
iSeries

UNIX-Type -- Secure Sockets APIs

Version 5 Release 3

���

iSeries

UNIX-Type -- Secure Sockets APIs

Version 5 Release 3

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 113.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Secure sockets APIs 1

OS/400 Global Secure Toolkit (GSKit) APIs 2

APIs 3

gsk_attribute_get_buffer()—Get character information

about a secure session or an SSL environment . . . 3

Parameters 3

Authorities 4

Return Value 5

Error Conditions 5

Usage Notes 5

Related Information 6

gsk_attribute_get_cert_info()—Get information about

a local or partner certificate 7

Parameters 7

Authorities 7

Return Value 7

Error Conditions 8

Usage Notes 8

Related Information 9

gsk_attribute_get_enum()—Get enumerated

information about a secure session or an SSL

environment> 10

Parameters 10

Authorities 12

Return Value 12

Error Conditions 13

Usage Notes 13

Related Information 14

gsk_attribute_get_numeric_value()—Get numeric

information about a secure session or an SSL

environment 14

Parameters 14

Authorities 15

Return Value 15

Error Conditions 15

Usage Notes 16

Related Information 16

gsk_attribute_set_buffer()—Set character information

for a secure session or an SSL environment 17

Parameters 17

Authorities 18

Return Value 18

Error Conditions 18

Usage Notes 19

Related Information 20

gsk_attribute_set_callback()—Set callback pointers to

routines in the user application 21

Parameters 21

Authorities 23

Return Value 23

Error Conditions 23

Usage Notes 24

Related Information 24

gsk_attribute_set_enum()—Set enumerated

information for a secure session or an SSL

environment 25

Parameters 25

Authorities 27

Return Value 27

Error Conditions 27

Usage Notes 28

Related Information 28

gsk_attribute_set_numeric_value()—Set numeric

information for a secure session or an SSL

environment 29

Parameters 29

Authorities 30

Return Value 30

Error Conditions 30

Usage Notes 31

Related Information 31

gsk_environment_close()—Close an SSL

environment 32

Parameters 32

Authorities 32

Return Value 32

Error Conditions 32

Error Messages 33

Usage Notes 33

Related Information 33

gsk_environment_init()—Initialize an SSL

environment 33

Parameters 34

Authorities 34

Return Value 34

Error Conditions 35

Error Messages 35

Usage Notes 35

Related Information 36

gsk_environment_open()—Get a handle for an SSL

environment 36

Parameters 36

Authorities 36

Return Value 36

Error Messages 37

Usage Notes 37

Related Information 38

gsk_secure_soc_close()—Close a secure session . . 38

Parameters 38

Authorities 38

Return Value 38

Error Conditions 39

Error Messages 39

Usage Notes 39

Related Information 39

gsk_secure_soc_init()—Negotiate a secure session . . 40

Parameters 40

Authorities 40

Return Value 40

Error Conditions 41

Usage Notes 42

Error Messages 42

© Copyright IBM Corp. 1998, 2005 iii

Related Information 42

gsk_secure_soc_misc()—Perform miscellaneous

functions for a secure session 43

Parameters 43

Authorities 43

Return Value 43

Error Conditions 45

Usage Notes 45

Error Messages 45

Related Information 45

gsk_secure_soc_open()—Get a handle for a secure

session 46

Parameters 46

Authorities 46

Return Value 46

Error Conditions 47

Usage Notes 47

Error Messages 47

Related Information 47

gsk_secure_soc_read()—Receive data on a secure

session 48

Parameters 48

Authorities 48

Return Value 48

Error Conditions 49

Usage Notes 49

Error Messages 50

Related Information 50

gsk_secure_soc_startInit()—Start asynchronous

operation to negotiate a secure session 51

Parameters 51

Authorities 52

Return Values 52

Error Conditions 53

Error Messages 53

Related Information 53

gsk_secure_soc_startRecv()—Start asynchronous

receive operation on a secure session 54

Parameters 54

Authorities 55

Return Values 56

Error Conditions 56

Error Messages 57

Related Information 58

gsk_secure_soc_startSend()—Start asynchronous

send operation on a secure session 59

Parameters 59

Authorities 60

Return Values 60

Error Conditions 61

Error Messages 62

Usage Notes 62

Related Information 62

gsk_secure_soc_write()—Send data on a secure

session 63

Parameters 63

Authorities 63

Return Value 64

Error Conditions 64

Usage Notes 65

Error Messages 65

Related Information 65

gsk_strerror()—Retrieve GSKit runtime error

message 65

Parameters 65

Authorities 66

Return Value 66

Usage Notes 66

Related Information 66

Example 66

OS/400 Secure Sockets Layer (SSL_) APIs 67

QlgSSL_Init()—Initialize the Current Job for SSL

(using NLS-enabled path name) 68

Parameters 68

Authorities 70

Return Value 70

Error Conditions 70

Error Messages 71

Usage Notes 71

Related Information 71

SSL_Create()—Enable SSL Support for the Specified

Socket Descriptor 72

Parameters 72

Authorities 72

Return Value 73

Error Conditions 73

Error Messages 74

Usage Notes 74

Related Information 74

SSL_Destroy()—End SSL Support for the Specified

SSL Session 75

Parameters 75

Authorities 75

Return Value 75

Error Conditions 76

Error Messages 76

Usage Notes 77

Related Information 77

SSL_Handshake()—Initiate the SSL Handshake

Protocol 77

Parameters 78

Authorities 79

Return Value 79

Error Conditions 81

Error Messages 82

Usage Notes 82

Related Information 83

SSL_Init()—Initialize the Current Job for SSL . . . 83

Parameters 84

Authorities 85

Return Value 86

Error Conditions 86

Error Messages 87

Usage Notes 87

Related Information 87

SSL_Init_Application()—Initialize the Current Job

for SSL Processing Based on the Application

Identifier 88

Parameters 88

Authorities 91

Return Value 91

Error Conditions 92

iv iSeries: UNIX-Type -- Secure Sockets APIs

Error Messages 92

Usage Notes 92

Related Information 93

SSL_Perror()—Print SSL Error Message 93

Parameters 93

Authorities 94

Return Value 94

Error Conditions 94

Error Messages 94

Related Information 94

Example 94

SSL_Read()—Receive Data from an SSL-Enabled

Socket Descriptor 95

Parameters 96

Authorities 96

Return Value 96

Error Conditions 97

Error Messages 98

Usage Notes 98

Related Information 99

SSL_Strerror()—Retrieve SSL Runtime Error

Message 99

Parameters 99

Authorities 100

Return Value 100

Error Conditions 100

Error Messages 100

Related Information 100

Example 100

SSL_Write()—Write Data to an SSL-Enabled Socket

Descriptor 102

Parameters 102

Authorities 102

Return Value 103

Error Conditions 103

Error Messages 104

Usage Notes 104

Related Information 104

Concepts 105

Header Files for UNIX-Type Functions 105

Errno Values for UNIX-Type Functions 108

Appendix. Notices 113

Trademarks 114

Terms and conditions for downloading and

printing publications 115

Code disclaimer information 116

Contents v

vi iSeries: UNIX-Type -- Secure Sockets APIs

Secure sockets APIs

Secure sockets consists of the following APIs:

v “OS/400 Global Secure Toolkit (GSKit) APIs” on page 2
v “OS/400 Secure Sockets Layer (SSL_) APIs” on page 67

The OS/400(R) Global Secure Toolkit (GSKit) and OS/400 SSL_ application programming interfaces (APIs)

are a set of functions that, when used with the OS/400 sockets APIs, are designed to enable and facilitate

secure communications between processes on a network. The GSK Secure Toolkit (GSKit) APIs are the

preferred set of APIs to be used to securely enable an application using Secure Sockets Layer/Transport

Layer Security (SSL/TLS). The SSL_ APIs also can be used to enable an application to use the SSL/TLS

Protocol.

SSL provides communications privacy over an open communications network (that is, the Internet). The

protocol allows client/server applications to communicate to prevent eavesdropping, tampering, and

message forgery. The SSL protocol connection security has three basic properties:

v The connection is private. Encryption using secret keys is used to encrypt and decrypt the data. The

secret keys are generated on a per SSL session basis using an SSL handshake protocol. An SSL

handshake is a series of protocol packets sent in a particular sequence, which use asymmetric

cryptography to establish an SSL session. Symmetric cryptography is used for application data

encryption and decryption.
v The peer’s identity can be authenticated using asymmetric, or public key cryptography.
v The connection is reliable. Message transport includes a message integrity check using a keyed

Message Authentication Code (MAC). Secure hash functions are used for MAC computations.

When creating ILE programs or service programs that use the OS/400 GSKit or SSL_ APIs, you do not

need to explicitly bind to the secure sockets service program QSYS/QSOSSLSR because it is part of the

system binding directory.

The GSKit and SSL_ API documentation describes the GSKit and SSL_ APIs only. This documentation

does not include any information about how to configure or obtain any of the cryptographic objects, such

as a key ring file or certificate, that are required to fully enable an application for SSL. Some

cryptographic objects, such as certificate store files, are required parameters for GSKit and SSL_ APIs.

Information on how to configure the cryptographic objects required for the OS/400 secure socket APIs, or

how to configure a secure web server, which also uses the secure socket APIs, can be found using the

following references:

v HTTP Server: Documentation

v Secure Sockets Layer (SSL) under the Security topic. Plan for enabling SSL discusses what you must

install and configure before using secure sockets.
v Cryptographic Hardware topic.

For background information on GSKit and SSL_ APIs, see:

v Secure Sockets in the Sockets programming topic.

 Top | UNIX-Type APIs | APIs by category

© Copyright IBM Corp. 1998, 2005 1

http://www.as400.ibm.com/products/http/docs/doc.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

OS/400 Global Secure Toolkit (GSKit) APIs

OS/400(R) GSkit APIs, when used in addition to the existing OS/400 Sockets APIs, provide the functions

required for applications to establish secure communications. An application using GSKit for secure

communications basically is a client/server application written using sockets.

The Global Secure Toolkit (GSKit) APIs are:

v “gsk_attribute_get_buffer()—Get character information about a secure session or an SSL environment”

on page 3 (Get character information about a secure session or an SSL environment) is used to obtain

specific character string information about a secure session or an SSL environment.

v “gsk_attribute_get_cert_info()—Get information about a local or partner certificate” on page 7 (Get

information about a local or partner certificate) is used to obtain specific information about either the

server or client certificate for a secure session or an SSL environment.

v “gsk_attribute_get_enum()—Get enumerated information about a secure session or an SSL

environment>” on page 10 (Get enumerated information for a secure session or an SSL environment) is

used to obtain values for specific enumerated data for a secure session or an SSL environment.

v “gsk_attribute_get_numeric_value()—Get numeric information about a secure session or an SSL

environment” on page 14 (Get numeric information about a secure session or an SSL environment) is

used to obtain specific numeric information about a secure session or an SSL environment.

v “gsk_attribute_set_buffer()—Set character information for a secure session or an SSL environment” on

page 17 (Set character information for a secure session or an SSL environment) is used to set a

specified buffer attribute to a value inside the specified secure session or SSL environment.

v

“gsk_attribute_set_callback()—Set callback pointers to routines in the user application” on page 21

(Set callback pointers to routines in the user application) is used to set callback callback pointers to

routines in the user application.

v “gsk_attribute_set_enum()—Set enumerated information for a secure session or an SSL environment”

on page 25 (Set enumerated information for a secure session or an SSL environment) is used to set a

specified enumerated type attribute to an enumerated value in the secure session or SSL environment.

v “gsk_attribute_set_numeric_value()—Set numeric information for a secure session or an SSL

environment” on page 29 (Set numeric information for a secure session or an SSL environment) is used

to set specific numeric information for a secure session or an SSL environment.

v “gsk_environment_close()—Close an SSL environment” on page 32 (Close an SSL environment) is used

to close the SSL environment and release all storage associated with the environment.

v “gsk_environment_init()—Initialize an SSL environment” on page 33 (Initialize an SSL environment) is

used to initialize the SSL environment after any required attributes are set.

v “gsk_environment_open()—Get a handle for an SSL environment” on page 36 (Get a handle for an SSL

environment) is used to get storage for the SSL environment.

v “gsk_secure_soc_close()—Close a secure session” on page 38 (Close a secure session) is used to close a

secure session and free all the associated resources for that secure session.

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40 (Negotiate a secure session) is used to

negotiate a secure session, using the attributes set for the SSL environment and the secure session.

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43 (Perform

miscellaneous functions for a secure session) is used to perform miscellaneous functions for a secure

session.

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46 (Get a handle for a secure

session) is used to get storage for a secure session, set default values for attributes, and return a handle

that must be saved and used on secure session-related function calls.

v “gsk_secure_soc_read()—Receive data on a secure session” on page 48 (Receive data on a secure

session) is used by a program to receive data from a secure session.

v “gsk_secure_soc_startInit()—Start asynchronous operation to negotiate a secure session” on page 51

(Start asynchronous operation to negotiate a secure session) initiates an asynchronous negotiation of a

secure session, using the attributes set for the SSL environment and the secure session.

2 iSeries: UNIX-Type -- Secure Sockets APIs

v “gsk_secure_soc_startRecv()—Start asynchronous receive operation on a secure session” on page 54

(Start asynchronous receive operation on a secure session) is used to initiate an asynchronous receive

operation on a secure session.

v “gsk_secure_soc_startSend()—Start asynchronous send operation on a secure session” on page 59 (Start

asynchronous send operation on a secure session) is used to initiate an asynchronous send operation

on a secure session.

v “gsk_secure_soc_write()—Send data on a secure session” on page 63 (Send data on a secure session) is

used by a program to write data on a secure session.

v “gsk_strerror()—Retrieve GSKit runtime error message” on page 65 (Retrieve GSKit runtime error

message) is used to retrieve an error message and associated text string that describes a return value

that was returned from calling a GSKit API.

Note: These functions use header (include) files from the library QSYSINC, which is optionally

installable. Make sure QSYSINC is installed on your system before using any of the functions. See

“Header Files for UNIX-Type Functions” on page 105 for the file and member name of each header file.

See the following examples in the Socket programming topic for more information:

v Example: GSKit secure server with asynchronous data receive

v Example: GSKit secure server with asynchronous handshake

v Example: Establish a secure client with GSKit APIs

 Top | UNIX-Type APIs | APIs by category

APIs

These are the APIs for this category.

gsk_attribute_get_buffer()—Get character information about a secure

session or an SSL environment

 Syntax

 #include <gskssl.h>

 int gsk_attribute_get_buffer(gsk_handle my_gsk_handle,

 GSK_BUF_ID bufID,

 const char **buffer,

 int *bufSize);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_attribute_get_buffer() function is used to obtain specific character string information about a

secure session or an SSL environment. It can be used to obtain values such as certificate store file,

certificate store password, application ID, and ciphers.

Parameters

my_gsk_handle (Input)

Indicates one of the following handles:

Secure sockets APIs 3

#TOP_OF_PAGE
unix.htm
aplist.htm

v The handle for the secure session (my_session_handle)

v The handle for the SSL environment (my_env_handle)

bufID (Input)

The following values can be used to retrieve information about the secure session or the SSL

environment that is either defaulted or explicitly set:

v GSK_KEYRING_FILE (201) - buffer points to the name of the certificate store file being used

for the SSL environment.

v GSK_KEYRING_PW (202) - buffer points to the password for the certificate store file being

used for the SSL environment.

v GSK_KEYRING_LABEL (203) - buffer points to the certificate label associated with the

certificate in the certificate store identified by GSK_KEYRING_FILE to be used for the secure

session or SSL environment.

v GSK_OS400_APPLICATION_ID (6999) - buffer points to the application identifier being used

for the SSL environment.

v GSK_V2_CIPHER_SPECS (205) - buffer points to the list of available SSL Version 2 ciphers to

be used for the secure session or the SSL environment. See the usage notes in

“gsk_attribute_set_buffer()—Set character information for a secure session or an SSL

environment” on page 17 API for the format of the ciphers.

v GSK_V3_CIPHER_SPECS (206) - buffer points to the list of available SSL Version 3 or TLS

Version 1 ciphers to be used for the secure session or the SSL environment. See the usage notes

in “gsk_attribute_set_buffer()—Set character information for a secure session or an SSL

environment” on page 17 API for the format of the ciphers.

v GSK_CONNECT_SEC_TYPE (208) - buffer points to a string containing ″SSLV2,″ ″SSLV3,″ or

″TLSV1,″ depending on what was actually negotiated for use by the secure session.

v GSK_CONNECT_CIPHER_SPEC (207) - buffer points to a one- or two-character string

describing the cipher specification negotiated for use by the secure session. See the usage notes

in “gsk_attribute_set_buffer()—Set character information for a secure session or an SSL

environment” on page 17 API for the format of the ciphers.

v GSK_SID_VALUE (212) - buffer points to a string containing the session ID (SID) used for the

secure session.

buffer (Output)

The address of the location to place the pointer that will point to the buffer containing the

requested information. The storage for this information was allocated by the system from user

heap storage and will be freed by the gsk_secure_soc_close() API or the

gsk_environment_close() API.

 The data in the buffer is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this buffer is assumed to be

represented in the default CCSID of the job.

bufSize (Output)

The address of the location to store the length of the requested information pointed to by buffer.

Authorities

No authorization is required.

4 iSeries: UNIX-Type -- Secure Sockets APIs

Return Value

gsk_attribute_get_buffer()

returns an integer. Possible values are:

[GSK_OK]

gsk_attribute_get_buffer() was successful.

[GSK_ATTRIBUTE_INVALID_ID]

The specified bufID was not valid.

[GSK_INVALID_HANDLE]

The specified handle was not valid.

[GSK_AS400_ERROR_INVALID_POINTER]

The buffer or bufSize pointer is not valid.

[GSK_ERROR_UNSUPPORTED]

The bufID currently is not supported.

[GSK_ERROR_IO]

An error occurred in SSL processing. Check the errno value.

Error Conditions

When the gsk_attribute_get_buffer() API fails with return code [GSK_ERROR_IO], errno can be set to:

 [EINTR] Interrupted function call.

[EDEADLK] Resource deadlock avoided.

[ETERM] Operation terminated.

If an errno is returned that is not in this list, look in “Errno Values for UNIX-Type Functions” on page 108

for a description of the errno.

Usage Notes

1. The following GSK_BUF_ID values may be retrieved from the SSL environment after

gsk_environment_open().

v GSK_KEYRING_FILE

v GSK_KEYRING_PW

v GSK_KEYRING_LABEL

v GSK_OS400_APPLICATION_ID

v GSK_V2_CIPHER_SPECS

v GSK_V3_CIPHER_SPECS

2. The following GSK_BUF_ID values may be retrieved from the secure session after

gsk_secure_soc_open().

v GSK_KEYRING_LABEL

v GSK_V2_CIPHER_SPECS

v GSK_V3_CIPHER_SPECS

v GSK_CONNECT_SEC_TYPE

v GSK_CONNECT_CIPHER_SPEC

Secure sockets APIs 5

3. The following GSK_BUF_ID values are defaulted after gsk_secure_soc_open() and will be set for the

secure session after gsk_secure_soc_init().

v GSK_CONNECT_SEC_TYPE

v GSK_CONNECT_CIPHER_SPEC

v GSK_SID_VALUE

4. The following GSK_BUF_ID values may be changed for the secure session after

gsk_secure_soc_misc(), gsk_secure_soc_read() or gsk_secure_soc_startRecv() if an SSL Handshake

happened under the context of those calls for the secure session.

v GSK_CONNECT_CIPHER_SPEC

v GSK_SID_VALUE

5. You can reference the buffer pointer as long as the handle for the secure session or the SSL

environment is still open.

6. The following GSK_BUF_ID values currently are not supported in the OS/400 implementation:

v GSK_KEYRING_STASH_FILE

v GSK_LDAP_SERVER

v GSK_LDAP_USER

v GSK_LDAP_USER_PW

v GSK_USER_DATA

v GSK_PKCS11_DRIVER_PATH

v GSK_PKCS11_TOKEN_LABEL

v GSK_PKCS11_TOKEN_PWD

v GSK_CSP_NAME

Related Information

v “gsk_attribute_set_buffer()—Set character information for a secure session or an SSL environment” on

page 17

v “gsk_attribute_get_enum()—Get enumerated information about a secure session or an SSL

environment>” on page 10

v “gsk_attribute_get_numeric_value()—Get numeric information about a secure session or an SSL

environment” on page 14

v “gsk_attribute_get_cert_info()—Get information about a local or partner certificate” on page 7

v “gsk_environment_close()—Close an SSL environment” on page 32

v “gsk_environment_init()—Initialize an SSL environment” on page 33

v “gsk_environment_open()—Get a handle for an SSL environment” on page 36

v “gsk_secure_soc_close()—Close a secure session” on page 38

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46

v “gsk_strerror()—Retrieve GSKit runtime error message” on page 65

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

6 iSeries: UNIX-Type -- Secure Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

gsk_attribute_get_cert_info()—Get information about a local or partner

certificate

 Syntax

 #include <gskssl.h>

 int gsk_attribute_get_cert_info(gsk_handle my_gsk_handle,

 GSK_CERT_ID certID,

 const gsk_cert_data_elem **certDataElem,

 int *certDataElemCount);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_attribute_get_cert_info() function is used to obtain specific information about either the server

or client certificate for a secure session or an SSL environment.

Parameters

my_gsk_handle (Input)

Indicates one of the following handles:

v The handle for the secure session. (my_session_handle)

v The handle for the SSL environment. (my_env_handle)

certID (Input)

Indicates one of the following:

v GSK_LOCAL_CERT_INFO (701) - Retrieve certificate data information for the local certificate

that may be sent to the remote connection. This can be retrieved using the SSL environment

handle or the secure session handle.

v GSK_PARTNER_CERT_INFO (700) - Retrieve certificate data information for the partner

certificate that may have been received during the SSL handshake. This can only be retrieved

using the secure session handle.

certDataElem (Output)

The address of a pointer to the certificate information returned from this function call. On output,

certDataElem will contain the pointer to the information. The storage for this information was

allocated by the system from user heap storage and will be freed by the gsk_secure_soc_close()

API or the gsk_environment_close() API.

certDataElemCount (Output)

A pointer to an integer that will contain the number of certificate data elements returned from

this function call.

Authorities

No authorization is required.

Return Value

gsk_attribute_get_cert_info() returns an integer. Possible values are:

Secure sockets APIs 7

[GSK_OK]

gsk_attribute_get_cert_info() was successful.

[GSK_ATTRIBUTE_INVALID_ID]

The specified certID was not valid.

[GSK_INVALID_HANDLE]

The handle passed in to this function was not valid.

[GSK_INVALID_STATE]

One of the following occurred:

v A SSL environment handle was specified with a certID of GSK_LOCAL_CERT_INFO before a

gsk_environment_init() has been issued.

v A secure session handle was specified before a gsk_secure_soc_init() has been issued.

[GSK_AS400_ERROR_INVALID_POINTER]

The certDataElem or certDataElemCount pointer is not valid.

[GSK_INSUFFICIENT_STORAGE]

Not able to allocate storage for the requested operation.

[GSK_ERROR_IO]

An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_attribute_get_cert_info() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

Interrupted function call.

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

 If an errno is returned that is not in this list, look in “Errno Values for UNIX-Type Functions” on page 108

for a description of the errno.

Usage Notes

1. After gsk_attribute_get_cert_info() returns with a GSK_OK return value, certDataElem points to an

array of structures of type gsk_cert_data_elem. The following structure is the gsk_cert_data_elem

structure:

typedef struct gsk_cert_data_elem_t

{

 GSK_CERT_DATA_ID cert_data_id;

 char *cert_data_p;

 int cert_data_l;

} gsk_cert_data_elem;

Each element consists of the following fields:

v cert_data_id is the identifier for each element of the certificate. The following are the valid

identifiers:

– CERT_BODY_DER (600)

– CERT_BODY_BASE64 (601)

– CERT_SERIAL_NUMBER (602)

– CERT_COMMON_NAME (610)

8 iSeries: UNIX-Type -- Secure Sockets APIs

– CERT_LOCALITY (611)

– CERT_STATE_OR_PROVINCE (612)

– CERT_COUNTRY (613)

– CERT_ORG (614)

– CERT_ORG_UNIT (615)

– CERT_DN_PRINTABLE (616)

– CERT_DN_DER (617)

– CERT_POSTAL_CODE (618)

– CERT_EMAIL (619)

– CERT_ISSUER_COMMON_NAME (650)

– CERT_ISSUER_LOCALITY (651)

– CERT_ISSUER_STATE_OR_PROVINCE (652)

– CERT_ISSUER_COUNTRY (653)

– CERT_ISSUER_ORG (654)

– CERT_ISSUER_ORG_UNIT (655)

– CERT_ISSUER_DN_PRINTABLE (656)

– CERT_ISSUER_DN_DER (657)

– CERT_ISSUER_POSTAL_CODE (658)

– CERT_ISSUER_EMAIL (659)

– CERT_VERSION (660)

– CERT_VALID_FROM (662)

– CERT_VALID_TO (663)

– CERT_PUBLIC_KEY_ALGORITHM (664)

– CERT_ISSUER_UNIQUEID (669)

– CERT_SUBJECT_UNIQUEID (670)

v cert_data_p points to the specific certificate data.

v cert_data_l contains the length of the data element.
2. Many fields are character strings and are terminated with a trailing null. The length does not include

the null.

3. Other fields (CERT_BODY_DER, CERT_DN_DER, and so on) may have imbedded nulls and therefore

must use the integer length for processing.

4. Not all certificates contain all fields, so the number of fields returned depends on the certificate being

processed. This open-ended approach means new fields can be added from time to time without

disrupting existing usage.

5. All certificate data is returned in ASCII CCSID 850.

6. You can reference the certDataElem pointers as long as the handle for the secure session or SSL

environment is open.

Related Information

v “gsk_attribute_get_buffer()—Get character information about a secure session or an SSL environment”

on page 3—Get character information about a secure session or a SSL environment

v “gsk_attribute_get_enum()—Get enumerated information about a secure session or an SSL

environment>” on page 10—Get enumerated information about a secure session or an SSL

environment.

v “gsk_attribute_get_numeric_value()—Get numeric information about a secure session or an SSL

environment” on page 14—Get numeric information about a secure session or an SSL environment

v “gsk_environment_close()—Close an SSL environment” on page 32—Close the SSL environment

Secure sockets APIs 9

v “gsk_environment_init()—Initialize an SSL environment” on page 33—Initialize an SSL environment

v “gsk_environment_open()—Get a handle for an SSL environment” on page 36—Get a handle for an

SSL environment

v “gsk_secure_soc_close()—Close a secure session” on page 38—Close a secure session

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40—Negotiate a secure session

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43—Perform

miscellaneous functions for a secure session

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46—Get a handle for a secure

session

v “gsk_strerror()—Retrieve GSKit runtime error message” on page 65—Retrieve GSK runtime error

message

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

gsk_attribute_get_enum()—Get enumerated information about a secure

session or an SSL environment>

 Syntax

 #include <gskssl.h>

 int gsk_attribute_get_enum(gsk_handle my_gsk_handle,

 GSK_ENUM_ID enumID,

 GSK_ENUM_VALUE *enumValue);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_attribute_get_enum() function is used to obtain values for specific enumerated data for a secure

session or an SSL environment.

Parameters

my_gsk_handle (Input)

Indicates one of the following handles:

v The handle for the secure session. (my_session_handle)

v The handle for the SSL environment. (my_env_handle)

enumID (Input)

The following values can be used to retrieve information about the secure session or SSL

environment that is either defaulted or explicitly set:

v GSK_PROTOCOL_SSLV2 (403) - Whether the SSL Version 2 protocol is enabled or disabled

for this secure session or SSL environment. The enumValue returned will be one of the

following values:

– GSK_PROTOCOL_SSLV2_ON (510) - SSL Version 2 ciphers are enabled.

– GSK_PROTOCOL_SSLV2_OFF (511) - SSL Version 2 ciphers are disabled.

10 iSeries: UNIX-Type -- Secure Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

v GSK_PROTOCOL_SSLV3 (404) - Whether the SSL Version 3 protocol is enabled or disabled

for this secure session or SSL environment. The enumValue returned will be one of the

following values:

– GSK_PROTOCOL_SSLV3_ON (512) - SSL Version 3 ciphers are enabled.

– GSK_PROTOCOL_SSLV3_OFF (513) - SSL Version 3 ciphers are disabled.
v GSK_PROTOCOL_TLSV1 (407) - Whether the TLS Version 1 protocol is enabled or disabled

for this secure session or SSL environment. The enumValue returned will be one of the

following values:

– GSK_PROTOCOL_TLSV1_ON (518) - TLS Version 1 ciphers are enabled.

– GSK_PROTOCOL_TLSV1_OFF (519) - TLS Version 1 ciphers are disabled.
v GSK_SESSION_TYPE (402) - Type of handshake to be used for this secure session or SSL

environment. enumValue returned will be one of the following values:

– GSK_CLIENT_SESSION (507) - Secure sessions act as clients.

– GSK_SERVER_SESSION (508) - Secure sessions act as a server with no client

authentication. The client certificate is not requested.

– GSK_SERVER_SESSION_WITH_CL_AUTH (509) - Secure sessions act as a server that

requests the client to send a certificate. The value for GSK_CLIENT_AUTH_TYPE will

determine what happens if the client certificate is not valid or not provided.
v GSK_CLIENT_AUTH_TYPE (401) - Type of client authentication to use for this session.

enumValue must specify one of the following:

– GSK_CLIENT_AUTH_FULL (503) - All received certificates are validated. If a certificate

that is not valid is received, the secure session does not start, and an error code is returned

from gsk_secure_soc_init().

If no certificate is sent by the client, the start of the secure session is successful. Applications

can detect this situation by checking the GSK_CERTIFICATE_VALIDATION_CODE enumId

via gsk_attribute_get_numeric value(). A numValue of GSK_ERROR_NO_CERTIFICATE will

indicate no certificate was sent by client. In this case, the application is responsible for the

authentication of the client.

– GSK_CLIENT_AUTH_PASSTHRU (505) - All received certificates are validated. If

validation is successful or validation fails because the certificate is expired, or does not have

a trusted root, the secure session will start. For the other validation failure cases the secure

session does not start, and an error code is returned from gsk_secure_soc_init().

Applications can detect the situation where the secure session started but validation failed

by checking the GSK_CERTIFICATE_VALIDATION_CODE enumId via

gsk_attribute_get_numeric value(). The numValue will indicate the certificate validation

return code for client’s certificate. In this situation, the application is responsible for the

authentication of the client.

If no certificate is sent by the client, the start of the secure session is successful. Applications

can detect this situation by checking the GSK_CERTIFICATE_VALIDATION_CODE enumId

as well. A numValue of GSK_ERROR_NO_CERTIFICATE will indicate no certificate was sent

by client. In this case, the application is also responsible for the authentication of the client.

– GSK_OS400_CLIENT_AUTH_REQUIRED (6995) - All received certificates are validated. If

a certificate that is not valid is received, the secure session does not start, and an error code

is returned from gsk_secure_soc_init(). If no certificate is sent by the client, the secure

session does not start, and an error code of GSK_ERROR_NO_CERTIFICATE is returned

from gsk_secure_soc_init().
v GSK_PROTOCOL_USED (405) - Which protocol was used for this secure session. The

enumValue returned will be one of the following values:

Secure sockets APIs 11

– GSK_PROTOCOL_USED_SSLV2 (514) - The protocol used for this secure session is SSL

Version 2.

– GSK_PROTOCOL_USED_SSLV3 (515) - The protocol used for this secure session is SSL

Version 3.

– GSK_PROTOCOL_USED_TLSV1 (520) - The protocol used for this secure session is TLS

Version 1.
v GSK_SID_FIRST (406) - Whether a full handshake or abbreviated handshake occurred for this

secure session. The enumValue returned will be one of the following values:

– GSK_SID_IS_FIRST (516) - A full handshake occurred for this secure session.

– GSK_SID_NOT_FIRST (517) - An abbreviated handshake occurred for this secure session.
v

GSK_SERVER_AUTH_TYPE (410) - Type of server authentication to use for this session.

enumValue must specify one of the following:

– GSK_SERVER_AUTH_FULL (534) - All received certificates are validated. If a certificate

that is not valid is received, the secure session does not start, and an error code is returned

from gsk_secure_soc_init(). If no certificate is sent by the server, the secure session does not

start, and an error code of GSK_ERROR_NO_CERTIFICATE is returned from

gsk_secure_soc_init().
– GSK_SERVER_AUTH_PASSTHRU (535) - All received certificates are validated. If

validation is successful or validation fails because the certificate has expired or does not

have a trusted root, the secure session will start. For the other validation failure cases the

secure session does not start, and an error code is returned from gsk_secure_soc_init().

Applications can detect the situation where the secure session started but validation failed

by checking the GSK_CERTIFICATE_VALIDATION_CODE enumId via

gsk_attribute_get_numeric value(). The numValue will indicate the certificate validation

return code for server’s certificate. In this situation, the application is responsible for the

authentication of the server.

It is highly recommended that this option only be used if an alternate authentication method

is used.
v GSK_ENVIRONMENT_CLOSE_OPTIONS (411) - Type of special close options to use for this

environment. If gsk_environment_close() is issued prior to all secure sessions being closed, the

active secure sessions will continue to work and the environment close will effectively be

delayed. The resources for the SSL environment will not be freed up until after the last secure

session closes. No new secure sessions will be allowed to start using the closed SSL

environment. enumValue must specify one of the following:

– GSK_DELAYED_ENVIRONMENT_CLOSE (536) - Enable the environment close callback

routine support.

– GSK_NORMAL_ENVIRONMENT_CLOSE (537) - Field is ignored.

enumValue (Output)

Specifies a pointer to an integer in which to place the value of the requested information.

Authorities

No authorization is required.

Return Value

gsk_attribute_get_enum() returns an integer. Possible values are:

[GSK_OK]

gsk_attribute_get_enum() was successful.

[GSK_ATTRIBUTE_INVALID_ID]

The specified enumID was not valid.

12 iSeries: UNIX-Type -- Secure Sockets APIs

[GSK_INVALID_HANDLE]

The specified handle was not valid.

[GSK_AS400_ERROR_INVALID_POINTER]

The enumValue pointer is not valid.

[GSK_ERROR_UNSUPPORTED]

The enumID is currently not supported.

[GSK_ERROR_IO]

An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_attribute_get_enum() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

Interrupted function call.

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

 If an errno is returned that is not in this list, look in “Errno Values for UNIX-Type Functions” on page 108

for a description of the errno.

Usage Notes

1. The following GSK_ENUM_ID values may be retrieved from the SSL environment after

gsk_environment_open().

v GSK_PROTOCOL_SSLV2

v GSK_PROTOCOL_SSLV3

v GSK_PROTOCOL_TLSV1

v GSK_SESSION_TYPE

v GSK_CLIENT_AUTH_TYPE

v

GSK_SERVER_AUTH_TYPE

v GSK_ENVIRONMENT_CLOSE_OPTIONS

2. The following GSK_ENUM_ID values may be retrieved from the secure session after

gsk_secure_soc_open().

v GSK_PROTOCOL_SSLV2

v GSK_PROTOCOL_SSLV3

v GSK_PROTOCOL_TLSV1

v GSK_PROTOCOL_USED

v GSK_SESSION_TYPE

v GSK_CLIENT_AUTH_TYPE

v GSK_SID_FIRST

v

GSK_SERVER_AUTH_TYPE

3. The following GSK_ENUM_ID values are defaulted after gsk_secure_soc_open() and will be set for

the secure session after gsk_secure_soc_init() or gsk_secure_soc_misc().

v GSK_PROTOCOL_USED

v GSK_SID_FIRST

Secure sockets APIs 13

Related Information

v “gsk_attribute_get_buffer()—Get character information about a secure session or an SSL environment”

on page 3

v “gsk_attribute_get_numeric_value()—Get numeric information about a secure session or an SSL

environment”

v “gsk_attribute_get_cert_info()—Get information about a local or partner certificate” on page 7

v “gsk_attribute_set_enum()—Set enumerated information for a secure session or an SSL environment”

on page 25

v “gsk_environment_close()—Close an SSL environment” on page 32

v “gsk_environment_init()—Initialize an SSL environment” on page 33

v “gsk_environment_open()—Get a handle for an SSL environment” on page 36

v “gsk_secure_soc_close()—Close a secure session” on page 38

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46

v “gsk_strerror()—Retrieve GSKit runtime error message” on page 65

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

gsk_attribute_get_numeric_value()—Get numeric information about a

secure session or an SSL environment

 Syntax

 #include <gskssl.h>

 int gsk_attribute_get_numeric_value(gsk_handle my_gsk_handle,

 GSK_NUM_ID numID,

 int *numValue);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_attribute_get_numeric_value() function is used to obtain specific numeric information about a

secure session or an SSL environment.

Parameters

my_gsk_handle (Input)

Indicates one of the following handles:

v The handle for the secure session. (my_session_handle)

v The handle for the SSL environment. (my_env_handle)

numID (Input)

The following values can be used to retrieve information about the secure session or the SSL

environment that is either defaulted or explicitly set:

14 iSeries: UNIX-Type -- Secure Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

v GSK_FD (300) - numValue is a socket descriptor to be used for this secure session.

v GSK_V2_SESSION_TIMEOUT (301) - SSL Version 2 session time-out for the environment.

numValue must be in the range 0-100 seconds.

v GSK_V3_SESSION_TIMEOUT (302) - SSL Version 3 and TLS version 1 session time-out for

the environment. numValue must be in the range 0-86400 seconds.

v GSK_OS400_READ_TIMEOUT (6993) - The receive time-out for the secure session or the SSL

environment.

v GSK_CERTIFICATE_VALIDATION_CODE (6996) - The certificate validation return code for

the local or peer certificate.

v GSK_HANDSHAKE_TIMEOUT (6998) - SSL handshake time-out for the secure session or the

SSL environment.

numValue (Output)

A pointer to an integer containing the value of the requested information.

Authorities

No authorization is required.

Return Value

gsk_attribute_get_numeric_value() returns an integer. Possible values are:

[GSK_OK]

 gsk_attribute_get_numeric_value() was successful.

[GSK_ATTRIBUTE_INVALID_ID]

 The specified numID was not valid.

[GSK_INVALID_HANDLE]

 The handle specified was not valid.

[GSK_OS400_ERROR_INVALID_POINTER]

 The numValue pointer is not valid.

[GSK_ERROR_UNSUPPORTED]

 The numID is currently not supported.

[GSK_ERROR_IO]

 An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_attribute_get_numeric_value() API fails with return code [GSK_ERROR_IO], errno can be

set to:

[EINTR]

 Interrupted function call.

[EDEADLK]

Secure sockets APIs 15

Resource deadlock avoided.

[ETERM]

 Operation terminated.

 If an errno is returned that is not in this list, look in “Errno Values for UNIX-Type Functions” on page 108

for a description of the errno.

Usage Notes

1. The following GSK_NUM_ID values may be retrieved from the SSL environment after

gsk_environment_open():

v GSK_V2_SESSION_TIMEOUT

v GSK_V3_SESSION_TIMEOUT

v GSK_HANDSHAKE_TIMEOUT

v GSK_OS400_READ_TIMEOUT

2. The following GSK_NUM_ID value may be retrieved from the SSL environment after

gsk_environment_init().

v GSK_CERTIFICATE_VALIDATION_CODE - Will return the certificate validation return code for

the local certificate.
3. The following GSK_NUM_ID value may be retrieved from each individual secure session after

gsk_secure_soc_init().

v GSK_CERTIFICATE_VALIDATION_CODE - Will return the certificate validation return code for

the peer’s certificate.
4. The following GSK_NUM_ID values may be retrieved from each individual secure session after

gsk_secure_soc_open().

v GSK_FD

v GSK_HANDSHAKE_TIMEOUT

v GSK_OS400_READ_TIMEOUT

5. The following GSK_NUM_ID values are currently not supported in the OS/400 implementation:

v GSK_V2_SIDCACHE_SIZE

v GSK_V3_SIDCACHE_SIZE

v GSK_LDAP_SERVER_PORT

Related Information

v “gsk_attribute_get_buffer()—Get character information about a secure session or an SSL environment”

on page 3—Get character information about a secure session or an SSL environment

v “gsk_attribute_get_enum()—Get enumerated information about a secure session or an SSL

environment>” on page 10—Get enumerated information about a secure session or an SSL

environment.

v “gsk_attribute_get_cert_info()—Get information about a local or partner certificate” on page 7—Get

information about a local or partner certificate

v “gsk_attribute_set_numeric_value()—Set numeric information for a secure session or an SSL

environment” on page 29—Set numeric information for a secure session or an SSL environment

v “gsk_environment_init()—Initialize an SSL environment” on page 33—Initialize an SSL environment

v “gsk_environment_open()—Get a handle for an SSL environment” on page 36—Get a handle for an

SSL environment

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40—Negotiate a secure session

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43—Perform

miscellaneous functions for a secure session

16 iSeries: UNIX-Type -- Secure Sockets APIs

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46—Get a handle for a secure

session

v “gsk_strerror()—Retrieve GSKit runtime error message” on page 65—Retrieve GSK runtime error

message

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

gsk_attribute_set_buffer()—Set character information for a secure

session or an SSL environment

 Syntax

 #include <gskssl.h>

 int gsk_attribute_set_buffer(gsk_handle my_gsk_handle,

 GSK_BUF_ID bufID,

 const char *buffer,

 int bufSize);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_attribute_set_buffer() function is used to set a specified buffer attribute to a value inside the

specified secure session or SSL environment.

Parameters

my_gsk_handle (Input)

Indicates one of the following handles:

v The handle for the secure session. (my_session_handle)

v The handle for the SSL environment. (my_env_handle)

bufID (Input)

Indicates one of the following operations:

v GSK_KEYRING_FILE (201) - buffer points to the name of the certificate store file to be used for

the secure session or SSL environment. Authority to the certificate store file will be checked on

the gsk_environment_init() API or the gsk_secure_soc_init() API.

v GSK_KEYRING_PW (202) - buffer points to the password for the certificate store file to be

used for the secure session or SSL environment.

v GSK_KEYRING_LABEL (203) - buffer points to the certificate label associated with the

certificate in the certificate store to be used for the secure session or SSL environment.

v GSK_OS400_APPLICATION_ID (6999) - buffer points to the application identifier to be used

for the SSL environment.

v GSK_V2_CIPHER_SPECS (205) - buffer points to the list of SSL Version 2 ciphers to be used

for the secure session or the SSL environment.

Secure sockets APIs 17

#TOP_OF_PAGE
unix.htm
aplist.htm

v GSK_V3_CIPHER_SPECS (206) - buffer points to the list of SSL Version 3/TLS Version 1

ciphers to be used for the secure session or the SSL environment.

buffer (Input)

A pointer to the information to be used for the secure session or the SSL environment.

 The data in the buffer is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this buffer is assumed to be

represented in the default CCSID of the job.

bufSize (Input)

The length of the buffer information. If bufSize is specified as 0, the length of bufSize will be

calculated.

Authorities

No authorization is required.

Return Value

gsk_attribute_set_buffer() returns an integer. Possible values are:

[GSK_OK]

gsk_attribute_set_buffer() was successful.

[GSK_ATTRIBUTE_INVALID_ID]

The bufID value is not a valid identifier.

[GSK_ATTRIBUTE_INVALID_LENGTH]

The bufSize specified or the length of buffer is not valid.

[GSK_INVALID_HANDLE]

my_gsk_handle is not a valid handle that was received from issuing gsk_environment_open() or

gsk_secure_soc_open().

[GSK_AS400_ERROR_INVALID_POINTER]

The buffer pointer is not valid.

[GSK_INVALID_STATE]

One of the following occurred:

v bufID cannot be set for a SSL environment after a gsk_environment_init() has been issued.

v bufID cannot be set for a secure session after a gsk_secure_soc_init() has been issued.

[GSK_ERROR_UNSUPPORTED]

The bufID value is currently not supported.

[GSK_INSUFFICIENT_STORAGE]

Not able to allocate storage for the requested operation.

[GSK_ERROR_IO]

An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_attribute_set_buffer() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

Interrupted function call.

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

18 iSeries: UNIX-Type -- Secure Sockets APIs

If an errno is returned that is not in this list, look in “Errno Values for UNIX-Type Functions” on page 108

for a description of the errno.

Usage Notes

1. The following GSK_BUF_ID values may be set in the SSL environment after gsk_environment_open()

and before gsk_environment_init(). They are used as defaults for subsequent secure sessions:

v GSK_KEYRING_FILE

v GSK_KEYRING_PW

v GSK_KEYRING_LABEL

v GSK_OS400_APPLICATION_ID

v GSK_V2_CIPHER_SPECS

v GSK_V3_CIPHER_SPECS

2. The following GSK_BUF_ID values may be set for each individual secure session after

gsk_secure_soc_open() and before gsk_secure_soc_init(). These values will override values set in the

SSL environment:

v GSK_KEYRING_LABEL

v GSK_V2_CIPHER_SPECS

v GSK_V3_CIPHER_SPECS

3. The following GSK_V3_CIPHER_SPECS values are the SSL Version 3 ciphers and the TLS Version 1

ciphers supported:

 01 = NULL MD5

 02 = NULL SHA

 03 = RC4 MD5 EXPORT

 04 = RC4 MD5 US

 05 = RC4 SHA US

 06 = RC2 MD5 EXPORT

 09 = DES SHA EXPORT

 0A = Triple DES SHA US

 2F = TLS_RSA_WITH_AES_128_CBC_SHA

 35 = TLS_RSA_WITH_AES_256_CBC_SHA

 NULL = Default cipher specs are used (may change in future)

 For AC3 = ’04052F350A090306’

 For AC2 = ’090306’ (AC2 is supported but no longer shipped)

4. The following GSK_V2_CIPHER_SPECS values are the SSL Version 2 ciphers supported:

 1 = RC4 US

 2 = RC4 EXPORT

 3 = RC2 US

 4 = RC2 EXPORT

 6 = DES 56-bit

 7 = Triple DES US

 NULL = Default cipher specs are used (may change in future)

 For AC3 = ’136724’

 For AC2 = ’624’ (AC2 is supported but no longer shipped)

5. The following GSK_BUF_ID values currently are not supported in the OS/400 implementation:

Secure sockets APIs 19

v GSK_KEYRING_STASH_FILE

v GSK_LDAP_SERVER

v GSK_LDAP_USER

v GSK_LDAP_USER_PW

v

GSK_USER_DATA

v GSK_SID_VALUE

v GSK_PKCS11_DRIVER_PATH

v GSK_PKCS11_TOKEN_LABEL

v GSK_PKCS11_TOKEN_PWD

v GSK_CSP_NAME

6. The following are the possible scenerios for the use of GSK_KEYRING_LABEL:

v GSK_KEYRING_LABEL can be set after gsk_environment_open() and before

gsk_environment_init() to indicate which certificate in the GSK_KEYRING_FILE to use for the

secure environment.

v GSK_KEYRING_LABEL can be set after gsk_secure_soc_open() and before gsk_secure_soc_init()

to indicate which certificate in the GSK_KEYRING_FILE to use for the secure session.

v If GSK_KEYRING_LABEL is not set, the default certificate label in the GSK_KEYRING_FILE is

used for the SSL environment.
7. If GSK_OS400_APPLICATION_ID is set, the GSK_KEYRING_FILE, the GSK_KEYRING_LABEL,

and the GSK_KEYRING_PASSWORD values are ignored.

Related Information

v “gsk_attribute_get_buffer()—Get character information about a secure session or an SSL environment”

on page 3

v “gsk_attribute_set_enum()—Set enumerated information for a secure session or an SSL environment”

on page 25

v “gsk_attribute_set_numeric_value()—Set numeric information for a secure session or an SSL

environment” on page 29

v “gsk_environment_init()—Initialize an SSL environment” on page 33

v “gsk_environment_open()—Get a handle for an SSL environment” on page 36

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46

v “gsk_strerror()—Retrieve GSKit runtime error message” on page 65

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

20 iSeries: UNIX-Type -- Secure Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

gsk_attribute_set_callback()—Set callback pointers to routines in the

user application

 Syntax

 #include <gskssl.h>

 int gsk_attribute_set_callback(gsk_handle my_gsk_handle,

 GSK_CALLBACK_ID callBackID,

 void *callBackAreaPtr);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_attribute_set_callback() function is used to set callback pointers to routines in the user

application. These routines may be used for special purposes by the application.

Parameters

my_gsk_handle (Input)

Indicates one of the following handles:

v The handle for the secure session. (my_session_handle)

v The handle for the SSL environment. (my_env_handle)

callBackID (Input)

Indicates one of the following operations:

v GSK_ENVIRONMENT_CLOSE_CALLBACK (804) - This is the callback to have a user routine

be called when the last secure session is closed that was created based on secure environment

that already has been closed.

v GSK_CERT_VALIDATION_CALLBACK (805) This is the callback that is required to do

additional certificate validation

callBackAreaPtr (Input)

Address of a callback routine or address of a structure containing pointers to callback routines

appropriate to the callBackID. The following indicate what should be pointed to by the

callBackAreaPtr based on the value of the callBackID.

v GSK_ENVIRONMENT_CLOSE_CALLBACK - The callBackAreaPtr should be set to the

address of a function with prototype pGSK_ENVIRONMENT_CLOSE_CALLBACK.

pGSK_ENVIRONMENT_CLOSE_CALLBACK is defined as:

typedef void (*pGSK_ENVIRONMENT_CLOSE_CALLBACK) (gsk_handle my_env_handle);

v GSK_CERT_VALIDATION_CALLBACK - The callBackAreaPtr must point to a

validationCallBack structure. That structure is defined as:

typedef struct validationCallBack_struct

{

 pgsk_cert_validation_callback validation_callback;

 VALIDATE_REQUIRED validateRequired;

 CERT_NEEDED certificateNeeded;

} validationCallBack;

– validationCallBack.validation_callback should be set to a value of type

pgsk_cert_validation_callback. This is the pgsk_cert_validation_callback typedef:

Secure sockets APIs 21

typedef int (*pgsk_cert_validation_callback)(const unsigned char * my_CertificateChain,

 int my_validation_status)

Do not use pgsk_cert_validation_callback as a variable type when you create your prototype

and function though. The following prototype should be used in the code for the function

whose address will be assigned to validationCallBack.validation_callback:

int foo(const unsigned char * my_CertificateChain,

 int my_validation_status);

The return value from this function will be one of following:

- GSK_OK (0) - Application accepts the certificate, and SSL will continue the handshake

with this value.

- GSK_ERROR_CERT_VALIDATION (8) - Application does not accept the certificate, and

SSL handshake will terminate immediately with this value. If callback routine return other

than GSK_OK, SSL will consider it as GSK_ERROR_CERT_VALIDATION and terminate

the handshake.

-

Parameters

my_CertificateChain (Input)

A pointer to a copy of buffer which contains the data of certificate chain.

my_validation_status (Input)

Results from SSL certificate validation:

- GSK_VALIDATION_SUCCESSFUL (0) - Validation is successful.

- GSK_OS400_ERROR_NOT_TRUSTED_ROOT (6000) - The certificate is not signed

by a trusted certificate authority

- GSK_KEYFILE_CERT_EXPIRED (107) - The validity time period of the certificate

has expired.

– validationCallBack.validateRequired - This is the flag to inform SSL when to call the certificate

validation callback. The following values can be used :

- GSK_NO_VALIDATION (900) - User application would like SSL to validate and

authenticate the certificate first before calling the certificate validation callback. However,

if validation fails because the certificate is expired or does not have a trusted root the

certificate validation callback will still be called.

- GSK_VALIDATION_REQUIRED (901) - User application would like SSL to validate and

authenticate the certificate first before calling the certificate validation callback.

-

NOTE: If Authentication PassThru is set, and the application set the certificate callback to

GSK_VALIDATION_REQUIRED, SSL will reject the call with an error code

GSK_CONFLICTING_VALIDATION_SETTING. If a certificate validation callback has

been set to GSK_VALIDATION_REQUIRED, and application set authentication to

PassThru, SSL will also reject the call with an error code

GSK_CONFLICTING_VALIDATION_SETTING.
– validationCallBack.certificateNeeded - Provides certificate chain flag which informs SSL what

certificate chain should be passed to the certificate validation callback. The following values

can be used:

22 iSeries: UNIX-Type -- Secure Sockets APIs

- GSK_COMPLETED_CERTIFICATE_CHAIN (951) - To pass the callback routine the

complete certificate chain built by SSL during certificate validation and authentication.

- GSK_CERTIFICATE_CHAIN_SENT_VIA_SSL (950) - To pass the callback routine the

complete certificate chain built by SSL during certificate validation and authentication.

- GSK_END_ENTITY_CERTIFICATE (952) - To pass the callback routine the EE certificate

only. Note: This value will be ignored when the user set certificate validation flag to

GSK_NO_VALIDATION. In other words, SSL will set it to

GSK_CERTIFICATE_CHAIN_SENT_VIA_SSL.

Authorities

No authorization is required.

Return Value

gsk_attribute_set_callback() returns an integer. Possible values are:

[GSK_OK]

gsk_attribute_set_callback() was successful.

[GSK_ATTRIBUTE_INVALID_ID]

The callBackID specified was not valid.

[GSK_ATTRIBUTE_INVALID_ENUMERATION]

An enumeration referenced by the callBackAreaPtr was not valid.

[GSK_CONFLICTING_VALIDATION_SETTING]

The value for the validationCallBack.validateRequired field for

GSK_CERT_VALIDATION_CALLBACK conflicts with the setting for either

GSK_SERVER_AUTH_TYPE or GSK_CLIENT_AUTH_TYPE set by gsk_attribute_set_enum().

[GSK_INVALID_STATE]

The callBackID cannot be set after a gsk_environment_init() has been issued.

[GSK_INVALID_HANDLE]

The handle specified was not valid.

[GSK_ERROR_UNSUPPORTED]

The callBackID is currently not supported.

[GSK_ERROR_IO]

An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_attribute_set_callback() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

Interrupted function call.

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

 If an errno is returned that is not in this list, look in “Errno Values for UNIX-Type Functions” on page 108

for a description of the errno.

Secure sockets APIs 23

Usage Notes

1. The following GSK_CALLBACK_ID values may be set in the SSL environment after

gsk_environment_open() and before gsk_environment_init(). They are used as defaults for

subsequent secure sessions:

v GSK_ENVIRONMENT_CLOSE_CALLBACK

v GSK_CERT_VALIDATION_CALLBACK

2. The following GSK_CALLBACK_ID values currently are not supported in the OS/400 implementation:

v GSK_IO_CALLBACK

v GSK_SID_CACHE_CALLBACK

v GSK_CLIENT_CERT_CALLBACK

v GSK_PKCS11_CALLBACK

Related Information

v “gsk_attribute_set_enum()—Set enumerated information for a secure session or an SSL environment”

on page 25—Set enumerated information for a secure session or an SSL environment.

v “gsk_attribute_set_buffer()—Set character information for a secure session or an SSL environment” on

page 17—Set character string information for a secure session or an SSL environment.

v “gsk_attribute_set_numeric_value()—Set numeric information for a secure session or an SSL

environment” on page 29—Set numeric information for a secure session or an SSL environment

v “gsk_environment_init()—Initialize an SSL environment” on page 33—Initialize an SSL environment

v “gsk_environment_open()—Get a handle for an SSL environment” on page 36—Get a handle for an

SSL environment

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40—Negotiate a secure session

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43—Perform

miscellaneous functions for a secure session

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46—Get a handle for a secure

session

v “gsk_strerror()—Retrieve GSKit runtime error message” on page 65—Retrieve GSK runtime error

message

API introduced: V5R3

 Top | UNIX-Type APIs | APIs by category

24 iSeries: UNIX-Type -- Secure Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

gsk_attribute_set_enum()—Set enumerated information for a secure

session or an SSL environment

 Syntax

 #include <gskssl.h>

 int gsk_attribute_set_enum(gsk_handle my_gsk_handle,

 GSK_ENUM_ID enumID,

 GSK_ENUM_VALUE enumValue);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_attribute_set_enum() function is used to set a specified enumerated type attribute to an

enumerated value in the secure session or SSL environment.

Parameters

my_gsk_handle (Input)

Indicates one of the following handles:

v The handle for the secure session. (my_session_handle)

v The handle for the SSL environment. (my_env_handle)

enumID (Input)

Indicates one of the following operations:

v GSK_PROTOCOL_SSLV2 (403) - Enables or disables the SSL Version 2 protocol. enumValue

must specify one of the following:

– GSK_PROTOCOL_SSLV2_ON (510) - Enable SSL Version 2 ciphers.

– GSK_PROTOCOL_SSLV2_OFF (511) - Disable SSL Version 2 ciphers.
v GSK_PROTOCOL_SSLV3 (404) - Enables or disables the SSL Version 3 protocol. enumValue

must specify one of the following:

– GSK_PROTOCOL_SSLV3_ON (512) - Enable SSL Version 3 ciphers.

– GSK_PROTOCOL_SSLV3_OFF (513) - Disable SSL Version 3 ciphers.
v GSK_PROTOCOL_TLSV1 (407) - Enables or disables the TLS Version 1 protocol. enumValue

must specify one of the following:

– GSK_PROTOCOL_TLSV1_ON (518) - Enable TLS Version 1 ciphers.

– GSK_PROTOCOL_TLSV1_OFF (519) - Disable TLS Version 1 ciphers.
v GSK_SESSION_TYPE (402) - Type of handshake to be used for this secure session or SSL

environment. enumValue must specify one of the following operations:

– GSK_CLIENT_SESSION (507) - Secure sessions act as clients.

– GSK_SERVER_SESSION (508) - Secure sessions act as a server with no client

authentication. The client is not asked for a certificate.

– GSK_SERVER_SESSION_WITH_CL_AUTH (509) - Secure sessions act as a server that

requests the client to send a certificate. The value for GSK_CLIENT_AUTH_TYPE will

determine what happens if the client certificate is not valid or not provided.

Secure sockets APIs 25

v GSK_CLIENT_AUTH_TYPE (401) - Type of client authentication to use for this session.

enumValue must specify one of the following:

– GSK_CLIENT_AUTH_FULL (503) - All received certificates are validated. If an invalid

certificate is received, the secure session does not start, and an error code is returned from

gsk_secure_soc_init().

If no certificate is sent by the client, the start of the secure session is successful. Applications

can detect this situation by checking the GSK_CERTIFICATE_VALIDATION_CODE enumId

through gsk_attribute_get_numeric value(). A numValue of GSK_ERROR_NO_CERTIFICATE

will indicate no certificate was sent by client. In this case, the application is responsible for

the authentication of the client.

– GSK_CLIENT_AUTH_PASSTHRU (505) - All received certificates are validated. If

validation is successful or validation fails because the certificate is expired or does not have

a trusted root, the secure session will start. For the other validation failure cases the secure

session does not start, and an error code is returned from gsk_secure_soc_init().

Applications can detect the situation where the secure session started but validation failed

by checking the GSK_CERTIFICATE_VALIDATION_CODE enumId via

gsk_attribute_get_numeric value(). The numValue will indicate the certificate validation

return code for client’s certificate. In this situation, the application is responsible for the

authentication of the client.

If no certificate is sent by the client, the start of the secure session is successful. Applications

can detect this situation by checking the GSK_CERTIFICATE_VALIDATION_CODE enumId

as well. A numValue of GSK_ERROR_NO_CERTIFICATE will indicate no certificate was sent

by client. In this case, the application is also responsible for the authentication of the client.

NOTE: If Authentication PassThru is set, and the application set the certificate callback to

GSK_VALIDATION_REQUIRED, SSL will reject the call with an error code

GSK_CONFLICTING_VALIDATION_SETTING. If a certificate validation callback has been

set to GSK_VALIDATION_REQUIRED, and application set authentication to PassThru, SSL

will also reject the call with an error code GSK_CONFLICTING_VALIDATION_SETTING.

– GSK_OS400_CLIENT_AUTH_REQUIRED (6995) - All received certificates are validated. If

a certificate that is not valid is received, the secure session does not start, and an error code

is returned from gsk_secure_soc_init(). If no certificate is sent by the client, the secure

session does not start, and an error code of GSK_ERROR_NO_CERTIFICATE is returned

from gsk_secure_soc_init().
v

GSK_SERVER_AUTH_TYPE (410) - Type of server authentication to use for this session.

enumValue must specify one of the following:

– GSK_SERVER_AUTH_FULL (534) - All received certificates are validated. If a certificate

that is not valid is received, the secure session does not start, and an error code is returned

from gsk_secure_soc_init(). If no certificate is sent by the server, the secure session does not

start, and an error code of GSK_ERROR_NO_CERTIFICATE is returned from

gsk_secure_soc_init().
– GSK_SERVER_AUTH_PASSTHRU (535) - All received certificates are validated. If

validation is successful or validation fails because the certificate has expired or does not

have a trusted root, the secure session will start. For the other validation failure cases the

secure session does not start, and an error code is returned from gsk_secure_soc_init().

Applications can detect the situation where the secure session started but validation failed

by checking the GSK_CERTIFICATE_VALIDATION_CODE enumId via

gsk_attribute_get_numeric value(). The numValue will indicate the certificate validation

return code for server’s certificate. In this situation, the application is responsible for the

authentication of the server.

It is highly recommended that this option only be used if an alternate authentication method

is used.

NOTE: If Authentication PassThru is set, and the application set the certificate callback to

GSK_VALIDATION_REQUIRED, SSL will reject the call with an error code

26 iSeries: UNIX-Type -- Secure Sockets APIs

GSK_CONFLICTING_VALIDATION_SETTING. If a certificate validation callback has been

set to GSK_VALIDATION_REQUIRED, and application set authentication to PassThru, SSL

will also reject the call with an error code GSK_CONFLICTING_VALIDATION_SETTING.
v GSK_ENVIRONMENT_CLOSE_OPTIONS (411) - Type of special close options to use for this

environment. If gsk_environment_close() is issued prior to all secure sessions being closed, the

active secure sessions will continue to work and the environment close will effectively be

delayed. The resources for the SSL environment will not be freed up until after the last secure

session closes. No new secure sessions will be allowed to start using the closed SSL

environment. enumValue must specify one of the following:

– GSK_DELAYED_ENVIRONMENT_CLOSE (536) - Enable the environment close callback

routine support.

– GSK_NORMAL_ENVIRONMENT_CLOSE (537) - Field is ignored.

enumValue (Input)

An enumerated type appropiate to the enumID.

Authorities

No authorization is required.

Return Value

gsk_attribute_set_enum() returns an integer. Possible values are:

[GSK_OK]

gsk_attribute_set_enum() was successful.

[GSK_ATTRIBUTE_INVALID_ENUMERATION]

The enumeration specified for the enumValue was not valid.

[GSK_ATTRIBUTE_INVALID_ID]

The enumID specified was not valid.

[GSK_CONFLICTING_VALIDATION_SETTING]

The value for GSK_SERVER_AUTH_TYPE or GSK_CLIENT_AUTH_TYPE conflicts with the

setting for the validationCallBack.validateRequired field for GSK_CERT_VALIDATION_CALLBACK

set by gsk_attribute_set_callback().

[GSK_INVALID_STATE]

One of the following occurred:

v The enumID cannot be set after a gsk_environment_init() has been issued.

v The enumID cannot be set after a gsk_secure_soc_init() has been issued.

[GSK_INVALID_HANDLE]

The handle specified was not valid.

[GSK_ERROR_UNSUPPORTED]

The enumID is currently not supported.

[GSK_ERROR_IO]

An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_attribute_set_enum() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

Interrupted function call.

Secure sockets APIs 27

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

 If an errno is returned that is not in this list, look in “Errno Values for UNIX-Type Functions” on page 108

for a description of the errno.

Usage Notes

1. The following GSK_ENUM_ID values may be set in the SSL environment after

gsk_environment_open() and before gsk_environment_init(). They are used as defaults for

subsequent secure sessions:

v GSK_PROTOCOL_SSLV2

v GSK_PROTOCOL_SSLV3

v GSK_PROTOCOL_TLSV1

v GSK_SESSION_TYPE

v GSK_CLIENT_AUTH_TYPE

v

GSK_SERVER_AUTH_TYPE

v GSK_ENVIRONMENT_CLOSE_OPTIONS

2. The following GSK_ENUM_ID values may be set for each individual secure session after

gsk_secure_soc_open() and before gsk_secure_soc_init(). These values will override values set in the

SSL environment:

v GSK_PROTOCOL_SSLV2

v GSK_PROTOCOL_SSLV3

v GSK_PROTOCOL_TLSV1

v GSK_SESSION_TYPE

v GSK_CLIENT_AUTH_TYPE

v

GSK_SERVER_AUTH_TYPE

Related Information

v “gsk_attribute_get_enum()—Get enumerated information about a secure session or an SSL

environment>” on page 10—Get enumerated information about a secure session or an SSL

environment.

v “gsk_attribute_set_buffer()—Set character information for a secure session or an SSL environment” on

page 17—Set character string information for a secure session or an SSL environment.

v “gsk_attribute_set_numeric_value()—Set numeric information for a secure session or an SSL

environment” on page 29—Set numeric information for a secure session or an SSL environment

v “gsk_environment_init()—Initialize an SSL environment” on page 33—Initialize an SSL environment

v “gsk_environment_open()—Get a handle for an SSL environment” on page 36—Get a handle for an

SSL environment

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40—Negotiate a secure session

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43—Perform

miscellaneous functions for a secure session

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46—Get a handle for a secure

session

28 iSeries: UNIX-Type -- Secure Sockets APIs

v “gsk_strerror()—Retrieve GSKit runtime error message” on page 65—Retrieve GSK runtime error

message

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

gsk_attribute_set_numeric_value()—Set numeric information for a

secure session or an SSL environment

 Syntax

 #include <gskssl.h>

 int gsk_attribute_set_numeric_value(gsk_handle my_gsk_handle,

 GSK_NUM_ID numID,

 int numValue);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_attribute_set_numeric_value() function is used to set specific numeric information for a secure

session or an SSL environment.

Parameters

my_gsk_handle (Input)

One of the following handles:

v The handle for the secure session. (my_session_handle)

v The handle for the SSL environment. (my_env_handle)

numID (Input)

One of the following operations:

v GSK_FD (300) - numValue is a socket descriptor to be used for this secure session.

v GSK_V2_SESSION_TIMEOUT (301) - numValue is the SSL Version 2 session time-out for the

SSL environment. numValue must be in the range 0-100 seconds.

v GSK_V3_SESSION_TIMEOUT (302) - numValue is the SSL Version 3 and TLS Version 1

session time-out for the SSL environment. numValue must be in the range 0-86400 seconds (24

hours).

v GSK_OS400_READ_TIMEOUT (6993) - numValue is the receive time-out for the secure session

or the SSL environment. numValue must be in milliseconds. A numValue of 0 is the default

which means to wait forever.

Secure sockets APIs 29

#TOP_OF_PAGE
unix.htm
aplist.htm

v GSK_HANDSHAKE_TIMEOUT (6998) - numValue is the SSL handshake time-out for the

secure session or the SSL environment. numValue must be in seconds. A numValue of 0 is the

default which means to wait forever.

numValue (Input)

An integer value to be updated for the specified numID.

Authorities

No authorization is required.

Return Value

gsk_attribute_set_numeric_value() returns an integer. Possible values are:

[GSK_OK]

 gsk_attribute_set_numeric_value() was successful.

[GSK_INVALID_STATE]

 One of the following occurred:

v numID cannot be set in the SSL environment after a gsk_environment_init() has been issued.

v numID cannot be set for a secure session after a gsk_secure_soc_init() has been issued.

[GSK_ATTRIBUTE_INVALID_ID]

 The numID specified was not valid.

[GSK_ATTRIBUTE_INVALID_NUMERIC_VALUE]

 The numValue specified was not valid.

[GSK_INVALID_HANDLE]

 A handle was specified that was not valid.

[GSK_ERROR_UNSUPPORTED]

 The numID is currently not supported.

[GSK_ERROR_IO]

 An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_attribute_set_numeric_value() API fails with return code [GSK_ERROR_IO], errno can be

set to:

[EINTR]

 Interrupted function call.

[EDEADLK]

 Resource deadlock avoided.

[ETERM]

 Operation terminated.

 If an errno is returned that is not in this list, look in “Errno Values for UNIX-Type Functions” on page 108

for a description of the errno.

30 iSeries: UNIX-Type -- Secure Sockets APIs

Usage Notes

1. The following GSK_NUM_ID values may be set in the SSL environment after

gsk_environment_open() and before gsk_environment_init(). They are used as defaults for

subsequent secure sessions:

v GSK_V2_SESSION_TIMEOUT

v GSK_V3_SESSION_TIMEOUT

v GSK_HANDSHAKE_TIMEOUT

v GSK_OS400_READ_TIMEOUT

2. The following GSK_NUM_ID values may be set for each individual secure session after

gsk_secure_soc_open() and before gsk_secure_soc_init(). These values will override values set in the

SSL environment:

v GSK_FD

v GSK_HANDSHAKE_TIMEOUT

v GSK_OS400_READ_TIMEOUT

3. The following GSK_NUM_ID values are currently not supported in the OS/400 implementation:

v GSK_V2_SIDCACHE_SIZE

v GSK_V3_SIDCACHE_SIZE

v GSK_LDAP_SERVER_PORT

4. The GSK_FD value is a socket descriptor that must have an address family of AF_INET or AF_INET6

and a socket type of SOCK_STREAM.

Related Information

v “gsk_attribute_get_numeric_value()—Get numeric information about a secure session or an SSL

environment” on page 14—Get numeric information about a secure session or an SSL environment

v “gsk_attribute_set_buffer()—Set character information for a secure session or an SSL environment” on

page 17—Set character string information for a secure session or an SSL environment.

v “gsk_attribute_set_enum()—Set enumerated information for a secure session or an SSL environment”

on page 25—Set enumerated information for a secure session or an SSL environment.

v “gsk_environment_init()—Initialize an SSL environment” on page 33—Initialize an SSL environment

v “gsk_environment_open()—Get a handle for an SSL environment” on page 36—Get a handle for an

SSL environment

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40—Negotiate a secure session

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43—Perform

miscellaneous functions for a secure session

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46—Get a handle for a secure

session

v “gsk_strerror()—Retrieve GSKit runtime error message” on page 65—Retrieve GSK runtime error

message

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Secure sockets APIs 31

#TOP_OF_PAGE
unix.htm
aplist.htm

gsk_environment_close()—Close an SSL environment

 Syntax

 #include <gskssl.h>

 int gsk_environment_close(gsk_handle *my_env_handle);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_environment_close() function is used to close the SSL environment and release all storage

associated with the environment.

Parameters

my_env_handle (Input)

A pointer to the handle for the SSL environment to be closed.

Authorities

No authorization is required.

Return Value

gsk_environment_close() returns an integer. Possible values are:

[GSK_OK]

 gsk_environment_close() was successful.

[GSK_CLOSE_FAILED]

 An error occurred during close processing.

[GSK_INVALID_HANDLE]

 The handle specified was not valid.

[GSK_AS400_ERROR_INVALID_POINTER]

 my_env_handle pointer is not valid.

[GSK_ERROR_IO]

 An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_environment_close() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

 Interrupted function call.

[EDEADLK]

 Resource deadlock avoided.

[ETERM]

32 iSeries: UNIX-Type -- Secure Sockets APIs

Operation terminated.

 If an errno is returned that is not in this list, look in “Errno Values for UNIX-Type Functions” on page 108

for a description of the errno.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. You should close all secure sessions using the SSL environment prior to doing the

gsk_environment_close().

2. If gsk_environment_close() is issued prior to all secure sessions being closed, the active secure

sessions will continue to work. The resources for the SSL environment will not be freed up until after

the last secure session closes. No new secure sessions will be allowed to start using the closed SSL

environment.

Related Information

v “gsk_environment_init()—Initialize an SSL environment”—Initialize an SSL environment

v “gsk_environment_open()—Get a handle for an SSL environment” on page 36—Get a handle for an

SSL environment

v “gsk_secure_soc_close()—Close a secure session” on page 38—Close a secure session

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40—Negotiate a secure session

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46—Get a handle for a secure

session

v “gsk_strerror()—Retrieve GSKit runtime error message” on page 65—Retrieve GSK runtime error

message

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

gsk_environment_init()—Initialize an SSL environment

 Syntax

 #include <gskssl.h>

 int gsk_environment_init(gsk_handle my_env_handle);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

Secure sockets APIs 33

#TOP_OF_PAGE
unix.htm
aplist.htm

The gsk_environment_init() function is used to initialize the SSL environment after any required

attributes are set. The certificate store file is opened and other operations such as accessing information in

the registration facility are performed to set up this environment. After this function call is issued, SSL is

ready to process secure session requests.

Parameters

my_env_handle (Input)

The handle identifying the SSL environment that will be initialized.

Authorities

Authorization of *R (allow access to the object) to the certificate store file and its associated files is

required. Authorization of *X (allow use of the object) to each directory of the path name of the certificate

store file and its associated files is required.

Return Value

gsk_environment_init() returns an integer. Possible values are:

[GSK_OK]

 gsk_environment_init() was successful.

[GSK_INVALID_HANDLE]

 The handle specified was not valid.

[GSK_INVALID_STATE]

 A gsk_environment_init() has already been issued with this handle.

[GSK_KEYRING_OPEN_ERROR]

 Certificate store file could not be opened.

[GSK_AS400_ERROR_NO_ACCESS]

 No permission to access the certificate store file.

[GSK_ERROR_BAD_V3_CIPHER]

 An SSLV3 or TLSV1 cipher suite was specified that is not valid.

[GSK_ERROR_BAD_V2_CIPHER]

 An SSLV2 cipher suite was specified that is not valid.

[GSK_ERROR_BAD_CERTIFICATE]

 The certificate is bad.

[GSK_ERROR_NO_PRIVATE_KEY]

 There is no private key associated with the certificate.

[GSK_AS400_ERROR_PASSWORD_EXPIRED]

 The validity time period of the certificate store file password has expired.

[GSK_ERROR_BAD_KEYFILE_LABEL]

 The specified certificate store’s certificate label is not valid or does not exist.

[GSK_ERROR_BAD_KEYFILE_PASSWORD]

 The specified certificate store password is not valid.

[GSK_NO_KEYFILE_PASSWORD]

34 iSeries: UNIX-Type -- Secure Sockets APIs

No certificate store password was specified.

[GSK_AS400_ERROR_NOT_REGISTERED]

 The application identifier has not been registered.

[GSK_AS400_ERROR_INVALID_POINTER]

 my_env_handle pointer is not valid.

[GSK_ERROR_BAD_KEY_LEN_FOR_EXPORT]

 The certificate was created with a key length that cannot be exported.

[GSK_INSUFFICIENT_STORAGE]

 Not able to allocate storage for the requested operation.

[GSK_INTERNAL_ERROR]

 An unexpected error occurred during SSL processing.

[GSK_ERROR_IO]

 An error occurred in SSL processing, check errno value.

Error Conditions

When the gsk_environment_init() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

 Interrupted function call.

[EDEADLK]

 Resource deadlock avoided.

[ETERM]

 Operation terminated.

If an errno is returned that is not in this list, look in “Errno Values for UNIX-Type Functions” on page 108

for a description of the errno.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. If gsk_environment_init() fails, gsk_environment_close() must be issued to clean up resources.

2. Multiple SSL environment handles may be opened in a process with different attributes set for each

SSL environment.

3. The status of the local certificate can be determined by checking the

GSK_CERTIFICATE_VALIDATION_CODE enumId using gsk_attribute_get_numeric_value(). The

numValue will indicate the certificate validation return code for the certificate used on this

gsk_environment_init().

Secure sockets APIs 35

Related Information

v “gsk_attribute_set_buffer()—Set character information for a secure session or an SSL environment” on

page 17—Set character information for a secure session or an SSL environment.

v “gsk_attribute_set_enum()—Set enumerated information for a secure session or an SSL environment”

on page 25—Set enumerated information for a secure session or an SSL environment.

v “gsk_attribute_set_numeric_value()—Set numeric information for a secure session or an SSL

environment” on page 29—Set numeric information for a secure session or an SSL environment

v “gsk_environment_close()—Close an SSL environment” on page 32—Close the SSL environment

v “gsk_environment_open()—Get a handle for an SSL environment”—Get a handle for an SSL

environment

v “gsk_strerror()—Retrieve GSKit runtime error message” on page 65—Retrieve GSK runtime error

message

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

gsk_environment_open()—Get a handle for an SSL environment

 Syntax

 #include <gskssl.h>

 int gsk_environment_open(gsk_handle *my_env_handle);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_environment_open() function is used to get storage for the SSL environment. This function call

must be issued before any other gsk function calls are issued. This call returns an SSL environment

handle that must be saved and used on subsequent gsk calls.

Parameters

my_env_handle (Output)

A pointer to the SSL environment handle to be used for subsequent gsk function calls.

Authorities

No authorization is required.

Return Value

gsk_environment_open() returns an integer. Possible values are:

[GSK_OK]

 gsk_environment_open() was successful.

[GSK_API_NOT_AVAILABLE]

 One of the following software products is not installed:

36 iSeries: UNIX-Type -- Secure Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

1. Digital Certificate Manager (DCM), 57xx-SS1 - OS400 Option 34

2. Cryptographic Access Provider, 57xx-ACy

(where xx is equal to the current OS/400 product ID and y is equal to one of the current

available level of Cryptographic Access Provider licensed program products.)

[GSK_INSUFFICIENT_STORAGE]

 Not able to allocate storage for the requested operation.

[GSK_INTERNAL_ERROR]

 An internal error occured during system processing.

[GSK_AS400_ERROR_INVALID_POINTER]

 The my_env_handle pointer is not valid.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. After gsk_environment_open() returns with a GSK_OK return value, attributes for the SSL

environment have been set and can be retrieved using any of the get function calls. The following is a

list of the defaulted values:

v GSK_V2_SESSION_TIMEOUT set to 100 seconds.

v GSK_V3_SESSION_TIMEOUT set to 86400 seconds (24 hours).

v GSK_HANDSHAKE_TIMEOUT set to 0 (wait forever).

v GSK_OS400_RECEIVE_TIMEOUT set to 0 (wait forever).

v GSK_SESSION_TYPE set to GSK_CLIENT_SESSION.

v GSK_KEYRING_LABEL set to use the default certificate from the certificate store file.

v GSK_PROTOCOL_TLSV1 set to GSK_PROTOCOL_TLSV1_ON.

v GSK_PROTOCOL_SSLV3 set to GSK_PROTOCOL_SSLV3_ON.

v GSK_PROTOCOL_SSLV2 set to GSK_PROTOCOL_SSLV2_ON.

v GSK_V2_CIPHER_SPECS set to the default SSL Version 2 cipher suite list based on the product

installed.

v GSK_V3_CIPHER_SPECS set to the default SSL Version 3 cipher suite list based on the product

installed.
2. The default cipher suite list associated with the installed Cryptographic Access Provider, 57xx-AC3

(US) product in preference order is as follows:

v GSK_V3_CIPHER_SPECS set to SSL Version 3 or TLS Version 1

default ″04052F350A090306.″

v GSK_V2_CIPHER_SPECS set to ″137624.″

See the usage notes in “gsk_attribute_set_buffer()—Set character information for a secure session or

an SSL environment” on page 17 API for the format of the ciphers.
3. The default cipher suite list associated with the installed Cryptographic Access Provider, 57xx-AC2

(International) product in preference order is as

follows: (57xx-AC2 is supported but no longer

shipped)

v GSK_V3_CIPHER_SPECS set to SSL Version 3 or TLS Version 1 default ″090306.″

Secure sockets APIs 37

v GSK_V2_CIPHER_SPECS set to ″624.″

See the usage notes in “gsk_attribute_set_buffer()—Set character information for a secure session or

an SSL environment” on page 17 API for the format of the ciphers.

Related Information

v “gsk_attribute_set_buffer()—Set character information for a secure session or an SSL environment” on

page 17—Set character information for an secure session or a SSL environment

v “gsk_attribute_set_enum()—Set enumerated information for a secure session or an SSL environment”

on page 25—Set enumerated information for a secure session or an SSL environment

v “gsk_attribute_set_numeric_value()—Set numeric information for a secure session or an SSL

environment” on page 29—Set numeric information for a secure session or an SSL environment

v “gsk_environment_close()—Close an SSL environment” on page 32—Close the SSL environment

v “gsk_environment_init()—Initialize an SSL environment” on page 33—Initialize an SSL environment

v “gsk_strerror()—Retrieve GSKit runtime error message” on page 65—Retrieve GSK runtime error

message

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

gsk_secure_soc_close()—Close a secure session

 Syntax

 #include <gskssl.h>

 int gsk_secure_soc_close(gsk_handle *my_session_handle);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_close() function is used to close a secure session and free all the associated resources

for that secure session.

Parameters

my_session_handle (Input)

A pointer to the handle for the secure session to be closed. This handle originated from a call to

gsk_secure_soc_open().

Authorities

No authorization is required.

Return Value

gsk_secure_soc_close() returns an integer. Possible values are:

[GSK_OK]

38 iSeries: UNIX-Type -- Secure Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

gsk_secure_soc_close() was successful.

[GSK_CLOSE_FAILED]

 An error occurred during close processing.

[GSK_INVALID_HANDLE]

 The handle specified was not valid.

[GSK_ERROR_IO]

 An error occurred in SSL processing, check the errno value.

Error Conditions

When the gsk_secure_soc_close() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

 Interrupted function call.

[EDEADLK]

 Resource deadlock avoided.

[ETERM]

 Operation terminated.

 If an errno is returned that is not in this list, look in “Errno Values for UNIX-Type Functions” on page 108

for a description of the errno.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. You must do a gsk_secure_soc_close() if a prior gsk_secure_soc_open() was successful.

Related Information

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40—Negotiate a secure session

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43—Perform

miscellaneous functions for a secure session

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46—Get a handle for a secure

session

v “gsk_strerror()—Retrieve GSKit runtime error message” on page 65—Retrieve GSK runtime error

message

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Secure sockets APIs 39

#TOP_OF_PAGE
unix.htm
aplist.htm

gsk_secure_soc_init()—Negotiate a secure session

 Syntax

 #include <gskssl.h>

 int gsk_secure_soc_init(gsk_handle my_session_handle);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_init() function is used to negotiate a secure session, using the attributes set for the

SSL environment and the secure session. This API does the SSL handshake to the remote peer; upon

successful completion, you have a secure session established.

Parameters

my_session_handle (Input)

The handle for this secure session that was obtained through the gsk_secure_soc_open() API call.

Authorities

Authorization of *R (allow access to the object) to the certificate store file and its associated files is

required. Authorization of *X (allow use of the object) to each directory of the path name of the certificate

store file and its associated files is required.

Return Value

gsk_secure_soc_init() returns an integer. Possible values are:

[GSK_OK]

gsk_secure_soc_init() was successful.

[GSK_INVALID_HANDLE]

The handle specified was not valid.

[GSK_KEYRING_OPEN_ERROR]

Certificate store file could not be opened.

[GSK_ERROR_BAD_KEYFILE_LABEL]

The specified certificate store label is not valid.

[GSK_ERROR_BAD_V3_CIPHER]

An SSLV3 or TLSV1 cipher suite was specified that is not valid.

[GSK_ERROR_BAD_V2_CIPHER]

An SSLV2 cipher suite was specified that is not valid.

[GSK_ERROR_NO_CIPHERS]

No ciphers available or no ciphers were specified.

[GSK_ERROR_NO_CERTIFICATE]

No certificate is available for SSL processing.

[GSK_ERROR_BAD_CERTIFICATE]

The certificate is bad.

40 iSeries: UNIX-Type -- Secure Sockets APIs

[SSL_ERROR_NOT_TRUSTED_ROOT]

The certificate is not signed by a trusted certificate authority.

[GSK_KEYFILE_CERT_EXPIRED]

The validity time period of the certificate has expired.

[GSK_ERROR_BAD_MESSAGE]

A badly formatted message was received.

[GSK_ERROR_UNSUPPORTED]

Operation is not supported by SSL.

[GSK_ERROR_BAD_PEER]

The peer system is not recognized.

[GSK_ERROR_CLOSED]

The SSL session ended.

[GSK_ERROR_CERT_VALIDATION]

The certificate is not valid or was rejected by the GSK_CERT_VALIDATION_CALLBACK

program.

[GSK_AS400_ERROR_NO_INITIALIZE]

A successful gsk_environment_init() was not previously called with this handle.

[GSK_AS400_ERROR_TIMED_OUT]

The value specified for the handshake timeout expired before the handshake completed.

[GSK_AS400_ERROR_NOT_TCP]

The socket descriptor type is not SOCK_STREAM or the address family is not AF_INET or

AF_INET6.

[GSK_AS400_ERROR_ALREADY_SECURE]

The socket descriptor is already in use by another secure session.

[GSK_INSUFFICIENT_STORAGE]

Unable to allocate storage for the requested operation.

[GSK_AS400_ERROR_INVALID_POINTER]

The my_session_handle pointer is not valid.

[GSK_INTERNAL_ERROR]

An unexpected error occurred during SSL processing.

[GSK_ERROR_IO]

An error occurred in SSL processing, check errno value.

Error Conditions

When the gsk_secure_soc_init() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EIO] Input/output error.

[EINTR]

Interrupted function call.

[EDEADLK]

Resource deadlock avoided.

[ETERM]

Operation terminated.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Secure sockets APIs 41

Any errno that can be returned by send() or recv() can be returned by this API. See Sockets APIs for a

description of the errno values they return.

If an errno is returned that is not in this list, see “Errno Values for UNIX-Type Functions” on page 108 for

a description of the errno.

Usage Notes

1. The gsk_secure_soc_init() function is valid only on sockets that have an address family of AF_INET

or AF_INET6 and a socket type of SOCK_STREAM.

2.

When doing the SSL handshake with a GSK_SESSION_TYPE value of GSK_SERVER_SESSION or

GSK_SERVER_SESSION_WITH_CL_AUTH, the GSK_CONNECT_CIPHER_SPEC value will be the first

cipher found in the ordered GSK_V3_CIPHER_SPECS(GSK_V2_CIPHER_SPECS if SSLV2 is only

common protocol) list that was also found in the cipher list provided by the client during the SSL

handshake.

3. When doing the SSL handshake with a GSK_SESSION_TYPE value of GSK_CLIENT_SESSION, the

cipher specification list will be sent to the server in the client hello in the order found in the

GSK_V3_CIPHER_SPECS and/or GSK_V2_CIPHER_SPECS list, however the value from that list that

is negotiated for GSK_CONNECT_CIPHER_SPEC is determined by the server policy.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Related Information

v “gsk_attribute_set_buffer()—Set character information for a secure session or an SSL environment” on

page 17—Set character information for a secure session or an SSL environment.

v “gsk_attribute_set_enum()—Set enumerated information for a secure session or an SSL environment”

on page 25—Set enumerated information for a secure session or an SSL environment.

v “gsk_attribute_set_numeric_value()—Set numeric information for a secure session or an SSL

environment” on page 29—Set numeric information for a secure session or an SSL environment

v “gsk_secure_soc_close()—Close a secure session” on page 38—Close a secure session

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43—Perform

miscellaneous functions for a secure session

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46—Get a handle for a secure

session

v “gsk_secure_soc_read()—Receive data on a secure session” on page 48—Receive data on a secure

session

v “gsk_secure_soc_startInit()—Start asynchronous operation to negotiate a secure session” on page

51—Start asynchronous operation to negotiate a secure session

v “gsk_secure_soc_write()—Send data on a secure session” on page 63—Send data on a secure session

v “gsk_strerror()—Retrieve GSKit runtime error message” on page 65—Retrieve GSK runtime error

message

 API Introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

42 iSeries: UNIX-Type -- Secure Sockets APIs

unix8.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

gsk_secure_soc_misc()—Perform miscellaneous functions for a secure

session

 Syntax

 #include <gskssl.h>

 int gsk_secure_soc_misc(gsk_handle my_session_handle,

 GSK_MISC_ID miscID);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_misc() function is used to perform miscellaneous functions for a secure session.

Parameters

my_session_handle (Input)

The handle for the secure session obtained from gsk_secure_soc_open() and after performing a

gsk_secure_soc_init().

miscID (Input)

One of the following operations:

v GSK_RESET_CIPHER (100) - Performs another SSL handshake for the SSL session identified

by the my_session_handle parameter. If an SSL session’s cache entry is still valid and both end

points of the SSL session allow using a cache entry, an abbreviated SSL handshake may be

performed. If the SSL cache entry for this session has expired or if the SSL session’s cache entry

has been reset with the GSK_RESET_SESSION function, or if one end point of the SSL session

does not allow using the SSL session cache entry, then a full SSL handshake will be performed.

v GSK_RESET_SESSION (101) - Removes this set of SSL session attributes from the SSL session

cache. Any new SSL session handshake requests to the peer end point will not use this set of

attributes. In most cases, as result of this operation, a full SSL handshake will be performed for

the next SSL handshake request between both end points.

Authorities

No authorization is required.

Return Value

gsk_secure_soc_misc() returns an integer. Possible values are:

[GSK_OK]

 gsk_secure_soc_misc() was successful.

[GSK_INVALID_HANDLE]

 The handle specified was not valid.

[GSK_INVALID_STATE]

 A gsk_secure_soc_init() has not been issued with this handle.

[GSK_ERROR_NOT_SSLV3]

Secure sockets APIs 43

SSLV3 or TLSV1 is required for this function.

[GSK_MISC_INVALID_ID]

 The value specified for miscID is not valid.

[GSK_AS400_ERROR_INVALID_POINTER]

 The my_session_handle pointer is not valid.

[GSK_INTERNAL_ERROR]

 An unexpected error occurred during SSL processing.

[GSK_ERROR_IO]

 An error occurred in SSL processing; check the errno value.

[GSK_KEYRING_OPEN_ERROR]

 Certificate store file could not be opened.

[GSK_ERROR_BAD_KEYFILE_LABEL]

 The specified certificate store label is not valid.

[GSK_ERROR_BAD_V3_CIPHER]

 An SSLV3 or TLSV1 cipher suite was specified that is not valid.

[GSK_ERROR_BAD_V2_CIPHER]

 An SSLV2 cipher suite was specified that is not valid.

[GSK_ERROR_NO_CIPHERS]

 No ciphers available or no ciphers were specified.

[GSK_ERROR_NO_CERTIFICATE]

 No certificate is available for SSL processing.

[GSK_ERROR_BAD_CERTIFICATE]

 The certificate is bad.

[SSL_ERROR_NOT_TRUSTED_ROOT]

 The certificate is not signed by a trusted certificate authority.

[GSK_KEYFILE_CERT_EXPIRED]

 The validity time period of the certificate has expired.

[GSK_ERROR_BAD_MESSAGE]

 A badly formatted message was received.

[GSK_ERROR_UNSUPPORTED]

 Operation is not supported by SSL.

[GSK_ERROR_BAD_PEER]

 The peer system is not recognized.

[GSK_ERROR_CLOSED]

 The SSL session ended.

[GSK_AS400_ERROR_NO_INITIALIZE]

 A successful gsk_environment_init() was not previously called with this handle.

44 iSeries: UNIX-Type -- Secure Sockets APIs

[GSK_AS400_ERROR_TIMED_OUT]

 The value specified for the handshake timeout expired before the handshake completed.

[GSK_AS400_ERROR_NOT_TCP]

 The socket descriptor type is not SOCK_STREAM or the address family is not AF_INET or

AF_INET6.

[GSK_AS400_ERROR_ALREADY_SECURE]

 The socket descriptor is already in use by another secure session.

[GSK_INSUFFICIENT_STORAGE]

 Unable to allocate storage for the requested operation.

Error Conditions

When the gsk_secure_soc_misc() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

 Interrupted function call.

[EDEADLK]

 Resource deadlock avoided.

[ETERM]

 Operation terminated.

[EIO]

 Input/output error.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Usage Notes

1. An SSL session’s attributes that are negotiated as part of an SSL handshake may be cached by each

end point involved in the SSL session and then reused as part of an abbreviated SSL handshake when

allowed by both end points.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Related Information

v “gsk_secure_soc_close()—Close a secure session” on page 38—Close a secure session

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40—Negotiate a secure session

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46—Get a handle for a secure

session

v “gsk_strerror()—Retrieve GSKit runtime error message” on page 65—Retrieve GSK runtime error

message

Secure sockets APIs 45

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

gsk_secure_soc_open()—Get a handle for a secure session

 Syntax

 #include <gskssl.h>

 int gsk_secure_soc_open(gsk_handle my_env_handle,

 gsk_handle *my_session_handle);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_open() function is used to get storage for a secure session, set default values for

attributes, and return a handle that must be saved and used on secure session-related function calls.

Parameters

my_env_handle (Input)

The handle for the SSL environment obtained from gsk_environment_open().

my_session_handle (Output)

Pointer to the secure session handle.

Authorities

No authorization is required.

Return Value

gsk_secure_soc_open() returns an integer. Possible values are:

[GSK_OK]

 gsk_secure_soc_open() was successful.

[GSK_INVALID_HANDLE]

 The environment handle specified was not valid.

[GSK_INSUFFICIENT_STORAGE]

 Not able to allocate storage for the requested operation.

[GSK_AS400_ERROR_INVALID_POINTER]

 The my_env_handle pointer is not valid.

[GSK_INTERNAL_ERROR]

 An internal error occured during system processing.

[GSK_ERROR_IO]

 An error occurred in SSL processing, check the errno value.

46 iSeries: UNIX-Type -- Secure Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Error Conditions

When the gsk_secure_soc_open() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINTR]

 Interrupted function call.

[EDEADLK]

 Resource deadlock avoided.

[ETERM]

 Operation terminated.

 If an errno is returned that is not in this list, see “Errno Values for UNIX-Type Functions” on page 108 for

a description of the errno.

Usage Notes

1. After gsk_secure_soc_open() returns with a GSK_OK return value, attributes from the SSL

environment will be used as the defaults for the subsequent gsk_secure_soc_init(). The defaults can

be changed using the gsk_attribute_set_buffer(), gsk_attribute_set_enum(), or

gsk_attribute_set_numeric_value() APIs after calling gsk_secure_soc_open() and before calling

gsk_secure_soc_init().

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Related Information

v “gsk_attribute_set_buffer()—Set character information for a secure session or an SSL environment” on

page 17—Set character string information for a secure session or a SSL environment.

v “gsk_attribute_set_enum()—Set enumerated information for a secure session or an SSL environment”

on page 25—Set enumerated information for a secure session or a SSL environment.

v “gsk_attribute_set_numeric_value()—Set numeric information for a secure session or an SSL

environment” on page 29—Set numeric information for a secure session or a SSL environment

v “gsk_environment_open()—Get a handle for an SSL environment” on page 36—Get a handle for a SSL

environment

v “gsk_secure_soc_close()—Close a secure session” on page 38—Close a secure session

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40—Negotiate a secure session

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43—Perform

miscellaneous functions for a secure session

v “gsk_strerror()—Retrieve GSKit runtime error message” on page 65—Retrieve GSK runtime error

message

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Secure sockets APIs 47

#TOP_OF_PAGE
unix.htm
aplist.htm

gsk_secure_soc_read()—Receive data on a secure session

 Syntax

 #include <gskssl.h>

 int gsk_secure_soc_read(gsk_handle my_session_handle,

 char *readBuffer,

 int readBufSize,

 int *amtRead);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_read() function is used by a program to receive data from a secure session.

Parameters

my_session_handle (Input)

The handle, returned from gsk_secure_soc_open() and used on the gsk_secure_soc_init() API call

that initialized the secure session over which data is to be read.

readBuffer (Output)

The pointer to the user-supplied buffer in which the data is to be stored.

readBufSize (Input)

The number of bytes to be read.

amtRead (Output)

The number of bytes that were read as a result of this API call.

Authorities

No authorization is required.

Return Value

gsk_secure_soc_read() returns an integer. Possible values are:

[GSK_OK]

 gsk_secure_soc_read() was successful.

[GSK_INVALID_HANDLE]

 The handle specified was not valid.

[GSK_INVALID_STATE]

 The handle is not in the correct state for this operation.

[GSK_INVALID_BUFFER_SIZE]

 The readBufSize is less than 1.

[GSK_WOULD_BLOCK]

 Operation would have caused the process to be suspended.

[GSK_ERROR_BAD_MESSAGE]

48 iSeries: UNIX-Type -- Secure Sockets APIs

SSL received a badly formatted message.

[GSK_ERROR_BAD_MAC]

 A bad message authentication code was received.

[GSK_OS400_ERROR_CLOSED]

 The secure session was closed by another thread before the read completed.

[GSK_OS400_ERROR_INVALID_POINTER]

 The readBuffer or amtRead pointer is not valid.

[GSK_OS400_ERROR_TIMED_OUT]

The value specified for the receive timeout expired before the read completed.

[GSK_ERROR_SOCKET_CLOSED]

 A close() was done on the socket descriptor for this secure session.

[GSK_INTERNAL_ERROR]

 An unexpected error occurred during SSL processing.

[GSK_ERROR_IO]

 An error occurred in SSL processing; check the errno value.

Error Conditions

When the gsk_secure_soc_read() API fails with return code [GSK_ERROR_IO], errno can be set to:

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EIO]

 Input/output error.

[ENOTCONN]

 Requested operation requires a connection.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

 Any errno that can be returned by recv() can be returned by this API. See Sockets APIs for a description

of the errno values it can return.

If an errno is returned that is not in this list, see “Errno Values for UNIX-Type Functions” on page 108 for

a description of the errno.

Usage Notes

1. The maximum length of data typically returned will not exceed 16 KB. This is because SSL is a record

level protocol and the largest record allowed is 32 KB minus the necessary SSL record headers.

2. It is strongly suggested that you do not mix the gsk_secure_soc_read() API with any of the sockets

read functions. SSL and socket reads and writes can be mixed, but they must be performed in

matched sets. If a client application writes 100 bytes of data using one or more of the socket send()

calls, then the server application must read exactly 100 bytes of data using one or more of the socket

recv() calls. This is also true for gsk_secure_soc_read() API.

Secure sockets APIs 49

unix8.htm

3. Since SSL is a record-oriented protocol, SSL must receive an entire record before it can be decrypted

and any data returned to the application. Thus, a select() may indicate that data is available to be

read, but a subsequent gsk_secure_soc_read() may hang waiting for the remainder of the SSL record

to be received when using blocking I/O.

4. A FIONREAD ioctl() cannot be used to determine the amount of data available for reading by using

gsk_secure_soc_read().

5. SSL will ignore the out-of-band (OOB) data indicator. OOB will not affect the SSL application. OOB

will just be data to the SSL protocol.

6.

For an SSL enabled socket, which must use a connection-oriented transport service (that is, TCP), a

returned value of zero in the amtRead field indicates one of the following:

v The partner program has issued a close() for the socket.

v The partner program has issued a secure close for the secure session. For example, if the partner

program was coded using the GSKit APIs, the partner issued gsk_secure_soc_close().

v The partner program has issued a shutdown() to disable writing to the socket.

v The connection is broken and the error was returned on a previously issued socket function.

v A shutdown() to disable reading was previously done on the socket.
7. When the secure session uses a blocking socket and GSK_OS400_READ_TIMEOUT was set,

GSK_OS400_ERROR_TIMED_OUT will be the return value if no data arrives before the timeout

expires.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Related Information

v “gsk_secure_soc_close()—Close a secure session” on page 38—Close a secure session

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40—Negotiate a a secure session

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43—Perform

miscellaneous functions for a secure session

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46—Get a handle for a secure

session

v “gsk_secure_soc_write()—Send data on a secure session” on page 63—Send data on a secure session

v “gsk_strerror()—Retrieve GSKit runtime error message” on page 65—Retrieve GSK runtime error

message

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

50 iSeries: UNIX-Type -- Secure Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

gsk_secure_soc_startInit()—Start asynchronous operation to negotiate

a secure session

 Syntax

 #include <gskssl.h>

 #include <qsoasync.h>

 int gsk_secure_soc_startInit(gsk_handle my_session_handle,

 int IOCompletionPort,

 Qso_OverlappedIO_t * communicationsArea)

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_startInit() function is used to initiate an asynchronous negotiation of a secure

session, using the attributes set for the SSL environment and the secure session. This API starts the SSL

handshake to the remote peer and upon successful completion of QsoWaitForIOCompletion() a secure

session is established.

Parameters

my_session_handle (Input)

The handle returned from gsk_secure_soc_open() that will be used to negotiate the secure

session.

int IOCompletionPort (Input)

The I/O completion port that should be posted when the operation completes.

Qso_OverlappedIO_t * communicationsArea (Input/Output)

A pointer to a structure that contains the following information:

 descriptorHandle (Input) - The descriptor handle is application specific and is never used by the system.

This field is intended to make it easier for the application to keep track of information

regarding a given socket connection.

buffer Not used.

bufferLength Not used.

postFlag Not used.

postFlagResult Not used.

fillBuffer Not used.

returnValue (Output) - When the negotiate operation completes asynchronously, this field contains

indication of success or failure.

errnoValue (Output) - When the negotiate operation completes asynchronously and returnValue is

GSK_ERROR_IO, this field will contain an errno further defining the failure.

operationCompleted (Output) - If the operation is posted to the I/O completion port, this field is updated

to indicate that the operation was a GSKSECURESOCSTARTINIT.

secureDataTransferSize Not used.

bytesAvailable Not used.

operationWaitTime Not used.

postedDescriptor Not used - Must be set to zero.

Secure sockets APIs 51

operationId (Input) - An identifier to uniquely identify this operation or a group of operations. It

can be set with the return value from QsoGenerateOperationId() or with an

application-defined value.
This value is preserved but ignored by all APIs except QsoCancelOperation() and

QsoIsOperationPending().

reserved1 (Output) - Must be set to hexadecimal zeroes.

reserved2 (Input) - Must be set to hexadecimal zeroes.

Authorities

Authorization of *R (allow access to the object) to the certificate store file and its associated files is

required. Authorization of *X (allow use of the object) to each directory of the path name of the certificate

store file and its associated files is required.

Return Values

gsk_secure_soc_startInit() returns an integer. Possible values are:

v GSK_OS400_ASYNCHRONOUS_SOC_INIT - The function has been started. When the function

completes, the Qso_OverlappedIO_t communications structure will be updated with the results and the

I/O completion port will be posted.

v If the function fails, possible values are:

[GSK_INVALID_HANDLE]

 The handle specified was not valid.

[GSK_OS400_ERROR_NO_INITIALIZE]

 A successful gsk_environment_init() was not previously called with this handle.

[GSK_OS400_ERROR_NOT_TCP]

 The socket descriptor type is not SOCK_STREAM or the address family is not AF_INET or

AF_INET6.

[GSK_OS400_ERROR_ALREADY_SECURE]

 The socket descriptor is already in use by another secure session.

[GSK_OS400_ERROR_INVALID_POINTER]

 The my_session_handle pointer is not valid.

[GSK_INTERNAL_ERROR]

 An unexpected error occurred during SSL processing.

[GSK_OS400_ERROR_INVALID_OVERLAPPEDIO_T]

 The Qso_OverLappedIO_t specified was not valid.

[GSK_OS400_ERROR_INVALID_IOCOMPLETIONPORT]

 The I/O completion port specified was not valid.

[GSK_OS400_ERROR_BAD_SOCKET_DESCRIPTOR]

 The socket descriptor specified within the gsk_handle was not valid.

[GSK_ERROR_IO]

 An error occured in SSL processing; check the errno value.

52 iSeries: UNIX-Type -- Secure Sockets APIs

qsogenerateoperationid.htm
qsocanceloperation.htm
qsoisoperationpending.htm

Error Conditions

When gsk_secure_soc_startInit() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EIO] Input/output error.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

 If an errno is returned that is not in this list, see “Errno Values for UNIX-Type Functions” on page 108 for

a description of the errno.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. The gsk_secure_soc_startInit() function is valid only on sockets that have an address family of

AF_INET or AF_INET6 and a socket type of SOCK_STREAM.

2. The current implemention of the SSL Protocol does not allow gsk_secure_soc_startInit() to complete

synchronously. Use gsk_secure_soc_init() if the synchronous behaviour is needed.

3. When doing the SSL handshake with a GSK_SESSION_TYPE value of GSK_SERVER_SESSION or

GSK_SERVER_SESSION_WITH_CL_AUTH, the GSK_CONNECT_CIPHER_SPEC value will be the first

cipher found in the ordered GSK_V3_CIPHER_SPECS(GSK_V2_CIPHER_SPECS if SSLV2 is only

common protocol) list that was also found in the cipher list provided by the client during the SSL

handshake.

4. When doing the SSL handshake with a GSK_SESSION_TYPE value of GSK_CLIENT_SESSION, the

cipher specification list will be sent to the server in the client hello in the order found in the

GSK_V3_CIPHER_SPECS and/or GSK_V2_CIPHER_SPECS list, however the value from that list that

is negotiated for GSK_CONNECT_CIPHER_SPEC is determined by the server policy.

Related Information

v “gsk_secure_soc_close()—Close a secure session” on page 38—Close a secure session

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40—Negotiate a secure session

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43—Perform

miscellaneous functions for a secure session

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46—Get a handle for a secure

session

v “gsk_secure_soc_read()—Receive data on a secure session” on page 48—Receive data on a secure

session

v “gsk_secure_soc_write()—Send data on a secure session” on page 63—Send data on a secure session

v “gsk_secure_soc_startRecv()—Start asynchronous receive operation on a secure session” on page

54—Start Asynchronous Recv Operation on a secure session

v “gsk_secure_soc_startSend()—Start asynchronous send operation on a secure session” on page

59—Start Asynchronous Send Operation on a secure session

v

QsoCancelOperation()—Cancel an I/O Operation

v QsoCreateIOCompletionPort()—Create I/O Completion Port

v QsoDestroyIOCompletionPort()—Destroy I/O Completion Port

Secure sockets APIs 53

qsocanceloperation.htm
createiocompletionport.htm
destroyiocompletionport.htm

v QsoPostIOCompletionPort()—Post Request on I/O Completion Port

v QsoWaitForIOCompletion()—Wait for I/O Completion Operation

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

gsk_secure_soc_startRecv()—Start asynchronous receive operation on

a secure session

 Syntax

 #include <gskssl.h>

 #include <qsoasync.h>

 int gsk_secure_soc_startRecv (gsk_handle my_session_handle,

 int IOCompletionPort,

 Qso_OverlappedIO_t * communicationsArea)

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_startRecv() function is used to initiate an asynchronous receive operation on a secure

session. The supplied receive buffer cannot be reused by the calling application until the receive is

complete or the I/O completion port specified on the gsk_secure_soc_startRecv() has been destroyed.

This API supports sockets with an address family of AF_INET or AF_INET6 and type SOCK_STREAM

only.

Parameters

my_session_handle (Input)

The handle, returned from gsk_secure_soc_open() and used on the gsk_secure_soc_init() API call

that initialized the secure session over which data is to be read.

int IOCompletionPort (Input)

The I/O completion port that should be posted when the operation completes.

Qso_OverlappedIO_t * communicationsArea (Input/Output)

A pointer to a structure that contains the following information:

 descriptorHandle (Input) - The descriptor handle is application specific and is never used by the system.

This field is intended to make it easier for the application to keep track of information

regarding a given socket connection.

buffer (Input) - A pointer to a buffer into which data should be read.

bufferLength (Input) - The length of the buffer into which data should be read. Also represents the

amount of data requested.

54 iSeries: UNIX-Type -- Secure Sockets APIs

postiocompletion.htm
waitforiocompletion.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

postFlag (Input) - The postFlag indicates if this operation should be posted to the I/O

completion port even if it completes immediately.

v A 0 value indicates that if the operation is already complete upon return to the

application, then do not post to the I/O completion port.

v A 1 value indicates that even if the operation completes immediately upon return to

the application, the result should still be posted to the I/O completion port.

postFlagResult (Output) - This field is valid if gsk_secure_soc_startRecv() returns with 1 and postFlag

was set to 1. In this scenario, postFlagResult set to 1 denotes the operation completed

and been posted to the I/O completion port specified. A value of 0 denotes the

operation could not be completed immediately, but will be handled asynchronously.

fillBuffer (Input) - The fillBuffer flag indicates when this operation should complete. If the

fillBuffer flag is 0, then the operation will complete as soon as any data is available to

be received. If the fillBuffer flag is non-zero, this operation will not complete until

enough data has been received to fill the buffer, an end-of-file condition occurs on the

socket, or an error occurs on a socket.

returnValue (Output) - IF gsk_secure_soc_startRecv() completes synchronously (function return

value equals GSK_OK), then this field is set to GSK_OK and field secure data transfer

size indicates number of bytes received.

errnoValue (Output) - When the operation has completed asynchronously and returnValue is

GSK_ERROR_IO, this field will contain an errno further defining the failure.

operationCompleted (Output) - If the operation is posted to the I/O completion port, this field is updated

to indicate that the operation was a GSKSECURESOCSTARTRECV.

secureDataTransferSize (Output) - Number of bytes received when gsk_secure_soc_startRecv() completes

synchronously (return value equals GSK_OK).

bytesAvailable Not used.

operationWaitTime (Input) - A timeval structure which specifies the maximum time allowed for this

operation to complete asynchronously.

 struct timeval {

 long tv_sec; /* second */

 long tv_usec; /* microseconds */

 };

If this timer expires, the operation will be posted to the I/O completion port with

errnoValue set to EAGAIN.

If this field is set to zero, the operation’s asynchronous completion will not be timed.

If socketDescriptor is closed before the operation completes or times out, the operation

will be posted to the I/O completion port with errnoValue set to ECLOSED.

The minimum operationWaitTime is 1 second. The microseconds field (tv_usec) in the

timeval is not used and must be set to zero.

postedDescriptor Not used - Must be set to zero.

operationId (Input) - An identifier to uniquely identify this operation or a group of operations. It

can be set with the return value from QsoGenerateOperationId() or with an

application-defined value.
This value is preserved but ignored by all APIs except QsoCancelOperation() and

QsoIsOperationPending().

reserved1 (Output) - Must be set to hexadecimal zeroes.

reserved2 (Input) - Must be set to hexadecimal zeroes.

Authorities

No authorization is required.

Secure sockets APIs 55

qsogenerateoperationid.htm
qsocanceloperation.htm
qsoisoperationpending.htm

Return Values

gsk_secure_soc_startRecv() returns an integer. Possible values are:

v GSK_OK - The function has completed synchronously. The Qso_OverlappedIO_t communications

structure has been updated but nothing has nor will be posted to the I/O completion port for this

operation. Inspect field secureDataTransferSize in the Qso_OverlappedIO_t communications structure

to determine the number of bytes received.

v GSK_AS400_ASYNCHRONOUS_RECV - The function has been started. When the function completes

(or times out if operationWaitTime was specified), the Qso_OverlappedIO_t communications structure

will be updated with the results and the I/O completion port will be posted.

v If the function fails, possible values are:

[GSK_INVALID_HANDLE]

 The handle specified was not valid.

[GSK_INVALID_STATE]

 The handle is not in the correct state for this operation.

[GSK_INVALID_BUFFER SIZE]

 The bufferLength field located in the Qso_OverLappedIO_t communications area is less than 1.

[GSK_ERROR_BAD_MESSAGE]

 SSL received a badly formatted message.

[GSK_ERROR_BAD_MAC]

 A bad message authentization code was received.

[GSK_ AS400_ERROR_INVALID_POINTER]

 The buffer pointer located in Qso_OverLappedIO_t communications area is not valid.

[GSK_ERROR_SOCKET_CLOSED]

 A close() was done on the socket descriptor for this secure session.

[GSK_INTERNAL_ERROR]

 An unexpected error occurred during SSL processing.

[GSK_AS400_ERROR_INVALID_ OVERLAPPEDIO_T]

 The Qso_OverLappedIO_t specified was not valid.

[GSK_AS400_ERROR_INVALID_ IOCOMPLETIONPORT]

 The I/O completion port specified was not valid.

[GSK_AS400_ERROR_BAD_SOCKET_DESCRIPTOR]

 The socket descriptor specified within the gsk_handle was not valid.

[GSK_ERROR_IO]

 An error occured in SSL processing; check the errno value.

Error Conditions

When gsk_secure_soc_startRecv() API fails with return code [GSK_ERROR_IO], errno can be set to:

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

56 iSeries: UNIX-Type -- Secure Sockets APIs

[EINVAL]

 The field operationWaitTime.tv_sec was negative or operationWaitTime.tv_usec was not zero or

postedDescriptor was not zero.

[EIO]

 Input/output error.

[ENOTCONN]

 Requested operation requires a connection.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

 If an errno is returned that is not in this list, see “Errno Values for UNIX-Type Functions” on page 108 for

a description of the errno.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. A buffer that is given to gsk_secure_soc_startRecv() must not be used by the application again until

either it is returned by QsoWaitForIOCompletion() or is reclaimed by issuing a close() on the socket

descriptor or issuing a QsoDestroyIOCompletionPort() on the I/O completion port. If a buffer is given

to gsk_secure_soc_startRecv() to be filled, and it is later detected during gsk_secure_soc_startRecv()

processing that the buffer has been freed, it may produce an unrecoverable condition on the socket for

which the gsk_secure_soc_startRecv() was issued. If this occurs, an ECONNABORTED error value

will be returned.

2. It is not recommended to intermix gsk_secure_soc_startRecv() and blocking I/O (ie, recv() or

gsk_secure_soc_read()) on the same socket. If this condition occurs, then pending asynchronous recv

I/O will be serviced first before the blocking I/O.

3. The maximum length of data typically returned will not exceed 16 KB. This is due to the fact that SSL

is a record level protocol and the largest record allowed is 32 KB minus the necessary SSL record

headers.

4. Socket option SO_RCVLOWAT is not supported by this API. Semantics similar to SO_RCVLOWAT

can be obtained using the fillBuffer field in the Qso_OverLappedIO_t structure.

5. Socket option SO_RCVTIMEO is not supported by this API. Semantics similar to SO_RCVTIMEO can

be obtained using the operationWaitTime field in the Qso_OverLappedIO_t structure.

6. It is strongly suggested that you do not mix the gsk_secure_soc_read() nor

gsk_secure_soc_startRecv() APIs with any of the sockets read functions. However, SSL and socket

reads and writes can be mixed, but they must be performed in matched sets. If a client application

writes 100 bytes of data using one or more of the socket send() calls, then the server application must

read exactly 100 bytes of data using one or more of the socket recv() calls. This is also true for

gsk_secure_soc_read() and gsk_secure_soc_startRecv() APIs.

7. A FIONREAD ioctl() cannot be used to determine the amount of data available for reading by using

gsk_secure_soc_startRecv().

8. SSL will ignore the out of band (OOB) data indicator. OOB will not affect the SSL application. OOB

will only be data to the SSL protocol.

Secure sockets APIs 57

9. For an SSL enabled socket, which must use a connection-oriented transport service (that is, TCP), a

returned value of zero in the secureDataTransferSize field indicates one of the following:

v The partner program has issued a close() for the socket.

v The partner program has issued a secure close for the secure session. For example, if the partner

program was coded using the GSKit APIs, the partner issued gsk_secure_soc_close().

v The partner program has issued a shutdown() to disable writing to the socket.

v The connection is broken and the error was returned on a previously issued socket function.

v A shutdown() to disable reading was previously done on the socket.

Related Information

v “gsk_secure_soc_close()—Close a secure session” on page 38—Close a Secure Session

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40—Negotiate a secure session

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43—Perform

miscellaneous functions for a secure session

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46—Get a handle for a secure

session

v “gsk_secure_soc_startInit()—Start asynchronous operation to negotiate a secure session” on page

51—Start Asynchronous Operation to negotiate a secure session

v “gsk_secure_soc_startSend()—Start asynchronous send operation on a secure session” on page

59—Start Asynchronous Send Operation on a secure session

v “gsk_secure_soc_write()—Send data on a secure session” on page 63—Send data on a secure session

v

QsoCancelOperation()—Cancel an I/O Operation

v QsoCreateIOCompletionPort()—Create I/O Completion Port

v QsoDestroyIOCompletionPort()—Destroy I/O Completion Port

v QsoPostIOCompletionPort()—Post Request on I/O Completion Port

v QsoStartRecv—Start Asynchronous Recv Operation

v QsoStartSend—Start Asynchronous Send Operation

v QsoWaitForIOCompletion()—Wait for I/O Completion Operation

v recv()—Receive Data

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

58 iSeries: UNIX-Type -- Secure Sockets APIs

qsocanceloperation.htm
createiocompletionport.htm
destroyiocompletionport.htm
postiocompletion.htm
startrecv.htm
startsend.htm
waitforiocompletion.htm
recv.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

gsk_secure_soc_startSend()—Start asynchronous send operation on a

secure session

 Syntax

 #include <gskssl.h>

 #include <qsoasync.h>

 int gsk_secure_soc_startSend (gsk_handle my_session_handle,

 int IOCompletionPort,

 Qso_OverlappedIO_t * communicationsArea)

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_startSend() function is used to initiate an asynchronous send operation on a secure

session. The supplied send buffer cannot be reused by the calling application until the send is complete

or the I/O completion port specified on the gsk_secure_soc_startSend() has been destroyed. This API

supports sockets with an address family of AF_INET or AF_INET6 and type SOCK_STREAM only.

Parameters

my_session_handle (Input)

The handle, returned from gsk_secure_soc_open() and used on the gsk_secure_soc_init() API call

that initialized the secure session over which data is to be written.

int IOCompletionPort (Input)

The I/O completion port that should be posted when the operation completes.

Qso_OverlappedIO_t * communicationsArea (Input/Output)

A pointer to a structure that contains the following information:

 descriptorHandle (Input) - The descriptor handle is application-specific and is never used by the system.

This field is intended to make it easier for the application to keep track of information

regarding a given socket connection.

buffer (Input) - A pointer to a buffer of data that should be sent over the socket.

bufferLength (Input) - The length of the data to be sent.

postFlag (Input) - The postFlag indicates if this operation should be posted to the I/O

completion port even if it completes immediately.

v A value of 0 indicates that if the operation is already complete upon return to the

application, then do not post to the I/O completion port.

v A value of 1 indicates that even if the operation completes immediately upon return

to the application, the result should still be posted to the I/O completion port.

postFlagResult (Output) - This field is valid if gsk_secure_soc_startSend() returns with 1 and postFlag

was set to 1. In this scenario, postFlagResult set to 1 denotes the operation completed

and been posted to the I/O completion port specified. A value of 0 denotes the

operation could not be completed immediately, but will be handled asynchronously.

fillBuffer (Input) - Only used on gsk_secure_soc_startRecv() or QsoStartRecv(). Ignored on

gsk_secure_soc_startSend().

Secure sockets APIs 59

returnValue (Output) - If gsk_secure_soc_startSend() completes synchronously (return value equals

GSK_OK), then this field is set to GSK_OK and field secureDataTransferSize indicates

number of bytes sent.

errnoValue (Output) - When the operation has completed asynchronously and returnValue is

GSK_ERROR_IO, this field will contain an errno further defining the failure.

operationCompleted (Output) - If the operation is posted to the I/O completion port, this field is updated

to indicate that the operation was a GSKSECURESOCSTARTSEND.

secureDataTransferSize (Output) - Number of bytes sent when gsk_secure_soc_startSend() completes

synchronously (function return value equals GSK_OK).

bytesAvailable Not used.

operationWaitTime (Input) - A timeval structure which specifies the maximum time allowed for this

operation to complete asynchronously.

 struct timeval {

 long tv_sec; /* second */

 long tv_usec; /* microseconds */

 };

If this timer expires, the operation will be posted to the I/O completion port with

errnoValue set to EAGAIN.

If this field is set to zero, the operation’s asynchronous completion will not be timed.

If socketDescriptor is closed before the operation completes or times out, the operation

will be posted to the I/O completion port with errnoValue set to ECLOSED.

The minimum operationWaitTime is 1 second. The microseconds field (tv_usec) in the

timeval is not used and must be set to zero.

postedDescriptor Not used - Must be set to zero.

operationId (Input) - An identifier to uniquely identify this operation or a group of operations. It

can be set with the return value from QsoGenerateOperationId() or with an

application-defined value.
This value is preserved but ignored by all APIs except QsoCancelOperation() and

QsoIsOperationPending().

reserved1 (Input) - Must be set to hex zeroes.

reserved2 (Input) - Must be set to hex zeroes.

Authorities

No authorization is required.

Return Values

gsk_secure_soc_startSend() returns an integer. Possible values are:

v GSK_OK- The function has completed synchronously. The Qso_OverlappedIO_t communications

structure has been updated but nothing has nor will be posted to the I/O completion port for this

operation. Inspect field secureDataTransferSize in the Qso_OverlappedIO_t communications structure

to determine the number of bytes sent.

v GSK_AS400_ASYNCHRONOUS_SEND - The function has been started. When the function completes

(or times out if operationWaitTime was specified), the Qso_OverlappedIO_t communications structure

will be updated with the results and the I/O completion port will be posted.

v If the function fails, possible values are:

[GSK_INVALID_HANDLE]

 The handle specified was not valid.

60 iSeries: UNIX-Type -- Secure Sockets APIs

qsogenerateoperationid.htm
qsocanceloperation.htm
qsoisoperationpending.htm

[GSK_INVALID_STATE]

 The handle is not in the correct state for this operation.

[GSK_INVALID_BUFFER SIZE]

 The bufferLength field located in the Qso_OverLappedIO_t communications area is less than 1.

[GSK_ERROR_SOCKET_CLOSED]

 A close() was done on the socket descriptor for this secure session.

[GSK_ AS400_ERROR_INVALID_POINTER]

 The buffer pointer located in Qso_OverlappedIO_t communications area is not valid.

[GSK_INTERNAL_ERROR]

 An unexpected error occurred during SSL processing.

[GSK_AS400_ERROR_INVALID_ OVERLAPPEDIO_T]

 The Qso_OverLappedIO_t specified was not valid.

[GSK_AS400_ERROR_INVALID_ IOCOMPLETIONPORT]

 The I/O completion port specified was not valid.

[GSK_AS400_ERROR_BAD_SOCKET_DESCRIPTOR]

 The socket descriptor specified within the gsk_handle was not valid.

GSK_ERROR_IO]

 An error occured in SSL processing; check the errno value.

Error Conditions

When gsk_secure_soc_startSend() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EINVAL]

 The field operationWaitTime.tv_sec was negative or operationWaitTime.tv_usec was not zero or

postedDescriptor was not zero.

[EIO]

 Input/output error.

[ENOTCONN]

 Requested operation requires a connection.

[ENOTSOCK]

 The specified descriptor does not reference a socket.

[EPIPE]

 Broken pipe.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

 If an errno is returned that is not in this list, see “Errno Values for UNIX-Type Functions” on page 108 for

a description of the errno.

Secure sockets APIs 61

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. Since gsk_secure_soc_startSend() is asynchronous, care should be used to control how many of these

functions are outstanding. When a TCP socket becomes flow control blocked such that the

gsk_secure_soc_startSend() is not able to pass the data to the TCP socket immediately, the return

value will be GSK_AS400_ASYNCHRONOUS_SEND. Applications that send large amounts of data

should have the postFlag set to 0. This allows the application to use a return value of

GSK_AS400_ASYNCHRONOUS_SEND as an indication that the socket has become flow control

blocked. The application should then wait for the outstanding operation to complete before issuing

another gsk_secure_soc_startSend(). This will ensure that the application does not exhaust system

buffer resources.

2. A buffer that is given to gsk_secure_soc_startSend() must not be used by the application again until

either it is returned by QsoWaitForIOCompletion() or is reclaimed by issuing a close() on the socket

descriptor or issuing a QsoDestroyIOCompletionPort() on the I/O completion port. If a buffer is given

to gsk_secure_soc_startSend() to be sent, and it is later detected during gsk_secure_soc_startSend()

processing that the buffer has been freed, it may produce an unrecoverable condition on the socket for

which the gsk_secure_soc_startSend() was issued. If this occurs, an ECONNABORTED error value

will be returned.

3. There is no maximum length of data that can be written.

4. It is not recommended to intermix gsk_secure_soc_startSend() and blocking I/O (ie, send() or

gsk_secure_soc_send()) on the same socket. If one does, then pending asynchronous send I/O will be

serviced before blocking I/O once data can be sent.

5. It is strongly suggested that you do not mix the gsk_secure_soc_write() nor

gsk_secure_soc_startSend() APIs with any of the sockets write functions. However, SSL and socket

reads and writes can be mixed, but they must be performed in matched sets. If a client application

writes 100 bytes of data using one or more of the socket send() calls, then the server application must

read exactly 100 bytes of data using one or more of the socket recv() calls. This is also true for

gsk_secure_soc_write() and gsk_secure_soc_startSend()APIs.

6. Socket option SO_SNDTIMEO is not supported by this API. Semantics similar to SO_SNDTIMEO can

be obtained using the operationWaitTime field in the Qso_OverLappedIO_t structure.

Related Information

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40—Negotiate a secure session

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43—Perform

miscellaneous functions for a secure session

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46—Get a handle for a secure

session

v “gsk_secure_soc_read()—Receive data on a secure session” on page 48—Receive data on a secure

session

v “gsk_secure_soc_startInit()—Start asynchronous operation to negotiate a secure session” on page

51—Start Asynchronous Operation to negotiate a secure session

v “gsk_secure_soc_startRecv()—Start asynchronous receive operation on a secure session” on page

54—Start Asynchronous Receive Operation on a secure session

v

QsoCancelOperation()—Cancel an I/O Operation

62 iSeries: UNIX-Type -- Secure Sockets APIs

qsocanceloperation.htm

v QsoPostIOCompletionPort()—Post Request on I/O Completion Port

v QsoCreateIOCompletionPort()—Create I/O Completion Port

v QsoDestroyIOCompletionPort()—Destroy I/O Completion Port

v QsoStartRecv—Start Asynchronous Recv Operation

v QsoStartSend—Start Asynchronous Send Operation

v QsoWaitForIOCompletion()—Wait for I/O Completion Operation

v send()—Send Data

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

gsk_secure_soc_write()—Send data on a secure session

 Syntax

 #include <gskssl.h>

 int gsk_secure_soc_write(gsk_handle my_session_handle,

 char *writeBuffer,

 int writeBufSize,

 int *amtWritten);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_secure_soc_write() function is used by a program to write data on a secure session.

Parameters

my_session_handle (Input)

The handle, returned from gsk_secure_soc_open() and used on the gsk_secure_soc_init() API call

that initialized the secure session over which data is to be written.

writeBuffer (Input)

The pointer to the user-supplied buffer from which the data is to be written.

writeBufSize (Input)

The number of bytes to be written.

amtWritten (Output)

The number of bytes written as a result of this API call.

Authorities

No authorization is required.

Secure sockets APIs 63

postiocompletion.htm
createiocompletionport.htm
destroyiocompletionport.htm
startrecv.htm
startsend.htm
waitforiocompletion.htm
send.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Return Value

gsk_secure_soc_write() returns an integer. Possible values are:

[GSK_OK]

 gsk_secure_soc_write() was successful.

[GSK_INVALID_HANDLE]

 The handle specified was not valid.

[GSK_INVALID_STATE]

 The handle is not in the correct state for this operation.

[GSK_INVALID_BUFFER_SIZE]

 The readBufSize is less than 1.

[GSK_WOULD_BLOCK]

 Operation would have caused the process to be suspended.

[GSK_ERROR_SOCKET_CLOSED]

 A close() was done on the socket descriptor for this secure session.

[GSK_AS400_ERROR_CLOSED]

 The secure session was closed by another thread before the write completed.

[GSK_AS400_ERROR_INVALID_POINTER]

 The writeBuffer or amtWritten pointer is not valid.

[GSK_INTERNAL_ERROR]

 An unexpected error occurred during SSL processing.

[GSK_ERROR_IO]

 An error occurred in SSL processing; check the errno value.

Error Conditions

When the gsk_secure_soc_write() API fails with return code [GSK_ERROR_IO], errno can be set to:

[EIO]

 Input/output error.

[ENOTCONN]

 Requested operation requires a connection.

[ENOTSOCK]

 The specified descriptor does not reference a socket.

[EPIPE]

 Broken pipe.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

 Any errno that can be returned by send() can be returned by this API. See Sockets APIs for a description

of the errno values it can return.

64 iSeries: UNIX-Type -- Secure Sockets APIs

unix8.htm

Usage Notes

1. There is no maximum length of the data that can be written.

2. It is strongly suggested that you do not mix the gsk_secure_soc_write() API with any of the sockets

write functions. SSL and socket reads and writes can be mixed, but they must be performed in

matched sets. If a client application writes 100 bytes of data using one or more of the socket send()

calls, then the server application must read exactly 100 bytes of data using one or more of the socket

recv() calls. This is also true for gsk_secure_soc_write() API.

3. The amtWritten value is set to zero when return value is not GSK_OK.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Related Information

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40—Negotiate a secure session

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43—Perform

miscellaneous functions for a secure session

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46—Get a handle for a secure

session

v “gsk_secure_soc_read()—Receive data on a secure session” on page 48—Receive data on a secure

session

v “gsk_strerror()—Retrieve GSKit runtime error message”—Retrieve GSK runtime error message

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

gsk_strerror()—Retrieve GSKit runtime error message

 Syntax

 #include <gskssl.h>

 const char *gsk_strerror(int gsk_return_value);

 Service Program Name: QSYS/QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The gsk_strerror() function is used to retrieve an error message and associated text string that describes a

return value that was returned from calling a GSKit API.

Parameters

gsk_return_value (Input)

The return value received from a GSKit API.

Secure sockets APIs 65

#TOP_OF_PAGE
unix.htm
aplist.htm

Authorities

No authorization is required.

Return Value

gsk_strerror() returns a pointer to the return value text.

Usage Notes

1. gsk_strerror() returns a pointer to the string. The null-terminated string is stored in the CCSID of the

job.

2. If a gsk_return_value is specified for which there is no corresponding description, an Unknown Error

string is returned.

Related Information

v “gsk_attribute_get_buffer()—Get character information about a secure session or an SSL environment”

on page 3—Get character information about a secure session or an SSL environment.

v “gsk_attribute_get_cert_info()—Get information about a local or partner certificate” on page 7—Get

information about a local or partner certificate.

v “gsk_attribute_get_enum()—Get enumerated information about a secure session or an SSL

environment>” on page 10—Get enumerated information about a secure session or an SSL

environment.

v “gsk_attribute_get_numeric_value()—Get numeric information about a secure session or an SSL

environment” on page 14—Get numeric information about a secure session or an SSL environment.

v “gsk_attribute_set_buffer()—Set character information for a secure session or an SSL environment” on

page 17—Set character information for a secure session or an SSL environment.

v “gsk_attribute_set_enum()—Set enumerated information for a secure session or an SSL environment”

on page 25—Set enumerated information for a secure session or an SSL environment.

v “gsk_attribute_set_numeric_value()—Set numeric information for a secure session or an SSL

environment” on page 29—Set numeric information for a secure session or an SSL environment

v “gsk_environment_close()—Close an SSL environment” on page 32—Close the SSL environment

v “gsk_environment_init()—Initialize an SSL environment” on page 33—Initialize a SSL environment

v “gsk_environment_open()—Get a handle for an SSL environment” on page 36—Get a handle for an

SSL environment

v “gsk_secure_soc_close()—Close a secure session” on page 38—Close a secure session

v “gsk_secure_soc_init()—Negotiate a secure session” on page 40—Negotiate a secure session

v “gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session” on page 43—Perform

miscellaneous functions for a secure session

v “gsk_secure_soc_open()—Get a handle for a secure session” on page 46—Get a handle for a secure

session

v “gsk_secure_soc_read()—Receive data on a secure session” on page 48—Receive data on a secure

session

v “gsk_secure_soc_write()—Send data on a secure session” on page 63—Send data on a secure session

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how gsk_strerror() is used:

#include <stdio.h>

#include <sys/types.h>

#include <gskssl.h>

66 iSeries: UNIX-Type -- Secure Sockets APIs

aboutapis.htm#CODEDISCLAIMER

void main()

{

 int rc = GSK_OK;

 gsk_handle env_handle = NULL;

 rc = gsk_environment_open(&env_handle);

 if (rc != GSK_OK)

 {

 printf("gsk_environment_open() failed with rc = %d %s\n",

 rc,gsk_strerror(rc));

 break;

 }

 ...

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

OS/400 Secure Sockets Layer (SSL_) APIs

OS/400(R) SSL_ APIs, when used in addition to the existing OS/400 Sockets APIs, provide the functions

required for applications to establish secure communications. An application using SSL for secure

communications is basically a client/server application written using sockets.

The SSL_ APIs are:

v “QlgSSL_Init()—Initialize the Current Job for SSL (using NLS-enabled path name)” on page 68

(Initialize the current job for SSL (using NLS-enabled path name)) is used to establish the SSL security

information to be used for all SSL sessions for the current job.

v “SSL_Create()—Enable SSL Support for the Specified Socket Descriptor” on page 72 (Enable SSL

support for the specified socket descriptor) is used by a program to enable SSL support for the

specified socket descriptor.

v “SSL_Destroy()—End SSL Support for the Specified SSL Session” on page 75 (End SSL support for the

specified SSL session) is used by a program to end SSL support for the specified SSL session.

v “SSL_Handshake()—Initiate the SSL Handshake Protocol” on page 77 (Initiate the SSL handshake

protocol) is used by a program to initiate the SSL handshake protocol. Both the client and the server

program must call the SSL_Handshake verb in order to initiate the handshake processing.

v “SSL_Init()—Initialize the Current Job for SSL” on page 83 (Initialize the current job for SSL) is used to

establish the SSL security information to be used for all SSL sessions for the current job.

v “SSL_Init_Application()—Initialize the Current Job for SSL Processing Based on the Application

Identifier” on page 88 (Establish the SSL security information) is used to establish the SSL security

information to be used for all SSL sessions for the current job based on the specified application

identifier.

v “SSL_Perror()—Print SSL Error Message” on page 93 (Print SSL error message) prints an error message

to stderr.

v “SSL_Read()—Receive Data from an SSL-Enabled Socket Descriptor” on page 95 (Receive data from an

SSL-enabled socket descriptor) is used by a program to receive data from an SSL-enabled socket

descriptor.

v “SSL_Strerror()—Retrieve SSL Runtime Error Message” on page 99 (Retrieve SSL runtime error

message) is used to retrieve an error message and associated text string which describes an SSL return

value.

v “SSL_Write()—Write Data to an SSL-Enabled Socket Descriptor” on page 102 (Write data to an

SSL-enabled socket descriptor) is used by a program to write data to an SSL-enabled socket descriptor.

Secure sockets APIs 67

#TOP_OF_PAGE
unix.htm
aplist.htm

Note: These functions use header (include) files from the library QSYSINC, which is optionally

installable. Make sure QSYSINC is installed on your system before using any of the functions. See

“Header Files for UNIX-Type Functions” on page 105 for the file and member name of each header file.

See the following examples for more information:

v Example: Establish secure server with SSL APIs

v Example: Establish secure client with SSL APIs

 Top | UNIX-Type APIs | APIs by category

QlgSSL_Init()—Initialize the Current Job for SSL (using NLS-enabled

path name)

 Syntax

 #include <qsossl.h>

 int QlgSSL_Init(QlgSSLInit* init)

 Service Program Name: *SRVPGM

 Default Public Authority: *USE

 Threadsafe: Yes

The QlgSSL_Init() function is used to establish the SSL security information to be used for all SSL sessions

for the current job. The QlgSSL_Init() API establishes a certificate and private key for use by the

handshake protocol processing when acting as a server. The QlgSSL_Init() API establishes a certificate for

use by the handshake protocol processing when acting as a client that is connected to a server performing

client authentication.

Parameters

QlgSSLInit * init (input)

The pointer to a QlgSSLInit structure. QlgSSLInit is a typedef for a buffer of type struct

QlgSSLInitStr. In <qsossl.h>, struct QlgSSLInitStr is defined as the following:

 struct QlgSSLInitStr { /* QlgSSLInitStr */

 Qlg_Path_Name* keyringFileName; /* Key ring file name */

 char* keyringPassword; /* Key ring file password */

 unsigned short int* cipherSuiteList; /* List of cipher suites */

 unsigned int cipherSuiteListLen; /* number of entries in

 the cipher suites list */

};

The fields within the QlgSSLInit structure as pointed to by init are defined as follows:

Qlg_Path_Name_T *keyringFileName (input)

A pointer to a structure defining the path to the key ring file. This structure defines the

coded character set identifier (CCSID) and the path to the key ring file to be used for this

job’s SSL processing. The path must be a fully qualified integrated file system file name.

68 iSeries: UNIX-Type -- Secure Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

char *keyringPassword (input)

A pointer to the password for the key ring file named in the keyringFileName field.

 If this parameter’s value is equal to NULL, then the QlgSSL_Init() support will attempt to

extract a password from a key-ring password file.

 This parameter is assumed to be represented in the same CCSID (coded character set

identifier) as the keyringFileName.

unsigned short int* cipherSuiteList (input)

A pointer to the cipher specification list to be used during the SSL handshake protocol for

this job. This list is a string of concatenated cipher specification values. A cipher

specification value is an unsigned short integer. Any value provided will override any

values provided by a previous QlgSSL_Init() API or the system default cipher

specification list if the previous QlgSSL_Init() API did not provide a cipher specification

list. A value of NULL for this parameter indicates one of the following:

v Use the cipher specification list provided by a previous QlgSSL_Init() API

v Use the system default cipher specification list if a previous QlgSSL_Init() API was not

done

The caller specifies the preferred order of the cipher specifications. The cipher

specification values are defined in <qsossl.h> as the following:

 TLS_RSA_WITH_NULL_MD5 0x0001

 TLS_RSA_WITH_NULL_SHA 0x0002

 TLS_RSA_EXPORT_WITH_RC4_40_MD5 0x0003

 TLS_RSA_WITH_RC4_128_MD5 0x0004

 TLS_RSA_WITH_RC4_128_SHA 0x0005

 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 0x0006

 TLS_RSA_EXPORT_WITH_DES40_CBC_SHA 0x0008

 TLS_RSA_WITH_DES_CBC_SHA 0x0009

 TLS_RSA_WITH_3DES_EDE_CBC_SHA 0x000A

 TLS_RSA_WITH_AES_128_CBC_SHA 0x002F

 TLS_RSA_WITH_AES_256_CBC_SHA 0x0035

 TLS_RSA_WITH_RC2_CBC_128_MD5 0xFF01

 TLS_RSA_WITH_DES_CBC_MD5 0xFF02

 TLS_RSA_WITH_3DES_EDE_CBC_MD5 0xFF03

 Notes:

1. The SSL_RSA_EXPORT_WITH_DES40_CBC_SHA cipher is not supported by OS/400.
2. The list of cipher specifications will be different between the Cryptographic Access

Provider 56-Bit (5722AC2) and Cryptographic Access Provider 128-Bit (5722AC3)

licensed products. If one of the cryptographic products is installed and an application

attempts to use a cipher specification that is not allowed only for that cryptographic

product, they will receive an EINVAL errno.

3. The default cipher suite list for the Internet Connection Secure Server (US) 5722AC3

product in preference order is as follows:

TLS_RSA_WITH_RC4_128_MD5

TLS_RSA_WITH_RC4_128_SHA

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_DES_CBC_SHA

TLS_RSA_WITH_DES_CBC_MD5

TLS_RSA_WITH_3DES_EDE_CBC_MD5

TLS_RSA_WITH_RC2_CBC_128_MD5

TLS_RSA_EXPORT_WITH_RC4_40_MD5

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

Secure sockets APIs 69

4. The default cipher suite list for the Internet Connection Secure Server (US) 5722AC2

product in preference order is as follows:(5722AC2 is supported but no longer

shipped)

TLS_RSA_WITH_DES_CBC_SHA

TLS_RSA_WITH_DES_CBC_MD5

TLS_RSA_EXPORT_WITH_RC4_40_MD5

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

unsigned int cipherSuiteListLen (input)

The number of cipher suite entries specified in the list pointed to by the cipherSuiteList

parameter.

Authorities

Authorization of *R (allow access to the object) to the key ring file and its associated files is required.

Return Value

The QlgSSL_Init() API returns an integer. Possible values are:

[0]

 Successful return

[SSL_ERROR_BAD_CIPHER_SUITE]

 A cipher suite that is not valid was specified.

[SSL_ERROR_IO]

 An error occurred in SSL processing; check the errno value.

[SSL_ERROR_KEYPASSWORD_EXPIRED]

 The specified key ring password has expired.

[SSL_ERROR_NO_KEYRING]

 No key ring file was specified.

[SSL_ERROR_SSL_NOT_AVAILABLE]

 SSL is not available for use.

[SSL_ERROR_UNKNOWN]

 An unknown or unexpected error occurred during SSL processing.

Error Conditions

When the QlgSSL_Init() API fails with return code [SSL_ERROR_IO], errno can be set to:

[EINVAL]

 Parameter not valid.

 This error code indicates that the Qlg_Path_Name_T structure was not valid:

v The path type was less than 0 or greater than 3.

v A reserved field was not initialized to zeros.

[ECONVERT]

 Conversion error.

 This error code indicates one of the following:

70 iSeries: UNIX-Type -- Secure Sockets APIs

v The CCSID specified in the keyringFileName cannot be converted to the current default CCSID

for integrated file system path names.

v There was an incomplete character or shift state sequence at the end of the keyringFileName

path or keyringPassword.

[EACCES]

 Permission denied.

 This error code indicates one of the following:

v The keyringFileName field contains a file name to which the user is not authorized.

v The keyringPassword value is not valid for the specified keyringFileName.

[EBADF]

 Descriptor not valid.

 This error code indicates one of the following:

v The keyringFileName value does not specify a valid key ring file name.

[EFAULT]

 Bad address.

 The system detected an address that was not valid while attempting to access the init parameter

or one of the address fields in the init parameter.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EUNKNOWN]

 Unknown system state.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. A successful SSL_Init(), QlgSSL_Init (using NLS-enabled path name), or SSL_Init_Application() API must

be used to enable a job for SSL processing before attempting to use any other SSL API.

2. If multiple SSL_Init_Application(), QlgSSL_Init (using NLS-enabled path name), or SSL_Init() APIs are

performed in a job, then only the values associated with the last SSL_Init_Application(), QlgSSL_Init

(using NLS-enabled path name), or SSL_Init() performed are used.

3. If the keyringPassword parameter pointer value is equal to NULL, then QlgSSL_Init will attempt to

extract the password value from the key-ring password file associated with the keyringFileName

parameter’s value. The existence of the associated key-ring password file is based on a configuration

selection made during the creation of the key ring file.

Related Information

v “SSL_Create()—Enable SSL Support for the Specified Socket Descriptor” on page 72—Enable SSL

Support for the Specified Socket Descriptor
v “SSL_Destroy()—End SSL Support for the Specified SSL Session” on page 75—End SSL Support for the

Specified SSL Session

Secure sockets APIs 71

v “SSL_Handshake()—Initiate the SSL Handshake Protocol” on page 77—Initiate the SSL Handshake

Protocol
v “SSL_Init()—Initialize the Current Job for SSL” on page 83—Initialize the Current Job for SSL
v “SSL_Init_Application()—Initialize the Current Job for SSL Processing Based on the Application

Identifier” on page 88—Initialize the Current Job for SSL Processing Based on the Application Identifier
v “SSL_Read()—Receive Data from an SSL-Enabled Socket Descriptor” on page 95—Receive Data from

an SSL-Enabled SocketDescriptor
v “SSL_Write()—Write Data to an SSL-Enabled Socket Descriptor” on page 102—Write Data to an

SSL-Enabled Socket Descriptor

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

SSL_Create()—Enable SSL Support for the Specified Socket Descriptor

 Syntax

 #include <qsossl.h>

 SSLHandle* SSL_Create(int socket_descriptor,

 int flags)

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The SSL_Create() function is used by a program to enable SSL support for the specified socket descriptor.

Parameters

int socket_descriptor (input)

The descriptor of the socket to be used for the SSL session. The socket descriptor must have been

created (using the socket() API) with a type of SOCK_STREAM and an address family of AF_INET

or AF_INET6.

int flags (input)

A flag value that controls the use of SSL for the session. The flags value is either zero, or is

obtained by the ORing of the following constant:

 SSL_ENCRYPT (1<<0) Encrypt the connection.

SSL_DONT_ENCRYPT (0) Do not encrypt the connection.

Authorities

No authorization is required.

72 iSeries: UNIX-Type -- Secure Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Return Value

The SSL_Create() API returns a pointer to an SSLHandle. A value of NULL is returned when SSL_Create()

fails. An SSLHandle is a typedef for a buffer of type struct SSLHandleStr. In <qsossl.h>, struct

SSLHandleStr is defined as the following:

struct SSLHandleStr { /* SSLHandleStr */

 int fd; /* Socket descriptor */

 int createFlags; /* SSL_Create flags value */

 unsigned protocol; /* SSL protocol version */

 unsigned timeout; /* Timeout value in seconds */

 unsigned char cipherKind[3]; /* Current 2.0 cipher suite*/

 unsigned short int cipherSuite; /* Current 3.0 cipher suite */

 unsigned short int* cipherSuiteList; /* List of cipher suites */

 unsigned int cipherSuiteListLen; /* Number of entries in

 the cipher suites list */

 unsigned char* peerCert; /* Peer certificate */

 unsigned peerCertLen; /* Peer certificate length */

 int peerCertValidateRc; /* Return code from

 validation of certficate */

 int (*exitPgm)(struct SSLHandleStr* sslh);

 /* Authentication exit

 program called when a

 certificate is received

 during SSL handshake */

};

Note: A full explanation of each of the members of the above structure are defined in the SSL_Handshake()

API description.

The SSLHandle structure returned will be initialized to hexadecimal zeros with the exception of the fd

field, which will be initialized to the socket_descriptor input parameter and the createFlags field, which will

be initialized to the flags input parameter.

Error Conditions

When the SSL_Create() API fails, errno can be set to:

[EALREADY]

 Operation already in progress.

[EBADF]

 Descriptor not valid.

[EFAULT]

 Bad address.

[EINVAL]

 Parameter not valid.

 This error code indicates one of the following:

v The socket_descriptor type is not SOCK_STREAM or address family is not AF_INET or

AF_INET6.

v One of the parameters passed is not valid or is NULL.

[EIO]

 Input/output error.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

Secure sockets APIs 73

[ENOTSOCK]

 The specified descriptor does not reference a socket.

[EPIPE]

 Broken pipe.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EUNKNOWN]

 Unknown system state.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. The SSL_Create() function is only valid on sockets that have an address family of AF_INET or AF_INET6

and a socket type of SOCK_STREAM. If the descriptor pointed to by the socket_descriptor parameter does

not have the correct address family and socket type, [SSL_ERROR_IO] is returned and the errno value

is set to EINVAL.

2. If the flags parameter specifies a value that does not include the SSL_ENCRYPT flag, then the SSL

protocol will not be used for the connection. Not using the SSL protocol has the following effects:

v The SSL_Handshake() API will simply return successful without performing any function.

v The SSL_Read() API will simply call the sockets read() API with the same set of input parameters.

v The SSL_Write() API will simply call the sockets write() API with the same set of input parameters.
3. Any use of givedescriptor() and takedescriptor() APIs must be performed prior to issuing an

SSL_Create().

Related Information

v “SSL_Destroy()—End SSL Support for the Specified SSL Session” on page 75—End SSL Support for the

Specified SSL Session

v “SSL_Handshake()—Initiate the SSL Handshake Protocol” on page 77—Initiate the SSL Handshake

Protocol

v “SSL_Init()—Initialize the Current Job for SSL” on page 83—Initialize the Current Job for SSL

v “SSL_Read()—Receive Data from an SSL-Enabled Socket Descriptor” on page 95)—Receive Data from

an SSL-Enabled Socket Descriptor

v “SSL_Write()—Write Data to an SSL-Enabled Socket Descriptor” on page 102—Write Data to an

SSL-Enabled Socket Descriptor

 API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

74 iSeries: UNIX-Type -- Secure Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

SSL_Destroy()—End SSL Support for the Specified SSL Session

 Syntax

 #include <qsossl.h>

 int SSL_Destroy(SSLHandle* handle)

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The SSL_Destroy() function is used by a program to end SSL support for the specified SSL session. The

SSL session to be ended is identified by the handle parameter.

Parameters

SSLHandle* handle (input)

The pointer to an SSLHandle for an active SSL session, which is being ended. An SSLHandle is a

typedef for a buffer of type struct SSLHandleStr. In <qsossl.h>, struct SSLHandleStr is defined as

the following:

 struct SSLHandleStr { /* SSLHandleStr */

 int fd; /* Socket descriptor */

 int createFlags; /* SSL_Create flags value */

 unsigned protocol; /* SSL protocol version */

 unsigned timeout; /* Timeout value in seconds */

 unsigned char cipherKind[3]; /* Current 2.0 cipher suite*/

 unsigned short int cipherSuite; /* Current 3.0 cipher suite */

 unsigned short int* cipherSuiteList; /* List of cipher suites */

 unsigned int cipherSuiteListLen; /* Number of entries in

 the cipher suites list */

 unsigned char* peerCert; /* Peer certificate */

 unsigned peerCertLen; /* Peer certificate length */

 int peerCertValidateRc; /* Return code from

 validation of certficate */

 int (*exitPgm)(struct SSLHandleStr* sslh);

 /* Authentication exit

 program called when a

 certificate is received

 during SSL handshake */

};

Authorities

No authorization is required.

Return Value

The SSL_Destroy() API returns an integer. Possible values are:

 [0] Successful return

[SSL_ERROR_IO] An error occurred in SSL processing; check the errno value.

Secure sockets APIs 75

Error Conditions

When the SSL_Destroy() API fails with return code [SSL_ERROR_IO], errno can be set to:

[EBADF]

 Descriptor not valid.

[EFAULT]

 Bad address.

 The system detected an address that was not valid while attempting to access the handle

parameter or a field within the structure pointed to by the handle parameter.

[EIO]

 Input/output error.

[EINVAL]

 Parameter not valid. This error code indicates one of the following:

v The socket_descriptor type is not SOCK_STREAM or address family is not AF_INET or

AF_INET6.

v One of the parameters passed is not valid or is NULL.

[ENOTCONN]

 Requested operation requires a connection.

 This error code indicates that the socket_descriptor has not had SSL support enabled. This usually

means that an SSL_Create() has not been completed for this socket_descriptor.

[ENOTSOCK]

 The specified descriptor does not reference a socket.

[EPIPE]

 Broken pipe.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

 This error code indicates that the SSL_Destroy() was unable to successfully complete the removal

of SSL support on this socket_descriptor.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EUNKNOWN]

 Unknown system state.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

76 iSeries: UNIX-Type -- Secure Sockets APIs

Usage Notes

1. All storage referenced from any field within the structure pointed to by the handle parameter and the

storage pointed to by the handle parameter itself will be freed upon a successful return.

2. Unpredictable results will occur if you attempt to use an SSL_Destroy() while sending or receiving

data on the peer system.

3. If an SSL_Destroy() is not done, then the storage referenced by the handle parameter will not be freed

until the job ends.

Note: A job end might cause a Licensed Internal Code log entry or error log entry if the handle

parameter storage is not freed before the job ended.

4. If an SSL_Destroy() is not done, the storage referenced by the handle parameter will not be freed. This

will result in a memory leak. A memory leak is the loss of a piece of system memory because it is not

allocated to any process on the system.

Related Information

v “SSL_Create()—Enable SSL Support for the Specified Socket Descriptor” on page 72—Enable SSL

Support for the Specified Socket Descriptor

v “SSL_Handshake()—Initiate the SSL Handshake Protocol”—Initiate the SSL Handshake Protocol

v “SSL_Init()—Initialize the Current Job for SSL” on page 83—Initialize the Current Job for SSL

v “SSL_Read()—Receive Data from an SSL-Enabled Socket Descriptor” on page 95—Receive Data from

an SSL-Enabled Socket Descriptor

v “SSL_Write()—Write Data to an SSL-Enabled Socket Descriptor” on page 102—Write Data to an

SSL-Enabled Socket Descriptor

 API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

SSL_Handshake()—Initiate the SSL Handshake Protocol

 Syntax

 #include <qsossl.h>

 int SSL_Handshake(SSLHandle* handle,

 int how)

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The SSL_Handshake() function is used by a program to initiate the SSL handshake protocol. Both the

client and the server program must call the SSL_Handshake verb in order to initiate the handshake

processing.

Secure sockets APIs 77

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

SSLHandle* handle (input/output)

The pointer to an SSLHandle for an SSL session. An SSLHandle is a typedef for a buffer of type

struct SSLHandleStr. In <qsossl.h>, struct SSLHandleStr is defined as the following:

 struct SSLHandleStr { /* SSLHandleStr */

 int fd; /* Socket descriptor */

 int createFlags; /* SSL_Create flags value */

 unsigned protocol; /* SSL protocol version */

 unsigned timeout; /* Timeout value in seconds */

 unsigned char cipherKind[3]; /* Current 2.0 cipher suite */

 unsigned short int cipherSuite; /* Current 3.0 cipher suite */

 unsigned short int* cipherSuiteList; /* List of cipher suites */

 unsigned int cipherSuiteListLen; /* Number of entries in

 the cipher suites list */

 unsigned char* peerCert; /* Peer certificate */

 unsigned peerCertLen; /* Peer certificate length */

 int peerCertValidateRc; /* Return code from

 validation of certficate */

 int (*exitPgm)(struct SSLHandleStr* sslh);

 /* Authentication exit

 program called when a

 certificate is received

 during SSL handshake */

};

 The fields within the SSLHandle structure as pointed to by handle are defined as follows:

 int fd (input) The socket descriptor of the connection for which the SSL handshake protocol is

to be performed. This field was initialized by a prior SSL_Create() API.

int createFlags (input) Whether or not the SSL protocol is to be used. If the field specifies a value that

does not include the SSL_ENCRYPT flag, then this function will return success

without performing the SSL handshake protocol. This field was initialized by a

prior SSL_Create() API.

unsigned int protocol

(input/output)

The type of SSL handshake protocol to be performed. The protocol(s) that are

acceptable as the handshake protocol for this job. The following values may be

specified for protocol and are defined in <qsossl.h>.

SSL_VERSION_CURRENT 0 (TLS with SSL Version 3.0 and SSL

 Version 2.0 compatibility)

SSL_VERSION_2 2 (SSL Version 2.0 only)

SSL_VERSION_3 3 (SSL Version 3.0 only)

TLS_VERSION_1 4 (TLS Version 1 only)

TLSV1_SSLV3 5 (TLS Version 1 with SSL

 Version 3.0 compatibility)

Upon return, this field will be set to reflect the protocol version actually

negotiated. If the createFlags field specifies a value that does not include the

SSL_ENCRYPT flag, then this field will be unchanged from its input value.

unsigned timeout (input) The approximate number of seconds to wait for the SSL handshake protocol to

complete. A value of 0 indicates to wait forever for the handshake to complete.

unsigned char cipherKind[3]

(output)

The cipher kind (which is the SSL Version 2.0 cipher suite) negotiated by the

handshake.

unsigned short int cipherSuite

(output)

The cipher suite type negotiated by the handshake.

78 iSeries: UNIX-Type -- Secure Sockets APIs

unsigned short int*

cipherSuiteList (input)

A pointer to a cipher specification list that is to be used during the handshake

negotiation for this SSL session. This list is a string of concatenated cipher

specification values. Each cipher specification is an unsigned short integer value.

Any value provided will override, for this SSL session, the default cipher

specification list provided by a previous SSL_Init() API or SSL_Init_Application()

API . The valid cipher suites allowed are defined in <qsossl.h>. A value of

NULL indicates one of the following:

v Use the cipher specification list provided by a previous SSL_Init() API or

SSL_Init_Application() API

v Use the system default cipher specification list if the previous SSL_Init() API

or SSL_Init_Application() API did not provide a cipher specification list

unsigned int cipherSuiteListLen

(input)

The number of cipher suite entries specified in the list pointed to by the

cipherSuiteList field.

unsigned char* peerCert (output) The pointer to the certificate received from the peer system. For a client, this is a

pointer to the server’s certificate. For a server with client authentication enabled,

this is a pointer to the client’s certificate. For a server without client

authentication this pointer value remains unchanged.

unsigned peerCertLen (output) The length of the certificate pointed to by the peerCert field.

int (*exitPgm)(SSLHandle* sslh)

(input)

A pointer to a user supplied function that is called whenever a certificate is

received during handshake processing. The exitPgm will be passed the pointer to

the handle, which could include the peer’s certificate. The exitPgm returns a

nonzero value if the peer’s certificate is accepted. The return of a zero value by

the exitPgm will cause the handshake processing to fail. Users of this function do

not need to provide an exit program. The pointer should be a NULL value if

there is not a user-supplied exit program. The exit program should be written in

a threadsafe manner.

int how (input) The type of SSL handshake to be performed. The following values may be

specified for handshake type and are defined in <qsossl.h>.

SSL_HANDSHAKE_AS_CLIENT (0)

Perform the handshake as a client.

SSL_HANDSHAKE_AS_SERVER (1)

Perform the handshake as a server.

SSL_HANDSHAKE_AS_SERVER_WITH_CLIENT_AUTH (2)

Perform the handshake as a server with client authentication.

SSL_HANDSHAKE_AS_SERVER_WITH_OPTIONAL_CLIENT_AUTH (3)

Perform the handshake as a server with optional client authentication.

Authorities

Authorization of *R (allow access to the object) to the key ring file and its associated files is required.

Return Value

The SSL_Handshake() API returns an integer. Possible values are:

[0]

 Successful return

[SSL_ERROR_BAD_CERTIFICATE]

 The certificate is bad.

[SSL_ERROR_BAD_CERT_SIG]

Secure sockets APIs 79

The certificate’s signature is not valid.

[SSL_ERROR_BAD_CERTIFICATE]

 The certificate is bad.

[SSL_ERROR_BAD_CIPHER_SUITE]

 A cipher suite that is not valid was specified.

[SSL_ERROR_BAD_MAC]

 A bad message authentication code was received.

[SSL_ERROR_BAD_MALLOC]

 Unable to allocate storage required for SSL processing.

[SSL_ERROR_BAD_MESSAGE]

 SSL received a badly formatted message.

[SSL_ERROR_BAD_PEER]

 The peer system is not recognized.

[SSL_ERROR_BAD_STATE]

 SSL detected a bad state in the SSL session.

[SSL_ERROR_CERTIFICATE_REJECTED]

 The certificate is not valid or was rejected by the exit program.

[SSL_ERROR_CERT_EXPIRED]

 The validity time period of the certificate is expired.

[SSL_ERROR_CLOSED]

 The SSL session ended.

[SSL_ERROR_IO]

 An error occurred in SSL processing; check the errno value.

[SSL_ERROR_NO_CERTIFICATE]

 No certificate is available for SSL processing.

[SSL_ERROR_NO_CIPHERS]

 No ciphers available or specified.

[SSL_ERROR_NO_INIT]

 SSL_Init() was not previously called for this job.

[SSL_ERROR_NOT_TRUSTED_ROOT]

 The certificate is not signed by a trusted certificate authority.

[SSL_ERROR_PERMISSION_DENIED]

 Permission was denied to access object.

[SSL_ERROR_SSL_NOT_AVAILABLE]

 SSL is not available for use.

[SSL_ERROR_UNKNOWN]

 An unknown or unexpected error occurred during SSL processing.

80 iSeries: UNIX-Type -- Secure Sockets APIs

[SSL_ERROR_UNSUPPORTED_CERTIFICATE_TYPE]

 OS/400 does not support the certificate’s type.

[SSL_ERROR_UNSUPPORTED_CERTIFICATE_TYPE]

 OS/400 does not support the certificate’s type.

Error Conditions

When the SSL_Handshake() API fails with a return code of [SSL_ERROR_IO], errno can be set to:

[EACCES]

 Permission denied.

[EBADF]

 Descriptor not valid.

[EBUSY]

 Resource busy.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EDEADLK]

 Resource deadlock avoided.

[EFAULT]

 Bad address.

 The system detected an address that was not valid while attempting to access the handle

parameter or one of the address fields in the handle parameter.

[EINTR]

 Interrupted function call.

[EINVAL]

 Parameter not valid.

 This error code indicates one of the following:

v The socket_descriptor type is not SOCK_STREAM or address family is not AF_INET or

AF_INET6.

v One of the parameters passed is not valid or is NULL.

v The protocol field contains a value that is not valid.

[EALREADY]

 Operation already in progress.

 An SSL_Handshake() API has already been previously successfully completed.

[EIO]

 Input/output error.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

[ENOTCONN]

Secure sockets APIs 81

Requested operation requires a connection.

 This error code indicates one of the following:

v The socket_descriptor is not for a socket that is in a connected state.

v The socket_descriptor has not had SSL support enabled.

[ENOTSOCK]

 The specified descriptor does not reference a socket.

[EPIPE]

 Broken pipe.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EUNKNOWN]

 Unknown system state.

 Any errno that can be returned by send() or recv() can be returned by this API. See Sockets APIs for a

description of the errno values they return.

If an errno is returned that is not in this list, see “Errno Values for UNIX-Type Functions” on page 108 for

a description of the errno.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. The SSL_Handshake() function is only valid on sockets that have an address family of AF_INET or

AF_INET6 and a socket type of SOCK_STREAM. If the descriptor pointed to by the handle structure

parameter does not have the correct address family and socket type, [SSL_ERROR_IO] is returned and

the errno value is set to EINVAL.

2. The SSL_Handshake() function can be called only one time per SSL session. If a secondary call of

SSL_Handshake() occurs within the same established SSL session, then it will fail and the errno will be

set to [einval].

3. A successful SSL_Init() or or SSL_Init_Application() API and a successful SSL_Create() API must be

called prior to an SSL_Handshake() API. The SSL_Init() API or SSL_Init_Application() API is used to

establish a certificate and private key for either of the following:

v A successful handshake as a server

v A successful handshake as a client when connected to a server performing client authentication
4. The SSL_Create() API is used to enable SSL support for the specified socket descriptor.

82 iSeries: UNIX-Type -- Secure Sockets APIs

unix8.htm

5.

When doing SSL_Handshake() with a how parameter value of SSL_HANDSHAKE_AS_SERVER,

SSL_HANDSHAKE_AS_SERVER_WITH_CLIENT_AUTH, or

SSL_HANDSHAKE_AS_SERVER_WITH_OPTIONAL_CLIENT_AUTH, the cipherSuite value (if TLS_VERSION_1 or

SSL_VERSION_3 protocol) or the cipherKind (if SSL_VERSION_2 protocol) will be the first cipher found in

the ordered cipherSuiteList list that was also found in the cipher list provided by the client during the

SSL handshake.

6. When doing SSL_Handshake() with a how parameter value of SSL_HANDSHAKE_AS_CLIENT, the cipher

specification list will be sent to the server in the client hello in the order found in the cipherSuiteList,

however the value from that list that is negotiated for the cipherSuite value (if TLS_VERSION_1 or

SSL_VERSION_3 protocol) or the cipherKind (if SSL_VERSION_2 protocol) is determined by the server

policy.

Related Information

v “SSL_Create()—Enable SSL Support for the Specified Socket Descriptor” on page 72—Enable SSL

Support for the Specified Socket Descriptor
v “SSL_Destroy()—End SSL Support for the Specified SSL Session” on page 75—End SSL Support for the

Specified SSL Session
v “SSL_Init()—Initialize the Current Job for SSL”—Initialize the Current Job for SSL
v “SSL_Read()—Receive Data from an SSL-Enabled Socket Descriptor” on page 95—Receive Data from

an SSL-Enabled Socket Descriptor
v “SSL_Read()—Receive Data from an SSL-Enabled Socket Descriptor” on page 95—Write Data to an

SSL-Enabled Socket Descriptor

 API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

SSL_Init()—Initialize the Current Job for SSL

 Syntax

 #include <qsossl.h>

 int SSL_Init(SSLInit* init)

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The SSL_Init() function is used to establish the SSL security information to be used for all SSL sessions

for the current job. The SSL_Init() API establishes the certificate and the associated public and private key

information for use by the SSL handshake protocol processing when acting as a server or when acting as

a client. The certificate and key information is needed by an application that is acting as a client in the

situations where the client is connecting to a server which has enabled and requires client authentication.

Secure sockets APIs 83

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

SSLInit * init (input)

The pointer to an SSLInit structure. SSLInit is a typedef for a buffer of type struct SSLInitStr. In

<qsossl.h>, struct SSLInitStr is defined as the following:

 struct SSLInitStr { /* SSLInitStr */

 char* keyringFileName; /* Key ring file name */

 char* keyringPassword; /* Key ring file password */

 unsigned short int* cipherSuiteList; /* List of cipher suites */

 unsigned int cipherSuiteListLen; /* number of entries in

 the cipher suites list */

};

 The fields within the SSLInit structure as pointed to by init are defined as follows:

char *keyringFileName (input)

A pointer to a null-terminated character string, identifying the path to the key database file to be

used for this job’s SSL processing. The path must be a fully qualified integrated file system file

name.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgSSL_Init()—Initialize the Current Job for SSL (using NLS-enabled path name)” on page

68 for a description of supplying the keyringFileName in any CCSID.

char *keyringPassword (input)

A pointer to a null-terminated character string, identifying the password for the key database file

named in the keyringFileName field.

 If this parameter’s value is equal to NULL, then the SSL_Init() support will attempt to extract the

key database password that has been securely stored on the system.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

unsigned short int* cipherSuiteList (input)

A pointer to the cipher specification list to be used during the SSL handshake protocol for this

job. This list is a string of concatenated cipher specification values. A cipher specification value is

an unsigned short integer. Any value provided will override any values provided by a previous

SSL_Init() API or SSL_Init_Application() API or the system default cipher specification list if the

previous SSL_Init() API or SSL_Init_Application() API did not provide a cipher specification list. A

value of NULL for this parameter indicates one of the following:

v Use the cipher specification list provided by a previous SSL_Init() API or SSL_Init_Application()

API

v Use the system default cipher specification list if a previous SSL_Init() API or

SSL_Init_Application() API was not done

The caller specifies the preferred order of the cipher specifications. The cipher specification

values, shown here not in preferred or strength order, are defined in <qsossl.h> as the following:

84 iSeries: UNIX-Type -- Secure Sockets APIs

TLS_RSA_WITH_NULL_MD5 0x0001

 TLS_RSA_WITH_NULL_SHA 0x0002

 TLS_RSA_EXPORT_WITH_RC4_40_MD5 0x0003

 TLS_RSA_WITH_RC4_128_MD5 0x0004

 TLS_RSA_WITH_RC4_128_SHA 0x0005

 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 0x0006

 TLS_RSA_WITH_DES_CBC_SHA 0x0009

 TLS_RSA_WITH_3DES_EDE_CBC_SHA 0x000A

 TLS_RSA_WITH_AES_128_CBC_SHA 0x002F

 TLS_RSA_WITH_AES_256_CBC_SHA 0x0035

 TLS_RSA_WITH_RC2_CBC_128_MD5 0xFF01

 TLS_RSA_WITH_DES_CBC_MD5 0xFF02

 TLS_RSA_WITH_3DES_EDE_CBC_MD5 0xFF03

 Notes:

1. The SSL_RSA_EXPORT_WITH_DES40_CBC_SHA cipher is not supported by OS/400.

2. The list of cipher specifications will be different between the Cryptographic Access Provider

56-Bit (5722AC2)and Cryptographic Access Provider 128-Bit (5722AC3) licensed products. If

one of the cryptographic products is installed and an application attempts to use a cipher

specification that is not allowed only for that cryptographic product, they will receive an

EINVAL errno.

3. The default cipher suite list for the Internet Connection Secure Server (US) 5722AC3 product

in preference order is as follows:

TLS_RSA_WITH_RC4_128_MD5

TLS_RSA_WITH_RC4_128_SHA

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_DES_CBC_SHA

TLS_RSA_WITH_DES_CBC_MD5

TLS_RSA_WITH_3DES_EDE_CBC_MD5

TLS_RSA_WITH_RC2_CBC_128_MD5

TLS_RSA_EXPORT_WITH_RC4_40_MD5

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

4. The default cipher suite list for the Internet Connection Secure Server (US) 5722AC2 product

in preference order is as follows: (5722AC2 is supported but no longer shipped)

TLS_RSA_WITH_DES_CBC_SHA

TLS_RSA_WITH_DES_CBC_MD5

TLS_RSA_EXPORT_WITH_RC4_40_MD5

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

unsigned int cipherSuiteListLen (input)

The number of cipher suite entries specified in the list pointed to by the cipherSuiteList

parameter.

Authorities

Authorization of *R (allow access to the object) to the key database file and its associated files is required.

Secure sockets APIs 85

Return Value

The SSL_Init() API returns an integer. Possible values are:

[0]

 Successful return

[SSL_ERROR_BAD_CIPHER_SUITE]

 A cipher suite that is not valid was specified.

[SSL_ERROR_IO]

 An error occurred in SSL processing; check the errno value.

[SSL_ERROR_KEYPASSWORD_EXPIRED]

 The specified key ring password has expired.

[SSL_ERROR_NO_KEYRING]

 No key ring file was specified.

[SSL_ERROR_SSL_NOT_AVAILABLE]

 SSL is not available for use.

[SSL_ERROR_UNKNOWN]

 An unknown or unexpected error occurred during SSL processing.

Error Conditions

When the SSL_Init() API fails with return code [SSL_ERROR_IO], errno can be set to:

[EINVAL]

 Parameter not valid.

[EACCES]

 Permission denied.

 This error code indicates one of the following:

v The keyringFileName field contains a file name to which the user is not authorized.

v The keyringPassword value is not valid for the specified keyringFileName.

[EBADF]

 Descriptor not valid.

 This error code indicates one of the following:

v The keyringFileName value does not specify a valid key ring file name.

[EFAULT]

 Bad address.

 The system detected an address that was not valid while attempting to access the init parameter

or one of the address fields in the init parameter.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EUNKNOWN]

 Unknown system state.

86 iSeries: UNIX-Type -- Secure Sockets APIs

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. A successful SSL_Init(), QlgSSL_Init (using NLS-enabled path name), or an SSL_Init_Application() API

must be used to enable a job for SSL processing before attempting to use any other SSL API.

2. If multiple SSL_Init_Application (), QlgSSL_Init, or SSL_Init() APIs are performed in a job, then only

the values associated with the last SSL_Init_Application(), QlgSSL_Init, or or SSL_Init() performed are

used.

3. If the keyringPassword parameter pointer value is equal to NULL, then SSL_Init() will attempt to

extract the password value as stored on the system with the keyringFileName parameter’s value. The

existence of the securely stored key database password is based on a configuration selection made

during the creation of the key database file.

Related Information

v QlgSSL_Init()—Initialize the Current Job for SSL (using NLS-enabled path name)
v “SSL_Create()—Enable SSL Support for the Specified Socket Descriptor” on page 72—Enable SSL

Support for the Specified Socket Descriptor
v “SSL_Destroy()—End SSL Support for the Specified SSL Session” on page 75)—End SSL Support for the

Specified SSL Session
v “SSL_Handshake()—Initiate the SSL Handshake Protocol” on page 77—Initiate the SSL Handshake

Protocol
v “SSL_Init_Application()—Initialize the Current Job for SSL Processing Based on the Application

Identifier” on page 88—Initialize the Current Job for SSL Processing Based on the Application Identifier
v “SSL_Read()—Receive Data from an SSL-Enabled Socket Descriptor” on page 95—Receive Data from

an SSL-Enabled Socket Descriptor
v “SSL_Write()—Write Data to an SSL-Enabled Socket Descriptor” on page 102—Write Data to an

SSL-Enabled Socket Descriptor

 API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

Secure sockets APIs 87

#TOP_OF_PAGE
unix.htm
aplist.htm

SSL_Init_Application()—Initialize the Current Job for SSL Processing

Based on the Application Identifier

 Syntax

 #include <qsossl.h>

 int SSL_Init_Application(SSLInitApp*

 init_app)

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The SSL_Init_Application() function is used to establish the SSL security information to be used for all SSL

sessions for the current job based on the specified application identifier. The SSL_Init_Application() API

uses the application identifier to determine and then establish the certificate and the associated public

and private key information for use by the SSL handshake protocol processing when acting as a server or

when acting as a client. The certificate and key information is needed by an application that is acting as

a client in the situaitons where the client is connecting to a server which has enabled and requires client

authentication.

Parameters

SSLInitApp * init_app (input)

The pointer to an SSLInitApp value. SSLInitApp is a typedef for a buffer of type struct

SSLInitAppStr. In <qsossl.h>, struct SSLInitAppStr is defined as the following:

 struct SSLInitAppStr { /* SSLInitAppStr */

 char* applicationID; /* application id value */

 unsigned int applicationIDLen; /* length of application id */

 char* localCertificate; /* local certificate */

 unsigned int localCertificateLen; /* ength of local certificate */

 unsigned short int* cipherSuiteList; /* List of cipher suites */

 unsigned int cipherSuiteListLen; /* number of entries in

 the cipher suites list */

 unsigned int sessionType; /* the type of application as

 registered */

 unsigned int reserved1; /* reserved - must be 0 */

 unsigned int protocol; /* SSL protocol version */

 unsigned int timeout; /* cache timeout (seconds) */

 char reserved[12]; /* reserved - must be NULL (0s)*/

};

 The fields within the SSLInitApp structure as pointed to by init_app are defined as follows:

88 iSeries: UNIX-Type -- Secure Sockets APIs

char *applicationID (input)

A pointer to a null terminated character string identifying the application identifier value that

was used to register the application using the Register Application for Certificate Use, (OPM,

QSYRGAP; ILE, QsyRegisterAppForCertUse) API. See the Register Application for Certificate Use

API for information on the format and values allowed for the application identifier.

char *applicationIDLen (input)

The number of characters in the application identifier string as specified by the applicationID

parameter.

char *localCertificate (input)

On input, the localCertificate pointer must be set to point to storage that has been allocated by

the calling application that will be used on output to contain the application’s registered local

certificate. If a certificate is not to be returned then set this pointer’s value to NULL and the

localCertificateLen value to zero (0). The storage should be large enough to accomodate the size

of the certificate. Most certificates are less than 2K in length. On output, the localCertificate

pointer will not be changed, though the storage it points to will contain the registered

application’s certificate. The certificate will be the one registered for that application by the

Register Application for Certificate Use (OPM, QSYRGAP; ILE, QsyRegisterAppForCertUse) API.

See the Register Application for Certificate Use API for information on the format and values

allowed for the application identifier.

unsigned intlocalCertificateLen (input)

On input, this value must equal the number of characters available in the storage pointed to by

the localCertificate pointer. Set this value to 0 if you do not want a certificate returned by this

API. On output, this value is equal to the length of the certificate. If the certificate will not fit into

the storage provided, then this value will be set to the length required to contain the certificate.

unsigned short int* cipherSuiteList (input)

A pointer to the cipher specification list to be used during the SSL handshake protocol for this

job. This list is a string of concatenated cipher specification values. A cipher specification value is

an unsigned short integer. Any value provided will override any values provided by a previous

SSL_Init_Application() API or SSL_Init() API or the system default cipher specification list if the

previous SSL_Init_Application() API or SSL_Init() API did not provide a cipher specification list. A

value of NULL for this parameter indicates one of the following:

v Use the cipher specification list provided by a previous SSL_Init_Application() API or SSL_Init()

API

v Use the system default cipher specification list if a previous SSL_Init_Application() API or

SSL_Init() API was not done

The caller specifies the preferred order of the cipher specifications. The cipher specification

values, shown here not in preferred or strength order, are defined in <qsossl.h> as the following:

 TLS_RSA_WITH_NULL_MD5 0x0001

 TLS_RSA_WITH_NULL_SHA 0x0002

 TLS_RSA_EXPORT_WITH_RC4_40_MD5 0x0003

 TLS_RSA_WITH_RC4_128_MD5 0x0004

 TLS_RSA_WITH_RC4_128_SHA 0x0005

 TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 0x0006

 TLS_RSA_WITH_DES_CBC_SHA 0x0009

 TLS_RSA_WITH_3DES_EDE_CBC_SHA 0x000A

 TLS_RSA_WITH_AES_128_CBC_SHA 0x002F

 TLS_RSA_WITH_AES_256_CBC_SHA 0x0035

Secure sockets APIs 89

TLS_RSA_WITH_RC2_CBC_128_MD5 0xFF01

 TLS_RSA_WITH_DES_CBC_MD5 0xFF02

 TLS_RSA_WITH_3DES_EDE_CBC_MD5 0xFF03

 Notes:

1. The SSL_RSA_EXPORT_WITH_DES40_CBC_SHA cipher is not supported by OS/400.

2. The list of cipher specifications will be different between the Cryptographic Access Provider

56-Bit (5722AC2), Cryptographic Access Provider 128-Bit (5722AC3) licensed products. If one

of the cryptographic products is installed and an application attempts to use a cipher

specification that is not allowed only for that cryptographic product, they will receive an

EINVAL errno.

3.

The default cipher suite list for the Internet Connection Secure Server (US) 5722AC3

product in preference order is as follows:

TLS_RSA_WITH_RC4_128_MD5

TLS_RSA_WITH_RC4_128_SHA

TLS_RSA_WITH_AES_128_CBC_SHA

TLS_RSA_WITH_AES_256_CBC_SHA

TLS_RSA_WITH_3DES_EDE_CBC_SHA

TLS_RSA_WITH_DES_CBC_SHA

TLS_RSA_WITH_DES_CBC_MD5

TLS_RSA_WITH_3DES_EDE_CBC_MD5

TLS_RSA_WITH_RC2_CBC_128_MD5

TLS_RSA_EXPORT_WITH_RC4_40_MD5

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

4. The default cipher suite list for the Internet Connection Secure Server (US) 5722AC2 product

in preference order is as follows: (5722AC2 is supported but no longer shipped)

TLS_RSA_WITH_DES_CBC_SHA

TLS_RSA_WITH_DES_CBC_MD5

TLS_RSA_EXPORT_WITH_RC4_40_MD5

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5

unsigned int cipherSuiteListLen (input)

The number of cipher suite entries specified in the list pointed to by the cipherSuiteList

parameter.

unsigned int sessionType (output)

The type registered for the application. The following values are returned in sessionType and are

defined in <qsossl.h>.

 SSL_REGISTERED_AS_CLIENT 0

 SSL_REGISTERED_AS_SERVER 1

 SSL_REGISTERED_AS_SERVER_WITH_CLIENT_AUTH 2

 SSL_REGISTERED_AS_SERVER_WITH_OPTIONAL_CLIENT_AUTH 3

 SSL_REGISTERED_AS_NOT_SPECIFIED 99

unsigned int reserved1 (input)

This reserved field must be set to 0.

unsigned int protocol (input)

The protocol(s) that are acceptable as the handshake protocol for this job. The following values

may be specified for protocol and are defined in <qsossl.h>.

 SSL_VERSION_CURRENT 0 (TLS with SSL Version 3.0 and SSL

 Version 2.0 compatibility)

 SSL_VERSION_2 2 (SSL Version 2.0 only)

 SSL_VERSION_3 3 (SSL Version 3.0 only)

90 iSeries: UNIX-Type -- Secure Sockets APIs

TLS_VERSION_1 4 (TLS Version 1 only)

 TLSV1_SSLV3 5 (TLS Version 1 with SSL

 Version 3.0 compatibility)

unsigned int timeout (input)

The time period (in seconds) for which TLS Version 1.0 and SSL Version 3.0 session parameters

are cached for use with abbreviated SSL handshakes. The valid range for timeout is from 1 to

86,400 seconds (24 hours). Not specifying a value (0) will default to the maximum timeout, and

specifying a value of 0xffffffff will disable caching. The following values are defined in

<qsossl.h>.

 SSL_TIMEOUT_DEFAULT 0 (Use default timeout, 24 hours)

 SSL_TIMEOUT_MAX 86400 (Use maximum timeout, 24 hours)

 SSL_TIMEOUT_DISABLE 0xffffffff (Disable caching of session parameters

 for abbreviated handshakes)

char reserved[12] (input)

This reserved field must be set to NULL (0s).

Authorities

Authorization of *R (allow access to the object) to the key database file and its associated files is required.

The certificate is stored in a key database file.

Return Value

The SSL_Init_Application() API returns an integer. Possible values are:

[0]

 Successful return

[SSL_ERROR_BAD_CIPHER_SUITE]

 A cipher suite that is not valid was specified.

[SSL_ERROR_CERT_EXPIRED]

 The validity time period of the certificate is expired.

[SSL_ERROR_KEYPASSWORD_EXPIRED]

 The specified key ring password has expired.

[SSL_ERROR_NO_KEYRING]

 No key ring file was found.

[SSL_ERROR_NOT_REGISTERED]

 The application identifier is not registered with the certificate registry facility.

[SSL_ERROR_NOT_TRUSTED_ROOT]

 The certificate is not signed by a trusted certificate authority.

[SSL_ERROR_NO_CERTIFICATE]

 No certificate is available for SSL processing.

[SSL_ERROR_IO]

 An error occurred in SSL processing; check the errno value.

[SSL_ERROR_SSL_NOT_AVAILABLE]

 SSL is not available for use.

[SSL_ERROR_UNKNOWN]

 An unknown or unexpected error occurred during SSL processing.

Secure sockets APIs 91

Error Conditions

When the SSL_Init_Application() API fails with return code [SSL_ERROR_IO], errno can be set to:

[EINVAL]

 Parameter not valid.

[EACCES]

 Permission denied.

 This error code indicates one of the following:

v The applicationID field contains a registered application identifier to which the user is not

authorized.

v The user profile, which the application is operating under, is not authorized to the key

database file or its associated files.

[EFAULT]

 Bad address.

 The system detected an address that was not valid while attempting to access the init_app

parameter or one of the address fields in the init_app parameter.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EUNKNOWN]

 Unknown system state.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. Before the SSL_Init_Application() API can be used, the user must have registered the application using

the Register Application for Certificate Use (OPM, QSYRGAP; ILE, QsyRegisterAppForCertUse) API.

The Register Application For Certificate Use API registers an application with the registry facility,

allowing an application to be associated with a specific certificate. The Register Application for

Certificate Use is described in the System Programming Interface Reference. If the applicaiton is not

registered with the registry facility, then an error of SSL_ERROR_NOT_REGISTERED will be returned

by SSL_Init_Application().

2. A successful SSL_Init(), SSL_Init (using NLS-enabled path name), or an SSL_Init_Application() API must

be used to enable a job for SSL processing before attempting to use any other SSL API.

3. If multiple SSL_Init_Application(), SSL_Init (using NLS-enabled path name), or multiple SSL_Init() APIs

are performed in a job, then only the values associated with the last SSL_Init_Application(), SSL_Init

(using NLS-enabled path name), or SSL_Init() performed are used.

4. If the SSL_Init_Application() API or SSL_Init() API are both performed in the same job, then only the

values associated with the last API performed are used.

5. The reserved fields in the SSLInitApp structure must be set to NULLs (0s) before using this API.

92 iSeries: UNIX-Type -- Secure Sockets APIs

Related Information

v “QlgSSL_Init()—Initialize the Current Job for SSL (using NLS-enabled path name)” on page

68—Initialize the Current Job for SSL (using NLS-enabled path name)
v “SSL_Create()—Enable SSL Support for the Specified Socket Descriptor” on page 72—Enable SSL

Support for the Specified Socket Descriptor
v “SSL_Destroy()—End SSL Support for the Specified SSL Session” on page 75)—End SSL Support for the

Specified SSL Session
v “SSL_Init()—Initialize the Current Job for SSL” on page 83—Initialize the Current Job for SSL
v “SSL_Handshake()—Initiate the SSL Handshake Protocol” on page 77—Initiate the SSL Handshake

Protocol
v “SSL_Read()—Receive Data from an SSL-Enabled Socket Descriptor” on page 95—Receive Data from

an SSL-Enabled Socket Descriptor
v “SSL_Write()—Write Data to an SSL-Enabled Socket Descriptor” on page 102—Write Data to an

SSL-Enabled Socket Descriptor

 API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

SSL_Perror()—Print SSL Error Message

 Syntax

 #include <qsossl.h>

 void SSL_Perror(int sslreturnvalue,

 const char* string);

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The SSL_Perror() function prints an error message to stderr. If string is not NULL and does not point to a

null character, the string pointed to by string is printed to the standard error stream. If a string is printed,

it is followed by a colon and a space. Regardless of if string was printed or not, the message associated

with the sslreturnvalue is printed followed by a new-line character. Also, the message associated with the

thread’s errno is printed followed by a new-line character.

Parameters

int sslreturnvalue (Input)

The Return Value received from a SSL API.

char* string (Input)

The string to be printed prior to the message associated with the sslreturnvalue. If no preceding

message is desired, NULL must be entered.

Secure sockets APIs 93

#TOP_OF_PAGE
unix.htm
aplist.htm

Authorities

No authorization is required.

Return Value

There is no return value.

Error Conditions

This API calls the Retrieve SSL Runtime Error Message (SSL_Strerror) API in order to perform its task. It

inherits all error conditions from this function. If the sslreturnvalue is unrecognized or if unable to

retrieve the message corresponding to sslreturnvalue, then an Unknown error message will be printed

following the string. Also, the message associated with the value found in the thread’s errno is printed.

Note: the value of errno may be updated by SSL_Perror() in some error conditions.

Error Messages

See Error Conditions.

Related Information

v “SSL_Strerror()—Retrieve SSL Runtime Error Message” on page 99—Retrieve SSL Runtime Error

Message
v “SSL_Create()—Enable SSL Support for the Specified Socket Descriptor” on page 72—Enable SSL

Support for the Specified Socket Descriptor
v “SSL_Destroy()—End SSL Support for the Specified SSL Session” on page 75—End SSL Support for the

Specified SSL Session
v “SSL_Handshake()—Initiate the SSL Handshake Protocol” on page 77—Initiate the SSL Handshake

Protocol
v “SSL_Init()—Initialize the Current Job for SSL” on page 83—Initialize the Current Job for SSL
v “SSL_Init_Application()—Initialize the Current Job for SSL Processing Based on the Application

Identifier” on page 88—Initialize the Current Job for SSL Processing Based on the Application Identifier
v “SSL_Read()—Receive Data from an SSL-Enabled Socket Descriptor” on page 95—Receive Data from

an SSL-Enabled Socket Descriptor
v “SSL_Write()—Write Data to an SSL-Enabled Socket Descriptor” on page 102—Write Data to an

SSL-Enabled Socket Descriptor

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how SSL_Perror() is used:

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <qsossl.h>

#include <netinet/in.h>

#include <arpa/inet.h>

#include <errno.h>

/* bufferLen is 250 bytes */

#define bufferLen 250

void main()

{

 int bufferLen, on = 1, rc = 0, sd, sd2, addrlen = 0;

94 iSeries: UNIX-Type -- Secure Sockets APIs

aboutapis.htm#CODEDISCLAIMER

char buffer[bufferLen];

 SSLInit sslinit;

 SSLHandle* sslh;

 struct sockaddr_in addr;

 unsigned short int cipher[3] = {

 SSL_RSA_WITH_RC4_128_MD5,

 SSL_RSA_WITH_RC4_128_SHA,

 SSL_RSA_EXPORT_WITH_RC4_40_MD5

 };

 /***/

 /* memset sslinit structure to hex zeros and */

 /* fill in values for the sslinit structure */

 /***/

 memset((char *)&SSL_Init, 0x00, sizeof(sslinit));

 sslinit.keyringFileName = "/keyringfile.kyr";

 sslinit.keyringPassword = NULL;

 sslinit.cipherSuiteList = &cipher[0];

 sslinit.cipherSuiteListLen = 3;

 /***/

 /* initialize SSL security call SSL_Init */

 /***/

 if ((rc = SSL_Init(&sslinit)) != 0)

 {

 SSL_Perror(rc, "Could not initialize SSL");

 }

 ...

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

SSL_Read()—Receive Data from an SSL-Enabled Socket Descriptor

 Syntax

 #include <qsossl.h>

 int SSL_Read(SSLHandle *handle,

 void *buffer,

 int buffer_length)

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

Secure sockets APIs 95

#TOP_OF_PAGE
unix.htm
aplist.htm

The SSL_Read() function is used by a program to receive data from an SSL-enabled socket descriptor.

Parameters

SSLHandle* handle (input)

The pointer to an SSLHandle for an SSL session. An SSLHandle is a typedef for a buffer of type

struct SSLHandleStr. In <qsossl.h>, struct SSLHandleStr is defined as the following:

 struct SSLHandleStr { /* SSLHandleStr */

 int fd; /* Socket descriptor */

 int createFlags; /* SSL_Create flags value */

 unsigned protocol; /* SSL protocol version */

 unsigned timeout; /* Timeout value in seconds */

 unsigned char cipherKind[3]; /* Current 2.0 cipher suite*/

 unsigned short int cipherSuite; /* Current 3.0 cipher suite */

 unsigned short int* cipherSuiteList; /* List of cipher suites */

 unsigned int cipherSuiteListLen; /* Number of entries in

 the cipher suites list */

 unsigned char* peerCert; /* Peer certificate */

 unsigned peerCertLen; /* Peer certificate length */

 int peerCertValidateRc; /* Return code from

 validation of certficate */

 int (*exitPgm)(struct SSLHandleStr* sslh);

 /* Authentication exit

 program called when a

 certificate is received

 during SSL handshake */

};

void *buffer (input)

A pointer to the user-supplied buffer in which the data that is received on the SSL session is to be

stored.

int buffer_length (input)

The length of the buffer.

Authorities

No authorization is required.

Return Value

The SSL_Read() API returns an integer. Possible values are:

[n]

 Successful, where n is the number of bytes read.

[SSL_ERROR_BAD_MESSAGE]

 SSL received a badly formatted message.

[SSL_ERROR_BAD_MAC]

 A bad message authentication code was received.

[SSL_ERROR_BAD_MALLOC]

 Unable to allocate storage required for SSL processing.

[SSL_ERROR_BAD_STATE]

 SSL detected a bad state in the SSL session.

[SSL_ERROR_CLOSED]

96 iSeries: UNIX-Type -- Secure Sockets APIs

The SSL session ended.

[SSL_ERROR_IO]

 An error occurred in SSL processing; check the errno value.

[SSL_ERROR_PERMISSION_DENIED]

 Permission was denied to access object.

[SSL_ERROR_UNKNOWN]

 An unknown or unexpected error occurred during SSL processing.

[SSL_ERROR_UNSUPPORTED_CERTIFICATE_TYPE]

 OS/400 does not support the certificate’s type.

Error Conditions

When the SSL_Read() API fails with return code [SSL_ERROR_IO], errno can be set to:

[EBADF]

 Descriptor not valid.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EFAULT]

 Bad address.

 One of the following conditions occurred:

v The system detected an address that was not valid while attempting to access the buffer

parameter.

v The system detected an address that was not valid while attempting to access the handle

parameter or one of the address fields in the handle parameter.

[EINVAL]

 Parameter not valid.

 This error code indicates one of the following:

v The socket_descriptor type is not SOCK_STREAM or address family is not AF_INET or

AF_INET6.

v One of the parameters passed is not valid or is NULL.

v The buffer_length parameter specifies a negative value.

[EIO]

 Input/output error.

[ENOTCONN]

 Requested operation requires a connection.

 This error code indicates one of the following:

v The socket_descriptor is not for a socket that is in a connected state.

v The socket_descriptor has not had SSL support enabled. This usually means that an SSL_Create()

has not been completed for this socket_descriptor.

[ENOTSOCK]

 The specified descriptor does not reference a socket.

[ETIMEDOUT]

Secure sockets APIs 97

A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EUNKNOWN]

 Unknown system state.

[EWOULDBLOCK]

 Operation would have caused the thread to be suspended.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. The SSL_Read() function is only valid on sockets that have an address family of AF_INET or AF_INET6

and a socket type of SOCK_STREAM. If the descriptor pointed to by the handle structure parameter does

not have the correct address family and socket type, [SSL_ERROR_IO] is returned and the errno value

is set to EINVAL.

2. The maximum length of data returned will not exceed 32 KB. This is due to the fact that SSL is a

record level protocol and the largest record allowed is 32 KB minus the necessary SSL record headers.

3. If the createFlags field in the SSLHandle specifies a value that does not include the SSL_ENCRYPT flag,

this function will simply call the sockets read() function.

4. Unpredictable results will occur when attempting to mix invocations to SSL_Read() and any of the

sockets read functions (recv(), read(), readv(), and so forth). It is strongly suggested that you do not mix

the SSL_Read() API with any of the sockets read functions.

5. Since SSL is a record-oriented protocol, SSL must receive an entire record before it can be decrypted

and any data returned to the application. Thus, a select() may indicate that data is available to be read,

but a subsequent SSL_Read() may hang waiting for the remainder of the SSL record to be received

when using blocking I/O.

6. A FIONREAD ioctl() cannot be used to determine the amount of data available for reading by using

SSL_Read().

7. SSL will ignore the out of band (OOB) data indicator. OOB will not affect the SSL application. OOB

will just be data to the SSL protocol.

8. For an SSL enabled socket, which must use a connection-oriented transport service (that is, TCP), a

returned value of zero indicates one of the following:

v The partner program has issued a close() for the socket.

v The partner program has issued a shutdown() to disable writing to the socket.

v The connection is broken and the error was returned on a previously issued socket function.

v A shutdown() to disable reading was previously done on the socket.
9. If an SSL_Read() is run on a socket that is set to non-blocking mode, and there is no data waiting to

be read on the SSL enabled socket, the return value will be equal to -10 and the errno will be set to

EWOULDBLOCK.

98 iSeries: UNIX-Type -- Secure Sockets APIs

Related Information

v “SSL_Create()—Enable SSL Support for the Specified Socket Descriptor” on page 72—Enable SSL

Support for the Specified Socket Descriptor

v “SSL_Destroy()—End SSL Support for the Specified SSL Session” on page 75—End SSL Support for the

Specified SSL Session

v “SSL_Handshake()—Initiate the SSL Handshake Protocol” on page 77—Initiate the SSL Handshake

Protocol

v “SSL_Init()—Initialize the Current Job for SSL” on page 83—Initialize the Current Job for SSL

v “SSL_Write()—Write Data to an SSL-Enabled Socket Descriptor” on page 102—Write Data to an

SSL-Enabled Socket Descriptor

 API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

SSL_Strerror()—Retrieve SSL Runtime Error Message

 Syntax

 #include <qsossl.h>

 char* SSL_Strerror(int sslreturnvalue,

 SSLErrorMsg* serrmsgp);

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The SSL_Strerror() function is used to retrieve an error message and associated text string which

describes an SSL return value.

Parameters

int sslreturnvalue (Input)

The Return Value received from a SSL API.

SSLErrorMsg* serrmsgp (Input)

The pointer to a SSLErrorMsg structure. If no SSLErrorMsg is provided, NULL must be entered.

SSLErrorMsg is a typedef for a buffer of type struct SSLErrorMsgStr. In <qsossl.h>, struct

SSLErrorMsg is defined as the following:

 struct SSLErrorMsgStr { /* SSLErrorMsgStr */

 char messageID[7]; /* Message identifier */

 char messageFile[20]; /* Qualified message file name */

};

The fields within the SSLErrorMsg structure as pointed to by serrmsgp are defined as follows:

char messageID[7] (output)

The message identifier which defines the message associated with the input sslreturnvalue.

Secure sockets APIs 99

#TOP_OF_PAGE
unix.htm
aplist.htm

char messageFile[20] (output)

The fully qualified message file name where the message associated with the messageID is

stored. The first 10 characters specify the file name, and the second 10 characters specify

the library.

Authorities

No authorization is required.

Return Value

The SSL_Strerror() API returns a pointer to the string. The null-terminated string is stored in the CCSID of

the job. If the serrmsgp is provided, the SSLErrorMsg struct will be updated to reflect the message

information corresponding to the string returned.

Error Conditions

If the sslreturnvalue is unrecognized, then an Unknown error message will be stored at the location

pointed to by the return value. Other error conditions will be handled as described under Error

Messages.

Error Messages

This API calls the Retrieve Message (QMHRTVM) API in order to perform its task. It inherits all error

conditions from this function. If errors are encountered while using the Retrieve Message API, they will

be reflected in the SSLErrorMsg fields (if provided) and any associated message replacement text will be

stored at the location pointed to by the return value.

Related Information

v “SSL_Perror()—Print SSL Error Message” on page 93—Print SSL Error Message
v “SSL_Create()—Enable SSL Support for the Specified Socket Descriptor” on page 72—Enable SSL

Support for the Specified Socket Descriptor
v “SSL_Destroy()—End SSL Support for the Specified SSL Session” on page 75—End SSL Support for the

Specified SSL Session
v “SSL_Handshake()—Initiate the SSL Handshake Protocol” on page 77—Initiate the SSL Handshake

Protocol
v “SSL_Init()—Initialize the Current Job for SSL” on page 83—Initialize the Current Job for SSL
v “SSL_Init_Application()—Initialize the Current Job for SSL Processing Based on the Application

Identifier” on page 88—Initialize the Current Job for SSL Processing Based on the Application Identifier
v “SSL_Read()—Receive Data from an SSL-Enabled Socket Descriptor” on page 95)—Receive Data from

an SSL-Enabled Socket Descriptor
v “SSL_Write()—Write Data to an SSL-Enabled Socket Descriptor” on page 102—Write Data to an

SSL-Enabled Socket Descriptor

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how SSL_Strerror() is used:

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <qsossl.h>

100 iSeries: UNIX-Type -- Secure Sockets APIs

aboutapis.htm#CODEDISCLAIMER

#include <netinet/in.h>

#include <arpa/inet.h>

#include <errno.h>

/* bufferLen is 250 bytes */

#define bufferLen 250

void main()

{

 int bufferLen, on = 1, rc = 0, sd, sd2, addrlen = 0;

 char buffer[bufferLen];

 SSLInit sslinit;

 SSLHandle* sslh;

 struct sockaddr_in addr;

 unsigned short int cipher[3] = {

 SSL_RSA_WITH_RC4_128_MD5,

 SSL_RSA_WITH_RC4_128_SHA,

 SSL_RSA_EXPORT_WITH_RC4_40_MD5

 };

 /***/

 /* memset sslinit structure to hex zeros and */

 /* fill in values for the sslinit structure */

 /***/

 memset((char *)&SSL_Init, 0x00, sizeof(sslinit));

 sslinit.keyringFileName = "/keyringfile.kyr";

 sslinit.keyringPassword = NULL;

 sslinit.cipherSuiteList = &cipher[0];

 sslinit.cipherSuiteListLen = 3;

 /***/

 /* initialize SSL security call SSL_Init */

 /***/

 if ((rc = SSL_Init(&sslinit)) != 0)

 {

 printf("SSL_Init() failed with rc = %d %s \n"

 "and errno = %d %s \n",rc,SSL_Strerror(rc, NULL),

 errno,strerror(errno));

 }

 ...

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Secure sockets APIs 101

#TOP_OF_PAGE
unix.htm
aplist.htm

SSL_Write()—Write Data to an SSL-Enabled Socket Descriptor

 Syntax

 #include <qsossl.h>

 int SSL_Write(SSLHandle *handle,

 void *buffer,

 int buffer_length)

 Service Program Name: QSOSSLSR

 Default Public Authority: *USE

 Threadsafe: Yes

The SSL_Write() function is used by a program to write data to an SSL-enabled socket descriptor.

Parameters

SSLHandle* handle (input)

The pointer to an SSLHandle for an SSL session. An SSLHandle is a typedef for a buffer of type

struct SSLHandleStr. In <qsossl.h>, struct SSLHandleStr is defined as the following:

 struct SSLHandleStr { /* SSLHandleStr */

 int fd; /* Socket descriptor */

 int createFlags; /* SSL_Create flags value */

 unsigned protocol; /* SSL protocol version */

 unsigned timeout; /* Timeout value in seconds */

 unsigned char cipherKind[3]; /* Current 2.0 cipher suite*/

 unsigned short int cipherSuite; /* Current 3.0 cipher suite */

 unsigned short int* cipherSuiteList; /* List of cipher suites */

 unsigned int cipherSuiteListLen; /* Number of entries in

 the cipher suites list */

 unsigned char* peerCert; /* Peer certificate */

 unsigned peerCertLen; /* Peer certificate length */

 int peerCertValidateRc; /* Return code from

 validation of certficate */

 int (*exitPgm)(struct SSLHandleStr* sslh);

 /* Authentication exit

 program called when a

 certificate is received

 during SSL handshake */

};

void *buffer (input)

A pointer to the user-supplied buffer in which the data to be written is stored.

int buffer_length (input)

The length of the buffer.

Authorities

No authorization is required.

102 iSeries: UNIX-Type -- Secure Sockets APIs

Return Value

SSL_Write() returns an integer. Possible values are:

[n]

 Successful, where n is the number of bytes written.

[SSL_ERROR_BAD_STATE]

 SSL detected a bad state in the SSL session.

[SSL_ERROR_CLOSED]

 The SSL session ended.

[SSL_ERROR_IO]

 An error occurred in SSL processing; check the errno value.

[SSL_ERROR_UNKNOWN]

 An unknown or unexpected error occurred during SSL processing.

Error Conditions

When the SSL_Write() API fails with return code [SSL_ERROR_IO], errno can be set to to one of the

following:

[EBADF]

 Descriptor not valid.

[EFAULT]

 Bad address.

 One of the following conditions occurred:

v The system detected an address that was not valid while attempting to access the buffer

parameter.

v The system detected an address that was not valid while attempting to access the handle

parameter or one of the address fields in the handle parameter.

[EINTR]

 Interrupted function call.

[EINVAL]

 Parameter not valid.

 This error code indicates one of the following:

v The socket_descriptor type is not SOCK_STREAM or address family is not AF_INET or

AF_INET6.

v One of the parameters passed is not valid or is NULL.

v The buffer_length parameter specifies a negative value.

[EIO]

 Input/output error.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

[ENOTCONN]

 Requested operation requires a connection.

Secure sockets APIs 103

This error code indicates one of the following:

v The socket_descriptor is not for a socket that is in a connected state.

v The socket_descriptor has not had SSL support enabled. This usually means that an SSL_Create()

has not been completed for this socket_descriptor.

[ENOTSOCK]

 The specified descriptor does not reference a socket.

[EPIPE]

 Broken pipe.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EUNKNOWN]

 Unknown system state.

[EWOULDBLOCK]

 Operation would have caused the thread to be suspended.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. The SSL_Write() function is only valid on sockets that have an address family of AF_INET or AF_INET6

and a socket type of SOCK_STREAM. If the descriptor pointed to by the handle structure parameter does

not have the correct address family and socket type, [SSL_ERROR_IO] is returned and the errno value

is set to EINVAL.

2. There is no maximum length of the data that can be written. However, SSL will segment the data into

multiple SSL record buffers if it will not fit in one SSL record buffer. The maximum SSL record size is

32 KB minus the necessary SSL record headers.

3. If the createFlags field in the SSLHandle specifies a value that does not include the SSL_ENCRYPT flag,

then this function will simply call the sockets write() function.

4. Unpredictable results will occur when attempting to mix calls to SSL_Write() and any of the sockets

write functions (send(), write(), writev(), and so forth). It is strongly suggested that you do not mix the

SSL_Write() API with any of the sockets write functions.

Related Information

v “SSL_Create()—Enable SSL Support for the Specified Socket Descriptor” on page 72—Enable SSL

Support for the Specified Socket Descriptor

v “SSL_Destroy()—End SSL Support for the Specified SSL Session” on page 75—End SSL Support for the

Specified SSL Session

104 iSeries: UNIX-Type -- Secure Sockets APIs

v “SSL_Handshake()—Initiate the SSL Handshake Protocol” on page 77—Initiate the SSL Handshake

Protocol

v “SSL_Init()—Initialize the Current Job for SSL” on page 83—Initialize the Current Job for SSL

v “SSL_Read()—Receive Data from an SSL-Enabled Socket Descriptor” on page 95—Receive Data from

an SSL-Enabled Socket Descriptor

 API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

Concepts

These are the concepts for this category.

Header Files for UNIX-Type Functions

Programs using the UNIX(R)-type functions must include one or more header files that contain

information needed by the functions, such as:

v Macro definitions

v Data type definitions

v Structure definitions

v Function prototypes

The header files are provided in the QSYSINC library, which is optionally installable. Make sure

QSYSINC is on your system before compiling programs that use these header files. For information on

installing the QSYSINC library, see Include files and the QSYSINC Library.

The table below shows the file and member name in the QSYSINC library for each header file used by

the UNIX-type APIs in this publication.

 Name of Header File Name of File in QSYSINC Name of Member

arpa/inet.h ARPA INET

arpa/nameser.h ARPA NAMESER

bse.h H BSE

bsedos.h H BSEDOS

bseerr.h H BSEERR

dirent.h H DIRENT

errno.h H ERRNO

fcntl.h H FCNTL

grp.h H GRP

inttypes.h H INTTYPES

limits.h H LIMITS

mman.h H MMAN

netdbh.h H NETDB

netinet/icmp6.h NETINET ICMP6

net/if.h NET IF

netinet/in.h NETINET IN

netinet/ip_icmp.h NETINET IP_ICMP

Secure sockets APIs 105

#TOP_OF_PAGE
unix.htm
aplist.htm
conQSYSINC.htm

Name of Header File Name of File in QSYSINC Name of Member

netinet/ip.h NETINET IP

netinet/ip6.h NETINET IP6

netinet/tcp.h NETINET TCP

netinet/udp.h NETINET UDP

netns/idp.h NETNS IDP

netns/ipx.h NETNS IPX

netns/ns.h NETNS NS

netns/sp.h NETNS SP

net/route.h NET ROUTE

nettel/tel.h NETTEL TEL

os2.h H OS2

os2def.h H OS2DEF

pwd.h H PWD

Qlg.h H QLG

qp0lchsg.h H QP0LCHSG

qp0lflop.h H QP0LFLOP

qp0ljrnl.h H QP0LJRNL

qp0lror.h H QP0LROR

qp0lrro.h H QP0LRRO

qp0lrtsg.h H QP0LRTSG

qp0lscan.h H QP0LSCAN

Qp0lstdi.h H QP0LSTDI

qp0wpid.h H QP0WPID

qp0zdipc.h H QP0ZDIPC

qp0zipc.h H QP0ZIPC

qp0zolip.h H QP0ZOLIP

qp0zolsm.h H QP0ZOLSM

qp0zripc.h H QP0ZRIPC

qp0ztrc.h H QP0ZTRC

qp0ztrml.h H QP0ZTRML

qp0z1170.h H QP0Z1170

qsoasync.h H QSOASYNC

qtnxaapi.h H QTNXAAPI

qtnxadtp.h H QTNXADTP

qtomeapi.h H QTOMEAPI

qtossapi.h H QTOSSAPI

resolv.h H RESOLVE

semaphore.h H SEMAPHORE

signal.h H SIGNAL

spawn.h H SPAWN

ssl.h H SSL

106 iSeries: UNIX-Type -- Secure Sockets APIs

Name of Header File Name of File in QSYSINC Name of Member

sys/errno.h H ERRNO

sys/ioctl.h SYS IOCTL

sys/ipc.h SYS IPC

sys/layout.h H LAYOUT

sys/limits.h H LIMITS

sys/msg.h SYS MSG

sys/param.h SYS PARAM

sys/resource.h SYS RESOURCE

sys/sem.h SYS SEM

sys/setjmp.h SYS SETJMP

sys/shm.h SYS SHM

sys/signal.h SYS SIGNAL

sys/socket.h SYS SOCKET

sys/stat.h SYS STAT

sys/statvfs.h SYS STATVFS

sys/time.h SYS TIME

sys/types.h SYS TYPES

sys/uio.h SYS UIO

sys/un.h SYS UN

sys/wait.h SYS WAIT

ulimit.h H ULIMIT

unistd.h H UNISTD

utime.h H UTIME

You can display a header file in QSYSINC by using one of the following methods:

v Using your editor. For example, to display the unistd.h header file using the Source Entry Utility

editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(5)

v Using the Display Physical File Member command. For example, to display the sys/stat.h header file,

enter the following command:

DSPPFM FILE(QSYSINC/SYS) MBR(STAT)

You can print a header file in QSYSINC by using one of the following methods:

v Using your editor. For example, to print the unistd.h header file using the Source Entry Utility editor,

enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(6)

v Using the Copy File command. For example, to print the sys/stat.h header file, enter the following

command:

CPYF FROMFILE(QSYSINC/SYS) TOFILE(*PRINT) FROMMBR(STAT)

Symbolic links to these header files are also provided in directory /QIBM/include.

Secure sockets APIs 107

Top | UNIX-Type APIs | APIs by category

Errno Values for UNIX-Type Functions

Programs using the UNIX(R)-type functions may receive error information as errno values. The possible

values returned are listed here in ascending errno value sequence.

 Name Value Text

EDOM 3001 A domain error occurred in a math function.

ERANGE 3002 A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or update operation.

ENOTOPEN 3004 File is not open.

ENOTREAD 3005 File is not opened for read operations.

EIO 3006 Input/output error.

ENODEV 3007 No such device.

ERECIO 3008 Cannot get single character for files opened for record I/O.

ENOTWRITE 3009 File is not opened for write operations.

ESTDIN 3010 The stdin stream cannot be opened.

ESTDOUT 3011 The stdout stream cannot be opened.

ESTDERR 3012 The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not correct.

EBADNAME 3014 The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open function is not correct.

EBADPOS 3017 The position specifier is not correct.

ENOPOS 3018 There is no record at the specified position.

ENUMMBRS 3019 Attempted to use ftell on multiple members.

ENUMRECS 3020 The current record position is too long for ftell.

EINVAL 3021 The value specified for the argument is not correct.

EBADFUNC 3022 Function parameter in the signal function is not set.

ENOENT 3025 No such path or directory.

ENOREC 3026 Record is not found.

EPERM 3027 The operation is not permitted.

EBADDATA 3028 Message data is not valid.

EBUSY 3029 Resource busy.

EBADOPT 3040 Option specified is not valid.

ENOTUPD 3041 File is not opened for update operations.

ENOTDLT 3042 File is not opened for delete operations.

EPAD 3043 The number of characters written is shorter than the expected

record length.

EBADKEYLN 3044 A length that was not valid was specified for the key.

EPUTANDGET 3080 A read operation should not immediately follow a write operation.

EGETANDPUT 3081 A write operation should not immediately follow a read operation.

EIOERROR 3101 A nonrecoverable I/O error occurred.

108 iSeries: UNIX-Type -- Secure Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Name Value Text

EIORECERR 3102 A recoverable I/O error occurred.

EACCES 3401 Permission denied.

ENOTDIR 3403 Not a directory.

ENOSPC 3404 No space is available.

EXDEV 3405 Improper link.

EAGAIN 3406 Operation would have caused the process to be suspended.

EWOULDBLOCK 3406 Operation would have caused the process to be suspended.

EINTR 3407 Interrupted function call.

EFAULT 3408 The address used for an argument was not correct.

ETIME 3409 Operation timed out.

ENXIO 3415 No such device or address.

EAPAR 3418 Possible APAR condition or hardware failure.

ERECURSE 3419 Recursive attempt rejected.

EADDRINUSE 3420 Address already in use.

EADDRNOTAVAIL 3421 Address is not available.

EAFNOSUPPORT 3422 The type of socket is not supported in this protocol family.

EALREADY 3423 Operation is already in progress.

ECONNABORTED 3424 Connection ended abnormally.

ECONNREFUSED 3425 A remote host refused an attempted connect operation.

ECONNRESET 3426 A connection with a remote socket was reset by that socket.

EDESTADDRREQ 3427 Operation requires destination address.

EHOSTDOWN 3428 A remote host is not available.

EHOSTUNREACH 3429 A route to the remote host is not available.

EINPROGRESS 3430 Operation in progress.

EISCONN 3431 A connection has already been established.

EMSGSIZE 3432 Message size is out of range.

ENETDOWN 3433 The network currently is not available.

ENETRESET 3434 A socket is connected to a host that is no longer available.

ENETUNREACH 3435 Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the requested operation.

ENOPROTOOPT 3437 The protocol does not support the specified option.

ENOTCONN 3438 Requested operation requires a connection.

ENOTSOCK 3439 The specified descriptor does not reference a socket.

ENOTSUP 3440 Operation is not supported.

EOPNOTSUPP 3440 Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not supported.

EPROTONOSUPPORT 3442 No protocol of the specified type and domain exists.

EPROTOTYPE 3443 The socket type or protocols are not compatible.

ERCVDERR 3444 An error indication was sent by the peer program.

ESHUTDOWN 3445 Cannot send data after a shutdown.

ESOCKTNOSUPPORT 3446 The specified socket type is not supported.

Secure sockets APIs 109

Name Value Text

ETIMEDOUT 3447 A remote host did not respond within the timeout period.

EUNATCH 3448 The protocol required to support the specified address family is not

available at this time.

EBADF 3450 Descriptor is not valid.

EMFILE 3452 Too many open files for this process.

ENFILE 3453 Too many open files in the system.

EPIPE 3455 Broken pipe.

ECANCEL 3456 Operation cancelled.

EEXIST 3457 File exists.

EDEADLK 3459 Resource deadlock avoided.

ENOMEM 3460 Storage allocation request failed.

EOWNERTERM 3462 The synchronization object no longer exists because the owner is no

longer running.

EDESTROYED 3463 The synchronization object was destroyed, or the object no longer

exists.

ETERM 3464 Operation was terminated.

ENOENT1 3465 No such file or directory.

ENOEQFLOG 3466 Object is already linked to a dead directory.

EEMPTYDIR 3467 Directory is empty.

EMLINK 3468 Maximum link count for a file was exceeded.

ESPIPE 3469 Seek request is not supported for object.

ENOSYS 3470 Function not implemented.

EISDIR 3471 Specified target is a directory.

EROFS 3472 Read-only file system.

EUNKNOWN 3474 Unknown system state.

EITERBAD 3475 Iterator is not valid.

EITERSTE 3476 Iterator is in wrong state for operation.

EHRICLSBAD 3477 HRI class is not valid.

EHRICLBAD 3478 HRI subclass is not valid.

EHRITYPBAD 3479 HRI type is not valid.

ENOTAPPL 3480 Data requested is not applicable.

EHRIREQTYP 3481 HRI request type is not valid.

EHRINAMEBAD 3482 HRI resource name is not valid.

EDAMAGE 3484 A damaged object was encountered.

ELOOP 3485 A loop exists in the symbolic links.

ENAMETOOLONG 3486 A path name is too long.

ENOLCK 3487 No locks are available.

ENOTEMPTY 3488 Directory is not empty.

ENOSYSRSC 3489 System resources are not available.

ECONVERT 3490 Conversion error.

E2BIG 3491 Argument list is too long.

110 iSeries: UNIX-Type -- Secure Sockets APIs

Name Value Text

EILSEQ 3492 Conversion stopped due to input character that does not belong to

the input codeset.

ETYPE 3493 Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that was not found or was

destroyed.

EBADOBJ 3495 Attempted to reference an object that was not found, was

destroyed, or was damaged.

EIDXINVAL 3496 Data space index used as a directory is not valid.

ESOFTDAMAGE 3497 Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution directory.

EOFFLINE 3499 Object is suspended.

EROOBJ 3500 Object is a read-only object.

EEAHDDSI 3501 Hard damage on extended attribute data space index.

EEASDDSI 3502 Soft damage on extended attribute data space index.

EEAHDDS 3503 Hard damage on extended attribute data space.

EEASDDS 3504 Soft damage on extended attribute data space.

EEADUPRC 3505 Duplicate extended attribute record.

ELOCKED 3506 Area being read from or written to is locked.

EFBIG 3507 Object too large.

EIDRM 3509 The semaphore, shared memory, or message queue identifier is

removed from the system.

ENOMSG 3510 The queue does not contain a message of the desired type and

(msgflg logically ANDed with IPC_NOWAIT).

EFILECVT 3511 File ID conversion of a directory failed.

EBADFID 3512 A file ID could not be assigned when linking an object to a

directory.

ESTALE 3513 File handle was rejected by server.

ESRCH 3515 No such process.

ENOTSIGINIT 3516 Process is not enabled for signals.

ECHILD 3517 No child process.

EBADH 3520 Handle is not valid.

ETOOMANYREFS 3523 The operation would have exceeded the maximum number of

references allowed for a descriptor.

ENOTSAFE 3524 Function is not allowed.

EOVERFLOW 3525 Object is too large to process.

EJRNDAMAGE 3526 Journal is damaged.

EJRNINACTIVE 3527 Journal is inactive.

EJRNRCVSPC 3528 Journal space or system storage error.

EJRNRMT 3529 Journal is remote.

ENEWJRNRCV 3530 New journal receiver is needed.

ENEWJRN 3531 New journal is needed.

EJOURNALED 3532 Object already journaled.

EJRNENTTOOLONG 3533 Entry is too large to send.

Secure sockets APIs 111

Name Value Text

EDATALINK 3534 Object is a datalink object.

ENOTAVAIL 3535 IASP is not available.

ENOTTY 3536 I/O control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its sort file size limit.

ETXTBSY 3543 Text file busy.

EASPGRPNOTSET 3544 ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be restarted.

ESCANFAILURE 3546 An object has been marked as a scan failure due to processing by

an exit program associated with the scan-related integrated file

system exit points.

 Top | UNIX-Type APIs | APIs by category

112 iSeries: UNIX-Type -- Secure Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 113

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

114 iSeries: UNIX-Type -- Secure Sockets APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 115

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

116 iSeries: UNIX-Type -- Secure Sockets APIs

����

Printed in USA

	Contents
	Secure sockets APIs
	OS/400 Global Secure Toolkit (GSKit) APIs
	APIs
	gsk_attribute_get_buffer()—Get character information about a secure session or an SSL environment
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	gsk_attribute_get_cert_info()—Get information about a local or partner certificate
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	gsk_attribute_get_enum()—Get enumerated information about a secure session or an SSL environment>
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	gsk_attribute_get_numeric_value()—Get numeric information about a secure session or an SSL environment
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	gsk_attribute_set_buffer()—Set character information for a secure session or an SSL environment
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	gsk_attribute_set_callback()—Set callback pointers to routines in the user application
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	gsk_attribute_set_enum()—Set enumerated information for a secure session or an SSL environment
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	gsk_attribute_set_numeric_value()—Set numeric information for a secure session or an SSL environment
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	gsk_environment_close()—Close an SSL environment
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	gsk_environment_init()—Initialize an SSL environment
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	gsk_environment_open()—Get a handle for an SSL environment
	Parameters
	Authorities
	Return Value
	Error Messages
	Usage Notes
	Related Information

	gsk_secure_soc_close()—Close a secure session
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	gsk_secure_soc_init()—Negotiate a secure session
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Error Messages
	Related Information

	gsk_secure_soc_misc()—Perform miscellaneous functions for a secure session
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Error Messages
	Related Information

	gsk_secure_soc_open()—Get a handle for a secure session
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Error Messages
	Related Information

	gsk_secure_soc_read()—Receive data on a secure session
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Error Messages
	Related Information

	gsk_secure_soc_startInit()—Start asynchronous operation to negotiate a secure session
	Parameters
	Authorities
	Return Values
	Error Conditions
	Error Messages
	Related Information

	gsk_secure_soc_startRecv()—Start asynchronous receive operation on a secure session
	Parameters
	Authorities
	Return Values
	Error Conditions
	Error Messages
	Related Information

	gsk_secure_soc_startSend()—Start asynchronous send operation on a secure session
	Parameters
	Authorities
	Return Values
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	gsk_secure_soc_write()—Send data on a secure session
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Error Messages
	Related Information

	gsk_strerror()—Retrieve GSKit runtime error message
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information
	Example

	OS/400 Secure Sockets Layer (SSL_) APIs
	QlgSSL_Init()—Initialize the Current Job for SSL (using NLS-enabled path name)
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	SSL_Create()—Enable SSL Support for the Specified Socket Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	SSL_Destroy()—End SSL Support for the Specified SSL Session
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	SSL_Handshake()—Initiate the SSL Handshake Protocol
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	SSL_Init()—Initialize the Current Job for SSL
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	SSL_Init_Application()—Initialize the Current Job for SSL Processing Based on the Application Identifier
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	SSL_Perror()—Print SSL Error Message
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	SSL_Read()—Receive Data from an SSL-Enabled Socket Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	SSL_Strerror()—Retrieve SSL Runtime Error Message
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	SSL_Write()—Write Data to an SSL-Enabled Socket Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	Concepts
	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

