
iSeries

UNIX-Type -- Interprocess Communication (IPC) APIs

Version 5 Release 3

ERserver

���

iSeries

UNIX-Type -- Interprocess Communication (IPC) APIs

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 153.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Interprocess Communication (IPC) APIs 1

APIs 3

ftok()—Generate IPC Key from File Name 3

Parameters 3

Authorities 4

Return Value 4

Error Conditions 4

Usage Notes 6

Related Information 7

Example 7

msgctl()—Perform Message Control Operations . . . 8

Parameters 9

Authorities 9

Return Value 10

Error Conditions 10

Error Messages 11

Usage Notes 11

Related Information 11

Example 11

msgget()—Get Message Queue 11

Parameters 12

Authorities 12

Return Value 13

Error Conditions 13

Error Messages 14

Usage Notes 14

Related Information 14

Example 14

msgrcv()—Receive Message Operation 15

Parameters 16

Authorities 16

Return Value 16

Error Conditions 16

Error Messages 18

Usage Notes 18

Related Information 18

Example 18

msgsnd()—Send Message Operation 19

Parameters 20

Authorities 20

Return Value 20

Error Conditions 20

Error Messages 21

Usage Notes 21

Related Information 22

Example 22

QlgFtok()—Generate IPC Key from File Name

(using NLS-enabled path name) 23

Parameters 23

Related Information 23

Example 23

QlgSem_open()—Open Named Semaphore (using

NLS-enabled path name) 24

Parameters 25

Error Conditions 25

Related Information 25

Example 25

QlgSem_open_np()—Open Named Semaphore with

Maximum Value (using NLS-enabled path name) . . 26

Parameters 27

Error Conditions 27

Related Information 27

Example 27

QlgSem_unlink()—Unlink Named Semaphore (using

NLS-enabled path name) 28

Parameters 28

Error Conditions 28

Related Information 29

Example 29

Delete Interprocess Communication Objects

(QP0ZDIPC) API 30

Authorities and Locks 30

Required Parameter Group 30

Delete Control Format 30

Field Descriptions 31

Error Messages 31

Open List of Interprocess Communication Objects

(QP0ZOLIP) API 32

Authorities and Locks 33

Required Parameter Group 33

FIPC0100 Format 34

Field Descriptions 34

LSST0100 Format 35

LMSQ0100 Format 36

LSHM0100 Format 36

LNSM0100 Format 37

LUSM0100 Format 38

Field Descriptions 39

Error Messages 43

Open List of Semaphores (QP0ZOLSM) API . . . 44

Authorities and Locks 44

Required Parameter Group 45

LSEM0100 Format 45

Field Descriptions 46

Error Messages 47

Retrieve an Interprocess Communication Object

(QP0ZRIPC) API 47

Authorities and Locks 48

Required Parameter Group 48

RSST0100 Format 48

RMSQ0100 Format 49

RSHM0100 Format 50

Field Descriptions 51

Error Messages 56

semctl()—Perform Semaphore Control Operations 57

Parameters 58

Authorities 59

Return Value 60

Error Conditions 60

Error Messages 61

Usage Notes 61

Related Information 61

© Copyright IBM Corp. 1998, 2005 iii

Example 61

semget()—Get Semaphore Set with Key 62

Authorities 63

Return Value 63

Error Conditions 63

Error Messages 64

Usage Notes 64

Related Information 65

Example 65

semop()—Perform Semaphore Operations on

Semaphore Set 65

Parameters 66

Authorities 66

Return Value 67

Error Conditions 67

Error Messages 68

Usage Notes 68

Related Information 68

Example 68

sem_close()—Close Named Semaphore 69

Parameters 69

Authorities 69

Return Value 69

Error Conditions 69

Error Messages 69

Related Information 70

Example 70

sem_destroy()—Destroy Unnamed Semaphore . . . 70

Parameters 71

Authorities 71

Return Value 71

Error Conditions 71

Error Messages 71

Related Information 71

Example 71

sem_getvalue()—Get Semaphore Value 72

Authorities 72

Return Value 72

Error Conditions 72

Error Messages 73

Related Information 73

Example 73

Output: 73

sem_init()—Initialize Unnamed Semaphore 74

Parameters 74

Authorities 74

Return Value 74

Error Conditions 74

Error Messages 75

Related Information 75

Example 75

sem_init_np()—Initialize Unnamed Semaphore with

Maximum Value 75

Parameters 76

Authorities 76

Return Value 76

Error Conditions 76

Error Messages 77

Related Information 77

Example 77

sem_open()—Open Named Semaphore 78

Parameters 78

Authorities 79

Return Value 79

Error Conditions 79

Error Messages 80

Related Information 80

Example 80

sem_open_np()—Open Named Semaphore with

Maximum Value 81

Parameters 81

Authorities 82

Return Value 83

Error Conditions 83

Error Messages 84

Related Information 84

Example 84

sem_post()—Post to Semaphore 85

Parameters 85

Authorities 85

Return Value 85

Error Conditions 85

Error Messages 85

Related Information 85

Example 86

Output: 86

sem_post_np()—Post Value to Semaphore 86

Parameters 87

Authorities 87

Return Value 87

Error Conditions 87

Error Messages 87

Related Information 87

Example 88

Output: 88

sem_trywait()—Try to Decrement Semaphore . . . 89

Parameters 89

Authorities 89

Return Value 89

Error Conditions 89

Error Messages 89

Related Information 90

Example 90

Output: 90

sem_unlink()—Unlink Named Semaphore 91

Parameters 91

Authorities 91

Return Value 91

Error Conditions 92

Error Messages 92

Related Information 92

Example 92

sem_wait()—Wait for Semaphore 93

Parameters 93

Authorities 93

Return Value 93

Error Conditions 93

Error Messages 93

Related Information 93

Example 94

Output: 94

sem_wait_np()—Wait for Semaphore with Timeout 95

iv iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Parameters 95

Authorities 95

Return Value 95

Error Conditions 95

Error Messages 96

Related Information 96

Example 96

Output: 97

shmat()—Attach Shared Memory Segment to

Current Process 97

Parameters 98

Authorities 98

Return Value 98

Error Conditions 98

Error Messages 100

Usage Notes 100

Related Information 100

Example 100

shmctl()—Perform Shared Memory Control

Operations 101

Parameters 101

Authorities 102

Return Value 102

Error Conditions 103

Error Messages 104

Usage Notes 104

Related Information 104

Example 104

shmdt()—Detach Shared Memory Segment from

Calling Process 104

Parameters 105

Authorities 105

Return Value 105

Error Conditions 105

Error Messages 106

Usage Notes 106

Related Information 106

Example 106

shmget()—Get ID of Shared Memory Segment with

Key 106

Parameters 107

Authorities 108

Return Value 109

Error Conditions 109

Error Messages 110

Usage Notes 110

Related Information 110

Example 111

Exit Programs 111

Integrated File System Scan on Close Exit Program 111

Restrictions 112

Authorities and Locks 113

Program Data 113

Required Parameter Group 113

Format of Integrated File System Close Exit

Information (Input) 113

Format of Status Information (Output) 114

Field Descriptions 114

Usage Notes 119

Related Information 120

Integrated File System Scan on Open Exit Program 121

Restrictions 122

Authorities and Locks 122

Program Data 122

Required Parameter Group 122

Format of Integrated File System Open Exit

Information (Input) 123

Format of Status Information (Output) 123

Field Descriptions 124

Scan Key List and Scan Key Signatures 128

Coded Character Set Identifier (CCSID)

Information 129

Usage Notes 130

Related Information 131

Process a Path Name Exit Program 131

Parameters 132

Save Storage Free Exit Program 133

Required Parameter Group 134

Related Information 134

Concepts 135

Identifier Based Services 135

Message Queues 136

Semaphore Sets 138

Shared Memory 140

Pointer Based Services 142

Managing IPC Objects 144

Header Files for UNIX-Type Functions 144

Errno Values for UNIX-Type Functions 147

Appendix. Notices 153

Trademarks 154

Terms and conditions for downloading and

printing publications 155

Code disclaimer information 156

Contents v

vi iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Interprocess Communication (IPC) APIs

Interprocess communication (IPC) on OS/400(R) is made up of five services divided into the two

categories of identifier-based services and pointer-based services. The identifier-based IPC services consist

of message queues, semaphore sets, and shared memory. The pointer-based services consist of unnamed

and named semaphores. The basic purpose of these services is to provide OS/400 processes and threads

with a way to communicate with each other through a set of standard APIs. These functions are based on

the definitions in the Single UNIX(R) Specification.

For additional information on the Interprocess Communication APIs, see:

v “Identifier Based Services” on page 135

– “Message Queues” on page 136

– “Semaphore Sets” on page 138

– “Shared Memory” on page 140
v “Pointer Based Services” on page 142 (Named and Unnamed Semaphores)
v “Managing IPC Objects” on page 144

The interprocess communication functions and what they do are:

v “ftok()—Generate IPC Key from File Name” on page 3 (Generate IPC Key from File Name) generates

an IPC key based on the combination of path and id.

v “msgctl()—Perform Message Control Operations” on page 8 (Perform Message Control Operations)

provides message control operations as specified by cmd on the message queue specified by msqid.

v “msgget()—Get Message Queue” on page 11 (Get Message Queue) returns the message queue identifier

associated with the parameter key.

v “msgrcv()—Receive Message Operation” on page 15 (Receive Message Operation) reads a message

from the queue associated with the message queue identifier specified by msqid and places it in the

user-defined buffer pointed to by msgp.

v “msgsnd()—Send Message Operation” on page 19 (Send Message Operation) is used to send a message

to the queue associated with the message queue identifier specified by msqid.

v “QlgFtok()—Generate IPC Key from File Name (using NLS-enabled path name)” on page 23 (Generate

IPC Key from File Name (using NLS-enabled path name)) generates an IPC key based on the

combination of path and id.

v “QlgSem_open()—Open Named Semaphore (using NLS-enabled path name)” on page 24 (Open

Named Semaphore (using NLS-enabled path name)) opens a named semaphore and returns a

semaphore pointer that may be used on subsequent calls to sem_post(), sem_post_np(), sem_wait(),

sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close().

v “QlgSem_open_np()—Open Named Semaphore with Maximum Value (using NLS-enabled path name)”

on page 26 (Open Named Semaphore with Maximum Value (using NLS-enabled path name)) opens a

named semaphore and returns a semaphore pointer that may be used on subsequent calls to

sem_post(), sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close().

v “QlgSem_unlink()—Unlink Named Semaphore (using NLS-enabled path name)” on page 28 (Unlink

Named Semaphore (using NLS-enabled path name)) unlinks a named semaphore.

v “Delete Interprocess Communication Objects (QP0ZDIPC) API” on page 30 (Delete Interprocess

Communication Objects) deletes one or more interprocess communication (IPC) objects as specified by

the delete control parameter.

v “Open List of Interprocess Communication Objects (QP0ZOLIP) API” on page 32 (Open List of

Interprocess Communication Objects) lets you generate a list of interprocess communication (IPC)

objects and descriptive information based on the selection parameters.

© Copyright IBM Corp. 1998, 2005 1

v “Open List of Semaphores (QP0ZOLSM) API” on page 44 (Open List of Semaphores) lets you generate

a list of description information about the semaphores within a semaphore set.

v “Retrieve an Interprocess Communication Object (QP0ZRIPC) API” on page 47 (Retrieve an

Interprocess Communication Object) lets you generate detailed information about a single interprocess

communication (IPC) object.

v “semctl()—Perform Semaphore Control Operations” on page 57 (Perform Semaphore Control

Operations) provides semaphore control operations as specified by cmd on the semaphore specified by

semnum in the semaphore set specified by semid.

v “semget()—Get Semaphore Set with Key” on page 62 (Get Semaphore Set with Key) returns the

semaphore ID associated with the specified semaphore key.

v “semop()—Perform Semaphore Operations on Semaphore Set” on page 65 (Perform Semaphore

Operations on Semaphore Set) performs operations on semaphores in a semaphore set. These

operations are supplied in a user-defined array of operations.

v “sem_close()—Close Named Semaphore” on page 69 (Close Named Semaphore) closes a named

semaphore that was previously opened by a thread of the current process using sem_open() or

sem_open_np().

v “sem_destroy()—Destroy Unnamed Semaphore” on page 70 (Destroy Unnamed Semaphore) destroys

an unnamed semaphore that was previously initialized using sem_init() or sem_init_np().

v “sem_getvalue()—Get Semaphore Value” on page 72 (Get Semaphore Value) retrieves the value of a

named or unnamed semaphore.

v “sem_init()—Initialize Unnamed Semaphore” on page 74 (Initialize Unnamed Semaphore) initializes an

unnamed semaphore and sets its initial value.

v “sem_init_np()—Initialize Unnamed Semaphore with Maximum Value” on page 75 (Initialize Unnamed

Semaphore with Maximum Value) initializes an unnamed semaphore and sets its initial value.

v “sem_open()—Open Named Semaphore” on page 78 (Open Named Semaphore) opens a named

semaphore, returning a semaphore pointer that may be used on subsequent calls to sem_post(),

sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close().

v “sem_open_np()—Open Named Semaphore with Maximum Value” on page 81 (Open Named

Semaphore with Maximum Value) opens a named semaphore, returning a semaphore pointer that may

be used on subsequent calls to sem_post(), sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(),

sem_getvalue(), and sem_close().

v “sem_post()—Post to Semaphore” on page 85 (Post to Semaphore) posts to a semaphore, incrementing

its value by one.

v “sem_post_np()—Post Value to Semaphore” on page 86 (Post Value to Semaphore) posts to a

semaphore, incrementing its value by the increment specified in the options parameter.

v “sem_trywait()—Try to Decrement Semaphore” on page 89 (Try to Decrement Semaphore) attempts to

decrement the value of the semaphore.

v “sem_unlink()—Unlink Named Semaphore” on page 91 (Unlink Named Semaphore) unlinks a named

semaphore.

v “sem_wait()—Wait for Semaphore” on page 93 (Wait for Semaphore) decrements by one the value of

the semaphore.

v “sem_wait_np()—Wait for Semaphore with Timeout” on page 95 (Wait for Semaphore with Timeout)

attempts to decrement by one the value of the semaphore.

v “shmat()—Attach Shared Memory Segment to Current Process” on page 97 (Attach Shared Memory

Segment to Current Process) returns the address of the shared memory segment associated with the

specified shared memory identifier.

v “shmctl()—Perform Shared Memory Control Operations” on page 101 (Perform Shared Memory

Control Operations) provides shared memory control operations as specified by cmd on the shared

memory segment specified by shmid.

2 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

v “shmdt()—Detach Shared Memory Segment from Calling Process” on page 104 (Detach Shared

Memory Segment from Calling Process) detaches the shared memory segment specified by shmaddr

from the calling process.

v “shmget()—Get ID of Shared Memory Segment with Key” on page 106 (Get ID of Shared Memory

Segment with Key) returns the shared memory ID associated with the specified shared memory key.

Note: These functions use header (include) files from the library QSYSINC, which is optionally

installable. Make sure QSYSINC is installed on your system before using any of the functions. See

“Header Files for UNIX-Type Functions” on page 144 for the file and member name of each header file.

 Top | UNIX-Type APIs | APIs by category

APIs

These are the APIs for this category.

ftok()—Generate IPC Key from File Name

 Syntax

 #include <sys/ipc.h>

 key_t ftok(const char *path, int id);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 6.

The ftok() function generates an IPC key based on the combination of path and id.

Identifier-based interprocess communication facilities require you to supply a key to the msgget(),

semget(), shmget() subroutines to obtain interprocess communication identifiers. The ftok() function is

one mechanism to generate these keys.

If the values for path and id are the same as a previous call to ftok() and the file named by path was not

deleted and re-created in between calls to ftok(), ftok() will return the same key.

The ftok() function returns different keys if different values of path and id are used.

Only the low-order 8-bits of id are significant. The remaining bits are ignored by ftok().

Parameters

path (Input) The path name of the file used in combination with id to generate the key.

 See “QlgFtok()—Generate IPC Key from File Name (using NLS-enabled path name)” on page 23

for a description and an example of supplying the path in any CCSID.

id (Input) The integer identifier used in combination with path to generate the key. Only the low

order 8-bits of id are significant. The remaining bits will be ignored.

Interprocess Communication (IPC) APIs 3

#TOP_OF_PAGE
unix.htm
aplist.htm

Authorities

Authorization Required for ftok() (excluding QOPT)

 Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object None None

Authorization Required for ftok() in the QOPT File System

 Object Referred to Authority Required errno

Volume containing directory or object *USE EACCES

Directory or object within volume None None

Return Value

 value ftok() was successful.

(key_t)-1 ftok() was not successful. The errno variable is set to indicate the error.

Error Conditions

If ftok() is not successful, errno indicates one of the following errors.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

4 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

Interprocess Communication (IPC) APIs 5

A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

6 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

v Where multiple threads exist in the job.

v The object this function is operating on resides in a file system that is not threadsafe. Only the

following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. If the values for path and id are the same as a previous call to ftok() and if the file named by path was

deleted and re-created in between calls to ftok(), ftok() will return a different key.

3. The ftok() function will return the same key for different values of path if the path names refer to

symbolic links or hard links whose target files are the same.

4. The ftok() function may return the same key for different values of path if the target files are in

different file systems.

5. The ftok() function may return the same key for different values of path if the target file is in a file

system that contains more than 224 files.

Related Information

v “QlgFtok()—Generate IPC Key from File Name (using NLS-enabled path name)” on page 23—Generate

IPC Key from File Name (using NLS-enabled path name)

v “msgget()—Get Message Queue” on page 11—Get Message Queue

v “semget()—Get Semaphore Set with Key” on page 62—Get Semaphore Set with Key

v “shmget()—Get ID of Shared Memory Segment with Key” on page 106—Get ID of Shared Memory

Segment with Key

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses ftok() and semget() functions.

#include <sys/ipc.h>

#include <sys/sem.h>

#include <errno.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 key_t myKey;

 int semid;

 /* Use ftok to generate a key associated with a file. */

 /* Every process will get the same key back if the */

 /* caller calls with the same parameters. */

 myKey = ftok("/myApplication/myFile", 42);

 if(myKey == -1) {

 printf("ftok failed with errno = %d\n", errno);

 return -1;

 }

Interprocess Communication (IPC) APIs 7

aboutapis.htm#CODEDISCLAIMER

/* Call an xxxget() API, where xxx is sem, shm, or msg. */

 /* This will create or reference an existing IPC object */

 /* with the ’well known’ key associated with the file */

 /* name used above. */

 semid = semget(myKey, 1, 0666 | IPC_CREAT);

 if(semid == -1) {

 printf("semget failed with errno = %d\n", errno);

 return -1;

 }

 /* ... Use the semaphore as required ... */

 return 0;

}

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

msgctl()—Perform Message Control Operations

 Syntax

 #include <sys/msg.h>

 int msgctl(int msqid, int cmd, struct msqid_ds *buf);

 Service Program Name: QP0ZUSHR

 Default Public Authority: *USE

 Threadsafe: Yes

The msgctl() function allows the caller to control the message queue specified by the msqid parameter.

A message queue is controlled by setting the cmd parameter to one of the following values:

IPC_RMID (0x00000000)

Remove the message queue identifier msqid from the system and destroy any messages on the

message queue. Any threads that are waiting in msgsnd() or msgrcv() are woken up and

msgsnd() or msgrcv() returns with a return value of -1 and errno set to EIDRM.

 The IPC_RMID command can be run only by a thread with appropriate privileges or one that has

an effective user ID equal to the user ID of the owner or the user ID of the creator of the message

queue. The structure pointed to by *buf is ignored and can be NULL.

IPC_SET (0x00000001)

Set the user ID of the owner, the group ID of the owner, the permissions, and the maximum

number of bytes for the message queue to the values in the msg_perm.uid, msg_perm.gid,

msg_perm.mode, and msg_qbytes members of the msqid_ds data structure pointed to by *buf.

 The IPC_SET command can be run only by a thread with appropriate privileges or one that has

an effective user ID equal to the user ID of the owner or the user ID of the creator of the message

queue.

 In addition, only a thread with appropriate privileges can increase the maximum number of bytes

for the message queue.

8 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

IPC_STAT (0x00000002)

Store the current value of each member of the msqid_ds data structure into the structure pointed

to by *buf. The IPC_STAT command requires read permission to the message queue.

Parameters

msqid (Input) Message queue identifier, a positive integer. It is returned by the “msgget()—Get Message

Queue” on page 11 function and used to identify the message queue on which to perform the

control operation.

cmd (Input) Command, the control operation to perform on the message queue. Valid values are listed

above.

buf (I/O) Pointer to the message queue data structure to be used to get or set message queue

information.

 The members of the msqid_ds structure are as follows:

 struct ipc_perm

msg_perm

The members of the ipc_perm structure are as follows:

uid_t uid

The user ID of the owner of the message queue.

gid_t gid

The group ID of the owner of the message queue.

uid_t cuid

The user ID of the creator of the message queue.

gid_t cgid

The group ID of the creator of the message queue.

mode_t mode

The permissions for the message queue.

msgnum_t

msg_qnum

The number of messages currently on the message queue.

msglen_t

msg_qbytes

The maximum number of bytes allowed on the message queue.

pid_t msg_lspid The process ID of the last job to send a message using msgsnd().

pid_t msg_lrpid The process ID of the last job to receive a message using msgrcv().

time_t msg_stime The time the last job sent a message to the message queue using msgsnd().

time_t msg_rtime The time the last job received a message from the message queue using msgrcv().

time_t msg_ctime The time the last job changed the message queue using msgctl().

Authorities

Authorization Required for msgctl()

 Object Referred to Authority Required errno

Message queue for which state information is retrieved (cmd =

IPC_STAT)

Read EACCES

Message queue for which state information is set (cmd = IPC_SET) See Note EPERM

Message queue to be removed (cmd = IPC_RMID) See Note EPERM

Note: To set message queue information or to remove a message queue, the thread must be the owner or

creator of the queue, or have appropriate privileges. To increase the maximum number of bytes for the

message queue, a thread must have appropriate privileges.

Interprocess Communication (IPC) APIs 9

Return Value

 0 msgctl() was successful.

-1 msgctl() was not successful. The errno variable is set to indicate the error.

Error Conditions

If msgctl() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 The cmd parameter is IPC_STAT and the calling thread does not have read permission.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

 The message queue has been damaged by a previous message queue operation.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 One of the following has occurred:

v The msqid parameter is not a valid message queue identifier.

v The cmd parameter is not a valid command.

v The cmd parameter is IPC_SET and the value of msg_qbytes exceeds the system limit.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

 The cmd parameter is equal to IPC_RMID or IPC_SET and both of the following are true:

v the caller does not have the appropriate privileges.

v the effective user ID of the caller is not equal to the user ID of the owner or the user ID of the

creator of the message queue.

The cmd parameter is IPC_SET and an attempt is being made to increase the maximum number

of bytes for the message queue, but the the caller does not have appropriate privileges.

10 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

1. “Appropriate privileges” is defined to be *ALLOBJ special authority. If the user profile under which

the thread is running does not have *ALLOBJ special authority, the caller does not have appropriate

privileges.

Related Information

v The <sys/msg.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “Message Queues” on page 136 for the current system limits.
v “msgget()—Get Message Queue”—Get Message Queue

v “msgrcv()—Receive Message Operation” on page 15—Receive Message Operation

v “msgsnd()—Send Message Operation” on page 19—Send Message Operation

Example

See Code disclaimer information for information pertaining to code examples.

The following example performs a control operation on a message queue:

#include <sys/msg.h>

main() {

 int msqid = 2;

 int rc;

 struct msqid_ds buf;

 rc = msgctl(msqid, IPC_STAT, &buf);

}

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

msgget()—Get Message Queue

 Syntax

 #include <sys/msg.h>

 #include <sys/stat.h>

 int msgget(key_t key, int msgflg);

 Service Program Name: QP0ZUSHR

 Default Public Authority: *USE

 Threadsafe: Yes

Interprocess Communication (IPC) APIs 11

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

The msgget() function either creates a new message queue or returns the message queue identifier

associated with the key parameter for an existing message queue. A new message queue is created if one

of the following is true:

v The key parameter is equal to IPC_PRIVATE.

v The key parameter does not already have a message queue identifier associated with it and the

IPC_CREAT flag is specified in the msgflg parameter.

The system maintains status information about a message queue which can be retrieved with the

“msgctl()—Perform Message Control Operations” on page 8 function. When a new message queue is

created, the system initializes the members of the msqid_ds structure as follows:

v msg_perm.cuid and msg_perm.uid are set equal to the effective user ID of the calling thread.

v msg_perm.cgid and msg_perm.gid are set equal to the effective group ID of the calling thread.

v The low-order 9 bits of msg_perm.mode are set equal to the low-order 9 bits of the msgflg parameter.

v msg_qbytes is set equal to the system limit.

v msg_ctime is set equal to the current time.

v msg_qnum, msg_lspid, msg_lrpid, msg_stime, and msg_rtime are set equal to 0.

Parameters

key (Input) Key associated with the message queue. A key of IPC_PRIVATE (0x00000000) guarantees

that a unique message queue is created. A key also can be specified by the caller or generated by

the “ftok()—Generate IPC Key from File Name” on page 3 function.

msgflg

(Input) Operations and permissions flag. The value of msgflg is either zero or is obtained by

performing an OR operation on one or more of the following constants:

S_IRUSR (0x00000100)

Allow the owner of the message queue to read from it.

S_IWUSR (0x00000080)

Allow the owner of the message queue to write to it.

S_IRGRP (0x00000020)

Allow the group of the message queue to read from it.

S_IWGRP (0x00000010)

Allow the group of the message queue to write to it.

S_IROTH (0x00000004)

Allow others to read from the message queue.

S_IWOTH (0x00000002)

Allow others to write to the message queue.

IPC_CREAT (0x00000200)

Create the message queue if it does not exist.

IPC_EXCL (0x00000400)

Return an error if the IPC_CREAT flag is set and the message queue already exists.

Authorities

Authorization Required for msgget()

12 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Object Referred to Authority Required errno

Message queue to be created None None

Existing message queue to be accessed See Note EACCES

Note: If the thread is accessing an existing message queue, the mode specified in the last 9 bits of msgflg

must be a subset of the mode of the existing message queue.

Return Value

 value msgget() was successful. The value returned is the message queue identifier associated with the

key parameter.

-1 msgget() was not successful. The errno variable is set to indicate the error.

Error Conditions

If msgget() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 A message queue identifier exists for the parameter key, but permissions specified in the

low-order 9 bits of semflg are not a subset of the current permissions.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

 The message queue has been damaged by a previous message queue operation.

[EEXIST]

 File exists.

 The file specified already exists and the specified operation requires that it not exist.

 The named file, directory, or path already exists.

 A message queue identifier exists for the key parameter and both the IPC_CREAT and IPC_EXCL

flags are set in the msgflg parameter.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

 A message queue identifier does not exist for the key parameter, and the IPC_CREAT flag is not

set in the msgflg parameter.

[ENOSPC]

 No space available.

Interprocess Communication (IPC) APIs 13

The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

 A message queue identifier cannot be created because the system limit on the maximum number

of allowed message queue identifiers would be exceeded.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

1. The best way to generate a unique key is to use the “ftok()—Generate IPC Key from File Name” on

page 3 function.

Related Information

v The <sys/msg.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “Message Queues” on page 136 for the current system limits.
v “ftok()—Generate IPC Key from File Name” on page 3—Generate IPC Key from File Name

v “msgctl()—Perform Message Control Operations” on page 8—Perform Message Control Operations

v “msgrcv()—Receive Message Operation” on page 15—Receive Message Operation

v “msgsnd()—Send Message Operation” on page 19—Send Message Operation

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a message queue:

#include <sys/msg.h>

#include <sys/stat.h>

main() {

 int msqid;

 msqid = msgget(IPC_PRIVATE, IPC_CREAT | S_IRUSR | S_IWUSR);

}

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

14 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

msgrcv()—Receive Message Operation

 Syntax

 #include <sys/msg.h>

 int msgrcv(int msqid, void *msgp, size_t msgsz,

 long int msgtyp, int msgflg);

 Service Program Name: QP0ZUSHR

 Default Public Authority: *USE

 Threadsafe: Yes

The msgrcv() function reads a message from the message queue specified by the msqid parameter and

places it in the user-defined buffer pointed to by the *msgp parameter.

The *msgp parameter points to a user-defined buffer that must contain the following:

1. A field of type long int that specifies the type of the message.

2. A data part that contains the data bytes of the message.

The following structure is an example of what this user-defined buffer might look like for a message that

has 5 bytes of data:

 struct mymsg {

 long int mtype; /* message type */

 char mtext[5]; /* message text */

 }

The value of mtype is the type of the received message, as specified by the sender of the message.

The msgtyp parameter specifies the type of message to receive from the message queue as follows:

v If msgtyp is equal to zero, the first message is received.

v If msgtyp is greater than zero, the first message of type msgtyp is received.

v If msgtyp is less than zero, the first message of the lowest type that is less than or equal to the absolute

value of msgtyp is received.

The msgsz parameter specifies the size in bytes of the data part of the message. The received message is

truncated to msgsz bytes if it is larger than msgsz and the MSG_NOERROR flag is set in the msgflg

parameter. The truncated part of the message is lost and no indication of the truncation is given to the

calling thread. Otherwise, msgrcv() returns with return value -1 and errno set to E2BIG.

If a message of the desired type is not available on the message queue, the msgflg parameter specifies the

action to be taken. The actions are as follows:

v If the IPC_NOWAIT flag is set in the msgflg parameter, msgrcv() returns immediately with a return

value of -1 and errno set to ENOMSG.

v If the IPC_NOWAIT flag is not set in the msgflg parameter, the calling thread suspends processing until

one of the following occurs:
– A message of the desired type is sent to the message queue.

– The message queue identifier msqid is removed from the system. When this occurs, the msgrcv()

function returns with a return value of -1 and errno set to EIDRM.

Interprocess Communication (IPC) APIs 15

– A signal is delivered to the calling thread. When this occurs, the msgrcv() function returns with a

return value of -1 and errno set to EINTR.

The system maintains status information about a message queue which can be retrieved with the

“msgctl()—Perform Message Control Operations” on page 8 function. When a message is successfully

received from the message queue, the system sets the members of the msqid_ds structure as follows:

v msg_qnum is decremented by 1.

v msg_lrpid is set to the process ID of the calling thread.

v msg_rtime is set to the current time.

Parameters

msqid (Input) Message queue identifier, a positive integer. It is returned by the “msgget()—Get Message

Queue” on page 11 function and used to identify the message queue to receive the message from.

msgp (Output) Pointer to a buffer in which the received message will be stored. See above for the

details on the format of the buffer.

msgsz (Input) Length of the data part of the buffer.

msgtyp

(Input) Type of message to be received.

msgflg

(Input) Operations flags. The value of msgflg is either zero or is obtained by performing an OR

operation on one or more of the following constants:

IPC_NOWAIT (0x00000800)

If a message is not available, do not wait for the message and return immediately.

MSG_NOERROR (0x00001000)

If the data part of the message is larger than msgsz, do not return an error.

Authorities

Authorization Required for msgrcv()

 Object Referred to Authority Required errno

Message queue from which message is received Read EACCES

Return Value

 value msgrcv() was successful. The value returned is the number of bytes of data placed in the data part

of the buffer pointed to by the msgp parameter.

-1 msgrcv() was not successful. The errno variable is set to indicate the error.

Error Conditions

If msgrcv() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[E2BIG]

16 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Argument list too long.

 The size in bytes of the message is greater than msgsz and the MSG_NOERROR flag is not set in

the msgflg parameter.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 The calling thread does not have read permission to the message queue.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

 The message queue has been damaged by a previous message queue operation.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EIDRM]

 ID has been removed.

 The message queue identifier msqid was removed from the system.

[EINTR]

 Interrupted function call.

 The function msgrcv() was interrupted by a signal.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 One of the following has occurred:

v The *msgp parameter is NULL.

v The msqid parameter is not a valid message queue identifier.

[ENOMSG]

 Message does not exist.

 The message queue does not contain a message of the desired type and the IPC_NOWAIT flag is

set in the msgflg parameter.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Interprocess Communication (IPC) APIs 17

Error Messages

None.

Usage Notes

1. The parameter msgsz should include any bytes inserted by the compiler for padding or alignment

purposes. These bytes are part of the message data and affect the total number of bytes in the

message queue.

The following example shows pad data and how it affects the size of a message using datamodel

*P128:

 struct mymsg {

 long int mtype; /* 12 bytes padding inserted after */

 char *pointer; /* the mtype field by the compiler.*/

 char c; /* 15 bytes padding inserted after */

 char *pointer2; /* the c field by the compiler. */

 } msg; /* After the mtype field, there are*/

 /* 33 bytes of user data, but 60 */

 /* bytes of data including padding.*/

 msgsz = sizeof(msg) - sizeof(long int); /* 60 bytes. */

2. The msgrcv() function does not tag message data with a CCSID (coded character set identifier) value.

If a CCSID value is required to correctly interpret the message data, it is the responsibility of the

caller to include the CCSID value as part of the data.

3. If the msgrcv() function does not complete successfully, the requested message is not removed from

the message queue.

Related Information

v The <sys/msg.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “Message Queues” on page 136 for the current system limits.
v “msgctl()—Perform Message Control Operations” on page 8—Perform Message Control Operations

v “msgget()—Get Message Queue” on page 11—Get Message Queue

v “msgsnd()—Send Message Operation” on page 19—Send Message Operation

v sigaction()—Examine and change signal action

Example

See Code disclaimer information for information pertaining to code examples.

The following example receives a message from a message queue:

#include <sys/msg.h>

main() {

 int msqid = 2;

 int rc;

 size_t msgsz;

 long int msgtyp;

 struct mymsg {

 long int mtype;

 char mtext[256];

 };

 msgsz = sizeof(struct mymsg) - sizeof(long int);

 msgtyp = 1;

 rc = msgrcv(msqid, &mymsg, msgsz, msgtyp, IPC_NOWAIT);

}

18 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

sigactn.htm
aboutapis.htm#CODEDISCLAIMER

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

msgsnd()—Send Message Operation

 Syntax

 #include <sys/msg.h>

 int msgsnd(int msqid, void *msgp,

 size_t msgsz, int msgflg);

 Service Program Name: QP0ZUSHR

 Default Public Authority: *USE

 Threadsafe: Yes

The msgsnd() function is used to send a message to the message queue specified by the msqid parameter.

The *msgp parameter points to a user-defined buffer that must contain the following:

1. A field of type long int that specifies the type of the message.

2. A data part that contains the data bytes of the message.

The following structure is an example of what the user-defined buffer might look like for a message that

has 5 bytes of data.

 struct mymsg {

 long int mtype; /* message type */

 char mtext[5]; /* message text */

 }

The value of mtype must be greater than zero. When messages are received with “msgrcv()—Receive

Message Operation” on page 15, the message type can be used to select the messages. The message data

can be any length up to the system limit.

If the message queue is full, the msgflg parameter specifies the action to be taken. The actions are as

follows:

v If the IPC_NOWAIT flag is set in the msgflg parameter, the message is not sent. The msgsnd() function

returns immediately with a return value of -1 and errno set to EAGAIN.

v If the IPC_NOWAIT flag is not set in the msgflg parameter, the calling thread suspends processing until

one of the following occurs:
– Enough messages are received from the message queue so that a message of size msgsz can be

placed on the message queue.

– The message queue identifier msqid is removed from the system. When this occurs, the msgsnd()

function returns with a return value of -1 and errno set to EIDRM.

– A signal is delivered to the calling thread. When this occurs, the msgsnd() function returns with a

return value of -1 and errno set to EINTR.

Interprocess Communication (IPC) APIs 19

#TOP_OF_PAGE
unix.htm
aplist.htm

The system maintains status information about a message queue which can be retrieved with the

“msgctl()—Perform Message Control Operations” on page 8 function. When a message is successfully

sent to the message queue, the system sets the members of the msqid_ds structure as follows:

v msg_qnum is incremented by 1.

v msg_lspid is set to the process ID of the calling thread.

v msg_stime is set to the current time.

Parameters

msqid (Input) Message queue identifier, a positive integer. It is returned by the “msgget()—Get Message

Queue” on page 11 function and used to identify the message queue to send the message to.

msgp (Input) Pointer to a buffer with the message to be sent. See above for the details on the format of

the buffer.

msgsz (Input) Length of the data part of the message to be sent.

msgflg

(Input) Operations flags. The value of msgflg is either zero or is obtained by performing an OR

operation on one or more of the following constants:

IPC_NOWAIT (0x00000800)

If the message queue is full, do not wait for space to become available on the message

queue and return immediately.

Authorities

Authorization Required for msgsnd()

 Object Referred to Authority Required errno

Message queue on which message is placed Write EACCES

Return Value

 0 msgsnd() was successful.

-1 msgsnd() was not successful. The errno variable is set to indicate the error.

Error Conditions

If msgsnd() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 The calling thread does not have write permission to the message queue.

[EAGAIN]

 Operation would have caused the process to be suspended.

20 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

The message cannot be sent for one of the reasons cited above and the IPC_NOWAIT flag is set

in the msgflg parameter.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

 The message queue has been damaged by a previous message queue operation.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EIDRM]

 ID has been removed.

 The message queue identifier msqid was removed from the system.

[EINTR]

 Interrupted function call.

 The function msgsnd() was interrupted by a signal.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 One of the following has occurred:

v The *msgp parameter is NULL.

v The msqid parameter is not a valid message queue identifier.

v The mtype parameter is less than or equal to zero.

v The msgsz parameter is greater than the system limit.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

1. The parameter msgsz should include any bytes inserted by the compiler for padding or alignment

purposes. These bytes are part of the message data and affect the total number of bytes in the

message queue.

The following example shows pad data and how it affects the size of a message when using

datamodel *P128:

Interprocess Communication (IPC) APIs 21

struct mymsg {

 long int mtype; /* 12 bytes padding inserted after */

 char *pointer; /* the mtype field by the compiler.*/

 char c; /* 15 bytes padding inserted after */

 char *pointer2; /* the c field by the compiler. */

 } msg; /* After the mtype field, there are*/

 /* 33 bytes of user data, but 60 */

 /* bytes of data including padding.*/

 msgsz = sizeof(msg) - sizeof(long int); /* 60 bytes. */

2. The msgsnd() function does not tag message data with a CCSID (coded character set identifier) value.

If a CCSID value is required to correctly interpret the message data, it is the responsibility of the

caller to include the CCSID value as part of the data.

3. If the msgsnd() function does not complete successfully, the requested message is not placed on the

message queue.

Related Information

v The <sys/msg.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “Message Queues” on page 136 for the current system limits.
v “msgctl()—Perform Message Control Operations” on page 8—Perform Message Control Operations

v “msgget()—Get Message Queue” on page 11—Get Message Queue

v “msgrcv()—Receive Message Operation” on page 15—Receive Message Operation

v sigaction()—Examine and change signal action

Example

See Code disclaimer information for information pertaining to code examples.

The following example sends a message to a message queue:

#include <sys/msg.h>

main() {

 int msqid = 2;

 int rc;

 size_t msgsz;

 struct mymsg {

 long int mtype;

 char mtext[256];

 };

 msgsz = sizeof(struct mymsg) - sizeof(long int);

 mymsg.mtype = 1;

 rc = msgsnd(msqid, &mymsg, msgsz, IPC_NOWAIT);

}

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

22 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

sigactn.htm
aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

QlgFtok()—Generate IPC Key from File Name (using NLS-enabled path

name)

 Syntax

 #include <sys/ipc.h>

 #include <qlg.h>

 key_t QlgFtok(const Qlg_Path_Name_T *path, int id);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

 Threadsafe: Conditional. See Usage Notes for “ftok()—Generate IPC Key from File Name” on page 3.

The QlgFtok() function, like the ftok() function, generates an IPC key based on the combination of path

and id. The difference is that the QlgFtok() function takes a pointer to a Qlg_Path_Name_T structure,

while the ftok() function takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, returnvalues, and related information, see

“ftok()—Generate IPC Key from File Name” on page 3.

Parameters

path (Input) The path name of the file used in combination with id to generate the key. For more

information on the Qlg_Path_Name_T structure, see Path name format.

Related Information

“ftok()—Generate IPC Key from File Name” on page 3—Generate IPC Key from File Name

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses the QlgFtok() and semget() functions.

#include <sys/ipc.h>

#include <sys/sem.h>

#include <errno.h>

#include <stdio.h>

#include <qlg.h>

int main(int argc, char *argv[])

{

 key_t myKey;

 int semid;

 #define mypath "/myApplication/myFile"

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 const char Path_Name_Del_const[2]= "/";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char[100] pn; /* This size must be >= the path */

 /* name length or be a pointer */

 /* to the path name. */

Interprocess Communication (IPC) APIs 23

pns.htm
aboutapis.htm#CODEDISCLAIMER

};

 struct pnstruct path;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)path name, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 memcpy(path.qlg_struct.Path_Name_Delimiter,Path_Name_Del_const,1);

 memcpy(path.pn,mypath,sizeof(mypath));

 /* Use QlgFtok to generate a key associated with a file. */

 /* Every process will get the same key back if the caller */

 /* calls with the same parameters. */

 myKey = QlgFtok((Qlg_Path_Name_T *)path name, 42);

 if(myKey == -1) {

 printf("QlgFtok failed with errno = %d\n", errno);

 return -1;

 }

 /* Call an xxxget() API, where xxx is sem, shm, or msg. */

 /* This will create or reference an existing IPC object */

 /* with the ’well known’ key associated with the file */

 /* name used above. */

 semid = semget(myKey, 1, 0666 | IPC_CREAT);

 if(semid == -1) {

 printf("semget failed with errno = %d\n", errno);

 return -1;

 }

 /* ... Use the semaphore as required ... */

 return 0;

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgSem_open()—Open Named Semaphore (using NLS-enabled path

name)

 Syntax

 #include <semaphore.h>

 #include <qlg.h>

 sem_t * QlgSem_open(const Qlg_Path_Name_T *name,

 int oflag, ...);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

24 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

The QlgSem_open() function, like the sem_open() function, opens a named semaphore and returns a

semaphore pointer that may be used on subsequent calls to sem_post(), sem_post_np(), sem_wait(),

sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close(). The QlgSem_open() function takes a

pointer to a Qlg_Path_Name_T structure, while the sem_open() function takes a pointer to a character

string that is in the CCSID of the job.

Limited information on the name parameter is provided in this API. For additional information on the

name parameter and a discussion of other parameters, authorities required, return values, and related

information, see “sem_open()—Open Named Semaphore” on page 78—Open Named Semaphore.

Parameters

name (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the semaphore to be opened. For more information on the Qlg_Path_Name_T

structure, see Path name format.

Error Conditions

If QlgSem_open() is not successful, errno usually indicates the following error or one of the errors

identified in “Error Conditions” on page 79—Open Named Semaphore.

[ECONVERT]

A conversion error for the parameter name.

Related Information

v The <qlg.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “sem_open()—Open Named Semaphore” on page 78—Open Named Semaphore

v “QlgSem_open_np()—Open Named Semaphore with Maximum Value (using NLS-enabled path name)”

on page 26—Open Named Semaphore with Maximum Value (using NLS-enabled path name)

v “QlgSem_unlink()—Unlink Named Semaphore (using NLS-enabled path name)” on page 28—Unlink

Named Semaphore (using NLS-enabled path name)

Note: All of the related information for sem_open() applies to QlgSem_open(). See Related Information

in “Related Information” on page 80.

Example

See Code disclaimer information for information pertaining to code examples.

The following example opens the named semaphore ″/mysemaphore″ and creates the semaphore with an

initial value of 10 if it does not already exist. If the semaphore is created, the permissions are set such

that only the current user has access to the semaphore.

#include <semaphore.h>

#include <qlg.h>

main() {

 sem_t * my_semaphore;

 int rc;

 #define mypath "/mysemaphore"

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 const char Path_Name_Del_const[2]= "/";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char[100] pn; /* This size must be >= the path */

 /* name length or be a pointer */

 /* to the path name. */

Interprocess Communication (IPC) APIs 25

pns.htm
aboutapis.htm#CODEDISCLAIMER

};

 struct pnstruct path;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)path name, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 memcpy(path.qlg_struct.Path_Name_Delimiter,Path_Name_Del_const,1);

 memcpy(path.pn,mypath,sizeof(mypath));

 my_semaphore = QlgSem_open((Qlg_Path_Name_T *)path name,

 O_CREAT, S_IRUSR | S_IWUSR, 10);

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgSem_open_np()—Open Named Semaphore with Maximum Value

(using NLS-enabled path name)

 Syntax

 #include <semaphore.h>

 #include <qlg.h>

 sem_t * QlgSem_open_np(const Qlg_Path_Name_T *name, int oflag

 mode_t mode, unsigned int value,

 sem_attr_np_t * attr);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The QlgSem_open_np() function, like the sem_open_np() function, opens a named semaphore and

returns a semaphore pointer that may be used on subsequent calls to sem_post(), sem_post_np(),

sem_wait(), sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close(). The QlgSem_open_np()

function takes a pointer to a Qlg_Path_Name_T structure, while the sem_open_np() function takes a

pointer to a character string.

Limited information on the name parameter is provided in this API. For additional information on the

name parameter and a discussion of other parameters, authorities required, return values, and related

information, see “sem_open_np()—Open Named Semaphore with Maximum Value” on page 81—Open

Named Semaphore with Maximum Value.

26 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

name (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the semaphore to be opened. For more information on the Qlg_Path_Name_T

structure, see Path name format.

Error Conditions

If QlgSem_open_np() is not successful, errno usually indicates the following error or one of the errors

identified in “Error Conditions” on page 83—Open Named Semaphore with Maximum Value.

[ECONVERT]

A conversion error for the parameter name.

Related Information

v The <qlg.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “sem_open_np()—Open Named Semaphore with Maximum Value” on page 81—Open Named

Semaphore with Maximum Value

v “QlgSem_open()—Open Named Semaphore (using NLS-enabled path name)” on page 24—Open

Named Semaphore (using NLS-enabled path name)

v “QlgSem_unlink()—Unlink Named Semaphore (using NLS-enabled path name)” on page 28—Unlink

Named Semaphore (using NLS-enabled path name)

Note: All of the related information for sem_open_np() applies to QlgSem_open_np(). See Related

Information in “Related Information” on page 84.

Example

See Code disclaimer information for information pertaining to code examples.

The following example opens the named semaphore ″/mysemaphore″ and creates the semaphore with an

initial value of 10 and a maxiumum value of 11. The permissions are set such that only the current user

has access to the semaphore.

#include <semaphore.h>

#include <qlg.h>

main() {

 sem_t * my_semaphore;

 int rc;

 sem_attr_np_t attr;

 #define mypath "/mysemaphore"

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 const char Path_Name_Del_const[2]= "/";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char[100] pn; /* This size must be >= the path */

 /* name length or be a pointer */

 /* to the path name. */

 };

 struct pnstruct path;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)path name, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

Interprocess Communication (IPC) APIs 27

pns.htm
aboutapis.htm#CODEDISCLAIMER

memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 memcpy(path.qlg_struct.Path_Name_Delimiter,Path_Name_Del_const,1);

 memcpy(path.pn,mypath,sizeof(mypath));

 memset(&attr, 0, sizeof(attr));

 attr.maxvalue=11;

 my_semaphore = QlgSem_open_np((Qlg_Path_Name_T *)path name,

 O_CREAT|O_EXCL,

 S_IRUSR | S_IWUSR,

 10,

 &attr);

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgSem_unlink()—Unlink Named Semaphore (using NLS-enabled path

name)

 Syntax

 #include <semaphore.h>

 #include <qlg.h>

 int QlgSem_unlink(const Qlg_Path_Name_T *name);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The QlgSem_unlink() function, like the sem_unlink() function, unlinks a named semaphore. The

QlgSem_unlink() function takes a pointer to a Qlg_Path_Name_T structure, while the sem_unlink()

function takes a pointer to a character string.

Limited information on the name parameter is provided in this API. For additional information on the

name parameter, authorities required, return values, and related information, see “sem_unlink()—Unlink

Named Semaphore” on page 91—Unlink Named Semaphore.

Parameters

name (Input) A pointer a Qlg_Path_Name_T structure that contains a path name or a pointer to a path

name of the semaphore to be unlinked. For more information on the Qlg_Path_Name_T structure,

see Path name format.

Error Conditions

If QlgSem_unlink() is not successful, errno usually indicates the following error or one of the errors

identified in “sem_unlink()—Unlink Named Semaphore” on page 91—Unlink Named Semaphore.

[ECONVERT]

A conversion error for the parameter name.

28 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
pns.htm

Related Information

v The <qlg.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “sem_unlink()—Unlink Named Semaphore” on page 91—Unlink Named Semaphore

v “QlgSem_open()—Open Named Semaphore (using NLS-enabled path name)” on page 24—Open

Named Semaphore (using NLS-enabled path name)

v “QlgSem_open_np()—Open Named Semaphore with Maximum Value (using NLS-enabled path name)”

on page 26—Open Named Semaphore with Maximum Value (using NLS-enabled path name)

Note: All of the related information for sem_unlink() applies to QlgSem_unlink(). See Related

Information in “Related Information” on page 92.

Example

See Code disclaimer information for information pertaining to code examples.

The following example unlinks the named semaphore ″/mysem″.

#include <semaphore.h>

#include <qlg.h>

main() {

 int rc;

 #define mypath "/mysem"

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 const char Path_Name_Del_const[2]= "/";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char[100] pn; /* This size must be >= the path */

 /* name length or be a pointer */

 /* to the path name. */

 };

 struct pnstruct path;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)path name, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 memcpy(path.qlg_struct.Path_Name_Delimiter,Path_Name_Del_const,1);

 memcpy(path.pn,mypath,sizeof(mypath));

 rc = QlgSem_unlink((Qlg_Path_Name_T *)path name);

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Interprocess Communication (IPC) APIs 29

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

Delete Interprocess Communication Objects (QP0ZDIPC) API

 Required Parameter Group:

1 Delete control

Input Char(*)

2 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Delete Interprocess Communication Objects (QP0ZDIPC) API deletes one or more interprocess

communication (IPC) objects as specified by the delete control parameter.

Authorities and Locks

Job Authority

The calling thread must be the owner, must be the creator, or must have *ALLOBJ special

authority.

 For additional information on these authorities, see the iSeries Security Reference

book.

Required Parameter Group

Delete control

INPUT; CHAR(*)

 Information about which IPC objects to delete. For the layout of this structure, see “Delete

Control Format.”

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Delete Control Format

The following shows the format of the delete control parameter. For detailed descriptions of the fields in

the table, see “Field Descriptions” on page 31.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of objects to delete.

These fields repeat for

each object to delete.

CHAR(1) IPC type

CHAR(3) Reserved

BINARY(4) Identifier

30 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Field Descriptions

Identifier. A unique IPC identifier that is used to specify which IPC object is to be deleted. The identifier

is obtained from calling the APIs semget(), shmget(), msgget(), or QP0ZOLIP.

IPC type. This value describes the type of IPC object to delete. Possible values follow:

 1 Delete a semaphore set object.

2 Delete a shared memory object.

3 Delete a message queue object.

Number of objects to delete. The number of IPC objects in the delete control parameter.

Reserved. A reserved field. These characters must be set to ’00’x.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPFA986 E &1 IPC objects deleted; &2 IPC object not deleted

CPDA981 D Not authorized to delete IPC object &1.

CPDA982 D IPC object &1 does not exist.

CPDA983 D IPC object &1 is marked as damaged.

CPFA987 E Delete control not valid.

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

Interprocess Communication (IPC) APIs 31

#TOP_OF_PAGE
unix.htm
aplist.htm

Open List of Interprocess Communication Objects (QP0ZOLIP) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 List information

Output Char(80)

4 Number of records to return

Input Binary(4)

5 Format name

Input Char(8)

6 Filter information

Input Char(*)

7 Filter format name

Input Char(8)

8 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Open List of Interprocess Communication Objects (QP0ZOLIP) API lets you generate a list of

interprocess communication (IPC) objects and descriptive information based on the selection parameters.

The QP0ZOLIP API places the specified number of list entries in the receiver variable. You can access

additional records by using the Get List Entries (QGYGTLE) API. On successful completion of the

QP0ZOLIP API, a handle is returned in the list information parameter. You may use this handle on

subsequent calls to the following APIs:

v Get List Entries (QGYGTLE)

v Find Entry Number in List (QGYFNDE)

v Close List (QGYCLST)

You can use the QP0ZOLIP API to:

v Open a list of all IPC objects of a specific type (semaphore sets, message queues, shared memory,

named semaphores, or unnamed semaphores).

v Open a list of identifier-based IPC objects (semaphore sets, message queues, or shared memory) of a

specific type with a key in a specified range.

v Open a list of identifier-based IPC objects of a specific type that are owned by one or more specified

users.

v Open a list of IPC objects of a specific type (semaphore sets, message queues, shared memory, or

named semaphores) that were created by one or more specified users.

32 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Only one IPC type (either semaphore sets, message queue, shared memory, named semaphores, or

unnamed semaphores) can be returned in one call to this API. The IPC type is determined by the format

name parameter.

The records returned by QP0ZOLIP include an information status field that describes the completeness

and validity of the information. Be sure to check the information status field before using any other

information returned.

Authorities and Locks

Job Authority

Service special authority (*SERVICE) is needed to call this API.

 For additional information on this authority, see the iSeries Security Reference

book.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is used to return the IPC object information that you requested.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable.

List information

OUTPUT; CHAR(80)

 Information about the list of IPC objects that were opened. For a description of the layout of this

parameter, see Format of Open List Information.

Number of records to return

INPUT; BINARY(4)

 The number of records in the list to put into the receiver variable.

Format name

INPUT; CHAR(8)

 The format of the information to be returned in the receiver variable. This parameter will

determine the type of IPC mechanism to open the list for. You must use one of the following

format names:

 LSST0100 This format is described in “LSST0100 Format” on page 35.

LMSQ0100 This format is described in “LMSQ0100 Format” on page 36.

LSHM0100 This format is described in “LSHM0100 Format” on page 36.

LNSM0100 This format is described in “LNSM0100 Format” on page 37.

LUSM0100 This format is described in “LUSM0100 Format” on page 38.

Filter information

INPUT; CHAR(*)

 The information in this parameter is used to filter the list of IPC objects. The format of this

variable depends on the filter format name.

Filter format name

INPUT; CHAR(8)

 The name of the format that is used to filter the list of IPC objects. You must use one of the

following format names:

Interprocess Communication (IPC) APIs 33

oli.htm

FIPC0100 This format is described in “FIPC0100 Format.”

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

FIPC0100 Format

The following shows the format of the filter information for the FIPC0100 format. For detailed

descriptions of the field in the table, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(1) Filter on key

1 1 CHAR(3) Reserved

4 4 BINARY(4) Minimum key

8 8 BINARY(4) Maximum key

12 C BINARY(4) Offset to owner profiles array

16 10 BINARY(4) Number of owner profiles specified

20 14 BINARY(4) Offset to creator profiles array

24 18 BINARY(4) Number of creator profiles specified

This field repeats for

each owner profile

name.

CHAR(10) Owner profile name

This field repeats for

each creator profile

name.

CHAR(10) Creator profile name

Field Descriptions

Creator profile name. The user profile names that created the IPC objects being returned. These values

are used only if the number of creator profiles specified field is greater than one. Possible special values

follow:

 *ALL IPC objects created by any user profile are added to the list. The rest of the user profiles in the

array are ignored.

*CURRENT IPC objects created by the current user profile are added to the list.

Filter on key. Whether filtering will be done based on the key value of the IPC object. Possible values

follow:

 0 No filtering is done based on the key value. The values of minimum key field and maximum key

field are ignored.

1 Filtering is done based on the values of minimum key field and maximum key field.

Maximum key. The maximum IPC object’s key value. Only the IPC objects with a key greater than or

equal to the minimum key and less than or equal to the maximum key will be added to the generated

list. This value is only used if the filter on key field is set to one.

34 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Minimum key. The minimum IPC object’s key value. Only the IPC objects with a key greater than or

equal to the minimum key and less than or equal to the maximum key will be added to the generated

list. This value is only used if the filter on key field is set to one.

Number of creator profiles specified. The number of creator profiles specified in the creator profile

names array. If this value is zero, no filtering is to be done for the creator user profile.

Number of owner profiles specified. The number of owner profiles specified in the owner profile names

array. If this value is zero, no filtering is to be done for the owner user profile.

Offset to creator profiles array. The offset in characters (bytes) from the beginning of the filter

information to the beginning of the array of creator profiles.

Offset to owner profiles array. The offset in characters (bytes) from the beginning of the filter

information to the beginning of the array of owner profiles.

Owner profile name. The user profile names that own the IPC objects being returned. These values are

used only if the number of owner profiles specified field is greater than one. Possible special values

follow:

 *ALL IPC objects that are owned by any user profile are added to the list. The rest of the user profiles in

the array are ignored.

*CURRENT IPC objects that are owned by the current user profile are added to the list.

Reserved.These characters must be set to ’00’x.

LSST0100 Format

This format name is used to return list information for semaphore sets. The following table shows the

information returned in each record in the receiver variable for the LSST0100 format. For a detailed

description of each field, see “Field Descriptions” on page 39.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Identifier

4 4 BINARY(4) Key

8 8 BINARY(4) Number of semaphores

12 C CHAR(1) Damaged

13 D CHAR(1) Owner read permission

14 E CHAR(1) Owner write permission

15 F CHAR(1) Group read permission

16 10 CHAR(1) Group write permission

17 11 CHAR(1) General read permission

18 12 CHAR(1) General write permission

19 13 CHAR(1) Authorized to delete

20 14 CHAR(16) Last semop() date and time

36 24 CHAR(16) Last administration change date and time

52 34 CHAR(10) Owner

62 3E CHAR(10) Group owner

72 48 CHAR(10) Creator

Interprocess Communication (IPC) APIs 35

Offset

Type Field Dec Hex

82 52 CHAR(10) Creator’s group

LMSQ0100 Format

This format name is used to return list information for message queues. The following table shows the

information returned in each record in the receiver variable for the LMSQ0100 format. For a detailed

description of each field, see “Field Descriptions” on page 39.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Identifier

4 4 BINARY(4) Key

8 8 CHAR(1) Damaged

9 9 CHAR(1) Owner read permission

10 A CHAR(1) Owner write permission

11 B CHAR(1) Group read permission

12 C CHAR(1) Group write permission

13 D CHAR(1) General read permission

14 E CHAR(1) General write permission

15 F CHAR(1) Authorized to delete

16 10 BINARY(4) Number of messages on queue

20 14 BINARY(4) Size of all messages on queue

24 18 BINARY(4) Maximum size of all messages on queue

28 1C BINARY(4) Number of threads to receive message

32 20 BINARY(4) Number of threads to send message

36 24 CHAR(16) Last msgrcv() date and time

52 34 CHAR(16) Last msgsnd() date and time

68 44 CHAR(16) Last administration change date and time

84 54 CHAR(10) Owner

94 5E CHAR(10) Group owner

104 68 CHAR(10) Creator

114 72 CHAR(10) Creator’s group

LSHM0100 Format

This format name is used to return list information for shared memory. The following table shows the

information returned in each record in the receiver variable for the LSHM0100 format. For a detailed

description of each field, see “Field Descriptions” on page 39.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Identifier

36 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Offset

Type Field Dec Hex

4 4 BINARY(4) Key

8 8 CHAR(1) Damaged

9 9 CHAR(1) Owner read permission

10 A CHAR(1) Owner write permission

11 B CHAR(1) Group read permission

12 C CHAR(1) Group write permission

13 D CHAR(1) General read permission

14 E CHAR(1) General write permission

15 F CHAR(1) Marked to be deleted

16 10 CHAR(1) Authorized to delete

17 11 CHAR(1) Teraspace

18 12 CHAR(1) Resize

19 13 CHAR(1) Reserved

20 14 BINARY(4) Segment size

24 18 BINARY(4) Number attached

28 1C CHAR(16) Last shmat() date and time

44 2C CHAR(16) Last detach date and time

60 3C CHAR(16) Last administration change date and time

76 4C CHAR(10) Owner

86 56 CHAR(10) Group owner

96 60 CHAR(10) Creator

106 6A CHAR(10) Creator’s group

LNSM0100 Format

This format name is used to return list information for named semaphores. The following table shows the

information returned in each record in the receiver variable for the LNSM0100 format. For a detailed

description of each field, see “Field Descriptions” on page 39.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of entry

4 4 BINARY(4) Value

8 8 BINARY(4) Maximum value

12 C BINARY(4) Offset to waiting threads

16 10 BINARY(4) Number of waiting threads

20 14 BINARY(4) Offset to name

24 18 BINARY(4) Length of name

28 1C CHAR(16) Title

44 2C CHAR(1) Marked to be deleted

45 2D CHAR(1) Authorized to delete

Interprocess Communication (IPC) APIs 37

Offset

Type Field Dec Hex

46 2E CHAR(10) Creator

56 38 CHAR(10) Creator’s group

66 42 CHAR(1) Owner read permission

67 43 CHAR(1) Owner write permission

68 44 CHAR(1) Group read permission

69 45 CHAR(1) Group write permission

70 46 CHAR(1) General read permission

71 47 CHAR(1) General write permission

72 48 CHAR(26) Last sem_post() qualified job identifier

98 62 CHAR(2) Reserved

100 64 CHAR(16) Last sem_post() thread identifier

116 74 CHAR(26) Last sem_wait() qualified job identifier

142 8e CHAR(2) Reserved

144 90 CHAR(16) Last sem_wait() thread identifier

These fields repeat for

each thread waiting on

the semaphore.

CHAR(26) Waiting qualified job identifier

CHAR(2) Reserved

CHAR(16) Waiting thread identifier

This field follows the

list of threads waiting

on the semaphore.

CHAR(*) Name of the semaphore

LUSM0100 Format

This format name is used to return list information for unnamed semaphores. The following table shows

the information returned in each record in the receiver variable for the LUSM0100 format. For a detailed

description of each field, see “Field Descriptions” on page 39.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of entry

4 4 BINARY(4) Value

8 8 BINARY(4) Maximum value

12 C BINARY(4) Offset to waiting threads

16 10 BINARY(4) Number of waiting threads

20 14 BINARY(4) Reserved

24 18 CHAR(16) Title

40 28 CHAR(26) Last sem_post() qualified job identifier

66 42 CHAR(2) Reserved

68 44 CHAR(16) Last sem_post() thread identifier

84 54 CHAR(26) Last sem_wait() qualified job identifier

110 6E CHAR(2) Reserved

38 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Offset

Type Field Dec Hex

112 70 CHAR(16) Last sem_wait() thread identifier

These fields repeat for

each thread waiting on

the semaphore.

CHAR(26) Waiting qualified job identifier

CHAR(2) Reserved

CHAR(16) Waiting thread identifier

Field Descriptions

Authorized to delete. This value determines if the caller has the authority to delete this IPC object.

Possible values follow:

 0 The calling thread cannot delete the IPC object.

1 The calling thread can delete the IPC object.

Creator. The name of the user profile that created this IPC object.

Creator’s group. The name of the group profile that created this IPC object. A special value can be

returned:

 *NONE The creator does not have a group profile.

Damaged. Whether the IPC object has suffered internal damage. Possible values follow:

 0 The IPC object is not damaged.

1 The IPC object is damaged.

General read permission. Whether any user other than the owner and group owner has read authority to

the IPC object. Possible values follow:

 0 General read authority is not allowed to the IPC object.

1 General read authority is allowed for the IPC object.

General write permission. Whether if any user other than the owner and group owner has write

authority to the IPC object. Possible values follow:

 0 General write authority is not allowed to the IPC object.

1 General write authority is allowed to the IPC object.

Group owner. The name of the group profile that owns this IPC object. A special value can be returned:

 *NONE The IPC object does not have a group owner.

Group read permission. Whether the group owner has read authority to the IPC object. Possible values

follow:

 0 The group owner does not have read authority to the IPC object.

1 The group owner has read authority to the IPC object.

Interprocess Communication (IPC) APIs 39

Group write permission. Whether the group owner has write authority to the IPC object. Possible values

follow:

 0 The group owner does not have write authority to the IPC object.

1 The group owner has write authority to the IPC object.

Identifier. The unique IPC object identifier.

Key. The key of the IPC object. If this value is zero, this IPC object has no key associated with it.

Last administration change date and time. The date and time of the last change to the IPC object for the

owner, group owner, or permissions. The 16 characters are:

 1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last detach date and time. The date and time of the last detachment from the shared memory segment.

If no thread has performed a successful detachment, this value will be set to all zeros. The 16 characters

are:

 1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last msgrcv() date and time. The date and time of the last successful msgrcv() call. If no thread has

performed a successful msgrcv() call, this value will be set to all zeros. The 16 characters are:

 1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last msgsnd() date and time. The date and time of the last successful msgsnd() call. If no thread has

performed a successful msgsnd() call, this value will be set to all zeros. The 16 characters are:

 1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last sem_post() qualified job identifier. The job name, the job user profile, and the job number of the

last thread that successfully called sem_post() or sem_post_np() if the job has not ended. The 26

characters are:

 1-10 The job name

11-20 The user profile

21-26 The job number

40 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

If the thread has ended, then the first 16 characters contain 16 characters that uniquely identify the ended

job, followed by 10 spaces. If no thread has used sem_post() to post to the semaphore, then the 26

characters will contain spaces.

Last sem_post() thread identifier. The thread ID of the last thread that successfully called sem_post() or

sem_post_np() if the thread has not ended.

Last sem_wait() qualified job identifier. The job name, the job user profile, and the job number of the

last thread that returned from a sem_wait(), sem_wait_np(), or sem_wait() call, if the job has not ended.

The 26 characters are:

 1-10 The job name

11-20 The user profile

21-26 The job number

If the thread has ended, then the first 16 characters contain 16 characters that uniquely identify the ended

job, followed by 10 spaces. If no job has used sem_wait() to wait on the semaphore, then the 26

characters will contain spaces.

Last sem_wait() thread identifier. The thread ID of the last thread that returned from a sem_wait(),

sem_wait_np(), or sem_wait() call, if the thread has not ended.

Last semop() date and time. The date and time of the last successful semop() call. If no thread has

performed a successful semop() call, this value will be set to all zeros. The 16 characters are:

 1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last shmat() date and time. The date and time of the last successful shmat(). If no thread has performed

a successful shmat() call, this value will be set to all zeros. The 16 characters are:

 1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Length of entry. The length of this record in the list.

Length of name. The number of bytes in the name of the semaphore, not including the terminating null

character.

Marked to be deleted. Whether the shared memory is marked to be deleted when the number attached

becomes zero. Possible values follow:

 0 The shared memory segment is not marked for deletion.

1 The shared memory segment is marked for deletion.

Maximum size of all messages on queue. The maximum byte size of all messages that can be on the

queue at one time.

Maximum value. The maximum value of the semaphore.

Interprocess Communication (IPC) APIs 41

Name of the semaphore. The null-terminated name of the semaphore.

Number attached. The number of times any thread has done a shmat() without doing a detach.

Number of messages on queue. The number of messages that are currently on the message queue.

Number of semaphores. The number of semaphores in the semaphore set.

Number of threads to receive message. The number of threads that are currently waiting to receive a

message.

Number of threads to send message. The number of threads that are currently waiting to send a

message.

Number of waiting threads. The total number of threads that are waiting for this semaphore to reach a

certain value.

Offset to name. The offset to where the name field begins.

Offset to waiting threads. The offset to where the fields containing waiting threads begin.

Owner. The name of the user profile that owns this IPC object.

Owner read permission. Whether the owner has read authority to the IPC object. Possible values follow:

 0 The owner does not have read authority to the IPC object.

1 The owner has read authority to the IPC object.

Owner write permission. Whether the owner has write authority to the IPC object. Possible values

follow:

 0 The owner does not have write authority to the IPC object.

1 The owner has write authority to the IPC object.

Reserved. An ignored field.

Resize. Whether the shared memory object may be resized. Possible values follow:

 0 The shared memory object may not be resized.

1 The shared memory object may be resized.

Segment size. The size of the shared memory segment.

Size of all messages on queue. The byte size of all of the messages that are currently on the queue.

Teraspace. Whether the shared memory object is attachable only to a process’s teraspace. Possible values

follow:

 0 The shared memory object is not attachable to a process’s teraspace.

1 The shared memory object is attachable to a process’s teraspace.

Title. The title of the semaphore. The title contains the 16 characters that are associated with the

semaphore when it is created.

42 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Value. The value of the semaphore.

Waiting qualified job identifier. The job name, the job user profile, and the job number of a thread

waiting on the semaphore. The 26 characters are:

 1-10 The job name

11-20 The user profile

21-26 The job number

Waiting thread identifier. The thread ID of a thread waiting on the semaphore.

Error Messages

 Message ID Error Message Text

CPF0F01 E *SERVICE authority is required to run this program.

CPF2204 E User profile &1 not found.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0027 E &1 is not valid for number of records to return.

GUI0115 E The list has been marked in error. See the previous messages.

GUI0118 E Starting record cannot be 0 when records have been requested.

GUI0135 E Filter key information is not valid.

GUI0136 E Filter information is not valid.

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

Interprocess Communication (IPC) APIs 43

#TOP_OF_PAGE
unix.htm
aplist.htm

Open List of Semaphores (QP0ZOLSM) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 List information

Output Char(80)

4 Number of records to return

Input Binary(4)

5 Format name

Input Char(8)

6 Semaphore set identifier

Input BINARY(4)

7 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Open List of Semaphores (QP0ZOLSM) API lets you generate a list of description information about

the semaphores within a semaphore set.

The QP0ZOLSM API places the specified number of list entries in the receiver variable. You can access

additional records by using the Get List Entries (QGYGTLE) API. On successful completion of the

QP0ZOLSM API, a handle is returned in the list information parameter. You may use this handle on

subsequent calls to the following APIs:

v Get List Entries (QGYGTLE)

v Find Entry Number in List (QGYFNDE)

v Close List (QGYCLST)

The records returned by QP0ZOLSM include an information status field that describes the completeness

and validity of the information. Be sure to check the information status field before using any other

information returned.

Authorities and Locks

Job Authority

Service special authority (*SERVICE) is needed to call this API.

 For additional information on this authority, see the iSeries Security Reference

book.

44 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is used to return the semaphore information that you requested.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable.

List information

OUTPUT; CHAR(80)

 Information about the list of semaphores that were opened. For a description of the layout of this

parameter, see Format of Open List Information.

Number of records to return

INPUT; BINARY(4)

 The number of records in the list to put into the receiver variable.

Format name

INPUT; CHAR(8)

 The format of the information to be returned in the receiver variable. You must use the following

format name:

 LSEM0100 This format is described in “LSEM0100 Format.”

Semaphore set identifier

INPUT; BINARY(4)

 The semaphore set identifier of the semaphore set whose semaphores you would like the

information about. The semaphore set identifier can be obtained from calling either the semget(),

or QP0ZOLIP API.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

LSEM0100 Format

This format name is used to return list information for the semaphores in a semaphore set. The following

table shows the information returned in each record in the receiver variable for the LSEM0100 format. For

a detailed description of each field, see “Field Descriptions” on page 46.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of entry

4 4 BINARY(4) Number

8 8 BINARY(4) Value

12 C BINARY(4) Displacement to wait values

16 10 BINARY(4) Number of waiters

20 14 BINARY(4) Size of waiting information

24 18 BINARY(4) Waiting for zero

Interprocess Communication (IPC) APIs 45

oli.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

28 1C BINARY(4) Waiting for positive value

32 20 CHAR(26) Last changed qualified job identifier

58 3A CHAR(2) Reserved

60 3C BINARY(4) Process identifier

These fields repeat for

each waiter on the

semaphore value.

BINARY(4) Wait value

CHAR(26) Waiting qualified job identifier

CHAR(2) Reserved

Field Descriptions

Displacement to wait values. The offset in characters (bytes) from the beginning of the semaphore record

to the beginning of the array of wait values.

Last changed qualified job identifier. The job name, the job user profile, and the job number of the

thread that last changed the value of the semaphore. The 26 characters are:

 1-10 The job name

11-20 The user profile

21-26 The job number

These fields will be all blanks if any of the following are true:

v No thread has changed the semaphore value.

v The process that changed the semaphore has ended.

v The process that changed the semaphore has not been initialized for signals.

Length of entry. The length of this semaphore record in the list.

Number. The semaphore number in the semaphore set.

Number of waiters. The total number of threads that are waiting for this semaphore to reach a certain

value.

Process identifier The process identifier of the last thread to change the value of the semaphore. If no

thread has changed the semaphore value, this field will be zero.

Reserved. An ignored field.

Size of waiting information. The size, in bytes, of the record that is used to store information about a

thread that is waiting for a semaphore value.

Value. The current value of the semaphore.

Wait value. The value that a thread is waiting for the semaphore to reach. If the value is zero, the thread

is waiting for the semaphore value to equal zero. If the value is a positive number, the thread is waiting

for the semaphore value to be greater than or equal to this value.

Waiting for positive value. The number of threads that are currently waiting for a semaphore value to

reach a positive number.

46 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Waiting for zero. The number of threads that are currently waiting for the semaphore value to reach

zero.

Waiting qualified job identifier. The job name, the job user profile, and the job number of the thread

that is currently waiting for the semaphore. The 26 characters are:

 1-10 The job name

11-20 The user profile

21-26 The job number

Error Messages

 Message ID Error Message Text

GUI0002 E &2 is not valid for length of receiver variable.

GUI0027 E &1 is not valid for number of records to return.

GUI0115 E The list has been marked in error. See the previous messages.

GUI0118 E Starting record cannot be 0 when records have been requested.

CPF0F01 E *SERVICE authority is required to run this program.

CPF2204 E User profile &1 not found.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPFA988 E IPC object &1 does not exist.

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

Retrieve an Interprocess Communication Object (QP0ZRIPC) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format name

Input Char(8)

4 Identifier

Input Binary(4)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

Interprocess Communication (IPC) APIs 47

#TOP_OF_PAGE
unix.htm
aplist.htm

The Retrieve an Interprocess Communication Object (QP0ZRIPC) API lets you generate detailed

information about a single interprocess communication (IPC) object. The object is identified by the format

name and the identifier that is passed in.

The QP0ZRIPC API places the information about the object in the receiver variable. The information that

is written to the receiver variable is dependent on the format name parameter.

Authorities and Locks

Job Authority

Service special authority (*SERVICE) is needed to call this API.

 For additional information on this authority, see the iSeries Security Reference

book.

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The variable that is used to return the IPC object information that you requested.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of the information to be returned in the receiver variable. This parameter will

determine the object type (either message queues, semaphore sets, or shared memory) to retrieve

the list for. You must use one of the following format names:

 RSST0100 This format is described in “RSST0100 Format.”

RMSQ0100 This format is described in “RMSQ0100 Format” on page 49.

RSHM0100 This format is described in “RSHM0100 Format” on page 50.

Identifier

INPUT; BINARY(4)

 The identifier of the IPC object that you would like to retrieve information about. This identifier

is returned from the APIs semget(), shmget(), msgget(), or QP0ZOLIP.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

RSST0100 Format

This format name is used to return information for a single semaphore set. The following table shows the

information returned in the receiver variable for the RSST0100 format. For a detailed description of each

field, see “Field Descriptions” on page 51.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

48 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

8 8 BINARY(4) Identifier

12 C BINARY(4) Key

16 10 BINARY(4) Number of semaphores

20 14 CHAR(1) Damaged

21 15 CHAR(1) Owner read permission

22 16 CHAR(1) Owner write permission

23 17 CHAR(1) Group read permission

24 18 CHAR(1) Group write permission

25 19 CHAR(1) General read permission

26 1A CHAR(1) General write permission

27 1B CHAR(1) Authorized to delete

28 1C CHAR(16) Last semop() date and time

44 2C CHAR(16) Last administration change date and time

60 3C CHAR(10) Owner

70 46 CHAR(10) Group owner

80 50 CHAR(10) Creator

90 5A CHAR(10) Creator’s group

RMSQ0100 Format

This format name is used to return information about a single message queue. The following table shows

the information returned in the receiver variable for the RMSQ0100 format. For a detailed description of

each field, see “Field Descriptions” on page 51.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Identifier

12 C BINARY(4) Key

16 10 CHAR(1) Damaged

17 11 CHAR(1) Owner read permission

18 12 CHAR(1) Owner write permission

19 13 CHAR(1) Group read permission

20 14 CHAR(1) Group write permission

21 15 CHAR(1) General read permission

22 16 CHAR(1) General write permission

23 17 CHAR(1) Authorized to delete

24 18 BINARY(4) Number of messages on queue

28 1C BINARY(4) Size of all messages on queue

32 20 BINARY(4) Maximum size of all messages on queue

Interprocess Communication (IPC) APIs 49

Offset

Type Field Dec Hex

36 24 BINARY(4) Number of threads to receive message

40 28 BINARY(4) Number of threads to send message

44 2C CHAR(16) Last msgrcv() date and time

60 3C CHAR(16) Last msgsnd() date and time

76 4C CHAR(16) Last administration change date and time

92 5C CHAR(10) Owner

102 66 CHAR(10) Group owner

112 70 CHAR(10) Creator

122 7A CHAR(10) Creator’s group

132 84 CHAR(26) Last msgsnd() qualified job identifier

158 9E CHAR(2) Reserved

160 A0 BINARY(4) Last msgsnd() process identifier

164 A4 CHAR(26) Last msgrcv() qualified job identifier

190 BE CHAR(2) Reserved

192 C0 BINARY(4) Last msgrcv() process identifier

196 C4 BINARY(4) Offset to message type

200 C8 BINARY(4) Size of message information record

204 CC BINARY(4) Offset to wait type

208 D0 BINARY(4) Size of message receive record

212 D4 BINARY(4) Offset to wait size

216 D8 BINARY(4) Size of message send record

These fields repeat for

each message on

queue.

BINARY(4) Message type

BINARY(4) Message size

These fields repeat for

each thread waiting to

receive a message.

BINARY(4) Message wait type

CHAR(26) Message receive qualified job identifier

CHAR(2) Reserved

These fields repeat for

each thread waiting to

send a message.

BINARY(4) Message wait size

CHAR(26) Message send qualified job identifier

CHAR(2) Reserved

RSHM0100 Format

This format name is used to return information for a single shared memory object. The following table

shows the information returned in the receiver variable for the RSHM0100 format. For a detailed

description of each field, see “Field Descriptions” on page 51.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

50 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Offset

Type Field Dec Hex

8 8 BINARY(4) Identifier

12 C BINARY(4) Key

16 10 CHAR(1) Damaged

17 11 CHAR(1) Owner read permission

18 12 CHAR(1) Owner write permission

19 13 CHAR(1) Group read permission

20 14 CHAR(1) Group write permission

21 15 CHAR(1) General read permission

22 16 CHAR(1) General write permission

23 17 CHAR(1) Marked to be deleted

24 18 CHAR(1) Authorized to delete

25 19 CHAR(1) Teraspace

26 1A CHAR(1) Resize

27 1B CHAR(1) Reserved

28 1C BINARY(4) Segment size

32 20 BINARY(4) Number attached

36 24 CHAR(16) Last shmat() date and time

52 34 CHAR(16) Last detach date and time

68 44 CHAR(16) Last administration change date and time

84 54 CHAR(10) Owner

94 5E CHAR(10) Group owner

104 68 CHAR(10) Creator

114 72 CHAR(10) Creator’s group

124 7C CHAR(26) Last attach or detach qualified job identifier

150 96 CHAR(2) Reserved

152 98 BINARY(4) Last attach or detach process identifier

156 9C BINARY(4) Offset to times attached

160 A0 BINARY(4) Number of attach entries

164 A4 BINARY(4) Size of attach entry

These fields repeat for

the number of attach

entries.

BINARY(4) Times attached

CHAR(26) Attached qualified job identifier

CHAR(2) Reserved

Field Descriptions

Attached qualified job identifier. The job name, the job user profile, and the job number of a job that is

attached to the shared memory segment. The 26 characters are:

 1-10 The job name

11-20 The user profile

21-26 The job number

Interprocess Communication (IPC) APIs 51

Authorized to delete. This value determines if the caller has the authority to delete this IPC object.

Possible values follow:

 0 The current thread cannot delete the IPC object.

1 The current thread can delete the IPC object.

Bytes available. The number of bytes of data available to be returned. All available data is returned if

enough space is provided.

Bytes returned. The number of bytes of data returned.

Creator. The name of the user profile that created this IPC object.

Creator’s group. The name of the group profile that created this IPC object. A special value can be

returned:

 *NONE The creator does not have a group profile.

Damaged. Whether the IPC object has suffered internal damage. Possible values follow:

 0 The IPC object is not damaged.

1 The IPC object is damaged.

General read permission. Whether any user other than the owner and group owner has read authority to

the IPC object. Possible values follow:

 0 General read authority is not allowed to the IPC object.

1 General read authority is allowed to the IPC object.

General write permission. Whether any user other than the owner and group owner has write authority

to the IPC object. Possible values follow:

 0 General write authority is not allowed to the IPC object.

1 General write authority is allowed to the IPC object.

Group owner. The name of the group profile that owns this IPC object. A special value can be returned:

 *NONE The IPC object does not have a group owner.

Group read permission. Whether the group owner has read authority to the IPC object. Possible values

follow:

 0 The group owner does not have read authority to the IPC object.

1 The group owner has read authority to the IPC object.

Group write permission. Whether the group owner has write authority to the IPC object. Possible values

follow:

 0 The group owner does not have write authority to the IPC object.

1 The group owner has write authority to the IPC object.

52 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Identifier. The unique IPC object identifier.

Key. The key of the IPC object. If this value is zero, this IPC object has no key associated with it.

Last administration change date and time. The date and time of the last change to the IPC object for the

owner, group owner, or permissions. The 16 characters are:

 1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last attach or detach process identifier. The process identifier of the thread that performed the last

successful attachment or detachment from the shared memory segment. If no thread has attached or

detached from the shared memory segment, this field will be zero.

Last attach or detach qualified job identifier. The job name, the job user profile, and the job number of

the thread that performed the last successful attachment or detachment from the shared memory

segment. The 26 characters are:

 1-10 The job name

11-20 The user profile

21-26 The job number

These fields will be all blanks if any of the following are true:

v No thread has performed an attachment or detachment on the shared memory.

v The last process that did an attachment or detachment on the shared memory has ended.

v The last process that did an attachment or detachment on the shared memory is not initialized for

signals.

Last detach date and time. The date and time of the last detachment from the shared memory segment.

If no thread has performed a successful detachment, this value will be set to all zeros. The 16 characters

are:

 1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last msgrcv() date and time. The date and time of the last successful msgrcv() call. If no thread has

performed a successful msgrcv() call, this value will be set to all zeros. The 16 characters are:

 1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last msgrcv() process identifier. The process identifier of the thread that performed the last successful

msgrcv(). If no thread has done a msgrcv(), this field will be zero.

Last msgrcv() qualified job identifier. The job name, the job user profile, and the job number of the

thread that performed the last successful msgrcv(). The 26 characters are:

Interprocess Communication (IPC) APIs 53

1-10 The job name

11-20 The user profile

21-26 The job number

These fields will be all blanks if any of the following are true:

v No thread has received a message on this message queue.

v The last process to receive a message has ended.

v The last process to receive a message has not been initialized for signals.

Last msgsnd() date and time. The date and time of the last successful msgsnd() call. If no thread has

performed a successful msgsnd() call, this value will be set to all zeros. The 16 characters are:

 1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last msgsnd() process identifier. The process identifier of the thread that performed the last successful

msgsnd(). If no thread has done a msgsnd(), this field will be zero.

Last msgsnd() qualified job identifier. The job name, the job user profile, and the job number of the

thread that performed the last successful msgsnd(). The 26 characters are:

 1-10 The job name

11-20 The user profile

21-26 The job number

These fields will be all blanks if any of the following are true:

v No thread has sent a message to this message queue.

v The last process to send a message has ended.

v The last process to send a message has not been initialized for signals.

Last semop() date and time. The date and time of the last successful semop() call. If no thread has

performed a successful semop() call, this value will be set to all zeros. The 16 characters are:

 1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Last shmat() date and time. The date and time of the last successful shmat(). If no thread has performed

a successful shmat() call, this value will be set to all zeros. The 16 characters are:

 1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 Date, in YYMMDD (year, month, and day) format.

8-13 Time of day, in HHMMSS (hours, minutes, and seconds) format.

14-16 Milliseconds.

Marked to be deleted. Whether the shared memory is marked to be deleted when the number attached

becomes zero. Possible values follow:

54 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

0 The shared memory segment is not marked for deletion.

1 The shared memory segment is marked for deletion.

Maximum size of all messages on queue. The maximum byte size of all messages that can be on the

queue at one time.

Message receive qualified job identifier. The job name, the job user profile, and the job number of the

thread that is waiting to receive a message. The 26 characters are:

 1-10 The job name

11-20 The user profile

21-26 The job number

Message send qualified job identifier. The job name, the job user profile, and the job number of the

thread that is waiting to send a message. The 26 characters are:

 1-10 The job name

11-20 The user profile

21-26 The job number

Message size. The message size of a message that is currently on the queue.

Message type. The message type of a message that is currently on the queue.

Message wait size. The message size of a message that a thread is currently waiting to put on the queue.

Message wait type. The message type that a thread is currently waiting to receive.

Number attached. The number of times any thread has done a shmat() without doing a detach. One

process can be attached multiple times to the same shared memory segment.

Number of attach entries. The number of entries in the variable length section of RSHM0100.

Number of threads to receive message. The number of threads that are currently waiting to receive a

message.

Number of threads to send message. The number of threads that are currently waiting to send a

message.

Number of messages on queue. The number of messages that are currently on the message queue.

Number of semaphores. The number of semaphores in the semaphore set.

Offset to message type. The offset in characters (bytes) from the beginning of the RMSQ0100 record to

the message type field.

Offset to times attached. The offset in characters (bytes) from the beginning of the RSHM0100 record to

the times attached field.

Offset to wait size. The offset in characters (bytes) from the beginning of the RMSQ0100 record to the

wait size field.

Offset to wait type. The offset in characters (bytes) from the beginning of the RMSQ0100 record to the

wait type field.

Interprocess Communication (IPC) APIs 55

Owner. The name of the user profile that owns this IPC object.

Owner read permission. Whether the owner has read authority to the IPC object. Possible values follow:

 0 The owner does not have read authority to the IPC object.

1 The owner has read authority to the IPC object.

Owner write permission. Whether the owner has write authority to the IPC object. Possible values

follow:

 0 The owner does not have write authority to the IPC object.

1 The owner has write authority to the IPC object.

Reserved. An ignored field.

Resize. Whether the shared memory object may be resized. Possible values follow:

 0 The shared memory object may not be resized.

1 The shared memory object may be resized.

Segment size. The size of the shared memory segment.

Size of all messages on queue. The size, in bytes, of all of the messages that are currently on the queue.

Size of attach entry. The size, in bytes, of each attach entry in the array of attach entries.

Size of message information record. The size, in bytes, of each message information record.

Size of message receive record. The size, in bytes, of the record that is used to store information about a

thread waiting to receive a message.

Size of message send record. The size, in bytes, of the record that is used to store information about a

thread waiting to send a message.

Teraspace. Whether the shared memory object is attachable only to a process’s teraspace. Possible values

follow:

 0 The shared memory object is not attachable to a process’s teraspace.

1 The shared memory object is attachable to a process’s teraspace.

Times attached. The number of times that this process is attached to the shared memory.

Error Messages

 Message ID Error Message Text

GUI0002 E &2 is not valid for length of receiver variable.

CPF0F01 E *SERVICE authority is required to run this program.

CPF24B4 E Severe error while addressing parameter list.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

56 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPFA988 E IPC object &1 does not exist.

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

semctl()—Perform Semaphore Control Operations

 Syntax

 #include <sys/sem.h>

 int semctl(int semid, int semnum, int cmd, ...);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

 Threadsafe: Yes

The semctl() function allows the caller to control the semaphore set specified by the semid parameter.

A semaphore set is controlled by setting the cmd parameter to one of the following values:

IPC_RMID (0x00000000)

Remove the semaphore set identifier semid from the system and destroy the set of semaphores.

Any threads that are waiting in semop() are woken up and semop() returns with a return value

of -1 and errno set to EIDRM.

 The IPC_RMID command can be run only by a thread with appropriate privileges or one that has

an effective user ID equal to the user ID of the owner or the user ID of the creator of the

semaphore set.

IPC_SET (0x00000001)

Set the user ID of the owner, the group ID of the owner, and the permissions for the semaphore

set to the values in the sem_perm.uid, sem_perm.gid, and sem_perm.mode members of the semid_ds

data structure pointed to by the fourth parameter.

 The IPC_SET command can be run only by a thread with appropriate privileges or one that has

an effective user ID equal to the user ID of the owner or the user ID of the creator of the

semaphore set.

IPC_STAT (0x00000002)

Store the current value of each member of the semid_ds data structure into the structure pointed

to by the fourth parameter. The IPC_STAT command requires read permission to the semaphore

set.

GETNCNT (0x00000003)

Return the number of threads waiting for the value of semaphore semnum to increase. This value

is the semncnt value in the semaphore_t data structure associated with the specified semaphore.

The GETNCNT command requires read permission to the semaphore set.

GETPID (0x00000004)

Return the process ID of the last thread to operate on semaphore semnum. This value is the

sempid value in the semaphore_t data structure associated with the specified semaphore. The

GETPID command requires read permission to the semaphore set.

Interprocess Communication (IPC) APIs 57

#TOP_OF_PAGE
unix.htm
aplist.htm

GETVAL (0x00000005)

Return the current value of semaphore semnum. This value is the semval value in the semaphore_t

data structure associated with the specified semaphore. The GETVAL command requires read

permission to the semaphore set.

GETALL (0x00000006)

Return the values of each semaphore in the semaphore set into the array pointed to by the fourth

parameter, which is a pointer to an array of type unsigned short. The values are the semval value

in the semaphore_t data structure associated with each semaphore in the semaphore set. The

GETALL command requires read permission to the semaphore set.

GETZCNT (0x00000007)

Return the number of threads waiting for the value of semaphore semnum to reach zero. This

value is the semzcnt value in the semaphore_t data structure associated with the specified

semaphore. The GETZCNT command requires read permission to the semaphore set.

SETVAL (0x00000008)

Set the value of semaphore semnum to the integer value of type int specified in the fourth

parameter and clear the associated per-thread semaphore adjustment value. The SETVAL

command requires write permission to the semaphore set.

SETALL (0x00000009)

Set the values of each semaphore in the semaphore set to the values contained in the array

pointed to by the fourth parameter, which is a pointer to an array of type unsigned short. In

addition, the associated per-thread semaphore-adjustment value is cleared for each semaphore.

The SETALL command requires write permission to the semaphore set.

Parameters

semid (Input) Semaphore set identifier, a positive integer. It is returned by the “semget()—Get

Semaphore Set with Key” on page 62 function and used to identify the semaphore set on which

to perform the control operation.

semnum

(Input) Semaphore number, a non-negative integer. It identifies a semaphore within the

semaphore set on which to perform the control operation.

cmd (Input) Command, the control operation to perform on the semaphore set. Valid values are listed

above.

... (Input/output) An optional fourth parameter whose type depends on the value of cmd. For the

cmd SETVAL, this parameter must be an integer of type int. For the cmd IPC_STAT or IPC_SET,

this parameter must be a pointer to a semid_ds structure. For the cmd GETALL or SETALL, this

parameter must be a pointer to an array of type unsigned short. For all other values of cmd, this

parameter is not required.

 The members of the semid_ds structure are as follows:

58 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

struct ipc_perm

sem_perm

The members of the ipc_perm structure are as follows:

uid_t uid

The user ID of the owner of the semaphore set.

gid_t gid

The group ID of the owner of the semaphore set.

uid_t cuid

The user ID of the creator of the semaphore set.

gid_t cgid

The group ID of the creator of the semaphore set.

mode_t mode

The permissions for the semaphore set.

unsigned short

sem_nsems

The number of semaphores in the set.

time_t sem_otime The time the last thread operated on the semaphore set using semop().

time_t sem_ctime The time the last thread changed the semaphore set using semctl().

Authorities

Authorization Required for semctl()

 Object Referred to Authority Required errno

Semaphore, get the value of (cmd = GETVAL) Read EACCES

Semaphore, set the value of (cmd = SETVAL) Write EACCES

Semaphore, get last process to operate on (cmd = GETPID) Read EACCES

Semaphore, get number of threads waiting for value to increase

(cmd = GETNCNT)

Read EACCES

Semaphore, get number of threads waiting for value to reach zero

(cmd = GETZCNT)

Read EACCES

Semaphore set, get value of each semaphore (cmd = GETALL) Read EACCES

Semaphore set, set value of each semaphore (cmd = SETALL) Write EACCES

Semaphore set, retrieve state information (cmd = IPC_STAT) Read EACCES

Semaphore set, set state information (cmd = IPC_SET) See Note EPERM

Semaphore set, remove (cmd = IPC_RMID) See Note EPERM

Note: To set semaphore set information or to remove a semaphore set, the thread must be the owner or

creator of the semaphore set, or have appropriate privileges.

Interprocess Communication (IPC) APIs 59

Return Value

 value semctl() was successful. Depending on the control operation specified in cmd, semctl() returns the

following values:

GETVAL

The value of the specified semaphore.

GETPID

The process ID of the last thread that performed a semaphore operation on the specified

semaphore.

GETNCNT

The number of threads waiting for the value of the specified semaphore to increase.

GETZCNT

The number of threads waiting for the value of the specified semaphore to reach zero.

For all other values of cmd:

The value is 0.

-1 semctl() was not successful. The errno variable is set to indicate the error.

Error Conditions

If semctl() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 The cmd parameter is IPC_STAT, GETVAL, GETPID, GETNCNT, GETZCNT, or GETALL and the

calling thread does not have read permission to the semaphore set.

 The cmd parameter is SETVAL, or SETALL and the calling thread does not have write permission

to the semaphore set.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

 The semaphore set has been damaged by a previous semaphore operation.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

60 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

One of the following has occurred:

v The semid parameter is not a valid semaphore identifier.

v The semnum parameter is less than zero or greater than or equal to sem_nsems.

v The cmd parameter is not a valid command.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

 The cmd parameter is IPC_RMID or IPC_SET and both of the following are true:

v the calling thread does not have appropriate privileges.

v the effective user ID of the calling thread is not equal to the user ID of the owner or the user

ID of the creator of the semaphore set.

[ERANGE]

 A range error occurred.

 The value of an argument is too small, or a result too large.

 The cmd parameter is SETVAL, and the value to which semval is to be set is greater than the

system-imposed maximum.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

1. “Appropriate privileges” is defined to be *ALLOBJ special authority. If the user profile under which

the thread is running does not have *ALLOBJ special authority, the thread does not have appropriate

privileges.

2. Take care when using a union for the optional fourth parameter. If the optional fourth parameter is an

integer, semctl() expects it to directly follow the third parameter in storage. But a union that contains

a pointer is aligned on a 16-byte boundary, which might not directly follow the third parameter.

Therefore, the value used by semctl() for the fourth parameter might not be the value intended by the

caller, and unexpected results could occur.

Related Information

v The <sys/sem.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “semget()—Get Semaphore Set with Key” on page 62—Get Semaphore Set with Key

v “semop()—Perform Semaphore Operations on Semaphore Set” on page 65—Perform Semaphore

Operations on Semaphore Set

Example

See Code disclaimer information for information pertaining to code examples.

For an example of using this function, see Using Semaphores and Shared Memory in Examples: APIs.

Interprocess Communication (IPC) APIs 61

aboutapis.htm#CODEDISCLAIMER
apiexusmem.htm

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

semget()—Get Semaphore Set with Key

 Syntax

 #include <sys/sem.h>

 #include <sys/stat.h>

 int semget(key_t key, int nsems, int semflg);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

 Threadsafe: Yes

The semget() function either creates a new semaphore set or returns the semaphore set identifier

associated with the key parameter for an existing semaphore set. A new semaphore set is created if one of

the following is true:

v The key parameter is equal to IPC_PRIVATE.

v The key parameter does not already have a semaphore set identifier associated with it and the

IPC_CREAT flag is specified in the semflg parameter.

The system maintains status information about a semaphore set which can be retrieved with the

“semctl()—Perform Semaphore Control Operations” on page 57 function. When a new semaphore set is

created, the system initializes the members of the semid_ds structure as follows:

v sem_perm.cuid and sem_perm.uid are set to the current user ID of the thread.

v sem_perm.cgid and sem_perm.gid are set to the current group ID of the thread.

v The low-order 9 bits of shm_perm.mode are set equal to the low-order 9 bits of the shmflg parameter.

v sem_nsems is set to the value specified in the nsems parameter.

v sem_ctime is set to the current time.

v sem_otime is set to zero.

Parameters

key (Input) Key associated with the semaphore set. A key of IPC_PRIVATE (0x00000000) guarantees

that a unique semaphore set is created. A key can also be specified by the caller or generated by

the “ftok()—Generate IPC Key from File Name” on page 3 function.

nsems (Input) Number of semaphores in the semaphore set. The number of semaphores in the set

cannot be changed after the semaphore set is created. If an existing semaphore set is being

accessed, nsems can be zero.

semflg

(Input) Operations and permission flags. The semflg parameter value is either zero, or is obtained

by performing an OR operation on one or more of the following constants:

S_IRUSR (0x00000100)

Allow the owner of the semaphore set to read from it.

S_IWUSR (0x00000080)

Allow the owner of the semaphore set to write to it.

62 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

S_IRGRP (0x00000020)

Allow the group of the semaphore set to read from it.

S_IWGRP (0x00000010)

Allow the group of the semaphore set to write to it.

S_IROTH (0x00000004)

Allow others to read from the semaphore set.

S_IWOTH (0x00000002)

Allow others to write to the semaphore set.

IPC_CREAT (0x00000200)

Create the semaphore set if it does not exist.

IPC_EXCL (0x00000400)

Return an error if the IPC_CREAT flag is set and the semaphore set already exists.

Authorities

Authorization Required for semget()

 Object Referred to Authority Required errno

Semaphore set to be created None None

Existing semaphore set to be accessed See Note EACCES

Note: If the thread is accessing a semaphore set that already exists, the mode specified in the last 9 bits of

semflg must be a subset of the mode of the existing semaphore set.

Return Value

 value semget() was successful. The value returned is the semaphore set identifier associated with the key

parameter.

-1 semget() was not successful. The errno variable is set to indicate the error.

Error Conditions

If semget() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 A semaphore set identifier exists for the parameter key, but permissions specified in the low-order

9 bits of semflg are not a subset of the current permissions.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

Interprocess Communication (IPC) APIs 63

The semaphore set has been damaged by a previous semaphore operation.

[EEXIST]

 File exists.

 The file specified already exists and the specified operation requires that it not exist.

 The named file, directory, or path already exists.

 A semaphore identifier exists for the key parameter, and both the IPC_CREAT and IPC_EXCL

flags are set in the semflg parameter.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 One of the following has occurred:

v The value of nsems is either less than or equal to zero, or greater than the system-imposed

limit.

v A semaphore identifier exists for the parameter key, but the number of semaphores in the set

associated with it is less than nsems and nsems is not zero.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

 A semaphore set identifier does not exist for the key parameter, and the IPC_CREAT flag is not

set in the semflg parameter.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

 A semaphore set identifier cannot be created because the system limit on the maximum number

of allowed semaphore set identifiers would be exceeded.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

1. The best way to generate a unique key is to use the “ftok()—Generate IPC Key from File Name” on

page 3 function.

64 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

2. A “semctl()—Perform Semaphore Control Operations” on page 57 call specifying a cmd parameter of

SETALL should be used to initialize the semaphore values after the semaphore set is created.

Related Information

v The <sys/sem.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “ftok()—Generate IPC Key from File Name” on page 3—Generate IPC Key from File Name

v “semctl()—Perform Semaphore Control Operations” on page 57—Perform Semaphore Control

Operations

v “semop()—Perform Semaphore Operations on Semaphore Set”—Perform Semaphore Operations on

Semaphore Set

Example

See Code disclaimer information for information pertaining to code examples.

For an example of using this function, see Using Semaphores and Shared Memory in Examples: APIs.

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

semop()—Perform Semaphore Operations on Semaphore Set

 Syntax

 #include <sys/sem.h>

 int semop(int semid, struct sembuf *sops,

 size_t nsops);

 Service Program Name: QP0ZCPA

 Default Public Authority: *USE

 Threadsafe: Yes

The semop() function performs operations on semaphores in a semaphore set. These operations are

supplied in a user-defined array of operations.

Each semaphore operation specified by the sops array is performed on the semaphore set specified by

semid. The entire array of operations is performed atomically; no other thread will operate on the

semaphore set until all of the operations are done or it is determined that they cannot be done. If the

entire set of operations cannot be performed, none of the operations are done, and the thread waits until

all of the operations can be done.

The members of the sembuf structure are as follows:

 unsigned short

sem_num

The number of the semaphore in the semaphore set.

short sem_op The operation to perform on the semaphore.

short sem_flg The operation flags.

Interprocess Communication (IPC) APIs 65

aboutapis.htm#CODEDISCLAIMER
apiexusmem.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

The semop() function changes each semaphore specified by sem_num according to the value of sem_op as

follows:

v If sem_op is positive, semop() increments the value of the semaphore and wakes up any threads

waiting for the semaphore to increase. This corresponds to releasing resources controlled by the

semaphore.

v If sem_op is negative, semop() attempts to decrement the value of the semaphore. If the result would be

negative, it waits for the semaphore value to increase. If the result would be positive, it decrements the

semaphore. If the result would be zero, it decrements the semaphore and wakes up any threads

waiting for the semaphore to be zero. This corresponds to the allocation of resources.

v If sem_op is zero, the thread waits for the semaphore’s value to be zero.

If IPC_NOWAIT is set in sem_flg and the operation cannot be completed, semop() returns with a return

value of -1 and errno set to EAGAIN instead of causing the thread to wait.

If SEM_UNDO is set in sem_flg, semop() causes IPC to reverse the effect of this semaphore operation

when the thread ends, effectively releasing the resources or request for resources controlled by the

semaphore. This value is known as the semaphore adjustment value.

If the thread waits for the semaphore value to change, the calling thread suspends processing until one of

the following occurs:

v The semaphore reaches the specified value.

v The semaphore set identifier semid is removed from the system. When this occurs, the semop() function

returns with a return value of -1 and errno set to EIDRM.

v A signal is delivered to the calling thread. When this occurs, the semop function returns with a return

value of -1 and errno set to EINTER.

The system maintains status information about a semaphore set which can be retrieved with the

“semctl()—Perform Semaphore Control Operations” on page 57 function. When a semaphore operation is

successfully completed, the system sets the members of the semid_ds structure as follows:

v shm_otime is set to the current time.

Parameters

semid (Input) Semaphore set identifier, a positive integer. It is returned by the “semget()—Get

Semaphore Set with Key” on page 62 function and used to identify the semaphore set on which

to perform the control operation.

sops (Input) Pointer to array of semaphore operation structures.

nsops (Input) Number of sembuf structures in sops array.

Authorities

Authorization Required for semop()

 Object Referred to Authority Required errno

Semaphore, sem_op is negative Write EACCES

Semaphore, sem_op is positive Write EACCES

Semaphore, sem_op is zero Read EACCES

66 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Return Value

 0 semop() was successful.

-1 semop() was not successful. The errno variable is set to indicate the error.

Error Conditions

If semop() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 The sem_op value is negative or positive and the calling thread does not have write permisstion to

the semaphore set.

 The sem_op value is zero and the calling thread does not have read permisstion to the semaphore

set.

[EAGAIN]

 Operation would have caused the process to be suspended.

 The operation would result in the calling thread waiting and the IPC_NOWAIT flag is set in the

sem_flg member.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

 The semaphore set has been damaged by a previous semaphore operation.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFBIG]

 Object is too large.

 The size of the object would exceed the system allowed maximum size.

 The sem_num parameter is less than zero or greater than or equal to the number of semaphores in

the set associated with semid.

[EIDRM]

 ID has been removed.

 The semaphore identifier semid has been removed from the system.

[EINTR]

 Interrupted function call.

 The semop() function was interrupted by a signal.

Interprocess Communication (IPC) APIs 67

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The semid parameter is not a valid semaphore identifier.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

 The limit on the number of individual threads requesting a SEM_UNDO would be exceeded.

[ERANGE]

 A range error occurred.

 The value of an argument is too small, or a result too large.

 An operation would cause a semval to overflow the system-imposed limit, or an operation would

cause a semaphore adjustment value to overflow the system-imposed limit.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

Related Information

v The <sys/sem.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “semget()—Get Semaphore Set with Key” on page 62—Get Semaphore Set with Key

v “semctl()—Perform Semaphore Control Operations” on page 57—Perform Semaphore Control

Operations

Example

See Code disclaimer information for information pertaining to code examples.

For an example of using this function, see Using Semaphores and Shared Memory in Examples: APIs.

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

68 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

aboutapis.htm#CODEDISCLAIMER
apiexusmem.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

sem_close()—Close Named Semaphore

 Syntax

 #include <semaphore.h>

 int sem_close(sem_t * sem);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_close() function closes a named semaphore that was previously opened by a thread of the

current process using sem_open() or sem_open_np(). The sem_close() function frees system resources

associated with the semaphore on behalf of the process. Using a semaphore after it has been closed will

result in an error. A semaphore should be closed when it is no longer used. If a sem_unlink() was

performed previously for the semaphore and the current process holds the last reference to the

semaphore, then the named semaphore will be deleted and removed from the system.

Parameters

sem (Input) A pointer to an opened named semaphore. This semaphore is closed for this process.

Authorities

No authorization is required. Authorization is verified during sem_open().

Return Value

 0 sem_close() was successful.

-1 sem_close() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_close() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The sem parameter is not a valid semaphore.

Error Messages

None.

Interprocess Communication (IPC) APIs 69

Related Information

v The <semaphore.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “sem_getvalue()—Get Semaphore Value” on page 72—Get Semaphore Value

v “sem_open()—Open Named Semaphore” on page 78—Open Named Semaphore

v “sem_open_np()—Open Named Semaphore with Maximum Value” on page 81—Open Named

Semaphore with Maximum Value

v “sem_post()—Post to Semaphore” on page 85—Post to Semaphore

v “sem_post_np()—Post Value to Semaphore” on page 86—Post Value to Semaphore

v “sem_trywait()—Try to Decrement Semaphore” on page 89—Try to Decrement Semaphore

v “sem_unlink()—Unlink Named Semaphore” on page 91—Unlink Named Semaphore

v “sem_wait()—Wait for Semaphore” on page 93—Wait for Semaphore

v “sem_wait_np()—Wait for Semaphore with Timeout” on page 95—Wait for Semaphore with Timeout

Example

See Code disclaimer information for information pertaining to code examples.

The following example opens a named semaphore with an initial value of 10 and then closes it.

#include <semaphore.h>

main() {

 sem_t * my_semaphore;

 int rc;

 my_semaphore = sem_open("/mysemaphore",

 O_CREAT, S_IRUSR | S_IWUSR,

 10);

 sem_close(my_semaphore);

}

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

sem_destroy()—Destroy Unnamed Semaphore

 Syntax

 #include <semaphore.h>

 int sem_destroy(sem_t * sem);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_destroy() function destroys an unnamed semaphore that was previously initialized using

sem_init() or sem_init_np(). Any threads that have blocked from calling sem_wait() or sem_wait_np() on

the semaphore will unblock and return an [EINVAL] or [EDESTROYED] error.

70 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

sem (Input) A pointer to an initialized unnamed semaphore. The semaphore is destroyed.

Authorities

None

Return Value

 0 sem_destroy() was successful.

-1 sem_destroy() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_destroy() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

 The semaphore is being destroyed by another thread.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The sem parameter is not a valid semaphore.

Error Messages

None.

Related Information

v The <semaphore.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “sem_getvalue()—Get Semaphore Value” on page 72—Get Semaphore Value

v “sem_init()—Initialize Unnamed Semaphore” on page 74—Initialize Unnamed Semaphore

v “sem_init_np()—Initialize Unnamed Semaphore with Maximum Value” on page 75—Initialize

Unnamed Semaphore with Maximum Value

v “sem_post()—Post to Semaphore” on page 85—Post to Semaphore

v “sem_post_np()—Post Value to Semaphore” on page 86—Post Value to Semaphore

v “sem_trywait()—Try to Decrement Semaphore” on page 89—Try to Decrement Semaphore

v “sem_unlink()—Unlink Named Semaphore” on page 91—Unlink Named Semaphore

v “sem_wait()—Wait for Semaphore” on page 93—Wait for Semaphore

v “sem_wait_np()—Wait for Semaphore with Timeout” on page 95—Wait for Semaphore with Timeout

Example

See Code disclaimer information for information pertaining to code examples.

Interprocess Communication (IPC) APIs 71

aboutapis.htm#CODEDISCLAIMER

The following example initializes an unnamed semaphore, my_semaphore, that will be used by threads of

the current process and sets its value to 10. The semaphore is then destroyed using sem_destroy().

#include <semaphore.h>

main() {

 sem_t my_semaphore;

 int rc;

 rc = sem_init(&my_semaphore, 0, 10);

 rc = sem_destroy(&my_semaphore);

}

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

sem_getvalue()—Get Semaphore Value

 Syntax

 #include <semaphore.h>

 int sem_getvalue(sem_t * sem, int * value);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_getvalue() function retrieves the value of a named or unnamed semaphore. If the current value

of the semaphore is zero and there are threads waiting on the semaphore, a negative value is returned.

The absolute value of this negative value is the number of threads waiting on the semaphore.

Parameters

sem (Input) A pointer to an initialized unnamed semaphore or an opened named semaphore.

value (Output) A pointer to the integer that contains the value of the semaphore.

Authorities

None

Return Value

 0 sem_getvalue() was successful.

-1 sem_getvalue() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_getvalue() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.

72 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

Error Messages

None.

Related Information

v The <semaphore.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “sem_close()—Close Named Semaphore” on page 69—Close Named Semaphore

v “sem_destroy()—Destroy Unnamed Semaphore” on page 70—Destroy Unnamed Semaphore

v “sem_init()—Initialize Unnamed Semaphore” on page 74—Initialize Unnamed Semaphore

v “sem_init_np()—Initialize Unnamed Semaphore with Maximum Value” on page 75—Initialize

Unnamed Semaphore with Maximum Value

v “sem_open()—Open Named Semaphore” on page 78—Open Named Semaphore

v “sem_open_np()—Open Named Semaphore with Maximum Value” on page 81—Open Named

Semaphore with Maximum Value

v “sem_post()—Post to Semaphore” on page 85—Post to Semaphore

v “sem_post_np()—Post Value to Semaphore” on page 86—Post Value to Semaphore

v “sem_trywait()—Try to Decrement Semaphore” on page 89—Try to Decrement Semaphore

v “sem_unlink()—Unlink Named Semaphore” on page 91—Unlink Named Semaphore

v “sem_wait()—Wait for Semaphore” on page 93—Wait for Semaphore

v “sem_wait_np()—Wait for Semaphore with Timeout” on page 95—Wait for Semaphore with Timeout

Example

See Code disclaimer information for information pertaining to code examples.

The following example retrieves the value of a semaphore before and after it is decremented by

sem_wait().

#include <stdio.h>

#include <semaphore.h>

main() {

 sem_t my_semaphore;

 int value;

 sem_init(&my_semaphore, 0, 10);

 sem_getvalue(&my_semaphore, &value);

 printf("The initial value of the semaphore is %d\n", value);

 sem_wait(&my_semaphore);

 sem_getvalue(&my_semaphore, &value);

 printf("The value of the semaphore after the wait is %d\n", value);

}

Output:

The initial value of the semaphore is 10

The value of the semaphore after the wait is 9

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

Interprocess Communication (IPC) APIs 73

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

sem_init()—Initialize Unnamed Semaphore

 Syntax

 #include <semaphore.h>

 int sem_init(sem_t * sem, int shared,

 unsigned int value);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_init() function initializes an unnamed semaphore and sets its initial value. The maximum value

of the semaphore is set to SEM_VALUE_MAX. The title for the semaphore is set to the character

representation of the address of the semaphore. If an unnamed semaphore already exists at sem, then it

will be destroyed and a new semaphore will be initialized.

Parameters

sem (Input) A pointer to the storage of an uninitialized unnamed semaphore. The pointer must be

aligned on a 16-byte boundary. This semaphore is initialized.

shared

(Input) An indication to the system of how the semaphore is going to be used. A value of zero

indicates that the semaphore will be used only by threads within the current process. A nonzero

value indicates that the semaphore may be used by threads from other processes.

value (Input) The value used to initialize the value of the semaphore.

Authorities

None

Return Value

 0 sem_init() was successful.

-1 sem_init() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_init() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The value parameter is greater than SEM_VALUE_MAX.

[ENOSPC]

 No space available.

74 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

System semaphore resources have been exhausted.

Error Messages

None.

Related Information

v The <semaphore.h> file (see)

v “sem_destroy()—Destroy Unnamed Semaphore” on page 70—Destroy Unnamed Semaphore

v “sem_getvalue()—Get Semaphore Value” on page 72—Get Semaphore Value

v “sem_init_np()—Initialize Unnamed Semaphore with Maximum Value”—Initialize Unnamed

Semaphore with Maximum Value

v “sem_post()—Post to Semaphore” on page 85—Post to Semaphore

v “sem_post_np()—Post Value to Semaphore” on page 86—Post Value to Semaphore

v “sem_trywait()—Try to Decrement Semaphore” on page 89—Try to Decrement Semaphore

v “sem_wait()—Wait for Semaphore” on page 93—Wait for Semaphore

v “sem_wait_np()—Wait for Semaphore with Timeout” on page 95—Wait for Semaphore with Timeout

Example

See Code disclaimer information for information pertaining to code examples.

The following example initializes an unnamed semaphore, my_semaphore, that will be used by threads of

the current process. Its value is set to 10.

#include <semaphore.h>

main() {

 sem_t my_semaphore;

 int rc;

 rc = sem_init(&my_semaphore, 0, 10);

}

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

sem_init_np()—Initialize Unnamed Semaphore with Maximum Value

 Syntax

 #include <semaphore.h>

 int sem_init_np(sem_t * sem, int shared,

 unsigned int value,

 sem_attr_np_t * attr);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

Interprocess Communication (IPC) APIs 75

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

The sem_init_np() function initializes an unnamed semaphore and sets its initial value. The

sem_init_np() function uses the attr parameter to set the maximum value and title of the semaphore. If

an unnamed semaphore already exists at sem, then it will be destroyed and a new semaphore will be

initialized.

Parameters

sem (Input) A pointer to the storage of an uninitialized unnamed semaphore. The pointer must be

aligned on a 16-byte boundary. This semaphore is initialized.

shared

(Input) An indication to the system of how the semaphore is going to be used. A value of zero

indicates that the semaphore will be used only by threads within the current process. A nonzero

value indicates that the semaphore may be used by threads from other processes.

value (Input) The value used to initialize the value of the semaphore.

attr (Input) Attributes for the semaphore.

 The members of the sem_attr_np_t structure are as follows.

 unsigned int

reserved1[1]

A reserved field that must be set to zero.

unsigned int

maxvalue

The maximum value that the semaphore may obtain. maxvalue must be greater than zero. If a

sem_post() or sem_post_np() operation would cause the value of a semaphore to exceed its

maximum value, the operation will fail, returning EINVAL.

unsigned int

reserved2[2]

A reserved field that must be set to zero.

char title[16] The title of the semaphore. The title is a null-terminated string that contains up to 16 bytes. Any

bytes after the null character are ignored. The title is retrieved using the Open List of Interprocess

Communication Objects (QP0ZOLIP) API.

void * reserved3[2] A reserved field that must be set to zero.

Authorities

None

Return Value

 0 sem_init_np() was successful.

-1 sem_init_np() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_init_np() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The value parameter is greater than the maxvalue field of the attr parameter.

 The maxvalue field of the attr parameter is greater than SEM_VALUE_MAX.

 The maxvalue field of the attr parameter is equal to zero.

76 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

The reserved fields of the attr argument are not set to zero.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

 System semaphore resources have been exhausted.

Error Messages

None.

Related Information

v The <semaphore.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “sem_destroy()—Destroy Unnamed Semaphore” on page 70—Destroy Unnamed Semaphore

v “sem_getvalue()—Get Semaphore Value” on page 72—Get Semaphore Value

v “sem_init()—Initialize Unnamed Semaphore” on page 74—Initialize Unnamed Semaphore

v “sem_post()—Post to Semaphore” on page 85—Post to Semaphore

v “sem_post_np()—Post Value to Semaphore” on page 86—Post Value to Semaphore

v “sem_trywait()—Try to Decrement Semaphore” on page 89—Try to Decrement Semaphore

v “sem_wait()—Wait for Semaphore” on page 93—Wait for Semaphore

v “sem_wait_np()—Wait for Semaphore with Timeout” on page 95—Wait for Semaphore with Timeout

Example

See Code disclaimer information for information pertaining to code examples.

The following example initializes an unnamed semaphore, my_semaphore, that will be used by threads of

the current process and sets its value to 10. The maximum value and title of the semaphore are set to 10

and ″MYSEM″.

#include <semaphore.h>

main() {

 sem_t my_semaphore;

 sem_attr_np_t attr;

 int rc;

 memset(&attr, 0, sizeof(attr));

 attr.maxvalue = 10;

 strcpy(attr.title, "MYSEM");

 rc = sem_init_np(&my_semaphore, 0, 10, &attr);

}

Interprocess Communication (IPC) APIs 77

aboutapis.htm#CODEDISCLAIMER

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

sem_open()—Open Named Semaphore

 Syntax

 #include <semaphore.h>

 sem_t * sem_open(const char *name, int oflag, ...);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_open() function opens a named semaphore, returning a semaphore pointer that may be used on

subsequent calls to sem_post(), sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(),

sem_getvalue(), and sem_close(). When a semaphore is being created, the parameters mode and value

must be specified on the call to sem_open(). If a semaphore is created, then the maximum value of the

semaphore is set to SEM_VALUE_MAX and the title of the semaphore is set to the last 16 characters of

the name.

If sem_open() is called multiple times within the same process using the same name, sem_open() will

return a pointer to the same semaphore, as long as another process has not used sem_unlink() to unlink

the semaphore.

If sem_open() is called from a program using data model LLP64, the returned semaphore pointer must be

declared as a sem_t *__ptr128.

Parameters

name (Input) A pointer to the null-terminated name of the semaphore to be opened. The name should

begin with a slash (’/’) character. If the name does not begin with a slash (’/’) character, the

system adds a slash to the beginning of the name.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 The name is added to a set of names that is used only by named semaphores. The name has no

relationship to any file system path names. The maximum length of the name is

SEM_NAME_MAX.

 See “QlgSem_open()—Open Named Semaphore (using NLS-enabled path name)” on page

24—Open Named Semaphore (using NLS-enabled path name) for a description and an example

of supplying the name in any CCSID.

oflag (Input) Option flags.

 The oflag parameter value is either zero or is obtained by performing an OR operation on one or

more of the following constants:

 ’0x0008’ or

O_CREAT

Creates the named semaphore if it does not already exist.

78 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

’0x0010’ or

O_EXCL

Causes sem_open() to fail if O_CREAT is also set and the named semaphore already exists.

mode (input) Permission flags.

 The mode parameter value is either zero or is obtained by performing an OR operation on one or

more of the following list of constants. For another process to open the semaphore, the process’s

effective UIDd must be able to open the semaphore in both read and write mode.

 ’0x0100’ or

S_IRUSR

Permits the creator of the named semaphore to open the semaphore in read mode.

’0x0080’ or

S_IWUSR

Permits the creator of the named semaphore to open the semaphore in write mode.

’0x0020’ or

S_IRGRP

Permits the group associated with the named semaphore to open the semaphore in read mode.

’0x0010’ or

S_IWGRP

Permits the group associated with the named semaphore to open the semaphore in write mode.

’0x0004’ or

S_IROTH

Permits others to open the named semaphore in read mode.

’0x0002’ or

S_IWOTH

Permits others to open the named semaphore in write mode.

value (Input) Initial value of the named semaphore.

Authorities

Authorization required for sem_open()

 Object Referred to Authority Required errno

Named semaphore to be created None None

Existing named semaphore to be accessed *RW EACCES

Return Value

 value sem_open() was successful. The value returned is a pointer to the open named semaphore.

SEM_FAILED sem_open() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_open() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

[EEXIST]

 Semaphore exists.

 A named semaphore exists for the parameter name, but O_CREAT and O_EXCL are both set in

oflag.

[EINVAL]

Interprocess Communication (IPC) APIs 79

The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The value parameter is greater than SEM_VALUE_MAX.

[ENAMETOOLONG]

 The name is too long. The name is longer than the SEM_NAME_MAX characters.

[ENOENT]

 No such path or directory.

 The name specified on the sem_open() call does not refer to an existing named semaphore and

O_CREAT was not set in oflag.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

also could be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

 System semaphore resources have been exhausted.

Error Messages

None.

Related Information

v The <semaphore.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “QlgSem_open()—Open Named Semaphore (using NLS-enabled path name)” on page 24 Open Named

Semaphore (using NLS-enabled path name)

v “sem_close()—Close Named Semaphore” on page 69—Close Named Semaphore

v “sem_getvalue()—Get Semaphore Value” on page 72—Get Semaphore Value

v “sem_open_np()—Open Named Semaphore with Maximum Value” on page 81—Open Named

Semaphore with Maximum Value

v “sem_post()—Post to Semaphore” on page 85—Post to Semaphore

v “sem_post_np()—Post Value to Semaphore” on page 86—Post Value to Semaphore

v “sem_trywait()—Try to Decrement Semaphore” on page 89—Try to Decrement Semaphore

v “sem_unlink()—Unlink Named Semaphore” on page 91—Unlink Named Semaphore

v “sem_wait()—Wait for Semaphore” on page 93—Wait for Semaphore

v “sem_wait_np()—Wait for Semaphore with Timeout” on page 95—Wait for Semaphore with Timeout

Example

See Code disclaimer information for information pertaining to code examples.

The following example opens the named semaphore ″/mysemaphore″ and creates the semaphore with an

initial value of 10 if it does not already exist. If the semaphore is created, the permissions are set such

that only the current user has access to the semaphore.

#include <semaphore.h>

main() {

 sem_t * my_semaphore;

80 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

aboutapis.htm#CODEDISCLAIMER

int rc;

 my_semaphore = sem_open("/mysemaphore",

 O_CREAT, S_IRUSR | S_IWUSR, 10);

}

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

sem_open_np()—Open Named Semaphore with Maximum Value

 Syntax

 #include <semaphore.h>

 sem_t * sem_open_np(const char *name, int oflag,

 mode_t mode, unsigned int value,

 sem_attr_np_t * attr);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_open_np() function opens a named semaphore, returning a semaphore pointer that may be used

on subsequent calls to sem_post(), sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(),

sem_getvalue(), and sem_close(). If a named semaphore is being created, the parameters mode, value, and

attr are used to set the permissions, value, and maximum value of the created semaphore.

If sem_open_np() is called multiple times within the same process using the same name, sem_open_np()

will return a pointer to the same semaphore, as long as another process has not used sem_unlink() to

unlink the semaphore.

If sem_open_np() is called from a program using data model LLP64, the returned semaphore pointer

must be declared as a sem_t *__ptr128.

Parameters

name (Input) A pointer to the null-terminated name of the semaphore to be opened. The name should

begin with a slash (’/’) character. If the name does not begin with a slash (’/’) character, the

system adds a slash to the beginning of the name.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 The name is added to a set of names used by named semaphores only. The name has no

relationship to any file system path names. The maximum length of the name is

SEM_NAME_MAX.

 See “QlgSem_open_np()—Open Named Semaphore with Maximum Value (using NLS-enabled

path name)” on page 26—Open Named Semaphore with Maximum Value (using NLS-enabled

path name) for a description and an example of supplying the name in any CCSID.

oflag (Input) Option flags.

Interprocess Communication (IPC) APIs 81

#TOP_OF_PAGE
unix.htm
aplist.htm

The oflag parameter value is either zero or is obtained by performing an OR operation on one or

more of the following constants:

 ’0x0008’ or

O_CREAT

Creates the named semaphore if it does not already exist.

’0x0010’ or

O_EXCL

Causes sem_open_np() to fail if O_CREAT is also set and the named semaphore already exists.

mode (input) Permission flags.

 The mode parameter value is either zero or is obtained by performing an OR operation on one or

more of the list of constants. For another process to open the semaphore, the process’s effective

UID must be able to open the semaphore in both read and write mode.

 ’0x0100’ or

S_IRUSR

Permits the creator of the named semaphore to open the semaphore in read mode.

’0x0080’ or

S_IWUSR

Permits the creator of the named semaphore to open the semaphore in write mode.

’0x0020’ or

S_IRGRP

Permits the group associated with the named semaphore to open the semaphore in read mode.

’0x0010’ or

S_IWGRP

Permits the group associated with the named semaphore to open the semaphore in write mode.

’0x0004’ or

S_IROTH

Permits others to open the named semaphore in read mode.

’0x0002’ or

S_IWOTH

Permits others to open the named semaphore in write mode.

value (Input) The initial value of the named semaphore.

attr (Input) Attributes for the semaphore.

 The members of the sem_attr_np_t structure are as follows:

 unsigned int

reserved1[1]

A reserved field that must be set to zero.

unsigned int

maxvalue

The maximum value that the semaphore may obtain. maxvalue must be greater than zero. If a

sem_post() or sem_post_np() operation would cause the value of a semaphore to exceed its

maximum value, the operation will fail, returning EINVAL.

unsigned int

reserved2[1]

A reserved field that must be set to zero.

char title[16] The title of the semaphore. The title is a null-terminated string that has a maximum length of 16

bytes. The string is associated with the semaphore. If the first byte is zero, then the system assigns

a title to the semaphore that is based on the semaphore name. The title is retrieved using the

Open List of Interprocess Communication Objects (QP0ZOLIP) API.

void * reserved3[2] A reserved field that must be set to zero.

Authorities

Authorization required for sem_open_np()

 Object Referred to Authority Required errno

Named semaphore to be created None None

Existing named semaphore to be accessed *RW EACCES

82 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Return Value

 value sem_open_np() was successful. The value returned is a pointer to the opened named semaphore.

SEM_FAILED sem_open_np() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_open_np() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

[EEXIST]

 A named semaphore exists for the parameter name, but O_CREAT and O_EXCL are both set in

oflag.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The maxvalue field of the attr argument is greater than SEM_VALUE_MAX.

 The maxvalue field of the attr argument is equal to zero.

 The value argument is greater than the maxvalue field of the attr argument.

 The reserved fields of the attr argument are not set to zero.

[ENAMETOOLONG]

 The name is too long. The name is longer than the SEM_NAME_MAX characters.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

 The name specified on the sem_open_np() call does not refer to an existing named semaphore

and O_CREAT was not set in oflag.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

also could be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

Interprocess Communication (IPC) APIs 83

Insufficient space remains to hold the intended file, directory, or link.

 System semaphore resources have been exhausted.

Error Messages

None.

Related Information

v The <semaphore.h> file (see “Header Files for UNIX-Type Functions” on page 144)
v “QlgSem_open_np()—Open Named Semaphore with Maximum Value (using NLS-enabled path name)”

on page 26—Open Named Semaphore with Maximum Value (using NLS-enabled path name)

v “sem_close()—Close Named Semaphore” on page 69—Close Named Semaphore

v “sem_getvalue()—Get Semaphore Value” on page 72—Get Semaphore Value

v “sem_open()—Open Named Semaphore” on page 78—Open Named Semaphore

v “sem_post()—Post to Semaphore” on page 85—Post to Semaphore

v “sem_post_np()—Post Value to Semaphore” on page 86—Post Value to Semaphore

v “sem_trywait()—Try to Decrement Semaphore” on page 89—Try to Decrement Semaphore

v “sem_unlink()—Unlink Named Semaphore” on page 91—Unlink Named Semaphore

v “sem_wait()—Wait for Semaphore” on page 93—Wait for Semaphore

v “sem_wait_np()—Wait for Semaphore with Timeout” on page 95—Wait for Semaphore with Timeout>

Example

See Code disclaimer information for information pertaining to code examples.

The following example opens the named semaphore ″/mysemaphore″ and creates the semaphore with an

initial value of 10 and a maxiumum value of 11. The permissions are set such that only the current user

has access to the semaphore.

#include <semaphore.h>

main() {

 sem_t * my_semaphore;

 int rc;

 sem_attr_np_t attr;

 memset(&attr, 0, sizeof(attr));

 attr.maxvalue=11;

 my_semaphore = sem_open_np("/mysemaphore",

 O_CREAT|O_EXCL,

 S_IRUSR | S_IWUSR,

 10,

 &attr);

}

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

84 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

sem_post()—Post to Semaphore

 Syntax

 #include <semaphore.h>

 int sem_post(sem_t * sem);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_post() function posts to a semaphore, incrementing its value by one. If the resulting value is

greater than zero and if there is a thread waiting on the semaphore, the waiting thread decrements the

semaphore value by one and continues running.

Parameters

sem (Input) A pointer to an initialized unnamed semaphore or opened named semaphore.

Authorities

None

Return Value

 0 sem_post() was successful.

-1 sem_post() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_post() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EINVAL]

The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 Posting to the semaphore would cause its value to exceed its maximum value. The maximum

value is SEM_VALUE_MAX or was set using sem_open_np() or sem_init_np().

Error Messages

None.

Related Information

v The <semaphore.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “sem_close()—Close Named Semaphore” on page 69—Close Named Semaphore

v “sem_destroy()—Destroy Unnamed Semaphore” on page 70—Destroy Unnamed Semaphore

v “sem_getvalue()—Get Semaphore Value” on page 72—Get Semaphore Value

Interprocess Communication (IPC) APIs 85

v “sem_init()—Initialize Unnamed Semaphore” on page 74—Initialize Unnamed Semaphore

v “sem_open()—Open Named Semaphore” on page 78—Open Named Semaphore

v “sem_open_np()—Open Named Semaphore with Maximum Value” on page 81-Open Named

Semaphore with Maximum Value

v “sem_post_np()—Post Value to Semaphore”—Post Value to Semaphore

v “sem_trywait()—Try to Decrement Semaphore” on page 89—Try to Decrement Semaphore

v “sem_unlink()—Unlink Named Semaphore” on page 91—Unlink Named Semaphore

v “sem_wait()—Wait for Semaphore” on page 93—Wait for Semaphore

v “sem_wait_np()—Wait for Semaphore with Timeout” on page 95—Wait for Semaphore with Timeout

Example

See Code disclaimer information for information pertaining to code examples.

The following example initializes an unnamed semaphore and posts to it, incrementing its value by 1.

#include <stdio.h>

#include <semaphore.h>

main() {

 sem_t my_semaphore;

 int value;

 sem_init(&my_semaphore, 0, 10);

 sem_getvalue(&my_semaphore, &value);

 printf("The initial value of the semaphore is %d\n", value);

 sem_post(&my_semaphore);

 sem_getvalue(&my_semaphore, &value);

 printf("The value of the semaphore after the post is %d\n", value);

}

Output:

The initial value of the semaphore is 10

The value of the semaphore after the post is 11

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

sem_post_np()—Post Value to Semaphore

 Syntax

 #include <semaphore.h>

 int sem_post_np(sem_t * sem,

 sem_post_options_np_t *options);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

86 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

The sem_post_np() function posts to a semaphore, incrementing its value by the increment specified in

the options parameter. If the resulting value is greater than zero and if there are threads waiting on the

semaphore, the waiting threads decrement the semaphore and continue running.

Parameters

sem (Input) A pointer to an initialized unnamed semaphore or opened named semaphore.

options

(Input) Post options.

 The members of the sem_post_options_np_t structure are as follows.

 unsigned int reserved1[1] A reserved field that must be set to zero.

unsigned int increment The value, greater than zero, used to increment the

semaphore. If the value specified causes the value of a

semaphore to exceed its maximum value, sem_post_np()

will fail by returning [EINVAL].

unsigned int reserved2[2] A reserved field that must be set to zero.

Authorities

None

Return Value

 0 sem_post_np() was successful.

-1 sem_post_np() was not successful. The errno variable is

set to indicate the error.

Error Conditions

If sem_post_np() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EOVERFLOW]

 Maximum value exceeded.

 Posting to the semaphore would cause its value to exceed its maximum value. The maximum

value is SEM_VALUE_MAX or was set using sem_open_np() or sem_init_np().

 The reserved fields of the attr argument are not set to zero.

Error Messages

None.

Related Information

v The <semaphore.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “sem_close()—Close Named Semaphore” on page 69—Close Named Semaphore

Interprocess Communication (IPC) APIs 87

v “sem_destroy()—Destroy Unnamed Semaphore” on page 70—Destroy Unnamed Semaphore

v “sem_getvalue()—Get Semaphore Value” on page 72—Get Semaphore Value

v “sem_init()—Initialize Unnamed Semaphore” on page 74—Initialize Unnamed Semaphore

v “sem_init_np()—Initialize Unnamed Semaphore with Maximum Value” on page 75—Initialize

Unnamed Semaphore with Maximum Value

v “sem_open()—Open Named Semaphore” on page 78—Open Named Semaphore

v “sem_open_np()—Open Named Semaphore with Maximum Value” on page 81—Open Named

Semaphore with Maximum Value

v “sem_post()—Post to Semaphore” on page 85—Post to Semaphore

v “sem_trywait()—Try to Decrement Semaphore” on page 89—Try to Decrement Semaphore

v “sem_unlink()—Unlink Named Semaphore” on page 91—Unlink Named Semaphore

v “sem_wait()—Wait for Semaphore” on page 93—Wait for Semaphore

v “sem_wait_np()—Wait for Semaphore with Timeout” on page 95—Wait for Semaphore with Timeout

Example

See Code disclaimer information for information pertaining to code examples.

The following example initializes an unnamed semaphore and posts to it, incrementing its value by 2.

#include <stdio.h>

#include <semaphore.h>

main() {

 sem_t my_semaphore;

 sem_post_options_np_t options;

 int value;

 sem_init(&my_semaphore, 0, 10);

 sem_getvalue(&my_semaphore, &value);

 printf("The initial value of the semaphore is %d.\n", value);

 memset(&options, 0, sizeof(options));

 options.increment=2;

 sem_post_np(&my_semaphore,&options);

 sem_getvalue(&my_semaphore, &value);

 printf("The value of the semaphore after the post is %d.\n", value);

}

Output:

The initial value of the semaphore is 10.

The value of the semaphore after the post is 12.

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

88 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

sem_trywait()—Try to Decrement Semaphore

 Syntax

 #include <semaphore.h>

 int sem_trywait(sem_t * sem);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_trywait() function attempts to decrement the value of the semaphore. The semaphore will be

decremented if its value is greater than zero. If the value of the semaphore is zero, then sem_trywait()

will return -1 and set errno to EAGAIN.

Parameters

sem (Input) A pointer to an initialized unnamed semaphore or opened named semaphore.

Authorities

None

Return Value

 0 sem_trywait() was successful.

-1 sem_trywait() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_trywait() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EAGAIN]

 Operation would have caused the process to be suspended.

 The value of the semaphore is currently zero and cannot be decremented.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

Error Messages

None.

Interprocess Communication (IPC) APIs 89

Related Information

v The <semaphore.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “sem_close()—Close Named Semaphore” on page 69—Close Named Semaphore

v “sem_destroy()—Destroy Unnamed Semaphore” on page 70—Destroy Unnamed Semaphore

v “sem_getvalue()—Get Semaphore Value” on page 72—Get Semaphore Value

v “sem_init()—Initialize Unnamed Semaphore” on page 74—Initialize Unnamed Semaphore

v “sem_init_np()—Initialize Unnamed Semaphore with Maximum Value” on page 75—Initialize

Unnamed Semaphore with Maximum Value

v “sem_open()—Open Named Semaphore” on page 78—Open Named Semaphore

v “sem_open_np()—Open Named Semaphore with Maximum Value” on page 81—Open Named

Semaphore with Maximum Value

v “sem_post()—Post to Semaphore” on page 85—Post to Semaphore

v “sem_post_np()—Post Value to Semaphore” on page 86—Post Value to Semaphore

v “sem_unlink()—Unlink Named Semaphore” on page 91—Unlink Named Semaphore

v “sem_wait()—Wait for Semaphore” on page 93—Wait for Semaphore

v “sem_wait_np()—Wait for Semaphore with Timeout” on page 95—Wait for Semaphore with Timeout

Example

See Code disclaimer information for information pertaining to code examples.

The following example attempts to decrement a semaphore with a current value of zero.

#include <stdio.h>

#include <errno.h>

#include <semaphore.h>

main() {

 sem_t my_semaphore;

 int value;

 int rc;

 sem_init(&my_semaphore, 0, 1);

 sem_getvalue(&my_semaphore, &value);

 printf("The initial value of the semaphore is %d\n", value);

 sem_wait(&my_semaphore);

 sem_getvalue(&my_semaphore, &value);

 printf("The value of the semaphore after the wait is %d\n", value);

 rc = sem_trywait(&my_semaphore);

 if ((rc == -1) && (errno == EAGAIN)) {

 printf("sem_trywait did not decrement the semaphore\n");

 }

}

Output:

The initial value of the semaphore is 1

The value of the semaphore after the wait is 0

sem_trywait did not decrement the semaphore

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

90 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

sem_unlink()—Unlink Named Semaphore

 Syntax

 #include <semaphore.h>

 int sem_unlink(const char *name);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_unlink() function unlinks a named semaphore. The name of the semaphore is removed from the

set of names used by named semaphores. If the semaphore is still in use, the semaphore is not deleted

until all processes using the semaphore have ended or have called sem_close(). Using the name of an

unlinked semaphore in subsequent calls to sem_open() or sem_open_np() will result in the creation of a

new semaphore with the same name if the O_CREAT flag of the oflag parameter has been set.

Parameters

name (Input) A pointer to the null-terminated name of the semaphore to be unlinked. The name should

begin with a slash (’/’) character. If the name does not begin with a slash (’/’) character, the

system adds a slash to the beginning of the name.

 This parameter is assumed to be represented in the coded character set identifier (CCSID)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 The name is present in a set of names used only by named semaphores. The name has no relation

to any file system path names. The maximum length of the name is SEM_NAME_MAX.

 See “QlgSem_unlink()—Unlink Named Semaphore (using NLS-enabled path name)” on page

28—Unlink Named Semaphore (using NLS-enabled path name) for a description and an example

of supplying the name in any CCSID.

Authorities

Authorization required for sem_unlink()

 Object Referred to Authority Required errno

Named semaphore to be deleted See note EACCES

Note: To unlink a named semaphore, the effective UID of the process must be the creator of the

semaphore or the process must have *ALLOBJ authority.

Return Value

 0 sem_unlink() was successful.

-1 sem_unlink() was not successful. The errno variable is set to indicate the error.

Interprocess Communication (IPC) APIs 91

Error Conditions

If sem_unlink() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

[ENOENT]

 No such path or directory.

 The specified name doesnot refer to an existing named semaphore.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[ENAMETOOLONG]

 The name is too long. The name is longer than the SEM_NAME_MAX characters.

Error Messages

None.

Related Information

v The <semaphore.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “QlgSem_unlink()—Unlink Named Semaphore (using NLS-enabled path name)” on page 28—Unlink

Named Semaphore (using NLS-enabled path name)

v “sem_open()—Open Named Semaphore” on page 78—Open Named Semaphore

v “sem_open_np()—Open Named Semaphore with Maximum Value” on page 81—Open Named

Semaphore with Maximum Value

Example

See Code disclaimer information for information pertaining to code examples.

The following example unlinks the named semaphore ″/mysem″.

#include <semaphore.h>

main() {

 int rc;

 rc = sem_unlink("/mysem");

}

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

92 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

sem_wait()—Wait for Semaphore

 Syntax

 #include <semaphore.h>

 int sem_wait(sem_t * sem);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_wait() function decrements by one the value of the semaphore. The semaphore will be

decremented when its value is greater than zero. If the value of the semaphore is zero, then the current

thread will block until the semaphore’s value becomes greater than zero.

Parameters

sem (Input) A pointer to an initialized unnamed semaphore or opened named semaphore.

Authorities

None

Return Value

 0 sem_wait() was successful.

-1 sem_wait() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_wait() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

Error Messages

None.

Related Information

v The <semaphore.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “sem_close()—Close Named Semaphore” on page 69—Close Named Semaphore

Interprocess Communication (IPC) APIs 93

v “sem_destroy()—Destroy Unnamed Semaphore” on page 70—Destroy Unnamed Semaphore

v “sem_getvalue()—Get Semaphore Value” on page 72—Get Semaphore Value

v “sem_init()—Initialize Unnamed Semaphore” on page 74—Initialize Unnamed Semaphore

v “sem_init_np()—Initialize Unnamed Semaphore with Maximum Value” on page 75—Initialize

Unnamed Semaphore with Maximum Value

v “sem_open()—Open Named Semaphore” on page 78—Open Named Semaphore

v “sem_open_np()—Open Named Semaphore with Maximum Value” on page 81—Open Named

Semaphore with Maximum Value

v “sem_post()—Post to Semaphore” on page 85—Post to Semaphore

v “sem_post_np()—Post Value to Semaphore” on page 86—Post Value to Semaphore

v “sem_trywait()—Try to Decrement Semaphore” on page 89—Try to Decrement Semaphore

v “sem_unlink()—Unlink Named Semaphore” on page 91—Unlink Named Semaphore

v “sem_wait_np()—Wait for Semaphore with Timeout” on page 95—Wait for Semaphore with Timeout

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a semaphore with an initial value of 10. The value is decremented by

calling sem_wait().

#include <stdio.h>

#include <semaphore.h>

main() {

 sem_t my_semaphore;

 int value;

 sem_init(&my_semaphore, 0, 1);

 sem_getvalue(&my_semaphore, &value);

 printf("The initial value of the semaphore is %d\n", value);

 sem_wait(&my_semaphore);

 sem_getvalue(&my_semaphore, &value);

 printf("The value of the semaphore after the wait is %d\n", value);

}

Output:

The initial value of the semaphore is 1

The value of the semaphore after the wait is 0

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

94 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

sem_wait_np()—Wait for Semaphore with Timeout

 Syntax

 #include <semaphore.h>

 int sem_wait_np(sem_t * sem,

 sem_wait_options_np_t * options);

 Service Program Name: QP0ZPSEM

 Default Public Authority: *USE

 Threadsafe: Yes

The sem_wait_np() function attempts to decrement by one the value of the semaphore. The semaphore

will be decremented by one when its value is greater than zero. If the value of the semaphore is zero,

then the current thread will block until the semaphore’s value becomes greater than zero or until the

timeout period specified on the options parameter has ended. If the semaphore is not decremented before

the timeout ends, sem_wait_np() will return with an error, setting errno to [ETIMEDOUT].

Parameters

sem (Input) A pointer to an initialized unnamed semaphore or opened named semaphore.

options

(Input) A pointer to a semaphore wait (sem_wait_options_np_t) structure. The members of the

sem_wait_options_np_t structure are as follows:

 unsigned int

reserved1[2]

A reserved field that must be set to zero.

struct

sem_timeout_t

timeout

The time, in MI time, that sem_wait_np() should wait for the semaphore. If the timeout is zero,

sem_wait_np() will return immediately with errno set to [ETIMEDOUT] if the semaphore cannot

be decremented. If a timeout value of 0xFFFFFFFF FFFFFFFF is specified, then sem_wait_np() will

wait indefinitely. The maximum timeout that may be specified is 281 272 976 710 655 (2 ** 48 -1)

microseconds. Any value larger than this, other than 0xFFFFFFFF FFFFFFFF, will cause

sem_wait_np() to wait for the maximum timeout (281 272 976 710 655 microseconds). The

Qp0zCvtToMITime() may be used to convert a timeval structure to the corresponding MI time.

Authorities

None

Return Value

 0 sem_wait_np() was successful.

-1 sem_wait_np() was not successful. The errno variable is set to indicate the error.

Error Conditions

If sem_wait_np() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[ECANCEL]

 Operation canceled.

Interprocess Communication (IPC) APIs 95

[EDESTROYED]

 The semaphore was destroyed.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

Error Messages

None.

Related Information

v The <semaphore.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “sem_close()—Close Named Semaphore” on page 69—Close Named Semaphore

v “sem_destroy()—Destroy Unnamed Semaphore” on page 70—Destroy Unnamed Semaphore

v “sem_getvalue()—Get Semaphore Value” on page 72—Get Semaphore Value

v “sem_init()—Initialize Unnamed Semaphore” on page 74—Initialize Unnamed Semaphore

v “sem_init_np()—Initialize Unnamed Semaphore with Maximum Value” on page 75—Initialize

Unnamed Semaphore with Maximum Value

v “sem_open()—Open Named Semaphore” on page 78—Open Named Semaphore

v “sem_open_np()—Open Named Semaphore with Maximum Value” on page 81—Open Named

Semaphore with Maximum Value

v “sem_post()—Post to Semaphore” on page 85—Post to Semaphore

v “sem_post_np()—Post Value to Semaphore” on page 86—Post Value to Semaphore

v “sem_trywait()—Try to Decrement Semaphore” on page 89—Try to Decrement Semaphore

v “sem_unlink()—Unlink Named Semaphore” on page 91—Unlink Named Semaphore

v “sem_wait_np()—Wait for Semaphore with Timeout” on page 95—Wait for Semaphore with Timeout

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a semaphore with an initial value of 1. The value is decremented using

sem_wait(). The program then attempts to decrement the semaphore using sem_wait_np() with a timeout

of 2 seconds. This will fail with ETIMEDOUT because the semaphore’s value is currently zero.

#include <stdio.h>

#include <errno.h>

#include <semaphore.h>

#include <time.h>

#include <qp0z1170.h>

main() {

 sem_t my_semaphore;

 int value;

 sem_wait_options_np_t options;

96 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

aboutapis.htm#CODEDISCLAIMER

int rc;

 struct timeval waittime;

 time_t start_time;

 time_t end_time;

 sem_init(&my_semaphore, 0, 1);

 sem_getvalue(&my_semaphore, &value);

 printf("The initial value of the semaphore is %d\n", value);

 sem_wait(&my_semaphore);

 sem_getvalue(&my_semaphore, &value);

 printf("The value of the semaphore after the wait is %d\n", value);

 memset(&options, 0, sizeof(options));

 waittime.tv_sec = 2;

 waittime.tv_usec = 0;

 Qp0zCvtToMITime((unsigned char *) &options.timeout,

 wait_time,

 QP0Z_CVTTIME_TO_OFFSET);

 time(&start_time);

 rc = sem_wait_np(&my_semaphore, &options);

 time(&end_time);

 if ((rc == -1) && (errno == ETIMEDOUT)) {

 printf("sem_wait_np timed out after %d seconds\n",

 end_time - start_time);

 }

}

Output:

The initial value of the semaphore is 1

The value of the semaphore after the wait is 0

sem_wait_np timed out after 2 seconds

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

shmat()—Attach Shared Memory Segment to Current Process

 Syntax

 #include <sys/shm.h>

 void *shmat(int shmid, const void *shmaddr,

 int shmflg);

 Service Program Name: QP0ZUSHR

 Default Public Authority: *USE

 Threadsafe: Yes

The shmat() function attaches to the shared memory segment specified by shmid and returns the address

of the shared memory segment.

The address specified by shmaddr is only used when shmat() is called from a program that uses data

model *LLP64 and attaches to a teraspace shared memory segment. Otherwise the address specified by

shmaddr is ignored and the actual shared memory segment address is returned regardless of the value of

shmaddr.

Interprocess Communication (IPC) APIs 97

#TOP_OF_PAGE
unix.htm
aplist.htm

The system maintains status information about a shared memory segment which can be retrieved with

the “shmctl()—Perform Shared Memory Control Operations” on page 101 function. When a shared

memory segment is successfully attached, the system sets the members of the shmid_ds structure as

follows:

v shm_nattch is incremented by 1.

v shm_lpid is set to the process ID of the calling thread.

v shm_atime is set to the current time.

Parameters

shmid (Input) Shared memory identifier, a positive integer. It is returned by the “shmget()—Get ID of

Shared Memory Segment with Key” on page 106 function and used to identify the shared

memory segment.

shmaddr

(Input) Shared memory address. The address at which the calling thread would like the shared

memory segment attached.

shmflg

(Input) Operations flags. The value of the shmflg parameter is either zero or is obtained by

performing an OR operation on one or more of the following constants:

SHM_RDONLY (0x00001000)

Attach the shared memory segment in read-only mode. This flag is valid only for

teraspace shared memory segments.

Authorities

Authorization Required for shmat()

 Object Referred to Authority Required errno

Shared memory segment to be attached in read/write memory Read and Write EACCES

Shared memory segment to be attached in read-only memory in a

process’s teraspace.

Read EACCES

Return Value

 value shmat() was successful. The value returned is a pointer to the shared memory segment associated

with the specified identifier.

NULL shmat() was not successful. The errno variable is set to indicate the error.

Error Conditions

If shmat() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 Operation permission is denied to the calling thread.

98 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Shared memory operations are not permitted because the QSHRMEMCTL system value is set to

0.

 The shared memory segment is to be attached in read/write mode and the calling thread does

not read and write permission to the shared memory segment.

 The shared memory segment is to be attached in read-only mode and the calling thread does not

read permission to the shared memory segment.

[EADDRINUSE]

 A damaged object was encountered.

 Address already in use.

 An attempt was made to attach to a teraspace shared memory segment with the

SHM_MAP_FIXED_NP attribute and the address range is not available in the teraspace of the

current job.

[EDAMAGE]

 A damaged object was encountered.

 The shared memory segment has been damaged by a previous shared memory operation.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The shmid parameter is not a valid shared memory identifier.

[EOPNOTSUPP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

 The SHM_RDONLY flag is set in the shmflg parameter. Read-only shared memory segments are

not supported for nonteraspace shared memory segments and for shared memory segments

created with the SHM_MAP_FIXED_NP attribute.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 The available data space is not large enough to accommodate the shared memory segment.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Interprocess Communication (IPC) APIs 99

Error Messages

None.

Usage Notes

1. The only supported operation flag is SHM_RDONLY. This operation flag is supported only when you

attach to a teraspace shared memory segment. If shmflg specifies SHM_RDONLY for a nonteraspace

shared memory segment, then an [EOPNOTSUPP] error is returned. All other values for shmflg are

ignored.

2. A module that was not created with teraspace memory enabled should not attach to a teraspace

shared memory segment. The call to shmat() will succeed and return a pointer. Any attempt, however,

by a module not created with teraspace memory enabled to use the returned pointer will result in an

MCH3601 (Pointer not set for location referenced) exception.

3. When a job attaches to a shared memory segment that was created with the SHM_MAP_FIXED_NP

attribute, an address range within the job’s teraspace is used for the shared memory mapping. When

a subsequent job attaches to the shared memory segment, the same address range within its teraspace

must be available. If the address range is not available, the call to shmat() will fail with an

[EADDRINUSE] error.

4. The storage for a shared memory segment is allocated when the first job attaches to the shared

memory segment. The storage is charged against the job’s temporary storage limit. If the job does not

have enough temporary storage to satisfy the request, the call to shmat() will fail with an [ENOMEM]

error.

Related Information

v The <sys/shm.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “shmat()—Attach Shared Memory Segment to Current Process” on page 97—Perform Shared Memory

Control Operations

v “shmget()—Get ID of Shared Memory Segment with Key” on page 106—Get ID of Shared Memory

Segment with Key

v “shmdt()—Detach Shared Memory Segment from Calling Process” on page 104—Detach Shared

Memory Segment from Calling Process

Example

See Code disclaimer information for information pertaining to code examples.

For an example of using this function, see Using Semaphores and Shared Memory in Examples: APIs.

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

100 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

aboutapis.htm#CODEDISCLAIMER
apiexusmem.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

shmctl()—Perform Shared Memory Control Operations

 Syntax

 #include <sys/shm.h>

 int shmctl(int shmid, int cmd, struct shmid_ds *buf);

 Service Program Name: QP0ZUSHR

 Default Public Authority: *USE

 Threadsafe: Yes

The shmctl() function allows the caller to control the shared memory segment specified by the shmid

parameter.

A shared memory segment is controlled by setting the cmd parameter to one of the following values:

IPC_RMID (0x00000000)

Remove the shared memory segment identifier shmid from the system and destroy the shared

memory segment.

 The IPC_RMID command can be run only by a thread with appropriate privileges or one that has

an effective user ID equal to the user ID of the owner or the user ID of the creator of the shared

memory segment. The structure pointed to by *buf is ignored and can be NULL.

IPC_SET (0x00000001)

Set the user ID of the owner, the group ID of the owner, the permissions, and the maximum

number of bytes for the shared memory segment to the values in the shm_perm.uid, shm_perm.gid,

and shm_perm.mode members of the shmid_ds data structure pointed to by *buf.

 The IPC_SET command can be run only by a thread with appropriate privileges or one that has

an effective user ID equal to the user ID of the owner or the user ID of the creator of the shared

memory segment.

IPC_STAT (0x00000002)

Store the current value of each member of the shmid_ds data structure into the structure pointed

to by *buf. The IPC_STAT command requires read permission to the shared memory segment.

SHM_SIZE (0x00000006)

Set the size of the shared memory segment using the shm_segsz member of the shmid_ds data

structure pointed to by *buf. This value may be larger or smaller than the current size. This

command is valid for nonteraspace shared memory segments and for teraspace shared memory

segments created using the SHM_RESIZE_NP option of the shmget() function. The maximum size

to which a nonteraspace shared memory segment may be expanded is 16 773 120 bytes (16 MB

minus 4096 bytes). The maximum size of a resizeable teraspace shared memory segment is

268 435 456 bytes (256 MB).
The SHM_SIZE command can be run only by a thread with appropriate privileges or a thread

that has an effective user ID equal to the user ID of the owner or the user ID of the creator of the

shared memory segment.
If a shared memory segment is resized to a smaller size, other threads using the memory that is

being removed from the shared memory segment may experience memory exceptions when

accessing that memory.

Parameters

shmid (Input) Shared memory identifier, a positive integer. It is returned by the “shmget()—Get ID of

Interprocess Communication (IPC) APIs 101

Shared Memory Segment with Key” on page 106 function and used to identify the shared

memory segment on which to perform the control operation.

cmd (Input) Command, the control operation to perform on the shared memory segment. Valid values

are listed above.

buf (I/O) Pointer to the shmid_ds structure to be used to get or set shared memory information.

 The members of the shmid_ds structure are as follows:

 struct ipc_perm

shm_perm

The members of the ipc_perm structure are as follows:

uid_t uid

The user ID of the owner of the segment.

gid_t gid

The group ID of the owner of the segment.

uid_t cuid

The user ID of the creator of the segment.

gid_t cgid

The group ID of the creator of the segment.

mode_t mode

The permissions for the segment.

size_t shm_segsz The size of the segment in bytes.

pid_t shm_lpid The process ID of the last job to attach or detach to the segment using shmat() or shmdt().

pid_t shm_cpid The process ID of the job that created the segment using shmget().

int shm_nattch The number of jobs attached to the segment.

time_t shm_atime The time the last job attached to the segment using shmat().

time_t shm_dtime The time the last job detached from the segment using shmdt().

time_t shm_ctime The time the last job changed the segment using shmctl().

Authorities

Authorization Required for shmctl()

 Object Referred to Authority Required errno

Shared memory segment for which state information is retrieved

(cmd = IPC_STAT)

Read EACCES

Shared memory segment for which state information is set (cmd =

IPC_SET)

See Note EPERM

Shared memory segment to be removed (cmd = IPC_RMID) See Note EPERM

Shared memory segment to be resized (cmd = SHM_SIZE) See Note EPERM

Note: To set shared memory segment information, to remove a shared memory segment, or to resize a

shared memory segment, the thread must be the owner or creator of the shared memory segment or have

appropriate privileges.

Return Value

 0 shmctl() was successful.

-1 shmctl() was not successful. The errno variable is set to indicate the error.

102 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Error Conditions

If shmctl() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 The cmd parameter is IPC_STAT and the calling thread does not have read permission to shared

memory segment.

[EDAMAGE]

 A damaged object was encountered.

 The shared memory segment has been damaged by a previous shared memory operation.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 One of the following has occurred:

v The shmid parameter is not a valid shared memory identifier.

v The cmd parameter is not a valid command.

v The cmd parameter is SHM_SIZE, and the teraspace shared memory segment cannot be resized

because it was not created by specifying SHM_RESIZE_NP on the shmflg parameter of

shmget().

v The cmd parameter is SHM_SIZE, and the new size is not valid for the shared memory

segment.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 A shared memory identifier segment is to be resized, but the amount of available physical

memory is not sufficient to fulfill the request.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

 The cmd parameter is IPC_RMID or IPC_SET and both of the following are true:

v the calling thread does not have the appropriate privileges.

Interprocess Communication (IPC) APIs 103

v the effective user ID of the calling thread is not equal to the user ID of the owner or the user

ID of the creator of the shared memory segment.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

1. “Appropriate privileges” is defined to be *ALLOBJ special authority. If the user profile under which

the thread is running does not have *ALLOBJ special authority, the thread does not have appropriate

privileges.

Related Information

v The <sys/shm.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “shmat()—Attach Shared Memory Segment to Current Process” on page 97—Attach Shared Memory

Segment to Current Process

v “shmdt()—Detach Shared Memory Segment from Calling Process”—Detach Shared Memory Segment

from Calling Process

v “shmget()—Get ID of Shared Memory Segment with Key” on page 106—Get ID of Shared Memory

Segment with Key

Example

See Code disclaimer information for information pertaining to code examples.

For an example of using this function, see Using Semaphores and Shared Memory in Examples: APIs.

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

shmdt()—Detach Shared Memory Segment from Calling Process

 Syntax

 #include <sys/shm.h>

 int shmdt(const void *shmaddr);

 Service Program Name: QP0ZUSHR

 Default Public Authority: *USE

 Threadsafe: Yes

The shmdt() function detaches the shared memory segment specified by shmaddr from the calling job. The

shmaddr is the value returned by the “shmat()—Attach Shared Memory Segment to Current Process” on

page 97 function.

104 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

aboutapis.htm#CODEDISCLAIMER
apiexusmem.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

The system maintains status information about a shared memory segment which can be retrieved with

the “shmctl()—Perform Shared Memory Control Operations” on page 101 function. When a shared

memory segment is successfully detached, the system sets the members of the shmid_ds structure as

follows:

v shm_nattch is decremented by 1.

v shm_lpid is set to the process ID of the calling thread.

v shm_dtime is set to the current time.

Parameters

shmaddr

(Input) Address of the shared memory segment to be detached.

Authorities

Authorization Required for shmdt()

 Object Referred to Authority Required errno

Shared memory segment to be detached None None

Return Value

 0 shmdt() was successful.

-1 shmdt() was not successful. The errno variable is set to indicate the error.

Error Conditions

If shmdt() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EDAMAGE]

 A damaged object was encountered.

 The shared memory segment has been damaged by a previous shared memory operation.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The value of shmaddr is not the start address of a shared memory segment.

[ENOSYS]

 Function not implemented.

Interprocess Communication (IPC) APIs 105

An attempt was made to use a function that is not available in this implementation for any object

or any arguments.

 The function is not implemented.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

1. This function does not delete the shared memory segment. To delete a shared memory segment, use

the shmctl() function with the cmd parameter set to IPC_RMID.

Related Information

v The <sys/shm.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “shmat()—Attach Shared Memory Segment to Current Process” on page 97—Attach Shared Memory

Segment to Current Process

v “shmctl()—Perform Shared Memory Control Operations” on page 101—Perform Shared Memory

Control Operations

v “shmget()—Get ID of Shared Memory Segment with Key”—Get ID of Shared Memory Segment with

Key

Example

See Code disclaimer information for information pertaining to code examples.

For an example of using this function, see Using Semaphores and Shared Memory in Examples: APIs.

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

shmget()—Get ID of Shared Memory Segment with Key

 Syntax

 #include <sys/shm.h>

 #include <sys/stat.h>

 int shmget(key_t key, size_t size, int shmflg);

 Service Program Name: QP0ZUSHR

 Default Public Authority: *USE

 Threadsafe: Yes

106 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

aboutapis.htm#CODEDISCLAIMER
apiexusmem.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

The shmget() function either creates a new shared memory segment or returns the shared memory

identifier associated with the key parameter for an existing shared memory segment. A new shared

memory segment is created if one of the following is true:

v The key parameter is equal to IPC_PRIVATE.

v The key parameter does not already have a shared memory identifier associated with it and the

IPC_CREAT flag is specified in the shmflg parameter.

The system maintains status information about a shared memory segment which can be retrieved with

the “shmctl()—Perform Shared Memory Control Operations” on page 101 function. When a new shared

memory segment is created, the system initializes the members of the shmid_ds structure as follows:

v shm_perm.cuid and shm_perm.uid are set equal to the effective user ID of the calling thread.

v shm_perm.cgid and shm_perm.gid are set equal to the effective group ID of the calling thread.

v The low-order 9 bits of shm_perm.mode are set equal to the low-order 9 bits of the shmflg parameter.

v shm_segsz is set to the value specified in the size parameter.

v shm_ctime is set to the current time.

v shm_lpid, shm_nattch, shm_atime, and shm_dtime are set to zero.

There are two types of shared memory segments: teraspace shared memory segments and nonteraspace

shared memory segments. A teraspace shared memory segment is accessed by adding the shared memory

segment to a job’s teraspace. A nonteraspace shared memory segment creates shared memory using

OS/400 space objects.

Shared memory segments larger than 16 773 120 bytes (16 MB minus 4096 bytes) should be created as

teraspace shared memory segments. The maximum size of a teraspace shared memory segment is

4 294 967 295 bytes (4GB - 1). The maximum size of a resizeable teraspace shared memory segment is

268 435 456 bytes (256 MB).

The maximum size of a nonteraspace shared memory segments is 16 776 960 bytes (16 MB - 256 bytes).

When the operating system accesses a nonteraspace shared memory segment that has a size in the range

16 773 120 bytes (16 MB minus 4096 bytes) to 16 776 960 bytes (16 MB minus 256 bytes), a performance

degradation will be observed.

The size of the shared memory segment can be changed after it is created using the “shmctl()—Perform

Shared Memory Control Operations” on page 101 function. The size can only be changed if it is

nonteraspace shared memory segment or if it is a teraspace shared memory segment and

SHM_RESIZE_NP is specified in the shmflg parameter.

Parameters

key (Input) The key associated with the shared memory segment. A key of IPC_PRIVATE

(0x00000000) guarantees that a unique shared memory segment is created. A key can also be

specified by the caller or generated by the “ftok()—Generate IPC Key from File Name” on page 3

function.

size (Input) The size of the shared memory segment being created. If an existing shared memory

segment is being accessed, size may be zero.

shmflg

(Input) Operation and permission flags. The value of the shmflg parameter is either zero or is

obtained by performing an OR operation on one or more of the following constants:

S_IRUSR (0x00000100)

Allow the owner of the shared memory segment to attach to it in read mode.

S_IWUSR (0x00000080)

Allow the owner of the shared memory segment to attach to it in write mode.

Interprocess Communication (IPC) APIs 107

S_IRGRP (0x00000020)

Allow the group of the shared memory segment to attach to it in read mode.

S_IWGRP (0x00000010)

Allow the group of the shared memory segment to attach to it in write mode.

S_IROTH (0x00000004)

Allow others to attach to the shared memory segment in read mode.

S_IWOTH (0x00000002)

Allow others to attach to the shared memory segment in write mode.

IPC_CREAT (0x00000200)

Create the shared memory segment if it does not exist.

IPC_EXCL (0x00000400)

Return an error if the IPC_CREAT flag is set and the shared memory segment already

exists.

SHM_TS_NP (0x00010000)

If creating a new shared memory segment, make the shared memory segment a teraspace

shared memory segment. When a job attaches to the shared memory segment, the shared

memory segment will be added to the job’s teraspace. Some compilers permit the user to

indicate that the teraspace versions of storage functions should be used. For example, if a

C module is compiled using CRTCMOD TERASPACE(*YES *TSIFC), this flag will be set

automatically.

 If accessing an existing shared memory segment, only specify this constant if it was

specified when the shared memory segment was created.

SHM_RESIZE_NP (0x00040000)

If creating a new teraspace shared memory segment, allow the size of the shared memory

segment to be changed with the “shmctl()—Perform Shared Memory Control Operations”

on page 101 function. The maximum size of this teraspace shared memory segment is

268 435 456 bytes (256 MB). This flag is ignored for nonteraspace shared memory

segments. A nonteraspace shared memory segment may always be resized up to

16 773 120 bytes (16 MB - 4096 bytes).

SHM_MAP_FIXED_NP (0x00100000)

If creating a new teraspace shared memory segment, make all jobs that successfully attach

to the shared memory segment attach to the shared memory segment at the same

address. The shared memory segment may not be attached in read-only mode. This flag

is ignored for nonteraspace shared memory segments.

 If accessing an existing shared memory segment, only specify this constant if it was

specified when the shared memory segment was created.

Authorities

Authorization Required for shmget()

 Object Referred to Authority Required errno

Shared memory segment to be created None None

Existing shared memory segment to be accessed See Note EACCES

Note: If the thread is accessing a shared memory segment that already exists, the mode specified in the

last 9 bits of the shmflg parameter must be a subset of the mode of the existing shared memory segment.

108 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Return Value

 value shmget()was successful. The value returned is the shared memory identifier associated with the

key parameter.

-1 shmget() was not successful. The errno variable is set to indicate the error.

Error Conditions

If shmget() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 A shared memory identifier exists for the parameter key, but permissions specified in the

low-order 9 bits of semflg are not a subset of the current permissions.

 Shared memory operations are not permitted because the QSHRMEMCTL system value is set to

0.

[EDAMAGE]

 A damaged object was encountered.

 The shared memory segment has been damaged by a previous shared memory operation.

[EEXIST]

 File exists.

 The file specified already exists and the specified operation requires that it not exist.

 The named file, directory, or path already exists.

 A shared memory identifier exists for the key parameter and both the IPC_CREAT and IPC_EXCL

flags are set in the shmflg parameter.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 One of the following has occurred:

v The value of the size parameter is less than the system-imposed minimum or greater than the

system-imposed maximum.

v A shared memory identifier exists for the key parameter and the size of the segment associated

with it is less than size and size is not zero.

v A shared memory identifier exists for the key parameter and the SHM_MAP_FIXED_NP or

SHM_TS_NP attributes of the shared memory segment do not match the flags set in the shmflg

parameter.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

Interprocess Communication (IPC) APIs 109

A named file or directory does not exist or is an empty string.

 A shared memory identifier does not exist for the key parameter and the IPC_CREAT flag is not

set in the shmflg parameter.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 A new shared memory segment is being created and the amount of available physical memory is

not sufficient to fulfill the request.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

 A shared memory identifier cannot be created because the system limit on the maximum number

of allowed shared memory identifiers would be exceeded.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

None.

Usage Notes

1. The best way to generate a unique key is to use the “ftok()—Generate IPC Key from File Name” on

page 3 function.

2. When the operating system accesses a nonteraspace shared memory segment that has a size in the

range 16 773 120 bytes (16 MB minus 4096 bytes) to 16 776 960 bytes (16 MB minus 256 bytes), a

performance degradation will be observed. Use a teraspace shared memory segment if the size of the

segment is larger than 16 773 120 bytes.

3. Use the “shmat()—Attach Shared Memory Segment to Current Process” on page 97 function to get

addressability to the shared memory segment after the shared memory identifier is obtained.

4. The storage for a shared memory segment is not allocated until it is attached to a job. A job will not

be able to attach to a shared memory segment that is larger than the amount of storage available on

the system.

5. Jobs cannot attach a nonteraspace shared memory segment in read-only or write-only mode.

Consequently, permissions that specify read-only or write-only will always result in shmat() returning

with a return value of -1 and errno set to EOPNOTSUPP. Jobs are permitted to attach a teraspace

shared memory segment in read-only mode.

Related Information

v The <sys/shm.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v “ftok()—Generate IPC Key from File Name” on page 3—Generate IPC Key from File Name

v “shmat()—Attach Shared Memory Segment to Current Process” on page 97—Attach Shared Memory

Segment to Current Process

110 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

v “shmctl()—Perform Shared Memory Control Operations” on page 101—Perform Shared Memory

Control Operations

v “shmdt()—Detach Shared Memory Segment from Calling Process” on page 104—Detach Shared

Memory Segment from Calling Process

Example

See Code disclaimer information for information pertaining to code examples.

For an example of using this function, see Using Semaphores and Shared Memory in Examples: APIs.

API introduced: V3R6

 Top | UNIX-Type APIs | APIs by category

Exit Programs

These are the Exit Programs for this category.

Integrated File System Scan on Close Exit Program

 Required Parameter Group:

1 Integrated file system close exit information

Input Char(*)

2 Status information

Output Char(*)
 QSYSINC Member Name: QP0LSCAN

 Exit Point Name: QIBM_QP0L_SCAN_CLOSE

 Exit Point Format Name: SCCL0100

The integrated file system scan on close exit program is called to do scan processing when an integrated

file system object is closed under the following conditions.

The exit program will not be called if:

v No exit programs exist for this exit point.

v -or- the Scan file systems (QSCANFS) system value has *NONE specified so that no file systems will be

scanned.

v -or- the object was marked to not be scanned and a scan is not required because the object was

restored.

v -or- the object being closed was opened for write access only.

v -or- the object is the storage which was allocated for Integrated xSeries servers to use as virtual disk

drives for the xSeries servers. From the perspective of the iSeries server, virtual drives appear as byte

stream files within the integrated file system.

v -or- the object is not being accessed from a file server, and the Scan file systems control

(QSCANFSCTL) system value has *FSVRONLY specified so that only file server accesses are scanned.

v -or- the object is in a *TYPE1 directory.

Interprocess Communication (IPC) APIs 111

aboutapis.htm#CODEDISCLAIMER
apiexusmem.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

If the previous conditions have been met, the exit program will be called if:

v The object has never been scanned.

v -or- the object’s data has been modified since the last time it was scanned. Data modifications include

writes, memory map writes, truncates or clears.

v -or- the CCSID of the object has been modified since the last time it was scanned.

v -or- the To CCSID specified on the open request associated with this close is different than the last two

To CCSIDs that were specified and previously scanned for this object.

v -or- the object was opened in binary in association with this close request, and it has not previously

been scanned in binary.

v -or- there have been updates to the scanning software and the object was not marked to be scanned

only if the object changed. Updates to scanning software occur by either registering additional exit

programs for the scan-related exit points, or by calling Change Scan Signature (QP0LCHSG) API to

update the scan key signature associated with existing exit program scan keys.

Note: If there are multiple descriptors referencing the same open instance of the object, then the exit

program will only be called for the close request on the last descriptor. Additionally, the From CCSID of

the object will be the value it is at the point in time of the close operation while the To CCSID will be

reflective of the value specified at open.

For more information on close processing, see close()—Close File or Socket Descriptor. For more

information on the scan-related attributes which can be set for objects, see Qp0lSetAttr()—Set Attributes.

For more information on the integrated file system scan processing and various options, see the

Integrated file system information in the Files and file systems topic.

The exit point supports a maximum of 50 exit programs. For information about adding an exit program

to an exit point, see the Registration Facility.

Note: If the integrated file system exit program returns any error messages or if any errors are received

when attempting to call the exit program, the object will be treated as if the program was not called and

the object was not scanned. Therefore, the close operation will continue unless the Scan file systems

control (QSCANFSCTL) system value has *ERRFAIL specified which will cause the operation to fail. If a

scan detects a failure, the close operation will still proceed and complete to release the resources. If the

Scan file systems control (QSCANFSCTL) system value has *NOFAILCLO specified, the close operation

will not return any failure indication. If *NOFAILCLO is not specified, the close operation will fail with

error code [ESCANFAILURE].

Restrictions

v Only objects of type *STMF that are in *TYPE2 directories in the ″root″ (/), QOpenSys, and

user-defined file systems are scanned. For information on *TYPE2 directories, see the Convert

Directory(CVTDIR) command and the Integrated file system information in the Files and file systems

topic.

v The exit programs will not be called during an IPL or the vary-on of an independent Auxiliary Storage

Pool (ASP).

v The exit programs will not be called when objects are being closed as a part of a process end request.

v During the call to the exit programs, the ASP group associated with the thread will not be able to be

changed.

v The exit programs must exist in the system ASP or in a basic user ASP. They cannot exist in an

independent ASP. Any ASP group could be associated with the thread when the exit program is called.

If the exit program is not found, the object will be treated as if the program was not called and the

object was not scanned. Therefore, the close operation will continue unless the Scan file systems control

(QSCANFSCTL) system value has *ERRFAIL specified which will cause the operation to fail. If the

112 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

chgscansgn.htm
close.htm
qsetattr.htm
reg1.htm

Scan file systems control (QSCANFSCTL) system value has *NOFAILCLO specified, the close operation

will not return any failure indication. If *NOFAILCLO is not specified, the close operation will fail with

error code [ESCANFAILURE].

v The exit programs could be called from an exit point within a multi-threaded job and must be written

to be threadsafe.

Authorities and Locks

User Profile Authority

*ALLOBJ (all object) and *SECADM (security administrator) special authorities to add exit

programs to the registration facility

 *ALLOBJ and *SECADM special authorities to remove exit programs from the registration facility

Program Data

When you register the exit program, the following program data must be provided. The following table

shows the structure of the program data information. For a description of the fields in this format, see

“Field Descriptions” on page 114. This structure is defined in header file qp0lscan.h as data type

Qp0l_Scan_Program_Data_t.

 Offset

Type Field Dec Hex

0 0 Char(10) User profile

10 A Char(20) Scan key

30 1E Char(12) Scan key signature

Required Parameter Group

Integrated file system close exit information

INPUT; CHAR(*)

 Information that is needed by the exit program to do its object scan processing. For details, see

“Format of Integrated File System Close Exit Information (Input).”

Status information

OUTPUT; CHAR(*)

 Information that is returned by the exit program indicating what scan processing has occurred.

For details, see “Format of Status Information (Output)” on page 114.

Format of Integrated File System Close Exit Information (Input)

The following table shows the structure of the integrated file system close exit information for exit point

format SCCL0100. For a description of the fields in this format, see “Field Descriptions” on page 114. This

structure is defined in header file qp0lscan.h as data type Qp0l_Scan_Exit_Information_t.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Integrated file system close exit information length

4 4 CHAR(20) Exit point name

24 18 CHAR(8) Exit point format name

32 20 BINARY(4) Length of status information

32 20 BINARY(4) Scan descriptor

36 24 BINARY(4), UNSIGNED From CCSID

Interprocess Communication (IPC) APIs 113

Offset

Type Field Dec Hex

40 28 BINARY(4), UNSIGNED To CCSID

44 2C BINARY(4), UNSIGNED Last failure CCSID

48 30 BINARY(4) Oflags

52 34 CHAR(16) File ID

68 44 CHAR(10) Object type

78 4E CHAR(1) File system

79 4F CHAR(1) Additional call

80 50 CHAR(1) Object modified since last scan

81 51 CHAR(1) Scan signatures different

82 52 CHAR(1) Call after previous failure

Format of Status Information (Output)

The following table shows the structure of the status information. For a description of the fields in this

format, see “Field Descriptions.” This structure is defined in header file qp0lscan.h as data type

Qp0l_Scan_Status_Information_t.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Close scan status information length

4 4 BINARY(4), UNSIGNED Failing CCSID

8 8 CHAR(1) Update object scan information

9 9 CHAR(1) Scan status

Field Descriptions

Additional call. Whether the exit program was called an additional time because another “Integrated File

System Scan on Close Exit Program” on page 111 that was called has indicated the object was modified.

See the scan status field for this modify indication. The possible values are:

 QP0L_SCAN_CALL_FIRST (x’00’) The first call to the exit program.

QP0L_SCAN_CALL_ADDL (x’01’) An additional call to the exit program because another exit program

has indicated the object was modified.

Call after previous failure. Whether the exit program was called after the object had previously been

scanned and a failure detected. The possible values are:

 QP0L_SCAN_NO (x’00’) This is not a call after a previous scan failure.

QP0L_SCAN_YES (x’01’) This is a call after a previous scan failure. The Last failure CCSID field

in conjunction with the From CCSID indicate the CCSID or binary

indication of the failing scan request.

Note: If the Failing CCSID and From CCSID values match, it is the

same as if the object would have been opened in binary.

Close scan status information length. The length in bytes of all data returned from the integrated file

system close exit program. The only valid value for this field is 10. If anything else is specified, the object

114 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

will be treated as if the program was not called and the object was not scanned. Therefore, the close

operation will continue unless the Scan file systems control (QSCANFSCTL) system value has *ERRFAIL

specified which will cause the operation to fail. If the Scan file systems control (QSCANFSCTL) system

value has *NOFAILCLO specified, the close operation will not return any failure indication. If

*NOFAILCLO is not specified, the close operation will fail with error code [ESCANFAILURE].

Exit point format name. The format name for the integrated file system scan on close exit program. The

possible format name follows:

 SCCL0100 The format name that is used while an object is being closed.

Exit point name. The name of the exit point that is calling the exit program.

Failing CCSID. This field only has meaning if the Call after previous failure field had a value of

QP0L_SCAN_YES when the exit program was called, and if the Update object scan information field has a

value of QP0L_SCAN_YES, and if the Scan status field has a value of QP0L_SCAN_FAILURE or

QP0L_SCAN_FAIL_WANT_MODIFY. When the Call after previous failure had a value of QP0L_SCAN_YES,

then the scan exit program should verify that the object does not have any problems when scanned using

both the To CCSID and Last failure CCSID values. If either scan fails, then this field should be filled in

with the failing CCSID which will be stored as part of the object scan information with the failure

indication. If the value of this field does not match either of the two input CCSID fields, then the To

CCSID value will be used. If more than one exit program indicates a failure, the failing CCSID value

which will be preserved is from the last exit program which scanned the object and indicated a failure.

For more information on CCSIDs and conversions, see “Coded Character Set Identifier (CCSID)

Information” on page 129 in “Integrated File System Scan on Open Exit Program” on page 121.

Note: If the Failing CCSID and From CCSID values match, it is the same as if the object would have been

opened in binary.

File ID. A unique identifier associated with the object that is being closed. A file ID can be used with

Qp0lGetPathFromFileID()—Get Path Name of Object from Its File ID, to retrieve an object’s path name.

File system. The file system that the object being scanned is in. The possible value follows:

 QP0L_SCAN_ROOT_QOPENSYS_UDFS (x’00’) The object is in the ″root″ (/), QOpenSys, or a user-defined file

system.

From CCSID. The CCSID value that the data is in on the system itself at the point in time of the close

operation. Therefore, this will be the CCSID in which data is to be returned (when reading from the

object using the Scan descriptor), or the CCSID in which data is being supplied (when writing to the object

using the Scan descriptor). For more information on CCSIDs and conversions, see “Coded Character Set

Identifier (CCSID) Information” on page 129 in “Integrated File System Scan on Open Exit Program” on

page 121.

Integrated file system close exit information length. The length in bytes of all data passed to the

integrated file system close exit program.

Last failure CCSID. The CCSID value that was specified when this object was last scanned and indicated

a scan failure. This field only has meaning if the Call after previous failure field has a value of

QP0L_SCAN_YES. Therefore, this would have been the CCSID in which data was to have been returned

(when the user was to be reading from the object), or the CCSID in which data was to have been

supplied (when the user was to be writing to the object). However, that request failed for this CCSID.

This is now being returned so that this CCSID can also be scanned, if it is different than the To CCSID

value. For more information on CCSIDs and conversions, see “Coded Character Set Identifier (CCSID)

Information” on page 129 in “Integrated File System Scan on Open Exit Program” on page 121.

Interprocess Communication (IPC) APIs 115

getpthff.htm

Note: If the Last failure CCSID and From CCSID values match, it is the same as if the object would have

been opened in binary.

Length of status information. The length in bytes allocated for the returned status information.

Object modified since last scan. Whether the exit program was called because the objects data or CCSID

has been modified since it was last scanned. Examples of object data or CCSID modifications are: writing

to the object, directly or through memory mapping; truncating the object; clearing the object; and

changing the objects CCSID attribute, etc.. The possible values are:

 QP0L_SCAN_NO (x’00’) The object has not been modified since it was last scanned.

QP0L_SCAN_YES (x’01’) The object has been modified since it was last scanned.

Object type. The object type. See Control Language (CL) information in the iSeries Information Center for

descriptions of all iSeries object types.

Oflags. The oflags that were specified on the open request associated with this close request with the

following exceptions. For a description of all possible oflag values, see open()—Open a File.

v If the oflags do not contain write access, the system will attempt to upgrade the access intent to

include write, unless the Scan file systems control (QSCANFSCTL) system value has *NOWRTUPG

specified or the object is not eligible for write access. If the upgrade is not attempted or is unsuccessful,

the access intent matches the users invocation. If it is successful, the write access intent is included in

this oflag information. This upgrade would be useful if the exit program wanted to modify the object

to correct any problems found while scanning.

v The CCSID related flags will have been removed. This includes O_TEXTDATA, O_CCSID,

O_CODEPAGE, and O_TEXT_CREATE.

v The synchronization flags will have been removed. This includes O_SYNC, O_DSYNC, and O_RSYNC.

Scan descriptor. A descriptor representing the object that is being closed. This scan descriptor has the

following characteristics:

v It can be used to do any read processing on the object being processed. Reads using this descriptor will

not update the last access timestamp information for the object.

v It can be used to do any write processing on the object being processed. If write processing is done by

the exit program, the exit program should indicate QP0L_SCAN_MODIFY in the Scan status field. If it

does not, the object’s scan information will be cleared as if the objects data has been modified.

v It cannot be used to memory map the object, see mmap()—Memory Map a File.

v It cannot be used to close the object using close()—Close File or Socket Descriptor. When control

returns from the exit program, the system code will do the close of this scan descriptor. The system will

wait on this close attempt until all accesses to this object are closed. Therefore, if the exit program uses

givedescriptor()—Pass Descriptor Access to Another Job and takedescriptor()—Receive Socket Access

from Another Job or sendmsg()—Send Data or Descriptors or Both and recvmsg()—Receive Data or

Descriptors or Both to pass the descriptor to another job, the job which used takedescriptor() or

recvmsg() must close that descriptor when it is done processing, else the system will be waiting for

that close.

v dup()—Duplicate Open File Descriptor and fcntl()—Perform File Control Command with F_DUPFD

cannot be used to duplicate the scan descriptor. This is so the system has tight control of the closing of

this scan descriptor.

v Data read using this descriptor will be in the From CCSID format. If any data is written using this

descriptor, it must be in the From CCSID format. For more information on CCSIDs see “Coded

Character Set Identifier (CCSID) Information” on page 129 in “Integrated File System Scan on Open

Exit Program” on page 121.

v It will be a different descriptor than was specified on the close request.

v The oflags for this descriptor are what are passed on this interface.

116 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

open.htm
mmap.htm
close.htm
gvsoc.htm
tksoc.htm
tksoc.htm
sendms.htm
recvms.htm
recvms.htm
dup.htm
fcntl.htm

v It is scoped to the process. However, one can use givedescriptor() and takedescriptor() or sendmsg()

and recvmsg() to pass this descriptor to another job or process. Again, that process must complete its

use of that descriptor before control is returned to the system from the exit program because the

system will close the descriptor when exit program processing is complete. The system will wait on

this close attempt until all accesses to this object are closed.

v No other threads in the process, other than those created by the exit program, will be able to access

this descriptor.

v It only lives for the life of the exit program invocation. That is, once control is returned from the exit

program, it will be destroyed. Therefore, it cannot be stored for later use.

Scan key. The scan key associated with this exit program. The first character of this scan key can not be

hex zeros or a blank. For more information on the scan key, see “Scan Key List and Scan Key Signatures”

on page 128 in “Integrated File System Scan on Open Exit Program” on page 121.

Scan key signature. The scan key signature associated with the specified scan key. For more information

on the scan key signature, see “Scan Key List and Scan Key Signatures” on page 128 in “Integrated File

System Scan on Open Exit Program” on page 121. If the specified scan key already exists in the scan key

list, and the exit program is being added to replace an existing exit program entry, then the specified scan

key signature must match the scan key signature associated with the scan key in the scan key list. If the

specified scan key already exists in the scan key list, and the exit program is not being added to replace

an existing exit program entry, then the specified scan key signature must match the scan key signature

associated with the scan key in the scan key list unless the scan key signature associated with the scan

key in the scan key list is all hex zeros. More than one exit program, including exit programs associated

with the “Integrated File System Scan on Open Exit Program” on page 121, can have the same scan key

signature.

Scan signatures different. Whether the exit program was called because the object’s current scan key

signature is different than the appropriate associated signature. When an object is in an independent ASP

group, the object scan signature is compared to the associated independent ASP group scan signature.

When an object is not in an independent ASP group, the object scan signature is compared to the global

scan signature. The possible values are:

 QP0L_SCAN_NO (x’00’) The compared signatures are not different.

QP0L_SCAN_YES (x’01’) The compared signatures are different.

Scan status. The status of the scan processing. This field is only used if the Update object scan information

field value specifies a value of QP0L_SCAN_YES. The possible values are:

 QP0L_SCAN_SUCCESS (x’01’) The object was scanned and has no failures. If this indicator is

returned by all exit programs that were called, the object will be

marked as scan successful, and the close operation completes with no

errors.

QP0L_SCAN_FAILURE (x’02’) The object was scanned and has at least one failure. If this indicator

is returned by at least one of the exit programs that was called, the

object will be marked as scan failure, and the close operation fails.

Additionally, only the CCSID or binary indication related to this

failing request will be kept in the object scan information, and the

rest of the historical CCSID or binary information will be cleared.

Once an object has been marked as a failure under this condition, it

will not be scanned again until the object’s scan signature is different

than the global scan key signature or independent ASP group scan

key signature as appropriate. Therefore, subsequent requests to work

with the object will fail with a scan failure indication. Examples of

requests which will fail are opening the object, changing the CCSID

of the object, copying the object etc..

Interprocess Communication (IPC) APIs 117

gvsoc.htm
tksoc.htm
sendms.htm
recvms.htm

QP0L_SCAN_FAIL_WANT_MODIFY (x’03’) The object was scanned and has at least one failure. However, the

exit program wanted to modify the file to correct the failure, but

could not because it did not have write access. If this indicator is

returned by at least one of the exit programs that was called, the

object will be marked as scan failure, and the close operation fails.

Additionally, only the CCSID or binary indication related to this

failing request will be kept in the object scan information, and the

rest of the historical CCSID or binary information will be cleared.

Once an object has been marked as a failure under this condition, it

will not be scanned again until the object’s scan signature is different

than the global scan key signature or independent ASP group scan

key signature as appropriate, or if a subsequent access would allow

write access to be given to the exit program. Therefore, subsequent

requests to work with the object will fail with a scan failure

indication. Examples of requests which will fail are opening the

object, changing the CCSID of the object, copying the object etc..

QP0L_SCAN_MODIFY (x’04’) The object was scanned, one or more failures were found, but the

object was modified to remove the failures. If this indicator is

returned by at least one of the exit programs that was called, then

any exit programs which have previously been called will be called

one more time so that they can scan the modified object information.

This second call is indicated by an Additional call field value. If after

this additional call, no failures are found, the object will be marked

as scan successful, and the close operation completes with no errors.

If a value other than the possible values is specified, the object will be treated as if the program was not

called and the object was not scanned. Therefore, the close operation will continue unless the Scan file

systems control (QSCANFSCTL) system value has *ERRFAIL specified which will cause the operation to

fail. If the Scan file systems control (QSCANFSCTL) system value has *NOFAILCLO specified, the close

operation will not return any failure indication. If *NOFAILCLO is not specified, the close operation will

fail with error code [ESCANFAILURE].

To CCSID. The CCSID value that was specified on the open request associated with this close request.

Therefore, this will be the CCSID in which data was returned (when the user was reading from the

object), or the CCSID in which data was be supplied (when the user was writing to the object). Therefore,

the exit program should be converting the data to this CCSID since this is how the data was presented to

the user after their open request completed. For more information on CCSIDs and conversions, see

“Coded Character Set Identifier (CCSID) Information” on page 129 in “Integrated File System Scan on

Open Exit Program” on page 121.

Note: If the To CCSID and From CCSID values match, it is the same as if the object was opened in binary.

Update object scan information. Whether the scan information associated with the object should be

updated or not. The object scan information includes the following:

v Scan status for the object.

v Scan signature associated with the object scan status.

v The To CCSID value of the object which was scanned or if the object was scanned in binary.

Note: Actually, the last two To CCSID values which have been scanned will be maintained as well as a

separate indication of binary scans.

The possible values are:

 QP0L_SCAN_NO (x’00’) The object scan information should not be updated. This might be

used when the object was not actually scanned by the exit program,

perhaps because it did not need to be, or perhaps because a deferred

scan was initiated.

118 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

QP0L_SCAN_YES (x’01’) The object scan information should be updated. When this value is

set, then the values in the Scan status field and Failing CCSID are

used. If at least one exit program specified this value, then the object

scan information will be updated.

If a value other than the possible values is specified, a value of QP0L_SCAN_NO is assumed.

User profile. The exit program will be called under this user profile. Therefore, this user profile should

have *USE authority to the exit program, and *EXECUTE authority to the exit program library. If the user

profile is not valid or accessible at the time the exit program is called, the object will be treated as if the

program was not called and the object was not scanned. Therefore, the close operation will continue

unless the Scan file systems control (QSCANFSCTL) system value has *ERRFAIL specified which will

cause the operation to fail. If the Scan file systems control (QSCANFSCTL) system value has

*NOFAILCLO specified, the close operation will not return any failure indication. If *NOFAILCLO is not

specified, the close operation will fail with error code [ESCANFAILURE]. The first character of the user

profile can not be hex zeros or a blank.

Note: The system will not do any additional verification that this specified profile has authority to the

object for which the exit program is being called when that exit program is being called, even when the

access levels for the object are upgraded to include write. By registering this exit program, you are

indicating this is acceptable.

Usage Notes

1. When the exit program is executing (including any created threads), if it does any operations on other

objects which might normally trigger another call to a scan-related exit program, the scan-related exit

program will not be called, and it will be treated as if no scanning occurred for the object. For

example, if the exit program opens a separate object, that object will not be scanned as part of that

open request, even if an exit program is registered to the QIBM_QP0L_SCAN_OPEN exit point. If

however, that object has previously failed a scan, then the operation will fail with error code

[ESCANFAILURE].
2. When the exit program is executing (including any created threads), if it does any opens of other

objects, then the descriptors which will be returned will come from the same table of descriptors that

the Scan descriptor is derived from. Therefore, customer application code will not be impacted by

’regular’ descriptors being used and possibly reaching an application specified limit on the number of

descriptors which can be used. Additionally, the exit program will not be able to use any of the

’regular’ descriptors when it or any of its created threads are executing. That is, it will not be able to

access any objects which have been opened outside the scope of the exit program execution. Any

attempts to do so will fail with error code [EBADF].
3. When the following APIs are called from the thread executing the exit program and any of its created

threads, the table of Scan descriptors, will not be inherited by the spawned process.

v spawn()—Spawn Process

v spawnp()—Spawn Process with Path

Therefore, when the following APIs are called from the thread executing the exit program and any of

its created threads, the descriptors returned by these APIs will only work within the same process.

v pipe()—Create Interprocess Channel

v Qp0zPipe()—Create Interprocess Channel with Sockets()

v socketpair()—Create a Pair of Sockets
4. When the exit programs are executing (including any created threads), signals are blocked from being

delivered to a thread. When a signal is blocked, the signal-handling action associated with the signal

is not taken. The signal remains pending until all exit programs have completed execution. For more

information, see Signal concepts.
5. When the following APIs are called from the thread executing the exit program and any of its created

threads, they will fail with the listed error code.

Interprocess Communication (IPC) APIs 119

spawn.htm
spawnp.htm
pipe2.htm
pipe.htm
socketp.htm
unix5a2.htm#SIGCONCEPTS

v DosSetFileLocks()—Lock and Unlock a Byte Range of an Open File— [ENOTSUP]

v DosSetFileLocks64()—Lock and Unlock a Byte Range of an Open File (Large File Enabled)—

[ENOTSUP]

v fcntl()—Perform File Control Command with F_SETLK, F_SETLK64, F_SETLKW or F_SETLKW64

— [ENOTSUP]

v DosSetRelMaxFH()—Change maximum number of file descriptors — [ERROR_GEN_FAILURE]

v dup2()—Duplicate Open File Descriptor to Another Descriptor — [ENOTSUP]

v takedescriptor()—Receive Socket Access from Another Job — [ENOTSUP]
6. Unpredictable results will occur if the select()—Wait for events on multiple sockets API and any of its

associated type and macro definitions are used in the thread executing the exit program and any of its

created threads. Therefore, these interfaces should not be used under these conditions.
7. It is recommended that the exit program use the large-file enabled APIs such as lseek64()—Set File

Read/Write Offset (Large File Enabled) to work with the scan descriptor as these APIs will work with

any size object.
8. If Kerberos is configured on the system, then the thread executing the exit program and any of its

created threads will not be able to access objects in any file systems which use Kerberos for

authentication. If they do, the operation will fail with error code [ENOTSUP]. E.g. the exit program

cannot access objects in the QFileSvr.400 file system when Kerberos is configured.

9. The exit program should not call the open or close API interfaces on the object represented by the

scan descriptor. If this is done from the thread executing the exit program, then [EDEADLK] will be

returned. If the object is opened or closed from any other process or thread, that process or thread

will wait until this invocation’s scan is completed.

Related Information

v The <qp0lscan.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v Change Scan Signature (QP0LCHSG) API

v “Integrated File System Scan on Open Exit Program” on page 121

v Qp0lGetAttr()—Get Attributes.

v Qp0lSetAttr()—Set Attributes.

v Retrieve Scan Signature (QP0LRTSG) API

v Retrieve System Values (QWCRSVAL) API

Exit program introduced: V5R3

 Top | Integrated File System APIs | APIs by category

120 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

dossfllk.htm
dossfl64.htm
fcntl.htm
dossrmfh.htm
dup2.htm
tksoc.htm
sselect.htm
lseek64.htm
lseek64.htm
chgscansgn.htm
qgetattr.htm
qsetattr.htm
rtvscansgn.htm
qwcrsval.htm
#TOP_OF_PAGE
unix2.htm
aplist.htm

Integrated File System Scan on Open Exit Program

 Required Parameter Group:

1 Integrated file system open exit information

Input Char(*)

2 Status information

Output Char(*)
 QSYSINC Member Name: QP0LSCAN

 Exit Point Name: QIBM_QP0L_SCAN_OPEN

 Exit Point Format Name: SCOP0100

The integrated file system scan on open exit program is called to do scan processing when an integrated

file system object is opened under the following conditions.

The exit program will not be called if:

v No exit programs exist for this exit point.

v -or- the Scan file systems (QSCANFS) system value has *NONE specified so that no file systems will be

scanned.

v -or- the object was marked to not be scanned and a scan is not required because the object was

restored.

v -or- the object is being opened for write access only.

v -or- the object is being truncated as part of the open request.

v -or- the object is the storage which was allocated for Integrated xSeries servers to use as virtual disk

drives for the xSeries servers. From the perspective of the iSeries server, virtual drives appear as byte

stream files within the integrated file system.

v -or- the object is not being accessed from a file server, and the Scan file systems control

(QSCANFSCTL) system value has *FSVRONLY specified so that only file server accesses are scanned.

v -or- the object is in a *TYPE1 directory.

If the previous conditions have been met, the exit program will be called if:

v The object has never been scanned.

v -or- the object’s data has been modified since the last time it was scanned. Data modifications include

writes, memory map writes, truncates or clears.

v -or- the CCSID of the object has been modified since the last time it was scanned.

v -or- the To CCSID specified on the open request is different than the last two To CCSIDs that were

specified and previously scanned for this object.

v -or- the object is being opened in binary, and it has not previously been scanned in binary.

v -or- there have been updates to the scanning software and the object was not marked to be scanned

only if the object changed. Updates to scanning software occur by either registering additional exit

programs for the scan-related exit points, or by calling Change Scan Signature (QP0LCHSG) API to

update the scan key signature associated with existing exit program scan keys.

For more information on open processing, as well as CCSID values, see open()—Open File. For more

information on the scan-related attributes which can be set for objects, see Qp0lSetAttr()—Set Attributes.

Interprocess Communication (IPC) APIs 121

chgscansgn.htm
open.htm
qsetattr.htm

For more information on the integrated file system scan processing and various options, see the

Integrated file system information in the Files and file systems topic

The exit point supports a maximum of 50 exit programs. For information about adding an exit program

to an exit point, see the Registration Facility.

Note: If the integrated file system exit program returns any error messages or if any errors are received

when attempting to call the exit program, the object will be treated as if the program was not called and

the object was not scanned. Therefore, the open operation will continue unless the Scan file systems

control (QSCANFSCTL) system value has *ERRFAIL specified which will cause the operation to fail.

Restrictions

v Only objects of type *STMF that are in *TYPE2 directories in the ″root″ (/), QOpenSys, and

user-defined file systems are scanned. For information on *TYPE2 directories, see the Convert

Directory(CVTDIR) command and the Integrated file system information in the Files and file systems

topic.

v The exit programs will not be called during an IPL or the vary-on of an independent Auxiliary Storage

Pool (ASP).

v During the call to the exit programs, the ASP group associated with the thread will not be able to be

changed.

v The exit programs must exist in the system ASP or in a basic user ASP. They cannot exist in an

independent ASP. Any ASP group could be associated with the thread when the exit program is called.

If the exit program is not found, the object will be treated as if the program was not called and the

object was not scanned. Therefore, the open operation will continue unless the Scan file systems control

(QSCANFSCTL) system value has *ERRFAIL specified which will cause the operation to fail.

v The exit programs could be called from an exit point within a multi-threaded job and must be written

to be threadsafe.

Authorities and Locks

User Profile Authority

*ALLOBJ (all object) and *SECADM (security administrator) special authorities to add exit

programs to the registration facility

 *ALLOBJ and *SECADM special authorities to remove exit programs from the registration facility

Program Data

When you register the exit program, the following program data must be provided. The following table

shows the structure of the program data information. For a description of the fields in this format, see

“Field Descriptions” on page 124. This structure is defined in header file qp0lscan.h as data type

Qp0l_Scan_Program_Data_t.

 Offset

Type Field Dec Hex

0 0 Char(10) User profile

10 A Char(20) Scan key

30 1E Char(12) Scan key signature

Required Parameter Group

Integrated file system open exit information

INPUT; CHAR(*)

122 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

reg1.htm

Information that is needed by the exit program to do its object scan processing. For details, see

“Format of Integrated File System Open Exit Information (Input).”

Status information

OUTPUT; CHAR(*)

 Information that is returned by the exit program indicating what scan processing has occurred.

For details, see “Format of Status Information (Output).”

Format of Integrated File System Open Exit Information (Input)

The following table shows the structure of the integrated file system open exit information for exit point

format SCOP0100. For a description of the fields in this format, see “Field Descriptions” on page 124.

This structure is defined in header file qp0lscan.h as data type Qp0l_Scan_Exit_Information_t.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Integrated file system open exit information length

4 4 CHAR(20) Exit point name

24 18 CHAR(8) Exit point format name

32 20 BINARY(4) Length of status information

36 24 BINARY(4) Scan descriptor

40 28 BINARY(4), UNSIGNED From CCSID

44 2C BINARY(4), UNSIGNED To CCSID

48 30 BINARY(4), UNSIGNED Last failure CCSID

52 34 BINARY(4) Oflags

56 38 CHAR(16) File ID

72 48 CHAR(10) Object type

82 52 CHAR(1) File system

83 53 CHAR(1) Additional call

84 54 CHAR(1) Object modified since last scan

85 55 CHAR(1) Scan signatures different

86 56 CHAR(1) Call after previous failure

Format of Status Information (Output)

The following table shows the structure of the status information. For a description of the fields in this

format, see “Field Descriptions” on page 124. This structure is defined in header file qp0lscan.h as data

type Qp0l_Scan_Status_Information_t.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Open scan status information length

4 4 BINARY(4), UNSIGNED Failing CCSID

8 8 CHAR(1) Update object scan information

9 9 CHAR(1) Scan status

Interprocess Communication (IPC) APIs 123

Field Descriptions

Additional call. Whether the exit program was called an additional time because another “Integrated File

System Scan on Open Exit Program” on page 121 that was called has indicated the object was modified.

See the scan status field for this modify indication. The possible values are:

 QP0L_SCAN_CALL_FIRST (x’00’) The first call to the exit program.

QP0L_SCAN_CALL_ADDL (x’01’) An additional call to the exit program because another exit program

has indicated the object was modified.

Call after previous failure. Whether the exit program was called after the object had previously been

scanned and a failure detected. The possible values are:

 QP0L_SCAN_NO (x’00’) This is not a call after a previous scan failure.

QP0L_SCAN_YES (x’01’) This is a call after a previous scan failure. The Last failure CCSID field

in conjunction with the From CCSID indicate the CCSID or binary

indication of the failing scan request.

Note: If the Failing CCSID and From CCSID values match, it is the

same as if the object would have been opened in binary.

Exit point format name. The format name for the integrated file system scan on open exit program. The

possible format name follows:

 SCOP0100 The format name that is used while an object is being opened.

Exit point name. The name of the exit point that is calling the exit program.

Failing CCSID. This field only has meaning if the Call after previous failure field had a value of

QP0L_SCAN_YES when the exit program was called, and if the Update object scan information field has a

value of QP0L_SCAN_YES, and if the Scan status field has a value of QP0L_SCAN_FAILURE or

QP0L_SCAN_FAIL_WANT_MODIFY. When the Call after previous failure had a value of QP0L_SCAN_YES,

then the scan exit program should verify that the object does not have any problems when scanned using

both the To CCSID and Last failure CCSID values. If either scan fails, then this field should be filled in

with the failing CCSID which will be stored as part of the object scan information with the failure

indication. If the value of this field does not match either of the two input CCSID fields, then the To

CCSID value will be used. If more than one exit program indicates a failure, the failing CCSID value

which will be preserved is from the last exit program which scanned the object and indicated a failure.

For more information on CCSIDs and conversions, see “Coded Character Set Identifier (CCSID)

Information” on page 129.

Note: If the Failing CCSID and From CCSID values match, it is the same as if the object would have been

opened in binary.

File ID. A unique identifier associated with the object that is being opened. A file ID can be used with

Qp0lGetPathFromFileID()—Get Path Name of Object from Its File ID, to retrieve an object’s path name.

File system. The file system that the object being scanned is in. The possible value follows:

 QP0L_SCAN_ROOT_QOPENSYS_UDFS The object is in the ″root″ (/), QOpenSys, or a user-defined file

system.

From CCSID. The CCSID value that the data is in on the system itself. Therefore, this will be the CCSID

in which data is to be returned (when reading from the object using the Scan descriptor), or the CCSID in

124 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

getpthff.htm

which data is being supplied (when writing to the object using the Scan descriptor). For more information

on CCSIDs and conversions, see “Coded Character Set Identifier (CCSID) Information” on page 129.

Integrated file system open exit information length. The length in bytes of all data passed to the

integrated file system open exit program.

Last failure CCSID. The CCSID value that was specified when this object was last scanned and indicated

a scan failure. This field only has meaning if the Call after previous failure field has a value of

QP0L_SCAN_YES. Therefore, this would have been the CCSID in which data was to have been returned

(when the user was to be reading from the object), or the CCSID in which data was to have been

supplied (when the user was to be writing to the object). However, that request failed for this CCSID.

This is now being returned so that this CCSID can also be scanned, if it is different than the To CCSID

value. For more information on CCSIDs and conversions, see “Coded Character Set Identifier (CCSID)

Information” on page 129.

Note: If the Last failure CCSID and From CCSID values match, it is the same as if the object would have

been opened in binary.

Length of status information. The length in bytes allocated for the returned status information.

Object modified since last scan. Whether the exit program was called because the objects data or CCSID

has been modified since it was last scanned. Examples of object data or CCSID modifications are: writing

to the object, directly or through memory mapping; truncating the object; clearing the object; and

changing the objects CCSID attribute, etc.. The possible values are:

 QP0L_SCAN_NO (x’00’) The object has not been modified since it was last scanned.

QP0L_SCAN_YES (x’01’) The object has been modified since it was last scanned.

Object type. The object type. See Control Language (CL) information in the iSeries Information Center for

descriptions of all iSeries object types.

Oflags. The oflags that were specified on the open request with the following exceptions. For a

description of all possible oflag values, see open()—Open a File.

v If the oflags do not contain write access, the system will attempt to upgrade the access intent to

include write, unless the Scan file systems control (QSCANFSCTL) system value has *NOWRTUPG

specified or the object is not eligible for write access. If the upgrade is not attempted or is unsuccessful,

the access intent matches the users invocation. If it is successful, the write access intent is included in

this oflag information. This upgrade would be useful if the exit program wanted to modify the object

to correct any problems found while scanning.

v The CCSID related flags will have been removed. This includes O_TEXTDATA, O_CCSID,

O_CODEPAGE, and O_TEXT_CREATE.

v The synchronization flags will have been removed. This includes O_SYNC, O_DSYNC, and O_RSYNC.

Open scan status information length. The length in bytes of all data returned from the integrated file

system open exit program. The only valid value for this field is 10. If anything else is specified, the object

will be treated as if the program was not called and the object was not scanned. Therefore, the open

operation will continue unless the Scan file systems control (QSCANFSCTL) system value has *ERRFAIL

specified which will cause the operation to fail.

Scan descriptor. A descriptor representing the object that is being opened. This scan descriptor has the

following characteristics:

v It can be used to do any read processing on the object being processed. Reads using this descriptor will

not update the last access timestamp information for the object.

Interprocess Communication (IPC) APIs 125

open.htm

v It can be used to do any write processing on the object being processed. If write processing is done by

the exit program, the exit program should indicate QP0L_SCAN_MODIFY in the Scan status field. If it

does not, the object’s scan information will be cleared as if the objects data has been modified.

v It cannot be used to memory map the object, see mmap()—Memory Map a File.

v It cannot be used to close the object using close()—Close File or Socket Descriptor. When control

returns from the exit program, the system code will do the close of this scan descriptor. The system will

wait on this close attempt until all accesses to this object are closed. Therefore, if the exit program uses

givedescriptor()—Pass Descriptor Access to Another Job and takedescriptor()—Receive Socket Access

from Another Job or sendmsg()—Send Data or Descriptors or Both and recvmsg()—Receive Data or

Descriptors or Both to pass the descriptor to another job, the job which used takedescriptor() or

recvmsg() must close that descriptor when it is done processing, else the system will be waiting for

that close.

v dup()—Duplicate Open File Descriptor and fcntl()—Perform File Control Command with F_DUPFD

cannot be used to duplicate the scan descriptor. This is so the system has tight control of the closing of

this scan descriptor.

v Data read using this descriptor will be in the From CCSID format. If any data is written using this

descriptor, it must be in the From CCSID format. For more information on CCSIDs see “Coded

Character Set Identifier (CCSID) Information” on page 129.

v It will be a different descriptor than will actually be returned to the user, if the open is ultimately

successful.

v The oflags for this descriptor are what are passed on this interface.

v It is scoped to the process. However, one can use givedescriptor() and takedescriptor() or sendmsg()

and recvmsg() to pass this descriptor to another job or process. Again, that process must complete its

use of that descriptor before control is returned to the system from the exit program because the

system will close the descriptor when exit program processing is complete. The system will wait on

this close attempt until all accesses to this object are closed.

v No other threads in the process, other than those created by the exit program, will be able to access

this descriptor.

v It only lives for the life of the exit program invocation. That is, once control is returned from the exit

program, it will be destroyed. Therefore, it cannot be stored for later use.

Scan key. The scan key associated with this exit program. The first character of this scan key can not be

hex zeros or a blank. For more information on the scan key, see “Scan Key List and Scan Key Signatures”

on page 128

Scan key signature. The scan key signature associated with the specified scan key. For more information

on the scan key signature, see “Scan Key List and Scan Key Signatures” on page 128. If the specified scan

key already exists in the scan key list, and the exit program is being added to replace an existing exit

program entry, then the specified scan key signature must match the scan key signature associated with the

scan key in the scan key list. If the specified scan key already exists in the scan key list, and the exit

program is not being added to replace an existing exit program entry, then the specified scan key signature

must match the scan key signature associated with the scan key in the scan key list unless the scan key

signature associated with the scan key in the scan key list is all hex zeros. More than one exit program,

including exit programs associated with the “Integrated File System Scan on Close Exit Program” on page

111, can have the same scan key signature.

Scan signatures different. Whether the exit program was called because the object’s current scan key

signature is different than the appropriate associated signature. When an object is in an independent ASP

group, the object scan signature is compared to the associated independent ASP group scan signature.

When an object is not in an independent ASP group, the object scan signature is compared to the global

scan signature. The possible values are:

 QP0L_SCAN_NO (x’00’) The compared signatures are not different.

QP0L_SCAN_YES (x’01’) The compared signatures are different.

126 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

mmap.htm
close.htm
gvsoc.htm
tksoc.htm
tksoc.htm
sendms.htm
recvms.htm
recvms.htm
dup.htm
fcntl.htm
gvsoc.htm
tksoc.htm
sendms.htm
recvms.htm

Scan status. The status of the scan processing. This field is only used if the Update object scan information

field value specifies a value of QP0L_SCAN_YES. The possible values are:

 QP0L_SCAN_SUCCESS (x’01’) The object was scanned and has no failures. If this indicator is

returned by all exit programs that were called, the object will be

marked as scan successful, and the open operation completes with no

errors.

QP0L_SCAN_FAILURE (x’02’) The object was scanned and has at least one failure. If this indicator

is returned by at least one of the exit programs that was called, the

object will be marked as scan failure, and the open operation fails.

Additionally, only the CCSID or binary indication related to this

failing request will be kept in the object scan information, and the

rest of the historical CCSID or binary information will be cleared.

Once an object has been marked as a failure under this condition, it

will not be scanned again until the object’s scan signature is different

than the global scan key signature or independent ASP group scan

key signature as appropriate. Therefore, subsequent requests to work

with the object will fail with a scan failure indication. Examples of

requests which will fail are opening the object, changing the CCSID

of the object, copying the object etc..

QP0L_SCAN_FAIL_WANT_MODIFY (x’03’) The object was scanned and has at least one failure. However, the

exit program wanted to modify the file to correct the failure, but

could not because it did not have write access. If this indicator is

returned by at least one of the exit programs that was called, the

object will be marked as scan failure, and the open operation fails.

Additionally, only the CCSID or binary indication related to this

failing request will be kept in the object scan information, and the

rest of the historical CCSID or binary information will be cleared.

Once an object has been marked as a failure under this condition, it

will not be scanned again until the object’s scan signature is different

than the global scan key signature or independent ASP group scan

key signature as appropriate, or if a subsequent access would allow

write access to be given to the exit program. Therefore, subsequent

requests to work with the object will fail with a scan failure

indication. Examples of requests which will fail are opening the

object, changing the CCSID of the object, copying the object etc..

QP0L_SCAN_MODIFY (x’04’) The object was scanned, one or more failures were found, but the

object was modified to remove the failures. If this indicator is

returned by at least one of the exit programs that was called, then

any exit programs which have previously been called will be called

one more time so that they can scan the modified object information.

This second call is indicated by an Additional call field value. If after

this additional call, no failures are found, the object will be marked

as scan successful, and the open operation completes with no errors.

If a value other than the possible values is specified, the object will be treated as if the program was not

called and the object was not scanned. Therefore, the open operation will continue unless the Scan file

systems control (QSCANFSCTL) system value has *ERRFAIL specified which will cause the operation to

fail.

To CCSID. The CCSID value that was specified on the open request. Therefore, this will be the CCSID in

which data will be returned (when the user will be reading from the object), or the CCSID in which data

will be supplied (when the user will be writing to the object). Therefore, the exit program should be

converting the data to this CCSID since this is how the data will be presented to the user if the open

request completes successfully. For more information on CCSIDs and conversions, see “Coded Character

Set Identifier (CCSID) Information” on page 129.

Interprocess Communication (IPC) APIs 127

Note: If the To CCSID and From CCSID values match, it is the same as if the object will be opened in

binary.

Update object scan information. Whether the scan information associated with the object should be

updated or not. The object scan information includes the following:

v Scan status for the object.

v Scan signature associated with the object scan status.

v The To CCSID value of the object which was scanned or if the object was scanned in binary.

Note: Actually, the last two To CCSID values which have been scanned will be maintained as well as a

separate indication of binary scans.

The possible values are:

 QP0L_SCAN_NO (x’00’) The object scan information should not be updated. This might be

used when the object was not actually scanned by the exit program,

perhaps because it did not need to be, or perhaps because a deferred

scan was initiated.

QP0L_SCAN_YES (x’01’) The object scan information should be updated. When this value is

set, then the values in the Scan status field and Failing CCSID are

used. If at least one exit program specified this value, then the object

scan information will be updated.

If a value other than the possible values is specified, a value of QP0L_SCAN_NO is assumed.

User profile. The exit program will be called under this user profile. Therefore, this user profile should

have *USE authority to the exit program, and *EXECUTE authority to the exit program library. If the user

profile is not valid or accessible at the time the exit program is called, the object will be treated as if the

program was not called and the object was not scanned. Therefore, the open operation will continue

unless the Scan file systems control (QSCANFSCTL) system value has *ERRFAIL specified which will

cause the operation to fail. The first character of the user profile can not be hex zeros or a blank.

Note: The system will not do any additional verification that this specified profile has authority to the

object for which the exit program is being called when that exit program is being called, even when the

access levels for the object are upgraded to include write. By registering this exit program, you are

indicating this is acceptable.

Scan Key List and Scan Key Signatures

A list of scan keys and associated scan key signatures will be used to help minimize unnecessary scan calls,

while allowing users to ensure scans occur when needed. The scan key list and scan key signature will

allow an association of scanning software level with the various scan-related exit programs (“Integrated

File System Scan on Close Exit Program” on page 111 and “Integrated File System Scan on Open Exit

Program” on page 121). Updates to this information will allow the system to increment its global scan

signature field to reflect the software updates.

The system will maintain a global scan signature field and independent ASP group scan signature fields.

Each integrated file system object which supports scanning will have an object scan signature field.

The global scan signature indicates the state or level of the scanning software. It will or will not be

modified under the following rules:

v When the scan-related exit programs are added or registered, the user specifies a scan key and a scan

key signature. These values are added to the scan key list. If the scan key has previously been

specified, e.g. for a different exit program registration, then the global scan signature will only be

incremented if the specified scan key signature is not hex zero. If the scan key has not previously been

specified, and the scan key signature is not a hex zero value, the global scan signature will be

incremented.

128 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

v By calling the Change Scan Signature (QP0LCHSG) API to specify that a new scan key signature be

associated with a specific scan key. This will cause the system to update the scan key list and

increment the current global scan signature value.

v When the scan-related exit programs are removed, the user specifies a scan key and a scan key

signature. These values are removed from the scan key list if no other scan-related exit programs are

registered that have that scan key. Removing entries from the scan key list does not update the global

scan signature.

The independent ASP group scan signature indicates the state of the scanning software as well. Since it

moves with the independent ASP group, it represents the state of the scanning code software in

relationship to when and where that independent ASP group was varied on. The independent ASP group

scan key list and independent ASP group scan signature will or will not be modified under the following

rules:

v If the independent ASP group is available and online, the independent ASP group scan key list will be

updated whenever the system scan key list is updated. Any changes to the independent ASP group

scan key list will cause the independent ASP group scan signature to be incremented under the same

rules as to when the global scan signature is updated.

v If the independent ASP group is varied on after any global scan key list changes, then when the first

scannable integrated file system object on the independent ASP group is opened or its scan information

is retrieved, the independent ASP group scan key list will be compared to the global scan key list.

– If the global scan key list has more scan keys or different scan key signatures than the independent

ASP group scan key list has, then the independent ASP group scan list will be updated to match.

Additionally, the independent ASP group scan signature will be incremented.

– If the global scan key list is a proper subset of the scan keys and scan key signatures in the

independent ASP group scan key list, then the independent ASP group scan list will be updated to

match. However, the independent ASP group scan signature will not be incremented. If the global

scan key list exactly matchs the scan keys and scan key signatures in the independent ASP group

scan key list, then no changes are made.

It is highly recommended that the scanning software level of support which is indicated by scan keys and

scan key signatures be maintained the same across all systems in the independent ASP Cluster group. See

Cluster for more information.

When an object in an independent ASP group is about to be scanned or its scan information is retrieved,

the object scan signature will be compared to the associated independent ASP group scan signature.

When an object is not in an independent ASP group, the object scan signature will be compared to the

global scan signature value.

When an object is successfully scanned, the object scan signature will be updated to match the global

scan signature or independent ASP group scan signature when scanning was begun as appropriate. Other

associated fields will be updated as well as described in Update object scan information.

Coded Character Set Identifier (CCSID) Information

The CCSID values presented on this interface have the following meanings and inter-relationships. The

From CCSID represents the value for the data that is stored in the object. Therefore, when discussing

reading and writing in the From CCSID format, it means the data is read or written as is, no conversion

occurs between what is given to or returned by the system, and the data in the object itself. The scan

descriptor that is passed to the exit program is not an open instance which provides CCSID conversion.

But, when the object is ultimately opened, the file descriptor that is returned will include conversion

using the value in To CCSID. If the To CCSID and From CCSID values match, it is the same as if the object

would have been opened in binary. If the object is not being opened in binary, the scan exit program

should do its scanning using the To CCSID value, and can use the appropriate APIs to do the conversion.

If the scan succeeds or fails, then the CCSID which is preserved with the scan status information is the To

CCSID, except for the following case. If the Call after previous failure field has a value of

Interprocess Communication (IPC) APIs 129

chgscansgn.htm
clust1.htm

QP0L_SCAN_YES, and the value in the Last Failure CCSID is different than To CCSID, then the scan exit

program should also scan the object data using the Last Failure CCSID. In this case, if the scan succeeds,

then the CCSID which is preserved with the scan status information is the To CCSID. If the scan fails,

then the CCSID which is preserved with the scan status information is the Failing CCSID.

For more information on CCSIDs and conversions, see open()—Open a File and Globalization topic.

Usage Notes

1. When the exit program is executing (including any created threads), if it does any operations on other

objects which might normally trigger another call to a scan-related exit program, the scan-related exit

program will not be called, and it will be treated as if no scanning occurred for the object. For

example, if the exit program opens a separate object, that object will not be scanned as part of that

open request, even if an exit program is registered to the QIBM_QP0L_SCAN_OPEN exit point. If

however, that object has previously failed a scan, then the operation will fail with error code

[ESCANFAILURE].
2. When the exit program is executing (including any created threads), if it does any opens of other

objects, then the descriptors which will be returned will come from the same table of descriptors that

the Scan descriptor is derived from. Therefore, customer application code will not be impacted by

’regular’ descriptors being used and possibly reaching an application specified limit on the number of

descriptors which can be used.

Additionally, the exit program will not be able to use any of the ’regular’ descriptors when it or any

of its created threads are executing. That is, it will not be able to access any objects which have been

opened outside the scope of the exit program execution. Any attempts to do so will fail with error

code [EBADF].
3. When the following APIs are called from the thread executing the exit program and any of its created

threads, the table of Scan descriptors, will not be inherited by the spawned process.

v spawn()—Spawn Process

v spawnp()—Spawn Process with Path

Therefore, when the following APIs are called from the thread executing the exit program and any of

its created threads, the descriptors returned by these APIs will only work within the same process.

v pipe()—Create Interprocess Channel

v Qp0zPipe()—Create Interprocess Channel with Sockets()

v socketpair()—Create a Pair of Sockets
4. When the exit programs are executing (including any created threads), signals are blocked from being

delivered to a thread. When a signal is blocked, the signal-handling action associated with the signal

is not taken. The signal remains pending until all exit programs have completed execution. For more

information, see Signal concepts.
5. When the following APIs are called from the thread executing the exit program and any of its created

threads, they will fail with the listed error code.

v DosSetFileLocks()—Lock and Unlock a Byte Range of an Open File— [ENOTSUP]

v DosSetFileLocks64()—Lock and Unlock a Byte Range of an Open File (Large File Enabled)—

[ENOTSUP]

v fcntl()—Perform File Control Command with F_SETLK, F_SETLK64, F_SETLKW or F_SETLKW64

— [ENOTSUP]

v DosSetRelMaxFH()—Change maximum number of file descriptors — [ERROR_GEN_FAILURE]

v dup2()—Duplicate Open File Descriptor to Another Descriptor — [ENOTSUP]

v takedescriptor()—Receive Socket Access from Another Job — [ENOTSUP]
6. Unpredictable results will occur if the select()—Wait for events on multiple sockets API and any of its

associated type and macro definitions are used in the thread executing the exit program and any of its

created threads. Therefore, these interfaces should not be used under these conditions.

130 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

open.htm
spawn.htm
spawnp.htm
pipe2.htm
pipe.htm
socketp.htm
unix5a2.htm#SIGCONCEPTS
dossfllk.htm
dossfl64.htm
fcntl.htm
dossrmfh.htm
dup2.htm
tksoc.htm
sselect.htm

7. It is recommended that the exit program use the large-file enabled APIs such as lseek64()—Set File

Read/Write Offset (Large File Enabled) to work with the scan descriptor as these APIs will work with

any size object.

8. If Kerberos is configured on the system, then the thread executing the exit program and any of its

created threads will not be able to access objects in any file systems which use Kerberos for

authentication. If they do, the operation will fail with error code [ENOTSUP]. E.g. the exit program

cannot access objects in the QFileSvr.400 file system when Kerberos is configured.

9. The exit program should not call the open or close API interfaces on the object represented by the

scan descriptor. If this is done from the thread executing the exit program, then [EDEADLK] will be

returned. If the object is opened or closed from any other process or thread, that process or thread

will wait until this invocation’s scan is completed.

Related Information

v The <qp0lscan.h> file (see “Header Files for UNIX-Type Functions” on page 144)

v Change Scan Signature (QP0LCHSG) API

v “Integrated File System Scan on Close Exit Program” on page 111

v Qp0lGetAttr()—Get Attributes.

v Qp0lSetAttr()—Set Attributes.

v Retrieve Scan Signature (QP0LRTSG) API

v Retrieve System Values (QWCRSVAL) API

Exit program introduced: V5R3

 Top | Integrated File System APIs | APIs by category

Process a Path Name Exit Program

 Required Parameter Group:

1 Selection status pointer

Input BINARY(4)

2 Error value pointer

Input BINARY(4)

3 Return value pointer

Output BINARY(4)

4 Object name pointer

Input CHAR(*)

5 Function control block pointer

Input CHAR(*)

The Process a Path Name exit program is a user-specified exit program that is called by the

Qp0lProcessSubtree() function for each object in the API’s search that meets the caller’s selection criteria.

This exit program can be either a procedure or program.

Interprocess Communication (IPC) APIs 131

lseek64.htm
lseek64.htm
chgscansgn.htm
qgetattr.htm
qsetattr.htm
rtvscansgn.htm
qwcrsval.htm
#TOP_OF_PAGE
unix2.htm
aplist.htm

When the user exit program is given control, it can call other APIs, build lists or tables, or do other

processing. Since the API passes the names of all the children objects to the user exit program before

passing the name of the parent, the user exit program can also delete directories.

If the exit program encounters an error during processing, it returns a valid errno in the Return value

pointer field, that Qp0lProcessSubtree() returns to its caller. When its processing is complete, the exit

program return code is set to tell Qp0lProcessSubtree() to do one of the following:

v End processing.

v Continue processing by calling the exit program again with the next object from the same directory.

v Continue processing by calling the exit program again, but not with objects from the same directory. In

this case, Qp0lProcessSubtree() moves to the next directory or object that meets the specified criteria

and calls the exit program with it.

If Qp0lProcessSubtree() encounters any problems in resolving to a user exit program,

Qp0lProcessSubtree() ends and returns to its caller. If Qp0lProcessSubtree() encounters any errors with

any other parameters, it ends and returns control to its caller, after a call to the user exit program. This

call allows the exit program to perform any desired cleanup before Qp0lProcessSubtree() ends. Use the

Err_recovery_action parameter of Qp0lProcessSubtree() to set other conditions for calling or not calling the

user exit program.

Storage referred to by the Selection status pointer, Error value pointer, Return value pointer, or the Object

name pointer when the Process a Path Name exit program is called, are destroyed or reused when

Qp0lProcessSubtree() regains control.

See Qp0lProcessSubtree()—Process a Path Name for more information.

Parameters

Selection status pointer

INPUT; BINARY(4)

 A pointer to an unsigned integer. This pointer indicates whether Qp0lProcessSubtree()

encountered any problems in processing. Valid values follow:

 0 QP0L_SELECT_OK: Indicates to that no problems were encountered during the selection of the

current object. The Error value pointer parameter is set to NULL.

1 QP0L_SELECT_DONE: Indicates that the last object was processed and that this is the last call to

the Process a Path Name exit program. The Object name pointer and the Error value pointer

parameters are set to NULL.

2 QP0L_SELECT_NOT_OK: Indicates that Qp0lProcessSubtree() has encountered an error but that

the Process a Path Name exit program can decide if the operation should continue or end. The

Error value pointer parameter points to a valid errno.

3 QP0L_SELECT_FAILED: Indicates that Qp0lProcessSubtree() has encountered an unrecoverable

error and that Qp0lProcessSubtree() will return to its caller when it regains control. The Error

value pointer parameter points to a valid errno.

Error value pointer

INPUT; BINARY(4)

 A pointer to a valid errno that describes any problems encountered by the API during the

processing of the current object. Any valid errno can be passed in this field when this parameter

is not NULL.

Return value pointer

OUTPUT; BINARY(4)

 A pointer to a value from the Process a Path Name exit program that instructs the API to

continue or to end processing. Valid values follow.

132 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

qprstree.htm

0 Process a Path Name exit program was successful.

-1 Process a Path Name exit program was successful. Qp0lProcessSubtree() should skip processing

any remaining objects in this directory and move on to process objects in other directories.

> 0 (an errno) Process a Path Name exit program was not successful. Qp0lProcessSubtree() ends.

Object name pointer

INPUT; CHAR(*)

 A pointer to the path name structure that contains the fully qualified name of the object being

processed by Qp0lProcessSubtree(). The Path_Type flag defined in the qlg.h header file must be

used to determine whether the Object name pointer contains a pointer or is a character string.

This flag must also be used to determine whether the path name delimiter character is 1 or 2

characters long. Value values follow:

 0 The path name is a character string, and the path name delimiter is 1 character long.

1 The path name is a pointer, and the path name delimiter character is 1 character long.

2 The path name is a character string, and the path name delimiter is 2 characters long.

3 The path name is a pointer, and the path name delimiter character is 2 characters long.

Function control block pointer

INPUT; CHAR(*)

 A pointer to the data that is passed to Qp0lProcessSubtree() on its call. Qp0lProcessSubtree()

does not process the data that is referred to by this pointer, but passes this pointer as a parameter

when it calls the exit program.

 Exit program introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

Save Storage Free Exit Program

 Required Parameter Group:

1 Path name pointers

Input Char(*)

2 Return code pointer

Output Binary(4)

3 Return value pointer

Output Binary(4)

4 Function control block pointer

Input Char(*)

The Save Storage Free exit program is a user-specified program that is called by Qp0lSaveStgFree() to

save an OS/400 object of type *STMF. This exit program can be either a procedure or program.

When the Save Storage Free exit program is given control, it should save the object so it can be

dynamically retrieved at a later time. The *STMF object is locked when the exit program is called to

prevent changes to it until the storage free operation is complete. If the Save Storage Free exit program

Interprocess Communication (IPC) APIs 133

#TOP_OF_PAGE
unix.htm
aplist.htm

ends unsuccessfully, it must return a valid errno in the storage pointed to by the return value pointer.

Qp0lSaveStgFree() then passes this errno to its caller with a minus one return code.

Storage referred to by the path name pointers or the return code pointer when the Save Storage Free exit

program is called is destroyed or reused when Qp0lSaveStgFree() regains control.

Required Parameter Group

Path names pointers

INPUT; CHAR(*)

 All of the path names to the *STMF object being storage freed. There is one path name for each

link to the object. These path names are in the Qlg_Path_Name_T format and are in the UCS-2

CCSID. See Path name format for more information on this format. For information about UCS-2,

see the Globalization topic.

 Path Name Pointers

Offset

Type Field Dec Hex

0 0 BINARY(4) Number of path names

4 4 CHAR(12) Reserved

16 10 ARRAY(*) Array of path name pointers

Array of path name pointers. Pointers to each path name that Qp0lSaveStgFree() found for the

object identified by the path name on the call to Qp0lSaveStgFree(). Each path name is in the

Qlg_Path_Name_T format.

 Number of path names. The total number of path names that Qp0lSaveStgFree() found for the

object identified by the caller of Qp0lSaveStgFree().

 Reserved. A reserved field. This field must be set to binary zero.

Return code pointer

OUTPUT; BINARY(4)

 A pointer to an indicator that is returned to indicate whether the exit program was successful or

whether it failed. Valid values follow:

 0 The Save Storage Free exit program was successful.

-1 The Save Storage Free exit program was not successful. The Return value pointer is set to indicate

the error.

Return value pointer

OUTPUT; BINARY(4)

 A pointer to a valid errno that is returned from the exit program to identify the reason it was not

successful.

Function control block pointer

INPUT; CHAR(*)

 A pointer to the data that is passed to Qp0lSaveStgFree() on its call. Qp0lSaveStgFree() does not

process the data that is referred to by this pointer, but passes this pointer as a parameter when it

calls the exit program.

Related Information

v Qp0lSaveStgFree()—Save Storage Free

134 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

pns.htm
qsavstgf.htm

Exit program introduced: V4R3

 Top | Backup and Recovery APIs | UNIX-Type APIs | APIs by category

Concepts

These are the concepts for this category.

Identifier Based Services

Although each IPC service provides a specific type of interprocess communication, the three identifier

based services share many similarities. Each service defines a mechanism through which its

communications take place. For message queues, that mechanism is a message queue; for semaphore sets,

it is a semaphore set; and for shared memory, it is a shared memory segment. These mechanisms are

identified by a unique positive integer called, respectively, a message queue identifier (msqid), a

semaphore set identifier (semid), and a shared memory identifier (shmid).

Note: Throughout the Interprocess Communication APIs, the term thread is used extensively. This does

not mean that IPC objects can be used only between threads within one process, but rather that

authorization checks and waits occur for the calling thread within a process.

Associated with each identifier is a data structure that contains state information for the IPC mechanism,

as well as ownership and permissions information. The ownership and permissions information is

defined in a structure in the <sys/ipc.h> header file as follows:

typedef struct ipc_perm {

 uid_t uid; /* Owner"s user ID */

 gid_t gid; /* Owner"s group ID */

 uid_t cuid; /* Creator"s user ID */

 gid_t cgid; /* Creator"s group ID */

 mode_t mode; /* Access modes */

} ipc_perm_t;

This structure is similar to a file permissions structure, and is initialized by the thread that creates the

IPC mechanism. It is then checked by all subsequent IPC operations to determine if the requesting thread

has the required permissions to perform the operation.

To get an identifier, a thread must either create a new IPC mechanism or access an existing mechanism.

This is done through the msgget(), semget(), and shmget() functions. Each get operation takes as input a

key parameter and returns an identifier. Each get operation also takes a flag parameter. This flag parameter

contains the IPC permissions for the mechanism as well as bits that determine whether or not a new

mechanism is created. The rules for whether a new mechanism is created or an existing one is referred to

are as follows:

v Specifying a key of IPC_PRIVATE guarantees a new mechanism is created.

v Setting the IPC_CREAT bit in the flag parameter creates a new mechanism for the specified key if one

does not already exist. If an existing mechanism is found, its identifier is returned.

v Setting both IPC_CREAT and IPC_EXCL creates a new mechanism for the specified key only if a

mechanism does not already exist. If an existing mechanism is found, an error is returned.

When a message queue, semaphore set, or shared memory segment is created, the thread that creates it

determines how it can be accessed. The thread does this by passing mode information in the low-order 9

bits of the flag parameter on the msgget(), semget(), or shmget() function call. This information is used to

initialize the mode field in the ipc_perm structure. The values of the bits are given below in hexadecimal

notation:

Interprocess Communication (IPC) APIs 135

#TOP_OF_PAGE
back1.htm
unix.htm
aplist.htm

Bit Meaning

X″0100″ Read by user

X″0080″ Write by user

X″0020″ Read by group

X″0010″ Write by group

X″0004″ Read by others

X″0002″ Write by others

Subsequent IPC operations do a permission test on the calling thread before allowing the thread to

perform the requested operation. This permission test is done in one of three forms:

v For the msgget(), semget(), or shmget() calls that are accessing an existing IPC mechanism, the caller″s

flag parameter is checked to make sure it does not specify access bits that are not in the mode field of

the existing IPC mechanism″s ipc_perm structure. If the flag parameter does not contain any bits that

are not in the mode field, permission is granted.

v For most of the other IPC APIs, the effective user ID and effective group ID of the thread are retrieved,

and these values are compared with the data in the ipc_perm structure as follows:

– If the effective user ID equals either the uid or the cuid field for the IPC mechanism, and if the

appropriate access bit is on in the mode field (either Read by user or Write by user, depending on

the operation being requested), permission is granted.

– If the effective group ID equals either the gid or the cgid field for the IPC mechanism, and if the

appropriate access bit is on in the mode field (either Read by group or Write by group), permission is

granted.

– If none of the above tests are true, and if the appropriate access bit is on for others (either Read by

others or Write by others), permission is granted.
v For the msgctl(), semctl(), or shmctl() APIs, some values of the cmd parameter require the caller to be

the owner or creator of the IPC object, or have appropriate privileges. The values of cmd that this rule

applies to depends on the API. This is shown in the API descriptions for msgctl(), semctl(), and

shmctl().

Message Queues

Message queues provide a form of message passing in which any process (given that it has the necessary

permissions) can read a message from or write a message to any IPC message queue on the system.

There are no requirements that a process be waiting to receive a message from a queue before another

process sends one, or that a message exist on the queue before a process requests to receive one.

Every message on a queue has the following attributes:

v Message type

v Message length (length of data part of message)

v Message data (if length is greater than 0)

A thread gets a message queue identifier by calling the msgget() function. Depending on the key and

msgflg parameters passed in, either a new message queue is created or an existing message queue is

accessed. When a new message queue is created, a data structure is also created to contain information

about the message queue. This structure is defined in the <sys/msg.h> header file as follows:

typedef struct msqid_ds {

 struct ipc_perm msg_perm; /* Operation permission struct */

 msgqnum_t msg_qnum; /* # msgs currently on queue */

 msglen_t msg_qbytes; /* Max # bytes allowed on queue*/

 pid_t msg_lspid; /* Process ID of last msgsnd() */

 pid_t msg_lrpid; /* Process ID of last msgrcv() */

136 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

time_t msg_stime; /* Time of last msgsnd() */

 time_t msg_rtime; /* Time of last msgrcv() */

 time_t msg_ctime; /* Time of last change */

} msqid_ds_t;

A thread puts a message on a message queue by calling the msgsnd() function. The following parameters

are passed in:

v Message queue ID

v Pointer to a buffer containing the message type and message data

v Length of the message

v Flag that specifies whether or not the thread is willing to wait to send the message.

A thread gets a message from a message queue by calling the msgrcv() function. The following

parameters are passed in:

v Message queue ID

v Pointer to a buffer in which to receive the message

v Length of the buffer

v Type of message

v Flag that specifies whether or not the thread is willing to wait and whether or not the thread is willing

to truncate a message to receive it

A thread removes a message queue ID by calling the msgctl() function. The thread also can use the

msgctl() function to change the data structure values associated with the message queue ID or to retrieve

the data structure values associated with the message queue ID. The following parameters are passed in:

v Message queue ID

v Command the thread wants to perform (remove ID, set data structure values, receive data structure

values)

v Pointer to a buffer from which to set data structure values or in which to receive data structure values

Message Queue Differences and Restrictions

OS/400 message queues differ from the message queue definition in the Single UNIX Specification in the

following ways:

v The maximum message size is 65535 bytes.

v The maximum number of bytes on a message queue is 16 777 216.

v The maximum number of message queues that can be created (system-wide) is 2 147 483 646.

 The message queue functions are:

v “ftok()—Generate IPC Key from File Name” on page 3 (Generate IPC Key from File Name) generates

an IPC key based on the combination of path and id.

v “msgctl()—Perform Message Control Operations” on page 8 (Perform Message Control Operations)

provides message control operations as specified by cmd on the message queue specified by msqid.

v “msgget()—Get Message Queue” on page 11 (Get Message Queue) returns the message queue identifier

associated with the parameter key.

v “msgrcv()—Receive Message Operation” on page 15 (Receive Message Operation) reads a message

from the queue associated with the message queue identifier specified by msqid and places it in the

user-defined buffer pointed to by msgp.

v “msgsnd()—Send Message Operation” on page 19 (Send Message Operation) is used to send a message

to the queue associated with the message queue identifier specified by msqid.

v “QlgFtok()—Generate IPC Key from File Name (using NLS-enabled path name)” on page 23 (Generate

IPC Key from File Name (using NLS-enabled path name)) generates an IPC key based on the

combination of path and id.

Interprocess Communication (IPC) APIs 137

Semaphore Sets

A semaphore is a synchronization mechanism similar to a mutex or a machine interface (MI) lock. It can

be used to control access to shared resources, or used to notify other threads of the availability of

resources. It differs from a mutex in the following ways:

v A semaphore set is not a single value, but has a set of values. It is referred to through a semaphore set

containing multiple semaphores. Each semaphore set is identified by a semid, which identifies the

semaphore set, and a semnum, which identifies the semaphore within the set. Multiple semaphore

operations may be specified on one semop() call. These operations are atomic on multiple semaphores

within a semaphore set.
v Semaphore values can range from 0 to 65535.
v Semaphores have permissions associated with them. A thread must have appropriate authorities to

perform an operation on a semaphore.
v A semaphore can have a semaphore adjustment value associated with it. This value represents

resource allocations which can be automatically undone by the system when the thread ends,

representing the releasing of resources. The adjustment value can range from -32767 to 32767.

Thus, a semaphore can be used as a resource counter or as a lock.

A process gets a semaphore set identifier by calling the semget() function. Depending on the key and

semflg parameters passed in, either a new semaphore set is created or an existing semaphore set is

accessed. When a new semaphore set is created, a data structure is also created to contain information

about the semaphore set. This structure is defined in the <sys/sem.h> header file as follows:

typedef struct semid_ds {

 struct ipc_perm sem_perm; /* Permissions structure */

 unsigned short sem_nsems; /* Number of sems in set */

 time_t sem_otime; /* Last sem op time */

 time_t sem_ctime; /* Last change time */

} semtablentry_t;

A thread performs operations on one or more of the semaphores in a set by calling the semop() function.

The following parameters are passed in:

v Semaphore ID

v Pointer to an array of sembuf structures

v Number of sembuf structures in the array.

The sembuf structure is defined in the <sys/sem.h> header file as follows:

struct sembuf {

 unsigned short sem_num; /* Semaphore number */

 short sem_op; /* Semaphore operation */

 short sem_flg; /* Operation flags */

};

The operation performed on a semaphore is specified by the sem_op field, which can be positive, negative,

or zero:

v If sem_op is positive, the value of sem_op is added to the semaphore″s current value.

v If sem_op is zero, the caller will wait until the semaphore″s value becomes zero.

v If sem_op is negative, the caller will wait until the semaphore″s value is greater than or equal to the

absolute value of sem_op. Then the absolute value of sem_op is subtracted from the semaphore″s current

value.

The sem_flg value specifies whether or not the thread is willing to wait, and also whether or not the

thread wants the system to keep a semaphore adjustment value for the semaphore.

138 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Semaphore waits are visible from the Work with Active Jobs display. A thread waiting on a semaphore in

a semaphore set appears to be in a semaphore wait state (SEMW) on the Work with Threads display

(requested using the WRKJOB command and taking option 20). Displaying the call stack of the thread

shows the semop() function near the bottom of the stack.

A thread removes a semaphore set ID by calling the semctl() function. The thread also can use the

semctl() function to change the data structure values associated with the semaphore set ID or to retrieve

the data structure values associated with the semaphore set ID. The following parameters are passed in:

v Semaphore set ID

v Command the thread wants to perform (remove ID, set data structure values, receive data structure

values),

v Pointer to a buffer from which to set data structure values, or in which to receive data structure values.

In addition, the semctl() function can perform various other control operations on a specific semaphore

within a set, or on an entire semaphore set:

v Set or retrieve a semaphore value.

v Retrieve the process ID of the last thread to operate on a semaphore.

v Retrieve the number of threads waiting for a semaphore value to increase.

v Retrieve the number of threads waiting for a semaphore value to become zero.

v Retrieve the value of every semaphore in a semaphore set.

v Set the value of every semaphore in a semaphore set.

Semaphore Set Differences and Restrictions

OS/400 semaphore sets differ from the definition in the Single UNIX Specification in the following ways:

v The Single UNIX Specification does not define threads. Consequently, Single UNIX Specification

semaphores are defined in terms of processes and the semaphore:

– Causes the entire process to wait

– Releases resources when the process ends

OS/400 handles semaphores at the thread level. An OS/400 semaphore:

– Causes only a single thread to wait

– Releases resources when the thread ends
v The maximum number of semaphore sets that can be created (system-wide) is 2 147 483 646.
v The maximum number of semaphores per semaphore set is 65535.
v Semaphores values are limited to the range from 0 to 65535. Adjustment values associated with a

semaphore are limited to the range -32767 to 32767.

The semaphore set functions are:

v “ftok()—Generate IPC Key from File Name” on page 3 (Generate IPC Key from File Name) generates

an IPC key based on the combination of path and id.

v “QlgFtok()—Generate IPC Key from File Name (using NLS-enabled path name)” on page 23 (Generate

IPC Key from File Name (using NLS-enabled path name)) generates an IPC key based on the

combination of path and id.

v “semctl()—Perform Semaphore Control Operations” on page 57 (Perform Semaphore Control

Operations) provides semaphore control operations as specified by cmd on the semaphore specified by

semnum in the semaphore set specified by semid.

v “semget()—Get Semaphore Set with Key” on page 62 (Get Semaphore Set with Key) returns the

semaphore ID associated with the specified semaphore key.

v “semop()—Perform Semaphore Operations on Semaphore Set” on page 65 (Perform Semaphore

Operations on Semaphore Set) performs operations on semaphores in a semaphore set. These

operations are supplied in a user-defined array of operations.

Interprocess Communication (IPC) APIs 139

Shared Memory

Processes and threads can communicate directly with one another by sharing parts of their memory space

and then reading and writing the data stored in the shared memory. Synchronization of shared memory

is the responsibility of the application program. Semaphores and mutexes provide ways to synchronize

shared memory use across processes and threads.

A thread gets a shared memory identifier by calling the shmget() function. Depending on the key and

shmflg parameters passed in, either a new shared memory segment is created or an existing shared

memory segment is accessed. The size of the shared memory segment is specified by the size parameter.

When a new shared memory segment is created, a data structure is also created to contain information

about the shared memory segment. This structure is defined in the <sys/shm.h> header file as follows:

typedef struct shmid_ds {

 struct ipc_perm shm_perm; /* Operation permission struct*/

 int shm_segsz; /* Segment size */

 pid_t shm_lpid; /* Process id of last shmop */

 pid_t shm_cpid; /* Process id of creator */

 int shm_nattch; /* Current # attached */

 time_t shm_atime; /* Last shmat time */

 time_t shm_dtime; /* Last shmdt time */

 time_t shm_ctime; /* Last change time */

} shmtablentry_t;

A process gets addressability to the shared memory segment by attaching to it using the shmat()

function. The following parameters are passed in:

v Shared memory ID

v Pointer to an address

v Flag specifying how the shared memory segment is to be attached

A process detaches a shared memory segment by calling the shmdt() function. The only parameter

passed in is the shared memory segment address. The process implicitly detaches from the shared

memory when the process ends.

A thread removes a shared memory ID by calling the shmctl() function. The thread also can use the

shmctl() function to change the data structure values associated with the shared memory ID or to retrieve

the data structure values associated with the shared memory ID. The following parameters are passed in:

v Shared memory ID

v Command the thread wants to perform (remove ID, set data structure values, receive data structure

values)

v Pointer to a buffer from which to set data structure values, or in which to receive data structure values.

Shared Memory Differences and Restrictions

Shared memory segments are created as teraspace-shared memory segments or as nonteraspace-shared

memory segments. A teraspace shared memory segment is accessed by adding the shared memory

segment to a process″s teraspace. A teraspace is a space that has a much larger capacity than other

OS/400 spaces and is addressable from only one process. A nonteraspace shared memory segment creates

shared memory using OS/400 space objects.

A teraspace shared memory segment is created if SHM_TS_NP is specified on the shmflag parameter of

shmget() or if a shared memory segment is created from a program that was compiled using the

TERASPACE(*YES *TSIFC) option of CRTBNDC or CRTCMOD. The following capabilities and restrictions

apply for teraspace shared memory segments.

v Teraspace shared memory objects may be attached in read-only mode.

140 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

v The address specified by shmaddr is only used when shmat() is called from a program that uses data

model LLP64 and attaches to a teraspace shared memory segment. Otherwise it is not possible to

specify the address in teraspace at which the shared memory is to be mapped. The shmaddr parameter

on the shmat() function is ignored.
v After a teraspace shared memory segment is detached, it cannot be addressed through a pointer saved

by the process.
v The maximum size of a teraspace shared memory segment is 4 294 967 295 bytes (4 GB minus 1).
v The maximum number of shared memory segments that can be created (system-wide) is

2 147 483 646.
v A teraspace shared memory segment may be created such that its size can be changed after it is

created. The maximum size of this type of shared memory segment is 268 435 456 bytes (256 MB).

The OS/400 nonteraspace shared memory differs from the shared memory definition in the Single UNIX

Specification in the following ways:

v The nonteraspace shared memory segments are OS/400 space objects and can be attached only in

read/write mode, not in the read-only mode that the Single UNIX Specification allows. If the

SHM_RDONLY flag is specified in the shmflg parameter on a shmget() call, the call fails and the errno

variable is set to [EOPNOTSUPP].
v A nonteraspace shared memory segment can be attached only at the actual address of the OS/400

space object, not at an address specified by the thread. The shmaddr parameter on the shmat() function

is ignored.
v After a nonteraspace shared memory segment is detached from a process, it still can be addressed

through a pointer saved by the process. For nonteraspace shared memory segments, OS/400 does not

″map″ and ″unmap″ regions of storage to the address space of a process.
v The maximum size of a nonteraspace shared memory segment is 16 776 960 bytes. Although the

maximum size of a shared memory segment is 16 776 960 bytes, shared memory segments larger than

16 773 120 bytes should be created as teraspace shared memory segments. When the operating system

accesses a nonteraspace shared memory segment that has a size larger than 16 773 120 bytes, a

performance degradation may be observed.
v The maximum number of shared memory segments that can be created (system-wide) is

2 147 483 646.
v The size of a nonteraspace shared memory segment may be changed using the SHM_RESIZE

command of shmctl(), up to a maximum size of 16 773 120 bytes.

The shared memory functions are:

v “ftok()—Generate IPC Key from File Name” on page 3 (Generate IPC Key from File Name) generates

an IPC key based on the combination of path and id.

v “QlgFtok()—Generate IPC Key from File Name (using NLS-enabled path name)” on page 23 (Generate

IPC Key from File Name (using NLS-enabled path name)) generates an IPC key based on the

combination of path and id.

v “shmat()—Attach Shared Memory Segment to Current Process” on page 97 (Attach Shared Memory

Segment to Current Process) returns the address of the shared memory segment associated with the

specified shared memory identifier.

v “shmctl()—Perform Shared Memory Control Operations” on page 101 (Perform Shared Memory

Control Operations) provides shared memory control operations as specified by cmd on the shared

memory segment specified by shmid.

v “shmdt()—Detach Shared Memory Segment from Calling Process” on page 104 (Detach Shared

Memory Segment from Calling Process) detaches the shared memory segment specified by shmaddr

from the calling process.

v “shmget()—Get ID of Shared Memory Segment with Key” on page 106 (Get ID of Shared Memory

Segment with Key) returns the shared memory ID associated with the specified shared memory key.

Interprocess Communication (IPC) APIs 141

Top | UNIX-Type APIs | APIs by category

Pointer Based Services

The pointer based services consist of named and unnamed semaphores. The named and unnamed

semaphores on OS/400(R) differ from the other IPC mechanisms in that they do not have an IPC

identifier associated with them. Instead, pointers to the semaphore are used to operate on the semaphore.

Before using a semaphore, a process must obtain a pointer to the semaphore. Unlike a semaphore set, a

named or unnamed semaphore refers to a single semaphore only. A semaphore contains a value, a

maximum value, and a title.

There are two types of semaphores: named semaphores and unnamed semaphores. Once a semaphore is

created and a pointer to the semaphore is obtained, the same operations are used to manipulate the

values of both types of semaphores. Like the semaphores in a semaphore set, a named or unnamed

semaphore has a nonzero value. A semaphore can be used as a resource counter or as a lock. A thread

decrements a semaphore to obtain one or more associated resources, and increments the semaphore to

release the resource. A semaphore also has a maximum value associated with it. An attempt to increment

the value of a semaphore above its maximum value results in an error.

Besides a value, named and unnamed semaphores contain a maximum value and a title. The maximum

value sets the highest value that the semaphore value may obtain. The title is a null-terminated string

with a maximum size of 16 characters that are associated with the semaphore and may be used to contain

debugging information. The titles associated with named and unnamed semaphores may be obtained by

using the QP0ZOLIP() API.

A process obtains a pointer to a named semaphore by calling the sem_open() or sem_open_np()

functions. These functions find the semaphore associated with a name. The name is a character string,

interpreted in the CCSID of the job. The name may be structured so that it looks like a pathname. This

name, however, has no relationship to any file system. If the semaphore exists and the process has

permission to use the semaphore, then the system allocates memory for the semaphore and returns a

pointer to the caller. If the semaphore does not exist, it will be created if the appropriate flags are set.

When a new named semaphore is created, the permissions of the semaphore are set using the

information provided by the mode parameter. These permissions are the same as those used by the

identifier- based IPC services. The sem_open_np() function permits the caller to set the maximum value

and title of a semaphore when creating a named semaphore. When a process is finished using a named

semaphore, it should call sem_close() to close the semaphore. The semaphore is also explicitly closed

when a process terminates. When a named semaphore will no longer be needed, it can be removed from

the system using sem_unlink().

A process obtains a pointer to an unnamed semaphore calling the sem_init() or sem_init_np() functions.

These functions initialize a semaphore at the specified memory location. The sem_init_np() function

permits the caller to set the maximum value and title of a unnamed semaphore when it is created. When

a process is finished using an unnamed semaphore, it should call sem_destroy() to destroy the

semaphore and release system resources associated with that semaphore.

A process decrements by one the value of a semaphore using the sem_wait() and sem_wait_np()

functions. If the value of the semaphore is currently zero, then the thread is blocked until the value of the

semaphore is incremented or until the time specified on the sem_wait_np() has expired. The

sem_trywait() call may be used to decrement the value of the semaphore if it is greater than zero. If the

current value of the semaphore is zero, then sem_trywait() will return an error. The sem_post()and

sem_post_np()functions are used to increment the value of a semaphore. After the value of the

semaphore is incremented, it may be decremented immediately by threads that have blocked trying to

decrement the semaphore.

142 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Named and unnamed semaphore waits are visible from the Work with Active Jobs display. A thread

waiting on a named or unnamed semaphore will be in a semaphore wait state (SEMW).

The sem_getvalue()function returns the value of the semaphore if the value is greater than or equal to

zero. If there are threads waiting on the semaphore, sem_getvalue() returns a negative number whose

absolute value is the number of threads waiting on the semaphore.

For details on the semaphore functions, see the following:

v “QlgSem_open()—Open Named Semaphore (using NLS-enabled path name)” on page 24 (Open

Named Semaphore (using NLS-enabled path name)) opens a named semaphore and returns a

semaphore pointer that may be used on subsequent calls to sem_post(), sem_post_np(), sem_wait(),

sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close().

v “QlgSem_open_np()—Open Named Semaphore with Maximum Value (using NLS-enabled path name)”

on page 26 (Open Named Semaphore with Maximum Value (using NLS-enabled path name)) opens a

named semaphore and returns a semaphore pointer that may be used on subsequent calls to

sem_post(), sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close().

v “QlgSem_unlink()—Unlink Named Semaphore (using NLS-enabled path name)” on page 28 (Unlink

Named Semaphore (using NLS-enabled path name)) unlinks a named semaphore.

v “sem_close()—Close Named Semaphore” on page 69 (Close Named Semaphore) closes a named

semaphore that was previously opened by a thread of the current process using sem_open() or

sem_open_np().

v “sem_destroy()—Destroy Unnamed Semaphore” on page 70 (Destroy Unnamed Semaphore) destroys

an unnamed semaphore that was previously initialized using sem_init() or sem_init_np().

v “sem_getvalue()—Get Semaphore Value” on page 72 (Get Semaphore Value) retrieves the value of a

named or unnamed semaphore.

v “sem_init()—Initialize Unnamed Semaphore” on page 74 (Initialize Unnamed Semaphore) initializes an

unnamed semaphore and sets its initial value.

v “sem_init_np()—Initialize Unnamed Semaphore with Maximum Value” on page 75 (Initialize Unnamed

Semaphore with Maximum Value) initializes an unnamed semaphore and sets its initial value.

v “sem_open()—Open Named Semaphore” on page 78 (Open Named Semaphore) opens a named

semaphore, returning a semaphore pointer that may be used on subsequent calls to sem_post(),

sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(), sem_getvalue(), and sem_close().

v “sem_open_np()—Open Named Semaphore with Maximum Value” on page 81 (Open Named

Semaphore with Maximum Value) opens a named semaphore, returning a semaphore pointer that may

be used on subsequent calls to sem_post(), sem_post_np(), sem_wait(), sem_wait_np(), sem_trywait(),

sem_getvalue(), and sem_close().

v “sem_post()—Post to Semaphore” on page 85 (Post to Semaphore) posts to a semaphore, incrementing

its value by one.

v “sem_post_np()—Post Value to Semaphore” on page 86 (Post Value to Semaphore) posts to a

semaphore, incrementing its value by the increment specified in the options parameter.

v “sem_trywait()—Try to Decrement Semaphore” on page 89 (Try to Decrement Semaphore) attempts to

decrement the value of the semaphore.

v “sem_unlink()—Unlink Named Semaphore” on page 91 (Unlink Named Semaphore) unlinks a named

semaphore.

v “sem_wait()—Wait for Semaphore” on page 93 (Wait for Semaphore) decrements by one the value of

the semaphore.

v “sem_wait_np()—Wait for Semaphore with Timeout” on page 95 (Wait for Semaphore with Timeout)

attempts to decrement by one the value of the semaphore.

 Top | UNIX-Type APIs | APIs by category

Interprocess Communication (IPC) APIs 143

#TOP_OF_PAGE
unix.htm
aplist.htm

Managing IPC Objects

Interprocess communication objects can be managed with the following APIs. The QP0ZOLIP API opens

a list of message queue, shared memory, semaphore set, named semaphore or unnamed semaphore

objects by type, by owner, by creator, or by key. The QP0ZOLSM API opens a list of semaphores in a

semaphore set. Both APIs return a handle that can be used to get list entries with the QGYGTLE API,

find entries by number with the QGYFNDE API, or close the list with the QGYCLST API.

The QP0ZRIPC API retrieves detailed information about message queue, shared memory, or semaphore

set objects. The QP0ZDIPC API deletes message queue, shared memory, or semaphore set objects.

The IPC object management APIs are:

v “Delete Interprocess Communication Objects (QP0ZDIPC) API” on page 30 (Delete Interprocess

Communication Objects) deletes one or more interprocess communication (IPC) objects as specified by

the delete control parameter.

v “Open List of Interprocess Communication Objects (QP0ZOLIP) API” on page 32 (Open List of

Interprocess Communication Objects) lets you generate a list of interprocess communication (IPC)

objects and descriptive information based on the selection parameters.

v “Open List of Semaphores (QP0ZOLSM) API” on page 44 (Open List of Semaphores) lets you generate

a list of description information about the semaphores within a semaphore set.

v “Retrieve an Interprocess Communication Object (QP0ZRIPC) API” on page 47 (Retrieve an

Interprocess Communication Object) lets you generate detailed information about a single interprocess

communication (IPC) object.

 Top | UNIX-Type APIs | APIs by category

Header Files for UNIX-Type Functions

Programs using the UNIX(R)-type functions must include one or more header files that contain

information needed by the functions, such as:

v Macro definitions

v Data type definitions

v Structure definitions

v Function prototypes

The header files are provided in the QSYSINC library, which is optionally installable. Make sure

QSYSINC is on your system before compiling programs that use these header files. For information on

installing the QSYSINC library, see Include files and the QSYSINC Library.

The table below shows the file and member name in the QSYSINC library for each header file used by

the UNIX-type APIs in this publication.

 Name of Header File Name of File in QSYSINC Name of Member

arpa/inet.h ARPA INET

arpa/nameser.h ARPA NAMESER

bse.h H BSE

bsedos.h H BSEDOS

bseerr.h H BSEERR

dirent.h H DIRENT

errno.h H ERRNO

144 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
conQSYSINC.htm

Name of Header File Name of File in QSYSINC Name of Member

fcntl.h H FCNTL

grp.h H GRP

inttypes.h H INTTYPES

limits.h H LIMITS

mman.h H MMAN

netdbh.h H NETDB

netinet/icmp6.h NETINET ICMP6

net/if.h NET IF

netinet/in.h NETINET IN

netinet/ip_icmp.h NETINET IP_ICMP

netinet/ip.h NETINET IP

netinet/ip6.h NETINET IP6

netinet/tcp.h NETINET TCP

netinet/udp.h NETINET UDP

netns/idp.h NETNS IDP

netns/ipx.h NETNS IPX

netns/ns.h NETNS NS

netns/sp.h NETNS SP

net/route.h NET ROUTE

nettel/tel.h NETTEL TEL

os2.h H OS2

os2def.h H OS2DEF

pwd.h H PWD

Qlg.h H QLG

qp0lchsg.h H QP0LCHSG

qp0lflop.h H QP0LFLOP

qp0ljrnl.h H QP0LJRNL

qp0lror.h H QP0LROR

qp0lrro.h H QP0LRRO

qp0lrtsg.h H QP0LRTSG

qp0lscan.h H QP0LSCAN

Qp0lstdi.h H QP0LSTDI

qp0wpid.h H QP0WPID

qp0zdipc.h H QP0ZDIPC

qp0zipc.h H QP0ZIPC

qp0zolip.h H QP0ZOLIP

qp0zolsm.h H QP0ZOLSM

qp0zripc.h H QP0ZRIPC

qp0ztrc.h H QP0ZTRC

qp0ztrml.h H QP0ZTRML

qp0z1170.h H QP0Z1170

Interprocess Communication (IPC) APIs 145

Name of Header File Name of File in QSYSINC Name of Member

qsoasync.h H QSOASYNC

qtnxaapi.h H QTNXAAPI

qtnxadtp.h H QTNXADTP

qtomeapi.h H QTOMEAPI

qtossapi.h H QTOSSAPI

resolv.h H RESOLVE

semaphore.h H SEMAPHORE

signal.h H SIGNAL

spawn.h H SPAWN

ssl.h H SSL

sys/errno.h H ERRNO

sys/ioctl.h SYS IOCTL

sys/ipc.h SYS IPC

sys/layout.h H LAYOUT

sys/limits.h H LIMITS

sys/msg.h SYS MSG

sys/param.h SYS PARAM

sys/resource.h SYS RESOURCE

sys/sem.h SYS SEM

sys/setjmp.h SYS SETJMP

sys/shm.h SYS SHM

sys/signal.h SYS SIGNAL

sys/socket.h SYS SOCKET

sys/stat.h SYS STAT

sys/statvfs.h SYS STATVFS

sys/time.h SYS TIME

sys/types.h SYS TYPES

sys/uio.h SYS UIO

sys/un.h SYS UN

sys/wait.h SYS WAIT

ulimit.h H ULIMIT

unistd.h H UNISTD

utime.h H UTIME

You can display a header file in QSYSINC by using one of the following methods:

v Using your editor. For example, to display the unistd.h header file using the Source Entry Utility

editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(5)

v Using the Display Physical File Member command. For example, to display the sys/stat.h header file,

enter the following command:

146 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

DSPPFM FILE(QSYSINC/SYS) MBR(STAT)

You can print a header file in QSYSINC by using one of the following methods:

v Using your editor. For example, to print the unistd.h header file using the Source Entry Utility editor,

enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(6)

v Using the Copy File command. For example, to print the sys/stat.h header file, enter the following

command:

CPYF FROMFILE(QSYSINC/SYS) TOFILE(*PRINT) FROMMBR(STAT)

Symbolic links to these header files are also provided in directory /QIBM/include.

 Top | UNIX-Type APIs | APIs by category

Errno Values for UNIX-Type Functions

Programs using the UNIX(R)-type functions may receive error information as errno values. The possible

values returned are listed here in ascending errno value sequence.

 Name Value Text

EDOM 3001 A domain error occurred in a math function.

ERANGE 3002 A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or update operation.

ENOTOPEN 3004 File is not open.

ENOTREAD 3005 File is not opened for read operations.

EIO 3006 Input/output error.

ENODEV 3007 No such device.

ERECIO 3008 Cannot get single character for files opened for record I/O.

ENOTWRITE 3009 File is not opened for write operations.

ESTDIN 3010 The stdin stream cannot be opened.

ESTDOUT 3011 The stdout stream cannot be opened.

ESTDERR 3012 The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not correct.

EBADNAME 3014 The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open function is not correct.

EBADPOS 3017 The position specifier is not correct.

ENOPOS 3018 There is no record at the specified position.

ENUMMBRS 3019 Attempted to use ftell on multiple members.

ENUMRECS 3020 The current record position is too long for ftell.

EINVAL 3021 The value specified for the argument is not correct.

EBADFUNC 3022 Function parameter in the signal function is not set.

ENOENT 3025 No such path or directory.

ENOREC 3026 Record is not found.

EPERM 3027 The operation is not permitted.

EBADDATA 3028 Message data is not valid.

EBUSY 3029 Resource busy.

Interprocess Communication (IPC) APIs 147

#TOP_OF_PAGE
unix.htm
aplist.htm

Name Value Text

EBADOPT 3040 Option specified is not valid.

ENOTUPD 3041 File is not opened for update operations.

ENOTDLT 3042 File is not opened for delete operations.

EPAD 3043 The number of characters written is shorter than the expected

record length.

EBADKEYLN 3044 A length that was not valid was specified for the key.

EPUTANDGET 3080 A read operation should not immediately follow a write operation.

EGETANDPUT 3081 A write operation should not immediately follow a read operation.

EIOERROR 3101 A nonrecoverable I/O error occurred.

EIORECERR 3102 A recoverable I/O error occurred.

EACCES 3401 Permission denied.

ENOTDIR 3403 Not a directory.

ENOSPC 3404 No space is available.

EXDEV 3405 Improper link.

EAGAIN 3406 Operation would have caused the process to be suspended.

EWOULDBLOCK 3406 Operation would have caused the process to be suspended.

EINTR 3407 Interrupted function call.

EFAULT 3408 The address used for an argument was not correct.

ETIME 3409 Operation timed out.

ENXIO 3415 No such device or address.

EAPAR 3418 Possible APAR condition or hardware failure.

ERECURSE 3419 Recursive attempt rejected.

EADDRINUSE 3420 Address already in use.

EADDRNOTAVAIL 3421 Address is not available.

EAFNOSUPPORT 3422 The type of socket is not supported in this protocol family.

EALREADY 3423 Operation is already in progress.

ECONNABORTED 3424 Connection ended abnormally.

ECONNREFUSED 3425 A remote host refused an attempted connect operation.

ECONNRESET 3426 A connection with a remote socket was reset by that socket.

EDESTADDRREQ 3427 Operation requires destination address.

EHOSTDOWN 3428 A remote host is not available.

EHOSTUNREACH 3429 A route to the remote host is not available.

EINPROGRESS 3430 Operation in progress.

EISCONN 3431 A connection has already been established.

EMSGSIZE 3432 Message size is out of range.

ENETDOWN 3433 The network currently is not available.

ENETRESET 3434 A socket is connected to a host that is no longer available.

ENETUNREACH 3435 Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the requested operation.

ENOPROTOOPT 3437 The protocol does not support the specified option.

ENOTCONN 3438 Requested operation requires a connection.

148 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Name Value Text

ENOTSOCK 3439 The specified descriptor does not reference a socket.

ENOTSUP 3440 Operation is not supported.

EOPNOTSUPP 3440 Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not supported.

EPROTONOSUPPORT 3442 No protocol of the specified type and domain exists.

EPROTOTYPE 3443 The socket type or protocols are not compatible.

ERCVDERR 3444 An error indication was sent by the peer program.

ESHUTDOWN 3445 Cannot send data after a shutdown.

ESOCKTNOSUPPORT 3446 The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the timeout period.

EUNATCH 3448 The protocol required to support the specified address family is not

available at this time.

EBADF 3450 Descriptor is not valid.

EMFILE 3452 Too many open files for this process.

ENFILE 3453 Too many open files in the system.

EPIPE 3455 Broken pipe.

ECANCEL 3456 Operation cancelled.

EEXIST 3457 File exists.

EDEADLK 3459 Resource deadlock avoided.

ENOMEM 3460 Storage allocation request failed.

EOWNERTERM 3462 The synchronization object no longer exists because the owner is no

longer running.

EDESTROYED 3463 The synchronization object was destroyed, or the object no longer

exists.

ETERM 3464 Operation was terminated.

ENOENT1 3465 No such file or directory.

ENOEQFLOG 3466 Object is already linked to a dead directory.

EEMPTYDIR 3467 Directory is empty.

EMLINK 3468 Maximum link count for a file was exceeded.

ESPIPE 3469 Seek request is not supported for object.

ENOSYS 3470 Function not implemented.

EISDIR 3471 Specified target is a directory.

EROFS 3472 Read-only file system.

EUNKNOWN 3474 Unknown system state.

EITERBAD 3475 Iterator is not valid.

EITERSTE 3476 Iterator is in wrong state for operation.

EHRICLSBAD 3477 HRI class is not valid.

EHRICLBAD 3478 HRI subclass is not valid.

EHRITYPBAD 3479 HRI type is not valid.

ENOTAPPL 3480 Data requested is not applicable.

EHRIREQTYP 3481 HRI request type is not valid.

EHRINAMEBAD 3482 HRI resource name is not valid.

Interprocess Communication (IPC) APIs 149

Name Value Text

EDAMAGE 3484 A damaged object was encountered.

ELOOP 3485 A loop exists in the symbolic links.

ENAMETOOLONG 3486 A path name is too long.

ENOLCK 3487 No locks are available.

ENOTEMPTY 3488 Directory is not empty.

ENOSYSRSC 3489 System resources are not available.

ECONVERT 3490 Conversion error.

E2BIG 3491 Argument list is too long.

EILSEQ 3492 Conversion stopped due to input character that does not belong to

the input codeset.

ETYPE 3493 Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that was not found or was

destroyed.

EBADOBJ 3495 Attempted to reference an object that was not found, was

destroyed, or was damaged.

EIDXINVAL 3496 Data space index used as a directory is not valid.

ESOFTDAMAGE 3497 Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution directory.

EOFFLINE 3499 Object is suspended.

EROOBJ 3500 Object is a read-only object.

EEAHDDSI 3501 Hard damage on extended attribute data space index.

EEASDDSI 3502 Soft damage on extended attribute data space index.

EEAHDDS 3503 Hard damage on extended attribute data space.

EEASDDS 3504 Soft damage on extended attribute data space.

EEADUPRC 3505 Duplicate extended attribute record.

ELOCKED 3506 Area being read from or written to is locked.

EFBIG 3507 Object too large.

EIDRM 3509 The semaphore, shared memory, or message queue identifier is

removed from the system.

ENOMSG 3510 The queue does not contain a message of the desired type and

(msgflg logically ANDed with IPC_NOWAIT).

EFILECVT 3511 File ID conversion of a directory failed.

EBADFID 3512 A file ID could not be assigned when linking an object to a

directory.

ESTALE 3513 File handle was rejected by server.

ESRCH 3515 No such process.

ENOTSIGINIT 3516 Process is not enabled for signals.

ECHILD 3517 No child process.

EBADH 3520 Handle is not valid.

ETOOMANYREFS 3523 The operation would have exceeded the maximum number of

references allowed for a descriptor.

ENOTSAFE 3524 Function is not allowed.

EOVERFLOW 3525 Object is too large to process.

150 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Name Value Text

EJRNDAMAGE 3526 Journal is damaged.

EJRNINACTIVE 3527 Journal is inactive.

EJRNRCVSPC 3528 Journal space or system storage error.

EJRNRMT 3529 Journal is remote.

ENEWJRNRCV 3530 New journal receiver is needed.

ENEWJRN 3531 New journal is needed.

EJOURNALED 3532 Object already journaled.

EJRNENTTOOLONG 3533 Entry is too large to send.

EDATALINK 3534 Object is a datalink object.

ENOTAVAIL 3535 IASP is not available.

ENOTTY 3536 I/O control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its sort file size limit.

ETXTBSY 3543 Text file busy.

EASPGRPNOTSET 3544 ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be restarted.

ESCANFAILURE 3546 An object has been marked as a scan failure due to processing by

an exit program associated with the scan-related integrated file

system exit points.

 Top | UNIX-Type APIs | APIs by category

Interprocess Communication (IPC) APIs 151

#TOP_OF_PAGE
unix.htm
aplist.htm

152 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 153

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

154 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 155

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

156 iSeries: UNIX-Type -- Interprocess Communication (IPC) APIs

����

Printed in USA

	Contents
	Interprocess Communication (IPC) APIs
	APIs
	ftok()—Generate IPC Key from File Name
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	msgctl()—Perform Message Control Operations
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	msgget()—Get Message Queue
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	msgrcv()—Receive Message Operation
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	msgsnd()—Send Message Operation
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	QlgFtok()—Generate IPC Key from File Name (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgSem_open()—Open Named Semaphore (using NLS-enabled path name)
	Parameters
	Error Conditions
	Related Information
	Example

	QlgSem_open_np()—Open Named Semaphore with Maximum Value (using NLS-enabled path name)
	Parameters
	Error Conditions
	Related Information
	Example

	QlgSem_unlink()—Unlink Named Semaphore (using NLS-enabled path name)
	Parameters
	Error Conditions
	Related Information
	Example

	Delete Interprocess Communication Objects (QP0ZDIPC) API
	Authorities and Locks
	Required Parameter Group
	Delete Control Format
	Field Descriptions
	Error Messages

	Open List of Interprocess Communication Objects (QP0ZOLIP) API
	Authorities and Locks
	Required Parameter Group
	FIPC0100 Format
	Field Descriptions
	LSST0100 Format
	LMSQ0100 Format
	LSHM0100 Format
	LNSM0100 Format
	LUSM0100 Format
	Field Descriptions
	Error Messages

	Open List of Semaphores (QP0ZOLSM) API
	Authorities and Locks
	Required Parameter Group
	LSEM0100 Format
	Field Descriptions
	Error Messages

	Retrieve an Interprocess Communication Object (QP0ZRIPC) API
	Authorities and Locks
	Required Parameter Group
	RSST0100 Format
	RMSQ0100 Format
	RSHM0100 Format
	Field Descriptions
	Error Messages

	semctl()—Perform Semaphore Control Operations
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	semget()—Get Semaphore Set with Key
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	semop()—Perform Semaphore Operations on Semaphore Set
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	sem_close()—Close Named Semaphore
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	sem_destroy()—Destroy Unnamed Semaphore
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	sem_getvalue()—Get Semaphore Value
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example
	Output:

	sem_init()—Initialize Unnamed Semaphore
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	sem_init_np()—Initialize Unnamed Semaphore with Maximum Value
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	sem_open()—Open Named Semaphore
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	sem_open_np()—Open Named Semaphore with Maximum Value
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	sem_post()—Post to Semaphore
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example
	Output:

	sem_post_np()—Post Value to Semaphore
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example
	Output:

	sem_trywait()—Try to Decrement Semaphore
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example
	Output:

	sem_unlink()—Unlink Named Semaphore
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	sem_wait()—Wait for Semaphore
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example
	Output:

	sem_wait_np()—Wait for Semaphore with Timeout
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example
	Output:

	shmat()—Attach Shared Memory Segment to Current Process
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	shmctl()—Perform Shared Memory Control Operations
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	shmdt()—Detach Shared Memory Segment from Calling Process
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	shmget()—Get ID of Shared Memory Segment with Key
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	Exit Programs
	Integrated File System Scan on Close Exit Program
	Restrictions
	Authorities and Locks
	Program Data
	Required Parameter Group
	Format of Integrated File System Close Exit Information (Input)
	Format of Status Information (Output)
	Field Descriptions
	Usage Notes
	Related Information

	Integrated File System Scan on Open Exit Program
	Restrictions
	Authorities and Locks
	Program Data
	Required Parameter Group
	Format of Integrated File System Open Exit Information (Input)
	Format of Status Information (Output)
	Field Descriptions
	Scan Key List and Scan Key Signatures
	Coded Character Set Identifier (CCSID) Information
	Usage Notes
	Related Information

	Process a Path Name Exit Program
	Parameters

	Save Storage Free Exit Program
	Required Parameter Group
	Related Information

	Concepts
	Identifier Based Services
	Message Queues
	Message Queue Differences and Restrictions

	Semaphore Sets
	Semaphore Set Differences and Restrictions

	Shared Memory
	Shared Memory Differences and Restrictions

	Pointer Based Services
	Managing IPC Objects
	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

