
iSeries

UNIX-Type -- Sockets APIs

Version 5 Release 3

���

iSeries

UNIX-Type -- Sockets APIs

Version 5 Release 3

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 367.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Sockets APIs 1

APIs 1

Sockets System Functions 1

accept()—Wait for Connection Request and Make

Connection 4

Parameters 4

Authorities 5

Return Value 5

Error Conditions 5

Error Messages 6

Usage Notes 6

Related Information 7

accept_and_recv()—Wait for Connection Request and

Receive the First Message That Was Sent 8

Parameters 9

Authorities 10

Return Value 10

Error Conditions 10

Error Messages 11

Usage Notes 11

Related Information 13

bind()—Set Local Address for Socket 14

Parameters 14

Authorities 15

Return Value 15

Error Conditions 15

Error Messages 17

Usage Notes 17

Related Information 19

close()—Close File or Socket Descriptor 19

Parameters 20

Authorities 20

Return Value 20

Error Conditions 20

Error Messages 23

Usage Notes 23

Related Information 24

Example 24

connect()—Establish Connection or Destination

Address 25

Parameters 26

Authorities 26

Return Value 26

Error Conditions 26

Error Messages 29

Usage Notes 29

Related Information 31

fcntl()—Perform File Control Command 31

Parameters 31

Flags 33

File Locking 33

Authorities 37

Return Value 37

Error Conditions 37

Error Messages 40

Usage Notes 41

Related Information 42

Example 42

fstat()—Get File Information by Descriptor 43

Parameters 43

Authorities 44

Return Value 44

Error Conditions 44

Error Messages 46

Usage Notes 47

Related Information 48

Example 48

getdomainname()—Retrieve Domain Name 49

Parameters 49

Authorities 49

Return Value 49

Error Conditions 49

Error Messages 50

Usage Notes 50

Related Information 50

gethostid()—Retrieve Host ID 50

Authorities 50

Return Value 50

Usage Notes 51

Related Information 51

gethostname()—Retrieve Host Name 51

Parameters 52

Authorities 52

Return Value 52

Error Conditions 52

Error Messages 52

Usage Notes 52

Related Information 53

getpeername()—Retrieve Destination Address of

Socket 53

Parameters 54

Authorities 54

Return Value 54

Error Conditions 54

Error Messages 55

Usage Notes 55

Related Information 56

getsockname()—Retrieve Local Address of Socket . 56

Parameters 57

Authorities 57

Return Value 57

Error Conditions 57

Error Messages 58

Usage Notes 58

Related Information 59

getsockopt()—Retrieve Information about Socket

Options 60

Parameters 60

Authorities 65

Return Value 65

Error Conditions 65

Error Messages 66

© Copyright IBM Corp. 1998, 2005 iii

Usage Notes 66

Related Information 67

givedescriptor()—Pass Descriptor Access to Another

Job 67

Parameters 67

Authorities 68

Return Value 68

Error Conditions 68

Error Messages 68

Usage Notes 68

Related Information 69

ioctl()—Perform I/O Control Request 69

Parameters 69

Authorities 75

Return Value 75

Error Conditions 75

Error Messages 77

Usage Notes 78

Related Information 78

listen()—Invite Incoming Connections Requests . . 79

Parameters 79

Authorities 79

Return Value 79

Error Conditions 79

Error Messages 80

Usage Notes 80

Related Information 81

QsoCancelOperation()—Cancel an I/O Operation . . 81

Parameters 81

Authorities 81

Return Values 82

Errno Conditions 82

Error Messages 82

Usage Notes 82

Related Information 82

QsoCreateIOCompletionPort()—Create I/O

Completion Port 83

Authorities 83

Return Values 83

Errno Conditions 83

Error Messages 83

Usage Notes 83

Related Information 84

QsoDestroyIOCompletionPort()—Destroy I/O

Completion Port 84

Parameters 84

Authorities 84

Return Values 84

Errno Conditions 84

Error Messages 85

Usage Notes 85

Related Information 85

QsoGenerateOperationId()—Get an I/O Operation

ID 86

Parameters 86

Authorities 86

Return Values 86

Errno Conditions 86

Error Messages 87

Related Information 87

QsoIsOperationPending()—Check if an I/O

Operation is Pending 87

Parameters 87

Authorities 88

Return Values 88

Errno Conditions 88

Error Messages 88

Related Information 88

QsoPostIOCompletion()—Post I/O Completion

Request 89

Parameters 89

Authorities 90

Return Values 90

Errno Conditions 90

Error Messages 91

Related Information 91

QsoStartAccept()—Start asynchronous accept

operation 91

Parameters 92

Authorities 93

Return Values 93

Errno Conditions 93

Error Messages 94

Usage Notes 94

Related Information 94

QsoStartRecv()—Start Asynchronous Receive

Operation 95

Parameters 95

Authorities 96

Return Values 97

Errno Conditions 97

Error Messages 97

Usage Notes 97

Related Information 97

QsoStartSend()—Start Asynchronous Send

Operation 98

Parameters 98

Authorities 99

Return Values 99

Errno Conditions 100

Error Messages 100

Usage Notes 100

Related Information 100

QsoWaitForIOCompletion()—Wait for I/O

Operation 101

Parameters 101

Authorities 105

Return Values 105

Errno Conditions 105

Error Messages 106

Usage Notes 106

Related Information 106

Rbind()—Set Remote Address for Socket 107

Parameters 107

Authorities 108

Return Value 108

Error Conditions 108

Error Messages 109

Usage Notes 109

Related Information 109

read()—Read from Descriptor 110

iv iSeries: UNIX-Type -- Sockets APIs

Parameters 111

Authorities 111

Return Value 111

Error Conditions 111

Error Messages 115

Usage Notes 115

Related Information 117

Example 117

readv()—Read from Descriptor Using Multiple

Buffers 118

Parameters 118

Authorities 119

Return Value 119

Error Conditions 119

Error Messages 122

Usage Notes 122

Related Information 124

recv()—Receive Data 124

Parameters 125

Authorities 125

Return Value 125

Error Conditions 125

Error Messages 127

Usage Notes 127

Related Information 127

recvfrom()—Receive Data 128

Parameters 128

Authorities 129

Return Value 129

Error Conditions 129

Error Messages 131

Usage Notes 131

Related Information 132

recvmsg()—Receive a Message Over a Socket . . . 132

Parameters 133

Authorities 135

Return Value 135

Error Conditions 135

Error Messages 136

Usage Notes 137

Related Information 138

rexec()—Issue a Command on a Remote Host . . 139

Parameters 139

Return Value 140

Authorities 140

Error Conditions 140

Usage Notes 140

Related Information 141

Example 141

rexec_r()—Issue a Command on a Remote Host 142

Parameters 143

Return Value 143

Authorities 144

Error Conditions 144

Usage Notes 144

Related Information 144

Example 145

rexec_r_ts64()—Issue a Command on a Remote

Host 146

Usage Notes 146

rexec_ts64()—Issue a Command on a Remote Host 147

Usage Notes 147

select()—Wait for Events on Multiple Sockets . . . 148

Parameters 148

Authorities 149

Return Value 149

Error Conditions 149

Error Messages 149

Usage Notes 150

send()—Send Data 151

Parameters 151

Authorities 152

Return Value 152

Error Conditions 152

Error Messages 153

Usage Notes 153

Related Information 154

sendmsg()—Send a Message Over a Socket . . . 154

Parameters 155

Authorities 156

Return Value 156

Error Conditions 157

Error Messages 159

Usage Notes 160

Related Information 160

sendto()—Send Data 161

Parameters 162

Authorities 162

Return Value 162

Error Conditions 162

Error Messages 165

Usage Notes 165

Related Information 166

send_file()—Send a File over a Socket Connection 166

Parameters 166

Authorities 167

Return Value 167

Error Conditions 168

Error Messages 169

Usage Notes 169

Related Information 170

send_file64()—Send a File over a Socket

Connection 170

Parameters 171

Authorities 171

Usage Notes 171

setdomainname()—Set Domain Name 172

Parameters 172

Authorities 172

Return Value 172

Error Conditions 172

Error Messages 173

Usage Notes 173

Related Information 173

sethostid()—Set Host ID 173

Parameters 173

Authorities 173

Return Value 174

Error Conditions 174

Error Messages 174

Usage Notes 174

Related Information 174

Contents v

sethostname()—Set Host Name 175

Parameters 175

Authorities 175

Return Value 175

Error Conditions 175

Error Messages 176

Usage Notes 176

Related Information 176

setsockopt()—Set Socket Options 177

Parameters 177

Authorities 182

Return Value 182

Error Conditions 183

Error Messages 184

Usage Notes 184

Related Information 185

shutdown()—End Receiving and/or Sending of

Data on Socket 186

Parameters 186

Authorities 186

Return Value 186

Error Conditions 187

Error Messages 187

Usage Notes 187

Related Information 187

socket()—Create Socket 188

Parameters 188

Authorities 189

Return Value 189

Error Conditions 189

Error Messages 189

Usage Notes 190

Related Information 191

socketpair()—Create a Pair of Sockets 191

Parameters 191

Authorities 192

Return Value 192

Error Conditions 192

Error Messages 192

Usage Notes 193

Related Information 193

takedescriptor()—Receive Socket Access from

Another Job 193

Parameters 193

Authorities 193

Return Value 193

Error Conditions 194

Error Messages 194

Usage Notes 194

Related Information 195

write()—Write to Descriptor 195

Parameters 197

Authorities 197

Return Value 197

Error Conditions 197

Error Messages 202

Usage Notes 202

Related Information 204

Example 204

writev()—Write to Descriptor Using Multiple

Buffers 205

Parameters 205

Authorities 206

Return Value 206

Error Conditions 206

Error Messages 210

Usage Notes 211

Related Information 211

Sockets Network Functions 212

dn_comp()—Compress Domain Name 217

Parameters 217

Return Value 217

Error Conditions 217

Usage Notes 218

Related Information 218

dn_comp_ts64()—Compress Domain Name . . . 218

Usage Notes 218

dn_expand()—Expand Domain Name 219

Parameters 219

Return Value 219

Error Conditions 219

Usage Notes 220

Related Information 220

dn_find()—Search for Compressed Domain Name 220

Parameters 220

Return Value 221

Error Conditions 221

Usage Notes 221

Related Information 221

dn_find_ts64()—Search for Compressed Domain

Name 221

Usage Notes 222

dn_skipname()—Skip over Compressed Domain

Name 222

Parameters 222

Return Value 222

Error Conditions 222

Usage Notes 223

Related Information 223

endhostent()—Close Host Database 223

Authorities 223

Usage Notes 223

Related Information 224

endhostent_r()—Close Host Database 224

Parameters 224

Authorities 224

Return Value 224

Error Conditions 225

Usage Notes 225

Related Information 225

endnetent()—Close Network Database 225

Usage Notes 226

Authorities 226

Related Information 226

endnetent_r()—Close Network Database 226

Parameters 227

Authorities 227

Return Value 227

Error Conditions 227

Usage Notes 227

Related Information 227

endprotoent()—Close Protocol Database 228

vi iSeries: UNIX-Type -- Sockets APIs

Authorities 228

Usage Notes 228

Related Information 228

endprotoent_r()—Close Protocol Database 229

Parameters 229

Authorities 229

Return Value 229

Error Conditions 229

Usage Notes 229

Related Information 230

endservent()—Close Service Database 230

Authorities 230

Usage Notes 230

Related Information 231

endservent_r()—Close Service Database 231

Parameters 231

Authorities 231

Return Value 231

Error Conditions 232

Usage Notes 232

Related Information 232

freeaddrinfo()—Free Address Information 232

Parameters 233

Authorities 233

Usage Notes 233

Related Information 233

gai_strerror()—Retrieve Address Information

Runtime Error Message 233

Parameters 234

Authorities 234

Return Value 234

Usage Notes 234

Related Information 234

getaddrinfo()—Get Address Information 234

Parameters 235

Authorities 237

Return Value 237

Error Conditions 237

Usage Notes 238

Related Information 238

gethostbyaddr()—Get Host Information for IP

Address 239

Parameters 240

Authorities 240

Return Value 240

Error Conditions 240

Usage Notes 241

Related Information 241

gethostbyaddr_r()—Get Host Information for IP

Address 242

Parameters 242

Authorities 243

Return Value 243

Error Conditions 243

Usage Notes 244

Related Information 244

gethostbyname()—Get Host Information for Host

Name 245

Parameters 245

Authorities 245

Return Value 245

Error Conditions 246

Usage Notes 246

Related Information 247

gethostbyname_r()—Get Host Information for Host

Name 248

Parameters 248

Authorities: 249

Return Value 249

Error Conditions 249

Usage Notes 250

Related Information 251

gethostent()—Get Next Entry from Host Database 251

Authorities 251

Return Value 251

Usage Notes 252

Related Information 252

gethostent_r()—Get Next Entry from Host

Database 253

Parameters 253

Authorities 253

Return Value 253

Error Conditions 254

Usage Notes 254

Related Information 254

getnameinfo()—Get Name Information for Socket

Address 255

Parameters 255

Authorities 256

Return Value 256

Error Conditions 256

Usage Notes 256

Related Information 257

getnetbyaddr()—Get Network Information for IP

Address 257

Parameters 258

Authorities 258

Return Value 258

Usage Notes 258

Related Information 259

getnetbyaddr_r()—Get Network Information for IP

Address 259

Parameters 259

Authorities 260

Return Value 260

Error Conditions 260

Usage Notes 260

Related Information 261

getnetbyname()—Get Network Information for

Domain Name 261

Parameters 261

Authorities 262

Return Value 262

Usage Notes 262

Related Information 262

getnetbyname_r()—Get Network Information for

Domain Name 263

Parameters 263

Authorities 263

Return Value 263

Error Conditions 264

Usage Notes 264

Contents vii

Related Information 264

getnetent()—Get Next Entry from Network

Database 264

Authorities 265

Return Value 265

Usage Notes 265

Related Information 265

getnetent_r()—Get Next Entry from Network

Database 266

Parameters 266

Authorities 266

Return Value 266

Error Conditions 267

Usage Notes 267

Related Information 267

getprotobyname()—Get Protocol Information for

Protocol Name 267

Parameters 268

Authorities 268

Return Value 268

Usage Notes 268

Related Information 269

getprotobyname_r()—Get Protocol Information for

Protocol Name 269

Parameters 269

Authorities 270

Return Value 270

Error Conditions 270

Usage Notes 270

Related Information 271

getprotobynumber()—Get Protocol Information for

Protocol Number 271

Parameters 271

Authorities 271

Return Value 271

Usage Notes 272

Related Information 272

getprotobynumber_r()—Get Protocol Information

for Protocol Number 272

Parameters 273

Authorities 273

Return Value 273

Error Conditions 273

Usage Notes 273

Related Information 274

getprotoent()—Get Next Entry from Protocol

Database 274

Authorities 274

Return Value 274

Usage Notes 275

Related Information 275

getprotoent_r()—Get Next Entry from Protocol

Database 275

Parameters 276

Authorities 276

Return Value 276

Error Conditions 276

Usage Notes 276

Related Information 277

getservbyname()—Get Port Number for Service

Name 277

Parameters 277

Authorities 278

Return Value 278

Usage Notes 278

Related Information 278

getservbyname_r()—Get Port Number for Service

Name 279

Parameters 279

Authorities 279

Return Value 280

Error Conditions 280

Usage Notes 280

Related Information 280

getservbyport()—Get Service Name for Port

Number 281

Parameters 281

Authorities 281

Return Value 282

Usage Notes 282

Related Information 282

getservbyport_r()—Get Service Name for Port

Number 283

Parameters 283

Authorities 283

Return Value 283

Error Conditions 284

Usage Notes 284

Related Information 284

getservent()—Get Next Entry from Service

Database 285

Authorities 285

Return Value 285

Usage Notes 285

Related Information 286

getservent_r()—Get Next Entry from Service

Database 286

Parameters 286

Authorities 286

Return Value 287

Error Conditions 287

Usage Notes 287

Related Information 287

hstrerror()—Retrieve Resolver Error Message . . . 288

Parameters 288

Return Value 288

Authorities: 288

Error Conditions 288

Usage Notes 288

Related Information 288

Example 289

htonl()—Convert Long Integer to Network Byte

Order 289

Parameters 289

Authorities 289

Return Value 289

Usage Notes 289

Related Information 290

htons()—Convert Short Integer to Network Byte

Order 290

Parameters 290

Authorities 290

viii iSeries: UNIX-Type -- Sockets APIs

Return Value 290

Usage Notes 291

Related Information 291

inet_addr()—Translate Full Address to 32-bit IP

Address 291

Parameters 292

Authorities 292

Return Value 292

Error Conditions 292

Usage Notes 292

Related Information 293

inet_lnaof()—Separate Local Portion of IP Address 293

Parameters 294

Authorities 294

Return Value 294

Usage Notes 294

Related Information 294

inet_makeaddr()—Combine Network Portion and

Host Portion to Make IP Address 294

Parameters 295

Authorities 295

Return Value 295

Related Information 295

inet_netof()—Separate Network Portion of IP

Address 296

Parameters 296

Authorities 296

Return Value 296

Usage Notes 297

Related Information 297

inet_network()—Translate Network Portion of

Address to 32-bit IP Address 297

Parameters 298

Authorities 298

Return Value 298

Error Conditions 298

Related Information 298

inet_ntoa()—Translate IP Address to Dotted

Decimal Format 299

Parameters 299

Return Value 299

Usage Notes 299

inet_ntoa_r()—Translate IP Address to Dotted

Decimal Format 300

Parameters 300

Return Value 300

Error Conditions 300

inet_ntop()—Convert IPv4 and IPv6 Addresses

Between Binary and Text Form 301

Parameters 301

Authorities 301

Return Value 301

Error Conditions 301

Usage Notes 302

Related Information 302

inet_pton()—Convert IPv4 and IPv6 Addresses

Between Text and Binary Form 302

Parameters 303

Authorities 303

Return Value 303

Error Conditions 303

Usage Notes 303

Related Information 304

ns_addr()—Translate Network Services Address to

12-byte Address 304

Parameters 304

Return Value 304

Usage Notes 305

ns_ntoa()—Translate Network Services Address

from 12-byte Address/h2> 306

Parameters 306

Return Value 306

Usage Notes 306

ns_ntoa_r() — Translate Network Services Address

from 12-byte Address 307

Parameters 307

Return Value 307

Error Conditions 307

Usage Notes 308

ntohl()—Convert Long Integer to Host Byte Order 308

Parameters 308

Authorities 308

Return Value 309

Usage Notes 309

Related Information 309

ntohs()—Convert Short Integer to Host Byte Order 309

Parameters 309

Authorities 310

Return Value 310

Usage Notes 310

Related Information 310

res_close()—Close Socket and Reset _res Structure 310

Authorities: 310

Return Value 310

Usage Notes 311

Related Information 311

res_findzonecut()—Find the Enclosing Zone and

Servers 311

Parameters 312

Authorities 312

Return Value 312

Error Conditions 312

Usage Notes 313

Related Information 313

res_hostalias()—Retrieve the host alias 314

Parameters 314

Authorities 314

Return Value 315

Error Conditions 315

Usage Notes 315

Related Information 315

res_init()—Initialize _res Structure 316

Authorities: 318

Return Value 318

Error Conditions 318

Usage Notes 318

Related Information 319

res_mkquery()—Place Domain Query in Buffer . . 320

Parameters 320

Authorities: 321

Return Value 321

Error Conditions 321

Contents ix

Usage Notes 322

Related Information 322

res_nclose()—Close Socket and Reset res Structure 322

Parameters 323

Related Information 323

res_ninit()—Initialize res Structure 323

Parameters 323

Return Value 324

Error Conditions 324

Related Information 324

Example 324

res_nisourserver()—Check Server Address 327

Parameters 328

Authorities: 328

Return Value 328

Error Conditions 328

Related Information 328

res_nmkquery()—Place Domain Query in Buffer 329

Parameters 329

Related Information 329

res_nmkupdate()—Construct an Update Packet . . 330

Parameters 330

Authorities 330

Return Value 330

Error Conditions 330

Usage Notes 331

Related Information 331

res_nquery()—Send Domain Query 332

Parameters 332

Related Information 332

res_nquerydomain()—Send 2 String Domain Query 333

Parameters 333

Related Information 333

Example 333

res_nsearch()—Search for Domain Name 334

Parameters 334

Related Information 334

res_nsend()—Send Buffered Domain Query or

Update 335

Parameters 335

Related Information 335

res_nsendsigned()—Send Authenticated Domain

Query or Update 336

Parameters 336

Authorities 336

Return Value 336

Error Conditions 337

Usage Notes 338

Related Information 339

res_nupdate()—Build and Send Dynamic Updates 339

Parameters 339

Authorities 340

Return Value 340

Error Conditions 340

Usage Notes 341

Related Information 341

res_query()—Send Domain Query 342

Parameters 342

Authorities 342

Return Value 342

Error Conditions 342

Usage Notes 343

Related Information 343

res_search()—Search for Domain Name 344

Parameters 344

Return Value 344

Authorities: 344

Error Conditions 344

Usage Notes 345

Related Information 345

res_send()—Send Buffered Domain Query or

Update 346

Parameters 346

Authorities: 346

Return Value 346

Error Conditions 346

Usage Notes 347

Related Information 348

res_xlate()—Translate DNS Packets 349

Parameters 349

Authorities 349

Return Value 349

Error Conditions 349

Usage Notes 350

Related Information 350

sethostent()—Open Host Database 351

Parameters 351

Authorities 351

Error Conditions 351

Usage Notes 351

Related Information 352

sethostent_r()—Open Host Database 352

Parameters 352

Authorities 352

Return Value 353

Error Conditions 353

Usage Notes 353

Related Information 353

setnetent()—Open Network Database 354

Parameters 354

Authorities 354

Usage Notes 354

Related Information 354

setnetent_r()—Open Network Database 355

Parameters 355

Authorities 355

Return Value 355

Error Conditions 355

Usage Notes 355

Related Information 356

setprotoent()—Open Protocol Database 356

Parameters 356

Authorities 356

Usage Notes 356

Related Information 357

setprotoent_r()—Open Protocol Database 357

Parameters 357

Authorities 357

Return Value 358

Error Conditions 358

Usage Notes 358

Related Information 358

x iSeries: UNIX-Type -- Sockets APIs

setservent()—Open Service Database 358

Parameters 359

Authorities 359

Usage Notes 359

Related Information 359

setservent_r()—Open Service Database 359

Parameters 360

Authorities 360

Return Value 360

Error Conditions 360

Usage Notes 360

Related Information 360

_getlong()—Get Long Byte Quantities 361

Parameters 361

Return Value 361

Usage Notes 361

Related Information 361

_getshort()—Get Short Byte Quantities 361

Parameters 362

Return Value 362

Usage Notes 362

Related Information 362

_putlong()—Put Long Byte Quantities 362

Parameters 362

Return Value 362

Usage Notes 362

Related Information 363

_putshort()—Put Short Byte Quantities 363

Parameters 363

Return Value 363

Usage Notes 363

Related Information 363

Concepts 363

Debugging IP over SNA Configurations 364

Appendix. Notices 367

Trademarks 368

Terms and conditions for downloading and

printing publications 369

Code disclaimer information 370

Contents xi

xii iSeries: UNIX-Type -- Sockets APIs

Sockets APIs

The sockets APIs consist of functions, structures, and defined macros. The structures and defined macros

are shipped as header files.

An important part of interprocess communications is to locate and construct network addresses. Many of

the socket network APIs are inherently not threadsafe. Threadsafe APIs have been added to mirror the

function provided by the non-threadsafe APIs. All threadsafe APIs follow the UNIX(R) convention of

appending R to the API name denoting threadsafe.

There are two categories of sockets functions:

v “Sockets System Functions”
v “Sockets Network Functions” on page 212

For additional information, see:

v Sockets Programming
v “Debugging IP over SNA Configurations” on page 364

 Top | UNIX-Type APIs | APIs by category

APIs

These are the APIs for this category.

Sockets System Functions

The system functions supported by the sockets APIs are:

v “accept()—Wait for Connection Request and Make Connection” on page 4 (Wait for an incoming

connection and tie that connection to the application) is used to wait for connection requests.

v “accept_and_recv()—Wait for Connection Request and Receive the First Message That Was Sent” on

page 8 (Wait for connection request and receive the first message that was sent.) is used to wait for an

incoming connection request, receive the first message from the peer, and return the local and remote

socket addresses associated with the connection.

v “bind()—Set Local Address for Socket” on page 14 (Set a local address for the socket) is used to

associate a local address with a socket.

v “close()—Close File or Socket Descriptor” on page 19 (Close file descriptor) closes a descriptor, fildes.

v “connect()—Establish Connection or Destination Address” on page 25 (Bind a destination to a socket or

set a connection) is used to establish a connection on a connection-oriented socket or establish the

destination address on a connectionless socket.

v “fcntl()—Perform File Control Command” on page 31 (Perform file control command) performs various

actions on open descriptors.

v “fstat()—Get File Information by Descriptor” on page 43 (Get file information by descriptor) gets status

information about the file specified by the open file descriptor file_descriptor and stores the

information in the area of memory indicated by the buf argument.

v “getdomainname()—Retrieve Domain Name” on page 49 (Retrieve domain name for the system) is

used to retrieve the name of the domain from the system.

v “gethostid()—Retrieve Host ID” on page 50 (Retrieve host ID for the system) is used to retrieve a host

ID’s 32-bit IP address.

© Copyright IBM Corp. 1998, 2005 1

#TOP_OF_PAGE
unix.htm
aplist.htm

v “gethostname()—Retrieve Host Name” on page 51 (Retrieve host name for the system) is used to

retrieve the name of the host from the system.

v “getpeername()—Retrieve Destination Address of Socket” on page 53 (Retrieve destination address of a

socket) is used to retrieve the destination address to which the socket is connected.

v “getsockname()—Retrieve Local Address of Socket” on page 56 (Retrieve local address of a socket) is

used to retrieve the local address associated with the socket.

v “getsockopt()—Retrieve Information about Socket Options” on page 60 (Allow an application to

request information about a socket (timeout, retransmission, buffer space)) is used to retrieve

information about socket options.

v “givedescriptor()—Pass Descriptor Access to Another Job” on page 67 (Pass the access rights to a

descriptor) is used to pass a descriptor from one OS/400 job to another OS/400 job.

v “ioctl()—Perform I/O Control Request” on page 69 (Perform I/O control request) performs control

functions (requests) on a file descriptor.

v “listen()—Invite Incoming Connections Requests” on page 79 (Prepare a socket for incoming

connections) is used to indicate a willingness to accept incoming connection requests. If a listen() is not

done, incoming connections are silently discarded.

v

“QsoCancelOperation()—Cancel an I/O Operation” on page 81 (Cancel an I/O Operation) is used to

cancel one or more asynchronous I/O operations that are pending on the socket.

v “QsoCreateIOCompletionPort()—Create I/O Completion Port” on page 83 (Create I/O Completion

Port) is used to create a common wait point for a completed overlapped I/O operation.

v “QsoDestroyIOCompletionPort()—Destroy I/O Completion Port” on page 84 (Destroy I/O Completion

Port) is used to destroy an I/O completion port.

v

“QsoGenerateOperationId()—Get an I/O Operation ID” on page 86 (Get an I/O Operation ID) is

used to get an operation identifier that is unique for this socket.

v

“QsoIsOperationPending()—Check if an I/O Operation is Pending” on page 87 (Check if an I/O

Operation is Pending) is used to check if one or more asynchronous I/O operations is pending on the

socket.

v “QsoPostIOCompletion()—Post I/O Completion Request” on page 89 (Post I/O Completion Request)

will post an Qso_OverlappedIO_t request on a specifed I/O completion port.

v “QsoStartAccept()—Start asynchronous accept operation” on page 91 (Start Asynchronous Accept

Operation) is used to wait asynchronously for connection requests.

v “QsoStartRecv()—Start Asynchronous Receive Operation” on page 95 (Start Asynchronous Receive

Operation) is used to initiate a asynchronous receive operation.

v “QsoStartSend()—Start Asynchronous Send Operation” on page 98 (Start Asynchronous Send

Operation) is used to initiate a asynchronous send operation.

v “QsoWaitForIOCompletion()—Wait for I/O Operation” on page 101 (Wait for I/O Operation) is used to

wait for a completed overlapped I/O operation.

v “Rbind()—Set Remote Address for Socket” on page 107 (Establish remote bind) used to request that a

SOCKS server allow an inbound connection request across a firewall.

v “read()—Read from Descriptor” on page 110 (Read from Descriptor) reads nbyte bytes of input into the

memory area indicated by buf.

v “readv()—Read from Descriptor Using Multiple Buffers” on page 118 (Read from Descriptor Using

Multiple Buffers) is used to receive data from a file or socket descriptor.

v “recv()—Receive Data” on page 124 (Receive data using a socket descriptor) is used to receive data

through a socket.

v “recvfrom()—Receive Data” on page 128 (Receive data and remote address using a socket descriptor) is

used to receive data through a connected or unconnected socket.

v “recvmsg()—Receive a Message Over a Socket” on page 132 (Receive data and remote address using a

socket descriptor and multiple buffers (scatter read)) is used to receive data or descriptors or both

through a connected or unconnected socket.

2 iSeries: UNIX-Type -- Sockets APIs

v “rexec()—Issue a Command on a Remote Host” on page 139 (Issue a command on a remote host) is

used to open a connection to a remote host and send a user ID, password, and command to the remote

host.

v “rexec_r()—Issue a Command on a Remote Host” on page 142 (Issue a command on a remote host) is

used to open a connection to a remote host and send a user ID, password, and command to the remote

host.

v “rexec_r_ts64()—Issue a Command on a Remote Host” on page 146 (Issue a command on a remote

host) is used to open a connection to a remote host and send a user ID, password, and command to

the remote host.

v “rexec_ts64()—Issue a Command on a Remote Host” on page 147 (Issue a command on a remote host)

is used to open a connection to a remote host and send a user ID, password, and command to the

remote host.

v “select()—Wait for Events on Multiple Sockets” on page 148 (Allow a single process to wait for

connections on multiple sockets) is used to enable an application to multiplex I/O.

v “send()—Send Data” on page 151 (Send data using a socket descriptor) is used to send data through a

connected socket.

v “sendmsg()—Send a Message Over a Socket” on page 154 (Send data with a destination address using

a socket descriptor and multiple buffers (gather write)) is used to send data or descriptors or both

through a connected or unconnected socket.

v “sendto()—Send Data” on page 161 (Send data with a destination address using a socket descriptor) is

used to send data through a connected or unconnected socket.

v “send_file()—Send a File over a Socket Connection” on page 166 (Send a file over a socket connection)

is used to send the contents of an open file over an existing socket connection.

v “send_file64()—Send a File over a Socket Connection” on page 170 (Send a file over a socket

connection) is used to send the contents of an open file over an existing socket connection.

v “setdomainname()—Set Domain Name” on page 172 (Set domain name for the system) is used to set

the name of the domain.

v “sethostid()—Set Host ID” on page 173 (Set Host ID) is used to set a host ID.

v “sethostname()—Set Host Name” on page 175 (Set host name for the system) is used to set the name of

the host for a system.

v “setsockopt()—Set Socket Options” on page 177 (Allow an application to set characteristics of a socket

(timeout, retransmission, buffer space)) is used to set socket options.

v “shutdown()—End Receiving and/or Sending of Data on Socket” on page 186 (End Receiving and/or

Sending of Data on Socket) is used to disable reading, writing, or reading and writing on a socket.

v “socket()—Create Socket” on page 188 (Create a socket) is used to create an end point for

communications.

v “socketpair()—Create a Pair of Sockets” on page 191 (Create a pair of sockets) is used to create a pair

of unnamed, connected sockets in the AF_UNIX or AF_UNIX_CCSID address_family.

v “takedescriptor()—Receive Socket Access from Another Job” on page 193 (Receive the access rights to a

descriptor) is used to obtain a descriptor in one OS/400 job which was passed from another OS/400

job by a givedescriptor().

v “write()—Write to Descriptor” on page 195 (Write to Descriptor) writes nbyte bytes from buf to the file

or socket associated with file_descriptor.

v “writev()—Write to Descriptor Using Multiple Buffers” on page 205 (Write to Descriptor Using

Multiple Buffers) is used to write data to a file or socket descriptor.

Note: These functions use header (include) files from the library QSYSINC, which is optionally

installable. Make sure QSYSINC is installed on your system before using any of the functions.

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 3

#TOP_OF_PAGE
unix.htm
aplist.htm

accept()—Wait for Connection Request and Make Connection

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int accept(int socket_descriptor,

 struct sockaddr *address,

 int *address_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

 int accept(int socket_descriptor,

 struct sockaddr *address,

 socklen_t *address_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The accept() function is used to wait for connection requests. accept() takes the first connection request on

the queue of pending connection requests and creates a new socket to service the connection request.

accept() is used with connection-oriented socket types, such as SOCK_STREAM.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

socket_descriptor

(Input) The descriptor of the socket on which to wait.

address

(Output) A pointer to a buffer of type struct sockaddr in which the address from which the

connection request was received is stored. The structure sockaddr is defined in <sys/socket.h>.

 The BSD 4.3 structure is:

 struct sockaddr {

 u_short sa_family;

 char sa_data[14];

 };

The BSD 4.4/UNIX 98 compatible structure is:

4 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
_xopen_source.htm

typedef uchar sa_family_t;

 struct sockaddr {

 uint8_t sa_len;

 sa_family_t sa_family;

 char sa_data[14];

 };

The BSD 4.4 sa_len field is the length of the address. The sa_family field identifies the address

family to which the address belongs, and sa_data is the address whose format is dependent on the

address family.

 Note: See the usage notes about using different address families with sockaddr_storage.

address_length

(Input/output) This parameter is a value-result field. The caller passes a pointer to the length of

the address parameter. On return from the call, address_length contains the actual length of the

address from which the connection request was received.

Authorities

When the socket identified by the socket_descriptor is of type AF_INET and a connection indication

request is received over an APPC device, the thread must have adequate authority. The thread must have

retrieve, insert, delete, and update authority to the APPC device. When the thread does not have this

level of authority, an errno of EACCES is returned.

Return Value

accept() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is a socket descriptor.

Error Conditions

When accept() fails, errno can be set to one of the following:

 [EACCES] Permission denied.

A connection indication request was received on the socket referenced by the

socket_descriptor parameter, but the process that issued the accept() did not have the

appropriate privileges required to handle the request. The connection indication

request is reset by the system.

[EBADF] Descriptor not valid.

[ECONNABORTED] Connection ended abnormally.

An accept() was issued on a socket for which receives have been disallowed (due to a

shutdown() call).

This also could be encountered if time elapsed since a successful Rbind() is greater than

the margin allowed by the associated SOCKS server.

[EFAULT] Bad address.

System detected an address which was not valid while attempting to access the address

or address_length parameters.

[EINTR] Interrupted function call.

Sockets APIs 5

[EINVAL] Parameter not valid.

This error code indicates one of the following:

v The address_length parameter is set to a value that is less than zero, and the address

parameter is set to a value other than a NULL pointer.

v A listen() has not been issued against the socket referenced by the socket_descriptor

parameter.

[EIO] Input/output error.

[EMFILE] Too many descriptions for this process.

[ENFILE] Too many descriptions in system.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EOPNOTSUPP] Operation not supported.

The socket_descriptor parameter references a socket that does not support the accept().

The accept() is only valid on sockets that are connection-oriented (for example, type of

SOCK_STREAM).

[EUNATCH] The protocol required to support the specified address family is not available at this

time.

[EUNKNOWN] Unknown system state.

[EWOULDBLOCK] Operation would have caused the thread to be suspended.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. If the address parameter is set to a NULL pointer or the address_length parameter points to an integer

which has a value that is equal to zero, the address from which the connection request was received is

not returned.

2. If the length of the address to be returned exceeds the length of the address parameter, the returned

address is truncated.

3. The following are inherited by the descriptor returned by the accept() call:

v All socket options with a level of SOL_SOCKET.

v The status flags:

– Blocking flag (set/reset either by the ioctl() call with the FIONBIO request or by the fcntl() call

with the F_SETFL command and the status flag set to O_NONBLOCK).

– Asynchronous flag (set/reset either by the ioctl() call with the FIOASYNC request or by the

fcntl() call with the F_SETFL command and the status flag set to FASYNC).
v The process ID or process group ID that is to receive SIGIO or SIGURG signals (set/reset by either

the ioctl() call with the FIOSETOWN or the SIOCSPGRP request, or by the fcntl() call with the

F_SETOWN command).
4. Closing a socket causes any queued but unaccepted connection requests to be reset.

6 iSeries: UNIX-Type -- Sockets APIs

5. The structure sockaddr is a generic structure used for any address family but it is only 16 bytes long.

The actual address returned for some address families may be much larger. You should declare

storage for the address with the structure sockaddr_storage. This structure is large enough and

aligned for any protocol-specific structure. It may then be cast as sockaddr structure for use on the

APIs. The ss_family field of the sockaddr_storage will always align with the family field of any

protocol-specific structure. The BSD 4.3 structure is:

 #define _SS_MAXSIZE 304

 #define _SS_ALIGNSIZE (sizeof (char*))

 #define _SS_PAD1SIZE (_SS_ALIGNSIZE - sizeof(sa_family_t))

 #define _SS_PAD2SIZE (_SS_MAXSIZE - (sizeof(sa_family_t)+

 _SS_PAD1SIZE + _SS_ALIGNSIZE))

 struct sockaddr_storage {

 sa_family_t ss_family;

 char _ss_pad1[_SS_PAD1SIZE];

 char* _ss_align;

 char _ss_pad2[_SS_PAD2SIZE];

 };

The BSD 4.4/UNIX 98 compatible structure is:

 #define _SS_MAXSIZE 304

 #define _SS_ALIGNSIZE (sizeof (char*))

 #define _SS_PAD1SIZE (_SS_ALIGNSIZE - (sizeof(uint8_t) + sizeof(sa_family_t)))

 #define _SS_PAD2SIZE (_SS_MAXSIZE - (sizeof(uint8_t) + sizeof(sa_family_t)+

 _SS_PAD1SIZE + _SS_ALIGNSIZE))

 struct sockaddr_storage {

 uint8_t ss_len;

 sa_family_t ss_family;

 char _ss_pad1[_SS_PAD1SIZE];

 char* _ss_align;

 char _ss_pad2[_SS_PAD2SIZE];

 };

6. If the socket is using an address family of AF_UNIX, the address (which is a path name) is returned in

the default coded character set identifier (CCSID) currently in effect for the job.

7. If the socket is using an address family of AF_UNIX_CCSID, the output structure sockaddr_unc defines

the format and coded character set identifier (CCSID) of the address (which is a path name).

8. If a successful Rbind() has been performed on the listening socket, then a new connection is not

returned, but rather an inbound connection occurs on the same listening socket. The descriptor

number returned is different, but it actually refers to the same connection referred to by the listening

socket.

9. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the accept() API is mapped to qso_accept98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “bind()—Set Local Address for Socket” on page 14—Set Local Address for Socket

v “fcntl()—Perform File Control Command” on page 31—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 69—Perform I/O Control Request

v “listen()—Invite Incoming Connections Requests” on page 79—Invite Incoming Connections Requests

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 7

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

accept_and_recv()—Wait for Connection Request and Receive the First

Message That Was Sent

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

int accept_and_recv(int listen_socket_descriptor,

 int *accept_socket_descriptor,

 struct sockaddr *remote_address,

 size_t *remote_address_length,

 struct sockaddr *local_address,

 size_t *local_address_length,

 void *buffer,

 size_t buffer_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

int accept_and_recv(int listen_socket_descriptor,

 int *accept_socket_descriptor,

 struct sockaddr *remote_address,

 socklen_t *remote_address_length,

 struct sockaddr *local_address,

 socklen_t *local_address_length,

 void *buffer,

 size_t buffer_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The accept_and_recv() function is used to wait for an incoming connection request, receive the first

message from the peer, and return the local and remote socket addresses associated with the connection.

accept_and_recv() is used with connection-oriented sockets that have an address family of AF_INET or

AF_INET6 and a socket type of SOCK_STREAM.

The accept_and_recv() API is a combination of the accept(), getsockname(), and recv() socket APIs. Socket

applications that use these three APIs can obtain improved performance by using accept_and_recv().

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

8 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
_xopen_source.htm

Parameters

listen_socket_descriptor

(Input) The descriptor of the socket on which to wait. This parameter specifies the socket that has

issued a successful call to listen().

accept_socket_descriptor

(Input/Output) A pointer to an integer that specifies the socket descriptor on which to accept the

incoming connection. This socket must not be bound or connected. The use of this parameter lets

the application reuse the accepting socket.

 If a pointer to a value of -1 is passed in for this parameter, a new descriptor in the process’s

descriptor table will be allocated for incoming connection. The socket descriptor for a new

connection will be returned to the application by this parameter. It is recommended that a value

of -1 be used on the first call to accept_and_recv(). See the “Usage Notes” on page 11 for additional

information.

remote_address

(Output) A pointer to a buffer of type struct sockaddr in which the address from which the

connection request was received is stored. The structure sockaddr is defined in <sys/socket.h>.

 The BSD 4.3 structure is:

 struct sockaddr {

 u_short sa_family;

 char sa_data[14];

 };

The BSD 4.4/UNIX 98 compatible structure is:

 typedef uchar sa_family_t;

 struct sockaddr {

 uint8_t sa_len;

 sa_family_t sa_family;

 char sa_data[14];

 };

The BSD 4.4 sa_len field is the length of the address. The sa_family field identifies the address

family to which the address belongs, and sa_data is the address whose format is dependent on the

address family.

 Note: See the usage notes about using different address families with sockaddr_storage.

remote_address_length

(Input/Output) This parameter is a value-result field. The caller passes a pointer to the length of

the remote_address parameter. On return from the call, remote_address_length contains the actual

length of the address from which the connection request was received.

local_address

(Output) A pointer to a buffer of type struct sockaddr in which the local address over which the

connection request was received is stored. The structure sockaddr is defined in <sys/socket.h>.

 The BSD 4.3 structure is:

 struct sockaddr {

 u_short sa_family;

 char sa_data[14];

 };

The BSD 4.4/UNIX 98 compatible structure is:

 typedef uchar sa_family_t;

 struct sockaddr {

Sockets APIs 9

uint8_t sa_len;

 sa_family_t sa_family;

 char sa_data[14];

 };

The BSD 4.4 sa_len field is the length of the address. The sa_family field identifies the address

family to which the address belongs, and sa_data is the address whose format is dependent on the

address family.

 Note: See the usage notes about using different address families with sockaddr_storage.

local_address_length

(Input/Output) This parameter is a value-result field. The caller passes a pointer to the length of

the local_address parameter. On return from the call, local_address_length contains the actual length

of the local address over which the connection request was received.

buffer (Output) The pointer to the buffer in which the data that is to be read is stored. If a NULL

pointer is passed in for this parameter, the receive operation is not performed and the

accept_and_recv() function completes when the incoming connection is received.

buffer_length

(Input) The length in bytes of the buffer pointed to by the buffer parameter.

Authorities

If IP over SNA is being used, *CHANGE authority to the APPC device is required.

Return Value

accept_and_recv() returns an integer. Possible values are:

v -1 (unsuccessful call)

v n (successful call), where n is the number of bytes received.

Error Conditions

When accept_and_recv() fails, errno can be set to one of the following:

 [EACCES] Permission denied.

A connection indication request was received on the socket referenced by the

listen_socket_descriptor parameter, but the process that issued the accept_and_recv() call

did not have the appropriate privileges required to handle the request. The connection

indication request is reset by the system.

[EBADF] Descriptor not valid.

Either the listen_socket_descriptor or the descriptor pointed to by the

accept_socket_descriptor parameter is not a valid socket descriptor.

[ECONNABORTED] Connection ended abnormally.

An accept_and_recv() was issued on a socket for which receive operations have been

disallowed (due to a shutdown() call).

[EFAULT] Bad address.

System detected an address that was not valid while attempting to access the

accept_socket_descriptor, remote_address, remote_address_length, local_address,

local_address_length, or buffer parameter.

[EINTR] Interrupted function call.

10 iSeries: UNIX-Type -- Sockets APIs

[EINVAL] Parameter not valid.

This error code indicates one of the following:

v A listen() has not been issued against the socket referenced by the

listen_socket_descriptor parameter.

v The socket referenced by the accept_socket_descriptor parameter has been bound to a

local address.

v The accept_socket_descriptor does not have the same address family and socket type

as the listen_socket_descriptor.

v The accept_socket_descriptor parameter is set to a value that is less than -1.

[EIO] Input/output error.

[EISCONN] A connection has already been established.

[EMFILE] Too many descriptions for this process.

[ENFILE] Too many descriptions in system.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOTSOCK] The specified descriptor does not reference a socket.

Either the listen_socket_descriptor or the descriptor pointed to by the

accept_socket_descriptor parameter is not a valid socket descriptor.

[EOPNOTSUPP] Operation not supported.

This error code indicates one of the following:

v The listen_socket_descriptor parameter references a socket that does not support the

accept_and_recv() function. The accept_and_recv() function is only valid on sockets that

have an address family of AF_INET or AF_INET6 and a socket type of SOCK_STREAM.

v The O_NONBLOCK option is set for the listen_socket_descriptor or the descriptor pointed

to by the accept_socket_descriptor parameter. Non-blocking is not supported for

accept_and_recv().

[EUNATCH] The protocol required to support the specified address family is not available at this

time.

[EUNKNOWN] Unknown system state.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

 1. The accept_and_recv() function is only valid on sockets that have an address family of AF_INET or

AF_INET6 and a socket type of SOCK_STREAM. If the listen_socket_descriptor does not have the

correct address family and socket type, -1 is returned and the errno value is set to EOPNOTSUPP.

 2. Non-blocking mode is not supported for this function. If O_NONBLOCK is set on the

listen_socket_descriptor parameter or on the descriptor pointed to by the accept_socket_descriptor

parameter, -1 is returned and the errno value is set to EOPNOTSUPP.

 3. If the remote_address parameter is set to a NULL pointer, the address from which the connection

request was received is not returned. If the length of the remote address to be returned exceeds the

length that was specified by the remote_address_length parameter, the returned address will be

truncated.

Sockets APIs 11

4. If the local_address parameter is set to a NULL pointer, the local address to which the socket is bound

is not returned. If the length of the local address to be returned exceeds the length that was specified

by the local_address_length parameter, the returned address will be truncated.

 5. If the buffer parameter is set to a NULL pointer or the buffer_length parameter is set to value of 0, the

receive operation is not performed and the accept_and_recv() function completes when the incoming

connection is received.

 6. If a pointer to a value of -1 is passed in for the accept_socket_descriptor parameter, the following

attributes are inherited by the socket descriptor that is returned by the accept_and_recv() call:

v All socket options with a level of SOL_SOCKET.

v The status flags:

– Asynchronous flag (set or reset either by the ioctl() call with the FIOASYNC request or by the

fcntl() call with the F_SETFL command and the status flag set to FASYNC).
v The process ID or process group ID that is to receive SIGIO or SIGURG signals (set or reset by

either the ioctl() call with the FIOSETOWN or the SIOCSPGRP request, or by the fcntl() call with

the F_SETOWN command).
 7. The accept_and_recv() function allows an application to reuse an existing socket descriptor. If a socket

descriptor is specified for the accept_socket_descriptor parameter, it must not be bound or connected

and it must have the same address family and socket type as the listen_socket_descriptor. The socket

descriptor that is passed in for the accept_socket_descriptor parameter can be obtained by either calling

socket() or by specifying the SF_REUSE flag on the flags parameter of the send_file() function.

If an application specifies a pointer to an unbound and unconnected socket descriptor for the

accept_socket_descriptor parameter that is the same address family and socket type as the

listen_socket_descriptor, the accept_and_recv() function will try to use the accept_socket_descriptor for the

incoming connection. If the accept_socket_descriptor cannot be used for the incoming connection, the

descriptor for that socket will be closed and a new socket will be created for the incoming

connection. The new socket may have a different descriptor number associated with it. This means

that the value that is returned by the accept_socket_descriptor parameter may not be the same value

that was specified by the application when the accept_and_recv() function was called.

The ability to reuse an existing socket is not supported on all platforms. Therefore, it is

recommended that a pointer to a value of -1 be passed in for the accept_socket_descriptor parameter. If

socket reuse is not supported and the send_file() API is called with the flags parameter set to

SF_REUSE, the socket connection will be closed and the socket descriptor will be set to -1 by the

send_file() API. If socket reuse is supported, then the connection will be closed and the socket

descriptor will be reset so that it can be used again. Regardless of whether socket reuse is supported

or not, the application can pass its socket descriptor variable into the accept_and_recv() function as the

accept_socket_descriptor parameter.

 8. The structure sockaddr is a generic structure used for any address family but it is only 16 bytes

long. The actual address returned for some address families may be much larger. You should declare

storage for the address with the structure sockaddr_storage. This structure is large enough and

aligned for any protocol-specific structure. It may then be cast as sockaddr structure for use on the

APIs. The ss_family field of the sockaddr_storage will always align with the family field of any

protocol-specific structure.

The BSD 4.3 structure is:

 #define _SS_MAXSIZE 304

 #define _SS_ALIGNSIZE (sizeof (char*))

 #define _SS_PAD1SIZE (_SS_ALIGNSIZE - sizeof(sa_family_t))

 #define _SS_PAD2SIZE (_SS_MAXSIZE - (sizeof(sa_family_t)+

 _SS_PAD1SIZE + _SS_ALIGNSIZE))

 struct sockaddr_storage {

 sa_family_t ss_family;

 char _ss_pad1[_SS_PAD1SIZE];

 char* _ss_align;

 char _ss_pad2[_SS_PAD2SIZE];

 };

12 iSeries: UNIX-Type -- Sockets APIs

The BSD 4.4/UNIX 98 compatible structure is:

 #define _SS_MAXSIZE 304

 #define _SS_ALIGNSIZE (sizeof (char*))

 #define _SS_PAD1SIZE (_SS_ALIGNSIZE - (sizeof(uint8_t) + sizeof(sa_family_t)))

 #define _SS_PAD2SIZE (_SS_MAXSIZE - (sizeof(uint8_t) + sizeof(sa_family_t)+

 _SS_PAD1SIZE + _SS_ALIGNSIZE))

 struct sockaddr_storage {

 uint8_t ss_len;

 sa_family_t ss_family;

 char _ss_pad1[_SS_PAD1SIZE];

 char* _ss_align;

 char _ss_pad2[_SS_PAD2SIZE];

 };

 9. To take full advantage of the performance improvement offered by the accept_and_recv() API, a

multiple accept server model needs to be used by the application. In this model the server will do a

socket(), bind(), and listen() as currently is done. The server will then give the listening socket to

multiple jobs or threads. Each job or thread will then call accept_and_recv() using the same listening

socket. When a connection request comes in, only one of the jobs or threads would wake up.

10. If a successful Rbind() has been performed on the listening socket, then a new connection is not

returned, but rather an inbound connection occurs on the same listening socket. The descriptor

number returned is different, but it actually refers to the same connection referred to by the listening

socket.

11. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the accept_and_recv() API is mapped to

qso_accept_and_recv98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “accept()—Wait for Connection Request and Make Connection” on page 4—Wait for Connection

Request and Make Connection

v “getsockname()—Retrieve Local Address of Socket” on page 56—Retrieve Local Address of Socket

v “recv()—Receive Data” on page 124—Receive Data

v “send_file()—Send a File over a Socket Connection” on page 166—Send a File over a Socket

Connection

 API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 13

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

bind()—Set Local Address for Socket

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int bind(int socket_descriptor,

 struct sockaddr *local_address,

 int address_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

 int bind(int socket_descriptor,

 const struct sockaddr *local_address,

 socklen_t address_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The bind() function is used to associate a local address with a socket.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

socket_descriptor

(Input) The descriptor of the socket that is to be bound.

local_address

(Input) A pointer to a buffer of type struct sockaddr that contains the local address to which the

socket is to be bound. The structure sockaddr is defined in <sys/socket.h>.

 The BSD 4.3 structure is:

 struct sockaddr {

 u_short sa_family;

 char sa_data[14];

 };

The BSD 4.4/UNIX 98 compatible structure is:

 typedef uchar sa_family_t;

 struct sockaddr {

14 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
_xopen_source.htm

uint8_t sa_len;

 sa_family_t sa_family;

 char sa_data[14];

 };

The BSD 4.4 sa_len field is the length of the address. The sa_family field identifies the address

family to which the address belongs, and sa_data is the address whose format is dependent on the

address family.

address_length

(Input) The length of the local_address.

Authorities

v When the address type of the socket identified by the socket_descriptor is AF_INET, the thread must

have retrieve, insert, delete, and update authority to the port specified by the local_address field.

When the thread does not have this level of authority, an errno of EACCES is returned.

v When the address type of the socket identified by the socket_descriptor is AF_INET and is running IP

over SNA, the thread must have retrieve, insert, delete, and update authority to the APPC device.

When the thread does not have this level of authority, an errno of EACCES is returned.

Return Value

bind() returns an integer. Possible values are:

v -1 (unsuccessful)

v 0 (successful)

Error Conditions

When a bind() fails, errno can be set to one of the following:

 [EACCES] Permission denied.

The process does not have the appropriate privileges to bind local_address to the

socket pointed to by socket_descriptor (for example, if socket_descriptor is a socket

with an address family of AF_INET, and the sockaddr_in structure (pointed to by

local_address) specified a port that was restricted for use).

[EADDRINUSE] Address already in use.

This error code indicates one of the following:

v The socket_descriptor points to a socket with an address family of AF_INET, and

the address specified in the sockaddr_in structure (pointed to by local_address)

has already been assigned to another socket.

v The socket_descriptor points to a socket with an address family of AF_INET6,

and the address specified in the sockaddr_in6 structure (pointed to by

local_address) has already been assigned to another socket.

v The socket_descriptor points to a socket with an address family of AF_UNIX or

AF_UNIX_CCSID, and the address specified in the sockaddr_un or sockaddr_unc

structure (pointed to by local_address) has already been assigned to another

socket.

Sockets APIs 15

[EADDRNOTAVAIL] Address not available. This error code indicates one of the following:

v The socket_descriptor points to a socket with an address family of AF_INET, and

the IP address specified in the sockaddr_in structure (pointed to by

local_address) is not one defined by the local interfaces.

v The socket_descriptor points to a socket with an address family of AF_INET6,

and the IP address specified in the sockaddr_in6 structure (pointed to by

local_address) is not one defined by the local interfaces.

[EAFNOSUPPORT] The type of socket is not supported in this protocol family.

The address family specified in the address structure pointed to by local_address

parameter cannot be used with the socket pointed to by the socket_descriptor

parameter.

[EBADF] Descriptor not valid.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access

the local_address parameter.

[EINVAL] Parameter not valid. This error code indicates one of the following:

v The address_length parameter specifies a length that is negative or is not valid

for the address family.

v The socket referenced by socket_descriptor is not a socket of type SOCK_RAW

and is already bound to an address.

v The local address pointed to by the local_address parameter specified an

address that was not valid.

v The socket_descriptor points to a socket with an address family of

AF_UNIX_CCSID, and the CCSID specified in sunc_qlg in the sockaddr_unc

structure (pointed to by local_address) cannot be converted to the current

default CCSID for integrated file system path names.

v The socket_descriptor points to a socket with an address family of

AF_UNIX_CCSID, and there was an incomplete character or shift state sequence

at the end of sunc_path in the sockaddr_unc structure (pointed to by

local_address).

v The socket_descriptor points to a socket with an address family of

AF_UNIX_CCSID, and the sockaddr_unc structure (pointed to by local_address)

was not valid:

– The sunc_format was not set to SO_UNC_DEFAULT or

SO_UNC_USE_QLG.

– The sunc_zero was not initialized to zeros.

– The sunc_format field was set to SO_UNC_USE_QLG and the sunc_qlg

structure was not valid:

- The path type was less than 0 or greater than 3.

- The path length was less than 0 or out of bounds. For example, a

single-byte path name was greater than 126 bytes or a double-byte path

name was greater than 252 bytes.

- A reserved field was not initialized to zeros.

[EIO] Input/output error.

16 iSeries: UNIX-Type -- Sockets APIs

[ELOOP] A loop exists in symbolic links encountered during pathname resolution.

This error code is only returned on sockets that use the AF_UNIX or

AF_UNIX_CCSID address family.

[ENAMETOOLONG] File name too long.

This error code is only returned on sockets that use the AF_UNIX or

AF_UNIX_CCSID address family.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOENT] No such file or directory.

This error code is only returned on sockets that use the AF_UNIX or

AF_UNIX_CCSID address family.

[ENOSYS] Function not implemented.

This error code is only returned on sockets that use the AF_UNIX or

AF_UNIX_CCSID or AF_UNIX_CCSID address family.

[ENOTDIR] Not a directory.

This error code is only returned on sockets that use the AF_UNIX or

AF_UNIX_CCSID address family.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EUNKNOWN] Unknown system state.

[EUNATCH] The protocol required to support the specified address family is not available at

this time.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. For sockets that use an address family of AF_UNIX or AF_UNIX_CCSID, the following is applicable:

v The process must have the following types of permission:

– Create permission to the directory in which the entry is to be created.

– Search permission along all the components of the path.

Also, processes trying to establish a connection with the connect() must have write access to the

entry that is created.

v For AF_UNIX, the path name is assumed to be in the default coded character set identifier (CCSID)

currently in effect for the job. For AF_UNIX_CCSID, the path name is assumed to be in the format and

CCSID specified in the sockaddr_unc (pointed to by local_address).

v When the socket is no longer needed, the caller should remove the file system entry that was

created by the bind() using the unlink() or Qp0lunlink() system function.
2. For sockets that use an address family of AF_INET, the following is applicable:

v The internet address structure sockaddr_in requires a 2-byte port number and a 32-bit IP address.

You can have the system automatically select a port number by setting the port number to 0.

The BSD 4.3 structure is:

Sockets APIs 17

struct sockaddr_in {

 short sin_family;

 u_short sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

 };

The BSD 4.4/UNIX 98 compatible structure is:

 typedef uchar sa_family_t;

 struct sockaddr_in {

 uint8_t sin_len;

 sa_family_t sin_family;

 u_short sin_port;

 struct in_addr sin_addr;

 char sin_zero[8];

 };

The BSD 4.4 sin_len field is the length of the address. The sin_family is the address family (always

AF_INET for TCP and UDP), sin_port is the port number, and sin_addr is the internet address. The

sin_zero field is reserved and must be hex zeros.

v A wildcard address is provided (INADDR_ANY defined in <netinet/in.h>) that allows an application to

receive messages directed to a specified port independent of the IP address that was specified. If a

local IP address is specified, only data received on that IP address is made available. INADDR_ANY

must be used to receive data from multiple local interface definitions.
3. For sockets that use an address family of AF_INET6, the following is applicable:

v The internet address structure sockaddr_in6 requires a 2-byte port number and a 128-bit IP address.

You can have the system automatically select a port number by setting the port number to 0.

The BSD 4.3 structure is:

 typedef unsigned short sa_family_t;

 typedef unsigned short in_port_t;

 struct sockaddr_in6 {

 sa_family_t sin6_family;

 in_port_t sin6_port;

 uint32_t sin6_flowinfo;

 struct in6_addr sin6_addr;

 uint32_t sin6_scope_id;

 };

The BSD 4.4/UNIX 98 compatible structure is:

 typedef uchar sa_family_t;

 typedef unsigned short in_port_t;

 struct sockaddr_in6 {

 uint8_t sin6_len;

 sa_family_t sin6_family;

 in_port_t sin6_port;

 uint32_t sin6_flowinfo;

 struct in6_addr sin6_addr;

 uint32_t sin6_scope_id;

 };

The BSD 4.4 sin6_len field is the length of the address. The sin6_family is the address family

(AF_INET6 in this case), sin6_port is the port number, and sin6_addr is the internet address. The

sin6_flowinfo field contains two pieces of information: the traffic class and the flow label. Note: This

field is currently not supported and should be set to zero for upward compatibility. The

sin6_scope_id field identifies a set of interfaces as appropriate for the scope of the address carried in

the sin6_addr field. Note: This field is currently not supported and should be set to zero for upward

compatibility.

18 iSeries: UNIX-Type -- Sockets APIs

v A wildcard address is provided that allows an application to receive messages directed to a

specified port independent of the IP address that was specified. Since the IPv6 address type is a

structure (struct in6_addr), a symbolic constant can be used to initialize an IPv6 address variable,

but cannot be used in an assignment. Therfore, the IPv6 wildcard address is provided in two forms

as defined in <netinet/in.h>. The first version is a global variable named in6addr_any. This version

is used similarly to the way applications use the INADDR_ANY in IPv4 as defined above and must be

used for structure assignment. The other version is a symbolic constant named IN6ADDR_ANY_INIT.

This version may be used to initialize an in6_addr structure. If a local IP address is specified, only

data received on that IP address is made available. The wildcard address must be used to receive

data from multiple local interface definitions.
4. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the bind() API is mapped to qso_bind98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “connect()—Establish Connection or Destination Address” on page 25—Establish Connection or

Destination Address

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

close()—Close File or Socket Descriptor

 Syntax

 #include <unistd.h>

 int close(int fildes);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 23.

The close() function closes a descriptor, fildes. This frees the descriptor to be returned by future open()

calls and other calls that create descriptors.

When the last open descriptor for a file is closed, the file itself is closed. If the link count of the file is

zero at that time, the space occupied by the file is freed and the file becomes inaccessible.

close() unlocks (removes) all outstanding byte locks that a job has on the associated file.

When all file descriptors associated with a pipe or FIFO special file are closed, any data remaining in the

pipe or FIFO is discarded and internal storage used is returned to the system.

When fildes refers to a socket, close() closes the socket identified by the descriptor.

For information about the exit point that can be associated with close(), see Integrated File System

Scan on Close Exit Programs.

Sockets APIs 19

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm
ifscloseexit.htm
ifscloseexit.htm

Parameters

fildes (Input) The descriptor to be closed.

Authorities

No authorization is required. Authorization is verified during open(), creat(), or socket().

Return Value

close() returns an integer. Possible values are:

 0 close() was successful.

-1 close() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If close() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

20 iSeries: UNIX-Type -- Sockets APIs

[EDEADLK]

 Resource deadlock avoided.

 An attempt was made to lock a system resource that would have resulted in a deadlock situation.

The lock was not obtained.

 The function attempted was failed to prevent a deadlock.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

Sockets APIs 21

A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

 Function not implemented.

 An attempt was made to use a function that is not available in this implementation for any object

or any arguments.

 The path name given refers to an object that does not support this function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ESCANFAILURE]

 Object had scan failure.

 An object has been marked as a scan failure due to processing by an exit program associated with

the scan-related integrated file system exit points.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 Additionally, if interaction with a file server is required to access the object, errno could indicate one of

the following errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

22 iSeries: UNIX-Type -- Sockets APIs

Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

1.

This function will fail with error code [EBADF] when fildes is a scan descriptor that was passed to

one of the scan-related exit programs. See Integrated File System Scan on Open Exit Programs and

Integrated File System Scan on Close Exit Programs for more information.

2. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

Sockets APIs 23

ifsopenexit.htm
ifscloseexit.htm

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

3. When a socket descriptor is closed, the system tries to send any queued data associated with the

socket.

v For AF_INET sockets, depending on whether the SO_LINGER socket option is set, queued data may be

discarded.

Note: For these sockets, the default value for the SO_LINGER socket option has the option flag set off

(the system attempts to send any queued data with an infinite wait time).
4. A socket descriptor being shared among multiple processes is not closed until the process that issued

the close() is the last process with access to the socket.

Related Information

v The <unistd.h> file (see Header Files for UNIX-Type Functions)
v creat()—Create or Rewrite File

v dup()—Duplicate Open File Descriptor

v dup2()—Duplicate Open File Descriptor to Another Descriptor

v “fcntl()—Perform File Control Command” on page 31—Perform File Control Command

v

Integrated File System Scan on Close Exit Programs

v open()—Open File

v “setsockopt()—Set Socket Options” on page 177—Set Socket Options

v unlink()—Remove Link to File

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses close()

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

main() {

 int fd1, fd2;

 char out[20]="Test string",

 fn[]="test.file",

 in[20];

 short write_error;

 memset(in, 0x00, sizeof(in));

 write_error = 0;

24 iSeries: UNIX-Type -- Sockets APIs

unix13.htm
creat.htm
dup.htm
dup2.htm
ifscloseexit.htm
open.htm
unlink.htm
aboutapis.htm#CODEDISCLAIMER

if ((fd1 = creat(fn,S_IRWXU)) == -1)

 perror("creat() error");

 else if ((fd2 = open(fn,O_RDWR)) == -1)

 perror("open() error");

 else {

 if (write(fd1, out, strlen(out)+1) == -1) {

 perror("write() error");

 write_error = 1;

 }

 close(fd1);

 if (!write_error) {

 if (read(fd2, in, sizeof(in)) == -1)

 perror("read() error");

 else printf("string read from file was: ’%s’\n", in);

 }

 close(fd2);

 }

}

Output:

string read from file was: ’Test string’

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

connect()—Establish Connection or Destination Address

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

int connect(int socket_descriptor,

 struct sockaddr *destination_address,

 int address_length)

Service Program Name: QSOSRV1

Default Public Authority: *USE

Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

int connect(int socket_descriptor,

 const struct sockaddr *destination_address,

 socklen_t address_length)

Service Program Name: QSOSRV1

Default Public Authority: *USE

Threadsafe: Yes

Sockets APIs 25

#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm

The connect() function is used to establish a connection on a connection-oriented socket or establish the

destination address on a connectionless socket.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

socket_descriptor

(Input) The descriptor of the socket that is to be connected.

destination_address

(Input) A pointer to a buffer of type struct sockaddr that contains the destination address to

which the socket is to be bound. The structure sockaddr is defined in <sys/socket.h>.

 The BSD 4.3 structure is:

 struct sockaddr {

 u_short sa_family;

 char sa_data[14];

 };

The BSD 4.4/UNIX 98 compatible structure is:

 typedef uchar sa_family_t;

 struct sockaddr {

 uint8_t sa_len;

 sa_family_t sa_family;

 char sa_data[14];

 };

The BSD 4.4 sa_len field is the length of the address. The sa_family field identifies the address

family to which the address belongs, and sa_data is the address whose format is dependent on the

address family.

address_length

(Input) The length of the destination_address.

Authorities

When the address type of the socket identified by the socket_descriptor is AF_INET and is running IP

over SNA, the thread must have retrieve, insert, delete, and update authority to the APPC device. When

the thread does not have this level of authority, then an errno of EACCES is returned.

Return Value

connect() returns an integer. Possible values are:

v -1 (unsuccessful)

v 0 (successful)

Error Conditions

When a connect() fails, errno can be set to one of the following. For additional debugging information, see

“Debugging IP over SNA Configurations” on page 364.

26 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm

[EACCES] Permission denied.

This error code indicates one of the following:

v The process does not have the appropriate privileges to connect to the address

pointed to by the destination_address parameter.

v The socket pointed to by socket_descriptor is using a connection-oriented

transport service, and the destination_address parameter specifies a TCP/IP

limited broadcast address (internet address of all ones).

[EADDRINUSE] Address already in use.

This error code indicates one of the following:

v The socket_descriptor parameter points to a connection-oriented socket that has

been bound to a local address that contained no wildcard values, and the

destination_address parameter specified an address that matched the bound

address.

v The socket_descriptor parameter points to a socket that has been bound to a

local address that contained no wildcard values, and the destination_address

parameter (also containing no wildcard values) specified an address that

would have resulted in a connection with a non-unique association.

[EADDRNOTAVAIL] Address not available.

This error code is returned if the socket_descriptor parameter points to a socket

with an address family of AF_INET or AF_INET6 and either a port was not

available or a route to the address specified by the destination_address parameter

could not be found.

[EAFNOSUPPORT] The type of socket is not supported in this protocol family.

The address family specified in the address structure pointed to by

destination_address parameter cannot be used with the socket pointed to by the

socket_descriptor parameter.

[EALREADY] Operation already in progress.

A previous connect() function had already been issued for the socket pointed to

by the socket_descriptor parameter, and has yet to be completed. This error code is

returned only on sockets that use a connection-oriented transport service.

[EBADF] Descriptor not valid.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

This error occurs when there is no application that is bound to the address

specified by the destination_address parameter.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access

the destination_address parameter.

[EHOSTUNREACH] A route to the remote host is not available.

This error code is returned on sockets that use the AF_INET and AF_INET6 address

families.

[EINPROGRESS] Operation in progress.

The socket_descriptor parameter points to a socket that is marked as nonblocking

and the connection could not be completed immediately. This error code is

returned only on sockets that use a connection-oriented transport service.

[EINTR] Interrupted function call.

Sockets APIs 27

[EINVAL] Parameter not valid.

This error code indicates one of the following:

v The address_length parameter specifies a length that is negative or not valid for

the address family.

v The AF_INET or AF_INET6 socket is of type SOCK_STREAM, and a previous

connect() has already completed unsuccessfully. Only one connection attempt is

allowed on a connection-oriented socket.

Note: For sockets that have an address family of AF_UNIX, or AF_UNIX_CCSID, if

a connect() fails, a subsequent connect() is allowed, even if the transport service

being used is connection-oriented.

v connect() cannot be issued on the socket pointed to by the socket_descriptor

parameter because the socket is using a connection-oriented transport service

(with an address family of AF_INET or AF_INET6), and a shutdown() that

disabled the sending of data was previously issued.

v The destination address pointed to by the destination_address parameter

specified an address that was not valid.

v The socket_descriptor points to a socket with an address family of

AF_UNIX_CCSID, and the CCSID specified in sunc_qlg in the sockaddr_unc

structure (pointed to by local_address) cannot be converted to the current

default CCSID for integrated file system path names.

v The socket_descriptor points to a socket with an address family of

AF_UNIX_CCSID, and there was an incomplete character or shift state sequence

at the end of sunc_path in the sockaddr_unc structure (pointed to by

local_address).

v The socket_descriptor points to a socket with an address family of

AF_UNIX_CCSID, and the sockaddr_unc structure (pointed to by local_address)

was not valid:

– The sunc_format was not set to SO_UNC_DEFAULT or

SO_UNC_USE_QLG.

– The sunc_zero was not initialized to zeros.

– The sunc_format field was set to SO_UNC_USE_QLG and the sunc_qlg

structure was not valid:

- The path type was less than 0 or greater than 3.

- The path length was less than 0 or out of bounds. For example, a single

byte path name was greater than 126 bytes or a double byte path name

was greater than 252 bytes.

- A reserved field was not initialized to zeros.

[EIO] Input/output error.

[EISCONN] A connection has already been established.

This error code is returned only on sockets that use a connection-oriented

transport service.

[ELOOP] A loop exists in symbolic links encountered during pathname resolution.

This error code is only returned on sockets that use the AF_UNIX or

AF_UNIX_CCSID address family.

[ENAMETOOLONG] File name too long.

This error code is only returned on sockets that use the AF_UNIX or

AF_UNIX_CCSID address family.

[ENETDOWN] The network is not currently available.

28 iSeries: UNIX-Type -- Sockets APIs

[ENETUNREACH] Cannot reach the destination network.

This error code is returned for sockets that use the AF_INET or AF_INET6 address

families, the address specified by the destination_address parameter requires the

use of a router, and the socket option SO_DONTROUTE is currently set on.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOENT] No such file or directory.

This error code is only returned on sockets that use the AF_UNIX or

AF_UNIX_CCSID address family.

[ENOSYS] Function not implemented.

This error code is only returned on sockets that use the AF_UNIX and

AF_UNIX_CCSID address families.

[ENOTDIR] Not a directory.

[ENOTSOCK] The specified descriptor does not reference a socket.

This error code is only returned on sockets that use the AF_UNIX or

AF_UNIX_CCSID address family.

[EOPNOTSUPP] Operation not supported.

connect() is not allowed on a passive socket (a socket for which a listen() has been

done).

[EPROTOTYPE] The socket type or protocols are not compatible.

This error code is only returned on sockets that use the AF_UNIX or

AF_UNIX_CCSID address family.

[ETIMEDOUT] A remote host did not respond within the timeout period.

This error code is returned when connection establishment times out. No

connection is established. A possible cause may be that the partner application is

bound to the address specified by the destination_address parameter, but the

partner application has not yet issued a listen().

[EUNKNOWN] Unknown system state.

[EUNATCH] The protocol required to support the specified address family is not available at

this time.

[EPROTO] An underlying protocol error has occurred.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. connect() establishes an end-to-end connection. It can only be issued once on sockets that have an

address family of AF_INET or AF_INET6 and are of type SOCK_STREAM. (If the connect() fails to

successfully establish the connection, you must close the socket and create a new socket if you wish to

try to establish a connection again.) For sockets of other address families that are connection-oriented,

you may simply try the connect() again to the same or to a new address. connect() can be issued on

sockets of type SOCK_DGRAM and SOCK_RAW multiple times. Each time connect() is issued, it changes the

destination address from which packets may be received and to which packets may be sent.

Note: Issuing connect() on sockets of type SOCK_DGRAM and SOCK_RAW is not recommended because of

dynamic route reassignment (picking a new route when a route that was previously used is no longer

Sockets APIs 29

available). When this reassignment occurs, the next packet from the partner program can be received

from a different IP address than the address your application specified on the connect(). This results in

the data being discarded.

2. When a connect() is issued successfully on sockets with an address family of AF_INET or AF_INET6 and

type of SOCK_DGRAM, errors relating to the unsuccessful delivery of outgoing packets may be received

as errno values. For example, assume an application has issued the connect() for a destination_address at

which no server is currently bound for the port specified in destination_address, and the application

sends several packets to that destination_address. Eventually, one of the application output functions

(for example, send()) will receive an error [ECONNREFUSED]. If the application had not issued the

connect(), this diagnostic information would have been discarded.

3. A connectionless transport socket for which a connect() has been issued can be disconnected by either

setting the destination_address parameter to NULL or setting the address_length parameter to zero, and

issuing another connect().

4. For sockets that use a connection-oriented transport service and an address family of AF_INET or

AF_INET6 there is a notion of a directed connect. A directed connect allows two socket endpoints

(socket A and socket B) to be connected without having a passive socket to accept an incoming

connection request. The idea is for both sockets to bind to addresses. Socket A then issues a connect()

specifying the address that socket B is bound to, and socket B issues a connect() specifying the address

that socket A is bound to. At this point sockets A and B are connected, and data transfer between the

sockets can now take place.

5. For sockets with an address family of AF_INET or AF_INET6, the following is applicable:

v For sockets of type SOCK_STREAM or SOCK_DGRAM, a local port number is implicitly assigned to the

socket if the connect() is issued without previously issuing a bind().
6. For sockets with an address family of AF_INET, the following is applicable:

v If the destination address has an IP address that is set to zero, the system selects an appropriate

destination IP address using the following algorithm:

– If the socket is bound to an IP address of zero, a loopback address is used. If a loopback

interface is not configured (or the associated interface is not active), the address of the next

available interface that is active is used. Otherwise, the destination IP address is not changed

(and results in an error on the connect()).

– If the socket is bound to a nonzero IP address, then the IP address that the socket is bound to is

used.
v If the destination address has an internet IP address that is set to INADDR_BROADCAST (hex

0xFFFFFFFF), the system selects an appropriate destination IP address using the following

algorithm:

– If the socket is bound to an IP address of zero and:

- It is using a connectionless transport service, then the first active interface found that supports

broadcast frames is used by the networking software.

- It is using a connection-oriented transport service, an error is returned ([EACCES]).
– If the socket is bound to a nonzero IP address and is using a connectionless transport service

and:

- The address that the socket is bound to denotes an interface that supports broadcast frames

(for example, not a loopback address), then the limited broadcast address of the IP address

that the socket is bound to is used.

- The address that the socket is bound to is a loopback address, an error is returned ([EINVAL]).
– If the socket is bound to a nonzero IP address and it is using a connection-oriented transport

service, an error is returned ([EACCES]).
7. For sockets with an address family of AF_UNIX or AF_UNIX_CCSID, the following is applicable:

v There is no implicit binding of an address to the socket. The socket is unnamed if the connect() is

issued without previously issuing a bind().

30 iSeries: UNIX-Type -- Sockets APIs

v The process must have write access to the destination address and search permission along all the

components of the path.

v For AF_UNIX, the path name is assumed to be in the default coded character set identifier (CCSID)

currently in effect for the job. For AF_UNIX_CCSID, the path name is assumed to be in the format and

coded character set identifier (CCSID) specified in the sockaddr_unc (pointed to by local_address).
8. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the connect() API is mapped to qso_connect98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “fcntl()—Perform File Control Command”—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 69—Perform I/O Control Request

v “bind()—Set Local Address for Socket” on page 14—Set Local Address for Socket

v “accept()—Wait for Connection Request and Make Connection” on page 4—Wait for Connection

Request and Make Connection

v “sendto()—Send Data” on page 161—Send Data

v “sendmsg()—Send a Message Over a Socket” on page 154—Send Data or Descriptors or Both

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

fcntl()—Perform File Control Command

 Syntax

 #include <sys/types.h>

 #include <unistd.h>

 #include <fcntl.h>

 int fcntl(int descriptor,

 int command,

 ...)

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 41.

The fcntl() function performs various actions on open descriptors, such as obtaining or changing the

attributes of a file or socket descriptor.

Parameters

descriptor

(Input) The descriptor on which the control command is to be performed, such as having its

attributes retrieved or changed.

command

(Input) The command that is to be performed on the descriptor.

Sockets APIs 31

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

... (Input) A variable number of optional parameters that is dependent on the command. Only some

of the commands use this parameter.

 The fcntl() commands that are supported are:

 F_DUPFD Duplicates the descriptor. A third int argument must be specified. fcntl() returns the lowest

descriptor greater than or equal to this third argument that is not already associated with an open

file. This descriptor refers to the same object as descriptor and shares any locks. If the original

descriptor was opened in text mode, data conversion is also done on the duplicated descriptor.

The FD_CLOEXEC flag that is associated with the new descriptor is cleared.

F_GETFD Obtains the descriptor flags for descriptor. fcntl() returns these flags as its result. For a list of

supported file descriptor flags, see “Flags” on page 33. Descriptor flags are associated with a

single descriptor and do not affect other descriptors that refer to the same object.

F_GETFL Obtains the file status flags and file access mode flags for descriptor. fcntl() returns these flags as

its result. For a list of supported file status and file access mode flags, see Using the oflag

Parameter in open().

F_GETLK Obtains locking information for an object. You must specify a third argument of type struct flock

*. See “File Locking” on page 33 for details. fcntl() returns 0 if it successfully obtains the locking

information. When you develop in C-based languages and the function is compiled with the

_LARGE_FILES macro defined, F_GETLK is mapped to the F_GETLK64 symbol.

F_GETLK64 Obtains locking information for a large file. You must specify a third argument of type struct

flock64 *. See “File Locking” on page 33 for details. fcntl() returns 0 if it successfully obtains the

locking information. When you develop in C-based languages, it is necessary to compile the

function with the _LARGE_FILE_API macro defined to use this symbol.

F_GETOWN Returns the process ID or process group ID that is set to receive the SIGIO (I/O is possible on a

descriptor) and SIGURG (urgent condition is present) signals. For more information, see Signal APIs.

F_SETFD Sets the descriptor flags for descriptor. You must specify a third int argument, which gives the new

file descriptor flag settings (see “Flags” on page 33). If any other bits in the third argument are set,

fcntl() fails with the [EINVAL] error. fcntl() returns 0 if it successfully sets the flags. Descriptor

flags are associated with a single descriptor and do not affect other descriptors that refer to the

same object.

F_SETFL Sets status flags for the descriptor. You must specify a third int argument, giving the new file

status flag settings (see “Flags” on page 33). fcntl() does not change the file access mode, and file

access bits in the third argument are ignored. All other oflag values that are valid on the open()

API are also ignored. If any other bits in the third argument are set, fcntl() fails with the

[EINVAL] error. fcntl() returns 0 if it successfully sets the flags.

F_SETLK Sets or clears a file segment lock. You must specify a third argument of type struct flock *. See

“File Locking” on page 33 for details. fcntl() returns 0 if it successfully clears the lock. When you

develop in C-based languages and the function is compiled with the _LARGE_FILES macro

defined, F_SETLK is mapped to the F_SETLK64 symbol.

F_SETLK64 Sets or clears a file segment lock for a large file. You must specify a third argument of type struct

flock64 *. See “File Locking” on page 33 for details. fcntl() returns 0 if it successfully clears the

lock. When you develop in C-based languages, it is necessary to compile the function with the

_LARGE_FILE_API macro defined to use this symbol.

F_SETLKW Sets or clears a file segment lock; however, if a shared or exclusive lock is blocked by other locks,

fcntl() waits until the request can be satisfied. You must specify a third argument of type struct

flock *. See “File Locking” on page 33 for details. When you develop in C-based languages and

the function is compiled with the _LARGE_FILES macro defined, F_SETLKW is mapped to the

F_SETLKW64 symbol.

F_SETLKW64 Sets or clears a file segment lock on a large file; however, if a shared or exclusive lock is blocked

by other locks, fcntl() waits until the request can be satisfied. See “File Locking” on page 33 for

details. You must specify a third argument of type struct flock64 *. When you develop in

C-based languages, it is necessary to compile the function with the _LARGE_FILE_API macro

defined to use this symbol.

F_SETOWN Sets the process ID or process group ID that is to receive the SIGIO and SIGURG signals. For more

information, see Signal APIs.

32 iSeries: UNIX-Type -- Sockets APIs

open.htm#HDROPNFLAG
open.htm#HDROPNFLAG
unix5a1.htm
unix5a1.htm

Flags

There are several types of flags associated with each open object. Flags for an object are represented by

symbols defined in the <fcntl.h header file. The following file status flags can be associated with an

object:

 FASYNC The SIGIO signal is sent to the process when it is possible to do I/O.

FNDELAY This flag is defined to be equivalent to O_NDELAY.

O_APPEND Append mode. If this flag is 1, every write operation on the file begins at the end of the file.

O_DSYNC Synchronous update - data only. If this flag is 1, all file data is written to permanent storage before

the update operation returns. Update operations include, but are not limited to, the following:

ftruncate(), open() with O_TRUNC, and write().

O_NDELAY This flag is defined to be equivalent to O_NONBLOCK.

O_NONBLOCK Non-blocking mode. If this flag is 1, read or write operations on the file will not cause the thread

to block. This file status flag applies only to pipe, FIFO, and socket descriptors.

O_RSYNC Synchronous read. If this flag is 1, read operations to the file will be performed synchronously.

This flag is used in combination with O_SYNC or O_DSYNC. When O_RSYNC and O_SYNC are

set, all file data and file attributes are written to permanent storage before the read operation

returns. When O_RSYNC and O_DSYNC are set, all file data is written to permanent storage

before the read operation returns.

O_SYNC Synchronous update. If this flag is 1, all file data and file attributes relative to the I/O operation

are written to permanent storage before the update operation returns. Update operations include,

but are not limited to, the following: ftruncate(), open() with O_TRUNC, and write().

The following file access mode flags can be associated with a file:

 O_RDONLY The file is opened for reading only.

O_RDWR The file is opened for reading and writing.

O_WRONLY The file is opened for writing only.

A mask can be used to extract flags:

 O_ACCMODE Extracts file access mode flags.

The following descriptor flags can be associated with a descriptor:

 FD_CLOEXEC Controls descriptor inheritance during spawn() and spawnp() when simple inheritance is being

used, as follows:

v If the FD_CLOEXEC flag is zero, the descriptor is inherited by the child process that is created

by the spawn() or spawnp()API.

Note: Descriptors that are created as a result of the opendir() API (to implement open directory

streams) are not inherited, regardless of the value of the FD_CLOEXEC flag.

v If the FD_CLOEXEC flag is set, the descriptor is not inherited by the child process that is

created by the spawn() or spawnp() API.

Refer to spawn()—Spawn Process and spawnp()—Spawn Process with Path for additional information

about FD_CLOEXEC.

File Locking

A local or remote job can use fcntl() to lock out other local or remote jobs from a part of a file. By locking

out other jobs, the job can read or write to that part of the file without interference from others. File

locking can ensure data integrity when several jobs have a file accessed concurrently. For more

Sockets APIs 33

spawn.htm
spawnp.htm

information about remote locking, see information about the network lock manager and the network

status monitor in the OS/400 Network File System Support

book.

Two different structures are used to control locking operations: struct flock and struct flock64 (both

defined in the <fcntl.h header file). You can use struct flock64 with the F_GETLK64, F_SETLK64, and

F_SETLKW64 commands to control locks on large files (files greater than 2GB minus 1 byte). The struct

flock structure has the following members:

 short l_type Indicates the type of lock, as indicated by one of the following

symbols (defined in the <fcntl.h> header file):

F_RDLCK

Indicates a read lock; also called a shared lock. When a job

has a read lock, no other job can obtain write locks for that

part of the file. More than one job can have a read lock on

the same part of a file simultaneously. To establish a read

lock, a job must have the file accessed for reading.

F_WRLCK

Indicates a write lock; also called an exclusive lock. When a

job has a write lock, no other job can obtain a read lock or

write lock on the same part or an overlapping part of that

file. A job cannot put a write lock on part of a file if

another job already has a read lock on an overlapping part

of the file. To establish a write lock, a job must have

accessed the file for writing.

F_UNLCK

Unlocks a lock that was set previously.

short l_whence One of three symbols used in determining the part of the file that is

affected by this lock. These symbols are defined in the <unistd.h>

header file and are the same as symbols used by lseek():

SEEK_CUR

The current file offset in the file.

SEEK_END

The end of the file.

SEEK_SET

The start of the file.

off_t l_start Gives a byte offset used to identify the part of the file that is

affected by this lock. If l_start is negative, it is handled as an

unsigned value. The part of the file affected by the lock begins at

this offset from the location given by l_whence. For example, if

l_whence is SEEK_SET and l_start is 10, the locked part of the file

begins at an offset of 10 bytes from the beginning of the file.

off_t l_len Gives the size of the locked part of the file, in bytes. If the size is

negative, it is treated as an unsigned value. If l_len is zero, the

locked part of the file begins at the position specified by l_whence

and l_start, and extends to the end of the file. Together, l_whence,

l_start, and l_len are used to describe the part of the file that is

affected by this lock.

pid_t l_pid Specifies the job ID of the job that holds the lock. This is an output

field used only with F_GETLK actions.

void *l_reserved0 Reserved. Must be set to NULL.

void *l_reserved1 Reserved. Must be set to NULL.

When you develop in C-based languages and this function is compiled with _LARGE_FILES defined, the

struct flock data type will be mapped to a struct flock64 data type. To use the struct flock64 data

type explicitly, it is necessary to compile the function with _LARGE_FILE_API defined.

34 iSeries: UNIX-Type -- Sockets APIs

The struct flock64 structure has the following members:

 short l_type Indicates the type of lock, as indicated by one of the following

symbols (defined in the <fcntl.h header file):

F_RDLCK

Indicates a read lock; also called a shared lock. When a job

has a read lock, no other job can obtain write locks for that

part of the file. More than one job can have a read lock on

the same part of a file simultaneously. To establish a read

lock, a job must have the file accessed for reading.

F_WRLCK

Indicates a write lock; also called an exclusive lock. When a

job has a write lock, no other job can obtain a read lock or

write lock on the same part or an overlapping part of that

file. A job cannot put a write lock on part of a file if

another job already has a read lock on an overlapping part

of the file. To establish a write lock, a job must have

accessed the file for writing.

F_UNLCK

Unlocks a lock that was set previously.

short l_whence One of three symbols used in determining the part of the file that is

affected by this lock. These symbols are defined in the <unistd.h>

header file and are the same as symbols used by lseek():

SEEK_CUR

The current file offset in the file.

SEEK_END

The end of the file.

SEEK_SET

The start of the file.

char l_reserved2[4] Reserved field

off64_t l_start Gives a byte offset used to identify the part of the file that is

affected by this lock. l_start is handled as a signed value. The part

of the file affected by the lock begins at this offset from the location

given by l_whence. For example, if l_whence is SEEK_SET and

l_start is 10, the locked part of the file begins at an offset of 10

bytes from the beginning of the file.

off64_t l_len Gives the size of the locked part of the file, in bytes. If the size is

negative, the part of the file affected is l_start + l_len through l_start

- 1. If l_len is zero, the locked part of the file begins at the position

specified by l_whence and l_start, and extends to the end of the

file. Together, l_whence, l_start, and l_len are used to describe the

part of the file that is affected by this lock.

pid_t l_pid Specifies the job ID of the job that holds the lock. This is an output

field used only with F_GETLK actions.

char reserved3[4] Reserved field.

void *l_reserved0 Reserved. Must be set to NULL.

void *l_reserved1 Reserved. Must be set to NULL.

You can set locks by specifying F_SETLK or F_SETLK64 as the command argument for fcntl(). Such a

function call requires a third argument pointing to a struct flock structure (or struct flock64 in the

case of F_SETLK64), as in this example:

Sockets APIs 35

struct flock lock_it;

 lock_it.l_type = F_RDLCK;

 lock_it.l_whence = SEEK_SET;

 lock_it.l_start = 0;

 lock_it.l_len = 100;

 fcntl(file_descriptor,F_SETLK,&lock_it);

This example sets up a flock structure describing a read lock on the first 100 bytes of a file, and then calls

fcntl() to establish the lock. You can unlock this lock by setting l_type to F_UNLCK and making the

same call. If an F_SETLK operation cannot set a lock, it returns immediately with an error saying that the

lock cannot be set.

The F_SETLKW and F_SETLKW64 operations are similar to F_SETLK and F_SETLK64, except that they

wait until the lock can be set. For example, if you want to establish an exclusive lock and some other job

already has a lock established on an overlapping part of the file, fcntl() waits until the other process has

removed its lock.

F_SETLKW and F_SETLKW64 operations can encounter deadlocks when job A is waiting for job B to

unlock a region and job B is waiting for job A to unlock a different region. If the system detects that an

F_SETLKW or F_SETLKW64 might cause a deadlock, fcntl() fails with errno set to [EDEADLK].

With the F_SETLK64, F_SETLKW64, and F_GETLK64 operations, the maximum offset that can be

specified is the largest value that can be held in an 8-byte, signed integer.

A job can determine locking information about a file by using F_GETLK and F_GETLK64 as the command

argument for fcntl(). In this case, the call to fcntl() should specify a third argument pointing to a flock

structure. The structure should describe the lock operation you want. When fcntl() returns, the structure

indicated by the flock pointer is changed to show the first lock that would prevent the proposed lock

operation from taking place. The returned structure shows the type of lock that is set, the part of the file

that is locked, and the job ID of the job that holds the lock. In the returned structure:

v l_whence is always SEEK_SET.

v l_start gives the offset of the locked portion from the beginning of the file.

v l_len is the length of the locked portion.

If there are no locks that prevent the proposed lock operation, the returned structure has F_UNLCK in

l_type and is otherwise unchanged.

If fcntl() attempts to operate on a large file (one larger than 2GB minus 1 byte) with the F_SETLK,

F_GETLK, or FSETLKW commands, the API fails with [EOVERFLOW]. To work with large files, compile

with the _LARGE_FILE_API macro defined (when you develop in C-based languages) and use the

F_SETLK64, F_GETLK64, or FSETLKW64 commands. When you develop in C-based languages, it is also

possible to work with large files by compiling the source with the _LARGE_FILES macro label defined.

Note that the file must have been opened for large file access (either the open64() API was used or the

open() API was used with the O_LARGEFILE flag defined in the oflag parameter).

An application that uses the F_SETLK or F_SETLKW commands may try to lock or unlock a file that has

been extended beyond 2GB minus 1 byte by another application. If the value of l_len is set to 0 on the

lock or unlock request, the byte range held or released will go to the end of the file rather than ending at

offset 2GB minus 2.

An application that uses the F_SETLK or F_SETLKW commands also may try to lock or unlock a file that

has been extended beyond offset 2GB minus 2 with l_len NOT set to 0. If this application attempts to

lock or unlock the byte range up to offset 2GB minus 2 and l_len is not 0, the unlock request will unlock

the file only up to offset 2GB minus 2 rather than to the end of the file.

36 iSeries: UNIX-Type -- Sockets APIs

A job can have several locks on a file at the same time, but only one type of lock can be set on a given

byte. Therefore, if a job puts a new lock on a part of a file that it had locked previously, the job has only

one lock on that part of the file. The type of the lock is the one specified in the most recent locking

operation.

Locks can start and extend beyond the current end of a file, but cannot start or extend ahead of the

beginning of a file.

All of the locks a job has on a file are removed when the job closes any descriptor that refers to the

locked file.

All locks obtained using fcntl() are advisory only. Jobs can use advisory locks to inform each other that

they want to protect parts of a file, but advisory locks do not prevent input and output on the locked

parts. If a job has appropriate permissions on a file, it can perform whatever I/O it chooses, regardless of

what advisory locks are set. Therefore, advisory locking is only a convention, and it works only when all

jobs respect the convention.

Another type of lock, called a mandatory lock, can be set by a remote personal computer application.

Mandatory locks restrict I/O on the locked parts. A read fails when reading a part that is locked with a

mandatory write lock. A write fails when writing a part that is locked with a mandatory read or

mandatory write lock.

The maximum starting offset that can be specified by using the fnctl() API is 263 - 1, the largest number

that can be represented by a signed 8-byte integer. Mandatory locks set by a personal computer

application or by a user of the DosSetFileLocks64() API may lock a byte range that is greater than 263 - 1.

An application that uses the F_SETLK64 or F_SETLKW64 commands can lock the offset range that is

beyond 263 - 1 by locking offset 263 - 1. When offset 263 - 1 is locked, it implicitly locks to the end of the

file. The end of the file is the largest number than can be represented by an 8-byte unsigned integer or 264

- 1. This implicit lock may inhibit the personal computer application from setting mandatory locks in the

range not explicitly accessable by the fcntl() API.

Any lock set using the fcntl() API that locks offset 263 - 1 will have a length of 0.

An application that uses the F_GETLK64 may encounter a mandatory lock set by a personal computer

application, which locks a range of offsets greater than 263 - 1. This lock conflict will have a starting offset

equal to or less than 263 - 1 and a length of 0.

Authorities

No authorization is required.

Return Value

 value fcntl() was successful. The value returned depends on the command that was specified.

-1 fcntl() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If fcntl() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

Sockets APIs 37

The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

 The process tried to lock with F_SETLK, but the lock is in conflict with a previously established

lock.

[EBADF]

 Descriptor not valid.

 A descriptor argument was out of range, referred to an object that was not open, or a read or

write request was made to an object that is not open for that operation.

 A given descriptor or directory pointer is not valid for this operation. The specified descriptor is

incorrect, or does not refer to an open object.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADFUNC]

 Function parameter in the signal function is not set.

 A given descriptor or directory pointer is not valid for this operation. The specified descriptor is

incorrect, or does not refer to an open object.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EDEADLK]

 Resource deadlock avoided.

 An attempt was made to lock a system resource that would have resulted in a deadlock situation.

The lock was not obtained.

 The function attempted was failed to prevent a deadlock.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

38 iSeries: UNIX-Type -- Sockets APIs

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EMFILE]

 Too many open files for this process.

 An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of

OPEN_MAX can be retrieved using the sysconf() function.

 The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENOLCK]

 No locks available.

 A system-imposed limit on the number of simultaneous file and record locks was reached, and no

more were available at that time.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSYS]

 Function not implemented.

 An attempt was made to use a function that is not available in this implementation for any object

or any arguments.

 The path name given refers to an object that does not support this function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[EOVERFLOW]

 Object is too large to process.

 The object’s data size exceeds the limit allowed by this function.

 One of the values to be returned cannot be represented correctly.

Sockets APIs 39

The command argument is F_GETLK, F_SETLK, or F_SETLKW and the offset of any byte in the

requested segment cannot be represented correctly in a variable of type off_t (the offset is greater

than 2GB minus 1 byte).

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could also indicate one of the

following errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

40 iSeries: UNIX-Type -- Sockets APIs

Message ID Error Message Text

CPFA0D4 E File system error occurred. Error number &1.

CPFA081 E Unable to set return value or error code.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2.

If F_DUPFD is specified as the fcntl() command, this function will fail with error code [EBADF]

when fildes is a scan descriptor that was passed to one of the scan-related exit programs. See

Integrated File System Scan on Open Exit Programs and Integrated File System Scan on Close Exit

Programs for more information.

3. If the fcntl() command is called by a thread executing one of the scan-related exit programs (or any of

its created threads), it will fail with error code [ENOTSUP] if F_SETLK, F_SETLK64, F_SETLKW or

F_SETLKW64 is specified. See Integrated File System Scan on Open Exit Programs and Integrated File

System Scan on Close Exit Programs for more information.

4. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

The following fcntl() commands are not supported:

v F_GETLK

v F_SETLK

v F_SETLKW

Using any of these commands results in an [ENOSYS] error.

5. Network File System Differences

Reading and writing to a file with the Network File System relies on byte-range locking to guarantee

data integrity. To prevent data inconsistency, use the fcntl() API to get and release these locks. For

more information about remote locking, see information about the network lock manager and the

network status monitor in the OS/400 Network File System Support

book.

6. QNetWare File System Differences

Sockets APIs 41

ifsopenexit.htm
ifscloseexit.htm
ifscloseexit.htm
ifsopenexit.htm
ifscloseexit.htm
ifscloseexit.htm

F_GETLK and F_SETLKW are not supported. F_RDLCK and F_WRLCK are ignored. All locks prevent

reading and writing. Advisory locks are not supported. All locks are mandatory locks. Locking a file

that is opened more than once in the same job with the same access mode is not supported, and its

result is undefined.

7. This function will fail with the [EOVERFLOW] error if the command is F_GETLK, F_SETLK, or

F_SETLKW and the offset or the length exceeds offset 2 GB minus 2.

8. When you develop in C-based languages and an application is compiled with the _LARGE_FILES

macro defined, the struct flock data type will be mapped to a struct flock64 data type. To use the

struct flock64 data type explicitly, it is necessary to compile the function with the

_LARGE_FILE_API defined.

9. In several cases, similar function can be obtained by using ioctl().

Related Information

v The <sys/types.h> file (see Header Files for UNIX-Type Functions)

v The <unistd.h> file (see Header Files for UNIX-Type Functions)

v The <fcntl.h> file (see Header Files for UNIX-Type Functions)

v “close()—Close File or Socket Descriptor” on page 19—Close File or Socket Descriptor

v dup()—Duplicate Open File Descriptor

v dup2()—Duplicate Open File Descriptor to Another Descriptor

v “ioctl()—Perform I/O Control Request” on page 69—Perform I/O Control Request

v lseek()—Set File Read/Write Offset

v open()—Open File

v spawn()—Spawn Process

v spawnp()—Spawn Process with Path

v OS/400 Network File System Support

book

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses fcntl():

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

#include <fcntl.h>

int main()

{

 int flags;

 int append_flag;

 int nonblock_flag;

 int access_mode;

 int file_descriptor; /* File Descriptor */

 char *text1 = "abcdefghij";

 char *text2 = "0123456789";

 char read_buffer[25];

 memset(read_buffer, ’\0’, 25);

 /* create a new file */

 file_descriptor = creat("testfile",S_IRWXU);

 write(file_descriptor, text1, 10);

 close(file_descriptor);

42 iSeries: UNIX-Type -- Sockets APIs

unix13.htm
unix13.htm
unix13.htm
dup.htm
dup2.htm
lseek.htm
open.htm
spawn.htm
spawnp.htm
aboutapis.htm#CODEDISCLAIMER

/* open the file with read/write access */

 file_descriptor = open("testfile", O_RDWR);

 read(file_descriptor, read_buffer,24);

 printf("first read is \’%s\’\n",read_buffer);

 /* reset file pointer to the beginning of the file */

 lseek(file_descriptor, 0, SEEK_SET);

 /* set append flag to prevent overwriting existing text */

 fcntl(file_descriptor, F_SETFL, O_APPEND);

 write(file_descriptor, text2, 10);

 lseek(file_descriptor, 0, SEEK_SET);

 read(file_descriptor, read_buffer,24);

 printf("second read is \’%s\’\n",read_buffer);

 close(file_descriptor);

 unlink("testfile");

 return 0;

}

Output:

first read is ’abcdefghij’

second read is ’abcdefghij0123456789’

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

fstat()—Get File Information by Descriptor

 Syntax

 #include <sys/stat.h>

 int fstat(int descriptor,

 struct stat *buffer)

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 47.

The fstat() function gets status information about the object specified by the open descriptor descriptor

and stores the information in the area of memory indicated by the buffer argument. The status

information is returned in a stat structure, as defined in the <sys/stat.h> header file.

Parameters

descriptor

(Input) The descriptor for which information is to be retrieved.

buffer (Output) A pointer to a buffer of type struct stat in which the information is returned. The

structure pointed to by the buffer parameter is described in stat()— Get File Information.

 The st_mode, st_dev, and st_blksize fields are the only fields set for socket descriptors. The st_mode

field is set to a value that indicates the descriptor is a socket descriptor, the st_dev field is set to

-1, and the st_blksize field is set to an optimal value determined by the system.

Sockets APIs 43

#TOP_OF_PAGE
unix.htm
aplist.htm
stat.htm

Authorities

No authorization is required.

Return Value

 0 fstat() was successful. The information is returned in buffer.

-1 fstat() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If fstat() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A descriptor argument was out of range, referred to a file that was not open, or a read or write

request was made to a file that is not open for that operation.

 A given descriptor or directory pointer is not valid for this operation. The specified descriptor is

incorrect, or does not refer to an open object.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADFUNC]

 Function parameter in the signal function is not set.

 A given descriptor or directory pointer is not valid for this operation. The specified descriptor is

incorrect, or does not refer to an open object.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

44 iSeries: UNIX-Type -- Sockets APIs

A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid. [EFAULT] is returned if this function is passed a pointer parameter that is not

valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 This error code may be returned when the underlying object represented by the descriptor is

unable to fill the stat structure (for example, if the function was issued against a socket descriptor

that had its connection reset).

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

[ENOSYSRSC]

 System resources not available to complete request.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[EOVERFLOW]

 Object is too large to process.

 The object’s data size exceeds the limit allowed by this function.

 The specified file exists and its size is too large to be represented in the structure pointed to by

buffer (the file is larger than 2GB minus 1 byte).

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[ESTALE]

Sockets APIs 45

File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could also indicate one of the

following errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPFA0D4 E File system error occurred. Error number &1.

CPFA081 E Unable to set return value or error code.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

46 iSeries: UNIX-Type -- Sockets APIs

Usage Notes

1. This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

v Where multiple threads exist in the job.

v The object this function is operating on resides in a file system that is not threadsafe. Only the

following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. Sockets-Specific Notes

v The field st_mode can be inspected using the S_ISSOCK macro (defined in <sys/stat.h>) to

determine if the descriptor is pointing to a socket descriptor.

v For socket descriptors, use the send buffer size (this is the value returned for st_blksize) for the

length parameter on your input and output functions. This can improve performance.

Note: IBM reserves the right to change the calculation of the optimal send size.
3. QOPT File System Differences

The value for st_atime will always be zero. The value for st_ctime will always be the creation date

and time of the file or directory.

The user, group, and other mode bits are always on for an object that exists on a volume not

formatted in Universal Disk Format (UDF).

fstat on /QOPT will always return 2,147,483,647 for size fields.

fstat on optical volumes will return the volume capacity or 2,147,483,647, whichever is smaller.

The file access time is not changed.

4. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. Once a file is open, subsequent requests to perform operations on the file can

fail because file attributes are checked at the server on each request. If permissions on the file are

made more restrictive at the server or the file is unlinked or made unavailable by the server for

another client, your operation on an open descriptor will fail when the local Network File System

receives these updates. The local Network File System also impacts operations that retrieve file

attributes. Recent changes at the server may not be available at your client yet, and old values may be

returned from operations. (Several options on the Add Mounted File System (ADDMFS) command

determine the time between refresh operations of local data.)

5. QNetWare File System Differences

The QNetWare file system does not fully support mode bits. See the Netware on iSeries topic for

more information.

6. This function will fail with the [EOVERFLOW] error if the specified file exists and its size is too large

to be represented in the structure pointed to by buffer (the file is larger than 2GB minus 1 byte).

7. When you develop in C-based languages and this function is compiled with _LARGE_FILES defined,

it will be mapped to fstat64(). Note that the type of the buffer parameter, struct stat *, also will be

mapped to type struct stat64 *. See stat64() for more information on this structure.

Sockets APIs 47

stat64.htm

Related Information

v The <sys/types.h> file (see Header Files for UNIX-Type Functions)

v The <sys/stat.h> file (see Header Files for UNIX-Type Functions)

v “fcntl()—Perform File Control Command” on page 31—Perform File Control Command

v fstat64()—Get File Information by Descriptor (Large File Enabled)

v lstat()—Get File or Link Information

v open()—Open File

v “socket()—Create Socket” on page 188—Create Socket

v stat()—Get File Information

v stat64()—Get File Information (Large File Enabled))

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets status information:

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <time.h>

main() {

 char fn[]="temp.file";

 struct stat info;

 int file_descriptor;

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 if (fstat(file_descriptor, &info) != 0)

 perror("fstat() error");

 else {

 puts("fstat() returned:");

 printf(" inode: %d\n", (int) info.st_ino);

 printf(" dev id: %d\n", (int) info.st_dev);

 printf(" mode: %08x\n", info.st_mode);

 printf(" links: %d\n", info.st_nlink);

 printf(" uid: %d\n", (int) info.st_uid);

 printf(" gid: %d\n", (int) info.st_gid);

 }

 close(file_descriptor);

 unlink(fn);

 }

}

Output: Note that the output may vary from system to system.

fstat() returned:

 inode: 3057

 dev id: 1

 mode: 03000080

 links: 1

 uid: 137

 gid: 500

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

48 iSeries: UNIX-Type -- Sockets APIs

unix13.htm
unix13.htm
fstat64.htm
lstat.htm
open.htm
stat.htm
stat64.htm
aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

getdomainname()—Retrieve Domain Name

 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int getdomainname(char *name,

 int length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The getdomainname() function is used to retrieve the name of the domain from the system.

Parameters

name (Output) The name parameter can be one of the following:

v The pointer to a character array where the domain name is to be stored. The domain name is

NULL-terminated unless the length of the domain name exceeds the length of the name

parameter. In that case the domain name is truncated to the size of the name parameter.

v A NULL string when a sethostname() has not been previously issued since the last initial

program load.

length (Input) The length of the name parameter. Maximum length of domain names is 255.

Authorities

None.

Return Value

getdomainname() returns an integer. Possible values are:

v -1 (unsuccessful)

v 0 (successful)

Error Conditions

When getdomainname() fails, errno can be set to one of the following:

 [EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the name

parameter.

[EINVAL] Parameter not valid.

The length parameter specifies a negative value.

[EIO] Input/output error.

[EUNKNOWN] Unknown system state.

Sockets APIs 49

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. When a process issues a setdomainname(), the name of the domain can be accessed by any process that

issues a getdomainname().

2. The name of the domain is reset to NULL when an initial program load is performed.

Note: The domain name returned by this function is NOT related to the domain name of the domain

name server that is configured using the Configure TCP/IP (CFGTCP) menu.

3. The domain name is returned in the default coded character set identifier (CCSID) currently in effect

for the job.

Related Information

v “setdomainname()—Set Domain Name” on page 172—Set Domain Name

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

gethostid()—Retrieve Host ID

 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int gethostid()

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The gethostid() function is used to retrieve a host’s ID.

Authorities

No authorization is required.

Return Value

gethostid() returns an integer. Possible values are:

v 0 when a sethostid() has not been issued previously since the last initial program load (IPL)

v n (successful), where n is the number specified on a previously issued sethostid() call

50 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Usage Notes

1. When a process issues a sethostid(), the host_id can be accessed by any process that issues a gethostid()

2. The host_id is reset to zero when an initial program load is performed.

3. The host_id is a signed integer. Therefore, a -1 return value from the gethostid() may not indicate an

error, but rather that a previous sethostid() was issued that specified a host_id of -1.

4. While many socket implementations refer to the host_id as the IP address of the machine, this is not

necessarily the case. Many machines that support the TCP/IP protocol suite support multiple local IP

addresses. The value contained in host_id is not used by TCP in any manner.

Related Information

v “sethostid()—Set Host ID” on page 173—Set Host ID Address

v “gethostname()—Retrieve Host Name”—Retrieve Host Name

v “sethostname()—Set Host Name” on page 175—Set Host Name

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

gethostname()—Retrieve Host Name

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int gethostname(char *name,

 int length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

 int gethostname(char *name,

 socklen_t length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The gethostname() function is used to retrieve the name of the host from the system.

Sockets APIs 51

#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

name (Output) The pointer to a character array where the host name is to be stored. The host name is

NULL-terminated unless the length of the host name exceeds the length of the name parameter, in

which case the host name is truncated to the size of the name parameter.

length (Input) The length of the name parameter.

Authorities

No authorization is required.

Return Value

gethostname() returns an integer. Possible values are:

v -1 (unsuccessful)

v 0 (successful)

Error Conditions

When gethostname() fails, errno can be set to one of the following:

 [EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the name

parameter.

[EINVAL] Parameter not valid.

The length parameter specifies a negative value.

[EIO] Input/output error.

[EUNKNOWN] Unknown system state.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. Maximum length of host names is defined by {MAXHOSTNAMELEN} (defined in <sys/param.h>).

2. When a process issues a sethostname(), the host name can be accessed by any process that issues a

gethostname().

3. On an initial program load, the host name is set to whatever was configured using the iSeries

Navigator or option 12 (Change TCP/IP domain information) on the Configure TCP/IP (CFGTCP)

menu. The local domain name is appended with the local host name and stored in system-wide

storage. This combined name is the host name that can be retrieved by gethostname(). If the local host

name and local domain name are not set, the host name is set to NULL.

4. The host name is returned in the default coded character set identifier (CCSID) currently in effect for

the job.

52 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm

5. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the gethostname() API is mapped to qso_gethostname98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “sethostname()—Set Host Name” on page 175—Set Host Name

v “gethostid()—Retrieve Host ID” on page 50—Retrieve Host ID Address

v “sethostid()—Set Host ID” on page 173—Set Host ID Address

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

getpeername()—Retrieve Destination Address of Socket

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int getpeername(int socket_descriptor,

 struct sockaddr *destination_address,

 int *address_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

 int getpeername(int socket_descriptor,

 struct sockaddr *destination_address,

 socklen_t *address_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The getpeername() function is used to retrieve the destination address to which the socket is connected.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Sockets APIs 53

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm
_xopen_source.htm

Parameters

socket_descriptor

(Input) The descriptor of the socket for which the destination address is to be retrieved.

destination_address

(Output) A pointer to a buffer of type struct sockaddr in which the destination address to which

the socket connects is stored. The structure sockaddr is defined in <sys/socket.h>.

 The BSD 4.3 structure is:

 struct sockaddr {

 u_short sa_family;

 char sa_data[14];

 };

The BSD 4.4/UNIX 98 compatible structure is:

 typedef uchar sa_family_t;

 struct sockaddr {

 uint8_t sa_len;

 sa_family_t sa_family;

 char sa_data[14];

 };

The BSD 4.4 sa_len field is the length of the address. The sa_family field identifies the address

family to which the address belongs, and sa_data is the address whose format is dependent on the

address family.

 Note: See the usage notes about using different address families with sockaddr_storage.

address_length

(I/O) This parameter is a value-result field. The caller passes a pointer to the length of the

destination_address parameter. On return from the call, the address_length parameter contains the

actual length of the destination address.

Authorities

No authorization is required.

Return Value

getpeername() returns an integer. Possible values are:

v -1 (unsuccessful)

v 0 (successful)

Error Conditions

When getpeername() fails, errno can be set to one of the following:

 [EBADF] Descriptor not valid.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the

destination_address or address_length parameters.

[EINVAL] Parameter not valid.

The address_length parameter specifies a negative value.

[EIO] Input/output error.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOTCONN] Requested operation requires a connection.

54 iSeries: UNIX-Type -- Sockets APIs

[ENOTSOCK] The specified descriptor does not reference a socket.

[EUNKNOWN] Unknown system state.

[EUNATCH] The protocol required to support the specified address family is not available at this time.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. getpeername() fails if issued against a socket for which a connect() has not been done.

2. For connection oriented sockets, getpeername() fails if both the write side and the read side have been

closed through the use of one or more previous shutdown() functions.

3. If the length of the address to be returned exceeds the length of the destination_address parameter, the

returned address is truncated.

4. The structure sockaddr is a generic structure used for any address family but it is only 16 bytes long.

The actual address returned for some address families may be much larger. You should declare

storage for the address with the structure sockaddr_storage. This structure is large enough and

aligned for any protocol-specific structure. It may then be cast as sockaddr structure for use on the

APIs. The ss_family field of the sockaddr_storage will always align with the family field of any

protocol-specific structure.

The BSD 4.3 structure is:

 #define _SS_MAXSIZE 304

 #define _SS_ALIGNSIZE (sizeof (char*))

 #define _SS_PAD1SIZE (_SS_ALIGNSIZE - sizeof(sa_family_t))

 #define _SS_PAD2SIZE (_SS_MAXSIZE - (sizeof(sa_family_t)+

 _SS_PAD1SIZE + _SS_ALIGNSIZE))

 struct sockaddr_storage {

 sa_family_t ss_family;

 char _ss_pad1[_SS_PAD1SIZE];

 char* _ss_align;

 char _ss_pad2[_SS_PAD2SIZE];

 };

The BSD 4.4/UNIX 98 compatible structure is:

 #define _SS_MAXSIZE 304

 #define _SS_ALIGNSIZE (sizeof (char*))

 #define _SS_PAD1SIZE (_SS_ALIGNSIZE - (sizeof(uint8_t) + sizeof(sa_family_t)))

 #define _SS_PAD2SIZE (_SS_MAXSIZE - (sizeof(uint8_t) + sizeof(sa_family_t)+

 _SS_PAD1SIZE + _SS_ALIGNSIZE))

 struct sockaddr_storage {

 uint8_t ss_len;

 sa_family_t ss_family;

 char _ss_pad1[_SS_PAD1SIZE];

 char* _ss_align;

 char _ss_pad2[_SS_PAD2SIZE];

 };

5. When used with an address family of AF_UNIX or AF_UNIX_CCSID, getpeername() always returns the

same path name that was specified on the bind() in the peer program. If the path name specified by

the peer program was not a fully qualified path name, the output of getpeername() is meaningful only

if your program knows what current directory was in effect for the peer program when it issued the

Sockets APIs 55

bind(). For AF_UNIX, the path name is returned in the default coded character set identifier (CCSID)

currently in effect for the job. For AF_UNIX_CCSID, the output structure sockaddr_unc defines the

format and CCSID of the returned path name.

6. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the getpeername() API is mapped to qso_getpeername98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “accept()—Wait for Connection Request and Make Connection” on page 4—Wait for Connection

Request and Make Connection

v “bind()—Set Local Address for Socket” on page 14—Set Local Address for Socket

v “connect()—Establish Connection or Destination Address” on page 25—Establish Connection or

Destination Address

v “getsockname()—Retrieve Local Address of Socket”—Retrieve Local Address of Socket

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

getsockname()—Retrieve Local Address of Socket

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int getsockname(int socket_descriptor,

 struct sockaddr *local_address,

 int *address_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

 int getsockname(int socket_descriptor,

 struct sockaddr *local_address,

 socklen_t *address_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The getsockname() function is used to retrieve the local address associated with the socket.

56 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

socket_descriptor

(Input) The descriptor of the socket for which the local address is to be retrieved.

local_address

(Output) A pointer to a buffer of type struct sockaddr in which the local address of the socket is

stored. The structure sockaddr is defined in <sys/socket.h>.

 The BSD 4.3 structure is:

 struct sockaddr {

 u_short sa_family;

 char sa_data[14];

 };

The BSD 4.4/UNIX 98 compatible structure is:

 typedef uchar sa_family_t;

 struct sockaddr {

 uint8_t sa_len;

 sa_family_t sa_family;

 char sa_data[14];

 };

The BSD 4.4 sa_len field is the length of the address. The sa_family field identifies the address

family to which the address belongs, and sa_data is the address whose format is dependent on the

address family.

 Note: See the usage notes about using different address families with sockaddr_storage.

address_length

(I/O) This parameter is a value-result field. The caller passes a pointer to the length of the

local_address parameter. On return from the call, the address_length parameter contains the actual

length of the local address.

Authorities

No authorization is required.

Return Value

getsockname() returns an integer. Possible values are:

v -1 (unsuccessful)

v 0 (successful)

Error Conditions

When getsockname() fails, errno can be set to one of the following:

 [EBADF] Descriptor not valid.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the local_address

or address_length parameters.

Sockets APIs 57

_xopen_source.htm

[EINVAL] Parameter not valid. This error code indicates one of the following:

v The address_length parameter specifies a negative value.

v The socket specified by the socket_descriptor parameter is using a connection-oriented transport

service and either the write-side has been shut down (with a shutdown()) or the connection has

been reset.

[EIO] Input/output error.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EUNKNOWN] Unknown system state.

[EUNATCH] The protocol required to support the specified address family is not available at this time.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. If the length of the address to be returned exceeds the length of the local_address parameter, the

returned address will be truncated.

2. The structure sockaddr is a generic structure used for any address family but it is only 16 bytes long.

The actual address returned for some address families may be much larger. You should declare

storage for the address with the structure sockaddr_storage. This structure is large enough and

aligned for any protocol-specific structure. It may then be cast as sockaddr structure for use on the

APIs. The ss_family field of the sockaddr_storage will always align with the family field of any

protocol-specific structure.

The BSD 4.3 structure is:

 #define _SS_MAXSIZE 304

 #define _SS_ALIGNSIZE (sizeof (char*))

 #define _SS_PAD1SIZE (_SS_ALIGNSIZE - sizeof(sa_family_t))

 #define _SS_PAD2SIZE (_SS_MAXSIZE - (sizeof(sa_family_t)+

 _SS_PAD1SIZE + _SS_ALIGNSIZE))

 struct sockaddr_storage {

 sa_family_t ss_family;

 char _ss_pad1[_SS_PAD1SIZE];

 char* _ss_align;

 char _ss_pad2[_SS_PAD2SIZE];

 };

The BSD 4.4/UNIX 98 compatible structure is:

 #define _SS_MAXSIZE 304

 #define _SS_ALIGNSIZE (sizeof (char*))

 #define _SS_PAD1SIZE (_SS_ALIGNSIZE - (sizeof(uint8_t) + sizeof(sa_family_t)))

 #define _SS_PAD2SIZE (_SS_MAXSIZE - (sizeof(uint8_t) + sizeof(sa_family_t)+

 _SS_PAD1SIZE + _SS_ALIGNSIZE))

 struct sockaddr_storage {

 uint8_t ss_len;

 sa_family_t ss_family;

58 iSeries: UNIX-Type -- Sockets APIs

char _ss_pad1[_SS_PAD1SIZE];

 char* _ss_align;

 char _ss_pad2[_SS_PAD2SIZE];

 };

3. When used with an address family of AF_UNIX or AF_UNIX_CCSID, getsockname() always returns the

same path name that was specified on a bind(). If the path name that was specified is not a fully

qualified path name, the output of getsockname() is meaningful only if your program knows what

current directory was in effect at the time of the bind(). For AF_UNIX, the path name is returned in the

default coded character set identifier (CCSID) currently in effect for the job. For AF_UNIX_CCSID, the

output structure sockaddr_unc defines the format and CCSID of the returned path name.

4. getsockname() produces different results, depending on the address family or type of the socket:

v For address family of AF_INET:

– If the type is SOCK_STREAM or SOCK_DGRAM, getsockname() will return 0 if issued before the bind().

The socket address that is returned has the IP address and port number fields set to zeros.

– If the type is SOCK_RAW, getsockname() returns a -1 if issued before a bind().

– If the type is SOCK_STREAM, and an Rbind() has successfully completed, then the address returned

is the SOCKS server address. See Rbind() for more information.
v For address family of AF_INET6:

– If the type is SOCK_STREAM or SOCK_DGRAM, getsockname() will return 0 if issued before the bind().

The socket address that is returned has the IP address and port number fields set to zeros.

– If the type is SOCK_RAW, getsockname() returns a -1 if issued before a bind().
v For address family of AF_UNIX or AF_UNIX_CCSID, getsockname() returns 0 if issued before a bind().

The address length is 0. This is always the case for sockets created by socketpair().
5. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the getsockname() API is mapped to qso_getsockname98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “bind()—Set Local Address for Socket” on page 14—Set Local Address for Socket

v “connect()—Establish Connection or Destination Address” on page 25—Establish Connection or

Destination Address

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 59

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

getsockopt()—Retrieve Information about Socket Options

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int getsockopt(int socket_descriptor,

 int level,

 int option_name,

 char *option_value,

 int *option_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

 int getsockopt(int socket_descriptor,

 int level,

 int option_name,

 void *option_value,

 socklen_t *option_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The getsockopt() function is used to retrieve information about socket options.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

socket_descriptor

(Input) The descriptor of the socket for which information is to be retrieved.

level (Input) Value indicating whether the request applies to the socket itself or to the underlying

protocol being used. Supported values are:

 IPPROTO_IP Request applies to IP protocol layer.

IPPROTO_TCP Request applies to TCP protocol layer.

SOL_SOCKET Request applies to socket layer.

IPPROTO_IPV6 Request applies to IPv6 protocol layer.

IPPROTO_ICMPV6 Request applies to ICMPv6 protocol layer.

60 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
_xopen_source.htm

option_name

(Input) The option name for which information is to be retrieved. The following tables list the

options supported, and for which level the option applies. Assume that the option is supported

for all address families unless the option is described otherwise.

 Note: Options directed to a specific protocol level are only supported by that protocol. An option

that is directed to level SOL_SOCKET usually completes successfully. If the underlying protocol does

not provide support for the option, the socket library retrieves one of the following:

v The default value for the option.

v The value previously set with a setsockopt().

This provides compatibility with Berkeley Software Distributions implementations that also

shield the application from protocols that do not support an option.

 Socket Options That Apply to the IP Layer (IPPROTO_IP)

 Option Description

IP_OPTIONS Determine what options are set in the IP header. This is only supported for sockets with an

address family of AF_INET.

IP_TOS Get Type Of Service (TOS) and Precedence in the IP header. This option is only supported

for sockets with an address family of AF_INET.

IP_TTL Get Time To Live (TTL) in the IP header. This option is only supported for sockets with an

address family of AF_INET.

IP_MULTICAST_IF Get interface over which outgoing multicast datagrams will be sent. An option_value

parameter of type in_addr is used to retrieve the local IP address that is associated with the

interface over which outgoing multicast datagrams will be sent. This option is only

supported for sockets with an address family of AF_INET and type of SOCK_DGRAM or

SOCK_RAW.

IP_MULTICAST_TTL Get Time To Live (TTL) from the IP header for outgoing multicast datagrams. An

option_value parameter of type char is used into which a value between 0 and 255 is

retrieved. This option is only supported for sockets with an address family of AF_INET and

type of SOCK_DGRAM or SOCK_RAW.

IP_DONTFRAG Return the current Don’t fragment flag setting in the IP header. A value of 0 indicates that

it is reset. A value of 1 indicates that it is set. This option is supported for sockets with an

address family of AF_INET and type of SOCK_DGRAM or SOCK_RAW only.

IP_MULTICAST_LOOP Determine the multicast looping mode. A non-zero value indicates that multicast datagrams

sent by this system should also be delivered to this system as long as it is a member of the

multicast group. If this option is not set, a copy of the datagram will not be delivered to the

sending host. An option_value parameter of type char is used to retrieve the current setting.

This option is only supported for sockets with an address family of AF_INET and type of

SOCK_DGRAM or SOCK_RAW.

IP_RECVLCLIFADDR Determine if the local interface that a datagram was received will be returned. A value of 1

indicates the first 4 bytes of the reserved field of the sockaddr structure will contain the

local interface. This option is only supported for sockets with an address family of

AF_INET and type of SOCK_DGRAM.

 Socket Options That Apply to the TCP Layer (IPPROTO_TCP)

 Option Description

TCP_NODELAY Determine if TCP is buffering data. This option is only supported for sockets with an address

family of AF_INET or AF_INET6and type SOCK_STREAM.

TCP_MAXSEG Determine TCP maximum segment size. This option is only supported for sockets with an

address family of AF_INET or AF_INET6 and type SOCK_STREAM.

Sockets APIs 61

Socket Options That Apply to the Socket Layer (SOL_SOCKET)

 Option Description

SO_ACCEPTCONN Reports whether socket listening is enabled. This option stores an int value. This is a boolean

option.

SO_BROADCAST Determine if messages can be sent to the broadcast address. This option is only supported for

sockets with an address family of AF_INET and type SOCK_DGRAM or SOCK_RAW. The broadcast

address can be determined by issuing an ioctl() specifying the SIOCGIFBRDADDR request.

SO_DEBUG Determine if low level-debugging is active.

SO_DONTROUTE Determine if the normal routing mechanism is being bypassed. This option is only supported by

sockets with an address family of AF_INET or AF_INET6.

SO_ERROR Return any pending errors in the socket. The value returned corresponds to the standard error

codes defined in <errno.h>

SO_KEEPALIVE Determine if the connection is being kept up by periodic transmissions. This option is only

supported for sockets with an address family of AF_INET or AF_INET6 and type SOCK_STREAM.

SO_LINGER Determine whether the system attempts to deliver any buffered data or if the system discards it

when a close() is issued.

For sockets that are using a connection-oriented transport service with an address family of

AF_INET or AF_INET6, the default is off (which means that the system attempts to send any

queued data, with an infinite wait-time).

SO_OOBINLINE Determine if out-of-band data is received inline with normal data. This option is only supported

for sockets with an address family of AF_INET or AF_INET6.

SO_RCVBUF Determine the size of the receive buffer.

SO_RCVLOWAT Determine the size of the receive low-water mark. This option is only supported for sockets with

a type of SOCK_STREAM.

SO_RCVTIMEO Determine the receive timeout value. This option is not supported unless _XOPEN_SOURCE is

defined to be 520 or greater.

SO_REUSEADDR Determine if the local socket address can be reused. This option is supported by sockets with an

address family of AF_INET or AF_INET6 and a type of SOCK_STREAM or SOCK_DGRAM.

SO_SNDBUF Determine the size of the send buffer.

SO_SNDLOWAT Determine the size of the send low-water mark. This option is not supported.

SO_SNDTIMEO Determine the send timeout value. This option is not supported unless _XOPEN_SOURCE is

defined to be 520 or greater.

SO_TYPE Determine the value for the socket type.

SO_USELOOPBACK Determine if the loopback feature is being used. This option is not supported.

 Socket Options That Apply to the IPv6 Layer (IPPROTO_IPV6)

 Option Description

IPV6_UNICAST_HOPS Get the hop limit value that will be used for subsequent unicast packets sent by this

socket. An option_value parameter of type int is used to retrieve the current setting.

This option is only supported for sockets with an address family of AF_INET6.

IPV6_MULTICAST_IF Get the interface over which outgoing multicast datagrams will be sent. An

option_value parameter of type unsigned int is used to retrieve the interface index that

is associated with the interface over which outgoing multicast datagrams will be sent.

This option currently is not supported.

62 iSeries: UNIX-Type -- Sockets APIs

Option Description

IPV6_MULTICAST_HOPS Get the hop limit value that will be used for subsequent multicast packets sent by this

socket. An option_value parameter of type int is used to retrieve the current setting.

This option currently is not supported.

IPV6_MULTICAST_LOOP Determine the multicast looping mode. A value of 1 (default), indicates that multicast

datagrams sent by this system should also be delivered to this system as long as it is

a member of the multicast group. If this option is 0, a copy of the datagram will not

be delivered to the sending host. An option_value parameter of type unsigned int is

used to retrieve the current setting. This option is currently not supported.

IPV6_V6ONLY Determine the AF_INET6 communication restrictions. A non-zero value indicates that

this AF_INET6 socket is restricted to IPv6 communications only. This option stores an

int value. This is a boolean option. By default this option is turned off. This option is

only supported for sockets with an address family of AF_INET6.

IPV6_CHECKSUM Determine if the kernel will calculate and insert a checksum for output and verify the

received checksum on input, discarding the packet if the checksum is in error for this

socket. An option_value parameter of type int is used to retrieve the current setting. If

this option is -1 (the default), this socket option is disabled. A value of 0 or greater

specifies an integer offset into the user data of where the checksum is located. This

option is only supported for sockets with an address family of AF_INET6 and type of

SOCK_RAW with a protocol other than IPPROTO_ICMPV6. The checksum is automatically

computed for protocol IPPROTO_ICMPV6.

 Socket Options That Apply to the ICMPv6 Layer (IPPROTO_ICMPV6)

 Option Description

ICMP6_FILTER Determine the current ICMPv6 Type Filtering. An option_value parameter of type struct

icmp6_filter, defined in <netinet/icmp6.h> is used to retrieve the current setting. The following

macros, defined in <netinet/icmp6.h> can be used after retrieval of the type filtering structure to

determine whether or not specific ICMPv6 message types will be passed to the application or be

blocked: ICMP6_FILTER_WILLPASS and ICMP6_FILTER_WILLBLOCK. This option is only

supported for sockets with an address family of AF_INET6 and type of SOCK_RAW with a protocol of

IPPROTO_ICMPV6.

option_value

(Output) A pointer to the option value. Integer flags/values are returned by getsockopt() for all the

socket options except for SO_LINGER , IP_OPTIONS , IP_MULTICAST_IF , IP_MULTICAST_TTL,

IP_MULTICAST_LOOP, and ICMP6_FILTER.

 The following options should be considered as set if a nonzero value for the option_value

parameter is returned:

v SO_ACCEPTCONN

v SO_BROADCAST

v SO_DEBUG

v SO_DONTROUTE

v SO_KEEPALIVE

v SO_OOBINLINE

v SO_REUSEADDR

v SO_USELOOPBACK

v TCP_NODELAY

v IP_MULTICAST_LOOP

v IP_DONTFRAG

Sockets APIs 63

v IPV6_V6ONLY

v IPV6_MULTICAST_IF

v IPV6_MULTICAST_LOOP

For the SO_LINGER option, option_value is a pointer to where the structure linger is stored. The

structure linger is defined in <sys/socket.h>.

 struct linger {

 int l_onoff;

 int l_linger;

 };

The l_onoff field determines if the linger option is set. A nonzero value indicates the linger option

is set and is using the l_linger value. A zero value indicates that the option is not set. The l_linger

field is the time to wait before any buffered data to be sent is discarded. The following occur on a

close():

v For AF_INET and AF_INET6 sockets:

– If the l_onoff value is zero, the system attempts to send any buffered data with an infinite

wait-time.

– If the l_onoff value is nonzero and the l_linger value is nonzero, the system attempts to send

any buffered data for l_linger time. If l_linger time has elapsed and the data is still not

successfully sent, it is discarded. When data is discarded, the remote program may receive a

[ECONNRESET].
v For AF_INET sockets over SNA:

– If the l_onoff value is nonzero and the l_linger value is zero, the system waits indefinitely (no

timer is implemented). Otherwise, if the l_onoff value is nonzero and the l_linger value is

zero, the system discards any buffered data. When data is discarded, the remote program

may receive a [ECONNRESET].

Note: An application must implement an application level confirmation. Guaranteed receipt of

data by the partner program is required. Setting SO_LINGER does not guarantee delivery.

 For the SO_RCVTIME and SO_SNDTIME options, option_value is a pointer to where the structure

timeval is stored. The structure timeval is defined in <sys/time.h>.

 struct timeval {

 long tv_sec;

 long tv_usec;

 };

 For the IP_OPTIONS option, option_value is a pointer to storage in which data representing the IP

options (as specified in RFC 791) is stored. getsockopt() returns the options in the following format:

 IP address IP options ... IP options

IP address is a 4-byte IP address, and IP options identifies the IP options that were set using

setsockopt(). If an IP option set using setsockopt() contained a source routing option (strict or loose),

the first IP address in the source routing option list is removed. The IP options are adjusted

accordingly. (For this adjustment, the length in the IP options portion is changed, and alignment

is kept by adding no-operation option). The buffer is returned in the same format. The first 4

bytes are the IP address that was removed, and this is followed by the remaining IP options, if

any. If the IP options portion does not contain a source routing option, the first 4 bytes are set to

zero.

 For the IP_MULTICAST_IF option, option_value is a pointer to storage in which the structure

in_addr, defined in <netinet/in.h> as the following, will be stored:

64 iSeries: UNIX-Type -- Sockets APIs

struct in_addr {

 u_long s_addr; /* IP address */

 };

The s_addr field that is returned will be the local IP address that is associated with the interface

over which outgoing multicast datagrams are being sent.

 Notes:

1. For sockets that use a connection-oriented transport service, IP options that are set using

setsockopt() are only used if they are set prior to a connect() being issued. After the connection

is established, any IP options that the user sets are ignored.

2. If the IP options portion contains a source routing option, then the address in the source

routing option overrides the destination address. The destination address may have been

specified on an output operation (for example, on a sendto()) or on a connect().

3. If a socket has a type of SOCK_RAW and a protocol of IPPROTO_RAW, any IP options set

using setsockopt() are ignored (since the user must supply the IP header data on an output

operation as part of the data that is being transmitted).

4. The structure ip_opts (defined in <netinet/in.h>) can be used to receive IP options.

option_length

(I/O) The length of the option_value. The option_length parameter must be initially set by the

caller. option_length is changed on return to indicate the actual amount of storage used.

 Note: For option values that are of type integer, the length of the option_value pointed to by the

option_length parameter must be set to a value that is greater or equal to the size of an integer. If

the length is not set correctly, a correct option value is not received.

Authorities

No authorization is required.

Return Value

getsockopt() returns an integer. Possible values are:

v -1 (unsuccessful)

v 0 (successful)

Error Conditions

When getsockopt() fails, errno can be set to one of the following:

 [EBADF] Descriptor not valid.

[ECONNABORTED] Connection ended abnormally.

This error code indicates that the transport provider ended the connection

abnormally because of one of the following:

v The retransmission limit has been reached for data that was being sent

on the socket.

v A protocol error was detected.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to

access the option_value or option_length parameters.

Sockets APIs 65

[EINVAL] Parameter not valid.

This error code indicates one of the following:

v The level parameter specifies a level that is not supported. (except for

when the socket has an address family of AF_UNIX, in which case

[ENOPROTOOPT] is returned).

v The option_name parameter specifies a value that is not valid (except for

when the level is SOL_SOCKET , in which case [ENOPROTOOPT] is returned).

v The option_length parameter points to an integer that has a negative

value.

[EIO] Input/output error.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOPROTOOPT] The protocol does not support the specified option.

This error code indicates one of the following:

v The socket has an address family of AF_UNIX and the level parameter

specified is not SOL_SOCKET .

v The level parameter specifies a level of SOL_SOCKET and the option_name

parameter specifies a value that is not valid.

[ENOTCONN] Requested operation requires a connection.

This error code is only returned if the level parameter specifies a level other

than SOL_SOCKET and the socket_descriptor parameter points to a socket that

is using a connection-oriented transport service that has had its connection

broken.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EPERM] Operation not permitted.

The executing user profile must have *IOSYSCFG special authority to get

options when the level parameter specifies IPPROTO_IP and the option_value

parameter is IP_OPTIONS .

[EUNKNOWN] Unknown system state.

[EUNATCH] The protocol required to support the specified address family is not

available at this time.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. Socket options are defined in <sys/socket.h>, IP options are defined in <netinet/ip.h> and

<netinet/in.h>, TCP options are defined in <netinet/tcp.h>, IPv6 and ICMPv6 options are defined in

<netinet/in.h>.

2. The user profile for a running application must have the *IOSYSCFG special authority to specify the

level parameter as IPPROTO_IP and the option_value parameter as IP_OPTIONS .

3. When a TCP connection is closed for a socket using the AF_INET or AF_INET6 address families, the port

associated with that connection is not made available until twice the Maximum Segment Life (MSL)

time in seconds has passed. The MSL time is approximately 2 minutes. The SO_REUSEADDR option

66 iSeries: UNIX-Type -- Sockets APIs

allows a bind() to succeed when requesting a port that is being held during this time frame. This can

be especially useful if a server is abruptly ended and restarted.

Notes:

a. For AF_INET and AF_INET6, SOCK_STREAM sockets, this option does not allow two servers to

successfully issue a bind() requesting the same port number and local address combination. For

AF_INET and AF_INET6, SOCK_DGRAM sockets, the SO_REUSEADDR option does allow

multiple servers to successfully bind to the same port. When broadcast or multicast datagrams are

received for a given port, each server that is bound to that port receives a copy of the datagram

provided each server has enabled the SO_REUSEADDR option.

b. This option does not affect unicast datagram delivery.
4. Issuing a getsockopt() with the SO_ERROR option results in the resetting of the SO_ERROR option to zero.

Issuing another getsockopt() with the SO_ERROR option also returns a value of zero, assuming no errors

occur on the socket. Other functions, when issued, also reset the SO_ERROR option to zero. These

functions are:

v read(), readv(), recv(), recvmsg(), recvfrom()

v connect() (only when using a connectionless transport service)
5. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the getsockopt() API is mapped to qso_getsockopt98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “setsockopt()—Set Socket Options” on page 177—Set Socket Options

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

givedescriptor()—Pass Descriptor Access to Another Job

 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int givedescriptor(int descriptor,

 char *target_job)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The givedescriptor() function is used to pass a descriptor from one OS/400 job to another OS/400 job.

Parameters

descriptor

(Input) The descriptor that is to be passed to the target job.

target_job

(Input) A pointer to the internal job identifier of the target job that is to receive the descriptor

referenced by the descriptor parameter.

Sockets APIs 67

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Authorities

To give a descriptor, the source thread must be running under one of the following user profiles:

v A user profile that is the same as the job user identity of the target job

v A user profile that has all object (*ALLOBJ) special authority

The job user identity is the name of the user profile by which a job is known to other jobs. It is

described in more detail in the Work Management

book on the V5R1 Supplemental Manuals Web

site.

Return Value

givedescriptor() returns an integer. Possible values are:

v -1 (unsuccessful)

v 0 (successful)

Error Conditions

When givedescriptor() fails, errno can be set to one of the following:

 [EACCES] Permission denied.

The job does not have the appropriate privileges required to give the descriptor.

[EBADF] Descriptor not valid.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the target_job

parameter.

[EINVAL] Parameter not valid.

This error code indicates one of the following:

v The target_job parameter points to data that is not valid.

v The target_job parameter refers to a job that is not active.

[EIO] Input/output error.

[EOPNOTSUPP] Operation not supported.

The underlying instance represented by the descriptor does not support passing access rights.

[EUNKNOWN] Unknown system state.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. The information to specify in the target_job parameter can be obtained in the actual target job by using

a work management API (for example, QUSRJOBI) to retrieve the internal job identifier.

It is the responsibility of the application programmer to privately pass this information from the

target job to the job that issues the givedescriptor(). One possible method that could be used to

exchange this information is to use data queues.

68 iSeries: UNIX-Type -- Sockets APIs

2. The target_job does not have to be waiting on a takedescriptor() for the givedescriptor() to complete

successfully.

3. If both the job in which the givedescriptor() is issued and the target_job end while a descriptor is in

transit, the descriptor is reclaimed by the system, and the resource that it represents is closed.

4. For files and directories, givedescriptor() is only supported for objects in the Root, QOpenSys,

User-defined file systems (UDFS), and Network File System (NFS).

Related Information

v “takedescriptor()—Receive Socket Access from Another Job” on page 193—Receive Socket Access from

Another Job

v “sendmsg()—Send a Message Over a Socket” on page 154—Send Data or Descriptors or Both

v “recvmsg()—Receive a Message Over a Socket” on page 132—Receive Data or Descriptors or Both

v spawn()—Spawn Process

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

ioctl()—Perform I/O Control Request

 Syntax

 #include <sys/types.h>

 #include <sys/ioctl.h>

 int ioctl(int descriptor,

 unsigned long request,

 ...);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 78.

The ioctl() function performs control functions (requests) on a descriptor.

Parameters

descriptor

(Input) The descriptor on which the control request is to be performed.

request

(Input) The request that is to be performed on the descriptor.

... (Input) A variable number of optional parameters that are dependent on the request.

 The ioctl() requests that are supported are:

Sockets APIs 69

spawn.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

FIOASYNC Set or clear the flag that allows the receipt of asynchronous I/O signals (SIGIO).

The third parameter represents a pointer to an integer flag. A nonzero value sets the

socket to generate SIGIO signals, while a zero value sets the socket to not generate

SIGIO signals. Note that before the SIGIO signals can be delivered, you must use either

the FIOSETOWN or SIOCSPGRP ioctl() request, or the F_SETOWN fcntl() command to set a

process ID or a process group ID to indicate what process or group of processes will

receive the signal. Once conditioned to send SIGIO signals, a socket will generate SIGIO

signals whenever certain significant conditions change on the socket. For example,

SIGIO will be generated when normal data arrives on the socket, when out-of-band

data arrives on the socket (in addition to the SIGURG signal), when an error occurs on

the socket, or when end-of-file is received on the socket. It is also generated when a

connection request is received on the socket (if it is a socket on which the listen() verb

has been done). Also note that a socket can be set to generate the SIGIO signal by

using the fcntl() command F_SETFL with a flag value specifying FASYNC.

FIOCCSID Return the coded character set ID (CCSID) associated with the open instance

represented by the descriptor and the CCSID associated with the object. The third

parameter represents a pointer to the structure Qp0lFIOCCSID, which is defined in

<sys/ioctl.h>. This information may be necessary to correctly manipulate data read

from or written to a file opened in another process.

If the open instance represented by the descriptor is in binary mode (the open() did

not specify the O_TEXTDATA open flag), the open instance CCSID returned is equal to

the object CCSID returned.

FIOGETOWN Get the process ID or process group ID that is to receive the SIGIO and SIGURG signals.

The third parameter represents a pointer to a signed integer that will contain the

process ID or the process group ID to which the socket is currently sending

asynchronous signals such as SIGURG. A process ID is returned as a positive integer,

and a process group ID is specified as a negative integer. A 0 value returned indicates

that no asynchronous signals can be generated by the socket. A positive or a negative

value indicates that the socket has been set to generate SIGURG signals.

FIONBIO Set or clear the nonblocking I/O flag (O_NONBLOCK oflag). The third parameter

represents a pointer to an integer flag. A nonzero value sets the nonblocking I/O flag

for the descriptor; a zero value clears the flag.

FIONREAD Return the number of bytes available to be read. The third parameter represents a

pointer to an integer that is set to the number of bytes available to be read.

FIOSETOWN Set the process ID or process group ID that is to receive the SIGIO and SIGURG signals.

The third parameter represents a pointer to a signed integer that contains the process

ID or the process group ID to which the socket should send asynchronous signals such

as SIGURG. A process ID is specified as a positive integer, and a process group ID is

specified as a negative integer. Specifying a 0 value resets the socket such that no

asynchronous signals are delivered. Specifying a process ID or a process group ID

requests that sockets begin sending the SIGURG signal to the specified ID when

out-of-band data arrives on the socket.

70 iSeries: UNIX-Type -- Sockets APIs

SIOCADDRT Add an entry to the interface routing table. Valid for sockets with address family of

AF_INET.

The third parameter represents a pointer to the structure rtentry, which is defined in

<net/route.h>:

 struct rtentry [

 struct sockaddr rt_dst;

 struct sockaddr rt_mask;

 struct sockaddr rt_gateway;

 int rt_mtu;

 u_short rt_flags;

 u_short rt_refcnt;

 u_char rt_protocol;

 u_char rt_TOS;

 char rt_if[IFNAMSIZ];

];

The rt_dst, rt_mask, and rt_gateway fields are the route destination address, route

address mask, and gateway address, respectively. rt_mtu is the maximum transfer unit

associated with the route. rt_flags contains flags that give some information about a

route (for example, whether the route was created dynamically, whether the route is

usable, type of route, and so on). rt_refcnt indicates the number of references that exist

to the route entry. rt_protocol indicates how the route entry was generated (for

example, configuration, ICMP redirect, and so on). rt_tos is the type of service

associated with the route. rt_if is a NULL-terminated string that represents the

interface IP address in dotted decimal format that is associated with the route.

To add a route, the following fields must be set:

v rt_dst

v rt_mask

v rt_gateway

v rt_tos

v rt_protocol

v rt_mtu (Setting the rt_mtu value to zero essentially means use the MTU from the

associated line description used when the route is bound to an IFC.)

v rt_if (rt_if can be set to the dotted decimal equivalent of INADDR_ANY, which is 0.)

In addition, the rt_flags bit flags can be set to the following:

v RTF_NOREBIND_IFC_FAIL if no rebinding of the route is to occur when the

interface associated with the route fails.

v RTF_NOREBIND_IFC_ACTV if no rebinding is to occur when interfaces are

activated or deactivated.

To delete a route, the following fields must be set:

v rt_dst

v rt_mask

v rt_gateway

v rt_tos

v rt_protocol

All other fields are ignored when adding or removing an entry.

SIOCATMARK Return the value indicating whether socket’s read pointer is currently at the

out-of-band mark.

The third parameter represents a pointer to an integer flag. If the socket’s read pointer

is currently at the out-of-band mark, the flag is set to a nonzero value. If it is not, the

flag is set to zero.

Sockets APIs 71

SIOCDELRT Delete an entry from the interface routing table. Valid for sockets with address family

of AF_INET.

See SIOCADDRT (page 71) for more information on the third parameter.

SIOCGIFADDR Get the interface address. Valid for sockets with address family of AF_INET.

The third parameter represents a pointer to the structure ifreq, defined in <net/if.h>:

 struct ifreq {

 char ifr_name[IFNAMSIZE];

 union {

 struct sockaddr ifru_addr;

 struct sockaddr ifru_mask;

 struct sockaddr ifru_broadaddr;

 short ifru_flags;

 int ifru_mtu;

 int infu_rbufsize;

 char ifru_linename[10];

 char ifru_TOS;

 } ifr_ifru;

 };

ifr_name is the name of the interface for which information is to be retrieved. The

OS/400 implementation requires this field to be set to a NULL-terminated string that

represents the interface IP address in dotted decimal format. Depending on the

request, one of the fields in the ifr_ifru union will be set upon return from the ioctl()

call. ifru_addr is the local IP address of the interface. ifru_mask is the subnetwork mask

associated with the interface. ifru_broadaddr is the broadcast address. ifru_flags contains

flags that give some information about an interface (for example, token-ring routing

support, whether interface is active, broadcast address, and so on). ifru_mtu is the

maximum transfer unit configured for the interface. ifru_rbufsize is the reassembly

buffer size of the interface. ifru_linename is the line name associated with the interface.

ifru_TOS is the type of service configured for the interface.

SIOCGIFBRDADDR Get the interface broadcast address. Valid for sockets with address family of AF_INET.

See SIOCGIFADDR (page 72) for more information on the third parameter.

72 iSeries: UNIX-Type -- Sockets APIs

SIOCGIFCONF Get the interface configuration list. Valid for sockets with address family of AF_INET.

The third parameter represents a pointer to the structure ifconf, defined in <net/if.h>:

 struct ifconf [

 int ifc_len;

 int ifc_configured;

 int ifc_returned;

 union {

 caddr_t ifcu_buf;

 struct ifreq *ifcu_req;

 } ifc_ifcu;

];

ifc_len is a value-result field. The caller passes the size of the buffer pointed to by

ifcu_buf. On return, ifc_len contains the amount of storage that was used in the buffer

pointed to by ifcu_buf for the interface entries. ifc_configured is the number of interface

entries in the interface list. ifc_returned is the number of interface entries that were

returned (this is dependent on the size of the buffer pointed to by ifcu_buf). ifcu_buf is

the user buffer in which a list of interface entries will be stored. Each stored entry will

be an ifreq structure.

To get the interface configuration list, the following fields must be set:

v ifc_len

v ifcu_buf

See SIOCGIFADDR (page 72) for more information on the list of ifreq structures

returned. For this request, the ifr_name and ifru_addr fields will be set to a value.

Note: Additional information about each individual interface can be obtained using

these values and the other interface-related requests.

SIOCGIFFLAGS Get interface flags. Valid for sockets with address family of AF_INET.

See SIOCGIFADDR (page 72) for more information on the third parameter.

SIOCGIFLIND Get the interface line description name. Valid for sockets with address family of

AF_INET.

See SIOCGIFADDR (page 72) for more information on the third parameter.

SIOCGIFMTU Get the interface network MTU. Valid for sockets with address family of AF_INET.

See SIOCGIFADDR (page 72) for more information on the third parameter.

SIOCGIFNETMASK Get the mask for the network portion of the interface address. Valid for sockets with

address family of AF_INET.

See SIOCGIFADDR (page 72) for more information on the third parameter.

SIOCGIFRBUFS Get the interface reassembly buffer size. Valid for sockets with address family of

AF_INET.

See SIOCGIFADDR (page 72) for more information on the third parameter.

SIOCGIFTOS Get the interface type-of-service (TOS). Valid for sockets with address family of

AF_INET.

See SIOCGIFADDR (page 72) for more information on the third parameter.

SIOCGPGRP Get the process ID or process group ID that is to receive the SIGIO and SIGURG signals.

See FIOGETOWN (page 70) for more information on the third parameter.

Sockets APIs 73

SIOCGRTCONF Get the route configuration list. Valid for sockets with address family of AF_INET.

For the SIOCGRTCONF request, the third parameter represents a pointer to the structure

rtconf, also defined in <net/route.h>:

 struct rtconf [

 int rtc_len;

 int rtc_configured;

 int rtc_returned;

 union {

 caddr_t rtcu_buf;

 struct rtentry *rtcu_req;

 } rtc_rtcu;

];

rtc_len is a value-result field. The caller passes the size of the buffer pointed to by

rtcu_buf. On return, rtc_len contains the amount of storage that was used in the buffer

pointed to by rtcu_buf for the route entries. rtc_configured is the number of route entries

in the route list. rtc_returned is the number of route entries that were returned (this is

dependent on the size of the buffer pointed to by rtcu_buf). rtcu_buf is the user buffer

in which a list of route entries will be stored. Each stored entry will be an rtentry

structure.

To get the route configuration list, the following fields must be set:

v rtc_len

v rtcu_buf

See SIOCADDRT (page 71) for more information on the list of rtentry structures

returned. For this request, all fields in each rtentry structure will be set to a value.

SIOCSENDQ Return the number of bytes on the send queue that have not been acknowledged by

the remote system. Valid for sockets with address family of AF_INET or AF_INET6 and

socket type of SOCK_STREAM.

The third parameter represents a pointer to an integer that is set to the number of

bytes yet to be acknowledged as being received by the remote TCP transport driver.

Notes:

1. SIOCSENDQ is used after a series of blocking or non-blocking send operations to

see if the sent data has reached the transport layer on the remote system. Note that

this does not not guarantee the data has reached the remote application.

2. When SIOCSENDQ is used in a multithreaded application, the actions of other

threads must be considered by the application. SIOCSENDQ provides a result for a

socket descriptor at the given point in time when the ioctl()) request is received by

the TCP transport layer. Blocking send operations that have not completed, as well

as non-blocking send operations in other threads issued after the SIOCSENDQ

ioctl(), are not reflected in the result obtained for the SIOCSENDQ ioctl().

3. In a situation where the application has multiple threads sending data on the same

socket descriptor, the application should not assume that all data has been received

by the remote side when 0 is returned if the application is not positive that all send

operations in the other threads were complete at the time the SIOCSENDQ ioctl()

was issued. An application should issue the SIOCSENDQ ioctl() only after it has

completed all of the send operations. No value is added by querying the machine

to see if it has sent all of the data when the application itself has not sent all of the

data in a given unit of work.

SIOCSPGRP Set the process ID or process group ID that is to receive the SIGIO and SIGURG signals.

See FIOSETOWN (page 70) for more information on the third parameter.

74 iSeries: UNIX-Type -- Sockets APIs

Authorities

No authorization is required.

Return Value

ioctl() returns an integer. Possible values are:

v 0(ioctl() was successful)

v -1 (ioctl() was not successful. The errno global variable is set to indicate the error.)

Error Conditions

If ioctl() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A descriptor argument was out of range, referred to an object that was not open, or a read or

write request was made to an object that is not open for that operation.

 A given descriptor or directory pointer is not valid for this operation. The specified descriptor is

incorrect, or does not refer to an open object.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

Sockets APIs 75

While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for an argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL. Either the requested function is not

supported, or the optional parameter is not valid.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended object.

[ENOSYS]

 Function not implemented.

 An attempt was made to use a function that is not available in this implementation for any object

or any arguments.

 The path name given refers to an object that does not support this function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[EPIPE]

 Broken pipe.

76 iSeries: UNIX-Type -- Sockets APIs

[ERESTART]

 A system call was interrupted and may be restarted.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could also indicate one of the

following errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPFA0D4 E File system error occurred. Error number &1.

CPFA081 E Unable to set return value or error code.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Sockets APIs 77

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. QDLS File System Differences

QDLS does not support ioctl().

3. QOPT File System Differences

QOPT does not support ioctl().

4. A program must have the appropriate privilege *IOSYSCFG to issue any of the following requests:

SIOCADDRT and SIOCDELRT.

Related Information

v The <sys/ioctl.h> file (see Header Files for UNIX-Type Functions)

v The <sys/types.h> file (see Header Files for UNIX-Type Functions)

v “fcntl()—Perform File Control Command” on page 31—Perform File Control Command

v Socket Programming

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

78 iSeries: UNIX-Type -- Sockets APIs

unix13.htm
unix13.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

listen()—Invite Incoming Connections Requests

 Syntax

 #include <sys/socket.h>

 int listen(int socket_descriptor,

 int back_log)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The listen() function is used to indicate a willingness to accept incoming connection requests. If a listen()

is not done, incoming connections are silently discarded.

Parameters

socket_descriptor

(Input) The descriptor of the socket that is to be prepared to receive incoming connection

requests.

back_log

(Input) The maximum number of connection requests that can be queued before the system starts

rejecting incoming requests. The maximum number of connection requests that can be queued is

defined by {SOMAXCONN} (defined in <sys/socket.h>).

Authorities

No authorization is required.

Return Value

listen() returns an integer. Possible values are:

v -1 (unsuccessful)

v 0 (successful)

Error Conditions

When listen() fails, errno can be set to one of the following:

 [EADDRNOTAVAIL] Address not available.

The socket has an address family of AF_INET or AF_INET6, the socket was not

bound, and the system tried to bind the socket but could not because a port was

not available.

[EBADF] Descriptor not valid.

[EINVAL] Parameter not valid.

This error code indicates one of the following:

v A connect() has been issued on the socket pointed to by the socket_descriptor

parameter.

v The socket_descriptor parameter points to a socket with an address family of

AF_UNIX that has not been bound to an address.

Sockets APIs 79

[EIO] Input/output error.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EOPNOTSUPP] Operation not supported.

The socket_descriptor parameter points to a socket that does not support listen().

listen() is only supported on sockets that are using a connection-oriented protocol

(socket type of SOCK_STREAM).

[EUNKNOWN] Unknown system state.

[EUNATCH] The protocol required to support the specified address family is not available at

this time.

Error Messages

 CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. If the socket is not bound to an address and the address family is:

v

v AF_INET, the system automatically selects an address (INADDR_ANY and an available port number)

and binds it to the socket.

v AF_INET6, the system automatically selects an address (in6addr_any and an available port number)

and binds it to the socket.

v AF_UNIX, the listen() fails with [EINVAL].
2. listen() can be issued multiple times for a particular socket.

3. If the back_log parameter specifies a value greater than the maximum {SOMAXCONN} allowed, the

specified value will be ignored and SOMAXCONN will be used. If the back_log parameter specifies a

negative value, the specified value will be ignored and zero will be used.

4. The optimal setting of the listen() back_log value is dependent on the following factors:

v The design of the server—how the server processes connection requests. Does it handle each

connection request itself or does it pass the actual processing of the connection to a child or worker

job? In other words, how long does it take for the server to handle an incoming connection until it

can handle the next one? The shorter the time, the smaller the back_log value can be.

v The number and rate of connection requests the server can expect over a given period of time will

help determine the back_log value. More connection requests coming in over a shorter period of

time requires a larger back_log value.

v The following may determine how the server performs and thus how long it will take for an accept

request to be serviced:

– The system processor size

– How storage pools used by the server are allocated

– Machine performance

The faster the server performance, the smaller the back_log value can be.

Also, to help you determine how much main storage is consumed by a connection request in the

listen() back_log, consider the following:

v Each connection request in the backlog consumes at least 1KB of storage.

80 iSeries: UNIX-Type -- Sockets APIs

v Each connection request can consume an additional storage amount equal to the size of TCP receive

buffer. You can determine the TCP receive buffer size by looking at the TCPRCVBUF parameter

value on the Change TCP Attributes (CHGTCPA) CL command. This storage amount will be

consumed only if the remote peer (client) sends data after the connection is established and put

into the backlog.
5. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the listen() API is mapped to qso_listen98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “accept()—Wait for Connection Request and Make Connection” on page 4—Wait for Connection

Request and Make Connection

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

QsoCancelOperation()—Cancel an I/O Operation

 Syntax

 #include <qsoasync.h>

 int QsoCancelOperation(int socketDescriptor, unsigned long long operationId)

 Service Program Name: QSOSRV3

 Default Public Authority: *USE

 Threadsafe: Yes

The QsoCancelOperation() function is used to cancel one or more asynchronous I/O operations that are

pending on the socket. Pending operations are defined as incomplete operations that have not been

posted to an I/O completion port. The canceled operations will be posted to the I/O completion port

with an errnoValue of ECANCELED.

If any operations that match the operation identifier are uninterruptible, then no pending operations will

be cancelled. The only operation that is uninterruptible is gsk_secure_soc_startInit() when secure

negotiations have already begun.

Parameters

int socketDescriptor (Input)

The socket descriptor where the operation was started.

unsigned long long operationId (Input)

The operation identifier that was specified in field operationId in the Qso_OverlappedIO_t structure

when the operation was started.

 All pending operations on the socket that match the operationId will be cancelled.

Authorities

No authorization is required.

Sockets APIs 81

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm
gskstartinit.htm

Return Values

QsoCancelOperation() returns an integer. Possible values are:

v -1 - The function did not complete because an error occurred. Inspect the errno value to determine the

cause of the failure.

v 0 - An operation matching the operation identifier was not pending and could not be cancelled.

v >0 - Successful, at least one operation was cancelled. The return value is the number of operations

cancelled.

Errno Conditions

When QsoCancelOperation() fails, errno can be set to one of the following:

 [EAGAIN] At least one pending operation was uninterruptible. If there were multiple operations pending,

none were cancelled.

[EBADF] Invalid descriptor.

[ENOTSOCK] The specified descriptor is not a socket.

[EUNKNOWN] Unknown system state.

Error Messages

 Message ID Error Message Text

CPFA081 E Unable to set return value or error code.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. When QsoCancelOperation() fails with EAGAIN for multiple pending operation, the application may

retry QsoCancelOperation() and some pending operations may yet be cancelled after the uninterruptible

operation has completed. Or the application may close() the socket to force all pending operations to

be cancelled.

Related Information

v “QsoCreateIOCompletionPort()—Create I/O Completion Port” on page 83—Create I/O Completion

Port

v “QsoDestroyIOCompletionPort()—Destroy I/O Completion Port” on page 84—Destroy I/O Completion

Port

v gsk_secure_soc_startInit()—Start Asynchronous Operation to negotiate a secure session

v gsk_secure_soc_startRecv—Start Asynchronous Recv Operation on a secure session

v gsk_secure_soc_startSend—Start Asynchronous Send Operation on a secure session

v “QsoGenerateOperationId()—Get an I/O Operation ID” on page 86—Get an I/O Operation ID

v “QsoIsOperationPending()—Check if an I/O Operation is Pending” on page 87—Check if an I/O

Operation is Pending

v “QsoStartRecv()—Start Asynchronous Receive Operation” on page 95—Start Asynchronous Recv

Operation

v “QsoStartSend()—Start Asynchronous Send Operation” on page 98—Start Asynchronous Send

Operation

v “QsoWaitForIOCompletion()—Wait for I/O Operation” on page 101—Wait for I/O Completion

Operation

82 iSeries: UNIX-Type -- Sockets APIs

gskstartinit.htm
gskstartrecv.htm
gskstartsend.htm

API introduced: V5R3 with PTF

 Top | UNIX-Type APIs | APIs by category

QsoCreateIOCompletionPort()—Create I/O Completion Port

 Syntax

 #include <qsoasync.h>

 int QsoCreateIOCompletionPort()

 Service Program Name: QSOSRV3

 Default Public Authority: *USE

 Threadsafe: Yes

The QsoCreateIOCompletionPort is used to create a common wait point for a completed overlapped I/O

operation. The wait point is represented by the I/O completion port handle returned by the

QsoCreateIOCompletionPort() function. This handle is specified on QsoStartRecv and QsoStartSend

functions to initiate overlapped I/O operations.

Authorities

No authorization is required.

Return Values

QsoCreateIOCompletionPort() returns an integer. Possible values are:

v -1 - Unsuccessful, errno is set to a value defined below.

v n - Successful, where n is an I/O completion port handle that can be used in conjunction with

overlapped I/O functions QsoStartRecv(), QsoStartSend(), and QsoPostIOCompletionPort().

Errno Conditions

When QsoCreateIOCompletionPort() fails, errno can be set to one of the following:

 [ENOBUFS] The limit of 256 I/O completion ports has been exceeded for this process.

[EUNKNOWN] Unknown system state.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. The I/O completion port handle is a process scoped resource; therefore, you may not start an

overlapped I/O function on a socket in one process and check for its completion in another process.

Sockets APIs 83

#TOP_OF_PAGE
unix.htm
aplist.htm

2. The number of I/O completion ports that can be active for a given process is 256.

Related Information

v “QsoDestroyIOCompletionPort()—Destroy I/O Completion Port”—Create I/O Completion Port
v “QsoPostIOCompletion()—Post I/O Completion Request” on page 89—Post Request on I/O

Completion Port
v “QsoStartRecv()—Start Asynchronous Receive Operation” on page 95—Start Asynchronous Recv

Operation
v “QsoStartSend()—Start Asynchronous Send Operation” on page 98—Start Asynchronous Send

Operation
v “QsoWaitForIOCompletion()—Wait for I/O Operation” on page 101—Wait for I/O Completion

Operation

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QsoDestroyIOCompletionPort()—Destroy I/O Completion Port

 Syntax

 #include <qsoasync.h>

 int QsoDestroyIOCompletionPort

 (int IOCompletionPort)

 Service Program Name: QSOSRV3

 Default Public Authority: *USE

 Threadsafe: Yes

The QsoDestroyIOCompletionPort is used to destroy an I/O completion port.

Parameters

int IOCompletionPort (Input)
 The I/O completion port to be destroyed. All threads sleeping with QsoWaitForIOCompletion() on

the I/O completion port being destroyed will be awakened with return value of -1 and errno

value of EDESTROYED.

Authorities

No authorization is required.

Return Values

QsoDestroyIOCompletionPort() returns an integer. Possible values are:

v 0 - Successful destruction of the I/O completion port.

v -1 - The function has failed. Inspect the errno value to determine the cause of the failure.

Errno Conditions

When QsoDestroyIOCompletionPort fails, errno can be set to one of the following:

84 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

[EINVAL] The specified I/O completion port is not valid.

[EUNKOWN] Unknown system state.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. There can be many overlapped I/O operations outstanding when an I/O completion port is

destroyed. The buffers that are associated with these overlapped I/O operations are available for use

by the application as soon as QsoDestroyIOCompletionPort()returns successfully.

2. The state of the sockets that were used to issue the overlapped I/O operations that are still

outstanding is not defined. That is, there is no way for the application to determine if an outstanding

QsoStartRecv() or QsoStartSend() has completed once the I/O completion port has been destroyed. For

this reason, further attempts to read from those sockets will result in ECONNABORTED and further

attempts to write to these sockets will result in EPIPE. No further input or output operations will be

allowed on these sockets.

Related Information

v “QsoCreateIOCompletionPort()—Create I/O Completion Port” on page 83—Create I/O Completion

Port
v “QsoPostIOCompletion()—Post I/O Completion Request” on page 89—Post Request on I/O

Completion Port
v “QsoStartRecv()—Start Asynchronous Receive Operation” on page 95—Start Asynchronous Recv

Operation
v “QsoStartSend()—Start Asynchronous Send Operation” on page 98—Start Asynchronous Send

Operation
v “QsoWaitForIOCompletion()—Wait for I/O Operation” on page 101—Wait for I/O Completion

Operation

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 85

#TOP_OF_PAGE
unix.htm
aplist.htm

QsoGenerateOperationId()—Get an I/O Operation ID

 Syntax

 #include <qsoasync.h>

 unsigned long long QsoGenerateOperationId(int socketDescriptor)

 Service Program Name: QSOSRV3

 Default Public Authority: *USE

 Threadsafe: Yes

The QsoGenerateOperationId() function is used to get an operation identifier that is unique for this

socket. The operation identifier may then be used in field operationId in the Qso_OverlappedIO_t structure

when an asynchronous I/O operation is started.

It is not required that an application use QsoGetIoID() to set the I/O identifer. Any appropriate

application defined value may be used. Individual operations may use unique operation identifiers or

groups of operations could share I/O identifiers, depending on the application’s requirements.

QsoGenerateOperationId(), when used consistently, is a convenient means to get unique identifiers for

use on a socket. Note that operation identifiers from one sockets may not be unique if used on a different

socket.

I/o identifiers are ignored by all API’s except “QsoCancelOperation()—Cancel an I/O Operation” on

page 81 and “QsoIsOperationPending()—Check if an I/O Operation is Pending” on page 87. Other start

operations will only preserve the input value and return it on “QsoWaitForIOCompletion()—Wait for I/O

Operation” on page 101.

Parameters

int socketDescriptor (Input)

The socket descriptor where the operation identifier will be used.

Authorities

No authorization is required.

Return Values

QsoGenerateOperationId() returns an unsigned long long operation identifier. Possible values are:

v 0 - The function did not complete because an error occurred. Inspect the errno value to determine the

cause of the failure.

v <>0 - Successful, the value returned is a unique operation identifier for the socket.

Errno Conditions

When QsoGenerateOperationId() fails, errno can be set to one of the following:

 [EBADF] Invalid descriptor

[ENOTSOCK] The specified descriptor is not a socket.

[EUNKNOWN] Unknown system state.

86 iSeries: UNIX-Type -- Sockets APIs

Error Messages

 Message ID Error Message Text

CPFA081 E Unable to set return value or error code.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

v gsk_secure_soc_startInit()—Start Asynchronous Operation to negotiate a secure session

v gsk_secure_soc_startRecv—Start Asynchronous Recv Operation on a secure session

v gsk_secure_soc_startSend—Start Asynchronous Send Operation on a secure session

v “QsoCancelOperation()—Cancel an I/O Operation” on page 81—Cancel an I/O Operation

v “QsoIsOperationPending()—Check if an I/O Operation is Pending”—Check if an I/O Operation is

Pending

v “QsoStartRecv()—Start Asynchronous Receive Operation” on page 95—Start Asynchronous Recv

Operation

v “QsoStartSend()—Start Asynchronous Send Operation” on page 98—Start Asynchronous Send

Operation

v “QsoWaitForIOCompletion()—Wait for I/O Operation” on page 101—Wait for I/O Completion

Operation

API introduced: V5R3 with PTF

 Top | UNIX-Type APIs | APIs by category

QsoIsOperationPending()—Check if an I/O Operation is Pending

 Syntax

 #include <qsoasync.h>

 int QsoIsOperationPending(int socketDescriptor, unsigned long long operationId)

 Service Program Name: QSOSRV3

 Default Public Authority: *USE

 Threadsafe: Yes

The QsoIsOperationPending() function is used to check if one or more asynchronous I/O operations is

pending on the socket. Pending operations are defined as incomplete operations that have not been

posted to an I/O completion port.

Parameters

int socketDescriptor (Input)

The socket descriptor from which to generate an operation identifier.

Sockets APIs 87

gskstartinit.htm
gskstartrecv.htm
gskstartsend.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

unsigned long long operationId (Input)

The operation identifier that was specified in field operationId in the Qso_OverlappedIO_t structure

when the operation was started.

Authorities

No authorization is required.

Return Values

QsoIsOperationPending() returns an integer. Possible values are:

v -1 - The function did not complete because an error occurred. Inspect the errno value to determine the

cause of the failure.

v 0 - An operation matching the operation identifier was not pending.

v >0 - Successful, at least one operation that matched the operation identifier was pending. The return

value is the number of matching operations currently pending.

Errno Conditions

When QsoIsOperationPending() fails, errno can be set to one of the following:

 [EBADF] Invalid descriptor

[ENOTSOCK] The specified descriptor is not a socket.

[EUNKNOWN] Unknown system state.

Error Messages

 Message ID Error Message Text

CPFA081 E Unable to set return value or error code.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

v gsk_secure_soc_startInit()—Start Asynchronous Operation to negotiate a secure session

v gsk_secure_soc_startRecv—Start Asynchronous Recv Operation on a secure session

v gsk_secure_soc_startSend—Start Asynchronous Send Operation on a secure session

v “QsoCancelOperation()—Cancel an I/O Operation” on page 81—Cancel an I/O Operation

v “QsoGenerateOperationId()—Get an I/O Operation ID” on page 86—Get an I/O Operation ID

v “QsoStartRecv()—Start Asynchronous Receive Operation” on page 95—Start Asynchronous Recv

Operation

v “QsoStartSend()—Start Asynchronous Send Operation” on page 98—Start Asynchronous Send

Operation

v “QsoWaitForIOCompletion()—Wait for I/O Operation” on page 101—Wait for I/O Completion

Operation

API introduced: V5R3 with PTF

 Top | UNIX-Type APIs | APIs by category

88 iSeries: UNIX-Type -- Sockets APIs

gskstartinit.htm
gskstartrecv.htm
gskstartsend.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

QsoPostIOCompletion()—Post I/O Completion Request

 Syntax

 #include <qsoasync.h>

 int QsoPostIOCompletion

 (int IOCompletionPort, Qso_OverlappedIO_t * communicationsArea)

 Service Program Name: QSOSRV3

 Default Public Authority: *USE

 Threadsafe: Yes

The QsoPostIOCompletion function will post an Qso_OverlappedIO_t request on a specifed I/O

completion port. This allows an application to notify a completion port that some function or activity has

occurred. The application defines what that function or activity is within the Qso_OverlappedIO_t

request.

Parameters

int IOCompletionPort (Input)

The I/O completion port that should be posted.

Qso_OverlappedIO_t * communicationsArea (Input/Output)

A pointer to a structure that contains the following information:

 descriptorHandle (Input) - The descriptor handle is application-specific and is never used by the system.

It is intended to make it easier for the application to keep track of information

regarding a given socket connection.

buffer (Input) - Supplied value is preserved.

bufferLength (Input) - Supplied value is preserved.

postFlag (Input) - Supplied value is preserved.

fillBuffer (Input) - Supplied value is preserved.

returnValue (Output) - This field will be set to 0 if this operation completes successfully.

errnoValue (Output) - This field will be set to 0 if this operation completes successfully.

operationCompleted (Output) - When the operation is posted to the I/O completion port, this field is

updated to indicate that the operation was a QSOPOSTIOCOMPLETION.

secureDataTransferSize Not used.

bytesAvailable Not used.

Sockets APIs 89

operationWaitTime (Input) - A timeval structure which specifies a time to wait before posting this

operation asynchronously to the I/O completion port with errnoValue set to EAGAIN.

 struct timeval {

 long tv_sec; /* second */

 long tv_usec; /* microseconds */

 };

If this field is set to zero, the operation will be posted immediately.

If this field is non-zero, then the postedDescriptor field must be set.

If postedDescriptor is closed before the timer expires, the operation will be posted to the

I/O completion port with errnoValue set to ECLOSED.

The minimum operationWaitTime is 1 second. The microseconds field (tv_usec) in the

timeval is not used and must be set to zero.

postedDescriptor This field is only relevant if a non-zero timeval was specified in operationWaitTime. This

is the socket descriptor to be associated with the timer. If this descriptor is closed

before the timer expires, the operation will be posted to the I/O completion port with

errnoValue set to ECLOSED.

This field must be set when the operationWaitTime field is used.

operationId (Input) - An identifier to uniquely identify this operation or a group of operations. It

can be set with the return value from “QsoGenerateOperationId()—Get an I/O

Operation ID” on page 86 or with an application-defined value.
This value is preserved but ignored by all APIs except “QsoCancelOperation()—Cancel

an I/O Operation” on page 81 and “QsoIsOperationPending()—Check if an I/O

Operation is Pending” on page 87. This field is applicable only when both

postedDescriptor and operationWaitTime are specified. Otherwise the operation completes

immediately and cannot be cancelled.

reserved1 (Input) - Must be set to hex zeroes.

reserved2 (Input) - Must be set to hex zeroes.

Authorities

No authorization is required.

Return Values

QsoPostIOCompletion() returns an integer. Possible values are:

v -1 - The function did not complete because an error occurred. Inspect the errno value to determine the

cause of the failure.

v 0 - The function has successfully posted the communications area to the I/O completion port.

v 1 - The timer has been started. When the timer expires the Qso_OverlappedIO_t communications

structure will be updated with the results and the I/O completion port will be posted.

Errno Conditions

When QsoPostIOCompletion() fails, errno can be set to one of the following:

90 iSeries: UNIX-Type -- Sockets APIs

[EINVAL] The I/O completion port or a reserved field was specified that was not valid or

operationWaitTime.tv_sec was negative or operationWaitTime.tv_usec was not zero.

[EDESTROYED] The I/O completion port has been destroyed.

[ENOTSOCK] The postedDescriptor field was not set to a socket descriptor when operationWaitTime was set.

[ENOBUFS] There was not enough buffer space for the requested operation. Check the maximum allowed

storage for the executing user profile.

[ENOMEM] The I/O completion port is full and cannot accept any more messages at this time.

Error Messages

 Message ID Error Message Text

CPFA081 E Unable to set return value or error code.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

v

“QsoCancelOperation()—Cancel an I/O Operation” on page 81—Cancel an I/O Operation

v “QsoCreateIOCompletionPort()—Create I/O Completion Port” on page 83—Create I/O Completion

Port

v “QsoDestroyIOCompletionPort()—Destroy I/O Completion Port” on page 84—Destroy I/O Completion

Port

v “QsoStartRecv()—Start Asynchronous Receive Operation” on page 95—Start Asynchronous Recv

Operation

v “QsoStartSend()—Start Asynchronous Send Operation” on page 98—Start Asynchronous Send

Operation

v “QsoWaitForIOCompletion()—Wait for I/O Operation” on page 101—Wait for I/O Completion

Operation

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QsoStartAccept()—Start asynchronous accept operation

 Syntax

 #include <sys/socket.h>

 #include <qsoasync.h>

 int QsoStartAccept (int socketDescriptor,int IOCompletionPort,

 Qso_OverlappedIO_t * communicationsArea)

 Service Program Name: QSOSRV3

 Default Public Authority: *USE

 Threadsafe: Yes

Sockets APIs 91

#TOP_OF_PAGE
unix.htm
aplist.htm

The QsoStartAccept() function is used to wait asynchronously for connection requests. If connection

requests are queued, then QsoStartAccept() takes the first connection request on the queue and creates a

new socket to service the connection request. If no connection requests are queued, then an asynchronous

QsoStartAccept() request is pended onto the socket and will be transition to the specified I/O completion

port once a connection arrives. This API only supports sockets with an address family of AF_INET or

AF_INET6 and type SOCK_STREAM.

Parameters

socketDescriptor (Input)

The descriptor of the socket on which to wait.

int IOCompletionPort(Input)

The I/O completion port that should be posted when the operation completes.

Qso_OverlappedIO_t* communicationsArea (Input/Output)

A pointer to a structure that contains the following information:

 descriptorHandle (Input) - The descriptor handle is application specific and is never used by the system. This

field is intended to make it easier for the application to keep track of information regarding

a given socket connection.

buffer Not used.

bufferLength Not used.

postFlag (Input) - The postFlag indicates if this operation should be posted to the I/O completion

port even if it completes immediately.

v A 0 value indicates that if the operation is already complete upon return to the

application, then do not post to the I/O completion port.

v A 1 value indicates that even if the operation completes immediately upon return to the

application, the result should still be posted to the I/O completion port.

postFlagResult

Not used.

fillBuffer Not used.

returnValue When QsoStartAccept() completes synchronously (function return value equals 0), then this

field identifies the socket descriptor associated with the accepted connection. When the

accept operation completes asynchronously, this field contains indication of success or

failure.

errnoValue (Output) - When the operation completes asynchronously and returnValue is negative, this

field will contain an errno to indicate the error with which the operation eventually failed.

operationCompleted (Output) - If the operation is posted to the I/O completion port, this field is updated to

indicate that the operation was a QSOSTARTACCEPT.

secureDataTransferSize Not used.

bytesAvailable (Output) - Number of bytes available to be read from connection. Only valid if returnValue

is >=0.

92 iSeries: UNIX-Type -- Sockets APIs

operationWaitTime (Input) - A timeval structure which specifies the maximum time allowed for this operation to

complete asynchronously.

 struct timeval {

 long tv_sec; /* second */

 long tv_usec; /* microseconds */

 };

If this timer expires, the operation will be posted to the I/O completion port with errnoValue

set to EAGAIN.

If this field is set to zero, the operation’s asynchronous completion will not be timed.

If socketDescriptor is closed before the operation completes or times out, the operation will

be posted to the I/O completion port with errnoValue set to ECLOSED.

The minimum operationWaitTime is 1 second. The microseconds field (tv_usec) in the

timeval is not used and must be set to zero.

postedDescriptor Not used - Must be set to zero.

operationId (Input) - An identifier to uniquely identify this operation or a group of operations. It can be

set with the return value from “QsoGenerateOperationId()—Get an I/O Operation ID” on

page 86 or with an application-defined value.
This value is preserved but ignored by all APIs except “QsoCancelOperation()—Cancel an

I/O Operation” on page 81 and “QsoIsOperationPending()—Check if an I/O Operation is

Pending” on page 87.

reserved1 (Output) - Must be set to hex zeroes.

reserved2 (Input) - Must be set to hex zeroes.

Authorities

No authorization is required.

Return Values

QsoStartAccept() returns an integer. Possible values are:

v -1 - The function was not started because an error occurred. Inspect the errno to determine the cause of

the failure.

v 0 - The function has already completed. The Qso_OverlappedIO_t communications structure has been

updated but nothing has or will be posted to the I/O completion port for this operation. Inspect the

returnValue in the Qso_OverlappedIO_t communications structure to obtain connection descriptor and

bytesAvailable.

v 1 - The function has been started. When the function completes (or times out if operationWaitTime was

specified), the Qso_OverlappedIO_t communications structure will be updated with the results and the

I/O completion port will be posted.

Errno Conditions

When QsoStartAccept() fails, errno can be set to one of the following:

 [EFAULT] Bad address

[EINVAL] A I/O completion port or reserved field specified was not valid or postedDescriptor

was not zero or operationWaitTime.tv_sec was negative or operationWaitTime.tv_usec

was not zero, or a Listen() has not been issued against the socket referenced by the

SocketDescriptor parameter.

[EACCES] Permission denied.

A connection indication request was received on the socket referenced by the

socket_descriptor parameter, but the process that issued the QsoStartAccept() did not

have the appropriate privileges required to handle the request. The connection

indication request is reset by the system.

Sockets APIs 93

[EBADF] Descriptor not valid.

[ECONNABORTED] Connection ended abnormally.

An QsoStartAccept() was issued on a socket for which receives have been disallowed

(due to a shutdown() call).

[EIO] Input/output.

[EMFILE] Too many descriptors for this process.

[ENFILE] Too many descriptors in system.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EOPNOTSUPP] Operation not supported.

The socket_descriptor parameter references a socket that does not support the

QsoStartAccept(). The QsoStartAccept() is only valid on sockets with an address

family of AF_INET or AF_INET6 and type SOCK_STREAM.

The socket_descriptor parameter references a socket that has undergone an Rbind(). The

QsoStartAccept() operation is not valid on sockets in this state.

[EUNATCH] The protocol required to support the specified address family is not available at this

time.

[EUNKNOWN] Unknown system state.

Error Messages

 Message ID Error Message Text

CPFA081 E Unable to set return value or error code.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. It is not recommended to intermix QsoStartAccept() and accept(). If this condition occurs, the order

the requests will be serviced is undefined.

2. The following are inherited by the descriptor returned by the accept() call:

v All socket options with a level of SOL_SOCKET.

v The status flags:

– Blocking flag (set/reset either by the iocltl() call with the FIONBIO request or by the fcntl() call

with the F_SETFL command and the status flag set to O_NONBLOCK).

– Asynchronous flag (set/reset either by the ioctl() call with the FIOASYNC request or by the

fcntl() call with the F_SETFL command and the status flag set to FASYNC).
v The process ID or process group ID that is to receive SIGIO or SIGURG signals (set/reset by either

the ioctl() call with the FIOSETOWN or the SIOCSPGRP request, or by the fcntl() call with the

F_SETOWN command).
3. Closing a socket causes any queued but unaccepted connection requests to be reset.

Related Information

v “accept()—Wait for Connection Request and Make Connection” on page 4—Accept Connection

v

“QsoCancelOperation()—Cancel an I/O Operation” on page 81—Cancel an I/O Operation

94 iSeries: UNIX-Type -- Sockets APIs

v “QsoCreateIOCompletionPort()—Create I/O Completion Port” on page 83—Create I/O Completion

Port

v “QsoDestroyIOCompletionPort()—Destroy I/O Completion Port” on page 84—Destroy I/O Completion

Port

v “QsoPostIOCompletion()—Post I/O Completion Request” on page 89—Post Request on I/O

Completion Port

v “QsoStartRecv()—Start Asynchronous Receive Operation”—Start Asynchronous Recv Operation

v “QsoStartSend()—Start Asynchronous Send Operation” on page 98—Start Asynchronous Send

Operation

v “QsoWaitForIOCompletion()—Wait for I/O Operation” on page 101—Wait for I/O Completion

Operation

v “recv()—Receive Data” on page 124—Receive Data

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QsoStartRecv()—Start Asynchronous Receive Operation

 Syntax

 #include <qsoasync.h>

 int QsoStartRecv (int socketDescriptor,int IOCompletionPort,

 Qso_OverlappedIO_t * communicationsArea)

 Service Program Name: QSOSRV3

 Default Public Authority: *USE

 Threadsafe: Yes

The QsoStartRecv function is used to initiate an asynchronous receive operation. The supplied buffer

cannot be reused by the calling application until the receive is complete or the I/O completion port

specified on the QsoStartRecv has been destroyed. This API only supports sockets with an address family

of AF_INET or AF_INET6 and type SOCK_STREAM.

Parameters

int socketDescriptor (Input)

The socket descriptor that should be used to receive data into the specified buffer.

int IOCompletionPort (Input)

The I/O completion port that should be posted when the operation completes.

Qso_OverlappedIO_t * communicationsArea (Input/Output)

A pointer to a structure that contains the following information:

 descriptorHandle (Input) - The descriptor handle is application specific and is never used by the system. This

field is intended to make it easier for the application to keep track of information regarding

a given socket connection.

buffer (Input) - A pointer to a buffer into which data should be read.

Sockets APIs 95

#TOP_OF_PAGE
unix.htm
aplist.htm

bufferLength (Input) - The length of the buffer into which data should be read. Also represents the

amount of data requested.

postFlag (Input) - The postFlag indicates if this operation should be posted to the I/O completion

port even if it completes immediately.

v A 0 value indicates that if the operation is already complete upon return to the

application, then do not post to the I/O completion port.

v A 1 value indicates that even if the operation completes immediately upon return to the

application, the result should still be posted to the I/O completion port.

postFlagResult (Output) - This field is valid if QsoStartRecv() returns with 1 and postFlag was set to 1. In

this scenario, postFlagResult set to 1 denotes the operation completed and been posted to

the I/O completion port specified. A value of 0 denotes the operation could not be

completed immediately, but will be handled asynchronously.

fillBuffer (Input) - The fillBuffer flag indicates when this operation should complete. If the fillBuffer

flag is 0, then the operation will complete as soon as any data is available to be received. If

the fillBuffer flag is non-zero, this operation will not complete until enough data has been

received to fill the buffer, an end-of-file condition occurs on the socket, or an error occurs on

a socket.

returnValue (Output) - When QsoStartRecv() completes synchronously (function return value equals 0),

then this field indicates the number of bytes that were actually received. When the recv

operation completes asynchronously, this field contains indication of success or failure. Zero

returned denotes end-of-file state.

errnoValue (Output) - When the operation completes asynchronously and returnValue is negative, this

field contains an errno to indicate the error with which the operation eventually failed.

operationCompleted (Output) - If the operation is posted to the I/O completion port, this field is updated to

indicate that the operation was a QsoStartRecv().

secureDataTransferSize Not used.

bytesAvailable Not used.

operationWaitTime (Input) - A timeval structure which specifies the maximum time allowed for this operation to

complete asynchronously.

 struct timeval {

 long tv_sec; /* second */

 long tv_usec; /* microseconds */

 };

If this timer expires, the operation will be posted to the I/O completion port with errnoValue

set to EAGAIN.

If this field is set to zero, the operation’s asynchronous completion will not be timed.

If socketDescriptor is closed before the operation completes or times out, the operation will

be posted to the I/O completion port with errnoValue set to ECLOSED.

The minimum operationWaitTime is 1 second. The microseconds field (tv_usec) in the

timeval is not used and must be set to zero.

postedDescriptor Not used - Must be set to zero.

operationId (Input) - An identifier to uniquely identify this operation or a group of operations. It can be

set with the return value from “QsoGenerateOperationId()—Get an I/O Operation ID” on

page 86 or with an application-defined value.
This value is preserved but ignored by all APIs except “QsoCancelOperation()—Cancel an

I/O Operation” on page 81 and “QsoIsOperationPending()—Check if an I/O Operation is

Pending” on page 87.

reserved1 (Input) - Must be set to hex zeroes.

reserved2 (Input) - Must be set to hex zeroes.

Authorities

No authorization is required.

96 iSeries: UNIX-Type -- Sockets APIs

Return Values

QsoStartRecv() returns an integer. Possible values are:

v -1 - The function was not started because an error occurred. Inspect the errno to determine the cause of

the failure.

v 0 - The function has already completed. The Qso_OverlappedIO_t communications structure has been

updated but nothing has or will be posted to the I/O completion port for this operation. Inspect the

returnValue in the Qso_OverlappedIO_t communications structure to determine the number of bytes

received.

v 1 - The function has been started. When the function completes (or times out if operationWaitTime was

specified), the Qso_OverlappedIO_t communications structure will be updated with the results and the

I/O completion port will be posted.

Errno Conditions

When QsoStartRecv() fails, errno can be set to one of the following:

 [EINVAL] A buffer length or I/O completion port or reserved field specified was not valid or

postedDescriptor was not zero or operationWaitTime.tv_sec was negative or

operationWaitTime.tv_usec was not zero.

[ETRUNC] Data was truncated on an input, output, or update operation. Data has been lost.

Note: The rest of the errno values from “recv()—Receive Data” on page 124 also apply to QsoStartRecv().

Error Messages

 Message ID Error Message Text

CPFA081 E Unable to set return value or error code.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. If QsoStartRecv() partially fills a buffer and then encounters an EFAULT condition, the QsoStartRecv()

will complete with the ETRUNC error value to indicate that some data has been lost.

2. A buffer that is given to QsoStartRecv() must not be used by the application again until either it is

returned by QsoWaitForIOCompletion() or is reclaimed by issuing a close() on the socket descriptor or

issuing a QsoDestroyIOCompletionPort() on the I/O completion port. If a buffer is given to

QsoStartRecv() to be filled, and it is later detected during QsoStartRecv processing that the buffer has

been freed, it may produce an unrecoverable condition on the socket for which the QsoStartRecv()

was issued. If this occurs, an ECONNABORTED error value will be returned.

3. It is not recommended to intermix QsoStartRecv() and blocking I/O (that is, recv()) on the same

socket. If this condition occurs, then pending asynchronous send I/O will be serviced first before the

blocking I/O.

4. Socket option SO_RCVLOWAT is not supported by this API. Semantics similar to SO_RCVLOWAT

can be obtained using the fillBuffer field in the Qso_OverLappedIO_t structure.

5. Socket option SO_RCVTIMEO is not supported by this API. Semantics similar to SO_RCVTIMEO can

be obtained using the operationWaitTime field in the Qso_OverLappedIO_t structure.

Related Information

v

“QsoCancelOperation()—Cancel an I/O Operation” on page 81—Cancel an I/O Operation

Sockets APIs 97

v “QsoCreateIOCompletionPort()—Create I/O Completion Port” on page 83—Create I/O Completion

Port

v “QsoDestroyIOCompletionPort()—Destroy I/O Completion Port” on page 84—Create I/O Completion

Port

v “QsoPostIOCompletion()—Post I/O Completion Request” on page 89—Post Request on I/O

Completion Port

v “QsoStartSend()—Start Asynchronous Send Operation”—Start Asynchronous Send Operation

v “QsoWaitForIOCompletion()—Wait for I/O Operation” on page 101—Wait for I/O Completion

Operation

v “recv()—Receive Data” on page 124—Receive Data

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QsoStartSend()—Start Asynchronous Send Operation

 Syntax

 #include <qsoasync.h>

 int QsoStartSend (int socketDescriptor, int IOCompletionPort,

 Qso_OverlappedIO_t * communicationsArea)

 Service Program Name: QSOSRV3

 Default Public Authority: *USE

 Threadsafe: Yes

The QsoStartSend function is used to initiate a asynchronous send operation. The supplied buffer cannot

be reused by the calling application until the send is complete or the I/O completion port specified on

the QsoStartSend has been destroyed. This API only supports sockets with an address family of AF_INET

or AF_INET6 and type SOCK_STREAM.

Parameters

int socketDescriptor (Input)

The socket descriptor on which the data should be sent.

int IOCompletionPort(Input)

The I/O completion port that should be posted when the operation completes.

Qso_OverlappedIO_t * communicationsArea (Input/Output)

A pointer to a structure that contains the following information:

 descriptorHandle (Input) - The descriptor handle is application specific and is never used by the system. This

field is intended to make it easier for the application to keep track of information regarding

a given socket connection.

buffer (Input) - A pointer to a buffer of data that should be sent over the socket.

bufferLength (Input) - The length of the data to be sent.

98 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

postFlag (Input) - The postFlag indicates if this operation should be posted to the I/O completion

port even if it completes immediately.

v A 0 value indicates that if the operation is already complete upon return to the

application, then do not post to the I/O completion port.

v A 1 value indicates that even if the operation completes immediately upon return to the

application, the result should still be posted to the I/O completion port.

postFlagResult (Output) - This field is valid if QsoStartSend() returns with 1 and postFlag was set to 1. In

this scenario, postFlagResult set to 1 denotes the operation completed and been posted to

the I/O completion port specified. A value of 0 denotes the operation could not be

completed immediately, but will be handled asynchronously.

fillBuffer (Input) - Only used on QsoStartRecv(). Ignored on QsoStartSend().

returnValue (Output) - When QsoStartSend() completes synchronously (function return value equals 0),

then this field indicates the number of bytes that was actually sent. When the send operation

completes asynchronously, this filed contains indication of success or failure.

errnoValue (Output) - When the operation completes asynchronously and returnValue is negative, this

field will contain an errno to indicate the error with which the operation eventually failed.

operationCompleted (Output) - If the operation is posted to the I/O completion port, this field is updated to

indicate that the operation was a QsoStartSend().

secureDataTransferSize Not used.

bytesAvailable Not used.

operationWaitTime (Input) - A timeval structure which specifies the maximum time allowed for this operation to

complete asynchronously.

 struct timeval {

 long tv_sec; /* second */

 long tv_usec; /* microseconds */

 };

If this timer expires, the operation will be posted to the I/O completion port with errnoValue

set to EAGAIN.

If this field is set to zero, the operation’s asynchronous completion will not be timed.

If socketDescriptor is closed before the operation completes or times out, the operation will

be posted to the I/O completion port with errnoValue set to ECLOSED.

The minimum operationWaitTime is 1 second. The microseconds field (tv_usec) in the

timeval is not used and must be set to zero.

postedDescriptor Not used - Must be set to zero.

operationId (Input) - An identifier to uniquely identify this operation or a group of operations. It can be

set with the return value from “QsoGenerateOperationId()—Get an I/O Operation ID” on

page 86 or with an application-defined value.
This value is preserved but ignored by all APIs except “QsoCancelOperation()—Cancel an

I/O Operation” on page 81 and “QsoIsOperationPending()—Check if an I/O Operation is

Pending” on page 87.

reserved1 (Input) - Must be set to hex zeroes.

reserved2 (Input) - Must be set to hex zeroes.

Authorities

No authorization is required.

Return Values

QsoStartSend() returns an integer. Possible values are:

v -1 - The function was not started because an error occurred. Inspect the errno to determine the cause of

the failure.

Sockets APIs 99

v 0 - The function has already completed. The Qso_OverlappedIO_t communications structure has been

updated but nothing has or will be posted to the I/O completion port for this operation. Inspect the

returnValue in the Qso_OverlappedIO_t communications structure to determine the number of bytes

sent.

v 1 - The function has been started. When the function completes (or times out if operationWaitTime was

specified), the Qso_OverlappedIO_t communications structure will be updated with the results and the

I/O completion port will be posted.

Errno Conditions

When QsoStartSend() fails, errno can be set to one of the following:

 [EINVAL] A buffer length or I/O completion port or reserved field specified was not valid or postedDescriptor

was not zero or operationWaitTime.tv_sec was negative or operationWaitTime.tv_usec was not zero.

Note: The rest of the errno values from “send()—Send Data” on page 151 also apply to QsoStartSend().

Error Messages

 Message ID Error Message Text

CPFA081 E Unable to set return value or error code.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. It is important for application programmers to keep in mind that since QsoStartSend() is

asynchronous, care should be used to control how many of these functions are outstanding. When a

TCP socket becomes flow control blocked such that the QsoStartSend() is not able to pass the data to

the TCP socket immediately, the return value will be 1. Applications that send large amounts of data

should have the postFlag set to 0. This allows the application to use a return value of 1 as an

indication that the socket has become flow control blocked. The application should then wait for the

outstanding operation to complete before issuing another QsoStartSend(). This will ensure that the

application does not exhaust system buffer resources.

2. A buffer that is given to QsoStartSend() must not be used by the application again until either it is

returned by QsoWaitForIOCompletion() or is reclaimed by issuing a close() on the socket descriptor or

issuing a QsoDestroyIOCompletionPort() on the I/O completion port. If a buffer is given to

QsoStartSend() to be sent, and it is later detected during QsoStartSend() processing that the buffer has

been freed, it may produce an unrecoverable condition on the socket for which the QsoStartSend()

was issued. If this occurs, an ECONNABORTED error value will be returned.

3. It is not recommended to intermix QsoStartSend() and blocking I/O (that is, send()) on the same

socket. If one does, then the pending asynchronous send I/O will be serviced before blocking I/O

once data can be sent.

4. Socket option SO_SNDTIMEO is not supported by this API. Semantics similar to SO_SNDTIMEO can

be obtained using the operationWaitTime field in the Qso_OverLappedIO_t structure.

Related Information

v

“QsoCancelOperation()—Cancel an I/O Operation” on page 81—Cancel an I/O Operation

v “QsoCreateIOCompletionPort()—Create I/O Completion Port” on page 83—Create I/O Completion

Port

100 iSeries: UNIX-Type -- Sockets APIs

v “QsoDestroyIOCompletionPort()—Destroy I/O Completion Port” on page 84—Destroy I/O Completion

Port

v “QsoPostIOCompletion()—Post I/O Completion Request” on page 89—Post Request on I/O

Completion Port

v “QsoStartRecv()—Start Asynchronous Receive Operation” on page 95—Start Asynchronous Recv

Operation

v “QsoWaitForIOCompletion()—Wait for I/O Operation”—Wait for I/O Completion Operation

v “send()—Send Data” on page 151—Send Data

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QsoWaitForIOCompletion()—Wait for I/O Operation

 Syntax

 #include <gskssl.h>

 #include <qsoasync.h

 int QsoWaitForIOCompletion (int IOCompletionPort,

 Qso_OverlappedIO_t * completionStatus,

 struct timeval * timeToWait)

 Service Program Name: QSOSRV3

 Default Public Authority: *USE

 Threadsafe: Yes

The QsoWaitForIOCompletion() is used to wait for a completed overlapped I/O operation. The wait

point is represented by the I/O completion port that was created using the QsoCreateIOCompletionPort()

function.

Parameters

int IOCompletionPort

(Input) The I/O completion port on which to wait.

Qso_OverlappedIO_t * completionStatus

(Input/Output) A pointer to a qso_overlappedIO_t structure that will be updated with the status

defined below. If a field has no relevance to operation completed, then either a null or zero will

be returned for that field.

 descriptorHandle (Output) The descriptor handle that was supplied by the application when the operation

was started.

buffer (Output) A pointer to the buffer that was supplied when the operation was started. Null is

returned when operationCompleted is QSOSTARTACCEPT or GSKSECURESOCSTARTINIT .

bufferLength (Output) The length of the buffer that was supplied when the operation was started. Zero is

returned when operationCompleted is QSOSTARTACCEPT or GSKSECURESOCSTARTINIT.

postFlag (Output) The value of the postFlag when the operation was started. Zero is returned when

operationCompleted is QSOSTARTACCEPT or GSKSECURESOCSTARTINIT .

Sockets APIs 101

#TOP_OF_PAGE
unix.htm
aplist.htm

fillBuffer (Output) The value of the fillBuffer when the operation was started. Zero is returned when

operationCompleted is QSOSTARTACCEPT or GSKSECURESOCSTARTINIT .

returnValue (Output)

Possible values if operation completed is QSOPOSTIOCOMPLETION, QSOSTARTRECV,

QSOSTARTSEND, or QSOSTARTACCEPT:

-1 The operation failed and errnoValue field should be checked for further explanation

of the error.

>= 0 For both QSOSTARTRECV and QSOSTARTSEND, indicates the number of bytes

sent or received respectively. A return value of 0 on a receive indicates an

end-of-file condition. For QSOSTARTACCEPT, this field is the socket connection

descriptor. For QSOPOSTIOCOMPLETION, a return value of 0 indicates the

operation was not timed (operationWaitTime was zero on input).

QSOPOSTIOCOMPLETION will not return > 0.

Possible values if operation completed is GSKSECURESOCSTARTSEND or

GSKSECURESOCSTARTRECV:

GSK_OK

Operation was successful. Field secureDataTransferSize indicates the number of

bytes sent or received respectively.

Failure

Possible values common to GSKSECURESOCSTARTSEND and

GSKSECURESOCSTARTRECV:

[GSK_AS400_ERROR_INVALID_POINTER]

The buffer pointer located in the Qso_OverLappedIO_t is not valid.

[GSK_INTERNAL_ERROR]

An unexpected error occurred during SSL processing.

[GSK_AS400_ERROR_CLOSED]

Secure session was closed by a thread during SSL processing.

[GSK_ERROR_IO]

An error occurred in SSL processing; check the errno value.

[GSK_ERROR_SOCKET_CLOSED]

A close() was done on the socket descriptor for this secure session.

Values unique to GSKSECURESOCSTARTRECV:

[GSK_INVALID_HANDLE]

The handle specified was not valid.

[GSK_INVALID_STATE]

The handle is not in the correct state for this operation.

[GSK_ERROR_BAD_MESSAGE]

SSL received a badly formatted message.

[GSK_ERROR_BAD_MAC]

A bad message authentication code was received.

102 iSeries: UNIX-Type -- Sockets APIs

Possible values if operationCompleted is GSKSECURESOCSTARTINIT:

[GSK_OK]

Operation was successful, a secure session established.

[GSK_ERROR_BAD_MESSAGE]

SSL received a badly formatted message.

[GSK_ERROR_BAD_MAC]

A bad message authentication code was received.

[GSK_KEYRING_OPEN_ERROR]

Certificate store file could not be opened.

[GSK_ERROR_BAD_KEYFILE_LABEL]

The specified certificate store label is not valid.

[GSK_ERROR_BAD_V3_CIPHER]

An SSLV3 or TLSV1 cipher suite was specified that is not valid.

[GSK_ERROR_BAD_V2_CIPHER]

An SSLV2 cipher suite was specified that is not valid.

[GSK_ERROR_NO_CIPHERS]

No ciphers available or no ciphers were specified.

[GSK_ERROR_NO_CERTIFICATE]

No certificate is available for SSL processing.

[GSK_ERROR_BAD_CERTIFICATE]

The certificate is bad.

[SSL_ERROR_NOT_TRUSTED_ROOT]

The certificate is not signed by a trusted certificate authority.

[GSK_KEYFILE_CERT_EXPIRED]

The validity time period of the certificate has expired.

[GSK_ERROR_BAD_MESSAGE]

A badly formatted message was received.

[GSK_ERROR_UNSUPPORTED]

Operation is not supported by SSL.

[GSK_ERROR_BAD_PEER]

The peer system is not recognized.

[GSK_ERROR_CLOSED]

The SSL session ended.

[GSK_AS400_ERROR_TIMED_OUT]

The value specified for the handshake timeout expired before the handshake

completed.

[GSK_INSUFFICIENT_STORAGE]

Unable to allocate storage for the requested operation.

errnoValue

(Output) If operationCompleted is QSOPOSTIOCOMPLETION, QSOSTARTSEND,

QSOSTARTRECV or QSOSTARTACCEPT and returnValue is negative, this field will contain an

errno value further defining the error. This is also true if operationCompleted is

GSKSECURESOCSTARTINIT, GSKSECURESOCSTARTSEND or

GSKSECURESOCSTARTRECV and returnValue is GSK_ERROR_IO.

 Possible values are:

[ECANCELED] The operation was cancelled by “QsoCancelOperation()—Cancel an I/O Operation” on page 81.

Sockets APIs 103

If operationCompleted is QSOPOSTIOCOMPLETION:

 [EAGAIN] The specified timer value expired.

[ECLOSED] The socket descriptor was closed before the timer expired.

If operationCompleted is QSOSTARTRECV or GSKSECURESOCSTARTRECV:

 [EAGAIN] The operation did not complete in the specified time.

[EIO] Input/output error.

[ECONNABORTED] Connection ended abnormally.

This error code indicates that the transport provider ended the connection abnormally

because of one of the following:

v The retransmission limit has been reached for the data that was being sent on the socket.

v A protocol error was detected.

[ECONNRESET] A connection with a remote socket was reset by that socket.

[ECLOSED] Connection was closed. Only valid for QSOSTARTRECV.

[EFAULT] Read buffer pointer not valid.

If operationCompleted is QSOSTARTSEND or GSKSECURESOCSTARTSEND:

 [EAGAIN] The operation did not complete in the specified time.

[EIO] Input/output error.

[EPIPE] Broken pipe.

[ECLOSED] Connection was closed. Only valid for QSOSTARTSEND

[EFAULT] Send buffer pointer not valid.

If operationCompleted is QSOSTARTACCEPT:

 [EAGAIN] The operation did not complete in the specified time.

[ECONNABORTED] Connection ended abnormally.

[ECLOSED] Listening socket closed.

[EIO] Input/output error.

[EMFILE] Too many descriptors for this process.

[ENFILE] Too many descriptors in system.

[ENOBUFS] There is not enough buffer space for the requested operation.

[EUNKNOWN] Unknown system state.

If operationCompleted is GSKSECURESOCSTARTINIT:

 [ECONNABORTED] Connection ended abnormally.

[EDEADLK] Resource deadlock avoided.

[EINTR] Interrupted function call.

[EIO] Input/output error.

[ETERM] Operation terminated.

[EUNATCH] The protocol required to support the specified address family is not available at this time.

Any errno that can be returned by send() or recv() can be returned by this API if

operationCompleted is GSKSECURESOCSTARTINIT. See “Sockets APIs,” on page 1 for a

description of the errno values they return.

 If an errno is returned that is not in this list, see Errno Values for UNIX-Type Functions for a

description of the errno.

104 iSeries: UNIX-Type -- Sockets APIs

unix14.htm

operationCompleted (Output) The operation that was started and has now completed.

v 1 (QSOSTARTSEND)

v 2 (QSOSTARTRECV)

v 3 (QSOPOSTIOCOMPLETION)

v 4 (GSKSECURESOCSTARTSEND)

v 5 (GSKSECURESOCSTARTRECV)

v 6 (QSOSTARTACCEPT)

v 7 (GSKSECURESOCSTARTINIT)

secureDataTransferSize (Output) Number of bytes received or sent if operationCompleted is

GSKSECURESOCSTARTRECV or GSKSECURESOCSTARTSEND respectively and

returnValue equals GSK_OK.

bytesAvailable (Output) Number of bytes available to be read from connection. This parameter is valid only

if operationCompleted is QSOSTARTACCEPT and returnValue is >= 0.

operationWaitTime (Output) The value of the operationWaitTime when the operation was started.

postedDescriptor (Output) Always set to negative one. This field is only used on input for

QsoPostIOCompletion(). When the operation is retrieved with QsoWaitForIOCompletion(),

the descriptorHandle should be used to identify the socket connection and not this field.

operationId (Output) - An identifier to uniquely identify this operation or a group of operations. This

value is preserved from the start operation and returned by QsoWaitForIOCompletion(). It is

ignored unless “QsoCancelOperation()—Cancel an I/O Operation” on page 81 or

“QsoIsOperationPending()—Check if an I/O Operation is Pending” on page 87 is used.

struct timeval * timeToWait

(Input) A pointer to a timeval structure that contains the time in seconds and microseconds for

which the QsoWaitForIOCompletion() call should block if there is no completion status to receive.

 If this parameter is null, QsoWaitForIOCompletion() waits indefinitely. If this value is specified,

and 0 seconds 0 microseconds are specified, QsoWaitForIOCompletion() returns immediately.

Authorities

Authorization of *R (allow access to the object) to the certificate store file and its associated files is

required. Authorization of *X (allow use of the object) to each directory of the path name of the certificate

store file and its associated files is required.

Return Values

QsoWaitForIOCompletion returns an integer. Possible value are:

 1 Completion of an overlapped I/O function has been returned.

-1 The QsoWaitForIOCompletion() function timed out or an error occurred. Errno value has been set.

0 If the QsoWaitForIOCompletion() function is issued with a timeToWait parameter that specifies 0 seconds 0

microseconds and there is no completion status to report, the function returns immediately with a return

value of zero.

Errno Conditions

When QsoWaitForIOCompletion fails, errno can be set to one of the following:

 [ETIME] The function has blocked for the time period specified and has no completion status to

report.

Sockets APIs 105

[EFAULT] Bad address. The system detected a bad address while attempting to access the

completionStatus or the timeToWait parameter.

[EDESTROYED] The I/O completion port has been destroyed.

[EINVAL] The value of the I/O completion port is not valid or the timeToWait parameter is not valid.

[EINTR] Interrupted function call.

[EUNKNOWN] Unknown system state.

Error Messages

 Message ID Error Message Text

CPFA081 E Unable to set return value or error code.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. An errno of EDESTROYED indicates that the thread was waiting on the I/O completion port at the

time that it was destroyed by another thread. When an I/O completion port is destroyed, all buffers

that are associated with outstanding overlapped I/O operations are immediately available for use by

the application program.

2. The application should first check the return value of the QsoWaitForIOCompletion() call to determine

if the Qso_OverlappedIO_t structure specified by the completionStatus parameter has been updated.

This structure is updated ONLY if the return value of the QsoWaitForIOCompletion() call is one (1).

Related Information

v

“QsoCancelOperation()—Cancel an I/O Operation” on page 81—Cancel an I/O Operation

v “QsoIsOperationPending()—Check if an I/O Operation is Pending” on page 87—Check if an I/O

Operation is Pending

v “QsoCreateIOCompletionPort()—Create I/O Completion Port” on page 83—Create I/O Completion

Port

v “QsoDestroyIOCompletionPort()—Destroy I/O Completion Port” on page 84—Destroy I/O Completion

Port

v “QsoPostIOCompletion()—Post I/O Completion Request” on page 89—Post Request on I/O

Completion Port

v “QsoStartAccept()—Start asynchronous accept operation” on page 91—Start asynchronous accept

operation

v “QsoStartRecv()—Start Asynchronous Receive Operation” on page 95—Start Asynchronous Recv

Operation

v “QsoStartSend()—Start Asynchronous Send Operation” on page 98—Start Asynchronous Send

Operation

v gsk_secure_soc_startRecv()—Start Asynchronous Receive Operation on a secure session

v gsk_secure_soc_startSend()—Start Asynchronous Send Operation on a secure session

v gsk_secure_soc_startInit()—Start Asynchronous Operation to negotiate a secure session

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

106 iSeries: UNIX-Type -- Sockets APIs

gskstartrecv.htm
gskstartsend.htm
gskstartinit.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Rbind()—Set Remote Address for Socket

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int Rbind(int socket_descriptor,

 struct sockaddr *local_address,

 int address_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

 int Rbind(int socket_descriptor,

 const struct sockaddr *local_address,

 socklen_t address_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

A program uses the Rbind() call to request that a SOCKS server allow an inbound connection request

across a firewall. This call should only be used by applications that require inbound connections across a

firewall, and should only be used for sockets with an address family of af_inet. Note that for an Rbind()

call to succeed, a previous connect() call must have been issued for this thread, and must have resulted in

an outbound connection over the same SOCKS server. The Rbind() inbound connection will be from the

same IP address addressed by the original outbound connection. Caution must be exercised so that

outbound and inbound connections over the SOCKS server are paired. In other words, all Rbind()

inbound connections should immediately follow the outbound connection over the SOCKS server, and no

intervening non-SOCKS connections relating to this thread can be attempted before the Rbind() runs. For

an overview of using sockets and how to interact with a SOCKS server, see the topic about OS/400 client

SOCKS support in the Sockets Programming in the iSeries Information Center.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

socket_descriptor

(Input) The descriptor of the socket that is to be bound.

local_address

(Input) A pointer to a buffer of type struct sockaddr that contains the local address to which the

socket is to be bound. The structure sockaddr is defined in <sys/socket.h>.

Sockets APIs 107

_xopen_source.htm
_xopen_source.htm

The BSD 4.3 structure is:

 struct sockaddr {

 u_short sa_family;

 char sa_data[14];

 };

The BSD 4.4/UNIX 98 compatible structure is:

 typedef uchar sa_family_t;

 struct sockaddr {

 uint8_t sa_len;

 sa_family_t sa_family;

 char sa_data[14];

 };

The BSD 4.4 sa_len field is the length of the address. The sa_family field identifies the address

family to which the address belongs, and sa_data is the address whose format is dependent on the

address family.

address_length

(Input) The length of the local_address.

Authorities

v When the address type of the socket identified by the socket_descriptor is AF_INET, the thread must

have retrieve, insert, delete, and update authority to the port specified by the local_address field.

When the thread does not have this level of authority, an errno of EACCES is returned.

v When the address type of the socket identified by the socket_descriptor is AF_INET and is running IP

over SNA, the thread must have retrieve, insert, delete, and update authority to the APPC device.

When the thread does not have this level of authority, an errno of EACCES is returned.

Return Value

Rbind() returns an integer. Possible values are:

v -1 (unsuccessful)

v 0 (successful)

Error Conditions

When an Rbind() fails, errno can be set to one of the following:

 [EADDRNOTAVAIL] Address not available. This error code indicates one of the following:

v The SOCKS server specified is not reachable.

v The SOCKS server has denied the requested inbound connection.

v The Socket can no longer be used for an inbound connection.

[EAFNOSUPPORT] The type of socket is not supported in this protocol family.

The address family specified in the address structure pointed to by the

local_address parameter cannot be used with the socket pointed to by the

socket_descriptor parameter.

[EBADF] Descriptor not valid.

[EFAULT] Bad address.

The system detected an address that was not valid while attempting to access

the local_address parameter.

108 iSeries: UNIX-Type -- Sockets APIs

[EINVAL] Parameter not valid. This error code indicates one of the following:

v The address_length parameter specifies a length that is negative or is not valid

for the address family.

v The socket referenced by socket_descriptor is not a socket of type SOCK_RAW

and is already bound to an address.

v The local address pointed to by the local_address parameter specified an

address that was not valid.

[EIO] Input/output error.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EUNATCH] The protocol required to support the specified address family is not available at

this time.

[EUNKNOWN] Unknown system state.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. If this call is issued for sockets with an address family other than af_inet, or if the thread has not

performed an outbound connection through a SOCKS server, then a bind() call will be run instead. In

this case the documented errno and usage notes for bind() apply.

2. The local IP address and port number specified for sockets with an address family of af_inet are

ignored if Rbind() results in an inbound connection over a SOCKS server. In this scenario the socket is

logically bound to the SOCKS server IP address coupled with a port selected via SOCKS server. If a

bind() is performed, then the socket is bound to the local IP address and port number specified.

3. The Rbind() function may be explicitly used, or optionally you can compile your application with the

__Rbind macro defined when you call the compiler. For example, if you are compiling with a Create

C Module (CRTCMOD) CL command, specify __Rbind for the DEFINE keyword to cause the __Rbind

macro to be defined before the compilation starts. Now all bind() calls in the program will become

Rbind(). See <sys/socket.h> for a definition of the __Rbind macro.

4. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the Rbind() API is mapped to qso_Rbind98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “accept()—Wait for Connection Request and Make Connection” on page 4—Wait for Connection

Request and Make Connection

v “bind()—Set Local Address for Socket” on page 14—Set Local Address for Socket

v “connect()—Establish Connection or Destination Address” on page 25—Establish Connection or

Destination Address

v “getsockname()—Retrieve Local Address of Socket” on page 56—Retrieve Local Address of Socket

Sockets APIs 109

_xopen_source.htm

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

read()—Read from Descriptor

 Syntax

 #include <unistd.h>

 ssize_t read(int file_descriptor,

 void *buf, size_t nbyte);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 115.

From the file or socket indicated by file_descriptor, the read() function reads nbyte bytes of input into the

memory area indicated by buf. If nbyte is zero, read() returns a value of zero without attempting any

other action.

If file_descriptor refers to a ″regular file″ (a stream file that can support positioning the file offset) or any

other type of file on which the job can do an lseek() operation, read() begins reading at the file offset

associated with file_descriptor. A successful read() changes the file offset by the number of bytes read.

If read() is successful and nbyte is greater than zero, the access time for the file is updated.

read() is not supported for directories.

If file_descriptor refers to a descriptor obtained using the open() function with O_TEXTDATA specified, the

data is read from the file assuming it is in textual form. The maximum number of bytes on a single read

that can be supported for text data is 2,147,483,408 (2GB - 240) bytes. The data is converted from the code

page of the file to the code page of the application, job, or system as follows:

v When reading from a true stream file, any line-formatting characters (such as carriage return, tab, and

end-of-file) are just converted from one code page to another.

v When reading from record files that are being used as stream files, end-of-line characters are added to

the end of the data in each record.

There are some important considerations when the file is open for text conversion and the CCSIDs

involved are not strictly single-byte:

v The read() will return the exact number of bytes requested. For some CCSIDs, this may mean that

partial characters are returned at the end of the user buffer. In this case, the remainder of the character

has been read from the file and internally buffered. The next consecutive read() will begin with the

remainder of the partial character. However, if an lseek() is performed, the buffered data will be

discarded. See lseek()—Set File Read/Write Offset for more information.

v Because of the above consideration and because of the possible expansion or contraction of converted

data, applications using the O_CCSID flag should avoid assumptions about data size and the current

file offset. For example, a file might have a physical size of 100 bytes, but after an application has read

100 bytes from the file, the current file offset may be 50. In order to read the whole file, the application

might have to read 200 bytes or more, depending on the CCSIDs involved.

110 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
lseek.htm

If O_TEXTDATA was not specified on the open(), the data is read from the file without conversion. The

application is responsible for handling the data.

In the QSYS.LIB and independent ASP QSYS.LIB file systems, most end-of-file characters are symbolic;

that is, they are stored outside the member. When reading:

v If O_TEXTDATA is specified, both symbolic and nonsymbolic end-of-file characters can be seen.

v If O_TEXTDATA is not specified (binary mode), only nonsymbolic end-of-file characters can be seen.

See the Usage Notes for “write()—Write to Descriptor” on page 195.

When file_descriptor refers to a socket, the read() function reads from the socket identified by the socket

descriptor.

When attempting to read from an empty pipe or FIFO:

v If no job has the pipe or FIFO open for writing, read() return 0 to indicate end-of-file.

v If some job has the pipe or FIFO open for writing and O_NONBLOCK was specified, read() will fail

and errno will be set to [EAGAIN].

v If some job has the pipe or FIFO open for writing and O_NONBLOCK was not specified, read() will

block the calling thread until some data is written or until the pipe or FIFO is closed by all jobs that

had the pipe or FIFO open for writing.

Parameters

file_descriptor

(Input) The descriptor to be read.

buf (Output) A pointer to a buffer in which the bytes read are placed.

nbyte (Input) The number of bytes to be read.

Authorities

No authorization is required.

Return Value

value read() was successful. The value returned is the number of bytes actually read and placed in buf.

This number is less than or equal to nbyte. It is less than nbyte only if read() reached the end of

the file before reading the requested number of bytes. If read() is reading a regular file and

encounters a part of the file that has not been written (but before the end of the file), read()

places bytes containing zeros into buf in place of the unwritten bytes.

-1 read() was not successful. The errno global variable is set to indicate the error. If the value of

nbyte is greater than SSIZE_MAX, read() sets errno to [EINVAL].

Error Conditions

If read() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

Sockets APIs 111

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

 This may occur if file_descriptor refers to a socket and the socket is using a connection-oriented

transport service, and a connect() was previously completed. The thread, however, does not have

the appropriate privileges to the objects that were needed to establish a connection. For example,

the connect() required the use of an APPC device that the thread was not authorized to.

[EAGAIN]

 Operation would have caused the process to be suspended.

 If file_descriptor refers to a pipe or FIFO that has its O_NONBLOCK flag set, this error occurs if

the read() would have blocked the calling thread.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file. Or, this read request was made to a file that was

only open for writing.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

112 iSeries: UNIX-Type -- Sockets APIs

This may occur if file_descriptor refers to a socket that is using a connectionless transport service,

is not a socket of type SOCK_RAW, and is not bound to an address.

 The file resides in a file system that does not support large files, and the starting offset of the file

exceeds 2GB minus 2 bytes.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENXIO]

 No such device or address.

[EOVERFLOW]

 Object is too large to process.

 The object’s data size exceeds the limit allowed by this function.

 The file is a regular file, nbyte is greater than 0, the starting offset is before the end-of-file, and the

starting offset is greater than or equal to 2GB minus 2 bytes.

[ERESTART]

 A system call was interrupted and may be restarted.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 When the descriptor refers to a socket, errno could indicate one of the following errors:

[ECONNABORTED]

 Connection ended abnormally.

Sockets APIs 113

This error code indicates that the transport provider ended the connection abnormally because of

one of the following:

v The retransmission limit has been reached for data that was being sent on the socket.

v A protocol error was detected.

v

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EINTR]

 Interrupted function call.

[ENOTCONN]

 Requested operation requires a connection.

 This error code is returned only on sockets that use a connection-oriented transport service.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

 A non-blocking connect() was previously completed that resulted in the connection timing out.

No connection is established. This error code is returned only on sockets that use a

connection-oriented transport service.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EWOULDBLOCK]

 Operation would have caused the process to be suspended.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

114 iSeries: UNIX-Type -- Sockets APIs

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

This function will fail with error code [ENOTSAFE] if the object on which this function is operation is

a save file and multiple threads exist in the job.

This function will fail with error code [EIO] if the file specified is a save file and the file does not

contain complete save file data.

Sockets APIs 115

The file access time for a database member is updated using the normal rules that apply to database

files. At most, the access time is updated once per day.

If you previously used the integrated file system interface to manipulate a member that contains an

end-of-file character, you should avoid using other interfaces (such as the Source Entry Utility or

database reads and writes) to manipulate the member. If you use other interfaces after using the

integrated file system interface, the end-of-file information will be lost.

3. QOPT File System Differences

The file access time is not updated on a read() operation.

When reading from files on volumes formatted in Universal Disk Format (UDF), byte locks on the

range being read are ignored.

4. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. Once a file is open, subsequent requests to perform operations on the file can

fail because file attributes are checked at the server on each request. If permissions on the file are

made more restrictive at the server or the file is unlinked or made unavailable by the server for

another client, your operation on an open file descriptor will fail when the local Network File System

receives these updates. The local Network File System also impacts operations that retrieve file

attributes. Recent changes at the server may not be available at your client yet, and old values may be

returned from operations. (Several options on the Add Mounted File System (ADDMFS) command

determine the time between refresh operations of local data.)

Reading and writing to files with the Network File System relies on byte-range locking to guarantee

data integrity. To prevent data inconsistency, use the fcntl() API to get and release these locks.

5. QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If a larger buffer is passed, the error EINVAL will be

received.

6. For sockets that use a connection-oriented transport service (for example, sockets with a type of

SOCK_STREAM), a return value of zero indicates one of the following:

v The partner program has issued a close() for the socket.

v The partner program has issued a shutdown() to disable writing to the socket.

v The connection is broken and the error was returned on a previously issued socket function.

v A shutdown() to disable reading was previously done on the socket.
7. The following applies to sockets that use a connectionless transport service (for example, a socket

with a type of SOCK_DGRAM).

v If a connect() has been issued previously, then data can be received only from the address specified

in the previous connect().

v The address from which data is received is discarded, since the read() has no address parameter.

v The entire message must be read in a single read operation. If the size of the message is too large to

fit in the user supplied buffer, the remaining bytes of the message are discarded.

v A returned value of zero indicates one of the following:

– The partner program has sent a NULL message (a datagram with no user data).

– A shutdown() to disable reading was previously done on the socket.

– The buffer length specified was zero.
8. For file systems that do not support large files, read() will return [EINVAL] if the starting offset

exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do

support large files, read() will return [EOVERFLOW] if the starting offset exceeds 2GB minus 2 bytes

and the file was not opened for large file access.

9. Using this function successfully on the /dev/null or /dev/zero character special file results in a

return value of zero. In addition, the access time for the file is updated.

116 iSeries: UNIX-Type -- Sockets APIs

Related Information

v The <limits.h> file (see Header Files for UNIX-Type Functions)

v The <unistd.h> file (see Header Files for UNIX-Type Functions)

v creat()—Create or Rewrite File

v dup()—Duplicate Open File Descriptor

v dup2()—Duplicate Open File Descriptor to Another Descriptor

v

fclear()—Write (Binary Zeros) to Descriptor

v fclear64()—Write (Binary Zeros) to Descriptor (Large File Enabled)

v “fcntl()—Perform File Control Command” on page 31—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 69—Perform I/O Control Request

v lseek()—Set File Read/Write Offset

v open()—Open File

v pread()—Read from Descriptor with Offset

v pread64()—Read from Descriptor with Offset (large file enabled)

v pwrite()—Write to Descriptor with Offset

v pwrite64()—Write to Descriptor with Offset (large file enabled)

v “readv()—Read from Descriptor Using Multiple Buffers” on page 118—Read from Descriptor Using

Multiple Buffers

v “recv()—Receive Data” on page 124—Receive Data

v “recvfrom()—Receive Data” on page 128—Receive Data

v “recvmsg()—Receive a Message Over a Socket” on page 132—Receive Data or Descriptors or Both

v “write()—Write to Descriptor” on page 195—Write to Descriptor

v “writev()—Write to Descriptor Using Multiple Buffers” on page 205—Write to Descriptor Using

Multiple Buffers

Example

See Code disclaimer information for information pertaining to code examples.

The following example opens a file and reads input:

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

main() {

 int ret, file_descriptor, rc;

 char buf[]="Test text";

 if ((file_descriptor = creat("test.output", S_IWUSR))!= 0)

 perror("creat() error");

 else {

 if (-1==(rc=write(file_descriptor, buf, sizof(buf)-1)))

 perror("write() error");

 if (close(file_descriptor)!= 0)

 perror("close() error");

 }

 if ((file_descriptor = open("test.output", O_RDONLY)) < 0)

 perror("open() error");

 else {

 ret = read(file_descriptor, buf, sizeof(buf)-1));

 buf[ret] = 0x00;

 printf("block read: \n<%s>\", buf);

 if (close(file_descriptor)!= 0)

 perror("close() error");

Sockets APIs 117

unix13.htm
unix13.htm
creat.htm
dup.htm
dup2.htm
fclear.htm
fclear64.htm
lseek.htm
open.htm
pread.htm
pread64.htm
pwrite.htm
pwrite64.htm
aboutapis.htm#CODEDISCLAIMER

}

 if (unlink("test.output")!= 0)

 perror("unlink() error");

}

Output:

block read:

<Test text>

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

readv()—Read from Descriptor Using Multiple Buffers

 Syntax

 #include <sys/types.h>

 #include <sys/uio.h>

 int readv(int descriptor,

 struct iovec *io_vector[],

 int vector_length)

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 122.

The readv() function is used to receive data from a file or socket descriptor. readv() provides a way for

data to be stored in several different buffers (scatter/gather I/O).

See “read()—Read from Descriptor” on page 110 for more information related to reading from a

descriptor.

Parameters

descriptor

(Input) The descriptor to be read. The descriptor refers to a file or a socket.

io_vector[]

(I/O) The pointer to an array of type struct iovec. struct iovec contains a sequence of pointers to

buffers in which the data to be read is stored. The structure pointed to by the io_vector parameter

is defined in <sys/uio.h>.

 struct iovec {

 void *iov_base;

 size_t iov_len;

 }

iov_base and iov_len are the only fields in iovec used by sockets. iov_base contains the pointer to a

buffer and iov_len contains the buffer length. The rest of the fields are reserved.

vector_length

(Input) The number of entries in io_vector.

118 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Authorities

No authorization is required.

Return Value

readv() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is the number of bytes read.

Error Conditions

If readv() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

 This may occur if file_descriptor refers to a socket and the socket is using a connection-oriented

transport service, and a connect() was previously completed. The thread, however, does not have

the appropriate privileges to the objects that were needed to establish a connection. For example,

the connect() required the use of an APPC device that the thread was not authorized to.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file. Or, this readv request was made to a file that was

only open for writing.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

Sockets APIs 119

A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 This may occur if file_descriptor refers to a socket that is using a connectionless transport service,

is not a socket of type SOCK_RAW, and is not bound to an address.

 The file resides in a file system that does not support large files, and the starting offset of the file

exceeds 2 GB minus 2 bytes.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[EOVERFLOW]

 Object is too large to process.

 The object’s data size exceeds the limit allowed by this function.

 The file is a regular file, nbyte is greater than 0, the starting offset is before the end-of-file and is

greater than or equal to 2GB minus 2 bytes.

[ERESTART]

 A system call was interrupted and may be restarted.

120 iSeries: UNIX-Type -- Sockets APIs

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 When the descriptor refers to a socket, errno could indicate one of the following errors:

[ECONNABORTED]

 Connection ended abnormally.

 This error code indicates that the transport provider ended the connection abnormally because of

one of the following:

v The retransmission limit has been reached for data that was being sent on the socket.

v A protocol error was detected.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EINTR]

 Interrupted function call.

[ENOTCONN]

 Requested operation requires a connection.

 This error code is returned only on sockets that use a connection-oriented transport service.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

 A non-blocking connect() was previously completed that resulted in the connection timing out.

No connection is established. This error code is returned only on sockets that use a

connection-oriented transport service.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EWOULDBLOCK]

 Operation would have caused the process to be suspended.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

Sockets APIs 121

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

122 iSeries: UNIX-Type -- Sockets APIs

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. The io_vector[] parameter is an array of struct iovec structures. When a readv() is issued, the system

processes the array elements one at a time, starting with io_vector[0]. For each element, iov_len bytes

of received data are placed in storage pointed to by iov_base. Data is placed in storage until all

buffers are full, or until there is no more data to receive. Only the storage pointed to by iov_base is

updated. No change is made to the iov_len fields. To determine the end of the data, the application

program must use the following:

v The function return value (the total number of bytes received).

v The lengths of the buffers pointed to by iov_base.
3. For sockets that use a connection-oriented transport service (for example, sockets with a type of

SOCK_STREAM), a returned value of zero indicates one of the following:

v The partner program has issued a close() for the socket.

v The partner program has issued a shutdown() to disable writing to the socket.

v The connection is broken and the error was returned on a previously issued socket function.

v A shutdown() to disable reading was previously done on the socket.
4. The following applies to sockets that use a connectionless transport service (for example, a socket

with a type of SOCK_DGRAM):

v If a connect() has been issued previously, then data can be received only from the address specified

in the previous connect().

v The address from which data is received is discarded, because the readv() has no address parameter.

v The entire message must be read in a single read operation. If the size of the message is too large to

fit in the user-supplied buffers, the remaining bytes of the message are discarded.

v A returned value of zero indicates one of the following:

– The partner program has sent a NULL message (a datagram with no user data).

– A shutdown() to disable reading was previously done on the socket.

– The buffer length specified by the application was zero.
5. For the file systems that do not support large files, readv() will return [EINVAL] if the starting offset

exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do

support large files, readv() will return [EOVERFLOW] if the starting offset exceeds 2GB minus 2 bytes

and file was not opened for large file access.

6. QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If a larger buffer is passed, the error EINVAL will be

received.

7. QOPT File System Differences

When reading from files on volumes formatted in Universal Disk Format (UDF), byte locks on the

range being read are ignored.

8. Using this function successfully on the /dev/null or /dev/zero character special file results in a

return value of 0. In addition, the access time for the file is updated.

Sockets APIs 123

Related Information

v The <limits.h> file (see Header Files for UNIX-Type Functions)

v The <unistd.h> file (see Header Files for UNIX-Type Functions)

v creat()—Create or Rewrite File

v dup()—Duplicate Open File Descriptor

v dup2()—Duplicate Open File Descriptor to Another Descriptor

v

fclear()—Write (Binary Zeros) to Descriptor

v fclear64()—Write (Binary Zeros) to Descriptor (Large File Enabled)

v “fcntl()—Perform File Control Command” on page 31—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 69—Perform I/O Control Request

v lseek()—Set File Read/Write Offset

v open()—Open File

v “read()—Read from Descriptor” on page 110—Read from Descriptor

v “recv()—Receive Data”—Receive Data

v “recvfrom()—Receive Data” on page 128—Receive Data

v “recvmsg()—Receive a Message Over a Socket” on page 132—Receive Data or Descriptors or Both

v “write()—Write to Descriptor” on page 195—Write to Descriptor

v “writev()—Write to Descriptor Using Multiple Buffers” on page 205—Write to Descriptor Using

Multiple Buffers

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

recv()—Receive Data

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int recv(int socket_descriptor,

 char *buffer,

 int buffer_length,

 int flags)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

124 iSeries: UNIX-Type -- Sockets APIs

unix13.htm
unix13.htm
creat.htm
dup.htm
dup2.htm
fclear.htm
fclear64.htm
lseek.htm
open.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

 ssize_t recv(int socket_descriptor,

 void *buffer,

 size_t buffer_length,

 int flags)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The recv() function is used to receive data through a socket.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

socket_descriptor

(Input) The socket descriptor that is to be read from.

buffer (Input) The pointer to the buffer in which the data that is to be read is stored.

buffer_length

(Input) The length of the buffer.

flags (Input) A flag value that controls the reception of the data. The flags value is either zero, or is

obtained by performing an OR operation on one or more of the following constants:

 MSG_OOB Receive out-of-band data. Valid only for sockets with an address family of AF_INET or AF_INET6

and type SOCK_STREAM.

MSG_PEEK Obtain a copy of the message without removing the message from the socket.

MSG_WAITALL Wait for a full request or an error.

Authorities

No authorization is required.

Return Value

recv() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is the number of bytes received.

Error Conditions

When recv() fails, errno can be set to one of the following:

Sockets APIs 125

_xopen_source.htm
_xopen_source.htm

[EACCES] Permission denied.

The socket pointed to by the socket_descriptor parameter is using a

connection-oriented transport service, and a connect() was previously completed.

The process, however, does not have the appropriate privileges to the objects

that were needed to establish a connection. For example, the connect() required

the use of an APPC device that the process was not authorized to.

[EBADF] Descriptor not valid.

[ECONNABORTED] Connection ended abnormally.

This error code indicates that the transport provider ended the connection

abnormally because of one of the following:

v The retransmission limit has been reached for data that was being sent on the

socket.

v A protocol error was detected.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET] A connection with a remote socket was reset by that socket.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access

the buffer parameter.

[EINTR] Interrupted function call.

[EINVAL] Parameter not valid.

This error code indicates one of the following:

v The buffer_length parameter specifies a negative value.

v The flags parameter specifies a value that includes the MSG_OOB flag, but no

OOB data was available to be received.

v The flags parameter specifies a value that includes the MSG_OOB flag, and the

socket option SO_OOBINLINE has been set.

v The socket_descriptor parameter points to a socket that is using a connectionless

transport service, is not a socket of type SOCK_RAW, and is not bound to an

address.

[EIO] Input/output error.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOTCONN] Requested operation requires a connection.

This error code is returned only on sockets that use a connection-oriented

transport service.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EOPNOTSUPP] Operation not supported.

This error code indicates one of the following:

v The flags parameter specifies a value that includes the MSG_OOB flag, but the

socket_descriptor parameter points to a connectionless socket.

v The flags parameter specifies a value that includes the MSG_OOB flag, but the

socket_descriptor parameter points to a socket that does not have an address

family of AF_INET or AF_INET6.

[ETIMEDOUT] A remote host did not respond within the timeout period.

A nonblocking connect() call was previously done that resulted in the connection

establishment timing out. No connection is established. This error code is

returned only on sockets that use a connection-oriented transport service.

[EUNATCH] The protocol required to support the specified address family is not available at

this time.

126 iSeries: UNIX-Type -- Sockets APIs

[EUNKNOWN] Unknown system state.

[EWOULDBLOCK] Operation would have caused the thread to be suspended.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. For sockets that use a connection-oriented transport service (for example, sockets with a type of

SOCK_STREAM), a returned value of zero indicates one of the following:

v The partner program has issued a close() for the socket.

v The partner program has issued a shutdown() to disable writing to the socket.

v The connection is broken and the error was returned on a previously issued socket function.

v A shutdown() to disable reading was previously done on the socket.
2. The following applies to sockets that use a connectionless transport service (for example, a socket

with a type of SOCK_DGRAM):

v If a connect() has been issued previously, then data can be received only from the address specified

in the previous connect().

v The address from which data is received is discarded, since the recv() has no address parameter.

v The entire message must be read in a single read operation. If the size of the message is too large to

fit in the user supplied buffer, the remaining bytes of the message are discarded.

v A returned value of zero indicates one of the following:

– The partner program has sent a NULL message (a datagram with no user data),

– A shutdown() to disable reading was previously done on the socket.

– The buffer length specified was zero.
3. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the recv() API is mapped to qso_recv98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “fcntl()—Perform File Control Command” on page 31—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 69—Perform I/O Control Request

v “recvfrom()—Receive Data” on page 128—Receive Data

v “recvmsg()—Receive a Message Over a Socket” on page 132—Receive Data or Descriptors or Both

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 127

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

recvfrom()—Receive Data

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int recvfrom(int socket_descriptor,

 char *buffer,

 int buffer_length,

 int flags,

 struct sockaddr *from_address,

 int *address_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

 ssize_t recvfrom(int socket_descriptor,

 void *buffer,

 size_t buffer_length,

 int flags,

 struct sockaddr *from_address,

 socklen_t *address_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The recvfrom() function is used to receive data through a connected or unconnected socket.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

socket_descriptor

(Input) The socket descriptor that is to be read from.

buffer (Input) The pointer to the buffer in which the data that is to be read is stored.

buffer_length

(Input) The length of the buffer.

int flags

(Input) A flag value that controls the reception of the data. The flags value is either zero, or is

obtained by performing an OR operation on one or more of the following constants:

128 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
_xopen_source.htm

MSG_OOB Receive out-of-band data. Valid only for sockets with an address family of AF_INET or AF_INET6

and type SOCK_STREAM.

MSG_PEEK Obtain a copy of the message without removing the message from the socket.

MSG_WAITALL Wait for a full request or an error.

from_address

(Output) A pointer to a buffer of type struct sockaddr that contains the address from which the

message was received.

 The structure sockaddr is defined in <sys/socket.h>.

 The BSD 4.3 structure is:

 struct sockaddr {

 u_short sa_family;

 char sa_data[14];

 };

The BSD 4.4/UNIX 98 compatible structure is:

 typedef uchar sa_family_t;

 struct sockaddr {

 uint8_t sa_len;

 sa_family_t sa_family;

 char sa_data[14];

 };

The BSD 4.4 sa_len field is the length of the address. The sa_family field identifies the address

family to which the address belongs, and sa_data is the address whose format is dependent on the

address family.

 Note: See the usage notes about using different address families with sockaddr_storage.

address_length

(Input/output) This parameter is a value-result field. The caller passes a pointer to the length of

the from_address parameter. On return from the call, address_length will contain the actual length of

the address.

Authorities

An errno of EACCES is returned when the socket pointed to by the socket_descriptor field is address

family AF_INET and a nonblocking connect was attempted previously and was not successful. The

nonblocking connect was not successful because the thread did not have authority to the associated

APPC device. The thread performing the nonblocking connect must have retrieve, insert, delete, and

update authority to the APPC device.

Return Value

recvfrom() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is the number of bytes received.

Error Conditions

When recvfrom() fails, errno can be set to one of the following:

Sockets APIs 129

[EACCES] Permission denied.

The socket pointed to by the socket_descriptor parameter is using a

connection-oriented transport service, and a connect() was previously completed.

The process, however, does not have the appropriate privileges to the objects

that were needed to establish a connection. For example, the connect() required

the use of an APPC device that the process was not authorized to.

[EBADF] Descriptor not valid.

[ECONNABORTED] Connection ended abnormally.

This error code indicates that the transport provider ended the connection

abnormally because of one of the following:

v The retransmission limit has been reached for data that was being sent on the

socket.

v A protocol error was detected.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET] A connection with a remote socket was reset by that socket.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access

the buffer, from_address, or address_length parameter.

[EINTR] Interrupted function call.

[EINVAL] Parameter not valid.

This error code indicates one of the following:

v The buffer_length parameter specifies a negative value.

v The flags parameter specifies a value that includes the MSG_OOB flag, but no

OOB data was available to be received.

v The flags parameter specifies a value that includes the MSG_OOB flag, and the

socket option SO_OOBINLINE has been set.

v The socket_descriptor parameter points to a socket that is using a connectionless

transport service, is not a socket of type SOCK_RAW, and is not bound to an

address.

[EIO] Input/output error.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOTCONN] Requested operation requires a connection.

This error code is returned only on sockets that use a connection-oriented

transport service.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EOPNOTSUPP] Operation not supported.

This error code indicates one of the following:

v The flags parameter specifies a value that includes the MSG_OOB flag, but the

socket_descriptor parameter points to a connectionless socket.

v The flags parameter specifies a value that includes the MSG_OOB flag, but the

socket_descriptor parameter points to a socket that does not have an address

family of AF_INET or AF_INET6.

[ETIMEDOUT] A remote host did not respond within the timeout period.

A non-blocking connect() was previously issued that resulted in the connection

establishment timing out. No connection is established. This error code is

returned only on sockets that use a connection-oriented transport service.

[EUNATCH] The protocol required to support the specified address family is not available at

this time.

130 iSeries: UNIX-Type -- Sockets APIs

[EUNKNOWN] Unknown system state.

[EWOULDBLOCK] Operation would have caused the thread to be suspended.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. For sockets that use a connection-oriented transport service (for example, sockets with a type of

SOCK_STREAM), a returned value of zero indicates one of the following:

v The partner program has issued a close() for the socket.

v The partner program has issued a shutdown() to disable writing to the socket.

v The connection is broken and the error was returned on a previously issued socket function.

v A shutdown() to disable reading was previously done on the socket.
2. If the socket is using a connection-oriented transport service, the from_address and address_length

parameters are ignored.

3. The following applies to sockets that use a connectionless transport service (for example, a socket

with a type of SOCK_DGRAM):

v If a connect() has been issued previously, then data can be received only from the address specified

in the previous connect().

v If the from_address parameter is set to NULL or address_length specifies a value of zero, the address

from which data is received is discarded by the system.

v If the length of the address to be returned exceeds the length of the from_address parameter, the

returned address is truncated.
v The structure sockaddr is a generic structure used for any address family but it is only 16 bytes

long. The actual address returned for some address families may be much larger. You should

declare storage for the address with the structure sockaddr_storage. This structure is large enough

and aligned for any protocol-specific structure. It may then be cast as sockaddr structure for use on

the APIs. The ss_family field of the sockaddr_storage will always align with the family field of any

protocol-specific structure.

The BSD 4.3 structure is:

 #define _SS_MAXSIZE 304

 #define _SS_ALIGNSIZE (sizeof (char*))

 #define _SS_PAD1SIZE (_SS_ALIGNSIZE - sizeof(sa_family_t))

 #define _SS_PAD2SIZE (_SS_MAXSIZE - (sizeof(sa_family_t)+

 _SS_PAD1SIZE + _SS_ALIGNSIZE))

 struct sockaddr_storage {

 sa_family_t ss_family;

 char _ss_pad1[_SS_PAD1SIZE];

 char* _ss_align;

 char _ss_pad2[_SS_PAD2SIZE];

 };

The BSD 4.4/UNIX 98 compatible structure is:

 #define _SS_MAXSIZE 304

 #define _SS_ALIGNSIZE (sizeof (char*))

 #define _SS_PAD1SIZE (_SS_ALIGNSIZE - (sizeof(uint8_t) + sizeof(sa_family_t)))

 #define _SS_PAD2SIZE (_SS_MAXSIZE - (sizeof(uint8_t) + sizeof(sa_family_t)+

Sockets APIs 131

_SS_PAD1SIZE + _SS_ALIGNSIZE))

 struct sockaddr_storage {

 uint8_t ss_len;

 sa_family_t ss_family;

 char _ss_pad1[_SS_PAD1SIZE];

 char* _ss_align;

 char _ss_pad2[_SS_PAD2SIZE];

 };

v If the socket is using an address family of AF_UNIX, the address (which is a path name) is returned

in the default coded character set identifier (CCSID) currently in effect for the job.

v If the socket is using an address family of AF_UNIX_CCSID, the output structure sockaddr_unc

defines the format and coded character set identifier (CCSID) of the address (which is a path

name).

v The entire message must be read in a single read operation. If the size of the message is too large to

fit in the user supplied buffer, the remaining bytes of the message are discarded.

v A returned value of zero indicates one of the following:

– The partner program has sent a NULL message (a datagram with no user data).

– A shutdown() to disable reading was previously done on the socket.

– The buffer length specified was zero.
4. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the recvfrom() API is mapped to qso_recvfrom98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “fcntl()—Perform File Control Command” on page 31—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 69—Perform I/O Control Request

v “recv()—Receive Data” on page 124—Receive Data

v “recvmsg()—Receive a Message Over a Socket”—Receive Data or Descriptors or Both

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

recvmsg()—Receive a Message Over a Socket

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int recvmsg(int socket_descriptor,

 struct msghdr *message_structure,

 int flags)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

132 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

 ssize_t recvmsg(int socket_descriptor,

 struct msghdr *message_structure,

 int flags)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The recvmsg() function is used to receive data or descriptors or both through a connected or unconnected

socket.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

socket_descriptor

(Input) The socket descriptor that is to be read from.

message_structure

(I/O) The pointer to the message structure that contains the following:

v The address from which the message was received

v The vector array in which the data received is stored

v The ancillary data/access rights list in which the received descriptors are stored

The structure pointed to by the message_structure parameter is defined in <sys/socket.h>.

 The BSD 4.3 structure is:

 struct msghdr {

 caddr_t msg_name;

 int msg_namelen;

 struct iovec *msg_iov;

 int msg_iovlen;

 caddr_t msg_accrights;

 int msg_accrightslen;

 };

The BSD 4.4/UNIX 98 compatible structure is:

 struct msghdr {

 void *msg_name;

 socklen_t msg_namelen;

 struct iovec *msg_iov;

 int msg_iovlen;

 void *msg_control; /* Set to NULL if not needed */

 socklen_t msg_controllen; /* Set to 0 if not needed */

 int msg_flags;

 };

Sockets APIs 133

_xopen_source.htm
_xopen_source.htm

The msg_name and msg_namelen fields contain the address and address length to which the

message is sent. For further information on the structure of socket addresses, see Sockets

Programming in the iSeries Information Center. If the msg_name field is set to a NULL pointer, the

address information is not returned.

 The msg_iov and msg_iovlen fields are for scatter/gather I/O.

 The BSD 4.3 structure uses the msg_accrights and msg_accrightslen fields to pass descriptors. The

msg_accrights field is a list of zero or more descriptors, and msg_accrightslen is the total length (in

bytes) of the descriptor list.

 The BSD 4.4/UNIX 98 compatible structure uses the msg_control and msg_controllen fields to pass

ancillary data. The msg_control field is a pointer to ancillary data (of length msg_controllen) with

the form:

 struct cmsghdr {

 socklen_t cmsg_len; /* # bytes, including this header */

 int cmsg_level; /* originating protocol */

 int cmsg_type; /* protocol-specific type */

 /* followed by unsigned char cmsg_data[]; */

 };

The cmsg_len field is the total length including this header. cmsg_level is the originating protocol.

cmsg_type is the protocol-specific type.

If ancillary data is not being passed, the msg_control

field must be initalized to NULL and the msg_controllen field must be initialized to 0.

The

following table lists the supported ancillary data types when using the BSD 4.4/UNIX 98

compatible structures.

 Ancillary Data Types That Apply to the Socket Layer (where cmsg_level is SOL_SOCKET):

 cmsg_type cmsg_data

SCM_RIGHTS The rest of the buffer is a list of zero or more descriptors received.

This ancillary data type is only supported for sockets with an address family of AF_UNIX or

AF_UNIX_CCSID.

Macros are provided for navigating these structures.

v CMSG_DATA(cmsg) If the argument is a pointer to a cmsghdr structure, this macro returns an

unsigned character pointer to the data array associated with the cmsghdr structure.

v CMSG_NXTHDR(mhdr,cmsg) If the first argument is a pointer to a msghdr structure and the second

argument is a pointer to a cmsghdr structure in the ancillary data, pointed to by the

msg_control field of that msghdr structure, this macro returns a pointer to the next cmsghdr

structure, or a null pointer if this structure is the last cmsghdr in the ancillary data.

v CMSG_FIRSTHDR(mhdr) If the argument is a pointer to a msghdr structure, this macro returns a

pointer to the first cmsghdr structure in the ancillary data associated with this msghdr structure,

or a null pointer if there is no ancillary data associated with the msghdr structure.

The BSD 4.4/UNIX 98 compatible structure has the msg_flags for message level flags including:

v MSG_TRUNC Message data was truncated

v MSG_CTRUNC Ancillary data was truncated.

v MSG_EOR End of record (if supported by the protocol).

v MSG_OOB Out-of-band data.

flags (Input) A flag value that controls the reception of the data. The flags value is either zero, or is

obtained by performing an OR operation on one or more of the following constants:

134 iSeries: UNIX-Type -- Sockets APIs

MSG_OOB Receive out-of-band data. Valid only for sockets with an address family of AF_INET or AF_INET6

and type SOCK_STREAM.

MSG_PEEK Obtain a copy of the message without removing the message from the socket.

MSG_WAITALL Wait for a full request or an error.

Authorities

v An errno of EACCES is returned when the socket pointed to by the socket_descriptor field is address

family AF_INET and a nonblocking connect was attempted previously and was not successful. The

nonblocking connect was not successful because the thread did not have authority to the associated

APPC device. The thread performing the nonblocking connect must have retrieve, insert, delete, and

update authority to the APPC device.

v If this thread is receiving socket descriptors, it must have *ALLOBJ special authority or must be

running under the same user profile as the thread that sent the descriptors using sendmsg. If both of

these conditions are not true, the descriptors are reclaimed by the machine and an errno of EACCES is

returned.

Return Value

recvmsg() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is the number of bytes received.

Error Conditions

When recvmsg() fails, errno can be set to one of the following:

 [EACCES] Permission denied.

The socket pointed to by the socket_descriptor parameter is using a

connection-oriented transport service, and a connect() was previously completed.

The process, however, does not have the appropriate privileges to the objects

that were needed to establish a connection. For example, the connect() required

the use of an APPC device that the process was not authorized to.

If the msg_accrights and msg_accrightslen fields (or the BSD 4.4/UNIX 98

compatible fields msg_control and msg_controllen) were specified and descriptors

were sent, this error indicates that this job does not have the appropriate

privileges required to receive the descriptor. When this occurs, the descriptor is

reclaimed by the system and the resource that it represented is closed.

[EBADF] Descriptor not valid.

[ECONNABORTED] Connection ended abnormally.

This error code indicates that the transport provider ended the connection

abnormally because of one of the following:

v The retransmission limit has been reached for data that was being sent on the

socket.

v A protocol error was detected.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET] A connection with a remote socket was reset by that socket.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access

the message_structure parameter or a field within the structure pointed to by the

message_structure parameter.

[EINTR] Interrupted function call.

Sockets APIs 135

[EINVAL] Parameter not valid.

This error code indicates one of the following:

v The msg_iovlen field or the iov_len field in a iovec structure specifies a

negative value.

v The flags parameter specifies a value that includes the MSG_OOB flag, but no

OOB data was available to be received.

v The flags parameter specifies a value that includes the MSG_OOB flag, and the

socket option SO_OOBINLINE has been set.

v The socket_descriptor parameter points to a socket that is using a connectionless

transport service, is not a socket of type SOCK_RAW, and is not bound to an

address.

v The msg_accrightslen field in the msghdr structure specifies a negative value or

is not large enough when msg_accrights was specified.

v The msg_controllen field in the msghdr structure specifies a negative value or is

not large enough when msg_control was specified.

[EIO] Input/output error.

[EMFILE] Too many descriptions for this process.

[EMSGSIZE] Message size out of range.

The msg_iovlen field specifies a value that is greater than [MSG_MAXIOVLEN]

(defined in <sys/socket.h>).

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOTCONN] Requested operation requires a connection.

This error code is returned only on sockets that use a connection-oriented

transport service.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EOPNOTSUPP] Operation not supported.

This error code indicates one of the following:

v The flags parameter specifies a value that includes the MSG_OOB flag, but the

socket_descriptor parameter points to a connectionless socket.

v The flags parameter specifies a value that includes the MSG_OOB flag, but the

socket_descriptor parameter points to a socket that does not have an address

family of AF_INET or AF_INET6.

[ETIMEDOUT] A remote host did not respond within the timeout period.

A non-blocking connect() was previously issued that resulted in the connection

establishment timing out. No connection is established. This error code is

returned only on sockets that use a connection-oriented transport service.

[EUNATCH] The protocol required to support the specified address family is not available at

this time.

[EUNKNOWN] Unknown system state.

[EWOULDBLOCK] Operation would have caused the thread to be suspended.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

136 iSeries: UNIX-Type -- Sockets APIs

Usage Notes

1. The following applies to sockets that use a connection-oriented transport service (for example, sockets

with a type of SOCK_STREAM),

v The msg_name and msg_namelen fields in the structure pointed to by the message_structure parameter

are ignored.

v A returned value of zero indicates one of the following:

– The partner program has issued a close() for the socket.

– The partner program has issued a shutdown() to disable writing to the socket.

– The connection is broken and the error was returned on a previously issued socket function.

– A shutdown() to disable reading was previously done on the socket.
2. The following applies to sockets that use a connectionless transport service (for example, a socket

with a type of SOCK_DGRAM):

v If a connect() has been issued previously, then data can be received only from the address specified

in the previous connect().

v If the msg_name field is set to NULL or msg_namelen field specifies a value of zero, the address from

which data is received is discarded.

v If the length of the address to be returned exceeds the length specified by the msg_namelen field, the

returned address is truncated.

v If the socket is using an address family of AF_UNIX, the address (which is a path name) is returned

in the default coded character set identifier (CCSID) currently in effect for the job.

v If the socket is using an address family of AF_UNIX_CCSID, the output structure sockaddr_unc

defines the format and coded character set identifier (CCSID) of the address (which is a path

name).

v The entire message must be read in a single read operation. If the size of the message is too large to

fit in the user supplied buffer, the remaining bytes of the message are discarded.

v A returned value of zero indicates one of the following:

– The partner program has sent a NULL message (a datagram with no user data).

– A shutdown() to disable reading was previously done on the socket.

– The buffer length specified was zero.
3. The passing of descriptors is only supported over sockets that have an address family of AF_UNIX or

AF_UNIX_CCSID. The msg_accrightslen and the msg_accrights fields (or the BSD 4.4/UNIX 98 compatible

fields msg_control and msg_controllen) are ignored if the socket has any other address family. The value

of msg_accrightslen (or the BSD 4.4/UNIX 98 compatible field msg_controllen) should be checked to

determine if a descriptor has been returned. When you use sendmsg() and recvmsg() to pass

descriptors, the target job must be running with either of the following:

v The same user profile as the source job (in essence, passing the descriptor to yourself)

v *ALLOBJ special authority

If the target job closes the receiving end of the UNIX domain socket while a descriptor is in transit,

the descriptor is reclaimed by the system, and the resource that it represented is closed. For files and

directories, the ability to pass descriptors using sendmsg() and recvmsg() is only supported for objects

in the Root, QOpenSys, User-defined file systems (UDFS), and Network File System (NFS).

Note: The recvmsg() API will not block unless a data buffer is specified.

4. recvmsg() accepts a pointer to an array of iovec structures in the msghdr structure. The msg_iovlen

field is used to determine the number of elements in the array (the number of iovec structures

specified). When recvmsg() is issued, the system processes the array elements one at a time, starting

with the first structure. For each element of the array (for each structure), iov_len bytes of received

data are placed in storage pointed to by iov_base. Data is placed in storage until all buffers are full, or

Sockets APIs 137

until there is no more data to receive. Only the memory pointed to by iov_base is updated. No change

is made to the iov_len fields. To determine the end of the data, the application program must use the

following:

v The function return value (the total number of bytes received).

v The lengths of the buffers pointed to by iov_base.
5. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the recvmsg() API is mapped to qso_recvmsg98().
6.

If this function is called by a thread executing one of the scan-related exit programs (or any of its

created threads), it will fail with error code [ENOTSUP]. See Integrated File System Scan on Open Exit

Programs and Integrated File System Scan on Close Exit Programs for more information.

7.

When the descriptor is obtained using recvmsg(), any information accessed using that descriptor

with the various read and write interfaces will be in binary, even if the original descriptor’s accesses

would have had text conversions occur. See Using CCSIDs and code pages in the open—Open file

documentation for more information on text conversion.

Related Information

v For additional information and sample programs on how to use sendmsg() and recvmsg() to pass

descriptors between system jobs, see Sockets Programming in the iSeries Information Center.

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “fcntl()—Perform File Control Command” on page 31—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 69—Perform I/O Control Request

v “givedescriptor()—Pass Descriptor Access to Another Job” on page 67—Pass Descriptor Access to

Another Job

v “recv()—Receive Data” on page 124—Receive Data

v “recvfrom()—Receive Data” on page 128—Receive Data

v “takedescriptor()—Receive Socket Access from Another Job” on page 193—Receive Descriptor Access

from Another Job

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

138 iSeries: UNIX-Type -- Sockets APIs

ifsopenexit.htm
ifsopenexit.htm
ifscloseexit.htm
open.htm#HDRIFSCCSD
open.htm
_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

rexec()—Issue a Command on a Remote Host

 Syntax

 #include <arpa/rexec.h>

 int rexec(char **host,

 int port,

 char *user,

 char *password,

 char *command,

 int *errorDescriptor);

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The rexec() function is used to open a connection to a remote host and send a user ID, password, and

command to the remote host. The remote host verifies that the user ID and password are valid. The

command is issued after the user ID and password are validated.

Parameters

host (Input)

A pointer to a character string that identifies the name of a remote host.

port (Input)

The well-known Internet port to use for the connection. A pointer to the structure containing the

necessary port can be obtained by issuing the following call:

 getservbyname("exec", "tcp");

The port returned by getservbyname() is the port on which the remote host is listening for incoming

rexec() connections.

user (Input)

A character string that identifies a valid user on the remote host.

password (Input)

A character string that identifies the password for the user on the remote host. Specify a value of

NULL if password security is not active on the remote host.

command (Input)

A character string that identifies the command to be issued on the remote host.

errorDescriptor (Input/Output)

One of the following values:

 non-NULL A second connection is set up and that a descriptor for it is placed in the errorDescriptor parameter.

This connection provides standard error results of the remote command. This information also

includes remote authorization failure if rexec() is unsuccessful.

NULL The standard error results of the remote command are the same as the standard output return

value.

Sockets APIs 139

Return Value

rexec() returns an integer. Possible values are:

Non-negative

(successful) A socket to the remote command is returned and can be used to receive results of

running the command on the remote host.

v If errorDescriptor is non-NULL, standard error results of running the command on the remote

host can be received by using the errorDescriptor.

v If errorDescriptor is NULL, standard error results of running the command on the remote host

can be received with the standard output results by using the return value from rexec().

[-1] (unsuccessful) Refer to errno for a description of the failure.

v If errno is 0 and errorDescriptor is NULL, the host does not exist or remote authorization

failed.

v If errno is 0 and errorDescriptor is -1, the host does not exist.

v If errno is 0 and errorDescriptor is non-negative, remote authorization failed.

Authorities

No authorization is required.

Error Conditions

When the rexec() API fails, errno can be set to one of following:

 [ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

This error occurs when the rexec server on the remote system is not active.

[ECONNRESET] A connection with a remote socket was reset by that socket.

[EFAULT] Bad address.

System detected an address which was not valid while attempting to access the

address parameters.

[EHOSTUNREACH] A route to the remote host is not available.

[EINTR] Interrupted function call.

[EINVAL] Parameter not valid.

[EMFILE] Too many descriptors for this process.

[ENFILE] Too many descriptors in system.

[EPIPE] Broken pipe.

[ETIMEDOUT] A remote host did not respond within the timeout period.

This error code is returned when connection establishment times out. No

connection is established. A possible cause may be that the partner application is

bound, but the partner application has not yet issued a listen().

[EUNATCH] The protocol required to support address family AF_INET, is not available at this

time.

[EUNKNOWN] Unknown system state.

Usage Notes

v The password does not get encrypted while sent to the rexec server.

v Any results of the command received by the caller of rexec() are not converted from CCSID 819.

Conversion from ASCII ccsid 819 to the CCSID of the process or thread is the caller’s responsibility.

140 iSeries: UNIX-Type -- Sockets APIs

v If a remote authorization failure occurs, the return value will be -1 and if errorDescriptor is non-null a

message indicating the authorization failure can be received with the socket descriptor from

errorDescriptor.

v Any socket descriptor returned to the caller of rexec() must be explicitly closed by the caller.

v The user, password, and command will be translated from the job ccsid to ASCII ccsid 819 to be sent to

the remote host.

v Issuing rexec() to a remote host that is configured to set up a SOCKSified connection is not supported.

Related Information

v “rexec_r()—Issue a Command on a Remote Host” on page 142—Issue a Command on a Remote Host

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how rexec() is used:

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <qtqiconv.h>

#include <arpa/rexec.h>

#include <errno.h>

#define BufLen 256

void main()

{

 int sd = -1, rc;

 int responseLen = BufLen;

 int outbytesleft = BufLen;

 int bytesRead, saveBytesRead;

 struct servent serv_ent;

 struct servent_data serv_ent_data;

 char inbuf[BufLen];

 char outbuf[BufLen];

 char *inbufPtr = (char *)inbuf;

 char *outbufPtr = (char *)outbuf;

 iconv_t cd;

 QtqCode_T toCode = {0,0,0,0,0,0}; /* Convert to job CCSID */

 QtqCode_T fromCode = {819,0,0,1,0,0}; /* ASCII CCSID */

 char *host;

 char remoteHost[256] = "remoteHost";

 char user[32] = "userName";

 char password[32] = "myPassword";

 char cmd[256] = "commandToRun";

 int *errordesc = NULL;

 /* Must zero this out before call or results will be unpredictable. */

 memset(&serv_ent_data.serve_control_blk, 0x00, sizeof(struct netdb_control_block));

 /* retrieve the rexec server port number */

 rc = getservbyname_r("exec", "tcp", &serv_ent, &serv_ent_data);

 if (rc < 0)

 printf("getservbyname_r() failed with errno = %d\n",errno);

 host = remoteHost;

 errno = 0;

 /* Issue the rexec API */

 sd = rexec(&host, serv_ent.s_port, user, password, cmd, errordesc);

 if (sd == -1) /* check if rexec() failed */

 {

Sockets APIs 141

aboutapis.htm#CODEDISCLAIMER

if (errno)

 printf("rexec() failed with errno = %d\n",errno);

 else

 printf("Either the host does not exist or remote authentication failed.\n");

 }

 else /* rexec() was successful */

 {

 bytesRead = recv(sd, inbuf, responseLen, 0);

 if (bytesRead > 0)

 {

 saveBytesRead = bytesRead;

 inbuf[bytesRead-1] = 0; /* Null terminate */

 /* translate from ASCII to EBCDIC */

 cd = QtqIconvOpen(&toCode, &fromCode);

 iconv(cd,

 (unsigned char **)&inbufPtr,

 (unsigned int *)&bytesRead,

 (unsigned char **)&outbufPtr,

 (unsigned int *)&outbytesleft);

 iconv_close(cd);

 outbufPtr -= saveBytesRead; /* Reset the buffer pointers */

 printf("%s\n",outbufPtr);

 }

 else if (bytesRead == 0)

 printf("The remote host closed the connection.\n");

 else

 printf("recv() failed with errno = %d\n",errno);

 }

 if (sd != -1)

 close(sd); /* close the connection. */

 return;

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

rexec_r()—Issue a Command on a Remote Host

 Syntax

 #include <arpa/rexec.h>

 int rexec_r(char **host,

 int port,

 char *user,

 char *password,

 char *command,

 int *errorDescriptor,

 struct hostent_data *hostEntData);

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The rexec_r() function is used to open a connection to a remote host and send a user ID, password, and

command to the remote host. The remote host verifies that the user ID and password are valid. The

command will be issued after the user ID and password are validated.

142 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

host (Input)

A pointer to a character string that identifies the name of a remote host.

port (Input)

The well-known Internet port to use for the connection. A pointer to the structure that contains

the necessary port can be obtained by issuing the following call:

 struct servent servEnt;

 struct servent_data servEntData;

 memset(&servEntData.serve_control_blk, 0x00, sizeof(struct netdb_control_block));

 getservbyname_r("exec", "tcp", &servEnt, &servEntData);

The port returned by getservbyname_r() is the port that the remote host is listening on for incoming

rexec_r() connections.

user (Input)

A character string that identifies a valid user on the remote host.

password (Input)

A character string that identifies the password for the user on the remote host. Specify a value of

NULL if password security is not active on the remote host.

command (Input)

A character string that identifies the command to be issued on the remote host.

errorDescriptor (Input/Output)

One of the following values:

 non-NULL A second connection is set up, and a descriptor for it is placed in the errorDescriptor parameter.

This connection provides standard error results of the remote command. This information will also

include remote authorization failure if rexec() is unsuccessful.

NULL The standard error results of the remote command is the same as the standard output return value.

hostEntData (Input/Output)

A pointer to the hostent_data structure, which is used to pass and preserve results between

function calls. rexec_r() performs a gethostbyname_r() and each thread needs its own host data. The

field host_control_block in the hostent_data structure must be initialized to hexadecimal zeros before

its initial use. If compatibility with other platforms is required, then the entire hostent_data

structure must be initialized to hexadecimal zeros before its initial use. The hostent_data structure

is defined in <netdb.h>>.

Return Value

rexec_r() returns an integer. Possible values are:

Non-negative

(successful) A socket to the remote command is returned and can be used to receive results of

running the command on the remote host.

v If errorDescriptor is non-NULL, standard error results of running the command on the remote

host can be received by using the errorDescriptor.

v If errorDescriptor is NULL, standard error results of running the command on the remote host

can be received along with the standard output results by using the return value from

rexec_r().

[-1] (unsuccessful) Refer to errno for a description of the failure.

v If errno is 0 and errorDescriptor is NULL, the host does not exist or remote authorization

failed.

Sockets APIs 143

v If errno is 0 and errorDescriptor is -1, the host does not exist.

v If errno is 0 and errorDescriptor is Non-negative, remote authorization failed.

Authorities

No authorization is required.

Error Conditions

When the rexec_r() API fails, errno can be set to one of following:

 [ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

This error occurs when the rexec server on the remote system is not active.

[ECONNRESET] A connection with a remote socket was reset by that socket.

[EFAULT] Bad address.

System detected an address which was not valid while attempting to access the

address parameters.

[EHOSTUNREACH] A route to the remote host is not available.

[EINTR] Interrupted function call.

[EINVAL] Parameter not valid.

This error code occurs when the hostEntData structure has not been initialized to

hexadecimal zeros. For corrective action, see the description for structure

hostent_data.

[EMFILE] Too many descriptors for this process.

[ENFILE] Too many descriptors in system.

[EPIPE] Broken pipe.

[ETIMEDOUT] A remote host did not respond within the timeout period.

This error code is returned when connection establishment times out. No

connection is established. A possible cause may be that the partner application is

bound, but the partner application has not yet issued a listen().

[EUNATCH] The protocol required to support address family AF_INET, is not available at this

time.

[EUNKNOWN] Unknown system state.

Usage Notes

v The password does not get encrypted while sent to the rexec server.

v Any results of the command received by the caller of rexec_r() are not converted from CCSID 819.

Conversion from ASCII ccsid 819 to the CCSID of the process or thread is the caller’s responsibility.

v If a remote authorization failure occurs, the return value will be -1 and if errorDescriptor is non-null a

message indicating the authorization failure can be received with the socket descriptor from

errorDescriptor.

v Any socket descriptor returned to the caller of rexec_r() must be explicitly closed by the caller.

v The user, password, and command will be translated from the job ccsid to ASCII ccsid 819 to be sent to

the remote host.

v Issuing rexec_r() to a remote host that is configured to set up a SOCKSified connection is not

supported.

Related Information

v “rexec()—Issue a Command on a Remote Host” on page 139—Issue a Command on a Remote Host

144 iSeries: UNIX-Type -- Sockets APIs

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how rexec_r() is used:

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <qtqiconv.h>

#include <arpa/rexec.h>

#include <errno.h>

#define BufLen 256

void main()

{

 int sd = -1, rc;

 int responseLen = BufLen;

 int outbytesleft = BufLen;

 int bytesRead, saveBytesRead;

 struct hostent_data host_ent_data;

 struct servent serv_ent;

 struct servent_data serv_ent_data;

 char inbuf[BufLen];

 char outbuf[BufLen];

 char *inbufPtr = (char *)inbuf;

 char *outbufPtr = (char *)outbuf;

 iconv_t cd;

 QtqCode_T toCode = {0,0,0,0,0,0}; /* Convert to job CCSID */

 QtqCode_T fromCode = {819,0,0,1,0,0}; /* ASCII CCSID */

 char *host;

 char remoteHost[256] = "remoteHost";

 char user[32] = "userName";

 char password[32] = "myPassword";

 char cmd[256] = "commandToRun";

 int *errordesc = NULL;

 /* Must zero this out before call or results will be unpredictable. */

 memset(&serv_ent_data.serve_control_blk, 0x00, sizeof(struct netdb_control_block));

 /* retrieve the rexec server port number */

 rc = getservbyname_r("exec", "tcp", &serv_ent, &serv_ent_data);

 if (rc < 0)

 printf("getservbyname_r() failed with errno = %d\n",errno);

 /* must zero this out before call or results will be unpredictable. */

 memset((void *)&host_ent_data.host_control_blk, 0x00, sizeof(struct netdb_control_block));

 host = remoteHost;

 errno = 0;

 /* issue the rexec_r api */

 sd = rexec_r(&host, serv_ent.s_port, user, password, cmd, errordesc, &host_ent_data);

 if (sd == -1) /* check if rexec_r() failed */

 {

 if (errno)

 printf("rexec_r() failed with errno = %d\n",errno);

 else

 printf("Either the host does not exist or remote authentication failed.\n");

 }

 else /* rexec_r() was successful */

 {

 bytesRead = recv(sd, inbuf, responseLen, 0);

 if (bytesRead > 0)

 {

 saveBytesRead = bytesRead;

Sockets APIs 145

aboutapis.htm#CODEDISCLAIMER

inbuf[bytesRead-1] = 0; /* Null terminate */

 /* translate from ASCII to EBCDIC */

 cd = QtqIconvOpen(&toCode, &fromCode);

 iconv(cd,

 (unsigned char **)&inbufPtr,

 (unsigned int *)&bytesRead,

 (unsigned char **)&outbufPtr,

 (unsigned int *)&outbytesleft);

 iconv_close(cd);

 outbufPtr -= saveBytesRead; /* Reset the buffer pointers */

 printf("%s\n",outbufPtr);

 }

 else if (bytesRead == 0)

 printf("The remote host closed the connection.\n");

 else

 printf("recv() failed with errno = %d\n",errno);

 }

 if (sd != -1)

 close(sd); /* close the connection. */

 return;

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

rexec_r_ts64()—Issue a Command on a Remote Host

 Syntax

 #include <arpa/rexec.h>

 int rexec_r_ts64(char * __ptr64 * __ptr64 host,

 int port,

 char * __ptr64 user,

 char * __ptr64 password,

 char * __ptr64 command,

 int * __ptr64 errorDescriptor,

 struct hostent_data * __ptr64hostEntData);

 Service Program Name: QSOSRVTS

 Default Public Authority: *USE

 Threadsafe: Yes

The rexec_r_ts64() function is used to open a connection to a remote host and send a user ID, password,

and command to the remote host. The remote host verifies that the user ID and password are valid. The

command is issued after the user ID and password are validated. rexec_r_ts64() differs from rexec_r() in

that rexec_r_ts64() accepts 8-byte teraspace pointers.

For a discussion of the parameters, authorities required, return values, and other related information, see

“rexec_r()—Issue a Command on a Remote Host” on page 142.

Usage Notes

All of the usage notes for “rexec_r()—Issue a Command on a Remote Host” on page 142 apply to

rexec_r_ts64().

146 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

rexec_ts64()—Issue a Command on a Remote Host

 Syntax

 #include <arpa/rexec.h>

 int rexec_ts64(char * __ptr64 * __ptr64 host,

 int port,

 char * __ptr64 user,

 char * __ptr64 password,

 char * __ptr64 command,

 int * __ptr64 errorDescriptor);

 Service Program Name: QSOSRVTS

 Default Public Authority: *USE

 Threadsafe: Yes

The rexec_ts64() function is used to open a connection to a remote host and send a user ID, password,

and command to the remote host. The remote host verifies that the user ID and password are valid. The

command is issued after the user ID and password are validated. rexec_ts64() differs from rexec() in that

rexec_ts64() accepts 8-byte teraspace pointers.

For a discussion of the parameters, authorities required, return values, and other related information, see

“rexec()—Issue a Command on a Remote Host” on page 139.

Usage Notes

All of the usage notes for “rexec()—Issue a Command on a Remote Host” on page 139 apply to

rexec_ts64().

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 147

#TOP_OF_PAGE
unix.htm
aplist.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

select()—Wait for Events on Multiple Sockets

 Syntax

 #include <sys/types.h>

 #include <sys/time.h>

 int select(int max_descriptor,

 fd_set *read_set,

 fd_set *write_set,

 fd_set *exception_set,

 struct timeval *wait_time)

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 150.

The select() function is used to enable an application to multiplex I/O. By using select(), an application

with multiple interactive I/O sources avoids blocking on one I/O stream while the other stream is ready.

Thus, for example, an application that receives inputs from two distinct communication endpoints (using

sockets) can use select() to sleep until input is available from either of the sources. When input is

available, the application wakes up and receives an indication as to which descriptor is ready for reading.

The application identifies descriptors to be checked for read, write, and exception status and specifies a

timeout value. If any of the specified descriptors is ready for the specified event (read, write, or

exception), select() returns, indicating which descriptors are ready. Otherwise, the process waits until one

of the specified events occur or the wait times out.

Parameters

max_descriptor

(Input) Descriptors are numbered starting at zero, so the max_descriptor parameter must specify a

value that is one greater than the largest descriptor number that is to be tested.

read_set

(I/O) A pointer to a set of descriptors that should be checked to see if they are ready for reading.

This parameter is a value-result field. Each descriptor to be tested should be added to the set by

issuing a FD_SET() macro. If no descriptor is to be tested for reading, read_set should be NULL

(or point to an empty set). On return from the call, only those descriptors that are ready to be

read are in the set. FD_ISSET() should be used to test for membership of a descriptor in the set.

write_set

(I/O) A pointer to a set of descriptors that should be checked to see if they are ready for writing.

This parameter is a value-result field. Each descriptor to be tested should be added to the set by

issuing a FD_SET() macro. If no descriptor is to be tested for writing, write_set should be NULL

(or point to an empty set). On return from the call, only those descriptors that are ready to be

written are in the set. FD_ISSET() should be used to test for membership of a descriptor in the

set.

exception_set

(I/O) A pointer to a set of descriptors that should be checked for pending exception events. This

parameter is a value-result field. Each descriptor to be tested should be added to the set by

issuing a FD_SET() macro. If no descriptor is to be tested for exceptions, exception_set should be

148 iSeries: UNIX-Type -- Sockets APIs

NULL (or point to an empty set). On return from the call, only those descriptors that have an

exception event are in the set. FD_ISSET() should be used to test for membership of a descriptor

in the set.

wait_time

(Input) A pointer to a structure which specifies the maximum time to wait for at least one of the

selection criteria to be met. A time to wait of 0 is allowed; this returns immediately with the

current status of the sockets. The parameter may be specified even if NO descriptors are specified

(select() is being used as a timer). If wait_time is NULL, select() blocks indefinitely. The structure

pointed to by the wait_time parameter is defined in <sys/time.h>.

Authorities

No authorization is required.

Return Value

select() returns an integer. Possible values are:

v -1 (unsuccessful)

v 0 (if the time limit expires)

v n (total number of descriptors in all sets that met selection criteria)

Note: The timeval structure (pointed to by wait_time) is unchanged.

Error Conditions

When select() fails, errno can be set to one of the following:

 [EBADF] Descriptor not valid.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the read_set,

write_set, exception_set, or wait_time parameter.

[EINTR] Interrupted function call.

[EINVAL] Parameter not valid.

This error code indicates one of the following:

v The max_descriptor parameter specifies a negative value or a value greater than [FD_SETSIZE].

v The wait_time parameter specifies a time value which was not valid.

[EIO] Input/output error.

[ENOTSUP] Operation not supported.

The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EUNKNOWN] Unknown system state.

Error Messages

 CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred.

Sockets APIs 149

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. An application program must include the header file <sys/types.h> to use select(). The header file

contains the type and macro definitions needed to use select(). The maximum number of descriptors

that can be selected is defined by FD_SETSIZE. The following macros can be used to manipulate

descriptor sets:

v FD_ZERO(fd_set *p) removes all descriptors from the set specified by p.

v FD_CLR(int n, fd_set *p) removes descriptor n from the set specified by p.

v FD_SET(int n, fd_set *p) adds descriptor n to the set specified by p.

v FD_ISSET(int n, fd_set *p) returns a nonzero value if descriptor n is returned in the set specified by

p; otherwise, a zero value is returned.

Note: Values of type fd_set should only be manipulated by the macros supplied in the <sys/types.h>

header file.

3. A descriptor can be returned in the set specified by read_set to indicate one of the following:

v An error event exists on the descriptor.

v A connection request is pending on a socket descriptor. This technique can be used to wait for

connections on multiple socket descriptors. When a listening socket is returned in the set specified

by read_set, an application can then issue an accept() call to accept the connection.

v No data can be read from the underlying instance represented by the descriptor. For example, a

socket descriptor for which a shutdown() call has been done to disable the reception of data.
4. A descriptor can be returned in the set specified by write_set to indicate one of the following:

v Completion of a non-blocking connect() call on a socket descriptor. This allows an application to set

a socket descriptor to nonblocking (with fcntl() or ioctl()), issue a connect() and receive

[EINPROGRESS], and then use select() to verify that the connection has completed.

v No data can be written to the underlying instance represented by the descriptor (for example, a

socket descriptor for which a shutdown() has been done to disable the sending of data).

v When a write() can be successfully issued without blocking (or, for nonblocking, so it does not

return [EWOULDBLOCK]).
5. A socket descriptor is returned in the set specified by exception_set to indicate that out-of-band data

has arrived at the socket. This is only supported for connection-oriented sockets with an address

family of AF_INET or AF_INET6.

6.

Unpredictable results will appear if this function or any of its associated type and macro

definitions are used in a thread executing one of the scan-related exit programs (or any of its’ created

threads). See Integrated File System Scan on Open Exit Programs and Integrated File System Scan on

Close Exit Programs for more information.

150 iSeries: UNIX-Type -- Sockets APIs

ifsopenexit.htm
ifscloseexit.htm
ifscloseexit.htm

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

send()—Send Data

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int send(int socket_descriptor,

 char *buffer,

 int buffer_length,

 int flags)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

 ssize_t send(int socket_descriptor,

 const void *buffer,

 size_t buffer_length,

 int flags)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The send() function is used to send data through a connected socket.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

socket_descriptor

(Input) The socket descriptor that is to be written to.

buffer (Input) The pointer to the buffer in which the data that is to be written is stored.

buffer_length

(Input) The length of the buffer.

flags (Input) A flag value that controls the transmission of the data. The flags value is either zero, or is

obtained by performing an OR operation on the following constants:

Sockets APIs 151

#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm
_xopen_source.htm

MSG_EOR Terminate a record, if supported by the protocol.

MSG_OOB Send data as out-of-band data. Valid only for sockets with an address family of AF_INET or

AF_INET6 and type SOCK_STREAM.

MSG_DONTROUTE Bypass routing. Valid only for sockets with address family of AF_INET. It is ignored for other

address families.

Authorities

No authorization is required.

Return Value

send() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is the number of bytes sent.

Error Conditions

When send() fails, errno can be set to one of the following:

 [EACCES] Permission denied.

This error code indicates one of the following:

v Destination address specified a broadcast address and the socket option

SO_BROADCAST was not set (with a setsockopt()).

v The process does not have the appropriate privileges to the destination

address. This error code can only be returned on a socket with a type of

SOCK_DGRAM and an address family of AF_INET.

[EBADF] Descriptor not valid.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

This error code can only be returned on sockets that use a connectionless

transport service.

[EDESTADDRREQ] Operation requires destination address.

A destination address has not been associated with the socket pointed to by the

socket_descriptor parameter. This error code can only be returned on sockets that

use a connectionless transport service.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access

the buffer parameter.

[EHOSTDOWN] A remote host is not available.

This error code can only be returned on sockets that use a connectionless

transport service.

[EHOSTUNREACH] A route to the remote host is not available.

This error code can only be returned on sockets that use a connectionless

transport service.

[EINTR] Interrupted function call.

[EINVAL] Parameter not valid.

The buffer_length parameter specifies a negative value.

[EIO] Input/output error.

152 iSeries: UNIX-Type -- Sockets APIs

[EMSGSIZE] Message size out of range.

The data to be sent could not be sent atomically because the size specified by

buffer_length is too large.

[ENETDOWN] The network is not currently available.

This error code can only be returned on sockets that use a connectionless

transport service.

[ENETUNREACH] Cannot reach the destination network.

This error code can only be returned on sockets that use a connectionless

transport service.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOTCONN] Requested operation requires a connection.

This error code can only be returned on sockets that use a connection-oriented

transport service.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EOPNOTSUPP] Operation not supported.

This error code indicates one of the following:

v The flags parameter specifies a value that includes the MSG_OOB flag, but the

socket_descriptor parameter points to a connectionless socket.

v The flags parameter specifies a value that includes the MSG_OOB flag, but the

socket_descriptor parameter points to a socket that does not have an address

family of AF_INET or AF_INET6.

[EPIPE] Broken pipe.

[EUNATCH] The protocol required to support the specified address family is not available at

this time.

[EUNKNOWN] Unknown system state.

[EWOULDBLOCK] Operation would have caused the thread to be suspended.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. send() only works with sockets on which a connect() has been issued, since it does not allow the caller

to specify a destination address.

2. To broadcast on an AF_INET socket, the socket option SO_BROADCAST must be set (with a setsockopt()).

3. When using a connection-oriented transport service, all errors except [EUNATCH] and [EUNKNOWN] are

mapped to [EPIPE] on an output operation when either of the following occurs:

v A connection that is in progress is unsuccessful.

v An established connection is broken.

To get the actual error, use getsockopt() with the SO_ERROR option, or perform an input operation (for

example, read()).

Sockets APIs 153

4. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the send() API is mapped to qso_send98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “fcntl()—Perform File Control Command” on page 31—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 69—Perform I/O Control Request

v “sendto()—Send Data” on page 161—Send Data

v “sendmsg()—Send a Message Over a Socket”—Send Data or Descriptors or Both

v “write()—Write to Descriptor” on page 195—Write to Descriptor

v “writev()—Write to Descriptor Using Multiple Buffers” on page 205—Write to Descriptor Using

Multiple Buffers

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

sendmsg()—Send a Message Over a Socket

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int sendmsg(int socket_descriptor,

 struct msghdr *message_structure,

 int flags)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

 ssize_t sendmsg(int socket_descriptor,

 const struct msghdr *message_structure,

 int flags)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The sendmsg() function is used to send data or descriptors or

ancillary data or a combination of these

through a connected or unconnected socket.

154 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

socket_descriptor

(Input) The socket descriptor that is to be written to.

message_structure

(I/O) The pointer to the message structure that contains the following:

v The address to which the message is to be sent

v The vector array in which the data to be sent is stored

v The ancillary data; or an access rights list in which the descriptors to be sent are stored.

The structure pointed to by the message_structure parameter is defined in <sys/socket.h>.

 The BSD 4.3 structure is:

 struct msghdr {

 caddr_t msg_name;

 int msg_namelen;

 struct iovec *msg_iov;

 int msg_iovlen;

 caddr_t msg_accrights;

 int msg_accrightslen;

 };

The BSD 4.4/UNIX 98 compatible structure is:

 struct msghdr {

 void *msg_name;

 socklen_t msg_namelen;

 struct iovec *msg_iov;

 int msg_iovlen;

 void *msg_control; /* Set to NULL if not needed */

 socklen_t msg_controllen; /* Set to 0 if not needed */

 int msg_flags;

 };

The msg_name and msg_namelen fields contain the address and address length to which the

message is sent. For further information on the structure of socket addresses, see Sockets

Programming in the iSeries Information Center. If the msg_name field is set to a NULL pointer, the

address information is not returned.

 The msg_iov and msg_iovlen fields are for scatter/gather I/O.

 The BSD 4.3 structure uses the msg_accrights and msg_accrightslen fields to pass descriptors. The

msg_accrights field is a list of zero or more descriptors, and msg_accrightslen is the total length (in

bytes) of the descriptor list.

 The BSD 4.4/UNIX 98 compatible structure uses the msg_control and msg_controllen fields to pass

ancillary data. The msg_control field is a pointer to ancillary data (of length msg_controllen) with

the form:

 struct cmsghdr {

 socklen_t cmsg_len; /* # bytes, including this header */

 int cmsg_level; /* originating protocol */

 int cmsg_type; /* protocol-specific type */

 /* followed by unsigned char cmsg_data[]; */

 };

Sockets APIs 155

_xopen_source.htm

The cmsg_len field is the total length including this header. cmsg_level is the originating protocol.

cmsg_type is the protocol-specific type.

If ancillary data is not being passed, the msg_control

field must be initalized to NULL and the msg_controllen field must be initialized to 0.

The

following tables list the supported ancillary data types when using the BSD 4.4/UNIX 98

compatible structures.

 Ancillary Data Types That Apply to the Socket Layer (where cmsg_level is SOL_SOCKET):

 cmsg_type cmsg_data

SCM_RIGHTS The rest of the buffer is a list of zero or more descriptors to be sent.

This ancillary data type is only supported for sockets with an address family of AF_UNIX or

AF_UNIX_CCSID.

Ancillary Data Types That Apply to the IP Layer (where cmsg_level is IPPROTO_IP):

 cmsg_type cmsg_data

IP_QOS_CLASSIFICATION_DATA The rest of the buffer is an ip_qos_classification_data structure. This structure is defined

in <netinet/ip.h>. For further information on the how this structure should be

initialized, see Quality of Service in the iSeries Information Center.

This ancillary data type is only supported for sockets with an address family of

AF_INET and a type of SOCK_STREAM.

 Macros are provided for navigating these structures.

v CMSG_DATA(cmsg) If the argument is a pointer to a cmsghdr structure, this macro returns an

unsigned character pointer to the data array associated with the cmsghdr structure.

v CMSG_NXTHDR(mhdr,cmsg) If the first argument is a pointer to a msghdr structure and the second

argument is a pointer to a cmsghdr structure in the ancillary data, pointed to by the

msg_control field of that msghdr structure, this macro returns a pointer to the next cmsghdr

structure, or a null pointer if this structure is the last cmsghdr in the ancillary data.

v CMSG_FIRSTHDR(mhdr) If the argument is a pointer to a msghdr structure, this macro returns a

pointer to the first cmsghdr structure in the ancillary data associated with this msghdr structure,

or a null pointer if there is no ancillary data associated with the msghdr structure.

The BSD 4.4/UNIX 98 msg_flags field is ignored for sendmsg().

flags (Input) A flag value that controls the transmission of the data. The flags value is either zero, or is

obtained by performing an OR operation on one or more of the following constants:

 MSG_EOR Terminate a record, if supported by the protocol.

MSG_OOB Send data as out-of-band data. Valid only for sockets with an address family of AF_INET or

AF_INET6 and type SOCK_STREAM.

MSG_DONTROUTE Bypass routing. Valid only for sockets with address family of AF_INET. It is ignored for other

address families.

Authorities

When the address family of the socket identified by the socket_descriptor is AF_INET and is running IP

over SNA, the thread must have retrieve, insert, delete, and update authority to the APPC device. When

the thread does not have this level of authority, an errno of EACCES is returned.

Return Value

sendmsg() returns an integer. Possible values are:

v -1 (unsuccessful)

156 iSeries: UNIX-Type -- Sockets APIs

v n (successful), where n is the number of bytes sent.

Error Conditions

When sendmsg() fails, errno can be set to one of the following:

 [EACCES] Permission denied.

The process does not have the appropriate privileges to the destination address.

[EADDRNOTAVAIL] Address not available.

A socket with an address family of AF_INET or AF_INET6 is using a connectionless

transport service, the socket was not bound. The system tried to bind the socket

but could not because a port was not available.

[EBADF] Descriptor not valid.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

This error code can only be returned on sockets that use a connectionless

transport service.

[EDESTADDRREQ] Operation requires destination address.

A destination address has not been associated with the socket pointed to by the

socket_descriptor parameter and a destination address was not set in the msghdr

structure (pointed to by the message_structure parameter). This error code can

only be returned on sockets that use a connectionless transport service.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access

the message_structure parameter or a field within the structure pointed to by the

message_structure parameter.

[EHOSTDOWN] A remote host is not available.

This error code can only be returned on sockets that use a connectionless

transport service.

[EHOSTUNREACH] A route to the remote host is not available.

This error code can only be returned on sockets that use a connectionless

transport service.

[EINTR] Interrupted function call.

Sockets APIs 157

[EINVAL] Parameter not valid.

This error code indicates one of the following:

v The msg_iovlen field or the iov_len field in a iovec structure specifies a

negative value. The fields are contained in the msghdr structure (pointed to by

the message_structure parameter).

v The msg_namelen field in the msghdr structure (pointed to by the

message_structure parameter) specifies a length that is not valid for the address

family.

v The msg_accrightslen field in the msghdr structure specifies a negative value or

is not large enough when msg_accrights was specified.

v The msg_controllen field in the msghdr structure specifies a negative value or is

not large enough when msg_control was specified.

v The socket_descriptor points to a socket with an address family of

AF_UNIX_CCSID, and the CCSID specified in sunc_qlg in the sockaddr_unc

structure (pointed to by local_address) cannot be converted to the current

default CCSID for integrated file system path names.

v The socket_descriptor points to a socket with an address family of

AF_UNIX_CCSID, and there was an incomplete character or shift state sequence

at the end of sunc_path in the sockaddr_unc structure (pointed to by

local_address).

v The socket_descriptor points to a socket with an address family of

AF_UNIX_CCSID, and the sockaddr_unc structure (pointed to by local_address)

was not valid:

– The sunc_format was not set to SO_UNC_DEFAULT or

SO_UNC_USE_QLG.

– The sunc_zero was not initialized to zeros.

– The sunc_format field was set to SO_UNC_USE_QLG and the sunc_qlg

structure was not valid:

- The path type was less than 0 or greater than 3.

- The path length was less than 0 or out of bounds. For example, a

single-byte path name was greater than 126 bytes or a double-byte path

name was greater than 252 bytes.

- A reserved field was not initialized to zeros.

[EIO] Input/output error.

[EISCONN] A connection has already been established.

A destination address was set, but the socket pointed to by the socket_descriptor

parameter already has a destination address associated with it.

[ELOOP] A loop exists in symbolic links encountered during pathname resolution.

This error code refers to the destination address, and can only be returned by

sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

[EMSGSIZE] Message size out of range.

This error code indicates one of the following:

v The data to be sent could not be sent atomically because the total size of the

data to be sent is too large.

v The msg_iovlen field in the msghdr structure (pointed to by the

message_structure parameter) specifies a value that is greater than

[MSG_MAXIOVLEN] (defined in <sys/socket.h>).

158 iSeries: UNIX-Type -- Sockets APIs

[ENAMETOOLONG] File name too long.

This error code refers to the destination address, and can only be returned by

sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

[ENETDOWN] The network is not currently available.

This error code can only be returned on sockets that use a connectionless

transport service.

[ENETUNREACH] Cannot reach the destination network.

This error code can only be returned on sockets that use a connectionless

transport service.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOENT] No such file or directory.

This error code refers to the destination address, and can only be returned by

sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

[ENOSYS] Function not implemented.

This error code refers to the destination address, and can only be returned by

sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

[ENOTCONN] Requested operation requires a connection.

This error code can only be returned on sockets that use a connection-oriented

transport service.

[ENOTDIR] Not a directory.

This error code refers to the destination address, and can only be returned by

sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EOPNOTSUPP] Operation not supported.

This error code indicates one of the following:

v The flags parameter specifies a value that includes the MSG_OOB flag, but the

socket_descriptor parameter points to a connectionless socket.

v The flags parameter specifies a value that includes the MSG_OOB flag, but the

socket_descriptor parameter points to a socket that does not have an address

family of AF_INET or AF_INET6.

v The msg_accrights and msg_accrightslen (or the BSD 4.4/UNIX 98 compatible

fields msg_control and msg_controllen) were specified and the underlying

instance represented by the descriptor does not support the passing of access

rights.

[EPIPE] Broken pipe.

[EUNATCH] The protocol required to support the specified address family is not available at

this time.

[EUNKNOWN] Unknown system state.

[EWOULDBLOCK] Operation would have caused the thread to be suspended.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Sockets APIs 159

Usage Notes

1. The passing of descriptors is only supported over sockets that have an address family of AF_UNIX or

AF_UNIX_CCSID. The msg_accrightslen and the msg_accrights fields (or the BSD 4.4/UNIX 98 compatible

fields msg_control and msg_controllen) are ignored if the socket has any other address family. When

you use sendmsg() and recvmsg() to pass descriptors, the target job must be running with either of the

following:

v The same user profile as the source job (in essence, passing the descriptor to yourself)

v *ALLOBJ special authority

If the target job closes the receiving end of the UNIX domain socket while a descriptor is in transit,

the descriptor is reclaimed by the system, and the resource that it represented is closed. For files and

directories, the ability to pass descriptors using sendmsg() and recvmsg() is only supported for objects

in Root, QOpenSys, User-defined file systems (UDFS), and Network File System (NFS).

2. sendmsg() is an atomic operation in that it produces one packet of data each time the call is issued on

a connectionless socket. For example, a sendmsg() to a datagram socket will result in a single

datagram.

3. A destination address cannot be specified if the socket pointed to by the socket_descriptor parameter

already has a destination address associated with it. To not specify an address, users must set the

msg_name field to NULL or set the msg_namelen field to zero. (Not specifying an address by setting the

msg_namelen field to zero is an IBM extension.)

Note: The msg_name and msg_namelen fields are ignored if the socket is using a connection-oriented

transport service.

4. If the socket is using a connectionless transport device, the socket is not bound to an address, and the

socket type is SOCK_DGRAM, the system automatically selects an address (INADDR_ANY or

in6addr_any and an available port number) and binds it to the socket before sending the data.

5. To broadcast on an AF_INET socket, the socket option SO_BROADCAST must be set (with a setsockopt()).

6. When using a connection-oriented transport service, all errors except [EUNATCH] and [EUNKNOWN] are

mapped to [EPIPE] on an output operation when either of the following occurs:

v A connection that is in progress is unsuccessful.

v An established connection is broken.

To get the actual error, use getsockopt() with the SO_ERROR option, or perform an input operation (for

example, read()).

7. If the socket is using an address family of AF_UNIX, the destination address (which is a path name) is

assumed to be in the default coded character set identifier (CCSID) currently in effect for the job. For

AF_UNIX_CCSID, the destination address is assumed to be in the format and coded character set

identifier (CCSID) specified in the sockaddr_unc.

8. For AF_INET sockets over SNA, type SOCK_DGRAM, if a datagram can not be delivered, no errors are

returned. (As an example, a datagram might not be delivered if there is no datagram application at

the remote host listening at the requested port.)

9. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the sendmsg() API is mapped to qso_sendmsg98().

Related Information

v For additional information and sample programs on how to use sendmsg() and recvmsg() to pass

descriptors between iSeries jobs, see Socket Programming in the iSeries Information Center.

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “fcntl()—Perform File Control Command” on page 31—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 69—Perform I/O Control Request

v “givedescriptor()—Pass Descriptor Access to Another Job” on page 67—Pass Descriptor Access to

Another Job

160 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm

v “send()—Send Data” on page 151—Send Data

v “sendto()—Send Data”—Send Data

v “takedescriptor()—Receive Socket Access from Another Job” on page 193—Receive Socket Access from

Another Job

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

sendto()—Send Data

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int sendto(int socket_descriptor,

 char *buffer,

 int buffer_length,

 int flags,

 struct sockaddr *destination_address,

 int address_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

 ssize_t sendto(int socket_descriptor,

 const void *buffer,

 size_t buffer_length,

 int flags,

 const struct sockaddr *destination_address,

 socklen_t address_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The sendto() function is used to send data through a connected or unconnected socket.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Sockets APIs 161

#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm
_xopen_source.htm

Parameters

socket_descriptor

(Input) The socket descriptor that is to be written to.

buffer (Input) The pointer to the buffer in which the data that is to be written is stored.

buffer_length

(Input) The length of the buffer.

flags (Input) A flag value that controls the transmission of the data. The flags value is either zero, or is

obtained by performing an OR operation on one or more of the following constants:

 MSG_EOR Terminate a record, if supported by the protocol.

MSG_OOB Send data as out-of-band data. Valid only for sockets with an address family of AF_INET or

AF_INET6 and type SOCK_STREAM.

MSG_DONTROUTE Bypass routing. Valid only for sockets with address family of AF_INET. It is ignored for other

address families.

destination_address

(Input) A pointer to a buffer of type struct sockaddr that contains the destination address to

which the data is to be sent. The structure sockaddr is defined in <sys/socket.h>.

 The BSD 4.3 structure is:

 struct sockaddr {

 u_short sa_family;

 char sa_data[14];

 };

The BSD 4.4/UNIX 98 compatible structure is:

 typedef uchar sa_family_t;

 struct sockaddr {

 uint8_t sa_len;

 sa_family_t sa_family;

 char sa_data[14];

 };

The BSD 4.4 sa_len field is the length of the address. The sa_family field identifies the address

family to which the address belongs, and sa_data is the address whose format is dependent on the

address family.

address_length

(Input) The length of the destination_address.

Authorities

When the address family of the socket identified by the socket_descriptor is AF_INET and is running IP

over SNA, the thread must have retrieve, insert, delete, and update authority to the APPC device. When

the thread does not have this level of authority, an errno of EACCES is returned.

Return Value

sendto() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is the number of bytes sent.

Error Conditions

When sendto() fails, errno can be set to one of the following:

162 iSeries: UNIX-Type -- Sockets APIs

[EACCES] Permission denied.

The process does not have the appropriate privileges to the destination address.

[EADDRNOTAVAIL] Address not available.

A socket with an address family of AF_INET or AF_INET6, is using a

connectionless transport service, and the socket was not bound. The system tried

to bind the socket but could not because a port was not available.

[EBADF] Descriptor not valid.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

This error code can only be returned on sockets that use a connectionless

transport service.

[EDESTADDRREQ] Operation requires destination address.

A destination address has not been associated with the socket pointed to by the

socket_descriptor parameter and a destination address was not passed in as an

argument on the sendto(). This error code can only be returned on sockets that

use a connectionless transport service.

[EFAULT] Bad address.

The system detected an address which was not valid while attempting to access

the buffer or destination_address parameter.

[EHOSTDOWN] A remote host is not available.

This error code can only be returned on sockets that use a connectionless

transport service.

[EHOSTUNREACH] A route to the remote host is not available.

This error code can only be returned on sockets that use a connectionless

transport service.

[EINTR] Interrupted function call.

Sockets APIs 163

[EINVAL] Parameter not valid.

This error code indicates one of the following:

v The buffer_length parameter specifies a negative value.

v The socket is using a connectionless transport service and the address_length

parameter specifies a length that is not valid for the address family.

v The socket_descriptor points to a socket with an address family of

AF_UNIX_CCSID, and the CCSID specified in sunc_qlg in the sockaddr_unc

structure (pointed to by local_address) cannot be converted to the current

default CCSID for integrated file system path names.

v The socket_descriptor points to a socket with an address family of

AF_UNIX_CCSID, and there was an incomplete character or shift state sequence

at the end of sunc_path in the sockaddr_unc structure (pointed to by

local_address).

v The socket_descriptor points to a socket with an address family of

AF_UNIX_CCSID, and the sockaddr_unc structure (pointed to by local_address)

was not valid:

– The sunc_format was not set to SO_UNC_DEFAULT or

SO_UNC_USE_QLG.

– The sunc_zero was not initialized to zeros.

– The sunc_format field was set to SO_UNC_USE_QLG and the sunc_qlg

structure was not valid:

- The path type was less than 0 or greater than 3.

- The path length was less than 0 or out of bounds. For example, a

single-byte path name was greater than 126 bytes or a double-byte path

name was greater than 252 bytes.

- A reserved field was not initialized to zeros.

[EIO] Input/output error.

[EISCONN] A connection has already been established.

A destination address was set, but the socket pointed to by the socket_descriptor

parameter already has a destination address associated with it.

[ELOOP] A loop exists in symbolic links encountered during pathname resolution.

This error code refers to the destination address, and can only be returned on

sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

[EMSGSIZE] Message size out of range.

The data to be sent could not be sent atomically because the total size of the data

to be sent is too large.

[ENAMETOOLONG] File name too long.

This error code refers to the destination address, and can only be returned on

sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

[ENETDOWN] The network is not currently available.

This error code can only be returned on sockets that use a connectionless

transport service.

[ENETUNREACH] Cannot reach the destination network.

This error code can only be returned on sockets that use a connectionless

transport service.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOENT] No such file or directory.

This error code refers to the destination address, and can only be returned on

sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

164 iSeries: UNIX-Type -- Sockets APIs

[ENOSYS] Function not implemented.

This error code refers to the destination address, and can only be returned on

sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

[ENOTCONN] Requested operation requires a connection.

This error code can only be returned on sockets that use a connection-oriented

transport service.

[ENOTDIR] Not a directory.

This error code refers to the destination address, and can only be returned on

sockets that use the AF_UNIX or AF_UNIX_CCSID address family.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EOPNOTSUPP] Operation not supported.

This error code indicates one of the following:

v The flags parameter specifies a value that includes the MSG_OOB flag, but the

socket_descriptor parameter points to a connectionless socket.

v The flags parameter specifies a value that includes the MSG_OOB flag, but the

socket_descriptor parameter points to a socket that does not have an address

family of AF_INET or AF_INET6.

[EPIPE] Broken pipe.

[EPROTOTYPE] The socket type or protocols are not compatible.

This error code is only returned on sockets that use the AF_UNIX or the

AF_UNIX_CCSID address family.

[EUNATCH] The protocol required to support the specified address family is not available at

this time.

[EUNKNOWN] Unknown system state.

[EWOULDBLOCK] Operation would have caused the thread to be suspended.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. A destination address cannot be specified if the socket pointed to by the socket_descriptor parameter

already has a destination address associated with it. To not specify an address, users must set the

destination_address field to NULL or set the address_length field to zero. (Not specifying an address by

setting the address_length field to zero is an IBM extension.)

Note: The destination_address and address_length fields are ignored if the socket is using a

connection-oriented transport service.

2. If the socket is using a connectionless transport device, the socket is not bound to an address, and the

socket type is SOCK_DGRAM, the system automatically selects an address (INADDR_ANY or

in6addr_any and an available port number) and binds it to the socket before sending the data.

3. To broadcast on an AF_INET socket, the socket option SO_BROADCAST must be set (with a setsockopt()).

4. When using a connection-oriented transport service, all errors except [EUNATCH] and [EUNKNOWN] are

mapped to [EPIPE] on an output operation when either of the following occurs:

v A connection that is in progress is unsuccessful.

Sockets APIs 165

v An established connection is broken.

To get the actual error, use getsockopt() with the SO_ERROR option, or perform an input operation (for

example, read()).

5. If the socket is using an address family of AF_UNIX, the destination address (which is a path name) is

assumed to be in the default coded character set identifier (CCSID) currently in effect for the job. For

AF_UNIX_CCSID, the destination address is assumed to be in the format and coded character set

identifier (CCSID) specified in the sockaddr_unc.

6. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the sendto() API is mapped to qso_sendto98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “fcntl()—Perform File Control Command” on page 31—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 69—Perform I/O Control Request

v “send()—Send Data” on page 151—Send Data

v “sendmsg()—Send a Message Over a Socket” on page 154—Send Data or Descriptors or Both

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

send_file()—Send a File over a Socket Connection

 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int send_file(int *socket_descriptor,

 struct sf_parms *sf_struct,

 int flags)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 169.

The send_file() function is used to send the contents of an open file over an existing socket connection.

The send_file() API is a combination of the IFS read() and the sockets send() and close() APIs. Socket

applications that transmit a file over a socket connection can, under certain circumstances, obtain

improved performance by using send_file().

Parameters

socket_descriptor

(Input/Output) A pointer to the socket descriptor that is to be written to.

sf_struct

(Input/Output) A pointer to the send_file structure that contains the following:

v The header buffer and length

166 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

v The file descriptor, the offset into the file, the file size, and number of bytes to send from the

file

v The trailer buffer and length

v The number of bytes of data that were sent

The structure pointed to by the sf_struct parameter is defined in <sys/socket.h>.

 struct sf_parms

 {

 void *header_data;

 size_t header_length;

 int file_descriptor;

 size_t file_size;

 off_t file_offset;

 ssize_t file_bytes;

 void *trailer_data;

 size_t trailer_length;

 size_t bytes_sent;

 }

 header_data (Input/Output) A pointer to a buffer that contains data to be sent before the file data is sent.

header_length (Input/Output) The length in bytes of header_data.

file_descriptor (Input) The file descriptor for a file that has been opened for read access. This is the descriptor for

the file that contains the data to be transmitted. This field is ignored if the file_bytes field is set to

0.

file_size (Output) The size in bytes of the file associated with file_descriptor.

file_offset (Input/Output) The byte offset into the file from which to start sending data. Specify a value of 0

to start sending data from the start of the file. If a negative value is passed in, send_file() API will

return with -1 and the errno will be set to EINVAL.

file_bytes (Input/Output) The number of bytes from the file to be transmitted. Set the file_bytes field to -1 to

transmit all of the data from the file_offset position in the file to the end of the file. If the file_bytes

field is set to 0, no data from the file will be transmitted.

trailer_data (Input/Output) A pointer to a buffer that contains data to be sent after the file data is sent.

trailer_length (Input/Output) The length in bytes of trailer_data.

bytes_sent (Output) The number of bytes that have been successfully sent.

flags (Input) A flag value that controls what is done with the socket connection after the data has been

transmitted. The flags value is either zero or it is one of the following constants:

 SF_CLOSE After the header_data, file data, and trailer_data have been successfully sent, the connection and the

socket descriptor are closed. The descriptor that is pointed to by the socket_descriptor parameter is

set to -1 before the send_file() API returns to the application.

SF_REUSE After the header_data, file data, and trailer_data have been successfully sent, the connection is

closed. If socket reuse is supported, the descriptor that is pointed to by the socket_descriptor

parameter is reset. If socket reuse is not supported, the descriptor that is pointed to by the

socket_descriptor parameter is closed and set to -1.

Authorities

No authorization is required.

Return Value

send_file() returns an integer. Possible values are:

v -1 (unsuccessful call) Check errno for additional information

v 0 (successful call) All of the data has been successfully sent

v 1 (interrupted call) The command was interrupted while sending data

Sockets APIs 167

Error Conditions

When send_file() fails, errno can be set to one of the following:

 [EACCES] Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions. A

thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System takes place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EBADF] Descriptor not valid.

This error code indicates one of the following:

v The descriptor pointed to by the socket_descriptor parameter is not a valid socket descriptor.

v The file_descriptor parameter is not valid for this operation. The specified descriptor is incorrect,

does not refer to an open file, or refers to a file that was only open for writing.

[ECONVERT] Conversion error.

[EFAULT] Bad address.

The system detected an address that was not valid while attempting to access the socket_descriptor

or one of the fields in the send_file structure.

[EINTR] Interrupted function call.

[EINVAL] Parameter not valid.

This error code indicates one of the following:

v A NULL pointer was specified for the sf_struct parameter

v The file_offset parameter specified a negative value.

v The file_offset parameter specified a value that was greater than the file size.

v The file_bytes parameter would have resulted in a read operation beyond the end of the file.

v The flags parameter specified a value that was not valid.

[EIO] Input/output error.

[ENOBUFS] There is not enough buffer space for the requested operation.

[ENOTCONN] Requested operation requires a connection.

[ENOTSAFE] Function is not allowed in a job that is running with multiple threads.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EOPNOTSUPP] Operation not supported.

The socket_descriptor parameter references a socket that does not support the send_file() function.

The send_file() function is only valid on sockets that have an address family of AF_INET, AF_INET6,

AF_UNIX, or AF_UNIX_CCSID and a socket type of SOCK_STREAM.

[EOVERFLOW] Object is too large to process.

This error code indicates one of the following:

v The size of the file associated with file_descriptor parameter is greater than 2 GB minus 1 byte.

v The total number of bytes to be sent, header_length + file_bytes + trailer_length, is greater than 4

GB minus 1, the largest value that can be stored in the bytes_sent output field.

[EPIPE] Broken pipe.

[EUNATCH] The protocol required to support the specified address family is not available at this time.

[EUNKNOWN] Unknown system state.

168 iSeries: UNIX-Type -- Sockets APIs

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred.

Usage Notes

1. The send_file() function is only valid on sockets that have an address family of AF_INET, AF_INET6,

AF_UNIX, or AF_UNIX_CCSID and a socket type of SOCK_STREAM. If the descriptor pointed to by the

socket_descriptor parameter does not have the correct address family and socket type, -1 is returned

and the errno value is set to EOPNOTSUPP.

2. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

3. The file_offset parameter is used to specify a base zero location in the file referenced by the

file_descriptor parameter. If the file_bytes parameter is set to a value of 1 and the file_offset parameter is

set to a value of 0, the first byte from the file is sent. If the file_offset parameter is set to a value of 1,

the second byte from the file is sent.

4. An application that uses the send_file() API may specify the O_SHARE_RDONLY or the

O_SHARE_NONE option on the open() call when the file represented by file_descriptor is first opened.

These options prevent other jobs or threads on the system from updating the file while it is being

transmitted.

5. If the O_TEXTDATA option was specified on the open() call when the file represented by file_descriptor

was first opened, the data is sent from the file assuming it is in textual form. The data is converted

from the code page of the file to the code page of the application, job, or system as follows:

v When reading from a true stream file, any line-formatting characters (such as carriage return, tab,

and end-of-file) are just converted from one code page to another.

v When reading from record files that are being used as stream files, end-of-line characters are added

to the end of the data in each record.

If O_TEXTDATA was not specified on the open() call, the data is sent from the file without conversion.

Regardless of whether or not O_TEXTDATA was specified on the open() call, the header_data and

trailer_data are not translated. It is the application’s responsibility to translate the header_data and

trailer_data to the correct code page before calling send_file(). The send_file() function will not translate

the data buffers pointed to by the header_data and trailer_data parameters prior to sending them.

Note: The ability to do code-page translation is an OS/400 specific extension to the send_file() API.

The overhead to translate the file will have an effect on the performance of the send_file() API.

Sockets APIs 169

6. The send_file() function attempts to write header_length from the buffer pointed to by header_data,

followed by file_bytes from the file associated with file_descriptor, followed by trailer_length from the

buffer pointed to by trailer_data, over the connection associated with socket_descriptor. As the data is

sent, the API will update the variables in the sf_parms structure so that if the send_file() API is

interrupted by a signal, the application simply needs to reissue the send_file() call using the same

parameters.

Note: The value that is passed in for the flags parameter is ignored if the send_file() API is interrupted

by a signal.

7. When you develop in C-based languages and this function is compiled with _LARGE_FILES defined,

it will be mapped to send_file64(). Note that the type of the sf_struct parameter, struct sf_parms *,

also will be mapped to type struct sf_parms64 *.

Related Information

v “accept_and_recv()—Wait for Connection Request and Receive the First Message That Was Sent” on

page 8—Wait for Connection Request and Receive the First Message That Was Sent

v “close()—Close File or Socket Descriptor” on page 19—Close File or Socket Descriptor

v open()—Open File

v “send()—Send Data” on page 151—Send Data

 API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

send_file64()—Send a File over a Socket Connection

 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int send_file64(int *socket_descriptor,

 struct sf_parms64 *sf_struct,

 int flags)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 171.

The send_file64() function is used to send the contents of an open file over an existing socket connection.

The send_file64() API is a combination of the IFS read() and the sockets send() and close() APIs. Socket

applications that transmit a file over a socket connection can, under certain circumstances, obtain

improved performance by using send_file64().

send_file64() is enabled for large files. It is capable of operating on files larger than 2 GB minus 1 byte. For

additional information on the parameters, authorities required, return values, error conditions, error

messages, and other usage notes, see “send()—Send Data” on page 151.

170 iSeries: UNIX-Type -- Sockets APIs

open.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

socket_descriptor

(Input/Output) A pointer to the socket descriptor that is to be written to.

sf_struct

(Input/Output) A pointer to the send_file64 structure that contains the following:

v The header buffer and length.

v The file descriptor, the offset into the file, the file size, and the number of bytes to send from

the file.

v The trailer buffer and length.

v The number of bytes of data that were sent.

The structure pointed to by the sf_struct parameter is defined in <sys/socket.h>.

 struct sf_parms64

 {

 void *header_data;

 size_t header_length;

 int file_descriptor;

 unsigned long long file_size;

 long long file_offset;

 long long file_bytes;

 void *trailer_data;

 size_t trailer_length;

 unsigned long long bytes_sent;

 }

flags (Input) A flag value that controls what is done with the socket connection after the data has been

transmitted.

Authorities

No authorization is required.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden. To

use the send_file64() API, you must compile the source with the _LARGE_FILE_API macro defined.

2. All of the Usage Notes for send_file() apply to send_file64(). See Usage Notes in the send_file() API.

 API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 171

send.htm#HDRSDFUSAG
#TOP_OF_PAGE
unix.htm
aplist.htm

setdomainname()—Set Domain Name

 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int setdomainname(char *name,

 int length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The setdomainname() function is used to set the name of the domain.

Parameters

name (Input) The pointer to a character array where the domain name is stored.

length (Input) The length of the name parameter. The length can be from 0 to 255 bytes.

Authorities

No authorization is required.

Return Value

setdomainname() returns an integer. Possible values are:

v -1 (unsuccessful)

v 0 (successful)

Error Conditions

When setdomainname() fails, errno can be set to one of the following:

 [EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the name

parameter.

[EINVAL] Parameter not valid.

This error code indicates one of the following:

v The length parameter specifies a negative value or a value that is greater than the allowed

maximum length.

v The domain name pointed to by the name parameter contains characters that do not belong to

the invariant character set.

[EIO] Input/output error.

[EPERM] Operation not permitted.

The process does not have the appropriate privileges to use setdomainname().

[EUNKNOWN] Unknown system state.

172 iSeries: UNIX-Type -- Sockets APIs

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. A process must have the *iosyscfg special authority to use setdomainname().

2. The name of the domain is set to NULL when the pointer to the domain name (pointed to by the

name parameter) is set to NULL.

3. setdomainname() only allows domain names that are made up of invariant characters. In addition, the

domain name is assumed to be in the default coded character set identifier (CCSID) currently in effect

for the job.

Note: For exceptions to the invariant character set for some CCSIDs, see globalization topic.

Related Information

v “getdomainname()—Retrieve Domain Name” on page 49—Retrieve Domain Name

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

sethostid()—Set Host ID

 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int sethostid(int host_id)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The sethostid() function is used to set a host ID.

Parameters

host_id

(Input) The 32-bit host_id

Authorities

No authorization is required.

Sockets APIs 173

#TOP_OF_PAGE
unix.htm
aplist.htm

Return Value

sethostid() returns an integer. Possible values are:

v -1 (unsuccessful)

v 0 (successful)

Error Conditions

When sethostid() fails, errno can be set to one of the following:

 [EIO] Input/output error.

[EPERM] Operation not permitted.

The process does not have the appropriate privileges to use sethostid().

[EUNKNOWN] Unknown system state.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. A process must have the *iosyscfg special authority to use the sethostid().

2. When a process issues a sethostid(), the host_id can be accessed by ANY process that issues a

gethostid().

3. While many socket implementations refer to the host_id as the IP address of the machine, this is not

necessarily the case. Many machines that support the TCP/IP protocol suite support multiple local IP

addresses. The value contained in host_id is not used by TCP in any manner.

4. The host_id is reset to zero when an initial program load is performed.

5. The host_id is a signed integer. Therefore, a user should be careful to not confuse a return value of -1

from a gethostid() with an error return value. gethostid() never returns an error.

Related Information

“gethostid()—Retrieve Host ID” on page 50—Retrieve Host ID Address

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

174 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

sethostname()—Set Host Name

 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int sethostname(char *name,

 int length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The sethostname() function is used to set the name of the host for a system.

Parameters

name (Input) The pointer to a character array where the host name is stored.

length (Input) The length of the name parameter.

Authorities

No authorization is required.

Return Value

sethostname() returns an integer. Possible values are:

v -1 (unsuccessful)

v 0 (successful)

Error Conditions

When sethostname() fails, errno can be set to one of the following:

 [EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the name

parameter.

[EINVAL] Parameter not valid.

This error code indicates one of the following:

v The length parameter specifies a negative value or a value that is greater than the allowed

maximum length.

v The host name pointed to by the name parameter contains characters that are not invariant.

[EPERM] Operation not permitted.

The process does not have the appropriate privileges to use sethostname().

[EIO] Input/output error.

[EUNKNOWN] Unknown system state.

Sockets APIs 175

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. A process must have the *iosyscfg special authority to use the sethostname().

2. Maximum length of host names is defined by [MAXHOSTNAMELEN] (defined in <sys/param.h>).

3. The host name can be set in the following two ways (and users should be aware of the implications of

the way they choose):

v By using option 12 (Change local domain and host names) on the Configure TCP/IP (CFGTCP)

menu. When option 12 is used to change the local domain name or local host name, the system

appends the local domain name to the local host name and stores the value for access by

sethostname() and gethostname().

v By using the sethostname() function. When sethostname() is used to set the host name, the TCP/IP

configuration file is not affected. Only the field that is accessed by sethostname() and gethostname() is

changed.
4. The name of the host is set to NULL when the pointer to the host name (pointed to by the name

parameter) is set to NULL.

5. The host name is assumed to be in the default coded character set identifier (CCSID) currently in

effect for the job. In addition, the host name must adhere to the following conventions.

v The first character must be either an English alphabetic character or a numeric character.

v The last character must be either an English alphabetic character, a numeric character, or a period

(.).

v Blanks are not allowed (trailing blanks are removed).

v The special characters period(.), underscore(_), and minus(-) are allowed.

v Parts of the name separated by periods (.) cannot exceed 63 characters in length.

Note: Each part of the name separated by periods must begin and end with an English

alphanumeric character.

v Internet address names (in the form nnn.nnn.nnn.nnn (where nnn is a decimal number)) are not

allowed.

v Names must be from 1 to 255 characters in length.

Related Information

“gethostname()—Retrieve Host Name” on page 51—Retrieve Host Name

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

176 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

setsockopt()—Set Socket Options

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int setsockopt(int socket_descriptor,

 int level,

 int option_name,

 char *option_value,

 int option_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

 int setsockopt(int socket_descriptor,

 int level,

 int option_name,

 const void *option_value,

 socklen_t option_length)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The setsockopt() function is used to set socket options.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

socket_descriptor

(Input) The descriptor of the socket for which options are to be set.

level (Input) Whether the request applies to the socket itself or the underlying protocol being used.

Supported values are:

 IPPROTO_IP Request applies to IP protocol layer.

IPPROTO_TCP Request applies to TCP protocol layer.

SOL_SOCKET Request applies to socket layer.

IPPROTO_IPV6 Request applies to IPv6 protocol layer.

IPPROTO_ICMPV6 Request applies to ICMPv6 protocol layer.

Sockets APIs 177

_xopen_source.htm
_xopen_source.htm

option_name

(Input) The name of the option to be set. The following tables list the options supported for each

level. Assume that the option is supported for all address families unless the option is described

otherwise.

 Note: Options directed to a specific protocol level are only supported by that protocol. An option

that is directed to the SOL_SOCKET level always completes successfully. This provides compatibility

with Berkeley Software Distributions implementations that also shield the application from

protocols that do not support an option.

 Socket Options That Apply to the IP Layer (IPPROTO_IP)

 Option Description

IP_OPTIONS Set IP header options. This is only supported for sockets with an address family of

AF_INET.

IP_TOS Set Type Of Service (TOS) and Precedence in the IP header. This option is only

supported for sockets with an address family of AF_INET.

IP_TTL Set Time To Live (TTL) in the IP header. This option is only supported for sockets

with an address family AF_INET.

IP_MULTICAST_IF Set interface over which outgoing multicast datagrams should be sent. An option_value

parameter of type in_addr is used to specify the local IP address that is associated

with the interface over which outgoing multicast datagrams should be sent. An

address of INADDR_ANY removes the previous selection. This option is only

supported for sockets with an address family of AF_INET and type of SOCK_DGRAM or

SOCK_RAW.

IP_MULTICAST_TTL Set Time To Live (TTL) in the IP header for outgoing multicast datagrams. An

option_value parameter of type char is used to set this value between 0 and 255. This

option is only supported for sockets with an address family of AF_INET and type of

SOCK_DGRAM or SOCK_RAW.

IP_MULTICAST_LOOP Specify that a copy of an outgoing multicast datagram should be delivered to the

sending host as long as it is a member of the multicast group. If this option is not set,

a copy of the datagram will not be delivered to the sending host. An option_value

parameter of type char is used to control loopback being on or off. This option is only

supported for sockets with an address family of AF_INET and type of SOCK_DGRAM or

SOCK_RAW.

IP_ADD_MEMBERSHIP Joins a multicast group as specified in the option_value parameter of type struct

ip_mreq. A maximum of IP_MAX_MEMBERSHIPS groups may be joined per socket.

This option is only supported for sockets with an address family of AF_INET and type

of SOCK_DGRAM or SOCK_RAW.

IP_DROP_MEMBERSHIP Leaves a multicast group as specified in the option_value parameter of type struct

ip_mreq. This option is only supported for sockets with an address family of AF_INET

and type of SOCK_DGRAM or SOCK_RAW.

IP_RECVLCLIFADDR Indicates if the local interface that a datagram to be received should be returned. A

value of 1 indicates the first 4 bytes of the reserved field of the sockaddr structure

will contain the local interface. This option is only supported for sockets with an

address family of AF_INET and type of SOCK_DGRAM.

IP_DONTFRAG Set or reset the don’t fragment flag in the IP header. This option is supported for

sockets with an address family of AF_INET and type of SOCK_DGRAM or SOCK_RAW only.

 Socket Options That Apply to the TCP Layer (IPPROTO_TCP)

 Option Description

TCP_NODELAY Indicates if TCP is to buffer data. This option is only supported for sockets with an address

family of AF_INET or AF_INET6 and type of SOCK_STREAM.

178 iSeries: UNIX-Type -- Sockets APIs

Socket Options That Apply to the Socket Layer (SOL_SOCKET)

 Option Description

SO_BROADCAST Enable the socket for issuing messages to a broadcast address. This option is only supported for

sockets with an address family of AF_INET and type SOCK_DGRAM or SOCK_RAW. The broadcast

address to be used may be determined by issuing an ioctl() with the SIOCGIFBRDADDR request.

SO_DEBUG Indicates if low level-debugging is active.

SO_DONTROUTE Bypass normal routing mechanisms. This option is only supported by sockets with an address

family of AF_INET or AF_INET6.

SO_KEEPALIVE Keep the connection up by sending periodic transmissions. This option is only supported for

sockets of an address family of AF_INET or AF_INET6 and type SOCK_STREAM.

SO_LINGER Indicates if the system attempts delivery of any buffered data or if the system discards it when a

close() is issued.

For sockets that are using a connection-oriented transport service with an address family of

AF_INET or AF_INET6, the default is off (which means that the system attempts to send any

queued data, with an infinite wait-time).

SO_OOBINLINE Indicates whether out-of-band data is received inline with normal data. This option is only

supported for sockets with an address family of AF_INET or AF_INET6.

SO_RCVBUF Set the size of the receive buffer.

SO_RCVLOWAT Set the size of the receive low-water mark. The default size is 1. This option is only supported for

sockets with a type of SOCK_STREAM.

SO_RCVTIMEO Set the receive timeout value. This option is not supported unless _XOPEN_SOURCE is defined

to be 520 or greater.

SO_REUSEADDR Indicates if the local socket address can be reused. This option is supported by sockets with an

address family of AF_INET or AF_INET6 and a type of SOCK_STREAM or SOCK_DGRAM.

SO_SNDBUF Set the size of the send buffer.

SO_SNDLOWAT Set the size of the send low-water mark. This option is not supported.

SO_SNDTIMEO Set the send timeout value. This option is not supported unless _XOPEN_SOURCE is defined to

be 520 or greater.

SO_USELOOPBACK Indicates if the loopback feature is being used. This option is not supported.

 Socket Options That Apply to the IPv6 Layer (IPPROTO_IPV6)

 Option Description

IPV6_UNICAST_HOPS Set the hop limit value that will be used for subsequent unicast packets sent by this

socket. An option_value parameter of type int is used to set this value between 0 and

255. This option is supported for sockets with an address family of AF_INET6 only.

IPV6_MULTICAST_IF Set the interface over which outgoing multicast datagrams will be sent. An

option_value parameter of type unsigned int is used to set the interface index that is

associated with the interface over which outgoing multicast datagrams will be sent.

This option currently is not supported.

IPV6_MULTICAST_HOPS Set the hop limit value that will be used for subsequent multicast packets sent by this

socket. An option_value parameter of type int is used to set this value between 0 and

255. If IPV6_MULTICAST_HOPS is not set, the default is 1. This option currently is

not supported.

Sockets APIs 179

Option Description

IPV6_MULTICAST_LOOP Set the multicast looping mode. A value of 1 (default), indicates that multicast

datagrams sent by this system should also be delivered to this system as long as it is

a member of the multicast group. If this option is 0, a copy of the datagram will not

be delivered to the sending host. An option_value parameter of type unsigned int is

used to set this value. This option currently is not supported.

IPV6_JOIN_GROUP Joins a multicast group as specified in the option_value parameter of type struct

ipv6_mreq. A maximum of IP_MAX_MEMBERSHIPS groups may be joined per

socket. This option currently is not supported.

IPV6_LEAVE_GROUP Leaves a multicast group as specified in the option_value parameter of type struct

ipv6_mreq. This option currently is not supported.

IPV6_V6ONLY Set the AF_INET6 communication restrictions. A non-zero value indicates that this

AF_INET6 socket is restricted to IPv6 communications only. This option stores an int

value. This is a boolean option. By default this option is turned off. This option is

supported for sockets with an address family of AF_INET6 only.

IPV6_CHECKSUM Set if the kernel will calculate and insert a checksum for output and verify the

received checksum on input, discarding the packet if the checksum is in error for this

socket. An option_value parameter of type int is used to set this value. If this option is

-1 (the default), this socket option is disabled. A value of 0 or greater specifies an

integer offset into the user data of where the checksum is located. This must be an

even integer value. This option is only supported for sockets with an address family

of AF_INET6 and type of SOCK_RAW with a protocol other than IPPROTO_ICMPV6. The

checksum is automatically computed for protocol IPPROTO_ICMPV6.

 Socket Options That Apply to the ICMPv6 Layer (IPPROTO_ICMPV6)

 Option Description

ICMP6_FILTER Set the ICMPv6 Type Filtering. An option_value parameter of type struct icmp6_filter, defined in

<netinet/icmp6.h> is used to set this value. The following macros, defined in <netinet/icmp6.h>

can be used to update the type filtering structure to specify whether or not specific ICMPv6

message types will be passed to the application or be blocked: ICMP6_FILTER_SETPASS,

ICMP6_FILTER_SETBLOCK, ICMP6_FILTER_SETPASSALL, and ICMP6_FILTER_SETBLOCKALL.

The default is to pass all ICMPv6 message types to the application. This option is only supported

for sockets with an address family of AF_INET6 and type of SOCK_RAW with a protocol of

IPPROTO_ICMPV6.

option_value

(Input) A pointer to the option value. Integer flags/values are required by setsockopt() for all the

socket options except SO_LINGER, IP_OPTIONS, IP_MULTICAST_IF, IP_MULTICAST_TTL,

IP_MULTICAST_LOOP, IP_ADD_MEMBERSHIP, IP_DROP_MEMBERSHIP, IPV6_JOIN_GROUP, IPV6_LEAVE_GROUP,

ICMP6_FILTER.

 Note: For the IP_TOS and IP_TTL options, only the rightmost octet (least significant octet) of the

integer value is used.

 The following options can be set by specifying a nonzero value for the option_value parameter:

v SO_BROADCAST

v SO_DEBUG

v SO_DONTROUTE

v SO_KEEPALIVE

v SO_OOBINLINE

v SO_REUSEADDR

v TCP_NODELAY

180 iSeries: UNIX-Type -- Sockets APIs

v IP_MULTICAST_LOOP

v IP_DONTFRAG

v IPV6_V6ONLY

v IPV6_MULTICAST_LOOP

For the SO_LINGER option, option_value is a pointer to the structure struct linger, defined in

<sys/socket.h>.

 struct linger [

 int l_onoff;

 int l_linger;

];

The l_onoff field determines if the linger option is set. A nonzero value indicates the linger option

is set and is using the l_linger value. A zero value indicates that the option is not set. The l_linger

field is the time to wait before any buffered data to be sent is discarded. The following occur on a

close():

v For AF_INET and AF_INET6 sockets:

– If the l_onoff value is zero, the system attempts to send any buffered data with an infinite

wait-time.

– If the l_onoff value is nonzero and the l_linger value is nonzero, the system attempts to send

any buffered data for l_linger time. If l_linger time has elapsed and the data is still not

successfully sent, it is discarded. When data is discarded, the remote program may receive a

[ECONNRESET].
v For AF_INET sockets over SNA:

– If the l_onoff value is nonzero and the l_linger value is zero, the system waits indefinitely (no

timer is implemented). Otherwise, if the l_onoff value is nonzero and the l_linger value is

zero, the system discards any buffered data. When data is discarded, the remote program

may receive a [ECONNRESET].

Note: An application must implement an application level confirmation. Guaranteed receipt of

data by the partner program is required. Setting SO_LINGER does not guarantee delivery.

 For the SO_RCVTIME and SO_SNDTIME options, option_value is a pointer to where the structure

timeval is stored. The structure timeval is defined in <sys/time.h>.

 struct timeval {

 long tv_sec;

 long tv_usec;

};

For the IP_OPTIONS option, option_value is a pointer to a character string representing the IP

options as specified in RFC 791. The character string varies depending on which options are

selected. Each option is made up of a single byte representing the option code, and may be

followed by a length field (1 byte) and data for the option. The IP options that can be set are:

v End of option list. Used if options do not end at end of header.

v No operation (used to align octets in a list of options).

v Security and handling restrictions.

v Loose source routing. Used to route a datagram along a path of specified IP addresses.

Multiple network hops are allowed between any two IP addresses on the path.

v Record route. Used to trace a route.

v Stream identifier. Used to carry a SATNET stream identifier. This option has been deprecated

by RFC 1122 and will result in an error of [EINVAL] if used.

Sockets APIs 181

v Strict source routing. Used to route datagram along a path of specified IP addresses. No

additional network hops are allowed between any two IP addresses in the path.

v Internet timestamp. Used to record timestamps along the route.

For the IP_MULTICAST_IF option, option_value is a pointer to the structure in_addr, defined in

<netinet/in.h> as:

 struct in_addr [

 u_long s_addr;

 /* IP address */

];

The s_addr field specifies the local IP address that is associated with the interface over which

outgoing multicast datagrams should be sent.

 For the IP_ADD_MEMBERSHIP and IP_DROP_MEMBERSHIP options, option_value is a pointer to the

structure ip_mreq, defined in <netinet/in.h> as:

 struct ip_mreq [

 struct in_addr imr_multiaddr;

 /* IP multicast address of group */

 struct in_addr imr_interface;

 /* local IP address of interface */

];

The imr_multiaddr field is used to specify the multicast group to join or leave. The imr_interface

field is used to specify the local IP address that is associated with the interface to which this

request applies. If INADDR_ANY is specified for the local interface, the default multicast

interface will be selected.

 Note: Reception of IP multicast datagrams may require configuration changes to the line

description to enable the adapter to receive packets with a multicast destination address. On

Ethernet, for example, the Ethernet group address that is associated with the IP group address

must be specified by the GRPADR parameter on the line description. To determine the Ethernet

group address for a particular IP group address, the low-order 23 bits of the IP address are

placed into the low-order 23 bits of the Ethernet group address 01.00.5E.xx.xx.xx.

 Notes:

1. For sockets that use a connection-oriented transport service, IP options that are set using

setsockopt() are only used if they are set prior to a connect() being issued. After the connection

is established, any IP options that the user sets are ignored.

2. If the IP options portion contains a source routing option, then the address in the source

routing option overrides the destination address. The destination address may have been

specified on an output operation (for example, on a sendto()) or on a connect().

3. If a socket has a type of SOCK_RAW and a protocol of IPPROTO_RAW, any IP options set

using setsockopt() are ignored (since the user must supply the IP header data on an output

operation as part of the data that is being transmitted).

option_length

(Input) The length of the option_value.

Authorities

No authorization is required.

Return Value

setsockopt() returns an integer. Possible values are:

v -1 (unsuccessful)

182 iSeries: UNIX-Type -- Sockets APIs

v 0 (successful)

Error Conditions

When setsockopt() fails, errno can be set to one of the following:

[EADDRINUSE]

 Address already in use. This error code indicates that the socket_descriptor parameter specified for

the IP_ADD_MEMBERSHIP operation is already a member of the specified multicast group.

[EADDRNOTAVAIL]

 Address not available. For the IP_ADD_MEMBERSHIP or IP_DROP_MEMBERSHIP operations, this error

code indicates that an incorrect address was specified for either the imr_multiaddr or imr_interface

parameter value.

[EBADF]

 Descriptor not valid.

[ECONNABORTED]

 Connection ended abnormally.

 This error code indicates that the transport provider ended the connection abnormally because of

one of the following:

v The retransmission limit has been reached for data that was being sent on the socket.

v A protocol error was detected.

[EFAULT]

 Bad address.

 The system detected an address which was not valid while attempting to access the option_value

parameter.

[EINVAL]

 Parameter not valid.

 This error code indicates one of the following:

v The level parameter specifies a level that is not supported.

v The option_name parameter specifies a value that is not valid (except for when the level is

SOL_SOCKET , in which case [ENOPROTOOPT] is returned).

v The option_value parameter specifies a value that is not valid.

v The option_length parameter specifies a negative or zero value.

v An attempt was made to set a socket option that was read-only.

[EIO]

 Input/output error.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

[ENOPROTOOPT]

 The protocol does not support the specified option.

 This error code indicates one of the following:

v The socket has an address family of AF_UNIX and the level parameter specified is not SOL_SOCKET

.

Sockets APIs 183

v The level parameter specifies a level of SOL_SOCKET and the option_name parameter specifies a

value that is not valid.

[ENOTCONN]

 Requested operation requires a connection.

 This error code is only returned if the level parameter specifies a level other than SOL_SOCKET and

the socket_descriptor parameter points to a socket that is using a connection-oriented transport

service that has had its connection broken.

[ENOTSOCK]

 The specified descriptor does not reference a socket.

[EPERM]

 Operation not permitted.

 The executing user profile must have *IOSYSCFG special authority to set options when the level

parameter specifies IPPROTO_IP and the option_value parameter is IP_OPTIONS.

[ETOOMANYREFS]

 The operation would have exceeded the maximum number of references allowed for this socket.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EUNKNOWN]

 Unknown system state.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. Socket options are defined in <sys/socket.h>, IP options are defined in <netinet/ip.h> and

<netinet/in.h>, TCP options are defined in <netinet/tcp.h>, IPv6 and ICMPv6 options are defined in

<netinet/in.h>.

2. The user profile for an application that is running must have *IOSYSCFG special authority to set

options when the level parameter specifies IPPROTO_IP and the option_value parameter is IP_OPTIONS.

3. The following comments applies to the SO_SNDBUF option value:

v For AF_INET and AF_INET6 sockets over TCP of type SOCK_STREAM, the maximum value the SO_SNDBUF

option can be set to is 8 megabytes. Anything greater results in an error of [ENOBUFS]. If the

SO_SNDBUF option value is set to a positive value that is less than 512 bytes, the system

automatically uses 512 bytes as the SO_SNDBUF size.

v For AF_INET and AF_INET6 sockets over UDP of type SOCK_DGRAM, the maximum value the SO_SNDBUF

option can be set to is 65535 bytes less the IP and UDP header sizes. Anything greater results in an

error of [EINVAL].

184 iSeries: UNIX-Type -- Sockets APIs

4. For AF_INET sockets over SNA of type SOCK_STREAM, SO_RCVBUF should be set before connection is

established. After connection is established, any changes are ignored. Also, only the client can affect

the receive buffer size. The server cannot affect it.

5. For AF_INET sockets over SNA of type SOCK_DGRAM, both SO_SNDBUF and SO_RCVBUF are ignored and

have no effect on processing.

6. When a TCP connection is closed for a socket using the AF_INET or AF_INET6 address family, the port

associated with that connection is not made available until twice the Maximum Segment Life (MSL)

time in seconds has passed. The MSL time is approximately 2 minutes. The SO_REUSEADDR option

allows a bind() to succeed when requesting a port that is being held during this time frame. This can

be especially useful if a server is abruptly ended and restarted.

Notes:

v For AF_INET and AF_INET6, SOCK_STREAM sockets, this option does not allow two servers to

successfully issue a bind() requesting the same port number and local address combination. For

AF_INET and AF_INET6, SOCK_DGRAM sockets, the SO_REUSEADDR option does allow

multiple servers to successfully bind to the same port. When broadcast or multicast datagrams are

received for a given port, each server that is bound to that port receives a copy of the datagram

provided each server has enabled the SO_REUSEADDR option.
v This option does not affect unicast datagram delivery.

7. The following SOL_SOCKET options are not supported by AF_INET sockets over SNA. setsockopt()

appears to succeed, but has no effect on the function of AF_INET sockets over SNA.

v SO_BROADCAST

v SO_DONTROUTE

v SO_KEEPALIVE

v SO_LINGER

8. The option IP_DONTFRAG is not valid for multicast group destinations.

9. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the setsockopt() API is mapped to qso_setsockopt98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getsockopt()—Retrieve Information about Socket Options” on page 60—Retrieve Information about

Socket Options

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 185

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

shutdown()—End Receiving and/or Sending of Data on Socket

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int shutdown(int socket_descriptor,

 int how)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

 int shutdown(int socket_descriptor,

 int how)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The shutdown() function is used to disable reading, writing, or reading and writing on a socket.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

socket_descriptor

(Input) The descriptor of the socket to be shut down.

how (Input) The data flow path to be disabled:

 SHUT_RD or 0 No more data can be received.

SHUT_WR or 1 No more data can be sent.

SHUT_RDWR or 2 No more data can be sent or received.

Authorities

No authorization is required.

Return Value

shutdown() returns an integer. Possible values are:

v -1 (unsuccessful)

186 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
_xopen_source.htm

v 0 (successful)

Error Conditions

When shutdown() fails, errno can be set to one of the following:

 [EBADF] Descriptor not valid.

[EINVAL] Parameter not valid.

This error code indicates one of the following:

v The socket pointed to by the socket_descriptor parameter is using a connection-oriented transport

service. Also, the transport service is in a state in which sends and receives are disallowed (for

example, connection has been reset by peer).

v The how parameter specifies a value that is not valid.

[ENOTSOCK] The specified descriptor does not reference a socket.

[EIO] Input/output error.

[EUNATCH] The protocol required to support the specified address family is not available at this time.

Note: This errno is not returned if the how parameter is 0.

[EUNKNOWN] Unknown system state.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. Issuing a shutdown() with a how parameter of 0 causes any new data received for the socket to be

discarded. Any input functions for this socket complete with a 0, meaning that end-of-file has been

reached. On a BSD implementation, if the socket is being shared across multiple processes, any

blocking input operations are deblocked by this action. However, the OS/400 sockets implementation

of shutdown() does not cause these blocked functions to be deblocked.

2. Issuing a shutdown() with a how parameter of 1 results in all output functions being failed with an

error of [epipe]. The process issuing the output operation will receive a synchronous sigpipe signal.

This also sends a normal close sequence to the partner program. Receive operations issued by the

partner program receive a return value of 0 once all previous data has been received. On a BSD

implementation, if the socket is being shared across multiple processes or threads, any blocking

output functions are deblocked with a return value of -1 and an error code of [epipe]. However, the

OS/400 sockets implementation of shutdown() does not cause these blocked functions to be deblocked.

3. Issuing a shutdown() with a how parameter of 2 results in the actions listed for a how parameter of 0

being performed first, followed by the actions listed for a how parameter of 1.

4. Issuing a shutdown() on socket connected through a SOCKS server is not supported.

5. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the shutdown() API is mapped to qso_shutdown98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “close()—Close File or Socket Descriptor” on page 19—Close File or Socket Descriptor

Sockets APIs 187

_xopen_source.htm

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

socket()—Create Socket

 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int socket(int address_family,

 int type,

 int protocol)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The socket() function is used to create an end point for communications. The end point is represented by

the socket descriptor returned by the socket() function.

Parameters

address_family

(Input) The address family to be used with the socket. Supported values are:

 AF_INET For interprocess communications between processes on the same system or different systems in

the Internet domain using the Internet Protocol (IPv4).

AF_INET6 For interprocess communications between processes on the same system or different systems in

the Internet domain using the Internet Protocol (IPv6 or IPv4).

AF_NS For interprocess communications between processes on the same system or different systems in

the domain defined by the Novell or Xerox protocol definitions.

Note: The AF_NS address family is no longer supported as of V5R2.

AF_UNIX For interprocess communications between processes on the same system in the UNIX domain.

AF_UNIX_CCSID For interprocess communications between processes on the same system in the UNIX domain

using the Qlg_Path_Name_T structure.

AF_TELEPHONY For interprocess communications between processes on the same system in the telephony domain.

Note: The AF_TELEPHONY address family is no longer supported as of V5R3.

type (Input) The type of communications desired. Supported values are:

 SOCK_DGRAM Indicates a datagram socket is desired.

SOCK_SEQPACKET Indicates a full-duplex sequenced packet socket is desired. Each input and output operation

consists of exactly one record.

SOCK_STREAM Indicates a full-duplex stream socket is desired.

SOCK_RAW Indicates communication is directly to the network protocols. A process must have the appropriate

privilege *ALLOBJ to use this type of socket. Used by users who want to access the lower-level

protocols directly.

188 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

protocol

(Input) The protocol to be used on the socket. Supported values are:

 0 Indicates that the default protocol for the type selected is to be used. For example, IPPROTO_TCP is

chosen for the protocol if the type was set to SOCK_STREAM and the address family is AF_INET.

IPPROTO_IP Equivalent to specifying the value zero (0).

IPPROTO_TCP Indicates that the TCP protocol is to be used.

IPPROTO_UDP Indicates that the UDP protocol is to be used.

IPPROTO_RAW Indicates that communications is to the IP layer.

IPPROTO_ICMP Indicates that the Internet Control Message Protocol (ICMP) is to be used.

IPPROTO_ICMPV6 Indicates that the Internet Control Message Protocol (ICMPv6) is to be used.

TELPROTO_TEL Equivalent to specifying the value zero (0).

 Note: When the type is SOCK_RAW, the protocol can be set to some predefined protocol number from 0-255.

See “Usage Notes” on page 190 for further details.

Authorities

When the SOCKET being created is of type SOCK_RAW, the thread must have *ALLOBJ special

authority. When the thread does not have this authority, the EACCES is returned for errno.

Return Value

socket() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is a socket descriptor.

Error Conditions

When socket() fails, errno can be set to one of the following:

 [EACCES] Permission denied.

Process does not have the appropriate privileges to create the socket with the

specified type or protocol.

[EAFNOSUPPORT] The type of socket is not supported in this protocol family.

[EIO] Input/output error.

[EMFILE] Too many descriptions for this process.

[ENFILE] Too many descriptions in system.

[ENOBUFS] There is not enough buffer space for the requested operation.

[EPROTOTYPE] The socket type or protocols are not compatible.

[EPROTONOSUPPORT] No protocol of the specified type and domain exists.

[ESOCKTNOSUPPORT] The specified socket type is not supported.

[EUNATCH] The protocol required to support the specified address family is not available at

this time.

[EUNKNOWN] Unknown system state.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Sockets APIs 189

Usage Notes

1. The socket address families and types supported by sockets are defined in <sys/socket.h>. The

protocols are defined in <netinet/in.h> (Internet protocols).

2. The AF_UNIX and AF_UNIX_CCSID address family supports a protocol of 0 for both SOCK_STREAM and

SOCK_DGRAM.

3. The AF_NS address family is no longer supported as of V5R2.

4. The following tables list the combinations of types and protocols that are supported for AF_INET and

the combinations of types and protocols that are supported for AF_INET6.

 Supported Combinations of Types and Protocols for AF_INET

Socket Type Protocol

STREAM IPPROTO_TCP (see Usage note 5)

DGRAM IPPROTO_UDP

RAW IPPROTO_RAW, IPPROTO_ICMP, protocol_number, (see Usage note 6)

 Supported Combinations of Types and Protocols for AF_INET6

Socket Type Protocol

STREAM IPPROTO_TCP

DGRAM IPPROTO_UDP

RAW IPPROTO_RAW, IPPROTO_ICMPV6, protocol_number, (see Usage note 6)

5. The ALWANYNET (Allow ANYNET support) network attribute allows a customer to select whether a

SNA transport can be used for AF_INET socket applications.

The system administrator can see the current status of the ALWANYNET attribute and can change

that status. (This can be done by using the Display Network Attributes (DSPNETA) and Change

Network Attributes (CHGNETA) commands, respectively.)

If the status is changed, the change takes effect immediately. Also, the state of the ALWANYNET stays

the same across IPLs. For example, if the current status is *YES and the system administrator changes

the value to *NO, the use of AF_INET over a transport other than TCP/IP is deactivated. If a system

IPL is performed after this point, the use of AF_INET over a SNA transport remains deactivated after

the system IPL.

If AF_INET sockets will only be used over a TCP/IP transport, the ALWANYNET status should be set

to *NO to improve CPU utilization.

Note: If you are also using APPC over TCP/IP ALWANYNET status needs to be set to *YES.

6. When the socket type is SOCK_RAW, you can specify any protocol number between 0-255. Two

exceptions are the IPPROTO_TCP and IPPROTO_UDP protocols, which cannot be specified on a socket type

of SOCK_RAW (if you issue socket(), you get an error with an error code of [EPROTONOSUPPORT]). Each raw

socket is associated with one IP protocol number, and receives all data for that protocol. For example,

if two processes create a raw socket with the same protocol number, and data is received for the

protocol, then both processes get copies of the data.

Protocol numbers 0 (IPPROTO_IP) and 255 (IPPROTO_RAW) have some unique characteristics. If a protocol

number of zero is specified, then IP sends all data received from all the protocol numbers (except

IPPROTO_TCP and IPPROTO_UDP protocols). If a protocol number of 255 is specified, a user must ensure

that the IP header data is included in the data sent out on an output operation.

7.

The AF_TELEPHONY address family is no longer supported as of V5R3.

190 iSeries: UNIX-Type -- Sockets APIs

Related Information

v “socketpair()—Create a Pair of Sockets”—Create a Pair of Sockets

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

socketpair()—Create a Pair of Sockets

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int socketpair(int address_family,

 int type,

 int protocol,

 int *socket_vector)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <sys/socket.h>

 int socketpair(int address_family,

 int type,

 int protocol,

 int socket_vector[2])

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The socketpair() function is used to create a pair of unnamed, connected sockets in the AF_UNIX or

AF_UNIX_CCSID address_family.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

address_family

(Input) The address family to be used with the sockets. Supported values are:

Sockets APIs 191

#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm
_xopen_source.htm

AF_UNIX or

AF_UNIX_CCSID

For interprocess communications between processes on the same system in the UNIX domain.

type (Input) The type of communications desired. Supported values are:

 SOCK_DGRAM Indicates a datagram socket is desired.

SOCK_STREAM Indicates a full-duplex stream socket is desired.

protocol

(Input) The protocol to be used on the sockets. Supported values are:

 0 Indicates the default protocol for the type selected is to be used.

socket_vector

(Output) An integer array of size two that will contain the socket descriptors.

Authorities

No authorization is required.

Return Value

socketpair() returns an integer. Possible values are:

v -1 (unsuccessful)

v 0 (successful)

Error Conditions

When socketpair() fails, errno can be set to one of the following:

 [EAFNOSUPPORT] The type of socket is not supported in this protocol family.

[EFAULT] Bad address.

[EINVAL] Parameter not valid.

[EIO] Input/output error.

[EMFILE] Too many descriptions for this process.

[ENFILE] Too many descriptions in system.

[ENOBUFS] There is not enough buffer space for the requested operation.

[EOPNOTSUPP] Operation not supported.

[EPROTONOSUPPORT] No protocol of the specified type and domain exists.

[ESOCKTNOSUPPORT] The specified socket type is not supported.

[EUNKNOWN] Unknown system state.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

192 iSeries: UNIX-Type -- Sockets APIs

Usage Notes

1. The socket address families and types supported by sockets are defined in <sys/socket.h>.

2. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the socketpair() API is mapped to qso_socketpair98().
3.

If this function is called by a thread executing one of the scan-related exit programs (or any of its

created threads), the socket descriptors that are returned are scan descriptors. See Integrated File

System Scan on Open Exit Programs and Integrated File System Scan on Close Exit Programs for

more information. If a process is spawned, these scan descriptors are not inherited by the spawned

process and therefore cannot be used in that spawned process. Therefore, in this case, the socket

descriptors returned by socketpair() function will only work within the same process.

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “socket()—Create Socket” on page 188—Create Socket

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

takedescriptor()—Receive Socket Access from Another Job

 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 int takedescriptor(char *source_job)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The takedescriptor() function is used to obtain a descriptor in one OS/400 job which was passed from

another OS/400 job by a givedescriptor().

Parameters

source_job

(Input) A pointer to the internal job identifier that identifies the source job from which to receive

a passed descriptor.

Authorities

No authorization is required.

Return Value

takedescriptor() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is a descriptor.

Sockets APIs 193

ifsopenexit.htm
ifsopenexit.htm
ifscloseexit.htm
_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Error Conditions

When takedescriptor() fails, errno can be set to one of the following:

 [EFAULT] Bad address.

The system detected an address which was not valid while attempting to access the source_job

parameter.

[EINVAL] Parameter not valid.

The source_job parameter points to data that is not valid.

[EMFILE] Too many descriptions for this process.

[EIO] Input/output error.

[EUNKNOWN] Unknown system state.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

Usage Notes

1. This function can only obtain a descriptor if the sender of the descriptor referenced the job that this

takedescriptor() is issued in by explicitly specifying this job’s identification on the target_job parameter

of the givedescriptor().

2. If the source_job parameter is a NULL pointer, then a descriptor can be received from any job which

issues a givedescriptor() that references the job in which takedescriptor() is issued.

3. If no descriptor is available to be received, the takedescriptor() is blocked.

4. If both the job in which the givedescriptor() is issued and the job specified by the target_job parameter

end while a descriptor is in transit, the descriptor is reclaimed by the system, and the resource that it

represents is closed.

5. The information to specify in the target_job parameter of the givedescriptor() and in the source_job

parameter of the takedescriptor() can be obtained in the actual target job by using a work management

API (for example, QUSRJOBI) to retrieve the internal job identifier.

6. For files and directories, takedescriptor() is only supported for objects in the Root, QOpenSys,

User-defined file systems (UDFS), and Network File System (NFS).

7.

If this function is called by a thread executing one of the scan-related exit programs (or any of its

created threads), it will fail with error code [ENOTSUP]. See Integrated File System Scan on Open Exit

Programs and Integrated File System Scan on Close Exit Programs for more information.

8.

When the descriptor is obtained using takedescriptor(), any information accessed using that

descriptor with the various read and write interfaces will be in binary, even if the original descriptor’s

accesses would have had text conversions occur. See Using CCSIDs and code pages in the

open—Open file documentation for more information on text conversion.

194 iSeries: UNIX-Type -- Sockets APIs

ifsopenexit.htm
ifsopenexit.htm
ifscloseexit.htm
open.htm#HDRIFSCCSD
open.htm

Related Information

v “givedescriptor()—Pass Descriptor Access to Another Job” on page 67—Pass Descriptor Access to

Another Job

v “sendmsg()—Send a Message Over a Socket” on page 154—Send Data or Descriptors or Both

v “recvmsg()—Receive a Message Over a Socket” on page 132—Receive Data or Descriptors or Both

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

write()—Write to Descriptor

 Syntax

 #include <unistd.h>

 ssize_t write

 (int file_descriptor, const void *buf, size_t nbyte);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 202.

The write() function writes nbyte bytes from buf to the file or socket associated with file_descriptor. nbyte

should not be greater than INT_MAX (defined in the <limits.h> header file). If nbyte is zero, write()

simply returns a value of zero without attempting any other action.

If file_descriptor refers to a ″regular file″ (a stream file that can support positioning the file offset) or any

other type of file on which the job can do an lseek() operation, write() begins writing at the file offset

associated with file_descriptor, unless O_APPEND is set for the file (see below). A successful write()

increments the file offset by the number of bytes written. If the incremented file offset is greater than the

previous length of the file, the length of the file is set to the new file offset.

If O_APPEND (defined in the <fcntl.h> header file) is set for the file, write() sets the file offset to the end

of the file before writing the output.

If there is not enough room to write the requested number of bytes (for example, because there is not

enough room on the disk), the write() function writes as many bytes as the remaining space can hold.

If write() is successful and nbyte is greater than zero, the change and modification times for the file are

updated.

If file_descriptor refers to a descriptor obtained using the open() function with O_TEXTDATA specified, the

data is written to the file assuming it is in textual form. The maximum number of bytes on a single write

that can be supported for text data is 2,147,483,408 (2GB - 240) bytes. The data is converted from the code

page of the application, job, or system to the code page of the file as follows:

v When writing to a true stream file, any line-formatting characters (such as carriage return, tab, and

end-of-file) are just converted from one code page to another.

v When writing to a record file that is being used as a stream file:

Sockets APIs 195

#TOP_OF_PAGE
unix.htm
aplist.htm

– End-of-line characters are removed.

– Records are padded with blanks (for a source physical file member) or nulls (for a data physical file

member).

– Tab characters are replaced by the appropriate number of blanks to the next tab position.

There are some important considerations if O_CCSID was specified on the open().

v The write() will attempt to convert all of the data in the user’s buffer. Successfully converted data will

be written. Unconverted data is usually assumed to be a partial character. Partial characters will be

buffered internally and data from the next consecutive write will be appended to the buffered data. If

incorrect data is provided on a consecutive write, the write may fail with the [ECONVERT] error.

If an lseek() is performed, the file is closed, or the current job is ended, the buffered data will be

discarded. Discarded data will not be written to the file. See lseek()—Set File Read/Write Offset for

more information.

v Because of the above consideration and because of the possible expansion or contraction of converted

data, applications using the O_CCSID flag should avoid assumptions about data size and the current

file offset. For example, the user may supply a buffer to 100 bytes, but after an application has written

the buffer to a new file, the file size may be 50, 200, or something else, depending on the CCSIDs

involved.

If O_TEXTDATA was not specified on the open(), the data is written to the file without conversion. The

application is responsible for handling the data.

When file_descriptor refers to a socket, the write() function writes to the socket identified by the socket

descriptor.

Note: When the write completes successfully, the S_ISUID (set-user-ID) and S_ISGID (set-group-ID) bits

of the file mode will be cleared. If the write is unsuccessful, the bits are undefined.>

Write requests to a pipe or FIFO are handled the same as a regular file, with the following exceptions:

v The S_ISUID and S_ISGID file mode bits will not be cleared.

v There is no file offset associated with a pipe or FIFO. Each write request will append to the end of the

pipe or FIFO.

v Write requests of [PIPE_BUF] bytes or less will not be interleaved with data from other threads

performing writes on the same pipe or FIFO. Writes of greater than [PIPE_BUF] bytes may have data

interleaved on arbitrary boundaries with writes by other threads, whether or not the O_NONBLOCK

flag of the file status flags is set.

v If the O_NONBLOCK flag was not specified and the pipe or FIFO is full, the write request will block

the calling thread until the requested amount of data in nbyte is written.

v If the O_NONBLOCK flag was specified, then the following pertain to various write requests:

– The write() function will not block the calling thread.

– A write request for [PIPE_BUF] or fewer bytes will have the following effect:

If there is sufficient space available in the pipe or FIFO, write() will transfer all the data and return

the number of bytes requested. If there is not sufficient space in the pipe or FIFO, write() will

transfer no data, return -1, and set errno to [EAGAIN].

– A write request for more than [PIPE_BUF] bytes will cause one of the following:

- When at least one byte can be written, write() will transfer what it can and return the number of

bytes written.

- When no data can be written, write() will transfer no data, return -1, and set errno to [EAGAIN].

196 iSeries: UNIX-Type -- Sockets APIs

lseek.htm

Parameters

file_descriptor

(Input) The descriptor of the file to which the data is to be written.

buf (Input) A pointer to a buffer containing the data to be written.

nbyte (Input) The size in bytes of the data to be written.

Authorities

No authorization is required.

Return Value

 value write() was successful. The value returned is the number of bytes actually written. This number is

less than or equal to nbyte.

-1 write() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If write() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

 If writing to a socket, this error code indicates one of the following:

v The destination address specified is a broadcast address and the socket option SO_BROADCAST

was not set (with a setsockopt()).

v The process does not have the appropriate privileges to the destination address. This error code

can only be returned on a socket with an address family of AF_INET and a type of SOCK_DGRAM.

[EAGAIN]

 Operation would have caused the process to be suspended.

 If file_descriptor refers to a pipe or FIFO that has its O_NONBLOCK flag set, this error occurs if

the write() would have blocked the calling thread.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file. Or this write() request was made to a file that was

only open for reading.

Sockets APIs 197

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFBIG]

 Object is too large.

 The size of the object would exceed the system allowed maximum size or the process soft file size

limit.

 The file is a regular file, nbyte is greater than 0, and the starting offset is greater than or equal to 2

GB minus 2 bytes.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The file system that the file resides in does not support large files, and the starting offset exceeds

2GB minus 2 bytes.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

198 iSeries: UNIX-Type -- Sockets APIs

Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENXIO]

 No such device or address.

[ERESTART]

Sockets APIs 199

A system call was interrupted and may be restarted.

[ETRUNC]

 Data was truncated on an input, output, or update operation.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, thenretry the operation.

 When the descriptor refers to a socket, errno could indicate one of the following errors:

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

 This error code can only be returned on sockets that use a connectionless transport service.

[EDESTADDRREQ]

 Operation requires destination address.

 A destination address has not been associated with the socket pointed to by the fildes parameter.

This error code can only be returned on sockets that use a connectionless transport service.

[EHOSTDOWN]

 A remote host is not available.

 This error code can only be returned on sockets that use a connectionless transport service.

[EHOSTUNREACH]

 A route to the remote host is not available.

 This error code can only be returned on sockets that use a connectionless transport service.

[EINTR]

 Interrupted function call.

[EMSGSIZE]

 Message size out of range.

 The data to be sent could not be sent atomically because the size specified by nbyte is too large.

[ENETDOWN]

 The network is not currently available.

 This error code can only be returned on sockets that use a connectionless transport service.

[ENETUNREACH]

 Cannot reach the destination network.

 This error code can only be returned on sockets that use a connectionless transport service.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

200 iSeries: UNIX-Type -- Sockets APIs

[ENOTCONN]

 Requested operation requires a connection.

 This error code can only be returned on sockets that use a connection-oriented transport service.

[EPIPE]

 Broken pipe.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EWOULDBLOCK]

 Operation would have caused the thread to be suspended.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.>

Sockets APIs 201

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. QSYS.LIB and independent ASP QSYS.LIB File System Differences

This function will fail with error code [ENOTSAFE] if the object on which this function is operating is

a save file and multiple threads exist in the job.

If the file specified is a save file, only complete records will be written into the save file. A write()

request that does not provide enough data to completely fill a save file record will cause the partial

record’s data to be saved by the file system. The saved partial record will then be combined with

additional data on subsequent write()’s until a complete record may be written into the save file. If

the save file is closed prior to a saved partial record being written into the save file, then the saved

partial record is discarded, and the data in that partial record will need to be written again by the

application.

A successful write() updates the change, modification, and access times for a database member using

the normal rules that apply to database files. At most, the access time is updated once per day.

You should be careful when writing end-of-file characters in the QSYS.LIB and independent ASP

QSYS.LIB file systems. These file systems end-of-file characters are symbolic; that is, they are stored

outside the file member. However, some situations can result in actual, nonsymbolic end-of-file

characters being written to a member. These nonsymbolic end-of-file characters could cause some

tools or utilities to fail. For example:

v If you previously wrote an end-of-file character as the last character of a member, do not continue

to write data after that end-of-file character. Continuing to write data will cause a nonsymbolic

end-of-file to be written. As a result, a compile of the member could fail.

202 iSeries: UNIX-Type -- Sockets APIs

v If you previously wrote an end-of-file character as the last character of a member, do not write

other end-of-file characters preceding it in the file. This will cause a nonsymbolic end-of-file to be

written. As a result, a compile of the member could fail.

v If you previously used the integrated file system interface to manipulate a member that contains an

end-of-file character, avoid using other interfaces (such as the Source Entry Utility or database reads

and writes) to manipulate the member. If you use other interfaces after using the integrated file

system interface, the end-of-file information will be lost.
3. QOPT File System Differences

The change and modification times of the file are updated when the file is closed.

When writing to files on volumes formatted in Universal Disk Format (UDF), byte locks on the range

being written are ignored.

4. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. Once a file is open, subsequent requests to perform operations on the file can

fail because file attributes are checked at the server on each request. If permissions on the file are

made more restrictive at the server or the file is unlinked or made unavailable by the server for

another client, your operation on an open file descriptor will fail when the local Network File System

receives these updates. The local Network File System also impacts operations that retrieve file

attributes. Recent changes at the server may not be available at your client yet, and old values may be

returned from operations (several options on the Add Mounted File System (ADDMFS) command

determine the time between refresh operations of local data).

Reading and writing to files with the Network File System relies on byte-range locking to guarantee

data integrity. To prevent data inconsistency, use the fcntl() API to get and release these locks.

5. QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If a larger buffer is passed, the error EINVAL will be

received.

6. Sockets Usage Notes

a. write() only works with sockets on which a connect() has been issued, since it does not allow the

caller to specify a destination address.

b. To broadcast on an AF_INET socket, the socket option SO_BROADCAST must be set (with a

setsockopt()).

c. When using a connection-oriented transport service, all errors except [EUNATCH] and [EUNKNOWN]

are mapped to [EPIPE] on an output operation when either of the following occurs:

v A connection that is in progress is unsuccessful.

v An established connection is broken.

To get the actual error, use getsockopt() with the SO_ERROR option, or perform an input operation

(for example, read()).
7. For the file systems that do not support large files, write() will return [EINVAL] if the starting offset

exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do

support large files, write() will return [EFBIG] if the starting offset exceeds 2GB minus 2 bytes and the

file was not opened for large file access.

8. Using this function successfully on the /dev/null or /dev/zero character special file results in a

return value of the total number of bytes requested to be written. No data is written to the character

special file. In addition, the change and modification times for the file are updated.

9. If the write exceeds the process soft file size limit, signal SIFXFSZ is issued.

Sockets APIs 203

Related Information

v The <fcntl.h> file (see Header Files for UNIX-Type Functions)

v The <unistd.h> file (see Header Files for UNIX-Type Functions)

v creat()—Create or Rewrite File

v dup()—Duplicate Open File Descriptor

v dup2()—Duplicate Open File Descriptor to Another Descriptor

v

fclear()—Write (Binary Zeros) to Descriptor

v fclear64()—Write (Binary Zeros) to Descriptor (Large File Enabled)

v “fcntl()—Perform File Control Command” on page 31—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 69—Perform I/O Control Request

v lseek()—Set File Read/Write Offset

v open()—Open File

v pread()—Read from Descriptor with Offset

v pread64()—Read from Descriptor with Offset (large file enabled)

v pwrite()—Write to Descriptor with Offset

v pwrite64()—Write to Descriptor with Offset (large file enabled)

v “read()—Read from Descriptor” on page 110—Read from Descriptor

v “readv()—Read from Descriptor Using Multiple Buffers” on page 118—Read from Descriptor Using

Multiple Buffers

v “send()—Send Data” on page 151—Send Data

v “sendmsg()—Send a Message Over a Socket” on page 154—Send Data or Descriptors or Both

v “sendto()—Send Data” on page 161—Send Data

v “writev()—Write to Descriptor Using Multiple Buffers” on page 205—Write to Descriptor Using

Multiple Buffers

Example

See Code disclaimer information for information pertaining to code examples.

The following example writes a specific number of bytes to a file:

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#define mega_string_len 1000000

main() {

 char *mega_string;

 int file_descriptor;

 int ret;

 char fn[]="write.file";

 if ((mega_string = (char*) malloc(mega_string_len)) == NULL)

 perror("malloc() error");

 else if ((file_descriptor = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 memset(mega_string, ’0’, mega_string_len);

 if ((ret = write(file_descriptor, mega_string, mega_string_len)) == -1)

 perror("write() error");

 else printf("write() wrote %d bytes\n", ret);

 if (close(file_descriptor)!= 0)

204 iSeries: UNIX-Type -- Sockets APIs

unix13.htm
unix13.htm
creat.htm
dup.htm
dup2.htm
fclear.htm
fclear64.htm
lseek.htm
open.htm
pread.htm
pread64.htm
pwrite.htm
pwrite64.htm
aboutapis.htm#CODEDISCLAIMER

perror("close() error");

 if (unlink(fn)!= 0)

 perror("unlink() error");

 }

 free(mega_string);

}

Output:

write() wrote 1000000 bytes

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

writev()—Write to Descriptor Using Multiple Buffers

 Syntax

 #include <sys/types.h>

 #include <sys/uio.h>

 int writev(int descriptor,

 struct iovec *io_vector[],

 int vector_length)

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 211.

The writev() function is used to write data to a file or socket descriptor. writev() provides a way for the

data that is going to be written to be stored in several different buffers (scatter/gather I/O).

Note: When the write completes successfully, the S_ISUID (set-user-ID) and S_ISGID (set-group-ID) bits

of the file mode will be cleared. If the write is unsuccessful, the bits are undefined.

See “write()—Write to Descriptor” on page 195 for more information related to writing to a descriptor.

Parameters

descriptor

(Input) The descriptor to which the data is to be written. The descriptor refers to either a file or a

socket.

io_vector[]

(Input) The pointer to an array of type struct iovec. struct iovec contains a sequence of pointers

to buffers in which the data to be written is stored. The structure pointed to by the io_vector

parameter is defined in <sys/uio.h>.

 struct iovec {

 void *iov_base;

 size_t iov_len;

 }

iov_base and iov_len are the only fields in iovec used by sockets. iov_base contains the pointer to a

buffer and iov_len contains the buffer length. The rest of the fields are reserved.

Sockets APIs 205

#TOP_OF_PAGE
unix.htm
aplist.htm

vector_length

(Input) The number of entries in io_vector.

Authorities

No authorization is required.

Return Value

writev() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is the number of bytes written.

Error Conditions

If writev() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

 If writing to a socket, this error code indicates one of the following:

v The destination address specified is a broadcast address and the socket option SO_BROADCAST

was not set (with a setsockopt()).

v The process does not have the appropriate privileges to the destination address. This error code

can only be returned on a socket with an address family of AF_INET and a type of SOCK_DGRAM.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file. Or this writev() request was made to a file that was

only open for reading.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

206 iSeries: UNIX-Type -- Sockets APIs

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFBIG]

 Object is too large.

 The size of the object would exceed the system allowed maximum size or the process soft file size

limit.

 The file is a regular file, nbyte is greater than 0, and the starting offset is greater than or equal to

2GB minus 2 bytes.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The file resides in a file system that does not support large files, and the starting offset exceeds

2GB minus 2 bytes.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

Sockets APIs 207

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ERESTART]

 A system call was interrupted and may be restarted.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETRUNC]

 Data was truncated on an input, output, or update operation.

[EUNKNOWN]

208 iSeries: UNIX-Type -- Sockets APIs

Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 When the descriptor refers to a socket, errno could indicate one of the following errors:

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

 This error code can only be returned on sockets that use a connectionless transport service.

[EDESTADDRREQ]

 Operation requires destination address.

 A destination address has not been associated with the socket pointed to by the fildes parameter.

This error code can only be returned on sockets that use a connectionless transport service.

[EHOSTDOWN]

 A remote host is not available.

 This error code can only be returned on sockets that use a connectionless transport service.

[EHOSTUNREACH]

 A route to the remote host is not available.

 This error code can only be returned on sockets that use a connectionless transport service.

[EINTR]

 Interrupted function call.

[EMSGSIZE]

 Message size out of range.

 The data to be sent could not be sent atomically because the size specified by nbyte is too large.

[ENETDOWN]

 The network is not currently available.

 This error code can only be returned on sockets that use a connectionless transport service.

[ENETUNREACH]

 Cannot reach the destination network.

 This error code can only be returned on sockets that use a connectionless transport service.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

[ENOTCONN]

 Requested operation requires a connection.

 This error code can only be returned on sockets that use a connection-oriented transport service.

[EPIPE]

 Broken pipe.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EWOULDBLOCK]

Sockets APIs 209

Operation would have caused the thread to be suspended.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

210 iSeries: UNIX-Type -- Sockets APIs

Usage Notes

 1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

 2. writev() only works with sockets on which a connect() has been issued, since the call does not allow

the caller to specify a destination address.

 3. writev() is an atomic operation on sockets of type SOCK_DGRAM and SOCK_RAW in that it produces one

packet of data every time it is issued. For example, a writev() to a datagram socket results in a single

datagram.

 4. To broadcast on an AF_INET socket, the socket option SO_BROADCAST must be set (with a setsockopt()).

 5. When using a connection-oriented transport service, all errors except [EUNATCH] and [EUNKNOWN] are

mapped to [EPIPE] on an output operation when either of the following occurs:

v A connection that is in progress is unsuccessful.

v An established connection is broken.
To get the actual error, use getsockopt() with the SO_ERROR option, or perform an input operation (for

example, read()).

 6. For the file systems that do not support large files, writev() will return [EINVAL] if the starting

offset exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do

support large files, writev() will return [EFBIG] if the starting offset exceeds 2GB minus 2 bytes and

the file was not opened for large file access.

 7. QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If a larger buffer is passed, the error EINVAL will be

received.

 8. QOPT File System Differences

When writing to files on volumes formatted in Universal Disk Format (UDF), byte locks on the

range being written are ignored.

 9. Using this function successfully on the dev/null or /dev/zero character special file results in a

return value of the total number of bytes requested to be written. No data is written to the character

special file. In addition, the change and modification times for the file are updated.

10. If the write exceeds the process soft file size limit, signal SIFXFSZ is issued.

Related Information

v The <fcntl.h> file (see Header Files for UNIX-Type Functions)

v The <unistd.h> file (see Header Files for UNIX-Type Functions)

v creat()—Create or Rewrite File

v dup()—Duplicate Open File Descriptor

v dup2()—Duplicate Open File Descriptor to Another Descriptor

Sockets APIs 211

unix13.htm
unix13.htm
creat.htm
dup.htm
dup2.htm

v

fclear()—Write (Binary Zeros) to Descriptor

v fclear64()—Write (Binary Zeros) to Descriptor (Large File Enabled)

v “fcntl()—Perform File Control Command” on page 31—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 69—Perform I/O Control Request

v lseek()—Set File Read/Write Offset

v open()—Open File

v “read()—Read from Descriptor” on page 110—Read from Descriptor

v “readv()—Read from Descriptor Using Multiple Buffers” on page 118—Read from Descriptor Using

Multiple Buffers

v “send()—Send Data” on page 151—Send Data

v “sendmsg()—Send a Message Over a Socket” on page 154—Send Data or Descriptors or Both

v “sendto()—Send Data” on page 161—Send Data

v “write()—Write to Descriptor” on page 195—Write to Descriptor

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Sockets Network Functions

The network functions and the Berkeley Resolver routines supported by the sockets APIs are:

v “dn_comp()—Compress Domain Name” on page 217 (Compress an expanded domain name) is used to

compress an expanded domain name.

v “dn_comp_ts64()—Compress Domain Name” on page 218 (Compress an expanded domain name) is

used to compress an expanded domain name.

v “dn_expand()—Expand Domain Name” on page 219 (Expand a compressed domain name.) is used to

expand a compressed domain name.

v “dn_find()—Search for Compressed Domain Name” on page 220 (Search for a compressed domain

name from a list of previously compressed domain names) is used to search for an expanded domain

name in a list of compressed domain names.

v “dn_find_ts64()—Search for Compressed Domain Name” on page 221 (Search for a compressed domain

name from a list of previously compressed domain names) is used to search for an expanded domain

name in a list of compressed domain names.

v “dn_skipname()—Skip over Compressed Domain Name” on page 222 (Skip over a compressed domain

name.) is used to skip over a compressed domain name in a DNS packet.

v “endhostent()—Close Host Database” on page 223 (Close the nameserver database) is used to close the

host database file.

v “endhostent_r()—Close Host Database” on page 224 (Close the nameserver database) is used to close

the host database file.

v “endnetent()—Close Network Database” on page 225 (Close the network database) is used to close the

network database file.

v “endnetent_r()—Close Network Database” on page 226 (Close the network database) is used to close

the network database file.

v “endprotoent()—Close Protocol Database” on page 228 (Close the protocol database) is used to close

the protocols database file.

v “endprotoent_r()—Close Protocol Database” on page 229 (Close the protocol database) is used to close

the protocol database file.

v “endservent()—Close Service Database” on page 230 (Close the service database) is used to close the

services database file.

212 iSeries: UNIX-Type -- Sockets APIs

fclear.htm
fclear64.htm
lseek.htm
open.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

v “endservent_r()—Close Service Database” on page 231 (Close the service database) is used to close the

service database file.

v “freeaddrinfo()—Free Address Information” on page 232 (Free Address Information) frees one or more

addrinfo structures returned by getaddrinfo(), along with any additional storage associated with those

structures.

v “gai_strerror()—Retrieve Address Information Runtime Error Message” on page 233 (Retrieve Address

Information Runtime Error Message) retrieves a text string that describes a return value received from

calling the getaddrinfo() or getnameinfo() API.

v “getaddrinfo()—Get Address Information” on page 234 (Get Address Information) translates the name

of a service location or a service name and returns a set of socket addresses and associated information

to be used in creating a socket with which to address the specified service.

v “gethostbyaddr()—Get Host Information for IP Address” on page 239 (Provide information about host

given an Internet address) is used to retrieve information about a host.

v “gethostbyaddr_r()—Get Host Information for IP Address” on page 242 (Provide information about

host given an Internet address) is used to retrieve information about a host.

v “gethostbyname()—Get Host Information for Host Name” on page 245 (Provide information about host

given a host name) is used to retrieve information about a host.

v “gethostbyname_r()—Get Host Information for Host Name” on page 248 (Provide information about

host given a host name) is used to retrieve information about a host.

v “gethostent()—Get Next Entry from Host Database” on page 251 (Get next host entry from the

nameserver database) is used to retrieve information from the host database file.

v “gethostent_r()—Get Next Entry from Host Database” on page 253 (Get next host entry from the

nameserver database) is used to retrieve information from the host database file.

v “getnameinfo()—Get Name Information for Socket Address” on page 255 (Get Name Information for

Socket Address) translates a socket address to a node name and service location.

v “getnetbyaddr()—Get Network Information for IP Address” on page 257 (Get information from the

network database about a given internet address) is used to retrieve information about a network.

v “getnetbyaddr_r()—Get Network Information for IP Address” on page 259 (Get information from the

network database about a given internet address) is used to retrieve information about a network.

v “getnetbyname()—Get Network Information for Domain Name” on page 261 (Get information from the

network database about a given domain name) is used to retrieve information about a network.

v “getnetbyname_r()—Get Network Information for Domain Name” on page 263 (Get information from

the network database about a given domain name) is used to retrieve information about a network.

v “getnetent()—Get Next Entry from Network Database” on page 264 (Get network entry from the

network database) is used to retrieve network information from the network database file.

v “getnetent_r()—Get Next Entry from Network Database” on page 266 (Get network entry from the

network database) is used to retrieve network information from the network database file.

v “getprotobyname()—Get Protocol Information for Protocol Name” on page 267 (Get information

regarding a protocol given the protocol name) is used to retrieve information about a protocol.

v “getprotobyname_r()—Get Protocol Information for Protocol Name” on page 269 (Get information

regarding a protocol given the protocol name) is used to retrieve information about a protocol.

v “getprotobynumber()—Get Protocol Information for Protocol Number” on page 271 (Get information

regarding a protocol given the protocol number) is used to retrieve information about a protocol.

v “getprotobynumber_r()—Get Protocol Information for Protocol Number” on page 272 (Get information

regarding a protocol given the protocol number) is used to retrieve information about a protocol.

v “getprotoent()—Get Next Entry from Protocol Database” on page 274 (Get next protocol entry in the

protocol data base) is used to retrieve protocol information from the protocol database file.

v “getprotoent_r()—Get Next Entry from Protocol Database” on page 275 (Get next protocol entry in the

protocol data base) is used to retrieve protocol information from the protocol database file.

Sockets APIs 213

v “getservbyname()—Get Port Number for Service Name” on page 277 (Get port number for a given

service name.) is used to retrieve information about services (the protocol being used by the service

and the port number assigned for the service).

v “getservbyname_r()—Get Port Number for Service Name” on page 279 (Get port number for a given

service name.) is used to retrieve information about services: the protocol being used by the service

and the port number assigned for the service.

v “getservbyport()—Get Service Name for Port Number” on page 281 (Get service name given a port

number) is used to retrieve information about a service assigned to a port number.

v “getservbyport_r()—Get Service Name for Port Number” on page 283 (Get service name given a port

number) is used to retrieve information about a service assigned to a port number.

v “getservent()—Get Next Entry from Service Database” on page 285 (Get next service entry from the

service database) is used to retrieve information about services (the protocol being used by the service

and the port number assigned for the service).

v “getservent_r()—Get Next Entry from Service Database” on page 286 (Get next service entry from the

service database) is used to retrieve information about services: the protocol being used by the service

and the port number assigned for the service.

v “hstrerror()—Retrieve Resolver Error Message” on page 288 (Retrieve resolver error message.) is used

to retrieve the text string that describes a resolver h_errno value.

v “htonl()—Convert Long Integer to Network Byte Order” on page 289 (Convert a long (4 byte) integer

from local host byte order to the network byte order) is used to convert a long (4-byte) integer from

the local host byte order to standard network byte order.

v “htons()—Convert Short Integer to Network Byte Order” on page 290 (Convert a short (2 byte) integer

from local host byte order to the network byte order) is used to convert a short (2-byte) integer from

the local host byte order to standard network byte order.

v “inet_addr()—Translate Full Address to 32-bit IP Address” on page 291 (Translate the full address from

dotted decimal format to a 32-bit Internet address) is used to translate an Internet address from dotted

decimal format to a 32-bit IP address.

v “inet_lnaof()—Separate Local Portion of IP Address” on page 293 (Separate the local portion of an

Internet address.) is used to extract the local host portion of an IP address.

v “inet_makeaddr()—Combine Network Portion and Host Portion to Make IP Address” on page 294

(Formulate an Internet address that combines a network address with the local address of a host.) is

used to generate a 32-bit IP address from the 32-bit network IP address and the local address of the

host.

v “inet_netof()—Separate Network Portion of IP Address” on page 296 (Separate the network portion of

an Internet address.) is used to extract the network portion of an IP address.

v “inet_network()—Translate Network Portion of Address to 32-bit IP Address” on page 297 (Translate

the network portion of the address from dotted decimal format to a 32-bit Internet address) is used to

translate an Internet address from dotted decimal format to a 32-bit network IP address, in which the

host part of the IP address is set to zeros.

v “inet_ntoa()—Translate IP Address to Dotted Decimal Format” on page 299 (Translate from 32-bit

Internet address to a dotted decimal format) is used to translate an Internet address from a 32-bit IP

address to dotted decimal format.

v “inet_ntoa_r()—Translate IP Address to Dotted Decimal Format” on page 300 (Translate from 32-bit

Internet address to a dotted decimal format) is used to translate an Internet address from a 32-bit IP

address to dotted decimal format.

v “inet_ntop()—Convert IPv4 and IPv6 Addresses Between Binary and Text Form” on page 301 (Convert

IPv4 and IPv6 Addresses Between Binary and Text Form) converts a numeric address into a text string

suitable for presentation.

v “inet_pton()—Convert IPv4 and IPv6 Addresses Between Text and Binary Form” on page 302 (Convert

IPv4 and IPv6 Addresses Between Text and Binary Form) converts an address in its standard text

presentation form into its numeric binary form.

214 iSeries: UNIX-Type -- Sockets APIs

v “ns_addr()—Translate Network Services Address to 12-byte Address” on page 304 (Translate a network

services address from human readable format to a 12-byte hexadecimal address) is used to translate a

network services address from human readable format to a 12-byte hexadecimal address.

v “ns_ntoa()—Translate Network Services Address from 12-byte Address/h2>” on page 306 (Translate a

network services address from a 12-byte address to a human readable format) is used to translate a

network services address from a 12-byte address to a human readable format.

v “ns_ntoa_r() — Translate Network Services Address from 12-byte Address” on page 307 (Translate a

network services address from a 12-byte address to a human readable format) is used to translate a

network services address from a 12-byte address to a human readable format.

v “ntohl()—Convert Long Integer to Host Byte Order” on page 308 (Convert a long (4 byte) integer from

network byte order to the local host byte order) is used to convert a long (4-byte) integer from the

standard network byte order to the local host byte order.

v “ntohs()—Convert Short Integer to Host Byte Order” on page 309 (Convert a short (2 byte) integer

from network byte order to the local host byte order) is used to convert a short (2-byte) integer from

the standard network byte order to the local host byte order.

v “res_close()—Close Socket and Reset _res Structure” on page 310 (Close a socket and reset the _res

structure.) is used to reset the _res structure to the beginning defaults and close a socket that is opened

as a result of the RES_STAYOPEN flag.

v “res_findzonecut()—Find the Enclosing Zone and Servers” on page 311 (Find the enclosing zone and

servers) queries name servers until it finds the enclosing zone and its master name servers for the

specified domain name.

v “res_hostalias()—Retrieve the host alias” on page 314 (Retrieve the host alias) looks up the specified

name in the host aliases file specified by the environment variable HOSTALIASES.

v “res_init()—Initialize _res Structure” on page 316 (Initialize _res structure for domain name server.) is

used to initialize the _res structure for name resolution.

v “res_mkquery()—Place Domain Query in Buffer” on page 320 (Form a domain name query and place it

in a buffer in memory.) is used to make standard query messages (DNS packets) for name servers.

v “res_nclose()—Close Socket and Reset res Structure” on page 322 (Close socket and reset res structure)

is used to reset the _res structure to the beginning defaults and close a socket that is opened as a result

of the RES_STAYOPEN flag.

v “res_ninit()—Initialize res Structure” on page 323 (Initialize res structure) is used to initialize the _res

structure for name resolution.

v “res_nisourserver()—Check Server Address” on page 327 (Check server address) looks up the specified

server address in the ns_addr_list[] of the specified res structure.

v “res_nmkquery()—Place Domain Query in Buffer” on page 329 (Place domain query in buffer) is used

to make standard query messages (DNS packets) for name servers.

v “res_nmkupdate()—Construct an Update Packet” on page 330 (Construct an update packet) builds a

dynamic update packet from the linked list of update records.

v “res_nquery()—Send Domain Query” on page 332 (Send domain query) is used to interface to the

server query mechanism.

v “res_nquerydomain()—Send 2 String Domain Query” on page 333 (Send 2-string domain query) is

used to interface to the server query mechanism.

v “res_nsearch()—Search for Domain Name” on page 334 (Search for domain name) is used to make a

query message and wait for a response.

v “res_nsend()—Send Buffered Domain Query or Update” on page 335 (Send buffered domain query or

update) is used to send a query or update message to a name server and retrieve a response.

v “res_nsendsigned()—Send Authenticated Domain Query or Update” on page 336 (Send authenticated

domain query or update) is similar to res_nsend() but it uses the specified key to create a transaction

signature (TSIG) to sign the query or update packet and to authenticate the response.

Sockets APIs 215

v “res_nupdate()—Build and Send Dynamic Updates” on page 339 (Build and send dynamic updates)

separates the linked list of update records into groups so that all records in a group will belong to a

single zone on the nameserver.

v “res_query()—Send Domain Query” on page 342 (Form a domain name query and send it to the

domain name server.) is used to interface to the server query mechanism.

v “res_search()—Search for Domain Name” on page 344 (Search for a domain name from a list of

domain names) is used to make a query message and wait for a response.

v “res_send()—Send Buffered Domain Query or Update” on page 346 (Send the query formed in

res_mkquery to the domain name server.) is used to send a query or update message to a name server

and retrieve a response.

v “res_xlate()—Translate DNS Packets” on page 349 (Translate standard DNS packets between ASCII and

EBCDIC) is used to translate a standard DNS packet between ASCII and EBCDIC.

v “sethostent()—Open Host Database” on page 351 (Open the nameserver database) is used to prepare

for sequential access to the host database file. sethostent() opens the file and repositions the file marker

to the beginning of the file.

v “sethostent_r()—Open Host Database” on page 352 (Open the nameserver database) is used in

preparation for sequential access to the host database file.

v “setnetent()—Open Network Database” on page 354 (Open the network database) is used to prepare

for sequential access to the network database file.

v “setnetent_r()—Open Network Database” on page 355 (Open the network database) is used in

preparation for sequential access to the network database file.

v “setprotoent()—Open Protocol Database” on page 356 (Open the protocol database) is used to prepare

for sequential access to the protocol database file.

v “setprotoent_r()—Open Protocol Database” on page 357 (Open the protocol database) is used in

preparation for sequential access to the protocol database file.

v “setservent()—Open Service Database” on page 358 (Open the service database) is used to prepare for

sequential access to the service database file.

v “setservent_r()—Open Service Database” on page 359 (Open the service database) is used in

preparation for sequential access to the service database file.

v “_getlong()—Get Long Byte Quantities” on page 361 (Get long byte quantities from a byte stream) is

used to retrieve an unsigned long byte quantity.

v “_getshort()—Get Short Byte Quantities” on page 361 (Get short byte quantities from a byte stream.) is

used to retrieve an unsigned short byte quantity.

v “_putlong()—Put Long Byte Quantities” on page 362 (Put long byte quantities into a byte stream.) is

used to put an unsigned long byte quantity into a byte stream.

v “_putshort()—Put Short Byte Quantities” on page 363 (Put short byte quantities into a byte stream.) is

used to put an unsigned short byte quantity into a byte stream.

1 IBM(R) addition to the Berkeley Resolver Routines

Note: These functions use header (include) files from the library QSYSINC, which is optionally

installable. Make sure QSYSINC is installed on your system before using any of the functions.

 Top | UNIX-Type APIs | APIs by category

216 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

dn_comp()—Compress Domain Name

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int dn_comp(unsigned char *expanded_domain_name,

 unsigned char *compressed_domain_name,

 int answer_buffer_length,

 unsigned char **domain_name_pointers,

 unsigned char **last_domain_name)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The dn_comp() function is used to compress an expanded domain name.

Parameters

expanded_domain_name

(Input) The pointer to the expanded domain name.

compressed_domain_name

(Output) The pointer to where the compressed domain name will be stored.

answer_buffer_length

(Input) The size of the compressed_domain_name buffer.

domain_name_pointers

(Input) The pointer to an array of pointers to previously compressed domain names in the

current message.

last_domain_name

(Input) The pointer to the end of the array specified by domain_name_pointers.

Return Value

dn_comp() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is the size of the compressed domain name.

dn_comp() compresses the domain name pointed to by expanded_domain_name. The result is placed in

compressed_domain_name.

Error Conditions

When the dn_comp() function fails, it does not set specific errno or h_errno values. An error occurs under

the following conditions:

v NULL pointer(s) passed to the function.
v Invalid pointer(s) passed to the function.
v Compressed_domain_name too small for the compressed domain name.

Sockets APIs 217

Usage Notes

1. domain_name_pointers[0] points to the beginning of the DNS packet. The list of pointers ends with a

NULL pointer. After domain_name_pointers[0] is initialized to the beginning of the packet and

domain_name_pointers[1] is initialized to NULL, dn_comp() updates the list each time it is called.

2. dn_comp() calls dn_find() to attempt to locate the different parts of the domain name being

compressed.

3. dn_comp() expects EBCDIC data as input. The output from dn_comp() is also EBCDIC.

Related Information

v “dn_expand()—Expand Domain Name” on page 219—Expand Domain Name

v “dn_find()—Search for Compressed Domain Name” on page 220-Search for Compressed Domain Name

v “dn_skipname()—Skip over Compressed Domain Name” on page 222—Skip over Compressed Domain

Name

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

dn_comp_ts64()—Compress Domain Name

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int dn_comp_ts64(unsigned char * __ptr64 expanded_domain_name,

 unsigned char * __ptr64 compressed_domain_name,

 int answer_buffer_length,

 unsigned char * __ptr64 * __ptr64 domain_name_pointers,

 unsigned char * __ptr64 * __ptr64 last_domain_name)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The dn_comp_ts64() function is used to compress an expanded domain name. dn_comp_ts64() differs from

dn_comp() in that dn_comp_ts64() accepts 8-byte teraspace pointers.

For a discussion of the parameters, authorities required, return values, and other related information, see

“dn_comp()—Compress Domain Name” on page 217—Compress Domain Name.

Usage Notes

All of the usage notes for “dn_comp()—Compress Domain Name” on page 217—Compress Domain

Name apply to dn_comp_ts64().

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

218 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

dn_expand()—Expand Domain Name

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int dn_expand(unsigned char *message_pointer,

 unsigned char *end_of_message,

 unsigned char *compressed_domain_name,

 unsigned char *expanded_domain_name,

 int answer_buffer_length)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The dn_expand() function is used to expand a compressed domain name.

Parameters

message_pointer

(Input) The pointer to the beginning of a DNS packet.

end_of_message

(Input) The pointer to the end of the DNS packet.

compressed_domain_name

(Input) The pointer to the compressed domain name within the DNS packet.

expanded_domain_name

(Output) The pointer to the expanded domain name.

answer_buffer_length

(Input) The size of the expanded_domain_name buffer.

Return Value

dn_expand() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is the size of the compressed domain name.

The dn_expand() routine expands the domain name pointed to by compressed_domain_name. The result is

placed in expanded_domain_name.

Error Conditions

When the dn_expand() function fails, it does not set specific errno or h_errno values. An error occurs under

the following conditions:

v NULL pointer(s) passed to the function.
v Invalid pointer(s) passed to the function.
v expanded_domain_name too small for the expanded domain name.
v end_of_message reached before the domain name could be expanded.

Sockets APIs 219

Usage Notes

1. The compressed domain name size is returned rather than the expanded domain name size because it

is used to parse through the DNS packet.

2. dn_expand() uses end_of_message to insure that it doesn’t run past the end of the DNS packet.

3. dn_expand() expects EBCDIC data as input. The output from dn_expand() is also EBCDIC.

Related Information

v “dn_comp()—Compress Domain Name” on page 217—Compress Domain Name

v “dn_find()—Search for Compressed Domain Name”—Search for Compressed Domain Name

v “dn_skipname()—Skip over Compressed Domain Name” on page 222—Skip over Compressed Domain

Name

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

dn_find()—Search for Compressed Domain Name

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int dn_find(unsigned char *expanded_domain_name,

 unsigned char *message_pointer,

 unsigned char **domain_name_pointers,

 unsigned char **last_domain_name)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The dn_find() function is used to search for an expanded domain name in a list of compressed domain

names.

Parameters

expanded_domain_name

(Input) The pointer to the expanded domain name.

message_pointer_name

(Input) A pointer to the DNS packet that contains the compressed names pointed to by the

elements of domain_name_pointers.

domain_name_pointers

(Input) The pointer to an array of pointers to previously compressed names in the current

message.

last_domain_name

(Input) The pointer to the end of the array of domain_name_pointers.

220 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Return Value

dn_find() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is an offset into the message_pointer where domain name was found.

Error Conditions

When the dn_find() function fails, it does not set specific errno or h_errno values. An error occurs under

the following conditions:

v NULL pointer(s) passed to the function.
v Invalid pointer(s) passed to the function.
v Expanded domain name not found in the DNS packet.

Usage Notes

1. dn_find() locates an expanded name in an array of previously compressed names.

2. Usually dn_find() is called from dn_comp() but can be called directly.

3. dn_find() expects EBCDIC data as input.

Related Information

v “dn_expand()—Expand Domain Name” on page 219—Expand Domain Name

v “dn_comp()—Compress Domain Name” on page 217—Compress Domain Name

v “dn_skipname()—Skip over Compressed Domain Name” on page 222—Skip over Compressed Domain

Name

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

dn_find_ts64()—Search for Compressed Domain Name

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int dn_find_ts64(unsigned char * __ptr64 expanded_domain_name,

 unsigned char * __ptr64 message_pointer,

 unsigned char * __ptr64 * __ptr64 domain_name_pointers,

 unsigned char * __ptr64 * __ptr64 last_domain_name)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The dn_find() function is used to search for an expanded domain name in a list of compressed domain

names. dn_find_ts64() differs from dn_find() in that dn_find_ts64() accepts 8-byte teraspace pointers.

Sockets APIs 221

#TOP_OF_PAGE
unix.htm
aplist.htm

For a discussion of the parameters, authorities required, return values, and other related information, see

“dn_find()—Search for Compressed Domain Name” on page 220—Search for Compressed Domain Name.

Usage Notes

All of the usage notes for “dn_find()—Search for Compressed Domain Name” on page 220—Compress

Domain Name apply to dn_find_ts64().

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

dn_skipname()—Skip over Compressed Domain Name

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int dn_skipname(unsigned char *compressed_domain_name,

 unsigned char *end_of_message)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The dn_skipname() function is used to skip over a compressed domain name in a DNS packet.

Parameters

compressed_domain_name

(Input) A pointer to a compressed domain name.

end_of_message

(Input) The pointer to the end of the message string.

Return Value

dn_skipname() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is the size of compressed_domain_name.

Error Conditions

When the dn_skipname() function fails, it does not set specific errno or h_errno values. An error occurs

under the following conditions:

v NULL pointer(s) passed to the function.
v Invalid pointer(s) passed to the function.
v end_of_message reached before the end of the compressed domain name.

222 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Usage Notes

1. dn_skipname() skips over a compressed domain name in a DNS packet and returns the size of

compressed_domain_name.

2. dn_skipname() expects EBCDIC data as input.

Related Information

v “dn_expand()—Expand Domain Name” on page 219—Expand Domain Name

v “dn_find()—Search for Compressed Domain Name” on page 220—Search for Compressed Domain

Name

v “dn_comp()—Compress Domain Name” on page 217—Compress Domain Name

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

endhostent()—Close Host Database

 Syntax

 #include <netdb.h>

 void endhostent()

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes.”

The endhostent() function is used to close the host database file. The file is opened by those functions that

retrieve information about a host (for example, gethostent()).

Authorities

No authorization is required.

Usage Notes

1. When the _XOPEN_SOURCE macro defined to the value 520 or greater, the host file is always closed.

When the _XOPEN_SOURCE macro is not so defined, the host file is not closed if a sethostent() with a

nonzero parameter value was previously completed.

2. iSeries Navigator or the following CL commands can be used to access the host database file:

v ADDTCPHTE (Add TCP/IP Host Table Entry)

v RMVTCPHTE (Remove TCP/IP Host Table Entry)

v CHGTCPHTE (Change TCP/IP Host Table Entry)

v RNMTCPHTE (Rename TCP/IP Host Table Entry)

v MRGTCPHT (Merge TCP/IP Host Tables)
3. Do not use the endhostent() function in a multithreaded environment. See the multithread alternative

endhostent_r() function.
4. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the endhostent() API is mapped to qso_endhostent98().

Sockets APIs 223

#TOP_OF_PAGE
unix.htm
aplist.htm

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “gethostent()—Get Next Entry from Host Database” on page 251—Get Next Entry from Host Database

v “gethostbyname()—Get Host Information for Host Name” on page 245—Get Host Information for Host

Name

v “gethostbyaddr()—Get Host Information for IP Address” on page 239—Get Host Information for IP

Address

v “sethostname()—Set Host Name” on page 175—Open Host Database

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

endhostent_r()—Close Host Database

 Syntax

 #include <netdb.h>

 void endhostent_r(struct hostent_data

 *hostent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The endhostent_r() function is used to close the host database file. The file is opened by those functions

that retrieve information about a host (for example, gethostent_r()).

Parameters

struct hostent_data *hostent_data_struct_addr (input)

Specifies the pointer to the hostent_data structure, which is used to pass and preserve results

between function calls. The field host_control_blk in the hostent_data structure must be initialized

with hexadecimal zeros before its initial use. If compatibility with other platforms is required,

then the entire hostent_data structure must be initialized to hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The endhostent_r() function returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct hostent_datadenoted by hostent_data_struct_addr is defined in <netdb.h>.

224 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Error Conditions

 When the endhostent_r() function fails, errno can be set to:

[EINVAL]

 The hostent_data structure was not properly initialized to hexadecimal zeros before initial use.

For corrective action, see the description for structure hostent_data.

Usage Notes

1. When the _XOPEN_SOURCE macro defined to the value 520 or greater, the host file is always closed.

When the _XOPEN_SOURCE macro is not so defined, the host file will not be closed if a sethostent_r()

call with a nonzero parameter value was previously done.

2. The iSeries Navigator or the following CL commands can be used to access the host database file:

v ADDTCPHTE (Add TCP/IP Host Table Entry)

v RMVTCPHTE (Remove TCP/IP Host Table Entry)

v CHGTCPHTE (Change TCP/IP Host Table Entry)

v RNMTCPHTE (Rename TCP/IP Host Table Entry)

v MRGTCPHT (Merge TCP/IP Host Tables)
3. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the endhostent_r() API is mapped to qso_endhostent_r98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “gethostbyaddr_r()—Get Host Information for IP Address” on page 242—Get Host Information for IP

Address

v “gethostbyname_r()—Get Host Information for Host Name” on page 248—Get Host Information for

Host Name

v “gethostent_r()—Get Next Entry from Host Database” on page 253—Get Next Entry from Host

Database

v “sethostent_r()—Open Host Database” on page 352—Open Host Database

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

endnetent()—Close Network Database

 Syntax

 #include <netdb.h>

 void endnetent()

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 226.

Sockets APIs 225

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

The endnetent() function is used to close the network database file. The file is opened by those functions

that retrieve information about a network (for example, getnetent()).

Usage Notes

1. When the _XOPEN_SOURCE macro defined to the value 520 or greater, the network file is always

closed. When the _XOPEN_SOURCE macro is not so defined, the network file is not closed if a

setnetent() with a nonzero parameter value was previously completed.

2. The iSeries Navigator or the following CL commands can be used to access the network database file:

v WRKNETTBLE (Work with Network Table Entries)

v ADDNETTBLE (Add Network Table Entry)

v RMVNETTBLE (Remove Network Table Entry)
3. Do not use the endnetent() function in a multithreaded environment. See the multithread alternative

endnetent_r() function.

4. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the endnetent() API is mapped to qso_endnetent98().

Authorities

No authorization is required.

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getnetent()—Get Next Entry from Network Database” on page 264—Get Next Entry from Network

Database

v “setnetent()—Open Network Database” on page 354—Open Network Database

v “getnetbyaddr()—Get Network Information for IP Address” on page 257-Get Network Information for

IP Address

v “getnetbyname()—Get Network Information for Domain Name” on page 261—Get Network

Information for Domain Name

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

endnetent_r()—Close Network Database

 Syntax

 #include <netdb.h>

 int endnetent_r(struct netent_data

 *netent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The endnetent_r() function is used to close the network database file. The file is opened by those functions

that retrieve information about a network (for example, getnetent_r()).

226 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

struct netent_data *netent_data_struct_addr (input)

Specifies the pointer to the netent_data structure, which is used to pass and preserve results

between function calls. The field net_control_blk in the netent_data structure must be initialized

with hexadecimal zeros before its initial use. If compatibility with other platforms is required,

then the entire netent_data structure must be initialized with hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The endnetent_r() function returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct netent_datadenoted by netent_data_struct_addr is defined in <netdb.h>.

Error Conditions

 When the endnetent_r() function fails, errno can be set to:

[EINVAL]

 The netent_data structure was not properly initialized to hexadecimal zeros before initial use. For

corrective action, see the description for structure netent_data.

Usage Notes

1. When the _XOPEN_SOURCE macro defined to the value 520 or greater, the network file is always

closed. When the _XOPEN_SOURCE macro is not so defined, the network file will not be closed if a

setnetent_r() call with a nonzero parameter value was previously done.

2. The iSeries Navigator or the following CL commands can be used to access the network database file:

v WRKNETTBLE (Work with Network Table Entries)

v ADDNETTBLE (Add Network Table Entry)

v RMVNETTBLE (Remove Network Table Entry)
3. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the endnetent_r() API is mapped toqso_endnetent_r98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getnetent_r()—Get Next Entry from Network Database” on page 266—Get Next Entry from Network

Database

v “getnetbyaddr_r()—Get Network Information for IP Address” on page 259—Get Network Information

for IP Address

v “getnetbyname_r()—Get Network Information for Domain Name” on page 263—Get Network

Information for Domain Name

v “setnetent_r()—Open Network Database” on page 355—Open Network Database

Sockets APIs 227

_xopen_source.htm

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

endprotoent()—Close Protocol Database

 Syntax

 #include <netdb.h>

 void endprotoent()

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes.”

The endprotoent() function is used to close the protocols database file. The file is opened by those

functions that retrieve information about a protocol (for example, getprotoent()).

Authorities

No authorization is required.

Usage Notes

1. When the _XOPEN_SOURCE macro defined to the value 520 or greater, the protocols file is always

closed. When the _XOPEN_SOURCE macro is not so defined, the protocols file is not closed if a

setprotoent() with a nonzero parameter value was previously completed.

2. The iSeries Navigator or the following CL commands can be used to access the protocol database file:

v WRKPCLTBLE (Work with Protocol Table Entries)

v ADDPCLTBLE (Add Protocol Table Entry)

v RMVPCLTBLE (Remove Protocol Table Entry)
3. Do not use the endprotoent() function in a multithreaded environment. See the multithread alternative

endprotoent_r() function.

4. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the endprotoent() API is mapped to qso_endprotoent98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getprotoent()—Get Next Entry from Protocol Database” on page 274—Get Next Entry from Protocol

Database

v “setprotoent()—Open Protocol Database” on page 356—Open Protocol Database

v “getprotobyname()—Get Protocol Information for Protocol Name” on page 267—Get Protocol

Information for Protocol Name

v “getprotobynumber()—Get Protocol Information for Protocol Number” on page 271—Get Protocol

Information for Protocol Number

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

228 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

endprotoent_r()—Close Protocol Database

 Syntax

 #include <netdb.h>

 int endprotoent_r(struct protoent_data

 *protoent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The endprotoent_r() function is used to close the protocol database file. The file is opened by those

functions that retrieve information about a protocol (for example, getprotoent_r()).

Parameters

struct protoent_data *protoent_data_struct_addr (input)

Specifies the pointer to the protoent_data structure, which is used to pass and preserve results

between function calls. The field proto_control_blk must be initialized with hexadecimal zeros

before its initial use. If compatibility with other platforms is required, then the entire

protoent_data structure must be initialized with hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The endprotoent_r() function returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct protoent_data denoted by protoent_data_struct_addr is defined in <netdb.h>.

Error Conditions

When the endprotoent_r() function fails, errno can be set to:

[EINVAL]

 The protoent_data structure was not properly initialized with hexadecimal zeros before initial use.

For corrective action, see the description for structure protoent_data.

Usage Notes

1. When the _XOPEN_SOURCE macro defined to the value 520 or greater, the protocols file is always

closed. When the _XOPEN_SOURCE macro is not so defined, the protocols file will not be closed if a

setprotoent_r() call with a non-zero parameter value was previously done.

2. The iSeries Navigator or the following CL commands can be used to access the protocol database file:

v WRKPCLTBLE (Work with Protocol Table Entries)

Sockets APIs 229

v ADDPCLTBLE (Add Protocol Table Entry)

v RMVPCLTBLE (Remove Protocol Table Entry)
3. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the endprotoent_r() API is mapped to qso_endprotoent_r98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getprotobynumber_r()—Get Protocol Information for Protocol Number” on page 272—Get Protocol

v “getprotobyname_r()—Get Protocol Information for Protocol Name” on page 269—Get Protocol

Information for Protocol Name

v “getprotoent_r()—Get Next Entry from Protocol Database” on page 275—Get Next Entry from Protocol

Database

v “setprotoent_r()—Open Protocol Database” on page 357—Open Protocol Database

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

endservent()—Close Service Database

 Syntax

 #include <netdb.h>

 void endservent()

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes.”

The endservent() function is used to close the services database file. The file is opened by those functions

that retrieve information about services (for example, getservent()).

Authorities

No authorization is required.

Usage Notes

1. When the _XOPEN_SOURCE macro defined to the value 520 or greater, the services file is always

closed. When the _XOPEN_SOURCE macro is not so defined, the services file is not closed if a

setservent() with a nonzero parameter value was previously completed.

2. The iSeries Navigator or the following CL commands can be used to access the services database file:

v WRKSRVTBLE (Work with Service Table Entries)

v ADDSRVTBLE (Add Service Table Entry)

v RMVSRVTBLE (Remove Service Table Entry)
3. Do not use the endservent() function in a multithreaded environment. See the multithread alternative

endservent_r() function.

230 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

4. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the endservent() API is mapped to qso_endservent98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getservent()—Get Next Entry from Service Database” on page 285—Get Next Entry from Service

Database

v “setservent()—Open Service Database” on page 358—Open Service Database

v “getservbyname()—Get Port Number for Service Name” on page 277—Get Port Number for Service

Name

v “getservbyport()—Get Service Name for Port Number” on page 281—Get Service Name for Port

Number

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

endservent_r()—Close Service Database

 Syntax

 #include <netdb.h>

 int endservent_r(struct servent_data

 *servent_data_struct_addr)

 Service Program Name: QSOSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The endservent_r() function is used to close the service database file. The file is opened by those functions

that retrieve information about services (for example, getservent_r()).

Parameters

struct servent_data *servent_data_struct_addr (input)

Specifies the pointer to the servent_data structure, which is used to pass and preserve results

between function calls. The field serve_control_blk in the servent_data structure must be

initialized with hexadecimal zeros before its initial use. If compatibility with other platforms is

required, then the entire servent_data structure must initialized with hexadecimal zeros before

initial use.

Authorities

No authorization is required.

Return Value

The endservent_r() function returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

Sockets APIs 231

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

The struct servent_datadenoted by servent_data_struct_addr is defined in <netdb.h>.

Error Conditions

 When the endservent_r() function fails, errno can be set to:

[EINVAL]

 The servent_data structure was not properly initialized with hexadecimal zeros before initial use.

For corrective action,see the description for structure servent_data.

Usage Notes

1. When the _XOPEN_SOURCE macro defined to the value 520 or greater, the services file is always

closed. When the _XOPEN_SOURCE macro is not so defined, the services file will not be closed if a

setservent_r() call with a non-zero parameter value was previously done.

2. The iSeries Navigator or the following CL commands can be used to access the services database file:

v WRKSRVTBLE (Work with Service Table Entries)

v ADDSRVTBLE (Add Service Table Entry)

v RMVSRVTBLE (Remove Service Table Entry)
3. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the endservent_r() API is mapped to qso_endservent_r98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getservbyname_r()—Get Port Number for Service Name” on page 279—Get Port Number for Service

Name

v “getservbyport_r()—Get Service Name for Port Number” on page 283—Get Service Name for Port

Number

v “getservent_r()—Get Next Entry from Service Database” on page 286—Get Next Entry from Service

Database

v “setservent_r()—Open Service Database” on page 359—Open Service Database

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

freeaddrinfo()—Free Address Information

 Syntax

 #include <sys/socket.h>

 #include <netdb.h>

 void freeaddrinfo(struct addrinfo *ai);

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

232 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

The freeaddrinfo() function frees one or more addrinfo structures returned by “getaddrinfo()—Get

Address Information” on page 234, along with any additional storage associated with those structures. If

the ai_next field of the structure is not null, the entire list of structures is freed.

Parameters

ai (Input) The pointer to a struct addrinfo that was returned by “getaddrinfo()—Get Address

Information” on page 234.

 The structure struct addrinfo is defined in <netdb.h>.

 struct addrinfo {

 int ai_flags; /* AI_PASSIVE, AI_CANONNAME, AI_NUMERICHOST, .. */

 int ai_family; /* PF_xxx */

 int ai_socktype; /* SOCK_xxx */

 int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */

 socklen_t ai_addrlen; /* length of ai_addr */

 char *ai_canonname; /* canonical name for nodename */

 struct sockaddr *ai_addr; /* binary address */

 struct addrinfo *ai_next; /* next structure in linked list */

 };

Authorities

No authorization is required.

Usage Notes

1. The freeaddrinfo() API supports the freeing of arbitrary sublists of an addrinfo list originally returned

by “getaddrinfo()—Get Address Information” on page 234.

Related Information

v “getaddrinfo()—Get Address Information” on page 234—Get Address Information

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

gai_strerror()—Retrieve Address Information Runtime Error Message

 Syntax

 #include <sys/socket.h>

 #include <netdb.h>

 char *gai_strerror(int ecode);

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

Sockets APIs 233

#TOP_OF_PAGE
unix.htm
aplist.htm

The gai_strerror() function retrieves a text string that describes a return value received from calling the

“getaddrinfo()—Get Address Information” or “getnameinfo()—Get Name Information for Socket

Address” on page 255 API.

Parameters

ecode (Input) The return value received from “getaddrinfo()—Get Address Information” or

“getnameinfo()—Get Name Information for Socket Address” on page 255.

Authorities

No authorization is required.

Return Value

gai_strerror() returns a pointer to the return value text.

Usage Notes

1. gai_strerror() returns a pointer to the string. The null-terminated string is stored in the CCSID of the

job. If the job is 65535 and the string is something other than EBCDIC single byte or EBCDIC mixed,

the text is converted to the default job CCSID.
2. If an ecode is specified for which there is no corresponding description, an Unknown Error string is

returned.
3. The null-terminated string addressed by the pointer returned is overlayed by subsequent invocations

of the gai_strerror() API from within the same thread.

Related Information

v “getaddrinfo()—Get Address Information”—Get Address Information

v “getnameinfo()—Get Name Information for Socket Address” on page 255—Get Name Information for

Socket Address

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

getaddrinfo()—Get Address Information

 Syntax

 #include <sys/socket.h>

 #include <netdb.h>

 int getaddrinfo(const char *nodename, const char *servname,

 const struct addrinfo *hints,

 struct addrinfo **res);

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

234 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

The getaddrinfo() function translates the name of a service location (for example, a host name) and/or a

service name and returns a set of socket addresses and associated information to be used in creating a

socket with which to address the specified service.

Parameters

The nodename and servname parameters are either null pointers or pointers to null-terminated strings. One

or both of these two parameters must be a non-null pointer.

The format of a valid name depends on the protocol family or families. If a specific family is not given

and the name could be interpreted as valid within multiple supported families, the implementation will

attempt to resolve the name in all supported families and, in the absence of errors, one or more results

shall be returned.

nodename

(Input) The pointer to the null-terminated character string that contains the descriptive name or

address string for which the address information is to be retrieved. If the servname parameter is

null, a nodename must be specified and the requested network-level address will be returned. If

the nodename parameter is null, a servname must be specified and the requested service location

will be assumed to be local to the caller. If the specified address family is AF_INET, AF_INET6, or

AF_UNSPEC, valid descriptive names include host names. If the specified address family is

AF_INET, AF_INET6, or AF_UNSPEC, the permissable address string formats for the nodename

parameter are specified as defined in “inet_pton()—Convert IPv4 and IPv6 Addresses Between

Text and Binary Form” on page 302

servname

(Input) The pointer to the null-terminated character string that contains the descriptive name or

numeric representation suitable for use with the address family or families for which the

requested service information is to be retrieved. If nodename is not null, the requested service

location is named by nodename; otherwise, the requested service location is local to the caller. If

the specified address family is AF_INET, AF_INET6, or AF_UNSPEC, the service can be specified

as a string specifying a decimal port number.

hints
 (Input) The pointer to a struct addrinfo. If the parameter hints is not null, it refers to a structure

containing input values that may direct the operation by providing options and by limiting the

returned information to a specific socket type, address family and/or protocol. In this hints

structure every member other than ai_flags, ai_family, ai_socktype and ai_protocol must be zero or a

null pointer. If hints is a null pointer, the behavior will be as if it referred to a structure

containing the value zero for the ai_flags, ai_socktype and ai_protocol fields, and AF_UNSPEC for

the ai_family field.

 The structure struct addrinfo is defined in <netdb.h>.

 struct addrinfo {

 int ai_flags; /* AI_PASSIVE, AI_CANONNAME, AI_NUMERICHOST, .. */

 int ai_family; /* PF_xxx */

 int ai_socktype; /* SOCK_xxx */

 int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPv6 */

 socklen_t ai_addrlen; /* length of ai_addr */

 char *ai_canonname; /* canonical name for nodename */

 struct sockaddr *ai_addr; /* binary address */

 struct addrinfo *ai_next; /* next structure in linked list */

 };

A value of AF_UNSPEC for ai_family means that the caller will accept any protocol family. A

value of zero for ai_socktype means that the caller will accept any socket type. A value of zero for

ai_protocol means that the caller will accept any protocol.

 If the caller handles only IPv4 and not IPv6, then the ai_family member of the hints structure

should be set to PF_INET when getaddrinfo() is called.

Sockets APIs 235

If the caller handles only TCP and not UDP, for example, then the ai_protocol member of the hints

structure should be set to IPPROTO_TCP when getaddrinfo() is called.

 The ai_flags field to which hints parameter points must have the value zero or be the bitwise OR

of one or more of the values AI_PASSIVE, AI_CANONNAME, AI_NUMERICHOST,

AI_NUMERICSERV, AI_V4MAPPED, AI_ALL, and AI_ADDRCONFIG.

 The AI_PASSIVE flag in the ai_flags member of the hints structure specifies how to fill in the IP

address portion of the socket address structure. If the AI_PASSIVE flag is specified, then the

returned address information will be suitable for use in binding a socket for accepting incoming

connections for the specified service (that is, a call to “bind()—Set Local Address for Socket” on

page 14). In this case, if the nodename parameter is null, then the IP address portion of the

socket address structure will be set to INADDR_ANY for an IPv4 address or

IN6ADDR_ANY_INIT for an IPv6 address. If the AI_PASSIVE bit is not set, the returned address

information will be suitable for a call to “connect()—Establish Connection or Destination

Address” on page 25 (for a connection-oriented protocol) or for a call to “connect()—Establish

Connection or Destination Address” on page 25, “sendto()—Send Data” on page 161 or

“sendmsg()—Send a Message Over a Socket” on page 154 (for a connectionless protocol). In this

case, if the nodename parameter is null, then the IP address portion of the socket address

structure will be set to the loopback address. This flag is ignored if the nodename parameter is

not null.

 If the flag AI_CANONNAME is specified and the nodename parameter is not null, the function

attempts to determine the canonical name corresponding to nodename (for example, if nodename

is an alias or shorthand notation for a complete name).

 If the flag AI_NUMERICHOST is specified then a non-null nodename string must be a numeric

host address string. Otherwise an error of [EAI_NONAME] is returned. This flag prevents any

type of name resolution service (for example, the DNS) from being called.

 If the flag AI_NUMERICSERV is specified then a non-null servname string must be a numeric

port string. Otherwise an error [EAI_NONAME] is returned. This flag prevents any type of name

resolution service (for example, NIS+) from being called.

 If the AI_V4MAPPED flag is specified along with an ai_family of AF_INET6, then the caller will

accept IPv4-mapped IPv6 addresses. That is, if no AAAA records are found then a query is made

for A records and any found are returned as IPv4-mapped IPv6 addresses (ai_addrlen will be 28).

The AI_V4MAPPED flag is ignored unless ai_family equals AF_INET6.

 The AI_ALL flag is used in conjunction with the AI_V4MAPPED flag, and is only used with an

ai_family of AF_INET6. When AI_ALL is logically or’d with AI_V4MAPPED flag then the caller

will accept all addresses: IPv6 and IPv4-mapped IPv6. A query is first made for AAAA records

and if successful, the IPv6 addresses are returned. Another query is then made for A records and

any found are returned as IPv4-mapped IPv6 addresses (ai_addrlen will be 28). This flag is

ignored unless ai_family equals AF_INET6.

 If the AI_ADDRCONFIG flag is specified then a query for AAAA records will occur only if the

node has at least one IPv6 source address configured and a query for A records will occur only if

the node has at least one IPv4 source address configured. The loopback address is not considered

for this case as valid as a configured source address.

 The ai_socktype field to which argument hints points specifies the socket type for the service. If a

specific socket type is not given (for example, a value of zero) and the service name could be

interpreted as valid with multiple supported socket types, the implementation will attempt to

236 iSeries: UNIX-Type -- Sockets APIs

resolve the service name for all supported socket types and, all successful results will be

returned. A non-zero socket type value will limit the returned information to values with the

specified socket type.

res (Output) The pointer to a linked list of addrinfo structures, each of which specifies a socket

address and information for use in creating a socket with which to use that socket address. The

list will include at least one addrinfo structure. The ai_next field of each structure contains a

pointer to the next structure on the list, or a null pointer if it is the last structure on the list. Each

structure on the list includes values for use with a call to the “socket()—Create Socket” on page

188 function, and a socket address for use with the “connect()—Establish Connection or

Destination Address” on page 25 function or, if the AI_PASSIVE flag was specified, for use with

the “bind()—Set Local Address for Socket” on page 14 function. The fields ai_family, ai_socktype,

and ai_protocol are usable as the arguments to the “socket()—Create Socket” on page 188 function

to create a socket suitable for use with the returned address. The fields ai_addr and ai_addrlen are

usable as the arguments to the “connect()—Establish Connection or Destination Address” on page

25 or “bind()—Set Local Address for Socket” on page 14 functions with such a socket, according

to the AI_PASSIVE flag.

 If nodename is not null, and if requested by the AI_CANONNAME flag, the ai_canonname field of

the first returned addrinfo structure points to a null-terminated string containing the canonical

name corresponding to the input nodename; if the canonical name is not available, then

ai_canonname refers to the argument nodename or a string with the same contents. The contents

of the ai_flags field of the returned structures is undefined.

 All fields in socket address structures returned by getaddrinfo() that are not filled in through an

explicit argument (for example, sin6_flowinfo and sin_zero) will be set to zero.

 Note: This makes it easier to compare socket address structures.

Authorities

Authorization of *R (allow access to the object) to the host aliases file specified by the HOSTALIASES

environment variable.

You also need *X authority to each directory in the path of the host aliases file.

Return Value

getaddrinfo() returns an integer. Possible values are:

v 0 (successful)

v non-zero (unsuccessful)

Error Conditions

 When getaddrinfo() fails, the error return value can be set to one of the following:

[EAI_AGAIN]

 The name could not be resolved at this time. Future attempts may succeed.

[EAI_BADFLAGS]

 The flags parameter had an invalid value.

[EAI_FAIL]

 A non-recoverable error occurred when attempting to resolve the name.

[EAI_FAMILY]

 The address family was not recognized.

Sockets APIs 237

[EAI_MEMORY]

 There was a memory allocation failure when trying to allocate storage for the return value.

[EAI_NONAME]

 The name does not resolve for the supplied parameters. Neither nodename nor servname were

passed. At least one of these must be passed.

[EAI_SERVICE]

 The service passed was not recognized for the specified socket type.

[EAI_SOCKTYPE]

 The intended socket type was not recognized.

[EAI_SYSTEM]

 A system error occurred; the error code can be found in errno

Usage Notes

1. The “freeaddrinfo()—Free Address Information” on page 232 API must be used to free the addrinfo

structures returned by getaddrinfo().

2. The “gai_strerror()—Retrieve Address Information Runtime Error Message” on page 233 API may be

used to retrieve an error message associated with one of the error return values described above.

3. A job has a coded character set identifier (CCSID) and a default CCSID. The default CCSID is the

same as the job CCSID unless the job CCSID specifies 65535, which requests that no database

translation be performed. In this case, the default CCSID is set by the system based on the language

ID in effect for the job.

If the address information is retrieved from the domain name server, sockets converts the address

information specified by the nodename and servname parameters from the default (CCSID) to ASCII

before communicating with the domain name server. If the address information is retrieved from the

host database file, no conversion is done on the node and service names specified by the nodename

and servname parameters unless the CCSID of the job is something other than 65535.

In addition, the canonical names for nodename returned in the addrinfo structures will be returned in

the default CCSID of the job if they are obtained from the domain name server. For conversion to

occur for the canonical names returned in the addrinfo structures when they are obtained from the

host database file, you must use a job CCSID of something other than 65535.

4. The host database file currently only supports IPv4 addresses.

5. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the getaddrinfo() API is mapped to qetaddrinfo98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “bind()—Set Local Address for Socket” on page 14—Set a Local Address for the Socket

v “connect()—Establish Connection or Destination Address” on page 25—Establish Connection or

Destination Address

v “freeaddrinfo()—Free Address Information” on page 232—Free Address Information

v “gai_strerror()—Retrieve Address Information Runtime Error Message” on page 233—Retrieve Address

Information Runtime Error Message

v “gethostbyname()—Get Host Information for Host Name” on page 245—Get Host Information for Host

Name

v “getnameinfo()—Get Name Information for Socket Address” on page 255—Get Name Information for

Socket Address

238 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm

v “getservbyname()—Get Port Number for Service Name” on page 277—Get Port Number for Service

Name

v “getservbyport()—Get Service Name for Port Number” on page 281—Get Service Name for Port

Number

v “inet_pton()—Convert IPv4 and IPv6 Addresses Between Text and Binary Form” on page 302—Convert

IPv4 and IPv6 Addresses Between Text and Binary Form

v “sendto()—Send Data” on page 161—Send Data

v “sendmsg()—Send a Message Over a Socket” on page 154—Send Data or Descriptors or Both

v “socket()—Create Socket” on page 188—Create a Socket

 API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

gethostbyaddr()—Get Host Information for IP Address

 BSD 4.3 Syntax

 #include <netdb.h>

 struct hostent *gethostbyaddr(char *host_address,

 int address_length,

 int address_type)

 Service Program Name: QSOSRV2

Default Public Authority: *USE

Threadsafe: No; see “Usage Notes” on page 241.

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <netdb.h>

 struct hostent *gethostbyaddr(const void *host_address,

 socklen_t address_length,

 int address_type)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 241.

The gethostbyaddr() function is used to retrieve information about a host.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Sockets APIs 239

#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm
_xopen_source.htm

Parameters

host_address

(Input) The pointer to a structure of type in_addr that contains the address of the host for which

information is to be retrieved.

address_length

(Input) The length of the host_address.

address_type

(Input) The domain type of the host address. AF_INET is the only value for this parameter that is

supported.

Authorities

No authorization is required.

Return Value

gethostbyaddr() returns a pointer. Possible values are:

v NULL (unsuccessful)

v p (successful), where p is a pointer to struct hostent, defined in <netdb.h>.

 struct hostent {

 char *h_name;

 char **h_aliases;

 int h_addrtype;

 int h_length;

 char **h_addr_list;

 };

 #define h_addr h_addr_list[0]

h_name points to the character string that contains the name of the host. h_aliases is a pointer to a

NULL-terminated list of pointers, each of which points to a character string that represents an alternative

name for the host. h_addrtype contains the address type of the host (for example, AF_INET). h_length

contains the address length. h_addr_list is a pointer to a NULL-terminated list of pointers, each of which

points to a network address for the host, in network byte order. Note that the array of address pointers

points to structures of type in_addr defined in <netinet/in.h>.

Error Conditions

 When gethostbyaddr() fails, h_errno (defined in <netdb.h>) can be set to one of the following:

[HOST_NOT_FOUND]

 The host name specified by the host_address parameter was not found.

[NO_DATA]

 The host name is a valid name, but there is no corresponding IP address.

[NO_RECOVERY]

 An unrecoverable error has occurred.

[TRY_AGAIN]

 The local server did not receive a response from an authoritative server. An attempt at a later

time may succeed.

240 iSeries: UNIX-Type -- Sockets APIs

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the host database file:

v ADDTCPHTE (Add TCP/IP Host Table Entry)

v RMVTCPHTE (Remove TCP/IP Host Table Entry)

v CHGTCPHTE (Change TCP/IP Host Table Entry)

v RNMTCPHTE (Rename TCP/IP Host Table Entry)

v MRGTCPHT (Merge TCP/IP Host Tables)
2. The pointer returned by gethostbyaddr() points to static storage that is overwritten on subsequent calls

to the gethostbyaddr(), gethostbyname(), or gethostent() functions.

3. There are two sources from which host information can be obtained: the domain name server, and the

host database file. The path taken depends on whether an IP address is configured for a name server

using the iSeries Navigator or option 12, Change TCP/IP domain information, on the Configure

TCP/IP (CFGTCP) menu.

Note: A person with a UNIX background would expect this information to exist in a file known as

/etc/resolv.conf. If the IP address is found (indicating that the local network is a domain network), the

gethostbyaddr() function attempts to query the domain name server for information about a host. If the

query fails, the information is obtained from the host database file. If the name server IP address is

not found (indicating that local network is a flat network), the host database file is used to obtain the

host information.

4. When host information is retrieved from the host database file, the opened file is only closed if a

sethostent() with a nonzero parameter value was not previously done.

5. If a sethostent() with a nonzero parameter value was previously done, gethostbyaddr(), when obtaining

host information from the domain name server, communicates with the domain name server over a

connection-oriented transport service (for example, TCP). Otherwise, gethostbyaddr() uses a

connectionless transport service (for example, UDP).

6. If the host information is obtained from the domain name server, the information is returned in the

default coded character set identifier (CCSID) currently in effect for the job. (The default CCSID is the

same as the job CCSID unless 65535 is requested, in which case the default CCSID is set based on the

language ID of the job. See globalization for more information.) If the host information is retrieved

from the host database file, the default CCSID of the job is not used. To request translation of the host

information when it is retrieved from the host database file, you must use a job CCSID of something

other than 65535.

7. Address families are defined in <sys/socket.h>, and the in_addr structure is defined in

<netinet/in.h>.

8. Do not use the gethostbyaddr() function in a multithreaded environment. See the multithread

alternative gethostbyaddr_r() function.

9. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the gethostbyaddr() API is mapped to qso_gethostbyaddr98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “hstrerror()—Retrieve Resolver Error Message” on page 288—Retrieve Resolver Error Message

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “gethostbyname()—Get Host Information for Host Name” on page 245—Get Host Information for Host

Name

v “gethostent()—Get Next Entry from Host Database” on page 251—Get Next Entry from Host Database

v “sethostent()—Open Host Database” on page 351—Open Host Database

v “endhostent()—Close Host Database” on page 223—Close Host Database

Sockets APIs 241

_xopen_source.htm

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

gethostbyaddr_r()—Get Host Information for IP Address

 BSD 4.3 Syntax

 #include <netdb.h>

 int gethostbyaddr_r(char *host_address,

 int address_length,

 int address_type,

 struct hostent *hostent_struct_addr,

 struct hostent_data *hostent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <netdb.h>

 int gethostbyaddr_r(const void *host_address,

 socklen_t address_length,

 int address_type,

 struct hostent *hostent_struct_addr,

 struct hostent_data *hostent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The gethostbyaddr_r() function is used to retrieve information about a host.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

host_address (input)

Specifies the pointer to a structure of type in_addr that contains the address of the host for which

information is to be retrieved.

address_length (input)

Specifies the length of the host_address.

242 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm
_xopen_source.htm

address_type (input)

Specifies the domain type of the host address. Currently, af_inet is the only value for this

parameter that is supported.

hostent_struct_addr (input/output)

Specifies the pointer to a hostent structure where the results will be placed. All results must be

referenced through this structure.

hostent_data_struct_addr (input/output)

Specifies the pointer to the hostent_data structure, which is used to pass and preserve results

between function calls. The field host_control_blk in the hostent_data structure must be initialized

with hexadecimal zeros before its initial use. If compatibility with other platforms is required,

then the entire hostent_data structure must initialized with hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The gethostbyaddr_r() function returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct hostent denoted by hostent_struct_addr and struct hostent_datadenoted by

hostent_data_struct_addr are both defined in <netdb.h>. The structure struct hostentis defined as:

 struct hostent [

 char *h_name;

 char **h_aliases;

 int h_addrtype;

 int h_length;

 char **h_addr_list;

];

 #define h_addr h_addr_list[0]

h_name points to the character string that contains the name of the host. h_aliases is a pointer to a

NULL-terminated list of pointers, each of which points to a character string that represents an

alternative name for the host. h_addrtype contains the address type of the host (for example, af_inet).

h_length contains the size of an address in octets (for example, the size of an Internet address is 4

octets). h_addr_list is a pointer to a NULL-terminated list of pointers, each of which points to a network

address (in network byte order) for the host.

Error Conditions

When the gethostbyaddr_r() function fails, h_errno (defined in <netdb.h>) can be set to:

[HOST_NOT_FOUND]

 The host name specified by the host_address parameter was not found.

[NO_DATA]

 The host name is a valid name, but there is no corresponding IP address.

[NO_RECOVERY]

 An unrecoverable error has occurred.

[TRY_AGAIN]

 The local server did not receive a response from an authoritative server. An attempt at a later

time may succeed.

 When the gethostbyaddr_r() function fails, errno can be set to:

Sockets APIs 243

[EINVAL]

 The hostent_data structure was not properly initialized with hexadecimal zeros before initial use.

For corrective action, see the description for structure hostent_data.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the host database file:

v ADDTCPHTE (Add TCP/IP Host Table Entry)

v RMVTCPHTE (Remove TCP/IP Host Table Entry)

v CHGTCPHTE (Change TCP/IP Host Table Entry)

v RNMTCPHTE (Rename TCP/IP Host Table Entry)

v MRGTCPHT (Merge TCP/IP Host Tables)
2. There are two sources from which host information can be obtained: the domain name server and the

host database file. The path taken depends on whether an IP address is configured for a name server

using the iSeries Navigator or option 12, Change TCP/IP domain information, on the CFGTCP menu.

Note: A person with a UNIX background would expect this information to exist in a file known as

/etc/resolv.conf. If the IP address is found (indicating that the local network is a domain network), the

gethostbyaddr_r() function will attempt to query the domain name server for information about a host.

If the query fails, the information will be obtained from the host database file. If the name server IP

address is not found (indicating that local network is a flat network), the host database file is used to

obtain the host information.

3. When the host information is obtained from the host database file, the file is opened and the host

information is retrieved (if it exists) from the file. The file is then closed only if a sethostent_r() call

with a non-zero parameter value was not previously done.

4. If a sethostent_r() call with a non-zero parameter value was previously done, the gethostbyaddr_r()

routine, when obtaining host information from the domain name server, will communicate with the

domain name server over a connection-oriented transport service (for example, TCP). Otherwise,

gethostbyaddr_r() will use a connectionless transport service (for example, UDP).

5. If the host information is obtained from the domain name server, the information is returned in the

default coded character set identifier (CCSID) currently in effect for the job. (The default CCSID is the

same as the job CCSID unless 65535 is requested, in which case the default CCSID is set based on the

language ID of the job. See the globalization topic for more information.) If the host information is

retrieved from the host database file the default CCSID of the job is not used. To request translation of

the host information when it is retrieved from the host database file, you must use a job CCSID of

something other than 65535.

6. Address families are defined in <sys/socket.h>, and the in_addr structure is defined in

<netinet/in.h>.

7. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the gethostbyaddr_r() API is mapped to

qso_gethostbyaddr_r98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “hstrerror()—Retrieve Resolver Error Message” on page 288—Retrieve Resolver Error Message

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “gethostbyname_r()—Get Host Information for Host Name” on page 248—Get Host Information for

Host Name

v “gethostent_r()—Get Next Entry from Host Database” on page 253—Get Next Entry from Host

Database

v “endhostent_r()—Close Host Database” on page 224—Close Host Database

v “sethostent_r()—Open Host Database” on page 352—Open Host Database

244 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

gethostbyname()—Get Host Information for Host Name

 BSD 4.3 Syntax

 #include <netdb.h>

 struct hostent *gethostbyname(char *host_name)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 246.

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <netdb.h>

 struct hostent *gethostbyname(const char *host_name)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 246.

The gethostbyname() function is used to retrieve information about a host.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

host_name

(Input) The pointer to the character string that contains the name of the host for which

information is to be retrieved.

Authorities

Authorization of *R (allow access to the object) to the host aliases file specified by the HOSTALIASES

environment variable.

You also need *X authority to each directory in the path of the host aliases file.

Return Value

gethostbyname() returns a pointer. Possible values are:

v NULL (unsuccessful)

Sockets APIs 245

#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm
_xopen_source.htm

v p (successful), where p is a pointer to struct hostent.

The structure struct hostent is defined in <netdb.h>.

 struct hostent {

 char *h_name;

 char **h_aliases;

 int h_addrtype;

 int h_length;

 char **h_addr_list;

 };

 #define h_addr h_addr_list[0]

h_name points to the character string that contains the name of the host. h_aliases is a pointer to a

NULL-terminated list of pointers, each of which points to a character string that represents an alternative

name for the host. h_addrtype contains the address type of the host (for example, AF_INET). h_length

contains the address length. h_addr_list is a pointer to a NULL-terminated list of pointers, each of which

points to a network address for the host, in network byte order. Note that the array of address pointers

points to structures of type in_addr defined in <netinet/in.h>.

Error Conditions

 When gethostbyname() fails, h_errno (defined in <netdb.h>) can be set to one of the following:

[HOST_NOT_FOUND]

 The host name specified by the host_name parameter was not found.

[NO_DATA]

 The host name is a valid name, but there is no corresponding IP address.

[NO_RECOVERY]

 An unrecoverable error has occurred.

[TRY_AGAIN]

 The local server did not receive a response from an authoritative server. An attempt at a later

time may succeed.

 When the gethostbyname() function fails, errno can be set to:

[EACCES]

 Permission denied. The process does not have the appropriate privileges to the host aliases file

specified by the HOSTALIASES environment variable.

Usage Notes

 1. The iSeries Navigator or the following CL commands can be used to access the host database file:

v ADDTCPHTE (Add TCP/IP Host Table Entry)

v RMVTCPHTE (Remove TCP/IP Host Table Entry)

v CHGTCPHTE (Change TCP/IP Host Table Entry)

v RNMTCPHTE (Rename TCP/IP Host Table Entry)

v MRGTCPHT (Merge TCP/IP Host Tables)

246 iSeries: UNIX-Type -- Sockets APIs

2. The pointer returned by gethostbyname() points to static storage that is overwritten on subsequent

calls to the gethostbyname(), gethostbyaddr(), or gethostent() functions.

 3. There are two sources from which host information can be obtained: the domain name server, and

the host database file. The path taken depends on whether an IP address is configured for a name

server using the iSeries Navigator or option 12, Change TCP/IP domain information, on the

Configure TCP/IP (CFGTCP) menu.

Note: A person with a UNIX background would expect this information to exist in a file known as

/etc/resolv.conf.

If the IP address is found (indicating that the local network is a domain network), the gethostbyaddr()

function attempts to query the domain name server for information about a host. If the query fails,

the information is obtained from the host database file. If the name server IP address is not found

(indicating that local network is a flat network), the host database file is used to obtain the address.

 4. If the host_name parameter does specify a domain qualified name, the gethostbyaddr() function

appends a domain name to the specified host name, if possible. The domain name that is appended

is configured using the iSeries Navigator or CFGTCP menu option 12, Change TCP/IP domain

information.

 5. When the host information is obtained from the host database file, the file is opened and the host

information is retrieved (if it exists) from the file. The file is then closed only if a sethostent() with a

nonzero parameter value was not previously done.

 6. If a sethostent() with a nonzero parameter value was previously done, the gethostbyname() routine,

when obtaining host information from the domain name server, communicates with the domain

name server over a connection-oriented transport service (for example, TCP). Otherwise,

gethostbyname() uses a connectionless transport service (for example, UDP).

 7. A job has a coded character set identifier (CCSID) and a default CCSID. The default CCSID is the

same as the job CCSID unless the job CCSID specifies 65535, which requests that no database

translation be performed. In this case, the default CCSID is set by the system based on the language

ID in effect for the job.

If the host information is retrieved from the domain name server, sockets converts the host name

specified by the host_name parameter from the default (CCSID) to ASCII before communicating with

the domain name server. If the host information is retrieved from the host database file, no

conversion is done on the host name specified by the host_name parameter unless the CCSID of the

job is something other than 65535. In addition, the host names returned in the hostent structure will

be returned in the default CCSID of the job if they are obtained from the domain name server. For

translation to occur for the host names returned in the hostent structure when they are obtained

from the host database file, you must use a job CCSID of something other than 65535.

 8. Address families are defined in <sys/socket.h>, and the in_addr structure is defined in

<netinet/in.h>.

 9. Do not use the gethostbyname() function in a multithreaded environment. See the multithread

alternative gethostbyname_r() function.

10. gethostbyname() will resolve local host aliases to a domain name which are then resolved with a

query using DNS. See “res_hostalias()—Retrieve the host alias” on page 314 for more information on

aliases.

11. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the gethostbyname() API is mapped to

qso_gethostbyname98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “hstrerror()—Retrieve Resolver Error Message” on page 288—Retrieve Resolver Error Message

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “gethostbyaddr()—Get Host Information for IP Address” on page 239—Get Host Information for IP

Address

Sockets APIs 247

_xopen_source.htm

v “gethostent()—Get Next Entry from Host Database” on page 251—Get Next Entry from Host Database

v “sethostent()—Open Host Database” on page 351—Open Host Database

v “endhostent()—Close Host Database” on page 223—Close Host Database

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

gethostbyname_r()—Get Host Information for Host Name

 BSD 4.3 Syntax

 #include <netdb.h>

 int gethostbyname_r(char *host_name,

 struct hostent *hostent_struct_addr,

 struct hostent_data *hostent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <netdb.h>

 int gethostbyname_r(const char *host_name,

 struct hostent *hostent_struct_addr,

 struct hostent_data *hostent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The gethostbyname_r() function is used to retrieve information about a host.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

host_name (input)

Specifies the pointer to the character string that contains the name of the host for which

information is to be retrieved.

hostent_struct_addr (input/output)

Specifies the pointer to a hostent structure where the results will be placed. All results must be

referenced through this structure.

248 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm
_xopen_source.htm

hostent_data_struct_addr (input/output)

Specifies the pointer to the hostent_data structure, which is used to pass and preserve results

between function calls. The field host_control_blk in the hostent_data structure must be initialized

with hexadecimal zeros before its initial use. If compatibility with other platforms is required,

then the entire hostent_data structure must be initialized with hexadecimal zeros before initial

use.

Authorities:

Authorization of *R (allow access to the object) to the host aliases file specified by the hostaliases

environment variable.

You also need *X authority to each directory in the path of the host aliases file.

Return Value

The gethostbyname_r() function returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct hostent denoted by hostent_struct_addr and struct hostent_datadenoted by

hostent_data_struct_addr are both defined in <netdb.h>. The structure struct hostentis defined as:

 struct hostent [

 char *h_name;

 char **h_aliases;

 int h_addrtype;

 int h_length;

 char **h_addr_list;

];

 #define h_addr h_addr_list[0]

h_name points to the character string that contains the name of the host. h_aliases is a pointer to a

NULL-terminated list of pointers, each of which points to a character string that represents an alternative

name for the host. h_addrtype contains the address type of the host (for example, af_inet). h_length

contains the size of an address in octets (for example, the size of an Internet address is 4 octets).

h_addr_list is a pointer to a NULL-terminated list of pointers, each of which points to a network address

(in network byte order) for the host.

Error Conditions

When the gethostbyname_r() function fails, h_errno (defined in <netdb.h>) can be set to:

[HOST_NOT_FOUND]

 The host name specified by the host_name parameter was not found.

[NO_DATA]

 The host name is a valid name, but there is no corresponding IP address.

[NO_RECOVERY]

 An unrecoverable error has occurred.

[TRY_AGAIN]

 The local server did not receive a response from an authoritative server. An attempt at a later

time may succeed.

 When the gethostbyname_r() function fails, errno can be set to:

[EACCES]

Sockets APIs 249

Permission denied. The process does not have the appropriate privileges to the host aliases file

specified by the HOSTALIASES environment variable.

[EINVAL]

 The hostent_data structure was not initialized with hexadecimal zeros before initial use. For

corrective action, see the description for structure hostent_data.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the host database file:

v ADDTCPHTE (Add TCP/IP Host Table Entry)

v RMVTCPHTE (Remove TCP/IP Host Table Entry)

v CHGTCPHTE (Change TCP/IP Host Table Entry)

v RNMTCPHTE (Rename TCP/IP Host Table Entry)

v MRGTCPHT (Merge TCP/IP Host Tables)
2. There are two sources from which host information can be obtained: the domain name server and the

host database file. The path taken depends on whether an IP address is configured for a name server

using the iSeries Navigator or option 12, Change TCP/IP domain information, on the CFGTCP menu.

Note: A person with a UNIX background would expect this information to exist in a file known as

/etc/resolv.conf. If the IP address is found (indicating that the local network is a domain network), the

gethostbyaddr_r() function will attempt to query the domain name server for information about a host.

If the query fails, the information will be obtained from the host database file. If the name server IP

address is not found (indicating that local network is a flat network), the host database file is used to

obtain the address.

3. If the host_name parameter does specify a domain qualified name, the gethostbyaddr_r() function will

append a domain name to the specified host name, if possible. The domain name that will be

appended is configured using the iSeries Navigator or CFGTCP menu option 12, Change TCP/IP

domain information.

4. When the host information is obtained from the host database file, the file is opened and the host

information is retrieved (if it exists) from the file. The file is then closed only if a sethostent_r() call

with a non-zero parameter value was not previously done.

5. If a sethostent_r() call with a non-zero parameter value was previously done, the gethostbyname_r()

routine, when obtaining host information from the domain name server, will communicate with the

domain name server over a connection-oriented transport service (for example, TCP). Otherwise,

gethostbyname_r() will use a connectionless transport service (for example, UDP).

6. A job has a coded character set identifier (CCSID) and a default CCSID. The default CCSID is the

same as the job CCSID unless the job CCSID specifies 65535, which requests that no database

translation be performed. In this case, the default CCSID is set by the system based on the language

ID in effect for the job.

If the host information is retrieved from the domain name server, sockets converts the host name

specified by the host_name parameter to ASCII before communicating with the domain name server. If

the host information is retrieved from the host database file, no conversion is done on the host name

specified by the host_name parameter unless the CCSID of the job is something other than 65535. In

addition, host names returned in the hostent will be returned in the default CCSID of the job if they

are obtained from the domain name server. For translation to occur for the host names returned in the

hostent structure when they are obtained from the host database file, you must use a job CCSID of

something other than 65535.

7. Address families are defined in <sys/socket.h>, and the in_addr structure is defined in

<netinet/in.h>.

8. gethostbyname_r() will resolve local host aliases to a domain name which are then resolved with a

query using DNS. See “res_hostalias()—Retrieve the host alias” on page 314 for more information on

aliases.

250 iSeries: UNIX-Type -- Sockets APIs

9. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the gethostbyname_r() API is mapped to

qso_gethostbyname_r98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “hstrerror()—Retrieve Resolver Error Message” on page 288—Retrieve Resolver Error Message

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “endhostent_r()—Close Host Database” on page 224—Close Host Database

v “gethostbyaddr_r()—Get Host Information for IP Address” on page 242—Get Host Information for IP

Address

v “gethostent_r()—Get Next Entry from Host Database” on page 253—Get Next Entry from Host

Database

v “sethostent_r()—Open Host Database” on page 352—Open Host Database

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

gethostent()—Get Next Entry from Host Database

 Syntax

 #include <netdb.h>

 struct hostent *gethostent()

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 252.

The gethostent() function is used to retrieve information from the host database file. When gethostent() is

first called, the file is opened, and the first entry is returned. Each subsequent call to gethostent() results in

the next entry in the file being returned. To close the file, use endhostent().

Authorities

No authorization is required.

Return Value

gethostent() returns a pointer. Possible values are:

v NULL (unsuccessful or end-of-file)

v p (successful), where p is a pointer to struct hostent.

The structure struct hostent is defined in <netdb.h>.

 struct hostent {

 char *h_name;

 char **h_aliases;

 int h_addrtype;

 int h_length;

Sockets APIs 251

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

char **h_addr_list;

 };

 #define h_addr h_addr_list[0]

h_name points to the character string that contains the name of the host. h_aliases is a pointer to a

NULL-terminated list of pointers, each of which points to a character string that represents an alternative

name for the host. h_addrtype contains the address type of the host (for example, AF_INET). h_length

contains the address length. h_addr_list is a pointer to a NULL-terminated list of pointers, each of which

points to a network address for the host, in network byte order. Note that the array of address pointers

points to structures of type in_addr defined in <netinet/in.h>.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the host database file:

v ADDTCPHTE (Add TCP/IP Host Table Entry)

v RMVTCPHTE (Remove TCP/IP Host Table Entry)

v CHGTCPHTE (Change TCP/IP Host Table Entry)

v RNMTCPHTE (Rename TCP/IP Host Table Entry)

v MRGTCPHT (Merge TCP/IP Host Tables)
2. The pointer returned by gethostent() points to static storage that is overwritten on subsequent calls to

the gethostent(), gethostbyaddr(), or gethostbyname() functions.

3. A coded character set identifier (CCSID) of 65535 requests that no database translation be performed.

For translation to occur for the host names in the hostent structure, the job CCSID must be something

other than 65535.

4. Do not use the gethostent() function in a multithreaded environment. See the multithread alternative

gethostent_r() function.
5. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the gethostent() API is mapped to qso_gethostent98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “gethostbyaddr()—Get Host Information for IP Address” on page 239—Get Host Information for IP

Address

v “gethostbyname()—Get Host Information for Host Name” on page 245—Get Host Information for Host

Name

v “endhostent()—Close Host Database” on page 223—Close Host Database

v “sethostent()—Open Host Database” on page 351—Open Host Database

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

252 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

gethostent_r()—Get Next Entry from Host Database

 Syntax

 #include <netdb.h>

 int gethostent_r(struct hostent

 *hostent_struct_addr,

 struct hostent_data

 *hostent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The gethostent_r() function is used to retrieve information from the host database file. When the

gethostent_r() is first called, the file is opened, and the first entry is returned. Each subsequent call of

gethostent_r() results in the next entry in the file being returned. To close the file, use endhostent_r().

Parameters

struct hostent *hostent_struct_addr (input/output)

Specifies the pointer to a hostent structure where the results will be placed. All results must be

referenced through this structure.

struct hostent_data *hostent_data_struct_addr (input/output)

Specifies the pointer to the hostent_data structure, which is used to pass and preserve results

between function calls. The field host_control_blk in the hostent_data structure must be initialized

with hexadecimal zeros before its initial use. If compatibility with other platforms is required,

then the entire hostent_data structure must be initialized to hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The gethostent_r() function returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct hostent denoted by hostent_struct_addr and struct hostent_datadenoted by

hostent_data_struct_addr are both defined in <netdb.h>. The structure struct hostentis defined as:

 struct hostent [

 char *h_name;

 char **h_aliases;

 int h_addrtype;

 int h_length;

 char **h_addr_list;

];

 #define h_addr h_addr_list[0]

h_name points to the character string that contains the name of the host. h_aliases is a pointer to a

NULL-terminated list of pointers, each of which points to a character string that represents an alternative

name for the host. h_addrtype contains the address type of the host (for example, af_inet). h_length

Sockets APIs 253

contains the size of an address in octets (for example, the size of an Internet address is 4 octets).

h_addr_list is a pointer to a NULL-terminated list of pointers, each of which points to a network address

(in network byte order) for the host.

Error Conditions

 When the gethostent_r() function fails, errno can be set to:

[EINVAL]

 The hostent_data structure was not properly initialized to hexadecimal zeros before initial use.

For corrective action, see the description for structure hostent_data.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the host database file:

v ADDTCPHTE (Add TCP/IP Host Table Entry)

v RMVTCPHTE (Remove TCP/IP Host Table Entry)

v CHGTCPHTE (Change TCP/IP Host Table Entry)

v RNMTCPHTE (Rename TCP/IP Host Table Entry)

v MRGTCPHT (Merge TCP/IP Host Tables)
2. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the host names returned in the hostent structure, the job

CCSID must be something other than 65535.

Related Information

v “gethostbyaddr_r()—Get Host Information for IP Address” on page 242—Get Host Information for IP

Address

v “gethostbyname_r()—Get Host Information for Host Name” on page 248—Get Host Information for

Host Name

v “endhostent_r()—Close Host Database” on page 224—Close Host Database

v “sethostent_r()—Open Host Database” on page 352—Open Host Database

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

254 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

getnameinfo()—Get Name Information for Socket Address

 Syntax

 #include <sys/socket.h>

 #include <netdb.h>

 int getnameinfo(const struct sockaddr *sa, socklen_t salen,

 char *nodename, socklen_t nodenamelen,

 char *servname, socklen_t servnamelen,

 int flags);

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The getnameinfo() function translates a socket address to a node name and service location, all of which

are defined as with “getaddrinfo()—Get Address Information” on page 234.

Parameters

sa (Input) The pointer to a socket address structure to be translated.

salen (Input) The length of the socket address structure pointed to by sa.

nodename

(Output) If the nodename parameter is non-NULL and the nodenamelen parameter is nonzero, then

the nodename parameter must point to a buffer able to contain up to nodenamelen characters that

will receive the node name as a null-terminated string. If the nodename parameter is NULL or the

nodenamelen parameter is zero, the node name will not be returned. If the node’s name cannot be

located, the numeric form of the nodes address is returned instead of its name.

nodenamelen

(Input) The length of the buffer pointed to by nodename

servname

(Output) If the servname parameter is non-NULL and the servnamelen parameter is nonzero, then

the servname parameter must point to a buffer able to contain up to servnamelen characters that

will receive the service name as a null-terminated string. If the servname parameter is NULL or

the servnamelen parameter is zero, the service name will not be returned. If the service name

cannot be located, the numeric form of the service address (for example, its port number) is

returned instead of its name.

servnamelen

(Input) The length of the buffer pointed to by servname

flags (Input) A flag that changes the default actions of the function. By default the fully-qualified

domain name (FQDN) for the host is returned, unless one of the following is true:

v If the flag bit NI_NOFQDN is set, only the nodename portion of the FQDN is returned for

local hosts.

v If the flag bit NI_NUMERICHOST is set, the numeric form of the host’s address is returned

instead of its name, under all circumstances.

v If the flag bit NI_NAMEREQD is set, an error is returned if the host’s name cannot be located.

Sockets APIs 255

v If the flag bit NI_NUMERICSERV is set, the numeric form of the service address is returned

(for example, its port number) instead of its name, under all circumstances.

v If the flag bit NI_DGRAM is set, this indicates that the service is a datagram service

(SOCK_DGRAM). The default behavior is to assume that the service is a stream service

(SOCK_STREAM).

Authorities

No authorization required.

Return Value

getnameinfo() returns an integer. Possible values are:

v 0 (successful)

v non-zero (unsuccessful)

On successful completion, function getnameinfo() returns the node and service names, if requested, in the

buffers provided. The returned names are always null-terminated strings, and may be truncated if the

actual values are longer than can be stored in the buffers provided. If the returned values are to be used

as part of any further name resolution (for example, passed to “getaddrinfo()—Get Address Information”

on page 234, callers must either provide buffers large enough to store any result possible on the system

or must check for truncation and handle that case appropriately.

Error Conditions

 When getnameinfo() fails, the error return value can be set to one of the following:

[EAI_AGAIN]

 The name could not be resolved at this time. Future attempts may succeed.

[EAI_BADFLAGS]

 The flags parameter had an invalid value.

[EAI_FAIL]

 A non-recoverable error occurred.

[EAI_FAMILY]

 The address family was not recognized or the address length was invalid for the specified family.

[EAI_MEMORY]

 There was a memory allocation failure.

[EAI_NONAME]

 The name does not resolve for the supplied parameters. NI_NAMEREQD is set and the host’s

name cannot be located, or both nodename and servname were null.

[EAI_SYSTEM]

 A system error occurred; the error code can be found in errno

Usage Notes

1. The nodename and servname parameters cannot both be NULL.

256 iSeries: UNIX-Type -- Sockets APIs

2. The “gai_strerror()—Retrieve Address Information Runtime Error Message” on page 233 API may be

used to retrieve an error message associated with one of the error return values described above.

3. If the node and service information is obtained from the domain name server, the information is

returned in the default coded character set identifier (CCSID) currently in effect for the job. (The

default CCSID is the same as the job CCSID unless 65535 is requested, in which case the default

CCSID is set based on the language ID of the job. See Globalization for more information.) If the node

and service information is retrieved from the host database file, the default CCSID of the job is not

used. To request conversion of the host information when it is retrieved from the host database file,

you must use a job CCSID of something other than 65535.

4. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the getnameinfo() API is mapped to qetnameinfo98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getaddrinfo()—Get Address Information” on page 234—Get Address Information

v “gai_strerror()—Retrieve Address Information Runtime Error Message” on page 233—Retrieve Address

Information Runtime Error Message

v “gethostbyaddr()—Get Host Information for IP Address” on page 239—Get Host Information for IP

Address

v “getservbyport()—Get Service Name for Port Number” on page 281—Get Service Name for Port

Number

v “inet_ntop()—Convert IPv4 and IPv6 Addresses Between Binary and Text Form” on page 301—Convert

IPv4 and IPv6 Addresses Between Binary and Text Form

 API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

getnetbyaddr()—Get Network Information for IP Address

 BSD 4.3 Syntax

 #include <netdb.h>

 struct netent *getnetbyaddr(long network_address,

 int address_type)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 258.

Sockets APIs 257

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <netdb.h>

 struct netent *getnetbyaddr(uint32_t network_address,

 int address_type)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes.”

The getnetbyaddr() function is used to retrieve information about a network. The information is retrieved

from the network database file.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

network_address

(Input) The 32-bit network IP address for which information is to be retrieved.

address_type

(Input) An integer that indicates the type of network_address.

Authorities

No authorization is required.

Return Value

getnetbyaddr() returns a pointer. Possible values are:

v NULL (unsuccessful)

v p (successful), where p is a pointer to struct netent.

The structure struct netent is defined in <netdb.h>.

 struct netent {

 char *n_name;

 char **n_aliases;

 int n_addrtype;

 unsigned long n_net;

 };

n_name points to the character string that contains the name of the network. n_aliases is a pointer to a

NULL-terminated array of alternate names for the network. n_addrtype contains the address type of the

network. n_net is the 32-bit network address (an IP address with host part set to zero).

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the network database file:

v WRKNETTBLE (Work with Network Table Entries)

v ADDNETTBLE (Add Network Table Entry)

v RMVNETTBLE (Remove Network Table Entry)

258 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
_xopen_source.htm

2. The pointer returned by getnetbyaddr() points to static storage that is overwritten on subsequent calls

to the getnetbyaddr(), getnetbyname(), or getnetent() functions.

3. When the network information is obtained from the network database file, the file is opened and the

network information is retrieved (if it exists) from the file. The file is then closed only if a setnetent()

with a nonzero parameter value was not previously done.

4. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the network names returned in the netent structure, the job

CCSID must be something other than 65535.

5. Do not use the getnetbyaddr() function in a multithreaded environment. See the multithread alternative

getnetbyaddr_r() function.

6. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the getnetbyaddr() API is mapped to qso_getnetbyaddr98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getnetbyname()—Get Network Information for Domain Name” on page 261—Get Network

Information for Domain Name

v “getnetent()—Get Next Entry from Network Database” on page 264—Get Next Entry from Network

Database

v “setnetent()—Open Network Database” on page 354—Open Network Database

v “endnetent()—Close Network Database” on page 225—Close Network Database

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

getnetbyaddr_r()—Get Network Information for IP Address

 Syntax

 #include <netdb.h>

 int getnetbyaddr_r(long network_address,

 int address_type,

 struct netent *netent_struct_addr,

 struct netent_data

 *netent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

A program uses the getnetbyaddr_r() function to retrieve information about a network. The information is

retrieved from the network database file.

Parameters

long network_address (input)

Specifies the 32-bit network IP address for which information is to be retrieved.

Sockets APIs 259

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

int address_type (input)

Specifies an integer that indicates the type of network_address.

struct netent *netent_struct_addr (input/output)

Specifies the pointer to a netent structure where the results will be placed. All results must be

referenced through this structure.

struct netent_data *netent_data_struct_addr (input/output)

Specifies the pointer to the netent_data structure, which is used to pass and preserve results

between function calls. The field net_control_blk in the netent_data structure must be initialized

with hexadecimal zeros before its initial use. If compatibility with other platforms is required,

then the entire netent_data structure must be initialized with hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The getnetbyaddr_r() function returns a integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct netent denoted by netent_struct_addr and struct netent_datadenoted by

netent_data_struct_addr are both defined in <netdb.h>. The structure struct netentis defined as:

 struct netent [

 char *n_name;

 char **n_aliases;

 int n_addrtype;

 unsigned long n_net;

];

n_name points to the character string that contains the name of the network. n_aliases is a pointer to a

NULL-terminated list of pointers, each of which points to a character string that represents an alternative

name for the network. n_addrtype contains the address type of the network (that is, AF_INET). n_net is

the 32-bit network address (that is, an IP address in network byte order with host part set to zero).

Error Conditions

When the getnetbyaddr_r() function fails, errno can be set to:

[EINVAL]

 The netent_data structure was not properly initialized to hexadecimal zeros before initial use. For

corrective action, see the description for structure netent_data.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the network database file:

v WRKNETTBLE (Work with Network Table Entries)

v ADDNETTBLE (Add Network Table Entry)

v RMVNETTBLE (Remove Network Table Entry)
2. When the network information is obtained from the network database file, the file is opened and the

network information is retrieved (if it exists) from the file. The file is then closed only if a setnetent_r()

call with a non-zero parameter value was not previously done.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the network names returned in the netent structure, the job

CCSID must be something other than 65535.

260 iSeries: UNIX-Type -- Sockets APIs

Related Information

v “getnetent_r()—Get Next Entry from Network Database” on page 266-Get Next Entry from Network

Database

v “getnetbyname_r()—Get Network Information for Domain Name” on page 263—Get Network

Information for Domain Name

v “setnetent_r()—Open Network Database” on page 355-Open Network Database

v “endnetent_r()—Close Network Database” on page 226—Close Network Database

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

getnetbyname()—Get Network Information for Domain Name

 BSD 4.3 Syntax

 #include <netdb.h>

 struct netent *getnetbyname(char *network_name)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 262.

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <netdb.h>

 struct netent *getnetbyname(const char *network_name)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 262.

The getnetbyname() function is used to retrieve information about a network. The information is retrieved

from the network database file.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

network_name

(Input) The pointer to the character string that contains the name of the network for which

information is to be retrieved.

Sockets APIs 261

#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm
_xopen_source.htm

Authorities

No authorization is required.

Return Value

getnetbyname() returns a pointer. Possible values are:

v NULL (unsuccessful)

v p (successful), where p is a pointer to struct netent.

The structure struct netent is defined in <netdb.h>.

 struct netent {

 char *n_name;

 char **n_aliases;

 int n_addrtype;

 unsigned long n_net;

 };

n_name points to the character string that contains the name of the network. n_aliases is a pointer to a

NULL-terminated array of alternate names for the network. n_addrtype contains the address type of the

network. n_net is the 32-bit network address (an IP address with host part set to zero).

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the network database file:

v WRKNETTBLE (Work with Network Table Entries)

v ADDNETTBLE (Add Network Table Entry)

v RMVNETTBLE (Remove Network Table Entry)
2. The pointer returned by getnetbyname() points to static storage that is overwritten on subsequent calls

to the getnetbyname(), getnetbyaddr(), or getnetent() functions.

3. When the network information is obtained from the network database file, the file is opened and the

network information is retrieved (if it exists) from the file. The file is then closed only if a setnetent()

with a nonzero parameter value was not previously done.

4. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the network name specified by the network_name parameter,

and for the network names returned in the netent structure, the job CCSID must be something other

than 65535.

5. Do not use the getnetbyname() function in a multithreaded environment. See the multithread

alternative getnetbyname_r() function.
6. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the getnetbyname() API is mapped to qso_getnetbyname98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getnetbyaddr()—Get Network Information for IP Address” on page 257—Get Network Information for

IP Address

v “getnetent()—Get Next Entry from Network Database” on page 264—Get Next Entry from Network

Database

v “setnetent()—Open Network Database” on page 354—Open Network Database

v “endnetent()—Close Network Database” on page 225—Close Network Database

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

262 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

getnetbyname_r()—Get Network Information for Domain Name

 Syntax

 #include <netdb.h>

 int getnetbyname_r(char *network_name,

 struct netent *netent_struct_addr,

 struct netent_data

 *netent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The getnetbyname_r() function is used to retrieve information about a network. The information is

retrieved from the network database file.

Parameters

char *network_name (input/output)

Specifies the pointer to the character string that contains the name of the network for which

information is to be retrieved.

struct netent *netent_struct_addr (input/output)

Specifies the pointer to a netent structure where the results will be placed. All results must be

referenced through this structure.

struct netent_data *netent_data_struct_addr (input/output)

Specifies the pointer to the netent_data structure, which is used to pass and preserve results

between function calls. The field net_control_blk in the netent_data structure must be initialized

with hexadecimal zeros before its initial use. If compatibility with other platforms is required,

then the entire netent_data structure must initialized with hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The getnetbyname_r() function returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct netent denoted by netent_struct_addr and struct netent_datadenoted by

netent_data_struct_addr are both defined in <netdb.h>. The structure struct netentis defined as:

 struct netent [

 char *n_name;

 char **n_aliases;

 int n_addrtype;

 unsigned long n_net;

];

Sockets APIs 263

n_name points to the character string that contains the name of the network. n_aliases is a pointer to a

NULL-terminated list of pointers, each of which points to a character string that represents an alternative

name for the network. n_addrtype contains the address type of the network (that is, AF_INET). n_net is

the 32-bit network address (that is, an IP address in network byte order with host part set to zero).

Error Conditions

When the getnetbyname_r() function fails, errno can be set to:

[EINVAL]

 The netent_data structure was not properly initialized to hexadecimal zeros before initial use. For

corrective action, see the description for structure netent_data.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the network database file:

v WRKNETTBLE (Work with Network Table Entries)

v ADDNETTBLE (Add Network Table Entry)

v RMVNETTBLE (Remove Network Table Entry)
2. When the network information is obtained from the network database file, the file is opened and the

network information is retrieved (if it exists) from the file. The file is then closed only if a setnetent_r()

call with a non-zero parameter value was not previously done.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the network name specified by the network_name parameter,

and for the network names returned in the netent structure, the job CCSID must be something other

than 65535.

Related Information

v “getnetent_r()—Get Next Entry from Network Database” on page 266—Get Next Entry from Network

Database

v “getnetbyaddr_r()—Get Network Information for IP Address” on page 259—Get Network Information

for IP Address

v “setnetent_r()—Open Network Database” on page 355—Open Network Database

v “endnetent_r()—Close Network Database” on page 226—Close Network Database

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

getnetent()—Get Next Entry from Network Database

 Syntax

 #include <netdb.h>

 struct netent *getnetent()

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 265.

264 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

The getnetent() function is used to retrieve network information from the network database file. When

getnetent() is first called, the file is opened, and the first entry is returned. Each subsequent call to

getnetent() results in the next entry in the file being returned. To close the file, use endnetent().

Authorities

No authorization is required.

Return Value

getnetent() returns a pointer. Possible values are:

v NULL (unsuccessful or end-of-file)

v p (successful), where p is a pointer to struct netent.

The structure struct netent is defined in <netdb.h>.

 struct netent {

 char *n_name;

 char **n_aliases;

 int n_addrtype;

 unsigned long n_net;

 };

n_name points to the character string that contains the name of the network. n_aliases is a pointer to a

NULL-terminated array of alternate names for the network. n_addrtype contains the address type of the

network. n_net is the 32-bit network address (an IP address with host part set to zero).

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the network database file:

v WRKNETTBLE (Work with Network Table Entries)

v ADDNETTBLE (Add Network Table Entry)

v RMVNETTBLE (Remove Network Table Entry)
2. The pointer returned by getnetent() points to static storage that is overwritten on subsequent calls to

the getnetent(), getnetbyaddr(), or getnetbyname() functions.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the network names returned in the netent structure, the job

CCSID must be something other than 65535.

4. Do not use the getnetent() function in a multithreaded environment. See the multithread alternative

getnetent_r() function.
5. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the getnetent() API is mapped to qso_getnetent98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getnetbyaddr()—Get Network Information for IP Address” on page 257—Get Network Information for

IP Address

v “getnetbyname()—Get Network Information for Domain Name” on page 261—Get Network

Information for Domain Name

v “endnetent()—Close Network Database” on page 225—Close Network Database

v “setnetent()—Open Network Database” on page 354—Open Network Database

Sockets APIs 265

_xopen_source.htm

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

getnetent_r()—Get Next Entry from Network Database

 Syntax

 #include <netdb.h>

 int getnetent_r(struct netent *netent_struct_addr,

 struct netent_data

 *netent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The getnetent_r() function is used to retrieve network information from the network database file. When

the getnetent_r() is first called, the file is opened, and the first entry is returned. Each subsequent call of

getnetent_r() results in the next entry in the file being returned. To close the file, use endnetent_r().

Parameters

struct netent *netent_struct_addr (input/output)

Specifies the pointer to a netent structure where the results will be placed. All results must be

referenced through this structure.

struct netent_data *netent_data_struct_addr (input/output)

Specifies the pointer to the netent_data structure, which is used to pass and preserve results

between function calls. The field net_control_blk in the netent_data structure must be initialized

with hexadecimal zeros before its initial use. If compatibility with other platforms is required,

then the entire netent_data structure must initialized with hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The getnetent_r() function returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct netent, denoted by netent_struct_addr and struct netent_datadenoted by

netent_data_struct_addr are both defined in <netdb.h>. The structure struct netentis defined as:

 struct netent [

 char *n_name;

 char **n_aliases;

 int n_addrtype;

 unsigned long n_net;

];

n_name points to the character string that contains the name of the network. n_aliases is a pointer to a

NULL-terminated list of pointers, each of which points to a character string that represents an alternative

266 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

name for the network. n_addrtype contains the address type of the network (that is, AF_INET). n_net is

the 32-bit network address (that is, an IP address in network byte order with host part set to zero).

Error Conditions

When the getnetent_r() function fails, errno can be set to:

[EINVAL]

 The netent_data structure was not properly initialized to hexadecimal zeros before initial use. For

corrective action, see the description for structure netent_data.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the network database file:

v WRKNETTBLE (Work with Network Table Entries)

v ADDNETTBLE (Add Network Table Entry)

v RMVNETTBLE (Remove Network Table Entry)
2. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the network names returned in the netent structure, the job

CCSID must be something other than 65535.

Related Information

v “getnetbyaddr_r()—Get Network Information for IP Address” on page 259—Get Network Information

for IP Address

v “getnetbyname_r()—Get Network Information for Domain Name” on page 263—Get Network

Information for Domain Name

v “setnetent_r()—Open Network Database” on page 355—Open Network Database

v “endnetent_r()—Close Network Database” on page 226—Close Network Database

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

getprotobyname()—Get Protocol Information for Protocol Name

 BSD 4.3 Syntax

 #include <netdb.h>

 struct protoent *getprotobyname(char *protocol_name)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 268.

Sockets APIs 267

#TOP_OF_PAGE
unix.htm
aplist.htm

UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <netdb.h>

 struct protoent *getprotobyname(const char *protocol_name)

 Service Program Name: QSOSRV2

 Default Public Authority:*USE

 Threadsafe: No; see “Usage Notes.”

The getprotobyname() function is used to retrieve information about a protocol. The information is

retrieved from the protocol database file.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

protocol_name

(Input) The pointer to the character string that contains the name of the protocol for which

information is to be retrieved.

Authorities

No authorization is required.

Return Value

getprotobyname() returns a pointer. Possible values are:

v NULL (unsuccessful)

v p (successful), where p is a pointer to struct protoent

The structure struct protoent is defined in <netdb.h>.

 struct protoent {

 char *p_name;

 char **p_aliases;

 int p_proto;

 };

p_name points to the character string that contains the name of the protocol. p_aliases is a pointer to a

NULL-terminated array of alternate names for the protocol. p_proto is the protocol number.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the protocol database file:

v WRKPCLTBLE (Work with Protocol Table Entries)

v ADDPCLTBLE (Add Protocol Table Entry)

v RMVPCLTBLE (Remove Protocol Table Entry)
2. The pointer returned by getprotobyname() points to static storage that is overwritten on subsequent

calls to the getprotobyname(), getprotobynumber(), or getprotoent() functions.

268 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
_xopen_source.htm

3. When the protocol information is obtained from the protocol database file, the file is opened and the

protocol information is retrieved (if it exists) from the file. The file is then closed only if a setprotoent()

with a nonzero parameter value was not previously done.

4. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the protocol name specified by the protocol_name parameter,

and for the protocol names returned in the protoent structure, the job CCSID must be something other

than 65535.

5. Do not use the getprotobyname() function in a multithreaded environment. See the multithread

alternative getprotobyname_r() function.

6. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the getprotobyname() API is mapped to

qso_getprotobyname98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getprotobynumber()—Get Protocol Information for Protocol Number” on page 271—Get Protocol

Information for Protocol Number

v “getprotoent()—Get Next Entry from Protocol Database” on page 274—Get Next Entry from Protocol

Database

v “setprotoent()—Open Protocol Database” on page 356—Open Protocol Database

v “endprotoent()—Close Protocol Database” on page 228—Close Protocol Database

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

getprotobyname_r()—Get Protocol Information for Protocol Name

 Syntax

 #include <netdb.h>

 int getprotobyname_r(char *protocol_name,

 struct protoent

 *protoent_struct_addr,

 struct protoent_data

 *protoent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The getprotobyname_r() function is used to retrieve information about a protocol. The information is

retrieved from the protocol database file.

Parameters

char *protocol_name (input)

Specifies the pointer to the character string that contains the name of the protocol for which

information is to be retrieved.

Sockets APIs 269

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

struct protoent *protoent_struct_addr (input/output)

Specifies the pointer to a protoent structure where the results will be placed. All results must be

referenced through this structure.

struct protoent_data *protoent_data_struct_addr (input/output)

Specifies the pointer to the protoent_data structure, which is used to pass and preserve results

between function calls. The field proto_control_blk in the protoent_data structure must be

initialized with hexadecimal zeros before its initial use. If compatibility with other platforms is

required, then the entire protoent_data structure must be initialized with hexadecimal zeros

before initial use.

Authorities

No authorization is required.

Return Value

The getprotobyname_r() returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct protoent denoted by protoent_struct_addr and struct protoent_data denoted by

protoent_data_struct_addr are both defined in <netdb.h>. The structure struct protoentis defined as:

 struct protoent [

 char *p_name;

 char **p_aliases;

 int p_proto;

];

p_name points to the character string that contains the name of the protocol. p_aliases is a pointer to a

NULL-terminated list of pointers, each of which points to a character string that represents an alternative

name for the protocol. p_proto is the protocol number.

Error Conditions

When the getprotobyname_r() function fails, errno can be set to:

[EINVAL]

 The protoent_data structure was not properly initialized with hexadecimal zeros before initial use.

For corrective action, see the description for structure protoent_data.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the protocol database file:

v WRKPCLTBLE (Work with Protocol Table Entries)

v ADDPCLTBLE (Add Protocol Table Entry)

v RMVPCLTBLE (Remove Protocol Table Entry)
2. When the protocol information is obtained from the protocol database file, the file is opened and the

protocol information is retrieved (if it exists) from the file. The file is then closed only if a

setprotoent_r() call with a non-zero parameter value was not previously done.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the protocol name specified by the protocol_name parameter,

and for the protocol names returned in the protoent structure, the job CCSID must be something other

than 65535.

270 iSeries: UNIX-Type -- Sockets APIs

Related Information

v “getprotobynumber_r()—Get Protocol Information for Protocol Number” on page 272)—Get Protocol

v “getprotoent_r()—Get Next Entry from Protocol Database” on page 275—Get Next Entry from Protocol

Database

v “setprotoent_r()—Open Protocol Database” on page 357—Open Protocol Database

v “endprotoent_r()—Close Protocol Database” on page 229—Close Protocol Database

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

getprotobynumber()—Get Protocol Information for Protocol Number

 Syntax

 #include <netdb.h>

 struct protoent

 *getprotobynumber(int protocol_number)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 272.

The getprotobynumber() function is used to retrieve information about a protocol. The information is

retrieved from the protocol database file.

Parameters

protocol_number

(Input) The protocol number for which information is to be retrieved.

Authorities

No authorization is required.

Return Value

getprotobynumber() returns a pointer. Possible values are:

v NULL (unsuccessful)

v p (successful), where p is a pointer to struct protoent.

The structure struct protoent is defined in <netdb.h>.

 struct protoent {

 char *p_name;

 char **p_aliases;

 int p_proto;

 };

p_name points to the character string that contains the name of the protocol. p_aliases is a pointer to a

NULL-terminated array of alternate names for the protocol. p_proto is the protocol number.

Sockets APIs 271

#TOP_OF_PAGE
unix.htm
aplist.htm

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the protocol database file:

v WRKPCLTBLE (Work with Protocol Table Entries)

v ADDPCLTBLE (Add Protocol Table Entry)

v RMVPCLTBLE (Remove Protocol Table Entry)
2. The pointer returned by getprotobynumber() points to static storage that is overwritten on subsequent

calls to the getprotobynumber(), getprotobyname(), or getprotoent() functions.

3. When the protocol information is obtained from the protocol database file, the file is opened and the

protocol information is retrieved (if it exists) from the file. The file is then closed only if a setprotoent()

with a nonzero parameter value was not previously done.

4. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the protocol names returned in the protoent structure, the job

CCSID must be something other than 65535.

5. Do not use the getprotobynumber() function in a multithreaded environment. See the multithread

alternative getprotobynumber() function.
6. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the getprotobynumber() API is mapped to

qso_getprotobynumber98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getprotobyname()—Get Protocol Information for Protocol Name” on page 267—Get Protocol

Information for Protocol Name

v “getprotoent()—Get Next Entry from Protocol Database” on page 274—Get Next Entry from Protocol

Database

v “setprotoent()—Open Protocol Database” on page 356—Open Protocol Database

v “endprotoent()—Close Protocol Database” on page 228—Close Protocol Database

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

getprotobynumber_r()—Get Protocol Information for Protocol Number

 Syntax

 #include <netdb.h>

 int getprotobynumber_r(int protocol_number,

 struct protoent

 *protoent_struct_addr,

 struct protoent_data

 *protoent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

272 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

The getprotobynumber_r() function is used to retrieve information about a protocol. The information is

retrieved from the protocol database file.

Parameters

int protocol_number (input)

Specifies the protocol number for which information is to be retrieved.

struct protoent *protoent_struct_addr (input/output)

Specifies the pointer to a protoent structure where the results will be placed. All results must be

referenced through this structure.

struct protoent_data *protoent_data_struct_addr (input/output)

Specifies the pointer to the protoent_data structure, which is used to pass and preserve results

between function calls. The field proto_control_blk in the protoent_data structures must be

initialized with hexadecimal zeros before its initial use. If compatibility with other platforms is

required, then the entire protoent_data structure must be initialized with hexadecimal zeros

before initial use.

Authorities

No authorization is required.

Return Value

The getprotobynumber_r() function returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct protoent denoted by protoent_struct_addr and struct protoent_data denoted by

protoent_data_struct_addr are both defined in <netdb.h>. The structure struct protoentis defined as:

 struct protoent [

 char *p_name;

 char **p_aliases;

 int p_proto;

];

p_name points to the character string that contains the name of the protocol. p_aliases is a pointer to a

NULL-terminated list of pointers, each of which points to a character string that represents an alternative

name for the protocol. p_proto is the protocol number.

Error Conditions

When the getprotobynumber_r() function fails, errno can be set to:

[EINVAL]

 The protoent_data structure was not properly initialized with hexadecimal zeros before initial use.

For corrective action, see the description for structure protoent_data.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the protocol database file:

v WRKPCLTBLE (Work with Protocol Table Entries)

v ADDPCLTBLE (Add Protocol Table Entry)

v RMVPCLTBLE (Remove Protocol Table Entry)

Sockets APIs 273

2. When the protocol information is obtained from the protocol database file, the file is opened and the

protocol information is retrieved (if it exists) from the file. The file is then closed only if a

setprotoent_r() call with a non-zero parameter value was not previously done.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the protocol names returned in the protoent structure, the job

CCSID must be something other than 65535.

Related Information

v “getprotobyname_r()—Get Protocol Information for Protocol Name” on page 269—Get Protocol

Information for Protocol Name

v “getprotoent_r()—Get Next Entry from Protocol Database” on page 275—Get Next Entry from Protocol

Database

v “setprotoent_r()—Open Protocol Database” on page 357—Open Protocol Database

v “endprotoent_r()—Close Protocol Database” on page 229—Close Protocol Database

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

getprotoent()—Get Next Entry from Protocol Database

 Syntax

 #include <netdb.h>

 struct protoent *getprotoent()

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 275.

The getprotoent() function is used to retrieve protocol information from the protocol database file. When

getprotoent() is first called, the file is opened, and the first entry is returned. Each subsequent call to

getprotoent() results in the next entry in the file being returned. To close the file, use endprotoent().

Authorities

No authorization is required.

Return Value

getprotoent() returns a pointer. Possible values are:

v NULL (unsuccessful or end-of-file)

v p (successful), where p is a pointer to struct protoent.

The structure struct protoent is defined in <netdb.h>.

 struct protoent {

 char *p_name;

 char **p_aliases;

 int p_proto;

 };

274 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

p_name points to the character string that contains the name of the protocol. p_aliases is a pointer to a

NULL-terminated array of alternate names for the protocol. p_proto is the protocol number.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the protocol database file:

v WRKPCLTBLE (Work with Protocol Table Entries)

v ADDPCLTBLE (Add Protocol Table Entry)

v RMVPCLTBLE (Remove Protocol Table Entry)
2. The pointer returned by getprotoent() points to static storage that is overwritten on subsequent calls to

the getprotoent(), getprotobynumber(), or getprotobyname() functions.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the protocol names returned in the protoent structure, the job

CCSID must be something other than 65535.

4. Do not use the getprotoent() function in a multithreaded environment. See the multithread alternative

getprotoent_r() function.

5. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the getprotoent() API is mapped to qso_getprotoent98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getprotobyname()—Get Protocol Information for Protocol Name” on page 267—Get Protocol

Information for Protocol Name

v “getprotobynumber()—Get Protocol Information for Protocol Number” on page 271—Get Protocol

Information for Protocol Number

v “endprotoent()—Close Protocol Database” on page 228—Close Protocol Database

v “setprotoent()—Open Protocol Database” on page 356—Open Protocol Database

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

getprotoent_r()—Get Next Entry from Protocol Database

 Syntax

 #include <netdb.h>

 int getprotoent_r(struct protoent

 *protoent_struct_addr,

 struct protoent_data

 *protoent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

Sockets APIs 275

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

The getprotoent_r() function is used to retrieve protocol information from the protocol database file. When

the getprotoent_r() is first called, the file is opened, and the first entry is returned. Each subsequent call of

getprotoent_r() results in the next entry in the file being returned. To close the file, use endprotoent_r().

Parameters

struct protoent *protoent_address (input/output)

Specifies the pointer to a protoent structure where the results will be placed. All results must be

referenced through this structure.

struct protoent_data *protoent_data_struct_addr (input/output)

Specifies the pointer to the protoent_data structure, which is used to pass and preserve results

between function calls. The field proto_control_blk in the protoent_data structure must be

initialized with hexadecimal zeros before its initial use. If compatibility with other platforms is

required, then the entire protoent_data structure must be initialized with hexadecimal zeros

before initial use.

Authorities

No authorization is required.

Return Value

The getprotoent_r() function returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct protoent denoted by protoent_struct_addr and struct protoent_data denoted by

protoent_data_struct_addr are both defined in <netdb.h>. The structure struct protoentis defined as:

 struct protoent [

 char *p_name;

 char **p_aliases;

 int p_proto;

];

p_name points to the character string that contains the name of the protocol. p_aliases is a pointer to a

NULL-terminated list of pointers, each of which points to a character string that represents an alternative

name for the protocol. p_proto is the protocol number.

Error Conditions

When the getprotoent_r() function fails, errno can be set to:

[EINVAL]

 The protoent_data structure was not properly initialized with hexadecimal zeros before initial use.

For corrective action, see the description for structure protoent_data.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the protocol database file:

v WRKPCLTBLE (Work with Protocol Table Entries)

v ADDPCLTBLE (Add Protocol Table Entry)

v RMVPCLTBLE (Remove Protocol Table Entry)
2. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the protocol names returned in the protoent structure, the job

CCSID must be something other than 65535.

276 iSeries: UNIX-Type -- Sockets APIs

Related Information

v “getprotobynumber_r()—Get Protocol Information for Protocol Number” on page 272—Get Protocol

v “getprotobyname_r()—Get Protocol Information for Protocol Name” on page 269—Get Protocol

Information for Protocol Name

v “setprotoent_r()—Open Protocol Database” on page 357—Open Protocol Database

v “endprotoent_r()—Close Protocol Database” on page 229—Close Protocol Database

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

getservbyname()—Get Port Number for Service Name

 BSD 4.3 Syntax

 #include <netdb.h>

struct servent *getservbyname(char *service_name,

 char *protocol_name)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 278.

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <netdb.h>

struct servent *getservbyname(const char *service_name,

 const char *protocol_name)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 278.

The getservbyname() function is used to retrieve information about services (the protocol being used by the

service and the port number assigned for the service). The information is retrieved from the service

database file.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

service_name

(Input) The pointer to the character string that contains the name of the service for which

information is to be retrieved (for example, telnet).

Sockets APIs 277

#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm
_xopen_source.htm

protocol_name

(Input) The pointer to the character string that contains the name of the protocol that further

qualifies the search criteria. For example, if the service_name is telnet, and the protocol_name is tcp,

then the call will return the telnet server that uses the TCP protocol. If this parameter is set to

NULL, then the first telnet server is returned, regardless of the protocol used.

Authorities

No authorization is required.

Return Value

getservbyname() returns a pointer. Possible values are:

v NULL (unsuccessful)

v p (successful), where p is a pointer to struct servent.

The structure struct servent is defined in <netdb.h>.

 struct servent {

 char *s_name;

 char **s_aliases;

 int s_port;

 char *s_proto

 };

s_name points to the character string that contains the name of the service. s_aliases is a pointer to a

NULL-terminated array of alternate names for the service. s_port is the port number assigned to the

service. s_proto is the protocol being used by the service.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the services database file:

v WRKSRVTBLE (Work with Service Table Entries)

v ADDSRVTBLE (Add Service Table Entry)

v RMVSRVTBLE (Remove Service Table Entry)
2. The pointer returned by getservbyname() points to static storage that is overwritten on subsequent calls

to the getservbyname(), getservbyname(), or getservent() functions.

3. When the service information is obtained from the service database file, the file is opened and the

service information is retrieved (if it exists) from the file. The file is then closed only if a setservent()

with a nonzero parameter value was not previously done.

4. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the service name and the protocol name, specified by the

service_name and protocol_name parameters, respectively, and for the service names returned in the

servent structure, the job CCSID must be something other than 65535.

5. Do not use the getservbyname() function in a multithreaded environment. See the multithread

alternative getservbyname_r() function.
6. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the getservbyname() API is mapped to qso_getservbyname98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getservbyport()—Get Service Name for Port Number” on page 281—Get Service Name for Port

Number

v “getservent()—Get Next Entry from Service Database” on page 285—Get Next Entry from Service

Database

278 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm

v “setservent()—Open Service Database” on page 358—Open Service Database

v “endservent()—Close Service Database” on page 230—Close Service Database

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

getservbyname_r()—Get Port Number for Service Name

 Syntax

 #include <netdb.h>

 int getservbyname_r(char *service_name,

 char *protocol_name,

 struct servent

 *servent_struct_addr,

 struct servent_data

 *servent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The getservbyname_r() function is used to retrieve information about services: the protocol being used by

the service and the port number assigned for the service. The information is retrieved from the service

database file.

Parameters

char *service_name (input)

Specifies the pointer to the character string that contains the name of the service for which

information is to be retrieved (for example, telnet).

char *protocol_name (input)

Specifies the pointer to the character string that contains the name of the protocol that further

qualifies the search search criteria. For example, if the service_name is telnet, and the protocol_name

is tcp, then the call will return the telnet server that uses the TCP protocol. If this parameter is set

to NULL, then the first telnet server is returned, regardless of the protocol used.

struct servent *servent_struct_addr (input/output)

Specifies the pointer to a servent structure where the results will be placed. All results must be

referenced through this structure.

struct servent_data *servent_data_struct_addr (input/output)

Specifies the pointer to the servent_data structure, which is used to pass and preserve results

between function calls. The field serve_control_blk in the servent_data structure must be

initialized with hexadecimal zeros before its initial use. If compatibility with other platforms is

required, then the entire servent_data structure must be initialized with hexadecimal zeros before

initial use.

Authorities

No authorization is required.

Sockets APIs 279

#TOP_OF_PAGE
unix.htm
aplist.htm

Return Value

The getservbyname_r() function returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct servent denoted by servent_struct_addr and struct servent_datadenoted by

servent_data_struct_addr are both defined in <netdb.h>. The structure struct serventis defined as:

 struct servent [

 char *s_name;

 char **s_aliases;

 int s_port;

 char *s_proto

];

s_name points to the character string that contains the name of the service. s_aliases is a pointer to a

NULL-terminated list of pointers, each of which points to a character string that represents an alternative

name for the service. s_port is the port number assigned to the service. s_proto is a pointer to a character

string that contains the name of the protocol being used by the service.

Error Conditions

When the getservbyname_r() function fails, errno can be set to:

[EINVAL]

 The servent_data structure was not properly initialized with hexadecimal zeros before initial use.

For corrective action, see the description for structure servent_data.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the services database file:

v WRKSRVTBLE (Work with Service Table Entries)

v ADDSRVTBLE (Add Service Table Entry)

v RMVSRVTBLE (Remove Service Table Entry)
2. When the service information is obtained from the service database file, the file is opened and the

service information is retrieved (if it exists) from the file. The file is then closed only if a setservent_r()

call with a non-zero parameter value was not previously done.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the following, the job CCSID must be something other than

65535:

v The service name and the protocol name, specified by the service_name and protocol_name

parameters, respectively

v The service names returned in the servent structure

Related Information

v “getservbyport_r()—Get Service Name for Port Number” on page 283—Get Service Name for Port

Number

v “getservent_r()—Get Next Entry from Service Database” on page 286—Get Next Entry from Service

Database

v “setservent_r()—Open Service Database” on page 359—Open Service Database

v “endservent_r()—Close Service Database” on page 231—Close Service Database

280 iSeries: UNIX-Type -- Sockets APIs

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

getservbyport()—Get Service Name for Port Number

 BSD 4.3 Syntax

 #include <netdb.h>

 struct servent *getservbyport(int port_number,

 char *protocol_name)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 282.

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <netdb.h>

 struct servent *getservbyport(int port_number,

 const char *protocol_name)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 282.

The getservbyport() function is used to retrieve information about a service assigned to a port number. The

information is retrieved from the service database file.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

port_number

(Input) The port number for which service information is to be retrieved.

protocol_name

(Input) The pointer to the character string that contains the name of the protocol that further

qualifies the search criteria. For example, if the port_number is 10, and the protocol_name is tcp,

then the call will return the server that uses the TCP protocol on port number 10. If this

parameter is set to NULL, then the first server is returned, regardless of the protocol used.

Authorities

No authorization is required.

Sockets APIs 281

#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm
_xopen_source.htm

Return Value

getservbyport() returns a pointer. Possible values are:

v NULL (unsuccessful)

v p (successful), where p is a pointer to struct servent.

The structure struct servent is defined in <netdb.h>.

 struct servent {

 char *s_name;

 char **s_aliases;

 int s_port;

 char *s_proto

 };

s_name points to the character string that contains the name of the service. s_aliases is a pointer to a

NULL-terminated array of alternate names for the service. s_port is the port number assigned to the

service. s_proto is the protocol being used by the service.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the services database file:

v WRKSRVTBLE (Work with Service Table Entries)

v ADDSRVTBLE (Add Service Table Entry)

v RMVSRVTBLE (Remove Service Table Entry)
2. The pointer returned by getservbyport() points to static storage that is overwritten on subsequent calls

to the getservbyport(), getservbyname(), or getservent() functions.

3. When the service information is obtained from the service database file, the file is opened and the

service information is retrieved (if it exists) from the file. The file is then closed only if a setservent()

with a nonzero parameter value was not previously done.

4. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the protocol name specified by the protocol_name parameter, or

for the service names returned in the servent structure, the job CCSID must be something other than

65535.

5. Do not use the getservbyport() function in a multithreaded environment. See the multithread

alternative getservbyport_r() function.

6. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the getservbyport() API is mapped to qso_getservbyport98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getservbyname()—Get Port Number for Service Name” on page 277—Get Port Number for Service

Name

v “getservent()—Get Next Entry from Service Database” on page 285—Get Next Entry from Service

Database

v “setservent()—Open Service Database” on page 358—Open Service Database

v “endservent()—Close Service Database” on page 230—Close Service Database

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

282 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

getservbyport_r()—Get Service Name for Port Number

 Syntax

 #include <netdb.h>

 int getservbyport_r(int port_number,

 char *protocol_name,

 struct servent *servent_struct_addr,

 struct servent_data

 *servent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The getservbyport_r() function is used to retrieve information about a service assigned to a port number.

The information is retrieved from the service database file.

Parameters

int port_number (input)

Specifies the port number for which service information is to be retrieved.

char *protocol_name (input)

Specifies the pointer to the character string that contains the name of the protocol that further

qualifies the search criteria. For example, if the port_number is 10, and the protocol_name is tcp,

then the call will return the server that uses the TCP protocol on port number 10. If this

parameter is set to NULL, then the first server is returned, regardless of the protocol used.

struct servent *servent_struct_addr (input/output)

Specifies the pointer to a servent structure where the results will be placed. All results must be

referenced through this structure.

struct servent_data *servent_data_struct_addr (input/output)

Specifies the pointer to the servent_data structure, which is used to pass and preserve results

between function calls. The field serve_control_blk in the servent_data structure must be

initialized with hexadecimal zeros before its initial use. If compatibility with other platforms is

required then the entire servent_data structure must be initialized with hexadecimal zeros before

initial use.

Authorities

No authorization is required.

Return Value

The getservbyport_r() function returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct servent denoted by servent_struct_addr and struct servent_datadenoted by

servent_data_struct_addr are both defined in <netdb.h>. The structure struct serventis defined as:

Sockets APIs 283

struct servent [

 char *s_name;

 char **s_aliases;

 int s_port;

 char *s_proto

];

s_name points to the character string that contains the name of the service. s_aliases is a pointer to a

NULL-terminated list of pointers, each of which points to a character string that represents an alternative

name for the service. s_port is the port number assigned to the service. s_proto is a pointer to a character

string that contains the name of the protocol being used by the service.

Error Conditions

When the getservbyport_r() function fails, errno can be set to:

[EINVAL]

 The servent_data structure was not properly initialized with hexadecimal zeros before initial use.

For corrective action see the description for structure servent_data.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the services database file:

v WRKSRVTBLE (Work with Service Table Entries)

v ADDSRVTBLE (Add Service Table Entry)

v RMVSRVTBLE (Remove Service Table Entry)
2. When the service information is obtained from the service database file, the file is opened and the

service information is retrieved (if it exists) from the file. The file is then closed only if a setservent_r()

call with a non-zero parameter value was not previously done.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the protocol name specified by the protocol_name parameter, or

for the service names returned in the servent structure, the job CCSID must be something other than

65535.

Related Information

v “getservbyname_r()—Get Port Number for Service Name” on page 279—Get Port Number for Service

Name

v “getservent_r()—Get Next Entry from Service Database” on page 286—Get Next Entry from Service

Database

v “setservent_r()—Open Service Database” on page 359)—Open Service Database

v “endservent_r()—Close Service Database” on page 231—Close Service Database

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

284 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

getservent()—Get Next Entry from Service Database

 Syntax

 #include <netdb.h>

 struct servent *getservent()

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes.”

The getservent() function is used to retrieve information about services (the protocol being used by the

service and the port number assigned for the service). The information is retrieved from the services

database file. When getservent() is first called, the file is opened, and the first entry is returned. Each

subsequent call to getservent() results in the next entry in the file being returned. To close the file, use

endservent().

Authorities

No authorization is required.

Return Value

getservent() returns a pointer. Possible values are:

v NULL (unsuccessful or end-of-file)

v p (successful), where p is a pointer to struct servent.

 struct servent {

 char *s_name;

 char **s_aliases;

 int s_port;

 char *s_proto

 };

s_name points to the character string that contains the name of the service. s_aliases is a pointer to a

NULL-terminated array of alternate names for the service. s_port is the port number assigned to the

service. s_proto is the protocol being used by the service.

The structure struct servent is defined in <netdb.h>.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the services database file:

v WRKSRVTBLE (Work with Service Table Entries)

v ADDSRVTBLE (Add Service Table Entry)

v RMVSRVTBLE (Remove Service Table Entry)
2. The pointer returned by getservent() points to static storage that is overwritten on subsequent calls to

the getservent(), getservbyname(), or getservbyport() functions.

3. A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the service names returned in the servent structure, the job

CCSID must be something other than 65535.

4. Do not use the getservent() function in a multithreaded environment. See the multithread alternative

getservent_r() function.

Sockets APIs 285

5. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the getservent() API is mapped to qso_getservent98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getservbyname()—Get Port Number for Service Name” on page 277—Get Port Number for Service

Name

v “getservbyport()—Get Service Name for Port Number” on page 281—Get Service Name for Port

Number

v “endservent()—Close Service Database” on page 230—Close Service Database

v “setservent()—Open Service Database” on page 358—Open Service Database

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

getservent_r()—Get Next Entry from Service Database

 Syntax

 #include <netdb.h>

 int getservent_r(struct servent *servent_struct_addr,

 struct servent_data

 *servent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The getservent_r() function is used to retrieve information about services: the protocol being used by the

service and the port number assigned for the service. The information is retrieved from the services

database file. When the getservent_r() is first called, the file is opened, and the first entry is returned. Each

subsequent call of getservent_r() results in the next entry in the file being returned. To close the file, use

endservent_r().

Parameters

struct servent *servent_struct_addr (input/output)

Specifies the pointer to a servent structure where the results will be placed. All results must be

referenced through this structure.

struct servent_data *servent_data_struct_addr (input/output)

Specifies the pointer to the servent_data structure, which is used to pass and preserve results

between function calls. The field serve_control_blk in the servent_data structure must be

initialized with hexadecimal zeros before its initial use. If compatibility with other platforms is

required, then the entire servent_data structure must be initialized with hexadecimal zeros before

initial use.

Authorities

No authorization is required.

286 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Return Value

The getservent_r() function returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct servent denoted by servent_struct_addr and struct servent_datadenoted by

servent_data_struct_addr are both defined in <netdb.h>. The structure struct serventis defined as:

 struct servent [

 char *s_name;

 char **s_aliases;

 int s_port;

 char *s_proto

];

s_name points to the character string that contains the name of the service. s_aliases is a pointer to a

NULL-terminated list of pointers, each of which points to a character string that represents an alternative

name for the service. s_port is the port number assigned to the service. s_proto is a pointer to a character

string that contains the name of the protocol being used by the service.

Error Conditions

When the getservent_r() function fails, errno can be set to:

[einval]

 The servent_data structure was not properly initialized with hexadecimal zeros before initial use.

For corrective action, see the description for structure servent_data.

Usage Notes

The iSeries Navigator or the following CL commands can be used to access the services database file:

v WRKSRVTBLE (Work with Service Table Entries)

v ADDSRVTBLE (Add Service Table Entry)

v RMVSRVTBLE (Remove Service Table Entry)

A coded character set identifier (CCSID) of 65535 for the job requests that no database translation be

performed. For translation to occur for the service names returned in the servent structure, the job CCSID

must be something other than 65535.

Related Information

v “getservbyname_r()—Get Port Number for Service Name” on page 279—Get Port Number for Service

Name

v “getservbyport_r()—Get Service Name for Port Number” on page 283—Get Service Name for Port

Number

v “setservent_r()—Open Service Database” on page 359—Open Service Database

v “endservent_r()—Close Service Database” on page 231—Close Service Database

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 287

#TOP_OF_PAGE
unix.htm
aplist.htm

hstrerror()—Retrieve Resolver Error Message

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 char* hstrerror(int h_error_value);

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The hstrerror() function is used to retrieve the text string that describes a resolver h_errno value.

Parameters

h_error_value (Input)

The h_errno received from a resolver API.

Return Value

The hstrerror() API returns a pointer to the error text.

Authorities:

No authorization is required.

Error Conditions

None

Usage Notes

1. If the h_error_value is out of range or not found, “Unknown resolver error” will be returned.

Related Information

v “res_findzonecut()—Find the Enclosing Zone and Servers” on page 311—Find the Enclosing Zone and

Servers

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_ninit()—Initialize res Structure” on page 323—Initialize res Structure

v “res_nclose()—Close Socket and Reset res Structure” on page 322—Close Socket and Reset res Structure

v “res_nmkquery()—Place Domain Query in Buffer” on page 329—Place Domain Query in Buffer

v “res_nmkupdate()—Construct an Update Packet” on page 330—Construct an Update Packet

v “res_nquery()—Send Domain Query” on page 332—Send Domain Query

v “res_nsearch()—Search for Domain Name” on page 334—Search for Domain Name

v “res_nsend()—Send Buffered Domain Query or Update” on page 335—Send Buffered Domain Query

v “res_nsendsigned()—Send Authenticated Domain Query or Update” on page 336—Send Authenticated

Domain Query

v “res_nupdate()—Build and Send Dynamic Updates” on page 339—Build and Send Dynamic Updates

288 iSeries: UNIX-Type -- Sockets APIs

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

Example

See Code disclaimer information for information pertaining to code examples.

See “res_ninit()—Initialize res Structure” on page 323 for an example of how hstrerror() is used.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

htonl()—Convert Long Integer to Network Byte Order

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 unsigned long htonl(unsigned long host_long)

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <netinet/in.h>

 uint32_t htonl(uint32_t host_long)

 Threadsafe: Yes

The htonl() function is used to convert a long (4-byte) integer from the local host byte order to standard

network byte order.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

host_long

(Input) The 4-byte integer in local host byte order that is to be converted to standard network

byte order.

Authorities

No authorization is required.

Return Value

htonl() returns an integer. Possible values are:

v n (where n is the 4-byte integer in standard network byte order)

Usage Notes

1. On the iSeries server, the value returned to the caller is the same as the value that was passed to

htonl(), since the local host byte order does not differ from the standard network byte order.

Sockets APIs 289

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm
_xopen_source.htm

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “ntohl()—Convert Long Integer to Host Byte Order” on page 308)—Convert Long Integer to Host Byte

Order

v “htons()—Convert Short Integer to Network Byte Order”—Convert Short Integer to Network Byte

Order

v “ntohs()—Convert Short Integer to Host Byte Order” on page 309—Convert Short Integer to Host Byte

Order

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

htons()—Convert Short Integer to Network Byte Order

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 unsigned short htons(unsigned short host_short)

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <netinet/in.h>

uint16_t htons(uint16_t host_short)

 Threadsafe: Yes

The htons() function is used to convert a short (2-byte) integer from the local host byte order to standard

network byte order.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

host_short

(Input) The 2-byte integer in local host byte order that is to be converted to standard network

byte order.

Authorities

No authorization is required.

Return Value

htons() returns an integer. Possible values are:

v n (where n is the 2-byte integer in standard network byte order)

290 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm
_xopen_source.htm

Usage Notes

1. On the iSeries server, the value returned to the caller will be the same as the value that was passed to

htons(), since the local host byte order does not differ from the standard network byte order.

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “ntohs()—Convert Short Integer to Host Byte Order” on page 309—Convert Short Integer to Host Byte

Order

v “htonl()—Convert Long Integer to Network Byte Order” on page 289—Convert Long Integer to

Network Byte Order

v “ntohl()—Convert Long Integer to Host Byte Order” on page 308—Convert Long Integer to Host Byte

Order

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

inet_addr()—Translate Full Address to 32-bit IP Address

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 #include <netinet/in.h>

 #include <arpa/inet.h>

 unsigned long inet_addr(char *address_string)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <arpa/inet.h>

 in_addr_t inet_addr(const char *address_string)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The inet_addr() function is used to translate an Internet address from dotted decimal format to a 32-bit IP

address.

Sockets APIs 291

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

address_string

(Input) The Internet address in dotted decimal format that is to be converted to a 32-bit IP

address.

Authorities

No authorization is required.

Return Value

inet_addr() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (where n is the 32-bit IP address)

The inet_addr() subroutine returns an error value of -1 for strings that are not valid.

Note: An Internet address with a dot notation value of 255.255.255.255 or its equivalent in a different base

format causes the inet_addr() subroutine to return an unsigned long value of 4294967295. This value is

identical to the unsigned representation of the error value. Otherwise, the inet_addr() subroutine considers

255.255.255.255 a valid Internet address.

Error Conditions

 When inet_addr() fails, errno can be set to one of the following:

[EFAULT]

 Bad address.

 The system detected an address which was not valid while attempting to access the address_string

parameter.

[EINVAL]

 Parameter not valid.

Usage Notes

1. Notation of the dotted decimal address string can be in one of seven formats:

v Format 1 - a.b.c.d

v Format 2 - a.b.c.

v Format 3 - a.b.c

v Format 4 - a.b.

v Format 5 - a.b

v Format 6 - a.

v Format 7 - a

Where a component of the dotted decimal format can be decimal (for example, 7.3), octal (for

example, 07.3) or hexadecimal (for example, 0xb.3).

292 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm

The rules for converting a dotted decimal string are as follows:

v For format 1, each component is interpreted as one byte of the internet address.

v For format 2, each component is interpreted as one byte of the internet address, and the rightmost

byte is set to zero.

v For format 3, each component is interpreted as one byte of the internet address, except for

component c, which is interpreted as the rightmost two bytes of the internet address.

v For format 4, each component is interpreted as one byte of the internet address, and the rightmost

two bytes are set to zero.

v For format 5, each component is interpreted as one byte of the internet address, except for

component b, which is interpreted as the rightmost three bytes of the internet address.

v For format 6, component a is interpreted as one byte of the internet address, and the rightmost

three bytes are set to zero.

v For format 7, component a is returned as the internet address.
2. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the inet_addr() API is mapped to qso_inet_addr98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

inet_lnaof()—Separate Local Portion of IP Address

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 #include <netinet/in.h>

 #include <arpa/inet.h>

 int inet_lnaof(struct in_addr internet_address)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <arpa/inet.h>

 in_addr_t inet_lnaof(struct in_addr internet_address)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

Sockets APIs 293

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm

The inet_lnaof() function is used to extract the local host portion of an IP address.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

internet_address

(Input) The 32-bit IP address from which the local host portion of the address is to be extracted.

Authorities

No authorization is required.

Return Value

inet_lnaof() returns an integer. Possible values are:

v n (where n is the local host address)

Usage Notes

1. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the inet_lnaof() API is mapped to qso_inet_lnaof98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “inet_makeaddr()—Combine Network Portion and Host Portion to Make IP Address”—Combine

Network Portion and Host Portion to Make IP Address

v “inet_netof()—Separate Network Portion of IP Address” on page 296—Separate Network Portion of IP

Address

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

inet_makeaddr()—Combine Network Portion and Host Portion to Make

IP Address

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 #include <netinet/in.h>

 #include <arpa/inet.h>

 struct in_addr inet_makeaddr(int network_address,

 int host_address)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

294 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <arpa/inet.h>

struct in_addr inet_makeaddr(in_addr_t network_address,

 in_addr_t host_address)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The inet_makeaddr() function is used to generate a 32-bit IP address from the 32-bit network IP address

and the local address of the host.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

network_address

(Input) The 32-bit network IP address.

host_address

(Input) The local host address.

Authorities

No authorization is required.

Return Value

inet_makeaddr() returns an integer. Possible values are:

v n (where n is the 32-bit IP address)

When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the inet_makeaddress() API is mapped to

qso_inet_makeaddress98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 295

_xopen_source.htm
_xopen_source.htm
_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

inet_netof()—Separate Network Portion of IP Address

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 #include <netinet/in.h>

 #include <arpa/inet.h>

 int inet_netof(struct in_addr internet_address)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <arpa/inet.h>

 in_addr_t inet_netof(struct in_addr internet_address)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The inet_netof() function is used to extract the network portion of an IP address.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

internet_address

(Input) The 32-bit IP address from which the network portion of the address is to be extracted.

Authorities

No authorization is required.

Return Value

inet_netof() returns an integer. Possible values are:

v n (where n is the network IP address)

296 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
_xopen_source.htm

Usage Notes

1. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the inet_netof() API is mapped to qso_inet_netof98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “inet_lnaof()—Separate Local Portion of IP Address” on page 293—Separate Local Portion of IP

Address

v “inet_makeaddr()—Combine Network Portion and Host Portion to Make IP Address” on page

294—Combine Network Portion and Host Portion to Make IP Address

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

inet_network()—Translate Network Portion of Address to 32-bit IP

Address

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 #include <netinet/in.h>

 #include <arpa/inet.h>

 unsigned long inet_network(char *address_string)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <arpa/inet.h>

 in_addr_t inet_network(const char *address_string)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The inet_network() function is used to translate an Internet address from dotted decimal format to a 32-bit

network IP address, in which the host part of the IP address is set to zeros.

Sockets APIs 297

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

address_string

(Input) The Internet address in dotted decimal format that is to be converted to a 32-bit network

IP address.

Authorities

No authorization is required.

Return Value

inet_network() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (where n is the 32-bit network IP address)

Error Conditions

 When inet_network() fails, errno can be set to one of the following:

[EFAULT]

 Bad address.

 The system detected an address which was not valid while attempting to access the address_string

parameter.

[EINVAL]

 Parameter not valid.

 When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the inet_network() API is mapped to qso_inet_network98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

298 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

inet_ntoa()—Translate IP Address to Dotted Decimal Format

 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 #include <netinet/in.h>

 #include <arpa/inet.h>

 char *inet_ntoa(struct in_addr internet_address)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes.”

The inet_ntoa() function is used to translate an Internet address from a 32-bit IP address to dotted decimal

format.

Parameters

internet_address

(Input) The 32-bit IP address that is to be converted to dotted decimal format.

Return Value

inet_ntoa() returns one of the following values:

v NULL (unsuccessful)

v s (where s is the pointer to the Internet address in dotted decimal format)

Usage Notes

1. The pointer returned by inet_ntoa() points to static storage that is overridden on subsequent inet_ntoa()

functions.

2. Do not use the inet_ntoa() function in a multithreaded environment. See the multithread alternative

inet_ntoa_r function.

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 299

#TOP_OF_PAGE
unix.htm
aplist.htm

inet_ntoa_r()—Translate IP Address to Dotted Decimal Format

 Syntax

 #include <sys/types.h>

 #include <sys/socket.h>

 #include <netinet/in.h>

 #include <arpa/inet.h>

 int inet_ntoa_r(struct in_addr internet_address,

 char *output_buffer,

 int output_buffer_length)

 Service Program Name: Name QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The inet_ntoa_r() function is used to translate an Internet address from a 32-bit IP address to dotted

decimal format.

Parameters

struct in_addr internet_address (input)

The 32-bit IP address that is to be converted to dotted decimal format.

char * output_buffer (input/output)

The pointer to the buffer that contains the dotted decimal format.

int output_buffer_length (input)

The length of the output buffer (length should be at least 16).

Return Value

The inet_ntoa_r() function returns:

v -1 (unsuccessful call)

v 0 (successful call)

Error Conditions

When the inet_ntoa_r() function fails, errno can be set to:

[EINVAL]

 Parameter is not valid.

 This error code indicates one of the following:

v The output_buffer_length length is less than 16.

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

300 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

inet_ntop()—Convert IPv4 and IPv6 Addresses Between Binary and

Text Form

 Syntax

 #include <sys/socket.h>

 #include <arpa/inet.h>

 const char *inet_ntop(int af, const void *src,

 char *dst, socklen_t size);

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The inet_ntop() function converts a numeric address into a text string suitable for presentation.

Parameters

af (Input) Specifies the family of the address to be converted. Currently the AF_INET and

AF_INET6 address families are supported.

src (Input) The pointer to a buffer that contains the numeric form of an IPv4 address if the af

parameter is AF_INET, or the numeric form of an IPv6 address if the af parameter is AF_INET6.

dst (Output) The pointer to a a buffer into which the function stores the resulting null-terminated

text string.

size (Input) The size of the buffer pointed at by dst. The calling application must ensure that the

buffer referred to by dst is large enough to hold the resulting text string. For IPv4 addresses, the

buffer must be at least 16 bytes. For IPv6 addresses, the buffer must be at least 46 bytes. In order

to allow applications to easily declare buffers of the proper size to store IPv4 and IPv6 addresses

in string form, the following two constants are defined in <netinet/in.h>:

 #define INET_ADDRSTRLEN 16

 #define INET6_ADDRSTRLEN 46

Authorities

No authorization is required.

Return Value

inet_ntop() returns a pointer. Possible values are:

v NULL (unsuccessful)

v non-NULL (successful)

If successful, inet_ntop() returns a pointer to the buffer containing the text string.

Error Conditions

 When inet_ntop() fails, errno will be set to one of the following:

[EAFNOSUPPORT]

Sockets APIs 301

The address family is not supported.

[ENOSPC]

 The size of the result buffer is inadequate.

[EINVAL]

 Parameter is not valid.

[EFAULT]

 The system detected an address which was not valid while attempting to access the src or dst

parameter.

Usage Notes

1. The resulting string will be in the standard IPv4 dotted-decimal format for IPv4 or one of the

preferred forms for IPv6. See the Usage Notes for “inet_pton()—Convert IPv4 and IPv6 Addresses

Between Text and Binary Form” for a more detailed description.

2. A job has a coded character set identifier (CCSID). The job CCSID will be used to convert the

characters stored at dst (to allow the hexadecimal values to be shown in lower case).

Related Information

v “inet_ntoa()—Translate IP Address to Dotted Decimal Format” on page 299—Translate IP Address to

Dotted Decimal Format

v “inet_pton()—Convert IPv4 and IPv6 Addresses Between Text and Binary Form”—Convert IPv4 and

IPv6 Addresses Between Text and Binary Form

 API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

inet_pton()—Convert IPv4 and IPv6 Addresses Between Text and

Binary Form

 Syntax

 #include <sys/socket.h>

 #include <arpa/inet.h>

 int inet_pton(int af, const char *src, void *dst);

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The inet_pton() function converts an address in its standard text presentation form into its numeric

binary form.

302 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

af (Input) Specifies the family of the address to be converted. Currently the AF_INET and

AF_INET6 address families are supported.

src (Input) The pointer to the null-terminated character string that contains the text presentation form

of an IPv4 address if the af parameter is AF_INET, or the text presentation form of an IPv6

address if the af parameter is AF_INET6. See usage notes for the supported formats.

dst (Output) The pointer to a buffer into which the function stores the numeric address. The calling

application must ensure that the buffer referred to by dst is large enough to hold the numeric

address (4 bytes for AF_INET or 16 bytes for AF_INET6).

Authorities

No authorization is required.

Return Value

inet_pton() returns an integer. Possible values are:

v 1 (successful)

v 0 (unsuccessful—input is not a valid IPv4 dotted-decimal string or a valid IPv6 address string)

v -1 (unsuccessful—see errno)

If successful, the buffer pointed at by dst will be updated with the numeric address.

Error Conditions

When inet_pton() fails with a -1, errno will be set to:

[EAFNOSUPPORT]

 The address family is not supported.

[EINVAL]

 Parameter is not valid.

[EFAULT]

 The system detected an address which was not valid while attempting to access the src or dst

parameter.

Usage Notes

1. If the af parameter of inet_pton() is AF_INET, the src string must be in the standard IPv4

dotted-decimal form:

 ddd.ddd.ddd.ddd

where ddd is a one to three digit decimal number between 0 and 255 (see the “inet_addr()—Translate

Full Address to 32-bit IP Address” on page 291 definition). The inet_pton function does not accept

other formats (such as the octal numbers, hexadecimal numbers, and fewer than four numbers that

“inet_addr()—Translate Full Address to 32-bit IP Address” on page 291 accepts).

2. If the af parameter of inet_pton is AF_INET6, the src string must be in one of the following standard

IPv6 text forms:

a. The preferred form is x:x:x:x:x:x:x:x, where the ’x’s are the hexadecimal values of the eight 16-bit

pieces of the address. Leading zeros in individual fields can be omitted, but there must be at least

one value in every field.

Sockets APIs 303

b. A string of contiguous zero fields in the preferred form can be shown as ″::″. The ″::″ can only

appear once in an address. Unspecified addresses (0:0:0:0:0:0:0:0) may be represented simply as

″::″.

c. A third form that is sometimes more convenient when dealing with a mixed environment of IPv4

and IPv6 nodes is x:x:x:x:x:x:d.d.d.d, where the ″x″s are the hexadecimal values of the six

high-order 16-bit pieces of the address, and the ″d″s are the decimal values of the four low-order

8-bit pieces of the address (standard IPv4 representation).
3. A job has a coded character set identifier (CCSID). The job CCSID will be used to convert the

characters found at src (to allow the hexadecimal values to be entered in lower case).

Related Information

v “inet_addr()—Translate Full Address to 32-bit IP Address” on page 291—Translate Full Address to

32-bit IP Address

v “inet_ntop()—Convert IPv4 and IPv6 Addresses Between Binary and Text Form” on page 301—Convert

IPv4 and IPv6 Addresses Between Binary and Text Form

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

ns_addr()—Translate Network Services Address to 12-byte Address

 Syntax

 #include <sys/types.h>

 #include <netns/ns.h>

 struct ns_addr ns_addr(char *address_string)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The ns_addr() function is used to translate a network services address from human readable format to a

12-byte hexadecimal address.

Parameters

char *address_string

(Input) The network services address in human readable format.

Return Value

The ns_addr() function returns an ns_addr structure.

304 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Usage Notes

Notation of the human readable address string can be in many forms. The following notation rules apply

to all the format examples shown here.

1. There are three fields to the address string: the network field denoted by bytes n1 through n4, the

host field denoted by bytes h1 through h6, and the port number field denoted by bytes p1 and p2.

These three fields can be separated by a period (.), a colon (:), or a (#). Once one of these three

separator characters is encountered, the rest of the fields (the host field and the port number field)

may be byte separated by a period or a colon. The network field cannot use byte separators because it

is the first field and a field separator has not been encountered. Also, you may not use the same

character as a field separator and a byte separator.

2. Each field may be specified as either decimal, hexadecimal, or octal. Octal is specified by a preceding

zero (for example, 011 is decimal value 9). Hexadecimal can be specified in the following ways:

v Specifying 0xnn.

v Specifying 0Xnn.

v Specifying xnn.

v Specifying Xnn.

v Specifying an H character at the end of the field.

v Using a byte separator (only allowed for the host field or port number) in the field that contains the

byte.

v Using any of the characters a,b,c,d,e,f,A,B,C,D,E,F in any byte in the field.

The following are valid formats:

v Format 1 - n1n2n3n4:h1.h2.h3.h4.h5.h6:p1.p2

v Format 2 - n1n2n3n4.h1:h2:h3:h4:h5:h6.p1:p2

v Format 3 - n1n2n3n4#h1.h2.h3.h4.h5.h6#p1.p2

v Format 4 - n1n2n3n4#h1:h2:h3:h4:h5:h6#p1:p2

Although they can have byte separators, the host and port fields do not need to be byte separated. Also,

not all bytes need be specified for a given field. If not all bytes are specified, the specified bytes are

right-justified in the field.

Note: If the host field is not byte separated, the number must not be larger than what can be contained in

a 4-byte integer. That is, to use nonzero values for bytes h1 and h2, you must byte separate the host field.

The following formats are also valid:

v Format 5 - n1n2n3n4:h1h2h3h4h5h6:p1p2

v Format 6 - n1:h1.h2.h3.h4.h5.h6:p1p2

v Format 7 - n1:h1h2h3h4h5h6:p1.p2

Not all fields need be specified. The following formats are also valid:

v Format 8 - n1

v Format 9 - n1:h1

v Format 10 - n1::p1

v Format 11 - ::p1

As a further example, the following are just some of the ways that a network number of 71 decimal, a

host number of 8374930 decimal, and a port number of 9341 can be specified.

v 71:8374930:9341

v 71:00.00.00.7f.ca.92:9341

v 71:7f.ca.92:9341

Sockets APIs 305

v 0x47:7fca92:247d

v 47H:7f.ca.92:9341

v 47H.7fca92.247d

 API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

ns_ntoa()—Translate Network Services Address from 12-byte

Address/h2>

 Syntax

 #include <sys/types.h>

 #include <netns/ns.h>

 char *ns_ntoa

 (struct ns_addr network_services_address)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes.”

The ns_ntoa() function is used to translate a network services address from a 12-byte address to a human

readable format.

Parameters

struct ns_addr network_services_address

(Input) The 12-byte network services address that is to be converted to human readable format.

Return Value

The ns_ntoa() function returns:

v NULL (unsuccessful call)

v s (where s is the pointer to the network services address in human readable format)

Usage Notes

1. The network services address consists of three fields, the network field, the host field, and the port

number field. ns_ntoa() returns these fields as a single character string with the fields separated by the

period (.) character. The character string is always terminated with a NULL character.

2. The fields are always returned in hexadecimal notation. ns_ntoa() inserts an H character at the end of

each field that does not contain an a,b,c,d,e,f,A,B,C,D,E or F character, in order to make it obvious that

the notation is in hexadecimal.

3. Not all fields need be returned. For example, if the host field and the port number field of the

network services address both contain hexadecimal zeros, ns_ntoa() returns a character string that only

contains the network field.

4. The pointer returned by ns_ntoa() points to static storage that is overridden on subsequent calls to

ns_ntoa().

306 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

5. Do not use the ns_ntoa() function in a multithread environment. See the multithread alternative

“ns_ntoa_r() — Translate Network Services Address from 12-byte Address” function.

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

ns_ntoa_r() — Translate Network Services Address from 12-byte

Address

 Syntax

 #include <sys/types.h>

 #include <netns/ns.h>

 int ns_ntoa_r(struct ns_addr

 network_services_address,

 char *output_buffer,

 int output_buffer_length)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The ns_ntoa_r() function is used to translate a network services address from a 12-byte address to a

human readable format.

Parameters

struct ns_addr network_services_address (input)

Specifies the 12-byte network services address that is to be converted to human readable format.

char * output_buffer (input/output)

Specifies the pointer to the converted string.

int output_buffer_length (input)

Specifies the length of the output buffer (length should at least 35).

Return Value

The ns_ntoa_r() function returns:

v -1 (unsuccessful call)

v 0 (successful call)

Error Conditions

When the ns_ntoa_r() function fails, errno can be set to:

[EINVAL]

 Parameter is not valid.

 This error code indicates one of the following:

v The output_buffer_length length is less than 35.

Sockets APIs 307

#TOP_OF_PAGE
unix.htm
aplist.htm

Usage Notes

1. The network services address consists of three fields, the network field, the host field, and the port

number field. ns_ntoa_r() will return these fields as a single character string with the fields separated

by the period (.) character. The character string is always terminated with a NULL character.

2. The fields are always returned in hexadecimal notation. ns_ntoa_r() will insert an ’H’ character at the

end of each field that does not contain an a,b,c,d,e,f,A,B,C,D,E or F character, in order to make it

obvious that the notation is in hexadecimal.

3. Not all fields need be returned. For example, if the host field and the port number field of the

network services address both contain hexadecimal zeros, the ns_ntoa_r() routine will return a

character string that only contains the network field.

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

ntohl()—Convert Long Integer to Host Byte Order

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 unsigned long ntohl(unsigned long network_long)

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <netinet/in.h>

 uint32_t ntohl(uint32_t network_long)

 Threadsafe: Yes

The ntohl() function is used to convert a long (4-byte) integer from the standard network byte order to the

local host byte order.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

network_long

(Input) The 4-byte integer in standard network byte order that is to be converted to local host

byte order.

Authorities

No authorization is required.

308 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm
_xopen_source.htm

Return Value

ntohl() returns an integer. Possible values are:

v n (where n is the 4-byte integer in local host byte order)

Usage Notes

On the iSeries server, the value returned to the caller is the same as the value that was passed to ntohl(),

since the standard network byte order does not differ from the local host byte order.

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “htonl()—Convert Long Integer to Network Byte Order” on page 289—Convert Long Integer to

Network Byte Order

v “htons()—Convert Short Integer to Network Byte Order” on page 290—Convert Short Integer to

Network Byte Order

v “ntohs()—Convert Short Integer to Host Byte Order”—Convert Short Integer to Host Byte Order

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

ntohs()—Convert Short Integer to Host Byte Order

 BSD 4.3 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 unsigned short ntohs(unsigned short network_short)

 Threadsafe: Yes

 UNIX 98 Compatible Syntax

 #define _XOPEN_SOURCE 520

 #include <netinet/in.h>

 uint16_t ntohs(uint16_t network_short)

 Threadsafe: Yes

The ntohs() function is used to convert a short (2-byte) integer from the standard network byte order to

the local host byte order.

There are two versions of the API, as shown above. The base OS/400 API uses BSD 4.3 structures and

syntax. The other uses syntax and structures compatible with the UNIX 98 programming interface

specifications. You can select the UNIX 98 compatible interface with the _XOPEN_SOURCE macro.

Parameters

network_short

(Input) The 2-byte integer in standard network byte order that is to be converted to local host

byte order.

Sockets APIs 309

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm
_xopen_source.htm
_xopen_source.htm

Authorities

No authorization is required.

Return Value

ntohs() returns an integer. Possible values are:

v n (where n is the 2-byte integer in local host byte order)

Usage Notes

On the iSeries server, the value returned to the caller is the same as the value that was passed to ntohs(),

since the standard network byte order does not differ from the local host byte order.

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “htons()—Convert Short Integer to Network Byte Order” on page 290—Convert Short Integer to

Network Byte Order

v “htonl()—Convert Long Integer to Network Byte Order” on page 289—Convert Long Integer to

Network Byte Order

v “ntohl()—Convert Long Integer to Host Byte Order” on page 308—Convert Long Integer to Host Byte

Order

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

res_close()—Close Socket and Reset _res Structure

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 void res_close(void)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_close() function is used to reset the _res structure to the beginning defaults and close a socket that

is opened as a result of the RES_STAYOPEN flag.

Authorities:

No authorization is required.

Return Value

None

310 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Usage Notes

1. If res_send() was previously called with RES_STAYOPEN set in the options field of the _res structure,

res_close() closes the socket that was left open. res_close() does not attempt the close if there was no

socket left open.

2. res_close() sets the _res structure to default values.

v The retrans field is set to 5.

v The retry field is set to 4.

v The options field has the RES_RECURSE, RES_DEFDNAMES, and RES_DNSSRCH bits set.

v The nscount field is set to 1.

v All other fields in the _res structure are cleared.

v In a thread-enabled environment _res structure is shared among all threads within a process.

Related Information

v “res_nclose()—Close Socket and Reset res Structure” on page 322—Close Socket and Reset res Structure

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_init()—Initialize _res Structure” on page 316—Initialize _res Structure

v “res_mkquery()—Place Domain Query in Buffer” on page 320—Place Domain Query in Buffer

v “res_query()—Send Domain Query” on page 342—Send Domain Query

v “res_search()—Search for Domain Name” on page 344—Search for Domain Name

v “res_send()—Send Buffered Domain Query or Update” on page 346—Send Buffered Domain Query

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

res_findzonecut()—Find the Enclosing Zone and Servers

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int res_findzonecut(state* res,

 const char *domain_name,

 ns_class class,

 int options,

 char *zone_name,

 size_t zone_size,

 struct in_addr *addresses,

 int num_addresses)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

Sockets APIs 311

#TOP_OF_PAGE
unix.htm
aplist.htm

The res_findzonecut() queries name servers until it finds the enclosing zone and its master name servers

for the specified domain name.

Parameters

res (Input) The pointer to the state structure.

domain_name

(Input) The pointer to the domain name whose enclosing zone is desired.

class (Input) The class of domain_name.

options

(Input) Processing options, may be RES_EXHAUSTIVE.

zone_name

(Output) The pointer to the enclosing zone name found.

zonesize

(Input) The size of the zone_name buffer.

addresses

(Output) The name server addresses found for the enclosing zone.

num_addresses

(Input) The maximum number of addresses to be returned.

Authorities

No authorization is required.

Return Value

res_findzonecut() returns an integer. Possible values are:

v < 0 - (unsuccessful).

v = 0 - zone_name is now valid, but addresses wasn’t changed.

v > 0 - zone_name is now valid, and the return value is number of addresses found.

Error Conditions

When the res_findzonecut() function fails, res_findzonecut() can set errno to one of the following:

[ECONVERT]

 Either the input packet could not be translated to ASCII or the answer received could not be

translated to the coded character set identifier (CCSID) currently in effect for the job.

[EDESTADDRREQ]

 No zone could be found for the domain.

[EFAULT]

 The system detected a pointer that was invalid while attempting to access an input pointer.

[EINVAL]

 One of the following reasons:

v An invalid length or NULL pointer was passed to res_findzonecut()

v The res appears to be initialized but the reserved field is not set to zeros.

 Note: No attempt is made to initialize the res structure if it was initialized previous to the

res_findzonecut() being issued.

312 iSeries: UNIX-Type -- Sockets APIs

[EMSGSIZE]

 An invalid message length was returned on an answer.

[EPROTOTYPE]

 The answer to a query had the wrong domain name.

 Note: There are numerous other values that errno can be set to by the resolver and sockets functions that

res_findzonecut() calls. Refer to other functions for the other values.

Usage Notes

1. res_findzonecut() calls res_mkquery() and res_send() to query the specified server for the zone

information.

2. res_findzonecut() calls res_ninit() if the res structure has not been initialized.

3. res_findzonecut() assumes that the data passed to it is EBCDIC and is in the default coded character set

identifier (CCSID) currently in effect for the job. It translates the data from the default CCSID

currently in effect for the job to ASCII (CCSID 819) before the data is sent out to a name server. The

response that it receives from the name server is returned in the default CCSID currently in effect for

the job.

Related Information

v “res_nclose()—Close Socket and Reset res Structure” on page 322—Close Socket and Reset res Structure

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_ninit()—Initialize res Structure” on page 323—Initialize res Structure

v “res_nmkquery()—Place Domain Query in Buffer” on page 329—Place Domain Query in Buffer

v “res_nmkupdate()—Construct an Update Packet” on page 330—Construct an Update Packet

v “res_nquery()—Send Domain Query” on page 332—Send Domain Query

v “res_nsearch()—Search for Domain Name” on page 334—Search for Domain Name

v “res_nsend()—Send Buffered Domain Query or Update” on page 335—Send Buffered Domain Query

v “res_nsendsigned()—Send Authenticated Domain Query or Update” on page 336—Send Authenticated

Domain Query

v “res_nupdate()—Build and Send Dynamic Updates” on page 339—Build and Send Dynamic Updates

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 313

#TOP_OF_PAGE
unix.htm
aplist.htm

res_hostalias()—Retrieve the host alias

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 const char * res_hostalias(const state* res,

 const char* name,

 char* destination,

 size_t destination_length)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_hostalias() looks up the specified name in the host aliases file specified by the environment

variable HOSTALIASES.

A user may create a host aliases file. This file maps user defined aliases to host names, unlike the OS/400

host table (or a DNS) which maps host names to ip addresses. Also, it requires no special authorities for a

user to define an alias. It’s simply a shorthand for a server which can be easily changed and controlled

by users. No iSeries server default alias file is created.

The format is simply an alias followed by blank(s) followed by a domain name. For example, mypc may

be an alias for m999.mydomain.ibm.com and myaix may be an alias for m111.mydomain.ibm.com:

mypc m999.mydomain.ibm.com.

myaix m111.mydomain.ibm.com

Other functions, like “res_nsearch()—Search for Domain Name” on page 334 or “gethostbyname_r()—Get

Host Information for Host Name” on page 248 will resolve an alias like ″mypc″ to the full domain name

″m999.mydomain.ibm.com.″ before querying the DNS or OS/400 host table.

Note:An alias may not contain periods.

Parameters

res (Input) The pointer to the state structure.

name (Input) The pointer to the host name.

destination

(Output) The pointer to the destination buffer. This pointer will be the return value if the call

succeeds.

destination_length

(Input) The length of the destination buffer.

Authorities

Authorization of *R (allow access to the object) to the host aliases file specified by the HOSTALIASES

environment variable.

314 iSeries: UNIX-Type -- Sockets APIs

You also need *X authority to each directory in the path of the host aliases file.

Return Value

(NULL) No alias found or an error occurred.

(destination) A pointer to the destination buffer updated with the alias found.

Error Conditions

 When the res_hostalias() function fails, errno can be set to one of the following:

[EACCES]

 Permission denied. The process does not have the appropriate privileges to the host aliases file

specified by the HOSTALIASES environment variable.

[EFAULT]

 The system detected a pointer that was invalid while attempting to access an input pointer.

[EINVAL]

 One of the following reasons:

v The res appears to have been previously initialized but the reserved field is not set to zeros or

an input pointer was NULL.
v An alias was found that contains a period.

Usage Notes

1. If the RES_NOALIASES option is set, no processing is done and a NULL will be returned.

2. If the res structure has not been initialized, res_ninit() will be called.

Related Information

v “res_findzonecut()—Find the Enclosing Zone and Servers” on page 311—Find the Enclosing Zone and

Servers

v “res_ninit()—Initialize res Structure” on page 323—Initialize res Structure

v “res_nclose()—Close Socket and Reset res Structure” on page 322—Close Socket and Reset res Structure

v “res_nmkquery()—Place Domain Query in Buffer” on page 329—Place Domain Query in Buffer

v “res_nquery()—Send Domain Query” on page 332—Send Domain Query

v “res_nsearch()—Search for Domain Name” on page 334—Search for Domain Name

v “res_nsend()—Send Buffered Domain Query or Update” on page 335—Send Buffered Domain Query

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 315

#TOP_OF_PAGE
unix.htm
aplist.htm

res_init()—Initialize _res Structure

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 void res_init(void)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_init() function is used to initialize the _res structure for name resolution. Two bits are set in the

structure to indicate that it has been initialized. (These are the RES_INIT and RES_XINIT bits in the

options field of the _res structure.) Also, the default domain name and other components of the domain

to search are put into the _res structure.

The _res structure is defined in <resolv.h>.

 struct state {

 int retrans;

 int retry;

 long options;

 int nscount;

 struct sockaddr_in nsaddr_list[MAXNS];

 u_short id;

 char defdname[MAXDNAME];

 char reserved0[1];

 char reserved1[13];

 char *dnsrch[MAXDNSRCH+1];

 /* Extended state structure begins here.*/

 struct {

 struct in_addr addr;

 uint mask;

 } sort_list[MAXRESOLVSORT];

 int res_h_errno;

 int extended_error;

 unsigned ndots:4;

 unsigned nsort:4;

 char state_data[27];

 int internal_use[4];

 char reserved[444];

 };

 #define nsaddr nsaddr_list[0]

 extern struct state _res;

retrans Time interval in seconds between retries. The default is received from QUSRSYS/QATOCTCPIP

which is configured with the Change TCP/IP Domain (CHGTCPDMN) command

retry Number of times to retransmit. The default is received from QUSRSYS/QATOCTCPIP which is

configured with the Change TCP/IP Domain (CHGTCPDMN) command

options Contains flag bits to indicate the different resolver options. The default is RES_DEFAULT

316 iSeries: UNIX-Type -- Sockets APIs

nscount

Number of name servers. res_ninit() sets the number of name servers to the number found in the

database file. The maximum is 3

nsaddr_list

Contains the address(es) of the name server(s)

id Current packet ID. The id is initialized to a random number

defdname

Default domain name or the search list

dnsrch Contains the components of the search list. By default it points to components of defdname which

contains the local domain or the configured search list. However a program may allocate separate

storage for a customized search list and set the elements of dnsrch to point to it. Each component

pointed to by an element of dnsrch must be NULL terminated.

sort_list

List of address/mask pairs that will be used to sort the results of a gethostbyname() or

gethostbyname_r() operation

res_h_errno

Holds the last h_errno or errno set by the resolver for this context

ndots Number of dots in a name that will trigger an absolute query instead of using the dnsrch

nsort Number of elements in the sort_list array

state_data

Used internally by the resolver

reserved0,reserved1 and reserved

Fields are that set to zeros by res_ninit() or res_init(). If the res structure is manually initialized by

a program, it also must set these structures to zeros.

nsaddr Defined for backward compatibility

options The value for the options is constructed by performing an OR operation on the following values:

 RES_INIT Indicates that the res structure has been initialized.

RES_AAONLY Requests the answer be authoritative and not from a name server’s cache.

RES_USEVC Tells the resolver to use TCP instead of UDP.

RES_IGNTC Tells the resolver to ignore truncation.

RES_RECURSE Specifies that recursion is desired.

RES_DEFNAMES Appends the default domain name to single label queries.

RES_STAYOPEN Causes the TCP connection to remain open (used with RES_USEVC).

RES_DNSRCH Searches using dnsrch.

RES_INSECURE1 Disables type 1 security. Type 1 security rejects responses that didn’t come from one of

the configured DNS servers.

RES_INSECURE2 Disables type 2 security. Type 2 security checks the question section of the reply to

ensure it matches the original query sent.

RES_NOALIASES Tells the resolver to ignore the HOSTALIASES environment variable.

RES_ROTATE Tells the resolver to rotate through the list of DNS servers (nsaddr_list).

RES_NOCHECKNAME Tells the resolver not to check host names in replies for disallowed characters such as

underscore (_), non-ASCII, or control characters.

RES_KEEPTSIG Stops the resolver from stripping TSIG records on replies.

RES_NOCACHE Do not look in the resolver answer cache. Query the name server. The answer may still

be locally cached.

Sockets APIs 317

The following four values are OS/400 specific.

 RES_XINIT Indicates that the extended portion of the res structure has been initialized.

RES_CP850 Use ASCII code page 850 and not ASCII code page 819.

RES_RETRYTCP Retry with a TCP connection if the UDP connection fails for any reason.

RES_NSADDRONLY Only use the list of addresses in nsaddr. There may be a separate SOCKS DNS

configured that would normally be used.

RES_DEFAULT This is the default. Causes an OR operation on the RES_RECURSE, RES_DEFNAMES,

RES_DNSRCH values.

Authorities:

No authorization is required.

Return Value

None.

Error Conditions

 res_init() can set errno to the following:

[EINVAL]

 _res appears to have been previously initialized but the reserved field is not set to zeros.

[EUNKNOWN]

 res_init() was unable to retrieve the DNS server configuration.

Usage Notes

1. If no entry was configured with Change TCP/IP Domain (CHGTCPDMN), then res_init() does the

following:

v Calls gethostname() to get the default domain name. The default domain name in this case is the

host name minus the first component of the name. For example, if the host name is

ABC.RCHLAND.IBM.COM, the default name is RCHLAND.IBM.COM.

v Calls getservbyname() to get the port number.

v Uses hard-coded defaults for retrans, retry and ndots (5, 4 and 1 respectively).
2. The default initialization values can be overridden with enviroment variables. Note:The name of the

environment variable must be uppercased. The string value may be mixed case. Japanese systems

using CCSID 290 should use uppercase characters and numbers only in both environment variables

names and values.

v LOCALDOMAIN

The configured search list (struct state.defdname and struct state.dnsrch) can be overridden by

setting the environment variable LOCALDOMAIN to a space-separated list of up to 6 search

domains with a total of 256 characters (including spaces). If a search list is specified, the default

local domain is not used on queries.

v RES_OPTIONS allows certain internal resolver variables to be modified. The environment variable

can be set to one or more of the following space-separated options:

– NDOTS:n sets a threshold for the number of dots which must appear in a name given to

res_query() before an initial absolute query will be made. The default for n is ``1’’, meaning that

if there are any dots in a name, the name will be tried first as an absolute name before any

search list elements are appended to it.

318 iSeries: UNIX-Type -- Sockets APIs

– TIMEOUT:n sets the amount of time (in seconds) the resolver will wait for a response from a

remote name server before giving up and retrying the query.

– ATTEMPTS:n sets the number of queries the resolver will send to a given nameserver before

giving up and trying the next listed nameserver.

– ROTATE sets RES_ROTATE in _res.options , which causes round robin selection of nameservers

from among those listed. This has the effect of spreading the query load among all listed servers,

rather than having all clients try the first listed server first every time.

– NO-CHECK-NAMES sets RES_NOCHECKNAME in _res.options , which disables the modern

BIND checking of incoming host names and mail names for invalid characters such as

underscore (_), non-ASCII, or control characters.
v QIBM_BIND_RESOLVER_FLAGS

The RES_DEFAULT options (struct state.options) and system configured values (Change TCP/IP

Domain - CHGTCPDMN) can be overridden by setting the environment variable

QIBM_BIND_RESOLVER_FLAGS to a space separated list of resolver option flags. The state.options

structure will be initialized normally, using RES_DEFAULT, OPTIONS environment values and

CHGTCPDMN configured values. Then this environment varible will be used to override those

defaults. The flags named in this environment variable may be prepended with a ’+’, ’-’ or ’NOT_’

to set (’+’) or reset (’-’,’NOT_’) the value. For example, to turn on RES_NOCHECKNAME and turn

off RES_ROTATE:
ADDENVVAR ENVVAR(QIBM_BIND_RESOLVER_FLAGS) VALUE(’RES_NOCHECKNAME

NOT_RES_ROTATE’)
or
ADDENVVAR ENVVAR(QIBM_BIND_RESOLVER_FLAGS) VALUE(’+RES_NOCHECKNAME

-RES_ROTATE’)

v QIBM_BIND_RESOLVER_SORTLIST

A sort list (struct state.sort_list) can be configured by setting the environment variable

QIBM_BIND_RESOLVER_SORTLIST to a space-separated list of up to 10 ip addresses/mask pairs

in dotted decimal format (9.5.9.0/255.255.255.0)

Note: Environment variables are only checked after a successful call to res_init() or res_ninit(). So if the

structure has been manually initialized, environment variables are ignored. Also note that the

structure is only initialized once so later changes to the environment variables will be ignored.

3. res_init() is called by res_send(), res_mkquery(), res_search(), and res_query() if they detect the _res

structure has not been initialized (RES_INIT option). res_init() can also be called directly to change the

defaults and hence, change the behavior of one of the above routines. For example, if you want to use

TCP rather than attempt UDP first, simply call res_init() directly. Then before the call to res_send(), set

the RES_USEVC bit in the options flag. Other things in the _res structure, like the number of retries

or time interval between retries, can be changed in a like manner.

4. If the server protocol configured with Change TCP/IP Domain (CHGTCPDMN) is set to TCP, then

res_init() sets the RES_USEVC bit in the options field of the _res structure.

5. In a thread-enabled environment the _res structure is shared among all threads within a process.

Related Information

v “hstrerror()—Retrieve Resolver Error Message” on page 288—Retrieve Resolver Error Message

v “res_ninit()—Initialize res Structure” on page 323—Initialize res Structure

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_close()—Close Socket and Reset _res Structure” on page 310—Close Socket and Reset _res

Structure

v “res_mkquery()—Place Domain Query in Buffer” on page 320—Place Domain Query in Buffer

v “res_query()—Send Domain Query” on page 342—Send Domain Query

v “res_search()—Search for Domain Name” on page 344—Search for Domain Name

v “res_send()—Send Buffered Domain Query or Update” on page 346—Send Buffered Domain Query

Sockets APIs 319

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

res_mkquery()—Place Domain Query in Buffer

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int res_mkquery(int operation,

 char *domain_name,

 int class,

 int type,

 char *search_data,

 int search_data_length,

 struct rrec *reserved,

 char *query_buffer,

 int query_buffer_length)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_mkquery() function is used to make standard query messages (DNS packets) for name servers.

Parameters

operation

(Input) The query operation desired. This gets put into OPCODE in the header of the packet.

Common values are listed below (see <arpa/nameser.h> for all possible values):

 ns_o_query or

QUERY

Standard query request. (This value is almost always used.)

domain_name

(Input) The pointer to the name of the domain.

class (Input) The class of data being looked for. Common values are listed below (see

<arpa/nameser.h> for all possible values):

 ns_c_in or C_IN Specifies the ARPA Internet.

ns_c_any or

C_ANY

This is the wildcard match.

type (Input) The type of request being made. Common values are listed below (see <arpa/nameser.h>

for all possible values):

 ns_t_a or T_A Host address.

ns_t_aaaa IPv6 address.

320 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

ns_t_ns or T_NS Authoritative server.

ns_t_cname or

T_CNAME

Canonical name.

ns_t_soa or

T_SOA

Start of authority zone.

ns_t_wks or

T_WKS

Well-known service.

ns_t_ptr or

T_PTR

Domain name pointer.

ns_t_hinfo or

T_HINFO

Host information.

ns_t_mx or

T_MX

Mail routing information.

ns_t_txt or

T_TXT

Text strings.

ns_t_any or

T_ANY

Wildcard match.

search_data

(Input) A buffer containing the data for inverse queries. It is NULL for types other than IQUERY.

search_data_length

(Input) The length of search_data. It is NULL for types other than IQUERY.

reserved

(Input) A reserved and currently unused parameter. It is always a NULL pointer (defined for

compatibility).

query_buffer

(Output) A pointer to a user-supplied location containing the query message.

query_buffer_length

(Input) The length of query_buffer.

Authorities:

No authorization is required.

Return Value

res_mkquery() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is the size of the query.

Error Conditions

 When the res_mkquery() function fails, errno can be set to one of the following:

[EFAULT]

 The system detected a pointer that was invalid while attempting to access an input pointer.

[EINVAL]

 The _res appears to be initialized but the reserved field is not set to zeros.

[EMSGSIZE]

 The message buffer was too small. The query was larger than the value of query_buffer_length

Sockets APIs 321

Usage Notes

1. res_mkquery() creates a standard query message (DNS packet). It fills in the header fields, compresses

the domain name into the question section, and fills in the other question fields. This query message

is placed in query_buffer.

2. res_mkquery() calls res_init() if the _res structure has not been initialized.

3. res_mkquery() expects EBCDIC data as input. The output from res_mkquery() is also EBCDIC.

4. In a thread-enabled environment, the _res structure is shared among all threads within a process.

Related Information

v “res_nmkquery()—Place Domain Query in Buffer” on page 329—Place Domain Query in Buffer

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_init()—Initialize _res Structure” on page 316—Initialize _res Structure

v “res_close()—Close Socket and Reset _res Structure” on page 310—Close Socket and Reset _res

Structure

v “res_query()—Send Domain Query” on page 342—Send Domain Query

v “res_search()—Search for Domain Name” on page 344—Search for Domain Name

v “res_send()—Send Buffered Domain Query or Update” on page 346—Send Buffered Domain Query

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

res_nclose()—Close Socket and Reset res Structure

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 void res_nclose(state* res)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_nclose() function is similar to res_close() but it uses a user-declared res pointer instead of the

shared _res.

For a description of this function and more information on the parameters, authorities required, return

values, error conditions, error messages, usage notes, and related information, see “res_close()—Close

Socket and Reset _res Structure” on page 310.

322 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

res (Input) The pointer to the state structure.

Related Information

v “res_close()—Close Socket and Reset _res Structure” on page 310—Close Socket and Reset _res

Structure

v “res_findzonecut()—Find the Enclosing Zone and Servers” on page 311—Find the Enclosing Zone and

Servers

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_ninit()—Initialize res Structure”—Initialize res Structure

v “res_nmkquery()—Place Domain Query in Buffer” on page 329—Place Domain Query in Buffer

v “res_nquery()—Send Domain Query” on page 332—Send Domain Query

v “res_nsearch()—Search for Domain Name” on page 334—Search for Domain Name

v “res_nsend()—Send Buffered Domain Query or Update” on page 335—Send Buffered Domain Query

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

res_ninit()—Initialize res Structure

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int res_ninit(state* res)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_ninit() function is similar to res_init() but it uses a user-declared res pointer instead of the shared

_res.

For a description of this function and more information on the parameters, authorities required, return

values, error conditions, error messages, usage notes, and related information, see “res_init()—Initialize

_res Structure” on page 316—Initialize _res Structure.

Parameters

res (Input/Output) The pointer to the state structure.

 The RES_INIT and RES_XINIT options flags must be initialized to zero before the first call to any resolver

API or the res structure will not be properly initialized. For example:

Sockets APIs 323

#TOP_OF_PAGE
unix.htm
aplist.htm

state res;

 res.options &= ~ (RES_INIT | RES_XINIT);

 int n = res_ninit(&res);

Return Value

res_ninit() returns an integer. Possible values are:

v -1 (unsuccessful)

v 0 (successful)

Error Conditions

 When the res_ninit() function fails, errno can be set to one of the following:

[EFAULT]

 The system detected a pointer that was invalid while attempting to access an input pointer.

[EINVAL]

 The res appears to have been previously initialized but the reserved field is not set to zeros.

Related Information

v “hstrerror()—Retrieve Resolver Error Message” on page 288—Retrieve Resolver Error Message

v “res_init()—Initialize _res Structure” on page 316—Initialize _res Structure

v “res_findzonecut()—Find the Enclosing Zone and Servers” on page 311—Find the Enclosing Zone and

Servers

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_nclose()—Close Socket and Reset res Structure” on page 322—Close Socket and Reset res Structure

v “res_nmkquery()—Place Domain Query in Buffer” on page 329—Place Domain Query in Buffer

v “res_nquery()—Send Domain Query” on page 332—Send Domain Query

v “res_nsearch()—Search for Domain Name” on page 334—Search for Domain Name

v “res_nsend()—Send Buffered Domain Query or Update” on page 335—Send Buffered Domain Query

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how res_ninit() is used and how initialization defaults can be changed

after initialization:

#include <stdio.h>

#include <errno.h>

#include <netinet/in.h>

#include <arpa/nameser.h>

#include <resolv.h>

#include <netdb.h>

/* Declare update records - a zone record, a pre-requisite record, and

 an update record */

 ns_updrec update_records[] =

 {

 {

 {NULL,NULL},

 {NULL,&update_records[1]},

324 iSeries: UNIX-Type -- Sockets APIs

aboutapis.htm#CODEDISCLAIMER

ns_s_zn, /* a zone record */

 “mydomain.ibm.com.”,

 ns_c_in,

 ns_t_soa,

 0,

 NULL,

 0,

 0,

 NULL,

 NULL,

 0

 },

 {

 {NULL,NULL},

 {&update_records[0],&update_records[2]},

 ns_s_pr, /* pre-req record */

 “mypc.mydomain.ibm.com.”,

 ns_c_in,

 ns_t_a,

 0,

 NULL,

 0,

 ns_r_nxdomain, /* record must not exist */

 NULL,

 NULL,

 0

 },

 {

 {NULL,NULL},

 {&update_records[1],NULL},

 ns_s_ud, /* update record */

 “mypc.mydomain.ibm.com.”,

 ns_c_in,

 ns_t_a,

 10,

 (unsigned char *)“10.10.10.10”,

 11,

 ns_uop_add, /* to be added */

 NULL,

 NULL,

 0

 }

 };

void main()

{

 struct state res;

 int result;

 unsigned char update_buffer[2048];

 int buffer_length = sizeof update_buffer;

 unsigned char answer_buffer[2048];

 /* Turn off the init flags so that the structure will be initialized

 */

 res.options &= ~ (RES_INIT | RES_XINIT);

 result = res_ninit(&res);

 /* Put processing here to check the result and handle errors

 */

 /* We choose to use TCP and not UDP, so set the appropriate option now

 that the res variable has been initialized.

 */

 res.options |= RES_USEVC;

Sockets APIs 325

/* Send a query for mypc.mydomain.ibm.com address records

 */

 result = res_nquerydomain(&res,“mypc”, “mydomain.ibm.com.”, ns_c_in, ns_t_a,

 update_buffer, buffer_length);

 /* Sample error handling and printing errors

 */

 if (result == -1)

 {

 printf(“\nquery domain failed. result = %d \nerrno: %d: %s \nh_errno: %d: %s”,

 result,

 errno, strerror(errno),

 h_errno, hstrerror(h_errno));

 return;

 }

 /* The output on a failure will be:

 query domain failed. result = -1

 errno: 0: There is no error.

 h_errno: 5: Unknown host

 */

 {

 /* Build an update buffer (packet to be sent) from the update records

 */

 result = res_nmkupdate(&res, update_records, update_buffer, buffer_length);

 /* Put processing here to check the result and handle errors

 */

 }

 {

 char zone_name[NS_MAXDNAME];

 size_t zone_name_size = sizeof zone_name;

 struct sockaddr_in s_address;

 struct in_addr addresses[1];

 int number_addresses = 1;

 /* Find the DNS server that is authoritative for the domain

 that we want to update

 */

 result = res_findzonecut(&res, “mypc.mydomain.ibm.com”, ns_c_in, 0,

 zone_name, zone_name_size,

 addresses, number_addresses);

 /* Put processing here to check the result and handle errors

 */

 /* Check if the DNS server found is one of our regular

 DNS addresses

 */

 s_address.sin_addr = addresses[0];

 s_address.sin_family = res.nsaddr_list[0].sin_family;

 s_address.sin_port = res.nsaddr_list[0].sin_port;

 memset(s_address.sin_zero, 0x00, 8);

 result = res_nisourserver(&res, &s_address);

 /* Put processing here to check the result and handle errors

 */

 /* Set the DNS address found with res_findzonecut into the res

 structure. We will send the (TSIG signed) update to that DNS.

326 iSeries: UNIX-Type -- Sockets APIs

*/

 res.nscount = 1;

 res.nsaddr_list[0] = s_address;

 }

 {

 ns_tsig_key my_key = {

 “my-long-key”, /* This key must exist on the DNS */

 NS_TSIG_ALG_HMAC_MD5,

 (unsigned char*) “abcdefghijklmnopqrstuvwx”,

 24

 };

 /* Send a TSIG signed update to the DNS

 */

 result = res_nsendsigned(&res, update_buffer, result,

 &my_key,

 answer_buffer, sizeof answer_buffer);

 /* Put processing here to check the result and handle errors

 */

 }

 /* The res_findzonecut(), res_nmkupdate(), and res_nsendsigned() could

 be replaced with one call to res_nupdate() using update_records[1]

 to skip the zone record::

 result = res_nupdate(&res, &update_records[1], &my_key);

 */

 return;

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

res_nisourserver()—Check Server Address

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int res_nisourserver(state* res,

 const struct sockaddr_in server)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_nisourserver() looks up the specified server address in the ns_addr_list[] of the specified res

structure.

Sockets APIs 327

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

res (Input) The pointer to the state structure.

server (Input) The server address to check.

Authorities:

No authorization is required.

Return Value

(0) Server not found in ns_addr_list[].

(>0) Server found in ns_addr_list[].

(<0) Error.

Error Conditions

 When the res_nisourserver() function returns an error, errno will be set to one of the following:

[EFAULT]

 The system detected a pointer that was invalid while attempting to access an input pointer.

[EINVAL]

 One of the following reasons:

v A NULL pointer was passed to res_nisourserver()

v The res appears to be initialized but the reserved field is not set to zeros.

Related Information

v “res_findzonecut()—Find the Enclosing Zone and Servers” on page 311—Find the Enclosing Zone and

Servers

v “res_ninit()—Initialize res Structure” on page 323—Initialize res Structure

v “res_nclose()—Close Socket and Reset res Structure” on page 322—Close Socket and Reset res Structure

v “res_nmkquery()—Place Domain Query in Buffer” on page 329—Place Domain Query in Buffer

v “res_nquery()—Send Domain Query” on page 332—Send Domain Query

v “res_nsearch()—Search for Domain Name” on page 334—Search for Domain Name

v “res_nsend()—Send Buffered Domain Query or Update” on page 335—Send Buffered Domain Query

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

328 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

res_nmkquery()—Place Domain Query in Buffer

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int res_nmkquery(state* res,

 int operation,

 const char *domain_name,

 int class,

 int type,

 const unsigned char *search_data,

 int search_data_length,

 const unsigned char *reserved,

 unsigned char *query_buffer,

 int query_buffer_length)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_nmkquery() function is similar to res_mkquery() but it uses a user-declared res pointer instead of

the shared _res.

For a description of this function and more information on the parameters, authorities required, return

values, error conditions, error messages, usage notes, and related information, see “res_mkquery()—Place

Domain Query in Buffer” on page 320—Place Domain Query in Buffer.

Parameters

res (Input/Output) The pointer to the state structure.

Related Information

v “res_mkquery()—Place Domain Query in Buffer” on page 320—Place Domain Query in Buffer

v “res_findzonecut()—Find the Enclosing Zone and Servers” on page 311—Find the Enclosing Zone and

Servers

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_ninit()—Initialize res Structure” on page 323—Initialize res Structure

v “res_nclose()—Close Socket and Reset res Structure” on page 322—Close Socket and Reset res Structure

v “res_nquery()—Send Domain Query” on page 332—Send Domain Query

v “res_nsearch()—Search for Domain Name” on page 334—Search for Domain Name

v “res_nsend()—Send Buffered Domain Query or Update” on page 335—Send Buffered Domain Query

v “res_xlate()—Translate DNS Packets” on page 349-Translate DNS Packets

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 329

#TOP_OF_PAGE
unix.htm
aplist.htm

res_nmkupdate()—Construct an Update Packet

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int res_nmkupdate(state* res,

 ns_updrec *update_record,

 unsigned char *buffer,

 int buffer_length)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_nmkupdate() function builds a dynamic update packet from the linked list of update records.

Parameters

res (Input) The pointer to the state structure.

update_record

(Input) The pointer to the linked list of update records. See “res_nupdate()—Build and Send

Dynamic Updates” on page 339 for more information.

buffer (Input) The pointer to the buffer to be filled in with the update packet.

buffer_length

(Input) The length of the buffer.

Authorities

No authorization is required.

Return Value

res_nmkupdate() returns an integer. Possible values are:

v n (successful), where n is the actual size of the resulting update packet.

v -1 (unsuccessful) An error occurred parsing a word or number in the rdata portion of the update

records.

v -2 (unsuccessful) The buffer was too small

v -3 (unsuccessful) The zone section is not the first section in the linked list, or the section order has a

problem. The section order is ns_s_zn, ns_s_pr and ns_s_ud.

v -4 (unsuccessful) A number overflow occurred.

v -5 (unsuccessful) Unknown operation or no records found.

Error Conditions

 When the res_nmkupdate() function fails, res_nmkupdate() can set errno to one of the following:

[ECONVERT]

330 iSeries: UNIX-Type -- Sockets APIs

Either the input packet could not be translated to ASCII or the answer received could not be

translated to the coded character set identifier (CCSID) currently in effect for the job.

[EFAULT]

 The system detected a pointer that was invalid while attempting to access an input pointer.

[EINVAL]

 One of the following reasons:

v An invalid length or NULL pointer was passed to res_nmkupdate()

v The res appears to be initialized but the reserved field is not set to zeros.

 Note: No attempt is made to initialize the res structure if it was initialized previous to the

res_nmkupdate() being issued.

[EMSGSIZE]

 The message buffer was too small. The return value was -2.

Usage Notes

1. res_nmkupdate() calls res_ninit() if the res structure has not been initialized.

2. res_nmkupdate() assumes that the data passed to it is EBCDIC and is in the default coded character set

identifier (CCSID) currently in effect for the job. It translates the data from the default CCSID

currently in effect for the job to ASCII (CCSID 819) before the data is sent out to a name server. The

response that it receives from the name server is returned in the default CCSID currently in effect for

the job.

Related Information

v “res_nclose()—Close Socket and Reset res Structure” on page 322—Close Socket and Reset res Structure

v “res_findzonecut()—Find the Enclosing Zone and Servers” on page 311—Find the Enclosing Zone and

Servers

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_ninit()—Initialize res Structure” on page 323—Initialize res Structure

v “res_nmkquery()—Place Domain Query in Buffer” on page 329—Place Domain Query in Buffer

v “res_nquery()—Send Domain Query” on page 332—Send Domain Query

v “res_nsearch()—Search for Domain Name” on page 334—Search for Domain Name

v “res_nsend()—Send Buffered Domain Query or Update” on page 335—Send Buffered Domain Query

v “res_nsendsigned()—Send Authenticated Domain Query or Update” on page 336—Send Authenticated

Domain Query

v “res_nupdate()—Build and Send Dynamic Updates” on page 339—Build and Send Dynamic Updates

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 331

#TOP_OF_PAGE
unix.htm
aplist.htm

res_nquery()—Send Domain Query

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int res_nquery(state* res,

 const char *domain_name,

 int class,

 int type,

 unsigned char *answer_buffer,

 int answer_buffer_length)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_nquery() function is similar to res_query() but it uses a user-declared res pointer instead of the

shared _res.

For a description of this function and more information on the parameters, authorities required, return

values, error conditions, error messages, usage notes, and related information, see “res_query()—Send

Domain Query” on page 342—Send Domain Query.

Parameters

res (Input/Output) The pointer to the state structure.

Related Information

v “res_query()—Send Domain Query” on page 342—Send Domain Query

v “res_findzonecut()—Find the Enclosing Zone and Servers” on page 311—Find the Enclosing Zone and

Servers

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_ninit()—Initialize res Structure” on page 323—Initialize res Structure

v “res_nmkquery()—Place Domain Query in Buffer” on page 329—Place Domain Query in Buffer

v “res_nclose()—Close Socket and Reset res Structure” on page 322—Close Socket and Reset res Structure

v “res_nsearch()—Search for Domain Name” on page 334—Search for Domain Name

v “res_nsend()—Send Buffered Domain Query or Update” on page 335—Send Buffered Domain Query

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

332 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

res_nquerydomain()—Send 2 String Domain Query

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 void res_nquerydomain(state* res,

 const char *string1,

 const char *string2,

 int class,

 int type,

 unsigned char *answer_buffer,

 int answer_buffer_length)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_nquerydomain() concatenates string1 + string2 into a new domain_name parameter and calls

res_nquery(). For more information on domain_name, the remaining parameters, authorities required, return

values, and related information, see “res_nquery()—Send Domain Query” on page 332.

Parameters

string1

(Input) The pointer to the first string. In practice this is generally a host name.

string2

(Input) The pointer to the first string. In practice this is generally a zone name.

Related Information

v “res_nquery()—Send Domain Query” on page 332—Send Domain Query

Example

See Code disclaimer information for information pertaining to code examples.

See “res_ninit()—Initialize res Structure” on page 323 for an example of how hstrerror() is used.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 333

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

res_nsearch()—Search for Domain Name

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int res_nsearch(state* res,

 const char *domain_name,

 int class,

 int type,

 unsigned char *answer_buffer,

 int answer_buffer_length)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_nsearch() function is similar to res_search() but it uses a user-declared res pointer instead of the

shared _res.

For a description of this function and more information on the parameters, authorities required, return

values, error conditions, error messages, usage notes, and related information, see “res_search()—Search

for Domain Name” on page 344—Search for Domain Name.

Parameters

res (Input/Output) The pointer to the state structure.

Related Information

v “res_search()—Search for Domain Name” on page 344—Search for Domain Name

v “res_findzonecut()—Find the Enclosing Zone and Servers” on page 311—Find the Enclosing Zone and

Servers

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_ninit()—Initialize res Structure” on page 323—Initialize res Structure

v “res_nmkquery()—Place Domain Query in Buffer” on page 329—Place Domain Query in Buffer

v “res_nquery()—Send Domain Query” on page 332—Send Domain Query

v “res_nclose()—Close Socket and Reset res Structure” on page 322—Close Socket and Reset res Structure

v “res_nsend()—Send Buffered Domain Query or Update” on page 335—Send Buffered Domain Query

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

334 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

res_nsend()—Send Buffered Domain Query or Update

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int res_nsend(state* res,

 const unsigned char *query_buffer,

 int query_buffer_length,

 unsigned char *answer_buffer,

 int answer_buffer_length)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_nsend() function is similar to res_send() but it uses a user-declared res pointer instead of the

shared _res.

For a description of this function and more information on the parameters, authorities required, return

values, error conditions, error messages, usage notes, and related information, see “res_send()—Send

Buffered Domain Query or Update” on page 346—Send Buffered Domain Query.

Parameters

res (Input/Output) The pointer to the state structure.

Related Information

v “res_send()—Send Buffered Domain Query or Update” on page 346—Send Buffered Domain Query

v “res_findzonecut()—Find the Enclosing Zone and Servers” on page 311—Find the Enclosing Zone and

Servers

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_ninit()—Initialize res Structure” on page 323—Initialize res Structure

v “res_nmkquery()—Place Domain Query in Buffer” on page 329—Place Domain Query in Buffer

v “res_nquery()—Send Domain Query” on page 332—Send Domain Query

v “res_nsearch()—Search for Domain Name” on page 334—Search for Domain Name

v “res_nclose()—Close Socket and Reset res Structure” on page 322—Close Socket and Reset res Structure

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 335

#TOP_OF_PAGE
unix.htm
aplist.htm

res_nsendsigned()—Send Authenticated Domain Query or Update

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int res_nsendsigned(state* res,

 const unsigned char *query_buffer,

 int query_buffer_length,

 ns_tsig_key * key,

 unsigned char *answer_buffer,

 int answer_buffer_length)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_nsendsigned() function is similar to res_nsend() but it uses the specified key to create a transaction

signature (TSIG) to sign the query or update packet and to authenticate the response.

Parameters

res (Input) The pointer to the state structure.

query_buffer

(Input) The pointer to the query or update message.

query_buffer_length

(Input) The length of query_buffer.

key (Input) The pointer to the key to use for authentication. This key must exist on the name server.

answer_buffer

(Output) The pointer to where the response is stored.

answer_buffer_length

(Input) The size of the answer_buffer.

Authorities

No authorization is required.

Return Value

res_nsendsigned() returns an integer. Possible values are:

v n (successful), where n is the actual size of the answer returned.

v -1 (unsuccessful)

v -ns_r_badkey (unsuccessful) The key was invalid or the signing failed.

v NS_TSIG_ERROR_NO_SPACE (unsuccessful) The message buffer was too small to add the TSIG.

336 iSeries: UNIX-Type -- Sockets APIs

Error Conditions

 When the res_nsendsigned() function fails, res_nsendsigned() can set errno to one of the following:

[ECONNREFUSED]

 Not able to connect to a server.

[ECONVERT]

 Either the input packet could not be translated to ASCII or the answer received could not be

translated to the coded character set identifier (CCSID) currently in effect for the job.

[EFAULT]

 The system detected a pointer that was invalid while attempting to access an input pointer.

[EINVAL]

 One of the following reasons:

v An invalid length or NULL pointer was passed to res_nsendsigned()

v The res appears to be initialized but the reserved field is not set to zeros.

 Note: No attempt is made to initialize the res structure if it was initialized previous to the

res_nsendsigned() being issued.

[EMSGSIZE]

 The message buffer was too small to add the TSIG. The return value was

NS_TSIG_ERROR_NO_SPACE.

[ENOTTY]

 The message or reply couldn’t be verified. See extended_error in the res structure:

NS_TSIG_ERROR_FORMERR

 The message is malformed.

NS_TSIG_ERROR_NO_TSIG

 The message does not contain a TSIG record.

NS_TSIG_ERROR_ID_MISMATCH

 The TSIG original ID field does not match the message ID.

(-ns_r_badkey)

 Verification failed due to an invalid key.

(-ns_r_badsig)

 Verification failed due to an invalid signature.

(-ns_r_badtime)

 Verification failed due to an invalid timestamp.

ns_r_badkey

 Verification succeeded but the message had an error (rcode) of ns_r_badkey.

ns_r_badsig

 Verification succeeded but the message had an error (rcode) of ns_r_badsig.

ns_r_badtime

Sockets APIs 337

Verification succeeded but the message had an error (rcode) of ns_r_badtime.

[ETIMEDOUT]

 A timeout received from a connected server.

 When the res_nsearch() function fails, h_errno (defined in <netdb.h>) can also be set to one of the

following:

HOST_NOT_FOUND

 Either the input packet could not be translated to ASCII or the answer received could not

be translated to the coded character set identifier (CCSID) currently in effect for the job.

NO_RECOVERY

 An invalid length or NULL pointer was passed to res_nsendsigned() or the res could not

be initialized properly.

 Notes:

v No attempt is made to initialize the res structure if it was initialized previous to the res_nsendsigned()

being issued.
v There are numerous other values that errno can be set to by the sockets functions that res_nsendsigned()

calls. The above values are the only values that res_nsendsigned() can specifically set. Refer to other

sockets functions for the other values. errno is always set in an error condition, but h_errno is not

necessarily set.

After receiving an error reply packet, res_nsendsigned() will set the extended_error field in the state

structure to the last reply return code from the DNS server. See <arpa/nameser.h> for all possible

values of ns_rcode.

Usage Notes

1. res_nsendsigned() sends the query or update to the local name server and handles all timeouts and

retries. The response packet is stored in answer_buffer.

2. res_nsendsigned() calls res_ninit() if the res structure has not been initialized.

3. res_nsendsigned() uses the UDP protocol, except for the following cases in which it uses TCP to send

the packet.

v If the RES_USEVC or RES_STAYOPEN bits are set in the options field of the res structure.

v If the configuration from Change TCP/IP Domain (CHGTCPDMN) specifies that the server

protocol is TCP.

v If the truncation bit is set in the packet header on the response from a UDP packet, and

RES_IGNTC is not set in the res structure.
4. res_nsendsigned() does not perform iterative queries and expects the name server to handle recursion.

5. res_nsendsigned() assumes that the data passed to it is EBCDIC and is in the default coded character

set identifier (CCSID) currently in effect for the job. It translates the data from the default CCSID

currently in effect for the job to ASCII (CCSID 819) before the data is sent out to a name server. The

response that it receives from the name server is returned in the default CCSID currently in effect for

the job.

6. res_nsendsigned() will not use the local cache. It will always send the packet to the server.

7. When using TSIG, it is important that the QUTCOFFSET system value is set correctly for the local

time zone. The resolver system and name server timestamps must be within 5 minutes of each other

(adjusted by the UTC offset) or the authentication will fail with ns_r_badtime.

338 iSeries: UNIX-Type -- Sockets APIs

Related Information

v “hstrerror()—Retrieve Resolver Error Message” on page 288—Retrieve Resolver Error Message

v “res_nclose()—Close Socket and Reset res Structure” on page 322—Close Socket and Reset res Structure

v “res_findzonecut()—Find the Enclosing Zone and Servers” on page 311—Find the Enclosing Zone and

Servers

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_ninit()—Initialize res Structure” on page 323—Initialize res Structure

v “res_nmkquery()—Place Domain Query in Buffer” on page 329—Place Domain Query in Buffer

v “res_nmkupdate()—Construct an Update Packet” on page 330—Construct an Update Packet

v “res_nquery()—Send Domain Query” on page 332—Send Domain Query

v “res_nsearch()—Search for Domain Name” on page 334—Search for Domain Name

v “res_nsend()—Send Buffered Domain Query or Update” on page 335—Send Buffered Domain Query

v “res_nupdate()—Build and Send Dynamic Updates”—Build and Send Dynamic Updates

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

res_nupdate()—Build and Send Dynamic Updates

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int res_nupdate(state* res,

 ns_updrec *update_record

 ns_tsig_key *key)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_nupdate() function separates the linked list of update records into groups so that all records in a

group will belong to a single zone on the nameserver. It creates a dynamic update packet for each zone

and sends it to the nameservers for that zone.

Parameters

res (Input) The pointer to the state structure.

update_record

(Input) The pointer to the linked list of update records.

key (Input) The pointer to the key to use for authentication. If it is NULL, no authentication will be

done.

 The ns_updrec structure is defined in <arpa/nameser.h>.

Sockets APIs 339

#TOP_OF_PAGE
unix.htm
aplist.htm

struct ns_updrec {

 struct {

 struct ns_updrec *prev, *next;

 } r_link, r_glink;

 ns_sect r_section;

 char * r_dname;

 ns_class r_class;

 ns_type r_type;

 uint32 r_ttl;

 unsigned char * r_data;

 uint32 r_size;

 int32 r_opcode;

/* The following fields are ignored by the resolver routines */

 struct databuf * r_dp;

 struct databuf * r_deldp;

 uint32 r_zone;

};

typedef struct ns_updrec ns_updrec;

r_link and r_glink

Doubly linked lists of ns_updrec records. res_nupdate() uses r_link as its list of records to process

and ignores r_glink. res_nmkupdate() uses r_glink as its list of records to process and ignores r_link.

r_section

See the ns_sect enums in <arpa/nameser.h> for allowed values.

r_dname,r_class,r_type, r_ttl,r_data, and r_size

Identify the resource record to the DNS

r_opcode

Type of update operation. Valid operations are ns_uop_delete or ns_uop_add

These fields are ignored by the resolver: r_dp, r_deldp, r_zone.

Authorities

No authorization is required.

Return Value

res_nupdate() returns an integer. Possible values are:

v n (successful), where n is the number of zones updated.

v -1 (unsuccessful)

Error Conditions

 When the res_nupdate() function fails, res_nupdate() can set errno to one of the following:

[ECONVERT]

 Either the input packet could not be translated to ASCII or the answer received could not be

translated to the coded character set identifier (CCSID) currently in effect for the job.

[EFAULT]

 The system detected a pointer that was invalid while attempting to access an input pointer.

[EINVAL]

 One of the following reasons:

v An invalid length or NULL pointer was passed to res_nupdate()

v The res appears to be initialized but the reserved field is not set to zeros.

340 iSeries: UNIX-Type -- Sockets APIs

Notes:

v No attempt is made to initialize the res structure if it was initialized previous to the res_nupdate() being

issued.
v res_nupdate() calls res_findzonecut(), res_nmkupdate() and res_nsend() or res_nsendsigned() so errnos from

those routines may also be set.

Usage Notes

1. res_nupdate() calls res_ninit() if the res structure has not been initialized.

2. res_nupdate() calls res_findzonecut() to find the zone and name server to be updated for each input

record and sorts the records by zone. Then it makes a zone record for each zone and prepends it to

the update records. It calls res_nmkupdate() to make the update packet and then calls either res_nsend()

or res_nsendsigned() to send the packet. Note that since res_nupdate() prepends a new zone record, the

input records must only contain pre-requisite and update records, not zone records.

3. res_nupdate() assumes that the data passed to it is EBCDIC and is in the default coded character set

identifier (CCSID) currently in effect for the job. It translates the data from the default CCSID

currently in effect for the job to ASCII (CCSID 819) before the data is sent out to a name server. The

response that it receives from the name server is returned in the default CCSID currently in effect for

the job.

4. res_nupdate() will not use the local cache. It will always send the packet to the server.

5. When using TSIG, it is important that the QUTCOFFSET system value is set correctly for the local

time zone. The resolver system and name server timestamps must be within 5 minutes of each other

(adjusted by the UTC offset) or the authentication will fail with ns_r_badtime.

Related Information

v “res_nclose()—Close Socket and Reset res Structure” on page 322—Close Socket and Reset res Structure

v “res_findzonecut()—Find the Enclosing Zone and Servers” on page 311—Find the Enclosing Zone and

Servers

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_ninit()—Initialize res Structure” on page 323—Initialize res Structure

v “res_nmkquery()—Place Domain Query in Buffer” on page 329—Place Domain Query in Buffer

v “res_nmkupdate()—Construct an Update Packet” on page 330—Construct an Update Packet

v “res_nquery()—Send Domain Query” on page 332—Send Domain Query

v “res_nsearch()—Search for Domain Name” on page 334—Search for Domain Name

v “res_nsend()—Send Buffered Domain Query or Update” on page 335—Send Buffered Domain Query

v “res_nsendsigned()—Send Authenticated Domain Query or Update” on page 336—Send Authenticated

Domain Query

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

 API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 341

#TOP_OF_PAGE
unix.htm
aplist.htm

res_query()—Send Domain Query

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int res_query(char *domain_name,

 int class,

 int type,

 char *answer_buffer,

 int answer_buffer_length)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_query() function is used to interface to the server query mechanism.

Parameters

domain_name

(Input) The pointer to the domain name.

class (Input) The class of data being looked for. See “res_mkquery()—Place Domain Query in Buffer”

on page 320 or <arpa/nameser.h> for possible values.

type (Input) The type of request being made. See “res_mkquery()—Place Domain Query in Buffer” on

page 320 or <arpa/nameser.h> for possible values.

answer_buffer

(Output) The pointer to an address where the response is stored.

answer_buffer_length

(Input) The size of the answer area.

Authorities

No authorization is required.

Return Value

res_query() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is the actual size of the answer returned.

Error Conditions

 When the res_query() function fails, errno can be set to one of the following:

[EFAULT]

 The system detected a pointer that was invalid while attempting to access an input pointer.

[EINVAL]

342 iSeries: UNIX-Type -- Sockets APIs

The _res appears to be initialized but the reserved field is not set to zeros.

 When the res_query() function fails, h_errno (defined in <netdb.h>) can be set to one of the

following:

[HOST_NOT_FOUND]

 The domain name specified by the domain_name parameter was not found. The return

code in the response packet was NXDOMAIN.

[TRY_AGAIN]

 Either the name server is not running or the name server returned SERVFAIL in the

response packet.

[NO_RECOVERY]

 An unrecoverable error has occurred. Either the domain name could not be compressed

because it was invalid or the name server returned FORMERR, NOTIMP, or REFUSED.

[NO_DATA]

 The domain name exists but there is no data of the requested type.

Usage Notes

1. res_query() makes a query packet by calling res_mkquery(), sends the query by calling res_send(), and

makes preliminary checks on the reply. The reply message is left in answer_buffer.

2. res_query() calls res_init() if the _res structure has not been initialized.

3. res_query() expects EBCDIC data as input. The output from res_query() is also EBCDIC.

4. In a thread-enabled environment, the _res structure is shared among all threads within a process.

Related Information

v “hstrerror()—Retrieve Resolver Error Message” on page 288—Retrieve Resolver Error Message

v “res_nquery()—Send Domain Query” on page 332—Send Domain Query

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_init()—Initialize _res Structure” on page 316—Initialize _res Structure

v “res_mkquery()—Place Domain Query in Buffer” on page 320—Place Domain Query in Buffer

v “res_close()—Close Socket and Reset _res Structure” on page 310—Close Socket and Reset _res

Structure

v “res_search()—Search for Domain Name” on page 344—Search for Domain Name

v “res_send()—Send Buffered Domain Query or Update” on page 346—Send Buffered Domain Query

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 343

#TOP_OF_PAGE
unix.htm
aplist.htm

res_search()—Search for Domain Name

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int res_search(char *domain_name,

 int class,

 int type,

 char *answer_buffer,

 int answer_buffer_length)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_search() function is used to make a query message and wait for a response.

Parameters

domain_name

(Input) The pointer to the domain name.

class (Input) The class of data being looked for. See “res_mkquery()—Place Domain Query in Buffer”

on page 320 or <arpa/nameser.h> for possible values.

type (Input) The type of request being made. See “res_mkquery()—Place Domain Query in Buffer” on

page 320 or <arpa/nameser.h> for possible values.

answer_buffer

(Output) The pointer to an address where the response is stored.

answer_buffer_length

(Input) The size of the answer area.

Return Value

res_search() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is the actual size of the answer returned.

Authorities:

Authorization of *R (allow access to the object) to the host aliases file specified by the HOSTALIASES

environment variable.

You also need *X authority to each directory in the path of the host aliases file.

Error Conditions

 When the res_search() function fails, errno can be set to one of the following:

[EACCES]

344 iSeries: UNIX-Type -- Sockets APIs

Permission denied. The process does not have the appropriate privileges to the host aliases file

specified by the HOSTALIASES environment variable.

[EFAULT]

 The system detected a pointer that was invalid while attempting to access an input pointer.

[EINVAL]

 The _res appears to be initialized but the reserved field is not set to zeros.

 When the res_search() function fails, h_errno (defined in <netdb.h>) can be set to one of the

following:

[HOST_NOT_FOUND]

 (Set by the call to res_query()) The domain name specified by the domain_name parameter

was not found. The return code in the response packet was NXDOMAIN.

[TRY_AGAIN]

 Either the name server is not running or the name server returned SERVFAIL in the

response packet.

[NO_RECOVERY]

 (Set by the call to res_query()) An unrecoverable error has occurred. Either the domain

name could not be compressed because it was invalid or the name server returned

FORMERR, NOTIMP, or REFUSED.

[NO_DATA]

 (Set by the call to res_query()) The domain name exists but there is no data of the

requested type.

Usage Notes

1. The res_search() function implements the default and search rules controlled by the RES_DEFNAMES

and RES_DNSRCH options. res_search() takes the domain name received in domain_name, and makes it

fully qualified (if it is not already). res_search() also calls res_query(), passing it the different domain

names to look up, until a successful response is received.

2. res_search() calls res_init() if the _res structure has not been initialized.

3. res_search() expects EBCDIC data as input. The output from res_search() is also EBCDIC.

4. In a thread-enabled environment, the _res structure is shared among all threads within a process.

5. res_search() will resolve local host aliases to a domain name which are then resolved with a query

using DNS. See “res_hostalias()—Retrieve the host alias” on page 314 for more information on aliases.

Related Information

v “hstrerror()—Retrieve Resolver Error Message” on page 288—Retrieve Resolver Error Message

v “res_nsearch()—Search for Domain Name” on page 334—Search for Domain Name

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_init()—Initialize _res Structure” on page 316—Initialize _res Structure

v “res_mkquery()—Place Domain Query in Buffer” on page 320—Place Domain Query in Buffer

v “res_query()—Send Domain Query” on page 342—Send Domain Query

v “res_close()—Close Socket and Reset _res Structure” on page 310Close Socket and Reset _res Structure

v “res_send()—Send Buffered Domain Query or Update” on page 346—Send Buffered Domain Query

Sockets APIs 345

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

res_send()—Send Buffered Domain Query or Update

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int res_send(char *query_buffer,

 int query_buffer_length,

 char *answer_buffer,

 int answer_buffer_length)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_send() function is used to send a query or update message to a name server and retrieve a

response.

Parameters

query_buffer

(Input) The pointer to the query or update message.

query_buffer_length

(Input) The length of query_buffer.

answer_buffer

(Output) The pointer to where the response is stored.

answer_buffer_length

(Input) The size of the answer_buffer.

Authorities:

No authorization is required.

Return Value

res_send() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is the actual size of the answer returned.

Error Conditions

 When the res_send() function fails, res_send() can set errno to one of the following:

346 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

[ECONNREFUSED]

 Not able to connect to a server.

[ECONVERT]

 Either the input packet could not be translated to ASCII or the answer received could not be

translated to the coded character set identifier (CCSID) currently in effect for the job.

[EINVAL]

 One of the following reasons: An invalid length or NULL pointer was passed to res_send() or The

_res could not be initialized properly or The _res appears to be initialized but the reserved field

is not set to zeros.

 Note: No attempt is made to initialize the _res structure if it was initialized previous to the

res_send() being issued.

[ESRCH]

 No DNS servers were specified in nsaddr.

[ETIMEDOUT]

 A timeout received from a connected server.

 When the res_send() function fails, h_errno (defined in <netdb.h>) can also be set to one of the

following:

HOST_NOT_FOUND

 Either the input packet could not be translated to ASCII or the answer received could not

be translated to the coded character set identifier (CCSID) currently in effect for the job.

NO_RECOVERY

 An invalid length or NULL pointer was passed to res_send() or the _res could not be

initialized properly.

 Notes:

v No attempt is made to initialize the _res structure if it was initialized previous to the res_send() being

issued.
v There are numerous other values that errno can be set to by the sockets functions that res_send() calls.

The above values are the only values that res_send() can specifically set. Refer to other sockets functions

for the other values. errno is always set in an error condition, but h_errno is not necessarily set.

After receiving an error reply packet, res_send() will set the extended_error field in the state structure to the

last reply return code from the DNS server. See <arpa/nameser.h> for all possible values of ns_rcode.

Usage Notes

1. res_send() sends the query or update to the local name server and handles all timeouts and retries. The

response packet is stored in answer_buffer.

2. res_send() calls res_init() if the _res structure has not been initialized.

3. res_send() uses the UDP protocol, except for the following cases in which it uses TCP to send the

packet.

v If the RES_USEVC or RES_STAYOPEN bits are set in the options field of the _res structure.

Sockets APIs 347

v If the configuration from Change TCP/IP Domain (CHGTCPDMN) specifies that the server

protocol is TCP.

v If the truncation bit is set in the packet header on the response from a UDP packet, and

RES_IGNTC is not set in the _res structure.
4. res_send() does not perform interactive queries and expects the name server to handle recursion.

5. res_send() assumes that the data passed to it is EBCDIC and is in the default coded character set

identifier (CCSID) currently in effect for the job. It translates the data from the default CCSID

currently in effect for the job to ASCII (CCSID 819) before the data is sent out to a name server. The

response that it receives from the name server is returned in the default CCSID currently in effect for

the job.

6. Unless RES_NOCACHE was specified, res_send() checks the cached data for the answer to the query

(but not for updates). If the answer is found and the time to live has not expired, it is returned to the

calling program in answer_buffer and no attempt is made to send it on the network. If the time to live

has expired, the entry is deleted from the cache, and the query is sent on the network. If the answer is

not found in the cache, res_send() also sends the query on the network. When an answer is received

from the network, it is placed in cache if it is an authoritative answer and is not the result of an

inverse query. RES_NOCACHE does not stop answers from being cached. Authoritative negative

replies, indicating the data does not exist, will also be cached.

7. In a thread-enabled environment, the _res structure is shared among all threads within a process.

Related Information

v “hstrerror()—Retrieve Resolver Error Message” on page 288—Retrieve Resolver Error Message

v “res_nsend()—Send Buffered Domain Query or Update” on page 335—Send Buffered Domain Query

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_init()—Initialize _res Structure” on page 316—Initialize _res Structure

v “res_mkquery()—Place Domain Query in Buffer” on page 320—Place Domain Query in Buffer

v “res_query()—Send Domain Query” on page 342—Send Domain Query

v “res_search()—Search for Domain Name” on page 344—Search for Domain Name

v “res_close()—Close Socket and Reset _res Structure” on page 310—Close Socket and Reset _res

Structure

v “res_xlate()—Translate DNS Packets” on page 349—Translate DNS Packets

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

348 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

res_xlate()—Translate DNS Packets

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 int res_xlate(int input_ccsid,

 char *input_packet,

 int input_length,

 int output_ccsid,

 char *output_packet,

 int output_length)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The res_xlate() function is used to translate a standard DNS packet between ASCII and EBCDIC.

Parameters

input_ccsid

(Input) The CCSID value of the input packet to be translated.

input_packet

(Input) The pointer to where the standard DNS packet to be translated resides.

input_length

(Input) The length of input_packet.

output_ccsid

(Input) The CCSID value for the output packet.

output_packet

(Output) The pointer to where the translated DNS packet will be stored.

output_length

(Input) The length of output_packet.

Authorities

No authorization is required.

Return Value

res_xlate() returns an integer. Possible values are:

v 1 (successful)

v 0 (unsuccessful - translation error)

v -1 (unsuccessful - errors other than translation)

Error Conditions

When the res_xlate() function fails, it does not set specific errno or h_errno values. An error occurs under

the following conditions:

Sockets APIs 349

v NULL pointer(s) passed to the function.
v Invalid pointer(s) passed to the function.
v Invalid lengths passed to the function.
v An invalid packet format encountered.

Usage Notes

1. res_xlate() parses through input_packet, determining which fields need translation. The packet is copied

into output_packet as it is parsed, translating the fields as needed from input_ccsid to output_ccsid. If a

bad format is encountered or a user-supplied length is too small, res_xlate() returns a -1.

2. If there is an error in the translation of input_packet from input_ccsid to output_ccsid, res_xlate()

returns a value of 0 to the caller.

3. res_xlate() expects a value of 819 (ASCII) for either the input or output coded character set identifier

(CCSID). If translation from an EBCDIC CCSID is to occur, the output CCSID needs to be set to 819.

input_packet is then translated to ASCII, and the result is placed in output_packet If translation to an

EBCDIC CCSID is to occur, the input CCSID needs to be set to 819. input_packet is then translated

from ASCII to the EBCDIC CCSID specified in output_ccsid, and the result is placed in

output_packet.

res_xlate() returns unsuccessfully with a value of -1 if CCSID 819 is not used for either input_ccsid or

output_ccsid. Also, if both input_ccsid and output_ccsid values are 819, res_xlate() returns a -1.

4. In a thread-enabled environment, the _res is shared among all threads within a process.

Related Information

v “hstrerror()—Retrieve Resolver Error Message” on page 288—Retrieve Resolver Error Message

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_init()—Initialize _res Structure” on page 316—Initialize _res Structure

v “res_mkquery()—Place Domain Query in Buffer” on page 320—Place Domain Query in Buffer

v “res_query()—Send Domain Query” on page 342—Send Domain Query

v “res_search()—Search for Domain Name” on page 344—Search for Domain Name

v “res_send()—Send Buffered Domain Query or Update” on page 346—Send Buffered Domain Query

v “res_close()—Close Socket and Reset _res Structure” on page 310—Close Socket and Reset _res

Structure

v “res_findzonecut()—Find the Enclosing Zone and Servers” on page 311—Find the Enclosing Zone and

Servers

v “res_hostalias()—Retrieve the host alias” on page 314—Retrieve the host alias

v “res_ninit()—Initialize res Structure” on page 323—Initialize res Structure

v “res_nclose()—Close Socket and Reset res Structure” on page 322—Close Socket and Reset res Structure

v “res_nmkquery()—Place Domain Query in Buffer” on page 329—Place Domain Query in Buffer

v “res_nmkupdate()—Construct an Update Packet” on page 330—Construct an Update Packet

v “res_nquery()—Send Domain Query” on page 332—Send Domain Query

v “res_nsearch()—Search for Domain Name” on page 334—Search for Domain Name

v “res_nsend()—Send Buffered Domain Query or Update” on page 335—Send Buffered Domain Query

v “res_nsendsigned()—Send Authenticated Domain Query or Update” on page 336—Send Authenticated

Domain Query

v “res_nupdate()—Build and Send Dynamic Updates” on page 339—Build and Send Dynamic Updates

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

350 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

sethostent()—Open Host Database

 Syntax

 #include <netdb.h>

 void sethostent(int stay_open)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes.”

The sethostent() function is used to prepare for sequential access to the host database file. sethostent()

opens the file and repositions the file marker to the beginning of the file. In addition, sethostent() affects

what type of transport service (connectionless versus connection-oriented) is to be used when

gethostbyname() and gethostbyaddr() need to retrieve host information from the domain name server.

Parameters

int stay_open

(Input) Specifies whether to leave the database file open after each call to gethostbyname() and

gethostbyaddr(). A nonzero value results in the database file being left open. Also, a nonzero value

results in the use of a connection-oriented transport service (for example, TCP) being used by

gethostbyname() and gethostbyaddr() when host information is to be obtained from the domain

name server.

Authorities

No authorization is required.

Error Conditions

 When sethostent() fails, h_errno (defined in <netdb.h>) can be set to one of the following:

NO_RECOVERY

 An unrecoverable error has occurred.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the host database file:

v ADDTCPHTE (Add TCP/IP Host Table Entry

v RMVTCPHTE (Remove TCP/IP Host Table Entry)

v CHGTCPHTE (Change TCP/IP Host Table Entry)

v RNMTCPHTE (Rename TCP/IP Host Table Entry)

v MRGTCPHT (Merge TCP/IP Host Tables)
2. Do not use the sethostent() function in a multithreaded environment. See the multithread alternative

sethostent_r() function.

3. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the sethostent() API is mapped toqso_sethostent98().

Sockets APIs 351

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “gethostbyaddr()—Get Host Information for IP Address” on page 239—Get Host Information for IP

Address

v “gethostbyname()—Get Host Information for Host Name” on page 245—Get Host Information for Host

Name

v “endhostent()—Close Host Database” on page 223—Close Host Database

v “gethostent()—Get Next Entry from Host Database” on page 251—Get Next Entry from Host Database

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

sethostent_r()—Open Host Database

 Syntax

 #include <netdb.h>

 int sethostent_r(int stay_open,

 struct hostent_data *hostent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The sethostent_r() function is used in preparation for sequential access to the host database file. The

sethostent_r() function opens the file and repositions the file marker to the beginning of the file. In

addition, this call affects what type of transport service (connectionless versus connection-oriented) that is

to be used when gethostbyname_r() and gethostbyaddr_r() need to retrieve host information from the

domain name server.

Parameters

int stay_open (input)

Specifies whether to leave the database file open after each call to gethostbyname_r() and

gethostbyaddr_r(). A non-zero value will result in the database file being left open. Also, a non-zero

value will result in the use of a connection-oriented transport service (for example, TCP) being

used by gethostbyname_r() and gethostbyaddr_r() when host information is to be obtained from the

domain name server.

struct hostent_data *hostent_data_struct_addr (input/output)

Specifies the pointer to the hostent_data structure, which is used to pass and preserve results

between function calls. The field host_control_blk in the hostent_data structure must be initialized

with hexadecimal zeros before its initial use. If compatibility with other platforms is required,

then the entire hostent_data structure must be initialized to hexadecimal zeros before initial use.

Authorities

No authorization is required.

352 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Return Value

The sethostent_r() function returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct hostent_datadenoted by hostent_data_struct_addr is defined in <netdb.h>.

Error Conditions

When the sethostent_r() function fails, h_errno (defined in <netdb.h>) can be set to:

[NO_RECOVERY]

 An unrecoverable error has occurred.

 When the sethostent_r() function fails, errno can be set to:

[EINVAL]

 The hostent_data structure was not properly initialized to hexadecimal zeros before initial use.

For corrective action, see the description for structure hostent_data.

Usage Notes

The iSeries Navigator or the following CL commands can be used to access the host database file:

v ADDTCPHTE (Add TCP/IP Host Table Entry)

v RMVTCPHTE (Remove TCP/IP Host Table Entry)

v CHGTCPHTE (Change TCP/IP Host Table Entry)

v RNMTCPHTE (Rename TCP/IP Host Table Entry)

v MRGTCPHT (Merge TCP/IP Host Tables)

Related Information

v “gethostbyaddr_r()—Get Host Information for IP Address” on page 242—Get Host Information for IP

Address

v “gethostbyname_r()—Get Host Information for Host Name” on page 248—Get Host Information for

Host Name

v “endhostent_r()—Close Host Database” on page 224—Close Host Database

v “gethostent_r()—Get Next Entry from Host Database” on page 253—Get Next Entry from Host

Database

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 353

#TOP_OF_PAGE
unix.htm
aplist.htm

setnetent()—Open Network Database

 Syntax

 #include <netdb.h>

 void setnetent(int stay_open)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes.”

The setnetent() function is used to prepare for sequential access to the network database file. setnetent()

opens the file and repositions the file marker to the beginning of the file.

Parameters

stay_open

(Input) A value that indicates whether to leave the database file open after each getnetbyname()

and getnetbyaddr(). A nonzero value will result in the database file being left open.

Authorities

No authorization is required.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the network database file:
v WRKNETTBLE (Work with Network Table Entries)

v ADDNETTBLE (Add Network Table Entry)

v RMVNETTBLE (Remove Network Table Entry)
2. Do not use the setnetent() function in a multithreaded environment. See the multithread alternative

setnetent_r() function.

3. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the setnetent() API is mapped to qso_setnetent98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getnetbyaddr()—Get Network Information for IP Address” on page 257—Get Network Information for

IP Address

v “getnetbyname()—Get Network Information for Domain Name” on page 261—Get Network

Information for Domain Name

v “getnetent()—Get Next Entry from Network Database” on page 264—Get Next Entry from Network

Database

v “endnetent()—Close Network Database” on page 225—Close Network Database

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

354 iSeries: UNIX-Type -- Sockets APIs

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

setnetent_r()—Open Network Database

 Syntax

 #include <netdb.h>

 int setnetent_r(int stay_open,

 struct netent_data

 *netent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The setnetent_r() function is used in preparation for sequential access to the network database file. The

setnetent_r() function opens the file and repositions the file marker to the beginning of the file.

Parameters

int stay_open (input)

Specifies whether to leave the database file open after each call to getnetbyname_r() and

getnetbyaddr_r(). A non-zero value will result in the database file being left open.

struct netent_data *netent_data_struct_addr (input/output)

Specifies the pointer to the netent_data structure, which is used to pass and preserve results

between function calls. The field net_control_blk in the netent_data structure must be initialized

with hexadecimal zeros before its initial use. If compatibility with other platforms is required,

then the entire netent_data structure must be initialized with hexadecimal zeros before initial use.

Authorities

No authorization is required.

Return Value

The setnetent_r() function returns a pointer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct netent_datadenoted by netent_data_struct_addr is defined in <netdb.h>.

Error Conditions

When the setnetent_r() function fails, errno can be set to:

[EINVAL]

 The netent_data structure was not properly initialized to hexadecimal zeros before initial use. For

corrective action see the description for structure netent_data.

Usage Notes

The iSeries Navigator or the following CL commands can be used to access the network database file:

v WRKNETTBLE (Work with Network Table Entries)

v ADDNETTBLE (Add Network Table Entry)

Sockets APIs 355

v RMVNETTBLE (Remove Network Table Entry)

Related Information

v “getnetent_r()—Get Next Entry from Network Database” on page 266—Get Next Entry from Network

Database

v “getnetbyaddr_r()—Get Network Information for IP Address” on page 259—Get Network Information

for IP Address

v “getnetbyname_r()—Get Network Information for Domain Name” on page 263—Get Network

Information for Domain Name

v “endnetent_r()—Close Network Database” on page 226—Close Network Database

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

setprotoent()—Open Protocol Database

 Syntax

 #include <netdb.h>

 void setprotoent(int stay_open)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes.”

The setprotoent() function is used to prepare for sequential access to the protocol database file. setprotoent()

opens the file and repositions the file marker to the beginning of the file.

Parameters

stay_open

(Input) A value that indicates whether to leave the database file open after each

getprotobynumber() and getprotobyname(). A nonzero value results in the database file being left

open.

Authorities

No authorization is required.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the protocol database file:

v WRKPCLTBLE (Work with Protocol Table Entries)

v ADDPCLTBLE (Add Protocol Table Entry)

v RMVPCLTBLE (Remove Protocol Table Entry)
2. Do not use the setprotoent() function in a multithreaded environment. See the multithread alternative

setprotoent_r() function.

356 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

3. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the setprotoent() API is mapped to qso_setprotoent98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getprotobyname()—Get Protocol Information for Protocol Name” on page 267—Get Protocol

Information for Protocol Name

v “getprotobynumber()—Get Protocol Information for Protocol Number” on page 271—Get Protocol

Information for Protocol Number

v “getprotoent()—Get Next Entry from Protocol Database” on page 274—Get Next Entry from Protocol

Database

v “endprotoent()—Close Protocol Database” on page 228—Close Protocol Database

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

setprotoent_r()—Open Protocol Database

 Syntax

 #include <netdb.h>

 int setprotoent_r(int stay_open,

 struct protoent_data *protoent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

The setprotoent_r() function is used in preparation for sequential access to the protocol database file. The

setprotoent_r() function opens the file and repositions the file marker to the beginning of the file.

Parameters

int stay_open (input)

Specifies whether to leave the database file open after each call to getprotobynumber_r() and

getprotobyname_r(). A non-zero value will result in the database file being left open.

struct protoent_data *protoent_data_struct_addr (input/output)

Specifies the pointer to the protoent_data structure, which is used to pass and preserve results

between function calls. The field proto_control_blk in the protoent_data structure must be

initialized with hexadecimal zeros before its initial use. If compatibility with other platforms is

required, then the entire protoent_data structure must be initialized with hexadecimal zeros

before initial use.

Authorities

No authorization is required.

Sockets APIs 357

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Return Value

The setprotoent_r() returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct protoent_data denoted by protoent_data_struct_addr is defined in <netdb.h>.

Error Conditions

When the setprotoent_r() function fails, errno can be set to:

[EINVAL]

 The protoent_data structure was not properly initialized with hexadecimal zeros before initial use.

For corrective action, see the description for structure protoent_data.

Usage Notes

The iSeries Navigator or the following CL commands can be used to access the protocol database file:

v WRKPCLTBLE (Work with Protocol Table Entries)

v ADDPCLTBLE (Add Protocol Table Entry)

v RMVPCLTBLE (Remove Protocol Table Entry)

Related Information

v “getprotobynumber_r()—Get Protocol Information for Protocol Number” on page 272-Get Protocol

v “getprotobyname_r()—Get Protocol Information for Protocol Name” on page 269—Get Protocol

Information for Protocol Name

v “endprotoent_r()—Close Protocol Database” on page 229—Close Protocol Database

v “getprotoent_r()—Get Next Entry from Protocol Database” on page 275—Get Next Entry from Protocol

Database

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

setservent()—Open Service Database

 Syntax

 #include <netdb.h>

 void setservent(int stay_open)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 359.

The setservent() function is used to prepare for sequential access to the service database file. setservent()

opens the file and repositions the file marker to the beginning of the file.

358 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

stay_open

(Input) A value that indicates whether to leave the database file open after each getservbyname()

and getservbyport(). A nonzero value results in the database file being left open.

Authorities

No authorization is required.

Usage Notes

1. The iSeries Navigator or the following CL commands can be used to access the services database file:

v WRKSRVTBLE (Work with Service Table Entries)

v ADDSRVTBLE (Add Service Table Entry)

v RMVSRVTBLE (Remove Service Table Entry)
2. Do not use the setservent() function in a multithreaded environment. See the multithread alternative

setservent_r() function.
3. When you develop in C-based languages and an application is compiled with the _XOPEN_SOURCE

macro defined to the value 520 or greater, the setservent() API is mapped to qso_setservent98().

Related Information

v _XOPEN_SOURCE—Using _XOPEN_SOURCE for the UNIX 98 compatible interface

v “getservbyname()—Get Port Number for Service Name” on page 277—Get Port Number for Service

Name

v “getservbyport()—Get Service Name for Port Number” on page 281—Get Service Name for Port

Number

v “getservent()—Get Next Entry from Service Database” on page 285—Get Next Entry from Service

Database

v “endservent()—Close Service Database” on page 230—Close Service Database

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

setservent_r()—Open Service Database

 Syntax

 #include <netdb.h>

 int setservent_r(int stay_open,

 struct servent_data *servent_data_struct_addr)

 Service Program Name: QSOSRV2

 Default Public Authority: *USE

 Threadsafe: Yes

Sockets APIs 359

_xopen_source.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

The setservent_r() function is used in preparation for sequential access to the service database file. The

setservent_r() function opens the file and repositions the file marker to the beginning of the file.

Parameters

int stay_open (input)

Specifies whether to leave the database file open after each call to getservbyname_r() and

getservbyport_r(). A non-zero value will result in the database file being left open.

struct servent_data *servent_data_struct_addr (input/output)

Specifies the pointer to the servent_data structure, which is used to pass and preserve results

between function calls. The field serve_control_blk in the servent_data structure must be

initialized with hexadecimal zeros before its initial use. If compatibility with other platforms is

required, then the entire servent_data structure must be initialized with hexadecimal zeros before

initial use.

Authorities

No authorization is required.

Return Value

The setservent_r() function returns an integer. Possible values are:

v -1 (unsuccessful call)

v 0 (successful call)

The struct servent_datadenoted by servent_data_struct_addr is defined in <netdb.h>.

Error Conditions

When the setservent_r() function fails, errno can be set to:

[EINVAL]

 The servent_data structure was not properly initialized to hexadecimal zeros before initial use.

For corrective action, see the description for structure servent_data.

Usage Notes

The iSeries Navigator or the following CL commands can be used to access the services database file:

v WRKSRVTBLE (Work with Service Table Entries)

v ADDSRVTBLE (Add Service Table Entry)

v RMVSRVTBLE (Remove Service Table Entry)

Related Information

v “getservbyname_r()—Get Port Number for Service Name” on page 279—Get Port Number for Service

Name

v “getservbyport_r()—Get Service Name for Port Number” on page 283—Get Service Name for Port

Number

v “endservent_r()—Close Service Database” on page 231—Close Service Database

v “getservent_r()—Get Next Entry from Service Database” on page 286—Get Next Entry from Service

Database

 API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

360 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

_getlong()—Get Long Byte Quantities

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 unsigned long

 _getlong(unsigned char *message_pointer)

 Threadsafe: Yes

The _getlong() function is used to retrieve an unsigned long byte quantity.

Parameters

message_pointer

(Input) The pointer where the long integer is to be received from.

Return Value

_getlong() returns a 32-bit integer from where message_pointer is pointing.

Usage Notes

1. DNS packets have fields that are unsigned long integers (for example, TTL and serial number).

_getlong() picks these unsigned long integers out of a DNS packet and returns them.

Related Information

v “_getshort()—Get Short Byte Quantities”—Get Short Byte Quantities

v “_putlong()—Put Long Byte Quantities” on page 362—Put Long Byte Quantities

v “_putshort()—Put Short Byte Quantities” on page 363—Put Short Byte Quantities

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

_getshort()—Get Short Byte Quantities

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 unsigned short

 _getshort(unsigned char *message_pointer)

 Threadsafe: Yes

The _getshort() function is used to retrieve an unsigned short byte quantity.

Sockets APIs 361

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

message_pointer

(Input) The pointer where the short integer is to be received from.

Return Value

_getshort() returns a 16-bit integer from where message_pointer is pointing.

Usage Notes

1. DNS packets have fields that are unsigned short integers (for example, type, class, and data length).

_getshort() picks these unsigned short integers out of a DNS packet and returns them.

Related Information

v “_getlong()—Get Long Byte Quantities” on page 361—Get Long Byte Quantities

v “_putlong()—Put Long Byte Quantities”—Put Long Byte Quantities

v “_putshort()—Put Short Byte Quantities” on page 363—Put Short Byte Quantities

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

_putlong()—Put Long Byte Quantities

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 void _putlong(unsigned long long_integer,

 unsigned char *message_pointer)

 Threadsafe: Yes

The _putlong() function is used to put an unsigned long byte quantity into a byte stream.

Parameters

long_int

(Input) The 32-bit integer to be put into the byte stream.

unsigned char *message_pointer

(Input) The pointer to where the long_integer is to be put.

Return Value

_putlong() puts a 32-bit integer into message_pointer.

Usage Notes

DNS packets have fields that are unsigned long integers (for example, TTL and serial number). _putlong()

is generally used to put these fields into a DNS packet.

362 iSeries: UNIX-Type -- Sockets APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Related Information

v “_getlong()—Get Long Byte Quantities” on page 361—Get Long Byte Quantities

v “_getshort()—Get Short Byte Quantities” on page 361—Get Short Byte Quantities

v “_putshort()—Put Short Byte Quantities”—Put Short Byte Quantities

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

_putshort()—Put Short Byte Quantities

 Syntax

 #include <sys/types.h>

 #include <netinet/in.h>

 #include <arpa/nameser.h>

 #include <resolv.h>

 void _putshort(unsigned short short_integer,

 unsigned char *message_pointer)

 Threadsafe: Yes

The _putshort() function is used to put an unsigned short byte quantity into a byte stream.

Parameters

unsigned short short_int

(Input) The 16-bit integer to be put into the byte stream.

unsigned char *message_pointer

(Input) The pointer to where the short_integer is to be put.

Return Value

_putshort() puts a 16-bit integer into message_pointer.

Usage Notes

DNS packets have fields that are unsigned short integers (for example, type, class, and data length).

_putshort() is generally used to put these fields into a DNS packet.

Related Information

v “_getlong()—Get Long Byte Quantities” on page 361—Get Long Byte Quantities

v “_getshort()—Get Short Byte Quantities” on page 361—Get Short Byte Quantities

v “_putlong()—Put Long Byte Quantities” on page 362—Put Long Byte Quantities

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Concepts

These are the concepts for this category.

Sockets APIs 363

#TOP_OF_PAGE
unix.htm
aplist.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Debugging IP over SNA Configurations

Two commands can be helpful in debugging IP over SNA configurations:

v The Start Mode (STRMOD) CL command can help you determine if your SNA configuration is correct.

As input to the STRMOD command, you need the remote location name. You can determine the

remote location name from the destination IP address by using the Convert IP over SNA Interface

(CVTIPSIFC) command. The message you receive when STRMOD completes tells you whether it was

successful.

v The TCP/IP FTP command can help you determine if your AnyNet configuration is correct. If you get

the User prompt, the AnyNet configuration is correct.

Note: When FTP fails, it does not give a detailed reason for the failure. To get a detailed reason, you

should run a sockets program that reports the value for errno when the failure occurs.

 Common IP over SNA Configuration Errors

 Sockets Error (value of errno) Possible Causes

EHOSTUNREACH 1. Missing ADDIPSLOC command on client system.

2. Missing ADDIPSIFC command on client system.

3. Type of service points to a non-existent mode description on client

system.

4. ADDIPSLOC command on client system resulted in a location name that

is not found.

5. ADDIPSLOC command on client system resulted in a location name that

is on a non-APPC device description.

EADDRNOTAVAIL 1. AnyNet not active on client system (ALWANYNET attribute set to *NO),

but TCP is started.

2. Mode could not be added to device on client system.

EUNATCH 1. AnyNet not active on client system (ALWANYNET attribute set to *NO),

and TCP is not started.

ECONNREFUSED 1. AnyNet not active on client system (ALWANYNET attribute set to *NO).

2. listen() not active on server system.

ECONNABORTED 1. Line error

2. Device/controller/line varied off on client or server system while in use.

3. User not authorized to APPC device description object on server system.

ETIMEDOUT 1. ADDIPSLOC command on client system points to a location name that

does not exist or is on a system that is not responding in the APPN

network.

2. Messages (especially inquiry messages) on message queue QSYSOPR are

waiting for a reply.

364 iSeries: UNIX-Type -- Sockets APIs

Sockets Error (value of errno) Possible Causes

EACCES 1. User not authorized to port on client system.

2. User not authorized to APPC device description object on client system.

 Top | UNIX-Type APIs | APIs by category

Sockets APIs 365

#TOP_OF_PAGE
unix.htm
aplist.htm

366 iSeries: UNIX-Type -- Sockets APIs

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 367

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

368 iSeries: UNIX-Type -- Sockets APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 369

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

370 iSeries: UNIX-Type -- Sockets APIs

����

Printed in USA

	Contents
	Sockets APIs
	APIs
	Sockets System Functions
	accept()—Wait for Connection Request and Make Connection
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	accept_and_recv()—Wait for Connection Request and Receive the First Message That Was Sent
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	bind()—Set Local Address for Socket
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	close()—Close File or Socket Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	connect()—Establish Connection or Destination Address
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	fcntl()—Perform File Control Command
	Parameters
	Flags
	File Locking
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	fstat()—Get File Information by Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	getdomainname()—Retrieve Domain Name
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	gethostid()—Retrieve Host ID
	Authorities
	Return Value
	Usage Notes
	Related Information

	gethostname()—Retrieve Host Name
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	getpeername()—Retrieve Destination Address of Socket
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	getsockname()—Retrieve Local Address of Socket
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	getsockopt()—Retrieve Information about Socket Options
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	givedescriptor()—Pass Descriptor Access to Another Job
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	ioctl()—Perform I/O Control Request
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	listen()—Invite Incoming Connections Requests
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	QsoCancelOperation()—Cancel an I/O Operation
	Parameters
	Authorities
	Return Values
	Errno Conditions
	Error Messages
	Usage Notes
	Related Information

	QsoCreateIOCompletionPort()—Create I/O Completion Port
	Authorities
	Return Values
	Errno Conditions
	Error Messages
	Usage Notes
	Related Information

	QsoDestroyIOCompletionPort()—Destroy I/O Completion Port
	Parameters
	Authorities
	Return Values
	Errno Conditions
	Error Messages
	Usage Notes
	Related Information

	QsoGenerateOperationId()—Get an I/O Operation ID
	Parameters
	Authorities
	Return Values
	Errno Conditions
	Error Messages
	Related Information

	QsoIsOperationPending()—Check if an I/O Operation is Pending
	Parameters
	Authorities
	Return Values
	Errno Conditions
	Error Messages
	Related Information

	QsoPostIOCompletion()—Post I/O Completion Request
	Parameters
	Authorities
	Return Values
	Errno Conditions
	Error Messages
	Related Information

	QsoStartAccept()—Start asynchronous accept operation
	Parameters
	Authorities
	Return Values
	Errno Conditions
	Error Messages
	Usage Notes
	Related Information

	QsoStartRecv()—Start Asynchronous Receive Operation
	Parameters
	Authorities
	Return Values
	Errno Conditions
	Error Messages
	Usage Notes
	Related Information

	QsoStartSend()—Start Asynchronous Send Operation
	Parameters
	Authorities
	Return Values
	Errno Conditions
	Error Messages
	Usage Notes
	Related Information

	QsoWaitForIOCompletion()—Wait for I/O Operation
	Parameters
	Authorities
	Return Values
	Errno Conditions
	Error Messages
	Usage Notes
	Related Information

	Rbind()—Set Remote Address for Socket
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	read()—Read from Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	readv()—Read from Descriptor Using Multiple Buffers
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	recv()—Receive Data
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	recvfrom()—Receive Data
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	recvmsg()—Receive a Message Over a Socket
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	rexec()—Issue a Command on a Remote Host
	Parameters
	Return Value
	Authorities
	Error Conditions
	Usage Notes
	Related Information
	Example

	rexec_r()—Issue a Command on a Remote Host
	Parameters
	Return Value
	Authorities
	Error Conditions
	Usage Notes
	Related Information
	Example

	rexec_r_ts64()—Issue a Command on a Remote Host
	Usage Notes

	rexec_ts64()—Issue a Command on a Remote Host
	Usage Notes

	select()—Wait for Events on Multiple Sockets
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes

	send()—Send Data
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	sendmsg()—Send a Message Over a Socket
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	sendto()—Send Data
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	send_file()—Send a File over a Socket Connection
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	send_file64()—Send a File over a Socket Connection
	Parameters
	Authorities
	Usage Notes

	setdomainname()—Set Domain Name
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	sethostid()—Set Host ID
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	sethostname()—Set Host Name
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	setsockopt()—Set Socket Options
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	shutdown()—End Receiving and/or Sending of Data on Socket
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	socket()—Create Socket
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	socketpair()—Create a Pair of Sockets
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	takedescriptor()—Receive Socket Access from Another Job
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	write()—Write to Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	writev()—Write to Descriptor Using Multiple Buffers
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	Sockets Network Functions
	dn_comp()—Compress Domain Name
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	dn_comp_ts64()—Compress Domain Name
	Usage Notes

	dn_expand()—Expand Domain Name
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	dn_find()—Search for Compressed Domain Name
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	dn_find_ts64()—Search for Compressed Domain Name
	Usage Notes

	dn_skipname()—Skip over Compressed Domain Name
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	endhostent()—Close Host Database
	Authorities
	Usage Notes
	Related Information

	endhostent_r()—Close Host Database
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	endnetent()—Close Network Database
	Usage Notes
	Authorities
	Related Information

	endnetent_r()—Close Network Database
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	endprotoent()—Close Protocol Database
	Authorities
	Usage Notes
	Related Information

	endprotoent_r()—Close Protocol Database
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	endservent()—Close Service Database
	Authorities
	Usage Notes
	Related Information

	endservent_r()—Close Service Database
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	freeaddrinfo()—Free Address Information
	Parameters
	Authorities
	Usage Notes
	Related Information

	gai_strerror()—Retrieve Address Information Runtime Error Message
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	getaddrinfo()—Get Address Information
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	gethostbyaddr()—Get Host Information for IP Address
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	gethostbyaddr_r()—Get Host Information for IP Address
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	gethostbyname()—Get Host Information for Host Name
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	gethostbyname_r()—Get Host Information for Host Name
	Parameters
	Authorities:
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	gethostent()—Get Next Entry from Host Database
	Authorities
	Return Value
	Usage Notes
	Related Information

	gethostent_r()—Get Next Entry from Host Database
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	getnameinfo()—Get Name Information for Socket Address
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	getnetbyaddr()—Get Network Information for IP Address
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	getnetbyaddr_r()—Get Network Information for IP Address
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	getnetbyname()—Get Network Information for Domain Name
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	getnetbyname_r()—Get Network Information for Domain Name
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	getnetent()—Get Next Entry from Network Database
	Authorities
	Return Value
	Usage Notes
	Related Information

	getnetent_r()—Get Next Entry from Network Database
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	getprotobyname()—Get Protocol Information for Protocol Name
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	getprotobyname_r()—Get Protocol Information for Protocol Name
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	getprotobynumber()—Get Protocol Information for Protocol Number
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	getprotobynumber_r()—Get Protocol Information for Protocol Number
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	getprotoent()—Get Next Entry from Protocol Database
	Authorities
	Return Value
	Usage Notes
	Related Information

	getprotoent_r()—Get Next Entry from Protocol Database
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	getservbyname()—Get Port Number for Service Name
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	getservbyname_r()—Get Port Number for Service Name
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	getservbyport()—Get Service Name for Port Number
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	getservbyport_r()—Get Service Name for Port Number
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	getservent()—Get Next Entry from Service Database
	Authorities
	Return Value
	Usage Notes
	Related Information

	getservent_r()—Get Next Entry from Service Database
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	hstrerror()—Retrieve Resolver Error Message
	Parameters
	Return Value
	Authorities:
	Error Conditions
	Usage Notes
	Related Information
	Example

	htonl()—Convert Long Integer to Network Byte Order
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	htons()—Convert Short Integer to Network Byte Order
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	inet_addr()—Translate Full Address to 32-bit IP Address
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	inet_lnaof()—Separate Local Portion of IP Address
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	inet_makeaddr()—Combine Network Portion and Host Portion to Make IP Address
	Parameters
	Authorities
	Return Value
	Related Information

	inet_netof()—Separate Network Portion of IP Address
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	inet_network()—Translate Network Portion of Address to 32-bit IP Address
	Parameters
	Authorities
	Return Value
	Error Conditions
	Related Information

	inet_ntoa()—Translate IP Address to Dotted Decimal Format
	Parameters
	Return Value
	Usage Notes

	inet_ntoa_r()—Translate IP Address to Dotted Decimal Format
	Parameters
	Return Value
	Error Conditions

	inet_ntop()—Convert IPv4 and IPv6 Addresses Between Binary and Text Form
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	inet_pton()—Convert IPv4 and IPv6 Addresses Between Text and Binary Form
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	ns_addr()—Translate Network Services Address to 12-byte Address
	Parameters
	Return Value
	Usage Notes

	ns_ntoa()—Translate Network Services Address from 12-byte Address/h2>
	Parameters
	Return Value
	Usage Notes

	ns_ntoa_r() — Translate Network Services Address from 12-byte Address
	Parameters
	Return Value
	Error Conditions
	Usage Notes

	ntohl()—Convert Long Integer to Host Byte Order
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	ntohs()—Convert Short Integer to Host Byte Order
	Parameters
	Authorities
	Return Value
	Usage Notes
	Related Information

	res_close()—Close Socket and Reset _res Structure
	Authorities:
	Return Value
	Usage Notes
	Related Information

	res_findzonecut()—Find the Enclosing Zone and Servers
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	res_hostalias()—Retrieve the host alias
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	res_init()—Initialize _res Structure
	Authorities:
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	res_mkquery()—Place Domain Query in Buffer
	Parameters
	Authorities:
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	res_nclose()—Close Socket and Reset res Structure
	Parameters
	Related Information

	res_ninit()—Initialize res Structure
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example

	res_nisourserver()—Check Server Address
	Parameters
	Authorities:
	Return Value
	Error Conditions
	Related Information

	res_nmkquery()—Place Domain Query in Buffer
	Parameters
	Related Information

	res_nmkupdate()—Construct an Update Packet
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	res_nquery()—Send Domain Query
	Parameters
	Related Information

	res_nquerydomain()—Send 2 String Domain Query
	Parameters
	Related Information
	Example

	res_nsearch()—Search for Domain Name
	Parameters
	Related Information

	res_nsend()—Send Buffered Domain Query or Update
	Parameters
	Related Information

	res_nsendsigned()—Send Authenticated Domain Query or Update
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	res_nupdate()—Build and Send Dynamic Updates
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	res_query()—Send Domain Query
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	res_search()—Search for Domain Name
	Parameters
	Return Value
	Authorities:
	Error Conditions
	Usage Notes
	Related Information

	res_send()—Send Buffered Domain Query or Update
	Parameters
	Authorities:
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	res_xlate()—Translate DNS Packets
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	sethostent()—Open Host Database
	Parameters
	Authorities
	Error Conditions
	Usage Notes
	Related Information

	sethostent_r()—Open Host Database
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	setnetent()—Open Network Database
	Parameters
	Authorities
	Usage Notes
	Related Information

	setnetent_r()—Open Network Database
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	setprotoent()—Open Protocol Database
	Parameters
	Authorities
	Usage Notes
	Related Information

	setprotoent_r()—Open Protocol Database
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	setservent()—Open Service Database
	Parameters
	Authorities
	Usage Notes
	Related Information

	setservent_r()—Open Service Database
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	_getlong()—Get Long Byte Quantities
	Parameters
	Return Value
	Usage Notes
	Related Information

	_getshort()—Get Short Byte Quantities
	Parameters
	Return Value
	Usage Notes
	Related Information

	_putlong()—Put Long Byte Quantities
	Parameters
	Return Value
	Usage Notes
	Related Information

	_putshort()—Put Short Byte Quantities
	Parameters
	Return Value
	Usage Notes
	Related Information

	Concepts
	Debugging IP over SNA Configurations

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

