
iSeries

UNIX-Type -- Problem Determination APIs

Version 5 Release 3

ERserver

���

iSeries

UNIX-Type -- Problem Determination APIs

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 25.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Problem Determination APIs 1

APIs 2

Qp0zDump()—Dump Formatted Storage Trace Data 2

Parameters 2

Authorities 2

Return Value 2

Error Conditions 2

Usage Notes 3

Related Information 3

Example 3

Trace Output: 4

Qp0zDumpStack()—Dump Formatted Stack Trace

Data 5

Parameters 6

Return Value 6

Error Conditions 6

Usage Notes 6

Related Information 7

Example 7

Qp0zDumpTargetStack()—Dump Formatted Stack

Trace Data of the Target Thread 9

Parameters 9

Authorities 10

Return Value 10

Error Conditions 10

Usage Notes 10

Related Information 10

Example 10

Trace Output: 11

Qp0zLprintf()—Print Formatted Job Log Data . . . 12

Parameters 13

Authorities 13

Return Value 13

Error Conditions 13

Usage Notes 13

Related Information 14

Example 14

Job Log Output: 15

Qp0zUprintf()—Print Formatted User Trace Data . . 15

Parameters 16

Authorities 16

Return Value 16

Error Conditions 16

Usage Notes 16

Related Information 17

Example 17

Concepts 17

Header Files for UNIX-Type Functions 17

Errno Values for UNIX-Type Functions 20

Appendix. Notices 25

Trademarks 26

Terms and conditions for downloading and printing

publications 27

Code disclaimer information 28

© Copyright IBM Corp. 1998, 2005 iii

iv iSeries: UNIX-Type -- Problem Determination APIs

Problem Determination APIs

The problem determination APIs are:

v “Qp0zDump()—Dump Formatted Storage Trace Data” on page 2 (Dump formatted storage trace data)

dumps the user storage specified by area to the user trace.

v “Qp0zDumpStack()—Dump Formatted Stack Trace Data” on page 5 (Dump formatted stack trace data)

dumps a formatted representation of the call stack of the calling thread to the user trace.

v “Qp0zDumpTargetStack()—Dump Formatted Stack Trace Data of the Target Thread” on page 9 (Dump

formatted stack trace data of the target thread) dumps a formatted representation of the call stack of

the target thread to the user trace.

v “Qp0zLprintf()—Print Formatted Job Log Data” on page 12 (Print formatted job log data) prints user

data specified by format-string as an information message type to the job log.

v “Qp0zUprintf()—Print Formatted User Trace Data” on page 15 (Print formatted user trace data) prints

user data specified by the format-string parameter to the user trace.

Note: These functions use header (include) files from the library QSYSINC, which is optionally

installable. Make sure QSYSINC is installed on your system before using any of the functions. See

“Header Files for UNIX-Type Functions” on page 17 for the file and member name of each header file.

The problem determination APIs are intended to be used as an aid in debugging exception or error

conditions in application programs. These functions should not be used in performance critical code.

These functions can be used during application development, as well as after the application is made

available, as debug mechanisms. For example, one of the following methods could be used:

v Use a compile option that activates the problem determination functions during application

development. When the application is ready to be made available, recompile to deactivate the

functions.

v Design a method to (quickly) check and see whether application problem determination is desired, as

well as an external method to activate application problem determination. Then, use the problem

determination functions in such a manner as to check (at run time) whether or not the functions should

be called.

Some of the problem determination functions dump or print to the user trace. The user trace is a

permanent user space object named QP0Z<jobnumber> in the QUSRSYS library. The user trace is created

the first time any thread in a job writes trace output. The following CL commands can be used to

manipulate the user trace properties and objects:

v Change User Trace (CHGUSRTRC) can be used to change the characteristics of the user trace.

v Dump User Trace (DMPUSRTRC) can be used to dump trace records to a file or to standard output.

v Delete User Trace (DLTUSRTRC) can be used to delete the user trace objects.

For those problem determination functions that use the user trace, the following should be considered:

v The functions require no authority to the user trace object. See CL commands CHGUSRTRC,

DMPUSRTRC, and DLTUSRTRC for the authority required to administer, display, or modify tracing

information using the CL commands.

v No locks are held on the user trace between calls to the tracing functions. The user trace can be deleted

while in use. The next function that produces trace output will create the user trace again.

v If another job on the system has the same job number as an existing user trace, the existing trace data

is cleared, and the trace data from the new job replaces it.

© Copyright IBM Corp. 1998, 2005 1

Top | UNIX-Type APIs | APIs by category

APIs

These are the APIs for this category.

Qp0zDump()—Dump Formatted Storage Trace Data

 Syntax

 #include <qp0ztrc.h>

 void Qp0zDump(const char *label,

 void *area,

 int len);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0zDump() function dumps the user storage specified by area to the user trace. The user-provided

storage is formatted for viewing in hexadecimal representation for up to len number of bytes. The

formatted storage is labeled with the text string specified by label.

If any input parameters are not valid, or an incorrect or error condition is detected, the Qp0zDump()

function returns immediately and no error is indicated.

An application should not use the tracing function in performance critical code. These functions are

intended for debugging exception or error conditions. The user trace is a permanent user space object

named QP0Z<jobnumber> in the QUSRSYS library. The user trace is created the first time any thread in a

job writes trace output. See the Change User Trace (CHGUSRTRC), Dump User Trace (DMPUSRTRC) and

Delete User Trace (DLTUSRTRC) CL commands for information about manipulating the user trace

properties and objects.

Parameters

label (Input) A pointer to a string that is used to label the storage dump.

area (Input) A pointer to storage area that is to be formatted and dumped to the user trace.

len (Input) The number of bytes of storage to be formatted in the user trace.

Authorities

None.

Return Value

None.

Error Conditions

If Qp0zDump() is not successful, the function returns immediately and no error is indicated.

2 iSeries: UNIX-Type -- Problem Determination APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Usage Notes

1. No locks are held on the user trace between calls to the tracing functions. The user trace can be

deleted while in use. The next function that produces trace output will create the user trace again.

2. If another job on the system has the same job number as an existing user trace, the existing trace data

is cleared, and the trace data from the new job replaces it.

3. As the format of the user trace records can change, only the following CL commands can be used to

manipulate the user trace properties and objects:

v Change User Trace (CHGUSRTRC) can be used to change the characteristics of the user trace.

v Dump User Trace (DMPUSRTRC) can be used to dump trace records to a file or to standard output.

v Delete User Trace (DLTUSRTRC) can be used to delete the user trace objects.

Related Information

v “Qp0zDumpStack()—Dump Formatted Stack Trace Data” on page 5—Dump Formatted Stack Trace

Data

v “Qp0zDumpTargetStack()—Dump Formatted Stack Trace Data of the Target Thread” on page 9—Dump

Formatted Stack Trace Data of the Target Thread

v “Qp0zLprintf()—Print Formatted Job Log Data” on page 12—Print Formatted Job Log Data

v “Qp0zUprintf()—Print Formatted User Trace Data” on page 15—Print Formatted User Trace Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses Qp0zDump() and Qp0zUprintf() functions to produce trace output.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <qp0ztrc.h>

#define THREADDATAMAX 128

void *theThread(void *parm)

{

 char *myData = parm;

 printf("Entered the %s thread\n", myData);

 Qp0zUprintf("Tracing in the %s thread\n", myData);

 Qp0zDump("The Data", myData, THREADDATAMAX);

 free(myData);

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread, thread2;

 int rc=0;

 char *threadData;

 printf("Enter Testcase - %s\n", argv[0]);

 Qp0zUprintf("Tracing Testcase Entry\n");

 printf("Create two threads\n");

 Qp0zUprintf("Tracing creation of two threads\n");

Problem Determination APIs 3

aboutapis.htm#CODEDISCLAIMER

threadData = (char *)malloc(THREADDATAMAX);

 memset(threadData, ’Z’, THREADDATAMAX);

 sprintf(threadData, "50%% Cotton, 50%% Polyester");

 rc = pthread_create(&thread, NULL, theThread, threadData);

 if (rc) {

 printf("Failed to create a %s thread\n", threadData);

 exit(EXIT_FAILURE);

 }

 threadData = (char *)malloc(THREADDATAMAX);

 memset(threadData, ’Q’, THREADDATAMAX);

 sprintf(threadData, "Lacquered Camel Hair");

 rc = pthread_create(&thread2, NULL, theThread, threadData);

 if (rc) {

 printf("Failed to create a %s thread\n", threadData);

 exit(EXIT_FAILURE);

 }

 printf("Wait for threads to complete\n");

 rc = pthread_join(thread, NULL);

 if (rc) { printf("Failed pthread_join() 1\n"); exit(EXIT_FAILURE); }

 rc = pthread_join(thread2, NULL);

 if (rc) { printf("Failed pthread_join() 2\n"); exit(EXIT_FAILURE); }

 printf("Testcase complete\n");

 Qp0zUprintf("Tracing completion of the testcase rc=%d\n", rc);

 return 0;

}

Trace Output:

This trace output was generated after the test case was run by using the CL command DMPUSRTRC

JOB(100464/USER/TPZDUMP0) OUTPUT(*STDOUT). The above example program ran as job

100464/USER/TPZDUMP0.

Note the following in the trace output:

1. Each trace record is indented by several spaces to aid in readability. Trace records from different

threads have different indentation levels.

2. Each trace record is identified by the hexadecimal thread ID, a colon, and a timestamp. The

timestamp can be used to aid in debugging of waiting or looping threads. For example, the third trace

record shown below (the Tracing Testcase Entry trace point) was created by thread 0x13, and occurred

0.870960 seconds after the last full date and time label. This means that the trace record was created

on 5 January 1998 at 14:08:28.870960. A full date and time label is placed between those trace points

that occur during different whole seconds.

4 iSeries: UNIX-Type -- Problem Determination APIs

User Trace Dump for job 100464/USER/TPZDUMP0. Size: 300K, Wrapped 0

times. --- 01/05/1998 14:08:28 ---

 00000013:870960 Tracing Testcase Entry

 00000013:871720 Tracing creation of two threads

 00000014:879904 Tracing in the 50% Cotton, 50% Polyester thread

 00000014:880256 C66E80F4DF:001F60 L:0080 The Data

 00000014:880968 C66E80F4DF:001F60 F5F06C40 C396A3A3 96956B40 F5F06C40 *50% Cotton, 50% *

 00000014:881680 C66E80F4DF:001F70 D79693A8 85A2A385 9900E9E9 E9E9E9E9 *Polyester.ZZZZZZ*

 00000014:882392 C66E80F4DF:001F80 E9E9E9E9 E9E9E9E9 E9E9E9E9 E9E9E9E9 *ZZZZZZZZZZZZZZZZ*

 00000014:883096 C66E80F4DF:001F90 E9E9E9E9 E9E9E9E9 E9E9E9E9 E9E9E9E9 *ZZZZZZZZZZZZZZZZ*

 00000014:883808 C66E80F4DF:001FA0 E9E9E9E9 E9E9E9E9 E9E9E9E9 E9E9E9E9 *ZZZZZZZZZZZZZZZZ*

 00000014:884512 C66E80F4DF:001FB0 E9E9E9E9 E9E9E9E9 E9E9E9E9 E9E9E9E9 *ZZZZZZZZZZZZZZZZ*

 00000014:885224 C66E80F4DF:001FC0 E9E9E9E9 E9E9E9E9 E9E9E9E9 E9E9E9E9 *ZZZZZZZZZZZZZZZZ*

 00000015:887872 Tracing in the Lacquered Camel Hair thread

 00000015:888216 C66E80F4DF:002000 L:0080 The Data

 00000015:888952 C66E80F4DF:002000 D3818398 A4859985 8440C381 94859340 *Lacquered Camel *

 00000015:889680 C66E80F4DF:002010 C8818999 00D8D8D8 D8D8D8D8 D8D8D8D8 *Hair.QQQQQQQQQQQ*

 00000015:890416 C66E80F4DF:002020 D8D8D8D8 D8D8D8D8 D8D8D8D8 D8D8D8D8 *QQQQQQQQQQQQQQQQ*

 00000015:891152 C66E80F4DF:002030 D8D8D8D8 D8D8D8D8 D8D8D8D8 D8D8D8D8 *QQQQQQQQQQQQQQQQ*

 00000015:891888 C66E80F4DF:002040 D8D8D8D8 D8D8D8D8 D8D8D8D8 D8D8D8D8 *QQQQQQQQQQQQQQQQ*

 00000015:892624 C66E80F4DF:002050 D8D8D8D8 D8D8D8D8 D8D8D8D8 D8D8D8D8 *QQQQQQQQQQQQQQQQ*

 00000015:893352 C66E80F4DF:002060 D8D8D8D8 D8D8D8D8 D8D8D8D8 D8D8D8D8 *QQQQQQQQQQQQQQQQ*

 00000015:894088 C66E80F4DF:002070 D8D8D8D8 D8D8D8D8 D8D8D8D8 D8D8D8D8 *QQQQQQQQQQQQQQQQ*

 00000014:896168 C66E80F4DF:001FD0 E9E9E9E9 E9E9E9E9 E9E9E9E9 E9E9E9E9 *ZZZZZZZZZZZZZZZZ*

 00000013:898832 Tracing completion of the testcase rc=0

Press ENTER to end terminal session.

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

Qp0zDumpStack()—Dump Formatted Stack Trace Data

 Syntax

 #include <qp0ztrc.h>

 void Qp0zDumpStack(const char *label);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0zDumpStack() function dumps a formatted representation of the call stack of the calling thread

to the user trace. The formatted call stack is labeled with the text string specified by label. The formatted

call stack shows the library, program, module, and procedure information associated with each frame on

the call stack.

The formatted dump of the current call stack shows the oldest entries first, followed by newer entries.

Problem Determination APIs 5

#TOP_OF_PAGE
unix.htm
aplist.htm

The following example is a call stack dump if the Qp0zDumpStack() function is used to dump the stack

of the current thread. The label Thread dumping my own stack was inserted by the application program

using the label parameter.

The thread start routine in this example is threadfunc() in program or service program ATEST5 that

resides in library QP0WTEST. The threadfunc() function (at statement 2) has called the function foo().

The function foo() (at statement 1), in turn has called bar(). The function bar() (at statement 1), has

dumped the current call stack due to some application-specific error condition.

 Thread dumping my own stack

 Library / Program Module Stmt Procedure

 QSYS / QLESPI QLECRTTH 7 : LE_Create_Thread2

 QSYS / QP0WPTHR QP0WPTHR 974 : pthread_create_part2

 QP0WTEST / ATEST5 ATEST5 2 : threadfunc

 QP0WTEST / ATEST5 ATEST5 1 : foo

 QP0WTEST / ATEST5 ATEST5 1 : bar

 QSYS / QP0ZCPA QP0ZUDBG 5 : Qp0zDumpStack

 QSYS / QP0ZSCPA QP0ZSCPA 199 : Qp0zSUDumpStack

 QSYS / QP0ZSCPA QP0ZSCPA 210 : Qp0zSUDumpTargetStack

An application should not use the tracing function in performance critical code. These functions are

intended for debugging exception or error conditions. The user trace is a permanent user space object

named QP0Z<jobnumber> in the QUSRSYS library. The user trace is created the first time any thread in a

job writes trace output. See the Change User Trace (CHGUSRTRC), Dump User Trace (DMPUSRTRC) and

Delete User Trace (DLTUSRTRC) CL commands for information about manipulating the user trace

properties and objects.

Parameters

label (Input) A pointer to a string that is used to label the stack dump.

 Authorities

None.

Return Value

None.

Error Conditions

If Qp0zDumpStack() is not successful, the function returns immediately and no error is indicated.

Usage Notes

1. No locks are held on the user trace between calls to the tracing functions. The user trace can be

deleted while in use. The next function that produces trace output will create the user trace again.

2. If another job on the system has the same job number as an existing user trace, the existing trace data

is cleared, and the trace data from the new job replaces it.

3. If the calling thread has more than 128 call stack entries, Qp0zDumpStack() returns after dumping

the first 128 entries of the call stack.

4. As the format of the user trace records can change, only the following CL commands can be used to

manipulate the user trace properties and objects:

v Change User Trace (CHGUSRTRC) can be used to change the characteristics of the user trace.

v Dump User Trace (DMPUSRTRC) can be used to dump trace records to a file or to standard output.

v Delete User Trace (DLTUSRTRC) can be used to delete the user trace objects.

6 iSeries: UNIX-Type -- Problem Determination APIs

Related Information

v “Qp0zDump()—Dump Formatted Storage Trace Data” on page 2—Dump Formatted Storage Trace Data

v “Qp0zDumpStack()—Dump Formatted Stack Trace Data” on page 5—Dump Formatted Stack Trace

Data of the Target Thread

v “Qp0zLprintf()—Print Formatted Job Log Data” on page 12—Print Formatted Job Log Data

v “Qp0zUprintf()—Print Formatted User Trace Data” on page 15)—Print Formatted User Trace Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses Qp0zDumpStack() and Qp0zUprintf() functions to produce trace output.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <qp0ztrc.h>

#define THREADDATAMAX 128

void foo(char *string);

void bar(char *string);

void *theThread(void *parm)

{

 char *myData = parm;

 printf("Entered the %s thread\n", myData);

 foo(myData);

 free(myData);

 return NULL;

}

void foo(char *string)

{

 bar(string);

}

void bar(char *string)

{

 Qp0zUprintf("function bar(): Hit an error condition!\n");

 Qp0zDumpStack(string);

}

int main(int argc, char **argv)

{

 pthread_t thread, thread2;

 int rc=0;

 char *threadData;

 printf("Enter Testcase - %s\n", argv[0]);

 Qp0zUprintf("Tracing Testcase Entry\n");

 printf("Create two threads\n");

 Qp0zUprintf("Tracing creation of two threads\n");

 threadData = (char *)malloc(THREADDATAMAX);

 sprintf(threadData, "50%% Cotton, 50%% Polyester");

 rc = pthread_create(&thread, NULL, theThread, threadData);

 if (rc) {

 printf("Failed to create a %s thread\n", threadData);

Problem Determination APIs 7

aboutapis.htm#CODEDISCLAIMER

exit(EXIT_FAILURE);

 }

 threadData = (char *)malloc(THREADDATAMAX);

 sprintf(threadData, "Lacquered Camel Hair");

 rc = pthread_create(&thread2, NULL, theThread, threadData);

 if (rc) {

 printf("Failed to create a %s thread\n", threadData);

 exit(EXIT_FAILURE);

 }

 printf("Wait for threads to complete\n");

 rc = pthread_join(thread, NULL);

 if (rc) { printf("Failed pthread_join() 1\n"); exit(EXIT_FAILURE); }

 rc = pthread_join(thread2, NULL);

 if (rc) { printf("Failed pthread_join() 2\n"); exit(EXIT_FAILURE); }

 printf("Testcase complete\n");

 Qp0zUprintf("Tracing completion of the testcase rc=%d\n", rc);

 return 0;

}

Trace Output:

This trace output was generated after the test case was run by using the CL command DMPUSRTRC

JOB(100465/USER/TPZSTK0) OUTPUT(*STDOUT). The above example program ran as job

100465/USER/TPZSTK0.

Note the following in the trace output:

1. Each trace record is indented by several spaces to aid in readability. Trace records from different

threads have different indentation levels.

2. Each trace record is identified by the hexadecimal thread ID, a colon, and a timestamp. The

timestamp can be used to aid in debugging of waiting or looping threads. For example, the third trace

record shown below, (the Tracing Testcase Entry trace point) was created by thread 0x16, and occurred

0.841456 seconds after the last full date and time label. This means that the trace record was created

on 5 January 1998 at 16:32:23.841456. A full date and time label is placed between those trace points

that occur during different whole seconds.

User Trace Dump for job 100465/USER/TPZSTK0. Size: 300K, Wrapped 0 times.

--- 01/05/1998 16:32:23 ---

 00000016:841456 Tracing Testcase Entry

 00000016:842176 Tracing creation of two threads

 00000017:850328 function bar(): Hit an error condition!

 00000017:850552 Stack Dump For Current Thread

 00000017:850752 Stack: 50% Cotton, 50% Polyester

 00000018:853288 function bar(): Hit an error condition!

 00000018:853512 Stack Dump For Current Thread

 00000018:853712 Stack: Lacquered Camel Hair

 00000018:888752 Stack: Library / Program Module Stmt Procedure

 00000017:889400 Stack: Library / Program Module Stmt Procedure

 00000017:904848 Stack: QSYS / QLESPI QLECRTTH 774 : LE_Create_Thread2__FP12crtth_parm_t

 00000017:905088 Stack: QSYS / QP0WPTHR QP0WPTHR 1004 : pthread_create_part2

 00000017:905312 Stack: QP0WTEST / TPZSTK0 TPZSTK0 2 : theThread

 00000017:905528 Stack: QP0WTEST / TPZSTK0 TPZSTK0 1 : foo

 00000017:905744 Stack: QP0WTEST / TPZSTK0 TPZSTK0 2 : bar

 00000017:905960 Stack: QSYS / QP0ZCPA QP0ZUDBG 85 : Qp0zDumpStack

 00000017:906184 Stack: QSYS / QP0ZSCPA QP0ZSCPA 274 : Qp0zSUDumpStack

 00000017:906408 Stack: QSYS / QP0ZSCPA QP0ZSCPA 285 : Qp0zSUDumpTargetStack

 00000017:906536 Stack: Completed

 00000018:908504 Stack: QSYS / QLESPI QLECRTTH 774 : LE_Create_Thread2__FP12crtth_parm_t

 00000018:908744 Stack: QSYS / QP0WPTHR QP0WPTHR 1004 : pthread_create_part2

8 iSeries: UNIX-Type -- Problem Determination APIs

00000018:908960 Stack: QP0WTEST / TPZSTK0 TPZSTK0 2 : theThread

 00000018:909168 Stack: QP0WTEST / TPZSTK0 TPZSTK0 1 : foo

 00000018:909384 Stack: QP0WTEST / TPZSTK0 TPZSTK0 2 : bar

 00000018:909592 Stack: QSYS / QP0ZCPA QP0ZUDBG 85 : Qp0zDumpStack

 00000018:909816 Stack: QSYS / QP0ZSCPA QP0ZSCPA 274 : Qp0zSUDumpStack

 00000018:910032 Stack: QSYS / QP0ZSCPA QP0ZSCPA 285 : Qp0zSUDumpTargetStack

 00000018:910168 Stack: Completed

 00000016:912792 Tracing completion of the testcase rc=0

Press ENTER to end terminal session.

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

Qp0zDumpTargetStack()—Dump Formatted Stack Trace Data of the

Target Thread

 Syntax

 #include <qp0ztrc.h>

 int Qp0zDumpTargetStack(int handle,

 const char *label);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 10.

The Qp0zDumpTargetStack() function dumps a formatted representation of the call stack of the target

thread to the user trace. The target thread is specified by handle, which can be filled in using the pthread_t

structure. The formatted call stack is labeled with the text string specified by label. The formatted call

stack shows the library, program, module, and procedure information associated with each frame on the

call stack at the time the function was called.

The formatted dump of the target call stack shows the oldest entries first, followed by newer entries.

For consistent results, ensure that the target thread specified in the handle parameter is blocked or waiting

for some resource and not actively running.

If a target thread that is actively running is specified, the stack trace information may be inconsistent.

An application should not use the tracing function in performance critical code. These functions are

intended for debugging exception or error conditions. The user trace is a permanent user space object

named QP0Z<jobnumber> in the QUSRSYS library. The user trace is created the first time any thread in a

job writes trace output. See the Change User Trace (CHGUSRTRC), Dump User Trace (DMPUSRTRC) and

Delete User Trace (DLTUSRTRC) CL commands for information about manipulating the user trace

properties and objects.

Parameters

handle (Input) A handle to the target thread.

label (Input) A pointer to a string that is used to label the stack dump.

Problem Determination APIs 9

#TOP_OF_PAGE
unix.htm
aplist.htm

Authorities

None.

Return Value

 0 Qp0zDumpTargetStack() was successful.

value Qp0zDumpTargetStack() was not successful. The value returned is an errno indicating the failure.

Error Conditions

If Qp0zDumpTargetStack() is not successful, the return value usually indicates one of the following

errors. Under some conditions, the return value could indicate an error other than those listed here.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[ESRCH]

 No item could be found that matches the specified value.

Usage Notes

1. No locks are held on the user trace between calls to the tracing functions. The user trace can be

deleted while in use. The next function that produces trace output will create the user trace again.

2. If another job on the system has the same job number as an existing user trace, the existing trace data

is cleared, and the trace data from the new job replaces it.

3. The Qp0zDumpTargetStack() can only safely be used against a thread that is stopped or waiting for

some activity to occur. If Qp0zDumpTargetStack() is used with a thread that is actively running, the

output stack trace may show an inconsistent view of the call stack.

4. If the target thread has more than 128 call stack entries, Qp0zDumpTargetStack() returns after

dumping the first 128 entries of the call stack.

5. As the format of the user trace records can change, only the following CL commands can be used to

manipulate the user trace properties and objects:

v Change User Trace (CHGUSRTRC) can be used to change the characteristics of the user trace.

v Dump User Trace (DMPUSRTRC) can be used to dump trace records to a file or to standard output.

v Delete User Trace (DLTUSRTRC) can be used to delete the user trace objects.

Related Information

v “Qp0zDump()—Dump Formatted Storage Trace Data” on page 2—Dump Formatted Storage Trace Data

v “Qp0zDumpStack()—Dump Formatted Stack Trace Data” on page 5—Dump Formatted Stack Trace

Data

v “Qp0zLprintf()—Print Formatted Job Log Data” on page 12—Print Formatted Job Log Data

v “Qp0zUprintf()—Print Formatted User Trace Data” on page 15—Print Formatted User Trace Data

Example

See Code disclaimer information for information pertaining to code examples.

10 iSeries: UNIX-Type -- Problem Determination APIs

aboutapis.htm#CODEDISCLAIMER

The following example uses Qp0zDumpTargetStack() and Qp0zUprintf() functions to produce trace

output.

#define _MULTI_THREADED

#include <pthread.h>

#include <milib.h>

#include <stdio.h>

#include <errno.h>

#include <unistd.h>

#include <qp0ztrc.h>

void *threadfunc(void *);

int main(int argc, char **argv)

{

 int rc=0;

 pthread_t thread;

 Qp0zUprintf("Entering Testcase\n");

 rc = pthread_create(&thread, NULL, threadfunc, NULL);

 sleep(2); /* Let the thread block */

 /* If the other thread ends or is actively running (that is */

 /* changing the call stack, you may get meaningless results in the*/

 /* stack dump for the target thread.) */

 Qp0zDumpTargetStack(thread.reservedHandle,

 "Dumping target thread’s stack\n");

 Qp0zUprintf("Exit with return code of 0\n");

 return 0;

}

void foo(void);

void bar(void);

void *threadfunc(void *parm)

{

 Qp0zUprintf("Inside secondary thread\n");

 foo();

 return NULL;

}

void foo(void)

{

 bar();

}

void bar(void)

{

 Qp0zDumpStack("Thread dumping my own stack\n");

 sleep(10); /* Ensure the thread is blocked */

}

Trace Output:

This trace output was generated after the test case was run by using the CL command DMPUSRTRC

JOB(107141/USER/TPZTSTK0) OUTPUT(*STDOUT). The above example program ran as job

107141/USER/TPZTSTK0.

Note the following in the trace output:

1. Each trace record is indented by several spaces to aid in readability. Trace records from different

threads have different indentation levels.

2. Each trace record is identified by the hexadecimal thread ID, a colon, and a timestamp. The

timestamp can be used to aid in debugging of waiting or looping threads. For example, the third trace

record shown below, (the Entering Testcase trace point) was created by thread 0x36, and occurred

Problem Determination APIs 11

0.595584 seconds after the last full date and time label. This means that the trace record was created

on 23 January 1998 at 12:38:10.595584. A full date and time label is placed between those trace points

that occur during different whole seconds.

User Trace Dump for job 107141/USER/TPZTSTK0. Size: 300K, Wrapped 0 times.

 --- 01/23/1998 12:38:10 ---

 00000036:595584 Entering Testcase

 00000037:598832 Inside secondary thread

 00000037:599024 Stack Dump For Current Thread

 00000037:599200 Stack: Thread dumping my own stack

 00000037:695440 Stack: Library / Program Module Stmt Procedure

 00000037:752984 Stack: QSYS / QLESPI QLECRTTH 774 : LE_Create_Thread2__FP12crtth_parm_t

 00000037:805664 Stack: QSYS / QP0WPTHR QP0WPTHR 1006 : pthread_create_part2

 00000037:805888 Stack: QP0WTEST / TPZTSTK0 TPZTSTK0 2 : threadfunc

 00000037:806088 Stack: QP0WTEST / TPZTSTK0 TPZTSTK0 1 : foo

 00000037:806288 Stack: QP0WTEST / TPZTSTK0 TPZTSTK0 1 : bar

 00000037:806496 Stack: QSYS / QP0ZCPA QP0ZUDBG 85 : Qp0zDumpStack

 00000037:848280 Stack: QSYS / QP0ZSCPA QP0ZSCPA 274 : Qp0zSUDumpStack

 00000037:848504 Stack: QSYS / QP0ZSCPA QP0ZSCPA 285 : Qp0zSUDumpTargetStack

 00000037:848616 Stack: Completed

 --- 01/23/1998 12:38:12 ---

 00000036:628272 Stack Dump For Target Thread: Handle 7 (0x00000007)

 00000036:628464 Stack: Dumping target thread’s stack

 00000036:651608 Stack: Library / Program Module Stmt Procedure

 00000036:651872 Stack: QSYS / QLESPI QLECRTTH 774 : LE_Create_Thread2__FP12crtth_parm_t

 00000036:652088 Stack: QSYS / QP0WPTHR QP0WPTHR 1006 : pthread_create_part2

 00000036:652304 Stack: QP0WTEST / TPZTSTK0 TPZTSTK0 2 : threadfunc

 00000036:652512 Stack: QP0WTEST / TPZTSTK0 TPZTSTK0 1 : foo

 00000036:652712 Stack: QP0WTEST / TPZTSTK0 TPZTSTK0 2 : bar

 00000036:677456 Stack: QSYS / QP0SSRV1 QP0SLIB 1061 : sleep

 00000036:700096 Stack: QSYS / QP0SSRV2 QP0SWAIT 248 : qp0swait__FP13qp0ssigwait_t

 00000036:700216 Stack: Completed

 00000036:700408 Exit with return code of 0

Press ENTER to end terminal session.

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

Qp0zLprintf()—Print Formatted Job Log Data

 Syntax

 #include <qp0ztrc.h>

 int Qp0zLprintf(char *format-string, ...);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0zLprintf() function prints user data specified by format-string as an information message type to

the job log.

If a second parameter, argument-list, is provided, Qp0zLprintf() converts each entry in the argument-list

and writes the entry to the job log according to the corresponding format specification in format-string. If

12 iSeries: UNIX-Type -- Problem Determination APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

there are more entries in argument-list than format specifications in format-string, the extra argument-list

entries are evaluated and then ignored. If there are less entries in argument-list than format specifications

in format-string, the job log output for those entries is undefined, and the Qp0zLprintf() function may

return an error.

The data printed by Qp0zLprintf() is buffered one line at a time, and a new message in the job log is

forced every 512 characters if a new line (\n) is not detected in the data before that time. The buffer used

by Qp0zLprintf() is not physically written when the application ends. To ensure messages are written to

the job log, always use a new line (\n) at the end of each format-string.

An application should not use the tracing function in performance critical code. These functions are

intended for debugging exceptions or error conditions.

Parameters

format-string

(Input) The format string representing the format of the data to be printed. See the printf()

function in ILE C/C++ Run-Time Library Functions

for a description of valid format strings.

... (argument-list)

(Input) An optional list of arguments that contain entries to be formatted and printed to the job

log.

Authorities

None.

Return Value

 value Qp0zLprintf() was successful. The value returned is the number of characters successfully printed.

-1 Qp0zLprintf() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0zLprintf() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than that listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL. An invalid format-string or argument-list

was specified.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

Usage Notes

None.

Problem Determination APIs 13

Related Information

v “Qp0zDump()—Dump Formatted Storage Trace Data” on page 2—Dump Formatted Storage Trace Data

v “Qp0zDumpStack()—Dump Formatted Stack Trace Data” on page 5—Dump Formatted Stack Trace

Data

v “Qp0zDumpTargetStack()—Dump Formatted Stack Trace Data of the Target Thread” on page 9—Dump

Formatted Stack Trace Data of the Target Thread

v “Qp0zUprintf()—Print Formatted User Trace Data” on page 15—Print Formatted User Trace Data

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses Qp0zLprintf() to produce output in the job log.

#define _MULTI_THREADED

#include <pthread.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <qp0ztrc.h>

#define THREADDATAMAX 128

void *theThread(void *parm)

{

 char *myData = parm;

 Qp0zLprintf("%.8x %.8x: Entered the %s thread\n",

 pthread_getthreadid_np(), myData);

 free(myData);

 return NULL;

}

int main(int argc, char **argv)

{

 pthread_t thread, thread2;

 int rc=0;

 char *threadData;

 printf("Create two threads\n");

 Qp0zUprintf("Tracing creation of two threads\n");

 threadData = (char *)malloc(THREADDATAMAX);

 sprintf(threadData, "50%% Cotton, 50%% Polyester");

 rc = pthread_create(&thread, NULL, theThread, threadData);

 if (rc) {

 printf("Failed to create a %s thread\n", threadData);

 exit(EXIT_FAILURE);

 }

 threadData = (char *)malloc(THREADDATAMAX);

 sprintf(threadData, "Lacquered Camel Hair");

 rc = pthread_create(&thread2, NULL, theThread, threadData);

 if (rc) {

 printf("Failed to create a %s thread\n", threadData);

 exit(EXIT_FAILURE);

 }

 printf("Wait for threads to complete\n");

 rc = pthread_join(thread, NULL);

 if (rc) { printf("Failed pthread_join() 1\n"); exit(EXIT_FAILURE); }

14 iSeries: UNIX-Type -- Problem Determination APIs

aboutapis.htm#CODEDISCLAIMER

rc = pthread_join(thread2, NULL);

 if (rc) { printf("Failed pthread_join() 2\n"); exit(EXIT_FAILURE); }

 return 0;

}

Job Log Output:

The following two job log messages where generated by the example shown above. The output was

retrieved from the spooled file created when the job ran to completion and when the job log was

retained. The informational messages contain the contents of the Qp0zLprintf() function calls.

*NONE Information 01/05/98 16:55:05 QP0ZCPA QSYS *STMT QP0ZCPA QSYS *STMT

 From module : QP0ZUDBG

 From procedure : Qp0zVLprintf

 Statement : 296

 To module : QP0ZUDBG

 To procedure : Qp0zVLprintf

 Statement : 296

 Thread : 0000001A

 Message : 00000000 0000001a: Entered the 50% Cotton, 50% Polyester

 thread

*NONE Information 01/05/98 16:55:05 QP0ZCPA QSYS *STMT QP0ZCPA QSYS *STMT

 From module : QP0ZUDBG

 From procedure : Qp0zVLprintf

 Statement : 296

 To module : QP0ZUDBG

 To procedure : Qp0zVLprintf

 Statement : 296

 Thread : 0000001B

 Message : 00000000 0000001b: Entered the Lacquered Camel Hair thread

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

Qp0zUprintf()—Print Formatted User Trace Data

 Syntax

 #include <qp0ztrc.h>

 int Qp0zUprintf(char *format-string, ...);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0zUprintf() function prints user data specified by the format-string parameter to the user trace.

If a second parameter, argument-list, is provided, Qp0zUprintf() converts each entry in the argument-list

and writes the entry to the user trace according to the corresponding format specification in format-string.

If there are more entries in argument-list than format specifications in format-string, the extra argument-list

Problem Determination APIs 15

#TOP_OF_PAGE
unix.htm
aplist.htm

entries are evaluated and then ignored. If there are less entries in argument-list than format specifications

in format-string, the user trace output for those entries is undefined, and the Qp0zUprintf() function may

return an error.

An application should not use the tracing function in performance critical code. These functions are

intended for debugging exception or error conditions. The user trace is a permanent user space object

named QP0Z<jobnumber> in the QUSRSYS library. The user trace is created the first time any thread in a

job writes trace output. See the Change User Trace (CHGUSRTRC), Dump User Trace (DMPUSRTRC) and

Delete User Trace (DLTUSRTRC) CL commands for information about manipulating the user trace

properties and objects.

Parameters

format-string

(Input) The format string representing the format of the data to be printed. See the printf()

function in the ILE C/C++ Programmer’s Guide

for a description of valid format strings.

... (argument-list)

(Input) An optional list of arguments that contain entries to be formatted and printed to the user

trace.

Authorities

None.

Return Value

 value Qp0zUprintf() was successful. The value returned is the number of characters successfully

printed.

-1 Qp0zUprintf() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0zUprintf() is not successful, errno indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL. An invalid format-string or argument-list

was specified.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

Usage Notes

1. No locks are held on the user trace between calls to the tracing functions. The user trace can be

deleted while in use. The next function that produces trace output will create the user trace again.

16 iSeries: UNIX-Type -- Problem Determination APIs

2. If another job on the system has the same job number as an existing user trace, the existing trace data

is cleared, and the trace data from the new job replaces it.

3. As the format of the user trace records can change, only the following CL commands can be used to

manipulate the user trace properties and objects:

v Change User Trace (CHGUSRTRC) can be used to change the characteristics of the user trace.

v Dump User Trace (DMPUSRTRC) can be used to dump trace records to a file or to standard output.

v Delete User Trace (DLTUSRTRC) can be used to delete the user trace objects.

Related Information

v “Qp0zDump()—Dump Formatted Storage Trace Data” on page 2—Dump Formatted Storage Trace Data

v “Qp0zDumpStack()—Dump Formatted Stack Trace Data” on page 5—Dump Formatted Stack Trace

Data

v “Qp0zDumpTargetStack()—Dump Formatted Stack Trace Data of the Target Thread” on page 9—Dump

Formatted Stack Trace Data of the Target Thread

v “Qp0zLprintf()—Print Formatted Job Log Data” on page 12—Print Formatted Job Log Data

Example

See Code disclaimer information for information pertaining to code examples.

See “Qp0zDump()—Dump Formatted Storage Trace Data” on page 2—Dump Formatted Storage Trace

Data.

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

Concepts

These are the concepts for this category.

Header Files for UNIX-Type Functions

Programs using the UNIX(R)-type functions must include one or more header files that contain

information needed by the functions, such as:

v Macro definitions

v Data type definitions

v Structure definitions

v Function prototypes

The header files are provided in the QSYSINC library, which is optionally installable. Make sure

QSYSINC is on your system before compiling programs that use these header files. For information on

installing the QSYSINC library, see Include files and the QSYSINC Library.

The table below shows the file and member name in the QSYSINC library for each header file used by

the UNIX-type APIs in this publication.

 Name of Header File Name of File in QSYSINC Name of Member

arpa/inet.h ARPA INET

arpa/nameser.h ARPA NAMESER

Problem Determination APIs 17

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm
conQSYSINC.htm

Name of Header File Name of File in QSYSINC Name of Member

bse.h H BSE

bsedos.h H BSEDOS

bseerr.h H BSEERR

dirent.h H DIRENT

errno.h H ERRNO

fcntl.h H FCNTL

grp.h H GRP

inttypes.h H INTTYPES

limits.h H LIMITS

mman.h H MMAN

netdbh.h H NETDB

netinet/icmp6.h NETINET ICMP6

net/if.h NET IF

netinet/in.h NETINET IN

netinet/ip_icmp.h NETINET IP_ICMP

netinet/ip.h NETINET IP

netinet/ip6.h NETINET IP6

netinet/tcp.h NETINET TCP

netinet/udp.h NETINET UDP

netns/idp.h NETNS IDP

netns/ipx.h NETNS IPX

netns/ns.h NETNS NS

netns/sp.h NETNS SP

net/route.h NET ROUTE

nettel/tel.h NETTEL TEL

os2.h H OS2

os2def.h H OS2DEF

pwd.h H PWD

Qlg.h H QLG

qp0lchsg.h H QP0LCHSG

qp0lflop.h H QP0LFLOP

qp0ljrnl.h H QP0LJRNL

qp0lror.h H QP0LROR

qp0lrro.h H QP0LRRO

qp0lrtsg.h H QP0LRTSG

qp0lscan.h H QP0LSCAN

Qp0lstdi.h H QP0LSTDI

qp0wpid.h H QP0WPID

qp0zdipc.h H QP0ZDIPC

qp0zipc.h H QP0ZIPC

qp0zolip.h H QP0ZOLIP

18 iSeries: UNIX-Type -- Problem Determination APIs

Name of Header File Name of File in QSYSINC Name of Member

qp0zolsm.h H QP0ZOLSM

qp0zripc.h H QP0ZRIPC

qp0ztrc.h H QP0ZTRC

qp0ztrml.h H QP0ZTRML

qp0z1170.h H QP0Z1170

qsoasync.h H QSOASYNC

qtnxaapi.h H QTNXAAPI

qtnxadtp.h H QTNXADTP

qtomeapi.h H QTOMEAPI

qtossapi.h H QTOSSAPI

resolv.h H RESOLVE

semaphore.h H SEMAPHORE

signal.h H SIGNAL

spawn.h H SPAWN

ssl.h H SSL

sys/errno.h H ERRNO

sys/ioctl.h SYS IOCTL

sys/ipc.h SYS IPC

sys/layout.h H LAYOUT

sys/limits.h H LIMITS

sys/msg.h SYS MSG

sys/param.h SYS PARAM

sys/resource.h SYS RESOURCE

sys/sem.h SYS SEM

sys/setjmp.h SYS SETJMP

sys/shm.h SYS SHM

sys/signal.h SYS SIGNAL

sys/socket.h SYS SOCKET

sys/stat.h SYS STAT

sys/statvfs.h SYS STATVFS

sys/time.h SYS TIME

sys/types.h SYS TYPES

sys/uio.h SYS UIO

sys/un.h SYS UN

sys/wait.h SYS WAIT

ulimit.h H ULIMIT

unistd.h H UNISTD

utime.h H UTIME

Problem Determination APIs 19

You can display a header file in QSYSINC by using one of the following methods:

v Using your editor. For example, to display the unistd.h header file using the Source Entry Utility

editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(5)

v Using the Display Physical File Member command. For example, to display the sys/stat.h header file,

enter the following command:

DSPPFM FILE(QSYSINC/SYS) MBR(STAT)

You can print a header file in QSYSINC by using one of the following methods:

v Using your editor. For example, to print the unistd.h header file using the Source Entry Utility editor,

enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(6)

v Using the Copy File command. For example, to print the sys/stat.h header file, enter the following

command:

CPYF FROMFILE(QSYSINC/SYS) TOFILE(*PRINT) FROMMBR(STAT)

Symbolic links to these header files are also provided in directory /QIBM/include.

 Top | UNIX-Type APIs | APIs by category

Errno Values for UNIX-Type Functions

Programs using the UNIX(R)-type functions may receive error information as errno values. The possible

values returned are listed here in ascending errno value sequence.

 Name Value Text

EDOM 3001 A domain error occurred in a math function.

ERANGE 3002 A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or update operation.

ENOTOPEN 3004 File is not open.

ENOTREAD 3005 File is not opened for read operations.

EIO 3006 Input/output error.

ENODEV 3007 No such device.

ERECIO 3008 Cannot get single character for files opened for record I/O.

ENOTWRITE 3009 File is not opened for write operations.

ESTDIN 3010 The stdin stream cannot be opened.

ESTDOUT 3011 The stdout stream cannot be opened.

ESTDERR 3012 The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not correct.

EBADNAME 3014 The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open function is not correct.

EBADPOS 3017 The position specifier is not correct.

ENOPOS 3018 There is no record at the specified position.

ENUMMBRS 3019 Attempted to use ftell on multiple members.

ENUMRECS 3020 The current record position is too long for ftell.

EINVAL 3021 The value specified for the argument is not correct.

20 iSeries: UNIX-Type -- Problem Determination APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Name Value Text

EBADFUNC 3022 Function parameter in the signal function is not set.

ENOENT 3025 No such path or directory.

ENOREC 3026 Record is not found.

EPERM 3027 The operation is not permitted.

EBADDATA 3028 Message data is not valid.

EBUSY 3029 Resource busy.

EBADOPT 3040 Option specified is not valid.

ENOTUPD 3041 File is not opened for update operations.

ENOTDLT 3042 File is not opened for delete operations.

EPAD 3043 The number of characters written is shorter than the expected

record length.

EBADKEYLN 3044 A length that was not valid was specified for the key.

EPUTANDGET 3080 A read operation should not immediately follow a write operation.

EGETANDPUT 3081 A write operation should not immediately follow a read operation.

EIOERROR 3101 A nonrecoverable I/O error occurred.

EIORECERR 3102 A recoverable I/O error occurred.

EACCES 3401 Permission denied.

ENOTDIR 3403 Not a directory.

ENOSPC 3404 No space is available.

EXDEV 3405 Improper link.

EAGAIN 3406 Operation would have caused the process to be suspended.

EWOULDBLOCK 3406 Operation would have caused the process to be suspended.

EINTR 3407 Interrupted function call.

EFAULT 3408 The address used for an argument was not correct.

ETIME 3409 Operation timed out.

ENXIO 3415 No such device or address.

EAPAR 3418 Possible APAR condition or hardware failure.

ERECURSE 3419 Recursive attempt rejected.

EADDRINUSE 3420 Address already in use.

EADDRNOTAVAIL 3421 Address is not available.

EAFNOSUPPORT 3422 The type of socket is not supported in this protocol family.

EALREADY 3423 Operation is already in progress.

ECONNABORTED 3424 Connection ended abnormally.

ECONNREFUSED 3425 A remote host refused an attempted connect operation.

ECONNRESET 3426 A connection with a remote socket was reset by that socket.

EDESTADDRREQ 3427 Operation requires destination address.

EHOSTDOWN 3428 A remote host is not available.

EHOSTUNREACH 3429 A route to the remote host is not available.

EINPROGRESS 3430 Operation in progress.

EISCONN 3431 A connection has already been established.

EMSGSIZE 3432 Message size is out of range.

Problem Determination APIs 21

Name Value Text

ENETDOWN 3433 The network currently is not available.

ENETRESET 3434 A socket is connected to a host that is no longer available.

ENETUNREACH 3435 Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the requested operation.

ENOPROTOOPT 3437 The protocol does not support the specified option.

ENOTCONN 3438 Requested operation requires a connection.

ENOTSOCK 3439 The specified descriptor does not reference a socket.

ENOTSUP 3440 Operation is not supported.

EOPNOTSUPP 3440 Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not supported.

EPROTONOSUPPORT 3442 No protocol of the specified type and domain exists.

EPROTOTYPE 3443 The socket type or protocols are not compatible.

ERCVDERR 3444 An error indication was sent by the peer program.

ESHUTDOWN 3445 Cannot send data after a shutdown.

ESOCKTNOSUPPORT 3446 The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the timeout period.

EUNATCH 3448 The protocol required to support the specified address family is not

available at this time.

EBADF 3450 Descriptor is not valid.

EMFILE 3452 Too many open files for this process.

ENFILE 3453 Too many open files in the system.

EPIPE 3455 Broken pipe.

ECANCEL 3456 Operation cancelled.

EEXIST 3457 File exists.

EDEADLK 3459 Resource deadlock avoided.

ENOMEM 3460 Storage allocation request failed.

EOWNERTERM 3462 The synchronization object no longer exists because the owner is no

longer running.

EDESTROYED 3463 The synchronization object was destroyed, or the object no longer

exists.

ETERM 3464 Operation was terminated.

ENOENT1 3465 No such file or directory.

ENOEQFLOG 3466 Object is already linked to a dead directory.

EEMPTYDIR 3467 Directory is empty.

EMLINK 3468 Maximum link count for a file was exceeded.

ESPIPE 3469 Seek request is not supported for object.

ENOSYS 3470 Function not implemented.

EISDIR 3471 Specified target is a directory.

EROFS 3472 Read-only file system.

EUNKNOWN 3474 Unknown system state.

EITERBAD 3475 Iterator is not valid.

EITERSTE 3476 Iterator is in wrong state for operation.

22 iSeries: UNIX-Type -- Problem Determination APIs

Name Value Text

EHRICLSBAD 3477 HRI class is not valid.

EHRICLBAD 3478 HRI subclass is not valid.

EHRITYPBAD 3479 HRI type is not valid.

ENOTAPPL 3480 Data requested is not applicable.

EHRIREQTYP 3481 HRI request type is not valid.

EHRINAMEBAD 3482 HRI resource name is not valid.

EDAMAGE 3484 A damaged object was encountered.

ELOOP 3485 A loop exists in the symbolic links.

ENAMETOOLONG 3486 A path name is too long.

ENOLCK 3487 No locks are available.

ENOTEMPTY 3488 Directory is not empty.

ENOSYSRSC 3489 System resources are not available.

ECONVERT 3490 Conversion error.

E2BIG 3491 Argument list is too long.

EILSEQ 3492 Conversion stopped due to input character that does not belong to

the input codeset.

ETYPE 3493 Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that was not found or was

destroyed.

EBADOBJ 3495 Attempted to reference an object that was not found, was

destroyed, or was damaged.

EIDXINVAL 3496 Data space index used as a directory is not valid.

ESOFTDAMAGE 3497 Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution directory.

EOFFLINE 3499 Object is suspended.

EROOBJ 3500 Object is a read-only object.

EEAHDDSI 3501 Hard damage on extended attribute data space index.

EEASDDSI 3502 Soft damage on extended attribute data space index.

EEAHDDS 3503 Hard damage on extended attribute data space.

EEASDDS 3504 Soft damage on extended attribute data space.

EEADUPRC 3505 Duplicate extended attribute record.

ELOCKED 3506 Area being read from or written to is locked.

EFBIG 3507 Object too large.

EIDRM 3509 The semaphore, shared memory, or message queue identifier is

removed from the system.

ENOMSG 3510 The queue does not contain a message of the desired type and

(msgflg logically ANDed with IPC_NOWAIT).

EFILECVT 3511 File ID conversion of a directory failed.

EBADFID 3512 A file ID could not be assigned when linking an object to a

directory.

ESTALE 3513 File handle was rejected by server.

ESRCH 3515 No such process.

Problem Determination APIs 23

Name Value Text

ENOTSIGINIT 3516 Process is not enabled for signals.

ECHILD 3517 No child process.

EBADH 3520 Handle is not valid.

ETOOMANYREFS 3523 The operation would have exceeded the maximum number of

references allowed for a descriptor.

ENOTSAFE 3524 Function is not allowed.

EOVERFLOW 3525 Object is too large to process.

EJRNDAMAGE 3526 Journal is damaged.

EJRNINACTIVE 3527 Journal is inactive.

EJRNRCVSPC 3528 Journal space or system storage error.

EJRNRMT 3529 Journal is remote.

ENEWJRNRCV 3530 New journal receiver is needed.

ENEWJRN 3531 New journal is needed.

EJOURNALED 3532 Object already journaled.

EJRNENTTOOLONG 3533 Entry is too large to send.

EDATALINK 3534 Object is a datalink object.

ENOTAVAIL 3535 IASP is not available.

ENOTTY 3536 I/O control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its sort file size limit.

ETXTBSY 3543 Text file busy.

EASPGRPNOTSET 3544 ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be restarted.

ESCANFAILURE 3546 An object has been marked as a scan failure due to processing by

an exit program associated with the scan-related integrated file

system exit points.

 Top | UNIX-Type APIs | APIs by category

24 iSeries: UNIX-Type -- Problem Determination APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 25

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

26 iSeries: UNIX-Type -- Problem Determination APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 27

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

28 iSeries: UNIX-Type -- Problem Determination APIs

����

Printed in USA

	Contents
	Problem Determination APIs
	APIs
	Qp0zDump()—Dump Formatted Storage Trace Data
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Trace Output:

	Qp0zDumpStack()—Dump Formatted Stack Trace Data
	Parameters
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	Qp0zDumpTargetStack()—Dump Formatted Stack Trace Data of the Target Thread
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Trace Output:

	Qp0zLprintf()—Print Formatted Job Log Data
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example
	Job Log Output:

	Qp0zUprintf()—Print Formatted User Trace Data
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	Concepts
	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

