
iSeries

UNIX-Type -- Simple Network Management Protocol

(SNMP) APIs

Version 5 Release 3

ERserver

���

iSeries

UNIX-Type -- Simple Network Management Protocol

(SNMP) APIs

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 51.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Simple Network Management Protocol

(SNMP) APIs 1

Simple Network Management Protocol (SNMP)

Subagent APIs 1

APIs 3

connectSNMP()—Establish Connection with SNMP

Agent 4

Authorities 4

Parameters 4

Return Value 5

Usage Notes 5

Related Information 6

Example 6

debugDPI()—Set DPI Packet Trace 6

Parameters 6

Usage Notes 6

Related Information 7

Example 7

disconnectSNMP()—End Connection with SNMP

Agent 8

Authorities 8

Parameters 8

Return Value 9

Usage Notes 9

Related Information 9

Example 9

DPI_PACKET_LEN()—Get Length of DPI Packet . . 10

Parameters 10

Return Value 10

Usage Notes 10

Example 10

fDPIparse()—Free Storage from DPI Packet Parse . . 11

Parameters 11

Usage Notes 11

Related Information 11

Example 11

fDPIset()—Free Storage from DPI Set Packet . . . 12

Parameters 12

Usage Notes 12

Related Information 12

Example 12

mkDPIAreYouThere()—Make a DPI AreYouThere

Packet 13

Parameters 13

Return Value 13

Usage Notes 14

Related Information 14

Example 14

mkDPIclose()—Make a DPI Close Packet 14

Parameters 15

Return Value 15

Usage Notes 15

Related Information 15

Example 15

mkDPIopen()—Make a DPI Open Packet 16

Parameters 16

Return Value 17

Usage Notes 17

Related Information 18

Example 18

mkDPIregister()—Make a DPI Register Packet . . . 18

Parameters 18

Return Value 19

Usage Notes 19

Related Information 20

Example 20

mkDPIresponse()—Make a DPI Response Packet . . 21

Parameters 21

Return Value 21

Usage Notes 22

Related Information 22

Example 22

mkDPIset()—Make a DPI Set Packet 23

Parameters 23

Return Value 24

Usage Notes 24

Related Information 24

Example 24

mkDPItrap()—Make a DPI Trap Packet 25

Parameters 25

Return Value 25

Usage Notes 26

Related Information 26

Example 26

mkDPIunregister()—Make a DPI Unregister Packet 26

Parameters 27

Return Value 27

Usage Notes 27

Related Information 27

Example 27

pDPIpacket()—Parse a DPI Packet 28

Parameters 28

Return Value 28

Usage Notes 28

Related Information 28

Example 29

receiveDPIpacket()—Receive a DPI Packet from the

SNMP Agent 29

Authorities 29

Parameters 29

Return Value 30

Usage Notes 30

Related Information 30

Example 31

sendDPIpacket()—Send a DPI Packet to the SNMP

Agent 31

Parameters 31

Return Value 31

Usage Notes 32

Related Information 32

Example 32

© Copyright IBM Corp. 1998, 2005 iii

waitDPIpacket()—Wait for a DPI Packet 33

Authorities 33

Parameters 33

Return Value 34

Usage Notes 34

Related Information 34

Example 35

Simple Network Management Protocol (SNMP)

Manager APIs 35

snmpGet()—Retrieve MIB Objects 36

Parameters 36

Authorities 37

Return Value 38

Error Conditions 39

Usage Notes 39

Related Information 40

Example 40

snmpGetnext()—Retrieve Next MIB Object 40

Parameters 41

Authorities 42

Return Value 42

Error Conditions 43

Usage Notes 44

Related Information 44

Example 44

snmpSet()—Set MIB Objects 45

Parameters 45

Authorities 46

Return Value 46

Error Conditions 48

Usage Notes 48

Related Information 48

Example 49

Concepts 49

Debugging IP over SNA Configurations 49

Appendix. Notices 51

Trademarks 52

Terms and conditions for downloading and printing

publications 53

Code disclaimer information 54

iv iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

Simple Network Management Protocol (SNMP) APIs

The Simple Network Management Protocol (SNMP) APIs include the:

v “Simple Network Management Protocol (SNMP) Subagent APIs”

v “Simple Network Management Protocol (SNMP) Manager APIs” on page 35

Before using the SNMP APIs, read the Simple Network Management Protocol (SNMP) Support book

. It describes how to configure the iSeries(TM) to use SNMP and discusses SNMP agents, subagents,

managers, and management information base (MIBs). The book also discusses ″Using the SNMP

Subagent DPI API.″

You can get more information about SNMP and Distributed Protocol Interface (DPI(R)) from Requests for

Comment (RFC) on the Internet. A file called ways_to_get_rfcs has details about obtaining RFCs. To

receive these details send an E-MAIL message as follows:

To: rfc-info@ISI.EDU
Subject: gettingrfcs
help: ways_to_get_rfcs

DPI is described in RFC 1592, ″Simple Network Management Protocol Distributed Protocol Interface,″

Version 2.0.

 Top | UNIX-Type APIs | APIs by category

Simple Network Management Protocol (SNMP) Subagent APIs

The SNMP Subagent APIs are:

v “connectSNMP()—Establish Connection with SNMP Agent” on page 4 (Establish connection with

SNMP agent) establishes a logical connection between the SNMP subagent and the local (the same

iSeries) SNMP agent.

v “debugDPI()—Set DPI Packet Trace” on page 6 (Set DPI packet trace) sets the level of the Distributed

Protocol Interface (DPI) packet trace.

v “disconnectSNMP()—End Connection with SNMP Agent” on page 8 (End connection with SNMP

agent) ends the logical connection between the SNMP subagent and the iSeries SNMP agent.

v “DPI_PACKET_LEN()—Get Length of DPI Packet” on page 10 (Get length of DPI packet) returns the

length (number of bytes) of a Distributed Protocol Interface (DPI) packet.

v “fDPIparse()—Free Storage from DPI Packet Parse” on page 11 (Free storage from DPI packet parse)

frees storage that was previously allocated by a call to pDPIpacket() to store the DPI packet.

v “fDPIset()—Free Storage from DPI Set Packet” on page 12 (Free storage from DPI set packet) frees

storage that was previously allocated for snmp_dpi_set_packet structures.

v “mkDPIAreYouThere()—Make a DPI AreYouThere Packet” on page 13 (Make a DPI AreYouThere

packet) makes a DPI AreYouThere packet and returns a pointer to the packet.

v “mkDPIclose()—Make a DPI Close Packet” on page 14 (Make a DPI close packet) makes a DPI close

packet and returns a pointer to the packet.

v “mkDPIopen()—Make a DPI Open Packet” on page 16 (Make a DPI open packet) makes a Distributed

Protocol Interface (DPI) open packet and returns a pointer to the packet.

v “mkDPIregister()—Make a DPI Register Packet” on page 18 (Make a DPI register packet) makes a

Distributed Protocol Interface (DPI) register packet and returns a pointer to the packet.

© Copyright IBM Corp. 1998, 2005 1

#TOP_OF_PAGE
unix.htm
aplist.htm

v “mkDPIresponse()—Make a DPI Response Packet” on page 21 (Make a DPI response packet) makes a

DPI response packet and returns a pointer to the packet.

v “mkDPIset()—Make a DPI Set Packet” on page 23 (Make a DPI set packet) makes a DPI set structure

and adds it to a chained list of set structures if previous calls have been made.

v “mkDPItrap()—Make a DPI Trap Packet” on page 25 (Make a DPI trap packet) makes a DPI trap

packet and returns a pointer to the packet.

v “mkDPIunregister()—Make a DPI Unregister Packet” on page 26 (Make a DPI unregister packet) makes

a DPI unregister packet and returns a pointer to the packet.

v “pDPIpacket()—Parse a DPI Packet” on page 28 (Parse a DPI packet) parses a serialized Distributed

Protocol Interface (DPI) packet to make it available for processing by the subagent.

v “receiveDPIpacket()—Receive a DPI Packet from the SNMP Agent” on page 29 (Receive a DPI packet

from the SNMP agent) obtains a copy of a DPI packet sent by the SNMP agent to the subagent, and

returns the DPI packet to the caller.

v “sendDPIpacket()—Send a DPI Packet to the SNMP Agent” on page 31 (Send a DPI packet to the

SNMP agent) sends a copy of a Distributed Protocol Interface (DPI) packet to the SNMP agent (on the

same system as the subagent).

v “waitDPIpacket()—Wait for a DPI Packet” on page 33 (Wait for a DPI packet) waits for a message on

the data queue with which the subagent has previously connected (see connectSNMP()—Establish

Connection with SNMP Agent).

Note: These functions use header (include) files from the library QSYSINC, which is optionally

installable. Make sure QSYSINC is installed on your system before using any of the functions. All of the

SNMP subagent APIs use header file qtossapi.h. You can see this source in source file H, member name

QTOSSAPI, in the QSYSINC library.

The Simple Network Management Protocol (SNMP) subagent APIs can be used to dynamically extend

the management information base (MIB) that the system SNMP agent is aware of. The MIB is extended,

without any change to the SNMP agent itself, while the iSeries is running. Dynamically added MIB

subtrees (as defined and supported by a program known as a subagent) provide this capability. You may

now extend the remote and automated system management capabilities of the iSeries within the SNMP

framework. So, for example, you could define an SNMP MIB group for your RPG and SQL application,

and then use SNMP protocol data units (PDUs), such as get and set, to determine status information or to

make changes in control variables.

The term Distributed Protocol Interface (DPI) packet is used throughout this information. The DPI is an

extension to SNMP agents that permit users to dynamically add, delete, or replace management variables

in the local MIB without requiring recompilation of the SNMP agent.

The diagram below shows typical DPI API call sequences that are used to accomplish the SNMP

subagent functions that are listed.

 (A) Subagent initiation

(B) Subagent registration (loop for multiple subtrees)

(C) Normal processing loop for a subagent, starting with a wait for a (get, getnext, set...) packet from

the SNMP agent (other may be an unregister or close packet)

(D) A common call sequence that might be consolidated

(E) Subagent initiated trap

(F) Subagent termination

A loop around mkDPIset() represents building a packet with multiple varbinds.

DPI API Call Sequences—Example

2 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

Top | UNIX-Type APIs | APIs by category

APIs

These are the APIs for this category.

Simple Network Management Protocol (SNMP) APIs 3

#TOP_OF_PAGE
unix.htm
aplist.htm

connectSNMP()—Establish Connection with SNMP Agent

 Syntax

 #include <qtossapi.h>

 int connectSNMP(

 char *queue_name,

 char *lib_name,

 long int timeout);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The connectSNMP() function establishes a logical connection between the SNMP subagent and the local

(the same iSeries server) SNMP agent. The data queue named by the queue_name parameter is used by the

SNMP agent as the target data queue in a call to the Send Data Queue (QSNDDTAQ) API when it sends

a message to the subagent. Only a single connection is allowed per data queue and library, hence a

subagent may have only a single data queue. (Of course, a subagent may have multiple registrations. See

“mkDPIregister()—Make a DPI Register Packet” on page 18.)

Authorities

So that the subagent can receive messages from the SNMP agent, the following conditions must be met:

v The library and data queue whose names are passed as a parameter in the connectSNMP() call must

exist prior to the call.

v The SNMP agent job must have write access to the data queue. If you suspect a problem with the data

queue, check the job log of the SNMP agent job (QTMSNMP in subsystem QSYSWRK) for TCP4041

messages with reason code 001.

Parameters

queue_name

(Input) The name of the data queue (as a null-terminated string) on which the subagent wants to

receive Distributed Protocol Interface (DPI) packets. The value must conform to OS/400 rules for

data queue names (such as using uppercase letters and starting with a letter, $, #, @, and so

forth).

lib_name

(Input) The name of the OS/400 library (as a null-terminated string) to which the data queue

belongs. QTEMP is not an allowed value. The value must conform to OS/400 rules for library

names (such as using uppercase letters and starting with a letter, $, #, @, and so forth).

 Note that the actual character representation of the specific library name must be used. Special

values such as *LIBL and *CURLIB are not allowed.

timeout

(Input) The amount of time in seconds that the subagent is willing to wait for a connection. This

field may contain the following values:

 0 Unlimited wait

> 0 The number of seconds to wait (maximum is 2 147 483 647)

Any other values result in an error return code.

4 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

Return Value

The return values are defined in the <qtossapi.h> file in the QSYSINC library.

 0 snmpsa_RC_ok

The call was successful.

-1 snmpsa_RC_err

An exception occurred. Check the subagent job log for the exception information, correct the

condition, and resubmit the subagent job. (This return code is only used when a more specific

return code is not available.)

-2 snmpsa_RC_noagent

The SNMP agent is not available.

-3 snmpsa_RC_mismatch

There is a code-level mismatch between the agent and the subagent. If this occurs, report the

problem to the appropriate service organization.

-4 snmpsa_RC_timedout

The specified timeout value was exceeded.

-7 snmpsa_RC_parmerr

A parameter error occurred. This is more likely caused by errors in the value of a parameter (for

example, a value was too large or too small) or by a pointer parameter that has a NULL value and

should not. For char* parameters, it may also be caused if the length of the string exceeds some

limit.

-8 snmpsa_RC_lengtherr

During an attempt to communicate with the agent, a length exception occurred.

-9 snmpsa_RC_buffer

An internal buffer was not obtained. See any messages in the job log and correct any errors that

are indicated, then retry the operation.

-10 snmpsa_RC_duplicate

The agent already has a subagent with this queue and library name. The subagent may continue

as usual with the mkDPIopen() and mkDPIregister() functions. If these fail, the subagent should

use different library and queue names.

-13 snmpsa_RC_alreadyconnected

The subagent is already connected using the same data queue and library names passed on the

call. If the SNMP agent still does not forward requests to the subagent properly, use the

disconnectSNMP() function, then the connectSNMP() function.

For more information, see “SNMP Subagent Problem Determination” in the Simple Network

Management Protocol (SNMP) Support

book.

Usage Notes

The connectSNMP() function establishes a logical connection with the SNMP agent that is running on the

same system as the subagent. This is normally the first subagent API that a subagent calls.

This API, like all the subagent APIs, checks to ensure that the pointers passed are generally valid for user

data, for example, user domain. Such audits occur for all pointer parameters and for all pointers that

appear in all C structures that are passed as parameters. If one of these checks fail, a CPF9872 exception

is generated. This can occur from all the subagent APIs except debugDPI(), DPI_PACKET_LEN(), and

mkDPIAreYouThere().

Simple Network Management Protocol (SNMP) APIs 5

Related Information

v The <qtossapi.h> file (see Header Files for UNIX-Type Functions)

v “disconnectSNMP()—End Connection with SNMP Agent” on page 8—End Connection with SNMP

Agent

v “mkDPIregister()—Make a DPI Register Packet” on page 18—Make a DPI Register Packet

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>

 int rc;

 rc = connectSNMP(“QABCDEFG”, “LIBABC”, 0);

 if (rc) {

 /* Handle exception. */

 }

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

debugDPI()—Set DPI Packet Trace

 Syntax

 #include <qtossapi.h>

 void debugDPI(int level);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The debugDPI() function sets the level of the Distributed Protocol Interface (DPI(R)) packet trace. The

trace consists of a representation (printed to STDERR) of DPI packets as they are parsed (by the

pDPIpacket() function) or made (by one of the mkDPIxxx() APIs). The trace is written to ILE C standard

error output.

Parameters

level (Input) The level of tracing to perform. If this value is zero, tracing is turned off. If it has any

other value, tracing is turned on at the specified level. The higher the value, the more detail. A

higher level includes all lower levels of tracing. Possible values follow:

 0 Turn off packet tracing

1 Display packet creation and parsing

2 Level 1, plus display the hexadecimal dump of incoming and outgoing DPI packets.

Usage Notes

The debugDPI() function is used to turn the DPI packet trace on or off.

6 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

unix13.htm
aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

Related Information

v The <qtossapi.h> file (see Header Files for UNIX-Type Functions)

v “mkDPIregister()—Make a DPI Register Packet” on page 18—Make a DPI Register Packet

v “mkDPIresponse()—Make a DPI Response Packet” on page 21—Make a DPI Response Packet

v “pDPIpacket()—Parse a DPI Packet” on page 28—Parse a DPI Packet

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>

 debugDPI(2);

Following are some examples of the DPI packet trace. A simple way to view STDERR is to run your

program in batch in a submitted job.

The following is an example of a trace, with the level parameter set to 1, of a register packet made by the

subagent’s call to mkDPIregister(). This is indicated in the trace by the letter c (for create) at the

beginning of a trace line. Immediately following that is the parse of the response packet that the subagent

got back from the SNMP agent. This is indicated in the trace by the letter p (for parse) at the beginning of

a trace line.

 cDPIpacket: Major=2, Version=2, Release=0, Id=1, Type=SNMP_DPI_REGISTER

 cDPIreg: subtree=1.3.6.1.2.3.4.5.6., priority=0, timeout=4

 view_selection=No

 bulk_selection=No

 pDPIpacket: Major=2, Version=2, Release=0, Id=1, Type=SNMP_DPI_RESPONSE

 pDPIresp: ret_code=0 [0x0] (noError), ret_index=255

 pDPIset: subtree=1.3.6.1.2.3.4.5.6, instance=** NONE **

 object=1.3.6.1.2.3.4.5.6

 value_type=NULL [’04’H], value_len=0

 value=** NULL **

Next is an example of a ″get″ packet that is received by a subagent. Immediately following that is the

response packet that the subagent built (indicated by the letter c) by calling mkDPIresponse().

 pDPIpacket: Major=2, Version=2, Release=0, Id=2, Type=SNMP_DPI_GET

 Community=** NONE **

 pDPIget: subtree=1.3.6.1.2.3.4.5.6., instance=1.0

 object=1.3.6.1.2.3.4.5.6.1.0

 cDPIpacket: Major=2, Version=2, Release=0, Id=2, Type=SNMP_DPI_RESPONSE

 cDPIresp: ret_code=0 [0x0] (noError), ret_index=0

 cDPIset: subtree=1.3.6.1.2.3.4.5.6., instance=1.0

 object=1.3.6.1.2.3.4.5.6.1.0

 value_type=Integer32 [’81’H], value_len=4

 value=1 [0x00000001]

Next is an example of the trace with the level parameter set to 2. This causes a hexadecimal dump of the

DPI packet to be generated when pDPIpacket() is called, in addition to the trace level of 1. Next is the

same packet as parsed by pDPIpacket(), and immediately following that is the response packet that the

subagent built by calling mkDPIresponse().

 Dump of 33 byte incoming DPI packet:

 00 1f 02 02 00 00 03 02 00 00 f1 4b f3 4b f6 4b

 f1 4b f2 4b f3 4b f4 4b f5 4b f6 4b 00 f5 4b f0

 00

 pDPIpacket: Major=2, Version=2, Release=0, Id=3, Type=SNMP_DPI_GETNEXT

 Community=** NONE **

 pDPInext: subtree=1.3.6.1.2.3.4.5.6., instance=5.0

 object=1.3.6.1.2.3.4.5.6.5.0

 cDPIpacket: Major=2, Version=2, Release=0, Id=3, Type=SNMP_DPI_RESPONSE

 cDPIresp: ret_code=0 [0x0] (noError), ret_index=0

Simple Network Management Protocol (SNMP) APIs 7

unix13.htm
aboutapis.htm#CODEDISCLAIMER

cDPIset: subtree=1.3.6.1.2.3.4.5.6., instance=6.0

 object=1.3.6.1.2.3.4.5.6.6.0

 value_type=Counter32 [’86’H], value_len=4

 value=6 [0x00000006]

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

disconnectSNMP()—End Connection with SNMP Agent

 Syntax

 #include <qtossapi.h>

 int disconnectSNMP(

 char *queue_name,

 char *lib_name,

 long int timeout);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The disconnectSNMP() function ends the logical connection between the SNMP subagent and the

OS/400 SNMP agent.

Authorities

So that the subagent can receive messages from the SNMP agent, the following conditions must be met:

v The library and data queue whose names are passed as a parameter in the connectSNMP() call must

exist prior to the call.

v The data queue and library names passed as parameters in the disconnectSNMP() call must be the

same as used in the previous, successful connectSNMP() call.

Parameters

queue_name

(Input) The name of the data queue (as a null-terminated string) on which the subagent was

receiving Distributed Protocol Interface (DPI) packets. This should be the same data queue name

as previously used in a call to connectSNMP().

lib_name

(Input) The name of the OS/400 library (as a null-terminated string) to which the data queue

belongs. This should be the same library name as previously used in a call to connectSNMP().

timeout

(Input) The amount of time in seconds that the subagent is willing to wait for a disconnection.

This field may contain any of these values:

 0 Immediate disconnect, independent of whether or not the SNMP agent is available or has

responded

> 0 The number of seconds to wait (maximum is 2 147 483 647)

Any other values result in an error return code.

8 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Return Value

The indicated return values are defined in the <qtossapi.h> file.

 0 snmpsa_RC_ok

The disconnectSNMP() function was successful.

-1 snmpsa_RC_err

An exception occurred. Check the subagent job log for the exception information, correct the

condition, and resubmit the subagent job. (This return code is only used when a more specific

return code is not available.)

-2 snmpsa_RC_noagent

The SNMP agent is not available.

-3 snmpsa_RC_mismatch

There is a code-level mismatch between the agent and the subagent. If this occurs, report the

problem to the appropriate service organization.

-4 snmpsa_RC_timedout

The specified timeout value was exceeded.

-7 snmpsa_RC_parmerr

A parameter error occurred. This is more likely caused by errors in the value of a parameter (for

example, a value was too large or too small) or by a pointer parameter that has a NULL value and

should not. For char* parameters, it may also be caused if the length of the string exceeds some

limit.

-8 snmpsa_RC_lengtherr

During an attempt to communicate with the agent, a length exception occurred. See any messages

in the job log and correct any errors that are indicated, then retry the operation.

-9 snmpsa_RC_buffer

An internal buffer was not obtained. See any messages in the job log and correct any errors that

are indicated, then retry the operation.

-14 snmpsa_RC_sync

A synchronization problem occurred between the agent and subagent. If this occurs, report the

problem to the appropriate service organization.

For more information, see “SNMP Subagent Problem Determination” in the Simple Network

Management Protocol (SNMP) Support

book.

Usage Notes

The disconnectSNMP() function ends the logical connection between the SNMP agent and a subagent.

This is normally the last subagent API that a subagent calls.

Related Information

v The <qtossapi.h> file (see Header Files for UNIX-Type Functions)

v “connectSNMP()—Establish Connection with SNMP Agent” on page 4—Establish Connection with

SNMP Agent

Example

See Code disclaimer information for information pertaining to code examples.

Simple Network Management Protocol (SNMP) APIs 9

unix13.htm
aboutapis.htm#CODEDISCLAIMER

#include <qtossapi.h>

 int rc;

 rc = disconnectSNMP(“QABCDEFG”, “LIBABC”, 0);

 if (rc) {

 /* Handle exception. */

 }

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

DPI_PACKET_LEN()—Get Length of DPI Packet

 Syntax

 #include <qtossapi.h>

 int DPI_PACKET_LEN(unsigned char *packet_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The DPI_PACKET_LEN() macro returns the length (number of bytes) of a Distributed Protocol Interface

(DPI) packet.

Parameters

packet_p

(Input) A pointer to a (serialized) DPI packet.

Return Value

 value An integer value that represents the total DPI packet length.

For more information, see “SNMP Subagent Problem Determination” in the Simple Network

Management Protocol (SNMP) Support

book.

Usage Notes

The DPI_PACKET_LEN() macro generates a C expression that returns an integer that represents the total

length of a DPI packet. It uses the first 2 bytes (in network byte order) of the packet to calculate the

length. The length returned includes these first 2 bytes.

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>

 unsigned char *pack_p;

 int length;

 pack_p = mkDPIclose(SNMP_CLOSE_goingDown);

10 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
aboutapis.htm#CODEDISCLAIMER

if (pack_p) {

 length = DPI_PACKET_LEN(pack_p);

 /* Send packet to agent or subagent. */

 }

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

fDPIparse()—Free Storage from DPI Packet Parse

 Syntax

 #include <qtossapi.h>

 void fDPIparse(snmp_dpi_hdr *hdr_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The fDPIparse() function frees storage that was previously allocated by a call to pDPIpacket() to store

the DPI packet.

Parameters

hdr_p (Input) A pointer to an snmp_dpi_hdr structure.

Usage Notes

The fDPIparse() function frees dynamic storage that was previously created by a call to pDPIpacket().

After calling fDPIparse(), no further references should be made to hdr_p, which pointed to the

snmp_dpi_hdr structure.

A complete or partial DPI snmp_dpi_hdr structure is also implicitly freed by a call to a DPI function that

serializes an snmp_dpi_hdr structure into a DPI packet. The section that describes each function tells you

if this is the case. An example of such a function is mkDPIresponse().

Related Information

v The <qtossapi.h> file (see Header Files for UNIX-Type Functions)

v “mkDPIresponse()—Make a DPI Response Packet” on page 21—Make a DPI Response Packet

v “pDPIpacket()—Parse a DPI Packet” on page 28—Parse a DPI Packet

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>

 snmp_dpi_hdr *hdr_p;

 unsigned char *pack_p; /* Assume pack_p points to */

 /* incoming DPI packet. */

 hdr_p = pDPIpacket(pack_p);

 /* Handle the packet, and when done, do the following. */

 if (hdr_p) fDPIparse(hdr_p);

Simple Network Management Protocol (SNMP) APIs 11

#TOP_OF_PAGE
unix.htm
aplist.htm
unix13.htm
aboutapis.htm#CODEDISCLAIMER

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

fDPIset()—Free Storage from DPI Set Packet

 Syntax

 #include <qtossapi.h>

 void fDPIset(snmp_dpi_set_packet *packet_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The fDPIset() function frees storage that was previously allocated for snmp_dpi_set_packet structures.

Parameters

packet_p

(Input) A pointer to the first snmp_dpi_set_packet structure in a chain of such structures.

Usage Notes

The fDPIset() function is typically used if you must free a chain of one or more snmp_dpi_set_packet

structures. This may be the case if you are in the middle of preparing a chain of such structures for a DPI

RESPONSE packet, but then run into an error before you can actually make the response.

If you get to the point where you make a DPI response packet to which you pass the chain of

snmp_dpi_set_packet structures, then the mkDPIresponse() function will free the chain of

snmp_dpi_set_packet structures. Similarly, if you pass the chain of snmp_dpi_set_packet structures to

mkDPItrap() to make a DPI trap request, the storage will be freed.

Unnecessary free operations may result in an MCH6902 (type 2). If this occurs, remove the call to

fDPIset().

Related Information

v The <qtossapi.h> file (see Header Files for UNIX-Type Functions)

v “mkDPIresponse()—Make a DPI Response Packet” on page 21—Make a DPI Response Packet

v “mkDPIset()—Make a DPI Set Packet” on page 23—Make a DPI Set Packet

Example

See Code disclaimer information for information pertaining to code examples.

#include <qtossapi.h>

unsigned char *pack_p;

snmp_dpi_hdr *hdr_p;

snmp_dpi_set_packet *set_p, *first_p;

long int num1 = 0, num2 = 0;

/* ... */

12 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
unix13.htm
aboutapis.htm#CODEDISCLAIMER

/* The subagent was waiting for work from the SNMP agent, and */

/* a message arrives... */

hdr_p = pDPIpacket(pack_p); /* Assume pack_p */

/* analyze packet and assume all OK */ /* points to the */

/* now prepare response; 2 varBinds */ /* incoming packet. */

set_p = mkDPIset(snmp_dpi_NULL_p, /* Create first one */

 “1.3.6.1.2.3.4.5.”,“1.0”, /* OID=1, instance=0.*/

 SNMP_TYPE_Integer32,

 sizeof(num1), &num1);

if (set_p) { /* If successful, then */

 first_p = set_p; /* save pointer to first */

 set_p = mkDPIset(set_p, /* chain. Next one */

 “1.3.6.1.2.3.4.5.”,“1.1”, /* OID=1, instance=1.*/

 SNMP_TYPE_Integer32,

 sizeof(num2), &num2);

 if (set_p) { /*If successful, 2nd one */

 pack_p = mkDPIresponse(hdr_p, /* makes response. */

 SNMP_ERROR_noError, /* It will also free */

 0L, first_p); /* the set_p tree. */

 /* Send DPI response to agent. */

 } else { /* If 2nd mkDPIset fails, */

 fDPIset(first_p); /* it must free chain. */

 }

}

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

mkDPIAreYouThere()—Make a DPI AreYouThere Packet

 Syntax

 #include <qtossapi.h>

 unsigned char *mkDPIAreYouThere(void);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The mkDPIAreYouThere() function makes a DPI AreYouThere packet and returns a pointer to the packet.

Parameters

None.

Return Value

value The value returned is a pointer to the DPI packet.

 If successful, then a pointer to a static DPI packet buffer is returned. The first two bytes of the

buffer (in network byte order) contain the length of the remaining packet. The

DPI_PACKET_LEN() function can be used to calculate the total length of the DPI packet.

NULL If unsuccessful, then a NULL pointer is returned.

Simple Network Management Protocol (SNMP) APIs 13

#TOP_OF_PAGE
unix.htm
aplist.htm

Be aware that the static buffer for the DPI packet is shared by other mkDPIxxxx() functions that create a

serialized DPI packet.

For more information, see “SNMP Subagent Problem Determination” in the Simple Network

Management Protocol (SNMP) Support

book.

Usage Notes

The mkDPIAreYouThere() function creates a serialized DPI ARE_YOU_THERE packet that can then be

sent to the DPI peer (normally the agent).

If your connection to the agent is still intact, the agent will send a DPI RESPONSE with

SNMP_ERROR_DPI_noError in the error code field and zero in the error index field. The RESPONSE will

have no varbind data. If your connection is not intact, the agent may send a response with an error

indication, or may not send a response at all.

Related Information

v The <qtossapi.h> file (see Header Files for UNIX-Type Functions)

v “DPI_PACKET_LEN()—Get Length of DPI Packet” on page 10—Get Length of DPI Packet

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>

 unsigned char *pack_p;

 pack_p = mkDPIAreYouThere();

 if (pack_p) {

 /* Send the packet to the agent. */

 }

 /* Wait for response with waitDPIpacket(). */

 /* Normally the response should come back fairly quickly, */

 /* but it depends on the load of the agent. */

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

mkDPIclose()—Make a DPI Close Packet

 Syntax

 #include <qtossapi.h>

 unsigned char *mkDPIclose(char reason_code);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The mkDPIclose() function makes a DPI close packet and returns a pointer to the packet.

14 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

unix13.htm
aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

reason_code

(Input) The reason for the close. See the <qtossapi.h> file in the QSYSINC library for the list of

defined reason codes.

Return Value

 value The value returned is a pointer to the DPI packet.

If successful, then a pointer to a static DPI packet buffer is returned. The first 2 bytes of the buffer

(in network byte order) contain the length of the remaining packet. The DPI_PACKET_LEN()

function can be used to calculate the total length of the DPI packet.

NULL If unsuccessful, then a NULL pointer is returned.

Be aware that the static buffer for the DPI packet is shared by other mkDPIxxxx() functions that create a

serialized DPI packet.

For more information, see ″SNMP Subagent Problem Determination″ in the Simple Network Management

Protocol (SNMP) Support

book.

Usage Notes

The mkDPIclose() function creates a serialized DPI CLOSE packet that can then be sent to the DPI peer.

As a result of sending the packet, the DPI connection will be closed.

Sending a DPI CLOSE packet to the agent implies an automatic DPI UNREGISTER for all registered

subtrees on the connection being closed.

Related Information

v The <qtossapi.h> file (see Header Files for UNIX-Type Functions)

v “DPI_PACKET_LEN()—Get Length of DPI Packet” on page 10—Get Length of DPI Packet

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>

 unsigned char *pack_p;

 pack_p = mkDPIclose(SNMP_CLOSE_goingDown);

 if (pack_p) {

 /* Send the packet to the agent. */

 }

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Simple Network Management Protocol (SNMP) APIs 15

unix13.htm
aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

mkDPIopen()—Make a DPI Open Packet

 Syntax

 #include <qtossapi.h>

 unsigned char *mkDPIopen(

 char *oid_p,

 char *description_p,

 unsigned long timeout,

 unsigned long max_varbinds,

 char character_set,

 unsigned long password_len,

 unsigned char *password_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The mkDPIopen() function makes a Distributed Protocol Interface (DPI) open packet and returns a

pointer to the packet.

Parameters

oid_p (Input) A pointer to a NULL-terminated character string that represents the OBJECT IDENTIFIER,

which uniquely identifies the subagent.

description_p

(Input) A pointer to a NULL-terminated character string, which is a descriptive name for the

subagent. This can be any DisplayString, which basically is a byte string that contains only

characters from the ASCII network virtual terminal (NVT) set.

timeout

(Input) The requested timeout for this subagent. An agent often has a limit for this value, and it

will use that limit if this value is larger. A timeout of zero has a special meaning in the sense that

the agent will then use its own default timeout value. The upper bound and default timeout

values for DPI subagents are maintained by the SNMP agent in the subagent MIB. For details

about the subagent MIB, see ″SNMP Subagent MIB″ in the Simple Network Management Protocol

book.

max_varBinds

(Input) The maximum number of varbinds per DPI packet that the subagent is prepared to

handle. The agent tries to combine up to this number of varbinds (belonging to the same subtree)

in a single DPI packet. If zero is specified, there is no explicit upper bound on the number of

varbinds. In all cases, the actual number of varbinds is constrained by buffer sizes.

character_set

(Input) The character set that you want to use for string-based data fields in the DPI packets and

structures. In general, the SNMP agent communicates to all SNMP managers in NVT ASCII and

stores information in its own MIBs in ASCII. However, the agent will do some translations.

Currently, only DPI_NATIVE_CSET is supported. For the iSeries server, this is EBCDIC (coded

character set identifier (CCSID) 500).

 The specifics are as follows:

16 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

v On SET, COMMIT and UNDO requests from the agent, if the OID Structure of Management

Information (SMI) type is SNMP_TYPE_OCTET_STRING and the textual convention is

DisplayString, the agent will translate from ASCII to EBCDIC. The <qtossapi.h> file contains

the C-language defines for these SMI types.

Note: A subagent implementation with DisplayString OIDs that have read/write access should

check the value_type in the snmp_dpi_set_packet (see the <qtossapi.h> file). If the value_type

is not equal to the SNMP_TYPE_DisplayString in the set request, then the agent will not have

converted from ASCII to EBCDIC. In this case, the subagent should perform the translation.

v If the textual convention is DisplayString during the processing of a GET or GETNEXT from a

subagent, the agent will convert from EBCDIC to ASCII.

v When processing a DPI open packet, the agent will translate the description (see the

description_p parameter) from EBCDIC to ASCII for storage in the subagent MIB.

v In the SNMP MIB II system group, there are a number of DisplayString OIDs. These are all

stored in ASCII. (The Internet standard RFC 1213, ″Management Information Base for Network

Management of TCP/IP-based internets: MIB-II″, defines MIB II and the system group as well

as other groups.)

password_len

(Input) The length (in bytes) of an optional password. For the iSeries server agent, subagents do

not need to supply a password. If not, then a zero length may be specified.

password_p

(Input) A pointer to an byte string that represents the password for this subagent. This

corresponds to an SNMP agent community name. A password may include any character value,

including the NULL character. If the password_len is zero, then this can be a NULL pointer.

Return Value

 value The value returned is a pointer to the DPI packet.

If successful, then a pointer to a static DPI packet buffer is returned. The first 2 bytes of the buffer

(in network byte order) contain the length of the remaining packet. The DPI_PACKET_LEN()

function can be used to calculate the total length of the DPI packet.

NULL If unsuccessful, then a NULL pointer is returned.

Be aware that the static buffer for the DPI packet is shared by other mkDPIxxxx() functions that create a

serialized DPI packet.

For more information, see ″SNMP Subagent Problem Determination″ in the Simple Network Management

Protocol

book.

Usage Notes

The mkDPIopen() function creates a serialized DPI OPEN packet that can then be sent to the SNMP

agent.

The SNMP agent will send a DPI response packet back to the subagent with a code that can be used to

determine if the open request was successful. This will be one of the SNMP_ERROR_DPI_* return codes

found in <qtossapi.h>. Following receipt of this response packet, the subagent will need to call the

pDPIpacket() to parse this DPI packet. The error_code should be checked.

If the error_code is SNMP_ERROR_DPI_duplicateSubAgentIdentifier, then another subagent with the

same subagent OID has already sent an open DPI packet and the SA MIB OID saAllowDuplicateIDs is 2

(No). Either choose a different OID for this subagent, change saAllowDuplicateIDs to 1 (Yes) or stop the

other subagent that has the requested identifier. The fDPIparse() function would normally be called after

Simple Network Management Protocol (SNMP) APIs 17

that to free the parsed DPI response packet. For information about saAllowDuplicateIDs, see ″SNMP

Subagent MIB″ in the Simple Network Management Protocol

book.

Related Information

v The <qtossapi.h> file (see Header Files for UNIX-Type Functions)

v “DPI_PACKET_LEN()—Get Length of DPI Packet” on page 10—Get Length of DPI Packet

v “fDPIparse()—Free Storage from DPI Packet Parse” on page 11—Free Storage from DPI Packet Parse

v “pDPIpacket()—Parse a DPI Packet” on page 28—Parse a DPI Packet

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>

 unsigned char *pack_p;

 pack_p = mkDPIopen("1.3.6.1.2.3.4.5",

 "Sample DPI sub-agent"

 0L,2L, DPI_NATIVE_CSET,

 0,(char *)0);

 if (pack_p) {

 /* Send packet to the agent. */

 }

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

mkDPIregister()—Make a DPI Register Packet

 Syntax

 #include <qtossapi.h>

 unsigned char *mkDPIregister(

 unsigned short timeout,

 long int priority,

 char *group_p,

 char bulk_select);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The mkDPIregister() function makes a Distributed Protocol Interface (DPI) register packet and returns a

pointer to the packet.

Parameters

timeout

(Input) The requested timeout in seconds. An agent often has a limit for this value, and it will

use that limit if this value is larger. The value zero has special meaning in the sense that it tells

the agent to use the timeout value that was specified in the DPI OPEN packet.

18 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

unix13.htm
aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

priority

(Input) The requested priority, relative to other DPI subagents. This field may contain any of

these values:

 -1 The best available priority.

0 A better priority than the highest priority currently

registered. Use this value to obtain the SNMP DPI version

1 behavior.

nnn Any other positive value. You will receive that priority if

available; otherwise, the next best priority that is

available.

group_p

(Input) A pointer to a NULL-terminated character string that represents the subtree to be

registered. This group ID must have a trailing dot.

bulk_select

(Input) Whether you want the agent to pass GETBULK on to the subagent or to map them into

multiple GETNEXT requests. The possible value follows:

 DPI_BULK_NO Do not pass any GETBULK requests, but instead map a

GETBULK request into multiple GETNEXT requests.

Return Value

 value The mkDPIregister() function was successful. The value

returned is a pointer to the DPI packet.

If successful, then a pointer to a static DPI packet buffer

is returned. The first 2 bytes of the buffer (in network

byte order) contain the length of the remaining packet.

The DPI_PACKET_LEN function can be used to calculate

the total length of the DPI packet.

NULL The mkDPIregister() function was not successful.

If unsuccessful, then a NULL pointer is returned.

Be aware that the static buffer for the DPI packet is shared by other mkDPIxxxx() functions that create a

serialized DPI packet.

For more information, see “SNMP Subagent Problem Determination” in the Simple Network

Management Protocol

book.

Usage Notes

The mkDPIregister() function creates a serialized DPI REGISTER packet that can then be sent to the

SNMP agent.

The SNMP agent will send a DPI response packet back to the subagent with a code that can be used to

determine if the register request was successful. This will be one of the SNMP_ERROR_DPI_* return

codes found in <qtossapi.h>. Following receipt of this response packet, the subagent will need to call the

pDPIpacket() to parse the incoming DPI packet and to check the response packet error_code. Then,

fDPIparse() would normally be called to free the parsed DPI packet.

If the response from the SNMP agent is SNMP_ERROR_DPI_higherPriorityRegistered, then a DPI

subagent has already registered the same subtree at a higher priority than requested in this call. If so, this

Simple Network Management Protocol (SNMP) APIs 19

subagent will be contained in the subagent Management Information Base (MIB), and using an

appropriate SNMP management application, you can determine its priority. You may want to consider

requesting a higher priority or even -1 (best available) for your subagent.

If the response from the SNMP agent is SNMP_ERROR_DPI_alreadyRegistered, then the requested

subtree registration was for a portion of the overall MIB that is supported by an SNMP agent directly or

by other system-implemented programs. Generally, registration of any subtree root, which would have

the effect of masking all or portions of these subtrees (if allowed to occur), is prohibited.

Not all protected subtrees are currently supplied on the iSeries server, although most are. If a subtree is

currently not supplied, then the first subagent that dynamically registers it will be allowed, and later

subagents will be disallowed. Refer to the “OS/400 SNMP Agent Set Processing and Supported SNMP

MIBs” in the Simple Network Management Protocol

book for information on the MIB groups

currently supplied with OS/400.

Following are the protected subtrees and the associated MIB name:

 1.3.6.1.2.1.1 System

1.3.6.1.2.1.2 Interfaces

1.3.6.1.2.1.3 Address translation

1.3.6.1.2.1.4 Internet Protocol

1.3.6.1.2.1.5 Internet Control Message Protocol

1.3.6.1.2.1.6 Transmission Control Protocol (TCP)

1.3.6.1.2.1.7 User Datagram Protocol (UDP)

1.3.6.1.2.1.10.7 Ethernet

1.3.6.1.2.1.10.9 Token ring

1.3.6.1.2.1.10.15 Fiber distributed data interface (FDDI)

1.3.6.1.2.1.10.32 Frame relay

1.3.6.1.2.1.11 SNMP

1.3.6.1.2.1.25 Host

1.3.6.1.3.6 Interface extensions

1.3.6.1.4.1.2.2.12 Subagent

1.3.6.1.4.1.2.2.1 Distributed Protocol Interface (DPI) (See the Internet

standard RFC 1592, “Simple Network Management

Protocol Distributed Protocol Interface”, Version 1.0.)

1.3.6.1.4.1.2.6.2.13 Advanced Peer-to-Peer Networking(R) (APPN(R))

1.3.6.1.4.1.2.6.4.5 NetView/6000 subagent computer system group

1.3.6.1.4.1.2.6.50 Client management

1.3.6.1.4.1.23.2.5 Internetwork Packet Exchange (IPX) protocol

1.3.6.1.4.1.23.2.19 Netware Link Services Protocol (NLSP)

1.3.6.1.4.1.23.2.20 Router Information Protocol (RIP) and Service

Advertising Protocol (SAP)

Related Information

v The <qtossapi.h> file (see Header Files for UNIX-Type Functions)

v “DPI_PACKET_LEN()—Get Length of DPI Packet” on page 10—Get Length of DPI Packet

v “fDPIparse()—Free Storage from DPI Packet Parse” on page 11—Free Storage from DPI Packet Parse

v “pDPIpacket()—Parse a DPI Packet” on page 28—Parse a DPI Packet

Example

See Code disclaimer information for information pertaining to code examples.

20 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

unix13.htm
aboutapis.htm#CODEDISCLAIMER

#include <qtossapi.h>

 unsigned char *pack_p;

 pack_p = mkDPIregister(0,0L,“1.3.6.1.2.3.4.5.”,

 DPI_BULK_NO);

 if (pack_p) {

 /* Send packet to agent and await response. */

 }

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

mkDPIresponse()—Make a DPI Response Packet

 Syntax

 #include <qtossapi.h>

 unsigned char *mkDPIresponse(

 snmp_dpi_hdr *hdr_p,

 long int error_code,

 long int error_index,

 snmp_dpi_set_packet *packet_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The mkDPIresponse() function makes a DPI response packet and returns a pointer to the packet.

Parameters

hdr_p (Input) A pointer to the snmp_dpi_hdr structure of the DPI request to which this DPI packet will

be the response. The function uses this structure to copy the packet_id and the DPI version and

release so that the DPI packet is correctly formatted as a response.

error_code

(Input) The error code from the <qtossapi.h> file.

error_index

(Input) The first varbind in error. Counting starts at 1 for the first varbind. This field should be

zero if there is no error.

packet_p

(Input) A pointer to a chain of snmp_dpi_set_packet structures. This partial structure will be freed

by the mkDPIresponse() function. Therefore, on return, you cannot refer to it anymore. Pass a

NULL pointer if there are no varbinds to be returned.

Return Value

 value The value returned is a pointer to the DPI packet.

If successful, then a pointer to a static DPI packet buffer is returned. The first 2 bytes of the buffer

(in network byte order) contain the length of the remaining packet. The DPI_PACKET_LEN()

function can be used to calculate the total length of the DPI packet.

Simple Network Management Protocol (SNMP) APIs 21

#TOP_OF_PAGE
unix.htm
aplist.htm

NULL If unsuccessful, then a NULL pointer is returned.

Be aware that the static buffer for the DPI packet is shared by other mkDPIxxxx() functions that create a

serialized DPI packet.

For more information, see ″SNMP Subagent Problem Determination″ in the book Simple Network

Management Protocol

book.

Usage Notes

The mkDPIresponse() function is used by a subagent to prepare a DPI RESPONSE packet to a GET,

GETNEXT, SET, COMMIT, or UNDO request. The resulting packet can be sent to the SNMP agent.

Unnecessary free operations may result in an MCH6902 (type 2). If this occurs, remove the call to

fDPIset().

Related Information

v The <qtossapi.h> file (see Header Files for UNIX-Type Functions)

v “DPI_PACKET_LEN()—Get Length of DPI Packet” on page 10—Get Length of DPI Packet

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>

 unsigned char *pack_p;

 snmp_dpi_hdr *hdr_p;

 snmp_dpi_set_packet *set_p;

 long int num;

 hdr_p = pDPIpacket(pack_p); /* Parse incoming packet. */

 /* Assume it’s in pack_p. */

 if (hdr_p) {

 /* Analyze packet, assume GET, no error. */

 set_p = mkDPIset(snmp_dpi_set_packet_NULL_p,

 "1.3.6.1.2.3.4.5.", "1.0",

 SNMP_TYPE_Integer32,

 sizeof(num), &num);

 if (set_p) {

 pack_p = mkDPIresponse(hdr_p,

 SNMP_ERROR_noError, 0L, set_p);

 if (pack_p) {

 /* Send packet to subagent. */

 }

 }

 }

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

22 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

unix13.htm
aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

mkDPIset()—Make a DPI Set Packet

 Syntax

 #include <qtossapi.h>

 snmp_dpi_set_packet *mkDPIset(

 snmp_dpi_set_packet *packet_p,

 char *group_p,

 char *instance_p,

 int value_type,

 int value_len,

 void *value_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The mkDPIset() function makes a DPI set structure and adds it to a chained list of set structures if

previous calls have been made.

Parameters

packet_p

(Input) A pointer to a chain of snmp_dpi_set_packet structures. Pass a NULL pointer if this is the

first structure to be created. Typically, to handle multiple varbinds, this routine will be called

repeatedly with this parameter having as its value the result returned from the previous call.

Each new snmp_dpi_set_packet will be chained at the end.

group_p

(Input) A pointer to a NULL-terminated character string that represents the registered subtree

that caused this GET request to be passed to this DPI subagent. The subtree must have a trailing

dot.

instance_p

(Input) A pointer to a NULL-terminated character string that represents the rest (the piece

following the subtree part) of the OBJECT IDENTIFIER of the variable instance being accessed.

Use of the term instance_p here should not be confused with an OBJECT instance because this

instance_p string may consist of a piece of the OBJECT IDENTIFIER plus the INSTANCE

IDENTIFIER.

value_type

(Input) The type of the value.

 See the <qtossapi.h> file for a list of currently defined value types.

value_len

(Input) A signed integer that specifies the length (in bytes) of the value pointed to by the value_p

parameter. The length may be zero if the value is of type SNMP_TYPE_NULL.

value_p

(Input) A pointer to the actual value. This parameter may contain a NULL pointer if the value is

of (implicit or explicit) type SNMP_TYPE_NULL.

Simple Network Management Protocol (SNMP) APIs 23

Return Value

 value The value returned is a pointer to the DPI packet.

If successful, then a pointer to a static DPI packet buffer is returned. The first 2 bytes of the buffer

(in network byte order) contain the length of the remaining packet. The DPI_PACKET_LEN()

function can be used to calculate the total length of the DPI packet.

NULL If unsuccessful, then a NULL pointer is returned.

For more information, see “SNMP Subagent Problem Determination” in the Simple Network

Management Protocol

book.

Usage Notes

The mkDPIset() function is used at the subagent side to prepare a chain of one or more

snmp_dpi_set_packet structures. This chain is then later used to create a DPI packet, using a call to

mkDPIresponse() or mkDPItrap(), which can then be sent to an SNMP agent. Each occurrence of an

snmp_dpi_set_packet corresponds to a varbind in a protocol data unit (PDU).

This function is unlike the other subagent APIs that have names beginning mkDPI, in that this function

does not make a DPI packet that can be sent directly. Hence, it returns a pointer to an

snmp_dpi_set_packet rather than a char * (as do the other mkDPI functions).

Note that if the nth (n > 1) call to this function fails for some reason, the pointer to the chain of

previously built snmp_dpi_set_packet structures will be lost unless the caller saves it.

Related Information

v The <qtossapi.h> file (see Header Files for UNIX-Type Functions)

v “DPI_PACKET_LEN()—Get Length of DPI Packet” on page 10—Get Length of DPI Packet

v “fDPIset()—Free Storage from DPI Set Packet” on page 12—Free Storage from DPI Set Packet

v “mkDPIresponse()—Make a DPI Response Packet” on page 21)—Make a DPI Response Packet

v “mkDPItrap()—Make a DPI Trap Packet” on page 25—Make a DPI Trap Packet

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>

 unsigned char *pack_p;

 snmp_dpi_hdr *hdr_p;

 snmp_dpi_set_packet *set_p;

 long int num;

 hdr_p = pDPIpacket(pack_p) /* Parse incoming packet. */

 /* Assume it’s in pack_p. */

 if (hdr_p) {

 /* Analyze packet, assume GET, no error. */

 set_p = mkDPIset(snmp_dpi_set_packet_NULL_p,

 “1.3.6.1.2.3.4.5.”, “1.0”,

 SNMP_TYPE_Integer32,

 sizeof(num), &num);

 if (set_p) {

 pack_p = mkDPIresponse(hdr_p,

 SNMP_ERROR_noError,

 0L, set_p);

 if (pack_p)

 /* Send packet to subagent. */

 }

 }

24 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

unix13.htm
aboutapis.htm#CODEDISCLAIMER

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

mkDPItrap()—Make a DPI Trap Packet

 Syntax

 #include <qtossapi.h>

 unsigned char *mkDPItrap(

 long int generic,

 long int specific,

 snmp_dpi_set_packet *packet_p,

 char *enterprise_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The mkDPItrap() function makes a DPI trap packet and returns a pointer to the packet.

Parameters

generic

(Input) The generic trap type. The range of this value is 0 through 6, where 6 (enterpriseSpecific)

is the type that is probably used most by DPI subagent programmers. The values 0 through 5 are

well-defined standard SNMP traps.

specific

(Input) The (enterprise) specific trap type. This can be any value that is valid for the Management

Information Base (MIB) subtrees that the subagent implements.

packet_p

(Input) A pointer to a chain of snmp_dpi_set_structures that represents the varbinds to be passed

with the trap. This partial structure will be freed by the mkDPItrap() function; therefore, you

cannot refer to it anymore on completion of the call. A NULL pointer means that there are no

varbinds to be included in the trap.

enterprise_p

(Input) A pointer to a NULL-terminated character string that represents the enterprise ID

(OBJECT IDENTIFIER) for which this trap is defined. A NULL pointer can be used. In this case,

the subagent Identifier as passed in the DPI OPEN packet will be used when the agent receives

the DPI TRAP packet.

 Note: This OID must not end in a period (.).

Return Value

 value The value returned is a pointer to the DPI packet.

If successful, then a pointer to a static DPI packet buffer is returned. The first 2 bytes of the buffer

(in network byte order) contain the length of the remaining packet. The DPI_PACKET_LEN()

function can be used to calculate the total length of the DPI packet.

NULL If unsuccessful, then a NULL pointer is returned.

Simple Network Management Protocol (SNMP) APIs 25

#TOP_OF_PAGE
unix.htm
aplist.htm

Be aware that the static buffer for the DPI packet is shared by other mkDPIxxxx() functions that create a

serialized DPI packet.

For more information, see “SNMP Subagent Problem Determination” in the Simple Network

Management Protocol

book.

Usage Notes

The mkDPItrap() function is used at the subagent side to prepare a DPI TRAP packet. The resulting

packet can be sent to the SNMP agent.

Unnecessary free operations may result in an MCH6902 (type 2). If this occurs, remove the call to

fDPIset().

Related Information

v The <qtossapi.h> file (see Header Files for UNIX-Type Functions)

v “DPI_PACKET_LEN()—Get Length of DPI Packet” on page 10—Get Length of DPI Packet

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>

 unsigned char *pack_p;

 snmp_dpi_set_packet *set_p;

 long int num;

 set_p = mkDPIset(snmp_dpi_set_packet_NULL_p,

 “1.3.6.1.2.3.4.5.”, “1.0”,

 SNMP_TYPE_Integer32,

 sizeof(num), &num);

 if (set_p) {

 pack_p = mkDPItrap(6,1,set_p, (char *)0);

 if (pack_p) {

 /* Send packet to subagent. */

 }

 }

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

mkDPIunregister()—Make a DPI Unregister Packet

 Syntax

 #include <qtossapi.h>

 unsigned char *mkDPIunregister(

 char reason_code,

 char *group_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

26 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

unix13.htm
aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

The mkDPIunregister() function makes a DPI unregister packet and returns a pointer to the packet.

Parameters

reason_code

(Input) The reason for the unregister operation. See the <qtossapi.h> file for a list of defined

reason codes.

group_p

(Input) A pointer to a NULL-terminated character string that represents the subtree to be

unregistered. The subtree must have a trailing dot.

Return Value

 pointer value The mkDPIunregister() function was successful. The value returned is a pointer to the DPI packet.

If successful, then a pointer to a static DPI packet buffer is returned. The first 2 bytes of the buffer

(in network byte order) contain the length of the remaining packet. The DPI_PACKET_LEN()

function can be used to calculate the total length of the DPI packet.

NULL The mkDPIunregister() function was not successful.

If unsuccessful, then a NULL pointer is returned.

Be aware that the static buffer for the DPI packet is shared by other mkDPIxxxx() functions that create a

serialized DPI packet.

For more information, see “SNMP Subagent Problem Determination” in the Simple Network

Management Protocol

book.

Usage Notes

The mkDPIunregister() function creates a serialized DPI UNREGISTER packet that can then be sent to

the SNMP agent. Normally, the SNMP peer then sends a DPI RESPONSE packet back, which details if

the unregister was successful or not.

Related Information

v The <qtossapi.h> file (see Header Files for UNIX-Type Functions)

v “DPI_PACKET_LEN()—Get Length of DPI Packet” on page 10—Get Length of DPI Packet

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>

 unsigned char *pack_p;

 pack_p = mkDPIunregister(

 SNMP_UNREGISTER_goingDown,

 “1.3.6.1.2.3.4.5.”);

 if (pack_p) {

 /* Send packet to agent or subagent and await response. */

 }

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Simple Network Management Protocol (SNMP) APIs 27

unix13.htm
aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

pDPIpacket()—Parse a DPI Packet

 Syntax

 #include <qtossapi.h>

 snmp_dpi_hdr *pDPIpacket(unsigned char *packet_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The pDPIpacket() function parses a serialized Distributed Protocol Interface (DPI) packet to make it

available for processing by the subagent.

Parameters

packet_p

(Input) A pointer to a serialized (incoming) DPI packet.

Return Value

 pointer value The pDPIpacket() function was successful. The value returned is a pointer to the DPI packet.

If successful, a pointer to the snmp_dpi_hdr structure is returned. Storage for the structure has

been dynamically allocated, and it is the caller’s responsibility to free it when no longer needed.

You can use the fDPIparse() function to free the structure.

NULL The pDPIpacket() function was not successful.

If unsuccessful, a NULL pointer is returned.

For more information, see ″SNMP Subagent Problem Determination″ in the Simple Network Management

Protocol (SNMP) Support

book.

Usage Notes

The pDPIpacket() function parses the buffer that is pointed to by the packet_p parameter. It ensures that

the buffer contains a valid DPI packet and that the packet is for a DPI version and release that is

supported by the DPI functions in use.

Typical follow-on processing will examine the packet_type in the returned snmp_dpi_hdr, and take

various actions to process the various types of DPI packets that may arrive. A subagent would normally

expect to handle all the possible DPI packet types listed in <qtossapi.h>, except SNMPv2 types

(SNMP_DPI_GETBULK and SNMP_DPI_TRAPV2), and types sent only to SNMP agents

(SNMP_DPI_OPEN, SNMP_DPI_REGISTER, SNMP_DPI_TRAP, and SNMP_DPI_INFORM). Note that a

close or unregister packet can be sent from an agent to the subagent. And if the subagent receives an

are-you-there packet, it should build and send a response packet with the proper error_code.

Related Information

v The <qtossapi.h> file (see Header Files for UNIX-Type Functions)

v “fDPIparse()—Free Storage from DPI Packet Parse” on page 11—Free Storage from DPI Packet Parse

v “pDPIpacket()—Parse a DPI Packet”—Parse a DPI Packet

28 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

unix13.htm

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>

 unsigned char *pack_p;

 snmp_dpi_hdr *hdr_p;

 hdr_p = pDPIpacket(pack_p); /* Parse incoming packet. */

 /* Assume it’s in pack_p. */

 if (hdr_p) {

 /* Analyze packet, and handle it. */

 switch(hdr_p->packet_type) {

 ...

 }

 }

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

receiveDPIpacket()—Receive a DPI Packet from the SNMP Agent

 Syntax

 #include <qtossapi.h>

 int receiveDPIpacket(

 sa_dataq_msg *dataq_msg_p,

 void *dpi_msg_p,

 unsigned long int *length_p);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The receiveDPIpacket() function obtains a copy of a DPI packet sent by the SNMP agent to the subagent,

and returns the DPI packet to the caller.

Authorities

Unlike the waitDPIpacket() function, this function does not actually refer to the subagent,s data queue.

Parameters

dataq_msg_p

(Input) A pointer to the data queue message that was sent to the subagent to tell it that a DPI

packet is pending. Note that the message must have already been received from the data queue

by the subagent and placed in a buffer. This is a pointer to that message in the buffer. Use of this

function assumes that the data queue messages are handled directly by the subagent,s own code.

See waitDPIpacket() for an alternative.

 The sa_dataq_msg structure is defined in the <qtossapi.h> file.

dpi_msg_p

(I/O) A pointer to a buffer set up by the subagent that will contain the DPI serialized packet on

successful return from this routine.

Simple Network Management Protocol (SNMP) APIs 29

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

length_p

(Output) A pointer to an integer that will contain the length of the DPI packet contained in the

subagent,s buffer on successful return.

Return Value

The return values are defined in the <qtossapi.h> file.

 0 snmpsa_RC_ok

The call was successful.

-1 snmpsa_RC_err

An exception occurred. Check the subagent job log for the exception information, correct the

condition, and resubmit the subagent job. (This return code is only used when a more specific

return code is not available.)

-2 snmpsa_RC_noagent

The SNMP agent is not available.

-3 snmpsa_RC_mismatch

A previous DPI packet was found. The subagent may want to process this packet or call

receiveDPIpacket() again to get the next packet. See any messages in the job log and correct any

errors that are indicated, then retry the operation.

-5 snmpsa_RC_nonagentmsg

The data queue message is not from the SNMP agent. (There is no DPI packet pending.)

-7 snmpsa_RC_parmerr

A parameter error occurred, probably a null pointer.

-8 snmpsa_RC_lengtherr

A parameter was an incorrect length.

-9 snmpsa_RC_buffer

Check the job log of the subagent for MCH3802. If found, the problem was likely due to agent

workload, and the subagent can retry the request. If a different exception is found, see any

messages in the job log, correct any errors that are indicated, and then retry the operation.

-12 snmpsa_RC_connectfirst

The subagent must connect to the SNMP agent before making this call.

For more information, see ″SNMP Subagent Problem Determination″ in the Simple Network Management

Protocol

book.

Usage Notes

The receiveDPIpacket() function obtains a copy of a DPI packet sent to the subagent. The copy is placed

in a buffer owned by the subagent.

Use of this function by a subagent requires that the subagent programmer must wait for and receive the

prompting message on the subagent,s data queue. An alternative is to use the waitDPIpacket() function,

which handles the data queue for the subagent and also receives the DPI packet.

Related Information

v The <qtossapi.h> file (see Header Files for UNIX-Type Functions)

v “waitDPIpacket()—Wait for a DPI Packet” on page 33—Wait for a DPI Packet

30 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

unix13.htm

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>

 #define MAX_MSG_SIZE 4096

 char dpibuff[MAX_MSG_SIZE],

 dataqbuff[80];

 int rc, len;

 /* Wait for message on data queue. When it arrives... */

 QRCVDTAQ(...)

 /* Handle exceptions. */

 rc = receiveDPIpacket(&dataqbuff[0],

 &dpibuff[0], &len);

 if (rc) {

 /* Handle exceptions. */

 }

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sendDPIpacket()—Send a DPI Packet to the SNMP Agent

 Syntax

 #include <qtossapi.h>

 int sendDPIpacket(void *dpimsg_p, int length);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The sendDPIpacket() function sends a copy of a Distributed Protocol Interface (DPI) packet to the SNMP

agent (on the same iSeries server as the subagent).

Parameters

dpimsg_p

(Input) A pointer to the serialized DPI packet.

length (Input) The length in bytes of the DPI packet to be sent.

Return Value

The return values are defined in the <qtossapi.h> file.

 0 snmpsa_RC_ok

The routine was successful.

-1 snmpsa_RC_err

An exception occurred. Check the subagent job log for the exception information, correct the

condition, and resubmit the subagent job. (This return code is only used when a more specific

return code is not available.)

Simple Network Management Protocol (SNMP) APIs 31

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

-2 snmpsa_RC_noagent

The SNMP agent is not available.

-4 snmpsa_RC_timedout

An internal time-out occurred. See the job log for further information about the exception.

-7 snmpsa_RC_parmerr

A parameter error occurred, probably a null pointer.

-8 snmpsa_RC_lengtherr

The length parameter may be incorrect, or the DPI packet to be sent is longer than the maximum

length supported, or the length specified is not a positive number. See any messages in the job log

and correct any errors that are indicated, then retry the operation.

-9 snmpsa_RC_buffer

If the subagent was trying to send a response to an SNMP agent request (for example, using get

packets), it cannot be sent. The subagent may continue. (The SNMP manager may retry the

original request.) If the subagent was trying to send a subagent-initiated packet (for example,

using open or register packets), then a dynamic buffer was unavailable, probably due to agent

workload. The subagent may try to send the packet again.

-11 snmpsa_RC_canttrap

A trap cannot be sent to the SNMP agent at this time, probably due to pending agent workload.

The subagent may retry.

-12 snmpsa_RC_connectfirst

The subagent must connect to the SNMP agent before making this call.

For more information, see ″SNMP Subagent Problem Determination″ in the >Simple Network

Management Protocol

.

Usage Notes

The sendDPIpacket() function sends a copy of a DPI packet that was sent to the SNMP agent.

Related Information

v The <qtossapi.h> file (see Header Files for UNIX-Type Functions)

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>

 unsigned char *pack_p;

 int rc;

 pack_p = mkDPIopen("1.3.6.1.2.3.4.5",

 "Sample DPI sub-agent"

 0L,2L, DPI_NATIVE_CSET,

 0,(char *)0);

 if (pack_p) {

 /* Send packet to the agent. */

 rc = sendDPIpacket(pack_p, DPI_PACKET_LEN(pack_p));

 }

32 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

unix13.htm
aboutapis.htm#CODEDISCLAIMER

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

waitDPIpacket()—Wait for a DPI Packet

 Syntax

 #include <qtossapi.h>

 int waitDPIpacket(

 long int timeout,

 void *dpimsgbuff_p,

 unsigned long int *length);

 Service Program Name: QTOSSAPI

 Default Public Authority: *USE

 Threadsafe: No

The waitDPIpacket() function waits for a message on the data queue with which the subagent has

previously connected (see “connectSNMP()—Establish Connection with SNMP Agent” on page 4). When

a Distributed Protocol Interface (DPI) packet arrives, this function receives the packet and copies it to a

subagent buffer.

Authorities

So that the subagent can receive messages from the SNMP agent, the following conditions must be met:

v The SNMP agent job must have write access to the data queue. If you suspect a problem with the data

queue, check the job log of the SNMP agent job (QTMSNMP in subsystem QSYSWRK) for TCP4041

messages with reason code 001.

Parameters

timeout

(Input) The number of seconds that the subagent is willing to wait for a message (a call to this

function will block the subagent until a message is received or until this timeout is reached).

 Possible values have the indicated meaning;

 < 0 Unlimited wait

0 No wait. This causes an immediate return if a data queue message is not present.

> 0 The number of seconds to wait (maximum is 99999).

dpimsgbuff_p

(I/O) A pointer to a buffer that is owned by the subagent. This will contain the serialized packet

from the SNMP agent when snmpsa_RC_ok is returned. The maximum length of a DPI packet is

SNMP_DPI_BUFSIZE, defined in the <qtossapi.h> file. The buffer will contain the data queue

message itself if that message is not from the SNMP agent, and waitDPIpacket() will return

snmpsa_RC_nonagentmsg.

length (Output) When snmpsa_RC_ok is returned, the length (in bytes) of the DPI packet received. When

snmpsa_RC_nonagentmsg is returned, the length of the data queue message. Otherwise, this value

is 0.

Simple Network Management Protocol (SNMP) APIs 33

#TOP_OF_PAGE
unix.htm
aplist.htm

Return Value

The return values are defined in the <qtossapi.h> file.

 0 snmpsa_RC_ok

The routine was successful.

-1 snmpsa_RC_err

An exception occurred. Check the subagent job log for the exception information, correct the

condition, and resubmit the subagent job. (This return code is only used when a more specific

return code is not available.)

-2 snmpsa_RC_noagent

The SNMP agent is not available.

-3 snmpsa_RC_mismatch

A previous DPI packet was found. The subagent may want to process this packet or call the

receiveDPIpacket() function again to get the next packet.

-4 snmpsa_RC_timedout

No message was received within the specified timeout.

-5 snmpsa_RC_nonagentmsg

A data queue message arrived that is not from the SNMP agent.

-6 snmpsa_RC_dqinvalid

The subagent data queue or library is invalid. This refers to the data queue and library used in the

connectSNMP() call.

-7 snmpsa_RC_parmerr

A parameter error occurred, probably a null pointer.

-8 snmpsa_RC_lengtherr

A parameter was an incorrect length.

-9 snmpsa_RC_buffer

Check the job log of the subagent for MCH3802. If found, the problem was likely due to agent

workload, and the subagent can retry the request. If a different exception is found, see any

messages in the job log, correct any errors that are indicated, and then retry the operation.

-12 snmpsa_RC_connectfirst

The subagent must connect to the SNMP agent before making this call.

For more information, see “SNMP Subagent Problem Determination” in the Simple Network

Management Protocol

book.

Usage Notes

The waitDPIpacket() function waits for a message on the data queue that the subagent specified on the

connectSNMP() call. When a data queue message is received, the corresponding DPI packet is copied to

the specified subagent buffer.

If a data queue message arrives that is not from the SNMP agent, then it is returned in the buffer and the

code snmpsa_RC_nonagentmsg is returned.

Related Information

v The <qtossapi.h> file (see Header Files for UNIX-Type Functions)

34 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

unix13.htm

v “connectSNMP()—Establish Connection with SNMP Agent” on page 4—Establish Connection with

SNMP Agent

v “pDPIpacket()—Parse a DPI Packet” on page 28—Parse a DPI Packet

Example

See Code disclaimer information for information pertaining to code examples.

 #include <qtossapi.h>

 #define MAX_LEN 4096

 #define waitTIMEOUT 300

 unsigned char *pack_p,

 dpimsgbuff[MAX_LEN];

 snmp_dpi_hdr *hdr_p;

 snmp_dpi_set_packet *set_p;

 long int num, length;

 for(;;) {

 rc = waitDPIpacket(waitTIMEOUT,

 &dpimsgbuff[0], length);

 if (rc<0) {

 /* Handle exceptions. */

 }

 else {

 hdr_p = pDPIpacket(pack_p); /* Parse incoming packet. */

 /* Assume it’s in pack_p. */

 if (hdr_p) {

 /* Analyze packet, assume GET, no error. */

 set_p = mkDPIset(snmp_dpi_set_packet_NULL_p,

 “1.3.6.1.2.3.4.5.”, “1.0”,

 SNMP_TYPE_Integer32,

 sizeof(num), &num);

 if (set_p) {

 pack_p = mkDPIresponse(hdr_p,

 SNMP_ERROR_noError, 0L, set_p);

 if (pack_p) {

 /* Send packet to subagent. */

 } /*end if*/

 } /*end if*/

 } /*end if*/

 } /*end else*/

 } /*end for*/

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Simple Network Management Protocol (SNMP) Manager APIs

The SNMP Manager APIs are:

v “snmpGet()—Retrieve MIB Objects” on page 36 (Retrieve MIB objects) is used to get one or more

management information base (MIB) objects from an SNMP agent or subagent on a local or remote

system.

v “snmpGetnext()—Retrieve Next MIB Object” on page 40 (Retrieve next MIB object) is used to get the

value of one or more management information base (MIB) objects from an SNMP agent or subagent on

a local or remote system.

v “snmpSet()—Set MIB Objects” on page 45 (Set MIB objects) is used to set one or more management

information base (MIB) objects in an SNMP agent or subagent on a local or remote system.

Simple Network Management Protocol (SNMP) APIs 35

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

Note: These functions use header (include) files from the library QSYSINC, which is optionally

installable. Make sure QSYSINC is installed on your system before using any of the functions. All of the

SNMP manager APIs use header file qtomeapi.h. You can see this source in source file H, member name

QTOMEAPI, in the QSYSINC library.

For examples that use the SNMP manager APIs, see Using SNMP Manager APIs—Example.

For information about trap support, see SNMP Trap Support.

SNMP managing applications typically use APIs to establish communication with local or remote SNMP

agents, and then call other APIs to retrieve or modify MIB objects managed by those agents. The

OS/400(R) SNMP manager APIs accomplish both of these tasks within the same API. Three manager APIs

are provided to perform the SNMP GET, GETNEXT, and SET operations. In general, all three APIs are

blocked. That is, when the application calls these APIs, the API constructs a proper SNMP message,

delivers it to the proper SNMP agent, waits, decodes the response from the agent, and delivers the

information to the application. No processing occurs in the application until the API delivers this

information or times out. The communications mechanism between the manager APIs and agents uses

sockets. Therefore, both systems need to support sockets.

Application programmers who are writing network management applications can use the snmpGet(),

snmpGetnext(), and snmpSet() SNMP APIs to retrieve and set management information base (MIB) data

so that they can manage their systems and networks. Programmers should have a strong understanding

of network management, SNMP, and some transport protocol such as Transmission Control

Protocol/Internet Protocol (TCP/IP).

 Top | UNIX-Type APIs | APIs by category

snmpGet()—Retrieve MIB Objects

 Syntax

 #include <qtomeapi.h>

 int snmpGet(snmppdu * pdu_ptr,

 char * host_ptr,

 unsigned long int time_out,

 char * comm_ptr,

 unsigned long int comm_len);

 Service Program Name: QTOMEAPI

 Default Public Authority: *USE

 Threadsafe: No

An SNMP managing application uses the snmpGet() function to get one or more management

information base (MIB) objects from an SNMP agent or subagent on a local or remote system.

Parameters

pdu_ptr

(Input) A pointer to a structure of the protocol data unit (PDU) type as defined in the

<qtomeapi.h> file.

36 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

snmpexmp.htm
trap.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

This structure contains the PDU type (GET in this instance), the error status, the error index, and

the pointer to the varbind structure.

 The varbind structure (found in the qtomeapi.h file) consists of the following:

 struct _varBind{

 struct _varBind * next;

 char *oid; /* Null Terminated */

 unsigned char asn_type;

 int val_len;

 union {

 int * int_val;

 char * str_val;

 } val;

};

The fields for this structure are described as follows:

 *next The pointer to the next varbind. This has to be NULL if it is the last varbind in the list.

*oid The pointer to the OID being set or retrieved (depending on the operation).

asn_type The ASN type of the OID. This field must be set by the user only for the snmpSet function. On the

snmpGet or snmpGetnext function, it is returned by the API.

val_len For the snmpSet function, the user must set this to reflect the exact amount of data to be written

to the OID. On an snmpGet or snmpGetnext, the user must use this field to indicate how much

space to allocate for the value being retrieved. If the value coming back is greater than the amount

of space allocated, a return code of 1 is received.

val A union of either a pointer to the string data or a pointer to the integer data. This space is

allocated by the user.

host_ptr

(Input) A pointer to the character string that contains the Internet Protocol (IP) address.

 This parameter can be stored in dotted decimal notation, that is, 9.130.38.217, or in host address

format, that is, oursystem.endicott.ibm.com. This parameter must contain printable characters

only.

time_out

(Input) The time-out value.

 This parameter is the amount of time in seconds that the management application is willing to

wait for the response PDU. The minimum value is 1, and the maximum is 100.

comm_ptr

(Input) A pointer to the character string that contains the community name.

 This parameter contains a variable-length field that contains printable and nonprintable values.

Therefore, the user must supply the exact length of this value in another parameter.

EBCDIC-to-ASCII translation will not be done, and it is the responsibility of the managing

application to specify the community name in the correct notation for the SNMP agent system.

comm_len

(Input) The length of the community name.

 This parameter is the exact length of the community name. The minimum value is 1, and the

maximum is 255.

Authorities

Service Program Authority

*USE

Simple Network Management Protocol (SNMP) APIs 37

Return Value

The following are the possible return codes posted by the snmpGet() function:

 0 API_RC_OK

snmpGet() was successful.

-4 API_RC_OUT_OF_MEMORY

There was not enough storage to complete this operation.

-5 API_RC_OUT_OF_BUFFERS

There were not enough internal buffers to continue.

-6 API_RC_OUT_OF_VARBINDS

The maximum number of allowable varbinds was exceeded.

-7 API_RC_SNMP_OUT_OF_VARBINDS

The maximum number of allowable varbinds was exceeded. This return code is equivalent to the

-6 return code.

-9 API_RC_SNMP_INVALID_OID

The OID specified in the varbind list is not valid. This return code is equivalent to the -112 return

code.

-10 API_RC_INVALID_VALUE

The specified value in the varbind is not valid.

-11 API_RC_INVALID_VALUE_REP

The specified value in the varbind is incorrectly represented.

-12 API_RC_DECODE_ERROR

The SNMP APIs were unable to decode the incoming PDU.

-13 API_RC_DECODE_ERROR

The SNMP APIs were unable to encode the PDU data structure.

-18 API_RC_TIMEOUT

A response to this request was not received within the allotted time-out value.

-21 API_RC_INVALID_PDU_TYPE

The PDU type was not recognized as one of the seven common PDU types.

-103 API_RC_INVALID_IP_ADDRESS

The IP address that was specified is not valid.

-104 API_RC_INVALID_COMMUNITY_NAME

_LENGTH

The community name length must be greater than 0 and less than 256.

-108 API_RC_INVALID_TIMEOUT_PARM

The time-out value must be greater than 0 and less than or equal to 100.

-110 API_RC_UNKNOWN_HOST

The host name or IP address that is specified is not known on the network.

-112 API_RC_INVALID_OID

The OID that is specified in the varbind list is not valid.

-113 API_RC_INVALID_PDU_POINTER

The pointer value to the PDU structure must be non-NULL.

38 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

-114 API_RC_INVALID_HOST_POINTER

The pointer value to the host address must be non-NULL.

-115 API_RC_INVALID_HOST_POINTER

The pointer value to the community name must be non-NULL.

-201 API_RC_SOCKET_ERROR

The APIs have detected a socket error and cannot continue.

-202 API_RC_NOT_OK

The APIs have detected an unknown error and cannot continue. The val_len field of the varbind

structure contains a value that is not valid.

1 API_RC_VAL_LEN_LESS_THAN_RETURNED_

VAL_LEN

The value being returned by the API is greater than the space allocated by the user.

241 API_RC_DOMAIN_ERROR

This is equivalent to an MCH6801 error—stating object domain error.

242 API_RC_INVALID_POINTER

This is equivalent to an MCH3601 error—referenced location in a space does not contain a pointer.

243 API_RC_INVALID_PTR_TYPE

This is equivalent to an MCH3602 error-pointer type not valid for requested operation.

For more information, see ″Problem Determination for SNMP Manager APIs″ in the Simple Network

Management Protocol

book.

Error Conditions

Following are the possible error statuses returned in the error status field of the PDU structure. These

values are returned by the SNMP agents.

 0 API_SNMP_ERROR_noError

The function was successful.

1 API_SNMP_ERROR_tooBig

The agent could not fit the results of an operation into a single SNMP message.

2 API_SNMP_ERROR_noSuchName

The requested operation identified an unknown variable name.

3 API_SNMP_ERROR_badValue

The requested operation specified an incorrect syntax or value when the management application

tried to modify a variable.

5 API_SNMP_ERROR_genErr

A nonspecific error occurred while running this operation on the SNMP agent.

Usage Notes

The area where the data is returned is the responsibility of the user, not the API. To allocate storage, the

user may use the AddVarbind routine (see AddVarbind Routine). To deallocate storage, the user may use

the FreePdu routine (see FreePdu Routine).

Simple Network Management Protocol (SNMP) APIs 39

snmpexmp.htm#HDRVARBIND
snmpexmp.htm#HDRFREEPDU

You must use the correct PDU type on AddVarbind. It must match the operation on which you call. For

example, if you build a PDU wherein AddVarbind passes a PDU type of Set and then you call the

snmpGet operation using the PDU that you just created with Set, you will receive an error on the

snmpGet call.

All character strings that are passed to the APIs must be null-terminated unless you explicitly provide the

length, if a length field is available.

If you are building a PDU to go to a remote agent, you must remember to do correct translation of

strings. The iSeries server is an EBCDIC system, whereas an SNMP agent on an RISC System/6000(R)

(RS/6000(R)) computer is an ASCII system. Therefore, you must provide string values as you would see

them on that system. For example, if you are sending a PDU to an RS/6000 system and the community

name is public, you would enter the community name string in hexadecimal, X’7075626C6963’. See the

data conversion APIs to convert data from EBCDIC to ASCII and vice versa.

These APIs are blocked, which means that on a call to the API a PDU is sent across a communications

protocol to an SNMP agent on a local or remote system. The call returns when a response has been

received from the agent or when the command times out. On the return, all returned data is placed in the

appropriate locations. You need do no further action to retrieve such data.

Related Information

v The <qtomeapi.h> file (see Header Files for UNIX-Type Functions)

v “snmpGetnext()—Retrieve Next MIB Object”—Retrieve Next MIB Object

v “snmpSet()—Set MIB Objects” on page 45—Set MIB Objects

Example

See Code disclaimer information for information pertaining to code examples.

For examples that pertain to the SNMP manager APIs, see Using SNMP Manager APIs—Example.

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

snmpGetnext()—Retrieve Next MIB Object

 Syntax

 #include <qtomeapi.h>

 int snmpGetnext(snmppdu * pdu_ptr,

 char * host_ptr,

 unsigned long int time_out,

 char * comm_ptr,

 unsigned long int comm_len);

 Service Program Name: QTOMEAPI

 Default Public Authority: *USE

 Threadsafe: No

40 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

unix13.htm
aboutapis.htm#CODEDISCLAIMER
snmpexmp.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

An SNMP managing application uses the snmpGetnext() function to get the value of one or more

management information base (MIB) objects from an SNMP agent or subagent on a local or remote

system. The snmpGetnext() function gets the value of the object instance that is next in lexicographic

order.

Parameters

pdu_ptr

(Input) A pointer to a structure of the protocol data unit (PDU) type as defined in the

<qtomeapi.h> file.

 This structure contains the PDU type (GET NEXT in this instance), the error status, the error

index, and the pointer to the varbind structure.

 The varbind structure (found in the qtomeapi.h file) consists of the following:

 struct _varBind{

 struct _varBind * next;

 char *oid; /* Null Terminated */

 unsigned char asn_type;

 int val_len;

 union {

 int * int_val;

 char * str_val;

 } val;

};

The fields for this structure are described as follows:

 *next The pointer to the next varbind. This has to be NULL if it is the last varbind in the list.

*oid The pointer to the OID being set or retrieved (depending on the operation).

asn_type The ASN type of the OID. This field must be set by the user only for the snmpSet function. On the

snmpGet or snmpGetnext function, it is returned by the API.

val_len For the snmpSet function, the user must set this to reflect the exact amount of data to be written

to the OID. On an snmpGet or snmpGetnext, the user must use this field to indicate how much

space to allocate for the value being retrieved. If the value coming back is greater than the amount

of space allocated, a return code of 1 is received.

val A union of either a pointer to the string data or a pointer to the integer data. This space is

allocated by the user.

host_ptr

(Input) A pointer to the character string that contains the Internet Protocol (IP) address.

 This parameter can be stored in dotted decimal notation, that is, 9.130.38.217, or in host address

format, that is, oursystem.endicott.ibm.com. This parameter must contain printable characters

only.

time_out

(Input) The time-out value.

 This parameter is the amount of time in seconds that the management application is willing to

wait for the response PDU. The minimum value is 1, and the maximum is 100.

comm_ptr

(Input) A pointer to the character string that contains the community name.

 This parameter contains a variable-length field that contains printable and nonprintable values.

Therefore, the user must supply the exact length of this value in another parameter.

EBCDIC-to-ASCII translation will not be done, and it is the responsibility of the managing

application to specify the community name in the correct notation for the SNMP agent system.

comm_len

(Input) The length of the community name.

Simple Network Management Protocol (SNMP) APIs 41

This parameter is the exact length of the community name. The minimum value is 1, and the

maximum is 255.

Authorities

Service Program Authority

*USE

Return Value

The following are the possible return codes posted by the snmpGetnext() function:

 0 API_RC_OK

snmpGetnext() was successful.

-4 API_RC_OUT_OF_MEMORY

There was not enough storage to complete this operation.

-5 API_RC_OUT_OF_BUFFERS

There were not enough internal buffers to continue.

-6 API_RC_OUT_OF_VARBINDS

The maximum number of allowable varbinds was exceeded.

-7 API_RC_SNMP_OUT_OF_VARBINDS

The maximum number of allowable varbinds was exceeded. This return code is equivalent to the

-6 return code.

-9 API_RC_SNMP_INVALID_OID

The OID specified in the varbind list is not valid. This return code is equivalent to the -112 return

code.

-10 API_RC_INVALID_VALUE

The specified value in the varbind is not valid.

-11 API_RC_INVALID_VALUE_REP

The specified value in the varbind is incorrectly represented.

-12 API_RC_DECODE_ERROR

The SNMP APIs were unable to decode the incoming PDU.

-13 API_RC_DECODE_ERROR

The SNMP APIs were unable to encode the PDU data structure.

-18 API_RC_TIMEOUT

A response to this request was not received within the allotted time-out value.

-21 API_RC_INVALID_PDU_TYPE

The PDU type was not recognized as one of the seven common PDU types.

-103 API_RC_INVALID_IP_ADDRESS

The IP address that was specified is not valid.

-104 API_RC_INVALID_COMMUNITY_NAME

_LENGTH

The community name length must be greater than 0 and less than 256.

-108 API_RC_INVALID_TIMEOUT_PARM

The time-out value must be greater than 0 and less than or equal to 100.

42 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

-110 API_RC_UNKNOWN_HOST

The host name or IP address that is specified is not known on the network.

-112 API_RC_INVALID_OID

The OID that is specified in the varbind list is not valid.

-113 API_RC_INVALID_PDU_POINTER

The pointer value to the PDU structure must be non-NULL.

-114 API_RC_INVALID_HOST_POINTER

The pointer value to the host address must be non-NULL.

-115 API_RC_INVALID_HOST_POINTER

The pointer value to the community name must be non-NULL.

-201 API_RC_SOCKET_ERROR

The APIs have detected a socket error and cannot continue.

-202 API_RC_NOT_OK

The APIs have detected an unknown error and cannot continue. The val_len field of the varbind

structure contains a value that is not valid.

1 API_RC_VAL_LEN_LESS_THAN_RETURNED_

VAL_LEN

The value being returned by the API is greater than the space allocated by the user.

241 API_RC_DOMAIN_ERROR

This is equivalent to an MCH6801 error—stating object domain error.

242 API_RC_INVALID_POINTER

This is equivalent to an MCH3601 error—referenced location in a space does not contain a pointer.

243 API_RC_INVALID_PTR_TYPE

This is equivalent to an MCH3602 error-pointer type not valid for requested operation.

For more information, see “Problem Determination for SNMP Manager APIs” in the Simple Network

Management Protocol

book.

Error Conditions

Following are the possible error statuses returned in the error status field of the PDU structure. These

values are returned by the SNMP agents.

 0 API_SNMP_ERROR_noError

The function was successful.

1 API_SNMP_ERROR_tooBig

The agent could not fit the results of an operation into a single SNMP message.

2 API_SNMP_ERROR_noSuchName

The requested operation identified an unknown variable name.

3 API_SNMP_ERROR_badValue

The requested operation specified an incorrect syntax or value when the management application

tried to modify a variable.

5 API_SNMP_ERROR_genErr

A nonspecific error occurred while running this operation on the SNMP agent.

Simple Network Management Protocol (SNMP) APIs 43

Usage Notes

The area where the data is returned is the responsibility of the user, not the API. To allocate storage, the

user may use the AddVarbind routine (see AddVarbind Routine). To deallocate storage, the user may use

the FreePdu routine (see FreePdu Routine).

You must use the correct PDU type on AddVarbind. It must match the operation on which you call. For

example, if you build a PDU wherein AddVarbind passes a PDU type of Set and then you call the

snmpGet operation using the PDU that you just created with Set, you will receive an error on the

snmpGet call.

All character strings that are passed to the APIs must be null-terminated unless you explicitly provide the

length, if a length field is available.

If you are building a PDU to go to a remote agent, you must remember to do correct translation of

strings. The iSeries server is an EBCDIC system, whereas an SNMP agent on an RISC System/6000

(RS/6000) computer is an ASCII system. Therefore, you must provide string values as you would see

them on that system. For example, if you are sending a PDU to an RS/6000 system and the community

name is public, you would enter the community name string in hexadecimal, X’7075626C6963’. See the

data conversion APIs to convert data from EBCDIC to ASCII and vice versa.

These APIs are blocked, which means that on a call to the API a PDU is sent across a communications

protocol to an SNMP agent on a local or remote system. The call returns when a response has been

received from the agent or when the command times out. On the return, all returned data is placed in the

appropriate locations. You need do no further action to retrieve such data.

Related Information

v The <qtomeapi.h> file (see Header Files for UNIX-Type Functions)

v “snmpGet()—Retrieve MIB Objects” on page 36—Retrieve MIB Objects

v “snmpSet()—Set MIB Objects” on page 45—Set MIB Objects

Example

See Code disclaimer information for information pertaining to code examples.

For examples that pertain to the SNMP manager APIs, see Using SNMP Manager APIs—Example.

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

44 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

snmpexmp.htm#HDRVARBIND
snmpexmp.htm#HDRFREEPDU
unix13.htm
aboutapis.htm#CODEDISCLAIMER
snmpexmp.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

snmpSet()—Set MIB Objects

 Syntax

 #include <qtomeapi.h>

 int snmpSet(snmppdu * pdu_ptr,

 char * host_ptr,

 unsigned long int time_out,

 char * comm_ptr,

 unsigned long int comm_len);

 Service Program Name: QTOMEAPI

 Default Public Authority: *USE

 Threadsafe: No

An SNMP managing application uses the snmpSet() function to set one or more management information

base (MIB) objects in an SNMP agent or subagent on a local or remote system.

Parameters

pdu_ptr

(Input) A pointer to a structure of the protocol data unit (PDU) type as defined in the

<qtomeapi.h> file.

 This structure contains the PDU type (SET in this instance), the error status, the error index, and

the pointer to the varbind structure.

 The varbind structure (found in the qtomeapi.h file) consists of the following:

 struct _varBind{

 struct _varBind * next;

 char *oid; /* Null Terminated */

 unsigned char asn_type;

 int val_len;

 union {

 int * int_val;

 char * str_val;

 } val;

};

The fields for this structure are described as follows:

 *next The pointer to the next varbind. This has to be NULL if it is the last varbind in the list.

*oid The pointer to the OID being set or retrieved (depending on the operation).

asn_type The ASN type of the OID. This field must be set by the user only for the snmpSet function. On the

snmpGet or snmpGetnext function, it is returned by the API.

val_len For the snmpSet function, the user must set this to reflect the exact amount of data to be written

to the OID. On an snmpGet or snmpGetnext, the user must use this field to indicate how much

space to allocate for the value being retrieved. If the value coming back is greater than the amount

of space allocated, a return code of 1 is received.

val A union of either a pointer to the string data or a pointer to the integer data. This space is

allocated by the user.

host_ptr

(Input) A pointer to the character string that contains the Internet Protocol (IP) address.

Simple Network Management Protocol (SNMP) APIs 45

This parameter can be stored in dotted decimal notation, that is, 9.130.38.217, or in host address

format, that is, oursystem.endicott.ibm.com. This parameter must contain printable characters

only.

time_out

(Input) The time-out value.

 This parameter is the amount of time in seconds that the management application is willing to

wait for the response PDU. The minimum value is 1, and the maximum is 100.

comm_ptr

(Input) A pointer to the character string that contains the community name.

 This parameter contains a variable-length field that contains printable and nonprintable values.

Therefore, the user must supply the exact length of this value in another parameter.

EBCDIC-to-ASCII translation will not be done, and it is the responsibility of the managing

application to specify the community name in the correct notation for the SNMP agent system.

comm_len

(Input) The length of community name.

 This parameter is the exact length of the community name. The minimum value is 1, and the

maximum is 255.

Authorities

Service Program Authority

*USE

Return Value

The following are the possible return codes posted by the snmpSet() function:

 0 API_RC_OK

snmpSet() was successful.

-4 API_RC_OUT_OF_MEMORY

There was not enough storage to complete this operation.

-5 API_RC_OUT_OF_BUFFERS

There were not enough internal buffers to continue.

-6 API_RC_OUT_OF_VARBINDS

The maximum number of allowable varbinds was exceeded.

-7 API_RC_SNMP_OUT_OF_VARBINDS

The maximum number of allowable varbinds was exceeded. This return code is equivalent to the

-6 return code.

-9 API_RC_SNMP_INVALID_OID

The OID specified in the varbind list is not valid. This return code is equivalent to the -112 return

code.

-10 API_RC_INVALID_VALUE

The specified value in the varbind is not valid.

-11 API_RC_INVALID_VALUE_REP

The specified value in the varbind is incorrectly represented.

-12 API_RC_DECODE_ERROR

The SNMP APIs were unable to decode the incoming PDU.

46 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

-13 API_RC_DECODE_ERROR

The SNMP APIs were unable to encode the PDU data structure.

-18 API_RC_TIMEOUT

A response to this request was not received within the allotted time-out value.

-21 API_RC_INVALID_PDU_TYPE

The PDU type was not recognized as one of the seven common PDU types.

-103 API_RC_INVALID_IP_ADDRESS

The IP address that was specified is not valid.

-104 API_RC_INVALID_COMMUNITY_NAME

_LENGTH

The community name length must be greater than 0 and less than 256.

-108 API_RC_INVALID_TIMEOUT_PARM

The time-out value must be greater than 0 and less than or equal to 100.

-110 API_RC_UNKNOWN_HOST

The host name or IP address that is specified is not known on the network.

-112 API_RC_INVALID_OID

The OID that is specified in the varbind list is not valid.

-113 API_RC_INVALID_PDU_POINTER

The pointer value to the PDU structure must be non-NULL.

-114 API_RC_INVALID_HOST_POINTER

The pointer value to the host address must be non-NULL.

-115 API_RC_INVALID_HOST_POINTER

The pointer value to the community name must be non-NULL.

-201 API_RC_SOCKET_ERROR

The APIs have detected a socket error and cannot continue.

-202 API_RC_NOT_OK

The APIs have detected an unknown error and cannot continue. The val_len field of the varbind

structure contains a value that is not valid.

1 API_RC_VAL_LEN_LESS_THAN_RETURNED_

VAL_LEN

The value being returned by the API is greater than the space allocated by the user.

241 API_RC_DOMAIN_ERROR

This is equivalent to an MCH6801 error—stating object domain error.

242 API_RC_INVALID_POINTER

This is equivalent to an MCH3601 error—referenced location in a space does not contain a pointer.

243 API_RC_INVALID_PTR_TYPE

This is equivalent to an MCH3602 error—pointer type not valid for requested operation.

For more information, see ″Problem Determination for SNMP Manager APIs″ in the Simple Network

Management Protocol

book.

Simple Network Management Protocol (SNMP) APIs 47

Error Conditions

Following are the possible error statuses returned in the error status field of the PDU structure. These

values are returned by the SNMP agents.

 0 API_SNMP_ERROR_noError

The function was successful.

1 API_SNMP_ERROR_tooBig

The agent could not fit the results of an operation into a single SNMP message.

2 API_SNMP_ERROR_noSuchName

The requested operation identified an unknown variable name.

3 API_SNMP_ERROR_badValue

The requested operation specified an incorrect syntax or value when the management application

tried to modify a variable.

5 API_SNMP_ERROR_genErr

A nonspecific error occurred while running this operation on the SNMP agent.

Usage Notes

The area where the data is returned is the responsibility of the user, not the API. To allocate storage, the

user may use the AddVarbind routine (see AddVarbind Routine). To deallocate storage, the user may use

the FreePdu routine (see FreePdu Routine).

You must use the correct PDU type on AddVarbind. It must match the operation on which you call. For

example, if you build a PDU wherein AddVarbind passes a PDU type of Set and then you call the

snmpGet operation using the PDU that you just created with Set, you will receive an error on the

snmpGet call.

All character strings that are passed to the APIs must be null-terminated unless you explicitly provide the

length, if a length field is available.

If you are building a PDU to go to a remote agent, you must remember to do correct translation of

strings. The iSeries server is an EBCDIC system, whereas an SNMP agent on an RISC System/6000

(RS/6000) computer is an ASCII system. Therefore, you must provide string values as you would see

them on that system. For example, if you are sending a PDU to an RS/6000 system and the community

name is public, you would enter the community name string in hexadecimal, X’7075626C6963’. See the

data conversion APIs to convert data from EBCDIC to ASCII and vice versa.

These APIs are blocked, which means that on a call to the API a PDU is sent across a communications

protocol to an SNMP agent on a local or remote system. The call returns when a response has been

received from the agent or when the command times out. On the return, all returned data is placed in the

appropriate locations. You need do no further action to retrieve such data.

Related Information

v The <qtomeapi.h> file (see Header Files for UNIX-Type Functions)

v “snmpGet()—Retrieve MIB Objects” on page 36—Retrieve MIB Objects

v “snmpGetnext()—Retrieve Next MIB Object” on page 40—Retrieve Next MIB Object

48 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

snmpexmp.htm#HDRVARBIND
snmpexmp.htm#HDRFREEPDU
unix13.htm

Example

See Code disclaimer information for information pertaining to code examples.

For examples that pertain to the SNMP manager APIs, see Using SNMP Manager APIs—Example.

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Concepts

These are the concepts for this category.

Debugging IP over SNA Configurations

Two commands can be helpful in debugging IP over SNA configurations:

v The Start Mode (STRMOD) CL command can help you determine if your SNA configuration is correct.

As input to the STRMOD command, you need the remote location name. You can determine the

remote location name from the destination IP address by using the Convert IP over SNA Interface

(CVTIPSIFC) command. The message you receive when STRMOD completes tells you whether it was

successful.

v The TCP/IP FTP command can help you determine if your AnyNet configuration is correct. If you get

the User prompt, the AnyNet configuration is correct.

Note: When FTP fails, it does not give a detailed reason for the failure. To get a detailed reason, you

should run a sockets program that reports the value for errno when the failure occurs.

 Common IP over SNA Configuration Errors

 Sockets Error (value of errno) Possible Causes

EHOSTUNREACH 1. Missing ADDIPSLOC command on client system.

2. Missing ADDIPSIFC command on client system.

3. Type of service points to a non-existent mode description on client

system.

4. ADDIPSLOC command on client system resulted in a location name that

is not found.

5. ADDIPSLOC command on client system resulted in a location name that

is on a non-APPC device description.

EADDRNOTAVAIL 1. AnyNet not active on client system (ALWANYNET attribute set to *NO),

but TCP is started.

2. Mode could not be added to device on client system.

EUNATCH 1. AnyNet not active on client system (ALWANYNET attribute set to *NO),

and TCP is not started.

ECONNREFUSED 1. AnyNet not active on client system (ALWANYNET attribute set to *NO).

2. listen() not active on server system.

Simple Network Management Protocol (SNMP) APIs 49

aboutapis.htm#CODEDISCLAIMER
snmpexmp.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

Sockets Error (value of errno) Possible Causes

ECONNABORTED 1. Line error

2. Device/controller/line varied off on client or server system while in use.

3. User not authorized to APPC device description object on server system.

ETIMEDOUT 1. ADDIPSLOC command on client system points to a location name that

does not exist or is on a system that is not responding in the APPN

network.

2. Messages (especially inquiry messages) on message queue QSYSOPR are

waiting for a reply.

EACCES 1. User not authorized to port on client system.

2. User not authorized to APPC device description object on client system.

 Top | UNIX-Type APIs | APIs by category

50 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 51

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

52 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 53

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

54 iSeries: UNIX-Type -- Simple Network Management Protocol (SNMP) APIs

����

Printed in USA

	Contents
	Simple Network Management Protocol (SNMP) APIs
	Simple Network Management Protocol (SNMP) Subagent APIs
	APIs
	connectSNMP()—Establish Connection with SNMP Agent
	Authorities
	Parameters
	Return Value
	Usage Notes
	Related Information
	Example

	debugDPI()—Set DPI Packet Trace
	Parameters
	Usage Notes
	Related Information
	Example

	disconnectSNMP()—End Connection with SNMP Agent
	Authorities
	Parameters
	Return Value
	Usage Notes
	Related Information
	Example

	DPI_PACKET_LEN()—Get Length of DPI Packet
	Parameters
	Return Value
	Usage Notes
	Example

	fDPIparse()—Free Storage from DPI Packet Parse
	Parameters
	Usage Notes
	Related Information
	Example

	fDPIset()—Free Storage from DPI Set Packet
	Parameters
	Usage Notes
	Related Information
	Example

	mkDPIAreYouThere()—Make a DPI AreYouThere Packet
	Parameters
	Return Value
	Usage Notes
	Related Information
	Example

	mkDPIclose()—Make a DPI Close Packet
	Parameters
	Return Value
	Usage Notes
	Related Information
	Example

	mkDPIopen()—Make a DPI Open Packet
	Parameters
	Return Value
	Usage Notes
	Related Information
	Example

	mkDPIregister()—Make a DPI Register Packet
	Parameters
	Return Value
	Usage Notes
	Related Information
	Example

	mkDPIresponse()—Make a DPI Response Packet
	Parameters
	Return Value
	Usage Notes
	Related Information
	Example

	mkDPIset()—Make a DPI Set Packet
	Parameters
	Return Value
	Usage Notes
	Related Information
	Example

	mkDPItrap()—Make a DPI Trap Packet
	Parameters
	Return Value
	Usage Notes
	Related Information
	Example

	mkDPIunregister()—Make a DPI Unregister Packet
	Parameters
	Return Value
	Usage Notes
	Related Information
	Example

	pDPIpacket()—Parse a DPI Packet
	Parameters
	Return Value
	Usage Notes
	Related Information
	Example

	receiveDPIpacket()—Receive a DPI Packet from the SNMP Agent
	Authorities
	Parameters
	Return Value
	Usage Notes
	Related Information
	Example

	sendDPIpacket()—Send a DPI Packet to the SNMP Agent
	Parameters
	Return Value
	Usage Notes
	Related Information
	Example

	waitDPIpacket()—Wait for a DPI Packet
	Authorities
	Parameters
	Return Value
	Usage Notes
	Related Information
	Example

	Simple Network Management Protocol (SNMP) Manager APIs
	snmpGet()—Retrieve MIB Objects
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	snmpGetnext()—Retrieve Next MIB Object
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	snmpSet()—Set MIB Objects
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	Concepts
	Debugging IP over SNA Configurations

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

