to write the */

 /* child’s values for argv[0], getppid(), getpgrp(), */

 /* and getpid(). Finally, the child returns, which will satisfy */

 /* the parent’s wait() or waitpid(). */

 if (seq_num == 1)

 {

 if (p_pgrp != pgrp)

 return 70;

 rc = write(fd, argv[0], strlen(argv[0]));

 if (rc != strlen(argv[0]))

 return 71;

 rc = write(fd, &ppid, sizeof(pid_t));

 if (rc != sizeof(pid_t))

 return 72;

 rc = write(fd, &pgrp, sizeof(pid_t));

 if (rc != sizeof(pid_t))

 return 73;

 rc = write(fd, &pid, sizeof(pid_t));

 if (rc != sizeof(pid_t))

 return 74;

 return seq_num;

 }

 /* If the sequence number is an unexpected value, return */

 /* indicating an error. */

 else

 return 99;

}

API introduced: V5R1

 Top | “Process-Related APIs,” on page 1 | APIs by category

QlgSpawnp()—Spawn Process with Path (using NLS-enabled file name)

 Syntax

 #include <spawn.h>

 #include <qlg.h>

 pid_t QlgSpawnp(const Qlg_Path_Name_T *file,

 const int fd_count,

 const int fd_map[],

 const struct inheritance *inherit,

 char * const argv[],

 char * const envp[]);

 Service Program Name: QP0ZSPWN

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 19.

The QlgSpawnp() function, like the spawnp() function, creates a child process that inherits specific

attributes from the parent. The difference is that for the file parameter, the QlgSpawnp() function takes a

pointer to a Qlg_Path_Name_T structure, while the spawnp() function takes a pointer to a character

string in the ccsid of the job.

18 iSeries: UNIX-Type -- Process-Related APIs

#TOP_OF_PAGE
aplist.htm

Limited information on the file parameter is provided here. For more information on the file parameter

and for a discussion of other parameters, authorities required, and return values, see “spawnp()—Spawn

Process with Path” on page 52.

Parameters

file (Input) A pointer to a Qlg_Path_Name_T structure that contains a file name or a pointer to a file

name that is used with the search path to find an executable file that will run in the new (child)

process. For more information on the Qlg_Path_Name_T structure, see Path name format.

Usage Notes

See “spawnp()—Spawn Process with Path” on page 52—Spawn Process with Path for a complete

discussion of usage information for QlgSpawnp(). In addition, the following should be noted specifically

for QlgSpawnp().

1. The PATH environment variable is used; however, the PATH environment variable cannot be a

Qlg_Path_Name_T structure.

2. Shell scripts are supported; however, the interpreter path in the shell script itself cannot be a

Qlg_Path_Name_T structure.

Related Information

v The <qlg.h> file (see Header Files for UNIX-Type Functions)

v “spawnp()—Spawn Process with Path” on page 52—Spawn Process with Path

v “QlgSpawn()—Spawn Process (using NLS-enabled path name)” on page 12—Spawn Process (using

NLS-enabled path name)

Note: All of the related information for spawnp() applies to QlgSpawn().

Example

See Code disclaimer information for information pertaining to code examples.

For an example of using this function, see the example in the “QlgSpawn()—Spawn Process (using

NLS-enabled path name)” on page 12—Spawn Process (using NLS-enabled path name) API.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Qp0wChkChld()—Check Status for Child Processes

 Syntax

 #include <qp0wpid.h>

 int Qp0wChkChld(QP0W_PID_Entries_T *chldinfo);

 Service Program Name: QP0WPID

 Default Public Authority: *USE

 Threadsafe: Yes

Process-Related APIs 19

pns.htm
unix13.htm
aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

The Qp0wChkChld() function returns the status and process table entry information for the child

processes of the specified process ID.

Parameters

*chldinfo

(I/O) A pointer to the QP0W_PID_Entry_T structure. This structure contains the process table entry

information for the children processes identified by pid.

 The structure QP0W_PID_Entry_T is defined in the <qp0wpid.h> header file as follows:

typedef struct QP0W_PID_Entries_T {

 int entries_prov;

 int entries_could;

 int entries_return;

 pid_t pid;

 QP0W_PID_Data_T entry[1];

} QP0W_PID_Entries_T;

The members of the QP0W_PID_Entry_T structure are as follows:

 int entries_prov; (Input) The number of entries of type QP0W_PID_Data_T for which that the caller

has allocated storage to contain the status and process table entry information.

int entries_could; (Output) The number of entries of type QP0W_PID_Data_T that could be returned.

If the entries_could value exceeds the entries_prov value, the Qp0wChkChld()

function should be called again with sufficient storage to contain the number of

entries returned in entries_could (entries_prov must be greater than or equal to

entries_could).

int entries_return; (Output) The number of entries of type QP0W_PID_Data_T that were returned. If

the entries_return value is less than the entries_prov value, the content of the

excess number of entries provided is unchanged by Qp0wChkChld().

pid_t pid; (Input) The process ID of the process for which information about its child

processes is to be returned.

QP0W_PID_Data_T entry[1]; (Output) The process table information for child processes. There is one

QP0W_PID_Data_T structure entry for each child process, limited by the value of

entries_prov.

The structure QP0W_PID_Data_T is defined in the <qp0wpid.h> header file as follows:

typedef struct QP0W_PID_Data_T {

 pid_t pid;

 pid_t ppid;

 pid_t pgrp;

 int status;

 unsigned int exit_status;

} QP0W_PID_Data_T;

The members of the QP0W_PID_Data_T structure are as follows:

 pid_t pid; The process ID of the process.

pid_t ppid; The process ID of the parent process. If ppid has a value of binary 1, there is no parent process

associated with the process.

pid_t pgrp; The process group ID of the process.

20 iSeries: UNIX-Type -- Process-Related APIs

int status; A collection of flag bits that describe the current state of the process. The following flag bits can be

set in status:

QP0W_PID_TERMINATED

The process has ended.

QP0W_PID_StopPED

The process has been stopped by a signal.

QP0W_PID_CHILDWAIT

The process is waiting for a child process to be ended or stopped by a signal.

QP0W_PID_SIGNALStop

The process has requested that the SIGCHLD signal be generated for the process when

one of its child processes has been stopped by a signal.

unsigned int

exit_status;

Exit status of the process. This member only has meaning if the status has been set to

QP0W_PID_TERMINATED. Refer to the wait() function for a description of the exit status for a process.

Authorities

The process calling Qp0wChkChld() must have the appropriate authority to the process being examined.

A process is allowed to examine the process table information for a process if at least one of the following

conditions is true:

v The process is calling Qp0wChkChld() for its own process.

v The process has *JOBCTL special authority defined in the process user profile or in a current adopted

user profile.

v The process is the parent of the process (the process being examined has a parent process ID equal to

the process ID of the process calling Qp0wChkChld()).

v The real or effective user ID of the process matches the real or effective user ID of the process calling

Qp0wChkChld().

Return Value

 0 Qp0wChkChld() was successful.

value Qp0wChkChld() was not successful. The value returned indicates one of the following errors.

Under some conditions, value could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an

object and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EPERM]

Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to

do the requested operation.

[ESRCH]

No item could be found that matches the specified value.

Process-Related APIs 21

Usage Notes

The Qp0wChkChld() function provides an OS/400-specific way to obtain the process table information

for the child processes of the specified process.

Related Information

v The <qp0wpid.h> file (see Header Files for UNIX-Type Functions)

v The <signal.h> file (see Header Files for UNIX-Type Functions)

v “getpgrp()—Get Process Group ID” on page 4—Get Process Group ID

v “getpid()—Get Process ID” on page 5—Get Process ID

v “getppid()—Get Process ID of Parent Process” on page 6—Get Process ID of Parent Process

v “Qp0wGetPgrp()—Get Process Group ID” on page 29—Get Process Group ID

v “Qp0wGetPid()—Get Process ID” on page 30—Get Process ID

v “Qp0wGetPPid()—Get Process ID of Parent Process” on page 32—Get Process ID of Parent Process

v “wait()—Wait for Child Process to End” on page 66—Wait for Child Process to End

 API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Qp0wChkPgrp()—Check Status for Process Group

 Syntax

 #include <qp0wpid.h>

 int Qp0wChkPgrp(QP0W_PID_Entries_T *mbrinfo);

 Service Program Name: QP0WPID

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0wChkPgrp() function returns the status and process table entry information for the processes

that are members of the process group identified by pid in the structure QP0W_PID_Entry_T.

Parameters

*mbrinfo

(I/O) A pointer to the QP0W_PID_Entry_T structure. This structure contains the process table entry

information for the processes that are members of the process group identified by pid.

 The structure QP0W_PID_Entry_T is defined in the <qp0wpid.h> header file as follows:

typedef struct QP0W_PID_Entries_T {

 int entries_prov;

 int entries_could;

 int entries_return;

 pid_t pid;

 QP0W_PID_Data_T entry[1];

} QP0W_PID_Entries_T;

The members of the QP0W_PID_Entry_T structure are as follows:

22 iSeries: UNIX-Type -- Process-Related APIs

unix13.htm
unix13.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

int entries_prov; (Input) The number of entries of type QP0W_PID_Data_T for which the caller has

allocated storage to contain the status and process table entry information.

int entries_could; (Output) The number of entries of type QP0W_PID_Data_T that could be returned.

If the entries_could value exceeds the entries_prov value, the Qp0wChkPgrp()

function should be called again with sufficient storage to contain the number of

entries returned in entries_could (entries_prov must be greater than or equal to

entries_could).

int entries_return; (Output) The number of entries of type QP0W_PID_Data_T that were returned. If

the entries_return value is less than the entries_prov value, the content of the

excess number of entries provided is unchanged by Qp0wChkPgrp().

pid_t pid; (Input) The process group ID of the group of processes for which the process

information is to be returned.

QP0W_PID_Data_T entry[1]; (Output) The process table information for the process group members. There is

one QP0W_PID_Data_T structure entry for each process group member, limited by

the value of entries_prov.

The structure QP0W_PID_Data_T is defined in the <qp0wpid.h> file as follows:

typedef struct QP0W_PID_Data_T {

 pid_t pid;

 pid_t ppid;

 pid_t pgrp;

 int status;

 unsigned int exit_status;

} QP0W_PID_Data_T;

The members of the QP0W_PID_Data_T structure are as follows:

 pid_t pid; The process ID of the process.

pid_t ppid; The process ID of the parent process. If ppid has a value of binary 1, there is no parent process

associated with the process.

pid_t pgrp; The process group ID of the process.

int status; A collection of flag bits that describe the current state of the process. The following flag bits can be

set in status:

QP0W_PID_TERMINATED

The process has ended.

QP0W_PID_StopPED

The process was stopped by a signal.

QP0W_PID_CHILDWAIT

The process is waiting for a child process to be ended or stopped by a signal.

QP0W_PID_SIGNALStop

The process has requested that the SIGCHLD signal be generated for the process when

one of its child processes is stopped by a signal.

unsigned int

exit_status;

Exit status of the process. This member only has meaning if the status is set to

QP0W_PID_TERMINATED. Refer to the wait() function for a description of the exit status for a process.

Authorities

The process calling Qp0wChkPgrp() must have the appropriate authority to the processes being

examined. A process is allowed to examine the process table information for a process if at least one of

the following conditions is true:

v The process is calling Qp0wChkPgrp() for its own process.

Process-Related APIs 23

v The process has *JOBCTL special authority defined in the process user profile or in a current adopted

user profile.

v The process is the parent of the process (the process being examined has a parent process ID equal to

the process ID of the process calling Qp0wChkPgrp()).

v The real or effective user ID of the process matches the real or effective user ID of the process calling

Qp0wChkPgrp().

Return Value

 0 Qp0wChkPgrp() was successful.

value Qp0wChkPgrp() was not successful. The value returned indicates one of the following errors.

Under some conditions, value could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an

object and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EPERM]

Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to

do the requested operation.

[ESRCH]

No item could be found that matches the specified value.

Usage Notes

The Qp0wChkPgrp() function provides an OS/400-specific way to obtain the process table information

for the members of a process group.

Related Information

v The <qp0wpid.h> file (see Header Files for UNIX-Type Functions)

v The <signal.h> file (see Header Files for UNIX-Type Functions)

v “getpgrp()—Get Process Group ID” on page 4—Get Process Group ID

v “getpid()—Get Process ID” on page 5—Get Process ID

v “getppid()—Get Process ID of Parent Process” on page 6—Get Process ID of Parent Process

v “Qp0wGetPgrp()—Get Process Group ID” on page 29—Get Process Group ID

v “Qp0wGetPid()—Get Process ID” on page 30—Get Process ID

v “Qp0wGetPPid()—Get Process ID of Parent Process” on page 32—Get Process ID of Parent Process

v “wait()—Wait for Child Process to End” on page 66—Wait for Child Process to End

 API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

24 iSeries: UNIX-Type -- Process-Related APIs

unix13.htm
unix13.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Qp0wChkPid()—Check Status for Process ID

 Syntax

 #include <sys/types.h>

 #include <qp0wpid.h>

 int Qp0wChkPid(pid_t pid,

 QP0W_PID_Data_T *pidinfo);

 Service Program Name: QP0WPID

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0wChkPid() function returns the status and process table entry information for the process

specified by the process ID pid.

Parameters

pid (Input) The process ID of the process whose process table information is to be returned. When pid

has a value of binary 0, the process table information for the current process is returned.

*pidinfo

(Output) A pointer to the QP0W_PID_Data_T structure. The process table entry information for the

process identified by pid is stored in the location pointed to by the pidinfo parameter.

 The structure QP0W_PID_Data_T is defined in <qp0wpid.h> header file as follows:

typedef struct QP0W_PID_Data_T {

 pid_t pid;

 pid_t ppid;

 pid_t pgrp;

 int status;

 unsigned int exit_status;

} QP0W_PID_Data_T;

The members of the QP0W_PID_Data_T structure are as follows:

 pid_t pid; The process ID of the process.

pid_t ppid; The process ID of the parent process. If ppid has a value of binary 1, there is no parent process

associated with the process.

pid_t pgrp; The process group ID of the process.

Process-Related APIs 25

int status; A collection of flag bits that describe the current state of the process. The following flag bits can be

set in status:

QP0W_PID_TERMINATED

The process has ended.

QP0W_PID_StopPED

The process has been stopped by a signal.

QP0W_PID_CHILDWAIT

The process is waiting for a child process to be ended or stopped by a signal.

QP0W_PID_SIGNALStop

The process has requested that the SIGCHLD signal be generated for the process when

one of it’s child processes has been stopped by a signal.

unsigned int

exit_status;

Exit status of the process. This member only has meaning if the status has been set to

QP0W_PID_TERMINATED. Refer to the wait() function for a description of the exit status for a process.

Authorities

The process calling Qp0wChkPid() must have the appropriate authority to the process being examined. A

process is allowed to examine the process table information for a process if at least one of the following

conditions is true:

v The process is calling Qp0wChkPid() for its own process.

v The process has *JOBCTL special authority defined in the process user profile or in a current adopted

user profile.

v The process is the parent of the process (the process being examined has a parent process ID equal to

the process ID of the process calling Qp0wChkPid()).

v The real or effective user ID of the process matches the real or effective user ID of the process calling

Qp0wChkPid().

Return Value

 0 Qp0wChkPid() was successful.

value Qp0wChkPid() was not successful. The value returned indicates one of the following errors.

Under some conditions, value could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an

object and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EPERM]

Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to

do the requested operation.

[ESRCH]

No item could be found that matches the specified value.

26 iSeries: UNIX-Type -- Process-Related APIs

Usage Notes

The Qp0wChkPid() function provides an OS/400-specific way to obtain the process table information for

the specified process.

Related Information

v The <sys/types.h> file (see Header Files for UNIX-Type Functions)

v The <qp0wpid.h> file (see Header Files for UNIX-Type Functions)

v The <signal.h> file (see Header Files for UNIX-Type Functions)

v “getpgrp()—Get Process Group ID” on page 4—Get Process Group ID

v “getpid()—Get Process ID” on page 5—Get Process ID

v “getppid()—Get Process ID of Parent Process” on page 6—Get Process ID of Parent Process

v “Qp0wGetPgrp()—Get Process Group ID” on page 29—Get Process Group ID

v “Qp0wGetPid()—Get Process ID” on page 30—Get Process ID

v “Qp0wGetPPid()—Get Process ID of Parent Process” on page 32—Get Process ID of Parent Process

v “wait()—Wait for Child Process to End” on page 66—Wait for Child Process to End

 API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Qp0wGetJobID()—Get Qualified Job Name and ID for Process ID

 Syntax

 #include <qp0wpid.h>

 int Qp0wGetJobID(pid_t pid, QP0W_Job_ID_T *jobinfo);

 Service Program Name: QP0WPID

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0wGetJobID() function returns the qualified job name and internal job identifier for the process

whose process ID matches pid.

Parameters

pid (Input) The process ID of the process whose job number is to be returned. When pid has a value

of zero, the process ID of the calling process is used.

*jobinfo

(Output) A pointer to the qp0w_job_id_t structure. This structure contains the qualified OS/400

job name and internal job identifier for the process identified by pid.

 The structure qp0w_job_id_t is defined in the <qp0wpid.h> header file as follows:

Process-Related APIs 27

unix13.htm
unix13.htm
unix13.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

typedef struct QP0W_Job_ID_T {

 char jobname[10];

 char username[10];

 char jobnumber[6];

 char jobid[16];

} QP0W_Job_ID_T;

The members of the qp0w_job_id_t structure are as follows:

 char jobname[10] The name of the job as identified to the system. For an interactive job, the system assigns the job

the name of the work station where the job started. For a batch job, you specify the name in the

command when you submit the job.

char username[10] The user name under which the job runs. The user name is the same as the user profile name and

can come from several different sources, depending on the type of job.

char jobnumber[6] The system-generated job number.

char jobid[16] The internal job identifier. This value is sent to other APIs to speed the process of locating the job

on the system. The identifier is not valid following an initial program load (IPL). If you attempt to

use it after an IPL, an exception occurs.

Authorities

The process calling Qp0wGetJobID() must have the appropriate authority to the process whose job

number is to be returned. A process is allowed to access the job number for a process if at least one of the

following conditions is true:

v The process is calling Qp0wGetJobID() for its own process.

v The process has *JOBCTL special authority defined in the process user profile or in a current adopted

user profile.

v The process is the parent of the process (the process being examined has a parent process ID equal to

the process ID of the process calling Qp0wGetJobID()).

v The real or effective user ID of the process matches the real or effective user ID of the process calling

Qp0wGetJobID().

Return Value

 0 Qp0wGetJobID() was successful.

value Qp0wGetJobID() was not successful. The value returned indicates one of the following errors.

Under some conditions, value could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an

object and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EPERM]

Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to

do the requested operation.

[ESRCH]

No item could be found that matches the specified value.

28 iSeries: UNIX-Type -- Process-Related APIs

Related Information

v The <qp0wpid.h> file (see Header Files for UNIX-Type Functions)

v “getpid()—Get Process ID” on page 5—Get Process ID

v “Qp0wGetPid()—Get Process ID” on page 30—Get Process ID

 API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Qp0wGetPgrp()—Get Process Group ID

 Syntax

 #include <sys/types.h>

 #include <qp0wpid.h>

 pid_t Qp0wGetPgrp(void);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0wGetPgrp() function returns the process group ID of the calling process.

Parameters

None.

Authorities

None.

Return Value

 pid_t The value returned by Qp0wGetPgrp() is the process group ID of the calling process.

Error Conditions

The Qp0wGetPgrp() function is always successful and does not return an error.

Usage Notes

1. The Qp0wGetPgrp() function provides an OS/400-specific way to obtain the process group ID of the

calling process. It performs the same function as getpgrp().

2. Qp0wGetPgrp() enables a process for signals if the process is not already enabled for signals. For

details, see Qp0sEnableSignals()—Enable Process for Signals.

Related Information

v The <sys/types.h> file (see Header Files for UNIX-Type Functions)

v “getpgrp()—Get Process Group ID” on page 4—Get Process Group ID

Process-Related APIs 29

unix13.htm
#TOP_OF_PAGE
unix.htm
aplist.htm
sigesig.htm
unix13.htm

v Qp0sDisableSignals()—Disable Process for Signals

v Qp0sEnableSignals()—Enable Process for Signals

 API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Qp0wGetPid()—Get Process ID

 Syntax

 #include <sys/types.h>

 #include <qp0wpid.h>

 pid_t Qp0wGetPid(void);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0wGetPid() function returns the process ID of the calling process.

Parameters

None.

Authorities

None.

Return Value

 pid_t The value returned by Qp0wGetPid() is the process ID of the calling process.

Error Conditions

The Qp0wGetPid() function is always successful and does not return an error.

Usage Notes

1. The Qp0wGetPid() function provides an OS/400-specific way to obtain the process ID of the calling

process. It performs the same function as getpid().

2. Qp0wGetPid() enables a process for signals if the process is not already enabled for signals. For

details, see (see Qp0sEnableSignals()—Enable Process for Signals.

Related Information

v The <sys/types.h> file (see Header Files for UNIX-Type Functions)

v The <qp0wpid.h> file (see Header Files for UNIX-Type Functions)

v “getpid()—Get Process ID” on page 5—Get Process ID

v Qp0sDisableSignals()—Disable Process for Signals

30 iSeries: UNIX-Type -- Process-Related APIs

sigdsig.htm
sigesig.htm
#TOP_OF_PAGE
unix.htm
aplist.htm
sigesig.htm
unix13.htm
unix13.htm
sigdsig.htm

v Qp0sEnableSignals()—Enable Process for Signals

v “Qp0wGetPidNoInit()—Get Process ID without Initializing for Signals”—Get Process ID without

Initializing for Signals

 API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Qp0wGetPidNoInit()—Get Process ID without Initializing for Signals

 Syntax

 #include <sys/types.h>

 #include <qp0wpid.h>

 pid_t Qp0wGetPidNoInit(void);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0wGetPidNoInit() function returns the process ID of the calling process without enabling the

process to receive signals.

Parameters

None.

Authorities

None.

Return Value

 pid_t The value returned by Qp0wGetPidNoInit() is the process ID of the calling process.

Error Conditions

The Qp0wGetPidNoInit() function is always successful and does not return an error.

Usage Notes

The Qp0wGetPidNoInit() function provides an OS/400-specific way to obtain the process ID of the

calling process. It performs the same function as the getpid() function without enabling the process to

receive signals.

Related Information

v The <sys/types.h> file (see Header Files for UNIX-Type Functions)

v The <qp0wpid.h> file (see Header Files for UNIX-Type Functions)

v “getpid()—Get Process ID” on page 5—Get Process ID

v “Qp0wGetPid()—Get Process ID” on page 30—Get Process ID

Process-Related APIs 31

sigesig.htm
#TOP_OF_PAGE
unix.htm
aplist.htm
unix13.htm
unix13.htm

v Qp0sDisableSignals()—Disable Process for Signals

v Qp0sEnableSignals()—Enable Process for Signals

 API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Qp0wGetPPid()—Get Process ID of Parent Process

 Syntax

 #include <sys/types.h>

 #include <qp0wpid.h>

 pid_t Qp0wGetPPid(void);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0wGetPPid() function returns the parent process ID of the calling process.

Parameters

None.

Authorities

None.

Return Value

 pid_t The value returned by Qp0wGetPPid() is the process ID of the parent process for the calling

process. A process ID value of 1 indicates that there is no parent process associated with the

calling process.

Error Conditions

The Qp0wGetPPid() function is always successful and does not return an error.

Usage Notes

The Qp0wGetPPid() function provides an OS/400-specific way to obtain the parent process ID of the

calling process. It performs the same function as getppid().

Related Information

v The <sys/types.h> file (see Header Files for UNIX-Type Functions)

v The <qp0wpid.h> file (see Header Files for UNIX-Type Functions)

v “getppid()—Get Process ID of Parent Process” on page 6—Get Process ID of Parent Process

32 iSeries: UNIX-Type -- Process-Related APIs

sigdsig.htm
sigesig.htm
#TOP_OF_PAGE
unix.htm
aplist.htm
unix13.htm
unix13.htm

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Qp0zPipe()—Create Interprocess Channel with Sockets

 Syntax

 #include <spawn.h>

 int Qp0zPipe(int fildes[2]);

 Service Program Name: QP0ZSPWN

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0zPipe() function creates a data pipe that can be used by two processes. One end of the pipe is

represented by the file descriptor returned in fildes[0]. The other end of the pipe is represented by the file

descriptor returned in fildes[1]. Data that is written to one end of the pipe can be read from the other end

of the pipe in a first-in-first-out basis. Both ends of the pipe are open for reading and writing.

The Qp0zPipe() function is often used with the spawn() function to allow the parent and child processes

to send data to each other.

Parameters

fildes[2]

(Input) An integer array of size 2 that will contain the pipe descriptors.

Authorities

None.

Return Value

 0 Qp0zPipe() was successful.

-1 Qp0zPipe() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0zPipe() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

Process-Related APIs 33

#TOP_OF_PAGE
unix.htm
aplist.htm

The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EMFILE]

 Too many open files for this process.

 An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of

OPEN_MAX can be retrieved using the sysconf() function.

 The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENFILE]

 Too many open files in the system.

 A system limit has been reached for the number of files that are allowed to be concurrently open

in the system.

 The entire system has too many other file descriptors already open.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

[EOPNOTSUPP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Usage Notes

The OS/400 implementation of the Qp0zPipe()function is based on sockets rather than pipes and,

therefore, uses socket descriptors. There are several differences:

1. After calling the fstat() function using one of the file descriptors returned on a Qp0zPipe() call, when

the st_mode from the stat structure is passed to the S_ISFIFO() macro, the return value indicates

FALSE. When the st_mode from the stat structure is passed to S_ISSOCK(), the return value indicates

TRUE.

2. The file descriptors returned on a Qp0zPipe() call can be used with the send(), recv(), sendto(),

recvfrom(), sendmsg(), and recvmsg() functions.

3.

If this function is called by a thread executing one of the scan-related exit programs (or any of its

created threads), the descriptors that are returned are scan descriptors. See Integrated File System

Scan on Open Exit Programs and Integrated File System Scan on Close Exit Programs for more

information. If a process is spawned, these scan descriptors are not inherited by the spawned process

and therefore cannot be used in that spawned process. Therefore, in this case, the descriptors returned

by Qp0zPipe() function will only work within the same process.

34 iSeries: UNIX-Type -- Process-Related APIs

ifsopenexit.htm
ifsopenexit.htm
ifscloseexit.htm

If you want to use the traditional implementation of pipes, in which the descriptors returned are pipe

descriptors instead of socket descriptors, use the pipe() function.

Related Information

v The <spawn.h> file (see Header Files for UNIX-Type Functions)

v fstat()—Get File Information by Descriptor

v “pipe()—Create an Interprocess Channel” on page 9—Create an Interprocess Channel

v “spawn()—Spawn Process” on page 40—Spawn Process

v socketpair()—Create a Pair of Sockets

v stat()—Get File Information

 API introduced: V4R1

 Top | UNIX-Type APIs | APIs by category

Qp0zSystem()—Run a CL Command

 Syntax

 #include <qp0z1170.h>

 int Qp0zSystem(const char *CLcommand);

 Service Program Name: QP0ZTRML

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0zSystem() function spawns a new process, passes CLcommand to the CL command processor in

the new process, and waits for the command to complete. The command runs in a batch job so it does

not have access to a terminal.

This function is similar to the system() function provided by ILE C, but allows a program to safely run a

CL command from a multithreaded process. Note that if CLcommand fails, the global variable

_EXCP_MSGID is not set with the exception message id.

Parameters

*CLcommand

(Input) Pointer to null-terminated CL command string.

Authorities

The user calling Qp0zSystem() must have *USE authority to the specified CL command.

Return Value

 0 The specified CL command was successful.

1 The specified CL command was not successful.

-1 Qp0zSystem() was not successful.

Process-Related APIs 35

unix13.htm
fstat.htm
socketp.htm
stat.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Related Information

v The <qp0z1170.h> file (see Header Files for UNIX-Type Functions)

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how to use the Qp0zSystem() function to create a library.

#include <stdio.h>

#include <qp0z1170.h>

int main(int argc, char *argv[])

{

 if (Qp0zSystem("CRTLIB LIB(XYZ)") != 0)

 printf("Error creating library XYZ.\n");

 else

 printf("Library XYZ created.\n");

 return(0);

}

Output:

 Library XYZ created

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

setpgid()—Set Process Group ID for Job Control

 Syntax

 #include <sys/types.h>

 #include <unistd.h>

 int setpgid(pid_t pid, pid_t pgid);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The setpgid() function is used to either join an existing process group or create a new process group

within the session of the calling process.

See the “Usage Notes” on page 37 for considerations in using setpgid().

Parameters

pid (Input) The process ID of the process whose process group ID is to be changed. When pid has a

value of zero, the process group ID of the calling process is changed.

pgid (Input) The process group ID to be assigned to the process whose process ID matches pid. The

36 iSeries: UNIX-Type -- Process-Related APIs

unix13.htm
aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

value of pgid must be within the range of zero through the maximum signed integer. When

pgid/em> has a value of zero, the process group ID is set to the process ID of the process

indicated by pid.

Authorities

The process calling setpgid() must have the appropriate authority to the process being changed. A

process is allowed to access the process group ID for a process if at least one of the following conditions

is true:

v The process is calling setpgid() for its own process.

v The process has *JOBCTL special authority defined in the process user profile or in a current adopted

user profile.

v The process is the parent of the process (the process being examined has a parent process ID equal to

the process ID of the process calling setpgid()).

v The real or effective user ID of the process matches the real or effective user ID of the process calling

setpgid()).

Return Value

 0 setpgid() was successful.

-1 setpgid() was not successful. The errno variable is set to indicate the error.

Error Conditions

If setpgid() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[ESRCH]

 No item could be found that matches the specified value.

Usage Notes

1. OS/400 does not support sessions. Until session support is available on OS/400, the restriction that

the process group must be within the session of the calling process will not be enforced.

2. The setpgid() function fails if a nonzero process group ID is specified and that process group does not

exist. If this occurs, the return value is set to -1 and errno is set to [EPERM].

Related Information

v The <sys/types.h> file (see Header Files for UNIX-Type Functions)

v The <unistd.h> file (see Header Files for UNIX-Type Functions)

v “getpgrp()—Get Process Group ID” on page 4—Get Process Group ID

Process-Related APIs 37

unix13.htm
unix13.htm

v “Qp0wGetPgrp()—Get Process Group ID” on page 29—Get Process Group ID

 API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

setrlimit()—Set resource limit

 Syntax

 #include <sys/resource.h>

 int setrlimit(int resource, const struct rlimit *rlp);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The setrlimit() function sets the resource limit for the specified resource. A resource limit is a way for the

operating system to enforce a limit on a variety of resources used by a process. A resource limit is

represented by a rlimit structure. The rlim_cur member specifies the current or soft limit and the

rlim_max member specifies the maximum or hard limit.

A soft limit can be changed to any value that is less than or equal to the hard limit. The hard limit can be

changed to any value that is greater than or equal to the soft limit. Only a process with appropriate

authorities can increase a hard limit.

The setrlimit() function supports the following resources:

 RLIMIT_FSIZE

(0)

The maximum size of a file in bytes that can be created by a process.

The setrlimit() function does not support setting the following resources: RLIMIT_AS, RLIMIT_CORE,

RLIMIT_CPU, RLIMIT_DATA, RLIMIT_NOFILE, and RLIMIT_STACK. The setrlimit() function returns -1

and sets errno to ENOTSUP when called with one of these resources.

The value of RLIM_INFINITY is considered to be larger than any other limit value. If the value of the

limit is set to RLIM_INFINITY, then a limit is not enforced for that resource. If the value of the limit is set

to RLIM_SAVED_MAX, the new limit is the corresponding saved hard limit. If the value of the limit is

RLIM_SAVED_CUR, the new limit is the corresponding saved soft limit.

Parameters

resource

(Input)

 The resource to set the limits for.

*rlp (Input)

 Pointer to a struct rlim_t that contains the new values for the hard and soft limits.

38 iSeries: UNIX-Type -- Process-Related APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Authorities and Locks

The current user profile must have *JOBCTL special authority to increase the hard limit.

Return Value

 0 setrlimit() was successful.

-1 setrlimit() was not successful. The errno variable is set to indicate the error.

Error Conditions

If setrlimit() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 An invalid parameter was found.

 An invalid resource was specified.

 The new soft limit is greater the new hard limit.

 The new hard limit is lower than the new soft limit.

[EPERM]

 Permission denied.

 An attempt was made to increase the hard limit and the current user profile does not have

*JOBCTL special authority.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested resource.

Related Information

v The <sys/resource.h> file (see Header Files for UNIX-Type Functions)

v “getrlimit()—Get resource limit” on page 7—Get resource limit

v “ulimit()—Get and set process limits” on page 64—Get and set process limits

Example

See Code disclaimer information for information pertaining to code examples.

#include <sys/resource.h>

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

int main (int argc, char *argv[])

{

 struct rlimit limit;

Process-Related APIs 39

unix13.htm
aboutapis.htm#CODEDISCLAIMER

/* Set the file size resource limit. */

 limit.rlim_cur = 65535;

 limit.rlim_max = 65535;

 if (setrlimit(RLIMIT_FSIZE, &limit) != 0) {

 printf("setrlimit() failed with errno=%d\n", errno);

 exit(1);

 }

 /* Get the file size resource limit. */

 if (getrlimit(RLIMIT_FSIZE, &limit) != 0) {

 printf("getrlimit() failed with errno=%d\n", errno);

 exit(1);

 }

 printf("The soft limit is %llu\n", limit.rlim_cur);

 printf("The hard limit is %llu\n", limit.rlim_max);

 exit(0);

}

Example Output:

The soft limit is 65535

The hard limit is 65535

Introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

spawn()—Spawn Process

 Syntax

 #include <spawn.h>

 pid_t spawn(const char *path,

 const int fd_count,

 const int fd_map[],

 const struct inheritance *inherit,

 char * const argv[],

 char * const envp[]);

 Service Program Name: QP0ZSPWN

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 45.

The spawn() function creates a child process that inherits specific attributes from the parent. The

attributes inherited by the child process are file descriptors, the signal mask, the signal action vector, and

environment variables, among others.

Parameters

path (Input) Specific path to an executable file that will run in the new (child) process. The path name

is expected to be in the CCSID of the job.

 See “QlgSpawn()—Spawn Process (using NLS-enabled path name)” on page 12 for a description

and an example of supplying the path in any CCSID.

40 iSeries: UNIX-Type -- Process-Related APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

fd_count

(Input) The number of file descriptors the child process can inherit. It can have a value from zero

to the value returned from a call to sysconf(_SC_OPEN_MAX).

fd_map[]

(Input) An array that maps the parent process file descriptor numbers to the child process file

descriptor numbers. If this value is NULL, it indicates simple inheritance. Simple inheritance

means that the child process inherits all eligible open file descriptors of the parent process. In

addition, the file descriptor number in the child process is the same as the file descriptor number

in the parent process. Refer to “Attributes Inherited” on page 50 for details of file descriptor

inheritance.

inherit (Input) A pointer to an area of type struct inheritance. If the pointer is NULL, an error occurs.

The inheritance structure contains control information to indicate attributes the child process

should inherit from the parent. The following is an example of the inheritance structure, as

defined in the <spawn.h> header file:

 struct inheritance {

 flagset_t flags;

 int pgroup;

 sigset_t sigmask;

 sigset_t sigdefault;

};

The flags field specifies the manner in which the child process should be created. Only the

constants defined in <spawn.h> are allowed; otherwise, spawn() returns -1 with errno set to

EINVAL. The allowed constants follow:

 SPAWN_SETPGROUP If this flag is set ON, spawn() sets the process group ID of the child

process to the value in pgroup. In this case, the process group field, pgroup,

must be valid. If it is not valid, an error occurs. If this flag is set OFF, the

pgroup field is checked to determine what the process group ID of the child

process is set to. If the pgroup field is set to the constant

SPAWN_NEWPGROUP, the child process group ID is set to the child

process ID. If the pgroup field is not set to SPAWN_NEWPGROUP and the

flags field is not set to SPAWN_SETPGROUP, the process group ID of the

child process is set to the process group ID of the parent process. If the

pgroup field is set to SPAWN_NEWPGROUP and the flags field is set to

SPAWN_SETPGROUP, an error occurs.

SPAWN_SETSIGMASK If this flag is set ON, spawn() sets the signal blocking mask of the child

process to the value in sigmask. In this case, the signal blocking mask must

be valid. If it is not valid, an error occurs. If this flag is set OFF, spawn()

sets the signal blocking mask of the child process to the signal blocking

mask of the calling thread.

SPAWN_SETSIGDEF If this flag is set ON, spawn() sets the child process’ signals identified in

sigdefault to the default actions. The sigdefault must be valid. If it is not

valid, an error occurs. If this flag is set OFF, spawn() sets the child process’

signal actions to those of the parent process. Any signals of the parent

process that have a catcher specified are set to default in the child process.

The child process’ signal actions inherit the parent process’ ignore and

default signal actions.

SPAWN_SETTHREAD_NP If this flag is set ON, spawn() will create the child process as multithread

capable. The child process will be allowed to create threads. If this flag is

set OFF, the child process will not be allowed to create threads.

Process-Related APIs 41

SPAWN_SETPJ_NP If this flag is set ON, spawn() attempts to use available OS/400 prestart

jobs. The prestart job entries that may be used follow:

v QSYS/QP0ZSPWP, if the flag SPAWN_SETTHREAD_NP is set OFF.

v QSYS/QP0ZSPWT, if the flag SPAWN_SETTHREAD_NP is set ON.

The OS/400 prestart jobs must have been started using either

QSYS/QP0ZSPWP or QSYS/QP0ZSPWT as the program that identifies a

prestart job entry for the OS/400 subsystem that the parent process is

running under. If a prestart job entry is not defined, the child process will

run as a batch immediate job under the same subsystem as the parent

process.

If this flag (SPAWN_SETPJ_NP) is set OFF, the child process will run as a

batch immediate job under the same subsystem as the parent process.

Note:In order to more closely emulate POSIX semantics, spawn() will

ignore the Maximum number of uses (MAXUSE) value specified for the

prestart job entry. The prestart job will only be used once, behaving as if

MAXUSE(1) was specified.

SPAWN_SETCOMPMSG_NP If this flag is set ON, spawn() causes the child process to send a

completion message to the user’s message queue when the child process

ends. If this flag is set OFF, no completion message is sent to the user’s

message queue when the child process ends. If both the

SPAWN_SETCOMPMSG_NP and SPAWN_SETPJ_NP flags are set ON, an

error occurs.

SPAWN_SETJOBNAMEPARENT_NP If this flag is set ON, spawn() sets the child’s OS/400 simple job name to

that of the parent’s. If this flag is set OFF, spawn() sets the child’s OS/400

simple job name based on the path parameter.

SPAWN_SETJOBNAMEARGV_NP If this flag is set ON, spawn() sets the child’s OS/400 simple job name

based on the name found in argv[0] of the argv[] parameter. If this flag is

set OFF, spawn() sets the child’s OS/400 simple job name based on the

path parameter.

SPAWN_SETLOGJOBMSGABN_NP If this flag is set ON, the child process does not log the job started

(CPF1124) message and will only log the job ended (CPF1164) message

when the job ends abnormally (job ending code 30 or greater). This applies

to the job log as well as the system history log (QHST). If this flag is set

OFF, the child process logs the job started (CPF1124) and the job ended

(CPF1164) messages.

SPAWN_SETLOGJOBMSGNONE_NP If this flag is set ON, the child process does not log the job started

(CPF1124) and the job ended (CPF1164) messages to either the job log or to

the system history log (QHST). If this flag is set OFF, the child process logs

the job started (CPF1124) and the job ended (CPF1164) messages.

SPAWN_SETAFFINITYID_NP If this flag is set ON, spawn() sets the resources affinity identifier of the

child process to the 4-byte integer value, treated as an unsigned int, that

immediately follows the inheritance structure in memory. A value of 0

indicates OS/400 selects the resources affinity identifier. The caller must

ensure the value immediately follows the inheritance structure. For

example:

struct extended_inheritance {

 struct inheritance inherit;

 unsigned int affinityID;

};

struct extended_inheritance extended_inherit;

If this flag is set OFF, OS/400 selects the resources affinity identifier of the

child process.

SPAWN_SETTHREADRUNPTY_NP If this flag is set ON, spawn() sets the run priority of the child process to

the current thread’s run priority. If this flag is set OFF, spawn() sets the run

priority of the child process to the current process’ run priority.

42 iSeries: UNIX-Type -- Process-Related APIs

argv[] (Input) An array of pointers to strings that contain the argument list for the executable file. The

last element in the array must be the NULL pointer. If this parameter is NULL, an error occurs.

envp[] (Input) An array of pointers to strings that contain the environment variable lists for the

executable file. The last element in the array must be the NULL pointer. If this parameter is

NULL, an error occurs.

Authorities

Authorization Required for spawn()

Object Referred to

Authority
Required errno

Each directory in the path name

preceding the executable file that will

run in the new process

*X EACCES

Executable file that will run in the

new process

*X EACCES

If executable file that will run in the

new process is a shell script

*RX EACCES

Return Value

 value spawn() was successful. The value returned is the process ID of the child process.

-1 spawn() was not successful. The errno variable is set to indicate the error.

Error Conditions

If spawn() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[E2BIG]

 Argument list too long.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAPAR]

 Possible APAR condition or hardware failure.

[EBADFUNC]

 Function parameter in the signal function is not set.

Process-Related APIs 43

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

[EBADNAME]

 The object name specified is not correct.

[ECANCEL]

 Operation canceled.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

 The specified path name is not in the CCSID of the job.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The flags field in the inherit parameter contains an invalid value.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENFILE]

 Too many open files in the system.

 A system limit has been reached for the number of files that are allowed to be concurrently open

in the system.

44 iSeries: UNIX-Type -- Process-Related APIs

The entire system has too many other file descriptors already open.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[ETERM]

 Operation terminated.

[ENOSYSRSC]

 System resources not available to complete request.

 The child process failed to start. The maximum active jobs in a subsystem may have been

reached. CHGSBSD and CHGJOBQE CL commands can be used to change the maximum active

jobs.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Usage Notes

 1. spawn() is threadsafe, except this function will fail and errno ENOTSAFE will be set if it is called in

any of the following ways:

v From a multithreaded process and path refers to a shell script that does not exist in a threadsafe

file system.
 2. There are performance considerations when using spawn() and spawnp() concurrently among

threads in the same process. spawn() and spawnp() serialize against other spawn() and spawnp()

calls from other threads in the same process.

Process-Related APIs 45

3. The child process is enabled for signals. A side effect of this function is that the parent process is also

enabled for signals if it was not enabled for signals before this function was called.

 4. If this function is called from a program running in user state and it specifies a system-domain

program as the executable program for the child process, an exception occurs. In this case, spawn()

returns the process ID of the child process. On a subsequent call to wait() or waitpid(), the status

information returned indicates that an exception occurred in the child process.

 5. The program that will be run in the child process must be either a program object in the QSYS.LIB

file system or an independent ASP QSYS.LIB file system (*PGM object) or a shell script (see “About

Shell Scripts” on page 72). The syntax of the name of the file to run must be the proper syntax for

the file system in which the file resides. For example, if the program MYPROG resides in the

QSYS.LIB file system and in library MYLIB, the specification for spawn(). would be the following:

 /QSYS.LIB/MYLIB.LIB/MYPROG.PGM

See “QlgSpawn()—Spawn Process (using NLS-enabled path name)” on page 12 for an example

specifying the program using the Qlg_Path_Name_T structure. The Qlg_Path_Name_T structure is

supported by QlgSpawn() and allows the program name to be specified in any CCSID.

Note: For more information about path syntaxes for the different file systems, see the Integrated file

system information in the Files and file systems topic.

 6. Spawned child processes are batch jobs or prestart jobs. As such, they do not have the ability to do

5250-type interactive I/O.

 7. Spawned child processes that are OS/400 prestart jobs are similar to batch jobs. Due to the nature of

prestart jobs, only the following OS/400-specific attributes are explicitly inherited in a child process

when you use prestart jobs:

v Library list

v Language identifier

v Country or region identifier

v Coded character set identifier

v Default coded character set identifier

v Locale (as specified in the user profile)

The child process has the same user profile as the calling thread. However, the OS/400 job attributes

come from the job description specified for the prestart job entry, and the run attributes come from

the class that is associated with the OS/400 subsystem used for the prestart job entry.

Notes:

a. The prestart job entry QP0ZSPWP is used with prestart jobs that will not be creating threads. The

prestart job entry QP0ZSPWT is used with prestart jobs that will allow multiple threads. Both

types of prestart jobs may be used in the same subsystem. The prestart job entry must be defined

for the subsystem that the spawn() parent process runs under in order for it to be used.

b. The following example defines a prestart job entry (QP0ZSPWP) for use by spawn() under the

subsystem QINTER. The spawn() API must have the SPAWN_SETPJ_NP flag set (but not

SPAWN_SETTHREAD_NP) in order to use these prestart jobs:

ADDPJE SBSD(QSYS/QINTER) PGM(QSYS/QP0ZSPWP)

 INLJOBS(20) THRESHOLD(5) ADLJOBS(5)

 JOBD(QGPL/QDFTJOBD) MAXUSE(1)

 CLS(QGPL/QINTER)

c. The following example defines a prestart job entry (QP0ZSPWT) that will create prestart jobs that

are multithread capable for use by spawn() under the subsystem QINTER. The spawn() API must

have both SPAWN_SETPJ_NP and SPAWN_SETTHREAD_NP flags set in order to use these

prestart jobs. Also, the JOBD parameter must be a job description that allows multiple threads as

follows:

46 iSeries: UNIX-Type -- Process-Related APIs

ADDPJE SBSD(QSYS/QINTER) PGM(QSYS/QP0ZSPWT)

 INLJOBS(20) THRESHOLD(5) ADLJOBS(5)

 JOBD(QSYS/QAMTJOBD) MAXUSE(1)

 CLS(QGPL/QINTER)

Refer to the Work Management

book for complete details on prestart jobs.

 8. Shell scripts are allowed for the child process. If a shell script is specified, the appropriate shell

interpreter program is called. The shell script must be a text file and must contain the following

format on the first line of the file:

 #!interpreter_path <options>

where interpreter_path is the path to the shell interpreter program.

If the calling process is multithreaded, path (the first parameter to spawn()) must reference a

threadsafe file system.

spawn() calls the shell interpreter, passing in the shell options and the arguments passed in as a

parameter to spawn(). The argument list passed into the shell interpreter will look like Arguments to

Shell Interpreter (page 47).

Arguments to Shell Interpreter

See “About Shell Scripts” on page 72 for an example using spawn() and shell scripts.

 9.

Only programs that expect arguments as null-terminated character strings can be spawned. The

program that is run in the child process is called at it’s initial entry point. The arguments explicitly

passed to the program start with element argv[1] of the argv[] parameter that was specified during

the call to spawn(). The program language type determines how the arguments passed are seen by

that program. For example, if the program language type is ILE C or ILE C++, the linkage can be

described as:

 int main(int argc, char *argv[])

 {

 }

Process-Related APIs 47

where the following are true:

v argc is the number of arguments in argv[].

v argv[] is an array of arguments represented as null-terminated character strings.

v The last entry in the array is NULL.

v The first element in the array, argv[0], is automatically set to the name of the program. Any value

specified for argv[0] during the call to spawn() will be overwritten.

v The remaining argv[] elements, if any, will correspond directly to the argv[] elements specified

during the call to spawn().

The maximum number of arguments that can be specified is dependent on the following:

v The maximum number of parameters allowed for the program that is run in the child process, as

seen by the DSPPGM CL command. Some programs allow up to 65 535 parameters, while others

may only allow up to 255 parameters. The value of SPAWN_MAX_NUM_ARGS is 255, in order to

maintain compatibility with programs that only allow up to 255 parameters. If the maximum

number is exceeded, spawn() returns -1 with errno set to E2BIG.

v The total size required for containing the arguments, which includes the array of pointers to

strings, and the total size of all the strings. The total size is limited to approximately 16 500 000

bytes. If the total size is exceeded, spawn() returns -1 with errno set to ENOMEM.

10. The child process does not inherit any of the environment variables of the parent process. That is,

the default environment variable environment is empty. If the child process is to inherit all the

parent process’ environment variables, the extern variable environ can be used as the value for envp[]

when spawn() is called. If a specific set of environment variables is required in the child process, the

user must build the envp[] array with the ″name=value″ strings. In the child process, spawn() does

the equivalent of a putenv() on each element of the envp[] array. Then the extern variable environ

will be set and available to the child process’ program.

Note: If the user of spawn() specifies the extern variable environ as the envp[] parameter, the user

must successfully call one of the following APIs before calling spawn():

v getenv()

v putenv()

v Qp0zGetEnv()

v Qp0zInitEnv()

v Qp0zPutEnv()

The extern variable environ is not initialized until one of these APIs is called in the current activation

group. If environ is used in a call to spawn() without first calling one of these APIs, spawn() returns

an error.

11. OS/400 handles stdin, stdout, and stderr differently than most UNIX systems. On most UNIX

systems, stdin, stdout, and stderr have file descriptors 0, 1, and 2 reserved and allocated for them.

On OS/400, this is not the case. There are two ramifications of this difference:

a. File descriptor 0, 1, and 2 are allocated to the first three files that have descriptors allocated to

them. If an application writes to file descriptor 1 assuming it is stdout, the result will not be as

expected.

b. Any API that assumes stdin, stdout, and stderr are file descriptors 0, 1, and 2 will not behave as

expected.

Users and applications can enable descriptor-based standard I/O for child processes by setting

environment variable QIBM_USE_DESCRIPTOR_STDIO to the value Y in the child process. This can

be accomplished on the call to spawn() by either of the following:

a. Specifying the extern variable environ as the envp[] parameter. This assumes that the

QIBM_USE_DESCRIPTOR_STDIO environment variable exists in the calling process.

The environment variable can be set by using one of the following:

v API putenv(″QIBM_USE_DESCRIPTOR_STDIO=Y″);

48 iSeries: UNIX-Type -- Process-Related APIs

v Command ADDENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO) VALUE(Y)

v Command CHGENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO) VALUE(Y)
b. Explicitly include ″QIBM_USE_DESCRIPTOR_STDIO=Y″ in the user-defined envp[] array with the

″name=value″ strings.

If you enable descriptor-based standard I/O for child processes, file descriptors 0, 1, and 2 are

automatically used for stdin, stdout, and stderr, respectively. However, spawn() must be called using

a fd_map that has file descriptors 0, 1, and 2 properly allocated. See “About Shell Scripts” on page 72

for an example that enables descriptor-based standard I/O for a child process. Refer to the

WebSphere Development Studio: ILE C/C++ Programmer’s Guide

for complete details on this

support.

12. Spawn users have a facility to aid in debugging child processes.

To help the user start a debug session (when spawn() is the mechanism used to start the process),

the user sets the environment variable QIBM_CHILD_JOB_SNDINQMSG.

If the environment variable is assigned a numerical value, it indicates the number of descendent

levels that will be enabled for debugging. This support can be used to debug applications that create

children, grandchildren, great-grandchildren, and so forth. When the environment variable has a

value of 1, it enables debugging of all subsequent child processes. A value of 2 enables debugging of

all subsequent child processes and grandchild processes.

When the environment variable has a value less than or equal to 0, or any non-numerical value,

debugging will not occur.

Here are the steps a user would take to debug an application by using spawn():

Assume the user wants to debug child processes in an application called CHILDAPP found in

library MYAPPLIB.

v Set the QIBM_CHILD_JOB_SNDINQMSG environment variable to 1.

The environment variable can be set by using one of the following:

– API putenv(″QIBM_CHILD_JOB_SNDINQMSG=1″);

– Command ADDENVVAR ENVVAR(QIBM_CHILD_JOB_SNDINQMSG) VALUE(1)

– Command CHGENVVAR ENVVAR(QIBM_CHILD_JOB_SNDINQMSG) VALUE(1)
v Call or run the application that specifies /QSYS.LIB/MYAPPLIB.LIB/CHILDAPP.PGM as the

pathon the spawn() invocation. CHILDAPP will start running, send a CPAA980 *INQUIRY

message to the user’s message queue, and then will block, waiting for a reply to the message.

Issue a Work with Active Jobs (WRKACTJOB) command and find the CHILDAPP in a MSGW job

status. Option 7 (Display message) performed against this job will display the CPAA980

*INQUIRY message that was sent. As part of this message, the Qualified Job Name will be

displayed in the proper format to pass to the Start Service Job (STRSRVJOB) command (for

example, 145778/RANDYR/CHILDAPP).

Note: Alternatively, a Display Messages (DSPMSG) command can be issued for the user, and the

output searched for the specific CPAA980 *INQUIRY message.

Note: If the job’s inquiry message reply specifies using the default message reply, the child process

will not block since the default reply for the CPAA980 *INQUIRY message is G.

v Issue a Start Service Job against the child process: STRSRVJOB JOB(145778/RANDYR/
CHILDAPP).

v Issue a Start Debug Command: STRDBG PGM(MYAPPLIB/CHILDAPP).

v Set whatever breakpoints are needed in CHILDAPP. When ready to continue, find the CPAA980

message and reply with G. This will unblock CHILDAPP, which allows it to run until a breakpoint

is reached, at which time CHILDAPP will again stop.

Note: If you reply with C to the CPAA980 message, the child process is ended before the child

process’ program ever receives control. In this case, on a subsequent call to wait() or waitpid(), the

status information returned indicates WIFEXCEPTION(), which evaluates to a nonzero value, and

WEXCEPTNUMBER() will evaluate to 0.

Process-Related APIs 49

v The application is now stopped at a breakpoint and debugging can proceed.
13.

By default, the child’s OS/400 simple job name is derived directly from the path parameter. If path

is a symbolic link to another object, the OS/400 simple job name is derived from the symbolic link

itself. For example, if path was set to /QSYS.LIB/MYLIB.LIB/CHILD.PGM, the child’s OS/400

simple job name would be CHILD. If /usr/bin/daughter was a symbolic link to

/QSYS.LIB/MYLIB.LIB/CHILD.PGM and path was set to /usr/bin/daughter, the child’s OS/400

simple job name would be DAUGHTER.

If SPAWN_SETJOBNAMEPARENT_NP is set in inherit.flags, the child’s OS/400 simple job name

would be the same as the parent’s OS/400 simple job name.

If SPAWN_SETJOBNAMEARGV_NP is set in inherit.flags, the null-terminated character string

represented by argv[0] of the argv[] parameter will be used to derive the child’s OS/400 simple job

name. The name can be up to 10 characters, must be uppercase, and must contain only those

characters allowed for an OS/400 job name. However, a period (.) is not considered a valid character.

For example, if path was set to /QSYS.LIB/MYLIB.LIB/CHILD.PGM,

SPAWN_SETJOBNAMEARGV_NP was set ON, and argv[0] was set to SON, the child’s OS/400

simple job name would be SON. If the first character of the name is invalid, the path will be used. If

any of the remaining characters of the name are invalid, the valid characters up to that point will be

used.

14.

The _NP used at the end of certain flag names, that can be specified for the flags field of the

inherit parameter, indicate the flag is a non-standard, OS/400-platform-specific extension to the

inheritance structure. Applications that wish to avoid using platform-specific extensions should not

use these flags.

15.

The child process has an associated process ID, which uses system resources. Those resources will

remain in use, even after the child process has ended. In order to ensure those resources are

reclaimed, the parent process should either successfully call wait() or waitpid(), or the parent process

should end.

Attributes Inherited

The child process inherits the following POSIX attributes from the parent:

 1. File descriptor table (mapped according to fd_map).

Note: The following file descriptor table information does not apply to any of the scan descriptors

which are created by the thread executing one of the scan-related exit programs (or any of its created

threads). See Integrated File System Scan on Open Exit Programs and Integrated File System Scan on

Close Exit Programs for more information.

v If fd_map is NULL, all file descriptors are inherited without being reordered.

Note: File descriptors that have the FD_CLOEXEC file descriptor flag set are not inherited. File

descriptors that are created as a result of the opendir() API (to implement open directory streams)

are not inherited.

v If fd_map is not NULL, it is a mapping from the file descriptor table of the parent process to the

file descriptor table of the child process. fd_count specifies the number of file descriptors the child

process will inherit. Except for those file descriptors designated by SPAWN_FDCLOSED, file

descriptor i in the child process is specified by fd_map[i]. For example, fd_map[5]= 7 sets the child

process’ file descriptor 5 to the parent process’ file descriptor 7. File descriptors fd_count through

OPEN_MAX are closed in the child process, as are any file descriptors designated by

SPAWN_FDCLOSED.

Note: File descriptors that are specified in the fd_map array are inherited even if they have the

FD_CLOEXEC file descriptor flag set. After inheritance, the FD_CLOEXEC flag in the child

process’ file descriptor is cleared.

v For files descriptors that remain open, no attributes are changed.

v If a file descriptor refers to an open instance in a file system that does not support file descriptors

in two different processes pointing to the same open instance of a file, the file descriptor is closed

in the child process.

50 iSeries: UNIX-Type -- Process-Related APIs

ifsopenexit.htm
ifscloseexit.htm
ifscloseexit.htm

Only open files managed by the Root, QOpenSys, or user-defined file systems support inheritance

of their file descriptors. All other file systems will have their file descriptors closed in the child

process.
 2. Process group ID

v If inherit.flags is set to SPAWN_SETPGROUP, the child process group ID is set to the value in

inherit.pgroup.

Note: OS/400 does not support the ability to set the process group ID for the child process to a

user-specified group ID. This is a deviation from the POSIX standard.

v If inherit.pgroup is set to SPAWN_NEWPGROUP, the child process is put in a new process group

with a process group ID equal to the process ID.

v If inherit.pgroup is not set to SPAWN_NEWPGROUP, the child process inherits the process group

of the parent process.

If the process group that the child process is attempting to join has received the SIGKILL signal, the

child process is ended.

 3. Real user ID of the calling thread.

 4. Real group ID of the calling thread.

 5. Supplementary group IDs (group profile list) of the calling thread.

 6. Current working directory of the parent process.

 7. Root directory of the parent process.

 8. File mode creation mask of the parent process.

 9. Signal mask of the calling thread, except if the SPAWN_SETSIGMASK flag is set in inherit.flags. Then

the child process will initially have the signal mask specified in inherit.mask.

10. Signal action vector, as determined by the following:

v If the SPAWN_SETSIGDEF flag is set in inherit.flags, the signal specified in inherit.sigdefault is set to

the default actions in the child process. Signals set to the default action in the parent process are

set to the default action in the child process.

v Signals set to be caught in the parent process are set to the default action in the child process.

v Signals set to be ignored in the parent process are set to ignore in the child process, unless set to

default by the above rules.
11. Priority of the parent process.

Note: OS/400 prestart jobs do not inherit priority.

12. Scheduling policy (the OS/400 scheduling policy) of the parent process.

13. OS/400-specific attributes of the parent, such as job attributes, run attributes, library list, and user

profile.

Note: OS/400 prestart jobs inherit a subset of OS/400-specific attributes.

14. Resource limits of the parent process.

Related Information

v The <spawn.h> file (see Header Files for UNIX-Type Functions)

v “QlgSpawn()—Spawn Process (using NLS-enabled path name)” on page 12—Spawn Process (using

NLS-enabled path name)

v “spawnp()—Spawn Process with Path” on page 52—Spawn Process with Path

v sysconf()—Get System Configuration Variables

v “wait()—Wait for Child Process to End” on page 66—Wait for Child Process to End

v “waitpid()—Wait for Specific Child Process” on page 69—Wait for Specific Child Process

Process-Related APIs 51

unix13.htm
sysconf.htm

Example

See Code disclaimer information for information pertaining to code examples.

For an example of using this function, see Using the Spawn Process and Wait for Child Process APIs in

the API Examples.

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

spawnp()—Spawn Process with Path

 Syntax

 #include <spawn.h>

 pid_t spawnp(const char *file,

 const int fd_count,

 const int fd_map[],

 const struct inheritance *inherit,

 char * const argv[],

 char * const envp[]);

 Service Program Name: QP0ZSPWN

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 57.

The spawnp() function creates a child process that inherits specific attributes from the parent. The

attributes inherited by the child process are file descriptors, the signal mask, the signal action vector, and

environment variables, among others. spawnp() takes the file parameter and searches the environment

variable PATH. The file parameter is concatenated to each path defined in the PATH environment

variable. It uses the first occurrence of the file parameter that is found with a mode of execute.

If the PATH environment variable does not contain a value, an error occurs. If the file parameter contains

a ″/″ character, the value of file is used as a path and a search of the PATH or library list is not

performed. Specifying a file parameter containing a ″/″ is the same as calling spawn().

To search the library list, a special value for the PATH environment variable is used. The string %LIBL%

can be the entire PATH value or a component of the PATH value. When the string %LIBL% is encountered,

the library list is searched. For example, the following path searches the directory /usr/bin first, searches

the library list next, and then searches the /tobrien/bin directory for the file:

PATH=/usr/bin:%LIBL%:/tobrien/bin

Parameters

file (Input) A file name used with the search path to find an executable file that will run in the new

(child) process. The file name is expected to be in the CCSID of the job.

 See “QlgSpawnp()—Spawn Process with Path (using NLS-enabled file name)” on page 18 for a

description and an example of supplying the file in any CCSID.

52 iSeries: UNIX-Type -- Process-Related APIs

aboutapis.htm#CODEDISCLAIMER
apiexmp.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

fd_count

(Input) The number of file descriptors the child process can inherit. It can have a value from zero

to the value returned from a call to sysconf(_SC_OPEN_MAX).

fd_map[]

(Input) An array that maps the parent process file descriptor numbers to the child process file

descriptor numbers. If this value is NULL, it indicates simple inheritance. Simple inheritance

means that the child process inherits all eligible open file descriptors of the parent process. In

addition, the file descriptor number in the child process is the same as the file descriptor number

in the parent process. Refer to “Attributes Inherited” on page 62 for details of file descriptor

inheritance.

inherit (Input) A pointer to an area of type struct inheritance. If the pointer is NULL, an error occurs.

The inheritance structure contains control information to indicate attributes the child process

should inherit from the parent. The following is an example of the inheritance structure, as

defined in the <spawn.h> header file:

 struct inheritance {

 flagset_t flags;

 int pgroup;

 sigset_t sigmask;

 sigset_t sigdefault;

};

The flags field specifies the manner in which the child process should be created. Only the

constants defined in <spawn.h> are allowed; otherwise, spawnp() returns -1 with errno set to

EINVAL. The allowed constants follow:

 SPAWN_SETPGROUP If this flag is set ON, spawnp() sets the process group ID of the child

process to the value in pgroup. In this case, the process group field, pgroup,

must be valid. If it is not valid, an error occurs. If this flag is set OFF, the

pgroup field is checked to determine what the process group ID of the child

process is set to. If the pgroup field is set to the constant

SPAWN_NEWPGROUP, the child process group ID is set to the child

process ID. If the pgroup field is not set to SPAWN_NEWPGROUP and the

flags field is not set to SPAWN_SETPGROUP, the process group ID of the

child process is set to the process group ID of the parent process. If the

pgroup field is set to SPAWN_NEWPGROUP and the flags field is set to

SPAWN_SETPGROUP, an error occurs.

SPAWN_SETSIGMASK If this flag is set ON, spawnp() sets the signal blocking mask of the child

process to the value in sigmask. In this case, the signal blocking mask must

be valid. If it is not valid, an error occurs. If this flag is set OFF, spawnp()

sets the signal blocking mask of the child process to the signal blocking

mask of the calling thread.

SPAWN_SETSIGDEF If this flag is set ON, spawnp() sets the child process’ signals identified in

sigdefault to the default actions. The sigdefault must be valid. If it is not

valid, an error occurs. If this flag is set OFF, spawnp() sets the child

process’ signal actions to those of the parent process. Any signals of the

parent process that have a catcher specified are set to default in the child

process. The child process’ signal actions inherit the parent process’ ignore

and default signal actions.

SPAWN_SETTHREAD_NP If this flag is set ON, spawnp() will create the child process as multithread

capable. The child process will be allowed to create threads. If this flag is

set OFF, the child process will not be allowed to create threads.

Process-Related APIs 53

SPAWN_SETPJ_NP If this flag is set ON, spawnp() attempts to use available OS/400 prestart

jobs. The prestart job entries that may be used follow:

v QSYS/QP0ZSPWP, if the flag SPAWN_SETTHREAD_NP is set OFF.

v QSYS/QP0ZSPWT, if the flag SPAWN_SETTHREAD_NP is set ON.

The OS/400 prestart jobs must have been started using either

QSYS/QP0ZSPWP or QSYS/QP0ZSPWT as the program that identifies a

prestart job entry for the OS/400 subsystem that the parent process is

running under. If a prestart job entry is not defined, the child process will

run as a batch immediate job under the same subsystem as the parent

process.

If this flag (SPAWN_SETPJ_NP) is set OFF, the child process will run as a

batch immediate job under the same subsystem as the parent process.

Note:In order to more closely emulate POSIX semantics, spawnp() will

ignore the Maximum number of uses (MAXUSE) value specified for the

prestart job entry. The prestart job will only be used once, behaving as if

MAXUSE(1) was specified.

SPAWN_SETCOMPMSG_NP If this flag is set ON, spawnp() causes the child process to send a

completion message to the user’s message queue when the child process

ends. If this flag is set OFF, no completion message is sent to the user’s

message queue when the child process ends. If both the

SPAWN_SETCOMPMSG_NP and SPAWN_SETPJ_NP flags are set ON, an

error occurs.

SPAWN_SETJOBNAMEPARENT_NP If this flag is set ON, spawnp() sets the child’s OS/400 simple job name to

that of the parent’s. If this flag is set OFF, spawnp() sets the child’s OS/400

simple job name based on the file parameter.

SPAWN_SETJOBNAMEARGV_NP If this flag is set ON, spawnp() sets the child’s OS/400 simple job name

based on the name found in argv[0] of the argv[] parameter. If this flag is

set OFF, spawnp() sets the child’s OS/400 simple job name based on the

file parameter.

SPAWN_SETLOGJOBMSGABN_NP If this flag is set ON, the child process does not log the job started

(CPF1124) message and will only log the job ended (CPF1164) message

when the job ends abnormally (job ending code 30 or greater). This applies

to the job log as well as the system history log (QHST). If this flag is set

OFF, the child process logs the job started (CPF1124) and the job ended

(CPF1164) messages.

SPAWN_SETLOGJOBMSGNONE_NP If this flag is set ON, the child process does not log the job started

(CPF1124) and the job ended (CPF1164) messages to either the job log or to

the system history log (QHST). If this flag is set OFF, the child process logs

the job started (CPF1124) and the job ended (CPF1164) messages.

SPAWN_SETAFFINITYID_NP If this flag is set ON, spawnp() sets the resources affinity identifier of the

child process to the 4-byte integer value, treated as an unsigned int, that

immediately follows the inheritance structure in memory. A value of 0

indicates OS/400 selects the resources affinity identifier. The caller must

ensure the value immediately follows the inheritance structure. For

example:

struct extended_inheritance {

 struct inheritance inherit;

 unsigned int affinityID;

};

struct extended_inheritance extended_inherit;

If this flag is set OFF, OS/400 selects the resources affinity identifier of the

child process.

SPAWN_SETTHREADRUNPTY_NP If this flag is set ON, spawnp() sets the run priority of the child process to

the current thread’s run priority. If this flag is set OFF, spawnp() sets the

run priority of the child process to the current process’ run priority.

54 iSeries: UNIX-Type -- Process-Related APIs

argv[] (Input) An array of pointers to strings that contain the argument list for the executable file. The

last element in the array must be the NULL pointer. If this parameter is NULL, an error occurs.

envp[] (Input) An array of pointers to strings that contain the environment variable lists for the

executable file. The last element in the array must be the NULL pointer. If this parameter is

NULL, an error occurs.

Authorities

Authorization Required for spawnp()

Object Referred to

Authority
Required errno

Each directory in the path name

preceding the executable file that will

run in the new process

*X EACCES

Executable file that will run in the

new process

*X EACCES

If executable file that will run in the

new process is a shell script

*RX EACCES

Return Value

 value spawnp() was successful. The value returned is the process ID of the child process.

-1 spawnp() was not successful. The errno variable is set to indicate the error.

Error Conditions

If spawnp() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[E2BIG]

 Argument list too long.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAPAR]

 Possible APAR condition or hardware failure.

[EBADFUNC]

 Function parameter in the signal function is not set.

Process-Related APIs 55

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

[EBADNAME]

 The object name specified is not correct.

[ECANCEL]

 Operation canceled.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

 The specified path name is not in the CCSID of the job.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The flags field in the inherit parameter contains an invalid value.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENFILE]

 Too many open files in the system.

 A system limit has been reached for the number of files that are allowed to be concurrently open

in the system.

56 iSeries: UNIX-Type -- Process-Related APIs

The entire system has too many other file descriptors already open.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[ETERM]

 Operation terminated.

[ENOSYSRSC]

 System resources not available to complete request.

 The child process failed to start. The maximum active jobs in a subsystem may have been

reached. CHGSBSD and CHGJOBQE CL commands can be used to change the maximum active

jobs.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Usage Notes

 1. spawnp() is threadsafe, except this function will fail and errno ENOTSAFE will be set if it is called

in any of the following ways:

v From a multithreaded process and file refers to a shell script that does not exist in a threadsafe

file system.

v From a multithreaded process with a current working directory that is not in a threadsafe file

system, and the PATH environment variable causes spawnp() to check the current working

directory.

Process-Related APIs 57

2. There are performance considerations when using spawn() and spawnp() concurrently among

threads in the same process. spawn() and spawnp() serialize against other spawn() and spawnp()

calls from other threads in the same process.

 3. The child process is enabled for signals. A side effect of this function is that the parent process is also

enabled for signals if it was not enabled for signals before this function was called.

 4. If this function is called from a program running in user state and it specifies a system-domain

program as the executable program for the child process, an exception occurs. In this case, spawnp()

returns the process ID of the child process. On a subsequent call to wait() or waitpid(), the status

information returned indicates that an exception occurred in the child process.

 5. The program that will be run in the child process must be either a program object in the QSYS.LIB

file system or an independent ASP QSYS.LIB file system (*PGM object) or a shell script (see “About

Shell Scripts” on page 72). The syntax of the name of the file to run must be the proper syntax for

the file system in which the file resides. For example, if the program MYPROG resides in the

QSYS.LIB file system and in library MYLIB, the specification for spawnp(). would be the following:

 MYPROG.PGM

See “QlgSpawn()—Spawn Process (using NLS-enabled path name)” on page 12 for an example

specifying the program using the Qlg_Path_Name_T structure. The Qlg_Path_Name_T structure is

supported by QlgSpawn() and allows the program name to be specified in any CCSID.

Note: For more information about path syntaxes for the different file systems, see the Integrated file

system information in the Files and file systems topic.

 6. Spawned child processes are batch jobs or prestart jobs. As such, they do not have the ability to do

5250-type interactive I/O.

 7. Spawned child processes that are OS/400 prestart jobs are similar to batch jobs. Due to the nature of

prestart jobs, only the following OS/400-specific attributes are explicitly inherited in a child process

when you use prestart jobs:

v Library list

v Language identifier

v Country or region identifier

v Coded character set identifier

v Default coded character set identifier

v Locale (as specified in the user profile)

The child process has the same user profile as the calling thread. However, the OS/400 job attributes

come from the job description specified for the prestart job entry, and the run attributes come from

the class that is associated with the OS/400 subsystem used for the prestart job entry.

Notes:

a. The prestart job entry QP0ZSPWP is used with prestart jobs that will not be creating threads. The

prestart job entry QP0ZSPWT is used with prestart jobs that will allow multiple threads. Both

types of prestart jobs may be used in the same subsystem. The prestart job entry must be defined

for the subsystem that the spawnp() parent process runs under in order for it to be used.

b. The following example defines a prestart job entry (QP0ZSPWP) for use by spawnp() under the

subsystem QINTER. The spawnp() API must have the SPAWN_SETPJ_NP flag set (but not

SPAWN_SETTHREAD_NP) in order to use these prestart jobs:

ADDPJE SBSD(QSYS/QINTER) PGM(QSYS/QP0ZSPWP)

 INLJOBS(20) THRESHOLD(5) ADLJOBS(5)

 JOBD(QGPL/QDFTJOBD) MAXUSE(1)

 CLS(QGPL/QINTER)

c. The following example defines a prestart job entry (QP0ZSPWT) that will create prestart jobs that

are multithread capable for use by spawnp() under the subsystem QINTER. The spawnp() API

58 iSeries: UNIX-Type -- Process-Related APIs

must have both SPAWN_SETPJ_NP and SPAWN_SETTHREAD_NP flags set in order to use these

prestart jobs. Also, the JOBD parameter must be a job description that allows multiple threads as

follows:

ADDPJE SBSD(QSYS/QINTER) PGM(QSYS/QP0ZSPWT)

 INLJOBS(20) THRESHOLD(5) ADLJOBS(5)

 JOBD(QSYS/QAMTJOBD) MAXUSE(1)

 CLS(QGPL/QINTER)

Refer to the Work Management

book for complete details on prestart jobs.

 8. Shell scripts are allowed for the child process. If a shell script is specified, the appropriate shell

interpreter program is called. The shell script must be a text file and must contain the following

format on the first line of the file:

 #!interpreter_path <options>

where interpreter_path is the path to the shell interpreter program.

If the calling process is multithreaded, file (the first parameter to spawnp()) must reference a

threadsafe file system.

spawnp() calls the shell interpreter, passing in the shell options and the arguments passed in as a

parameter to spawnp(). The argument list passed into the shell interpreter will look like Arguments

to Shell Interpreter (page 59).

Arguments to Shell Interpreter

See “About Shell Scripts” on page 72 for an example using spawn() and shell scripts.

 9.

Only programs that expect arguments as null-terminated character strings can be spawned. The

program that is run in the child process is called at it’s initial entry point. The arguments explicitly

passed to the program start with element argv[1] of the argv[] parameter that was specified during

the call to spawnp(). The program language type determines how the arguments passed are seen by

that program. For example, if the program language type is ILE C or ILE C++, the linkage can be

described as:

Process-Related APIs 59

int main(int argc, char *argv[])

 {

 }

where the following are true:

v argc is the number of arguments in argv[].

v argv[] is an array of arguments represented as null-terminated character strings.

v The last entry in the array is NULL.

v The first element in the array, argv[0], is automatically set to the name of the program. Any value

specified for argv[0] during the call to spawnp() will be overwritten.

v The remaining argv[] elements, if any, will correspond directly to the argv[] elements specified

during the call to spawnp().

The maximum number of arguments that can be specified is dependent on the following:

v The maximum number of parameters allowed for the program that is run in the child process, as

seen by the DSPPGM CL command. Some programs allow up to 65 535 parameters, while others

may only allow up to 255 parameters. The value of SPAWN_MAX_NUM_ARGS is 255, in order to

maintain compatibility with programs that only allow up to 255 parameters. If the maximum

number is exceeded, spawnp() returns -1 with errno set to E2BIG.

v The total size required for containing the arguments, which includes the array of pointers to

strings, and the total size of all the strings. The total size is limited to approximately 16 500 000

bytes. If the total size is exceeded, spawnp() returns -1 with errno set to ENOMEM.

10. The child process does not inherit any of the environment variables of the parent process. That is,

the default environment variable environment is empty. If the child process is to inherit all the

parent process’ environment variables, the extern variable environ can be used as the value for envp[]

when spawnp() is called. If a specific set of environment variables is required in the child process,

the user must build the envp[] array with the ″name=value″ strings. In the child process, spawnp()

does the equivalent of a putenv() on each element of the envp[] array. Then the extern variable

environ will be set and available to the child process’ program.

Note: If the user of spawnp() specifies the extern variable environ as the envp[] parameter, the user

must successfully call one of the following APIs before calling spawnp():

v getenv()

v putenv()

v Qp0zGetEnv()

v Qp0zInitEnv()

v Qp0zPutEnv()

The extern variable environ is not initialized until one of these APIs is called in the current activation

group. If environ is used in a call to spawnp() without first calling one of these APIs, spawnp()

returns an error.

11. OS/400 handles stdin, stdout, and stderr differently than most UNIX systems. On most UNIX

systems, stdin, stdout, and stderr have file descriptors 0, 1, and 2 reserved and allocated for them.

On OS/400, this is not the case. There are two ramifications of this difference:

a. File descriptor 0, 1, and 2 are allocated to the first three files that have descriptors allocated to

them. If an application writes to file descriptor 1 assuming it is stdout, the result will not be as

expected.

b. Any API that assumes stdin, stdout, and stderr are file descriptors 0, 1, and 2 will not behave as

expected.

Users and applications can enable descriptor-based standard I/O for child processes by setting

environment variable QIBM_USE_DESCRIPTOR_STDIO to the value Y in the child process. This can

be accomplished on the call to spawnp() by either of the following:

a. Specifying the extern variable environ as the envp[] parameter. This assumes that the

QIBM_USE_DESCRIPTOR_STDIO environment variable exists in the calling process.

60 iSeries: UNIX-Type -- Process-Related APIs

The environment variable can be set by using one of the following:

v API putenv(″QIBM_USE_DESCRIPTOR_STDIO=Y″);

v Command ADDENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO) VALUE(Y)

v Command CHGENVVAR ENVVAR(QIBM_USE_DESCRIPTOR_STDIO) VALUE(Y)
b. Explicitly include ″QIBM_USE_DESCRIPTOR_STDIO=Y″ in the user-defined envp[] array with the

″name=value″ strings.

If you enable descriptor-based standard I/O for child processes, file descriptors 0, 1, and 2 are

automatically used for stdin, stdout, and stderr, respectively. However, spawnp() must be called

using a fd_map that has file descriptors 0, 1, and 2 properly allocated. See “About Shell Scripts” on

page 72 for an example that enables descriptor-based standard I/O for a child process. Refer to

WebSphere Development Studio: ILE C/C++ Programmer’s Guide

for complete details on this

support.

12. Spawn users have a facility to aid in debugging child processes.

To help the user start a debug session (when spawnp() is the mechanism used to start the process),

the user sets the environment variable QIBM_CHILD_JOB_SNDINQMSG.

If the environment variable is assigned a numerical value, it indicates the number of descendent

levels that will be enabled for debugging. This support can be used to debug applications that create

children, grandchildren, great-grandchildren, and so forth. When the environment variable has a

value of 1, it enables debugging of all subsequent child processes. A value of 2 enables debugging of

all subsequent child processes and grandchild processes.

When the environment variable has a value less than or equal to 0, or any non-numerical value,

debugging will not occur.

Here are the steps a user would take to debug an application by using spawnp():

Assume the user wants to debug child processes in an application called CHILDAPP found in

library MYAPPLIB.

v Set the QIBM_CHILD_JOB_SNDINQMSG environment variable to 1.

The environment variable can be set by using one of the following:

– API putenv(″QIBM_CHILD_JOB_SNDINQMSG=1″);

– Command ADDENVVAR ENVVAR(QIBM_CHILD_JOB_SNDINQMSG) VALUE(1)

– Command CHGENVVAR ENVVAR(QIBM_CHILD_JOB_SNDINQMSG) VALUE(1)
v Call or run the application that specifies CHILDAPP.PGM as the fileon the spawnp() invocation.

CHILDAPP will start running, send a CPAA980 *INQUIRY message to the user’s message queue,

and then will block, waiting for a reply to the message. Issue a Work with Active Jobs

(WRKACTJOB) command and find the CHILDAPP in a MSGW job status. Option 7 (Display

message) performed against this job will display the CPAA980 *INQUIRY message that was sent.

As part of this message, the Qualified Job Name will be displayed in the proper format to pass to

the Start Service Job (STRSRVJOB) command (for example, 145778/RANDYR/CHILDAPP).

Note: Alternatively, a Display Messages (DSPMSG) command can be issued for the user, and the

output searched for the specific CPAA980 *INQUIRY message.

Note: If the job’s inquiry message reply specifies using the default message reply, the child process

will not block since the default reply for the CPAA980 *INQUIRY message is G.

v Issue a Start Service Job against the child process: STRSRVJOB JOB(145778/RANDYR/
CHILDAPP).

v Issue a Start Debug Command: STRDBG PGM(MYAPPLIB/CHILDAPP).

v Set whatever breakpoints are needed in CHILDAPP. When ready to continue, find the CPAA980

message and reply with G. This will unblock CHILDAPP, which allows it to run until a breakpoint

is reached, at which time CHILDAPP will again stop.

Process-Related APIs 61

Note: If you reply with C to the CPAA980 message, the child process is ended before the child

process’ program ever receives control. In this case, on a subsequent call to wait() or waitpid(), the

status information returned indicates WIFEXCEPTION(), which evaluates to a nonzero value, and

WEXCEPTNUMBER() will evaluate to 0.

v The application is now stopped at a breakpoint and debugging can proceed.
13.

By default, the child’s OS/400 simple job name is derived directly from the file parameter. If file is

a symbolic link to another object, the OS/400 simple job name is derived from the symbolic link

itself. For example, if file was set to CHILD.PGM, the child’s OS/400 simple job name would be

CHILD. If /usr/bin/daughter was a symbolic link to /QSYS.LIB/MYLIB.LIB/CHILD.PGM and file

was set to daughter, the child’s OS/400 simple job name would be DAUGHTER.

If SPAWN_SETJOBNAMEPARENT_NP is set in inherit.flags, the child’s OS/400 simple job name

would be the same as the parent’s OS/400 simple job name.

If SPAWN_SETJOBNAMEARGV_NP is set in inherit.flags, the null-terminated character string

represented by argv[0] of the argv[] parameter will be used to derive the child’s OS/400 simple job

name. The name can be up to 10 characters, must be uppercase, and must contain only those

characters allowed for an OS/400 job name. However, a period (.) is not considered a valid character.

For example, if file was set to CHILD.PGM, SPAWN_SETJOBNAMEARGV_NP was set ON, and

argv[0] was set to SON, the child’s OS/400 simple job name would be SON. If the first character of

the name is invalid, the file will be used. If any of the remaining characters of the name are invalid,

the valid characters up to that point will be used.

14.

The _NP used at the end of certain flag names, that can be specified for the flags field of the

inherit parameter, indicate the flag is a non-standard, OS/400-platform-specific extension to the

inheritance structure. Applications that wish to avoid using platform-specific extensions should not

use these flags.

15.

The child process has an associated process ID, which uses system resources. Those resources will

remain in use, even after the child process has ended. In order to ensure those resources are

reclaimed, the parent process should either successfully call wait() or waitpid(), or the parent process

should end.

Attributes Inherited

The child process inherits the following POSIX attributes from the parent:

 1. File descriptor table (mapped according to fd_map).

Note: The following file descriptor table information does not apply to any of the scan descriptors

which are created by the thread executing one of the scan-related exit programs (or any of its created

threads). See Integrated File System Scan on Open Exit Programs and Integrated File System Scan on

Close Exit Programs for more information.

v If fd_map is NULL, all file descriptors are inherited without being reordered.

Note: File descriptors that have the FD_CLOEXEC file descriptor flag set are not inherited. File

descriptors that are created as a result of the opendir() API (to implement open directory streams)

are not inherited.

v If fd_map is not NULL, it is a mapping from the file descriptor table of the parent process to the

file descriptor table of the child process. fd_count specifies the number of file descriptors the child

process will inherit. Except for those file descriptors designated by SPAWN_FDCLOSED, file

descriptor i in the child process is specified by fd_map[i]. For example, fd_map[5]= 7 sets the child

process’ file descriptor 5 to the parent process’ file descriptor 7. File descriptors fd_count through

OPEN_MAX are closed in the child process, as are any file descriptors designated by

SPAWN_FDCLOSED.

Note: File descriptors that are specified in the fd_map array are inherited even if they have the

FD_CLOEXEC file descriptor flag set. After inheritance, the FD_CLOEXEC flag in the child

process’ file descriptor is cleared.

v For files descriptors that remain open, no attributes are changed.

62 iSeries: UNIX-Type -- Process-Related APIs

ifsopenexit.htm
ifscloseexit.htm
ifscloseexit.htm

v If a file descriptor refers to an open instance in a file system that does not support file descriptors

in two different processes pointing to the same open instance of a file, the file descriptor is closed

in the child process.

Only open files managed by the Root, QOpenSys, or user-defined file systems support inheritance

of their file descriptors. All other file systems will have their file descriptors closed in the child

process.
 2. Process group ID

v If inherit.flags is set to SPAWN_SETPGROUP, the child process group ID is set to the value in

inherit.pgroup.

Note: OS/400 does not support the ability to set the process group ID for the child process to a

user-specified group ID. This is a deviation from the POSIX standard.

v If inherit.pgroup is set to SPAWN_NEWPGROUP, the child process is put in a new process group

with a process group ID equal to the process ID.

v If inherit.pgroup is not set to SPAWN_NEWPGROUP, the child process inherits the process group

of the parent process.

If the process group that the child process is attempting to join has received the SIGKILL signal, the

child process is ended.

 3. Real user ID of the calling thread.

 4. Real group ID of the calling thread.

 5. Supplementary group IDs (group profile list) of the calling thread.

 6. Current working directory of the parent process.

 7. Root directory of the parent process.

 8. File mode creation mask of the parent process.

 9. Signal mask of the calling thread, except if the SPAWN_SETSIGMASK flag is set in inherit.flags. Then

the child process will initially have the signal mask specified in inherit.mask.

10. Signal action vector, as determined by the following:

v If the SPAWN_SETSIGDEF flag is set in inherit.flags, the signal specified in inherit.sigdefault is set to

the default actions in the child process. Signals set to the default action in the parent process are

set to the default action in the child process.

v Signals set to be caught in the parent process are set to the default action in the child process.

v Signals set to be ignored in the parent process are set to ignore in the child process, unless set to

default by the above rules.
11. Priority of the parent process.

Note: OS/400 prestart jobs do not inherit priority.

12. Scheduling policy (the OS/400 scheduling policy) of the parent process.

13. OS/400-specific attributes of the parent, such as job attributes, run attributes, library list, and user

profile.

Note: OS/400 prestart jobs inherit a subset of OS/400-specific attributes.

14. Resource limits of the parent process.

Related Information

v The <spawn.h> file (see Header Files for UNIX-Type Functions)

v “QlgSpawnp()—Spawn Process with Path (using NLS-enabled file name)” on page 18—Spawn Process

with Path (using NLS-enabled file name)

v “spawn()—Spawn Process” on page 40—Spawn Process

v sysconf()—Get System Configuration Variables

Process-Related APIs 63

unix13.htm
sysconf.htm

v “wait()—Wait for Child Process to End” on page 66—Wait for Child Process to End

v “waitpid()—Wait for Specific Child Process” on page 69—Wait for Specific Child Process

Example

See Code disclaimer information for information pertaining to code examples.

For an example of using this function, see Using the Spawn Process and Wait for Child Process APIs in

the API Examples.

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

ulimit()—Get and set process limits

 Syntax

 #include <ulimit.h>

 long int ulimit(int cmd, ...);

 Service Program Name: QP0WSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The ulimit() function provides a way to get and set process resource limits. A resource limit is a way for

the operating system to enforce a limit on a variety of resources used by a process. A resource limit has a

current or soft limit and a maximum or hard limit.

The ulimit() function is provided for compatibility with older applications. The “getrlimit()—Get resource

limit” on page 7 and “setrlimit()—Set resource limit” on page 38 functions should be used for working

with resource limits.

A soft limit can be changed to any value that is less than or equal to the hard limit. The hard limit can be

changed to any value that is greater than or equal to the soft limit. Only a process with appropriate

authorities can increase a hard limit.

The ulimit() function supports the following cmd values:

 UL_GETFSIZE

(0)

Return the current or soft limit for the file size resource limit. The returned limit is in 512-byte

blocks. The return value is the integer part of the file size resource limit divided by 512.

UL_SETFSIZE (1) Set the current or soft limit and the maximum or hard limit for the file size resource limit. The

second argument is taken as a long int that represents the limit in 512-byte blocks. The specified

value is multiplied by 512 to set the resource limit. If the result overflows an rlim_t, ulimit()

returns -1 and sets errno to EINVAL. The new file size resource limit is returned.

Parameters

cmd (Input)

64 iSeries: UNIX-Type -- Process-Related APIs

aboutapis.htm#CODEDISCLAIMER
apiexmp.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

The command to be performed.

... (Input)

 When the cmd is UL_SETFSIZE, a long int that represents the limit in 512-byte blocks.

Authorities and Locks

The current user profile must have *JOBCTL special authority to increase the hard limit.

Return Value

 value ulimit() was successful. The value is the requested limit.

-1 ulimit() was not successful. The errno variable is set to indicate the error.

Error Conditions

If ulimit() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EINVAL]

 An invalid parameter was found.

 An invalid cmd was specified.

[EPERM]

 Permission denied.

 An attempt was made to increase the hard limit and the current user profile does not have

*JOBCTL special authority.

Related Information

v The <ulimit.h> file (see Header Files for UNIX-Type Functions)

v “getrlimit()—Get resource limit” on page 7—Get resource limit

v “setrlimit()—Set resource limit” on page 38—Set resource limit

Example

See Code disclaimer information for information pertaining to code examples.

#include <ulimit.h>

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

int main (int argc, char *argv[])

{

 long int value;

 long int limit;

 /* Set the file size resource limit. */

 limit = 65535;

 errno = 0;

 value = ulimit(UL_SETFSIZE, limit);

 if ((value == -1) && (errno != 0)) {

 printf("ulimit() failed with errno=%d\n", errno);

 exit(1);

 }

Process-Related APIs 65

unix13.htm
aboutapis.htm#CODEDISCLAIMER

printf("The limit is set to %ld\n", value);

 /* Get the file size resource limit. */

 value = ulimit(UL_GETFSIZE);

 if ((value == -1) && (errno != 0)) {

 printf("ulimit() failed with errno=%d\n", errno);

 exit(1);

 }

 printf("The limit is %ld\n", value);

 exit(0);

}

Example Output:

The limit is set to 65535

The limit is 65535

Introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

wait()—Wait for Child Process to End

 Syntax

 #include <sys/types.h>

 #include <sys/wait.h>

 pid_t wait(int *stat_loc);

 Service Program Name: QP0ZSPWN

 Default Public Authority: *USE

 Threadsafe: Yes

The wait() function suspends processing until a child process has ended. The calling thread will suspend

processing until status information is available for a child process that ended. A suspended wait()

function call can be interrupted by the delivery of a signal whose action is either to run a signal-catching

function or to terminate the process. When wait() is successful, status information about how the child

process ended (for example, whether the process ended *stat_loc.

Parameters

stat_loc

(Input) Pointer to an area where status information about how the child process ended is to be

placed.

 *stat_loc argument is interpreted using macros defined in the <sys/wait.h> header file. The macros use an

argument stat_val, which is the integer value *stat_loc. When wait() returns with a valid process ID (pid),

the macros analyze the status referenced by the *stat_loc argument. The macros are as follows:

66 iSeries: UNIX-Type -- Process-Related APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

WIFEXITED(stat_val) Evaluates to a nonzero value if the status was returned for a child process that

ended normally.

WEXITSTATUS(stat_val) If the value of the WIFEXITED(stat_val) is nonzero, evaluates to the low-order 8

bits of the status argument that the child process passed to exit(), or to the value

the child process returned from main().

WIFSIGNALED(stat_val) Evaluates to a nonzero value if the status was returned for a child process that

ended because of the receipt of a terminating signal that was not caught by the

process.

WTERMSIG(stat_val) If the value of WIFSIGNALED(stat_val) is nonzero, evaluates to the number of

the signal that caused the child process to end.

WIFStopPED(stat_val) Evaluates to a nonzero value if the status was returned for a child process that is

currently stopped.

WStopSIG(stat_val) If the value of the WIFStopPED(stat_val) is nonzero, evaluates to the number of

the signal that caused the child process to stop.

WIFEXCEPTION(stat_val) Evaluates to a nonzero value if the status was returned for a child process that

ended because of an error condition.

Note: The WIFEXCEPTION macro is unique to the OS/400 implementation. See

the “Usage Notes” on page 68.

WEXCEPTNUMBER(stat_val) If the value of the WIFEXCEPTION(stat_val) is nonzero, this macro evaluates to

the last OS/400 exception number related to the child process.

Note: The WEXCEPTNUMBER macro is unique to the OS/400 implementation.

See the “Usage Notes” on page 68.

Authorities

None

Return Value

 value wait() was successful. The value returned indicates the process ID of the child process whose

status information *stat_loc.

-1 wait() was not successful. The errno value is set to indicate the error.

Error Conditions

If wait() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[ECHILD]

 Calling process has no remaining child processes on which wait operation can be performed.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINTR]

 Interrupted function call.

[EUNKNOWN]

 Unknown system state.

Process-Related APIs 67

The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Usage Notes

1. The WIFEXCEPTION macro is unique to the OS/400 implementation. This macro can be used to

determine whether the child process has ended because of an exception. When WIFEXCEPTION

returns a nonzero value, the value returned by the WEXCEPTNUMBER macro corresponds to the last

OS/400 exception number related to the child process.

2. When a child process ends because of an exception, the ILE C run-time library catches and handles

the original exception. The value returned by WEXCEPTNUMBER indicates that the exception was

CEE9901. This is a common exception ID. If you want to determine the original exception that ended

the child process, look at the job log for the child process.

3. If the child process is ended by any of the following:

v ENDJOB OPTION(*IMMED)

v ENDJOB OPTION(*CNTRLD) and delay time was reached

v Debugging a child process (environment variable QIBM_CHILD_JOB_SNDINQMSG is used) and

the resulting CPAA980 *INQUIRY message is replied to using C,

then the parent’s wait() stat_loc value indicates that:

v WIFEXCEPTION(stat_val) evaluates to a nonzero value

v WEXCEPTNUMBER(stat_val) evaluates to zero.

Related Information

v The <sys/types.h> file (see Header Files for UNIX-Type Functions)

v The <sys/wait.h> file (see Header Files for UNIX-Type Functions)

v “spawn()—Spawn Process” on page 40—Spawn Process

v “spawnp()—Spawn Process with Path” on page 52—Spawn Process with Path

v “waitpid()—Wait for Specific Child Process” on page 69—Wait for Specific Child Process

v Signal concepts

Example

See Code disclaimer information for information pertaining to code examples.

For an example of using this function, see Using the Spawn Process and Wait for Child Process APIs in

API examples.

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

68 iSeries: UNIX-Type -- Process-Related APIs

unix13.htm
unix13.htm
unix5a2.htm#SIGCONCEPTS
aboutapis.htm#CODEDISCLAIMER
apiexuspro.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

waitpid()—Wait for Specific Child Process

 Syntax

 #include <sys/types.h>

 #include <sys/wait.h>

 pid_t waitpid(pid_t pid, int *stat_loc, int options);

 Service Program Name: QP0ZSPWN

 Default Public Authority: *USE

 Threadsafe: Yes

The waitpid() function allows the calling thread to obtain status information for one of its child

processes. The calling thread suspends processing until status information is available for the specified

child process, if the options argument is 0. A suspended waitpid() function call can be interrupted by the

delivery of a signal whose action is either to run a signal-catching function or to terminate the process.

When waitpid() is successful, status information about how the child process ended (for example,

whether the process ended normally) is stored in the location specified by stat_loc.

The waitpid() function behaves the same as wait() if the pid argument is (pid_t)-1 and the options

argument is 0.

Parameters

pid (Input) A process ID or a process group ID to identify the child process or processes on which

waitpid() should operate.

stat_loc

(Input) Pointer to an area where status information about how the child process ended is to be

placed.

options

(Input) An integer field containing flags that define how waitpid() should operate.

 The pid argument specifies a set of child processes for which status is requested. The waitpid() function

only returns the status of a child process from the following set:

v If pid is equal to (pid_t)-1, status is requested for any child process. In this respect, waitpid() is then

equivalent to wait().

v If pid is greater than (pid_t)0, it specifies the process ID of a single child process for which status is

requested.

v If pid is (pid_t)0, status is requested for any child process whose process group ID is equal to that of

the calling thread.

v If pid is less than (pid_t)-1, status is requested for any child process whose process group ID is equal to

the absolute value of pid.

The status referenced by the stat_loc argument is interpreted using macros defined in the <sys/wait.h>

header file. The macros use an argument stat_val, which is the integer value pointed to by stat_loc. When

waitpid() returns with a valid process ID (pid), the macros analyze the status referenced by the stat_loc

argument. The macros are as follows:

 WIFEXITED(stat_val) Evaluates to a nonzero value if the status was returned for a child process that

ended normally.

Process-Related APIs 69

WEXITSTATUS(stat_val) If the value of the WIFEXITED(stat_val) is nonzero, evaluates to the low-order 8

bits of the status argument that the child process passed to exit(), or to the value

the child process returned from main().

WIFSIGNALED(stat_val) Evaluates to a nonzero value if the status was returned for a child process that

ended because of the receipt of a terminating signal that was not caught by the

process.

WTERMSIG(stat_val) If the value of WIFSIGNALED(stat_val) is nonzero, evaluates to the number of

the signal that caused the child process to end.

WIFStopPED(stat_val) Evaluates to a nonzero value if the status was returned for a child process that is

currently stopped.

WStopSIG(stat_val) If the value of the WIFStopPED(stat_val) is nonzero, evaluates to the number of

the signal that caused the child process to stop.

WIFEXCEPTION(stat_val) Evaluates to a nonzero value if the status was returned for a child process that

ended because of an error condition.

Note: The WIFEXCEPTION macro is unique to the OS/400 implementation. See

the “Usage Notes” on page 71.

WEXCEPTNUMBER(stat_val) If the value of the WIFEXCEPTION(stat_val) is nonzero, this macro evaluates to

the last OS/400 exception number related to the child process.

Note: The WEXCEPTNUMBER macro is unique to the OS/400 implementation.

See the “Usage Notes” on page 71.

The options argument can be set to either 0 or WNOHANG. WNOHANG indicates that the waitpid()

function should not suspend processing of the calling thread if status is not immediately available for one

of the child processes specified by pid. If WNOHANG is specified and no child process is immediately

available, waitpid() returns 0.

Authorities

None

Return Value

 value waitpid() was successful. The value returned indicates the process ID of the child process whose

status information was recorded in the storage pointed to by stat_loc.

0 WNOHANG was specified on the options parameter, but no child process was immediately

available.

-1 waitpid() was not successful. The errno value is set to indicate the error.

Error Conditions

If waitpid() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[ECHILD]

 Calling process has no remaining child processes on which wait operation can be performed.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EFAULT]

70 iSeries: UNIX-Type -- Process-Related APIs

The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINTR]

 Interrupted function call.

[EOPNOTSUPP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Usage Notes

1. The WIFEXCEPTION macro is unique to the OS/400 implementation. This macro can be used to

determine whether the child process has ended because of an exception. When WIFEXCEPTION

returns a nonzero value, the value returned by the WEXCEPTNUMBER macro corresponds to the last

OS/400 exception number related to the child process.

2. When a child process ends because of an exception, the ILE C run-time library catches and handles

the original exception. The value returned by WEXCEPTNUMBER indicates that the exception was

CEE9901. This is a common exception ID. If you want to determine the original exception that ended

the child process, look at the job log for the child process.

3. If the child process is ended by any of the following:

v ENDJOB OPTION(*IMMED),

v ENDJOB OPTION(*CNTRLD) and delay time was reached, or

v Debugging a child process (environment variable QIBM_CHILD_JOB_SNDINQMSG is used) and

the resulting CPAA980 *INQUIRY message is replied to using C,

then the parent’s wait() stat_loc value indicates that:

v WIFEXCEPTION(stat_val) evaluates to a nonzero value, and

v WEXCEPTNUMBER(stat_val) evaluates to zero.

Related Information

v The <sys/types.h> file (see Header Files for UNIX-Type Functions)

v The <sys/wait.h> file (see Header Files for UNIX-Type Functions)

v “spawn()—Spawn Process” on page 40—Spawn Process

v “spawnp()—Spawn Process with Path” on page 52—Spawn Process with Path

v “wait()—Wait for Child Process to End” on page 66—Wait for Child Process to End

v Signal concepts

Example

See Code disclaimer information for information pertaining to code examples.

For an example of using this function, see Using the Spawn Process and Wait for Child Process APIs in

API examples.

Process-Related APIs 71

unix13.htm
unix13.htm
unix5a2.htm#SIGCONCEPTS
aboutapis.htm#CODEDISCLAIMER
apiexuspro.htm

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Concepts

These are the concepts for this category.

About Shell Scripts

A shell (or shell interpreter) is a command interpreter. The shell interprets text strings and performs some

function for each string. As part of interpreting the string, the shell may do variable or wildcard

replacement or change the string in some way. Typically, the shell itself performs functions specified by

internal commands and spawns a child process to perform processing on the external commands.

Depending on the command, the shell then does one of the following:

v Waits for the child process to complete

v Continues processing with the next command

A shell script is a text file whose format defines the following:

v A shell interpreter (path and program)

v Options or arguments to pass to the shell

v Text to be interpreted as a series of commands to the shell

The format of a shell script, starting on line one and column one, is as follows:

 #!interpreter_path <options>

 text to be interpreted

 text to be interpreted

 .

 .

 .

where

 interpreter_path is the shell interpreter.

 options are the options to pass to the shell interpreter.

 The spawn() and spawnp() functions support shell scripts. OS/400 currently provides the Qshell

Interpreter. The Qshell Interpreter is a standard command interpreter for OS/400 based on the POSIX

1003.2 standard and X/Open CAE Specification for Shell and Utilities.

Examples

See Code disclaimer information for information pertaining to code examples.

The following is an example of using spawn() to run a shell script written for the Qshell Interpreter:

#include <stdio.h>

#include <spawn.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/wait.h>

int main(int argc, char *argv[])

{

72 iSeries: UNIX-Type -- Process-Related APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
aboutapis.htm#CODEDISCLAIMER

int fd_map[3], stdoutFds[2];

 char *xmp_argv[4], *xmp_envp[3];

 struct inheritance xmp_inherit = {0};

 char buffer[20];

 pid_t child_pid, wait_rv;

 int wait_stat_loc, rc;

 xmp_argv[0] = "/home/myuserid/myscript";

 xmp_argv[1] = "Hello";

 xmp_argv[2] = "world!";

 xmp_argv[3] = NULL;

 xmp_envp[0] =

 "NLSPATH=/QIBM/ProdData/OS400/Shell/MRI2924/%N";

 xmp_envp[1] = "QIBM_USE_DESCRIPTOR_STDIO=Y";

 xmp_envp[2] = NULL;

 if (pipe(stdoutFds) != 0) {

 printf("failure on pipe\n");

 return 1;

 }

 fd_map[0] = stdoutFds[1];

 fd_map[1] = stdoutFds[1];

 fd_map[2] = stdoutFds[1];

 if ((child_pid = spawn("/home/myuserid/myscript", 3,

 fd_map, &xmp_inherit, xmp_argv,

 xmp_envp)) == -1) {

 printf("failure on spawn\n");

 return 1;

 }

 if ((wait_rv = waitpid(child_pid,

 &wait_stat_loc, 0)) == -1) {

 printf("failure on waitpid\n");

 return 1;

 }

 close(stdoutFds[1]);

 while ((rc = read(stdoutFds[0],

 buffer, sizeof(buffer))) > 0) {

 buffer[rc] = ’\0’;

 printf("%s", buffer);

 }

 close(stdoutFds[0]);

 return 0;

}

where ″/home/myuserid/myscript″ could look like the following:

 #!/usr/bin/qsh

 print $1 $2

Example Output:

 Hello world!

 Top | “Process-Related APIs,” on page 1 | APIs by category

Process-Related APIs 73

#TOP_OF_PAGE
aplist.htm

74 iSeries: UNIX-Type -- Process-Related APIs

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 75

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

76 iSeries: UNIX-Type -- Process-Related APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 77

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

78 iSeries: UNIX-Type -- Process-Related APIs

����

Printed in USA

	Contents
	Process-Related APIs
	APIs
	getopt()—Get Flag Letters from Argument Vector
	Parameters
	Authorities
	Return Value
	Error Conditions
	Example

	getpgrp()—Get Process Group ID
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	getpid()—Get Process ID
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	getppid()—Get Process ID of Parent Process
	Parameters
	Authorities
	Return Value
	Error Conditions
	Related Information
	Example

	getrlimit()—Get resource limit
	Parameters
	Authorities and Locks
	Return Value
	Error Conditions
	Related Information
	Example

	pipe()—Create an Interprocess Channel
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	QlgSpawn()—Spawn Process (using NLS-enabled path name)
	Parameters
	Usage Notes
	Related Information
	Example

	QlgSpawnp()—Spawn Process with Path (using NLS-enabled file name)
	Parameters
	Usage Notes
	Related Information
	Example

	Qp0wChkChld()—Check Status for Child Processes
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	Qp0wChkPgrp()—Check Status for Process Group
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	Qp0wChkPid()—Check Status for Process ID
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	Qp0wGetJobID()—Get Qualified Job Name and ID for Process ID
	Parameters
	Authorities
	Return Value
	Related Information

	Qp0wGetPgrp()—Get Process Group ID
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	Qp0wGetPid()—Get Process ID
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	Qp0wGetPidNoInit()—Get Process ID without Initializing for Signals
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	Qp0wGetPPid()—Get Process ID of Parent Process
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	Qp0zPipe()—Create Interprocess Channel with Sockets
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	Qp0zSystem()—Run a CL Command
	Parameters
	Authorities
	Return Value
	Related Information
	Example
	Output:

	setpgid()—Set Process Group ID for Job Control
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	setrlimit()—Set resource limit
	Parameters
	Authorities and Locks
	Return Value
	Error Conditions
	Related Information
	Example

	spawn()—Spawn Process
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Attributes Inherited
	Related Information
	Example

	spawnp()—Spawn Process with Path
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Attributes Inherited
	Related Information
	Example

	ulimit()—Get and set process limits
	Parameters
	Authorities and Locks
	Return Value
	Error Conditions
	Related Information
	Example

	wait()—Wait for Child Process to End
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	waitpid()—Wait for Specific Child Process
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	Concepts
	About Shell Scripts

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

