
iSeries

UNIX-Type -- Signal APIs

Version 5 Release 3

ERserver

���

iSeries

UNIX-Type -- Signal APIs

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 81.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Signal APIs 1

APIs 2

alarm()—Set Schedule for Alarm Signal 2

Parameters 3

Return Value 3

Error Conditions 3

Usage Notes 3

Related Information 3

Example 3

Output: 4

getitimer()—Get Value for Interval Timer 5

Parameters 5

Return Value 5

Error Conditions 5

Related Information 6

Example 6

Output: 7

kill()—Send Signal to Process or Group of Processes 8

Parameters 8

Authorities 8

Return Value 9

Error Conditions 9

Usage Notes 10

Related Information 10

Example 10

Output: 11

pause()—Suspend Process Until Signal Received . . 12

Parameters 12

Return Value 12

Error Conditions 12

Usage Notes 13

Related Information 13

Example 13

Output: 14

Qp0sDisableSignals()—Disable Process for Signals 14

Parameters 14

Return Value 14

Error Conditions 14

Usage Notes 15

Related Information 15

Example 16

Output: 17

Qp0sEnableSignals()—Enable Process for Signals . . 17

Parameters 17

Return Value 17

Error Conditions 17

Usage Notes 18

Related Information 18

Example 19

setitimer()—Set Value for Interval Timer 19

Parameters 20

Return Value 20

Error Conditions 20

Usage Notes 21

Related Information 21

Example 21

Output: 22

sigaction()—Examine and Change Signal Action . . 23

Parameters 23

Control Signals Table 27

Return Value 28

Error Conditions 28

Usage Notes 28

Related Information 29

Example 29

Output: 31

sigaddset()—Add Signal to Signal Set 31

Parameters 32

Return Value 32

Error Conditions 32

Related Information 32

Example 32

Output: 33

sigdelset()—Delete Signal from Signal Set 33

Parameters 34

Return Value 34

Error Conditions 34

Related Information 34

Example 35

Output: 35

sigemptyset()—Initialize and Empty Signal Set . . 36

Parameters 36

Return Value 36

Error Conditions 36

Related Information 36

Example 37

Output: 37

sigfillset()—Initialize and Fill Signal Set 37

Parameters 38

Return Value 38

Error Conditions 38

Related Information 38

Example 38

Output: 39

sigismember()—Test for Signal in Signal Set . . . 39

Parameters 39

Return Value 39

Error Conditions 40

Related Information 40

Example 40

Output: 41

siglongjmp()—Perform Nonlocal Goto with Signal

Handling 41

Parameters 42

Return Value 42

Error Conditions 42

Usage Notes 42

Related Information 42

Example 42

Output 44

sigpending()—Examine Pending Signals 45

Parameters 45

© Copyright IBM Corp. 1998, 2005 iii

Return Value 45

Error Conditions 45

Related Information 45

Example 46

Output: 47

sigprocmask()—Examine and Change Blocked

Signals 47

Parameters 47

Return Value 48

Error Conditions 48

Usage Notes 48

Related Information 49

Example 49

Output: 50

sigsetjmp()—Set Jump Point for Nonlocal Goto . . 50

Parameters 51

Return Value 51

Error Conditions 51

Usage Notes 51

Related Information 51

Example 51

Output: 53

sigsuspend()—Wait for Signal 53

Parameters 54

Return Value 54

Error Conditions 54

Usage Notes 55

Related Information 55

Example 55

Output: 56

sigtimedwait()—Synchronously Accept a Signal for

Interval of Time 56

Parameters 57

Return Value 57

Error Conditions 57

Usage Notes 58

Related Information 58

Example 58

Output: 59

sigwait()—Synchronously Accept a Signal 59

Parameters 60

Return Value 60

Error Conditions 60

Usage Notes 60

Related Information 60

Example 61

Output: 62

sigwaitinfo()—Synchronously Accept a Signal and

Signal Data 62

Parameters 62

Return Value 63

Error Conditions 63

Usage Notes 63

Related Information 63

Example 63

Output: 64

sleep()—Suspend Processing for Interval of Time . . 65

Parameters 65

Return Value 65

Error Conditions 66

Usage Notes 66

Related Information 66

Example 66

Output: 67

usleep()—Suspend Processing for Interval of Time 67

Parameters 68

Return Value 68

Error Conditions 68

Usage Notes 68

Related Information 68

Example 68

Output: 69

Concepts 69

Using Signal APIs 69

Signal Concepts 69

OS/400 Signal Management 70

Differences from Signals on UNIX Systems . . . 72

Header Files for UNIX-Type Functions 73

Errno Values for UNIX-Type Functions 76

Appendix. Notices 81

Trademarks 82

Terms and conditions for downloading and printing

publications 83

Code disclaimer information 84

iv iSeries: UNIX-Type -- Signal APIs

Signal APIs

An X/Open specification defines a ″signal″ as a mechanism by which a process may be notified of, or

affected by, an event occurring in the system. The term signal is also used to refer to the event itself.

For additional information on the Signal APIs, see:

v “Using Signal APIs” on page 69

v “OS/400 Signal Management” on page 70

v “Differences from Signals on UNIX Systems” on page 72

The Signal APIs are:

v “alarm()—Set Schedule for Alarm Signal” on page 2 (Set schedule for alarm signal) generates a

SIGALRM signal after the number of seconds specified by the seconds parameter have elapsed. The

delivery of the SIGALRM signal is directed at the calling process.

v “getitimer()—Get Value for Interval Timer” on page 5 (Get value of interval timer) returns the value

last used to set the interval timer specified by which in the structure pointed to by value.

v “kill()—Send Signal to Process or Group of Processes” on page 8 (Send signal to process or group of

processes) sends a signal to a process or process group specified by pid.

v “pause()—Suspend Process Until Signal Received” on page 12 (Suspend process until signal received)

suspends processing of the calling thread.

v “Qp0sDisableSignals()—Disable Process for Signals” on page 14 (Disable process for signals) prevents

the process from receiving signals.

v “Qp0sEnableSignals()—Enable Process for Signals” on page 17 (Enable process for signals) enables the

process to receive signals.

v “setitimer()—Set Value for Interval Timer” on page 19 (Set value of interval timer) sets the timer

specified by which to the value in the structure pointed to by value and stores the previous value of

the timer in the structure pointed to by ovalue.

v “sigaction()—Examine and Change Signal Action” on page 23 (Examine and change signal action)

examines, changes, or both examines and changes the action associated with a specific signal.

v “sigaddset()—Add Signal to Signal Set” on page 31 (Add signal to signal set) is part of a family of

functions that manipulate signal sets.

v “sigdelset()—Delete Signal from Signal Set” on page 33 (Delete signal from signal set) is part of a

family of functions that manipulate signal sets.

v “sigemptyset()—Initialize and Empty Signal Set” on page 36 (Initialize and empty signal set) is part of

a family of functions that manipulate signal sets.

v “sigfillset()—Initialize and Fill Signal Set” on page 37 (Initialize and fill signal set) is part of a family of

functions that manipulate signal sets.

v “sigismember()—Test for Signal in Signal Set” on page 39 (Test for signal in signal set) is part of a

family of functions that manipulate signal sets.

v “siglongjmp()—Perform Nonlocal Goto with Signal Handling” on page 41 (Perform nonlocal goto with

signal handling) restores the stack environment previously saved in env by sigsetjmp().

v “sigpending()—Examine Pending Signals” on page 45 (Examine pending signals) returns signals that

are blocked from delivery and pending for either the calling thread or the process.

v “sigprocmask()—Examine and Change Blocked Signals” on page 47 (Examine and change blocked

signals) examines, or changes, or both examines and changes the signal mask of the calling thread.

v “sigsetjmp()—Set Jump Point for Nonlocal Goto” on page 50 (Set jump point for nonlocal goto) saves

the current stack environment and, optionally, the current signal mask.

© Copyright IBM Corp. 1998, 2005 1

v “sigsuspend()—Wait for Signal” on page 53 (Wait for signal) replaces the current signal mask of a

thread with the signal set given by *sigmask and then suspends processing of the calling process.

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 56 (Synchronously

accept a signal for interval of time) selects a pending signal from set, clears it from the set of pending

signals for the thread or process, and returns that signal number in the si_signo member in the

structure that is referenced by info.

v “sigwait()—Synchronously Accept a Signal” on page 59 (Synchronously accept a signal) selects a

pending signal from set, clears it from the set of pending signals for the thread or process, and returns

that signal number in the location that is referenced by sig.

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 62 (Synchronously accept a

signal and signal data) selects a pending signal from set, clears it from the set of pending signals for

the thread or process, and returns that signal number in the si_signo member in the structure that is

referenced by info.

v “sleep()—Suspend Processing for Interval of Time” on page 65 (Suspend processing for interval of

time) suspends a thread for a specified number of seconds.

v “usleep()—Suspend Processing for Interval of Time” on page 67 (Suspend processing for interval of

time) suspends a thread for the number of microseconds specified by the of useconds parameter.

Note: These functions use header (include) files from the library QSYSINC, which is optionally

installable. Make sure QSYSINC is installed on your system before using any of the functions. See

“Header Files for UNIX-Type Functions” on page 73 for the file and member name of each header file.

The term ″signal″ comes from X/Open CAE Specification System Interface Definitions Issue 4, Number 2,

Glossary, page 27. X/Open Company Ltd., United Kingdom, 1994.

 Top | UNIX-Type APIs | APIs by category

APIs

These are the APIs for this category.

alarm()—Set Schedule for Alarm Signal

 Syntax

 #include <unistd.h>

 unsigned int alarm(unsigned int seconds);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The alarm() function generates a SIGALRM signal after the number of seconds specified by the seconds

parameter have elapsed. The delivery of the SIGALRM signal is directed at the calling process.

seconds is the number of real seconds to elapse before the SIGALRM is generated. Because of processor

delays, the SIGALRM may be generated slightly later than this specified time. If seconds is zero, any

previously set alarm request is canceled.

2 iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Only one such alarm can be active at a time for the process. If a new alarm time is set, any previous

alarm is canceled.

Parameters

seconds

(Input) The number of real seconds to elapse before generating the signal.

Return Value

 value alarm() was successful. The value returned is one of the following:

v A nonzero value that is the number of real seconds until the previous alarm() request would

have generated a SIGALRM signal.

v A value of zero if there was no previous alarm() request with time remaining.

-1 alarm() was not successful. The errno variable is set to indicate the error.

Error Conditions

If alarm() is not successful, errno usually indicates the following error. Under some conditions, errno could

indicate an error other than that listed here.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

Usage Notes

The alarm() function enables a process for signals if the process is not already enabled for signals. For

details, see “Qp0sEnableSignals()—Enable Process for Signals” on page 17. If the system has not been

enabled for signals, alarm() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v The <unistd.h> file

v “pause()—Suspend Process Until Signal Received” on page 12—Suspend Process Until Signal Received

v “Qp0sDisableSignals()—Disable Process for Signals” on page 14—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 17—Enable Process for Signals

v “setitimer()—Set Value for Interval Timer” on page 19—Set Value for Interval Timer

v “sigaction()—Examine and Change Signal Action” on page 23—Examine and Change Signal Action

v “sigsuspend()—Wait for Signal” on page 53—Wait for Signal

v “sleep()—Suspend Processing for Interval of Time” on page 65—Suspend Processing for Interval of

Time

v “usleep()—Suspend Processing for Interval of Time” on page 67—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example generates a SIGALRM signal using the alarm() function:

Signal APIs 3

aboutapis.htm#CODEDISCLAIMER

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

#include <time.h>

#include <errno.h>

#define LOOP_LIMIT 1E6

volatile int sigcount=0;

void catcher(int sig) {

 printf("Signal catcher called for signal %d\n", sig);

 sigcount = 1;

}

int main(int argc, char *argv[]) {

 struct sigaction sact;

 volatile double count;

 time_t t;

 sigemptyset(&sact.sa_mask);

 sact.sa_flags = 0;

 sact.sa_handler = catcher;

 sigaction(SIGALRM, &sact, NULL);

 alarm(5); /* timer will pop in five seconds */

 time(&t);

 printf("Before loop, time is %s", ctime(&t));

 for(count=0; ((count<LOOP_LIMIT) && (sigcount==0)); count++);

 time(&t);

 printf("After loop, time is %s\n", ctime(&t));

 if(sigcount == 0)

 printf("The signal catcher never gained control\n");

 else

 printf("The signal catcher gained control\n");

 printf("The value of count is %.0f\n", count);

 return(0);

}

Output:

 Before loop, time is Sun Jan 22 10:14:00 1995

 Signal catcher called for signal 14

 After loop, time is Sun Jan 22 10:14:05 1995

 The signal catcher gained control

 The value of count is 290032

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

4 iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

getitimer()—Get Value for Interval Timer

 Syntax

 #include <sys/time.h>

 int getitimer(int which, struct itimerval *value);

 Service Program Name: QP0SSRVI

 Default Public Authority: *USE

 Threadsafe: Yes

The getitimer() function returns the value last used to set the interval timer specified by which in the

structure pointed to by value.

Parameters

which (Input) The interval timer type.

 The possible values for which, which are defined in the <sys/time.h> header file, are as follows:

 ITIMER_REAL The interval timer value is decremented in real time. The SIGALRM signal is generated for

the process when this timer expires.

ITIMER_VIRTUAL The interval timer value is only decremented when the process is running. The SIGVTALRM

signal is generated for the process when this timer expires.

ITIMER_PROF The interval timer value is only decremented when the process is running or when the

system is running on behalf of the process. The SIGPROF signal is generated for the process

when this timer expires.

value (Output) A pointer to the space where the current interval timer value is stored.

Return Value

 0 getitimer() was successful.

-1 getitimer() was not successful. The errno variable is set to indicate the error.

Error Conditions

If getitimer() is not successful, errno usually indicates the following error. Under some conditions, errno

could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

v The value of which is not equal to one of the defined values.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

Signal APIs 5

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

Related Information

v The <sys/time.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “alarm()—Set Schedule for Alarm Signal” on page 2—Set Schedule for Alarm Signal

v “setitimer()—Set Value for Interval Timer” on page 19—Set Value for Interval Timer

v “sleep()—Suspend Processing for Interval of Time” on page 65—Suspend Processing for Interval of

Time

v “usleep()—Suspend Processing for Interval of Time” on page 67—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example returns the current interval timer value using the getitimer() function:

#include <sys/time.h>

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

#include <time.h>

#include <errno.h>

#define LOOP_LIMIT 1E12

volatile int sigcount=0;

void catcher(int sig) {

 struct itimerval value;

 int which = ITIMER_REAL;

 printf("Signal catcher called for signal %d\n", sig);

 sigcount++;

 if(sigcount > 1) {

 /*

 * Disable the real time interval timer

 */

 getitimer(which, &value);

 value.it_value.tv_sec = 0;

 value.it_value.tv_usec = 0;

 setitimer(which, &value, NULL);

 }

}

int main(int argc, char *argv[]) {

 int result = 0;

 struct itimerval value, ovalue, pvalue;

 int which = ITIMER_REAL;

 struct sigaction sact;

 volatile double count;

 time_t t;

6 iSeries: UNIX-Type -- Signal APIs

aboutapis.htm#CODEDISCLAIMER

sigemptyset(&sact.sa_mask);

 sact.sa_flags = 0;

 sact.sa_handler = catcher;

 sigaction(SIGALRM, &sact, NULL);

 getitimer(which, &pvalue);

 /*

 * Set a real time interval timer to repeat every 200 milliseconds

 */

 value.it_interval.tv_sec = 0; /* Zero seconds */

 value.it_interval.tv_usec = 200000; /* Two hundred milliseconds */

 value.it_value.tv_sec = 0; /* Zero seconds */

 value.it_value.tv_usec = 500000; /* Five hundred milliseconds */

 result = setitimer(which, &value, &ovalue);

 /*

 * The interval timer value returned by setitimer() should be

 * identical to the timer value returned by getitimer().

 */

 if(ovalue.it_interval.tv_sec != pvalue.it_interval.tv_sec ||

 ovalue.it_interval.tv_usec != pvalue.it_interval.tv_usec ||

 ovalue.it_value.tv_sec != pvalue.it_value.tv_sec ||

 ovalue.it_value.tv_usec != pvalue.it_value.tv_usec) {

 printf("Real time interval timer mismatch\n");

 result = -1;

 }

 time(&t);

 printf("Before loop, time is %s", ctime(&t));

 for(count=0; ((count<LOOP_LIMIT) && (sigcount<2)); count++);

 time(&t);

 printf("After loop, time is %s\n", ctime(&t));

 if(sigcount == 0)

 printf("The signal catcher never gained control\n");

 else

 printf("The signal catcher gained control\n");

 printf("The value of count is %.0f\n", count);

 return(result);

}

Output:

 Before loop, time is Sun Jun 15 10:14:00 1997

 Signal catcher called for signal 14

 Signal catcher called for signal 14

 After loop, time is Sun Jun 15 10:14:01 1997

 The signal catcher gained control

 The value of count is 702943

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

Signal APIs 7

#TOP_OF_PAGE
unix.htm
aplist.htm

kill()—Send Signal to Process or Group of Processes

 Syntax

 #include <sys/types.h>

 #include <signal.h>

 int kill(pid_t pid, int sig);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The kill() function sends a signal to a process or process group specified by pid. The signal to be sent is

specified by sig and is either 0 or one of the signals from the list in the <sys/signal.h> header file.

The process sending the signal must have appropriate authority to the receiving process or processes. The

kill() function is successful if the process has permission to send the signal sig to any of the processes

specified by pid. If kill() is not successful, no signal is sent.

A process can use kill() to send a signal to itself. If the signal is not blocked in the sending thread, and if

no other thread has the sig unblocked or is waiting in a sigwait function for sig, either sig or at least one

pending unblocked signal is delivered to the sender before kill() returns.

Parameters

pid (Input) The process ID or process group ID to receive the signal.

sig (Input) The signal to be sent.

 pid and sig can be used as follows:

 pid_t pid; Specifies the processes that the caller wants to send the signal to:

v If pid is greater than zero, kill() sends the signal sig to the process whose ID is equal to pid.

v If pid is equal to zero, kill() sends the signal sig to all processes whose process group ID is equal

to that of the sender, except for those to which the sender does not have the appropriate

authority to send a signal.

v If pid is equal to -1, kill() returns -1 and errno is set to [ESRCH].

v If pid is less than -1, kill() sends the signal sig to all processes whose process group ID is equal

to the absolute value of pid, except for those to which the sender does not have appropriate

authority to send a signal.

int sig; The signal that should be sent to the processes specified by pid. This must be zero, or one of the

signals defined in the <sys/signal.h> header file. If sig is zero, kill() performs error checking, but

does not send a signal. You can use a sig value of zero to check whether the pid argument is valid.

Authorities

The thread sending the signal must have the appropriate authority to the receiving process. A thread is

allowed to send a signal to a process if at least one of the following conditions is true:

v The thread is sending a signal to its own process.

v The thread has *JOBCTL special authority defined in the currently running user profile or in a current

adopted user profile.

8 iSeries: UNIX-Type -- Signal APIs

v The thread belongs to a process that is the parent of the receiving process. (The process being signaled

has a parent process ID equal to the process ID of the thread sending the signal.)

v If the receiving process is multi-threaded,

– The real or effective user ID of the thread matches the job user identity of the process receiving

process (the process being signaled).
v Otherwise,

– The real or effective user ID of the thread matches the real or effective user ID of the process being

signaled. If _POSIX_SAVED_IDS is defined in the <unistd.h> include file, the saved set user ID of

the intended recipient is checked instead of its effective user ID.

The job user identity is the name of the user profile by which a job is known to other jobs. It is described

in more detail in the Work Management

book on the V5R1 Supplemental Manuals Web site.

When sending a signal affects entries for multiple processes, the signal is generated for each process to

which the process sending the signal is authorized. If the process does not have permission to send the

signal to any receiving process, the [EPERM] error is returned.

Regardless of user ID, a process can always send a SIGCONT signal to a process that is a member of the

same process group (same process group ID) as the sender.

Return Value

 0 kill() was successful. It had permission to send sig to one or more of the processes specified by

pid.

-1 kill() was not successful. It failed to send a signal. The errno variable is set to indicate the error.

Error Conditions

If kill() is not successful, errno usually indicates one of the following errors. Under some conditions, errno

could indicate an error other than those listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The value of sig is not within the range of signal numbers or is a signal that is not supported.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

v

[ENOSYSRSC]

 System resources not available to complete request.

Signal APIs 9

[EPERM]

Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[ESRCH]

No item could be found that matches the specified value.

 The process or process group specified in pid cannot be found.

Usage Notes

1. If the value of pid is 0 (so that kill() is used to send a signal to all processes whose process group ID

is equal to that of the sender), kill() enables the process for signals if the process is not already

enabled for signals. For details, see “Qp0sEnableSignals()—Enable Process for Signals” on page 17.

2. A process can use kill() to simulate the American National Standard C raise() function by using the

following:

 sigset_t sigmask;

 /*

 * Allow all signals to be delivered by unblocking all signals

 */

 sigemtyset(&sigmask);

 sigprocmask(SIG_SETMASK, &sigmask, NULL);

 ...

 kill(getpid(), SIGUSR1);

The example above ensures that no signals are blocked from delivery. When the kill() function is

called, the behavior is the same as calling the raise() function.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v The <sys/types.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “Qp0sDisableSignals()—Disable Process for Signals” on page 14—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 17—Enable Process for Signals

v “sigaction()—Examine and Change Signal Action” on page 23—Examine and Change Signal Action

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 56—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 59—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 62—Synchronously Accept a

Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses the kill() function:

#include <signal.h>

#include <unistd.h>

#include <errno.h>

#include <stdio.h>

#include <time.h>

int sendsig(int);

volatile int sigcount=0;

10 iSeries: UNIX-Type -- Signal APIs

aboutapis.htm#CODEDISCLAIMER

void catcher(int sig) {

 sigcount++;

}

int main(int argc, char *argv[]) {

 struct sigaction sigact;

 int result;

 /* set up a signal catching function to handle the signals */

 /* that will be sent from the sendsig() function */

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGUSR1, &sigact, NULL);

 /* Call the sendsig() function that will call the kill() */

 /* function for SIGUSR1 n times based on the input value */

 result = sendsig(21);

 printf("Back in main\n");

 printf("The kill() function was called %d times\n", result);

 printf("The signal catching function was called %d times\n", \

 sigcount);

 return(0);

}

int sendsig(int count) {

 int i;

 int j=0;

 for(i=0; i < count; i++) {

 if(i == ((i/10)*10)) {

 j++;

 kill(getpid(), SIGUSR1);

 }

 }

 return(j);

}

Output:

 Back in main

 The kill() function was called 3 times

 The signal catching function was called 3 times

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Signal APIs 11

#TOP_OF_PAGE
unix.htm
aplist.htm

pause()—Suspend Process Until Signal Received

 Syntax

 #include <unistd.h>

 int pause(void);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The pause() function suspends processing of the calling thread. The thread does not resume until a signal

is delivered whose action is to call a signal-catching function, end the request, or terminate the process.

Some signals can be blocked by the thread’s signal mask. See “sigprocmask()—Examine and Change

Blocked Signals” on page 47 for details.

If an incoming unblocked signal has an action of end the request or terminate the process, pause() never

returns to the caller. If an incoming signal is handled by a signal-catching function, pause() returns after

the signal-catching function returns.

Parameters

None.

Return Value

There is no return value to indicate successful completion.

Error Conditions

If pause() returns, errno indicates the following:

-1

 pause() was not successful. The errno variable is set to indicate the reason.

[EINTR]

 Interrupted function call.

 A signal was received and handled by a signal-catching function that returned.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

[EWOULDBLOCK]

Operation would have caused the process to be suspended. The current thread state would

prevent the signal function from completing.

12 iSeries: UNIX-Type -- Signal APIs

Usage Notes

The pause() function enables a process for signals if the process is not already enabled for signals. For

details, see “Qp0sEnableSignals()—Enable Process for Signals” on page 17. If the system has not been

enabled for signals, pause() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “alarm()—Set Schedule for Alarm Signal” on page 2—Set Schedule for Alarm Signal

v “kill()—Send Signal to Process or Group of Processes” on page 8—Send Signal to Process or Group of

Processes

v “Qp0sDisableSignals()—Disable Process for Signals” on page 14—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 17—Enable Process for Signals

v “sigprocmask()—Examine and Change Blocked Signals” on page 47—Examine and Change Blocked

Signals

v “sigsuspend()—Wait for Signal” on page 53—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 56—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 59—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 62—Synchronously Accept a

Signal and Signal Data

v “sleep()—Suspend Processing for Interval of Time” on page 65—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example suspends processing using the pause() function and determines the current time:

#include <unistd.h>

#include <signal.h>

#include <stdio.h>

#include <time.h>

void catcher(int sig) {

 printf("Signal catcher called for signal %d\n", sig);

}

void timestamp(char *str) {

 time_t t;

 time(&t);

 printf("The time %s is %s\n", str, ctime(&t));

}

int main(int argc, char *argv[]) {

 struct sigaction sigact;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGALRM, &sigact, NULL);

 alarm(10);

 timestamp("before pause");

 pause();

Signal APIs 13

aboutapis.htm#CODEDISCLAIMER

timestamp("after pause");

 return(0);

}

Output:

 The time before pause is Sun Jan 22 11:09:08 1995

 Signal catcher called for signal 14

 The time after pause is Sun Jan 22 11:09:18 1995

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Qp0sDisableSignals()—Disable Process for Signals

 Syntax

 #include <signal.h>

 int Qp0sDisableSignals(void);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0sDisableSignals() function prevents the process from receiving signals.

After Qp0sDisableSignals() is called, the process is no longer eligible to receive signals from another

process or the system. Calls to functions that examine the signal action or the signal blocking mask of the

thread will not return the requested information. For details on those functions, see

“sigaction()—Examine and Change Signal Action” on page 23 and “sigprocmask()—Examine and Change

Blocked Signals” on page 47.

If the process is currently disabled for signals, a call to Qp0sDisableSignals() has no effect and an

[ENOTSIGINIT] error is returned.

Parameters

None

Return Value

 0 Qp0sDisableSignals() was successful.

-1 Qp0sDisableSignals() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0sDisableSignals() is not successful, errno usually indicates the following error. Under some

conditions, errno could indicate an error other than that listed here.

[ENOTSIGINIT]

14 iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

Usage Notes

1. Processes, by default, are not eligible to receive signals from other processes or the system. However,

once a process has been enabled for signals, it remains eligible to receive signals until either it ends or

some user action is taken to prevent the delivery of signals.

Use of the following functions enables a process for signals:

v alarm()

v getpgrp()

v getpid()

v kill()

v pause()

v Qp0wGetPgrp()

v Qp0wGetPid()

v setitimer()

v sigaction()

v sigprocmask()

v sigsuspend()

v sigtimedwait()

v sigwait()

v sigwaitinfo()

v sleep()

Any of the Pthread APIs. See Pthread APIs for more information.

2. The user of signals can prevent the signals from being delivered to the process by calling the

sigprocmask() function. The user can also ignore the signal by calling the sigaction() function.

However, not all signals can be blocked or ignored. For details, see “sigaction()—Examine and Change

Signal Action” on page 23 and “sigprocmask()—Examine and Change Blocked Signals” on page 47.

The Qp0sDisableSignals() function provides a means of preventing the calling process from receiving

any signal from other processes or the system.

3. If a process has not been enabled for signals, the signal blocking mask for any thread created in the

process will be set to the empty set.

4. If a process with multiple threads is disabled for signals by calling Qp0sDisableSignals() and then

later re-enabled for signals, only the thread that causes signals to be enabled will have its signal

blocking mask changed. The signal blocking mask for all other threads will be the value last used to

set the signal blocking mask for those threads.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “alarm()—Set Schedule for Alarm Signal” on page 2—Set Schedule for Alarm Signal

v “kill()—Send Signal to Process or Group of Processes” on page 8—Send Signal to Process or Group of

Processes

v “pause()—Suspend Process Until Signal Received” on page 12—Suspend Process Until Signal Received

v “Qp0sEnableSignals()—Enable Process for Signals” on page 17—Enable Process for Signals

v “setitimer()—Set Value for Interval Timer” on page 19—Set Value for Interval Timer

Signal APIs 15

rzah4mst.htm

v “sigaction()—Examine and Change Signal Action” on page 23—Examine and Change Signal Action

v “sigprocmask()—Examine and Change Blocked Signals” on page 47—Examine and Change Blocked

Signals

v “sigsuspend()—Wait for Signal” on page 53—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 56—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 59—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 62—Synchronously Accept a

Signal and Signal Data

v “sleep()—Suspend Processing for Interval of Time” on page 65—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how a process can reset its signal vector and signal blocking mask.

#include <signal.h>

#include <time.h>

#include <unistd.h>

#include <stdio.h>

void timestamp(char *str) {

 time_t t;

 time(&t);

 printf("%s the time is %s\n", str, ctime(&t));

}

int main(int argc, char * argv[]) {

 unsigned int ret;

 timestamp("before sleep()");

 /*

 * The sleep() function implicitly enables the process to

 * receive signals.

 */

 ret = sleep(10);

 timestamp("after sleep()");

 printf("sleep() returned %d\n", ret);

 /*

 * Qp0sDisableSignals() prevents the process from receiving

 * signals. If the call to the Qp0sDisableSignals() function

 * is not done, the process would remain eligible to receive

 * signals after the return from main().

 */

 Qp0sDisableSignals();

 return(0);

}

16 iSeries: UNIX-Type -- Signal APIs

aboutapis.htm#CODEDISCLAIMER

Output:

 before sleep() the time is Sun Jan 22 17:25:17 1995

 after sleep() the time is Sun Jan 22 17:25:28 1995

 sleep() returned 0

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Qp0sEnableSignals()—Enable Process for Signals

 Syntax

 #include <signal.h>

 int Qp0sEnableSignals(void);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0sEnableSignals() function enables the process to receive signals.

The Qp0sEnableSignals() function causes the process signal vector to be initialized for the set of

supported signals. The signal handling action for each supported signal is set to the default action, as

defined by sigaction() (see “sigaction()—Examine and Change Signal Action” on page 23). The signal

blocking mask of the calling thread is set to the empty signal set (see “sigemptyset()—Initialize and

Empty Signal Set” on page 36).

If the process is currently enabled for signals, a call to the Qp0sEnableSignals() has no effect. That is, the

process signal vector and the signal blocking mask of the calling thread are unchanged and an

[EALREADY] error is returned.

Parameters

None

Return Value

 0 Qp0sEnableSignals() was successful.

-1 Qp0sEnableSignals() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0sEnableSignals() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EALREADY]

 Operation already in progress.

 The calling process is currently enabled for signals.

Signal APIs 17

#TOP_OF_PAGE
unix.htm
aplist.htm

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

v

Usage Notes

1. Processes, by default, are not eligible to receive signals from other processes or the system. The

Qp0sEnableSignals() function allows the calling process to receive signals from other processes or the

system without having to call other signal functions that enable the process for signals.

Use of the following functions enable a process for signals:

v alarm()

v getpgrp()

v getpid()

v kill()

v pause()

v Qp0wGetPgrp()

v Qp0wGetPid()

v setitimer()

v sigaction()

v sigprocmask()

v sigsuspend()

v sigtimedwait()

v sigwait()

v sigwaitinfo()

v sleep()

Any of the Pthread APIs. See Pthread APIs for more information.

2. Once a process has been enabled for signals, it remains eligible to receive signals until either it ends

or some user action is taken to prevent the delivery of signals. The user of signals can prevent the

signals from being delivered by calling the sigprocmask() function. The user can also ignore the signal

by calling the sigaction() function. However, not all signals can be blocked or ignored. For details, see

“sigaction()—Examine and Change Signal Action” on page 23 and “sigprocmask()—Examine and

Change Blocked Signals” on page 47.

3. If a process has not been enabled for signals, the signal blocking mask for any thread created in the

process will be set to the empty set.

4. If a process with multiple threads is disabled for signals by calling Qp0sDisableSignals() and then

later re-enabled for signals, only the thread that causes signals to be enabled will have its signal

blocking mask changed. The signal blocking mask for all other threads will be the value last used to

set the signal blocking mask for those threads.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “alarm()—Set Schedule for Alarm Signal” on page 2—Set Schedule for Alarm Signal

v “kill()—Send Signal to Process or Group of Processes” on page 8—Send Signal to Process or Group of

Processes

v “pause()—Suspend Process Until Signal Received” on page 12—Suspend Process Until Signal Received

18 iSeries: UNIX-Type -- Signal APIs

rzah4mst.htm

v “Qp0sDisableSignals()—Disable Process for Signals” on page 14—Disable Process for Signals

v “setitimer()—Set Value for Interval Timer”—Set Value for Interval Timer

v “sigaction()—Examine and Change Signal Action” on page 23—Examine and Change Signal Action

v “sigprocmask()—Examine and Change Blocked Signals” on page 47—Examine and Change Blocked

Signals

v “sigsuspend()—Wait for Signal” on page 53—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 56—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 59—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 62—Synchronously Accept a

Signal and Signal Data

v “sleep()—Suspend Processing for Interval of Time” on page 65—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how a process can reset its signal vector and signal blocking mask:

#include <signal.h>

#include <errno.h>

int resetSignals(void) {

 int return_value;

 return_value = Qp0sEnableSignals();

 if(return_value == -1) {

 Qp0sDisableSignals();

 return_value = Qp0sEnableSignals();

 }

 return(return_value);

}

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

setitimer()—Set Value for Interval Timer

 Syntax

 #include <sys/time.h>

 int setitimer(int which,

 const struct itimerval *value,

 struct itimerval *ovalue);

 Service Program Name: QP0SSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

Signal APIs 19

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

The setitimer() function sets the timer specified by which to the value in the structure pointed to by value

and stores the previous value of the timer in the structure pointed to by ovalue.

Parameters

which (Input) The interval timer type.

 The possible values for which, which are defined in the <sys/time.h> header file, are as follows:

 ITIMER_REAL The interval timer value is decremented in real time. The SIGALRM signal is generated for

the process when this timer expires.

ITIMER_VIRTUAL The interval timer value is only decremented when the process is running. The SIGVTALRM

signal is generated for the process when this timer expires.

ITIMER_PROF The interval timer value is only decremented when the process is running or when the

system is running on behalf of the process. The SIGPROF signal is generated for the process

when this timer expires.

value (Input) A pointer to the interval timer structure to be used to change the interval timer value.

 The timer value is defined by the itimerval structure. If it_value is non-zero, it indicates the time

to the next timer expiration. If it_interval is non-zero, it indicates the time to be used to reset the

timer when the it_value time elapses. If it_value is zero, the timer is disabled and the value of

it_interval is ignored. If it_interval is zero, the timer is disabled after the next timer expiration.

ovalue (Output) A pointer to the space where the previous interval timer value is stored. This value may

be NULL.

Return Value

 0 setitimer() was successful.

-1 setitimer() was not successful. The errno variable is set to indicate the error.

Error Conditions

If setitimer() is not successful, errno usually indicates the following error. Under some conditions, errno

could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

v The value of which is not equal to one of the defined values.

v The tv_usec member of the it_value structure has a value greater than or equal to 1,000,000.

v The tv_usec member of the it_interval structure has a value greater than or equal to 1,000,000.

[ENOSYSRSC]

 System resources not available to complete request.

v The ITIMER_VIRTUAL value for which is not supported on this implementation.

v The ITIMER_PROF value for which is not supported on this implementation.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

20 iSeries: UNIX-Type -- Signal APIs

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

Usage Notes

The setitimer() function enables a process for signals if the process is not already enabled for signals. For

details, see “Qp0sEnableSignals()—Enable Process for Signals” on page 17. If the system has not been

enabled for signals, setitimer() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

v The <sys/time.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “alarm()—Set Schedule for Alarm Signal” on page 2—Set Schedule for Alarm Signal

v “setitimer()—Set Value for Interval Timer” on page 19—Set Value for Interval Timer

v “sleep()—Suspend Processing for Interval of Time” on page 65—Suspend Processing for Interval of

Time

v “usleep()—Suspend Processing for Interval of Time” on page 67—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example returns the current interval timer value using the setitimer() function:

#include <sys/time.h>

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

#include <time.h>

#include <errno.h>

#define LOOP_LIMIT 1E12

volatile int sigcount=0;

void catcher(int sig) {

 struct itimerval value;

 int which = ITIMER_REAL;

 printf("Signal catcher called for signal %d\n", sig);

 sigcount++;

 if(sigcount > 1) {

 /*

 * Disable the real time interval timer

 */

 getitimer(which, &value);

 value.it_value.tv_sec = 0;

 value.it_value.tv_usec = 0;

 setitimer(which, &value, NULL);

 }

}

int main(int argc, char *argv[]) {

 int result = 0;

Signal APIs 21

aboutapis.htm#CODEDISCLAIMER

struct itimerval value, ovalue, pvalue;

 int which = ITIMER_REAL;

 struct sigaction sact;

 volatile double count;

 time_t t;

 sigemptyset(&sact.sa_mask);

 sact.sa_flags = 0;

 sact.sa_handler = catcher;

 sigaction(SIGALRM, &sact, NULL);

 getitimer(which, &pvalue);

 /*

 * Set a real time interval timer to repeat every 200 milliseconds

 */

 value.it_interval.tv_sec = 0; /* Zero seconds */

 value.it_interval.tv_usec = 200000; /* Two hundred milliseconds */

 value.it_value.tv_sec = 0; /* Zero seconds */

 value.it_value.tv_usec = 500000; /* Five hundred milliseconds */

 result = setitimer(which, &value, &ovalue);

 /*

 * The interval timer value returned by setitimer() should be

 * identical to the timer value returned by getitimer().

 */

 if(ovalue.it_interval.tv_sec != pvalue.it_interval.tv_sec ||

 ovalue.it_interval.tv_usec != pvalue.it_interval.tv_usec ||

 ovalue.it_value.tv_sec != pvalue.it_value.tv_sec ||

 ovalue.it_value.tv_usec != pvalue.it_value.tv_usec) {

 printf("Real time interval timer mismatch\n");

 result = -1;

 }

 time(&t);

 printf("Before loop, time is %s", ctime(&t));

 for(count=0; ((count<LOOP_LIMIT) && (sigcount<2)); count++);

 time(&t);

 printf("After loop, time is %s\n", ctime(&t));

 if(sigcount == 0)

 printf("The signal catcher never gained control\n");

 else

 printf("The signal catcher gained control\n");

 printf("The value of count is %.0f\n", count);

 return(result);

}

Output:

 Before loop, time is Sun Jun 15 10:14:00 1997

 Signal catcher called for signal 14

 Signal catcher called for signal 14

 After loop, time is Sun Jun 15 10:14:01 1997

 The signal catcher gained control

 The value of count is 702943

22 iSeries: UNIX-Type -- Signal APIs

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

sigaction()—Examine and Change Signal Action

 Syntax

 #include <signal.h>

 #include <sys/signal.h>

 int sigaction(int sig, const struct sigaction *act,

 struct sigaction *oact);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The sigaction() function examines, changes, or both examines and changes the action associated with a

specific signal.

The sig argument must be one of the macros defined in the <sys/signal.h> header file.

If sigaction() fails, the action for the signal sig is not changed.

Parameters

sig (Input) A signal from the list defined in “Control Signals Table” on page 27.

*act (Input) A pointer to the sigaction structure that describes the action to be taken for the signal.

Can be NULL.

 If act is a NULL pointer, signal handling is unchanged. sigaction() can be used to inquire about

the current handling of signal sig.

 If act is not NULL, the action specified in the sigaction structure becomes the new action

associated with sig.

*oact (Output) A pointer to a storage location where sigaction() can store a sigaction structure. This

structure contains the action currently associated with sig. Can be NULL.

 If oact is a NULL pointer, sigaction() does not store this information.

 The sigaction() function uses structures of the sigaction type. The following is an example of a

sigaction() structure:

struct sigaction {

 void (*sa_handler)(int);

 sigset_t sa_mask;

 int sa_flags;

 void (*sa_sigaction)(int, siginfo_t *,void *);

};

The members of the sigaction structure are as follows:

Signal APIs 23

#TOP_OF_PAGE
unix.htm
aplist.htm

Member name Description

void (*) (int) sa_handler A pointer to the function assigned to handle the signal. The value of this

member also can be SIG_DFL (indicating the default action) or SIG_IGN

(indicating that the signal should be ignored).

sigset_t sa_mask A signal set (set of signals) to be added to the signal mask of the calling

process before the signal-catching function sa_handler is called. For more

on signal sets, see “sigprocmask()—Examine and Change Blocked Signals”

on page 47. You cannot use this mechanism to block the SIGKILL or

SIGStop signals. If sa_mask includes these signals, they are ignored and

sigaction() does not return an error.

sa_mask must be set by using one or more of the signal set manipulation

functions: sigemptyset(), sigfillset(), sigaddset(), or sigdelset()

int sa_flags A collection of flag bits that affect the behavior of signals. The following

flag bits can be set in sa_flags:

SA_NOCLDStop

If this flag is set, the system does not generate a SIGCHLD signal

when child processes stop. This is relevant only when the sig

argument of sigaction() is SIGCHLD.

SA_NODEFER

If this flag is set and sigis caught, sig is not added to the signal

mask of the process on entry to the signal catcher unless it is

included in sa_mask. If this flag is not set, sig is always added to

the signal mask of the process on entry to the signal catcher. This

flag is supported for compatibility with applications that use

signal() to set the signal action.

SA_RESETHAND

If this flag is set, the signal-handling action for the signal is reset

to SIG_DFL and the SA_SIGINFO flag is cleared on entry to the

signal-catching function. Otherwise, the signal-handling action is

not changed on entry to the signal-catching function. This flag is

supported for compatibility with applications that use signal() to

set the signal action.

SA_SIGINFO

If this flag is not set and the signal is caught, the signal-catching

function identified by sa_handler is entered. If this flag is set and

the signal is caught, the signal-catching function identified by

sa_sigaction is entered.

void (*) (int, siginfo_t *, void *)

sa_sigaction

A pointer to the function assigned to handle the signal. If SA_SIGINFO is

set, the signal-catching function identified by sa_sigaction is entered with

additional arguments and sa_handler is ignored. If SA_SIGINFO is not

set, sa_sigaction is ignored. If sig_action() is called from a program using

data model LLP64, the parameters to sa_sigaction must be declared as

siginfo_t *__ptr128 and void *__ptr128.

When a signal catcher installed by sigaction(), with the SA_RESETHAND flag set off, catches a signal,

the system calculates a new signal mask by taking the union of the following:

v The current signal mask

v The signals specified by sa_mask

v The signal that was just caught if the SA_NODEFER flag is set off

24 iSeries: UNIX-Type -- Signal APIs

This new mask stays in effect until the signal handler returns, or until sigprocmask(), sigsuspend(), or

siglongjmp() is called. When the signal handler ends, the original signal mask is restored.

After an action has been specified for a particular signal, it remains installed until it is explicitly changed

with another call to sigaction().

There are three types of actions that can be associated with a signal: SIG_DFL, SIG_IGN, or a pointer to a

function. Initially, all signals are set to SIG_DFL or SIG_IGN. The actions prescribed by these values are

as follows:

 Action Description

SIG_DFL (signal-specific default action) v The default actions for the supported signals are specified in “Control

Signals Table” on page 27

v If the default action is to stop the process, that process is temporarily

suspended. When a process stops, a SIGCHLD signal is generated for

its parent process, unless the parent process has set the SA_NOCLDStop

flag. While a process is stopped, any additional signals sent to the

process are not delivered. The one exception is SIGKILL, which always

ends the receiving process. When the process resumes, any unblocked

signals that were not delivered are then delivered to it.

v If the default action is to ignore the signal, setting a signal action to

SIG_DFL causes any pending signals for that signal to be discarded,

whether or not the signal is blocked.

SIG_IGN (ignore signal) v Delivery of the signal has no effect on the process. The behavior of a

process is undefined if it ignores a SIGFPE, SIGILL, or SIGSEGV signal

that was not generated by kill() or raise().

v If the default action is to ignore the signal, setting a signal action to

SIG_DFL causes any pending signals for that signal to be discarded,

whether or not the signal is blocked.

v The signal action for the signals SIGKILL and SIGtop cannot be set to

SIG_IGN.

Signal APIs 25

Action Description

Pointer to a function (catch signal) v On delivery of the signal, the receiving process runs the signal-catching

function. When the signal-catching function returns, the receiving

process resumes processing at the point at which it was interrupted.

v If SA_SIGINFO is not set, the signal-catching function identified by

sa_handler is entered as follows:

void func(int signo);

where the following is true:

– func is the specified signal-catching function.

– signo is the signal number of the signal being delivered.

v If SA_SIGINFO is set, the signal-catching function identified by

sa_sigaction is entered as follows:

void func(int signo, siginfo_t *info, void *context);

where the following is true:

– func is the specified signal-catching function.

– signo is the signal number of the signal being delivered.

– *info points to an object of type siginfo_t associated with the signal

being delivered.

– context is set to the NULL pointer.

v The behavior of a process is undefined if it returns normally from a

signal-catching function for a SIGFPE, SIGILL, or SIGSEGV signal that

was not generated by kill() or raise().

v The signals SIGKILL and SIGStop cannot be caught.

The following is an example of the siginfo_t structure:

typedef struct siginfo_t {

 int si_signo; /* Signal number */

 int si_source : 1; /* Signal source */

 int reserved1 : 15; /* Reserved (binary 0) */

 short si_data_size; /* Size of additional signal

 related data (if available) */

 _MI_Time si_time; /* Time of signal */

 struct {

 char reserved2[2] /* Pad (reserved) */

 char si_job[10]; /* Simple job name */

 char si_user[10]; /* User name */

 char si_jobno[6]; /* Job number */

 char reserved3[4]; /* Pad (reserved) */

 } si_QJN; /* Qualified job name */

 int si_code; /* Cause of signal */

 int si_errno; /* Error number */

 pid_t si_pid; /* Process ID of sender */

 uid_t si_uid; /* Real user ID of sender */

 char si_data[1]; /* Additional signal related

 data (if available) */

} siginfo_t;

The members of the siginfo_t structure are as follows:

 int si_signo The system-generated signal number.

26 iSeries: UNIX-Type -- Signal APIs

int si_source Indicates whether the source of the signal is being generated by the system or another process on

the system. When the signal source is another process, the members si_QJN, si_pid, and si_uid

contain valid data. When the signal source is the system, those members are set to binary 0.

short si_data_size The length of si_errno, si_code, si_pid, si_uid, and any additional signal-related data. If this

member is set to 0, this signal-related information is not available.

struct si_QJN The fully qualified OS/400 job name of the process sending the signal.

int si_errno If not zero, this member contains an errno value associated with the signal, as defined in

<errno.h>.

int si_code If not zero, this member contains a code identifying the cause of the signal. Possible code values

are defined in the <sys/signal.h> header file.

pidt_t si_pid The process ID of the process sending the signal.

uid_t si_uid The real user ID of the process sending the signal.

char si_data[1] If present, the member contains any additional signal-related data.

Control Signals Table

See “Default Actions:” on page 28 for a description of the value given.

 Value Default Action Meaning

SIGABRT 2 Abnormal termination

SIGFPE 2 Arithmetic exceptions that are not masked (for example, overflow,

division by zero, and incorrect operation)

SIGILL 2 Detection of an incorrect function image

SIGINT 2 Interactive attention

SIGSEGV 2 Incorrect access to storage

SIGTERM 2 Termination request sent to the program

SIGUSR1 2 Intended for use by user applications

SIGUSR2 2 Intended for use by user applications

SIGALRM 2 A timeout signal (sent by alarm())

SIGHUP 2 A controlling terminal is hung up, or the controlling process ended

SIGKILL 1 A termination signal that cannot be caught or ignored

SIGPIPE 3 A write to a pipe that is not being read

SIGQUIT 2 A quit signal for a terminal

SIGCHLD 3 An ended or stopped child process (SIGCLD is an alias name for

this signal)

SIGCONT 5 If stopped, continue

SIGStop 4 A stop signal that cannot be caught or ignored

SIGTSTP 4 A stop signal for a terminal

SIGTTIN 4 A background process attempted to read from a controlling

terminal

SIGTTOU 4 A background process attempted to write to a controlling terminal

SIGIO 3 Completion of input or output

SIGURG 3 High bandwidth data is available at a socket

SIGPOLL 2 Pollable event

SIGBUS 2 Specification exception

SIGPRE 2 Programming exception

SIGSYS 2 Bad system call

Signal APIs 27

Value Default Action Meaning

SIGTRAP 2 Trace or breakpoint trap

SIGPROF 2 Profiling timer expired

SIGVTALRM 2 Virtual timer expired

SIGXCPU 2 Processor time limit exceeded

SIGXFSZ 2 File size limit exceeded

SIGDANGER 2 System crash imminent

SIGPCANCEL 2 Thread termination signal that cannot be caught or ignored

Default Actions:

 1 End the process immediately.

2 End the request.

3 Ignore the signal.

4 Stop the process.

5 Continue the process if it is currently stopped. Otherwise, ignore the signal.

Return Value

 0 sigaction() was successful.

-1 sigaction() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sigaction() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

Usage Notes

1. When the sigaction function is used to change the action associated with a specific signal, it enables a

process for signals if the process is not already enabled for signals. For details, see

“Qp0sEnableSignals()—Enable Process for Signals” on page 17. If the system has not been enabled for

signals, sigaction() is not successful, and an [ENOTSIGINIT] error is returned.

2. The sigaction() function can be used to set the action for a particular signal with the same semantics

as a call to signal(). The sigaction structure indicated by the parameter *act should contain the

following:

28 iSeries: UNIX-Type -- Signal APIs

v A sa_handler equal to the func specified on signal().

v A sa_mask containing the signal mask set by sigemptyset().

v A sa_flag with the SA_RESETHAND flag set on.

v A sa_flag with the SA_NODEFER flag set on.
3. Some of the functions have been restricted to be serially reusable with respect to asynchronous

signals. That is, the library does not allow an asynchronous signal to interrupt the processing of one

of these functions until it has completed.

This restriction needs to be taken into consideration when a signal-catching function is called

asynchronously, because it causes the behavior of some of the library functions to become

unpredictable.

Because of this, when producing a strictly compliant POSIX application, only the following functions

should be assumed to be reentrant with respect to asynchronous signals. Your signal-catching

functions should be restricted to using only these functions:

 accept() access() alarm() chdir()

chmod() chown() close() connect()

creat() dup() dup2() fcntl()

fstat() getegid() geteuid() getgid()

getgroups() getpgrp() getpid() getppid()

getuid() kill() link() lseek()

mkdir() open() pathconf() pause()

read() readv() recv() recvfrom()

recvmsg() rename() rmdir() select()

send() sendmsg() sendto() sigaction()

sigaddset() sigdelset() sigemptyset() sigfillset()

sigismember() sigpending() sigprocmask() sigsuspend()

sigtimedwait() sigwait() sigwaitinfo() setitimer()

sleep() stat() sysconf() time()

times() umask() uname() unlink()

utime() write() writev()

In addition to the above functions, the macro versions of getc() and putc() are not reentrant. However,

the library versions of these functions are reentrant.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “kill()—Send Signal to Process or Group of Processes” on page 8—Send Signal to Process or Group of

Processes

v “Qp0sDisableSignals()—Disable Process for Signals” on page 14—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 17—Enable Process for Signals

v “sigprocmask()—Examine and Change Blocked Signals” on page 47—Examine and Change Blocked

Signals

v “sigsuspend()—Wait for Signal” on page 53—Wait for Signal

Example

See Code disclaimer information for information pertaining to code examples.

The following example shows how signal catching functions can be established using the sigaction()

function:

Signal APIs 29

aboutapis.htm#CODEDISCLAIMER

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

void check_mask(int sig, char *signame) {

 sigset_t sigset;

 sigprocmask(SIG_SETMASK, NULL, &sigset);

 if(sigismember(&sigset, sig))

 printf("the %s signal is blocked\n", signame);

 else

 printf("the %s signal is unblocked\n", signame);

}

void catcher(int sig) {

 printf("inside catcher() function\n");

 check_mask(SIGUSR1, "SIGUSR1");

 check_mask(SIGUSR2, "SIGUSR2");

}

int main(int argc, char *argv[]) {

 struct sigaction sigact, old_sigact;

 sigset_t sigset;

 /*

 * Set up an American National Standard C style signal handler

 * by setting the signal mask to the empty signal set and

 * using the do-not-defer signal, and reset the signal handler

 * to the SIG_DFL signal flag options.

 */

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_flags = sigact.sa_flags | SA_NODEFER | SA_RESETHAND;

 sigact.sa_handler = catcher;

 sigaction(SIGUSR1, &sigact, NULL);

 /*

 * Send a signal to this program by using

 * kill(getpid(), SIGUSR1)

 * which is the equivalent of the American

 * National Standard C raise(SIGUSR1)

 * function call.

 */

 printf("raise SIGUSR1 signal\n");

 kill(getpid(), SIGUSR1);

 /*

 * Get the current value of the signal handling action for

 * SIGUSR1. The signal-catching function should have been

 * reset to SIG_DFL

 */

 sigaction(SIGUSR1, NULL, &old_sigact);

 if (old_sigact.sa_handler != SIG_DFL)

 printf("signal handler was not reset\n");

 /*

 * Reset the signal-handling action for SIGUSR1

 */

 sigemptyset(&sigact.sa_mask);

 sigaddset(&sigact.sa_mask, SIGUSR2);

30 iSeries: UNIX-Type -- Signal APIs

sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGUSR1, &sigact, NULL);

 printf("raise SIGUSR1 signal\n");

 kill(getpid(), SIGUSR1);

 /*

 * Get the current value of the signal-handling action for

 * SIGUSR1. catcher() should still be the signal catching

 * function.

 */

 sigaction(SIGUSR1, NULL, &old_sigact);

 if(old_sigact.sa_handler != catcher)

 printf("signal handler was reset\n");

 return(0);

}

Output:

 raise SIGUSR1 signal

 inside catcher() function

 the SIGUSR1 signal is unblocked

 the SIGUSR2 signal is unblocked

 raise SIGUSR1 signal

 inside catcher() function

 the SIGUSR1 signal is blocked

 the SIGUSR2 signal is blocked

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sigaddset()—Add Signal to Signal Set

 Syntax

 #include <signal.h>

 int sigaddset(sigset_t *set, int signo);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The sigaddset() function is part of a family of functions that manipulate signal sets. Signal sets are data

objects that let a thread keep track of groups of signals. For example, a thread might create a signal set to

record which signals it is blocking, and another signal set to record which signals are pending. Signal sets

are used to manipulate groups of signals used by other functions (such as sigprocmask()) or to examine

signal sets returned by other functions (such as sigpending()).

sigaddset() adds a signal to the set of signals already recorded in set.

Signal APIs 31

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

*set (Input) A pointer to a signal set.

signo (Input) A signal from the list defined in “Control Signals Table” on page 27.

Return Value

 0 sigaddset() successfully added to the signal set.

-1 sigaddset() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sigaddset() is not successful, errno usually indicates the following error. Under some conditions, errno

could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The value of signo is not within the range of valid signals or specifies a signal that is not

supported.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “sigaction()—Examine and Change Signal Action” on page 23—Examine and Change Signal Action

v “sigdelset()—Delete Signal from Signal Set” on page 33—Delete Signal from Signal Set

v “sigemptyset()—Initialize and Empty Signal Set” on page 36—Initialize and Empty Signal Set

v “sigfillset()—Initialize and Fill Signal Set” on page 37—Initialize and Fill Signal Set

v “sigismember()—Test for Signal in Signal Set” on page 39—Test for Signal in Signal Set

v “sigprocmask()—Examine and Change Blocked Signals” on page 47—Examine and Change Blocked

Signals

v “sigpending()—Examine Pending Signals” on page 45—Examine Pending Signals

v “sigsuspend()—Wait for Signal” on page 53—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 56—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 59—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 62—Synchronously Accept a

Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example adds a signal to a set of signals:

#include <stdio.h>

#include <unistd.h>

#include <signal.h>

32 iSeries: UNIX-Type -- Signal APIs

aboutapis.htm#CODEDISCLAIMER

void catcher(int sig) {

 printf("catcher() has gained control\n");

}

int main(int argc, char *argv[]) {

 struct sigaction sigact;

 sigset_t sigset;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGUSR1, &sigact, NULL);

 printf("before first kill()\n");

 kill(getpid(), SIGUSR1);

 /*

 * Blocking SIGUSR1 signals prevents the signals

 * from being delivered until they are unblocked,

 * so the catcher will not gain control.

 */

 sigemptyset(&sigset);

 sigaddset(&sigset, SIGUSR1);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 printf("before second kill()\n");

 kill(getpid(), SIGUSR1);

 printf("after second kill()\n");

 return(0);

}

Output:

 before first kill()

 catcher() has gained control

 before second kill()

 after second kill()

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sigdelset()—Delete Signal from Signal Set

 Syntax

 #include <signal.h>

 int sigdelset(sigset_t *set, int signo);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

Signal APIs 33

#TOP_OF_PAGE
unix.htm
aplist.htm

The sigdelset() function is part of a family of functions that manipulate signal sets. Signal sets are data

objects that let a thread keep track of groups of signals. For example, a thread might create a signal set to

record which signals it is blocking, and another signal set to record which signals are pending. Signal sets

are used to manipulate groups of signals used by other functions (such as sigprocmask()) or to examine

signal sets returned by other functions (such as sigpending()).

sigdelset() removes the specified signo from the list of signals recorded in set.

Parameters

*set (Input) A pointer to a signal set.

signo (Input) A signal from the list defined in “Control Signals Table” on page 27.

Return Value

 0 sigdelset() successfully deleted from the signal set.

-1 sigdelset() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sigdelset() is not successful, errno usually indicates the following error. Under some conditions, errno

could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The value of signo is not within the range of valid signals or specifies a signal that is not

supported.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “sigaction()—Examine and Change Signal Action” on page 23—Examine and Change Signal Action

v “sigaddset()—Add Signal to Signal Set” on page 31—Add Signal to Signal Set

v “sigemptyset()—Initialize and Empty Signal Set” on page 36—Initialize and Empty Signal Set

v “sigfillset()—Initialize and Fill Signal Set” on page 37—Initialize and Fill Signal Set

v “sigismember()—Test for Signal in Signal Set” on page 39—Test for Signal in Signal Set

v “sigprocmask()—Examine and Change Blocked Signals” on page 47—Examine and Change Blocked

Signals

v “sigpending()—Examine Pending Signals” on page 45—Examine Pending Signals

v “sigsuspend()—Wait for Signal” on page 53—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 56—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 59—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 62—Synchronously Accept a

Signal and Signal Data

34 iSeries: UNIX-Type -- Signal APIs

Example

See Code disclaimer information for information pertaining to code examples.

The following example deletes a signal from a set of signals:

#include <stdio.h>

#include <unistd.h>

#include <signal.h>

void catcher(int sig) {

 printf("catcher() has gained control\n");

}

int main(int argc, char *argv[]) {

 struct sigaction sigact;

 sigset_t sigset;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGUSR1, &sigact, NULL);

 /*

 * Blocking all signals prevents the blockable

 * signals from being delivered until they are

 * unblocked, so the catcher will not gain

 * control.

 */

 sigfillset(&sigset);

 sigaddset(&sigset, SIGUSR1);

 sigprocmask(SIG_SETMASK, &,sigset, NULL);

 printf("before kill()\n");

 kill(getpid(), SIGUSR1);

 printf("before unblocking SIGUSR1\n");

 sigdelset(&sigset, SIGUSR1);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 printf("after unblocking SIGUSR1\n");

 return(0);

}

Output:

 before kill()

 before unblocking SIGUSR1

 catcher() has gained control

 after unblocking SIGUSR1

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Signal APIs 35

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

sigemptyset()—Initialize and Empty Signal Set

 Syntax

 #include <signal.h>

 int sigemptyset(sigset_t *set);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The sigemptyset() function is part of a family of functions that manipulate signal sets. Signal sets are

data objects that let a thread keep track of groups of signals. For example, a thread might create a signal

set to record which signals it is blocking, and another signal set to record which signals are pending.

Signal sets are used to manipulate groups of signals used by other functions (such as sigprocmask()) or

to examine signal sets returned by other functions (such as sigpending()).

sigemptyset() initializes the signal set specified by set to an empty set. That is, all supported signals are

excluded (see “Control Signals Table” on page 27).

Parameters

*set (Input) A pointer to a signal set.

Return Value

 0 sigemptyset() was successful.

Error Conditions

The sigemptyset() function does not return an error.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “sigaction()—Examine and Change Signal Action” on page 23—Examine and Change Signal Action

v “sigaddset()—Add Signal to Signal Set” on page 31—Add Signal to Signal Set

v “sigdelset()—Delete Signal from Signal Set” on page 33—Delete Signal from Signal Set

v “sigfillset()—Initialize and Fill Signal Set” on page 37—Initialize and Fill Signal Set

v “sigismember()—Test for Signal in Signal Set” on page 39—Test for Signal in Signal Set

v “sigprocmask()—Examine and Change Blocked Signals” on page 47—Examine and Change Blocked

Signals

v “sigpending()—Examine Pending Signals” on page 45—Examine Pending Signals

v “sigsuspend()—Wait for Signal” on page 53—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 56—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 59—Synchronously Accept a Signal

36 iSeries: UNIX-Type -- Signal APIs

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 62—Synchronously Accept a

Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example initializes a set of signals to the empty set:

#include <stdio.h>

#include <unistd.h>

#include <signal.h>

int main(int argc, char *argv[]) {

 struct sigaction sigact;

 sigset_t sigset;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = SIG_IGN;

 sigaction(SIGUSR2, &sigact, NULL);

 /*

 * Unblocking all signals ensures that the signal

 * handling action will be taken when the signal

 * is generated.

 */

 sigemptyset(&sigset);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 printf("before kill()\n");

 kill(getpid(), SIGUSR2);

 printf("after kill()\n");

 return(0);

}

Output:

 before kill()

 after kill()

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sigfillset()—Initialize and Fill Signal Set

 Syntax

 #include <signal.h>

 int sigfillset(sigset_t *set);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

Signal APIs 37

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

The sigfillset() function is part of a family of functions that manipulate signal sets. Signal sets are data

objects that let a thread keep track of groups of signals. For example, a thread might create a signal set to

record which signals it is blocking, and another signal set to record which signals are pending. Signal sets

are used to manipulate groups of signals used by other functions (such as sigprocmask()) or to examine

signal sets returned by other functions (such as sigpending()).

sigfillset() initializes the signal set specified by set to a complete set. That is, the set includes all

supported signals (see “Control Signals Table” on page 27).

Parameters

*set (Input) A pointer to a signal set.

Return Value

 0 sigfillset() was successful.

Error Conditions

The sigfillset() function does not return an error.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “sigaction()—Examine and Change Signal Action” on page 23—Examine and Change Signal Action

v “sigaddset()—Add Signal to Signal Set” on page 31—Add Signal to Signal Set

v “sigdelset()—Delete Signal from Signal Set” on page 33—Delete Signal from Signal Set

v “sigemptyset()—Initialize and Empty Signal Set” on page 36—Initialize and Empty Signal Set

v “sigismember()—Test for Signal in Signal Set” on page 39—Test for Signal in Signal Set

v “sigprocmask()—Examine and Change Blocked Signals” on page 47—Examine and Change Blocked

Signals

v “sigpending()—Examine Pending Signals” on page 45—Examine Pending Signals

v “sigsuspend()—Wait for Signal” on page 53—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 56—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 59—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 62—Synchronously Accept a

Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example initializes a set of signals to the complete set:

#include <stdio.h>

#include <unistd.h>

#include <signal.h>

int main(int argc, char *argv[]) {

 sigset_t sigset;

 /*

 * Blocking all signals ensures that the signal

38 iSeries: UNIX-Type -- Signal APIs

aboutapis.htm#CODEDISCLAIMER

* handling action for the signals in the set is

 * not taken until the signals are unblocked.

 */

 sigfillset(&sigset);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 printf("before kill()\n");

 kill(getpid(), SIGUSR2);

 printf("after kill()\n");

 return(0);

}

Output:

 before kill()

 after kill()

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sigismember()—Test for Signal in Signal Set

 Syntax

 #include <signal.h>

 int sigismember(const sigset_t *set, int signo);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The sigismember() function is part of a family of functions that manipulate signal sets. Signal sets are

data objects that let a thread keep track of groups of signals. For example, a thread might create a signal

set to record which signals it is blocking, and another signal set to record which signals are pending.

Signal sets are used to manipulate groups of signals used by other functions (such as sigprocmask()) or

to examine signal sets returned by other functions (such as sigpending()).

sigismember() tests whether a signal number specified by signo is a member of a signal set specified by

set.

Parameters

*set (Input) A pointer to a signal set.

signo (Input) A signal from the list defined in “Control Signals Table” on page 27.

Return Value

 1 The specified signal is in the specified signal set.

0 The specified signal is not in the specified signal set.

-1 An error occurred. The errno variable is set to indicate the error.

Signal APIs 39

#TOP_OF_PAGE
unix.htm
aplist.htm

Error Conditions

If sigismember() is not successful, errno usually indicates the following error. Under some conditions,

errno could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The value of signo is not within the range of valid signals or specifies a signal that is not

supported.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “sigaction()—Examine and Change Signal Action” on page 23—Examine and Change Signal Action

v “sigaddset()—Add Signal to Signal Set” on page 31—Add Signal to Signal Set

v “sigdelset()—Delete Signal from Signal Set” on page 33—Delete Signal from Signal Set

v “sigemptyset()—Initialize and Empty Signal Set” on page 36—Initialize and Empty Signal Set

v “sigfillset()—Initialize and Fill Signal Set” on page 37—Initialize and Fill Signal Set

v “sigprocmask()—Examine and Change Blocked Signals” on page 47—Examine and Change Blocked

Signals

v “sigpending()—Examine Pending Signals” on page 45—Examine Pending Signals

v “sigsuspend()—Wait for Signal” on page 53—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 56—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 59—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 62—Synchronously Accept a

Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses the sigismember() function to test for the presence of signals in a signal set:

#include <stdio.h>

#include <signal.h>

void check(sigset_t set, int signo, char *signame) {

 printf("%s is ", signame);

 if(!sigismember(&set, signo))

 printf("not ");

 printf("in the set");

}

int main(int argc, char *argv[]) {

 sigset_t sigset;

 sigemptyset(&sigset);

40 iSeries: UNIX-Type -- Signal APIs

aboutapis.htm#CODEDISCLAIMER

sigaddset(&sigset, SIGUSR1);

 sigaddset(&sigset, SIGKILL);

 sigaddset(&sigset, SIGCHLD);

 check(sigset, SIGUSR1, "SIGUSR1");

 check(sigset, SIGUSR2, "SIGUSR2");

 check(sigset, SIGCHLD, "SIGCHLD");

 check(sigset, SIGFPE, "SIGFPE");

 check(sigset, SIGKILL, "SIGKILL");

 return(0);

}

Output:

 SIGUSR1 is in the set

 SIGUSR2 is not in the set

 SIGCHLD is in the set

 SIGFPE is not in the set

 SIGKILL is in the set

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

siglongjmp()—Perform Nonlocal Goto with Signal Handling

 Syntax

 #include <setjmp.h>

 void siglongjmp(sigjmp_buf env, int val);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The siglongjmp() function restores the stack environment previously saved in env by sigsetjmp().

siglongjmp() also provides the option to restore the signal mask, depending on whether the signal mask

was saved by sigsetjmp().

siglongjmp() is similar to longjmp(), except for the optional capability of restoring the signal mask.

The sigsetjmp() and siglongjmp() functions provide a way to perform a nonlocal ″goto.″

A call to sigsetjmp() causes the current stack environment (including, optionally, the signal mask) to be

saved in env. A subsequent call to siglongjmp() does the following:

v Restores the saved environment and signal mask (if saved by sigsetjmp()).

v Returns control to a point in the program corresponding to the sigsetjmp() call.

Processing resumes as if the sigsetjmp() call had just returned the given val. All variables, (except register

variables) that are accessible to the function that receives control contain the values they had when

siglongjmp() was called. The values of register variables are unpredictable. Nonvolatile auto variables

that are changed between calls to sigsetjmp() and siglongjmp() are also unpredictable.

Signal APIs 41

#TOP_OF_PAGE
unix.htm
aplist.htm

Note: When using siglongjmp(), the function in which the corresponding call to sigsetjmp() was made

must not have returned first. Unpredictable program behavior occurs if siglongjmp() is called after the

function calling sigsetjmp() has returned.

The val argument passed to siglongjmp() must be nonzero. If the val argument is equal to zero,

siglongjmp() substitutes a 1 in its place.

siglongjmp() does not use the normal function call and return mechanisms. siglongjmp() restores the

saved signal mask only if the env parameter was initialized by a call to sigsetjmp() with a nonzero

savemask argument.

Parameters

env (Input) An array type that holds the information needed to restore a calling environment.

val (Input) The return value.

Return Value

None.

Error Conditions

The siglongjmp() function does not return an error.

Usage Notes

The sigsetjmp()-siglongjmp() pair and the setjmp()-longjmp() pair cannot be intermixed. A stack

environment and signal mask saved by sigsetjmp() can be restored only by siglongjmp().

Related Information

v The <setjmp.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “sigaction()—Examine and Change Signal Action” on page 23—Examine and Change Signal Action

v “sigprocmask()—Examine and Change Blocked Signals” on page 47—Examine and Change Blocked

Signals

v “sigsetjmp()—Set Jump Point for Nonlocal Goto” on page 50—Set Jump Point for Nonlocal Goto

v “sigsuspend()—Wait for Signal” on page 53—Wait for Signal

v “sleep()—Suspend Processing for Interval of Time” on page 65—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

This example saves the stack environment and signal mask at the following statement:

 if(sigsetjmp(mark,1) != 0) { ...

When the system first performs the if statement, it saves the environment and signal mask in mark and

sets the condition to false because sigsetjmp() returns a 0 when it saves the environment. The program

prints the following message:

 sigsetjmp() has been called

The subsequent call to function p() tests for a local error condition, which can cause it to perform

siglongjmp() (in this example as a result of calling a signal catching function). Control is returned to the

42 iSeries: UNIX-Type -- Signal APIs

aboutapis.htm#CODEDISCLAIMER

original sigsetjmp() function using the environment saved in mark and the restored signal mask. This

time, the condition is true because -1 is the return value from siglongjmp(). The program then performs

the statements in the block and prints the following:

 siglongjmp() function was called

Then the program performs the recover() function and exits.

Here is the program:

#include <signal.h>

#include <setjmp.h>

#include <unistd.h>

#include <stdio.h>

sigset_t sigset;

sigjmp_buf mark;

void catcher(int);

void p(void);

void recover(void);

int main(int argc, char *argv[]) {

 int result;

 /*

 * Block the SIGUSR1 and SIGUSR2 signals. This set of

 * signals will be saved as part of the environment

 * by the sigsetjmp() function.

 */

 sigemptyset(&sigset);

 sigaddset(&sigset, SIGUSR1);

 sigaddset(&sigset, SIGUSR2);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 if(sigsetjmp(mark, 1) != 0) {

 printf("siglongjmp() function was called\n");

 recover();

 result=0;

 }

 else {

 printf("sigsetjmp() has been called\n");

 p();

 sigprocmask(SIG_SETMASK, NULL, &sigset);

 if(sigismember(&sigset, SIGUSR2))

 printf("siglongjmp() was not called\n");

 result=-1;

 }

 printf("return to main with result %d\n", result);

 return(result);

}

void p(void) {

 struct sigaction sigact;

 int error=0;

 printf("performing function p()\n");

 /* Send signal handler in case error condition is detected */

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

Signal APIs 43

sigact.sa_handler = catcher;

 sigaction(SIGUSR2, &sigact, NULL);

 sigdelset(&sigset, SIGUSR2);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 /* After some processing an error condition is detected */

 error=-1;

 /* Call catcher() function if error is detected */

 if(error != 0) {

 printf("error condition detected, send SIGUSR2 signal\n");

 kill(getpid(), SIGUSR2);

 }

 printf("return from catcher() function is an error\n");

}

void recover(void) {

 printf("taking recovery action\n");

 sigprocmask(SIG_SETMASK, NULL, &sigset);

 if(sigismember(&sigset, SIGUSR2))

 printf("signal mask was restored after siglongjmp()\n");

}

void catcher(int signo) {

 printf("in catcher() before siglongjmp()\n");

 siglongjmp(mark, -1);

 printf("in catcher() after siglongjmp() is an error\n");

}

Output

 sigsetjmp() has been called

 performing function p()

 error condition detected, send SIGUSR2 signal

 in catcher() before siglongjmp()

 siglongjmp() function was called

 taking recovery action

 signal mask was restored after siglongjmp()

 return to main with result 0

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

44 iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

sigpending()—Examine Pending Signals

 Syntax

 #include <signal.h>

 int sigpending(sigset_t *set);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The sigpending() function returns signals that are blocked from delivery and pending for either the

calling thread or the process. This information is represented as a signal set stored in set. For more

information on examining the signal set pointed to by set, see “sigismember()—Test for Signal in Signal

Set” on page 39.

Parameters

*set (Output) A pointer to the space where the signal set information is stored.

Return Value

 0 sigpending() was successful.

-1 sigpending() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sigpending() is not successful, errno usually indicates the following error. Under some conditions, errno

could indicate an error other than that listed here.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “sigaddset()—Add Signal to Signal Set” on page 31—Add Signal to Signal Set

v “sigdelset()—Delete Signal from Signal Set” on page 33—Delete Signal from Signal Set

v “sigemptyset()—Initialize and Empty Signal Set” on page 36—Initialize and Empty Signal Set

v “sigfillset()—Initialize and Fill Signal Set” on page 37—Initialize and Fill Signal Set

v “sigismember()—Test for Signal in Signal Set” on page 39—Test for Signal in Signal Set

v “sigprocmask()—Examine and Change Blocked Signals” on page 47—Examine and Change Blocked

Signals

Signal APIs 45

Example

See Code disclaimer information for information pertaining to code examples.

The following example returns blocked and pending signals:

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

void catcher(int sig) {

 puts("inside catcher() function\n");

}

void check_pending(int sig, char *signame) {

 sigset_t sigset;

 if(sigpending(&sigset) != 0)

 perror("sigpending() error\n");

 else if(sigismember(&sigset, sig))

 printf("a %s signal is pending\n", signame);

 else

 printf("no %s signals are pending\n", signame);

}

int main(int argc, char *argv[]) {

 struct sigaction sigact;

 sigset_t sigset;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 if(sigaction(SIGUSR1, &sigact, NULL) != 0)

 perror("sigaction() error\n");

 else {

 sigemptyset(&sigset);

 sigaddset(&sigset, SIGUSR1);

 if (sigprocmask(SIG_SETMASK, &sigset, NULL) != 0)

 perror("sigprocmask() error\n");

 else {

 printf("SIGUSR1 signals are now blocked\n");

 kill(getpid(), SIGUSR1);

 printf("after kill()\n");

 check_pending(SIGUSR1, "SIGUSR1");

 sigemptyset(&sigset);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 printf("SIGUSR1 signals are no longer blocked\n");

 check_pending(SIGUSR1, "SIGUSR1");

 }

 }

 return(0);

}

46 iSeries: UNIX-Type -- Signal APIs

aboutapis.htm#CODEDISCLAIMER

Output:

 SIGUSR1 signals are now blocked

 after kill()

 a SIGUSR1 signal is pending

 inside catcher() function

 SIGUSR1 signals are no longer blocked

 no SIGUSR1 signals are pending

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sigprocmask()—Examine and Change Blocked Signals

 Syntax

 #include <signal.h>

 int sigprocmask(int how, const sigset_t *set,

 sigset_t *oset);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The sigprocmask() function examines, or changes, or both examines and changes the signal mask of the

calling thread.

The signals SIGKILL or SIGStop cannot be blocked. Any attempt to use sigprocmask() to block these

signals is simply ignored, and no error is returned.

SIGFPE, SIGILL, and SIGSEGV signals that are not artificially generated by kill() or raise() (that is, were

generated by the system as a result of a hardware or software exception) are not blocked.

If there are any pending unblocked signals after sigprocmask() has changed the signal mask, at least one

of those signals is delivered to the thread before sigprocmask() returns.

If sigprocmask() fails, the process’s signal mask is not changed.

Parameters

how (Input) The way in which the signal set is changed.

*set (Input) A pointer to a set of signals to be used to change the currently blocked set. May be

NULL.

*oset (Output) A pointer to the space where the previous signal mask is stored. May be NULL.

 The possible values for how, which are defined in the <sys/signal.h> header file, are as follows:

 SIG_BLOCK Indicates that the set of signals given by set should be blocked, in addition to the set currently

being blocked.

SIG_UNBLOCK Indicates that the set of signals given by set should not be blocked. These signals are removed

from the current set of signals being blocked.

Signal APIs 47

#TOP_OF_PAGE
unix.htm
aplist.htm

SIG_SETMASK Indicates that the set of signals given by set should replace the old set of signals being blocked.

The set parameter points to a signal set giving the new signals that should be blocked or unblocked

(depending on the value of how), or it points to the new signal mask if the value of how was

SIG_SETMASK. Signal sets are described in “sigemptyset()—Initialize and Empty Signal Set” on page 36.

If set is a NULL pointer, the set of blocked signals is not changed. If set is NULL, the value of howis

ignored.

The signal set manipulation functions (sigemptyset(), sigfillset(), sigaddset(), and sigdelset()) must be

used to establish the new signal set pointed to by set.

sigprocmask() determines the current signal set and returns this information in *oset. If set is NULL, oset

returns the current set of signals being blocked. When set is not NULL, the set of signals pointed to by

oset is the previous set.

Return Value

 0 sigprocmask() was successful.

-1 sigprocmask() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sigprocmask() is not successful, errno usually indicates the following error. Under some conditions,

errno could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 One of the following has occurred:

v The value of how is not equal to one of the defined values.

v The signal set pointed to by set contains a signal that is not within the valid range or a signal

that is not supported.

v

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

Usage Notes

1. When the sigprocmask function is used to change the signal mask of the calling process, it enables

the process for signals if the process is not already enabled for signals. For details, see

“Qp0sEnableSignals()—Enable Process for Signals” on page 17. If the system has not been enabled for

signals, sigprocmask() is not successful, and an [ENOTSIGINIT] error is returned.

48 iSeries: UNIX-Type -- Signal APIs

2. Typically, sigprocmask(SIG_BLOCK, ...) is used to block signals during a critical section of code. At

the end of the critical section of code, sigprocmask(SIG_SETMASK, ...) is used to restore the mask to

the previous value returned by sigprocmask(SIG_BLOCK, ...).

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “sigaction()—Examine and Change Signal Action” on page 23—Examine and Change Signal Action

v “Qp0sDisableSignals()—Disable Process for Signals” on page 14—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 17—Enable Process for Signals

v “sigaddset()—Add Signal to Signal Set” on page 31—Add Signal to Signal Set

v “sigdelset()—Delete Signal from Signal Set” on page 33—Delete Signal from Signal Set

v “sigemptyset()—Initialize and Empty Signal Set” on page 36—Initialize and Empty Signal Set

v “sigfillset()—Initialize and Fill Signal Set” on page 37—Initialize and Fill Signal Set

v “sigismember()—Test for Signal in Signal Set” on page 39—Test for Signal in Signal Set

v “sigpending()—Examine Pending Signals” on page 45—Examine Pending Signals

v “sigsuspend()—Wait for Signal” on page 53—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 56—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 59—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 62—Synchronously Accept a

Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example changes the signal mask:

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

#include <time.h>

void catcher(int sig) {

 printf("inside catcher() function\n");

}

int main(int argc, char *argv[]) {

 time_t start, finish;

 struct sigaction sact;

 sigset_t new_set, old_set;

 double diff;

 sigemptyset(&sact.sa_mask);

 sact.sa_flags = 0;

 sact.sa_handler = catcher;

 sigaction(SIGALRM, &sact, NULL);

 sigemptyset(&new_set);

 sigaddset(&new_set, SIGALRM);

 sigprocmask(SIG_BLOCK, &new_set, &old_set);

 time(&start);

 printf("SIGALRM signals blocked at %s\n", ctime(&start));

 alarm(1); /* SIGALRM will be sent in 1 second */

Signal APIs 49

aboutapis.htm#CODEDISCLAIMER

do {

 time(&finish);

 diff = difftime(finish, start);

 } while (diff < 10);

 sigprocmask(SIG_SETMASK, &old_set, NULL);

 printf("SIGALRM signals unblocked at %s\n", ctime(&finish));

 return(0);

}

Output:

 SIGALRM signals blocked at Sun Jan 22 16:53:40 1995

 inside catcher() function

 SIGALRM signals unblocked at Sun Jan 22 16:53:50 1995

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sigsetjmp()—Set Jump Point for Nonlocal Goto

 Syntax

 #include <setjmp.h>

 int sigsetjmp(sigjmp_buf env, int savemask);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The sigsetjmp() function saves the current stack environment and, optionally, the current signal mask.

The stack environment and signal mask saved by sigsetjmp() can subsequently be restored by

siglongjmp().

sigsetjmp() is similar to setjmp(), except for the optional capability of saving the signal mask. Like

setjmp() and longjmp(), the sigsetjmp() and siglongjmp() functions provide a way to perform a nonlocal

″goto.″

A call to sigsetjmp() causes it to save the current stack environment in env. If the value of the savemask

parameter is nonzero, sigsetjmp() also saves the current signal mask in env. A subsequent call to

siglongjmp() does the following:

v Restores the saved environment and signal mask (if saved by sigsetjmp()).

v Returns control to a point corresponding to the sigsetjmp() call.

The values of all variables (except register variables) accessible to the function receiving control contain

the values they had when siglongjmp() was called. The values of register variables are unpredictable.

Nonvolatile automatic storage variables that are changed between calls to sigsetjmp() and siglongjmp()

are also unpredictable.

50 iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

env (Input) An array type for holding the information needed to restore a calling environment.

savemask

(Input) An indicator used to determine if the current signal mask of the thread is to be saved.

This value may be zero.

Return Value

 0 sigsetjmp() was called to save the stack environment and, optionally, the signal mask. It may have

been either successful or not successful.

val siglongjmp() caused control to be transferred to the place in the user’s program where sigsetjmp()

was issued. The value returned is the value specified on siglongjmp() for the val parameter (or 1

if the value of val is zero).

Error Conditions

The sigsetjmp() function does not return an error.

Usage Notes

The sigsetjmp()-siglongjmp() pair and the setjmp()-longjmp() pair cannot be intermixed. A stack

environment and signal mask saved by sigsetjmp() can be restored only by siglongjmp().

Related Information

v The <setjmp.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “sigaction()—Examine and Change Signal Action” on page 23—Examine and Change Signal Action

v “siglongjmp()—Perform Nonlocal Goto with Signal Handling” on page 41—Perform Nonlocal Goto

with Signal Handling

v “sigprocmask()—Examine and Change Blocked Signals” on page 47—Examine and Change Blocked

Signals

v “sigsuspend()—Wait for Signal” on page 53—Wait for Signal

Example

See Code disclaimer information for information pertaining to code examples.

This example saves the stack environment and signal mask at the following statement:

 if(sigsetjmp(mark,1) != 0) { ...

When the system first performs the if statement, it saves the environment and signal mask in mark and

sets the condition to false because sigsetjmp() returns a 0 when it saves the environment. The program

prints the following message:

 sigsetjmp() has been called

The subsequent call to function p() tests for a local error condition, which can cause it to perform

siglongjmp() (in this example as a result of calling a signal catching function). Control is returned to the

original sigsetjmp() function using the environment saved in mark and the restored signal mask. This

time, the condition is true because -1 is the return value from siglongjmp(). The program then performs

the statements in the block and prints the following:

 siglongjmp() function was called

Then the program performs the recover() function and exits.

Signal APIs 51

aboutapis.htm#CODEDISCLAIMER

Here is the program:

#include <signal.h>

#include <setjmp.h>

#include <unistd.h>

#include <stdio.h>

sigset_t sigset;

sigjmp_buf mark;

void catcher(int);

void p(void);

void recover(void);

int main(int argc, char *argv[]) {

 int result;

 /*

 * Block the SIGUSR1 and SIGUSR2 signals. This set of

 * signals will be saved as part of the environment

 * by the sigsetjmp() function.

 */

 sigemptyset(&sigset);

 sigaddset(&sigset, SIGUSR1);

 sigaddset(&sigset, SIGUSR2);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 if(sigsetjmp(mark, 1) != 0) {

 printf("siglongjmp() function was called\n");

 recover();

 result=0;

 }

 else {

 printf("sigsetjmp() has been called\n");

 p();

 sigprocmask(SIG_SETMASK, NULL, &sigset);

 if(sigismember(&sigset, SIGUSR2))

 printf("siglongjmp() was not called\n");

 result=-1;

 }

 printf("return to main with result %d\n", result);

 return(result);

}

void p(void) {

 struct sigaction sigact;

 int error=0;

 printf("performing function p()\n");

 /* Send signal handler in case error condition is detected */

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGUSR2, &sigact, NULL);

 sigdelset(&sigset, SIGUSR2);

 sigprocmask(SIG_SETMASK, &sigset, NULL);

 /* After some processing an error condition is detected */

 error=-1;

52 iSeries: UNIX-Type -- Signal APIs

/* Call catcher() function if error is detected */

 if(error != 0) {

 printf("error condition detected, send SIGUSR2 signal\n");

 kill(getpid(), SIGUSR2);

 }

 printf("return from catcher() function is an error\n");

}

void recover(void) {

 printf("taking recovery action\n");

 sigprocmask(SIG_SETMASK, NULL, &sigset);

 if(sigismember(&sigset, SIGUSR2))

 printf("signal mask was restored after siglongjmp()\n");

}

void catcher(int signo) {

 printf("in catcher() before siglongjmp()\n");

 siglongjmp(mark, -1);

 printf("in catcher() after siglongjmp() is an error\n");

}

Output:

 sigsetjmp() has been called

 performing function p()

 error condition detected, send SIGUSR2 signal

 in catcher() before siglongjmp()

 siglongjmp() function was called

 taking recovery action

 signal mask was restored after siglongjmp()

 return to main with result 0

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sigsuspend()—Wait for Signal

 Syntax

 #include <signal.h>

 int sigsuspend(const sigset_t *sigmask);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The sigsuspend() function replaces the current signal mask of a thread with the signal set given by

*sigmask and then suspends processing of the calling process. The thread does not resume running until a

Signal APIs 53

#TOP_OF_PAGE
unix.htm
aplist.htm

signal is delivered whose action is to call a signal-catching function, to end the request, or to terminate

the process. (Signal sets are described in more detail in “sigemptyset()—Initialize and Empty Signal Set”

on page 36.)

The signal mask indicates a set of signals that should be blocked. Such signals do not ″wake up″ the

suspended function. The signals SIGStop and SIGKILL cannot be blocked or ignored; they are delivered

to the thread regardless of what the sigmask argument specifies.

If an incoming unblocked signal has an action of end the request of terminate the process, sigsuspend()

never returns to the caller. If an incoming signal is handled by a signal-catching function, sigsuspend()

returns after the signal-catching function returns. In this case, the signal mask of the thread is restored to

whatever it was before sigsuspend() was called.

Parameters

*sigmask

(Input) A pointer to a set of signals to be used to replace the current signal mask of the process.

Return Value

 -1 sigsuspend() was not successful. The errno variable is set to indicate the reason.

There is no return value to indicate successful completion.

Error Conditions

If sigsuspend() returns, errno indicates the following:

[EINTR]

 Interrupted function call.

 A signal was received and handled by a signal-catching function that returned.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL. The signal set pointed to by sigmask

contains a signal that is not within the valid range or a signal that is not supported.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

[EWOULDBLOCK]

 Operation would have caused the process to be suspended.

 The current thread state would prevent the signal function from completing.

54 iSeries: UNIX-Type -- Signal APIs

Usage Notes

The sigsuspend function enables a process for signals if the process is not already enabled for signals.

For details, see “sigemptyset()—Initialize and Empty Signal Set” on page 36. If the system has not been

enabled for signals, sigsuspend() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “alarm()—Set Schedule for Alarm Signal” on page 2—Set Schedule for Alarm Signal

v “pause()—Suspend Process Until Signal Received” on page 12—Suspend Process Until Signal Received

v “Qp0sDisableSignals()—Disable Process for Signals” on page 14—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 17—Enable Process for Signals

v “sigaction()—Examine and Change Signal Action” on page 23—Examine and Change Signal Action

v “sigaddset()—Add Signal to Signal Set” on page 31—Add Signal to Signal Set

v “sigdelset()—Delete Signal from Signal Set” on page 33—Delete Signal from Signal Set

v “sigemptyset()—Initialize and Empty Signal Set” on page 36—Initialize and Empty Signal Set

v “sigfillset()—Initialize and Fill Signal Set” on page 37—Initialize and Fill Signal Set

v “sigismember()—Test for Signal in Signal Set” on page 39—Test for Signal in Signal Set

v “sigpending()—Examine Pending Signals” on page 45—Examine Pending Signals

v “sigprocmask()—Examine and Change Blocked Signals” on page 47—Examine and Change Blocked

Signals

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 56—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 59—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 62—Synchronously Accept a

Signal and Signal Data

v “sleep()—Suspend Processing for Interval of Time” on page 65—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example replaces the signal mask and then suspends processing:

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

#include <time.h>

void catcher(int sig) {

 printf("inside catcher() function\n");

}

void timestamp(char *str) {

 time_t t;

 time(&t);

 printf("%s the time is %s\n", str, ctime(&t));

}

int main(int argc, char *argv[]) {

 struct sigaction sigact;

 sigset_t block_set;

Signal APIs 55

aboutapis.htm#CODEDISCLAIMER

sigfillset(&block_set);

 sigdelset(&block_set, SIGALRM);

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGALRM, &sigact, NULL);

 timestamp("before sigsuspend()");

 alarm(10);

 sigsuspend(&block_set);

 timestamp("after sigsuspend()");

 return(0);

}

Output:

 before sigsuspend() the time is Sun Jan 22 17:11:41 1995

 inside catcher() function

 after sigsuspend() the time is Sun Jan 22 17:11:51 1995

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

sigtimedwait()—Synchronously Accept a Signal for Interval of Time

 Syntax

 #include <signal.h>

 int sigtimedwait(const sigset_t *set,

 siginfo_t *info,

 const struct timespec *timeout);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The sigtimedwait() function selects a pending signal from set, clears it from the set of pending signals for

the thread or process, and returns that signal number in the si_signo member in the structure that is

referenced by info. If prior to the call to sigtimedwait() there are multiple pending instances of a single

signal number, upon successful return the number of remaining signals for that signal number is

decremented by one.

If no signal in set is pending at the time of the call, the thread shall be suspended for the time interval in

the timespec structure referenced by timeout. The thread does not resume until either one or more signals

in set become pending or the time interval has elapsed. If the timespec structure referenced by timeout has

a value of zero and none of the signals specified by set are pending, then sigtimedwait() is not successful

and an [EAGAIN] error is returned.

The signals defined by set are required to be blocked at the time of the call to sigtimedwait(); otherwise,

sigtimedwait() is not successful, and an [EINVAL] error is returned. The signal SIGKILL or SIGStop

cannot be selected. Any attempt to use sigprocmask() to select these signals is simply ignored, and no

error is returned.

56 iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

The signal action for the signal in set that is returned in the member si_signo in the structure referenced

by info is not taken.

If more than one thread is using a sigwait function to wait for the same signal, only one of these threads

will return from the sigwait function with the signal number. If more than one thread is waiting for the

same signal, the first thread to wait on the signal will return from the sigwait function.

Parameters

*set (Input) A pointer to a signal set to be waited upon.

*info (Output) A pointer to the storage location where sigtimedwait() can store the signal related

information for the signal number that completed the wait. This value may be NULL. The

siginfo_t structure is described in sigaction()—Examine and Change Signal Action.

*timeout

(Input) A pointer to the storage location specifying the time interval sigtimedwait() should wait.

This value may be NULL. If timeout is NULL, the thread will be suspended until one or more

signals in set become pending.

Return Value

 0 sigtimedwait() was successful.

-1 sigtimedwait() was not successful. The errno variable is set to indicate the reason.

Error Conditions

If sigtimedwait() is not successful, errno usually indicates the following error. Under some conditions,

errno could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 One of the following has occurred:

v The signal set pointed to by set contains a signal that is not within the valid range or a signal

that is not supported.

v A signal in the signal set pointed to by set contains a signal that is not blocked.

v The tv_nsec member in the timespec structure pointed to by timeout is greater than or equal to

1,000,000,000.

[EAGAIN]

 Operation would have caused the process to be suspended.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

Signal APIs 57

#HDRSIGACTN

Usage Notes

The sigtimedwait() function enables a process for signals if the process is not already enabled for signals.

For details, see “Qp0sEnableSignals()—Enable Process for Signals” on page 17. If the system has not been

enabled for signals, sigtimedwait() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “Qp0sDisableSignals()—Disable Process for Signals” on page 14—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 17—Enable Process for Signals

v “sigaction()—Examine and Change Signal Action” on page 23—Examine and Change Signal Action

v “sigpending()—Examine Pending Signals” on page 45—Examine Pending Signals

v “sigprocmask()—Examine and Change Blocked Signals” on page 47—Examine and Change Blocked

Signals

v “sigsuspend()—Wait for Signal” on page 53—Wait for Signal

v “sigwait()—Synchronously Accept a Signal” on page 59—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 62—Synchronously Accept a

Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example suspends processing by using the sigtimedwait() function and determines the

current time:

Note: The signal catching function is not called.

#include <signal.h>

#include <stdio.h>

#include <time.h>

void catcher(int sig) {

 printf("Signal catcher called for signal %d\n", sig);

}

void timestamp(char *str) {

 time_t t;

 time(T);

 printf("The time %s is %s\n", str, ctime(T));

}

int main(int argc, char *argv[]) {

 int result = 0;

 struct sigaction sigact;

 struct sigset_t waitset;

 siginfo_t info;

 struct timespec timeout;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGALRM, &sigact, NULL);

 sigemptyset(&waitset);

 sigaddset(&waitset, SIGALRM);

 sigprocmask(SIG_BLOCK, &waitset, NULL);

58 iSeries: UNIX-Type -- Signal APIs

aboutapis.htm#CODEDISCLAIMER

timeout.tv_sec = 10; /* Number of seconds to wait */

 timeout.tv_nsec = 1000; /* Number of nanoseconds to wait */

 alarm(10);

 timestamp("before sigtimedwait()");

 result = sigtimedwait(&waitset, &info, &timeout);

 printf("sigtimedwait() returned for signal %d\n",

 info.si_signo);

 timestamp("after sigtimedwait()");

 return(result);

}

Output:

 The time before sigtimedwait() is Mon Feb 17 11:09:08 1997

 sigtimedwait() returned for signal 14

 The time after sigtimedwait() is Mon Feb 17 11:09:18 1997

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

sigwait()—Synchronously Accept a Signal

 Syntax

 #include <signal.h>

 int sigwait(const sigset_t *set, int *sig);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The sigwait() function selects a pending signal from set, clears it from the set of pending signals for the

thread or process, and returns that signal number in the location that is referenced by sig. If prior to the

call to sigwait() there are multiple pending instances of a single signal number, upon successful return

the number of remaining signals for that signal number is decremented by one.

If no signal in set is pending at the time of the call, the thread shall be suspended. The thread does not

resume until one or more signals in set become pending.

The signals defined by set are required to be blocked at the time of the call to sigwait(); otherwise,

sigwait() is not successful, and an [EINVAL] error is returned. The signals SIGKILL or SIGStop cannot be

selected. Any attempt to use sigwait() to select these signals is simply ignored, and no error is returned.

The signal action for the signal in set that is returned in the location referenced by sig is not taken.

If more than one thread is using a sigwait function to wait for the same signal, only one of these threads

will return from the sigwait function with the signal number. If more than one thread is waiting for the

same signal, the first thread to wait on the signal will return from the sigwait function.

Signal APIs 59

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

*set (Input) A pointer to a signal set to be waited upon.

*sig (Output) A pointer to the storage location where sigwait() can store the signal number that

completed the wait.

Return Value

 0 sigwait() was successful.

-1 sigwait() was not successful. The errno variable is set to indicate the reason.

Error Conditions

If sigwait() is not successful, errno usually indicates the following error. Under some conditions, errno

could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 One of the following has occurred:

v The signal set pointed to by set contains a signal that is not within the valid range or a signal

that is not supported.

v A signal in the signal set pointed to by set contains a signal that is not blocked.

v

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

Usage Notes

The sigwait() function enables a process for signals if the process is not already enabled for signals. For

details, see “Qp0sEnableSignals()—Enable Process for Signals” on page 17. If the system has not been

enabled for signals, sigwait() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “Qp0sDisableSignals()—Disable Process for Signals” on page 14—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 17—Enable Process for Signals

v “sigaction()—Examine and Change Signal Action” on page 23—Examine and Change Signal Action

v “sigpending()—Examine Pending Signals” on page 45—Examine Pending Signals

v “sigprocmask()—Examine and Change Blocked Signals” on page 47—Examine and Change Blocked

Signals

v “sigsuspend()—Wait for Signal” on page 53—Wait for Signal

60 iSeries: UNIX-Type -- Signal APIs

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 56—Synchronously

Accept a Signal for Interval of Time

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 62—Synchronously Accept a

Signal and Signal Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example suspends processing by using the sigwait() function and determines the current

time:

Note: The signal catching function is not called.

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

#include <time.h>

extern int errno;

void catcher(int sig) {

 printf("Signal catcher called for signal %d\n", sig);

}

void timestamp(char *str) {

 time_t t;

 time(T);

 printf("The time %s is %s\n", str, ctime(T));

}

int main(int argc, char *argv[]) {

 struct sigaction sigact;

 sigset_t waitset;

 int sig;

 int result = 0;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGALRM, &sigact, NULL);

 sigemptyset(&waitset);

 sigaddset(&waitset, SIGALRM);

 sigprocmask(SIG_BLOCK, &waitset, NULL);

 alarm(10);

 timestamp("before sigwait()");

 result = sigwait(&waitset, &sig);

 if(result == 0)

 printf("sigwait() returned for signal %d\n", sig);

 else {

 printf("sigwait() returned error number %d\n", errno);

 perror("sigwait() function failed\n");

 }

 timestamp("after sigwait()");

 return(result);

}

Signal APIs 61

aboutapis.htm#CODEDISCLAIMER

Output:

 The time before sigwait() is Tue Jul 15 11:15:43 1997

 sigwait() returned for signal 14

 The time after sigwait() is Tue Jul 15 11:15:54 1997

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

sigwaitinfo()—Synchronously Accept a Signal and Signal Data

 Syntax

 #include <signal.h>

 int sigwaitinfo(const sigset_t *set,

 siginfo_t *info);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The sigwaitinfo() function selects a pending signal from set, clears it from the set of pending signals for

the thread or process, and returns that signal number in the si_signo member in the structure that is

referenced by info. If prior to the call to sigwaitinfo() there are multiple pending instances of a single

signal number, upon successful return the number of remaining signals for that signal number is

decremented by one.

If no signal in set is pending at the time of the call, the thread shall be suspended. The thread does not

resume until one or more signals in set become pending.

The signals defined by set are required to be blocked at the time of the call to sigwaitinfo(); otherwise,

sigwaitinfo() is not successful, and an [EINVAL] error is returned. The signals SIGKILL or SIGStop

cannot be selected. Any attempt to use sigwaitinfo() to select these signals is simply ignored, and no

error is returned.

The signal action for the signal in set that is returned in the member si_signo in the structure referenced

by info is not taken.

If more than one thread is using a sigwait function to wait for the same signal, only one of these threads

will return from the sigwait function with the signal number. If more than one thread is waiting for the

same signal, the first thread to wait on the signal will return from the sigwait function.

Parameters

*set (Input) A pointer to a signal set to be waited upon.

*info (Output) A pointer to the storage location where sigwaitinfo() can store the signal related

information for the signal number that completed the wait. This value may be NULL. The

siginfo_t structure is described in “sigaction()—Examine and Change Signal Action” on page 23.

62 iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Return Value

 0 sigwaitinfo() was successful.

-1 sigwaitinfo() was not successful. The errno variable is set to indicate the reason.

Error Conditions

If sigwaitinfo() is not successful, errno usually indicates the following error. Under some conditions, errno

could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 One of the following has occurred:

v The signal set pointed to by set contains a signal that is not within the valid range or a signal

that is not supported.

v A signal in the signal set pointed to by set contains a signal that is not blocked.

v

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals

v The signal function is being called when the system signal controls have not been initialized.

Usage Notes

The sigwaitinfo() function enables a process for signals if the process is not already enabled for signals.

For details, see “Qp0sEnableSignals()—Enable Process for Signals” on page 17. If the system has not been

enabled for signals, sigwaitinfo() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

v The <signal.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “Qp0sDisableSignals()—Disable Process for Signals” on page 14—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 17—Enable Process for Signals

v “sigaction()—Examine and Change Signal Action” on page 23—Examine and Change Signal Action

v “sigpending()—Examine Pending Signals” on page 45—Examine Pending Signals

v “sigprocmask()—Examine and Change Blocked Signals” on page 47—Examine and Change Blocked

Signals

v “sigsuspend()—Wait for Signal” on page 53—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 56—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 59—Synchronously Accept a Signal

Example

See Code disclaimer information for information pertaining to code examples.

Signal APIs 63

aboutapis.htm#CODEDISCLAIMER

The following example suspends processing by using the sigwaitinfo() function and determines the

current time:

Note: The signal catching function is not called.

#include <signal.h>

#include <unistd.h>

#include <stdio.h>

#include <time.h>

extern int errno;

void catcher(int sig) {

 printf("Signal catcher called for signal %d\n", sig);

}

void timestamp(char *str) {

 time_t t;

 time(T);

 printf("The time %s is %s\n", str, ctime(T));

}

int main(int argc, char *argv[]) {

 int result = 0;

 struct sigaction sigact;

 sigset_t waitset;

 siginfo_t info;

 sigemptyset(&sigact.sa_mask);

 sigact.sa_flags = 0;

 sigact.sa_handler = catcher;

 sigaction(SIGALRM, &sigact, NULL);

 sigemptyset(&waitset);

 sigaddset(&waitset, SIGALRM);

 sigprocmask(SIG_BLOCK, &waitset, NULL);

 alarm(10);

 timestamp("before sigwaitinfo(");

 result = sigwaitinfo(&waitset, &info);

 if(result == 0)

 printf("sigwaitinfo() returned for signal %d\n",

 info.si_signo);

 else {

 printf("sigwait() returned error number %d\n", errno);

 perror("sigwait() function failed\n");

 }

 timestamp("after sigwaitinfo()");

 return(result);

}

Output:

 The time before sigwaitinfo() is Tue Jul 15 11:22:56 1997

 sigwaitinfo() returned for signal 14

 The time after sigwaitinfo() is Tue Jul 15 11:23:07 1997

64 iSeries: UNIX-Type -- Signal APIs

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

sleep()—Suspend Processing for Interval of Time

 Syntax

 #include <unistd.h>

 unsigned int sleep(unsigned int seconds);

 Service Program Name: QPOSSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The sleep() function suspends a thread for a specified number of seconds. (Because of processor delays,

the thread can sleep slightly longer than this specified time.) If an unblocked signal is received during

this time and its action is to call a signal-catching function, to end the request, or to end the process,

sleep() returns immediately with the amount of sleep time remaining.

If a SIGALRM signal is generated for the calling process while sleep() is running and if the SIGALRM

signal is being ignored or blocked from delivery, sleep() does not return when the SIGALRM signal is

scheduled. If the SIGALRM signal is blocked from delivery, the SIGALRM remains pending after sleep()

returns.

If a SIGALRM signal is generated for the calling process while sleep() is running (except as a result of a

previous call to alarm()) and if the SIGALRM is not being ignored or blocked from delivery, the

SIGALRM signal has no effect on sleep() other than causing it to return.

A signal-catching function that interrupts sleep() can examine and change the time a SIGALRM is

scheduled to be generated, the action associated with the SIGALRM signal, and whether SIGALRM is

blocked from delivery.

If a signal-catching function interrupts sleep() and calls siglongjmp() or longjmp() to restore an

environment saved prior to sleep(), the sleep() function is canceled. The action associated with the

SIGALRM signal and the time at which a SIGALRM signal is scheduled to be generated are unchanged.

The SIGALRM blocking action remains unchanged, unless the thread’s signal mask is restored as part of

the environment.

Parameters

seconds

(Input) The number of real seconds for which the process is to be suspended.

Return Value

 0 The thread slept for the full time specified.

value The thread did not sleep the full time because of a signal whose action is to run a signal-catching

function, to end the request, or to terminate the process. The value returned is the number of

seconds remaining in the specified sleep time; that is, the value of seconds minus the actual

number of seconds that the thread was suspended.

Signal APIs 65

#TOP_OF_PAGE
unix.htm
aplist.htm

-1 sleep() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sleep() is not successful, errno usually indicates the following error. Under some conditions, errno could

indicate an error other than that listed here.

[ENOTSIGINIT]

 Process not enabled for signals.

 An attempt was made to call a signal function under one of the following conditions:

v The signal function is being called for a process that is not enabled for asynchronous signals.

v The signal function is being called when the system signal controls have not been initialized.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EWOULDBLOCK]

 Operation would have caused the process to be suspended.

 The current thread state would prevent the signal function from completing.

Usage Notes

The sleep() function enables a process for signals if the process is not already enabled for signals. For

details, see “Qp0sEnableSignals()—Enable Process for Signals” on page 17. If the system has not been

enabled for signals, sleep() is not successful, and an [ENOTSIGINIT] error is returned.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “alarm()—Set Schedule for Alarm Signal” on page 2—Set Schedule for Alarm Signal

v “pause()—Suspend Process Until Signal Received” on page 12—Suspend Process Until Signal Received

v “Qp0sDisableSignals()—Disable Process for Signals” on page 14—Disable Process for Signals

v “Qp0sEnableSignals()—Enable Process for Signals” on page 17—Enable Process for Signals

v “sigaction()—Examine and Change Signal Action” on page 23—Examine and Change Signal Action

v “siglongjmp()—Perform Nonlocal Goto with Signal Handling” on page 41—Perform Nonlocal Goto

with Signal Handling

v “sigsetjmp()—Set Jump Point for Nonlocal Goto” on page 50—Set Jump Point for Nonlocal Goto

v “sigsuspend()—Wait for Signal” on page 53—Wait for Signal

v “sigtimedwait()—Synchronously Accept a Signal for Interval of Time” on page 56—Synchronously

Accept a Signal for Interval of Time

v “sigwait()—Synchronously Accept a Signal” on page 59—Synchronously Accept a Signal

v “sigwaitinfo()—Synchronously Accept a Signal and Signal Data” on page 62—Synchronously Accept a

Signal and Signal Data

v “usleep()—Suspend Processing for Interval of Time” on page 67—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses the sleep() function to suspend processing for a specified time:

66 iSeries: UNIX-Type -- Signal APIs

aboutapis.htm#CODEDISCLAIMER

#include <unistd.h>

#include <stdio.h>

#include <time.h>

void timestamp(char *str) {

 time_t t;

 time(&t);

 printf("%s the time is %s\n", str, ctime(&t));

}

int main(int argc, char *argv[]) {

 unsigned int ret;

 timestamp("before sleep()");

 ret = sleep(10);

 timestamp("after sleep()");

 printf("sleep() returned %d\n", ret);

 return(0);

}

Output:

 before sleep() the time is Sun Jan 22 17:25:17 1995

 after sleep() the time is Sun Jan 22 17:25:28 1995

 sleep() returned 0

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

usleep()—Suspend Processing for Interval of Time

 Syntax

 #include <unistd.h>

 unsigned int usleep(useconds_t useconds);

 Service Program Name: QP0SSRV1

 Default Public Authority: *USE

 Threadsafe: Yes

The usleep() function suspends a thread for the number of microseconds specified by the of useconds

parameter. (Because of processor delays, the thread can be suspended slightly longer than this specified

time.)

The usleep() function uses the process’s real-time interval timer to indicate when the thread should be

resumed.

There is one real-time interval timer for each process. The usleep() function will not interfere with a

previous setting of this timer.

Signal APIs 67

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

useconds

(Input) The number of microseconds for which the thread is to be suspended.

Return Value

 0 The thread slept for the full time specified.

-1 sleep() was not successful. The errno variable is set to indicate the error.

Error Conditions

If usleep() is not successful, errno usually indicates the following error. Under some conditions, errno

could indicate an error other than that listed here.

[EINVAL]

The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

v The time interval specified 1,000,000 or more microseconds.

Usage Notes

The usleep() function is included for its historical usage. The setitimer() function is preferred over this

function.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 73)

v “alarm()—Set Schedule for Alarm Signal” on page 2—Set Schedule for Alarm Signal

v “getitimer()—Get Value for Interval Timer” on page 5—Get Value for Interval Timer

v “setitimer()—Set Value for Interval Timer” on page 19—Set Value for Interval Timer

v “sleep()—Suspend Processing for Interval of Time” on page 65—Suspend Processing for Interval of

Time

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses the usleep() function to suspend processing for a specified time:

#include <unistd.h>

#include <stdio.h>

#include <time.h>

void timestamp(char *str) {

 time_t t;

 time(&t);

 printf("%s the time is %s\nquot;, str, ctime(&t));

}

int main(int argc, char *argv[]) {

 int result = 0;

68 iSeries: UNIX-Type -- Signal APIs

aboutapis.htm#CODEDISCLAIMER

timestamp(quot;before usleep()quot;);

 result = usleep(999999);

 timestamp(quot;after usleep()quot;);

 printf(quot;usleep() returned %d\nquot;, result);

 return(result);

}

Output:

 before usleep() the time is Sun Jun 15 17:25:17 1995

 after usleep() the time is Sun Jun 15 17:25:18 1995

 usleep() returned 0

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

Concepts

These are the concepts for this category.

Using Signal APIs

Signal Concepts

An X/Open specification defines a ″signal″ as a mechanism by which a process may be notified of, or

affected by, an event occurring in the system. The term signal is also used to refer to the event itself.

A signal is said to be generated when the event that causes the signal first occurs. Examples of such

events include the following:

v System-detected errors

v Timer expiration

v Terminal (work station) activity

v Calling an API such as the X/Open kill() function, the American National Standard C raise() function,

or the ILE CEESGL (signal a condition) function.

A synchronous signal is a signal that is generated by some action attributable to a program running

within the thread, such as a system-detected error, raise(), or CEESGL. An asynchronous signal is a

signal that is generated for the process by using the kill() function or by an asynchronous event such as

terminal activity or an expired timer.

The signal action vector is a list of signal-handling actions for each defined signal. The signal action

vector is maintained separately for each process and is inherited from the parent process. The signal

action vector specifies the signal-handling actions for both synchronously and asynchronously generated

signals.

A signal is said to be delivered to a process when the specified signal-handling action for the signal is

taken. A signal is said to be accepted by a process when a signal is selected and returned by one of the

sigwait functions.

Signals generated for a process are delivered to or accepted by one thread in the process.

A signal is said to be pending during the interval between the time the signal is generated and the time

it is delivered or accepted. Ordinarily, this interval cannot be detected by an application. However, a

Signal APIs 69

#TOP_OF_PAGE
unix.htm
aplist.htm

signal can be blocked from being delivered to a thread. When a signal is blocked, the signal-handling

action associated with the signal is not taken. If there are no threads in a call to a sigwait function

selecting the signal and if all threads block delivery of the signal, the signal remains pending on the

process. The signal remains pending until either a thread calls a sigwait function selecting the signal, a

thread unblocks delivery of the signal, or the signal action associated with the signal is set to ignore the

signal. The signal blocking mask defines the set of signals that are blocked from delivery to the thread.

The signal blocking mask is maintained separately for each thread in the process and is inherited from

the thread that created it.

OS/400 Signal Management

The set of defined signals is determined by the system. The system specifies the attributes for each

defined signal. These attributes consist of a signal number, the initial signal action, and the signal default

action. The system also specifies an initial signal blocking mask. The set of defined signals, the signal

attributes, and signal blocking mask are referred to as signal controls.

A signal can be generated or delivered only to a process that has expressed an interest in signals. An

error condition results under the following conditions:

v An attempt is made to generate a signal when the system signal controls have not been initialized.

v An attempt is made to generate a signal for a process that has not been enabled for signals.

A process can express an interest in signals by calling the Qp0sEnableSignals() API. In addition, calling

particular signal APIs implicitly enables the process for signals.

If the process has not been enabled for signals, the process signal controls are set from signal controls

established by the system during IPL (the system signal controls). An error condition results if an attempt

is made to enable signals for the process before the system signal controls have been initialized.

Once the process signal controls have been initialized, the user is permitted to change the signal controls

for the process. For example, the signal blocking mask and the signal action for a signal are commonly

changed. Some signal controls, such as the number of defined signals and the signal default action for a

signal, cannot be changed at the process level.

The attributes for each defined signal are stored in an object called a signal monitor. The system

supports a maximum of 63 signal monitors for each process. The process signal action vector is a list of

signal monitors, one for each defined signal. The signal monitor contains, but is not limited to, the

following information:

v Signal action

v Signal default action

v Signal options

The signal action defines the action to be taken by the system when a process receives an unblocked

signal. The user can change the signal action for a process signal monitor. The possible signal actions are:

v Handle using signal default action (SIG_DFL)

The handle using signal default action signal action indicates that the system is to take the action

specified by the signal default action field when the signal is eligible to be delivered.

v Ignore the signal (SIG_IGN)

The ignore the signal signal action indicates that the user is not interested in handling the signal. When

an ignored signal is generated for the process, the system automatically discards the signal, regardless

of the blocked or unblocked state of the signal monitor.

v Handle the signal by running signal-catching function

The handle the signal by running signal-catching function signal action causes the system to call the

signal-catching function when a signal is received for the signal monitor. The signal-catching function

is set to point to a procedure within an active activation group.

70 iSeries: UNIX-Type -- Signal APIs

The signal default action field defines the action to be taken by the system when the signal action is set

to handle using signal default action. The signal default action for a signal monitor is set in the system

signal controls and cannot be changed for a process signal monitor. The possible signal default actions

are:

v Terminate the process

The terminate the process action puts the process in a phase that ends the process, allowing cancel

handlers to be called. If the process is already in the end phase, the terminate the process action is

ignored.

v End the request

The end the request action results in the cancelation of all calls up to the nearest call that has a call

status of request processor. If a call with a status of request processor is not present or the job is

capable of having multiple threads, the terminate the process action is taken.

v Ignore the signal

The ignore the signal action causes the system to discard the signal. A signal is discarded for a signal

monitor in the blocked state when the signal action is handle using signal default action and the default

signal action is ignore the signal.

v Stop the process

The stop the process action causes the system to place the process in the stopped state. When a process

is in the stopped state, it is temporarily suspended until a signal is generated for the process that has

continue the process if stopped as its signal default action. When a process is in the stopped state, the

normal process control functions remain in effect (the process can be suspended, resumed, or ended).

When a signal is generated for a signal monitor that has stop the process as its signal default action, the

system removes any pending signals for signal monitors that have continue the process if stopped as their

default action.

v Continue the process if stopped

The continue the process if stopped action causes the system to resume running the process that is in the

stopped state, even if the signal monitor with the signal default action of continue the process if stopped

is in the blocked state or has a signal action of ignore the signal. When a signal is generated for a signal

monitor that has continue the process if stopped as its signal default action, the system removes any

pending signals for signal monitors that have stop the process as their signal default action.

v Signal exception

The signal exception action causes the system to send the MCH7603 escape message to the process.

The signal options specify an additional set of attributes for the signal monitor. The primary use of these

options is to specify an additional set of actions to be taken by the system when a signal-catching

function is called.

A signal is generated by sending a request to a signal monitor. Scheduling of the signal-handling action is

controlled separately for each signal monitor through the signal blocking mask. The signal blocking

mask is a bit mask that defines the set of signals to be blocked from delivery to the thread. The blocked

or unblocked option specified for the nth bit position in the signal blocking mask is applied to the nth

signal monitor defined for the process. When signal is unblocked is specified, the signal-handling action

is eligible to be scheduled. When signal is blocked is specified, the signal-handling action is blocked

from delivery.

The process to receive the signal is identified by a process ID. The process ID is used to indicate whether

the signal should be sent to an individual process or to a group of processes (known as a process group).

The process ID is a 4-byte binary number that is used to locate an entry in the system-managed process

table. A process table entry contains the following information relating to the process:

v Parent process ID

v Process group ID

v Status information

Signal APIs 71

The parent process is the logical creator of the process. A process group represents a collection of

processes that are bound together for some common purpose. An error condition results if the process ID

specified when a signal is sent does not represent a valid process or process group.

The process sending a signal must have the appropriate authority to the receiving process. The parent

process is allowed to send a signal to a child process (the parent process ID of the receiving process is

equal to the process ID of the process sending the signal). A child process is allowed to send a signal to

its parent process (the process ID of the receiving process is equal to the parent process ID of the process

sending the signal). A process can send a signal to another process if the sending process has *JOBCTL

authority defined for the current process user profile or in an adopted user profile. Otherwise, the real or

effective user ID of the sending process must match the real or effective user ID of the receiving process.

An error condition results if the process does not have authority to send the signal to a receiving process.

Differences from Signals on UNIX Systems

The OS/400(TM) support for signals does differ from the usual behavior of signals on UNIX(R) systems:

v Integration of American National Standard C signal model and X/Open signal model

On UNIX systems, the standard C signal functions (as defined by American National Standards

Institute (ANSI)) and the UNIX signal functions interact. That is, the standard C signal() function

operates on the process signal action vector. Likewise, when a signal is generated for a process using

the standard C raise() function, the process signal blocking mask and the signal action vector are used

to determine the action to be taken.

On OS/400, the behavior of the standard C signal functions depends on a compiler option. When the

compiler option SYSIFCOPT(*ASYNCSIGNAL) is specified, the standard C signal() and raise()

functions operate like the UNIX signal functions by operating on the process signal action vector and

the process signal blocking mask. However, if the SYSIFCOPT(*ASYNCSIGNAL) is not specified the

standard C signal functions do not operate like the UNIX signal functions. Although the default C

signal model does not interact with the UNIX signal functions, the UNIX signal functions sigaction()

and kill() provide the same type of capability as the standard C signal() and raise() functions. For

more information, see “sigaction()—Examine and Change Signal Action” on page 23 and “kill()—Send

Signal to Process or Group of Processes” on page 8.

v Scope of signal action vector, signal-blocking mask, and pending signals

On most UNIX systems, a process consists of a single thread of control. When the program in control

needs to perform a task that is contained in another program, the program uses the fork() and exec()

functions to start a child process that runs the other program. The signal controls for the child process

are inherited from the parent process. Changes to the signal controls in either the parent or the child

process are isolated to the process in which the change is made.

On OS/400, when a program needs to perform a task that is contained in another program, the

program calls that program directly. The target program is run using the same process structure. As a

result of this call and return mechanism, if a called program changes the process signal controls and

does not restore the original signal controls when returning to its caller, the changed process signal

controls remain in effect. The called program inherits the signal controls of its caller. However, there

are some differences from what would be expected if fork() and exec() were used in a UNIX process:

– The set of pending signals is not cleared.

– Alarms are not reset.

– Signals set to be caught are not reset to the default action.

Programs that use signals and change the signal controls of the process should restore the old actions

or signal blocking mask (or both) when they return to their callers. Programs using signals should

explicitly enable the process for signals when the program begins. If the process was not enabled for

signals when the program was called, the program should also disable signals when it returns to the

process. For more information, see “Qp0sEnableSignals()—Enable Process for Signals” on page 17 and

“Qp0sDisableSignals()—Disable Process for Signals” on page 14.

v Mapping system-detected errors to signals

72 iSeries: UNIX-Type -- Signal APIs

On UNIX systems, system-detected errors are mapped to signal numbers. For example, a floating point

error results in the SIGFPE signal being generated for the process. On OS/400, the default C signal

model presents system-detected errors to the user as escape messages which can be handled with C

signal handlers established with the C signal() function or with ILE C exception-handling functions,

but not with signal handlers established with the UNIX sigaction() function. When the compiler option

SYSIFCOPT(*ASYNCSIGNAL) is specified, system-detected errors are mapped to signal numbers and

can be handled with signal handlers established either with the C signal() function or the UNIX

sigaction() function, but not with ILE C exception-handling functions.

v Unexpected error handling in the signal-catching function

On UNIX systems, an unhandled error condition in a signal-catching function results in ending the

process. On OS/400, unhandled error conditions in the signal-catching function are implicitly handled.

The signal-catching function is ended and the receiving program resumes running at the point at which

it was interrupted. The error condition may be logged in the job log. Aside from the job log entry for

the error, no further error notification takes place.

v Termination action

OS/400 offers two types of termination actions. The termination action applied to most signals is to

end the most recent request. This usually results in ending the current program, which is the

expectation of most UNIX programmers. The second termination action is to end the process, which is

more severe. The only signal with this action is SIGKILL.

v Default actions

On OS/400, some default actions for signals are different than on typical UNIX systems. For example,

the OS/400 default action for the SIGPIPE signal is to ignore the signal.

 Top | UNIX-Type APIs | APIs by category

Header Files for UNIX-Type Functions

Programs using the UNIX(R)-type functions must include one or more header files that contain

information needed by the functions, such as:

v Macro definitions

v Data type definitions

v Structure definitions

v Function prototypes

The header files are provided in the QSYSINC library, which is optionally installable. Make sure

QSYSINC is on your system before compiling programs that use these header files. For information on

installing the QSYSINC library, see Include files and the QSYSINC Library.

The table below shows the file and member name in the QSYSINC library for each header file used by

the UNIX-type APIs in this publication.

 Name of Header File Name of File in QSYSINC Name of Member

arpa/inet.h ARPA INET

arpa/nameser.h ARPA NAMESER

bse.h H BSE

bsedos.h H BSEDOS

bseerr.h H BSEERR

dirent.h H DIRENT

errno.h H ERRNO

fcntl.h H FCNTL

Signal APIs 73

#TOP_OF_PAGE
unix.htm
aplist.htm
conQSYSINC.htm

Name of Header File Name of File in QSYSINC Name of Member

grp.h H GRP

inttypes.h H INTTYPES

limits.h H LIMITS

mman.h H MMAN

netdbh.h H NETDB

netinet/icmp6.h NETINET ICMP6

net/if.h NET IF

netinet/in.h NETINET IN

netinet/ip_icmp.h NETINET IP_ICMP

netinet/ip.h NETINET IP

netinet/ip6.h NETINET IP6

netinet/tcp.h NETINET TCP

netinet/udp.h NETINET UDP

netns/idp.h NETNS IDP

netns/ipx.h NETNS IPX

netns/ns.h NETNS NS

netns/sp.h NETNS SP

net/route.h NET ROUTE

nettel/tel.h NETTEL TEL

os2.h H OS2

os2def.h H OS2DEF

pwd.h H PWD

Qlg.h H QLG

qp0lchsg.h H QP0LCHSG

qp0lflop.h H QP0LFLOP

qp0ljrnl.h H QP0LJRNL

qp0lror.h H QP0LROR

qp0lrro.h H QP0LRRO

qp0lrtsg.h H QP0LRTSG

qp0lscan.h H QP0LSCAN

Qp0lstdi.h H QP0LSTDI

qp0wpid.h H QP0WPID

qp0zdipc.h H QP0ZDIPC

qp0zipc.h H QP0ZIPC

qp0zolip.h H QP0ZOLIP

qp0zolsm.h H QP0ZOLSM

qp0zripc.h H QP0ZRIPC

qp0ztrc.h H QP0ZTRC

qp0ztrml.h H QP0ZTRML

qp0z1170.h H QP0Z1170

qsoasync.h H QSOASYNC

74 iSeries: UNIX-Type -- Signal APIs

Name of Header File Name of File in QSYSINC Name of Member

qtnxaapi.h H QTNXAAPI

qtnxadtp.h H QTNXADTP

qtomeapi.h H QTOMEAPI

qtossapi.h H QTOSSAPI

resolv.h H RESOLVE

semaphore.h H SEMAPHORE

signal.h H SIGNAL

spawn.h H SPAWN

ssl.h H SSL

sys/errno.h H ERRNO

sys/ioctl.h SYS IOCTL

sys/ipc.h SYS IPC

sys/layout.h H LAYOUT

sys/limits.h H LIMITS

sys/msg.h SYS MSG

sys/param.h SYS PARAM

sys/resource.h SYS RESOURCE

sys/sem.h SYS SEM

sys/setjmp.h SYS SETJMP

sys/shm.h SYS SHM

sys/signal.h SYS SIGNAL

sys/socket.h SYS SOCKET

sys/stat.h SYS STAT

sys/statvfs.h SYS STATVFS

sys/time.h SYS TIME

sys/types.h SYS TYPES

sys/uio.h SYS UIO

sys/un.h SYS UN

sys/wait.h SYS WAIT

ulimit.h H ULIMIT

unistd.h H UNISTD

utime.h H UTIME

You can display a header file in QSYSINC by using one of the following methods:

v Using your editor. For example, to display the unistd.h header file using the Source Entry Utility

editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(5)

v Using the Display Physical File Member command. For example, to display the sys/stat.h header file,

enter the following command:

DSPPFM FILE(QSYSINC/SYS) MBR(STAT)

Signal APIs 75

You can print a header file in QSYSINC by using one of the following methods:

v Using your editor. For example, to print the unistd.h header file using the Source Entry Utility editor,

enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(6)

v Using the Copy File command. For example, to print the sys/stat.h header file, enter the following

command:

CPYF FROMFILE(QSYSINC/SYS) TOFILE(*PRINT) FROMMBR(STAT)

Symbolic links to these header files are also provided in directory /QIBM/include.

 Top | UNIX-Type APIs | APIs by category

Errno Values for UNIX-Type Functions

Programs using the UNIX(R)-type functions may receive error information as errno values. The possible

values returned are listed here in ascending errno value sequence.

 Name Value Text

EDOM 3001 A domain error occurred in a math function.

ERANGE 3002 A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or update operation.

ENOTOPEN 3004 File is not open.

ENOTREAD 3005 File is not opened for read operations.

EIO 3006 Input/output error.

ENODEV 3007 No such device.

ERECIO 3008 Cannot get single character for files opened for record I/O.

ENOTWRITE 3009 File is not opened for write operations.

ESTDIN 3010 The stdin stream cannot be opened.

ESTDOUT 3011 The stdout stream cannot be opened.

ESTDERR 3012 The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not correct.

EBADNAME 3014 The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open function is not correct.

EBADPOS 3017 The position specifier is not correct.

ENOPOS 3018 There is no record at the specified position.

ENUMMBRS 3019 Attempted to use ftell on multiple members.

ENUMRECS 3020 The current record position is too long for ftell.

EINVAL 3021 The value specified for the argument is not correct.

EBADFUNC 3022 Function parameter in the signal function is not set.

ENOENT 3025 No such path or directory.

ENOREC 3026 Record is not found.

EPERM 3027 The operation is not permitted.

EBADDATA 3028 Message data is not valid.

EBUSY 3029 Resource busy.

EBADOPT 3040 Option specified is not valid.

76 iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Name Value Text

ENOTUPD 3041 File is not opened for update operations.

ENOTDLT 3042 File is not opened for delete operations.

EPAD 3043 The number of characters written is shorter than the expected

record length.

EBADKEYLN 3044 A length that was not valid was specified for the key.

EPUTANDGET 3080 A read operation should not immediately follow a write operation.

EGETANDPUT 3081 A write operation should not immediately follow a read operation.

EIOERROR 3101 A nonrecoverable I/O error occurred.

EIORECERR 3102 A recoverable I/O error occurred.

EACCES 3401 Permission denied.

ENOTDIR 3403 Not a directory.

ENOSPC 3404 No space is available.

EXDEV 3405 Improper link.

EAGAIN 3406 Operation would have caused the process to be suspended.

EWOULDBLOCK 3406 Operation would have caused the process to be suspended.

EINTR 3407 Interrupted function call.

EFAULT 3408 The address used for an argument was not correct.

ETIME 3409 Operation timed out.

ENXIO 3415 No such device or address.

EAPAR 3418 Possible APAR condition or hardware failure.

ERECURSE 3419 Recursive attempt rejected.

EADDRINUSE 3420 Address already in use.

EADDRNOTAVAIL 3421 Address is not available.

EAFNOSUPPORT 3422 The type of socket is not supported in this protocol family.

EALREADY 3423 Operation is already in progress.

ECONNABORTED 3424 Connection ended abnormally.

ECONNREFUSED 3425 A remote host refused an attempted connect operation.

ECONNRESET 3426 A connection with a remote socket was reset by that socket.

EDESTADDRREQ 3427 Operation requires destination address.

EHOSTDOWN 3428 A remote host is not available.

EHOSTUNREACH 3429 A route to the remote host is not available.

EINPROGRESS 3430 Operation in progress.

EISCONN 3431 A connection has already been established.

EMSGSIZE 3432 Message size is out of range.

ENETDOWN 3433 The network currently is not available.

ENETRESET 3434 A socket is connected to a host that is no longer available.

ENETUNREACH 3435 Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the requested operation.

ENOPROTOOPT 3437 The protocol does not support the specified option.

ENOTCONN 3438 Requested operation requires a connection.

ENOTSOCK 3439 The specified descriptor does not reference a socket.

Signal APIs 77

Name Value Text

ENOTSUP 3440 Operation is not supported.

EOPNOTSUPP 3440 Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not supported.

EPROTONOSUPPORT 3442 No protocol of the specified type and domain exists.

EPROTOTYPE 3443 The socket type or protocols are not compatible.

ERCVDERR 3444 An error indication was sent by the peer program.

ESHUTDOWN 3445 Cannot send data after a shutdown.

ESOCKTNOSUPPORT 3446 The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the timeout period.

EUNATCH 3448 The protocol required to support the specified address family is not

available at this time.

EBADF 3450 Descriptor is not valid.

EMFILE 3452 Too many open files for this process.

ENFILE 3453 Too many open files in the system.

EPIPE 3455 Broken pipe.

ECANCEL 3456 Operation cancelled.

EEXIST 3457 File exists.

EDEADLK 3459 Resource deadlock avoided.

ENOMEM 3460 Storage allocation request failed.

EOWNERTERM 3462 The synchronization object no longer exists because the owner is no

longer running.

EDESTROYED 3463 The synchronization object was destroyed, or the object no longer

exists.

ETERM 3464 Operation was terminated.

ENOENT1 3465 No such file or directory.

ENOEQFLOG 3466 Object is already linked to a dead directory.

EEMPTYDIR 3467 Directory is empty.

EMLINK 3468 Maximum link count for a file was exceeded.

ESPIPE 3469 Seek request is not supported for object.

ENOSYS 3470 Function not implemented.

EISDIR 3471 Specified target is a directory.

EROFS 3472 Read-only file system.

EUNKNOWN 3474 Unknown system state.

EITERBAD 3475 Iterator is not valid.

EITERSTE 3476 Iterator is in wrong state for operation.

EHRICLSBAD 3477 HRI class is not valid.

EHRICLBAD 3478 HRI subclass is not valid.

EHRITYPBAD 3479 HRI type is not valid.

ENOTAPPL 3480 Data requested is not applicable.

EHRIREQTYP 3481 HRI request type is not valid.

EHRINAMEBAD 3482 HRI resource name is not valid.

EDAMAGE 3484 A damaged object was encountered.

78 iSeries: UNIX-Type -- Signal APIs

Name Value Text

ELOOP 3485 A loop exists in the symbolic links.

ENAMETOOLONG 3486 A path name is too long.

ENOLCK 3487 No locks are available.

ENOTEMPTY 3488 Directory is not empty.

ENOSYSRSC 3489 System resources are not available.

ECONVERT 3490 Conversion error.

E2BIG 3491 Argument list is too long.

EILSEQ 3492 Conversion stopped due to input character that does not belong to

the input codeset.

ETYPE 3493 Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that was not found or was

destroyed.

EBADOBJ 3495 Attempted to reference an object that was not found, was

destroyed, or was damaged.

EIDXINVAL 3496 Data space index used as a directory is not valid.

ESOFTDAMAGE 3497 Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution directory.

EOFFLINE 3499 Object is suspended.

EROOBJ 3500 Object is a read-only object.

EEAHDDSI 3501 Hard damage on extended attribute data space index.

EEASDDSI 3502 Soft damage on extended attribute data space index.

EEAHDDS 3503 Hard damage on extended attribute data space.

EEASDDS 3504 Soft damage on extended attribute data space.

EEADUPRC 3505 Duplicate extended attribute record.

ELOCKED 3506 Area being read from or written to is locked.

EFBIG 3507 Object too large.

EIDRM 3509 The semaphore, shared memory, or message queue identifier is

removed from the system.

ENOMSG 3510 The queue does not contain a message of the desired type and

(msgflg logically ANDed with IPC_NOWAIT).

EFILECVT 3511 File ID conversion of a directory failed.

EBADFID 3512 A file ID could not be assigned when linking an object to a

directory.

ESTALE 3513 File handle was rejected by server.

ESRCH 3515 No such process.

ENOTSIGINIT 3516 Process is not enabled for signals.

ECHILD 3517 No child process.

EBADH 3520 Handle is not valid.

ETOOMANYREFS 3523 The operation would have exceeded the maximum number of

references allowed for a descriptor.

ENOTSAFE 3524 Function is not allowed.

EOVERFLOW 3525 Object is too large to process.

EJRNDAMAGE 3526 Journal is damaged.

Signal APIs 79

Name Value Text

EJRNINACTIVE 3527 Journal is inactive.

EJRNRCVSPC 3528 Journal space or system storage error.

EJRNRMT 3529 Journal is remote.

ENEWJRNRCV 3530 New journal receiver is needed.

ENEWJRN 3531 New journal is needed.

EJOURNALED 3532 Object already journaled.

EJRNENTTOOLONG 3533 Entry is too large to send.

EDATALINK 3534 Object is a datalink object.

ENOTAVAIL 3535 IASP is not available.

ENOTTY 3536 I/O control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its sort file size limit.

ETXTBSY 3543 Text file busy.

EASPGRPNOTSET 3544 ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be restarted.

ESCANFAILURE 3546 An object has been marked as a scan failure due to processing by

an exit program associated with the scan-related integrated file

system exit points.

 Top | UNIX-Type APIs | APIs by category

80 iSeries: UNIX-Type -- Signal APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 81

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

82 iSeries: UNIX-Type -- Signal APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 83

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

84 iSeries: UNIX-Type -- Signal APIs

����

Printed in USA

	Contents
	Signal APIs
	APIs
	alarm()—Set Schedule for Alarm Signal
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	getitimer()—Get Value for Interval Timer
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example
	Output:

	kill()—Send Signal to Process or Group of Processes
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	pause()—Suspend Process Until Signal Received
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	Qp0sDisableSignals()—Disable Process for Signals
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	Qp0sEnableSignals()—Enable Process for Signals
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	setitimer()—Set Value for Interval Timer
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	sigaction()—Examine and Change Signal Action
	Parameters
	Control Signals Table
	Default Actions:

	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	sigaddset()—Add Signal to Signal Set
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example
	Output:

	sigdelset()—Delete Signal from Signal Set
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example
	Output:

	sigemptyset()—Initialize and Empty Signal Set
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example
	Output:

	sigfillset()—Initialize and Fill Signal Set
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example
	Output:

	sigismember()—Test for Signal in Signal Set
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example
	Output:

	siglongjmp()—Perform Nonlocal Goto with Signal Handling
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output

	sigpending()—Examine Pending Signals
	Parameters
	Return Value
	Error Conditions
	Related Information
	Example
	Output:

	sigprocmask()—Examine and Change Blocked Signals
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	sigsetjmp()—Set Jump Point for Nonlocal Goto
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	sigsuspend()—Wait for Signal
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	sigtimedwait()—Synchronously Accept a Signal for Interval of Time
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	sigwait()—Synchronously Accept a Signal
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	sigwaitinfo()—Synchronously Accept a Signal and Signal Data
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	sleep()—Suspend Processing for Interval of Time
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	usleep()—Suspend Processing for Interval of Time
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Output:

	Concepts
	Using Signal APIs
	Signal Concepts
	OS/400 Signal Management
	Differences from Signals on UNIX Systems

	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

