
iSeries

UNIX-Type -- Integrated File System APIs

Version 5 Release 3

ERserver

���

iSeries

UNIX-Type -- Integrated File System APIs

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 693.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Integrated File System APIs 1

APIs 10

access()—Determine File Accessibility 10

Parameters 10

Authorities 11

Return Value 11

Error Conditions 11

Error Messages 14

Usage Notes 15

Related Information 15

Example 16

accessx()—Determine File Accessibility for a Class of

Users 16

Parameters 16

Authorities 17

Return Value 18

Error Conditions 18

Error Messages 21

Usage Notes 22

Related Information 23

Example 23

chdir()—Change Current Directory 24

Parameters 24

Authorities 24

Return Value 24

Error Conditions 24

Error Messages 28

Usage Notes 28

Related Information 28

Example 29

chmod()—Change File Authorizations 29

Parameters 29

Authorities 31

Return Value 31

Error Conditions 32

Error Messages 35

Usage Notes 36

Related Information 37

Example 37

chown()—Change Owner and Group of File . . . 38

Parameters 38

Authorities 39

Return Value 40

Error Conditions 40

Error Messages 44

Usage Notes 44

Related Information 44

Example 45

close()—Close File or Socket Descriptor 46

Parameters 46

Authorities 46

Return Value 46

Error Conditions 46

Error Messages 50

Usage Notes 50

Related Information 51

Example 51

closedir()—Close Directory 52

Parameters 52

Authorities 52

Return Value 52

Error Conditions 52

Error Messages 56

Usage Notes 56

Related Information 56

Example 56

creat()—Create or Rewrite File 57

Parameters 57

Authorities 58

Return Value 58

Error Conditions 59

Error Messages 63

Usage Notes 63

Related Information 66

Example 66

creat64()—Create or Rewrite a File (Large File

Enabled) 66

Usage Notes 67

DosSetFileLocks()—Lock and Unlock a Byte Range

of an Open File 67

Parameters 68

Authorities 68

Return Value 69

Error Conditions 69

Error Messages 69

Usage Notes 70

Related Information 70

Example 71

DosSetFileLocks64()—Lock and Unlock a Byte

Range of an Open File (Large File Enabled) 72

Usage Notes 72

Related Information 73

DosSetRelMaxFH()—Change Maximum Number of

File Descriptors 73

Parameters 73

Authorities 74

Return Value 74

Error Conditions 74

Error Messages 74

Usage Notes 74

Related Information 75

Example 75

dup()—Duplicate Open File Descriptor 76

Parameters 76

Authorities 76

Return Value 76

Error Conditions 76

Error Messages 78

Usage Notes 78

Related Information 78

Example 78

© Copyright IBM Corp. 1998, 2005 iii

dup2()—Duplicate Open File Descriptor to Another

Descriptor 79

Parameters 80

Authorities 80

Return Value 80

Error Conditions 80

Error Messages 81

Usage Notes 81

Related Information 82

Example 82

faccessx()—Determine File Accessibility for a Class

of Users 83

Parameters 83

Authorities 84

Return Value 84

Error Conditions 85

Error Messages 87

Usage Notes 88

Related Information 89

Example 89

fchdir()—Change Current Directory by Descriptor 90

Parameters 90

Authorities 90

Return Value 90

Error Conditions 90

Error Messages 93

Usage Notes 93

Related Information 94

Example 94

fchmod()—Change File Authorizations by

Descriptor 95

Parameters 95

Authorities 95

Return Value 95

Error Conditions 96

Error Messages 99

Related Information 100

Example 100

fchown()—Change Owner and Group of File by

Descriptor 101

Parameters 101

Authorities 101

Return Value 102

Error Conditions 103

Error Messages 106

Usage Notes 106

Related Information 107

Example 107

fclear()—Write (Binary Zeros) to Descriptor . . . 108

Parameters 109

Authorities 109

Return Value 109

Error Conditions 109

Error Messages 111

Usage Notes 112

Related Information 113

Example 113

fclear64()—-Write (Binary Zeros) to Descriptor

(Large File Enabled) 114

Usage Notes 114

fcntl()—Perform File Control Command 115

Parameters 115

Flags 116

File Locking 117

Authorities 121

Return Value 121

Error Conditions 121

Error Messages 124

Usage Notes 124

Related Information 126

Example 126

fpathconf()—Get Configurable Path Name

Variables by Descriptor 127

Parameters 127

Authorities 128

Return Value 128

Error Conditions 129

Error Messages 131

Usage Notes 131

Related Information 131

Example 131

fstat()—Get File Information by Descriptor . . . 132

Parameters 133

Authorities 133

Return Value 133

Error Conditions 133

Error Messages 136

Usage Notes 136

Related Information 137

Example 137

fstat64()—Get File Information by Descriptor

(Large File Enabled) 138

Usage Notes 138

Example 138

fstatvfs()—Get File System Information by

Descriptor 140

Parameters 140

Return Value 140

Error Conditions 140

Error Messages 144

Usage Notes 144

Related Information 145

Example 145

fstatvfs64()—Get File System Information by

Descriptor (64-Bit Enabled) 146

Usage Notes 146

fsync()—Synchronize Changes to File 147

Parameters 147

Authorities 147

Return Value 147

Error Conditions 147

Error Messages 150

Usage Notes 150

Related Information 151

Example 151

ftruncate()—Truncate File 152

Parameters 152

Authorities 152

Return Value 152

Error Conditions 153

Error Messages 157

Usage Notes 157

iv iSeries: UNIX-Type -- Integrated File System APIs

Related Information 157

Example 158

ftruncate64()—Truncate File (Large File Enabled) 159

Usage Notes 159

getcwd()—Get Current Directory 160

Parameters 160

Authorities 160

Return Value 160

Error Conditions 161

Error Messages 164

Usage Notes 164

Related Information 165

Example 165

getegid()—Get Effective Group ID 166

Parameters 166

Authorities 166

Return Value 166

Error Conditions 166

Related Information 166

Example 166

geteuid()—Get Effective User ID 167

Parameters 167

Authorities 167

Return Value 167

Error Conditions 167

Related Information 168

Example 168

getgid()—Get Real Group ID 168

Parameters 169

Authorities 169

Return Value 169

Error Conditions 169

Related Information 169

Example 169

getgrgid()—Get Group Information Using Group

ID 170

Parameters 170

Authorities 170

Return Value 170

Error Conditions 170

Related Information 171

Example 171

getgrgid_r()—Get Group Information Using Group

ID 172

Parameters 172

Authorities 172

Return Value 172

Error Conditions 173

Related Information 173

Example 173

getgrgid_r_ts64()—Get Group Information Using

Group ID 174

getgrnam()—Get Group Information Using Group

Name 174

Parameters 175

Authorities 175

Return Value 175

Error Conditions 175

Related Information 175

Example 176

getgrnam_r()—Get Group Information Using

Group Name 176

Parameters 177

Authorities 177

Return Value 177

Error Conditions 177

Related Information 178

Example 178

getgrnam_r_ts64()—Get Group Information Using

Group Name 179

getgroups()—Get Group IDs 179

Parameters 180

Authorities 180

Return Value 180

Error Conditions 180

Usage Notes 180

Related Information 181

getpwnam()—Get User Information for User Name 181

Parameters 181

Authorities 181

Return Value 181

Error Conditions 182

Usage Notes 182

Related Information 182

Example 182

getpwnam_r()—Get User Information for User

Name 183

Parameters 183

Authorities 184

Return Value 184

Error Conditions 184

Usage Notes 184

Related Information 184

Example 185

getpwnam_r_ts64()—Get User Information for User

Name 186

getpwuid()—Get User Information for User ID . . 186

Parameters 186

Authorities 187

Return Value 187

Error Conditions 187

Usage Notes 187

Related Information 188

Example 188

getpwuid_r()—Get User Information for User ID 189

Parameters 189

Authorities 189

Return Value 190

Error Conditions 190

Usage Notes 190

Related Information 190

Example 190

getpwuid_r_ts64()—Get User Information for User

ID 191

getuid()—Get Real User ID 192

Parameters 192

Authorities 192

Return Value 192

Error Conditions 192

Related Information 192

Example 193

Contents v

ioctl()—Perform I/O Control Request 193

Parameters 193

Authorities 199

Return Value 199

Error Conditions 199

Error Messages 201

Usage Notes 202

Related Information 202

lchown()—Change Owner and Group of Symbolic

Link 203

Parameters 203

Authorities 203

Return Value 205

Error Conditions 205

Error Messages 208

Usage Notes 208

Related Information 209

Example 209

link()—Create Link to File 210

Parameters 211

Authorities 211

Return Value 211

Error Conditions 211

Error Messages 215

Usage Notes 215

Related Information 216

Example 216

lseek()—Set File Read/Write Offset 217

Parameters 218

Authorities 218

Return Value 218

Error Conditions 218

Error Messages 221

Usage Notes 221

Related Information 222

Example 223

lseek64()—Set File Read/Write Offset (Large File

Enabled) 223

Usage Notes 224

lstat()—Get File or Link Information 224

Parameters 224

Authorities 224

Return Value 225

Error Conditions 225

Error Messages 228

Usage Notes 228

Related Information 229

Example 230

lstat64()—Get File or Link Information (Large File

Enabled) 231

Usage Notes 231

Example 232

mkdir()—Make Directory 233

Parameters 233

Authorities 234

Return Value 234

Error Conditions 234

Error Messages 239

Usage Notes 239

Related Information 241

Example 241

mkfifo()—Make FIFO Special File 242

Parameters 242

Authorities 243

Return Value 243

Error Conditions 243

Error Messages 247

Usage Notes 247

Related Information 248

Example 248

mmap()—Memory Map a File 249

Parameters 250

Authorities 251

Return Value 251

Error Conditions 252

Error Messages 253

Usage Notes 253

Related Information 254

Example 254

mmap64()—Memory map a Stream File (Large File

Enabled) 257

Usage Notes 257

mprotect()—Change Access Protection for Memory

Mapping 257

Parameters 258

Authorities 258

Return Value 258

Error Conditions 258

Error Messages 259

Usage Notes 260

Related Information 260

Example 260

msync()—Synchronize Modified Data with Mapped

File 261

Parameters 261

Authorities 262

Return Value 262

Error Conditions 262

Error Messages 263

Usage Notes 263

Related Information 263

Example 263

munmap()—Remove Memory Mapping 265

Parameters 265

Authorities 265

Return Value 265

Error Conditions 265

Error Messages 266

Usage Notes 266

Related Information 266

Example 266

open()—Open File 267

Parameters 268

Using the oflag Parameter 269

Using CCSIDs and code pages 273

Authorities 274

Return Value 275

Error Conditions 275

Error Messages 280

Usage Notes 280

Related Information 284

Examples 285

vi iSeries: UNIX-Type -- Integrated File System APIs

open64()—Open File (Large File Enabled) 287

Usage Notes 287

opendir()—Open Directory 288

Parameters 288

Authorities 288

Return Value 288

Error Conditions 289

Error Messages 293

Usage Notes 293

Related Information 294

Example 294

pathconf()—Get Configurable Path Name Variables 295

Parameters 295

Authorities 297

Return Value 297

Error Conditions 297

Error Messages 301

Usage Notes 301

Related Information 301

Example 301

pipe()—Create an Interprocess Channel 302

Parameters 302

Authorities 303

Return Value 303

Error Conditions 303

Usage Notes 303

Related Information 304

Example 304

pread()—Read from Descriptor with Offset . . . 305

Parameters 305

Authorities 305

Return Value 305

Error Conditions 306

Error Messages 308

Usage Notes 309

Related Information 310

Example 311

pread64()—Read from Descriptor with Offset (large

file enabled) 311

Usage Notes 312

Example 312

pwrite()—Write to Descriptor with Offset 313

Parameters 313

Authorities 313

Return Value 313

Error Conditions 313

Error Messages 317

Usage Notes 317

Related Information 319

Example 319

pwrite64()—Write to Descriptor with Offset (large

file enabled) 320

Usage Notes 321

Example 321

QlgAccess()—Determine File Accessibility (using

NLS-enabled path name) 322

Parameters 322

Related Information 322

Example 322

QlgAccessx()—Determine File Accessibility for a

Class of Users (using NLS-enabled path name) . . 324

Parameters 324

Related Information 324

Example 324

QlgChdir()—Change Current Directory (using

NLS-enabled path name) 326

Parameters 326

Related Information 326

Example 326

QlgChmod()—Change File Authorizations (using

NLS-enabled path name) 327

Parameters 327

Related Information 328

Example 328

QlgChown()—Change Owner and Group of File

(using NLS-enabled path name) 329

Parameters 329

Related Information 329

Example 330

QlgCreat()—Create or Rewrite File (using

NLS-enabled path name) 331

Parameters 331

Related Information 331

Example 331

QlgCreat64()—Create or Rewrite a File (large file

enabled and using NLS-enabled path name) . . . 332

Parameters 333

Related Information 333

Example 333

QlgCvtPathToQSYSObjName()— Resolve

Integrated File System Path Name into QSYS

Object Name (using NLS-enabled path name) . . 334

QlgGetAttr()—Get Attributes (using NLS-enabled

path name) 335

QlgGetcwd()—Get Current Directory (using

NLS-enabled path name) 335

Parameters 336

Related Information 336

Example 336

QlgGetPathFromFileID()—Get Path Name of Object

from Its File ID (using NLS-enabled path name) . . 337

Parameters 337

Related Information 337

Example 337

QlgGetpwnam()—Get User Information for User

Name (using NLS-enabled path name) 340

Parameters 340

Authorities 340

Return Value 340

Error Conditions 340

Usage Notes 341

Related Information 341

Example 341

QlgGetpwnam_r()—Get User Information for User

Name (using NLS-enabled path name) 342

Parameters 342

Authorities 343

Return Value 343

Error Conditions 343

Usage Notes 343

Related Information 343

Example 344

Contents vii

QlgGetpwuid()—Get User Information for User ID

(using NLS-enabled path name) 345

Parameters 345

Authorities 345

Return Value 345

Error Conditions 345

Usage Notes 346

Related Information 346

Example 346

QlgGetpwuid_r()—Get User Information for User

ID (using NLS-enabled path name) 347

Parameters 347

Authorities 348

Return Value 348

Error Conditions 348

Usage Notes 348

Related Information 348

Example 349

QlgLchown()—Change Owner and Group of

Symbolic Link (using NLS-enabled path name) . . 350

Parameters 350

Related Information 350

Example 350

QlgLink()—Create Link to File (using NLS-enabled

path name) 352

Parameters 352

Related Information 352

Example 352

QlgLstat()—Get File or Link Information (using

NLS-enabled path name) 354

Parameters 354

Related Information 354

Example 355

QlgLstat64()—Get File or Link Information (large

file enabled and using NLS-enabled path name) . . 356

Parameters 357

Related Information 357

Example 357

QlgMkdir()—Make Directory (using NLS-enabled

path name) 359

Parameters 359

Related Information 359

Example 359

QlgMkfifo()—Make FIFO Special File (using

NLS-enabled path name) 361

Parameters 361

Related Information 361

Example 361

QlgOpen()—Open a File (using NLS-enabled path

name) 362

Parameters 363

Related Information 363

Example 363

QlgOpen64()—Open File (large file enabled and

using NLS-enabled path name) 364

Parameters 364

Related Information 364

QlgOpendir()—Open Directory (using NLS-enabled

path name) 365

Parameters 365

Related Information 365

Example 365

QlgPathconf()—Get Configurable Path Name

Variables (using NLS-enabled path name) 368

Parameters 368

Related Information 368

Example 368

QlgProcessSubtree()—Process a Path Name (using

NLS-enabled path name) 369

QlgReaddir()—Read Directory Entry (using

NLS-enabled path name) 370

Parameters 370

Related Information 371

Example 371

QlgReaddir_r()—Read Directory Entry (using

NLS-enabled path name) 372

Parameters 372

Related Information 373

Example 373

QlgReadlink()—Read Value of Symbolic Link

(using NLS-enabled path name) 374

Parameters 375

Related Information 375

Example 375

QlgRenameKeep()—Rename File or Directory, Keep

″new″ If It Exists (using NLS-enabled path name) . 377

Parameters 377

Related Information 377

Example 377

QlgRenameUnlink()—Rename File or Directory,

Unlink ″new″ If It Exists (using NLS-enabled path

name) 379

Parameters 379

Related Information 379

Example 379

QlgRmdir()—Remove Directory (using

NLS-enabled path name) 381

Parameters 381

Related Information 381

Example 381

QlgSaveStgFree()—Save Storage Free (using

NLS-enabled path name) 383

QlgSetAttr()—Set Attributes (using NLS-enabled

path name) 383

QlgStat()—Get File Information (using

NLS-enabled path name) 384

Parameters 384

Related Information 384

Example 385

QlgStat64()—Get File Information (large file

enabled and using NLS-enabled path name) . . . 386

Parameters 386

Related Information 386

Example 386

QlgStatvfs()—Get File System Information (using

NLS-enabled path name) 387

Parameters 388

Related Information 388

Example 388

QlgStatvfs64()—Get File System Information (64-Bit

enabled and using NLS-enabled path name) . . . 390

Parameters 390

viii iSeries: UNIX-Type -- Integrated File System APIs

Related Information 390

Example 390

QlgSymlink()—Make Symbolic Link (using

NLS-enabled path name) 391

Parameters 392

Related Information 392

Example 392

QlgUnlink()—Remove Link to File (using

NLS-enabled path name) 394

Parameters 394

Related Information 394

Example 394

QlgUtime()—Set File Access and Modification

Times (using NLS-enabled path name) 395

Parameters 395

Related Information 396

Example 396

Perform Miscellaneous File System Functions

(QP0FPTOS) API 397

Authorities and Locks 397

Required Parameter Group 397

Usage Notes 399

Error Messages 399

Examples 400

Qp0lCvtPathToQSYSObjName()— Resolve

Integrated File System Path Name into QSYS

Object Name 400

Parameters 401

Authorities 402

Returned Data Format 402

Field Descriptions 402

Error Conditions 403

Error Messages 403

Usage Notes 404

Related Information 404

Example 405

Perform File System Operation (QP0LFLOP) API 407

Authorities and Locks 407

Required Parameter Group 408

Output Buffer Description 410

FLOP0100 Structure Description 410

FLOP0300 Output Structure Description . . . 411

FLOP0400 Output Structure Description . . . 411

Input Buffer Description 412

Format of FLOP0200 Structure 412

Format of FLOP0300 Input Structure 413

Format of FLOP0400 Input Structure 413

Field Descriptions 413

Usage Notes 418

Error Messages 418

Qp0lGetAttr()—Get Attributes 419

Parameters 419

Authorities 437

Return Value 437

Error Conditions 437

Error Messages 441

Usage Notes 441

Related Information 442

Example 442

Qp0lGetPathFromFileID()—Get Path Name of

Object from Its File ID 446

Parameters 446

Authorities 447

Return Value 447

Error Conditions 447

Error Messages 449

Usage Notes 449

Related Information 449

Example 449

Qp0lOpen()—Open File 450

Parameters 450

Related Information 450

Example 450

Qp0lProcessSubtree()—Process a Path Name . . . 451

Parameters 452

Authorities 457

Return Value 457

Error Conditions 457

Error Messages 459

Usage Notes 460

Scenarios 462

Figure: Directory Structure A 463

Figure: Directory Structure B 464

Scenario 1 464

Figure: Scenario 1 API Input 464

Figure: Results of a call 465

Scenario 2 465

Figure: Scenario 2 API Input 465

Figure: Results of a call 466

Scenario 3 466

Figure: Scenario 3 API Input 466

Figure: Results of a call 467

Scenario 4 467

Figure: Scenario 4 API Input 467

Figure: Results of a call 467

Related Information 468

Example 468

Qp0lRenameKeep()—Rename File or Directory,

Keep ″new″ If It Exists 471

Parameters 472

Authorities 472

Return Value 473

Error Conditions 474

Error Messages 478

Usage Notes 478

Related Information 480

Example 480

Qp0lRenameUnlink()—Rename File or Directory,

Unlink ″new″ If It Exists 480

Parameters 481

Authorities 481

Return Value 483

Error Conditions 483

Error Messages 488

Usage Notes 488

Related Information 489

Example 489

Retrieve Object References (QP0LROR) 490

Parameters 490

Authorities and Locks 491

Output Structure Formats 491

Contents ix

RORO0100 Output Format Description

(Qp0l_RORO0100_Output) 491

RORO0200 Output Format Description

(Qp0l_RORO0200_Output) 492

Job Using Object Structure Description

(Qp0l_Job_Using_Object) 492

Simple Object Reference Types Structure

Description (Qp0l_Sim_Ref_Types_Output) . . . 493

Extended Object Reference Types Structure

Description (Qp0l_Ext_Ref_Types_Output) . . . 494

Field Descriptions for RORO0100 and

RORO0200 Output Structures and their

Imbedded Structures 495

Error Messages 498

Usage Notes 498

Related Information 499

Example 499

Qp0lSaveStgFree()—Save Storage Free 503

Parameters 503

Authorities 505

Return Value 505

Error Conditions 505

Error Messages 507

Usage Notes 508

Related Information 508

Example 508

Qp0lSetAttr()—Set Attributes 509

Parameters 509

Authorities 515

Return Value 516

Error Conditions 516

Error Messages 520

Usage Notes 520

Related Information 522

Example 522

Qp0lUnlink()—Remove Link to File 526

Parameters 526

Related Information 526

Example 526

Qp0zPipe()—Create Interprocess Channel with

Sockets 527

Parameters 528

Authorities 528

Return Value 528

Error Conditions 528

Usage Notes 529

Related Information 529

qsygetgroups()—Get Supplemental Group IDs . . 530

Parameters 530

Authorities 530

Return Value 530

Error Conditions 530

qsysetegid()—Set Effective Group ID 531

Parameters 531

Authorities and Locks 531

Return Value 531

Error Conditions 531

qsyseteuid()—Set Effective User ID 532

Parameters 533

Authorities and Locks 533

Return Value 533

Error Conditions 533

qsysetgid()—Set Group ID 534

Parameters 534

Authorities and Locks 534

Return Value 534

Error Conditions 534

qsysetgroups()—Set Supplemental Group IDs . . 535

Parameters 535

Authorities and locks 536

Return Value 536

Error Conditions 536

qsysetregid()—Set Real and Effective Group IDs 537

Parameters 537

Authorities and Locks 538

Return Value 538

Error Conditions 538

qsysetreuid()—Set Real and Effective User IDs . . 539

Parameters 539

Authorities and Locks 540

Return Value 540

Error Conditions 540

qsysetuid()—Set User ID 541

Parameters 541

Authorities and Locks 541

Return Value 541

Error Conditions 541

Retrieve Network File System Export Entries

(QZNFRTVE) API 543

Authorities and Locks 543

Usage Notes 543

Required Parameter Group 544

Receiver Variable Description 545

EXPE0100 and EXPE0200 format 545

Returned Records Feedback Information

Description 546

Format of Returned Records Feedback

Information 547

Field Descriptions 547

Error Messages 548

read()—Read from Descriptor 549

Parameters 550

Authorities 550

Return Value 550

Error Conditions 550

Error Messages 554

Usage Notes 554

Related Information 556

Example 556

readdir()—Read Directory Entry 557

Parameters 557

Authorities 558

Return Value 558

Error Conditions 558

Error Messages 561

Usage Notes 561

Related Information 562

Example 562

readdir_r()—Read Directory Entry 563

Parameters 563

Authorities 564

Return Value 564

x iSeries: UNIX-Type -- Integrated File System APIs

Error Conditions 564

Error Messages 567

Usage Notes 567

Related Information 568

Example 568

readdir_r_ts64()—Read Directory Entry 569

readlink()—Read Value of Symbolic Link 569

Parameters 569

Authorities 570

Return Value 570

Error Conditions 570

Error Messages 574

Usage Notes 574

Related Information 574

Example 574

readv()—Read from Descriptor Using Multiple

Buffers 575

Parameters 575

Authorities 576

Return Value 576

Error Conditions 576

Error Messages 579

Usage Notes 580

Related Information 581

rename()—Rename File or Directory 581

Parameters 582

Usage Notes 582

Related Information 582

rewinddir()—Reset Directory Stream to Beginning 583

Parameters 583

Authorities 583

Return Value 583

Error Conditions 583

Error Messages 583

Usage Notes 584

Related Information 584

Example 584

rmdir()—Remove Directory 585

Parameters 585

Authorities 585

Return Value 586

Error Conditions 586

Error Messages 591

Usage Notes 591

Related Information 591

Example 592

stat()—Get File Information 592

Parameters 593

Authorities 595

Return Value 595

Error Conditions 595

Error Messages 598

Usage Notes 599

Related Information 600

Example 600

stat64()—Get File Information (Large File Enabled) 601

Parameters 601

Usage Notes 604

statvfs()—Get File System Information 604

Parameters 604

Authorities 606

Return Value 606

Error Conditions 606

Error Messages 609

Usage Notes 610

Related Information 610

Example 611

statvfs64()—Get File System Information (64-Bit

Enabled) 612

Parameters 612

Usage Notes 613

symlink()—Make Symbolic Link 614

Parameters 614

Authorities 615

Return Value 615

Error Conditions 615

Error Messages 618

Usage Notes 618

Related Information 619

Example 619

sysconf()—Get System Configuration Variables . . 620

Parameters 620

Authorities 621

Return Value 621

Error Conditions 621

Error Messages 621

Related Information 621

Example 622

umask()—Set Authorization Mask for Job 622

Parameters 623

Authorities 623

Return Value 623

Error Conditions 623

Error Messages 623

Usage Notes 623

Related Information 623

Example 623

unlink()—Remove Link to File 624

Parameters 625

Authorities 625

Return Value 626

Error Conditions 626

Error Messages 630

Usage Notes 630

Related Information 631

Example 631

utime()—Set File Access and Modification Times 632

Parameters 632

Authorities 633

Return Value 633

Error Conditions 633

Error Messages 637

Usage Notes 637

Related Information 638

Example 638

write()—Write to Descriptor 639

Parameters 641

Authorities 641

Return Value 641

Error Conditions 641

Error Messages 646

Usage Notes 646

Contents xi

Related Information 648

Example 648

writev()—Write to Descriptor Using Multiple

Buffers 649

Parameters 649

Authorities 650

Return Value 650

Error Conditions 650

Error Messages 654

Usage Notes 655

Related Information 655

Exit Programs 656

Integrated File System Scan on Close Exit Program 656

Restrictions 657

Authorities and Locks 658

Program Data 658

Required Parameter Group 658

Format of Integrated File System Close Exit

Information (Input) 658

Format of Status Information (Output) 659

Field Descriptions 659

Usage Notes 664

Related Information 665

Integrated File System Scan on Open Exit Program 666

Restrictions 667

Authorities and Locks 667

Program Data 667

Required Parameter Group 668

Format of Integrated File System Open Exit

Information (Input) 668

Format of Status Information (Output) 668

Field Descriptions 669

Scan Key List and Scan Key Signatures 673

Coded Character Set Identifier (CCSID)

Information 674

Usage Notes 675

Related Information 676

Process a Path Name Exit Program 677

Parameters 678

Save Storage Free Exit Program 679

Required Parameter Group 679

Related Information 680

Concepts 680

Header Files for UNIX-Type Functions 680

Errno Values for UNIX-Type Functions 683

Integrated File System APIs—Time Stamp Updates 687

Appendix. Notices 693

Trademarks 694

Terms and conditions for downloading and

printing publications 695

Code disclaimer information 696

xii iSeries: UNIX-Type -- Integrated File System APIs

Integrated File System APIs

The integrated file system is a part of OS/400(R) that supports stream input/output and storage

management similar to personal computer and UNIX(R) operating systems while providing an integrating

structure over all information stored in your server.

The stream file support is designed for efficient use in client/server applications. Stream files are

particularly well suited for storing long continuous strings of data such as the text of documents, images,

audio, and video.

The integrated file system provides a hierarchical directory structure that supports UNIX-based open

system standards, such as Portable Operating System Interface for Computer Environments (POSIX)**

and The Single UNIX(R); Specification. This file and directory structure provides the users of PC operating

systems with a familiar environment.

In addition to providing an interface for users and application to access stream files, the integrated file

system also provides a common interface to access database files, documents and other objects stored on

the server.

For more information, see the Integrated file system information in the Files and file systems topic.

The integrated file system APIs are:

v “access()—Determine File Accessibility” on page 10 (Determine file accessibility) determines whether a

file can be accessed in a particular manner.

v “accessx()—Determine File Accessibility for a Class of Users” on page 16 (Determine File Accessibility

for a Class of Users) determines whether a file can be accessed by a specified class of users in a

particular manner.

v “chdir()—Change Current Directory” on page 24 (Change current directory) makes the directory

named by path the new current directory.

v “chmod()—Change File Authorizations” on page 29 (Change file authorizations) changes the mode of

the file or directory specified in path.

v “chown()—Change Owner and Group of File” on page 38 (Change owner and group of file) changes

the owner and group of a file.

v “close()—Close File or Socket Descriptor” on page 46 (Close file descriptor) closes a descriptor, fildes.

v “closedir()—Close Directory” on page 52 (Close directory) closes the directory stream indicated by dirp.

v “creat()—Create or Rewrite File” on page 57 (Create new file or rewrite existing file) creates a new file

or rewrites an existing file so that it is truncated to zero length.

v “creat64()—Create or Rewrite a File (Large File Enabled)” on page 66 (Create new file or rewrite

existing file (large file enabled)) creates a new file or rewrites an existing file so that it is truncated to

zero length.

v “DosSetFileLocks()—Lock and Unlock a Byte Range of an Open File” on page 67 (Lock and unlock a

range of an open file) locks and unlocks a range of an open file.

v “DosSetFileLocks64()—Lock and Unlock a Byte Range of an Open File (Large File Enabled)” on page

72 (Lock and unlock a range of an open file (large file enabled)) locks and unlocks a range of an open

file.

© Copyright IBM Corp. 1998, 2005 1

v “DosSetRelMaxFH()—Change Maximum Number of File Descriptors” on page 73 (Change maximum

number of file descriptors) requests that the system change the maximum number of file descriptors

for the calling process (job).

v “dup()—Duplicate Open File Descriptor” on page 76 (Duplicate open file descriptor) returns a new

open file descriptor.

v “dup2()—Duplicate Open File Descriptor to Another Descriptor” on page 79 (Duplicate open file

descriptor to another descriptor) returns a descriptor with the value fildes2.

v “faccessx()—Determine File Accessibility for a Class of Users” on page 83 (Determine File Accessibility

for a Class of Users) determines whether a file can be accessed by a specified class of users in a

particular manner.

v “fchdir()—Change Current Directory by Descriptor” on page 90 (Change Current Directory by

Descriptor) makes the directory named by fildes the new current directory.

v “fchmod()—Change File Authorizations by Descriptor” on page 95 (Change file authorizations by

descriptor) sets the file permission bits of the open file identified by fildes, its file descriptor.

v “fchown()—Change Owner and Group of File by Descriptor” on page 101 (Change owner and group of

file by descriptor) changes the owner and group of a file.

v

“fclear()—Write (Binary Zeros) to Descriptor” on page 108 (Clear a file) clears a file.

v

“fclear64()—-Write (Binary Zeros) to Descriptor (Large File Enabled)” on page 114 (Clear a file (large

file enabled)) clears a file.

v “fcntl()—Perform File Control Command” on page 115 (Perform file control command) performs

various actions on open descriptors.

v “fpathconf()—Get Configurable Path Name Variables by Descriptor” on page 127 (Get configurable

path name variables by descriptor) determines the value of a configuration variable (name) associated

with a particular file descriptor (file_descriptor).

v “fstat()—Get File Information by Descriptor” on page 132 (Get file information by descriptor) gets

status information about the file specified by the open file descriptor file_descriptor and stores the

information in the area of memory indicated by the buf argument.

v “fstat64()—Get File Information by Descriptor (Large File Enabled)” on page 138 (Get file information

by descriptor (large file enabled)) gets status information about the file specified by the open file

descriptor file_descriptor and stores the information in the area of memory indicated by the buf

argument.

v “fstatvfs()—Get File System Information by Descriptor” on page 140 (Get File System Information by

Descriptor) gets status information about the file system that contains the file referenced by the open

file descriptor fildes.

v “fstatvfs64()—Get File System Information by Descriptor (64-Bit Enabled)” on page 146 (Get file system

information by descriptor (64-bit enabled)) gets status information about the file system that contains

the file referred to by the open file descriptor fildes.

v “fsync()—Synchronize Changes to File” on page 147 (Synchronize changes to file) transfers all data for

the file indicated by the open file descriptor file_descriptor to the storage device associated with

file_descriptor.

v “ftruncate()—Truncate File” on page 152 (Truncate file) truncates the file indicated by the open file

descriptor file_descriptor to the indicated length.

v “ftruncate64()—Truncate File (Large File Enabled)” on page 159 (Truncate file (large file enabled))

truncates the file indicated by the open file descriptor file_descriptor to the indicated length.

v “getcwd()—Get Current Directory” on page 160 (Get Current Directory) determines the absolute path

name of the current directory and stores it in buf.

v “getegid()—Get Effective Group ID” on page 166 (Get effective group ID) returns the effective group

ID (gid) of the calling thread.

v “geteuid()—Get Effective User ID” on page 167 (Get effective user ID) returns the effective user ID

(uid) of the calling thread.

2 iSeries: UNIX-Type -- Integrated File System APIs

v “getgid()—Get Real Group ID” on page 168 (Get real group ID) returns the real group ID (gid) of the

calling thread.

v “getgrgid()—Get Group Information Using Group ID” on page 170 (Get group information using group

ID) returns a pointer to an object of type struct group containing an entry from the user database with

a matching gid.

v “getgrgid_r()—Get Group Information Using Group ID” on page 172 (Get group information using

group ID) updates the group structure pointed to by grp and stores a pointer to that structure in the

location pointed to by result.

v “getgrgid_r_ts64()—Get Group Information Using Group ID” on page 174 (Get group information

using group ID) updates the group structure pointed to by grp and stores a pointer to that structure in

the location pointed to by result.

v “getgrnam()—Get Group Information Using Group Name” on page 174 (Get group information using

group name) returns a pointer to an object of type struct group containing an entry from the user

database with a matching name.

v “getgrnam_r()—Get Group Information Using Group Name” on page 176 (Get group information using

group name) updates the group structure pointed to by grp and stores a pointer to that structure in the

location pointed to by result.

v “getgrnam_r_ts64()—Get Group Information Using Group Name” on page 179 (Get group information

using group name) updates the group structure pointed to by grp and stores a pointer to that structure

in the location pointed to by result.

v “getgroups()—Get Group IDs” on page 179 (Get group IDs) returns the number of primary and

supplementary group IDs associated with the calling thread without modifying the array pointed to by

the grouplist argument.

v “getpwnam()—Get User Information for User Name” on page 181 (Get user information for user name)

returns a pointer to an object of type struct passwd containing an entry from the user database with a

matching name.

v “getpwnam_r()—Get User Information for User Name” on page 183 (Get User Information for User

Name) updates the passwd structure pointed to by pwd and stores a pointer to that structure in the

location pointed to by result.

v “getpwnam_r_ts64()—Get User Information for User Name” on page 186 (Get user information for user

name) updates the passwd structure pointed to by pwd and stores a pointer to that structure in the

location pointed to by result.

v “getpwuid()—Get User Information for User ID” on page 186 (Get user information for user ID)

returns a pointer to an object of type struct passwd containing an entry from the user database with a

matching uid.

v “getpwuid_r()—Get User Information for User ID” on page 189 (Get User Information for User ID)

updates the passwd structure pointed to by pwd and stores a pointer to that structure in the location

pointed to by result.

v “getpwuid_r_ts64()—Get User Information for User ID” on page 191 (Get user information for user ID)

updates the passwd structure pointed to by pwd and stores a pointer to that structure in the location

pointed to by result.

v “getuid()—Get Real User ID” on page 192 (Get real user ID) returns the real user ID (uid) of the calling

thread.

v “ioctl()—Perform I/O Control Request” on page 193 (Perform I/O control request) performs control

functions (requests) on a file descriptor.

v “lchown()—Change Owner and Group of Symbolic Link” on page 203 (Change owner and group of

symbolic link) changes the owner and group of a file. If the named file is a symbolic link, lchown()

changes the owner or group of the link itself rather than the object to which the link points.

v “link()—Create Link to File” on page 210 (Create link to file) provides an alternative path name for the

existing file, so that the file can be accessed by either the existing name or the new name.

Integrated File System APIs 3

v “lseek()—Set File Read/Write Offset” on page 217 (Set file read/write offset) changes the current file

offset to a new position in the file.

v “lseek64()—Set File Read/Write Offset (Large File Enabled)” on page 223 (Set file read/write offset

(large file enabled)) changes the current file offset to a new position in the file.

v “lstat()—Get File or Link Information” on page 224 (Get file or link information) gets status

information about a specified file and places it in the area of memory pointed to by buf.

v “lstat64()—Get File or Link Information (Large File Enabled)” on page 231 (Get file or link information

(large file enabled)) gets status information about a specified file and places it in the area of memory

pointed to by buf.

v “mkdir()—Make Directory” on page 233 (Make directory) creates a new, empty directory whose name

is defined by path.

v “mkfifo()—Make FIFO Special File” on page 242 (Make FIFO special file) creates a new FIFO special

file (FIFO) whose name is defined by path.

v “mmap()—Memory Map a File” on page 249 (Memory map a file) establishes a mapping between a

process″ address space and a stream file.

v “mmap64()—Memory map a Stream File (Large File Enabled)” on page 257 (Memory map a stream file

(large file enabled)) is used to establish a memory mapping of a file.

v “mprotect()—Change Access Protection for Memory Mapping” on page 257 (Change access protection

for memory mapping) is used to change the access protection of a memory mapping to that specified

by protection.

v “msync()—Synchronize Modified Data with Mapped File” on page 261 (Synchronize modified data

with mapped file) can be used to write modified data from a shared mapping (created using the

mmap() function) to non-volatile storage or invalidate privately mapped pages.

v “munmap()—Remove Memory Mapping” on page 265 (Remove memory mapping) removes

addressability to a range of memory mapped pages of a process″s address space.

v “open()—Open File” on page 267 (Open file) opens a file and returns a number called a file descriptor.

v “open64()—Open File (Large File Enabled)” on page 287 (Open file (large file enabled)) opens a file

and returns a number called a file descriptor.

v “opendir()—Open Directory” on page 288 (Open directory) opens a directory so that it can be read

with the readdir() function.

v “pathconf()—Get Configurable Path Name Variables” on page 295 (Get configurable path name

variables) lets an application determine the value of a configuration variable (name) associated with a

particular file or directory (path).

v “pipe()—Create an Interprocess Channel” on page 302 (Create interprocess channel) creates a data pipe

and places two file descriptors, one each into the arguments fildes[0] and fildes[1], that refer to the

open file descriptions for the read and write ends of the pipe, respectively.

v “pread()—Read from Descriptor with Offset” on page 305 (Read from Descriptor with Offset) reads

nbyte bytes of input into the memory area indicated by buf.

v “pread64()—Read from Descriptor with Offset (large file enabled)” on page 311 (Read from Descriptor

with Offset (large file enabled)) reads nbyte bytes of input into the memory area indicated by buf.

v “pwrite()—Write to Descriptor with Offset” on page 313 (Write to Descriptor with Offset) writes nbyte

bytes from buf to the file associated with file_descriptor.

v “pwrite64()—Write to Descriptor with Offset (large file enabled)” on page 320 (Write to Descriptor with

Offset (large file enabled)) writes nbyte bytes from buf to the file associated with file_descriptor.

v “QlgAccess()—Determine File Accessibility (using NLS-enabled path name)” on page 322 (Determine

file accessibility (using NLS-enabled path name)) determines whether a file can be accessed in a

particular manner.

v “QlgAccessx()—Determine File Accessibility for a Class of Users (using NLS-enabled path name)” on

page 324 (Determine File Accessibility for a Class of Users (using NLS-enabled path name)) determines

whether a file can be accessed in a particular manner by a specified class of users.

4 iSeries: UNIX-Type -- Integrated File System APIs

v “QlgChdir()—Change Current Directory (using NLS-enabled path name)” on page 326 (Change current

directory (using NLS-enabled path name)) makes the directory named by path the new current

directory.

v “QlgChmod()—Change File Authorizations (using NLS-enabled path name)” on page 327 (Change file

authorizations (using NLS-enabled path name)) changes the mode of the file or directory specified in

path.

v “QlgChown()—Change Owner and Group of File (using NLS-enabled path name)” on page 329

(Change owner and group of file (using NLS-enabled path name)) changes the owner and group of a

file.

v “QlgCreat()—Create or Rewrite File (using NLS-enabled path name)” on page 331 (Create or rewrite

file (using NLS-enabled path name)) creates a new file or rewrites an existing file so that it is truncated

to zero length.

v “QlgCreat64()—Create or Rewrite a File (large file enabled and using NLS-enabled path name)” on

page 332 (Create or rewrite a file (large file enabled and using NLS-enabled path name)) creates a new

file or rewrites an existing file so that it is truncated to zero length.

v “QlgCvtPathToQSYSObjName()— Resolve Integrated File System Path Name into QSYS Object Name

(using NLS-enabled path name)” on page 334 (Resolve integrated file system path name into QSYS

object name (using NLS-enabled path name)) resolves a given integrated file system path name into the

three-part QSYS.LIB file system name: library, object, and member.

v “QlgGetAttr()—Get Attributes (using NLS-enabled path name)” on page 335 (Get attributes (using

NLS-enabled path name)) gets one or more attributes, on a single call, for the object that is referred to

by the input Path_Name.

v “QlgGetcwd()—Get Current Directory (using NLS-enabled path name)” on page 335 (Get current

directory (using NLS-enabled path name)) determines the absolute path name of the current directory

and returns a pointer to it.

v “QlgGetPathFromFileID()—Get Path Name of Object from Its File ID (using NLS-enabled path name)”

on page 337 (Get path name of object from its file ID (using NLS-enabled path name)) determines an

absolute path name of the file identified by fileid and stores it in buf.

v “QlgGetpwnam()—Get User Information for User Name (using NLS-enabled path name)” on page 340

(Get user information for user name (using NLS-enabled path name)) returns a pointer to an object of

type struct qplg_passwd containing an entry from the user database with a matching name.

v “QlgGetpwnam_r()—Get User Information for User Name (using NLS-enabled path name)” on page

342 (Get user information for user name (using NLS-enabled path name)) updates the qplg_passwd

structure pointed to by pwd and stores a pointer to that structure in the location pointed to by result.

v “QlgGetpwuid()—Get User Information for User ID (using NLS-enabled path name)” on page 345 (Get

user information for user ID (using NLS-enabled path name)) returns a pointer to an object of type

struct qplg_passwd containing an entry from the user database with a matching user ID (UID).

v “QlgGetpwuid_r()—Get User Information for User ID (using NLS-enabled path name)” on page 347

(Get user information for user ID (using NLS-enabled path name)) updates the qplg_passwd structure

pointed to by pwd and stores a pointer to that structure in the location pointed to by result.

v “QlgLchown()—Change Owner and Group of Symbolic Link (using NLS-enabled path name)” on page

350 (Change owner and group of symbolic link (using NLS-enabled path name)) changes the owner

and group of a file.

v “QlgLink()—Create Link to File (using NLS-enabled path name)” on page 352 (Create link to file (using

NLS-enabled path name)) provides an alternative path name for the existing file so that the file can be

accessed by either the existing name or the new name.

v “QlgLstat()—Get File or Link Information (using NLS-enabled path name)” on page 354 (Get file or

link information (using NLS-enabled path name)) gets status information about a specified file and

places it in the area of memory pointed to by buf.

v “QlgLstat64()—Get File or Link Information (large file enabled and using NLS-enabled path name)” on

page 356 (Get file or link information (large file enabled and using NLS-enabled path name)) gets

status information about a specified file and places it in the area of memory pointed to by buf.

Integrated File System APIs 5

v “QlgMkdir()—Make Directory (using NLS-enabled path name)” on page 359 (Make directory (using

NLS-enabled path name)) creates a new, empty directory whose name is defined by path.

v “QlgMkfifo()—Make FIFO Special File (using NLS-enabled path name)” on page 361 (Make FIFO

special file (using NLS-enabled path name)) creates a new FIFO special file whose name is defined by

path.

v “QlgOpen()—Open a File (using NLS-enabled path name)” on page 362 (Open a file (using

NLS-enabled path name)) opens a file or creates a new, empty file whose name is defined by path and

returns a number called a file descriptor.

v “QlgOpen64()—Open File (large file enabled and using NLS-enabled path name)” on page 364 (Open

file (large file enabled and using NLS-enabled path name)) opens a file and returns a number called a

file descriptor.

v “QlgOpendir()—Open Directory (using NLS-enabled path name)” on page 365 (Open directory (using

NLS-enabled path name)) opens a directory so it can be read.

v “QlgPathconf()—Get Configurable Path Name Variables (using NLS-enabled path name)” on page 368

(Get configurable path name variables (using NLS-enabled path name)) lets an application determine

the value of a configuration variable (name) associated with a particular file or directory (path).

v “QlgProcessSubtree()—Process a Path Name (using NLS-enabled path name)” on page 369 (Process a

path name (using NLS-enabled path name)) searches the directory tree under a specific path name.

v “QlgReaddir()—Read Directory Entry (using NLS-enabled path name)” on page 370 (Read directory

entry (using NLS-enabled path name)) returns a pointer to a structure describing the next directory

entry in the directory stream associated with dirp.

v “QlgReaddir_r()—Read Directory Entry (using NLS-enabled path name)” on page 372 (Read directory

entry (using NLS-enabled path name)) initializes a structure that is referenced by entry to represent the

next directory entry in the directory stream that is associated with dirp.

v “QlgReadlink()—Read Value of Symbolic Link (using NLS-enabled path name)” on page 374 (Read

value of symbolic link (using NLS-enabled path name)) places the contents of the symboliclink path in

the buffer buf.

v “QlgRenameKeep()—Rename File or Directory, Keep ″new″ If It Exists (using NLS-enabled path

name)” on page 377 (Rename file or directory, keep “new” if it exists (using NLS-enabled path name))

renames a file or a directory specified by old to the name given by new.

v “QlgRenameUnlink()—Rename File or Directory, Unlink ″new″ If It Exists (using NLS-enabled path

name)” on page 379 (Rename file or directory, unlink “new” if it exists (using NLS-enabled path

name)) renames a file or a directory specified by old to the name given by new.

v “QlgRmdir()—Remove Directory (using NLS-enabled path name)” on page 381 (Remove directory

(using NLS-enabled path name)) removes a directory, path, provided that the directory is empty; that

is, the directory contains no entries other than ″dot″ (.) or ″dot-dot″ (..).

v “QlgSaveStgFree()—Save Storage Free (using NLS-enabled path name)” on page 383 (Save Storage Free

(using NLS-enabled path name)) calls a user-supplied exit program to save an *STMF iSeries object

type and, upon successful completion of the exit program, frees the storage for the object and marks

the object as storage freed.

v “QlgSetAttr()—Set Attributes (using NLS-enabled path name)” on page 383 (Set attributes (using

NLS-enabled path name)) sets one of a set of defined attributes, on each call, for the object that is

referred to by the input *Path_Name.

v “QlgStat()—Get File Information (using NLS-enabled path name)” on page 384 (Get file information

(using NLS-enabled path name)) gets status information about a specified file and places it in the area

of memory pointed to by the buf argument.

v “QlgStat64()—Get File Information (large file enabled and using NLS-enabled path name)” on page 386

(Get file information (large file enabled and using NLS-enabled path name)) gets status information

about a specified file and places it in the area of memory pointed to by the buf argument.

v “QlgStatvfs()—Get File System Information (using NLS-enabled path name)” on page 387 (Get file

system information (using NLS-enabled path name)) gets status information about the file system that

contains the file named by the path argument.

6 iSeries: UNIX-Type -- Integrated File System APIs

v “QlgStatvfs64()—Get File System Information (64-Bit enabled and using NLS-enabled path name)” on

page 390 (Get file system information (64-bit enabled and using NLS-enabled path name)) gets status

information about the file system that contains the file named by the path argument.

v “QlgSymlink()—Make Symbolic Link (using NLS-enabled path name)” on page 391 (Make symbolic

link (using NLS-enabled path name)) creates the symbolic link named by slink with the value specified

by pname.

v “QlgUnlink()—Remove Link to File (using NLS-enabled path name)” on page 394 (Remove link to file

(using NLS-enabled path name)) removes a directory entry that refers to a file.

v “QlgUtime()—Set File Access and Modification Times (using NLS-enabled path name)” on page 395

(Set file access and modification times (using NLS-enabled path name)) sets the access and

modification times of path to the values in the utimbuf structure.

v “Perform Miscellaneous File System Functions (QP0FPTOS) API” on page 397 (Perform Miscellaneous

File System Functions) performs a variety of file system functions.

v

QP0LCHSG (Change Scan Signature) changes the scan key signature associated with a specific scan

key.

v “Qp0lCvtPathToQSYSObjName()— Resolve Integrated File System Path Name into QSYS Object

Name” on page 400 (Resolve integrated file system path name into QSYS object name) resolves a given

integrated file system path name into the three-part QSYS.LIB file system name: library, object, and

member.

v “Perform File System Operation (QP0LFLOP) API” on page 407 (Perform file system operation)

performs miscellaneous file system operations.

v “Qp0lGetAttr()—Get Attributes” on page 419 (Get attributes) gets one or more attributes, on a single

call, for the object that is referred to by the input Path_Name.

v “Qp0lGetPathFromFileID()—Get Path Name of Object from Its File ID” on page 446 (Get path name of

object from its file ID) determines an absolute path name of the file identified by fileid and stores it in

buf.

v “Qp0lOpen()—Open File” on page 450 (Open file) opens a file and returns a number called a file

descriptor.

v “Qp0lProcessSubtree()—Process a Path Name” on page 451 (Process a path name) searches the

directory tree under a specific path name. It selects and passes objects, one at a time, to an exit

program that is identified on its call. The exit program can be either a procedure or a program.

v “Qp0lRenameKeep()—Rename File or Directory, Keep ″new″ If It Exists” on page 471 (Rename file or

directory, keep new if it exists) renames a file or a directory specified by old to the name given by new.

v “Qp0lRenameUnlink()—Rename File or Directory, Unlink ″new″ If It Exists” on page 480 (Rename file

or directory, unlink new if it exists) renames a file or a directory specified by old to the name given by

new.

v “Retrieve Object References (QP0LROR)” on page 490 (Retrieve Object References) retrieves

information about integrated file system references on an object.

v

QP0LRRO (Retrieve Referenced Objects) retrieves usage information about integrated file system

objects that have been referenced by a specified job.

v

QP0LRTSG (Retrieve Scan Signature) retrieves the scan key signature associated with a specific scan

key.

v “Qp0lSaveStgFree()—Save Storage Free” on page 503 (Save Storage Free) calls a user-supplied exit

program to save an *STMF iSeries object type and, upon successful completion of the exit program,

frees the storage for the object and marks the object as storage freed.

v “Qp0lSetAttr()—Set Attributes” on page 509 (Set attributes) renames a file or a directory specified by

old to the name given by new.

v “Qp0lUnlink()—Remove Link to File” on page 526 (Remove link to file) removes a directory entry that

refers to a file.

v “Qp0zPipe()—Create Interprocess Channel with Sockets” on page 527 (Create interprocess channel with

sockets) creates a data pipe that can be used by two processes.

Integrated File System APIs 7

chgscansgn.htm
qp0lrro.htm
rtvscansgn.htm

v “qsygetgroups()—Get Supplemental Group IDs” on page 530 (Get Supplemental Group IDs) returns

the supplemental group IDs associated with the calling thread.

v “qsysetegid()—Set Effective Group ID” on page 531 (Set effective group ID) sets the effective group ID

to gid.

v “qsyseteuid()—Set Effective User ID” on page 532 (Set effective user ID) sets the effective user ID to

uid.

v “qsysetgid()—Set Group ID” on page 534 (Set group ID) sets the real, effective and saved groups to

gid.

v “qsysetgroups()—Set Supplemental Group IDs” on page 535 (Set Supplemental Group IDs) sets the

supplementary group IDs of the calling thread.

v “qsysetregid()—Set Real and Effective Group IDs” on page 537 (Set real and effective group IDs) is

used to set the real and effective group IDs. The real and effective group IDs may be set to different

values in the same call.

v “qsysetreuid()—Set Real and Effective User IDs” on page 539 (Set real and effective user IDs) sets the

real and effective user IDs to the values specified by ruid and euid.

v “qsysetuid()—Set User ID” on page 541 (Set user ID) sets the real, effective, and saved user ID to uid.

v “Retrieve Network File System Export Entries (QZNFRTVE) API” on page 543 (Retrieve network file

system export entries) returns the list of Network File System (NFS) export entries for objects currently

exported to NFS clients or for objects referenced in the /etc/exports file.

v “read()—Read from Descriptor” on page 549 (Read from Descriptor) reads nbyte bytes of input into the

memory area indicated by buf.

v “readdir()—Read Directory Entry” on page 557 (Read directory entry) returns a pointer to a dirent

structure describing the next directory entry in the directory stream associated with dirp.

v “readdir_r()—Read Directory Entry” on page 563 (Read directory entry) initializes the dirent structure

that is referenced by entry to represent the next directory entry in the directory stream that is

associated with dirp.

v “readdir_r_ts64()—Read Directory Entry” on page 569 (Read directory entry) initializes the dirent

structure that is referenced by entry to represent the next directory entry in the directory stream that is

associated with dirp.

v “readlink()—Read Value of Symbolic Link” on page 569 (Read value of symbolic link) places the

contents of the symbolic link path in the buffer buf.

v “readv()—Read from Descriptor Using Multiple Buffers” on page 575 (Read from Descriptor Using

Multiple Buffers) is used to receive data from a file or socket descriptor.

v “rename()—Rename File or Directory” on page 581 (Rename file or directory) is used to rename a file

or directory with the semantics of Qp0lRenameUnlink() or Qp0lRenameKeep().

v “rewinddir()—Reset Directory Stream to Beginning” on page 583 (Reset directory stream) ″rewinds″ the

position of an open directory stream to the beginning.

v “rmdir()—Remove Directory” on page 585 (Remove directory) removes a directory, path, provided that

the directory is empty; that is, the directory contains no entries other than ″dot″ (.) or ″dot-dot″ (..).

v “stat()—Get File Information” on page 592 (Get file information) gets status information about a

specified file and places it in the area of memory pointed to by the buf argument.

v “stat64()—Get File Information (Large File Enabled)” on page 601 (Get file information (large file

enabled)) gets status information about a specified file and places it in the area of memory pointed to

by the buf argument.

v “statvfs()—Get File System Information” on page 604 (Get file system information) gets status

information about the file system that contains the file named by the path argument.

v “statvfs64()—Get File System Information (64-Bit Enabled)” on page 612 (Get file system information

(large file enabled)) gets status information about the file system that contains the file named by the

path argument.

8 iSeries: UNIX-Type -- Integrated File System APIs

v “symlink()—Make Symbolic Link” on page 614 (Make symbolic link) creates the symbolic link named

by slink with the value specified by pname.

v “sysconf()—Get System Configuration Variables” on page 620 (Get system configuration variables)

returns the value of a system configuration option.

v “umask()—Set Authorization Mask for Job” on page 622 (Set authorization mask for job) changes the

value of the file creation mask for the current job to the value specified in cmask.

v “unlink()—Remove Link to File” on page 624 (Remove link to file) removes a directory entry that refers

to a file.

v “utime()—Set File Access and Modification Times” on page 632 (Set file access and modification times)

sets the access and modification times of path to the values in the utimbuf structure.

v “write()—Write to Descriptor” on page 639 (Write to Descriptor) writes nbyte bytes from buf to the file

or socket associated with file_descriptor.

v “writev()—Write to Descriptor Using Multiple Buffers” on page 649 (Write to Descriptor Using

Multiple Buffers) is used to write data to a file or socket descriptor.

The integrated file system exit programs are:

v

“Integrated File System Scan on Close Exit Program” on page 656 is called during close processing

such as with the “close()—Close File or Socket Descriptor” on page 46 API. This exit program must be

provided by the user.

v

“Integrated File System Scan on Open Exit Program” on page 666 is called during open processing

such as with the “open()—Open File” on page 267 API. This exit program must be provided by the

user.

v “Process a Path Name Exit Program” on page 677 is called by the “Qp0lProcessSubtree()—Process a

Path Name” on page 451 API for each object in the API″s search that meets the caller″s selection

criteria. This exit program must be provided by the user.

v “Save Storage Free Exit Program” on page 679 is called by the “Qp0lSaveStgFree()—Save Storage Free”

on page 503 API to save an *STMF iSeries object type.

In addition to the functions above, the following functions, which are described in the Sockets APIs, also

can operate on files in the integrated file system.

Other Functions that Operate on Files

 Function Description

givedescriptor() Give file access to another job

Give socket access to another job

select() Check I/O status of multiple file descriptors

Wait for events on multiple sockets

takedescriptor() Take file access from another job

Take socket access from another job

Note: These functions use header (include) files from the library QSYSINC, which is optionally

installable. Make sure QSYSINC is installed on your system before using any of the functions. See

“Header Files for UNIX-Type Functions” on page 680) for the file and member name of each header file.

Many of the terms used in this chapter, such as current directory, file system, path name, and link, are

explained in the Integrated file system information. The API Examples also shows an example of using

several integrated file system functions.

Integrated File System APIs 9

unix8.htm
gvsoc.htm
sselect.htm
tksoc.htm
apiexmp.htm

To determine whether a particular function updates the access, change, and modification times of the

object on which it performs an operation, see “Integrated File System APIs—Time Stamp Updates” on

page 687.

 Top | UNIX-Type APIs | APIs by category

APIs

These are the APIs for this category.

access()—Determine File Accessibility

 Syntax

 #include <unistd.h>

 int access(const char *path, int amode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 15.

The access() function determines whether a file can be accessed in a particular manner. When checking

whether a job has appropriate permissions, access() looks at the real user ID (UID) and group ID (GID),

not the effective IDs. Adopted authority is not used.

Parameters

path (Input) A pointer to the null-terminated path name for the file to be checked for accessibility.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 const char *path is the name of the file whose accessibility you want to determine. If the named

file is a symbolic link, access() resolves the symbolic link.

 See “QlgAccess()—Determine File Accessibility (using NLS-enabled path name)” on page 322—

Determine File Accessibility (using NLS-enabled path name) for a description and an example of

supplying the path in any CCSID.

amode (Input) A bitwise representation of the access permissions to be checked.

 The following symbols, which are defined in the <unistd.h> header file, can be used in amode:

F_OK Tests whether the file exists

R_OK Tests whether the file can be accessed for reading

W_OK Tests whether the file can be accessed for writing

X_OK Tests whether the file can be accessed for execution

You can take the bitwise inclusive OR of any or all of the last three symbols to test several access

modes at once. If you are using F_OK to test for the existence of the file, you cannot use OR with

any of the other symbols. If any other bits are set in amode, access() returns the [EINVAL] error.

10 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

If the job has *ALLOBJ special authority, access() will indicate success for R_OK, W_OK, or X_OK

even if none of the permission bits are set.

Authorities

Authorization Required for access()

 Object Referred to Authority Required errno

Each directory in the path name preceding the object to be tested *X EACCES

Object when R_OK is specified *R EACCES

Object when W_OK is specified *W EACCES

Object when X_OK is specified *X EACCES

Object when R_OK | W_OK is specified *RW EACCES

Object when R_OK | X_OK is specified *RX EACCES

Object when W_OK | X_OK is specified *WX EACCES

Object when R_OK | W_OK | X_OK is specified *RWX EACCES

Object when F_OK is specified None None

Return Value

0 access() was successful.

-1 access() was not successful (the specified access is not permitted). The errno global variable is set

to indicate the error.

Error Conditions

If access() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

Integrated File System APIs 11

The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EINTR]

 Interrupted function call.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

12 iSeries: UNIX-Type -- Integrated File System APIs

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[ETXTBSY]

 Text file busy.

 An attempt was made to execute an OS/400 PASE program that is currently open for writing, or

an attempt has been made to open for writing an OS/400 PASE program that is being executed.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

Integrated File System APIs 13

The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

14 iSeries: UNIX-Type -- Integrated File System APIs

Usage Notes

1. This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

v Where multiple threads exist in the job.

v The object this function is operating on resides in a file system that is not threadsafe. Only the

following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. Once a file is open, subsequent requests to perform operations on the file can

fail because file attributes are checked at the server on each request. If permissions on the file are

made more restrictive at the server or the file is unlinked or made unavailable by the server for

another client, your operation on an open file descriptor will fail when the local Network File System

receives these updates. The local Network File System also impacts operations that retrieve file

attributes. Recent changes at the server may not be available at your client yet, and old values may be

returned from operations. (Several options on the Add Mounted File System (ADDMFS) command

determine the time between refresh operations of local data.)

3. QOPT File System Differences

If the object exists on a volume formatted in Universal Disk Format (UDF), the authorization that is

checked for the object and preceding directories in the path name follows the rules described in

Authorization Required for access() (page 11) . If the object exists on a volume formatted in some

other media format, no authorization checks are made on the object or preceding directories. The

volume authorization list is checked for the requested authority regardless of the volume media

format.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <limits.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “accessx()—Determine File Accessibility for a Class of Users” on page 16—Determine File Accessibility

for Class of Users

v “chmod()—Change File Authorizations” on page 29—Change File Authorizations

v “faccessx()—Determine File Accessibility for a Class of Users” on page 83—Determine File Accessibility

for Class of Users

v “open()—Open File” on page 267—Open File

v “QlgAccess()—Determine File Accessibility (using NLS-enabled path name)” on page 322Determine File

Accessibility using NLS-enabled path name)

v “QlgAccessx()—Determine File Accessibility for a Class of Users (using NLS-enabled path name)” on

page 324—Determine File Accessibility for Class of Users (using NLS-enabled path name)

v “stat()—Get File Information” on page 592—Get File Information

Integrated File System APIs 15

Example

See Code disclaimer information for information pertaining to code examples.

The following example determines how a file is accessed:

#include <stdio.h>

#include <unistd.h>

main() {

 char path[]="/";

 if (access(path, F_OK) != 0)

 printf("’%s’ does not exist!\n", path);

 else {

 if (access(path, R_OK) == 0)

 printf("You have read access to ’%s’\n", path);

 if (access(path, W_OK) == 0)

 printf("You have write access to ’%s’\n", path);

 if (access(path, X_OK) == 0)

 printf("You have search access to ’%s’\n", path);

 }

}

Output:

The output from a user with read and execute access is:

You have read access to ’/’

You have search access to ’/’

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

accessx()—Determine File Accessibility for a Class of Users

 Syntax

 #include <unistd.h>

 int accessx(const char *path, int amode, int who);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 22.

The accessx() function determines whether a file can be accessed by a specified class of users in a

particular manner.

The caller must have authority to all components in the path name prefix.

Adopted authority is not used.

Parameters

path (Input) A pointer to the null-terminated path name for the file to be checked for accessibility.

16 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 const char *path is the name of the file whose accessibility you want to determine. If the named

file is a symbolic link, accessx() resolves the symbolic link.

 See “QlgAccessx()—Determine File Accessibility for a Class of Users (using NLS-enabled path

name)” on page 324— Determine File Accessibility for Class of Users (using NLS-enabled path

name) for a description and an example of supplying the path in any CCSID.

amode (Input) A bitwise representation of the access permissions to be checked.

 The following symbols, which are defined in the <unistd.h> header file, can be used in amode:

F_OK (x’00’) Tests whether the file exists

R_OK (x’04’) Tests whether the file can be accessed for reading

W_OK (x’02’) Tests whether the file can be accessed for writing

X_OK (x’01’) Tests whether the file can be accessed for execution

You can take the bitwise inclusive OR of any or all of the last three symbols to test several access

modes at once. If you are using F_OK to test for the existence of the file, you cannot use OR with

any of the other symbols. If any other bits are set in amode, accessx() returns the [EINVAL] error.

who (Input) The class of users whose authority is to be checked.

 The following symbols, which are defined in the <unistd.h> header file, can be used in who:

ACC_SELF

(x’00’) Determines if specified access is permitted for the current thread. The effective

user and group IDs are used.

 Note: If the real and effective user ID are the same and the real and effective group ID

are the same, the request is treated as ACC_INVOKER. See the Usage Notes for more

details.

ACC_INVOKER

(x’01’) Determines if specified access is permitted for the current thread. The real user and

group IDs are used.

 Note: The expression access(path, amode) is equivalent to accessx(path, amode,

ACC_INVOKER)

ACC_OTHERS

(x’08’) Determines if specified access is permitted for any user other than the object

owner. Only one of R_OK, W_OK, and X_OK is permitted when who is ACC_OTHERS.

Privileged users (users with *ALLOBJ special authority) are not considered in this check.

ACC_ALL

(x’20’) Determines if specified access is permitted for all users. Only one of R_OK, W_OK,

and X_OK is permitted when who is ACC_ALL. Privileged users (users with *ALLOBJ

special authority) are not considered in this check.

Authorities

Authorization Required to Path Prefix for accessx()

Integrated File System APIs 17

Object Referred to Authority Required errno

Each directory in the path name preceding the object to be tested *X EACCES

The following authorities are required if the who parameter is ACC_SELF or ACC_INVOKER. If

ACC_SELF is specified, the effective UID and GID of the caller are used. If ACC_INVOKER is used, the

real UID and GID of the caller are used.

Authorization Required to Object for accessx()

 Object Referred to Authority Required errno

Object when R_OK is specified *R EACCES

Object when W_OK is specified *W EACCES

Object when X_OK is specified *X EACCES

Object when R_OK | W_OK is specified *RW EACCES

Object when R_OK | X_OK is specified *RX EACCES

Object when W_OK | X_OK is specified *WX EACCES

Object when R_OK | W_OK | X_OK is specified *RWX EACCES

Object when F_OK is specified None None

If the thread has *ALLOBJ special authority, accessx() with ACC_SELF or ACC_INVOKER will indicate

success for R_OK, W_OK, or X_OK even if none of the permission bits are set.

Return Value

0 accessx() was successful.

-1 accessx() was not successful (or the specified access is not permitted for the class of users being

checked). The errno global variable is set to indicate the error.

Error Conditions

If access() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 The class of users specified by the who parameter does not have the permission indicated by the

amode parameter.

 The thread does not have access to the specified file, directory, component, or path prefix.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

18 iSeries: UNIX-Type -- Integrated File System APIs

The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EINTR]

 Interrupted function call.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

Integrated File System APIs 19

A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[ETXTBSY]

 Text file busy.

 An attempt was made to execute an OS/400 PASE program that is currently open for writing, or

an attempt has been made to open for writing an OS/400 PASE program that is being executed.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

20 iSeries: UNIX-Type -- Integrated File System APIs

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Integrated File System APIs 21

Usage Notes

1. This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

v Where multiple threads exist in the job.

v The object this function is operating on resides in a file system that is not threadsafe. Only the

following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. ACC_SELF Mapped to ACC_INVOKER

Some physical file systems do not support ACC_SELF for the who parameter. Therefore, accessx() will

change the who parameter from ACC_SELF to ACC_INVOKER if the caller’s real and effective user ID

are equal, and the caller’s real and effective group ID are equal.

3. Network File System Differences

The Network File System will only support the value ACC_INVOKER for the who parameter. If

accessx() is called on a file in a mounted Network File System directory with a value for who other

than ACC_INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been

mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be

returned.

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. Once a file is open, subsequent requests to perform operations on the file can

fail because file attributes are checked at the server on each request. If permissions on the file are

made more restrictive at the server or the file is unlinked or made unavailable by the server for

another client, your operation on an open file descriptor will fail when the local Network File System

receives these updates. The local Network File System also impacts operations that retrieve file

attributes. Recent changes at the server may not be available at your client yet, and old values may be

returned from operations. (Several options on the Add Mounted File System (ADDMFS) command

determine the time between refresh operations of local data.)

4. QNTC File System Differences

The QNTC File System will only support the value ACC_INVOKER for the who parameter. If accessx()

is called on a file in the QNTC File System with a value for who other than ACC_INVOKER, the call

will return -1 and errno ENOTSUP. Note: If the value for who has been mapped from ACC_SELF to

ACC_INVOKER as previously described, then ENOTSUP will not be returned.

5. QOPT File System Differences

If the object exists on a volume formatted in Universal Disk Format (UDF), the authorization that is

checked for the object and preceding directories in the path name follows the rules described in the

previous table (page 18), Authorization Required to Object for accessx(). If the object exists on a

volume formatted in some other media format, no authorization checks are made on the object or

preceding directories. The volume authorization list is checked for the requested authority regardless

of the volume media format.

6. QFileSvr.400 File System Differences

22 iSeries: UNIX-Type -- Integrated File System APIs

The QFileSvr.400 File System will only support the value ACC_INVOKER for the who parameter. If

accessx() is called on a file in the QFileSvr.400 File System with a value for who other than

ACC_INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been

mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be

returned.

7. QNetWare File System Differences

The QNetWare File System will only support the value ACC_INVOKER for the who parameter. If

accessx() is called on a file in the QNetWare File System with a value for who other than

ACC_INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been

mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be

returned.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <limits.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “chmod()—Change File Authorizations” on page 29—Change File Authorizations

v “open()—Open File” on page 267—Open File

v “access()—Determine File Accessibility” on page 10—Determine File Accessibility

v “faccessx()—Determine File Accessibility for a Class of Users” on page 83—Determine File Accessibility

for a Class of Users

v “QlgAccessx()—Determine File Accessibility for a Class of Users (using NLS-enabled path name)” on

page 324—Determine File Accessibility for a Class of Users (using NLS-enabled path name)

v “QlgAccess()—Determine File Accessibility (using NLS-enabled path name)” on page 322—Determine

File Accessibility (using NLS-enabled path name)

v “stat()—Get File Information” on page 592—Get File Information

Example

See Code disclaimer information for information pertaining to code examples.

The following example determines how a file is accessed:

#include <stdio.h>

#include <unistd.h>

main() {

 char path[]="/myfile";

 if (accessx(path, R_OK, ACC_OTHERS) == 0)

 printf("Someone besides the owner has read access to ’%s’\n", path);

 if (accessx(path, W_OK, ACC_OTHERS) == 0)

 printf("Someone besides the owner has write access to ’%s’\n", path);

 if (accessx(path, X_OK, ACC_OTHERS) == 0)

 printf("Someone besides the owner has search access to ’%s’\n", path);

}

Output:

In this example accessx() was called on ’/myfile’. The following would be the output if someone other

than the owner has *R authority, someone besides the owner has *W authority, and noone other than the

owner has *X authority.

Someone besides the owner has read access to ’/’

Someone besides the owner has write access to ’/’

Integrated File System APIs 23

aboutapis.htm#CODEDISCLAIMER

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

chdir()—Change Current Directory

 Syntax

 #include <unistd.h>

 int chdir(const char *path);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 28.

The chdir() function makes the directory named by path the new current directory. If the last component

of path is a symbolic link, chdir() resolves the contents of the symbolic link. If the chdir() function fails,

the current directory is unchanged.

Parameters

path (Input) A pointer to the null-terminated path name of the directory that should become the

current directory.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgChdir()—Change Current Directory (using NLS-enabled path name)” on page

326—Change Current Directory for a description and an example of supplying the path in any

CCSID.

Authorities

Note: Adopted authority is not used.

Authorization Required for chdir()

 Object Referred to Authority Required errno

Each directory of the path name *X EACCES

Return Value

0 chdir() was successful.

-1 chdir() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If chdir() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

24 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

Integrated File System APIs 25

An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

26 iSeries: UNIX-Type -- Integrated File System APIs

The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

Integrated File System APIs 27

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

The chdir() API operates on two objects: the previous current working directory and the new one. If

either of these objects is managed by a file system that is not threadsafe, chdir() fails with the

ENOTSAFE error code.

2. QOPT File System Differences

If the directory exists on a volume formatted in Universal Disk Format (UDF), the authorization that

is checked for each directory in the path name follows the rules described in Authorization Required

for chdir() (page 24). If the directory exists on a volume formatted in some other media format, no

authorization checks are made on each directory in the path name. The volume authorization list is

checked for *USE authority regardless of the volume media format.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <limits.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “fchdir()—Change Current Directory by Descriptor” on page 90—Change Current Directory by

Descriptor

v “getcwd()—Get Current Directory” on page 160—Get Current Directory

v “QlgChdir()—Change Current Directory (using NLS-enabled path name)” on page 326—Change

Current Directory

28 iSeries: UNIX-Type -- Integrated File System APIs

v “QlgGetcwd()—Get Current Directory (using NLS-enabled path name)” on page 335—Get Current

Directory

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses chdir():

#include <stdio.h>

#include <unistd.h>

main() {

 if (chdir("/tmp") != 0)

 perror("chdir() to /tmp failed");

 if (chdir("/chdir/error") != 0)

 perror("chdir() to /chdir/error failed");

}

Output:

chdir() to /chdir/error failed: No such path or directory.

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

chmod()—Change File Authorizations

 Syntax

 #include <sys/stat.h>

 int chmod(const char *path, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 36.

The chmod() function changes S_ISUID, S_ISGID,

S_ISVTX,

and the permission bits of the file or

directory specified in path to the corresponding bits specified in mode. If the named file is a symbolic link,

chmod() resolves the symbolic link. chmod() has no effect on file descriptions for files that are open at

the time chmod() is called.

When chmod() is successful it updates the change time of the file.

If the file is checked out by another user (someone other than the user profile of the current job), chmod()

fails with the [EBUSY] error.

Parameters

path (Input) A pointer to the null-terminated path name of the file whose mode is being changed.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

Integrated File System APIs 29

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

See “QlgChmod()—Change File Authorizations (using NLS-enabled path name)” on page 327 for

a description and an example of supplying the path in any CCSID.

mode (Input) Bits that define S_ISUID, S_ISGID,

S_ISVTX,

and the access permissions of the file.

 The mode argument is created with one of the following symbols defined in the <sys/stat.h>

include file.

See the “Usage Notes” on page 36 for the file system differences regarding these

symbols.

S_IRUSR

Read permission for the file owner

S_IWUSR

Write permission for the file owner

S_IXUSR

Search permission (for a directory) or execute permission (for a file) for the file owner

S_IRWXU

Read, write, and search or execute for the file owner. S_IRWXU is the bitwise inclusive

OR of S_IRUSR, S_IWUSR, and S_IXUSR

S_IRGRP

Read permission for the file’s group

S_IWGRP

Write permission for the file’s group

S_IXGRP

Search permission (for a directory) or execute permission (for a file) for the file’s group

S_IRWXG

Read, write, and search or execute permission for the file’s group. S_IRWXG is the

bitwise inclusive OR of S_IRGRP, S_IWGRP, and S_IXGRP

S_IROTH

General read permission

S_IWOTH

General write permission

S_IXOTH

General search permission (for a directory) or general execute permission (for a file)

S_IRWXO

General read, write, and search or execute permission. S_IRWXO is the bitwise inclusive

OR of S_IROTH, S_IWOTH, and S_IXOTH

S_ISUID

Set effective user ID at execution time. This bit is ignored if the object specified by path is

a directory.

S_ISGID

Set effective group ID at execution time. See “Usage Notes” on page 36 for more

information if the object specified by path is a directory.

S_ISVTX

Restricted renames and unlinks for objects within a directory. Objects can be linked into a

directory that has this bit set on, but cannot be renamed or unlinked from it unless one or

more of the following are true for the user performing the operation:

v The user is the owner of the object.

v The user is the owner of the directory.

v The user has *ALLOBJ special authority.

30 iSeries: UNIX-Type -- Integrated File System APIs

This restriction only applies to directories in the root (’/’), QOpenSys, and user-defined

file systems. Other types of object and directories in other file systems may have this bit

on, however, it will be ignored.

If bits other than the bits listed above are set in mode, chmod() returns the [EINVAL] error.

Authorities

Note: Adopted authority is not used.

Authorization required for chmod() (excluding QDLS, QSYS.LIB, and Independent ASP QSYS.LIB)

 Object Referred to Authority Required errno

Each directory in the path name

preceding the object

*X EACCES

Object Owner (see Note) EPERM

Note: You do not need the listed authority if you have *ALLOBJ special authority.

Authorization required for chmod() in the QDLS File System

 Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object Owner or *ALL EACCES

Authorization required for chmod() in the QSYS.LIB and Independent ASP QSYS.LIB file systems.

 Object Referred to Authority Required errno

Each directory in the path name

preceding the object

*X EACCES

The parent directory of the object if

the object is a save file

*RX EPERM

Object Owner (see Note) EPERM

Note: You do not need the listed authority if you have *ALLOBJ special authority.

Return Value

0 chmod() was successful.

-1 chmod() was not successful. The errno global variable is set to indicate the error.

Integrated File System APIs 31

Error Conditions

If chmod() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

32 iSeries: UNIX-Type -- Integrated File System APIs

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

Integrated File System APIs 33

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

 The thread does not have authority to perform the requested function.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

34 iSeries: UNIX-Type -- Integrated File System APIs

If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could also indicate one of the

following errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Integrated File System APIs 35

Usage Notes

 1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

– QFileSvr.400

 2. Root, QOpenSys, and User-Defined File System Differences

If the object has a primary group, it must match the primary group ID or one of the supplemental

group IDs of the caller of the API; otherwise, the S_ISGID bit is turned off.

 3. QSYS.LIB and independent ASP QSYS.LIB File System Differences

chmod() is not supported for member (.MBR) objects.

chmod() returns [EBUSY] if the object is allocated in another job.

QSYS.LIB and independent ASP QSYS.LIB do not support setting the S_ISUID (set-user-ID), S_ISGID

(set-group_ID), and

S_ISVTX (restricted rename and unlink)

bits. If they are turned on in the

mode parameter, they are ignored.

 4. QDLS File System Differences

Changing the permissions of the /QDLS directory (the root folder) is not allowed. If an attempt is

made to change the permissions, an [ENOTSUP] error is returned.

“Group” rights are not set if there is no current group.

QDLS does not support setting the S_ISUID, S_ISGID, and

S_ISVTX

bits. If they are turned on

in the mode parameter, they are ignored.

 5. QOPT File System Differences

Changing the permissions is allowed only for an object that exists on a volume formatted in

Universal Disk Format (UDF). For all other media formats, ENOTSUP is returned.

In addition to the authorization checks described in Authorization Required for chmod() (page 31),

the volume authorization list is checked for *CHANGE authority.

QOPT does not support setting the S_ISUID, S_ISGID, and

S_ISVTX

bits for any optical media

format. If they are turned on in the mode parameter, ENOTSUP is returned.

 6. QNetWare File System Differences

The QNetWare file system does not fully support chmod(). See NetWare on iSeries for more

information.

QNetWare supports the S_ISUID and S_ISGID bits by passing them to the server and surfacing them

to the caller. Some versions of NetWare may support the bits and others may not.

QNetWare does not support setting the S_ISVTX bit. If it is turned on in the mode parameter,

ENOTSUP is returned.

36 iSeries: UNIX-Type -- Integrated File System APIs

7. QFileSvr.400 Differences

QFileSvr.400 supports the S_ISUID, S_ISGID, and

S_ISVTX

bits by passing them to the server

and surfacing them to the caller.

 8. Network File System Differences

The NFS client supports the S_ISUID, S_ISGID, and

S_ISVTX

bits by passing them to the

server over the network and surfacing them to the caller. Whether a particular network file system

supports the setting of these bits depends on the server. Most servers have the capability of masking

off the

S_ISUID and S_ISGID

bits if the NOSUID option is specified on the export. The

default, however, is to support these

two

bits.

 9. QNTC File System Differences

chmod() does not update the Windows NT server access control lists that control the authority of

users to the file or directory. The mode settings are ignored.

10. S_ISGID bit of a directory in Root, QOpenSys, or User-Defined File System

The S_ISGID bit of the directory affects what the group ID (GID) is for objects that are created in the

directory. If the S_ISGID bit of the parent directory is off, the group ID (GID) is set to the effective

GID of the thread creating the object. If the S_ISGID bit of the parent directory is on, the group ID

(GID) of the new object is set to the GID of the parent directory. For all other file systems, the GID of

the new object is set to the GID of the parent directory.

Related Information

v The <sys/types.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <sys/stat.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “chown()—Change Owner and Group of File” on page 38—Change Owner and Group of File

v “fchmod()—Change File Authorizations by Descriptor” on page 95—Change File Authorizations by

Descriptor

v “mkdir()—Make Directory” on page 233—Make Directory

v “open()—Open File” on page 267—Open File

v “stat()—Get File Information” on page 592—Get File Information

v “QlgChmod()—Change File Authorizations (using NLS-enabled path name)” on page 327—Change File

Authorizations

Example

See Code disclaimer information for information pertaining to code examples.

The following example changes the permissions for a file:

#include <stdio.h>

#include <sys/stat.h>

#include <sys/types.h>

main() {

 char fn[]=“temp.file”;

 int file_descriptor;

 struct stat info;

 if ((file_descriptor = creat(fn, S_IWUSR)) == -1)

 perror(“creat() error”);

 else {

 if (stat(fn, &info)!= 0)

 perror("stat() error");

 else {

 printf("original permissions were: %08o\n", info.st_mode);

 }

 if (chmod(fn, S_IRWXU|S_IRWXG) != 0)

 perror("chmod() error");

Integrated File System APIs 37

aboutapis.htm#CODEDISCLAIMER

else {

 if (stat(fn, &info)!= 0)

 perror("stat() error");

 else {

 printf("after chmod(), permissions are: %08o\n", info.st_mode);

 }

 }

 if (close(file_descriptor)!= 0)

 perror("close() error");

 if (unlink(fn)!= 0)

 perror("unlink() error");

 }

}

Output:

original permissions were: 00100200

after chmod(), permissions are: 00100770

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

chown()—Change Owner and Group of File

 Syntax

 #include <unistd.h>

 int chown(const char *path, uid_t owner, gid_t group);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 44.

The chown() function changes the owner and group of a file. If the named file is a symbolic link,

chown() resolves the symbolic link. The permissions of the previous owner or primary group to the

object are revoked.

If the file is checked out by another user (someone other than the user profile of the current job), chown()

fails with the [EBUSY] error.

When chown() completes successfully, it updates the change time of the file.

Parameters

path

 (Input) A pointer to the null-terminated path name of the file whose owner and group are being

changed.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgChown()—Change Owner and Group of File (using NLS-enabled path name)” on page

329 for a description and an example of supplying the path in any CCSID.

38 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

owner

 (Input) The user ID (UID) of the new owner of the file.

group

 (Input) The group ID (GID) of the new group for the file.

 Note: Changing the owner or the primary group causes the S_ISUID (set-user-ID) and S_ISGID

(set-group-ID) bits of the file mode to be cleared, unless the caller has *ALLOBJ special authority. If the

caller does have *ALLOBJ special authority, the bits are not changed. This does not apply to directories or

FIFO special files. See the “chmod()—Change File Authorizations” on page 29 documentation.

Authorities

Note: Adopted authority is not used.

Authorization Required for chown() (excluding QSYS.LIB, independent ASP QSYS.LIB, and QDLS)

 Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object, when changing the owner Owner and

*OBJEXIST
(also see Note 1)

EPERM

Object, when changing the primary group See Note 2 EPERM

Previous owner’s user profile, when changing the owner *DLT EPERM

New owner’s user profile, when changing the owner *ADD EPERM

User profile of previous primary group, when changing the

primary group

*DLT EPERM

New primary group’s user profile, when changing the primary

group

*ADD EPERM

Note:

1. You do not need the listed authority if you have *ALLOBJ special authority.

2. At least one of the following must be true:

a. You have *ALLOBJ special authority.

b. You are the owner and either of the following:

v The new primary group is the primary group of the job.

v The new primary group is one of the supplementary groups of the job.

Authorization Required for chown() in the QSYS.LIB and independent ASP QSYS.LIB File Systems

 Object Referred to Authority Required errno

Each directory in the path name preceding the object *X
See Note 1

EACCES

Object when changing the owner See Note 2(a) EPERM

Object when changing the primary group See Note 2(b) EPERM

Integrated File System APIs 39

Object Referred to Authority Required errno

Note:

1. For *FILE objects (such as DDM file, diskette file, print file, and save file), *RX authority is required to the parent

directory of the object, rather than just *X authority.

2. The required authorization varies for each object type. For details of the following commands, see the iSeries

Security Reference

book.

a. CHGOWN

b. CHGPGP

Authorization Required for chown() in the QDLS File System

 Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object *ALLOBJ Special
Authority or Owner

EPERM

Previous owner’s user profile, when changing the owner *DLT EPERM

New owner’s user profile, when changing the owner *ADD EPERM

Previous primary group’s user profile, when changing the primary

group

*DLT EPERM

New primary group’s user profile, when changing the primary

group

*ADD EPERM

Authorization Required for chown() in the QOPT File System

 Object Referred to Authority Required errno

Volume authorization list *CHANGE EACCES

Each directory in the path name preceding the object. *X EACCES

Object *ALLOBJ Special
Authority or Owner

EPERM

Return Value

0 chown() was successful.

-1 chown() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If chown() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

40 iSeries: UNIX-Type -- Integrated File System APIs

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 owner or group is not a valid user ID (UID) or group ID (GID).

 owner is the current primary group of the object.

[EIO]

 Input/output error.

Integrated File System APIs 41

A physical I/O error occurred.

 A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

42 iSeries: UNIX-Type -- Integrated File System APIs

A named file or directory does not exist or is an empty string.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

 The thread does not have authority to perform the requested function.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Integrated File System APIs 43

Error Messages

The following messages may be sent from this API:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

chown() is not supported for member (.MBR) objects.

3. QDLS File System Differences

The owner and primary group of the /QDLS directory (root folder) cannot be changed. If an attempt

is made to change the owner and primary group, a [ENOTSUP] error is returned.

4. QOPT File System Differences

Changing the owner and primary group is allowed only for an object that exists on a volume

formatted in Universal Disk Format (UDF). For all other media formats, ENOTSUP will be returned.

QOPT file system objects that have owners will not be recognized by the Work with Objects by

Owner (WRKOBJOWN) CL command. Likewise, QOPT objects that have a primary group will not be

recognized by the Work Objects by Primary Group) CL command.

5. QFileSvr.400 File System Differences

The QFileSvr.400 file system does not support chown().

6. QNetWare File System Differences

The QNetWare file system does not support primary group. The GID must be zero.

7. QNTC File System Differences

The owner of files and directories cannot be changed. All files and directories in QNTC are owned by

the QDFTOWN user profile.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <limits.h> file (see “Header Files for UNIX-Type Functions” on page 680)

44 iSeries: UNIX-Type -- Integrated File System APIs

v “chmod()—Change File Authorizations” on page 29—Change File Authorizations

v “fchown()—Change Owner and Group of File by Descriptor” on page 101—Change Owner and Group

of File by Descriptor

v “fstat()—Get File Information by Descriptor” on page 132—Get File Information by Descriptor

v “lstat()—Get File or Link Information” on page 224—Get File or Link Information

v “stat()—Get File Information” on page 592—Get File Information

v “QlgChown()—Change Owner and Group of File (using NLS-enabled path name)” on page

329—Change Owner and Group of File

Example

See Code disclaimer information for information pertaining to code examples.

The following example changes the owner and group of a file:

#include <stdio.h>

#include <unistd.h>

#include <sys/stat.h>

#include <sys/types.h>

main() {

 char fn[]="temp.file";

 int file_descriptor;

 struct stat info;

 if ((file_descriptor = creat(fn, S_IRWXU)) == -1)

 perror("creat() error");

 else {

 close(file_descriptor);

 stat(fn, &info);

 printf("original owner was %d and group was %d\n", info.st_uid,

 info.st_gid);

 if (chown(fn, 152, 0) != 0)

 perror("chown() error");

 else {

 stat(fn, &info);

 printf("after chown(), owner is %d and group is %d\n",

 info.st_uid, info.st_gid);

 }

 unlink(fn);

 }

}

Output:

original owner was 137 and group was 0

after chown(), owner is 152 and group is 0

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 45

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

close()—Close File or Socket Descriptor

 Syntax

 #include <unistd.h>

 int close(int fildes);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 50.

The close() function closes a descriptor, fildes. This frees the descriptor to be returned by future open()

calls and other calls that create descriptors.

When the last open descriptor for a file is closed, the file itself is closed. If the link count of the file is

zero at that time, the space occupied by the file is freed and the file becomes inaccessible.

close() unlocks (removes) all outstanding byte locks that a job has on the associated file.

When all file descriptors associated with a pipe or FIFO special file are closed, any data remaining in the

pipe or FIFO is discarded and internal storage used is returned to the system.

When fildes refers to a socket, close() closes the socket identified by the descriptor.

For information about the exit point that can be associated with close(), see “Integrated File System

Scan on Close Exit Program” on page 656.

Parameters

fildes (Input) The descriptor to be closed.

Authorities

No authorization is required. Authorization is verified during open(), creat(), or socket().

Return Value

close() returns an integer. Possible values are:

 0 close() was successful.

-1 close() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If close() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

46 iSeries: UNIX-Type -- Integrated File System APIs

If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EDEADLK]

 Resource deadlock avoided.

 An attempt was made to lock a system resource that would have resulted in a deadlock situation.

The lock was not obtained.

 The function attempted was failed to prevent a deadlock.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

Integrated File System APIs 47

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

 Function not implemented.

 An attempt was made to use a function that is not available in this implementation for any object

or any arguments.

 The path name given refers to an object that does not support this function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

48 iSeries: UNIX-Type -- Integrated File System APIs

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ESCANFAILURE]

 Object had scan failure.

 An object has been marked as a scan failure due to processing by an exit program associated with

the scan-related integrated file system exit points.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 Additionally, if interaction with a file server is required to access the object, errno could indicate one of

the following errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

Integrated File System APIs 49

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

1.

This function will fail with error code [EBADF] when fildes is a scan descriptor that was passed to

one of the scan-related exit programs. See “Integrated File System Scan on Open Exit Program” on

page 666 and “Integrated File System Scan on Close Exit Program” on page 656 for more information.

2. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

3. When a socket descriptor is closed, the system tries to send any queued data associated with the

socket.

v For AF_INET sockets, depending on whether the SO_LINGER socket option is set, queued data may be

discarded.

Note: For these sockets, the default value for the SO_LINGER socket option has the option flag set off

(the system attempts to send any queued data with an infinite wait time).
4. A socket descriptor being shared among multiple processes is not closed until the process that issued

the close() is the last process with access to the socket.

50 iSeries: UNIX-Type -- Integrated File System APIs

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)
v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “dup()—Duplicate Open File Descriptor” on page 76—Duplicate Open File Descriptor

v “dup2()—Duplicate Open File Descriptor to Another Descriptor” on page 79—Duplicate Open File

Descriptor to Another Descriptor

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v

“Integrated File System Scan on Close Exit Program” on page 656

v “open()—Open File” on page 267—Open File

v setsockopt()—Set Socket Options

v “unlink()—Remove Link to File” on page 624—Remove Link to File

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses close()

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

main() {

 int fd1, fd2;

 char out[20]="Test string",

 fn[]="test.file",

 in[20];

 short write_error;

 memset(in, 0x00, sizeof(in));

 write_error = 0;

 if ((fd1 = creat(fn,S_IRWXU)) == -1)

 perror("creat() error");

 else if ((fd2 = open(fn,O_RDWR)) == -1)

 perror("open() error");

 else {

 if (write(fd1, out, strlen(out)+1) == -1) {

 perror("write() error");

 write_error = 1;

 }

 close(fd1);

 if (!write_error) {

 if (read(fd2, in, sizeof(in)) == -1)

 perror("read() error");

 else printf("string read from file was: ’%s’\n", in);

 }

 close(fd2);

 }

}

Output:

string read from file was: ’Test string’

Integrated File System APIs 51

ssocko.htm
aboutapis.htm#CODEDISCLAIMER

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

closedir()—Close Directory

 Syntax

 #include <sys/types.h>

 #include <dirent.h>

 int closedir(DIR *dirp);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 56.

The closedir() function closes the directory stream indicated by dirp. It frees the buffer that readdir() uses

when reading the directory stream.

A file descriptor is used for type DIR; closedir() closes the file descriptor.

Parameters

dirp (Input) A pointer to a DIR that refers to the open directory stream to be closed. This pointer is

returned by the opendir() function.

Authorities

No authorization is required. Authorization is verified during opendir().

Return Value

0 closedir() was successful.

-1 closedir() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If closedir() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

52 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

 This may occur when dirp does not refer to an open directory stream.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

 This may occur when dirp does not refer to an open directory stream.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

Integrated File System APIs 53

A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

 Function not implemented.

 An attempt was made to use a function that is not available in this implementation for any object

or any arguments.

 The path name given refers to an object that does not support this function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

54 iSeries: UNIX-Type -- Integrated File System APIs

Function is not allowed in a job that is running with multiple threads.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Integrated File System APIs 55

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. If the dirp argument passed to closedir() does not refer to an open directory, closedir() returns the

[EBADF] or [EFAULT] error.

3. After a call to closedir() the dirp will not point to a valid DIR.

Related Information

v The <sys/types.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <dirent.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “opendir()—Open Directory” on page 288—Open Directory

v “readdir()—Read Directory Entry” on page 557—Read Directory Entry

v “rewinddir()—Reset Directory Stream to Beginning” on page 583—Reset Directory Stream to Beginning

Example

See Code disclaimer information for information pertaining to code examples.

The following example closes a directory:

#include <stdio.h>

#include <sys/types.h>

#include <dirent.h>

main() {

 DIR *dir;

 struct dirent *entry;

 int count;

 if ((dir = opendir("/")) == NULL)

 perror("opendir() error");

 else {

56 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

count = 0;

 while ((entry = readdir(dir)) != NULL) {

 printf("directory entry %03d: %s\n", ++count, entry->d_name);

 }

 closedir(dir);

 }

}

Output:

directory entry 001: .

directory entry 002: ..

directory entry 003: QSYS.LIB

directory entry 004: QDLS

directory entry 005: QOpenSys

directory entry 006: home

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

creat()—Create or Rewrite File

 Syntax

 #include <fcntl.h>

 int creat(const char *path, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The creat() function creates a new file or rewrites an existing file so that it is truncated to zero length. The

function call

 creat(path,mode);

is equivalent to the call

 open(path, O_CREAT|O_WRONLY|O_TRUNC, mode);

This means that the file named by path is created if it does not already exist, opened for writing only, and

truncated to zero length. For further information, see “open()—Open File” on page 267—Open File.

The mode argument specifies file permission bits to be used in creating the file. For more information on

mode, see “chmod()—Change File Authorizations” on page 29—Change File Authorizations.

Parameters

path (Input) A pointer to the null-terminated path name of the file to be created or rewritten.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 When a new file is created, the new file name is assumed to be represented in the language and

country or region currently in effect for the job.

Integrated File System APIs 57

#TOP_OF_PAGE
unix.htm
aplist.htm

See “QlgCreat()—Create or Rewrite File (using NLS-enabled path name)” on page 331 for a

description and an example of supplying the path in any CCSID.

mode (Input) The file permission bits to be used when creating the file. The S_ISUID (set-user-ID),

S_ISGID (set-group-ID), and

S_ISVTX,

bits also may be specified when creating the file.

 See “chmod()—Change File Authorizations” on page 29 for details on the values that can be

specified for mode.

Authorities

Note: Adopted authority is not used.

Authorization Required for creat() (excluding QSYS.LIB, independent ASP QSYS.LIB, and QDLS)

 Object Referred to Authority Required errno

Each directory in the path name

preceding the object to be created

*X EACCES

Existing object *W EACCES

Parent directory of object to be

created when object does not exist

*WX EACCES

Authorization Required for creat() in the QSYS.LIB and independent ASP QSYS.LIB File Systems

 Object Referred to Authority Required errno

Each directory in the path name

preceding the object to be created

*X EACCES

Existing object *W EACCES

Existing object when object is a

save file

*RWX EACCES

Parent directory of object to be

created when object does not exist

*OBJMGT or *OBJALTER EACCES

Parent directory of object to be

created when object does not exist

and object type is *USRSPC or save

file

*RX and *Add EACCES

Parent directory of the parent

directory of object to be created when

object does not exist and object being

created is a physical file member

*Add EACCES

Authorization Required for creat() in the QDLS File System

 Object Referred to Authority Required errno

Each directory in the path name

preceding the object to be created

*X EACCES

Existing object *W EACCES

Parent directory of object to be

created when object does not exist

*CHANGE EACCES

Return Value

value creat() was successful. The value returned is the file descriptor for the open file.

58 iSeries: UNIX-Type -- Integrated File System APIs

-1 creat() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If creat() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

 The open sharing mode may conflict with another open of this file, or O_WRONLY or O_RDWR

is specified and the file is checked out by another user.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EEXIST]

 File exists.

 The file specified already exists and the specified operation requires that it not exist.

 The named file, directory, or path already exists.

[EFAULT]

 The address used for an argument is not correct.

Integrated File System APIs 59

In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

v Unused bits in mode are set and should be cleared.

v It is invalid to open this type of object.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EISDIR]

 Specified target is a directory.

 The path specified named a directory where a file or object name was expected.

 The path name given is a directory.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

60 iSeries: UNIX-Type -- Integrated File System APIs

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[EMFILE]

 Too many open files for this process.

 An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of

OPEN_MAX can be retrieved using the sysconf() function.

 The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENFILE]

 Too many open files in the system.

 A system limit has been reached for the number of files that are allowed to be concurrently open

in the system.

 The entire system has too many other file descriptors already open.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

Integrated File System APIs 61

The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOSYSRSC]

 System resources not available to complete request.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EOVERFLOW]

 Object is too large to process.

 The object’s data size exceeds the limit allowed by this function.

 The specified file exists and its size is too large to be represented in a variable of type off_t (the

file is larger than 2GB minus 1 byte).

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

62 iSeries: UNIX-Type -- Integrated File System APIs

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

Integrated File System APIs 63

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. ″Root″ (/), QOpenSys, and User-Defined File System Differences

The user who creates the file becomes its owner. If the S_ISGID bit of the parent directory is off, the

group ID (GID) is set to the effective GID of the thread creating the object. If the S_ISGID bit of the

parent directory is on, the group ID (GID) is copied from the parent directory in which the file is

created.

The owner, primary group, and public object authorities (*OBJEXIST, *OBJMGT, *OBJALTER, and

*OBJREF) are copied from the parent directory’s owner, primary group, and public object authorities.

This occurs even when the new file has a different owner than the parent directory. The owner,

primary group, and public data authorities (*R, *W, and *X) are derived from the permissions

specified in the mode (except for those permissions that are also set in the file mode creation mask).

The new file does not have any private authorities or authorization list. It only has authorities for the

owner, primary group, and public.

3. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

When creating a member, the ownership, group profile, and authorities are all derived from the

member’s parent physical file. The input mode value is ignored.

The group ID is obtained from the primary user profile, if a group profile exists.

The owner object authorities are set to *OBJEXIST, *OBJMGT, *OBJALTER, and *OBJREF. The primary

group object authorities are specified by options in the user profile of the job. None of the public

object authorities are set.

The owner, primary group, and public data authorities (*R, *W, and *X) are derived from the

permissions specified in the mode (except for those permissions that are also set in the file mode

creation mask). The data authorities must match the data authorities of the file in which the member

is being created.

The primary group authorities are not saved if the primary group does not exist. When a primary

group is attached to the object, the object gets the authorities specified in mode.

A member cannot be created in a mixed-CCSID file.

The file access time for a database member is updated using the normal rules that apply to database

files. At most, the access time is updated once per day.

4. QDLS File System Differences

The user who creates the file becomes its owner. The group ID is copied from the parent folder in

which the file is created.

The owner object authority is set to *OBJMGT + *OBJEXIST + *OBJALTER + *OBJREF.

The primary group and public object authority and all other authorities are copied from the parent

folder.

The owner, primary group, and public data authority (including *OBJOPR) are derived from the

permissions specified in mode (except those permissions that are also set in the file mode creation

mask).

The primary group authorities specified in mode are not saved if no primary group exists.

5. QOPT File System Differences

When the volume on which the file is being created is formatted in Universal Disk Format (UDF):

64 iSeries: UNIX-Type -- Integrated File System APIs

v The authorization that is checked for the object and preceding directories in the path name follows

the rules described in ″Authorization Required for creat().″ (page 58)

v The volume authorization list is checked for *CHANGE authority.

v The user who creates the file becomes its owner.

v The group ID is copied from the parent directory in which the file is created.

v The owner, primary group, and public data authorities (*R, *W, and *X) are derived from the

permissions specified in the mode (except those permissions that are also set in the file mode

creation mask).

v The resulting share mode is O_SHARE_NONE; therefore, the function call

creat(path,mode);

is equivalent to the call

open(path,

 O_CREAT|O_WRONLY|O_TRUNC|O_SHARE_NONE,

 mode);

v The same uppercase and lowercase forms in which the names are entered are preserved. No

distinction is made between uppercase and lower case when searching for names.

When the volume on which the file is being created is not formatted in Universal Disk Format (UDF):

v No authorization checks are made on the object or preceding directories in the path name.

v The volume authorization list is checked for *CHANGE authority.

v QDFTOWN becomes the owner of the file.

v No group ID is assigned to the file.

v The permissions specified in the mode are ignored. The owner, primary group, and public data

authorities are set to RWX.

v For newly created files, names are created in uppercase. No distinction is made between uppercase

and lowercase when searching for names.

A file cannot be created as a direct child of /QOPT.

The change and modification times of the parent directory are not updated.

6. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. The creation of a file may fail if permissions and other attributes that are

stored locally by the Network File System are more restrictive than those at the server. A later attempt

to create a file can succeed when the locally stored data has been refreshed. (Several options on the

Add Mounted File System (ADDMFS) command determine the time between refresh operations of

local data.) The creation can also succeed after the file system has been remounted.

If you try to re-create a file that was recently deleted, the request may fail because data that was

stored locally by the Network File System still has a record of the file’s existence. The creation

succeeds when the locally stored data has been updated.

Once a file is open, subsequent requests to perform operations on the file can fail because file

attributes are checked at the server on each request. If permissions on the file are made more

restrictive at the server or the file is unlinked or made unavailable by the server for another client,

your operation on an open file descriptor will fail when the local Network File System receives these

updates. The local Network File System also impacts operations that retrieve file attributes. Recent

changes at the server may not be available at your client yet, and old values may be returned from

operations.

7. QNetWare File System Differences

The user who creates the file becomes the owner. Mode bits are not fully supported. See NetWare on

iSeries for more information.

Integrated File System APIs 65

8. This function will fail with the [EOVERFLOW] error if the specified file exists and its size is too large

to be represented in a variable of type off_t (the file is larger than 2GB minus 1 byte).

9. When you develop in C-based languages and this function is compiled with the _LARGE_FILES

macro defined, it will be mapped to creat64().

Related Information

v The <fcntl.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “creat64()—Create or Rewrite a File (Large File Enabled)”—Create or Rewrite a File (Large File

Enabled)

v “open()—Open File” on page 267—Open File

v “QlgCreat()—Create or Rewrite File (using NLS-enabled path name)” on page 331—Create or Rewrite

File

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a file:

#include <stdio.h>

#include <fcntl.h>

main() {

 char fn[]="creat.file", text[]="This is a test";

 int fd, rc;

 if ((fd = creat(fn, S_IRUSR | S_IWUSR)) < 0)

 perror("creat() error");

 else {

 if (-1==(rc=write(fd, text, strlen(text))))

 perror("write() error");

 if (close(fd) != 0)

 perror("close() error");

 if (unlink(fn)!= 0)

 perror("unlink() error");

 }

}

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

creat64()—Create or Rewrite a File (Large File Enabled)

 Syntax

 #include <fcntl.h>

 int creat64(const char *path, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 67.

66 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

The creat64() function creates a new file or rewrites an existing file so that it is truncated to zero length.

The open file instance created with creat64() is allowed to be larger than 2GB minus 1 byte. The function

call

 creat64(path,mode);

is equivalent to the call

 open64(path, O_CREAT|O_WRONLY|O_TRUNC, mode);

If the file named by path does not already exist, it is created. The file is then opened for writing only and

truncated to zero length. For further information, see “open64()—Open File (Large File Enabled)” on page

287—Open File (Large File Enabled).

See “QlgCreat64()—Create or Rewrite a File (large file enabled and using NLS-enabled path name)” on

page 332—Create or Rewrite a File (Large File Enabled) for a description and an example of supplying

the path in any CCSID.

The mode argument specifies file permission bits to be used in creating the file. For more information on

mode, see “fchmod()—Change File Authorizations by Descriptor” on page 95—Change File

Authorizations.

For additional information about parameters, authorities required, error conditions, and examples, see

“creat()—Create or Rewrite File” on page 57—Create or Rewrite File.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden. To

use the creat64() API, you must compile the source with _LARGE_FILE_API macro defined.

2. All of the usage notes for creat() apply to creat64(). See “Usage Notes” on page 63 in the creat() API.

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

DosSetFileLocks()—Lock and Unlock a Byte Range of an Open File

 Syntax

 #define INCL_DOSERRORS

 #define INCL_DOSFILEMGR

 #include <os2.h>

 APIRET APIENTRY DosSetFileLocks(HFILE FileHandle,

 PFILELOCK ppUnLockRange,

 PFILELOCK ppLockRange,

 ULONG ulTimeOut,

 ULONG ulFlags);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 70.

The DosSetFileLocks() function locks and unlocks a range of an open file. A non-zero range indicates

that a lock or unlock request is being made.

Integrated File System APIs 67

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

FileHandle

(Input) The file descriptor of the file in which a range is to be locked.

ppUnlockRange

(Input) Address of the structure containing the offset and length of a range to be unlocked. The

structure is as follows:

FileOffset

The offset to the beginning of the range to be unlocked.

RangeLength

The length of the range to be unlocked. A value of zero means that unlocking is not

required.

ppLockRange

(Input) Address of the structure containing the offset and length of a range to be locked. The

structure is as follows:

FileOffset

The offset to the beginning of the range to be locked.

RangeLength

The length of the range to be locked. A value of zero means that locking is not required.

ulTimeOut

(Input) The maximum time, in milliseconds, that the process is to wait for the requested locks.

ulFlags

(Input) Flags that describe the action to be taken. If any flags other than those listed below are

specified, the error ERROR_INVALID_PARAMETER will be returned.

 The following values are to be specified in ulFlags:

’0x0002’ or QP0L_DOSSETFILELOCKS_ATOMIC

Atomic. This bit defines a request for atomic locking. If this bit is set to 1 and the lock

range is equal to the unlock range, an atomic lock occurs. If this bit is set to 1 and the

lock range is not equal to the unlock range, ERROR_LOCK_VIOLATION is returned.

’0x0001’ or QP0L_DOSSETFILELOCKS_SHARE

Share. This bit defines the type of access that other processes may have to the file range

that is being locked.

 If this bit is set to 0 (the default), other processes have no access to the locked file range.

The current process has exclusive access to the locked file range, which must not overlap

any other locked file range.

 If this bit is set to 1, the current process and other processes have shared access to the

locked file range. A file range with shared access may overlap any other file range with

shared access, but must not overlap any other file range with exclusive access.

Authorities

No authorization is required.

68 iSeries: UNIX-Type -- Integrated File System APIs

Return Value

NO_ERROR (0)

DosSetFileLocks() was successful.

value When value is not NO_ERROR (non-zero), DosSetFileLocks() was not successful. The value that is

returned indicates the error.

Error Conditions

If DosSetFileLocks() is not successful, the value that is returned is one of the following errors. The

<bseerr.h> header file defines these values.

[ERROR_GEN_FAILURE]

 A general failure occurred.

 This may result from damage in the system. Refer to messages in the job log for other possible

causes.

[ERROR_INVALID_HANDLE]

 An invalid file handle was found.

 The file handle passed to this function is not valid.

[ERROR_LOCK_VIOLATION]

 A lock violation was found.

 The requested lock and unlock ranges are both zero.

[ERROR_INVALID_PARAMETER]

 An invalid parameter was found.

 A parameter passed to this function is not valid.

 The byte range specified by the offset and length in the ppUnlockRange or ppLockRange

parameters extends beyond 2GB minus 1 byte.

[ERROR_ATOMIC_LOCK_NOT_SUPPORTED]

 The atomic lock operation is not supported.

 The file system does not support atomic lock operations.

[ERROR_TIMER_NOT_SUPPORTED]

 The lock timer value is not supported.

 The file system does not support the lock timer value.

Error Messages

The system may send the following messages from this function.

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Integrated File System APIs 69

Usage Notes

1.

If this function is called by a thread executing one of the scan-related exit programs (or any of its

created threads), it will fail with error code [ENOTSUP]. See “Integrated File System Scan on Open

Exit Program” on page 666 and “Integrated File System Scan on Close Exit Program” on page 656 for

more information.

2. This function will fail with error code [ERROR_GEN_FAILURE] when all the following conditions are

true:

v Where multiple threads exist in the job.

v The object this function is operating on resides in a file system that is not threadsafe. Only the

following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

QFileSvr.400

3. The following file systems do not support timer values other than 0. An attempt to a value other than

0 for the timer value results in an ERROR_TIMER_NOT_SUPPORTED error.

4. The following file systems do not support the atomic locking flag. If you turn on the atomic locking

flag, an ERROR_ATOMIC_LOCKS_NOT_SUPPORTED error is returned.

v Root

v QOpenSys

v User-Defined File System

v QDLS

v QOPT

v QNetWare
5. The following file systems do not support byte range locks. An attempt to use this API results in an

ERROR_GEN_FAILURE error.

v QSYS.LIB

v Independent ASP QSYS.LIB

v Network File System

v

QFileSvr.400

6. When you develop in C-based languages and this function is compiled with the _LARGE_FILES

macro defined, it will be mapped to DosSetFileLocks64(). Additionally, the PFILELOCK data type will

be mapped to a type PFILELOCK64.

7. Locks placed on character special files result in advisory locks. For more information on advisory

locking, please see the “fcntl()—Perform File Control Command” on page 115.

Related Information

v The <fcntl.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <os2.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <os2def.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <bse.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <bsedos.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <bseerr.h> file (see “Header Files for UNIX-Type Functions” on page 680)

70 iSeries: UNIX-Type -- Integrated File System APIs

v “DosSetFileLocks64()—Lock and Unlock a Byte Range of an Open File (Large File Enabled)” on page

72—Lock and Unlock a Byte Range of an Open File (Large File Enabled)

Example

See Code disclaimer information for information pertaining to code examples.

The following example opens, locks, and unlocks a file.

#define INCL_DOSERRORS

#define INCL_DOSFILEMGR

#include <os2.h>

#include <stdio.h>

#define NULL_RANGE 0L

#define LOCK_FLAGS 0

main() {

 char fn[]="lock.file";

 char buf[] =

 "Test data for locking and unlocking range of a file";

 int fd;

 ULONG lockTimeout = 2000; /* lock timeout of 2 seconds */

 FILELOCK Area; /* area of file to lock/unlock */

 Area.Offset = 4; /* start locking at byte 4 */

 Area.Range = 10; /* lock 10 bytes for the file */

 /* Create a file for this example */

 fd = creat(fn, S_IWUSR | S_IRUSR);

 /* Write some data to the file */

 write(fd, buf, sizof(buf) -1);

 close(fd);

 /* Open the file */

 if ((fd = open(fn, O_RDWR) < 0)

 {

 perror("open() error");

 return;

 }

 /* Lock a range */

 rc = DosSetFileLocks((HFILE)fd,

 NULL_RANGE,

 &Area,

 &LockTimeout,

 LOCK_FLAGS);

 if(rc != 0) /* Lock failed */

 {

 perror("DosSetFileLocks() error");

 }

 /* Unlock a range */

 rc = DosSetFileLocks((HFILE)fd,

 &Area,

 NULL_RANGE,

 &LockTimeout,

 LOCK_FLAGS);

 if(rc != 0) /* Unlock failed */

 {

 perror("DosSetFileLocks() error");

 }

 close(fd);

 unlink(fn);

}

Integrated File System APIs 71

aboutapis.htm#CODEDISCLAIMER

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

DosSetFileLocks64()—Lock and Unlock a Byte Range of an Open File

(Large File Enabled)

 Syntax

 #define INCL_DOSERRORS

 #define INCL_DOSFILEMGR

 #include <os2.h>

 APIRET APIENTRY DosSetFileLocks64(HFILE FileHandle,

 PFILELOCK64 ppUnLockRange,

 PFILELOCK64 ppLockRange,

 ULONG ulTimeOut,

 ULONG ulFlags);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes.”

The DosSetFileLocks64() function locks and unlocks a range of an open file. A non-zero range indicates

that a lock or unlock request is being made.

The DosSetFileLocks64() treats the values specified in the PFILELOCK64 structure as unsigned.

The maximum offset that can be specified using DosSetFileLocks64() is the largest value that can be held

in an 8-byte, unsigned integer, 264 - 1.

The maximum length that can be specified using DosSetFileLocks64() is the largest value that can be held

in an 8-byte, unsigned integer, 264 - 1.

DosSetFileLocks64() is enabled for large files. It is capable of operating on files larger than 2GB minus 1

byte as long as the file has been opened by either of the following:

v Using the open64() function (see “open64()—Open File (Large File Enabled)” on page 287).

v Using the open() function (see “open()—Open File” on page 267) with the O_LARGEFILE flag set in

the oflag parameter. Note that the PFILELOCK64 type will hold offsets greater than 2 GB minus 1 byte.

For details about parameters, authorities required, error conditions, and examples, see

“DosSetFileLocks()—Lock and Unlock a Byte Range of an Open File” on page 67.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden. To

use the DosSetFileLocks64() API and the PFILELOCK64 data type, you must compile the source with

_LARGE_FILE_API defined.

2. For additional usage notes about this API, see “Usage Notes” on page 70 in the DosSetFileLocks()

API.

72 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Related Information

v The <fcntl.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <os2.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <os2def.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <bse.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <bsedos.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <bseerr.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “DosSetFileLocks()—Lock and Unlock a Byte Range of an Open File” on page 67—Lock and Unlock a

Byte Range of an Open File

 API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

DosSetRelMaxFH()—Change Maximum Number of File Descriptors

 Syntax

 #define INCL_DOSERRORS

 #define INCL_DOSFILEMGR

 #include <os2.h>

 APIRET APIENTRY DosSetRelMaxFH(PLONG pcbReqCount,

 PULONG pcbCurMaxFH);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The DosSetRelMaxFH() function requests that the system change the maximum number of file

descriptors for the calling process (job). The system preserves all file descriptors that are currently open.

A request to increase the maximum number of file descriptors by more than the system can accommodate

will succeed. The resulting maximum will be the largest number possible, but will be less than what you

requested.

A request to decrease the maximum number of file descriptors will succeed. The resulting maximum will

be the smallest number possible, but may be more than what you expected. For example, assume that the

current maximum is 200 and there are 150 open files. A request to decrease the maximum by 75 results in

the maximum being decreased by only 50, to 150, to preserve the open file descriptors.

A request to decrease the maximum number of file descriptors to below 20 will succeed, but the

maximum will never be decreased below 20.

To retrieve the current maximum number of file descriptors, without any side effects, the value pointed

to by pcbReqCount should be set to zero.

Parameters

pcbReqCount

(Input) A pointer to the number to be added to the maximum number of file descriptors for the

Integrated File System APIs 73

#TOP_OF_PAGE
unix.htm
aplist.htm

calling process. If the value pointed to by pcbReqCount is positive, the system increases the

maximum number of file descriptors. If the value pointed to by pcbReqCount is negative, the

system decreases the maximum number of file descriptors.

pcbCurMaxFH

(Output) A pointer to the location to receive the new total number of allocated file descriptors.

Authorities

No authorization is required.

Return Value

NO_ERROR (0)

DosSetRelMaxFH() was successful. The function returns NO_ERROR (0) even if the system

disregards or partially fulfills a request for an increase or a decrease (for example, decreasing by a

smaller number than requested). You should examine the value pointed to by pcbCurMaxFH to

determine the result of this function.

value When value is not NO_ERROR (non-zero), DosSetRelMaxFH() was not successful. The value that

is returned indicates the error.

Error Conditions

If DosSetRelMaxFH() is not successful, the value that is returned is one of the following errors. The

<bseerr.h> header file defines these values.

[ERROR_GEN_FAILURE]

 A general failure occurred.

 This may result from damage in the system. Refer to messages in the job log for other possible

causes.

[ERROR_PROTECTION_VIOLATION]

 A protection violation occurred.

 A pointer passed to this function is not a valid pointer.

Error Messages

The system may send the following messages from this function.

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. If you are using the select() API, you should be aware of the value of the FD_SETSIZE macro defined

in the <sys/types.h> header file. This value is defined to be 200. This means that the fd_set structure

is defined to contain 200 bits, one for each file descriptor.

If your application uses DosSetRelMaxFH() to increase the maximum number of file descriptors

beyond 200, you should consider defining your own value for the FD_SETSIZE macro prior to

including <sys/types.h>. This is to ensure that the fd_set structure is defined with the correct number

of bits to accommodate the actual maximum number of file descriptors.

74 iSeries: UNIX-Type -- Integrated File System APIs

2. The maximum number of file descriptors for this process may be obtained by using the sysconf() API

with the _SC_OPEN_MAX parameter.

3.

If this function is called by a thread executing one of the scan-related exit programs (or any of its

created threads), it will fail with error code [ERROR_GEN_FAILURE]. See “Integrated File System

Scan on Open Exit Program” on page 666 and “Integrated File System Scan on Close Exit Program”

on page 656 for more information.

Related Information

v The <os2.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <os2def.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <bse.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <bsedos.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <bseerr.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <sys/types.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The select() API

v “sysconf()—Get System Configuration Variables” on page 620—Get System Configuration Variables

Example

See Code disclaimer information for information pertaining to code examples.

The following example increases the maximum number of file descriptors by two.

#define INCL_DOSERRORS

#define INCL_DOSFILEMGR

#include <os2.h>

#include <stdio.h>

void main()

{

 long ReqCount = 0; /* Number to add to maximum */

 /* file descriptor count. */

 ulong CurMaxFH; /* New count of file descriptors. */

 int rc; /* Return code. */

 /* Find out what the initial maximum is.*/

 if (NO_ERROR == (rc = DosSetRelMaxFH(&ReqCount, &CurMaxFH))

 {

 printf("Initial maximum = %d",CurMaxFH);

 ReqCount = 2; /* Set up to increase by 2. */

 if (NO_ERROR == (rc = DosSetRelMaxFH(&ReqCount, &CurMaxFH))

 {

 printf(" New maximum = %d",CurMaxFH);

 }

 }

 if (NO_ERROR != rc)

 {

 printf("Error = &d",rc);

 }

}

Output:

Initial maximum = 200 New maximum = 202

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 75

sselect.htm
aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

dup()—Duplicate Open File Descriptor

 Syntax

 #include <unistd.h>

 int dup(int fildes);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The dup() function returns a new open file descriptor. The new descriptor refers to the same open file as

fildes and shares any locks.

If the original file descriptor was opened in text mode, data conversion is also done on the duplicated file

descriptor.

The FD_CLOEXEC flag that is associated with the new file descriptor is cleared. Refer to

“fcntl()—Perform File Control Command” on page 115—Perform File Control Command for additional

information about the FD_CLOEXEC flag.

Parameters

fildes (Input) A descriptor to be duplicated.

 The following operations are equivalent:

 fd = dup(fildes);

 fd = fcntl(fildes,F_DUPFD,0);

For further information, see “fcntl()—Perform File Control Command” on page 115.

Authorities

No authorization is required.

Return Value

value dup() was successful. The value returned is the new descriptor.

-1 dup() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If dup() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

76 iSeries: UNIX-Type -- Integrated File System APIs

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECANCEL]

 Operation canceled.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ENOSYS]

 Function not implemented.

 An attempt was made to use a function that is not available in this implementation for any object

or any arguments.

 The path name given refers to an object that does not support this function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ESTALE]

 File or object handle rejected by server.

Integrated File System APIs 77

If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1.

This function will fail with error code [EBADF] when fildes is a scan descriptor that was passed to

one of the scan-related exit programs. See “Integrated File System Scan on Open Exit Program” on

page 666 and “Integrated File System Scan on Close Exit Program” on page 656 for more information.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “close()—Close File or Socket Descriptor” on page 46—Close File or Socket Descriptor

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “dup2()—Duplicate Open File Descriptor to Another Descriptor” on page 79—Duplicate Open File

Descriptor to Another Descriptor

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v “open()—Open File” on page 267—Open File

Example

See Code disclaimer information for information pertaining to code examples.

The following example duplicates an open descriptor:

#include <fcntl.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <stdio.h>

#include <errno.h>

void print_file_id(int file_descriptor) {

 struct stat info;

 if (fstat(file_descriptor, &info) != 0)

 fprintf(stderr, "stat() error for file_descriptor %d: %s\n",

 strerror(errno));

 else

 printf("The file id of file_descriptor %d is %d\n",

 file_descriptor,(int) info.st_ino);

}

78 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

main() {

 int file_descriptor, file_descriptor2;

 char fn[]="original.file";

 /* create original file */

 if((file_descriptor = creat(fn,S_IRUSR | S_IWUSR)) < 0)

 perror("creat() error");

 /* generate a duplicate file descriptor of file_descriptor */

 else {

 if ((file_descriptor2 = dup(file_descriptor)) < 0)

 perror("dup() error");

 /* print resulting information */

 else {

 print_file_id(file_descriptor);

 print_file_id(file_descriptor2);

 puts("The file descriptors are different but");

 puts("they point to the same file.");

 close(file_descriptor);

 close(file_descriptor2);

 }

 unlink(fn);

 }

}

Output:

The file id of file_descriptor 0 is 30

The file id of file_descriptor 3 is 30

The file descriptors are different but

they point to the same file.

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

dup2()—Duplicate Open File Descriptor to Another Descriptor

 Syntax

 #include <unistd.h>

 int dup2(int fildes, int fildes2);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 81.

The dup2() function returns a descriptor with the value fildes2. The descriptor refers to the same file as

fildes, and it will close the file that fildes2 was associated with.

If the original file descriptor was opened in text mode, data conversion is also done on the duplicated file

descriptor.

The FD_CLOEXEC flag that is associated with the new file descriptor is cleared. Refer to

“fcntl()—Perform File Control Command” on page 115—Perform File Control Command for additional

information about the FD_CLOEXEC flag.

Integrated File System APIs 79

#TOP_OF_PAGE
unix.htm
aplist.htm

The following conditions apply:

v If fildes2 is less than zero or greater than or equal to OPEN_MAX, dup2() returns -1 and sets the errno

global variable to [EBADF].

v If fildes is a valid descriptor and is equal to fildes2, dup2() returns fildes2 without closing it.

v If fildes is not a valid descriptor, dup2() fails and does not close fildes2.

This function works with descriptors for any type of object.

Parameters

fildes (Input) A descriptor to be duplicated.

fildes2 (Input) The descriptor to which the duplication is made.

Authorities

No authorization is required.

Return Value

value dup2() was successful. The value of fildes2 is returned.

-1 dup2() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If dup2() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EIO]

 Input/output error.

80 iSeries: UNIX-Type -- Integrated File System APIs

A physical I/O error occurred.

 A referenced object may be damaged.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1.

If this function is called by a thread executing one of the scan-related exit programs (or any of its

created threads), it will fail with error code [ENOTSUP]. See “Integrated File System Scan on Open

Exit Program” on page 666 and “Integrated File System Scan on Close Exit Program” on page 656 for

more information.

2. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

Integrated File System APIs 81

–

Network File System

–

QFileSvr.400

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “close()—Close File or Socket Descriptor” on page 46—Close File or Socket Descriptor

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “dup()—Duplicate Open File Descriptor” on page 76—Duplicate Open File Descriptor

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v “open()—Open File” on page 267—Open File

Example

See Code disclaimer information for information pertaining to code examples.

The following example duplicates an open descriptor:

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <errno.h>

void print_file_id(int file_descriptor) {

 struct stat info;

 if (fstat(file_descriptor, &info) != 0)

 fprintf(stderr, "stat() error for file_descriptor %d: %s\n",

 strerror(errno));

 else

 printf("The file id of file_descriptor %d is %d\n", file_descriptor,

 (int) info.st_ino);

}

main() {

 int file_descriptor, file_descriptor2;

 char fn[] = "original.file";

 char fn2[] = "dup2.file";

 /* create original file */

 if((file_descriptor = creat(fn, S_IRUSR | S_IWUSR)) < 0)

 perror("creat() error");

 /* create file to dup to */

 else if((file_descriptor2 = creat(fn2, S_IWUSR)) < 0)

 perror("creat()error");

 /* dup file_descriptor to file_descriptor2; print results */

 else {

 print_file_id(file_descriptor);

 print_file_id(file_descriptor2);

 if ((file_descriptor2 = dup2(file_descriptor, file_descriptor2)) < 0)

 perror("dup2() error");

 else {

 puts("After dup2()...");

 print_file_id(file_descriptor);

 print_file_id(file_descriptor2);

 puts("The file descriptors are different but they");

 puts("point to the same file which is different than");

 puts("the file that the second file_descriptor originally pointed to.");

 close(file_descriptor);

 close(file_descriptor2);

 }

82 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

unlink(fn);

 unlink(fn2);

 }

}

Output:

The file id of file_descriptor 0 is 30

The file id of file_descriptor 3 is 58

After dup2()...

The file id of file_descriptor 0 is 30

The file id of file_descriptor 3 is 30

The file descriptors are different, but they

point to the same file, which is different than

the file that the second file_descriptor originally pointed to.

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

faccessx()—Determine File Accessibility for a Class of Users

 Syntax

 #include <unistd.h>

 int faccessx(int fildes, int amode, int who);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 88.

The faccessx() function determines whether a file can be accessed by a specified class of users in a

particular manner.

Adopted authority is not used.

Parameters

fildes (Input) The file descriptor of the file that is having its accessibility checked.

amode (Input) A bitwise representation of the access permissions to be checked.

 The following symbols, which are defined in the <unistd.h> header file, can be used in amode:

F_OK (x’00’) Tests whether the file exists

R_OK (x’04’) Tests whether the file can be accessed for reading

W_OK (x’02’) Tests whether the file can be accessed for writing

X_OK (x’01’) Tests whether the file can be accessed for execution

You can take the bitwise inclusive OR of any or all of the last three symbols to test several access

modes at once. If you are using F_OK to test for the existence of the file, you cannot use OR with

any of the other symbols. If any other bits are set in amode, faccessx() returns the [EINVAL] error.

Integrated File System APIs 83

#TOP_OF_PAGE
unix.htm
aplist.htm

who (Input) The class of users whose authority is to be checked.

 The following symbols, which are defined in the <unistd.h> header file, can be used in who:

ACC_SELF

(x’00’) Determines if specified access is permitted for the current thread. The effective

user and group IDs are used.

 Note: If the real and effective user ID are the same and the real and effective group ID

are the same, the request is treated as ACC_INVOKER. See the Usage Notes for more

details.

ACC_INVOKER

(x’01’) Determines if specified access is permitted for the current thread. The effective

user and group IDs are used.

ACC_OTHERS

(x’08’) Determines if specified access is permitted for any user other than the object

owner. Only one of R_OK, W_OK, and X_OK is permitted when who is ACC_OTHERS.

Privileged users (users with *ALLOBJ special authority) are not considered in this check.

ACC_ALL

(x’20’) Determines if specified access is permitted for all users. Only one of R_OK, W_OK,

and X_OK is permitted when who is ACC_ALL. Privileged users (users with *ALLOBJ

special authority) are not considered in this check.

Authorities

The following authorities are required if the who parameter is ACC_SELF or ACC_INVOKER. If

ACC_SELF is specified, the effective UID and GID of the caller are used. If ACC_INVOKER is used, the

real UID and GID of the caller are used.

Authorization Required for faccessx()

 Object Referred to Authority Required errno

Object when R_OK is specified *R EACCES

Object when W_OK is specified *W EACCES

Object when X_OK is specified *X EACCES

Object when R_OK | W_OK is specified *RW EACCES

Object when R_OK | X_OK is specified *RX EACCES

Object when W_OK | X_OK is specified *WX EACCES

Object when R_OK | W_OK | X_OK is specified *RWX EACCES

Object when F_OK is specified None None

If the current thread has *ALLOBJ special authority, faccessx() with ACC_SELF or ACC_INVOKER will

indicate success for R_OK, W_OK, or X_OK even if none of the permission bits are set.

Return Value

0 faccessx() was successful.

84 iSeries: UNIX-Type -- Integrated File System APIs

-1 faccessx() was not successful (or the specified access is not permitted for the class of users being

checked). The errno global variable is set to indicate the error.

Error Conditions

If faccessx() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 The class of users specified by the who parameter does not have the permission indicated by the

amode parameter.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

Integrated File System APIs 85

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EINTR]

 Interrupted function call.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[ETXTBSY]

 Text file busy.

 An attempt was made to execute an OS/400 PASE program that is currently open for writing, or

an attempt has been made to open for writing an OS/400 PASE program that is being executed.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

86 iSeries: UNIX-Type -- Integrated File System APIs

Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Integrated File System APIs 87

Usage Notes

1. This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

v Where multiple threads exist in the job.

v The object this function is operating on resides in a file system that is not threadsafe. Only the

following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. ACC_SELF Mapped to ACC_INVOKER

Some physical file systems do not support ACC_SELF for the who parameter. However, faccessx() will

change the who parameter from ACC_SELF to ACC_INVOKER if the caller’s real and effective user ID

are equal, and the caller’s real and effective group ID are equal.

3. Network File System Differences

The Network File System will only support the value ACC_INVOKER for the who parameter. If

faccessx() is called on a file in a mounted Network File System directory with a value for who other

than ACC_INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been

mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be

returned.

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. Once a file is open, subsequent requests to perform operations on the file can

fail because file attributes are checked at the server on each request. If permissions on the file are

made more restrictive at the server or the file is unlinked or made unavailable by the server for

another client, your operation on an open file descriptor will fail when the local Network File System

receives these updates. The local Network File System also impacts operations that retrieve file

attributes. Recent changes at the server may not be available at your client yet, and old values may be

returned from operations. (Several options on the Add Mounted File System (ADDMFS) command

determine the time between refresh operations of local data.)

4. QNTC File System Differences

The QNTC File System will only support the value ACC_INVOKER for the who parameter. If

faccessx() is called on a file in the QNTC File System with a value for who other than ACC_INVOKER,

the call will return -1 and errno ENOTSUP. Note: If the value for who has been mapped from

ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be returned.

5. QOPT File System Differences

If the file descriptor refers to an object that exists on a volume formatted in Universal Disk Format

(UDF), the authorization that is checked for the object follows the rules described in the previous

table (page 84), Authorization Required for faccessx(). If the object exists on a volume formatted in

some other media format, no authorization checks are made on the object. The volume authorization

list is checked for the requested authority regardless of the volume media format.

6. QFileSvr.400 File System Differences

The QFileSvr.400 File System will only support the value ACC_INVOKER for the who parameter. If

faccessx() is called on a file in the QFileSvr.400 File System with a value for who other than

88 iSeries: UNIX-Type -- Integrated File System APIs

ACC_INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been

mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be

returned.

7. QNetWare File System Differences

The QNetWare File System will only support the value ACC_INVOKER for the who parameter. If

faccessx() is called on a file in the QNetWare File System with a value for who other than

ACC_INVOKER, the call will return -1 and errno ENOTSUP. Note: If the value for who has been

mapped from ACC_SELF to ACC_INVOKER as previously described, then ENOTSUP will not be

returned.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <limits.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “chmod()—Change File Authorizations” on page 29—Change File Authorizations

v “open()—Open File” on page 267—Open File

v “access()—Determine File Accessibility” on page 10—Determine File Accessibility

v “accessx()—Determine File Accessibility for a Class of Users” on page 16—Determine File Accessibility

for a Class of Users

v “QlgAccessx()—Determine File Accessibility for a Class of Users (using NLS-enabled path name)” on

page 324—Determine File Accessibility for a Class of Users (using NLS-enabled path name)

v “QlgAccess()—Determine File Accessibility (using NLS-enabled path name)” on page 322—Determine

File Accessibility (using NLS-enabled path name)

v “stat()—Get File Information” on page 592—Get File Information

Example

See Code disclaimer information for information pertaining to code examples.

The following example determines how a file is accessed:

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

main() {

 char path[]="/myfile";

 int fd;

 fd = open(path, O_RDONLY);

 if (fd == -1)

 {

 printf("Error opening file.\n");

 return;

 }

 if (faccessx(fd, R_OK, ACC_OTHERS) == 0)

 printf("Someone besides the owner has read access to ’%s’\n", path);

 if (faccessx(fd, W_OK, ACC_OTHERS) == 0)

 printf("Someone besides the owner has write access to ’%s’\n", path);

 if (faccessx(fd, X_OK, ACC_OTHERS) == 0)

 printf("Someone besides the owner has search access to ’%s’\n", path);

 close(fd);

}

Output:

Integrated File System APIs 89

aboutapis.htm#CODEDISCLAIMER

In this example faccessx() was called on a descriptor for ’/myfile’. The following would be the output if

someone other than the owner has *R authority, someone besides the owner has *W authority, and noone

other than the owner has *X authority.

Someone besides the owner has read access to ’/’

Someone besides the owner has write access to ’/’

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

fchdir()—Change Current Directory by Descriptor

 Syntax

 #include <unistd.h>

 int fchdir(int fildes);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 93.

The fchdir() function makes the directory named by fildes the new current directory. If the fchdir()

function fails, the current directory is unchanged.

Parameters

fildes (Input) The file descriptor of the directory.

Authorities

Note: Adopted authority is not used.

Authorization Required for fchdir()

 Object Referred to Authority Required errno

Each directory of the path name *X EACCES

Return Value

0 fchdir() was successful.

-1 fchdir() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If fchdir() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

90 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

[ENOSPC]

Integrated File System APIs 91

No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

92 iSeries: UNIX-Type -- Integrated File System APIs

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

Integrated File System APIs 93

– QOPT

–

Network File System

–

QFileSvr.400

The fchdir() API operates on two objects: the previous current working directory and the new one. If

either of these objects is managed by a file system that is not threadsafe, fchdir() fails with the

ENOTSAFE error code.

2. Network File System Differences

If the local storage of attributes and names is not suppressed (option noac when the file system is

mounted), then one can potentially use the fchdir() API to change to a directory which has been

removed. This depends on how often and when the local storage of attributes and names is refreshed.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <limits.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “chdir()—Change Current Directory” on page 24—Change Current Directory

v “getcwd()—Get Current Directory” on page 160—Get Current Directory

v “QlgChdir()—Change Current Directory (using NLS-enabled path name)” on page 326—Change

Current Directory

v “QlgGetcwd()—Get Current Directory (using NLS-enabled path name)” on page 335—Get Current

Directory

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses fchdir():

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

main() {

 char dir[]="tempfile";

 int file_descriptor;

 int oflag1 = O_RDONLY | O_CCSID;

 mode_t mode = S_IRUSR | S_IWUSR | S_IXUSR;

 unsigned int open_ccsid = 37;

 if ((file_descriptor = open(dir,oflag1,mode,open_ccsid)) < 0)

 perror("open() error");

 else {

 if (fchdir(file_descriptor) != 0)

 perror("fchdir() to tempfile failed");

 close(file_descriptor);

 }

}

Output:

fchdir() to tempfile failed: Not a directory.

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

94 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

fchmod()—Change File Authorizations by Descriptor

 Syntax

 #include <sys/stat.h>

 int fchmod(int fildes, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 36 for chmod().

The fchmod() function changes S_ISUID, S_ISGID,

S_ISVTX,

and the permission bits of the open

file or directory identified by fildes its file descriptor, to the corresponding bits specified in mode. fchmod()

has no effect on file descriptions for files that are open at the time fchmod() is called.

fchmod() marks for update the change time of the file.

If the file is checked out by another user (someone other than the user profile of the current job),

fchmod() fails with the [EBUSY] error.

Parameters

fildes (Input) The file descriptor of the file.

mode (Input) Bits that define S_ISUID, S_ISGID,

S_ISVTX,

and the access permissions of the file.

 The mode argument is created with one of the symbols defined in the <sys/stat.h> header file. For more

information on the symbols, refer to “chmod()—Change File Authorizations” on page 29.

If bits other than the bits listed above are set in mode, fchmod() returns the [EINVAL] error.

Authorities

Note: Adopted authority is not used.

Authorization Required for fchmod() (excluding QDLS)

 Object Referred to Authority Required errno

Object Owner (see Note) EPERM

Note: You do not need the listed authority if you have *ALLOBJ special authority.

Authorization Required for fchmod() in the QDLS File System

 Object Referred to Authority Required errno

Object Owner or *ALL EACCES

Return Value

0 fchmod() was successful.

-1 fchmod() was not successful. The errno global variable is set to indicate the error.

Integrated File System APIs 95

Error Conditions

If fchmod() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

96 iSeries: UNIX-Type -- Integrated File System APIs

A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

 No such path or directory.

Integrated File System APIs 97

The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

 Function not implemented.

 An attempt was made to use a function that is not available in this implementation for any object

or any arguments.

 The path name given refers to an object that does not support this function.

[ENOSYSRSC]

 System resources not available to complete request.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

 The object referenced by the descriptor does not support the function.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

 The thread does not have authority to perform the requested function.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

98 iSeries: UNIX-Type -- Integrated File System APIs

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this API:

Integrated File System APIs 99

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Related Information

v The <sys/stat.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “chmod()—Change File Authorizations” on page 29—Change File Authorizations

v “chown()—Change Owner and Group of File” on page 38—Change Owner and Group of File

v “fchown()—Change Owner and Group of File by Descriptor” on page 101—Change Owner and Group

of File by Descriptor

v “mkdir()—Make Directory” on page 233—Make Directory

v “open()—Open File” on page 267—Open File

v “stat()—Get File Information” on page 592—Get File Information

Example

See Code disclaimer information for information pertaining to code examples.

The following example changes a file permission:

#include <stdio.h>

#include <fcntl.h>

#include <sys/stat.h>

#include <sys/types.h>

main() {

 char fn[]="temp.file";

 int file_descriptor;

 struct stat info;

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 if (stat(fn, &info)!= 0)

 perror("stat() error");

 else {

 printf("original permissions were: %08o\n", info.st_mode);

 }

 if (fchmod(file_descriptor, S_IRWXU|S_IRWXG) != 0)

 perror("fchmod() error");

 else {

 if (stat(fn, &info)!= 0)

 perror("stat() error");

 else {

 printf("after fchmod(), permissions are: %08o\n", info.st_mode);

 }

 }

 if (close(file_descriptor)!= 0)

 perror("close() error");

 if (unlink(fn)!= 0)

 perror("unlink() error");

 }

}

Output:

original permissions were: 00100200

after fchmod(), permissions are: 00100770

100 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

fchown()—Change Owner and Group of File by Descriptor

 Syntax

 #include <unistd.h>

 int fchown(int fildes, uid_t owner, gid_t group);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 106.

The fchown() function changes the owner and group of a file. The permissions of the previous owner or

primary group to the object are revoked.

If the file is checked out by another user (someone other than the user profile of the current job),

fchown() fails with the [EBUSY] error.

When fchown() completes successfully, it marks the change time of the file to be updated.

Parameters

fildes (Input) The file descriptor of the file.

owner (Input) The new user ID to be set for file.

group (Input) The new group ID to be set for file.

 Note: Changing the owner or the primary group causes the S_ISUID (set-user-ID) and S_ISGID

(set-group-ID) bits of the file mode to be cleared, unless the caller has *ALLOBJ special authority. If the

caller does have *ALLOBJ special authority, the bits are not changed. This does not apply to directories,

FIFO special files, or pipes. See the “chmod()—Change File Authorizations” on page 29 documentation.

Authorities

Note: Adopted authority is not used.

Authorization Required for fchown() (excluding QSYS.LIB, independent ASP QSYS.LIB, and QDLS)

 Object Referred to Authority Required errno

Object, when changing the owner Owner and

*OBJEXIST
(also see Note 1)

EPERM

Object, when changing the primary group See Note 2 EPERM

Previous owner’s user profile, when changing the owner *DLT EPERM

New owner’s user profile, when changing the owner *ADD EPERM

Integrated File System APIs 101

#TOP_OF_PAGE
unix.htm
aplist.htm

Object Referred to Authority Required errno

User profile of previous primary group, when changing the

primary group

*DLT EPERM

New primary group’s user profile, when changing the primary

group

*ADD EPERM

Note:

1. You do not need the listed authority if you have *ALLOBJ special authority.

2. At least one of the following must be true:

a. You have *ALLOBJ special authority.

b. You are the owner and either of the following:

v The new primary group is the primary group of the job.

v The new primary group is one of the supplementary groups of the job.

Authorization Required for fchown() in the QSYS.LIB and independent ASP QSYS.LIB File Systems

 Object Referred to Authority Required errno

Object, when changing the owner See Note (1) EPERM

Object, when changing the primary group See Note (2) EPERM

Note: The required authorization varies for each object type. See the following commands in the iSeries Security

Reference

book for details:

1. CHGOBJOWN

2. CHGOBJPGP

Authorization Required for fchown() in the QDLS File System

 Object Referred to Authority Required errno

Object *ALLOBJ Special
Authority or Owner

EPERM

Previous owner’s user profile, when changing the owner *DLT EPERM

New owner’s user profile, when changing the owner *ADD EPERM

Previous primary group’s user profile, when changing the primary

group

*DLT EPERM

New primary group’s user profile, when changing the primary

group

*ADD EPERM

Authorization Required for fchown() in the QOPT File System

 Object Referred to Authority Required errno

Volume authorization list *CHANGE EACCES

Each directory in the path name preceding the object. *X EACCES

Object *ALLOBJ Special
Authority or Owner

EPERM

Return Value

0 fchown() was successful.

102 iSeries: UNIX-Type -- Integrated File System APIs

-1 fchown() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If fchown() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EINTR]

 Interrupted function call.

[EINVAL]

Integrated File System APIs 103

The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL. arameter passed to this function is not

valid.

 owner or group is not a valid user ID (UID) or group ID (GID).

 owner is the current primary group of the object.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

104 iSeries: UNIX-Type -- Integrated File System APIs

A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

 Function not implemented.

 An attempt was made to use a function that is not available in this implementation for any object

or any arguments.

 The path name given refers to an object that does not support this function.

[ENOSYSRSC]

 System resources not available to complete request.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

 The object referenced by the descriptor does not support the function.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

Integrated File System APIs 105

The thread does not have authority to perform the requested function.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. QDLS File System Differences

The owner and primary group of the /QDLS directory (root folder) cannot be changed. If an attempt

is made to change the owner and primary group, a [ENOTSUP] error is returned.

3. QOPT File System Differences

Changing the owner and primary group is allowed only for an object that exists on a volume

formatted in Universal Disk Format (UDF). For all other media formats, ENOTSUP will be returned.

106 iSeries: UNIX-Type -- Integrated File System APIs

QOPT file system objects that have owners will not be recognized by the Work with Objects by

Owner (WRKOBJOWN) CL command. Likewise, QOPT objects that have a primary group will not be

recognized by the Work Objects by Primary Group (WRKOBJPGP) CL command.

4. QFileSvr.400 File System Differences

The QFileSvr.400 file system does not support fchown().

5. QNetWare File System Differences

Primary group is not supported. The GID must be zero on this API.

6. QNTC File System Differences

The owner of files and directories cannot be changed. All files and directories in QNTC are owned by

the QDFTOWN user profile.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “chown()—Change Owner and Group of File” on page 38—Change Owner and Group of File

v “chmod()—Change File Authorizations” on page 29—Change File Authorizations

v “fchmod()—Change File Authorizations by Descriptor” on page 95—Change File Authorizations by

Descriptor

v “mkdir()—Make Directory” on page 233—Make Directory

v “open()—Open File” on page 267—Open File

v “stat()—Get File Information” on page 592—Get File Information

Example

See Code disclaimer information for information pertaining to code examples.

The following example changes the owner ID and group ID:

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

#include <sys/stat.h>

#include <sys/types.h>

main() {

 char fn[]="temp.file";

 int file_descriptor;

 struct stat info;

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 stat(fn, &info);

 printf("original owner was %d and group was %d\n", info.st_uid,

 info.st_gid);

 if (fchown(file_descriptor, 152, 0) != 0)

 perror("fchown() error");

 else {

 stat(fn, &info);

 printf("after fchown(), owner is %d and group is %d\n",

 info.st_uid, info.st_gid);

 }

 close(file_descriptor);

 unlink(fn);

 }

}

Output:

Integrated File System APIs 107

aboutapis.htm#CODEDISCLAIMER

original owner was 137 and group was 0

after fchown(), owner is 152 and group is 0

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

fclear()—Write (Binary Zeros) to Descriptor

 Syntax

 #include <unistd.h>

 off_t fclear

 (int file_descriptor, off_t nbyte);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 112.

The fclear() function writes nbyte bytes of binary zeros to the file associated with the file_descriptor. nbyte

should not be greater than INT_MAX (defined in the <limits.h> header file). If it is, [EINVAL] will be

returned. If nbyte is zero, fclear() simply returns a value of zero without attempting any other action.

If file_descriptor refers to a ″regular file″ (a stream file that can support positioning the file offset), fclear()

begins writing binary zeros at the file offset associated with file_descriptor. A successful fclear() increments

the file offset by the number of bytes written. If the incremented file offset is greater than the previous

length of the file, the length of the file is set to the new file offset. An unsuccessful fclear() will not

change the file offset. If the file_descriptor does not refer to a ″regular file″, [EINVAL] will be returned.

If O_APPEND (defined in the <fcntl.h> header file) is set for the file, fclear() does not set the file offset

to the end of the file before writing the output. Instead, it begins writing binary zeros at the current file

offset associated with the file_descriptor.

If fclear() is called such that nbyte plus the current file offset will cause the size of the file to exceed 2GB

minus 1 bytes when the file is not opened for large file access, the system allowed maximum file size

when the file is opened for large file access, or the process soft file size limit, [EFBIG] will be returned.

If fclear() is successful and nbyte is greater than zero, the change and modification times for the file are

updated.

If file_descriptor refers to a descriptor obtained using the open() function with O_TEXTDATA specified,

binary zeros are written to the file assuming they are in textual form. The data (binary zeros) is converted

from the code page of the application, job, or system, to the code page of the file as follows:

v Only simple conversions are performed. That is, if one byte of binary zeros does not convert to one

byte of binary zeros then [ENOTSUP] is returned.

v When clearing a physical file in the QSYS.LIB file system the fclear() should not be performed across a

record boundary. If it is, [ETRUNC] will be returned.

Note: The conversion of binary zeros will always result in binary zeros.

There are some important considerations if O_CCSID was specified on the open().

108 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

v If an fclear() is performed when there are partial characters buffered internally due to a previous

write(), the fclear() will fail with the [ENOTSUP] error.
v Because of the above consideration and because of the possible expansion or contraction of converted

data, applications using the O_CCSID flag should avoid assumptions about data size and the current

file offset.

If O_TEXTDATA was not specified on the open(), binary zeros are written to the file without conversion.

The application is responsible for handling the data.

Note: When the fclear completes successfully, the S_ISUID (set-user-ID) and S_ISGID (set-group-ID) bits

of the file mode will be cleared. If the fclear() is unsuccessful, the bits are undefined.

Parameters

file_descriptor

(Input) The descriptor of the file to be cleared (write binary zeros).

nbyte (Input) Indicates the number of bytes to clear (write binary zeros).

Authorities

No authorization is required.

Return Value

 value fclear() was successful. The return value is the number of bytes that have been successfully

cleared. This number will be equal to nbyte.

-1 fclear() was not successful. The fclear() was not able to clear all of the bytes requested. No

indication is given as to how much data was successfully cleared. In addition, the file offset will

remaind unchanged. The errno global variable is set to indicate the error.

Error Conditions

If fclear() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

 [EACCES] Permission denied.

An attempt was made to access an object in a way forbidden by its object access permissions.

The thread does not have access to the specified file, directory, component, or path.

If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN] Operation would have caused the process to be suspended.

[EBADF] Descriptor not valid.

A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file. Or this fclear() request was made to a file that was

only open for reading.

Integrated File System APIs 109

[EBADFID] A file ID could not be assigned when linking an object to a directory.

The file ID table is missing or damaged.

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY] Resource busy.

An attempt was made to use a system resource that is not available at this time.

[ECONVERT] Conversion error.

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE] A damaged object was encountered.

A referenced object is damaged. The object cannot be used.

[EFAULT] The address used for an argument is not correct.

In attempting to use an argument in a call, the system detected an address that is not valid.

While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFBIG] Object is too large.

The size of the file would exceed 2GB minus 1 bytes when the file is not opened for large file

access, the system allowed maximum file size when the file is opened for large file access, or the

process soft file size limit.

[EINTR] Interrupted function call.

[EINVAL] The value specified for the argument is not correct.

A function was passed incorrect argument values, or an operation was attempted on an object and

the operation specified is not supported for that type of object.

An argument value is not valid, out of range, or NULL.

[EIO] Input/output error.

A physical I/O error occurred.

A referenced object may be damaged.

[EJRNDAMAGE] Journal damaged.

A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNINACTIVE] Journal inactive.

The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC] Journal space or system storage error.

The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ENEWJRN] New journal is needed.

The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV] New journal receiver is needed.

A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

110 iSeries: UNIX-Type -- Integrated File System APIs

[ENOMEM] Storage allocation request failed.

A function needed to allocate storage, but no storage is available.

There is not enough memory to perform the requested function.

[ENOSPC] No space available.

The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL] Independent Auxiliary Storage Pool (ASP) is not available.

The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE] Function is not allowed in a job that is running with multiple threads.

[ENXIO] No such device or address.

[ERESTART] A system call was interrupted and may be restarted.

[ETRUNC] Data was truncated on an input, output, or update operation.

[ESTALE] File or object handle rejected by server.

If you are accessing a remote file through the Network File System, the file may have been deleted

at the server.

[EUNKNOWN] Unknown system state.

The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Additionally, if interaction with a file server is required to access the object, errno could indicate one of

the following errors:

 [EADDRNOTAVAIL] Address not available.

[ECONNABORTED] Connection ended abnormally.

[ECONNREFUSED] The destination socket refused an attempted connect operation.

[ECONNRESET] A connection with a remote socket was reset by that socket.

[EHOSTDOWN] A remote host is not available.

[EHOSTUNREACH] A route to the remote host is not available.

[ENETDOWN] The network is not currently available.

[ENETRESET] A socket is connected to a host that is no longer available.

[ENETUNREACH] Cannot reach the destination network.

[ETIMEDOUT] A remote host did not respond within the timeout period.

[EUNATCH] The protocol required to support the specified address family is not available at

this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Integrated File System APIs 111

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

– QFileSvr.400

– Network File System
2. QSYS.LIB and independent ASP QSYS.LIB File System Differences

This function will fail with error code [ENOTSAFE] if the object on which this function is operating is

a save file and multiple threads exist in the job.

An fclear() request should not be done on a save file. If it is, unpredictable results may occur.

A successful fclear() updates the change, modification, and access times for a database member using

the normal rules that apply to database files. At most, the access time is updated once per day.

3. QOPT File System Differences

The change and modification times of the file are updated when the file is closed.

When writing to files on volumes formatted in Universal Disk Format (UDF), byte locks on the range

being cleared are ignored.

4. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. Once a file is open, subsequent requests to perform operations on the file can

fail because file attributes are checked at the server on each request. If permissions on the file are

made more restrictive at the server or the file is unlinked or made unavailable by the server for

another client, your operation on an open file descriptor will fail when the local Network File System

receives these updates. The local Network File System also impacts operations that retrieve file

attributes. Recent changes at the server may not be available at your client yet, and old values may be

returned from operations (several options on the Add Mounted File System (ADDMFS) command

determine the time between refresh operations of local data).

Reading, writing, and clearing of files with the Network File System relies on byte-range locking to

guarantee data integrity. To prevent data inconsistency, use the “fcntl()—Perform File Control

Command” on page 115 API to get and release these locks.

5. QFileSvr.400 File System Differences

This file system does not support fclear() or fclear64(), [ENOTSUP] will be returned.

6. File System Differences

File systems other than Root, QOpenSys, and User-defined will be restricted to doing fclear()s no

larger than 2GB minus 1 bytes. If this rule is violated [EINVAL] will be returned.

112 iSeries: UNIX-Type -- Integrated File System APIs

7. For the file systems that do not support large files, fclear() will return [EINVAL] if nbyte plus the file

offset exceeds 2GB minus 1 bytes, regardless of how the file was opened. For the file systems that do

support large files, fclear() will return [EFBIG] if nbyte plus the file offset exceeds 2GB minus 1 bytes

and the file was not opened for large file access.

8. If the fclear() exceeds the process soft file size limit, signal SIFXFSZ is issued.

Related Information

v The <fcntl.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “dup()—Duplicate Open File Descriptor” on page 76—Duplicate Open File Descriptor

v “dup2()—Duplicate Open File Descriptor to Another Descriptor” on page 79—Duplicate Open File

Descriptor to Another Descriptor

v “fclear64()—-Write (Binary Zeros) to Descriptor (Large File Enabled)” on page 114—Write (Binary

Zeros) to Descriptor (Large File Enabled)

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v “ftruncate()—Truncate File” on page 152—Truncate File

v “ftruncate64()—Truncate File (Large File Enabled)” on page 159—Truncate File (Large File Enabled)

v “ioctl()—Perform I/O Control Request” on page 193—Perform I/O Control Request

v “lseek()—Set File Read/Write Offset” on page 217—Set File Read/Write Offset

v “open()—Open File” on page 267—Open File

v “pread()—Read from Descriptor with Offset” on page 305—Read from Descriptor with Offset

v “pread64()—Read from Descriptor with Offset (large file enabled)” on page 311—Read from Descriptor

with Offset (large file enabled)

v “pwrite()—Write to Descriptor with Offset” on page 313—Write to Descriptor with Offset

v “pwrite64()—Write to Descriptor with Offset (large file enabled)” on page 320—Write to Descriptor

with Offset (large file enabled)

v “read()—Read from Descriptor” on page 549—Read from Descriptor

v “readv()—Read from Descriptor Using Multiple Buffers” on page 575—Read from Descriptor Using

Multiple Buffers

v “write()—Write to Descriptor” on page 639—Write to Descriptor

v “writev()—Write to Descriptor Using Multiple Buffers” on page 649—Write to Descriptor Using

Multiple Buffers

Example

See Code disclaimer information for information pertaining to code examples.

The following example clears a specific number of bytes in a file:

#include <unistd.h>

#include <stdio.h>

main() {

 int fileDescriptor;

 off_t ret;

 int oflags = O_CREAT | O_RDWR;

 mode_t mode = S_IRUSR | S_IWUSR | S_IXUSR;

 if ((fileDescriptor = open("foo", oflags, mode)) < 0)

 perror("open() error");

 else {

 if ((ret = fclear(fileDescriptor, 10)) == -1)

 perror("fclear() error");

Integrated File System APIs 113

aboutapis.htm#CODEDISCLAIMER

else printf("fclear() cleared %d bytes.\n", ret);

 if (close(fileDescriptor)!= 0)

 perror("close() error");

 if (unlink("foo")!= 0)

 perror("unlink() error");

 }

}

Output:

fclear() cleared 10 bytes.

API introduced: V5R3

 Top | UNIX-Type APIs | APIs by category

fclear64()—-Write (Binary Zeros) to Descriptor (Large File Enabled)

 Syntax

 #include <unistd.h>

 off64_t fclear

 (int file_descriptor, off64_t nbyte);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes.

The fclear64() function writes nbyte bytes of binary zeros to the file associated with the file_descriptor. If

nbyte is zero, fclear64() simply returns a value of zero without attempting any other action.

fclear64() is enabled for large files. It is capable of operating on files larger than 2GB minus 1 bytes and is

capable of clearing up to the system allowed maximum file size bytes as long as the file exists in Root,

QOpenSys, and UDFS file systems and has been opened by either of the following:

v Using the open64() function (see “open64()—Open File (Large File Enabled)” on page 287).

v Using the open() function (see “open()—Open File” on page 267) with the O_LARGEFILE flag set in

the oflag parameter.

For additional information about parameters, authorities, error conditions, and examples, see

“fclear()—Write (Binary Zeros) to Descriptor” on page 108.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden. To

use the fclear64() API, you must compile the source with the _LARGE_FILE_API macro defined.

2. All of the usage notes for fclear() apply to fclear64(). See Usage Notes in the fclear() API.

API introduced: V5R3

114 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
#USAGE_NOTES

Top | UNIX-Type APIs | APIs by category

fcntl()—Perform File Control Command

 Syntax

 #include <sys/types.h>

 #include <unistd.h>

 #include <fcntl.h>

 int fcntl(int descriptor,

 int command,

 ...)

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 124.

The fcntl() function performs various actions on open descriptors, such as obtaining or changing the

attributes of a file or socket descriptor.

Parameters

descriptor

(Input) The descriptor on which the control command is to be performed, such as having its

attributes retrieved or changed.

command

(Input) The command that is to be performed on the descriptor.

... (Input) A variable number of optional parameters that is dependent on the command. Only some

of the commands use this parameter.

 The fcntl() commands that are supported are:

 F_DUPFD Duplicates the descriptor. A third int argument must be specified. fcntl() returns the lowest

descriptor greater than or equal to this third argument that is not already associated with an open

file. This descriptor refers to the same object as descriptor and shares any locks. If the original

descriptor was opened in text mode, data conversion is also done on the duplicated descriptor.

The FD_CLOEXEC flag that is associated with the new descriptor is cleared.

F_GETFD Obtains the descriptor flags for descriptor. fcntl() returns these flags as its result. For a list of

supported file descriptor flags, see “Flags” on page 116. Descriptor flags are associated with a

single descriptor and do not affect other descriptors that refer to the same object.

F_GETFL Obtains the file status flags and file access mode flags for descriptor. fcntl() returns these flags as

its result. For a list of supported file status and file access mode flags, see “Using the oflag

Parameter” on page 269 in open().

F_GETLK Obtains locking information for an object. You must specify a third argument of type struct flock

*. See “File Locking” on page 117 for details. fcntl() returns 0 if it successfully obtains the locking

information. When you develop in C-based languages and the function is compiled with the

_LARGE_FILES macro defined, F_GETLK is mapped to the F_GETLK64 symbol.

F_GETLK64 Obtains locking information for a large file. You must specify a third argument of type struct

flock64 *. See “File Locking” on page 117 for details. fcntl() returns 0 if it successfully obtains the

locking information. When you develop in C-based languages, it is necessary to compile the

function with the _LARGE_FILE_API macro defined to use this symbol.

Integrated File System APIs 115

#TOP_OF_PAGE
unix.htm
aplist.htm

F_GETOWN Returns the process ID or process group ID that is set to receive the SIGIO (I/O is possible on a

descriptor) and SIGURG (urgent condition is present) signals. For more information, see Signal APIs.

F_SETFD Sets the descriptor flags for descriptor. You must specify a third int argument, which gives the new

file descriptor flag settings (see “Flags”). If any other bits in the third argument are set, fcntl() fails

with the [EINVAL] error. fcntl() returns 0 if it successfully sets the flags. Descriptor flags are

associated with a single descriptor and do not affect other descriptors that refer to the same object.

F_SETFL Sets status flags for the descriptor. You must specify a third int argument, giving the new file

status flag settings (see “Flags”). fcntl() does not change the file access mode, and file access bits

in the third argument are ignored. All other oflag values that are valid on the open() API are also

ignored. If any other bits in the third argument are set, fcntl() fails with the [EINVAL] error.

fcntl() returns 0 if it successfully sets the flags.

F_SETLK Sets or clears a file segment lock. You must specify a third argument of type struct flock *. See

“File Locking” on page 117 for details. fcntl() returns 0 if it successfully clears the lock. When you

develop in C-based languages and the function is compiled with the _LARGE_FILES macro

defined, F_SETLK is mapped to the F_SETLK64 symbol.

F_SETLK64 Sets or clears a file segment lock for a large file. You must specify a third argument of type struct

flock64 *. See “File Locking” on page 117 for details. fcntl() returns 0 if it successfully clears the

lock. When you develop in C-based languages, it is necessary to compile the function with the

_LARGE_FILE_API macro defined to use this symbol.

F_SETLKW Sets or clears a file segment lock; however, if a shared or exclusive lock is blocked by other locks,

fcntl() waits until the request can be satisfied. You must specify a third argument of type struct

flock *. See “File Locking” on page 117 for details. When you develop in C-based languages and

the function is compiled with the _LARGE_FILES macro defined, F_SETLKW is mapped to the

F_SETLKW64 symbol.

F_SETLKW64 Sets or clears a file segment lock on a large file; however, if a shared or exclusive lock is blocked

by other locks, fcntl() waits until the request can be satisfied. See “File Locking” on page 117 for

details. You must specify a third argument of type struct flock64 *. When you develop in

C-based languages, it is necessary to compile the function with the _LARGE_FILE_API macro

defined to use this symbol.

F_SETOWN Sets the process ID or process group ID that is to receive the SIGIO and SIGURG signals. For more

information, see Signal APIs.

Flags

There are several types of flags associated with each open object. Flags for an object are represented by

symbols defined in the <fcntl.h header file. The following file status flags can be associated with an

object:

 FASYNC The SIGIO signal is sent to the process when it is possible to do I/O.

FNDELAY This flag is defined to be equivalent to O_NDELAY.

O_APPEND Append mode. If this flag is 1, every write operation on the file begins at the end of the file.

O_DSYNC Synchronous update - data only. If this flag is 1, all file data is written to permanent storage before

the update operation returns. Update operations include, but are not limited to, the following:

ftruncate(), open() with O_TRUNC, and write().

O_NDELAY This flag is defined to be equivalent to O_NONBLOCK.

O_NONBLOCK Non-blocking mode. If this flag is 1, read or write operations on the file will not cause the thread

to block. This file status flag applies only to pipe, FIFO, and socket descriptors.

O_RSYNC Synchronous read. If this flag is 1, read operations to the file will be performed synchronously.

This flag is used in combination with O_SYNC or O_DSYNC. When O_RSYNC and O_SYNC are

set, all file data and file attributes are written to permanent storage before the read operation

returns. When O_RSYNC and O_DSYNC are set, all file data is written to permanent storage

before the read operation returns.

O_SYNC Synchronous update. If this flag is 1, all file data and file attributes relative to the I/O operation

are written to permanent storage before the update operation returns. Update operations include,

but are not limited to, the following: ftruncate(), open() with O_TRUNC, and write().

The following file access mode flags can be associated with a file:

116 iSeries: UNIX-Type -- Integrated File System APIs

unix5a1.htm
unix5a1.htm

O_RDONLY The file is opened for reading only.

O_RDWR The file is opened for reading and writing.

O_WRONLY The file is opened for writing only.

A mask can be used to extract flags:

 O_ACCMODE Extracts file access mode flags.

The following descriptor flags can be associated with a descriptor:

 FD_CLOEXEC Controls descriptor inheritance during spawn() and spawnp() when simple inheritance is being

used, as follows:

v If the FD_CLOEXEC flag is zero, the descriptor is inherited by the child process that is created

by the spawn() or spawnp()API.

Note: Descriptors that are created as a result of the opendir() API (to implement open directory

streams) are not inherited, regardless of the value of the FD_CLOEXEC flag.

v If the FD_CLOEXEC flag is set, the descriptor is not inherited by the child process that is

created by the spawn() or spawnp() API.

Refer to spawn()—Spawn Process and spawnp()—Spawn Process with Path for additional information

about FD_CLOEXEC.

File Locking

A local or remote job can use fcntl() to lock out other local or remote jobs from a part of a file. By locking

out other jobs, the job can read or write to that part of the file without interference from others. File

locking can ensure data integrity when several jobs have a file accessed concurrently. For more

information about remote locking, see information about the network lock manager and the network

status monitor in the OS/400 Network File System Support

book.

Two different structures are used to control locking operations: struct flock and struct flock64 (both

defined in the <fcntl.h header file). You can use struct flock64 with the F_GETLK64, F_SETLK64, and

F_SETLKW64 commands to control locks on large files (files greater than 2GB minus 1 byte). The struct

flock structure has the following members:

Integrated File System APIs 117

spawn.htm
spawnp.htm

short l_type Indicates the type of lock, as indicated by one of the following

symbols (defined in the <fcntl.h> header file):

F_RDLCK

Indicates a read lock; also called a shared lock. When a job

has a read lock, no other job can obtain write locks for that

part of the file. More than one job can have a read lock on

the same part of a file simultaneously. To establish a read

lock, a job must have the file accessed for reading.

F_WRLCK

Indicates a write lock; also called an exclusive lock. When a

job has a write lock, no other job can obtain a read lock or

write lock on the same part or an overlapping part of that

file. A job cannot put a write lock on part of a file if

another job already has a read lock on an overlapping part

of the file. To establish a write lock, a job must have

accessed the file for writing.

F_UNLCK

Unlocks a lock that was set previously.

short l_whence One of three symbols used in determining the part of the file that is

affected by this lock. These symbols are defined in the <unistd.h>

header file and are the same as symbols used by lseek():

SEEK_CUR

The current file offset in the file.

SEEK_END

The end of the file.

SEEK_SET

The start of the file.

off_t l_start Gives a byte offset used to identify the part of the file that is

affected by this lock. If l_start is negative, it is handled as an

unsigned value. The part of the file affected by the lock begins at

this offset from the location given by l_whence. For example, if

l_whence is SEEK_SET and l_start is 10, the locked part of the file

begins at an offset of 10 bytes from the beginning of the file.

off_t l_len Gives the size of the locked part of the file, in bytes. If the size is

negative, it is treated as an unsigned value. If l_len is zero, the

locked part of the file begins at the position specified by l_whence

and l_start, and extends to the end of the file. Together, l_whence,

l_start, and l_len are used to describe the part of the file that is

affected by this lock.

pid_t l_pid Specifies the job ID of the job that holds the lock. This is an output

field used only with F_GETLK actions.

void *l_reserved0 Reserved. Must be set to NULL.

void *l_reserved1 Reserved. Must be set to NULL.

When you develop in C-based languages and this function is compiled with _LARGE_FILES defined, the

struct flock data type will be mapped to a struct flock64 data type. To use the struct flock64 data

type explicitly, it is necessary to compile the function with _LARGE_FILE_API defined.

The struct flock64 structure has the following members:

118 iSeries: UNIX-Type -- Integrated File System APIs

short l_type Indicates the type of lock, as indicated by one of the following

symbols (defined in the <fcntl.h header file):

F_RDLCK

Indicates a read lock; also called a shared lock. When a job

has a read lock, no other job can obtain write locks for that

part of the file. More than one job can have a read lock on

the same part of a file simultaneously. To establish a read

lock, a job must have the file accessed for reading.

F_WRLCK

Indicates a write lock; also called an exclusive lock. When a

job has a write lock, no other job can obtain a read lock or

write lock on the same part or an overlapping part of that

file. A job cannot put a write lock on part of a file if

another job already has a read lock on an overlapping part

of the file. To establish a write lock, a job must have

accessed the file for writing.

F_UNLCK

Unlocks a lock that was set previously.

short l_whence One of three symbols used in determining the part of the file that is

affected by this lock. These symbols are defined in the <unistd.h>

header file and are the same as symbols used by lseek():

SEEK_CUR

The current file offset in the file.

SEEK_END

The end of the file.

SEEK_SET

The start of the file.

char l_reserved2[4] Reserved field

off64_t l_start Gives a byte offset used to identify the part of the file that is

affected by this lock. l_start is handled as a signed value. The part

of the file affected by the lock begins at this offset from the location

given by l_whence. For example, if l_whence is SEEK_SET and

l_start is 10, the locked part of the file begins at an offset of 10

bytes from the beginning of the file.

off64_t l_len Gives the size of the locked part of the file, in bytes. If the size is

negative, the part of the file affected is l_start + l_len through l_start

- 1. If l_len is zero, the locked part of the file begins at the position

specified by l_whence and l_start, and extends to the end of the

file. Together, l_whence, l_start, and l_len are used to describe the

part of the file that is affected by this lock.

pid_t l_pid Specifies the job ID of the job that holds the lock. This is an output

field used only with F_GETLK actions.

char reserved3[4] Reserved field.

void *l_reserved0 Reserved. Must be set to NULL.

void *l_reserved1 Reserved. Must be set to NULL.

You can set locks by specifying F_SETLK or F_SETLK64 as the command argument for fcntl(). Such a

function call requires a third argument pointing to a struct flock structure (or struct flock64 in the

case of F_SETLK64), as in this example:

 struct flock lock_it;

 lock_it.l_type = F_RDLCK;

 lock_it.l_whence = SEEK_SET;

 lock_it.l_start = 0;

 lock_it.l_len = 100;

 fcntl(file_descriptor,F_SETLK,&lock_it);

Integrated File System APIs 119

This example sets up a flock structure describing a read lock on the first 100 bytes of a file, and then calls

fcntl() to establish the lock. You can unlock this lock by setting l_type to F_UNLCK and making the

same call. If an F_SETLK operation cannot set a lock, it returns immediately with an error saying that the

lock cannot be set.

The F_SETLKW and F_SETLKW64 operations are similar to F_SETLK and F_SETLK64, except that they

wait until the lock can be set. For example, if you want to establish an exclusive lock and some other job

already has a lock established on an overlapping part of the file, fcntl() waits until the other process has

removed its lock.

F_SETLKW and F_SETLKW64 operations can encounter deadlocks when job A is waiting for job B to

unlock a region and job B is waiting for job A to unlock a different region. If the system detects that an

F_SETLKW or F_SETLKW64 might cause a deadlock, fcntl() fails with errno set to [EDEADLK].

With the F_SETLK64, F_SETLKW64, and F_GETLK64 operations, the maximum offset that can be

specified is the largest value that can be held in an 8-byte, signed integer.

A job can determine locking information about a file by using F_GETLK and F_GETLK64 as the command

argument for fcntl(). In this case, the call to fcntl() should specify a third argument pointing to a flock

structure. The structure should describe the lock operation you want. When fcntl() returns, the structure

indicated by the flock pointer is changed to show the first lock that would prevent the proposed lock

operation from taking place. The returned structure shows the type of lock that is set, the part of the file

that is locked, and the job ID of the job that holds the lock. In the returned structure:

v l_whence is always SEEK_SET.

v l_start gives the offset of the locked portion from the beginning of the file.

v l_len is the length of the locked portion.

If there are no locks that prevent the proposed lock operation, the returned structure has F_UNLCK in

l_type and is otherwise unchanged.

If fcntl() attempts to operate on a large file (one larger than 2GB minus 1 byte) with the F_SETLK,

F_GETLK, or FSETLKW commands, the API fails with [EOVERFLOW]. To work with large files, compile

with the _LARGE_FILE_API macro defined (when you develop in C-based languages) and use the

F_SETLK64, F_GETLK64, or FSETLKW64 commands. When you develop in C-based languages, it is also

possible to work with large files by compiling the source with the _LARGE_FILES macro label defined.

Note that the file must have been opened for large file access (either the open64() API was used or the

open() API was used with the O_LARGEFILE flag defined in the oflag parameter).

An application that uses the F_SETLK or F_SETLKW commands may try to lock or unlock a file that has

been extended beyond 2GB minus 1 byte by another application. If the value of l_len is set to 0 on the

lock or unlock request, the byte range held or released will go to the end of the file rather than ending at

offset 2GB minus 2.

An application that uses the F_SETLK or F_SETLKW commands also may try to lock or unlock a file that

has been extended beyond offset 2GB minus 2 with l_len NOT set to 0. If this application attempts to

lock or unlock the byte range up to offset 2GB minus 2 and l_len is not 0, the unlock request will unlock

the file only up to offset 2GB minus 2 rather than to the end of the file.

A job can have several locks on a file at the same time, but only one type of lock can be set on a given

byte. Therefore, if a job puts a new lock on a part of a file that it had locked previously, the job has only

one lock on that part of the file. The type of the lock is the one specified in the most recent locking

operation.

Locks can start and extend beyond the current end of a file, but cannot start or extend ahead of the

beginning of a file.

120 iSeries: UNIX-Type -- Integrated File System APIs

All of the locks a job has on a file are removed when the job closes any descriptor that refers to the

locked file.

All locks obtained using fcntl() are advisory only. Jobs can use advisory locks to inform each other that

they want to protect parts of a file, but advisory locks do not prevent input and output on the locked

parts. If a job has appropriate permissions on a file, it can perform whatever I/O it chooses, regardless of

what advisory locks are set. Therefore, advisory locking is only a convention, and it works only when all

jobs respect the convention.

Another type of lock, called a mandatory lock, can be set by a remote personal computer application.

Mandatory locks restrict I/O on the locked parts. A read fails when reading a part that is locked with a

mandatory write lock. A write fails when writing a part that is locked with a mandatory read or

mandatory write lock.

The maximum starting offset that can be specified by using the fnctl() API is 263 - 1, the largest number

that can be represented by a signed 8-byte integer. Mandatory locks set by a personal computer

application or by a user of the DosSetFileLocks64() API may lock a byte range that is greater than 263 - 1.

An application that uses the F_SETLK64 or F_SETLKW64 commands can lock the offset range that is

beyond 263 - 1 by locking offset 263 - 1. When offset 263 - 1 is locked, it implicitly locks to the end of the

file. The end of the file is the largest number than can be represented by an 8-byte unsigned integer or 264

- 1. This implicit lock may inhibit the personal computer application from setting mandatory locks in the

range not explicitly accessable by the fcntl() API.

Any lock set using the fcntl() API that locks offset 263 - 1 will have a length of 0.

An application that uses the F_GETLK64 may encounter a mandatory lock set by a personal computer

application, which locks a range of offsets greater than 263 - 1. This lock conflict will have a starting offset

equal to or less than 263 - 1 and a length of 0.

Authorities

No authorization is required.

Return Value

 value fcntl() was successful. The value returned depends on the command that was specified.

-1 fcntl() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If fcntl() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

Integrated File System APIs 121

[EAGAIN]

 Operation would have caused the process to be suspended.

 The process tried to lock with F_SETLK, but the lock is in conflict with a previously established

lock.

[EBADF]

 Descriptor not valid.

 A descriptor argument was out of range, referred to an object that was not open, or a read or

write request was made to an object that is not open for that operation.

 A given descriptor or directory pointer is not valid for this operation. The specified descriptor is

incorrect, or does not refer to an open object.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADFUNC]

 Function parameter in the signal function is not set.

 A given descriptor or directory pointer is not valid for this operation. The specified descriptor is

incorrect, or does not refer to an open object.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EDEADLK]

 Resource deadlock avoided.

 An attempt was made to lock a system resource that would have resulted in a deadlock situation.

The lock was not obtained.

 The function attempted was failed to prevent a deadlock.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

122 iSeries: UNIX-Type -- Integrated File System APIs

Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EMFILE]

 Too many open files for this process.

 An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of

OPEN_MAX can be retrieved using the sysconf() function.

 The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENOLCK]

 No locks available.

 A system-imposed limit on the number of simultaneous file and record locks was reached, and no

more were available at that time.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSYS]

 Function not implemented.

 An attempt was made to use a function that is not available in this implementation for any object

or any arguments.

 The path name given refers to an object that does not support this function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[EOVERFLOW]

 Object is too large to process.

 The object’s data size exceeds the limit allowed by this function.

 One of the values to be returned cannot be represented correctly.

 The command argument is F_GETLK, F_SETLK, or F_SETLKW and the offset of any byte in the

requested segment cannot be represented correctly in a variable of type off_t (the offset is greater

than 2GB minus 1 byte).

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

Integrated File System APIs 123

Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could also indicate one of the

following errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPFA0D4 E File system error occurred. Error number &1.

CPFA081 E Unable to set return value or error code.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

124 iSeries: UNIX-Type -- Integrated File System APIs

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2.

If F_DUPFD is specified as the fcntl() command, this function will fail with error code [EBADF]

when fildes is a scan descriptor that was passed to one of the scan-related exit programs. See

“Integrated File System Scan on Open Exit Program” on page 666 and “Integrated File System Scan

on Close Exit Program” on page 656 for more information.

3. If the fcntl() command is called by a thread executing one of the scan-related exit programs (or any of

its created threads), it will fail with error code [ENOTSUP] if F_SETLK, F_SETLK64, F_SETLKW or

F_SETLKW64 is specified. See “Integrated File System Scan on Open Exit Program” on page 666 and

“Integrated File System Scan on Close Exit Program” on page 656 for more information.

4. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

The following fcntl() commands are not supported:

v F_GETLK

v F_SETLK

v F_SETLKW

Using any of these commands results in an [ENOSYS] error.

5. Network File System Differences

Reading and writing to a file with the Network File System relies on byte-range locking to guarantee

data integrity. To prevent data inconsistency, use the fcntl() API to get and release these locks. For

more information about remote locking, see information about the network lock manager and the

network status monitor in the OS/400 Network File System Support

book.

6. QNetWare File System Differences

F_GETLK and F_SETLKW are not supported. F_RDLCK and F_WRLCK are ignored. All locks prevent

reading and writing. Advisory locks are not supported. All locks are mandatory locks. Locking a file

that is opened more than once in the same job with the same access mode is not supported, and its

result is undefined.

7. This function will fail with the [EOVERFLOW] error if the command is F_GETLK, F_SETLK, or

F_SETLKW and the offset or the length exceeds offset 2 GB minus 2.

8. When you develop in C-based languages and an application is compiled with the _LARGE_FILES

macro defined, the struct flock data type will be mapped to a struct flock64 data type. To use the

struct flock64 data type explicitly, it is necessary to compile the function with the

_LARGE_FILE_API defined.

9. In several cases, similar function can be obtained by using ioctl().

Integrated File System APIs 125

Related Information

v The <sys/types.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <fcntl.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “close()—Close File or Socket Descriptor” on page 46—Close File or Socket Descriptor

v “dup()—Duplicate Open File Descriptor” on page 76—Duplicate Open File Descriptor

v “dup2()—Duplicate Open File Descriptor to Another Descriptor” on page 79—Duplicate Open File

Descriptor to Another Descriptor

v “ioctl()—Perform I/O Control Request” on page 193—Perform I/O Control Request

v “lseek()—Set File Read/Write Offset” on page 217—Set File Read/Write Offset

v “open()—Open File” on page 267—Open File

v spawn()—Spawn Process

v spawnp()—Spawn Process with Path

v OS/400 Network File System Support

book

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses fcntl():

#include <stdio.h>

#include <sys/types.h>

#include <unistd.h>

#include <fcntl.h>

int main()

{

 int flags;

 int append_flag;

 int nonblock_flag;

 int access_mode;

 int file_descriptor; /* File Descriptor */

 char *text1 = "abcdefghij";

 char *text2 = "0123456789";

 char read_buffer[25];

 memset(read_buffer, ’\0’, 25);

 /* create a new file */

 file_descriptor = creat("testfile",S_IRWXU);

 write(file_descriptor, text1, 10);

 close(file_descriptor);

 /* open the file with read/write access */

 file_descriptor = open("testfile", O_RDWR);

 read(file_descriptor, read_buffer,24);

 printf("first read is \’%s\’\n",read_buffer);

 /* reset file pointer to the beginning of the file */

 lseek(file_descriptor, 0, SEEK_SET);

 /* set append flag to prevent overwriting existing text */

 fcntl(file_descriptor, F_SETFL, O_APPEND);

 write(file_descriptor, text2, 10);

 lseek(file_descriptor, 0, SEEK_SET);

 read(file_descriptor, read_buffer,24);

 printf("second read is \’%s\’\n",read_buffer);

 close(file_descriptor);

126 iSeries: UNIX-Type -- Integrated File System APIs

spawn.htm
spawnp.htm
aboutapis.htm#CODEDISCLAIMER

unlink("testfile");

 return 0;

}

Output:

first read is ’abcdefghij’

second read is ’abcdefghij0123456789’

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

fpathconf()—Get Configurable Path Name Variables by Descriptor

 Syntax

 #include <unistd.h>

 long fpathconf(int file_descriptor, int name);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 131.

The fpathconf() function determines the value of a configuration variable (name) associated with a

particular file descriptor (file_descriptor). fpathconf() works exactly like pathconf(), except that it takes a

file descriptor as an argument rather than taking a path name.

Parameters

file_descriptor

(Input) A file descriptor of the file for which the value of the configurable variable is requested.

name (Input) The name of the configuration variable value requested.

 The value of name can be any one of a set of symbols defined in the <unistd.h> include file. Each symbol

stands for a configuration variable. The possible symbols are as follows:

_PC_CHOWN_RESTRICTED

Represents _POSIX_CHOWN_RESTRICTED, as defined in the <unistd.h> header file. It restricts

use of chown() to a job with appropriate privileges, and allows the group ID of a file to be

changed only to the effective group ID of the job or to one of its supplementary group IDs. If

file_descriptor is a directory, fpathconf() returns the value for any kind of file under the directory,

but not for subdirectories of the directory.

_PC_LINK_MAX

Represents LINK_MAX, which indicates the maximum number of links the file can have. If

file_descriptor is a directory, pathconf() returns the maximum number of links that can be

established to the directory itself.

_PC_MAX_CANON

Represents MAX_CANON, which indicates the maximum number of bytes in a terminal

canonical input line.

Integrated File System APIs 127

#TOP_OF_PAGE
unix.htm
aplist.htm

_PC_MAX_INPUT

Represents MAX_INPUT, which indicates the minimum number of bytes for which space is

available in a terminal input queue. This available space is the maximum number of bytes that a

portable application can have the user enter before the application actually reads the input.

_PC_NAME_MAX

Represents NAME_MAX, which indicates the maximum number of characters in a file name (not

including any terminating null at the end if the file name is stored as a string). This symbol refers

only to the file name itself; that is, the last component of the path name of the file. fpathconf()

returns the maximum length of file names, even when the path does not refer to a directory.

_PC_PATH_MAX

Represents PATH_MAX, which indicates the maximum number of characters in a complete path

name (not including any terminating null at the end if the path name is stored as a string).

fpathconf() returns the maximum length of a path name relative to the root of the file system that

is managing the object indicated by file_descriptor , even when the path does not refer to a

directory.

_PC_PIPE_BUF

Represents PIPE_BUF, which indicates the maximum number of bytes that can be written

″atomically″ to a pipe. If more than this number of bytes are written to a pipe, the operation may

take more than one physical write operation and physical read operation to read the data on the

other end of the pipe. If file_descriptor is a FIFO special file, fpathconf() returns the value for the

file itself. If file_descriptor is a directory, fpathconf() returns the value for any FIFOs that exist or

that can be created under the directory. If file_descriptor is any other kind of file, an error of

[EINVAL] is returned.

_PC_NO_TRUNC

Represents _POSIX_NO_TRUNC, as defined in the <unistd.h> header file. It generates an error if

a file name is longer than NAME_MAX. If file_descriptor refers to a directory, the value returned

by fpathconf() applies to all files under that directory.

_PC_VDISABLE

Represents _POSIX_VDISABLE, as defined in the <unistd.h> header file. This symbol indicates

that terminal special characters can be disabled using this character value, if it is defined.

_PC_THREAD_SAFE

This symbol is used to determine if the object represented by path resides in a threadsafe file

system. fpathconf() returns the value 1 if the file system is threadsafe and 0 if the file system is

not threadsafe. fpathconf() will never fail with error code [ENOTSAFE] when called with

_PC_THREAD_SAFE.

 If file_descriptor is a descriptor for a socket, fpathconf() returns an error of [EINVAL].

Authorities

No authorization is required.

Return Value

value fpathconf() was successful. The value of the variable requested in name is returned.

-1 One of the following has occurred:

v A particular variable has no limit (for example, _PC_PATH_MAX). The errno global variable is

not changed.

v fpathconf() was not successful. The errno is set.

128 iSeries: UNIX-Type -- Integrated File System APIs

Error Conditions

If fpathconf() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL. name is not a valid configuration variable

name, or the given variable cannot be associated with the specified file.

[EIO]

 Input/output error.

Integrated File System APIs 129

A physical I/O error occurred.

 A referenced object may be damaged.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

130 iSeries: UNIX-Type -- Integrated File System APIs

File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “open()—Open File” on page 267—Open File

v “pathconf()—Get Configurable Path Name Variables” on page 295—Get Configurable Path Name

Variables

v “QlgPathconf()—Get Configurable Path Name Variables (using NLS-enabled path name)” on page

368—Get Configurable Path Name Variables

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses fpathconf():

Integrated File System APIs 131

aboutapis.htm#CODEDISCLAIMER

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <errno.h>

main() {

 long result;

 char fn[]="temp.file";

 int file_descriptor;

 if ((file_descriptor = creat(fn, S_IRUSR)) < 0)

 perror("creat() error");

 else {

 errno = 0;

 puts("examining NAME_MAX limit for current working directory’s");

 puts("filesystem:");

 if ((result = fpathconf(file_descriptor, _PC_NAME_MAX)) == -1)

 if (errno == 0)

 puts("There is no limit to NAME_MAX.");

 else perror("fpathconf() error");

 else

 printf("NAME_MAX is %ld\n", result);

 close(file_descriptor);

 unlink(fn);

 }

}

Output:

examining NAME_MAX limit for current working directory’s

filesystem:

NAME_MAX is 255

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

fstat()—Get File Information by Descriptor

 Syntax

 #include <sys/stat.h>

 int fstat(int descriptor,

 struct stat *buffer)

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 136.

The fstat() function gets status information about the object specified by the open descriptor descriptor

and stores the information in the area of memory indicated by the buffer argument. The status

information is returned in a stat structure, as defined in the <sys/stat.h> header file.

132 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

descriptor

(Input) The descriptor for which information is to be retrieved.

buffer (Output) A pointer to a buffer of type struct stat in which the information is returned. The

structure pointed to by the buffer parameter is described in “stat()—Get File Information” on page

592.

 The st_mode, st_dev, and st_blksize fields are the only fields set for socket descriptors. The st_mode

field is set to a value that indicates the descriptor is a socket descriptor, the st_dev field is set to

-1, and the st_blksize field is set to an optimal value determined by the system.

Authorities

No authorization is required.

Return Value

 0 fstat() was successful. The information is returned in buffer.

-1 fstat() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If fstat() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A descriptor argument was out of range, referred to a file that was not open, or a read or write

request was made to a file that is not open for that operation.

 A given descriptor or directory pointer is not valid for this operation. The specified descriptor is

incorrect, or does not refer to an open object.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADFUNC]

Integrated File System APIs 133

Function parameter in the signal function is not set.

 A given descriptor or directory pointer is not valid for this operation. The specified descriptor is

incorrect, or does not refer to an open object.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid. [EFAULT] is returned if this function is passed a pointer parameter that is not

valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 This error code may be returned when the underlying object represented by the descriptor is

unable to fill the stat structure (for example, if the function was issued against a socket descriptor

that had its connection reset).

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

[ENOSYSRSC]

 System resources not available to complete request.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[EOVERFLOW]

 Object is too large to process.

134 iSeries: UNIX-Type -- Integrated File System APIs

The object’s data size exceeds the limit allowed by this function.

 The specified file exists and its size is too large to be represented in the structure pointed to by

buffer (the file is larger than 2GB minus 1 byte).

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could also indicate one of the

following errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

Integrated File System APIs 135

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPFA0D4 E File system error occurred. Error number &1.

CPFA081 E Unable to set return value or error code.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

v Where multiple threads exist in the job.

v The object this function is operating on resides in a file system that is not threadsafe. Only the

following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. Sockets-Specific Notes

v The field st_mode can be inspected using the S_ISSOCK macro (defined in <sys/stat.h>) to

determine if the descriptor is pointing to a socket descriptor.

v For socket descriptors, use the send buffer size (this is the value returned for st_blksize) for the

length parameter on your input and output functions. This can improve performance.

Note: IBM reserves the right to change the calculation of the optimal send size.
3. QOPT File System Differences

The value for st_atime will always be zero. The value for st_ctime will always be the creation date

and time of the file or directory.

The user, group, and other mode bits are always on for an object that exists on a volume not

formatted in Universal Disk Format (UDF).

fstat on /QOPT will always return 2,147,483,647 for size fields.

fstat on optical volumes will return the volume capacity or 2,147,483,647, whichever is smaller.

The file access time is not changed.

4. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. Once a file is open, subsequent requests to perform operations on the file can

fail because file attributes are checked at the server on each request. If permissions on the file are

made more restrictive at the server or the file is unlinked or made unavailable by the server for

another client, your operation on an open descriptor will fail when the local Network File System

receives these updates. The local Network File System also impacts operations that retrieve file

attributes. Recent changes at the server may not be available at your client yet, and old values may be

returned from operations. (Several options on the Add Mounted File System (ADDMFS) command

determine the time between refresh operations of local data.)

136 iSeries: UNIX-Type -- Integrated File System APIs

5. QNetWare File System Differences

The QNetWare file system does not fully support mode bits. See the Netware on iSeries topic for

more information.

6. This function will fail with the [EOVERFLOW] error if the specified file exists and its size is too large

to be represented in the structure pointed to by buffer (the file is larger than 2GB minus 1 byte).

7. When you develop in C-based languages and this function is compiled with _LARGE_FILES defined,

it will be mapped to fstat64(). Note that the type of the buffer parameter, struct stat *, also will be

mapped to type struct stat64 *. See “stat64()—Get File Information (Large File Enabled)” on page

601 for more information on this structure.

Related Information

v The <sys/types.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <sys/stat.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v “fstat64()—Get File Information by Descriptor (Large File Enabled)” on page 138—Get File Information

by Descriptor (Large File Enabled)

v “lstat()—Get File or Link Information” on page 224—Get File or Link Information

v “open()—Open File” on page 267—Open File

v socket()—Create Socket

v “stat()—Get File Information” on page 592—Get File Information

v “stat64()—Get File Information (Large File Enabled)” on page 601—Get File Information (Large File

Enabled))

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets status information:

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <time.h>

main() {

 char fn[]="temp.file";

 struct stat info;

 int file_descriptor;

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 if (fstat(file_descriptor, &info) != 0)

 perror("fstat() error");

 else {

 puts("fstat() returned:");

 printf(" inode: %d\n", (int) info.st_ino);

 printf(" dev id: %d\n", (int) info.st_dev);

 printf(" mode: %08x\n", info.st_mode);

 printf(" links: %d\n", info.st_nlink);

 printf(" uid: %d\n", (int) info.st_uid);

 printf(" gid: %d\n", (int) info.st_gid);

 }

 close(file_descriptor);

 unlink(fn);

 }

}

Integrated File System APIs 137

socket.htm
aboutapis.htm#CODEDISCLAIMER

Output: Note that the output may vary from system to system.

fstat() returned:

 inode: 3057

 dev id: 1

 mode: 03000080

 links: 1

 uid: 137

 gid: 500

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

fstat64()—Get File Information by Descriptor (Large File Enabled)

 Syntax

 #include <sys/stat.h>

 int fstat64(int fildes, struct stat64 *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes.”

The fstat64() function gets status information about the file specified by the open file descriptor

file_descriptor and stores the information in the area of memory indicated by the buf argument. The status

information is returned in a stat64 structure, as defined in the <sys/stat.h> header file.

fstat64() is enabled for large files. It is capable of operating on files larger than 2GB minus 1 byte as long

as the file has been opened by either of the following:

v Using the open64() function (see “open64()—Open File (Large File Enabled)” on page 287).

v Using the open() function (see “open()—Open File” on page 267) with O_LARGEFILE set in the oflag

parameter.

The elements of the stat64 structure are described in “stat64()—Get File Information (Large File

Enabled)” on page 601.

For additional information about parameters, authorities required, and error conditions, see “fstat()—Get

File Information by Descriptor” on page 132.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden. To

use the fstat64() API and the struct stat64 data type, you must compile the source with the

_LARGE_FILE_API macro defined.

2. All of the usage notes for fstat() apply to fstat64(). See Usage Notes in the fstat() API.

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets status information:

138 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
fstat.htm#HDRFSTAUSG
aboutapis.htm#CODEDISCLAIMER

#define _LARGE_FILE_API

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <time.h>

main() {

 char fn[]="temp.file";

 struct stat64 info;

 int file_descriptor;

 if ((file_descriptor = creat64(fn, S_IWUSR)) < 0)

 perror("creat64() error");

 else {

 if (ftruncate64(file_descriptor, 8589934662) != 0)

 perror("ftruncate64() error");

 else {

 if (fstat64(file_descriptor, &info) != 0)

 perror("fstat64() error");

 else {

 puts("fstat64() returned:");

 printf(" inode: %d\n", (int) info.st_ino);

 printf(" dev id: %d\n", (int) info.st_dev);

 printf(" mode: %08x\n", info.st_mode);

 printf(" links: %d\n", info.st_nlink);

 printf(" uid: %d\n", (int) info.st_uid);

 printf(" gid: %d\n", (int) info.st_gid);

 printf(" size: %lld\n", (long long) info.st_size);

 }

 }

 close(file_descriptor);

 unlink(fn);

 }

}

Output: Note that the output may vary from system to system.

fstat64() returned:

 inode: 3057

 dev id: 1

 mode: 03000080

 links: 1

 uid: 137

 gid: 500

 size: 8589934662

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 139

#TOP_OF_PAGE
unix.htm
aplist.htm

fstatvfs()—Get File System Information by Descriptor

 Syntax

 #include <sys/statvfs.h>

 int fstatvfs(int fildes, struct statvfs *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 144.

The fstatvfs() function gets status information about the file system that contains the file referenced by

the open file descriptor fildes. The information is stored in the area of memory indicated by the buf

argument. The status information is returned in a statvfs structure, as defined in the <sys/statvfs.h>

header file.

Parameters

fildes (Input) The file descriptor of the file from which file system information is required.

buf (Output) A pointer to the area to which the information should be written.

 The elements of the statvfs structure are described in “statvfs()—Get File System Information” on page

604. Signed fields of the statvfs structure that are not supported by the mounted file system will be set

to -1.

Authorities

Note: Adopted authority is not used.

Authorization Required for fstatvfs()

 Object Referred to Authority Required errno

Each directory in the path name that precedes the object *X EACCES

Object None None

Return Value

0 fstatvfs() was successful. The information is returned in buf.

-1 fstatvfs() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If fstatvfs() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

140 iSeries: UNIX-Type -- Integrated File System APIs

The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

Integrated File System APIs 141

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

142 iSeries: UNIX-Type -- Integrated File System APIs

Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

Integrated File System APIs 143

File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. ″Root″ (/) and QOpenSys File System Differences

These file systems return the f_flag field with the ST_NOSUID flag bit turned off. However, support for

the setuid/setgid semantics is limited to the ability to store and retrieve the S_ISUID and S_ISGID flags

when these file systems are accessed from the Network File System server.

3. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. Once a file is open, subsequent requests to perform operations on the file can

fail because file attributes are checked at the server on each request. If permissions on the file are

made more restrictive at the server or the file is unlinked or made unavailable by the server for

another client, your operation on an open file descriptor will fail when the local Network File System

receives these updates. The local Network File System also impacts operations that retrieve file

attributes. Recent changes at the server may not be available at your client yet, and old values may be

returned from operations. (Several options on the Add Mounted File System (ADDMFS) command

determine the time between refresh operations of local data.)

144 iSeries: UNIX-Type -- Integrated File System APIs

4. When you develop in C-based languages and an application is compiled with the _LARGE_FILES macro

defined, the fstatvfs() API will be mapped to a call to the fstatvfs64(). Additionally, the struct

statvfs data type will be mapped to a struct statvfs64.

Related Information

v The <sys/statvfs.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <sys/types.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “chmod()—Change File Authorizations” on page 29—Change File Authorizations

v “chown()—Change Owner and Group of File” on page 38—Change Owner and Group of File

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “dup()—Duplicate Open File Descriptor” on page 76—Duplicate Open File Descriptor

v

“fclear()—Write (Binary Zeros) to Descriptor” on page 108—Write (Binary Zeros) to Descriptor

v “fclear64()—-Write (Binary Zeros) to Descriptor (Large File Enabled)” on page 114—Write (Binary

Zeros) to Descriptor (Large File Enabled)

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v “fstatvfs64()—Get File System Information by Descriptor (64-Bit Enabled)” on page 146—Get File

System Information by Descriptor (64-Bit Enabled)

v “link()—Create Link to File” on page 210—Create Link to File

v “open()—Open File” on page 267—Open File

v “read()—Read from Descriptor” on page 549—Read from Descriptor

v “statvfs()—Get File System Information” on page 604—Get File System Information

v “unlink()—Remove Link to File” on page 624—Remove Link to File

v “utime()—Set File Access and Modification Times” on page 632—Set File Access and Modification

Times

v “write()—Write to Descriptor” on page 639—Write to Descriptor

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets status information about a file system:

#include <sys/statvfs.h>

#include <stdio.h>

main() {

 struct statvfs info;

 int fildes;

 if (-1 == (fildes = open("/",O_RDONLY)))

 perror("open() error");

 else if (-1 == fstatvfs(fildes, &info))

 perror("fstatvfs() error");

 else {

 puts("fstatvfs() returned the following information");

 puts("about the Root (’/’) file system:");

 printf(" f_bsize : %u\n", info.f_bsize);

 printf(" f_blocks : %08X%08X\n",

 *((int *)&info.f_blocks[0]),

 *((int *)&info.f_blocks[4]));

 printf(" f_bfree : %08X%08X\n",

 *((int *)&info.f_bfree[0]),

 *((int *)&info.f_bfree[4]));

 printf(" f_files : %u\n", info.f_files);

Integrated File System APIs 145

aboutapis.htm#CODEDISCLAIMER

printf(" f_ffree : %u\n", info.f_ffree);

 printf(" f_fsid : %u\n", info.f_fsid);

 printf(" f_flag : %X\n", info.f_flag);

 printf(" f_namemax : %u\n", info.f_namemax);

 printf(" f_pathmax : %u\n", info.f_pathmax);

 printf(" f_basetype : %s\n", info.f_basetype);

 }

}

Output: The following information will vary from file system to file system.

statvfs() returned the following information

about the Root (’/’) file system:

 f_bsize : 4096

 f_blocks : 00000000002BF800

 f_bfree : 0000000000091703

 f_files : 4294967295

 f_ffree : 4294967295

 f_fsid : 0

 f_flag : 1A

 f_namemax : 255

 f_pathmax : 4294967295

 f_basetype : "root" (/)

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

fstatvfs64()—Get File System Information by Descriptor (64-Bit

Enabled)

 Syntax

 #include <sys/statvfs.h>

 int fstatvfs64(int fildes, struct statvfs64 *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes.”

The fstatvfs64() function gets status information about the file system that contains the file referred to by

the open file descriptor fildes. The information is stored in the area of memory indicated by the buf

argument. The status information is returned in a statvfs64 structure, as defined in the <sys/statvfs.h>

header file.

For details about parameters, authorities required, error conditions and examples, see “fstatvfs()—Get File

System Information by Descriptor” on page 140. For details about the struct statvfs64 structure, see

“statvfs64()—Get File System Information (64-Bit Enabled)” on page 612.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden. To

use the fstatvfs64() API and the struct statvfs64 data type, you must compile the source with the

_LARGE_FILE_API defined.

146 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

2. All of the usage notes for fstatvfs() apply to fstatvfs64(). See “Usage Notes” on page 144 in the

fstatvfs() API.

 API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

fsync()—Synchronize Changes to File

 Syntax

 #include <unistd.h>

 int fsync(int file_descriptor);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 150.

The fsync() function transfers all data for the file indicated by the open file descriptor file_descriptor to the

storage device associated with file_descriptor. fsync() does not return until the transfer is complete, or until

an error is detected.

Parameters

file_descriptor

(Input) The file descriptor of the file that is to have its modified data written to permanent

storage.

Authorities

No authorization is required. Authorization is verified during open() or creat().

Return Value

0 fsync() was successful.

-1 fsync() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If fsync() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

Integrated File System APIs 147

#TOP_OF_PAGE
unix.htm
aplist.htm

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The file type is not valid for this operation.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

148 iSeries: UNIX-Type -- Integrated File System APIs

The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

Integrated File System APIs 149

A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. Using this function on a character special file will result in a return value of -1 and the errno global

value set to EINVAL.

150 iSeries: UNIX-Type -- Integrated File System APIs

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v

“fclear()—Write (Binary Zeros) to Descriptor” on page 108—Write (Binary Zeros) to Descriptor

v “fclear64()—-Write (Binary Zeros) to Descriptor (Large File Enabled)” on page 114—Write (Binary

Zeros) to Descriptor (Large File Enabled)

v “open()—Open File” on page 267—Open File

v “write()—Write to Descriptor” on page 639—Write to Descriptor

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses fsync():

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#define mega_string_len 250000

main() {

 char *mega_string;

 int file_descriptor;

 int ret;

 char fn[]="fsync.file";

 if ((mega_string = (char*) malloc(mega_string_len)) == NULL)

 perror("malloc() error");

 else if ((file_descriptor = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 memset(mega_string, ’s’, mega_string_len);

 if ((ret = write(file_descriptor,

 mega_string, mega_string_len)) == -1)

 perror("write() error");

 else {

 printf("write() wrote %d bytes\n", ret);

 if (fsync(file_descriptor) != 0)

 perror("fsync() error");

 else if ((ret = write(file_descriptor,

 mega_string, mega_string_len)) == -1)

 perror("write() error");

 else

 printf("write() wrote %d bytes\n", ret);

 }

 close(file_descriptor);

 unlink(fn);

 }

 free(mega_string);

}

Output:

write() wrote 250000 bytes

write() wrote 250000 bytes

Integrated File System APIs 151

aboutapis.htm#CODEDISCLAIMER

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

ftruncate()—Truncate File

 Syntax

 #include <unistd.h>

 int ftruncate(int file_descriptor, off_t length);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 157.

The ftruncate() function truncates the file indicated by the open file descriptor file_descriptor to the

indicated length. file_descriptor must be a ″regular file″ that is open for writing. (A regular file is a stream

file that can support positioning the file offset.) If the file size exceeds length, any extra data is discarded.

If the file size is smaller than length, the file is extended and filled with binary zeros to the indicated

length. (In the QSYS.LIB and independent ASP QSYS.LIB file systems blanks are used instead of zeros to

pad records after a member is extended.)

The ftruncate() function does not modify the current file

offset for any open file descriptions associated with the file.

If ftruncate() completes successfully, it marks the change time and modification times of the file. Also, the

S_ISUID (set-user-ID) and S_ISGID (set-group-ID) bits of the file mode are cleared. If ftruncate() is not

successful, the file is unchanged.

If ftruncate() is used to truncate the file to 0 bytes and the file has an OS/400 digital signature, the

signature is deleted.

Parameters

file_descriptor

(Input) The file descriptor of the file.

length (Input) The desired size of the file in bytes.

Authorities

No authorization is required. Authorization is verified during open() or creat().

Return Value

0 ftruncate() was successful.

-1 ftruncate() was not successful. The errno global variable is set to indicate the error. If the file

descriptor is not open for writing, ftruncate returns a [EBADF] error. If the file descriptor is a

valid descriptor open for writing but is not a descriptor for a regular file, ftruncate() returns a

[EINVAL] error.

152 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Error Conditions

If ftruncate() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

 The QSYS.LIB or independent ASP QSYS.LIB file system cannot get exclusive access to the

member to clear truncated data.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFBIG]

 Object is too large.

Integrated File System APIs 153

The size of the object would exceed the system allowed maximum size or the process soft file size

limit.

 The file is a regular file and length is greater than 2GB minus 1 byte.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL. file_descriptor does not refer to a regular

file open for writing, or the specified length is not correct.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EISDIR]

 Specified target is a directory.

 The path specified named a directory where a file or object name was expected.

 The path name given is a directory.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ELOCKED]

 Area being read from or written to is locked.

 The read or write of an area conflicts with a lock held by another process.

[ENAMETOOLONG]

154 iSeries: UNIX-Type -- Integrated File System APIs

A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

 Function not implemented.

 An attempt was made to use a function that is not available in this implementation for any object

or any arguments.

 The path name given refers to an object that does not support this function.

[ENOSYSRSC]

 System resources not available to complete request.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Integrated File System APIs 155

Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

 The object referenced by the descriptor does not support the function.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could also indicate one of the

following errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

156 iSeries: UNIX-Type -- Integrated File System APIs

A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. When you develop in C-based languages and this function is compiled with _LARGE_FILES defined,

it will be mapped to ftruncate64(). Note also that the type of the length parameter will be remapped

from off_t to off64_t.

3. For the Network File System, this function will fail with the [EFBIG] or the [EIO] error if the length

specified is greater than the largest file size supported by the server.

4. Using this function on a character special file results in a return value of -1 and the errno global value

set to EINVAL.

5. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

This function is not supported for save files and will fail with error code [ENOTSUP].

6. If the write exceeds the process soft file size limit, signal SIFXFSZ is issued.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “ftruncate64()—Truncate File (Large File Enabled)” on page 159—Truncate File (Large File Enabled)

Integrated File System APIs 157

v “open()—Open File” on page 267—Open File

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses ftruncate():

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#define string_len 1000

main() {

 char *mega_string;

 int file_descriptor;

 int ret;

 char fn[]="write.file";

 struct stat st;

 if ((mega_string = (char*) malloc(string_len)) == NULL)

 perror("malloc() error");

 else if ((file_descriptor = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 memset(mega_string, ’0’, string_len);

 if ((ret = write(file_descriptor, mega_string, string_len)) == -1)

 perror("write() error");

 else {

 printf("write() wrote %d bytes\n", ret);

 fstat(file_descriptor, &st);

 printf("the file has %ld bytes\n", (long) st.st_size);

 if (ftruncate(file_descriptor, 1) != 0)

 perror("ftruncate() error");

 else {

 fstat(file_descriptor, &st);

 printf("the file has %ld bytes\n", (long) st.st_size);

 }

 }

 close(file_descriptor);

 unlink(fn);

 }

 free(mega_string);

}

Output:

write() wrote 1000 bytes

the file has 1000 bytes

the file has 1 bytes

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

158 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

ftruncate64()—Truncate File (Large File Enabled)

 Syntax

 #include <unistd.h>

 int ftruncate64(int file_descriptor, off64_t length);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes.”

The ftruncate64() function truncates the file indicated by the open file descriptor file_descriptorto the

indicated length. file_descriptor must be a ″regular file″ that is open for writing. (A regular file is a stream

file that can support positioning the file offset.) If the file size exceeds length, any extra data is discarded.

If the file size is smaller than length, the file is extended and filled with binary zeros to the indicated

length. (In the QSYS.LIB and independent ASP QSYS.LIB file systems, blanks are used instead of zeros to

pad records after a member is extended.)

The ftruncate64() function does not modify the current file

offset for any open file descriptions associated with the file.

ftruncate64() is enabled for large files. It is capable of operating on files larger than 2GB minus 1 byte as

long as the file has been opened by either of the following:

v Using the open64() function (see “open64()—Open File (Large File Enabled)” on page 287).

v Using the open() function (see “open()—Open File” on page 267) with the O_LARGEFILE flag set in

the oflag parameter.

If ftruncate64() completes successfully, it marks the change time and modification times of the file. If

ftruncate64() is not successful, the file is unchanged.

For additional information about parameters, authorities, error conditions, and examples, see

“ftruncate()—Truncate File” on page 152.

Usage Notes

1. For file systems that do support large files, this function will fail with the [EFBIG] error if the length

specified is greater than 2GB minus 1 byte and O_LARGEFILE is not set in the oflag.

2. For file systems that do not support large files, this function will fail with the [EINVAL] error if the

length specified is greater than 2GB minus 1 byte.

3. QFileSvr.400 File System Differences

Although QFileSvr.400 does not support large files, it will return [EFBIG] if the length specified is

greater than 2GB minus 1 byte.

4. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden. To

use the ftruncate64() API and the off64_t data type, you must compile the source with

_LARGE_FILE_API defined.

5. All of the usage notes for ftruncate() apply to ftruncate64(). See “Usage Notes” on page 157 in the

ftruncate() API.

 API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 159

#TOP_OF_PAGE
unix.htm
aplist.htm

getcwd()—Get Current Directory

 Syntax

 #include <unistd.h>

 char *getcwd(char *buf, size_t size);

 Service Program Name: QP0LLIB2

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 164.

The getcwd() function determines the absolute path name of the current directory and stores it in buf. The

components of the returned path name are not symbolic links.

The access time of each directory in the absolute path name of the current directory (excluding the

current directory itself) is updated.

If buf is a NULL pointer, getcwd() returns a NULL pointer and the [EINVAL] error.

Parameters

buf (Output) A pointer to a buffer that will be used to hold the absolute path name of the current

directory. The buffer must be large enough to contain the full pathname including the terminating

NULL character. The current directory is returned in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgGetcwd()—Get Current Directory (using NLS-enabled path name)” on page 335 for a

description and an example of supplying the buf in any CCSID.

size (Input) The number of bytes in the buffer buf.

Authorities

Note: Adopted authority is not used.

Authorization Required for getcwd()

 Object Referred to Authority Required errno

Each directory in the path name

preceding the current directory

*RX EACCES

Current directory *X EACCES

Note: QDLS File System Differences

If the current directory is an immediate subdirectory of /QDLS (that is, at the next level below /QDLS in the

directory hierarchy), the user must have *RX (*USE) authority to the directory. Otherwise, the QDLS authority

requirements are the same as shown above.

Return Value

value getcwd() was successful. The value returned is a pointer to buf.

160 iSeries: UNIX-Type -- Integrated File System APIs

NULL getcwd() was not successful. The errno global variable is set to indicate the error. After an error,

the contents of buf are not defined.

 Note: If buf is a NULL pointer, getcwd() returns a NULL pointer.

Error Conditions

If getcwd() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EEXIST]

 File exists.

 The file specified already exists and the specified operation requires that it not exist.

 The named file, directory, or path already exists.

[EFAULT]

 The address used for an argument is not correct.

Integrated File System APIs 161

In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 A parameter passed to this function is not valid.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EMFILE]

 Too many open files for this process.

 An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of

OPEN_MAX can be retrieved using the sysconf() function.

 The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENFILE]

 Too many open files in the system.

 A system limit has been reached for the number of files that are allowed to be concurrently open

in the system.

 The entire system has too many other file descriptors already open.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

162 iSeries: UNIX-Type -- Integrated File System APIs

No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[ERANGE]

 A range error occurred.

 The value of an argument is too small, or a result too large.

 The size argument is too small. It is greater than zero but smaller than the length of the path

name plus a NULL character.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

Integrated File System APIs 163

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

v Where multiple threads exist in the job.

v The object this function is operating on resides in a file system that is not threadsafe. Only the

following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

164 iSeries: UNIX-Type -- Integrated File System APIs

–

Network File System

–

QFileSvr.400

2. QOPT File System Differences

If the directory exists on a volume formatted in Universal Disk Format (UDF), the authorization that

is checked for the directory and preceding directories in the path name follows the rules described in

Authorization Required for getcwd() (page 160). If the directory exists on a volume formatted in some

other media format, no authorization checks are made on the directory or preceding directories. The

volume authorization list is checked for *USE authority regardless of the volume media format.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “chdir()—Change Current Directory” on page 24—Change Current Directory

v “QlgGetcwd()—Get Current Directory (using NLS-enabled path name)” on page 335—Get Current

Directory

Example

See Code disclaimer information for information pertaining to code examples.

The following example determines the current directory:

#include <unistd.h>

#include <stdio.h>

main()

{

 char cwd[1024];

 if (chdir("/tmp") != 0)

 perror("chdir() error()");

 else

 {

 if (getcwd(cwd, sizeof(cwd)) == NULL)

 perror("getcwd() error");

 else

 printf("current working directory is: %s\n", cwd);

 }

}

Output:

current working directory is: /tmp

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 165

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

getegid()—Get Effective Group ID

 Syntax

 #include <unistd.h>

 gid_t getegid(void);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The getegid() function returns the effective group ID (GID) of the calling thread. The effective GID is the

group ID under which the thread is currently running. The effective GID of a thread may change while

the thread is running.

Parameters

None.

Authorities

No authorization is required.

Return Value

> 0 getegid() was successful. The value returned represents the effective GID.

>= 0 getegid() was successful. If there is no GID, the user ID has no group profile associated with it

and returns 0. Otherwise, if there is a group profile, the API returns the GID of the group profile.

-1 getegid() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If getegid() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EAGAIN]

Internal object compressed. Try again.

[EDAMAGE]

The user profile associated with the thread GID or an internal system object is damaged.

[ENOMEM]

The user profile associated with the thread GID has exceeded its storage limit.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets the effective GID.

166 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

#include <unistd.h>

main()

{

 gid_t ef_gid;

 if (-1 == (ef_gid = getegid(void)))

 perror("getegid() error.");

 else

 printf("The effective GID is: %u\n", ef_gid);

}

Output:

 The effective GID is: 75

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

geteuid()—Get Effective User ID

 Syntax

 #include <unistd.h>

 uid_t geteuid(void);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The geteuid() function returns the effective user ID (UID) of the calling thread. The effective UID is the

user ID under which the thread is currently running. The effective UID of a thread may change while the

thread is running.

Parameters

None.

Authorities

No authorization is required.

Return Value

0 or > 0

geteuid() was successful. The value returned represents the effective UID.

-1 geteuid() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If geteuid() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

Integrated File System APIs 167

#TOP_OF_PAGE
unix.htm
aplist.htm

[EAGAIN]

Internal object compressed. Try again.

[EDAMAGE]

The user profile associated with the thread UID or an internal system object is damaged.

[ENOMEM]

The user profile associated with the thread UID has exceeded its storage limit.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets the effective UID.

#include <unistd.h>

main()

{

 uid_t ef_uid;

 if (-1 == (ef_uid = geteuid(void)))

 perror("geteuid() error.");

 else

 printf("The effective UID is: %u\n", ef_uid);

}

Output:

 The effective UID is: 1957

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

getgid()—Get Real Group ID

 Syntax

 #include <unistd.h>

 gid_t getgid(void);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The getgid() function returns the real group ID (GID) of the calling thread. The real GID is the group ID

under which the thread was created.

 Note: When a user profile swap is done with the QWTSETP

API prior to running the getgid() function, the GID for

the current profile is returned.

168 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

None.

Authorities

No authorization is required.

Return Value

> 0 getgid() was successful. The value returned represents the GID.

>= 0 getgid() was successful. If there is no GID, the user ID has no group profile associated with it and

returns 0. Otherwise, if there is a group profile, the API returns the GID of the group profile.

-1 getgid() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If getgid() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EAGAIN]

Internal object compressed. Try again.

[EDAMAGE]

The user profile associated with the thread GID or an internal system object is damaged.

[ENOMEM]

The user profile associated with the thread GID has exceeded its storage limit.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets the real GID.

#include <unistd.h>

main()

{

 gid_t gid;

 if (-1 == (gid = getgid(void)))

 perror("getgid() error.");

 else

 printf("The real GID is: %u\n", gid);

}

Output:

 The real GID is: 75

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 169

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

getgrgid()—Get Group Information Using Group ID

 Syntax

 #include <grp.h>

 struct group *getgrgid(gid_t gid);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: No

The getgrgid() function returns a pointer to an object of type struct group containing an entry from the

user database with a matching GID.

Parameters

gid (Input) Group ID.

Authorities

*READ authority is required to the user profile associated with the gid. If the user does not have *READ

authority, only the name of the group and the group ID values are returned.

Return Value

struct group *

getgrgid() was successful. The return value points to static data of the format struct group,

which is defined in the grp.h header file. This storage is overwritten on each call to this function.

This static storage area is also used by the getgrnam() function. The struct group has the

following elements:

 char * gr_name Name of the group

gid_t gr_gid Group ID

char ** gr_mem A null-terminated list of pointers to the individual member profile names. If the group

profile does not have any members or if the caller does not have *READ authority to the

group profile, the list will be empty.

NULL pointer

getgrgid was not successful. The errno global variable is set to indicate the error.

Error Conditions

If getgrgid() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the GID is currently locked by another process.

[EC2] Detected pointer that is not valid.

[EINVAL]

Value is not valid. Check the job log for messages.

170 iSeries: UNIX-Type -- Integrated File System APIs

[ENOENT]

The user profile associated with the GID was not found.

[ENOMEM]

The user profile associated with the GID has exceeded its storage limit.

[ENOSPC]

Machine storage limit exceeded.

Related Information

v The <grp.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “getgrgid_r()—Get Group Information Using Group ID” on page 172—Get Group Information Using

Group ID

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets the group information for the gid of 91. The group name is GROUP1. There

are two group members, CLIFF and PATRICK.

#include <grp.h>

#include <stdio.h>

main()

{

 struct group *grp;

 short int lp;

 if (NULL == (grp = getgrgid(91)))

 perror("getgrgid() error.");

 else

 {

 printf("The group name is: %s\n", grp->gr_name);

 printf("The gid is: %u\n", grp->gr_gid);

 for (lp = 1; NULL != *(grp->gr_mem); lp++, (grp->gr_mem)++)

 printf("Group member %d is: %s\n", lp, *(grp->gr_mem));

 }

}

Output:

 The group name is: GROUP1

 The gid is: 91

 Group member 1 is: CLIFF

 Group member 2 is: PATRICK

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 171

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

getgrgid_r()—Get Group Information Using Group ID

 Syntax

 #include <sys/types.h>

 #include <grp.h>

 int getgrgid_r(gid_t gid, struct group *grp,

 char *buffer, size_t bufsize, struct group

 **result);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The getgrgid_r() function updates the group structure pointed to by grp and stores a pointer to that

structure in the location pointed to by result. The structure contains an entry from the user database with

a matching GID.

Parameters

gid (Input) Group ID.

grp (Input) A pointer to a group structure.

buffer (Input) A pointer to a buffer from which memory is allocated to hold storage areas referenced by

the group structure grp.

bufsize

(Input) The size of buffer in bytes.

result (Input) A pointer to a location in which a pointer to the updated group structure is stored. If an

error occurs or if the requested entry cannot be found, a NULL pointer is stored in this location.

 The struct group, which is defined in the grp.h header file, has the following elements:

 char * gr_name Name of the group

gid_t gr_gid Group ID

char ** gr_mem A null-terminated list of pointers to the individual member profile names. If the group

profile does not have any members or if the caller does not have *READ authority to the

group profile, the list will be empty.

Authorities

*READ authority is required to the user profile associated with the gid. If the user does not have *READ

authority, only the name of the group and the group ID values are returned.

Return Value

0 getgrgid_r was successful.

Any other value

Failure: The return value contains an error number indicating the error.

172 iSeries: UNIX-Type -- Integrated File System APIs

Error Conditions

If getgrgid_r() is not successful, the return value usually indicates one of the following errors. Under

some conditions, the value could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the GID is currently locked by another process.

[EC2] Detected pointer that is not valid.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with the GID was not found.

[ENOMEM]

The user profile associated with the GID has exceeded its storage limit.

[ENOSPC]

Machine storage limit exceeded.

[ERANGE]

Insufficient storage was supplied by buffer and bufsize to contain the data to be referenced by the

resulting group structure.

Related Information

v The <grp.h> file “Header Files for UNIX-Type Functions” on page 680(see)

v “getgrgid()—Get Group Information Using Group ID” on page 170—Get Group Information Using

Group ID

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets the group information for the gid of 91. The group name is GROUP1. There

are two group members, CLIFF and PATRICK.

#include <sys/types.h>

#include <grp.h>

#include <stdio.h>

#include <errno.h>

main()

{ short int lp;

 struct group grp;

 struct group * grpptr=&grp;

 struct group * tempGrpPtr;

 char grpbuffer[200];

 int grplinelen = sizeof(grpbuffer);

 if ((getgrgid_r(91,grpptr,grpbuffer,grplinelen,&tempGrpPtr))!=0)

 perror("getgrgid_r() error.");

 else

 {

 printf("\nThe group name is: %s\n", grp.gr_name);

 printf("The gid is: %u\n", grp.gr_gid);

 for (lp = 1; NULL != *(grp.gr_mem); lp++, (grp.gr_mem)++)

 printf("Group Member %d is: %s\n", lp, *(grp.gr_mem));

 }

}

Output:

Integrated File System APIs 173

aboutapis.htm#CODEDISCLAIMER

The group name is: GROUP1

 The gid is: 91

 Group member 1 is: CLIFF

 Group member 2 is: PATRICK

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

getgrgid_r_ts64()—Get Group Information Using Group ID

 Syntax

 #include <sys/types.h>

 #include <grp.h>

 int getgrgid_r_ts64(

 gid_t gid,

 struct group * __ptr64 grp,

 char * __prt64 buffer,

 size_t bufsize,

 struct group * __ptr64 * __ptr64 result);

 Service Program Name: QSYPAPI64

 Default Public Authority: *USE

 Threadsafe: Yes

The getgrgid_r_ts64() function updates the group structure pointed to by grp and stores a pointer to that

structure in the location pointed to by result. The structure contains an entry from the user database with

a matching GID. getgrgid_r_ts64() differs from getgrgid_r() in that it accepts 8-byte teraspace pointers.

For a discussion of the parameters, authorities required, return values, related information, usage notes,

and an example for the getgrgid_r() API, see “getgrgid_r()—Get Group Information Using Group ID” on

page 172—Get Group Information Using Group ID.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

getgrnam()—Get Group Information Using Group Name

 Syntax

 #include <grp.h>

 struct group *getgrnam(const char *name);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: No

174 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

The getgrnam() function returns a pointer to an object of type struct group containing an entry from the

user database with a matching name.

Parameters

name (Input) A pointer to a group profile name.

Authorities

*READ authority is required to the user profile associated with the name. If the user does not have

*READ authority, only the name of the group and the group ID values are returned.

Return Value

struct group *

getgrnam() was successful. The return value points to static data of the format struct group,

which is defined in the grp.h header file. This storage is overwritten on each call to this function.

This static storage area is also used by the getgrgid() function. The struct group has the

following elements:

 char * gr_name Name of the group

gid_t gr_gid Group ID

char ** gr_mem A null-terminated list of pointers to the individual member profile names. If the group

profile does not have any members or if the caller does not have *READ authority to the

group profile, the list will be empty.

NULL pointer

getgrnam was not successful. The errno global variable is set to indicate the error.

Error Conditions

If getgrnam() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the name is currently locked by another process.

[EC2] Detected pointer that is not valid.

[EDAMAGE]

The user profile associated with the group name or an internal system object is damaged.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with the name was not found or the profile name specified is not a

group profile.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Related Information

v The <grp.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “getgrnam_r()—Get Group Information Using Group Name” on page 176—Get Group Information

Using Group Name

Integrated File System APIs 175

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets the group information for the group GROUP1. The gid is 91. There are two

group members, CLIFF and PATRICK.

#include <grp.h>

#include <stdio.h>

main()

{

 struct group *grp;

 short int lp;

 if (NULL == (grp = getgrnam("GROUP1")))

 perror("getgrnam() error.");

 else

 {

 printf("The group name is: %s\n", grp->gr_name);

 printf("The gid is: %u\n", grp->gr_gid);

 for (lp = 1; NULL != *(grp->gr_mem); lp++, (grp->gr_mem)++)

 printf("Group member %d is: %s\n", lp, *(grp->gr_mem));

 }

}

Output:

 The group name is: GROUP1

 The gid is: 91

 Group member 1 is: CLIFF

 Group member 2 is: PATRICK

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

getgrnam_r()—Get Group Information Using Group Name

 Syntax

 #include <sys/types.h>

 #include <grp.h>

 int getgrnam_r(const char *name, struct group *grp,

 char *buffer, size_t bufsize, struct group

**result);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The getgrnam_r() function updates the group structure pointed to by grp and stores a pointer to that

structure in the location pointed to by result. The structure contains an entry from the user database with

matching name.

176 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

name (Input) A pointer to a group profile name.

grp (Input) A pointer to a group structure.

buffer (Input) A pointer to a buffer from which memory is allocated to hold storage areas referenced by

the group structure grp.

bufsize

(Input) The size of buffer in bytes.

result (Input) A pointer to a location in which a pointer to the updated group structure is stored. If an

error occurs or the requested entry cannot be found, a NULL pointer is stored in this location.

 The struct group, which is defined in the grp.h header file, has the following elements:

 char * gr_name Name of the group

gid_t gr_gid Group ID

char ** gr_mem A null-terminated list of pointers to the individual member profile names. If the group

profile does not have any members or if the caller does not have *READ authority to the

group profile, the list will be empty.

Authorities

*READ authority is required to the user profile associated with the name. If the user does not have

*READ authority, only the name of the group and the group ID values are returned.

Return Value

0 getgrnam_r was successful.

Any other value

Failure: The return value contains an error number indicating the error.

Error Conditions

If getgrnam_r() is not successful, the return value usually indicates one of the following errors. Under

some conditions, the value could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the name is currently locked by another process.

[EC2] Detected pointer that is not valid.

[EDAMAGE]

The user profile associated with the group name or an internal system object is damaged.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with the name was not found or the profile name specified is not a

group profile.

[ERANGE]

Insufficient storage was supplied by buffer and bufsize to contain the data to be referenced by the

resulting group structure.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Integrated File System APIs 177

Related Information

v The <grp.h> file (see)

v “getgrnam_r()—Get Group Information Using Group Name” on page 176—Get Group Information

Using Group Name

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets the group information for the group GROUP1. The gid is 91. There are two

group members, CLIFF and PATRICK.

#include <sys/types.h>

#include <grp.h>

#include <stdio.h>

#include <errno.h>

main()

{ short int lp;

 struct group grp;

 struct group * grpptr=&grp;

 struct group * tempGrpPtr;

 char grpbuffer[200];

 int grplinelen = sizeof(grpbuffer);

 if ((getgrnam_r("GROUP1",grpptr,grpbuffer,grplinelen,&tempGrpPtr))!=0)

 perror("getgrnam_r() error.");

 else

 {

 printf("\nThe group name is: %s\n", grp.gr_name);

 printf("The gid is: %u\n", grp.gr_gid);

 for (lp = 1; NULL != *(grp.gr_mem); lp++, (grp.gr_mem)++)

 printf("Group Member %d is: %s\n", lp, *(grp.gr_mem));

 }

}

Output:

 The group name is: GROUP1

 The gid is: 91

 Group member 1 is: CLIFF

 Group member 2 is: PATRICK

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

178 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

getgrnam_r_ts64()—Get Group Information Using Group Name

 Syntax

 #include <sys/types.h>

 #include <grp.h>

 int getgrnam_r_ts64(

 const char * __ptr64 name,

 struct group * __ptr64 grp,

 char * __ptr64 buffer,

 size_t bufsize,

 struct group * __ptr64 * __ptr64 result);

 Service Program Name: QSYPAPI64

 Default Public Authority: *USE

 Threadsafe: Yes

The getgrnam_r_ts64() function updates the group structure pointed to by grp and stores a pointer to that

structure in the location pointed to by result. The structure contains an entry from the user database with

a matching name. getgrnam_r_ts64() differs from getgrnam_r() in that it accepts 8-byte teraspace pointers.

For a discussion of the parameters, authorities required, return values, related information, usage notes,

and an example for the getgrnam_r() API, see “getgrnam_r()—Get Group Information Using Group

Name” on page 176—Get Group Information Using Group Name.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

getgroups()—Get Group IDs

 Syntax

 #include <unistd.h>

 int getgroups(int gidsetsize, gid_t grouplist[])

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: No

If the gidsetsize argument is zero, getgroups() returns the number of group IDs associated with the calling

thread without modifying the array pointed to by the grouplist argument. The number of group IDs

includes the effective group ID and the supplementary group IDs. Otherwise, getgroups() fills in the

array grouplist with the effective group ID and supplementary group IDs of the calling thread and returns

the actual number of group IDs stored. The values of array entries with indexes larger than or equal to

the returned value are undefined.

Integrated File System APIs 179

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

gidsetsize

(Input) The number of elements in the supplied array grouplist.

grouplist

(Output) The effective group ID and supplementary group IDs. The first element in grouplist is

the effective group ID.

Authorities

No authorization is required.

Return Value

 0 or > 0 getgroups() was successful. If the gidsetsize argument is 0, the number of group IDs is returned.

This number includes the effective group ID and supplementary group IDs. If gidsetsize is greater

than 0, the array grouplist is filled with the effective group ID and supplementary group IDs of the

calling thread and the return value represents the actual number of group IDs stored.

-1 getgroups() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If getgroups() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EINVAL]

The gidsetsize argument is not equal to zero and is less than the number of group IDs.

Usage Notes

This function can be used in two different ways. First, if called with gidsetsize equal to 0, it is used to

return the number of groups associated with a thread. Second, if called with gidsetsize not equal to 0, it is

used to return a list of the GIDs representing the effective and supplementary groups associated with a

thread. In this case, the gidsetsize argument represents how much space is available in the grouplist

argument.

The calling routine can choose to call this function with gidsetsize equal to 0 to determine how much

space to allocate for a second call to this function. The second call returns the values. The following is an

example of this method:

int numgroups;

gid_t *grouplist;

numgroups = getgroups(0,NULL);

grouplist = (gid_t *) calloc(numgroups, sizeof(gid_t));

if (getgroups(numgroups, grouplist) != -1) {

 .

 .

}

Alternatively, the calling routine can choose to create enough space for NGROUPS_MAX entries to ensure

enough space is available for the maximum possible number of entries that may be returned. This

introduces the possibility of wasted space. The following is an example of this method:

int numgroups;

gid_t grouplist[NGROUPS_MAX];

180 iSeries: UNIX-Type -- Integrated File System APIs

if (getgroups(NGROUPS_MAX, grouplist) != -1) {

 .

 .

}

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

getpwnam()—Get User Information for User Name

 Syntax

 #include <pwd.h>

 struct passwd *getpwnam(const char *name);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: No

The getpwnam() function returns a pointer to an object of type struct passwd containing an entry from

the user database with a matching name.

Parameters

name (Input) A pointer to a user profile name.

Authorities

*READ authority is required to the user profile associated with the name. If the user does not have

*READ authority, only the user name, user ID, and group ID values are returned.

Note: Adopted authority is not used.

Return Value

struct passwd *

getpwnam() was successful. The return value points to static data of the format struct passwd,

which is defined in the pwd.h header file. This storage is overwritten on each call to this

function. This static storage area is also used by the getpwuid() function. The struct passwd has

the following elements:

 char * pw_name User name

uid_t pw_uid User ID

uid_t pw_gid Group ID of the user’s first group. If the user does not have a first group, the gid

value will be set to 0.

char * pw_dir Initial working directory. If the user does not have *READ authority to the user

profile, the pw_dir pointer will be set to NULL.

Integrated File System APIs 181

#TOP_OF_PAGE
unix.htm
aplist.htm

char * pw_shell Initial user program. If the user does not have *READ authority to the user profile,

the pw_shell pointer will be set to NULL.

NULL pointer

getpwnam() was not successful. The errno global variable is set to indicate the error.

 See “QlgGetpwnam()—Get User Information for User Name (using NLS-enabled path name)” on page

340 for a description and an example where the path name is returned in any CCSID.

Error Conditions

If getpwnam() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the name is currently locked by another process.

[EC2] Detected pointer that is not valid.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with the name was not found.

[ENOMEM]

The user profile associated with the UID has exceeded its storage limit or is unable to allocate

memory.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify

that the home directory field in the user profile can be displayed.

Usage Notes

The initial working directory is returned in the CCSID value of the job.

Related Information

v The <pwd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “getpwnam_r()—Get User Information for User Name” on page 183—Get User Information for User

Name

v “QlgGetpwnam()—Get User Information for User Name (using NLS-enabled path name)” on page

340—Get User Information for User Name (using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets the user database information for the user name of MYUSER. The UID is 22.

The gid of MYUSER’s first group is 1012. The initial directory is /home/MYUSER. The initial user

program is *LIBL/QCMD.

#include <pwd.h>

main()

{

 struct passwd *pd;

 if (NULL == (pd = getpwnam("MYUSER")))

 perror("getpwnam() error.");

 else

182 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

{

 printf("The user name is: %s\n", pd->pw_name);

 printf("The user id is: %u\n", pd->pw_uid);

 printf("The group id is: %u\n", pd->pw_gid);

 printf("The initial directory is: %s\n", pd->pw_dir);

 printf("The initial user program is: %s\n", pd->pw_shell);

 }

}

Output:

 The user name is: MYUSER

 The user id is: 22

 The group id is: 1012

 The initial directory is: /home/MYUSER

 The initial user program is: *LIBL/QCMD

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

getpwnam_r()—Get User Information for User Name

 Syntax

 #include <sys/types.h>

 #include <pwd.h>

 int getpwnam_r(const char *name, struct passwd

 *pwd, char *buffer, size_t bufsize,

 struct passwd **result);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The getpwnam_r() function updates the passwd structure pointed to by pwd and stores a pointer to that

structure in the location pointed to by result. The structure contains an entry from the user database with

a matching name.

Parameters

name (Input) A pointer to a user profile name.

pwd (Input) A pointer to a passwd structure.

buffer (Input) A pointer to a buffer from which memory is allocated to hold storage areas referenced by

the structure pwd.

bufsize

(Input) The size of buffer in bytes.

result (Input) A pointer to a location in which a pointer to the updated passwd structure is stored. If an

error occurs or if the requested entry cannot be found, a NULL pointer is stored in this location.

 The struct passwd, which is defined in the pwd.h header file, has the following elements:

Integrated File System APIs 183

#TOP_OF_PAGE
unix.htm
aplist.htm

char * pw_name User name

uid_t pw_uid User ID

uid_t pw_gid Group ID of the user’s first group. If the user does not have a first group, the GID value

will be set to 0.

char * pw_dir Initial working directory. If the user does not have *READ authority to the user profile, the

pw_dir pointer will be set to NULL.

char * pw_shell Initial user program. If the user does not have *READ authority to the user profile, the

pw_shell will be set to NULL.

See “QlgGetpwnam_r()—Get User Information for User Name (using NLS-enabled path name)” on page

342 for a description and an example where the path name is returned in any CCSID. Go to _r version

Authorities

*READ authority is required to the user profile associated with the name. If the user does not have

*READ authority, only the user name, user ID, and group ID values are returned.

Note: Adopted authority is not used.

Return Value

0 getpwnam_r was successful.

Any other value

Failure: The return value contains an error number indicating the error.

Error Conditions

If getpwnam_r() is not successful, the return value usually indicates one of the following errors. Under

some conditions, the value could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the name is currently locked by another process.

[EC2] Detected pointer that is not valid.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with the name was not found.

[ENOMEM]

The user profile associated with the UID has exceeded its storage limit or is unable to allocate

memory.

[ERANGE]

Insufficient storage was supplied through buffer and bufsize to contain the data to be referenced

by the resulting group structure.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify

that the home directory field in the user profile can be displayed.

Usage Notes

The initial working directory is returned in the CCSID value of the job.

Related Information

v The <pwd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

184 iSeries: UNIX-Type -- Integrated File System APIs

v “getpwnam()—Get User Information for User Name” on page 181—Get User Information for User

Name

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets the user database information for the user name of MYUSER. The UID is 22.

The GID of MYUSER’s first group is 1012. The initial directory is /home/MYUSER. The initial user

program is *LIBL/QCMD.

#include <sys/types.h>

#include <pwd.h>

#include <stdio.h>

#include <errno.h>

main()

{

 struct passwd pd;

 struct passwd* pwdptr=&pd;

 struct passwd* tempPwdPtr;

 char pwdbuffer[200];

 int pwdlinelen = sizeof(pwdbuffer);

 if ((getpwnam_r("MYUSER",pwdptr,pwdbuffer,pwdlinelen,&tempPwdPtr))!=0)

 perror("getpwnam_r() error.");

 else

 {

 printf("\nThe user name is: %s\n", pd.pw_name);

 printf("The user id is: %u\n", pd.pw_uid);

 printf("The group id is: %u\n", pd.pw_gid);

 printf("The initial directory is: %s\n", pd.pw_dir);

 printf("The initial user program is: %s\n", pd.pw_shell);

 }

}

Output:

 The user name is: MYUSER

 The user ID is: 22

 The group ID is: 1012

 The initial directory is: /home/MYUSER

 The initial user program is: *LIBL/QCMD

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 185

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

getpwnam_r_ts64()—Get User Information for User Name

 Syntax

 #include <sys/types.h>

 #include <pwd.h>

 int getpwnam_r_ts64(

 const char * __ptr64 name,

 struct passwd * __ptr64 pwd,

 char * __ptr64 buffer,

 size_t bufsize,

 struct passwd * __ptr64 * __ptr64 result);

 Service Program Name: QSYPAPI64

 Default Public Authority: *USE

 Threadsafe: Yes

The getpwnam_r_ts64() function updates the passwd structure pointed to by pwd and stores a pointer to

that structure in the location pointed to by result. The structure contains an entry from the user database

with a matching name. getpwnam_r_ts64() differs from getpwnam_r() in that it accepts 8-byte teraspace

pointers.

For a discussion of the parameters, authorities required, return values, related information, usage notes,

and an example for the getpwnam_r() API, see “getpwnam_r()—Get User Information for User Name”

on page 183—Get User Information for User Name.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

getpwuid()—Get User Information for User ID

 Syntax

 #include <pwd.h>

 struct passwd *getpwuid(uid_t uid);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: No

The getpwuid() function returns a pointer to an object of type struct passwd containing an entry from

the user database with a matching UID.

Parameters

uid (Input) User ID.

186 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Authorities

*READ authority is required to the user profile associated with the UID. If the user does not have *READ

authority, only the user name, user ID, and group ID values are returned.

Note: Adopted authority is not used.

Return Value

struct passwd *

getpwuid() was successful. The return value points to static data of the format struct passwd,

which is defined in the pwd.h header file. This storage is overwritten on each call to this

function. This static storage area is also used by the getpwnam() function. The struct passwd has

the following elements:

 char * pw_name User name

uid_t pw_uid User ID

uid_t pw_gid Group ID of the user’s first group. If the user does not have a first group, the gid

value will be set to 0.

char * pw_dir Initial working directory. If the user does not have *READ authority to the user

profile, the pw_dir pointer will be set to NULL.

char * pw_shell Initial user program. If the user does not have *READ authority to the user profile,

the pw_shell pointer will be set to NULL.

NULL pointer

getpwuid() was not successful. The errno global variable is set to indicate the error.

 See “QlgGetpwuid()—Get User Information for User ID (using NLS-enabled path name)” on page 345 for

a description and an example where the path name is returned in any CCSID.

Error Conditions

If getpwuid() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the UID is currently locked by another process.

[EC2] Detected pointer that is not valid.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with UID was not found.

[ENOMEM]

The user profile associated with the UID has exceeded its storage limit or is unable to allocate

memory.

[ENOSPC]

Machine storage limit exceeded.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify

that the home directory field in the user profile can be displayed.

Usage Notes

The initial working directory is returned in the CCSID value of the job.

Integrated File System APIs 187

Related Information

v The <pwd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “getpwuid_r()—Get User Information for User ID” on page 189—Get User Information for User ID

v “QlgGetpwuid()—Get User Information for User ID (using NLS-enabled path name)” on page

345—Get User Information for User ID (using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets the user database information for the UID of 22. The user name is MYUSER.

The gid of MYUSER’s first group is 1012. The initial directory is /home/MYUSER. The initial user

program is *LIBL/QCMD.

#include <pwd.h>

main()

{

 struct passwd *pd;

 if (NULL == (pd = getpwuid(22)))

 perror("getpwuid() error.");

 else

 {

 printf(The user name is: %s\n", pd->pw_name);

 printf("The user id is: %u\n", pd->pw_uid);

 printf("The group id is: %u\n", pd->pw_gid);

 printf("The initial directory is: %s\n", pd->pw_dir);

 printf("The initial user program is: %s\n", pd->pw_shell);

 }

}

Output:

 The user name is: MYUSER

 The user id is: 22

 The group id is: 1012

 The initial directory is: /home/MYUSER

 The initial user program is: *LIBL/QCMD

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

188 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

getpwuid_r()—Get User Information for User ID

 Syntax

 #include <sys/types.h>

 #include <pwd.h>

 int getpwuid_r(uid_t uid, struct passwd *pwd,

 char *buffer, size_t bufsize, struct passwd

 **result);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The getpwuid_r() function updates the passwd structure pointed to by pwd and stores a pointer to that

structure in the location pointed to by result. The structure contains an entry from the user database with

a matching uid.

Parameters

uid (Input) User ID.

pwd (Input) A pointer to a struct passwd.

buffer (Input) A pointer to a buffer from which memory is allocated to hold storage areas referenced by

the structure passwd.

bufsize

(Input) The size of buffer in bytes.

result (Input) A pointer to a location in which a pointer to the updated passwd structure is stored. If an

error occurs or if the requested entry cannot be found, a NULL pointer is stored in this location.

 The struct passwd, which is defined in the pwd.h header file, has the following elements:

 char * pw_name User name

uid_t pw_uid User ID

uid_t pw_gid Group ID of the user’s first group. If the user does not have a first

group, the GID value will be set to 0.

char * pw_dir Initial working directory. If the user does not have *READ authority

to the user profile, the pw_dir pointer will be set to NULL.

char * pw_shell Initial user program. If the user does not have *READ authority to

the user profile, the pw_shell pointer will be set to NULL.

See “QlgGetpwuid_r()—Get User Information for User ID (using NLS-enabled path name)” on page 347

for a description and an example where the path name is returned in any CCSID.

Authorities

*READ authority is required to the user profile associated with the UID. If the user does not have *READ

authority, only the user name, user ID, and group ID values are returned.

Note: Adopted authority is not used.

Integrated File System APIs 189

Return Value

0 getpwuid_r() was successful.

Any other value

Failure: The return value contains an error number indicating the error.

Error Conditions

If getpwuid_r() is not successful, the error value usually indicates one of the following errors. Under

some conditions, the value could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the UID is currently locked by another process.

[EC2] Detected pointer that is not valid.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with the UID was not found.

[ENOMEM]

The user profile associated with the UID has exceeded its storage limit or is unable to allocate

memory.

[ENOSPC]

Machine storage limit exceeded.

[ERANGE]

Insufficient storage was supplied through buffer and bufsize to contain the data to be referenced

by the resulting group structure.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify

that the home directory field in the user profile can be displayed.

Usage Notes

The initial working directory is returned in the CCSID value of the job.

Related Information

v The <pwd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “getpwuid()—Get User Information for User ID” on page 186—Get User Information for User ID

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets the user database information for the UID of 22. The user name is MYUSER.

The GID of MYUSER’s first group is 1012. The initial directory is /home/MYUSER. The initial user

program is *LIBL/QCMD.

#include <sys/types.h>

#include <pwd.h>

#include <stdio.h>

#include <errno.h>

main()

{

 struct passwd pd;

 struct passwd* pwdptr=&pd;

 struct passwd* tempPwdPtr;

190 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

char pwdbuffer[200];

 int pwdlinelen = sizeof(pwdbuffer);

 if ((getpwuid_r(22,pwdptr,pwdbuffer,pwdlinelen,&tempPwdPtr))!=0)

 perror("getpwuid_r() error.");

 else

 {

 printf("\nThe user name is: %s\n", pd.pw_name);

 printf("The user id is: %u\n", pd.pw_uid);

 printf("The group id is: %u\n", pd.pw_gid);

 printf("The initial directory is: %s\n", pd.pw_dir);

 printf("The initial user program is: %s\n", pd.pw_shell);

 }

}

Output:

 The user name is: MYUSER

 The user ID is: 22

 The group ID is: 1012

 The initial directory is: /home/MYUSER

 The initial user program is: *LIBL/QCMD

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

getpwuid_r_ts64()—Get User Information for User ID

 Syntax

 #include <sys/types.h>

 #include <pwd.h>

 int getpwuid_r_ts64(

 uid_t uid,

 struct passwd * __ptr64 pwd,

 char * __ptr64 buffer,

 size_t bufsize,

 struct passwd * __ptr64 * __ptr64 result);

 Service Program Name: QSYPAPI64

 Default Public Authority: *USE

 Threadsafe: Yes

The getpwuid_r_ts64() function updates the passwd structure pointed to by pwd and stores a pointer to

that structure in the location pointed to by result. The structure contains an entry from the user database

with a matching UID. getpwuid_r_ts64() differs from getpwuid_r() in that it accepts 8-byte teraspace

pointers.

For a discussion of the parameters, authorities required, return values, related information, usage notes,

and an example for the getpwuid_r() API, see “getpwuid_r()—Get User Information for User ID” on

page 189—Get User Information for User ID.

Integrated File System APIs 191

#TOP_OF_PAGE
unix.htm
aplist.htm

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

getuid()—Get Real User ID

 Syntax

 #include <unistd.h>

 uid_t getuid(void);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The getuid() function returns the real user ID (UID) of the calling thread. The real UID is the user ID

under which the thread was created.

 Note: When a user profile swap is done with the QWTSETP

API prior to running the getuid() function, the UID for

the current profile is returned.

Parameters

None.

Authorities

No authorization is required.

Return Value

0 or > 0

getuid() was successful. The value returned represents the UID.

-1 getuid() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If getuid() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EAGAIN]

Internal object compressed. Try again.

[EDAMAGE]

The user profile associated with the thread UID or an internal system object is damaged.

[ENOMEM]

The user profile associated with the thread UID has exceeded its storage limit.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

192 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets the real UID.

#include <unistd.h>

main()

{

 uid_t uid;

 if (-1 == (uid = getuid(void)))

 perror("getuid() error.");

 else

 printf("The real UID is: %u\n", uid);

}

Output:

 The real UID is: 1957

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

ioctl()—Perform I/O Control Request

 Syntax

 #include <sys/types.h>

 #include <sys/ioctl.h>

 int ioctl(int descriptor,

 unsigned long request,

 ...);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 202.

The ioctl() function performs control functions (requests) on a descriptor.

Parameters

descriptor

(Input) The descriptor on which the control request is to be performed.

request

(Input) The request that is to be performed on the descriptor.

... (Input) A variable number of optional parameters that are dependent on the request.

 The ioctl() requests that are supported are:

Integrated File System APIs 193

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

FIOASYNC Set or clear the flag that allows the receipt of asynchronous I/O signals (SIGIO).

The third parameter represents a pointer to an integer flag. A nonzero value sets the

socket to generate SIGIO signals, while a zero value sets the socket to not generate

SIGIO signals. Note that before the SIGIO signals can be delivered, you must use either

the FIOSETOWN or SIOCSPGRP ioctl() request, or the F_SETOWN fcntl() command to set a

process ID or a process group ID to indicate what process or group of processes will

receive the signal. Once conditioned to send SIGIO signals, a socket will generate SIGIO

signals whenever certain significant conditions change on the socket. For example,

SIGIO will be generated when normal data arrives on the socket, when out-of-band

data arrives on the socket (in addition to the SIGURG signal), when an error occurs on

the socket, or when end-of-file is received on the socket. It is also generated when a

connection request is received on the socket (if it is a socket on which the listen() verb

has been done). Also note that a socket can be set to generate the SIGIO signal by

using the fcntl() command F_SETFL with a flag value specifying FASYNC.

FIOCCSID Return the coded character set ID (CCSID) associated with the open instance

represented by the descriptor and the CCSID associated with the object. The third

parameter represents a pointer to the structure Qp0lFIOCCSID, which is defined in

<sys/ioctl.h>. This information may be necessary to correctly manipulate data read

from or written to a file opened in another process.

If the open instance represented by the descriptor is in binary mode (the open() did

not specify the O_TEXTDATA open flag), the open instance CCSID returned is equal to

the object CCSID returned.

FIOGETOWN Get the process ID or process group ID that is to receive the SIGIO and SIGURG signals.

The third parameter represents a pointer to a signed integer that will contain the

process ID or the process group ID to which the socket is currently sending

asynchronous signals such as SIGURG. A process ID is returned as a positive integer,

and a process group ID is specified as a negative integer. A 0 value returned indicates

that no asynchronous signals can be generated by the socket. A positive or a negative

value indicates that the socket has been set to generate SIGURG signals.

FIONBIO Set or clear the nonblocking I/O flag (O_NONBLOCK oflag). The third parameter

represents a pointer to an integer flag. A nonzero value sets the nonblocking I/O flag

for the descriptor; a zero value clears the flag.

FIONREAD Return the number of bytes available to be read. The third parameter represents a

pointer to an integer that is set to the number of bytes available to be read.

FIOSETOWN Set the process ID or process group ID that is to receive the SIGIO and SIGURG signals.

The third parameter represents a pointer to a signed integer that contains the process

ID or the process group ID to which the socket should send asynchronous signals such

as SIGURG. A process ID is specified as a positive integer, and a process group ID is

specified as a negative integer. Specifying a 0 value resets the socket such that no

asynchronous signals are delivered. Specifying a process ID or a process group ID

requests that sockets begin sending the SIGURG signal to the specified ID when

out-of-band data arrives on the socket.

194 iSeries: UNIX-Type -- Integrated File System APIs

SIOCADDRT Add an entry to the interface routing table. Valid for sockets with address family of

AF_INET.

The third parameter represents a pointer to the structure rtentry, which is defined in

<net/route.h>:

 struct rtentry [

 struct sockaddr rt_dst;

 struct sockaddr rt_mask;

 struct sockaddr rt_gateway;

 int rt_mtu;

 u_short rt_flags;

 u_short rt_refcnt;

 u_char rt_protocol;

 u_char rt_TOS;

 char rt_if[IFNAMSIZ];

];

The rt_dst, rt_mask, and rt_gateway fields are the route destination address, route

address mask, and gateway address, respectively. rt_mtu is the maximum transfer unit

associated with the route. rt_flags contains flags that give some information about a

route (for example, whether the route was created dynamically, whether the route is

usable, type of route, and so on). rt_refcnt indicates the number of references that exist

to the route entry. rt_protocol indicates how the route entry was generated (for

example, configuration, ICMP redirect, and so on). rt_tos is the type of service

associated with the route. rt_if is a NULL-terminated string that represents the

interface IP address in dotted decimal format that is associated with the route.

To add a route, the following fields must be set:

v rt_dst

v rt_mask

v rt_gateway

v rt_tos

v rt_protocol

v rt_mtu (Setting the rt_mtu value to zero essentially means use the MTU from the

associated line description used when the route is bound to an IFC.)

v rt_if (rt_if can be set to the dotted decimal equivalent of INADDR_ANY, which is 0.)

In addition, the rt_flags bit flags can be set to the following:

v RTF_NOREBIND_IFC_FAIL if no rebinding of the route is to occur when the

interface associated with the route fails.

v RTF_NOREBIND_IFC_ACTV if no rebinding is to occur when interfaces are

activated or deactivated.

To delete a route, the following fields must be set:

v rt_dst

v rt_mask

v rt_gateway

v rt_tos

v rt_protocol

All other fields are ignored when adding or removing an entry.

SIOCATMARK Return the value indicating whether socket’s read pointer is currently at the

out-of-band mark.

The third parameter represents a pointer to an integer flag. If the socket’s read pointer

is currently at the out-of-band mark, the flag is set to a nonzero value. If it is not, the

flag is set to zero.

Integrated File System APIs 195

SIOCDELRT Delete an entry from the interface routing table. Valid for sockets with address family

of AF_INET.

See SIOCADDRT (page 195) for more information on the third parameter.

SIOCGIFADDR Get the interface address. Valid for sockets with address family of AF_INET.

The third parameter represents a pointer to the structure ifreq, defined in <net/if.h>:

 struct ifreq {

 char ifr_name[IFNAMSIZE];

 union {

 struct sockaddr ifru_addr;

 struct sockaddr ifru_mask;

 struct sockaddr ifru_broadaddr;

 short ifru_flags;

 int ifru_mtu;

 int infu_rbufsize;

 char ifru_linename[10];

 char ifru_TOS;

 } ifr_ifru;

 };

ifr_name is the name of the interface for which information is to be retrieved. The

OS/400 implementation requires this field to be set to a NULL-terminated string that

represents the interface IP address in dotted decimal format. Depending on the

request, one of the fields in the ifr_ifru union will be set upon return from the ioctl()

call. ifru_addr is the local IP address of the interface. ifru_mask is the subnetwork mask

associated with the interface. ifru_broadaddr is the broadcast address. ifru_flags contains

flags that give some information about an interface (for example, token-ring routing

support, whether interface is active, broadcast address, and so on). ifru_mtu is the

maximum transfer unit configured for the interface. ifru_rbufsize is the reassembly

buffer size of the interface. ifru_linename is the line name associated with the interface.

ifru_TOS is the type of service configured for the interface.

SIOCGIFBRDADDR Get the interface broadcast address. Valid for sockets with address family of AF_INET.

See SIOCGIFADDR (page 196) for more information on the third parameter.

196 iSeries: UNIX-Type -- Integrated File System APIs

SIOCGIFCONF Get the interface configuration list. Valid for sockets with address family of AF_INET.

The third parameter represents a pointer to the structure ifconf, defined in <net/if.h>:

 struct ifconf [

 int ifc_len;

 int ifc_configured;

 int ifc_returned;

 union {

 caddr_t ifcu_buf;

 struct ifreq *ifcu_req;

 } ifc_ifcu;

];

ifc_len is a value-result field. The caller passes the size of the buffer pointed to by

ifcu_buf. On return, ifc_len contains the amount of storage that was used in the buffer

pointed to by ifcu_buf for the interface entries. ifc_configured is the number of interface

entries in the interface list. ifc_returned is the number of interface entries that were

returned (this is dependent on the size of the buffer pointed to by ifcu_buf). ifcu_buf is

the user buffer in which a list of interface entries will be stored. Each stored entry will

be an ifreq structure.

To get the interface configuration list, the following fields must be set:

v ifc_len

v ifcu_buf

See SIOCGIFADDR (page 196) for more information on the list of ifreq structures

returned. For this request, the ifr_name and ifru_addr fields will be set to a value.

Note: Additional information about each individual interface can be obtained using

these values and the other interface-related requests.

SIOCGIFFLAGS Get interface flags. Valid for sockets with address family of AF_INET.

See SIOCGIFADDR (page 196) for more information on the third parameter.

SIOCGIFLIND Get the interface line description name. Valid for sockets with address family of

AF_INET.

See SIOCGIFADDR (page 196) for more information on the third parameter.

SIOCGIFMTU Get the interface network MTU. Valid for sockets with address family of AF_INET.

See SIOCGIFADDR (page 196) for more information on the third parameter.

SIOCGIFNETMASK Get the mask for the network portion of the interface address. Valid for sockets with

address family of AF_INET.

See SIOCGIFADDR (page 196) for more information on the third parameter.

SIOCGIFRBUFS Get the interface reassembly buffer size. Valid for sockets with address family of

AF_INET.

See SIOCGIFADDR (page 196) for more information on the third parameter.

SIOCGIFTOS Get the interface type-of-service (TOS). Valid for sockets with address family of

AF_INET.

See SIOCGIFADDR (page 196) for more information on the third parameter.

SIOCGPGRP Get the process ID or process group ID that is to receive the SIGIO and SIGURG signals.

See FIOGETOWN (page 194) for more information on the third parameter.

Integrated File System APIs 197

SIOCGRTCONF Get the route configuration list. Valid for sockets with address family of AF_INET.

For the SIOCGRTCONF request, the third parameter represents a pointer to the structure

rtconf, also defined in <net/route.h>:

 struct rtconf [

 int rtc_len;

 int rtc_configured;

 int rtc_returned;

 union {

 caddr_t rtcu_buf;

 struct rtentry *rtcu_req;

 } rtc_rtcu;

];

rtc_len is a value-result field. The caller passes the size of the buffer pointed to by

rtcu_buf. On return, rtc_len contains the amount of storage that was used in the buffer

pointed to by rtcu_buf for the route entries. rtc_configured is the number of route entries

in the route list. rtc_returned is the number of route entries that were returned (this is

dependent on the size of the buffer pointed to by rtcu_buf). rtcu_buf is the user buffer

in which a list of route entries will be stored. Each stored entry will be an rtentry

structure.

To get the route configuration list, the following fields must be set:

v rtc_len

v rtcu_buf

See SIOCADDRT (page 195) for more information on the list of rtentry structures

returned. For this request, all fields in each rtentry structure will be set to a value.

SIOCSENDQ Return the number of bytes on the send queue that have not been acknowledged by

the remote system. Valid for sockets with address family of AF_INET or AF_INET6 and

socket type of SOCK_STREAM.

The third parameter represents a pointer to an integer that is set to the number of

bytes yet to be acknowledged as being received by the remote TCP transport driver.

Notes:

1. SIOCSENDQ is used after a series of blocking or non-blocking send operations to

see if the sent data has reached the transport layer on the remote system. Note that

this does not not guarantee the data has reached the remote application.

2. When SIOCSENDQ is used in a multithreaded application, the actions of other

threads must be considered by the application. SIOCSENDQ provides a result for a

socket descriptor at the given point in time when the ioctl()) request is received by

the TCP transport layer. Blocking send operations that have not completed, as well

as non-blocking send operations in other threads issued after the SIOCSENDQ

ioctl(), are not reflected in the result obtained for the SIOCSENDQ ioctl().

3. In a situation where the application has multiple threads sending data on the same

socket descriptor, the application should not assume that all data has been received

by the remote side when 0 is returned if the application is not positive that all send

operations in the other threads were complete at the time the SIOCSENDQ ioctl()

was issued. An application should issue the SIOCSENDQ ioctl() only after it has

completed all of the send operations. No value is added by querying the machine

to see if it has sent all of the data when the application itself has not sent all of the

data in a given unit of work.

SIOCSPGRP Set the process ID or process group ID that is to receive the SIGIO and SIGURG signals.

See FIOSETOWN (page 194) for more information on the third parameter.

198 iSeries: UNIX-Type -- Integrated File System APIs

Authorities

No authorization is required.

Return Value

ioctl() returns an integer. Possible values are:

v 0(ioctl() was successful)

v -1 (ioctl() was not successful. The errno global variable is set to indicate the error.)

Error Conditions

If ioctl() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A descriptor argument was out of range, referred to an object that was not open, or a read or

write request was made to an object that is not open for that operation.

 A given descriptor or directory pointer is not valid for this operation. The specified descriptor is

incorrect, or does not refer to an open object.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

Integrated File System APIs 199

While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for an argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL. Either the requested function is not

supported, or the optional parameter is not valid.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended object.

[ENOSYS]

 Function not implemented.

 An attempt was made to use a function that is not available in this implementation for any object

or any arguments.

 The path name given refers to an object that does not support this function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[EPIPE]

 Broken pipe.

200 iSeries: UNIX-Type -- Integrated File System APIs

[ERESTART]

 A system call was interrupted and may be restarted.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could also indicate one of the

following errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPFA0D4 E File system error occurred. Error number &1.

CPFA081 E Unable to set return value or error code.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Integrated File System APIs 201

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. QDLS File System Differences

QDLS does not support ioctl().

3. QOPT File System Differences

QOPT does not support ioctl().

4. A program must have the appropriate privilege *IOSYSCFG to issue any of the following requests:

SIOCADDRT and SIOCDELRT.

Related Information

v The <sys/ioctl.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <sys/types.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v Socket Programming

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

202 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

lchown()—Change Owner and Group of Symbolic Link

 Syntax

 #include <unistd.h>

 int lchown(const char *path, uid_t owner, gid_t group);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 208.

The lchown() function changes the owner and group of a file. If the named file is a symbolic link,

lchown() changes the owner or group of the link itself rather than the object to which the link points. The

permissions of the previous owner or primary group to the object are revoked.

If the file is checked out by another user (someone other than the user profile of the current job),

lchown() fails with the [EBUSY] error.

When lchown() completes successfully, it updates the change time of the file.

Parameters

path (Input) A pointer to the null-terminated path name of the file whose owner and group are being

changed.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgLchown()—Change Owner and Group of Symbolic Link (using NLS-enabled path

name)” on page 350 for a description and an example of supplying the path in any CCSID.

owner (Input) The user ID (UID) of the new owner of the file. If the value is -1, the user ID is not

changed.

group (Input) The group ID (GID) of the new group for the file. If the value is -1, the group ID is not

changed.

 Note: Changing the owner or the primary group causes the S_ISUID (set-user-ID) and S_ISGID

(set-group-ID) bits of the file mode to be cleared, unless the caller has *ALLOBJ special authority. If the

caller does have *ALLOBJ special authority the bits are not changed. This does not apply to directories.

See the chmod() documentation.

Authorities

Note: Adopted authority is not used.

Authorization Required for lchown() (excluding QSYS.LIB, independent ASP QSYS.LIB, and QDLS)

 Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object, when changing the owner Owner and

*OBJEXIST
(also see Note 1)

EPERM

Integrated File System APIs 203

Object Referred to Authority Required errno

Object, when changing the primary group See Note 2 EPERM

Previous owner’s user profile, when changing the owner *DLT EPERM

New owner’s user profile, when changing the owner *ADD EPERM

User profile of previous primary group, when changing the

primary group

*DLT EPERM

New primary group’s user profile, when changing the primary

group

*ADD EPERM

Note:

1. You do not need the listed authority if you have *ALLOBJ special authority.

2. At least one of the following must be true:

a. You have *ALLOBJ special authority.

b. You are the owner and either of the following:

v The new primary group is the primary group of the job.

v The new primary group is one of the supplementary groups of the job.

Authorization Required for lchown() in the QSYS.LIB and independent ASP QSYS.LIB File Systems

 Object Referred to Authority Required errno

Each directory in the path name preceding the object *X

See Note 1

EACCES

Object when changing the owner See Note 2(a) EPERM

Object when changing the primary group See Note 2(b) EPERM

Note:

1. For *FILE objects (such as DDM file, diskette file, print file, and save file), *RX authority is required to the parent

directory of the object, rather than just *X authority.

2. The required authorization varies for each object type. For details of the following commands see the iSeries

Security Reference

book.

a. CHGOWN

b. CHGPGP

Authorization Required for lchown() in the QDLS File System

 Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object *ALLOBJ Special
Authority or Owner

EPERM

Previous owner’s user profile, when changing the owner *DLT EPERM

New owner’s user profile, when changing the owner *ADD EPERM

Previous primary group’s user profile, when changing the primary

group

*DLT EPERM

New primary group’s user profile, when changing the primary

group

*ADD EPERM

Authorization Required for lchown() in the QOPT File System

204 iSeries: UNIX-Type -- Integrated File System APIs

Object Referred to Authority Required errno

Volume authorization list *CHANGE EACCES

Each directory in the path name preceding the object. *X EACCES

Object *ALLOBJ Special
Authority or Owner

EPERM

Return Value

0 lchown() was successful.

-1 lchown() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If lchown() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs uid or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

Integrated File System APIs 205

The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 owner or group is not a valid user ID (UID) or group ID (GID).

 owner is the current primary group of the object.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ELOOP]

 A loop exists in the symbolic links.

206 iSeries: UNIX-Type -- Integrated File System APIs

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Integrated File System APIs 207

Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

 The thread does not have authority to perform the requested function.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

208 iSeries: UNIX-Type -- Integrated File System APIs

2. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

lchown() is not supported for member (.MBR) objects.

3. QDLS File System Differences

The owner and primary group of the /QDLS directory (root folder) cannot be changed. If an attempt

is made to change the owner and primary group, a [ENOTSUP] error is returned.

4. QOPT File System Differences

Changing the owner and primary group is allowed only for an object that exists on a volume

formatted in Universal Disk Format (UDF). For all other media formats, ENOTSUP will be returned.

QOPT file system objects that have owners will not be recognized by the Work with Objects by

Owner (WRKOBJOWN) CL command. Likewise, QOPT objects that have a primary group will not be

recognized by the Work Objects by Primary Group (WRKOBJPGP) CL command.

5. QFileSvr.400 File System Differences

The QFileSvr.400 file system does not support lchown().

6. QNetWare File System Differences

The QNetWare file system does not support primary group. The GID must be zero.

7. QNTC File System Differences

The owner of files and directories cannot be changed. All files and directories in QNTC are owned by

the QDFTOWN user profile.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <limits.h> file

v “chmod()—Change File Authorizations” on page 29—Change File Authorizations

v “fchown()—Change Owner and Group of File by Descriptor” on page 101—Change Owner and Group

of File by Descriptor

v “fstat()—Get File Information by Descriptor” on page 132—Get File Information by Descriptor

v “lstat()—Get File or Link Information” on page 224—Get File or Link Information

v “stat()—Get File Information” on page 592—Get File Information

v “QlgLchown()—Change Owner and Group of Symbolic Link (using NLS-enabled path name)” on page

350—Change Owner and Group of Symbolic Link

Example

See Code disclaimer information for information pertaining to code examples.

The following example changes the owner and group of a file:

#include <stdio.h>

#include <unistd.h>

#include <sys/stat.h>

#include <sys/types.h>

main() {

 char link_name[]="temp.link";

 char fn[]="temp.file";

 struct stat info;

 if (symlink(fn, link_name) == -1)

 perror("symlink() error");

 else {

 lstat(link_name, &info);

 printf("original owner was %d and group was %d\n", info.st_uid,

 info.st_gid);

 if (lchown(link_name, 152, 0) != 0)

 perror("lchown() error");

Integrated File System APIs 209

aboutapis.htm#CODEDISCLAIMER

else {

 lstat(link_name, &info);

 printf("after lchown(), owner is %d and group is %d\n",

 info.st_uid, info.st_gid);

 }

 unlink(link_name);

 }

}

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

link()—Create Link to File

 Syntax

 #include <unistd.h>

 int link(const char *existing, const char *new);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 215.

The link() function provides an alternative path name for the existing file, so that the file can be accessed

by either the existing name or the new name. link() creates a link with a path name new to an existing

file whose path name is existing. The link can be stored in the same directory as the original file or in a

different directory.

The link() function creates a hard link, which guarantees the existence of a file even after the original

path name has been removed.

If link() successfully creates the link, it increments the link count of the file. The link count indicates how

many links there are to the file. If link() fails for some reason, the link count is not incremented.

If the existing argument names a symbolic link, link() creates a link that refers to the file that results from

resolving the path name contained in the symbolic link. If new names a symbolic link, link() fails and sets

errno to [EEXIST].

A successful link updates the change time of the file, and the change time and modification time of the

directory that contains new (parent directory).

If the file is checked out by another user (a user profile other than the user profile of the current job),

link() fails with the [EBUSY] error.

Links created by this function are not allowed to cross file systems. For example, you cannot create a link

to a file in the QOpenSys directory from the root (/) directory.

Links are not allowed to directories. If existing names a directory, link() fails and sets errno to [EPERM].

A job must have access to a file to link to it.

210 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

existing

(Input) A pointer to a null-terminated path name naming an existing file to which a new link is

to be created.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgLink()—Create Link to File (using NLS-enabled path name)” on page 352 for a

description and an example of supplying the existing in any CCSID.

new (Input) A pointer to a null-terminated path name that is the name of the new link.

 This parameter is assumed to be represented in the CCSID currently in effect for the job. If the

CCSID of the job is 65535, this parameter is assumed to be represented in the default CCSID of

the job. The new link name is assumed to be represented in the language and country or region

currently in effect for the job.

 See “QlgLink()—Create Link to File (using NLS-enabled path name)” on page 352 for a

description and an example of supplying the new in any CCSID.

Authorities

Note: Adopted authority is not used.

Authorization Required for link()

Object Referred to

Authority

Required errno

Each directory in the existing path name that precedes the object being linked to *X EACCES

Existing object *OBJEXIST EACCES

Each directory in the new path name that precedes the object being linked to *X EACCES

Parent directory of the new link *WX EACCES

Return Value

0 link() was successful.

-1 link() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If link() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

Integrated File System APIs 211

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EEXIST]

 File exists.

 The file specified already exists and the specified operation requires that it not exist.

 The named file, directory, or path already exists.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

212 iSeries: UNIX-Type -- Integrated File System APIs

A physical I/O error occurred.

 A referenced object may be damaged.

[EISDIR]

 Specified target is a directory.

 The path specified named a directory where a file or object name was expected.

 The path name given is a directory.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[EMLINK]

 Maximum link count for a file was exceeded.

 An attempt was made to have the link count of a single file exceed LINK_MAX. The value of

LINK_MAX can be determined using the pathconf() or the fpathconf() function.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

 New journal is needed.

Integrated File System APIs 213

The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

 Function not implemented.

 An attempt was made to use a function that is not available in this implementation for any object

or any arguments.

 The path name given refers to an object that does not support this function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

214 iSeries: UNIX-Type -- Integrated File System APIs

The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

 Links to directories are not supported.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

[EXDEV]

 Improper link.

 A link to a file on another file system was attempted.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

Integrated File System APIs 215

– QOPT

–

Network File System

–

QFileSvr.400

2. The link() function should be used sparingly to avoid potential performance degradation. The greater

the number of hard links to an object, the more time it will take to change the attributes of the object.

3. File System Differences

The following file systems do not support link():

v QSYS.LIB

v Independent ASP QSYS.LIB

v QDLS

v QOPT

v QFileSvr.400

v QNetWare

v QNTC

If link() is used in any of these file systems, a [ENOSYS] error is returned.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “QlgLink()—Create Link to File (using NLS-enabled path name)” on page 352—Create Link to File

v “rename()—Rename File or Directory” on page 581—Rename File or Directory

v “unlink()—Remove Link to File” on page 624—Remove Link to File

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses link():

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdlib.h>

main()

{

 char fn[]="link.example.file";

 char ln[]="link.example.link";

 int file_descriptor;

 struct stat info;

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 close(file_descriptor);

 puts("before link()");

 stat(fn,&info);

 printf(" number of links is %hu\n",info.st_nlink);

 if (link(fn, ln) != 0) {

 perror("link() error");

 unlink(fn);

 }

 else {

 puts("after link()");

 stat(fn,&info);

 printf(" number of links is %hu\n",info.st_nlink);

216 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

unlink(ln);

 puts("after first unlink()");

 stat(fn,&info);

 printf(" number of links is %hu\n",info.st_nlink);

 unlink(fn);

 }

 }

}

Output:

before link()

 number of links is 1

after link()

 number of links is 2

after first unlink()

 number of links is 1

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

lseek()—Set File Read/Write Offset

 Syntax

 #include <unistd.h>

 off_t lseek(int file_descriptor, off_t offset, int whence);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 221.

The lseek() function changes the current file offset to a new position in the file. The new position is the

given byte offset from the position specified by whence. After you have used lseek() to seek to a new

location, the next I/O operation on the file begins at that location.

lseek() lets you specify new file offsets past the current end of the file. If data is written at such a point,

read operations in the gap between this data and the old end of the file will return bytes containing

binary zeros (or bytes containing blanks in the QSYS.LIB and independent ASP QSYS.LIB file systems). In

other words, the gap is assumed to be filled with zeros (or with blanks in the QSYS.LIB and independent

ASP QSYS.LIB file systems). Seeking past the end of a file, however, does not automatically extend the

length of the file. There must be a write operation before the file is actually extended.

There are some important considerations for lseek() if the O_TEXTDATA and O_CCSID flags were

specified on the open(), the file CCSID and open CCSID are not the same, and the converted data could

expand or contract:

v Making assumptions about data size and the current file offset is extremely dangerous. For example, a

file might have a physical size of 100 bytes, but after an application has read 100 bytes from the file,

the current file offset may be only 50. To read the whole file, the application might have to read 200

bytes or more, depending on the CCSIDs involved. Therefore, lseek() will only be allowed to change

the current file offset to:

Integrated File System APIs 217

#TOP_OF_PAGE
unix.htm
aplist.htm

– The start of the file (offset 0, whence SEEK_SET)

– The end of the file (offset 0, whence SEEK_END). In this case, the function will return a calculated

value based on the physical size of the file, the CCSID of the file, and the CCSID of the open

instance. This may be different than the actual file offset.

If any other combination of values is specified, lseek() fails and errno is set to ENOTSUP.

v Internally-buffered data from a read or write operation is discarded. See “read()—Read from

Descriptor” on page 549 and “write()—Write to Descriptor” on page 639 for more information

concerning internal buffering of text data.

v The expected state for the current text conversion is reset to the initial state. This consideration applies

only when using a CCSID that can represent data using more than one graphic character set or

containing characters of different byte lengths. Some CCSIDs require an escape or shift sequence to

signify a state change from one character set or byte length to another. Failing to account for this

consideration could lead to incorrect text conversion if, for instance, a double-byte character at the new

file offset was treated as two single-byte characters by the conversion function.

In the QSYS.LIB file and independent ASP QSYS.LIB file systems, you can seek only to the beginning of a

member while in text mode.

Parameters

file_descriptor

(Input) The file whose current file offset you want to change.

offset (input) The amount (positive or negative) the byte offset is to be changed. The sign indicates

whether the offset is to be moved forward (positive) or backward (negative).

whence

(Input) One of the following symbols (defined in the <unistd.h> header file):

SEEK_SET

The start of the file

SEEK_CUR

The current file offset in the file

SEEK_END

The end of the file

 If bits in whence are set to values other than those defined above, lseek() fails with the [EINVAL] error.

Authorities

No authorization is required. Authorization is verified during open() or creat().

Return Value

value lseek() was successful. The value returned is the new file offset, measured in bytes from the

beginning of the file.

-1 lseek() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If lseek() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

218 iSeries: UNIX-Type -- Integrated File System APIs

An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL. A parameter passed to this function is

not valid.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

Integrated File System APIs 219

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOSYSRSC]

 System resources not available to complete request.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EOVERFLOW]

 Object is too large to process.

 The object’s data size exceeds the limit allowed by this function.

 The resulting file offset would be a value that cannot be represented correctly in a variable of

type off_t (the offset is greater than 2GB minus 2 bytes).

[ESPIPE]

 Seek request not supported for object.

 A seek request was specified for an object that does not support seeking.

 The object is not capable of seeking.

 The file_descriptor argument is associated with a pipe or FIFO.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

220 iSeries: UNIX-Type -- Integrated File System APIs

Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

Integrated File System APIs 221

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. Once a file is open, subsequent requests to perform operations on the file can

fail because file attributes are checked at the server on each request. If permissions on the file are

made more restrictive at the server or the file is unlinked or made unavailable by the server for

another client, your operation on an open file descriptor will fail when the local Network File System

receives these updates. The local Network File System also impacts operations that retrieve file

attributes. Recent changes at the server may not be available at your client yet, and old values may be

returned from operations (several options on the Add Mounted File System (ADDMFS) command

determine the time between refresh operations of local data).

3. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

This function is not supported for save files and will fail with error code [ENOTSUP].

4. This function will fail with the [EOVERFLOW] error if the resulting file offset would be a value that

cannot be represented correctly in a variable of type off_t (the offset is greater than 2 GB minus 2

bytes).

5. When you develop in C-based languages and an application is compiled with the _LARGE_FILES

macro defined, the lseek() API will be mapped to a call to the lseek64() API. Additionally, the data

type off_t will be mapped to the type off64_t.

6. Using this function with the write(), pwrite(), and pwrite64() functions on the /dev/null or /dev/zero

character special file will not result in the file data size changing from zero.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “dup()—Duplicate Open File Descriptor” on page 76—Duplicate Open File Descriptor

v

“fclear()—Write (Binary Zeros) to Descriptor” on page 108—Write (Binary Zeros) to Descriptor

v “fclear64()—-Write (Binary Zeros) to Descriptor (Large File Enabled)” on page 114—Write (Binary

Zeros) to Descriptor (Large File Enabled)

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v “lseek64()—Set File Read/Write Offset (Large File Enabled)” on page 223—Set File Read/Write Offset

(Large File Enabled)

v “open()—Open File” on page 267—Open File

v “pread()—Read from Descriptor with Offset” on page 305—Read from Descriptor with Offset

v “pread64()—Read from Descriptor with Offset (large file enabled)” on page 311—Read from Descriptor

with Offset (large file enabled)

v “pwrite()—Write to Descriptor with Offset” on page 313—Write to Descriptor with Offset

v “pwrite64()—Write to Descriptor with Offset (large file enabled)” on page 320—Write to Descriptor

with Offset (large file enabled)

222 iSeries: UNIX-Type -- Integrated File System APIs

v “read()—Read from Descriptor” on page 549—Read from Descriptor

v “write()—Write to Descriptor” on page 639—Write to Descriptor

Example

See Code disclaimer information for information pertaining to code examples.

The following example positions a file (that has at least 11 bytes) to an offset of 10 bytes before the end of

the file:

lseek(file_descriptor,-10,SEEK_END);

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

lseek64()—Set File Read/Write Offset (Large File Enabled)

 Syntax

 #include <unistd.h>

 off64_t lseek64(int file_descriptor,

 off64_t offset, int whence);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 224.

The lseek64() function changes the current file offset to a new position in the file. The new position is the

given byte offset from the position specified by whence. After you have used lseek64() to seek to a new

location, the next I/O operation on the file begins at that location.

lseek64() lets you specify new file offsets past the current end of the file. If data is written at such a

point, read operations in the gap between this data and the old end of the file will return bytes

containing binary zeros (or bytes containing blanks in the QSYS.LIB or independent ASP QSYS.LIB file

systems). In other words, the gap is assumed to be filled with zeros (or with blanks in the QSYS.LIB or

independent ASP QSYS.LIB file systems). If you seek past the end of a file, however, the length of the file

is not automatically extended. The maximum offset that can be specified is the largest value that can be

held in an 8-byte, signed integer. You must do a write operation before the file is actually extended.

In the QSYS.LIB or independent ASP QSYS.LIB file systems, you can seek only to the beginning of a

member while in text mode.

lseek64() is enabled for large files. It is capable of operating on files larger than 2GB minus 1 byte as long

as the file has been opened by either of the following:

v Using the open64() function (see “open64()—Open File (Large File Enabled)” on page 287).

v Using the open() function (see “open()—Open File” on page 267) with the O_LARGEFILE flag set.

For additional information about parameters, authorities required, error conditions and examples, see

“lseek()—Set File Read/Write Offset” on page 217.

Integrated File System APIs 223

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden. To

use the lseek64() API and the off64_t data type, you must compile the source with the

_LARGE_FILE_API defined.

2. All of the usage notes for lseek() apply to lseek64(). See “Usage Notes” on page 221 in the lseek()

API.

 API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

lstat()—Get File or Link Information

 Syntax

 #include <sys/stat.h>

 int lstat(const char *path, struct stat *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 228.

The lstat() function gets status information about a specified file and places it in the area of memory

pointed to by buf. If the named file is a symbolic link, lstat() returns information about the symbolic link

itself.

The information is returned in the stat structure, referenced by buf. For details on the stat structure, see

“stat()—Get File Information” on page 592.

If the named file is not a symbolic link, lstat() updates the time-related fields before putting information

in the stat structure.

Parameters

path (Input) A pointer to the null-terminated path name of the file.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgLstat()—Get File or Link Information (using NLS-enabled path name)” on page 354 for a

description and an example of supplying the path in any CCSID.

buf (Output) A pointer to the area to which the information should be written.

Authorities

Note: Adopted authority is not used.

Authorization Required for lstat()

224 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object

None None

Return Value

0 lstat() was successful. The information is returned in buf.

-1 lstat() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If lstat() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

Integrated File System APIs 225

In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

226 iSeries: UNIX-Type -- Integrated File System APIs

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EOVERFLOW]

 Object is too large to process.

 The object’s data size exceeds the limit allowed by this function.

 The file size in bytes cannot be represented correctly in the structure pointed to by buf (the file is

larger than 2GB minus 1 byte).

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

Integrated File System APIs 227

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

v Where multiple threads exist in the job.

228 iSeries: UNIX-Type -- Integrated File System APIs

v The object this function is operating on resides in a file system that is not threadsafe. Only the

following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. QOPT File System Differences

The value for st_atime will always be zero. The value for st_ctime will always be the creation date

and time of the file or directory.

If the object exists on a volume formatted in Universal Disk Format (UDF), the authorization that is

checked for the object and each directory in the path name follows the rules described in

Authorization Required for lstat() (page 224). If the object exists on a volume formatted in some other

media format, no authorization checks are made on the object or each directory in the path name. The

volume authorization list is checked for *USE authority regardless of the volume media format.

The user, group, and other mode bits are always on for an object tha exists on a volume not formatted

in Universal Disk format (UDF).

lstat on /QOPT will always return 2,147,483,647 for size fields.

lstat on optical volumes will return the volume capacity or 2,147,483,647, whichever is smaller.

The file access time is not changed.

3. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. Once a file is open, subsequent requests to perform operations on the file can

fail because file attributes are checked at the server on each request. If permissions on the file are

made more restrictive at the server or the file is unlinked or made unavailable by the server for

another client, your operation on an open file descriptor will fail when the local Network File System

receives these updates. The local Network File System also impacts operations that retrieve file

attributes. Recent changes at the server may not be available at your client yet, and old values may be

returned from operations. (Several options on the Add Mounted File System (ADDMFS) command

determine the time between refresh operations of local data.)

4. QNetWare File System Differences

The QNetWare file system does not fully support mode bits. See NetWare on iSeries for more

information.

5. This function will fail with the [EOVERFLOW] error if the file size in bytes cannot be represented

correctly in the structure pointed to by buf (the file is larger than 2GB minus 1 byte).

6. When you develop in C-based languages and this function is compiled with _LARGE_FILES defined,

it will be mapped to lstat64(). Note that the type of the buf parameter, struct stat, also will be

mapped to type struct stat64.

Related Information

v The <sys/stat.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <sys/types.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “chmod()—Change File Authorizations” on page 29—Change File Authorizations

v “chown()—Change Owner and Group of File” on page 38—Change Owner and Group of File

Integrated File System APIs 229

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “dup()—Duplicate Open File Descriptor” on page 76—Duplicate Open File Descriptor

v

“fclear()—Write (Binary Zeros) to Descriptor” on page 108—Write (Binary Zeros) to Descriptor

v “fclear64()—-Write (Binary Zeros) to Descriptor (Large File Enabled)” on page 114—Write (Binary

Zeros) to Descriptor (Large File Enabled)

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v “fstat()—Get File Information by Descriptor” on page 132—Get File Information by Descriptor

v “link()—Create Link to File” on page 210—Create Link to File

v “mkdir()—Make Directory” on page 233—Make Directory

v “open()—Open File” on page 267—Open File

v “QlgLstat()—Get File or Link Information (using NLS-enabled path name)” on page 354—Get File or

Link Information

v “read()—Read from Descriptor” on page 549—Read from Descriptor

v “readlink()—Read Value of Symbolic Link” on page 569—Read Value of Symbolic Link

v “stat()—Get File Information” on page 592—Get File Information

v “symlink()—Make Symbolic Link” on page 614—Make Symbolic Link

v “unlink()—Remove Link to File” on page 624—Remove Link to File

v “utime()—Set File Access and Modification Times” on page 632—Set File Access and Modification

Times

v “write()—Write to Descriptor” on page 639—Write to Descriptor

Example

See Code disclaimer information for information pertaining to code examples.

The following example provides status information for a file:

#include <sys/types.h>

#include <sys/stat.h>

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

#include <time.h>

#include <stdio.h>

main() {

 char fn[]="temp.file", ln[]="temp.link";

 struct stat info;

 int file_descriptor;

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 close(file_descriptor);

 if (link(fn, ln) != 0)

 perror("link() error");

 else {

 if (lstat(ln, &info) != 0)

 perror("lstat() error");

 else {

 puts("lstat() returned:");

 printf(" inode: %d\n", (int) info.st_ino);

 printf(" dev id: %d\n", (int) info.st_dev);

 printf(" mode: %08x\n", info.st_mode);

 printf(" links: %d\n", info.st_nlink);

 printf(" uid: %d\n", (int) info.st_uid);

 printf(" gid: %d\n", (int) info.st_gid);

 }

230 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

unlink(ln);

 }

 unlink(fn);

 }

}

Output:

lstat() returned:

 inode: 3022

 dev id: 1

 mode: 00008080

 links: 2

 uid: 137

 gid: 500

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

lstat64()—Get File or Link Information (Large File Enabled)

 Syntax

 #include <sys/stat.h>

 int lstat64(const char *path, struct stat64 *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “lstat()—Get File or Link Information” on page 224.

The lstat64() function gets status information about a specified file and places it in the area of memory

pointed to by buf. If the named file is a symbolic link, lstat64() returns information about the symbolic

link itself.

The information is returned in the stat64 structure, referred to by buf. For details on the stat64 structure,

see “stat64()—Get File Information (Large File Enabled)” on page 601.

If the named file is not a symbolic link, lstat64() updates the time-related fields before putting

information in the stat64 structure.

For additional information about parameters, authorities required, and error conditions, see “lstat()—Get

File or Link Information” on page 224.

See “QlgLstat64()—Get File or Link Information (large file enabled and using NLS-enabled path name)”

on page 356 for a description and an example of supplying the path in any CCSID.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden. To

use the lstat64() API and the struct stat64 data type, you must compile the source with the

_LARGE_FILE_API defined.

2. All of the usage notes for lstat() apply to lstat64(). See “Usage Notes” on page 228 in the lstat() API.

Integrated File System APIs 231

#TOP_OF_PAGE
unix.htm
aplist.htm

Example

See Code disclaimer information for information pertaining to code examples.

The following example provides status information for a file.

#define _LARGE_FILE_API

#include <sys/types.h>

#include <sys/stat.h>

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

#include <time.h>

#include <stdio.h>

main() {

 char fn[]="temp.file", ln[]="temp.link";

 struct stat64 info;

 int file_descriptor;

 if ((file_descriptor = creat64(fn, S_IWUSR)) < 0)

 perror("creat64() error");

 else {

 close(file_descriptor);

 if (link(fn, ln) != 0)

 perror("link() error");

 else {

 if (lstat64(ln, &info) != 0)

 perror("lstat64() error");

 else {

 puts("lstat64() returned:");

 printf(" inode: %d\n", (int) info.st_ino);

 printf(" dev id: %d\n", (int) info.st_dev);

 printf(" mode: %08x\n", info.st_mode);

 printf(" links: %d\n", info.st_nlink);

 printf(" uid: %d\n", (int) info.st_uid);

 printf(" gid: %d\n", (int) info.st_gid);

 printf(" size: %lld\n", (long long) info.st_size);

 }

 unlink(ln);

 }

 unlink(fn);

 }

}

Output:

lstat() returned:

 inode: 3022

 dev id: 1

 mode: 00008080

 links: 2

 uid: 137

 gid: 500

 size: 18

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

232 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

mkdir()—Make Directory

 Syntax

 #include <sys/stat.h>

 int mkdir(const char *path, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 239.

The mkdir() function creates a new, empty directory whose name is defined by path. The file permission

bits in mode are modified by the file creation mask of the job and then used to set the file permission bits

of the directory being created.

For more information on the permission bits in mode see “chmod()—Change File Authorizations” on page

29. For more information on the file creation mask, see “umask()—Set Authorization Mask for Job” on

page 622.

The owner ID of the new directory is set to the effective user ID (uid) of the job. If the directory is being

created in the Root (’/’), QOpensys, and user-defined file systems, the following applies. If the S_ISGID

bit of the parent directory is off, the group ID (GID) is set to the effective GID of the thread creating the

directory. If the S_ISGID bit of the parent directory is on, the group ID (GID) of the new directory is set

to the GID of the parent directory. For all other file systems, the group ID (GID) of the new directory is

set to the GID of the parent directory.

mkdir() sets the access, change, modification, and creation times for the new directory. It also sets the

change and modification times for the directory that contains the new directory (parent directory).

The link count of the parent directory link count is increased by one. The link count of the new directory

is set to 2. The new directory also contains an entry for ″dot″ (.) and ″dot-dot″ (..).

If path names a symbolic link, the symbolic link is not followed, and mkdir() fails with the [EEXIST]

error.

If bits in mode other than the file permission bits are set, mkdir() fails with the [EINVAL] error.

Parameters

path (Input) A pointer to the null-terminated path name of the directory to be created.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 The name of the new directory is assumed to be represented in the language and country or

region currently in effect for the process.

 See “QlgMkdir()—Make Directory (using NLS-enabled path name)” on page 359 for a description

and an example of supplying the path in any CCSID.

mode (Input) Permission bits for the new directory. The

S_ISVTX

bit may also be specified when

creating the directory.

Integrated File System APIs 233

See “chmod()—Change File Authorizations” on page 29 for details on the values that can be

specified for mode.

Authorities

Note: Adopted authority is not used.

Authorization Required for mkdir() (excluding QSYS.LIB, Independent ASP QSYS.LIB, and QDLS)

Object Referred to

Authority

Required errno

Each directory in the path name preceding the directory to be created. *X EACCES

Parent directory of directory to be created *WX EACCES

Authorization Required for mkdir() in the QSYS.LIB and independent ASP QSYS.LIB File Systems

Object Referred to

Authority

Required errno

Each directory in the path name preceding the directory to be created. *X EACCES

Parent directory of directory to be created (when the directory being created is a

database file)

*X and *ADD EACCES

Authorization Required for mkdir() in the QDLS File System

Object Referred to

Authority

Required errno

Each directory in the path name preceding the directory to be created. *X EACCES

Parent directory of directory to be created *CHANGE EACCES

Return Value

0 mkdir() was successful. The directory was created.

-1 mkdir() was not successful. The directory was not created. The errno global variable is set to

indicate the error.

Error Conditions

If mkdir() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

234 iSeries: UNIX-Type -- Integrated File System APIs

Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EEXIST]

 File exists.

 The file specified already exists and the specified operation requires that it not exist.

 The named file, directory, or path already exists. Or, the last component of path is a symbolic link.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

Integrated File System APIs 235

A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[EMLINK]

 Maximum link count for a file was exceeded.

 An attempt was made to have the link count of a single file exceed LINK_MAX. The value of

LINK_MAX can be determined using the pathconf() or the fpathconf() function.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

236 iSeries: UNIX-Type -- Integrated File System APIs

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

 Function not implemented.

 An attempt was made to use a function that is not available in this implementation for any object

or any arguments.

 The path name given refers to an object that does not support this function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[EROOBJ]

Integrated File System APIs 237

Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

238 iSeries: UNIX-Type -- Integrated File System APIs

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v There are secondary threads active in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. Root, QOpenSys, and User-Defined File System Differences

The user who creates the directory becomes its owner.

The S_ISGID bit of the directory affects what the group ID (GID) is for objects that are created in the

directory. If the S_ISGID bit of the parent directory is off, the group ID (GID) is set to the effective

GID of the thread creating the object. If the S_ISGID bit of the parent directory is on, the group ID

(GID) is copied from the parent directory in which the new directory is being created.

The owner, primary group, and public object authorities (*OBJEXIST, *OBJMGT, *OBJALTER, and

*OBJREF) are copied from the parent directory’s owner, primary group, and public object authorities.

This occurs even when the new directory has a different owner than the parent directory. The owner,

primary group, and public data authorities (*R, *W, and *X) are derived from the permissions

specified in the mode (except for those permissions that are also set in the file mode creation mask).

The new directory does not have any private authorities or authorization list. It only has authorities

for the owner, primary group, and public.

The create object scanning attribute value for this directory is copied from the create object

scanning attribute value of the parent directory. For more information on this attribute, see

“Qp0lSetAttr()—Set Attributes” on page 509—Set Attributes.

3. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

The user who creates the directory becomes its owner. The group ID is copied from the primary user

ID, if one exists.

The owner is given *ALL object authority to the new directory. The group object authorities are

copied from the user profile of the owner. The public receives no object authority to the directory.

The primary group authorities specified in mode are not saved if no primary group exists.

Integrated File System APIs 239

The change and modification times for the directory that contains the new directory are only set when

the new directory is a database file.

4. QDLS File System Differences

The user who creates the directory becomes its owner. The group ID is copied from the parent folder

in which the new directory is being created.

The object authority of the owner is set to *OBJMGT + *OBJEXIST + *OBJALTER + *OBJREF.

The primary group and public object authority and all other authorities are copied from the parent

folder.

The owner, primary group, and public data authority (including *OBJOPR) are derived from the

permissions specified in mode (except those permissions that are also set in the file mode creation

mask).

The primary group authorities specified in mode are not saved if no primary group exists.

5. QOPT File System Differences

When the volume on which the directory is being created is formatted in Universal Disk Format

(UDF):

v The authorization that is checked for the object and preceding directories in the path name follows

the rules described in Authorization Required for mkdir() (page 234).

v The volume authorization list is checked for *CHANGE authority.

v The user who creates the file becomes its owner.

v The group ID is copied from the parent directory in which the file is created.

v The owner, primary group, and public data authorities (*R, *W, and *X) are derived from the

permissions specified in the mode.

v The same uppercase and lowercase forms in which the names are entered are preserved. No

distinction is made between uppercase and lowercase when searching for names.

When the volume on which the directory is being created is not formatted in Universal Disk Format

(UDF):

v No authorization is checked on the object or preceding directories in the path name.

v The volume authorization list is checked for *CHANGE authority.

v QDFTOWN becomes the owner of the directory.

v No group ID is assigned to the directory.

v The permissions specified in the mode are ignored. The owner, primary group, and public data

authorities are set to RWX.

v For newly created directories, names are created in uppercase. No distinction is made between

uppercase and lowercase when searching for names.

A directory cannot be created as a direct child of /QOPT.

The change and modification times of the parent directory are not updated.

6. Network File System Differences

Local access to remote directories through the Network File System may produce unexpected results

due to conditions at the server. The creation of a directory may fail if permissions and other attributes

that are stored locally by the Network File System are more restrictive than those at the server. A later

attempt to create a file can succeed when the locally stored data has been refreshed. (Several options

on the Add Mounted File System (ADDMFS) command determine the time between refresh

operations of local data.) The creation can also succeed after the file system has been remounted.

If you try to re-create a directory that was recently deleted, the request may fail because data that was

stored locally by the Network File System still has a record of the directory’s existence. The creation

succeeds when the locally stored data has been updated.

7. QNetWare File System Differences

The QNetWare file system does not fully support mode bits. See NetWare on iSeries for more

information.

240 iSeries: UNIX-Type -- Integrated File System APIs

8. QNTC File System Differences

Directory authorities are inherited from the access control list (if any exists) of the parent directory.

The mode bits are ignored.

In addition to the normal mkdir() function, in the QNTC file system, mkdir() can be used to add a

server directory under the /QNTC directory level. Directories for all functional Windows NT servers

in the local subnet are automatically created. However, Windows NT servers outside the local subnet

must be added by using mkdir() or the MKDIR command. For example:

 char new_dir[]="/QNTC/NTSRV1";

 mkdir(new_dir,NULL)

would add the NTSRV1 server into the QNTC directory structure for future access of files and

directories on that server.

It is also possible to add the server by using the TCP/IP address. For example:

 char new_dir[]="/QNTC/9.130.67.24";

 mkdir(new_dir,NULL)

The directories added using mkdir() will not persist across IPLs. Thus, mkdir() or the Make Directory

(MKDIR) command must be reissued after every system IPL.

Related Information

v The <sys/stat.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “chmod()—Change File Authorizations” on page 29—Change File Authorizations

v “QlgMkdir()—Make Directory (using NLS-enabled path name)” on page 359—Make Directory

v “stat()—Get File Information” on page 592—Get File Information

v “umask()—Set Authorization Mask for Job” on page 622—Set Authorization Mask for Job

v “pathconf()—Get Configurable Path Name Variables” on page 295—Get Configurable Path Name

Variables

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a new directory:

#include <sys/stat.h>

#include <unistd.h>

#include <stdio.h>

main() {

 char new_dir[]="new_dir";

 if (mkdir(new_dir, S_IRWXU|S_IRGRP|S_IXGRP) != 0)

 perror("mkdir() error");

 else if (chdir(new_dir) != 0)

 perror("first chdir() error");

 else if (chdir("..") != 0)

 perror("second chdir() error");

 else if (rmdir(new_dir) != 0)

 perror("rmdir() error");

 else

 puts("success!");

}

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 241

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

mkfifo()—Make FIFO Special File

 Syntax

 #include <sys/types.h>

 #include <sys/stat.h>

 int mkfifo(const char *path, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 247.

The mkfifo() function creates a new FIFO special file (FIFO) whose name is defined by path. A FIFO

special file is a type of file with the property that data written to the file is read on a first-in-first-out

basis. See the open(), read(), write(), lseek, and close functions for more characteristics of a FIFO special

file.

A FIFO may be opened for reading only or writing only for a uni-directional I/O. It also may be opened

for reading and writing access to provide a bi-directional FIFO descriptor.

The file permission bits in mode are modified by the file creation mask of the job and then used to set the

file permission bits of the FIFO being created.

For more information on the permission bits inmode, see “chmod()—Change File Authorizations” on page

29—Change File Authorizations. For more information on the file creation mask, see “umask()—Set

Authorization Mask for Job” on page 622—Set Authorization Mask for Job.

The owner ID of the new FIFO is set to the effective user ID (UID) of the thread. If the object is being

created in the Root (’/’), QOpensys, and user-defined file systems, the following applies. If the S_ISGID

bit of the parent directory is off, the group ID (GID) is set to the effective GID of the thread creating the

object. If the S_ISGID bit of the parent directory is on, the group ID (GID) of the new object is set to the

GID of the parent directory. For all other file systems, the group ID (GID) of the new FIFO is set to the

GID of the parent directory.

Upon successful completion, mkfifo() sets the access, change, modification, and creation times for the

new FIFO. It also sets the change and modification times for the directory that contains the new FIFO

(parent directory).

If path contains a symbolic link, the symbolic link is followed.

If path names a symbolic link, the symbolic link is not followed, and mkfifo() fails with the [EEXIST]

error.

If bits in mode other than the file permission bits are set, mkfifo() fails with the [EINVAL] error.

Parameters

path (Input) A pointer to the null-terminated path name of the FIFO special file to be created.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

242 iSeries: UNIX-Type -- Integrated File System APIs

The name of the new FIFO is assumed to be represented in the language and country or region

currently in effect for the process.

 See “QlgMkfifo()—Make FIFO Special File (using NLS-enabled path name)” on page 361—Make

FIFO Special File (using NLS-enabled path name) for a description and an example of supplying

the path in any CCSID.

mode (Input) Permission bits for the new FIFO.

Authorities

Adopted authority is not used.

Authorization Required for mkfifo()

Object Referred to

Authority
Required errno

Each directory in the path name preceding the FIFO to be created. *X EACCES

Parent directory of FIFO to be created *WX EACCES

Return Value

 0 mkfifo() was successful. The FIFO was created.

-1 mkfifo() was not successful. The FIFO was not created. The errno global variable is set to indicate the error.

Error Conditions

If mkfifo() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file also may fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

Integrated File System APIs 243

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EEXIST]

 File exists.

 The file specified already exists and the specified operation requires that it not exist.

 The named file, directory, or path already exists. Or, the last component of path is a symbolic link.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[EMLINK]

 Maximum link count for a file was exceeded.

244 iSeries: UNIX-Type -- Integrated File System APIs

An attempt was made to have the link count of a single file exceed LINK_MAX. The value of

LINK_MAX can be determined using the pathconf() or the fpathconf() function.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

 Function not implemented.

 An attempt was made to use a function that is not available in this implementation for any object

or any arguments.

 The path name given refers to an object that does not support this function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Integrated File System APIs 245

Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[EROFS]

 Read-only file system.

 You have attempted an update operation in a file system that only supports read operations.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

246 iSeries: UNIX-Type -- Integrated File System APIs

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

QFileSvr.400

2. File System Differences

The following file systems support mkfifo():

v Root

v QOpenSys

v User-defined
3. There are some restrictions when opening a FIFO for text conversion and the CCSIDs involved are not

strictly single-byte:

v Opening a FIFO for reading or reading and writing is not allowed.

Integrated File System APIs 247

v Any conversion between CCSIDs that are not strictly single-byte must be done by an open instance

that has write-only access.
4. The owner, primary group, and public object authorities (*OBJEXIST, *OBJMGT, *OBJALTER, and

*OBJREF) are copied from the parent directory’s owner, primary group, and public object authorities.

This occurs even when the new FIFO has a different owner than the parent directory. The owner,

primary group, and public data authorities (*R, *W, and *X) are derived from the permissions

specified in the mode (except for those permissions that are also set in the file mode creation mask).

The new FIFO does not have any private authorities or authorization list. It only has authorities for

the owner, primary group, and public.

Related Information

v The <sys/stat.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <sys/types.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “chmod()—Change File Authorizations” on page 29—Change File Authorizations

v “umask()—Set Authorization Mask for Job” on page 622—Set Authorization Mask for Job

v “QlgMkfifo()—Make FIFO Special File (using NLS-enabled path name)” on page 361—Make FIFO

Special File (using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a new FIFO:

#include <sys/types.h>

#include <sys/stat.h>

#include <stdio.h>

void main() {

 char *mypath = "/newFIFO";

 if (mkfifo(mypath, S_IRWXU|S_IRWXO) != 0)

 perror("mkfifo() error");

 else

 puts("success!");

 return;

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

248 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

mmap()—Memory Map a File

 Syntax

 #include <sys/types.h>

 #include <sys/mman.h>

 void *mmap(void *addr,

 size_t len,

 int protection,

 int flags,

 int fildes,

 off_t off);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The mmap() function establishes a mapping between a process’ address space and a stream file.

The address space of the process from the address returned to the caller, for a length of len, is mapped

onto a stream file starting at offset off.

The portion of the stream file being mapped is from starting offset off for a length of len bytes. The actual

address returned from the function is derived from the values of flagsand the value specified for address.

The mmap() function causes a reference to be associated with the file represented by fildes. This reference

is not removed by subsequent close operations. The file remains referenced as long as a mapping exists

over the file.

If a mapping already exists for the portion of the processes address space that is to be mapped and the

value MAP_FIXED was specified for flags, then the previous mappings for the affected pages are

implicitly unmapped. If one or more files affected by the implicit unmap no longer have active mappings,

these files will be unreferenced as a result of mmap().

The use of the mmap() function is restricted by the QSHRMEMCTL System Value. When this system

value is 0, the mmap() function may not create a shared mapping having with PROT_WRITE capability.

Essentially, this prevents the creation of a memory map that could alter the contents of the stream file

being mapped. If the flags parameter indicated MAP_SHARED, the prot parameter specifies

PROT_WRITE and the QSHRMEMCTL system value is 0, then the mmap() functions will fail and an

error number of EACCES results.

When the mmap() function creates a memory map, the current value of the QSHRMEMCTL system value

is stored with the mapping. This further restricts attempts to change the protection of the mapping

through the use of the mprotect function. Changing the system valueonly affects memory maps created

after the system value is changed.

If the size of the file increases after the mmap() function completes, then the whole pages beyond the

original end of file will not be accessible via the mapping.

If the size of the mapped file is decreased after mmap(), attempts to reference beyond the end of the file

are undefined and may result in an MCH0601 exception.

Integrated File System APIs 249

Any data written to that portion of the file that is allocated beyond end-of-file may not be preserved.

Changes made beyond end of file via mapped access may not be preserved.

The portion of the file beyond end-of-file is assumed to be zero by the traditional file access APIs such as

read(), readv(), write(), writev(), and ftruncate(). The system may clear a partial page, or whole pages

allocated beyond end-of-file. This must be taken into account when directly changing a memory mapped

file beyond end-of-file. It is not recommended that data be directly changed beyond end-of-file because

the extra space allocated varies and unpredictable results may occur.

The mmap() function is only supported for *TYPE2 stream files (*STMF) existing in the ″root″ (/),

QOpenSys, and user-defined file systems.

Journaling cannot be started while a file is memory mapped. Likewise, a journaled file cannot be memory

mapped. The mmap() function will fail with EINVAL if the file is journaled.

The off parameter must be zero or a multiple of the system page size. The _SC_PAGESIZE or

_SC_PAGE_SIZE options on the sysconf() function may be used to retrieve the system page size.

Parameters

addr (Input) The starting address of the memory area to be mapped. If the MAP_FIXED value is

specified with the flagparameter, then address must be a multiple of the system page size. Use the

_SC_PAGESIZE or _SC_PAGE_SIZE options of the sysconf() API to obtain the actual page size in

an implementation-independent manner. When the MAP_FIXED flag is specified, this address

must not be zero.

len (Input) The length in bytes to map. A length of zero will result in an errno of EINVAL.

protection

(Input) The access allowed to this process for this mapping. Specify PROT_NONE, PROT_READ,

PROT_WRITE, or a the inclusive-or of PROT_READ and PROT_WRITE. You cannot specify a

protection value more permissive than the mode in which the file was opened.

 The PROT_WRITE value requires that the file be opened for write and read access.

 The following table shows the symbolic constants allowed for the protection parameter.

 Symbolic Constant Decimal
Value Description

PROT_READ 1 Read access is allowed.

PROT_WRITE 2 Write access is allowed. Note that this value assumes PROT_READ also.

PROT_NONE 8 No data access is allowed.

PROT_EXEC 4 This value is allowed, but is equivalent to PROT_READ.

flags (Input) Further defines the type of mapping desired. There are actually two independent options

controlled through the flags parameter.

 The first attribute controls whether or not changes made through the mapping will be seen by

other processes. The MAP_PRIVATE option will cause a copy on write mapping to be created. A

change to the mapping results in a change to a private copy of the affected portion of the file.

These changes cannot be seen by other processes. The MAP_SHARED option provides a memory

mapping of the file where changes (if allowed by the protection parameter) are made to the file.

Changes are shared with other processes when MAP_SHARED is specified.

 The second control provided by the flags parameter in conjunction with the value of the addr

parameter influences the address range assigned to the mapping. You may request one of the

following address selection modes:

250 iSeries: UNIX-Type -- Integrated File System APIs

1. An exact address range specification. The system will set up the mapping at this location if

the address range is valid. Any mapping in the successfully mapping range that existed prior

to the mapping operation is implicitly unmapped by this operation.

2. A suggested address range. The system will select a range close to the suggested range.

3. System selected. The system will select an address range. This usually is used to acquire the

initial memory map range. Subsequent ranges can be mapped relative to this range.

The MAP_FIXED flag value specifies that the virtual address has been specified through the addr

parameter. The mmap() function will use the value of addr as the starting point of the memory

map.

 When MAP_FIXED is set in the flags parameter, the system is informed that the return value

must be equal to the value of addr. An invalid value of addr when MAP_FIXED is specified will

result in a value of MAP_FAILED, which has a value of 0, for the returned value and the the

value of errno will be set to EINVAL.

 When MAP_FIXED is not specified, a value of zero for parameter addr indicates that the system

may choose the value for the return value. If MAP_FIXED is not specified and a nonzero value is

specified for addr, the system will take this as a suggestion to find a contiguous address range

close to the specified address.

 The following table shows the symbolic constants allowed for the flags parameter.

 Symbolic Constant Decimal
Value Description

MAP_SHARED 4 Changes are shared.

MAP_PRIVATE 2 Changes are private.

MAP_FIXED 1 Parameter addr has exact address

fildes (Input) An open file descriptor.

off (Input) The offset into the file, in bytes, where the map should begin.

Authorities

No authority checking is performed by the mmap() function because this was done by the open()

functions which assigned the file descriptor, fildes, used by the mmap() function.

The following table shows the open access intent that is required for the various combinations of the

mapping sharing mode and mapping intent.

 Mapping Sharing Mode Mapping Intent Open access intents allowed

MAP_SHARED PROT_READ O_RDONLY or O_RDWR

MAP_SHARED PROT_WRITE O_RDWR

MAP_SHARED PROT_NONE O_RDONLY or O_RDWR

MAP_PRIVATE PROT_READ O_RDONLY or O_RDWR

MAP_PRIVATE PROT_WRITE O_RDONLY or O_RDWR

MAP_PRIVATE PROT_NONE O_RDONLY or O_RDWR

Return Value

Upon successful completion, the mmap() function returns the address at which the mapping was placed;

otherwise, it returns a value of MAP_FAILED, which has a value of 0, and sets errno to indicate the error.

The symbol MAP_FAILED is defined in the header <sys/mman.h>.

Integrated File System APIs 251

If successful, function mmap() will never return a value of MAP_FAILED.

If mmap() fails for reasons other than EBADF, EINVAL, or ENOTSUP, some of the mappings in the

address range starting at addr and continuing for len bytes may have been unmapped and no new

mappings are created.

Error Conditions

When the mmap() function fails, it returns MAP_FAILED, which has a value of 0, and sets the errno as

follows.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

 The file referenced by fildes is not open for read, or the file is not opened for write and

PROT_WRITE for a shared mapping is being requested. This error also results when the

QSHRMEMCTL system value is 0 and PROT_WRITE is specified.

[EBADFUNC]

 Function parameter in the signal function is not set.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

 The fildes parameter does not refer to an open file descriptr.

[EINVAL]

The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The value of the addr parameter is not valid. This can occur when MAP_FIXED is specified and

the value of the addr parameter is not a multiple of the system page size. This may also occur if

the value for parameter addr is not a valid VOID* pointer or is not within the range allowed.

 This error number is also returned if the value of the flags parameter does not indicate either

MAP_SHARED or MAP_PRIVATE.

 This error number is also returned if the specified file is journaled.

[ENODEV]

 No such device.

 The fildes parameter does not refer to a *TYPE2 stream file (*STMF) in the ″root″ (/), QOpenSys,

or user-defined file systems.

[ENOMEM]

 Storage allocation request failed.

252 iSeries: UNIX-Type -- Integrated File System APIs

A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

 This can occur if the portion of the local process address space reserved for memory mapping has

been exceeded.

 When MAP_FIXED is specified, it may also occur if the address range specified by the

combination of the addr and len parameters results in a range outside the range reserved for

process local storage.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

 An unsupported value, or combination of values, was specified on the protection parameter.

[ENXIO]

 No such device or address.

 The portion of the file, as specified by off and len is not valid for the current size of the file.

[EOVERFLOW]

 Object is too large to process.

 The object’s data size exceeds the limit allowed by this function.

 The value of off plus len exceeds the maximum offset allowed for the file referenced by fildes.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function.

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1.

This function will fail with error code [EBADF] when fildes is a scan descriptor that was passed to

one of the scan-related exit programs. See “Integrated File System Scan on Open Exit Program” on

page 666 and “Integrated File System Scan on Close Exit Program” on page 656 for more information.

Integrated File System APIs 253

2. The msync() function must be used to write changed pages of a shared mapping to disk. If a system

crash occurs before the msync function is executed, some data may not be preserved.

3. If the application chooses to mix file access methods such as read(), readv(), write(), or writev() with

mmap(), then the application must ensure proper synchronization. While operations such as read()

and write() are relatively atomic because of internal locking, access through the memory map created

by mmap() does not synchronize with the read(), readv(), write(), and writev() functions. Several

synchronization functions are available, including the fcntl() API, the DosDetFileLocks() API, and the

mutex functions. Use one of these synchronization methods around access and modifications if atomic

access is required. These techniques also will ensure atomic access in a multiprocessor environment.

4. When using mmap(), it is necessary to first make a nonspecific mapping request to generate a valid

address. This is easily done by specifying a requested address (addr) of 0 and not specifying

MAP_FIXED. Then, using the returned address pa as the new requested address (addr) and also

specifying MAP_FIXED for the flags parameter. The example below illustrates how this technique can

be applied to achieve a contiguous mapping of several files.

5. The address pointer returned by mmap() can only be used with the V4R4M0 or later versions of the

following languages:

v ILE COBOL

v ILE RPG

v ILE C if the TERASPACE parameter is used when compiling the program.

Related Information

v “open()—Open File” on page 267—Open File

v “open64()—Open File (Large File Enabled)” on page 287—Open File (Large File Enabled)

v “mmap64()—Memory map a Stream File (Large File Enabled)” on page 257—Memory Map a Stream

File (Large File Enabled)

v “munmap()—Remove Memory Mapping” on page 265—Remove Memory Mapping

v “mprotect()—Change Access Protection for Memory Mapping” on page 257—Change Access Protection

for Memory Mapping

v “msync()—Synchronize Modified Data with Mapped File” on page 261—Synchronize Modified Data

with Mapped File

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates two files and then produces a contiguous memory mapping of the first

data page of each file using two invocations of mmap().

#include <errno.h>

#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/mman.h>

main(void) {

 size_t bytesWritten = 0;

 int my_offset = 0;

 char text1Ý="Data for file 1.";

 char text2Ý="Data for file 2.";

 int fd1,fd2;

254 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

int PageSize;

 void *address;

 void *address2;

 fd1 = open("/tmp/mmaptest1",

 (O_CREAT | O_TRUNC | O_RDWR),

 (S_IRWXU | S_IRWXG | S_IRWXO));

 if (fd1 < 0)

 perror("open() error");

 else {

 bytesWritten = write(fd1, text1, strlen(text1));

 if (bytesWritten != strlen(text1)) {

 perror("write() error");

 int closeRC = close(fd1);

 return -1;

 }

 fd2 = open("/tmp/mmaptest2",

 (O_CREAT | O_TRUNC | O_RDWR),

 (S_IRWXU | S_IRWXG | S_IRWXO));

 if (fd2 < 0)

 perror("open() error");

 else {

 bytesWritten = write(fd2, text2, strlen(text2));

 if (bytesWritten != strlen(text2))

 perror("write() error");

 PageSize = (int)sysconf(_SC_PAGESIZE);

 if (PageSize < 0) {

 perror("sysconf() error");

 }

 else {

 off_t lastoffset = lseek(fd1, PageSize-1, SEEK_SET);

 if (lastoffset < 0) {

 perror("lseek() error");

 }

 else {

 bytesWritten = write(fd1, " ", 1); /* grow file 1 to 1 page. */

 off_t lastoffset = lseek(fd2, PageSize-1, SEEK_SET);

 bytesWritten = write(fd2, " ", 1); /* grow file 2 to 1 page. */

 /*

 * We want to show how to memory map two files with

 * the same memory map. We are going to create a two page

 * memory map over file number 1, even though there is only

 * one page available. Then we will come back and remap

 * the 2nd page of the address range returned from step 1

 * over the first 4096 bytes of file 2.

 */

 int len;

 my_offset = 0;

 len = PageSize; /* Map one page */

 address = mmap(NULL,

 len,

 PROT_READ,

 MAP_SHARED,

 fd1,

 my_offset);

 if (address != MAP_FAILED) {

 address2 = mmap(((char*)address)+PageSize,

 len,

 PROT_READ,

 MAP_SHARED | MAP_FIXED, fd2,

 my_offset);

Integrated File System APIs 255

if (address2 != MAP_FAILED) {

 /* print data from file 1 */

 printf("\n%s",address);

 /* print data from file 2 */

 printf("\n%s",address2);

 } /* address 2 was okay. */

 else {

 perror("mmap() error=");

 } /* mmap for file 2 failed. */

 }

 else {

 perror("munmap() error=");

 }

 /*

 * Unmap two pages.

 */

 if (munmap(address, 2*PageSize) < 0) {

 perror("munmap() error");

 }

 else;

 }

 }

 close(fd2);

 unlink("/tmp/mmaptest2");

 }

 close(fd1);

 unlink("/tmp/mmaptest1");

 }

 /*

 * Unmap two pages.

 */

 if (munmap(address, 2*PageSize) < 0) {

 perror("munmap() error");

 }

 else;

}

Output:

Data for file 1

Data for file 2

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

256 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

mmap64()—Memory map a Stream File (Large File Enabled)

 Syntax

 #include <sys/mman.h>

 void *mmap64(void *addr,

 size_t len,

 int protection,

 int flags,

 int fildes,

 off64_t off);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The mmap64() function, similar to the mmap() function, is used to establish a memory mapping of a file.

For a discussion of the parameters, authorities required, return values, related information, and examples

for mmap(), see “mmap()—Memory Map a File” on page 249—Memory Map a File.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs normally are hidden. To

use the mmap64() API, you must compile the source with the _LARGE_FILE_API macro defined.

2. All of the usage notes for mmap() apply to mmap64().

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

mprotect()—Change Access Protection for Memory Mapping

 Syntax

 #include <sys/types.h>

 #include <sys/mman.h>

 int mprotect(void *addr,

 size_t len,

 int protection);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The mprotect() function is used to change the access protection of a memory mapping to that specified

by protection. All whole pages of the process’s address space, that were established by the mmap()

function, addressed from addr continuing for a length of len will be affected by the change of access

Integrated File System APIs 257

#TOP_OF_PAGE
unix.htm
aplist.htm

protection. You may specify PROT_NONE, PROT_READ, PROT_WRITE, or the inclusive or of

PROT_READ and PROT_WRITE as values for the protect parameter.

Parameters

addr (Input) The starting address of the memory region for which the access is to be changed.

 The addr argument must be a multiple of the page size. The sysconf() function may be used to

determine the system page size.

len (Input) The length in bytes of the address range.

protection

(Input) The desired access protection. You may specify PROT_NONE, PROT_READ,

PROT_WRITE, or the inclusive or of PROT_READ AND PROT_WRITE as values for the protection

argument.

 No access through the memory mapping will be permitted if PROT_NONE is specified.

 Storage associated with the mapping cannot be altered unless the PROT_WRITE value is

specified.

 For shared mappings, PROT_WRITE requires that the file descriptor used to establish the map

had been opened for write access. A shared mapping is a mapping created with the

MAP_SHARED value of the flag parameter of the mmap() function.

 Since private mappings do not alter the underlying file, PROT_WRITE may be specified for a

mapping that had been created MAP_PRIVATE and had been opened for read access.

 The following table shows the symbolic constants allowed for the protection argument.

 Symbolic Constant Decimal
Value Description

PROT_WRITE 2 Write access allowed.

PROT_READ 2 Read access allowed.

PROT_NONE 8 No access allowed.

Authorities

No authorization is required.

Return Value

Upon successful completion, the mprotect() function returns 0. Upon failure, -1 is returned and errno is

set to the appropriate error number.

Error Conditions

When the mprotect() function fails, it returns -1 and sets there errno variable as follows.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

258 iSeries: UNIX-Type -- Integrated File System APIs

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

 The protection argument specifies a protection that violates the access permission the process has

to the underlying mapped file.

 If the QSHRMEMCTL system value was 0 at the time the mapping was created, then this

continues to limit the allowed access until the mapping is destroyed. An attempt to change the

protection of a shared mapping to PROT_WRITE when the QSHRMEMCTL system value had

been zero at the time of map creation will result in an errno of EACCES.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The addr argument is not a mulitple of the page size.

 This error number also may indicate that the value of the len argument is 0.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

 The addr argument is out of the allowed range.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

 For mprotect() this can be caused by an invalid combination of access requests on the protection

parameter.

Error Messages

The following messages may be sent from this function.

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Integrated File System APIs 259

Usage Notes

1. The address pointer that was returned by mmap() can only be used with the V4R4M0 or later

versions of the following languages:

v ILE COBOL

v ILE RPG

v ILE C if the TERASPACE parameter is used when compiling the program.

Related Information

v “open()—Open File” on page 267—Open File

v “open64()—Open File (Large File Enabled)” on page 287—Open File (Large File Enabled)

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “creat64()—Create or Rewrite a File (Large File Enabled)” on page 66—Create or Rewrite a File (Large

File Enabled)

v “mmap()—Memory Map a File” on page 249—Memory Map a Stream File

v “munmap()—Remove Memory Mapping” on page 265—Remove Memory Mapping

v “msync()—Synchronize Modified Data with Mapped File” on page 261—Synchronize Modified Data

with Mapped File

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a file, produces a memory mapping of the file using mmap(), and then

changes the protection of the file using mprotect().

#include <errno.h>

#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/mman.h>

main(void) {

 size_t bytesWritten =0;

 int fd;

 int PageSize;

 char textÝ = "This is a test";

 if ((PageSize = sysconf(_SC_PAGE_SIZE)) < 0) {

 perror("sysconf() Error=");

 return -1;

 }

 fd = open("/tmp/mmprotectTest",

 (O_CREAT | O_TRUNC | O_RDWR),

 (S_IRWXU | S_IRWXG | S_IRWXO));

 if (fd < 0) {

 perror("open() error");

 return fd;

 }

 off_t lastoffset = lseek(fd, 0, SEEK_SET);

 bytesWritten = write(fd, text, strlen(text));

 if (bytesWritten != strlen(text)) {

 perror("write error. ");

 return -1;

 }

260 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

lastoffset = lseek(fd, PageSize-1, SEEK_SET);

 bytesWritten = write(fd, " ", 1); /* grow file to 1 page. */

 if (bytesWritten != 1) {

 perror("write error. ");

 return -1;

 }

 /* mmap the file. */

 void *address;

 int len;

 off_t my_offset = 0;

 len = PageSize; /* Map one page */

 address =

 mmap(NULL, len, PROT_NONE, MAP_SHARED, fd, my_offset);

 if (address == MAP_FAILED) {

 perror("mmap error. ");

 return -1;

 }

 if (mprotect(address, len, PROT_WRITE) < 0) {

 perror("mprotect failed with error:");

 return -1;

 }

 else (void) printf("%s",address);

 close(fd);

 unlink("/tmp/mmprotectTest");

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

msync()—Synchronize Modified Data with Mapped File

 Syntax

 #include <sys/types.h>

 #include <sys/mman.h>

 int msync(void *addr,

 size_t len,

 int flags);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The msync() function can be used to write modified data from a shared mapping (created using the

mmap() function) to non-volatile storage or invalidate privately mapped pages. The data located through

mapping address addr for a length of len are either written to disk, or invalidated, depending on the

value of flags and the private or shared nature of the mapping.

Parameters

addr The starting address of the memory region to be synchronized to permanent storage. The

specified address must be a multiple of the page size.

Integrated File System APIs 261

#TOP_OF_PAGE
unix.htm
aplist.htm

len The number of bytes affected. The length must not be zero. If the length is not a multiple of the

page size the system will round this value to the next page boundary.

flags The desired synchronization.

 The following table shows the symbolic constants allowed for the flags parameter.

 Symbolic Constant Decimal
Value Description

MS_ASYNC 1 Perform asynchronous writes.

MS_SYNC 2 Perform synchronous writes.

MS_INVALIDATE 4 Invalidate privately cached data

The MS_SYNC and MS_ASYNC options are mutually exclusive. The MS_SYNC and MS_ASYNC

options are ignored if the memory map was created with the MAP_PRIVATE option.

 The MS_INVALIDATE option is used to discard changes made to a memory map created with

the MAP_PRIVATE option. The private memory map is synchronized with the current data in the

file. Any reference subsequent to the execution of the msync() function that invalidates a page

will result in a reference to the current value of the file. The first modification of a page after the

privately mapped page is invalidated results in the creation of a fresh private copy of that page.

Subsequent modifications of this page prior to the next execution of an msync that invalidates the

page will result in modifications to the same private copy of the page.

 The MS_INVALIDATE value is ignored if the memory map was created with the MAP_SHARED

option.

Authorities

No authorization is required.

Return Value

Upon successful completion, the msync() function returns 0.

Error Conditions

When the msync() function fails, it returns -1 and sets errno as follows.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The value of the flags parameter may be invalid.

 The value of the len parameter may be zero.

 The value of the addr may not be a multiple of the page size or is out of the allowed range.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[EUNKNOWN]

262 iSeries: UNIX-Type -- Integrated File System APIs

Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function.

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. The msync() function must be used to write changed pages of a shared mapping to disk. If a system

crash occurs before the msync() function completes, some data may not be preserved.

Process termination does not automatically write changed pages to disk. Some or all pages may be

eventually written by the paging subsystem, but no guarantee is given. Therefore, if the data must be

preserved the msync() function must be used to ensure changes made through a shared memory map

are written to disk.

2. The address pointer that was returned by mmap() can only be used with the V4R4M0 or later

versions of the following languages:

v ILE COBOL

v ILE RPG

v ILE C if the TERASPACE parameter is used when compiling the program.

Related Information

v “open()—Open File” on page 267—Open File

v “open64()—Open File (Large File Enabled)” on page 287—Open File (Large File Enabled)

v “mmap()—Memory Map a File” on page 249—Memory Map a Stream File

v “munmap()—Remove Memory Mapping” on page 265—Remove Memory Mapping

v “mprotect()—Change Access Protection for Memory Mapping” on page 257—Change Access Protection

for Memory Mapping

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a file, creates a memory map, stores data into the file, and writes the data

to disk using the msync() function.

#include <errno.h >

#include <fcntl.h >

#include <unistd.h >

#include <stdio.h >

#include <stdlib.h >

#include <string.h >

#include <sys/types.h >

#include <sys/mman.h >

main(void) {

 size_t bytesWritten =0;

 int fd;

Integrated File System APIs 263

aboutapis.htm#CODEDISCLAIMER

int PageSize;

 const char textÝ = "This is a test";

 if ((PageSize = sysconf(_SC_PAGE_SIZE)) < 0) {

 perror("sysconf() Error=");

 return -1;

 }

 fd = open("/tmp/mmsyncTest",

 (O_CREAT | O_TRUNC | O_RDWR),

 (S_IRWXU | S_IRWXG | S_IRWXO));

 if (fd < 0) {

 perror("open() error");

 return fd;

 }

 off_t lastoffset = lseek(fd, PageSize, SEEK_SET);

 bytesWritten = write(fd, " ", 1);

 if (bytesWritten != 1) {

 perror("write error. ");

 return -1;

 }

 /* mmap the file. */

 void *address;

 int len;

 off_t my_offset = 0;

 len = PageSize; /* Map one page */

 address =

 mmap(NULL, len, PROT_WRITE, MAP_SHARED, fd, my_offset);

 if (address == MAP_FAILED) {

 perror("mmap error. ");

 return -1;

 }

 /* Move some data into the file using memory map. */

 (void) strcpy((char*) address, text);

 /* use msync to write changes to disk. */

 if (msync(address, PageSize , MS_SYNC) < 0) {

 perror("msync failed with error:");

 return -1;

 }

 else (void) printf("%s","msync completed successfully.");

 close(fd);

 unlink("/tmp/msyncTest");

}

Output:

This is a test.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

264 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

munmap()—Remove Memory Mapping

 Syntax

 #include <sys/types.h>

 #include <sys/mman.h>

 int munmap (void *addr,

 size_t len);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The munmap() function removes addressability to a range of memory mapped pages of a process’s

address space. All pages starting with addr and continuing for a length of len bytes are removed.

The address range specified must begin on a page boundary. Portions of the specified address range

which are not mapped, or were not established by the mmap() function, are not affected by the

munmap() function.

If the mapping was created MAP_PRIVATE then any private altered pages are discarded and the system

storage associated with the copies are returned to the system free space.

When the mapping is removed, the reference associated with the pages mapped over the file is removed.

If the file has no references other than those due to memory mapping and the remaining memory

mappings are removed by the munmap() function, then the file becomes unreferenced. If the file becomes

unreferenced due to an munmap() function call and the file is no longer linked, then the file will be

deleted.

Parameters

addr The starting address of the memory region being removed.

 The addr parameter must be a multiple of the page size. The value zero or NULL is not a valid

starting address. The sysconf() function may be used to determine the system page size.

len (Input) The length of the address range. All whole pages beginning with addr for a length of len

are included in the address range.

Authorities

No authorization is required.

Return Value

Upon successful completion, the munmap() function returns 0. Upon failure, -1 is returned and errno is

set to the appropriate error number.

Error Conditions

When the munmap() function fails, it returns -1 and sets errno as follows.

[EINVAL]

 The value specified for the argument is not correct.

Integrated File System APIs 265

A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 For munmap() this may mean that the address range from addr and continuing for a length of len

is outside the valid range allowed for a process. This error may also indicate that the value for

the addr parameter is not a multiple of the page size. A value of 0 for parameter len also will

result in this error number.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function.

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. The address pointer that was returned by mmap() can only be used with the V4R4M0 or later

versions of the following languages:

v ILE COBOL

v ILE RPG

v ILE C if the TERASPACE parameter is used when compiling the program.

Related Information

v “open()—Open File” on page 267—Open File

v “open64()—Open File (Large File Enabled)” on page 287—Open File (Large File Enabled)

v “mmap()—Memory Map a File” on page 249—Memory Map a Stream File

v “mprotect()—Change Access Protection for Memory Mapping” on page 257—Change Access Protection

for Memory Mapping

v “msync()—Synchronize Modified Data with Mapped File” on page 261—Synchronize Modified Data

with Mapped File

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a file, produces a memory mapping of the file using mmap(), and then

removes the mapping using the munmap() function.

266 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

#include <stdio.h>

#include <fcntl.h>

#include <sys/types.h>

#include <sys/mman.h>

main() {

 char fn[]="creat.file";

 char text[]="This is a test";

 int fd;

 int PageSize;

 if ((fd =

 open(fn, O_CREAT | O_RDWR | O_APPEND,S_IRWXU) < 0)

 perror("open() error");

 else if (write(fd, text, strlen(text)) < 0;

 error("write() error=");

 else if ((PageSize=sysconf(_SC_PAGESIZE)) < 0)

 error("sysconf() Error=");

 else {

 off_t lastoffset = lseek(fd, PageSize-1, SEEK_SET);

 write(fd, " ", 1); /* grow file to 1 page. */

 /* mmap the file. */

 void *address;

 int len;

 my_offset = 0;

 len = 4096; /* Map one page */

 address =

 mmap(NULL, len, PROT_READ, MAP_SHARED, fd, my_offset)

 if (address != MAP_FAILED) {

 if (munmap(address, len)) == -1) {

 error("munmap failed with error:");

 }

 }

 close(fd);

 unlink(fn);

 }

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

open()—Open File

 Syntax

 #include <fcntl.h>

 int open(const char *path, int oflag, . . .);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 280.

Integrated File System APIs 267

#TOP_OF_PAGE
unix.htm
aplist.htm

The open() function opens a file and returns a number called a file descriptor. You can use this file

descriptor to refer to the file in subsequent I/O operations such as read() or write(). In these subsequent

operations, the file descriptor is commonly identified by the argument fildes or descriptor. Each file opened

by a job gets a new file descriptor.

If the last element of the path is a symbolic link, the open() function resolves the contents of the symbolic

link.

open() positions the file offset (an indicator showing where the next read or write will take place in the

file) at the beginning of the file. However, there are options that can change the position.

open() clears the FD_CLOEXEC file descriptor flag for the new file descriptor. Refer to “fcntl()—Perform

File Control Command” on page 115 for additional information about the FD_CLOEXEC flag.

The open() function also can be used to open a directory. The resulting file descriptor can be used in

some functions that have a fildes parameter.

If the file being opened has been saved and its storage freed, the file is restored during this open()

function. The storage extension exit program registered against the QIBM_QTA_STOR_EX400 exit point is

called to restore the object. (See the Storage Extension Exit Program for details). If the file cannot

successfully be restored, open() fails with the EOFFLINE error number.

For information about the exit point which can be associated with open(), see “Integrated File System

Scan on Open Exit Program” on page 666.

Parameters

path (Input) A pointer to the null-terminated path name of the file to be opened.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 When a new file is created, the new file name is assumed to be represented in the language and

country currently in effect for the job.

 See “QlgOpen()—Open a File (using NLS-enabled path name)” on page 362 for a description and

an example of supplying the path in any CCSID.

oflag (Input) The file status flags and file access modes of the file to be opened. See “Using the oflag

Parameter” on page 269.

 Note: The open64() API sets the O_LARGEFILE flag internally.

mode (Input) An optional third parameter of type mode_t that is required if the O_CREAT flag is set. It

specifies the file permission bits to be used when a file is created. For a description of the

permission bits, see “chmod()—Change File Authorizations” on page 29.

conversion ID

(Input) An optional fourth parameter of type unsigned int that is required if the O_CCSID or

O_CODEPAGE flag is set.

 If the O_CCSID flag is set, this parameter specifies a CCSID. If the O_CODEPAGE flag is set, this

parameter specifies a code page used to derive a CCSID.

 The specified or derived CCSID is assumed to be the CCSID of the data in the file, when a new

file is created. This CCSID is associated with the file during file creation.

 When the O_TEXT_CREAT flag and its prerequisite flags are not set, the specified or derived

CCSID is the CCSID in which data is to be returned (when reading from a file), or the CCSID in

which data is being supplied (when writing to a file).

268 iSeries: UNIX-Type -- Integrated File System APIs

XTASX400.htm

See “Using CCSIDs and code pages” on page 273 for more details.

text file creation conversion ID

(Input) An optional fifth parameter of type unsigned int that is required if the O_TEXT_CREAT

flag, along with prerequisite flags O_TEXTDATA, O_CREAT, and either O_CCSID or

O_CODEPAGE, is set. Note: because O_EXCL is not required, this parameter may apply to files

that already exist.

 When O_CCSID flag is set, this parameter specifies a CCSID. If the O_CODEPAGE flag is set, this

parameter specifies a code page used to derive a CCSID.

 The specified or derived CCSID will be used as the CCSID of this open instance. Therefore, this

will be the CCSID in which data is to be returned (when reading from a file), or the CCSID in

which data is being supplied (when writing to a file). Data will be stored in the CCSID associated

with the open file. Note: if the file was not created by this open operation, the file’s CCSID may

be different than the CCSID associated with the conversion ID parameter.

 See “Using CCSIDs and code pages” on page 273 for more details.

Using the oflag Parameter

One of the following values must be specified in oflag:

O_RDONLY

Open for reading only.

O_WRONLY

Open for writing only.

O_RDWR

Open for both reading and writing.

 One or more of the following also can be specified in oflag:

O_APPEND

Position the file offset at the end of the file before each write operation.

O_CREAT

The call to open() has a mode argument.

 If the file being opened already exists, O_CREAT has no effect, except when O_EXCL is also

specified (see the following description of O_EXCL.

 If the file being opened does not exist, it is created. The user ID (uid) of the file is set to the

effective uid of the job. If the object is being created in the ″root″ (/), QOpenSys, and

user-defined file systems, the following applies. If the S_ISGID bit of the parent directory is off,

the group ID (GID) is set to the effective GID of the thread creating the object. If the S_ISGID bit

of the parent directory is on, the group ID (GID) of the new object is set to the GID of the parent

directory. For all other file systems, the group ID (GID) of the file is set to the GID of the

directory in which the file is created. File permission bits are set according to mode, except for

those set in the file mode creation mask of the job. The S_ISUID (set-user-ID) and S_ISGID

(set-group-ID) bits are also set according to mode. The file type bits in mode are ignored. All other

bits in mode must be cleared (not set) or a [EINVAL] error is returned.

O_EXCL

Ignored if O_CREAT is not set. If both O_EXCL and O_CREAT are specified, open() fails if the

file already exists. If both O_EXCL and O_CREAT are specified, and path names a symbolic link,

open() fails regardless of the contents of the symbolic link.

O_LARGEFILE

Open a large file. The descriptor returned can be used with the other APIs to operate on files

larger than 2GB (GB = 1073741824) minus 1 byte. The file systems that do not support large files

Integrated File System APIs 269

will just ignore the O_LARGEFILE open flag if it is set. The O_LARGEFILE flag is ignored by the

file systems when open() is used to open a directory.

O_TRUNC

Truncate the file to zero length if the file exists and it is a “regular file” (a stream file that can

support positioning the file offset). The mode and owner of the file are not changed. O_TRUNC

applies only to regular files. O_TRUNC has no effect on FIFO special files. The O_TRUNC

behavior applies only when the file is successfully opened with O_RDWR or O_WRONLY.

 Truncation of the file will return the [EOVERFLOW] error if the file is larger than 2 GB minus 1

byte and if the O_LARGEFILE oflag is not also specified on the open() call. (Note that open64()

sets the O_LARGEFILE oflag automatically.)

 If the file exists and it is a regular file, the S_ISUID (set-user-ID) and S_ISGID (set-group-ID) bits

of the file mode are cleared.

 If the file has an OS/400 digital signature, open() with the O_TRUNC oflag causes the signature

to be deleted.

O_TEXTDATA

Determines how the data is processed when a file is opened.

v If O_TEXTDATA is specified, the data is processed as text.

The data is read from the file and written to the file assuming it is in textual form. When the

data is read from the file, it is converted from the CCSID of the file to the CCSID of the job or

the CCSID specified by the application receiving the data. When data is written to the file, it is

converted to the CCSID of the file from the CCSID of the job or the CCSID specified by the

application.

For true stream files, any line-formatting characters (such as carriage return, tab, and

end-of-file) are just converted from one CCSID to another.

When reading from a record file that is being used as a stream file, end-of-line characters are

added to the end of the data in each record. When writing to the record file:

– End-of-line characters are removed.

– Records are padded with blanks (for a source physical file member) or nulls (for a data

physical file member).

– Tab characters are replaced by the appropriate number of blanks to the next tab position.
v If O_TEXTDATA is not specified, the data is processed as binary. The data is read from the file

and written to the file without any conversion. The application is responsible for handling the

data.

See “Using CCSIDs and code pages” on page 273 for more details on text conversions.

O_CCSID

The call to open has a fourth argument (conversion ID), which is to be interpreted as a CCSID.

Text conversions between any two CCSIDs supported by the iconv() API can be performed.

 This flag cannot be specified with the O_CODEPAGE flag.

 See “Using CCSIDs and code pages” on page 273 for more details.

O_CODEPAGE

The call to open has a fourth argument (conversion ID), which is to be interpreted as a code page.

Only single-byte-to-single-byte or double-byte-to-double-byte text conversions are allowed.

 This flag cannot be specified with the O_CCSID flag.

 See “Using CCSIDs and code pages” on page 273 for more details.

270 iSeries: UNIX-Type -- Integrated File System APIs

O_TEXT_CREAT

The call to open has a fifth argument (text file creation conversion ID), which is to be interpreted as

either a code page or CCSID, depending on whether the O_CODEPAGE or O_CCSID was set.

 If the O_TEXT_CREAT flag is specified, all of the following flags must also be specified:

O_CREAT, O_TEXTDATA, and either O_CODEPAGE or O_CCSID. If all of these prerequisite

flags are not specified when O_TEXT_CREAT is specified, then the call to open will fail with

error condition [EINVAL].

 This flag indicates that the textual data read from or written to this file will be converted between

the CCSID specified or derived from the text file creation conversion ID and the CCSID of the file.

When data is read from the file, it is converted from the CCSID of the file to the CCSID specified

or derived from the text file creation conversion ID. When data is written to the file, it is converted

to the CCSID of the file from the CCSID specified or derived from the text file creation conversion

ID.

 See “Using CCSIDs and code pages” on page 273 for more details.

O_INHERITMODE

Create the file with the same data authorities as the parent directory that the file is created in.

Any data authorities passed in the mode parameter are ignored. The mode parameter, however,

must still be specified with a valid mode value. This flag is ignored if the O_CREAT flag is not

set.

 The ″root″ (/), QOpenSys, QSYS.LIB, independent ASP QSYS.LIB, and QDLS file systems support

this flag on an open() with the O_CREAT flag set. The QOPT file system ignores this flag because

files in this file system do not have data authorities.

O_NONBLOCK

Return without delay from certain operations on this open descriptor.

 If O_NONBLOCK is specified when opening a FIFO:

v An open() for reading only or reading and writing access returns without delay.

v An open() for writing only returns an error if no job currently has the FIFO open for reading.

The errno value will be ENXIO.

If O_NONBLOCK is not specified when opening a FIFO:

v An open() for reading only blocks the calling thread until another thread opens the FIFO for

writing.

v An open() for writing only blocks the calling thread until another thread opens the FIFO for

reading.

v An open() for reading and writing returns without delay.

The O_NONBLOCK open flag is ignored for all other object types.

O_SYNC

Updates to the file will be performed synchronously. All file data and file attributes relative to the

I/O operation are written to permanent storage before the update operation returns. Update

operations include, but are not limited to, the following: ftruncate(), open() with O_TRUNC,

write(),

and fclear()

.

O_DSYNC

Updates to the file will be performed synchronously, but only the file data is written to

permanent storage before the update operation returns. Update operations include, but are not

limited to, the following: ftruncate(), open() with O_TRUNC, write(),

and fclear()

Integrated File System APIs 271

.

O_RSYNC

Read operations to the file will be performed synchronously. Pending update requests affecting

the data to be read are written to permanent storage. This flag is used in combination with

O_SYNC or O_DSYNC. When O_RSYNC and O_SYNC are set, all file data and file attributes are

written to permanent storage before the read operation returns. When O_RSYNC and O_DSYNC

are set, all file data is written to permanent storage before the read operation returns.

 A file sharing mode may also be specified in the oflag. If none are specified, a default sharing mode of

O_SHARE_RDWR is used. No more than one of the following may be specified:

O_SHARE_RDONLY

Share with readers only. Open the file only if both of the following are true:

v The file currently is not open for writing.

v The access intent does not conflict with the sharing mode of another open instance of this file.

Once opened with this sharing mode, any request to open this file for writing fails with the

[EBUSY] error.

O_SHARE_WRONLY

Share with writers only. Open the file only if both of the following are true:

v The file is not currently open for reading.

v The access intent does not conflict with the sharing mode of another open instance of this file.

Once opened with this sharing mode, any request to open this file for reading fails with the

[EBUSY] error.

O_SHARE_RDWR

Share with readers and writers. Open the file only if the access intent of this open does not

conflict with the sharing mode of another open instance of this file.

O_SHARE_NONE

Share with neither readers nor writers. Open the file only if the file is not currently open. Once

the file is opened with this sharing mode, any request to open this file for reading or writing fails

with the [EBUSY] error.

 All other bits in oflag must be cleared (not set).

Notes:

1. If O_WRONLY or O_RDWR is specified and the file is checked out by a user profile other than that of

the current job, the open() fails with the [EBUSY] error.

2. If O_WRONLY or O_RDWR is specified and the file is marked ″read-only,″ the open() fails with the

[EROOBJ] error.

3. If O_CREAT is specified and the file did not previously exist, a successful open() sets the access time,

change time, modification time, and creation time for the new file. It also updates the change time

and modification time of the directory that contains the new file (the parent directory of the new file).

If O_TRUNC is specified and the file previously existed, a successful open() updates the change time

and modification time for the file.

4. Sharing Files

If a sharing mode is not specified in the oflag parameter, a default sharing mode of O_SHARE_RDWR

is used. The open() may fail with the [EBUSY] error number if the file is already open with a sharing

mode that conflicts with the access intent of this open() request.

272 iSeries: UNIX-Type -- Integrated File System APIs

Directories may only be opened with a sharing mode of O_SHARE_RDWR. If any other sharing mode

is specified, the open() fails with error number [EINVAL].

For *CHRSF files, a sharing mode of O_SHARE_RDWR is used regardless of the sharing mode

specified in the oflag parameter. The sharing mode specified in the oflag parameter is ignored.

The following table shows when conflicts will occur:

 File Sharing Conflicts

Access Intent

Sharing Mode

Readers Only Writers Only

Readers
and Writers

No Others
(Exclusive)

O_RDONLY OK EBUSY OK EBUSY

O_WRONLY EBUSY OK OK EBUSY

O_RDWR EBUSY EBUSY OK EBUSY

Using CCSIDs and code pages

If the O_CCSID or O_CODEPAGE flag is specified, but O_CREAT is not, the mode parameter must be

specified, but its value will be ignored.

The value of conversion ID must be less than 65536. The [EINVAL] error will be returned if it is not.

When a new file is created:

v conversion ID is used to derive a CCSID to be associated with the new file (the ″file CCSID″) and this

open instance (the ″open CCSID″). If the file is to contain textual data, this CCSID is assumed to be the

CCSID of the data, unless the O_TEXT_CREAT flag and its prerequisite flags were also specified.

v If neither O_CCSID nor O_CODEPAGE is specified, or if O_CCSID is specified and conversion ID is

zero (0), the file CCSID is set to the CCSID of the job. If the job CCSID is 65535, the file CCSID is set to

the default CCSID of the job.

v For this open instance, if the O_TEXT_CREAT flag and its prerequisite flags were not specified, the file

CCSID and open CCSID are the same and no text conversion will take place on data written to or read

from the file, whether O_TEXTDATA is specified or not. If you would like to associate the new file

with the CCSID specified in conversion ID, but you would also like to have text conversion occur

between the file’s CCSID and a different CCSID, consider using the O_TEXT_CREAT flag and

corresponding text file creation conversion ID parameter.

v The QSYS.LIB and independent ASP QSYS.LIB file systems cannot associate the derived CCSID with

the database file member being created. Rather, the CCSID of the new member is the CCSID of the

database file in which the member is being created. Data read or written during this open instance is

converted from or to the CCSID of the database file.

When an existing file is opened and O_TEXTDATA is not specified:

v The value of conversion ID is ignored.

When an existing file is opened

and O_TEXTDATA is specified:

v conversion ID is used to derive a CCSID to be associated with this open instance (the ″open CCSID″).

v If neither O_CCSID nor O_CODEPAGE is specified, or if O_CCSID is specified and conversion ID is

zero (0), the open CCSID is set to the CCSID of the job. If the job CCSID is 65535, the open CCSID is

set to the default CCSID of the job.

v The system will convert from the file CCSID to the open CCSID when reading data from the file, and

convert from the open CCSID to the file CCSID when writing data to the file.

v

If O_CCSID is not specified, and the file CCSID and open CCSID are not the same, and one of them

is not strictly single-byte, open() will fail with errno set to [ECONVERT].

Integrated File System APIs 273

See “Examples” on page 285 for a sample program that creates a new file and then opens it for data

conversion.

Authorities

Note: Adopted authority is not used.

 Authorization Required for open() (excluding QSYS.LIB, independent ASP QSYS.LIB,and QDLS)

Object Referred to

Authority
Required errno

Each directory in the path name preceding the

object to be opened

*X EACCES

Existing object when access mode is O_RDONLY *R EACCES

Existing object when access mode is O_WRONLY *W EACCES

Existing object when access mode is O_RDWR *RW EACCES

Existing object when O_TRUNC is specified *W EACCES

Parent directory of object to be created when

object does not exist and O_CREAT is specified

*WX EACCES

 Authorization Required for open() in the QSYS.LIB and independent ASP QSYS.LIB File Systems

Object Referred to

Authority
Required errno

Each directory in the path name preceding the object to be opened *X EACCES

Existing object when access mode is O_RDONLY *R EACCES

Existing object when access mode is O_WRONLY *W EACCES

Existing object when access mode is O_RDWR *RW EACCES

Existing object when object is a save file *RWX EACCES

Existing object when O_TRUNC is specified *W EACCES

Parent directory of object to be created when object does not exist

and O_CREAT is specified

*OBJMGT or
*OBJALTER

EACCES

Parent directory of object to be created when object does not

exist and object type is *USRSPC or save file

*RX and *Add EACCES

Parent directory of the parent directory of object to be created when

object does not exist, O_CREAT is specified, and object being

created is a physical file member

*ADD EACCES

 Authorization Required for open() in the QDLS File System

Object Referred to

Authority
Required errno

Each directory in the path name preceding the object to be opened *X EACCES

Existing object when access mode is O_RDONLY *R EACCES

Existing object when access mode is O_WRONLY *W EACCES

Existing object when access mode is O_RDWR *RW EACCES

Existing object when O_TRUNC is specified *W EACCES

274 iSeries: UNIX-Type -- Integrated File System APIs

Authorization Required for open() in the QDLS File System

Object Referred to

Authority
Required errno

Parent directory of object to be created when object does not exist

and O_CREAT is specified

*CHANGE EACCES

Return Value

 value open() was successful. The value returned is the file descriptor.

-1 open() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If open() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

 The open sharing mode may conflict with another open of this file, or O_WRONLY or O_RDWR

is specified and the file is checked out by another user.

 In the QSYS.LIB and independent ASP QSYS.LIB file systems, if the O_TEXTDATA flag was

specified, the file may be already open in this job or another job where the O_TEXTDATA flag

was not specified. Or if the O_TEXTDATA flag was not specified, the file may be already open in

this job or another job where the O_TEXTDATA flag was specified.

[ECONVERT]

Integrated File System APIs 275

Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EDEADLK]

 Resource deadlock avoided.

 An attempt was made to lock a system resource that would have resulted in a deadlock situation.

The lock was not obtained.

 The function attempted was failed to prevent a deadlock.

[EEXIST]

 File exists.

 The file specified already exists and the specified operation requires that it not exist.

 The named file, directory, or path already exists.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

v O_RDONLY and O_TRUNC were both specified.

v More than one of O_RDONLY, O_WRONLY, or O_RDWR are set in oflag.

v More than one of O_SHARE_RDONLY, O_SHARE_WRONLY, O_SHARE_RDWR, or

O_SHARE_NONE are set in oflag.

v Unused bits in oflag are set and should be cleared.

v Unused bits in mode are set and should be cleared.

v It is not valid to open this type of object.

v O_CODEPAGE and O_CCSID were both specified.

[EIO]

 Input/output error.

 A physical I/O error occurred.

276 iSeries: UNIX-Type -- Integrated File System APIs

A referenced object may be damaged.

[EISDIR]

 Specified target is a directory.

 The path specified named a directory where a file or object name was expected.

 The path name given is a directory. Write access or O_TRUNC has been specified and is not valid

for a directory.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[EMFILE]

 Too many open files for this process.

 An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of

OPEN_MAX can be retrieved using the sysconf() function.

 The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

 New journal is needed.

Integrated File System APIs 277

The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENFILE]

 Too many open files in the system.

 A system limit has been reached for the number of files that are allowed to be concurrently open

in the system.

 The entire system has too many other file descriptors already open.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

 Function not implemented.

 An attempt was made to use a function that is not available in this implementation for any object

or any arguments.

 The path name given refers to an object that does not support this function.

[ENOSYSRSC]

 System resources not available to complete request.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

278 iSeries: UNIX-Type -- Integrated File System APIs

A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[ENXIO]

 No such device or address.

 O_NONBLOCK and O_WRONLY open flags are specified, path refers to a FIFO, and no job has

the FIFO open for reading.

[EOFFLINE]

 Operation is suspended.

 You have atempted to use an object that has had its data saved and the storage associated with it

freed. An attempt to retrieve the object’s data failed. The object’s data cannot be used until it is

restored successfully. The object’s data was saved and freed either by saving the object with the

STG(*FREE) parameter or by calling an API.

[EOVERFLOW]

 Object is too large to process.

 The object’s data size exceeds the limit allowed by this function.

 The size of the specified file cannot be represented correctly in a variable of type off_t (the file is

larger than 2GB minus 1 byte).

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESCANFAILURE]

 Object had scan failure.

 An object has been marked as a scan failure due to processing by an exit program associated with

the scan-related integrated file system exit points.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETXTBSY]

 Text file busy.

 An attempt was made to execute an OS/400 PASE program that is currently open for writing, or

an attempt has been made to open for writing an OS/400 PASE program that is being executed.

Integrated File System APIs 279

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 Additionally, if interaction with a file server is required to access the object, errno could also indicate one

of the following errors:

[EADDRNOTAVAIL]

Address not available.

[ECONNABORTED]

Connection ended abnormally.

[ECONNREFUSED]

The destination socket refused an attempted connect operation.

[ECONNRESET]

A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

A remote host is not available.

[EHOSTUNREACH]

A route to the remote host is not available.

[ENETDOWN]

The network is not currently available.

[ENETRESET]

A socket is connected to a host that is no longer available.

[ENETUNREACH]

Cannot reach the destination network.

[ETIMEDOUT]

A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

 1. This function will fail with error number [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

280 iSeries: UNIX-Type -- Integrated File System APIs

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

– QFileSvr.400

 2. ″Root″ (/), QOpenSys, and User-Defined File System Differences

The user who creates the file becomes its owner. The S_ISGID bit of the directory affects what the

group ID (GID) is for objects that are created in the directory. If the S_ISGID bit of the parent

directory is off, the group ID (GID) is set to the effective GID of the thread creating the object. If the

S_ISGID bit of the parent directory is on, the group ID is copied from the parent directory in which

the file is created.

When you do not specify O_INHERITMODE for the oflag parameter, the owner, primary group, and

public object authorities (*OBJEXIST, *OBJMGT, *OBJALTER, and *OBJREF) are copied from the

parent directory’s owner, primary group, and public object authorities. This occurs even when the

new file has a different owner than the parent directory. The owner, primary group, and public data

authorities (*R, *W, and *X) are derived from the permissions specified in the mode (except for those

permissions that are also set in the file mode creation mask). The new file does not have any private

authorities or authorization list. It only has authorities for the owner, primary group, and public.

When you specify O_INHERITMODE for the oflag parameter, the owner, primary group, and public

data and object authorities (*R, *W, *X, *OBJEXIST, *OBJMGT, *OBJALTER, and *OBJREF) are copied

from the parent directory’s owner, primary group, and public data and object authorities. In

addition, the private authorities (if any) and authorization list (if any) are copied from the parent

directory. If the new file has a different owner than the parent directory and the new file’s owner has

a private authority in the parent directory, that private authority is not copied from the parent

directory. The authority for the owner of the new file is copied from the owner of the parent

directory.

There are some restrictions when opening a FIFO for text conversion and the CCSIDs involved are

not strictly single-byte:

v Opening a FIFO for reading or reading and writing is not allowed. The errno global variable is set

to [ENOTSUP].

v Any conversion between CCSIDs that are not strictly single-byte must be done by an open

instance that has write only access.
 3. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

The following object types are allowed to be opened:

v *MBR (physical file member)
The only types of physical files supported when specifying the O_TEXTDATA flag are

program-described physical files that contain a single field and source physical files that contain a

single text field. Externally described physical files are supported for binary access only.

v *LIB (library)

v *FILE (physical file or save file)

v *USRSPC (user space)

When creating a member, the ownership, group profile, and authorities are all derived from the

member’s parent physical file. The input mode value is ignored.

The group ID is obtained from the primary user profile, if a group profile exists.

The primary group authorities specified in mode are not saved if no primary group exists.

You cannot open a member in a file that has a mixed data CCSID.

Integrated File System APIs 281

The file access time for a database member is updated using the normal rules that apply to database

files. At most, the access time is updated once per day.

Due to the restriction that only one job may have a database member open for writing at a time, the

sharing modes O_SHARE_WRONLY and O_SHARE_RDWR do not provide the requested level of

sharing.

v If O_SHARE_WRONLY is specified, the open() succeeds. However, in all jobs other than the one

that performed this open(), the actual enforced share mode for this file is equivalent to

O_SHARE_NONE.

v If O_SHARE_RDWR is specified, or if no share mode is specified, the open() succeeds. However,

in all jobs other than the one that performed this open(), the actual enforced share mode is

equivalent to O_SHARE_RDONLY.

The open() of a database member fails with an [EBUSY] error under any of the following conditions:

v The O_TEXTDATA flag is specified, but the file is already open in this job or another job where

the O_TEXTDATA flag is not specified.

v The O_TEXTDATA flag is not specified, but the file is already open in this job or another job

where the O_TEXTDATA flag and write access are specified.

v The O_TEXTDATA flag is specified and write access is requested, but the file is already open in

this job or another job where O_TEXTDATA is specified and write access is also requested.

v The O_CREAT flag is specified, the member already exists, and the QSYS.LIB or independent ASP

QSYS.LIB file system cannot get exclusive access to the member. They must have exclusive access

to clear the old member.

v The O_TEXTDATA flag is not specified (binary mode) and more than one job tries to obtain write

access to the member. This condition does not apply to PC clients. Because PC clients share the

same server job, they can share access to the member.

v The user attempts to open a member with access intentions that conflict with existing object locks

on the member.

This function will fail with error number [ENOTSAFE] if the object on which this function is

operating is a save file and multiple threads exist in the job.

This function will fail with error number [ENOTSUP] if the file specified is a save file and the

O_RDWR flag is specified. A save file can be opened for either reading only or writing only.

This function will fail with error number [ENOTSUP] if the file specified is a save file and the

O_TEXTDATA flag is specified.

If a save file containing data is opened for writing, the O_APPEND or O_TRUNC flag must be

specified. Otherwise, the open() will fail with error number [ENOTSUP].

There are some restrictions on sharing modes when opening a save file.

a. A save file may not have more than one open descriptor per job, regardless of the sharing mode

specified.

v A save file currently open for reading only cannot be opened again in the same job for reading

or writing. The open() will fail with errno set to [EBUSY].

v A save file currently open for writing only cannot be opened again in the same job for reading

or writing. The open() will fail with errno set to [EBUSY].
b. Due to the restriction that only one job may have a save file open when the save file is open for

writing, the sharing modes O_SHARE_WRONLY and O_SHARE_RDWR do not provide the

reqested level of sharing.

v If O_SHARE_WRONLY is specified, the open() succeeds. However, in all jobs other than the

one that performed this open(), the actual enforced share mode for this file is equivalent to

O_SHARE_NONE.

282 iSeries: UNIX-Type -- Integrated File System APIs

v If O_SHARE_RDWR is specified and the file is opened for reading only, the open() succeeds.

However, in all jobs other than the one that performed this open(), the actual enforced share

mode is equivalent to O_SHARE_RDONLY.

v If O_SHARE_RDWR is specified and the file is opened for writing only, the open() succeeds.

However, in all jobs other than the one that performed this open(), the actual enforced share

mode is equivalent to O_SHARE_NONE.

Note: Unpredictable results, including loss of data, could occur if, in the same job, a user tries to

open the same file for writing at the same time by using both open() API for stream file access and a

data management open API for record access.

 4. QDLS File System Differences

When O_CREAT is specified and a new file is created:

v the owner’s object authority is set to *OBJMGT + *OBJEXIST + *OBJALTER + *OBJREF.

v The primary group and public object authority and all other authorities are copied from the

directory (folder) in which the file is created.

v The owner, primary group, and public data authority (including *OBJOPR) are derived from the

permissions specified in mode (except those permissions that are also set in the file mode creation

mask).

The primary group authorities specified in mode are not saved if no primary group exists.

QDLS does not store the language ID and country ID with its files. When this information is

requested (using the readdir() function), QDLS returns the language ID and country ID of the

system.

 5. QOPT File System Differences

When the volume on which the file is being opened is formatted in Universal Disk Format (UDF):

v The authorization that is checked for the object and preceding directories in the path name follows

the rules described in Authorization Required for open() (page 274).

v The volume authorization list is checked for *USE when the access mode is O_RDONLY. The

volume authorization list is checked for *CHANGE when the access mode is O_RDWR or

O_WRONLY.

v The user who creates the file becomes its owner.

v The group ID is copied from the parent directory in which the file is created.

v The owner, primary group, and public data authorities (*R, *W, and *X) are derived from the

permissions specified in the mode (except those permissions that are also set in the file mode

creation mask).

v When O_INHERITMODE is specified for the oflag parameter, the data authorities are copied from

the parent directory.

v The sharing modes O_SHARE_RDONLY, O_SHARE_WRONLY, and O_SHARE_RDWR do not

provide the requested level of sharing when the access mode is O_RDWR or O_WRONLY. When

the access mode is O_RDWR or O_WRONLY, the resulting sharing mode semantic will be

equivalent to O_SHARE_NONE.

v For newly created files, the same uppercase and lowercase forms in which the names are entered

are preserved. No distinction is made between uppercase and lowercase when searching for

names.

v This function will fail with error number [EINVAL] if the O_SYNC, O_DSYNC, or O_RSYNC open

flag is specified.

When the volume on which the file is being opened is not formatted in Universal Disk Format

(UDF):

v No authorization checks are made on the object or preceding directories in the path name.

v The volume authorization list is checked for *USE when the access mode is O_RDONLY. The

volume authorization list is checked for *CHANGE when the access mode is O_RDWR or

O_WRONLY.

Integrated File System APIs 283

v QDFTOWN becomes the owner of the file.

v No group ID is assigned to the file.

v The permissions specified in the mode are ignored. The owner, primary group, and public data

authorities are set to RWX.

v For newly created files, names are created in uppercase. No distinction is made between uppercase

and lowercase when searching for names.
 6. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. The creation of a file may fail if permissions and other attributes that are

stored locally by the Network File System are more restrictive than those at the server. A later

attempt to create a file can succeed when the locally stored data has been refreshed. (Several options

on the Add Mounted File System (ADDMFS) command determine the time between refresh

operations of local data.) The creation can also succeed after the file system has been remounted.

If you try to re-create a file that was recently deleted, the request may fail because data that was

stored locally by the Network File System still has a record of the file’s existence. The creation

succeeds when the locally stored data has been updated.

Once a file is open, subsequent requests to perform operations on the file can fail because file

attributes are checked at the server on each request. If permissions on the file are made more

restrictive at the server or the file is unlinked or made unavailable by the server for another client,

your operation on an open file descriptor will fail when the local Network File System receives these

updates. The local Network File System also impacts operations that retrieve file attributes. Recent

changes at the server may not be available at your client yet, and old values may be returned from

operations.

The sharing modes O_SHARE_RDONLY, O_SHARE_WRONLY, and O_SHARE_NONE do not

provide the requested level of sharing. If any one of these share modes is specified, the resulting

share mode semantic will be equivalent to O_SHARE_RDWR.

 7. QNetWare File System Differences

The QNetWare file system does not fully support mode bits. See Netware on iSeries in the iSeries

Information Center for more information.

 8. This function will fail with the [EOVERFLOW] error if the specified file exists and its size is too

large to be represented in a variable of type off_t (the file is larger than 2 GB minus 1 byte).

 9. When you develop in C-based languages and an application is compiled with the _LARGE_FILES

macro defined, the open() API will be mapped to a call to the open64() API.

10. Using this function on the /dev/null or /dev/zero character special file, the oflag values of

O_CREAT and O_TRUNC have no effect.

11. The O_SYNC, O_DSYNC, and O_RSYNC open flags will not cause updates made to the file via

mapped access to be written to permanent storage.

Related Information

v The <fcntl.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “close()—Close File or Socket Descriptor” on page 46—Close File or Socket Descriptor

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “dup()—Duplicate Open File Descriptor” on page 76—Duplicate Open File Descriptor

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v

“Integrated File System Scan on Open Exit Program” on page 666

v “lseek()—Set File Read/Write Offset” on page 217—Set File Read/Write Offset

v “open64()—Open File (Large File Enabled)” on page 287—Open File (Large File Enabled)

v “QlgOpen()—Open a File (using NLS-enabled path name)” on page 362—Open a File (using

NLS-enabled path name)

v “read()—Read from Descriptor” on page 549—Read from Descriptor

284 iSeries: UNIX-Type -- Integrated File System APIs

v “stat()—Get File Information” on page 592—Get File Information

v “umask()—Set Authorization Mask for Job” on page 622—Set Authorization Mask for Job

v “write()—Write to Descriptor” on page 639—Write to Descriptor

Examples

See Code disclaimer information for information pertaining to code examples.

The following example opens an output file for appending. Because no sharing mode is specified, the

O_SHARE_RDWR sharing mode is used.

int fildes;

fildes = open("outfile",O_WRONLY | O_APPEND);

The following example creates a new file with read, write, and execute permissions for the user creating

the file. If the file already exists, the open() fails. If the open() succeeds, the file is opened for sharing

with readers only.

fildes = open("newfile",O_WRONLY|O_CREAT|O_EXCL|O_SHARE_RDONLY,S_IRWXU);

This example first creates an output file for with a specified CCSID. The file is then closed and opened

again with data conversion. The open() function is called twice because no data conversion would have

occurred when using the first open’s descriptor on read or write operations, even if O_TEXTDATA had

been specified on that open; however, the second open could be eliminated entirely by using

O_TEXT_CREAT on the first open. This is demonstrated in the code example immediately following this

example. In this example, EBCDIC data is written to the file and converted to ASCII.

#include <fcntl.h>

#include <sys/stat.h>

#include <errno.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int fd;

 int rc;

 char name[]="/test.dat";

 char data[]="abcdefghijk";

 int oflag1 = O_CREAT | O_RDWR | O_CCSID;

 int oflag2 = O_RDWR | O_TEXTDATA | O_CCSID;

 mode_t mode = S_IRUSR | S_IWUSR | S_IXUSR;

 unsigned int file_ccsid = 819;

 unsigned int open_ccsid = 37;

 /***/

 /* First create the file with the CCSID 819. */

 /***/

 if ((fd=open(name,oflag1,mode,file_ccsid)) < 0)

 {

 perror("open() for create failed");

 return(0);

 }

 if (close(fd) < 0)

 {

 perror("close() failed.");

 return(0);

 }

 /***/

 /* Now open the file so EBCDIC (CCSID 37) data */

 /* written will be converted to ASCII (CCSID 819).*/

 /***/

Integrated File System APIs 285

aboutapis.htm#CODEDISCLAIMER

if ((fd=open(name,oflag2,mode,open_ccsid)) < 0)

 {

 perror("open() with translation failed");

 return(0);

 }

 /***/

 /* Write some EBCDIC data. */

 /***/

 if (-1 == (rc=write(fd, data, strlen(data))))

 {

 perror("write failed");

 return(0);

 }

 if (0 != (rc=close(fd)))

 {

 perror("close failed");

 return(0);

 }

}

In this second example, EBCDIC data is written to the file and converted to ASCII. This will produce the

same results as the first example, except that it did it by only using one open instead of two.

#include <fcntl.h>

#include <sys/stat.h>

#include <errno.h>

#include <stdio.h>

int main(int argc, char *argv[])

{

 int fd;

 int rc;

 char name[]="/test.dat";

 char data[]="abcdefghijk";

 int oflag1 = O_CREAT | O_RDWR | O_CCSID | O_TEXTDATA | O_TEXT_CREAT | O_EXCL;

 mode_t mode = S_IRUSR | S_IWUSR | S_IXUSR;

 unsigned int file_ccsid = 819;

 unsigned int open_ccsid = 37;

 /***/

 /* First create the file with the CCSID 819, and */

 /* open it such that the data is converted */

 /* between the the open CCSID of 37 and the */

 /* file’s CCSID of 819 when writing data to it. */

 /***/

 if ((fd=open(name,oflag1,mode,file_ccsid,open_ccsid)) < 0)

 {

 perror("open() for create failed");

 return(0);

 }

 /***/

 /* Write some EBCDIC data. */

 /***/

 if (-1 == (rc=write(fd, data, strlen(data))))

 {

 perror("write failed");

 return(0);

 }

 /***/

 /* Close the file. */

286 iSeries: UNIX-Type -- Integrated File System APIs

/***/

 if (0 != (rc=close(fd)))

 {

 perror("close failed");

 return(0);

 }

}

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

open64()—Open File (Large File Enabled)

 Syntax

 #include <fcntl.h>

 int open64(const char *path, int oflag, . . .);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “open()—Open File” on page 267.

The open64() function, similar to the open() function, opens a file and returns a number called a file

descriptor. open64() differs from open() in that it automatically opens the file with the O_LARGEFILE

flag set. For a further description of the open flags, see “Using the oflag Parameter” on page 269 in the

open() API.

For a discussion of the parameters, authorities required, return values, related information, and examples

for the open() and open64() APIs, see “open()—Open File” on page 267.

See “QlgOpen64()—Open File (large file enabled and using NLS-enabled path name)” on page 364 for a

description and an example of supplying the path in any CCSID.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden. To

use the open64() API, you must compile the source with the _LARGE_FILE_API macro defined.

2. All of the usage notes for open() apply to open64() and QlgOpen64(). See “Usage Notes” on page 280

in the open() API.

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 287

#TOP_OF_PAGE
unix.htm
aplist.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

opendir()—Open Directory

 Syntax

 #include <sys/types.h>

 #include <dirent.h>

 DIR *opendir(const char *dirname);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 293.

The opendir() function opens a directory so that it can be read with the readdir() function. The variable

dirname is a string giving the name of the directory to open. If the last component of dirname is a

symbolic link, opendir() follows the symbolic link. As a result, the directory that the symbolic link refers

to is opened. The functions readdir(), rewinddir(), and closedir() can be called after a successful call to

opendir(). The first readdir() call reads the first entry in the directory.

Names returned on calls to readdir() are returned in the CCSID (coded character set identifier) in effect

for the current job at the time this opendir() function is called. If the CCSID of the job is 65535, the

default CCSID of the job is used. See “QlgOpendir()—Open Directory (using NLS-enabled path name)”

on page 365 for specifying a different CCSID.

Parameters

dirname

(Input) A pointer to the null-terminated path name of the directory to be opened.

 This parameter is assumed to be represented in the CCSID currently in effect for the job. If the

CCSID of the job is 65535, this parameter is assumed to be represented in the default CCSID of

the job.

 See “QlgOpendir()—Open Directory (using NLS-enabled path name)” on page 365 for a

description and an example of supplying the dirname in any CCSID.

Authorities

Note: Adopted authority is not used.

Authorization required for opendir()

Object Referred to

Authority

Required errno

Each directory in the path name preceding the directory to be opened *X EACCES

The directory to be opened *R EACCES

Return Value

value opendir() was successful. The value returned is a pointer to a DIR, representing an open directory

stream. This DIR describes the directory and is used in subsequent operations on the directory

using the readdir(), rewinddir(), and closedir() functions.

288 iSeries: UNIX-Type -- Integrated File System APIs

NULL pointer

opendir() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If opendir() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EEXIST]

 File exists.

 The file specified already exists and the specified operation requires that it not exist.

 The named file, directory, or path already exists.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

Integrated File System APIs 289

While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[EMFILE]

 Too many open files for this process.

290 iSeries: UNIX-Type -- Integrated File System APIs

An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of

OPEN_MAX can be retrieved using the sysconf() function.

 The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENFILE]

 Too many open files in the system.

 A system limit has been reached for the number of files that are allowed to be concurrently open

in the system.

 The entire system has too many other file descriptors already open.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

Integrated File System APIs 291

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

292 iSeries: UNIX-Type -- Integrated File System APIs

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. The opendir() function uses a file descriptor for each open directory. Applications are limited to

opening no more than OPEN_MAX files and directories, and are subject to receiving the [EMFILE]

and [ENFILE] errors when too many file descriptors are in use. See the sysconf() function for a

description of OPEN_MAX.

The file descriptor that is used by opendir() will not be inherited in a child process that is created by

the spawn() or spawnp() API.

3. opendir() may allocate memory from the user’s heap.

Integrated File System APIs 293

4. Files that are added to the directory after the first call to readdir() following an opendir() or

rewinddir() may not be returned on calls to readdir(), and files that are removed may still be returned

on calls to readdir().

5. QDLS File System Differences

QDLS updates the access time on opendir().

6. QOPT File System Differences

If the directory exists on a volume formatted in Universal Disk Format (UDF), the authorization that

is checked for the directory and preceding directories in the path name follows the rules described in

Authorization required for opendir() (page 288). If the directory exists on a volume formatted in some

other media format, no authorization checks are made on the directory being opened and each

directory in the path name. The volume authorization list is checked for *USE authority regardless of

the volume media format.

Related Information

v The <sys/types.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <dirent.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “QlgOpendir()—Open Directory (using NLS-enabled path name)” on page 365—Open Directory

v “readdir_r()—Read Directory Entry” on page 563—Read Directory Entry

v “readdir_r()—Read Directory Entry” on page 563—Read Directory Entry

v “readdir_r_ts64()—Read Directory Entry” on page 569—Read Directory Entry

v “rewinddir()—Reset Directory Stream to Beginning” on page 583—Reset Directory Stream to Beginning

v “closedir()—Close Directory” on page 52—Close Directory

v spawn()—Spawn Process

v spawnp()—Spawn Process with Path

Example

See Code disclaimer information for information pertaining to code examples.

The following example opens a directory:

#include <sys/types.h>

#include <dirent.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <errno.h>

#include <stdio.h>

void traverse(char *fn, int indent) {

 DIR *dir;

 struct dirent *entry;

 int count;

 char path[1025]; /*** EXTRA STORAGE MAY BE NEEDED ***/

 struct stat info;

 for (count=0; count<indent; count++) printf(" ");

 printf("%s\n", fn);

 if ((dir = opendir(fn)) == NULL)

 perror("opendir() error");

 else {

 while ((entry = readdir(dir)) != NULL) {

 if (entry->d_name[0] != ’.’) {

 strcpy(path, fn);

 strcat(path, "/");

 strcat(path, entry->d_name);

 if (stat(path, &info) != 0)

 fprintf(stderr, "stat() error on %s: %s\n", path,

294 iSeries: UNIX-Type -- Integrated File System APIs

spawn.htm
spawn.htm
aboutapis.htm#CODEDISCLAIMER

strerror(errno));

 else if (S_ISDIR(info.st_mode))

 traverse(path, indent+1);

 }

 }

 closedir(dir);

 }

}

main() {

 puts("Directory structure:");

 traverse("/etc", 0);

}

Output:

Directory structure:

/etc

 /etc/samples

 /etc/samples/IBM

 /etc/IBM

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

pathconf()—Get Configurable Path Name Variables

 Syntax

 #include <unistd.h>

 long pathconf(const char *path, int name);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 301.

The pathconf() function lets an application determine the value of a configuration variable (name)

associated with a particular file or directory (path).

If the named file is a symbolic link, pathconf() resolves the symbolic link.

Parameters

path (Input) A pointer to the null-terminated path name of the file for which the value of the

configuration variable is requested.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the process. If the CCSID of the job is 65535, this parameter is assumed to

be represented in the default CCSID of the job.

 See “QlgPathconf()—Get Configurable Path Name Variables (using NLS-enabled path name)” on

page 368 for a description and an example of supplying the path in any CCSID.

name (Input) The name of the configuration variable value requested.

Integrated File System APIs 295

#TOP_OF_PAGE
unix.htm
aplist.htm

The value of name can be any one of the following set of symbols defined in the <unistd.h> header file,

each standing for a configuration variable:

_PC_LINK_MAX

 Represents LINK_MAX, which indicates the maximum number of links the file can have. If path

is a directory, pathconf() returns the maximum number of links that can be established to the

directory itself.

_PC_MAX_CANON

 Represents MAX_CANON, which indicates the maximum number of bytes in a terminal

canonical input line.

_PC_MAX_INPUT

 Represents MAX_INPUT, which indicates the minimum number of bytes for which space is

available in a terminal input queue. This available space is the maximum number of bytes that a

portable application can have the user enter before the application actually reads the input.

_PC_NAME_MAX

 Represents NAME_MAX, which indicates the maximum number of bytes in a file name (not

including any terminating null at the end if the file name is stored as a string). This symbol refers

only to the file name itself; that is, the last component of the path name of the file. pathconf()

returns the maximum length of file names, even when the path does not refer to a directory.

 This value is the number of bytes allowed in the file name if it were encoded in the CCSID of the

job. If the CCSID is mixed, this number is an estimate and may be larger than the actual

allowable maximum.

_PC_PATH_MAX

 Represents PATH_MAX, which indicates the maximum number of bytes in a complete path name

(not including any terminating null at the end if the path name is stored as a string). pathconf()

returns the maximum length of a relative path name relative to path, even when path does not

refer to a directory.

 This value is the number of bytes allowed in the path name if it were encoded in the CCSID of

the job. If the CCSID is mixed, this number is an estimate and may be larger than the actual

allowable maximum.

_PC_PIPE_BUF

 Represents PIPE_BUF, which indicates the maximum number of bytes that can be written

″atomically″ to a pipe. If more than this number of bytes are written to a pipe, the operation may

take more than one physical write operation and physical read operation to read the data on the

other end of the pipe. If path is a FIFO special file, pathconf() returns the value for the file itself.

If path is a directory, pathconf() returns the value for any FIFOs that exist or that can be created

under the directory. If path is any other kind of file, an error of [EINVAL] is returned.

_PC_CHOWN_RESTRICTED

 Represents _POSIX_CHOWN_RESTRICTED, as defined in the <unistd.h> header file. It restricts

use of chown() to a job with appropriate privileges, and allows the group ID of a file to be

changed only to the effective group ID of the job or to one of its supplementary group IDs. If path

is a directory, pathconf() returns the value for any kind of file under the directory, but not for

subdirectories of the directory.

_PC_NO_TRUNC

 Represents _POSIX_NO_TRUNC, as defined in the <unistd.h> header file. It generates an error if

a file name is longer than NAME_MAX. If path refers to a directory, the value returned by

pathconf() applies to all files under that directory.

296 iSeries: UNIX-Type -- Integrated File System APIs

_PC_VDISABLE

 Represents _POSIX_VDISABLE, as defined in the <unistd.h> header file. This symbol indicates

that terminal special characters can be disabled using this character value, if it is defined.

_PC_THREAD_SAFE

 This symbol is used to determine if the object represented by path resides in a threadsafe file

system. pathconf() returns the value 1 if the file system is threadsafe and 0 if the file system is

not threadsafe. fpathconf() will never fail with error code [ENOTSAFE] when called with

_PC_THREAD_SAFE.

Authorities

Note: Adopted authority is not used.

Authorization required for pathconf()

Object Referred to

Authority

Required errno

Each directory in the path name preceding the object *X EACCES

Object None None

Return Value

value pathconf() was successful. The value of the variable requested in name is returned.

-1 One of the following has occurred:

v A particular variable has no limit (for example, _PC_PATH_MAX). The errno global variable is

not changed.

v pathconf() was not successful. The errno is set.

Error Conditions

If fpathconf() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

Integrated File System APIs 297

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL. name is not a valid configuration variable

name, or the given variable cannot be associated with the specified file.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EISDIR]

 Specified target is a directory.

 The path specified named a directory where a file or object name was expected.

 The path name given is a directory.

[ELOOP]

 A loop exists in the symbolic links.

298 iSeries: UNIX-Type -- Integrated File System APIs

This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EPERM]

 Operation not permitted.

Integrated File System APIs 299

You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

300 iSeries: UNIX-Type -- Integrated File System APIs

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. When this function is called with any configuration variable name except _PC_THREAD_SAFE, the

following usage note applies:

v This function will fail with error code [ENOTSAFE] when all the following conditions are true:

– Where multiple threads exist in the job.

– The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

- Root

- QOpenSys

- User-defined

- QNTC

- QSYS.LIB

- Independent ASP QSYS.LIB

- QOPT

-

Network File System

-

QFileSvr.400

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “chown()—Change Owner and Group of File” on page 38—Change Owner and Group of File

v “fpathconf()—Get Configurable Path Name Variables by Descriptor” on page 127—Get Configurable

Path Name Variables by Descriptor

v “QlgPathconf()—Get Configurable Path Name Variables (using NLS-enabled path name)” on page

368—Get Configurable Path Name Variables

Example

See Code disclaimer information for information pertaining to code examples.

The following example determines the maximum number of bytes in a file name:

#include <stdio.h>

#include <unistd.h>

#include <errno.h>

main() {

Integrated File System APIs 301

aboutapis.htm#CODEDISCLAIMER

long result;

 errno = 0;

 puts("examining NAME_MAX limit for root filesystem");

 if ((result = pathconf("/", _PC_NAME_MAX)) == -1)

 if (errno == 0)

 puts("There is no limit to NAME_MAX.");

 else perror("pathconf() error");

 else

 printf("NAME_MAX is %ld\n", result);

}

Output:

examining NAME_MAX limit for root filesystem

NAME_MAX is 255

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

pipe()—Create an Interprocess Channel

 Syntax

 #include <unistd.h>

 int pipe(int fildes[2]);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The pipe() function creates a data pipe and places two file descriptors, one each into the arguments

fildes[0] and fildes[1], that refer to the open file descriptions for the read and write ends of the pipe,

respectively. Their integer values will be the two lowest available at the time of the pipe() call. The

O_NONBLOCK and FD_CLOEXEC flags will be clear on both descriptors. NOTE: these flags can,

however, be set by the fcntl() function.

Data can be written to the file descriptor fildes[1] and read from file descriptor fildes[0]. A read on the file

descriptor fildes[0] will access data written to the file descriptor fildes[1] on a first-in-first-out basis. File

descriptor fildes[0] is open for reading only. File descriptor fildes[1] is open for writing only.

The pipe() function is often used with the spawn() function to allow the parent and child processes to

send data to each other.

Upon successful completion, pipe() will update the access time, change time, and modification time of

the pipe.

Parameters

fildes[2]

(Output) An integer array of size 2 that will receive the pipe descriptors.

302 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Authorities

None.

Return Value

 0 pipe() was successful.

-1 pipe() was not successful. The errno variable is set to indicate the error.

Error Conditions

If pipe() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EMFILE]

 Too many open files for this process.

 An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of

OPEN_MAX can be retrieved using the sysconf() function.

 The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENFILE]

 Too many open files in the system.

 A system limit has been reached for the number of files that are allowed to be concurrently open

in the system.

 The entire system has too many other file descriptors already open.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Usage Notes

1.

If this function is called by a thread executing one of the scan-related exit programs (or any of its

created threads), the descriptors that are returned are scan descriptors. See “Integrated File System

Scan on Open Exit Program” on page 666 and “Integrated File System Scan on Close Exit Program”

on page 656 for more information. If a process is spawned, these scan descriptors are not inherited by

the spawned process and therefore cannot be used in that spawned process. Therefore, in this case,

the descriptors returned by pipe() function will only work within the same process.

Integrated File System APIs 303

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <fcntl.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v “fstat()—Get File Information by Descriptor” on page 132—Get File Information by Descriptor

v “Qp0zPipe()—Create Interprocess Channel with Sockets” on page 527—Create Interprocess Channel

with Sockets

v “read()—Read from Descriptor” on page 549—Read from Descriptor

v spawn()—Spawn Process

v “write()—Write to Descriptor” on page 639—Write to Descriptor

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a pipe, writes 10 bytes of data to the pipe, and then reads those 10 bytes

of data from the pipe.

#include <stdio.h>

#include <unistd.h>

#include <string.h>

void main()

{

 int fildes[2];

 int rc;

 char writeData[10];

 char readData[10];

 int bytesWritten;

 int bytesRead;

 memset(writeData,’A’,10);

 if (-1 == pipe(fildes))

 {

 perror("pipe error");

 return;

 }

 if (-1 == (bytesWritten = write(fildes[1],

 writeData,

 10)))

 {

 perror("write error");

 }

 else

 {

 printf("wrote %d bytes\n",bytesWritten);

 if (-1 == (bytesRead = read(fildes[0],

 readData,

 10)))

 {

 perror("read error");

 }

 else

 {

 printf("read %d bytes\n",bytesRead);

 }

 }

 close(fildes[0]);

304 iSeries: UNIX-Type -- Integrated File System APIs

spawn.htm
aboutapis.htm#CODEDISCLAIMER

close(fildes[1]);

 return;

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

pread()—Read from Descriptor with Offset

 Syntax

 #include <unistd.h>

 ssize_t pread(int file_descriptor,

 void *buf, size_t nbyte, off_t offset);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 309.

From the file indicated by file_descriptor, the pread() function reads nbyte bytes of input into the memory

area indicated by buf. The offset value defines the starting position in the file and the file pointer position

is not changed.

See “read()—Read from Descriptor” on page 549 for more information relating to reading from a

descriptor.

In the QSYS.LIB and independent ASP QSYS.LIB file systems, the offset will be ignored for a member

while in text mode.

Parameters

file_descriptor

(Input) The descriptor to be read.

buf (Output) A pointer to a buffer in which the bytes read are placed.

nbyte (Input) The number of bytes to be read.

offset (Input) The offset to the desired starting position in the file.

Authorities

No authorization is required.

Return Value

 value pread() was successful. The value returned is the number of bytes actually read and placed in buf.

This number is less than or equal to nbyte. It is less than nbyte only if pread() reached the end of

the file before reading the requested number of bytes. If pread() is reading a regular file and

encounters a part of the file that has not been written (but before the end of the file), pread()

places bytes containing zeros into buf in place of the unwritten bytes.

Integrated File System APIs 305

#TOP_OF_PAGE
unix.htm
aplist.htm

-1 pread() was not successful. The errno global variable is set to indicate the error. If the value of

nbyte is greater than SSIZE_MAX, pread() sets errno to [EINVAL].

Error Conditions

If pread() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file. Or, this pread request was made to a file that was

only open for writing.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINTR]

306 iSeries: UNIX-Type -- Integrated File System APIs

Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 This may occur if the file resides in a file system that does not support large files, and the

starting offset of the file exceeds 2GB minus 2 bytes.

 This will also occur if the offset value is less than 0.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENXIO]

 No such device or address.

[EOVERFLOW]

 Object is too large to process.

 The object’s data size exceeds the limit allowed by this function.

 The file is a regular file, nbyte is greater than 0, the starting offset is before the end-of-file, and the

starting offset is greater than or equal to 2GB minus 2 bytes.

[ERESTART]

 A system call was interrupted and may be restarted.

[ESPIPE]

 Seek request not supported for object.

 A seek request was specified for an object that does not support seeking.

 The object is not capable of seeking.

[ESTALE]

 File or object handle rejected by server.

Integrated File System APIs 307

If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could also indicate one of the

following errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

308 iSeries: UNIX-Type -- Integrated File System APIs

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

This function will fail with error code [ENOTSAFE] if the object on which this function is operation is

a save file and multiple threads exist in the job.

This function will fail with error code [EIO] if the file specified is a save file and the file does not

contain complete save file data.

The file access time for a database member is updated using the normal rules that apply to database

files. At most, the access time is updated once per day.

If you previously used the integrated file system interface to manipulate a member that contains an

end-of-file character, you should avoid using other interfaces (such as the Source Entry Utility or

database reads and writes) to manipulate the member. If you use other interfaces after using the

integrated file system interface, the end-of-file information will be lost.

3. QOPT File System Differences

The file access time is not updated on a pread() operation.

When reading from files on volumes formatted in Universal Disk Format (UDF), byte locks on the

range being read are ignored.

4. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. Once a file is open, subsequent requests to perform operations on the file can

fail because file attributes are checked at the server on each request. If permissions on the file are

made more restrictive at the server or the file is unlinked or made unavailable by the server for

another client, your operation on an open file descriptor will fail when the local Network File System

receives these updates. The local Network File System also impacts operations that retrieve file

attributes. Recent changes at the server may not be available at your client yet, and old values may be

returned from operations. (Several options on the Add Mounted File System (ADDMFS) command

determine the time between refresh operations of local data.)

Integrated File System APIs 309

Reading and writing to files with the Network File System relies on byte-range locking to guarantee

data integrity. To prevent data inconsistency, use the fcntl() API to get and release these locks.

5. QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If a larger buffer is passed, the error EINVAL will be

received.

6. For file systems that do not support large files, pread() will return [EINVAL] if the starting offset

exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do

support large files, pread() will return [EOVERFLOW] if the starting offset exceeds 2GB minus 2 bytes

and the file was not opened for large file access.

7. Using this function successfully on the /dev/null or /dev/zero character special file results in a

return value of zero. In addition, the access time for the file is updated.

8. If file_descriptor refers to a descriptor obtained using the open() function with O_TEXTDATA and

O_CCSID specified, the file CCSID and open CCSID are not the same, and the converted data could

expand or contract, then the offset value must be 0.

9. If file_descriptor refers to a character special file, the offset value is ignored.

Related Information

v The <limits.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “dup()—Duplicate Open File Descriptor” on page 76—Duplicate Open File Descriptor

v “dup2()—Duplicate Open File Descriptor to Another Descriptor” on page 79—Duplicate Open File

Descriptor to Another Descriptor

v

“fclear()—Write (Binary Zeros) to Descriptor” on page 108—Write (Binary Zeros) to Descriptor

v “fclear64()—-Write (Binary Zeros) to Descriptor (Large File Enabled)” on page 114—Write (Binary

Zeros) to Descriptor (Large File Enabled)

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 193—Perform I/O Control Request

v “lseek()—Set File Read/Write Offset” on page 217—Set File Read/Write Offset

v “open()—Open File” on page 267—Open File

v “pread64()—Read from Descriptor with Offset (large file enabled)” on page 311—Read from Descriptor

with Offset (large file enabled)

v “pwrite()—Write to Descriptor with Offset” on page 313—Write to Descriptor with Offset

v “pwrite64()—Write to Descriptor with Offset (large file enabled)” on page 320—Write to Descriptor

with Offset (large file enabled)

v “read()—Read from Descriptor” on page 549—Read from Descriptor

v “readv()—Read from Descriptor Using Multiple Buffers” on page 575—Read from Descriptor Using

Multiple Buffers

v recv()—Receive Data

v recvfrom()—Receive Data

v recvmsg()—Receive Data or Descriptors or Both

v “write()—Write to Descriptor” on page 639—Write to Descriptor

v “writev()—Write to Descriptor Using Multiple Buffers” on page 649—Write to Descriptor Using

Multiple Buffers

310 iSeries: UNIX-Type -- Integrated File System APIs

recv.htm
recvfr.htm
recvms.htm

Example

See Code disclaimer information for information pertaining to code examples.

The following example opens a file and reads input:

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

main() {

 int ret, file_descriptor;

 off_t off=5;

 char buf[]="Test text";

 if ((file_descriptor = creat("test.output", S_IWUSR))!= 0)

 perror("creat() error");

 else {

 if (-1==(rc=write(file_descriptor, buf, sizof(buf)-1)))

 perror("write() error");

 if (close(file_descriptor)!= 0)

 perror("close() error");

 }

 if ((file_descriptor = open("test.output", O_RDONLY)) < 0)

 perror("open() error");

 else {

 ret = pread(file_descriptor, buf, ((sizeof(buf)-1)-off), off);

 buf[ret] = 0x00;

 printf("block pread: \n<%s>\n", buf);

 if (close(file_descriptor)!= 0)

 perror("close() error");

 }

 if (unlink("test.output")!= 0)

 perror("unlink() error");

}

Output:

block pread:

<text>

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

pread64()—Read from Descriptor with Offset (large file enabled)

 Syntax

 #include <unistd.h>

 ssize_t pread64(int file_descriptor,

 void *buf, size_t nbyte, off64_t offset);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 312.

Integrated File System APIs 311

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

From the file indicated by file_descriptor, the pread64() function reads nbyte bytes of input into the

memory area indicated by buf. The offset value defines the starting position in the file and the file pointer

position is not changed.

pread64() is enabled for large files. It is capable of operating on files larger than 2GB minus 1 byte as

long as the file has been opened by either of the following:

v Using the open64() function (see “open64()—Open File (Large File Enabled)” on page 287).

v Using the open() function (see “open()—Open File” on page 267) with O_LARGEFILE set in the oflag

parameter.

For additional information about parameters, authorities, and error conditions, see “pread()—Read from

Descriptor with Offset” on page 305.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden. To

use the pread64 API, you must compile the source with the _LARGE_FILE_API macro defined.

2. All of the usage notes for pread() apply to pread64(). See Usage Notes in the pread API.

Example

See Code disclaimer information for information pertaining to code examples.

The following example opens a file and reads input:

#define _LARGE_FILE_API

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

main() {

 int ret, file_descriptor;

 off64_t off=5;

 char buf[]="Test text";

 if ((file_descriptor = creat64("test.output", S_IWUSR))!= 0)

 perror("creat64() error");

 else {

 if (-1==(rc=write(file_descriptor, buf, sizof(buf)-1)))

 perror("write() error");

 if (close(file_descriptor)!= 0)

 perror("close() error");

 }

 if ((file_descriptor = open64("test.output", O_RDONLY)) < 0)

 perror("open64() error");

 else {

 ret = pread64(file_descriptor, buf, ((sizeof(buf)-1)-off), off);

 buf[ret] = 0x00;

 printf("block pread64: \n<%s>\n", buf);

 if (close(file_descriptor)!= 0)

 perror("close() error");

 }

 if (unlink("test.output")!= 0)

 perror("unlink() error");

}

Output:

block pread64:

<text>

312 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

pwrite()—Write to Descriptor with Offset

 Syntax

 #include <unistd.h>

 ssize_t pwrite

 (int file_descriptor, const void *buf,

 size_t nbyte, off_t offset);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 317.

The pwrite() function writes nbyte bytes from buf to the file associated with file_descriptor. The offset value

defines the starting position in the file and the file pointer position is not changed.

See “write()—Write to Descriptor” on page 639 for more information relating to writing to a descriptor.

The offset will also be ignored if file_descriptor refers to a descriptor obtained using the open() function

with O_APPEND specified.

Parameters

file_descriptor

(Input) The descriptor of the file to which the data is to be written.

buf (Input) A pointer to a buffer containing the data to be written.

nbyte (Input) The size in bytes of the data to be written.

offset (Input) The offset to the desired starting position in the file.

Authorities

No authorization is required.

Return Value

 value pwrite() was successful. The value returned is the number of bytes actually written. This number

is less than or equal to nbyte.

-1 pwrite() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If pwrite() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

Integrated File System APIs 313

#TOP_OF_PAGE
unix.htm
aplist.htm

An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file. Or this pwrite() request was made to a file that was

only open for reading.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFBIG]

 Object is too large.

 The size of the object would exceed the system allowed maximum size or the process soft file size

limit.

 The file is a regular file, nbyte is greater than 0, and the starting offset is greater than or equal to 2

GB minus 2 bytes.

[EINTR]

 Interrupted function call.

[EINVAL]

314 iSeries: UNIX-Type -- Integrated File System APIs

The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The file system that the file resides in does not support large files, and the starting offset exceeds

2GB minus 2 bytes.

 This will also occur if the offset value is less than 0.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

Integrated File System APIs 315

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENXIO]

 No such device or address.

[ERESTART]

 A system call was interrupted and may be restarted.

[ETRUNC]

 Data was truncated on an input, output, or update operation.

[ESPIPE]

 Seek request not supported for object.

 A seek request was specified for an object that does not support seeking.

 The object is not capable of seeking.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, thenretry the operation.

 If interaction with a file server is required to access the object, errno could also indicate one of the

following errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

316 iSeries: UNIX-Type -- Integrated File System APIs

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

 1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

Integrated File System APIs 317

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

 2. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

For a physical file member opened in text mode, the offset must be equal to the current file

position. Otherwise, this operation will fail with error code [EIO].

This function will fail with error code [ENOTSAFE] if the object on which this function is operating

is a save file and multiple threads exist in the job.

If the file specified is a save file, only complete records will be written into the save file. A pwrite()

request that does not provide enough data to completely fill a save file record will cause the partial

record’s data to be saved by the file system. The saved partial record will then be combined with

additional data on subsequent pwrite()’s until a complete record may be written into the save file. If

the save file is closed prior to a saved partial record being written into the save file, then the saved

partial record is discarded, and the data in that partial record will need to be written again by the

application.

A successful pwrite() updates the change, modification, and access times for a database member

using the normal rules that apply to database files. At most, the access time is updated once per day.

You should be careful when writing end-of-file characters in the QSYS.LIB and independent ASP

QSYS.LIB file systems. For these file systems, end-of-file characters are symbolic; that is, they are

stored outside the file member. However, some situations can result in actual, nonsymbolic

end-of-file characters being written to a member. These nonsymbolic end-of-file characters could

cause some tools or utilities to fail. For example:

v If you previously wrote an end-of-file character as the last character of a member, do not continue

to write data after that end-of-file character. Continuing to write data will cause a nonsymbolic

end-of-file to be written. As a result, a compile of the member could fail.

v If you previously wrote an end-of-file character as the last character of a member, do not write

other end-of-file characters preceding it in the file. This will cause a nonsymbolic end-of-file to be

written. As a result, a compile of the member could fail.

v If you previously used the integrated file system interface to manipulate a member that contains

an end-of-file character, avoid using other interfaces (such as the Source Entry Utility or database

reads and writes) to manipulate the member. If you use other interfaces after using the integrated

file system interface, the end-of-file information will be lost.
 3. QOPT File System Differences

The change and modification times of the file are updated when the file is closed.

When writing to files on volumes formatted in Universal Disk Format (UDF), byte locks on the

range being written are ignored.

 4. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. Once a file is open, subsequent requests to perform operations on the file

can fail because file attributes are checked at the server on each request. If permissions on the file are

made more restrictive at the server or the file is unlinked or made unavailable by the server for

another client, your operation on an open file descriptor will fail when the local Network File

System receives these updates. The local Network File System also impacts operations that retrieve

file attributes. Recent changes at the server may not be available at your client yet, and old values

may be returned from operations (several options on the Add Mounted File System (ADDMFS)

command determine the time between refresh operations of local data).

Reading and writing to files with the Network File System relies on byte-range locking to guarantee

data integrity. To prevent data inconsistency, use the fcntl() API to get and release these locks.

 5. QFileSvr.400 File System Differences

318 iSeries: UNIX-Type -- Integrated File System APIs

The largest buffer size allowed is 16 megabytes. If a larger buffer is passed, the error EINVAL will be

received.

 6. For the file systems that do not support large files, pwrite() will return [EINVAL] if the starting

offset exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do

support large files, pwrite() will return [EFBIG] if the starting offset exceeds 2GB minus 2 bytes and

the file was not opened for large file access.

 7. Using this function successfully on the /dev/null or /dev/zero character special file results in a

return value of the total number of bytes requested to be written. No data is written to the

/dev/null or /dev/zero character special file. In addition, the change and modification times for the

file are updated.

 8. If the write exceeds the process soft file size limit, signal SIFXFSZ is issued.

 9. If file_descriptor refers to a descriptor obtained using the open() function with O_TEXTDATA and

O_CCSID specified, the file CCSID and open CCSID are not the same, and the converted data could

expand or contract, then the offset value must be 0.

10. If file_descriptor refers to a character special file, the offset value is ignored.

Related Information

v The <fcntl.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “dup()—Duplicate Open File Descriptor” on page 76—Duplicate Open File Descriptor

v “dup2()—Duplicate Open File Descriptor to Another Descriptor” on page 79—Duplicate Open File

Descriptor to Another Descriptor

v

“fclear()—Write (Binary Zeros) to Descriptor” on page 108—Write (Binary Zeros) to Descriptor

v “fclear64()—-Write (Binary Zeros) to Descriptor (Large File Enabled)” on page 114—Write (Binary

Zeros) to Descriptor (Large File Enabled)

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 193—Perform I/O Control Request

v “lseek()—Set File Read/Write Offset” on page 217—Set File Read/Write Offset

v “open()—Open File” on page 267—Open File

v “pread()—Read from Descriptor with Offset” on page 305—Read from Descriptor with Offset

v “pread64()—Read from Descriptor with Offset (large file enabled)” on page 311—Read from Descriptor

with Offset (large file enabled)

v “pwrite64()—Write to Descriptor with Offset (large file enabled)” on page 320—Write to Descriptor

with Offset (large file enabled)

v “read()—Read from Descriptor” on page 549—Read from Descriptor

v “readv()—Read from Descriptor Using Multiple Buffers” on page 575—Read from Descriptor Using

Multiple Buffers

v send()—Send Data

v sendmsg()—Send Data or Descriptors or Both

v sendto()—Send Data

v “write()—Write to Descriptor” on page 639—Write to Descriptor

v “writev()—Write to Descriptor Using Multiple Buffers” on page 649—Write to Descriptor Using

Multiple Buffers

Example

See Code disclaimer information for information pertaining to code examples.

The following example writes a specific number of bytes to a file:

Integrated File System APIs 319

send.htm
sendms.htm
sendto.htm
aboutapis.htm#CODEDISCLAIMER

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#define mega_string_len 1000000

main() {

 char *mega_string;

 int file_descriptor;

 int ret;

 off_t off=5;

 char fn[]="write.file";

 if ((mega_string = (char*) malloc(mega_string_len+off)) == NULL)

 perror("malloc() error");

 else if ((file_descriptor = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 memset(mega_string, ’0’, mega_string_len);

 if ((ret = pwrite(file_descriptor, mega_string, mega_string_len, off)) == -1)

 perror("pwrite() error");

 else printf("pwrite() wrote %d bytes at offset %d\n", ret, off);

 if (close(file_descriptor)!= 0)

 perror("close() error");

 if (unlink(fn)!= 0)

 perror("unlink() error");

 }

 free(mega_string);

}

Output:

pwrite() wrote 1000000 bytes at offset 5

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

pwrite64()—Write to Descriptor with Offset (large file enabled)

 Syntax

 #include <unistd.h>

 ssize_t pwrite64

 (int file_descriptor, const void *buf,

 size_t nbyte, off64_t offset);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 321.

The pwrite64() function writes nbyte bytes from buf to the file associated with file_descriptor. The offset

value defines the starting position in the file and the file pointer position is not changed.

320 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

The offset will also be ignored if file_descriptor refers to a descriptor obtained using the open() function

with O_APPEND specified.

pwrite64() is enabled for large files. It is capable of operating on files larger than 2GB minus 1 byte as

long as the file has been opened by either of the following:

v Using the open64() function (see “open64()—Open File (Large File Enabled)” on page 287).

v Using the open() function (see “open()—Open File” on page 267) with O_LARGEFILE set in the oflag

parameter.

For additional information about parameters, authorities, and error conditions, see “pwrite()—Write to

Descriptor with Offset” on page 313.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden. To

use the pwrite64 API, you must compile the source with the _LARGE_FILE_API macro defined.

2. All of the usage notes for pwrite() apply to pwrite64(). See Usage Notes in the pwrite API.

Example

See Code disclaimer information for information pertaining to code examples.

The following example writes a specific number of bytes to a file:

#define _LARGE_FILE_API

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#define mega_string_len 1000000

main() {

 char *mega_string;

 int file_descriptor;

 int ret;

 off64_t off=5;

 char fn[]="write.file";

 if ((mega_string = (char*) malloc(mega_string_len+off)) == NULL)

 perror("malloc() error");

 else if ((file_descriptor = creat64(fn, S_IWUSR)) < 0)

 perror("creat64() error");

 else {

 memset(mega_string, ’0’, mega_string_len);

 if ((ret = pwrite64(file_descriptor, mega_string, mega_string_len, off)) == -1)

 perror("pwrite64() error");

 else printf("pwrite64() wrote %d bytes at offset %d\n", ret, off);

 if (close(file_descriptor)!= 0)

 perror("close() error");

 if (unlink(fn)!= 0)

 perror("unlink() error");

 }

 free(mega_string);

}

Output:

pwrite64() wrote 1000000 bytes at offset 5

Integrated File System APIs 321

aboutapis.htm#CODEDISCLAIMER

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

QlgAccess()—Determine File Accessibility (using NLS-enabled path

name)

 Syntax

 #include <unistd.h>

 int QlgAccess(const Qlg_Path_Name_T *path, int amode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “access()—Determine File Accessibility” on page 10.

The QlgAccess() function, like the access() function, determines whether a file can be accessed in a

particular manner. The difference is that the QlgAccess() function takes a pointer to a Qlg_Path_Name_T

structure, while access() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“access()—Determine File Accessibility” on page 10—Determine File Accessibility.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name for the file to be checked for accessibility. For more information on the

Qlg_Path_Name_T structure, see Path name format.

Related Information

v “access()—Determine File Accessibility” on page 10—Determine File Accessiblity

v “accessx()—Determine File Accessibility for a Class of Users” on page 16—Determine File Accessibility

for Class of Users

v “faccessx()—Determine File Accessibility for a Class of Users” on page 83—Determine File Accessibility

for Class of Users

v “QlgAccessx()—Determine File Accessibility for a Class of Users (using NLS-enabled path name)” on

page 324—Determine File Accessibility for Class of Users (using NLS-enabled path name)

v “QlgChmod()—Change File Authorizations (using NLS-enabled path name)” on page 327—Change File

Authorizations (using NLS-enabled path name)

v “QlgStat()—Get File Information (using NLS-enabled path name)” on page 384—Get File Information

(using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example determines how a file is accessed:

322 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
pns.htm
aboutapis.htm#CODEDISCLAIMER

#include <stdio.h>

#include <unistd.h>

main()

{

 /**/

 /* Defininitons */

 /**/

#define mypath "/"

 const char US_const[3]= "US";

 const char Language_const[4] ="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= the */

 /* length of the path name or this must */

 /* be a pointer to the path name. */

 };

 struct pnstruct path;

 /**/

 /* Initialize Qlg_Path_Name_T parameters */

 /**/

 memset((void*)path name, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 path.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if (QlgAccess((Qlg_Path_Name_T *)&path, F_OK) != 0)

 printf("’%s’ does not exist!\n", mypath);

 else {

 if (QlgAccess((Qlg_Path_Name_T *)&path, R_OK) == 0)

 printf("You have read access to ’%s’\n", mypath);

 if (QlgAccess((Qlg_Path_Name_T *)&path, W_OK) == 0)

 printf("You have write access to ’%s’\n", mypath);

 if (QlgAccess((Qlg_Path_Name_T *)&path, X_OK) == 0)

 printf("You have search access to ’%s’\n", mypath);

 }

}

Output:

The output from a user with read and execute access is:

You have read access to ’/’

You have write access to ’/’

You have search access to ’/’

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 323

#TOP_OF_PAGE
unix.htm
aplist.htm

QlgAccessx()—Determine File Accessibility for a Class of Users (using

NLS-enabled path name)

 Syntax

 #include <unistd.h>

 int QlgAccessx(const Qlg_Path_Name_T *path, int amode, int who);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “accessx()—Determine File Accessibility for a Class of Users” on

page 16.

The QlgAccessx() function, like the accessx() function, determines whether a file can be accessed in a

particular manner by a specified class of users. The difference is that the QlgAccessx() function takes a

pointer to a Qlg_Path_Name_T structure, while accessx() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“accessx()—Determine File Accessibility for a Class of Users” on page 16—Determine File Accessibility for

a Class of Users.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name for the file to be checked for accessibility. For more information on the

Qlg_Path_Name_T structure, see Path name format.

Related Information

v “access()—Determine File Accessibility” on page 10—Determine File Accessiblity

v “accessx()—Determine File Accessibility for a Class of Users” on page 16—Determine File Accessibility

for a Class of Users

v “faccessx()—Determine File Accessibility for a Class of Users” on page 83—Determine File Accessibility

for a Class of Users

v “QlgAccess()—Determine File Accessibility (using NLS-enabled path name)” on page 322—Determine

File Accessibility (using NLS-enabled path name)

v “QlgChmod()—Change File Authorizations (using NLS-enabled path name)” on page 327—Change File

Authorizations (using NLS-enabled path name)

v “QlgStat()—Get File Information (using NLS-enabled path name)” on page 384—Get File Information

(using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example determines how a file is accessed:

#include <stdio.h>

#include <unistd.h>

main()

{

324 iSeries: UNIX-Type -- Integrated File System APIs

pns.htm
aboutapis.htm#CODEDISCLAIMER

/**/

 /* Defininitons */

 /**/

#define mypath "/myfile"

 const char US_const[3]= "US";

 const char Language_const[4] ="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= the */

 /* length of the path name or this must */

 /* be a pointer to the path name. */

 };

 struct pnstruct path;

 /**/

 /* Initialize Qlg_Path_Name_T parameters */

 /**/

 memset((void*)&path, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 path.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if (QlgAccessx((Qlg_Path_Name_T *)&path, R_OK, ACC_OTHERS) == 0)

 printf("Someone besides the owner has read access to ’%s’\n", mypath);

 if (QlgAccessx((Qlg_Path_Name_T *)&path, W_OK, ACC_OTHERS) == 0)

 printf("Someone besides the owner has write access to ’%s’\n", mypath);

 if (QlgAccessx((Qlg_Path_Name_T *)&path, X_OK, ACC_OTHERS) == 0)

 printf("Someone besides the owner has search access to ’%s’\n", mypath);

}

Output:

In this example QlgAccessx() was called on ’/myfile’. The following would be the output if someone

other than the owner has *R authority, someone besides the owner has *W authority, and noone other

than the owner has *X authority.

Someone besides the owner has read access to ’/’

Someone besides the owner has write access to ’/’

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 325

#TOP_OF_PAGE
unix.htm
aplist.htm

QlgChdir()—Change Current Directory (using NLS-enabled path name)

 Syntax

 #include <unistd.h>

 int QlgChdir(const Qlg_Path_Name_T *path);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “chdir()—Change Current Directory” on page 24.

The QlgChdir() function, like the chdir() function, makes the directory named by path the new current

directory. The difference is that the QlgChdir() function takes a pointer to a Qlg_Path_Name_T structure,

while chdir() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“chdir()—Change Current Directory” on page 24—Change Current Directory.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the directory that should become the current directory. For more information on the

Qlg_Path_Name_T structure, see Path name format.

Related Information

v “chdir()—Change Current Directory” on page 24—Change Current Directory

v “QlgGetcwd()—Get Current Directory (using NLS-enabled path name)” on page 335—Get Current

Directory (using NLS-enabled path name)

v “fchdir()—Change Current Directory by Descriptor” on page 90—Change Current Directory by

Descriptor

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses QlgChdir():

#include <stdio.h>

#include <unistd.h>

main() {

#define mypath "/tmpXXX"

 const char US_const[3]= "US";

 const char Language_const[4] ="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= the */

 /* length of the path name or this */

 /* this be a pointer to the path name. */

 };

 struct pnstruct path;

 /***/

326 iSeries: UNIX-Type -- Integrated File System APIs

pns.htm
aboutapis.htm#CODEDISCLAIMER

/* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 path.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if (QlgChdir((Qlg_Path_Name_T *)&path) != 0)

 {

 printf("QlgChdir() to /tmpXXX failed.");

 }

 else

 {

 printf("QlgChdir() changed the current directory ");

 printf("to ’%s’.\n", mypath);

 }

}

Output:

QlgChdir() changed the current directory to ’/tmpxxx’.

(or if error, such as path not found: QlgChdir() to /tmpXXX failed.)

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgChmod()—Change File Authorizations (using NLS-enabled path

name)

 Syntax

 #include <sys/stat.h>

 int QlgChmod(Qlg_Path_Name_T *path, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “chmod()—Change File Authorizations” on page 29.

The QlgChmod() function, like the chmod() function, changes S_ISUID, S_ISGID,

S_ISVTX,

and the

permission bits of the file or directory specified in path to the corresponding bits specified in mode. The

difference is that the QlgChmod() function takes a pointer to a Qlg_Path_Name_T structure, while

chmod() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“chmod()—Change File Authorizations” on page 29—Change File Authorizations.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains the path name or a pointer to the

Integrated File System APIs 327

#TOP_OF_PAGE
unix.htm
aplist.htm

path name of the file whose mode is being changed. For more information on the

Qlg_Path_Name_T structure, see Path name format.

Related Information

v “chmod()—Change File Authorizations” on page 29—Change File Authorizations

v “QlgChown()—Change Owner and Group of File (using NLS-enabled path name)” on page

329—Change Owner and Group of File (using NLS-enabled path name)

v “QlgMkdir()—Make Directory (using NLS-enabled path name)” on page 359—Make Directory (using

NLS-enabled path name)

v “QlgStat()—Get File Information (using NLS-enabled path name)” on page 384—Get File Information

(using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example changes the permissions for a file:

#include <stdio.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <fcntl.h>

#include <Qp0lstdi.h>

main() {

 int file_descriptor;

 struct stat info;

 #define mypath "temp.file"

 const char US_const[3]= "US";

 const char Language_const[4] ="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= the */

 /* length of the path name or this must */

 /* be a pointer to the path name. */

 };

 struct pnstruct path;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 path.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if ((file_descriptor = QlgCreat((Qlg_Path_Name_T *)&path, S_IWUSR)) == -1)

 perror("QlgCreat() error");

 else {

 close(file_descriptor);

 QlgStat((Qlg_Path_Name_T *)&path, &info);

 printf("original permissions were: %08o\n", info.st_mode);

 if (QlgChmod((Qlg_Path_Name_T *)&path, S_IRWXU|S_IRWXG) != 0)

 perror("QlgChmod() error");

 else {

 QlgStat((Qlg_Path_Name_T *)&path, &info);

 printf("after QlgChmod(), permissions are: %08o\n", info.st_mode);

328 iSeries: UNIX-Type -- Integrated File System APIs

pns.htm
aboutapis.htm#CODEDISCLAIMER

}

 QlgUnlink((Qlg_Path_Name_T *)&path);

 }

}

Output:

original permissions were: 00100200

after QlgChmod(), permissions are: 00100770

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgChown()—Change Owner and Group of File (using NLS-enabled

path name)

 Syntax

 #include <unistd.h>

 int QlgChown(Qlg_Path_Name_T *path, uid_t owner,gid_t

 group);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “chown()—Change Owner and Group of File” on page 38.

The QlgChown() function, like the chown() function, changes the owner and group of a file. The

difference is that the QlgChown() function takes a pointer to a Qlg_Path_Name_T structure, while

chown() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“chown()—Change Owner and Group of File” on page 38—Change Owner and Group of File.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the file whose owner and group are being changed. For more information on the

Qlg_Path_Name_T structure, see Path name format.

Related Information

v “chown()—Change Owner and Group of File” on page 38—Change Owner and Group of File

v “QlgChmod()—Change File Authorizations (using NLS-enabled path name)” on page 327—Change File

Authorizations (using NLS-enabled path name)

v “QlgLstat()—Get File or Link Information (using NLS-enabled path name)” on page 354—Get File or

Link Information (using NLS-enabled path name)

v “QlgStat()—Get File Information (using NLS-enabled path name)” on page 384—Get File Information

(using NLS-enabled path name)

Integrated File System APIs 329

#TOP_OF_PAGE
unix.htm
aplist.htm
pns.htm

Example

See Code disclaimer information for information pertaining to code examples.

The following example changes the owner and group of a file:

#include <stdio.h>

#include <unistd.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <fcntl.h>

#include <Qp0lstdi.h>

main() {

 int file_descriptor;

 struct stat info;

 #define mypath "temp.file"

 const char US_const[3]= "US";

 const char Language_const[4] ="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= the */

 /* length of the path name or this must */

 /* be a pointer to the path name. */

 };

 struct pnstruct path;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 path.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if ((file_descriptor = QlgCreat((Qlg_Path_Name_T *)&path, S_IRWXU)) == -1)

 perror("creat() error");

 else {

 close(file_descriptor);

 QlgStat((Qlg_Path_Name_T *)&path, &info);

 printf("original owner was %d and group was %d\n", info.st_uid,

 info.st_gid);

 if (QlgChown((Qlg_Path_Name_T *)&path, 152, 0) != 0)

 perror("QlgChown() error");

 else {

 QlgStat((Qlg_Path_Name_T *)&path, &info);

 printf("after QlgChown(), owner is %d and group is %d\n",

 info.st_uid, info.st_gid);

 }

 QlgUnlink((Qlg_Path_Name_T *)&path);

 }

}

Output:

original owner was 137 and group was 0

after QlgChown(), owner is 152 and group is 0

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

330 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

QlgCreat()—Create or Rewrite File (using NLS-enabled path name)

 Syntax

 #include <fcntl.h>

 int QlgCreat(Qlg_Path_Name_T *path, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “open()—Open File” on page 267.

The QlgCreat() function, like the creat() function, creates a new file or rewrites an existing file so that it is

truncated to zero length. The difference is that the QlgCreat() function takes a pointer to a

Qlg_Path_Name_T structure, while creat() takes a pointer to a character string. See “open()—Open File”

on page 267—Open File for more details on how the function call

 QlgCreat(path,mode);

is equivalent to the call

 QlgOpen(path, O_CREAT|O_WRONLY|O_TRUNC, mode);

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“creat()—Create or Rewrite File” on page 57—Create or Rewrite File or “open()—Open File” on page

267—Open File.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the file to be created or rewritten. For more information on the Qlg_Path_Name_T

structure, see Path name format.

Related Information

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “QlgCreat64()—Create or Rewrite a File (large file enabled and using NLS-enabled path name)” on

page 332—Create or Rewrite a File (large file enabled and using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a file:

#include <stdio.h>

#include <fcntl.h>

#include <Qp0lstdi.h>

main() {

 char text[]="This is a test";

 int file_descriptor;

 #define mypath "creat.file"

 const char US_const[3]= "US";

 const char Language_const[4] ="ENU";

Integrated File System APIs 331

pns.htm
aboutapis.htm#CODEDISCLAIMER

typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= the */

 /* length of the path name or this must */

 /* be a pointer to the path name. */

 };

 struct pnstruct path;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 path.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if ((file_descriptor =

 QlgCreat((Qlg_Path_Name_T *)&path, S_IRUSR | S_IWUSR)) < 0)

 perror("QlgCreat() error");

 else {

 write(file_descriptor, text, strlen(text));

 close(file_descriptor);

 QlgUnlink((Qlg_Path_Name_T *)&path);

 }

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgCreat64()—Create or Rewrite a File (large file enabled and using

NLS-enabled path name)

 Syntax

 #include <fcntl.h>

 int QlgCreat64(Qlg_Path_Name_T *path,mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “creat64()—Create or Rewrite a File (Large File Enabled)” on page

66.

The QlgCreat64() function, like the creat64() function, creates a new file or rewrites an existing file so that

it is truncated to zero length. The difference is that the QlgCreat64() function takes a pointer to a

Qlg_Path_Name_T structure, while creat64() takes a pointer to a character string. See “creat64()—Create

or Rewrite a File (Large File Enabled)” on page 66—Create or Rewrite a File (Large File Enabled) and

“open64()—Open File (Large File Enabled)” on page 287—Open File (Large File Enabled) for more details

on how the function call

 QlgCreat64(path,mode);

332 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

is equivalent to the call

 QlgOpen64(path, O_CREAT|O_WRONLY|O_TRUNC, mode);

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“creat64()—Create or Rewrite a File (Large File Enabled)” on page 66—Create or Rewrite a File (Large

File Enabled) or “open64()—Open File (Large File Enabled)” on page 287—Open File (Large File

Enabled).

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the file to be created or rewritten. For more information on the Qlg_Path_Name_T

structure, see Path name format.

Related Information

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite a File

v “creat64()—Create or Rewrite a File (Large File Enabled)” on page 66—Create or Rewrite a File (Large

File Enabled)

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a file:

#define _LARGE_FILE_API

#include <stdio.h>

#include <fcntl.h>

#include <Qp0lstdi.h>

main()

{

 char text[]="This is a test";

 int fd;

#define mypath "creat.file"

 const char US_const[3]= "US";

 const char Language_const[4] ="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= the */

 /* length of the path name or this must */

 /* be a pointer to the path name. */

 };

 struct pnstruct path;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 path.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if

 ((fd =

Integrated File System APIs 333

pns.htm
aboutapis.htm#CODEDISCLAIMER

QlgCreat64(

 (Qlg_Path_Name_T *)&path, S_IRUSR | S_IWUSR))

 < 0)

 {

 perror("QlgCreat64() error");

 }

 else {

 write(fd, text, strlen(text));

 close(fd);

 QlgUnlink((Qlg_Path_Name_T *)&path);

 }

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgCvtPathToQSYSObjName()— Resolve Integrated File System Path

Name into QSYS Object Name (using NLS-enabled path name)

 Syntax

 #include <qp0lstdi.h>

 void QlgCvtPathToQSYSObjName(

 Qlg_Path_Name_T *path_name,

 void *qsys_info,

 char format_name[8],

 uint bytes_provided,

 uint desired_CCSID,

 void *error_code);

 Service Program Name: QP0LLIB2

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “Qp0lCvtPathToQSYSObjName()— Resolve Integrated File System

Path Name into QSYS Object Name” on page 400.

For a description of this function and more information on the parameters, authorities required, return

values, error conditions, error messages, usage notes, and related information, see

“Qp0lCvtPathToQSYSObjName()— Resolve Integrated File System Path Name into QSYS Object Name”

on page 400— Resolve Integrated File System Path Name into QSYS Object Name.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

334 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

QlgGetAttr()—Get Attributes (using NLS-enabled path name)

 Syntax

 #include <Qp0lstdi.h<

 int QlgGetAttr

 (Qlg_Path_Name_T *Path_Name,

 Qp0l_AttrTypes_List_t *Attr_Array_ptr,

 char *Buffer_ptr,

 uint Buffer_Size_Provided,

 uint *Buffer_Size_Needed_ptr,

 uint *Num_Bytes_Returned_ptr,

 uint Follow_Symlnk, ...);

 Service Program Name: QP0LLIB2

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “Qp0lGetAttr()—Get Attributes” on page 419.

For a description of this function and more information on the parameters, authorities required, return

values, error conditions, error messages, usage notes, related information, and an example, see

“Qp0lGetAttr()—Get Attributes” on page 419—Get Attributes.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgGetcwd()—Get Current Directory (using NLS-enabled path name)

 Syntax

 #include <unistd.h>

 Qlg_Path_Name_T *QlgGetcwd(Qlg_Path_Name_T *buf,

 size_t size);

 Service Program Name: QP0LLIB2

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “getcwd()—Get Current Directory” on page 160.

The QlgGetcwd() function, like the getcwd() function, determines the absolute path name of the current

directory and returns a pointer to it. The difference is that the pointer returned by QlgGetcwd() is a

pointer to a Qlg_Path_Name_T structure that holds the absolute path name, while getcwd() returns a

pointer to a character string or buffer that contains the null-terminated absolute path name.

Limited information on the buf parameter and on the size parameter is provided here. For more

information on the parameters and for a discussion on authorities required, return values, and related

information, see “getcwd()—Get Current Directory” on page 160—Get Current Directory.

Integrated File System APIs 335

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

buf (Output) A pointer to a Qlg_Path_Name_T structure that holds the absolute path name of the

current directory. The path name is not null-terminated within the structure. For more

information on the Qlg_Path_Name_T structure, see Path name format.

size (Input) The number of bytes allocated for buf.

Related Information

v “getcwd()—Get Current Directory” on page 160—Get Current Directory

v “QlgChdir()—Change Current Directory (using NLS-enabled path name)” on page 326—Change

Current Directory (using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example determines the current directory:

#include <unistd.h>

#include <stdio.h>

main()

{

 #define mypath_cd "/tmp"

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[1024]; /* This size must be large enough */

 /* to contain the path name. */

 };

 struct pnstruct path_cd;

 struct pnstruct path_cwd;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)path name_cd, 0x00, sizeof(struct pnstruct));

 path_cd.qlg_struct.CCSID = 37;

 memcpy(path_cd.qlg_struct.Country_ID,US_const,2);

 memcpy(path_cd.qlg_struct.Language_ID,Language_const,3);

 path_cd.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path_cd.qlg_struct.Path_Length = sizeof(mypath_cd)-1;

 path_cd.qlg_struct.Path_Name_Delimiter[0] = ’/’

 memcpy(path_cd.pn,mypath_cd,sizeof(mypath_cd)-1);

 if (QlgChdir((Qlg_Path_Name_T *)path name_cd) != 0)

 perror("QlgChdir() error()");

 else

 {

 if (QlgGetcwd(Qlg_Path_Name_T *path_cwd,

 sizeof(struct pnstruct)) == NULL)

 perror("QlgGetcwd() error");

 else

 printf("Successful change to new current working directory.");

 }

}

Output:

336 iSeries: UNIX-Type -- Integrated File System APIs

pns.htm
aboutapis.htm#CODEDISCLAIMER

Successful change to new current working directory.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgGetPathFromFileID()—Get Path Name of Object from Its File ID

(using NLS-enabled path name)

 Syntax

 #include <Qp0lstdi.h>

 Qlg_Path_Name_T *QlgGetPathFromFileID(Qlg_Path_Name_T *buf,

 size_t size,Qp0lFID_t fileid);

 Service Program Name: QP0LLIB2

 Default Public Authority: *USE

 Threadsafe: Yes

The QlgGetPathFromFileID() function, like the Qp0lGetPathFromFileID() function, determines an

absolute path name of the file identified by fileid and stores it in buf. The difference is that the

QlgGetPathFromFileID() function points to a Qlg_Path_Name_T structure, while

Qp0lGetPathFromFileID() points to a null-terminated character string.

Limited information on the buf parameter is provided here. For more information on the buf parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“Qp0lGetPathFromFileID()—Get Path Name of Object from Its File ID” on page 446—Get Path Name of

Object from Its File ID.

Parameters

buf (Output) A pointer to a Qlg_Path_Name_T structure that will be used to hold an absolute path

name or a pointer to an absolute path name of the file identified by fileid. The path name is not

null-terminated within the structure. For more information on the Qlg_Path_Name_T structure,

see Path name format.

size (Input) The number of bytes in the buffer buf.

fileid (Input) The identifier of the file whose path name is to be returned. This identifier is logged in

audit journal entries to identify the file being audited. See the Parent File ID and Object File

ID fields of the audit journal entries described in the iSeries Security Reference

book.

Related Information

v “Qp0lGetPathFromFileID()—Get Path Name of Object from Its File ID” on page 446—Get Path Name

of Object from Its File ID

Example

See Code disclaimer information for information pertaining to code examples.

Integrated File System APIs 337

#TOP_OF_PAGE
unix.htm
aplist.htm
pns.htm
aboutapis.htm#CODEDISCLAIMER

The following example determines the path name of a file, given its file ID. In this example, the fileid is

hardcoded. More realistically, the fileid is obtained from the audit journal entry and passed to

QlgGetPathFromFileID().

#include <Qp0lstdi.h>

#include <stdio.h>

#include <qtqiconv.h>

void Path_Print(Qlg_Path_Name_T *);

main()

{

 Qp0lFID_t

 fileid = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x80, 0xFF, 0xCF, 0x00};

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[1024]; /* This size must be large enough */

 /* to contain the path name. */

 };

 struct pnstruct path;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path, 0x00, sizeof(struct pnstruct));

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 if (QlgGetPathFromFileID((Qlg_Path_Name_T *)&path,

 sizeof(struct pnstruct), fileid) == NULL)

 perror("QlgGetPathFromFileID() error");

 else

 {

 printf("Path retrieved successfully.\n");

 Path_Print((Qlg_Path_Name_T *)&path);

 }

}

void Path_Print(Qlg_Path_Name_T *path_to_print_pointer)

{

 /**/

 /* Print a path name that is in the Qlg_Path_Name_T format. */

 /**/

#define PATH_TYPE_POINTER 0x00000001 /* If flag is on, */

 /* input structure contains a pointer */

 /* to the path name, else the path */

 /* name is in contiguous storage */

 /* within the qlg structure. */

 typedef union pn_input_type /* Format of input path name. */

 {

 char pn_char_type[256]; /* in contiguous storage */

 char *pn_ptr_type; /* a pointer */

 };

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 union pn_input_type pn;

 };

 struct pnstruct *pns;

338 iSeries: UNIX-Type -- Integrated File System APIs

char *path_ptr;

 size_t insz;

 size_t outsz = 1000;

 char outbuf[1000];

 char *outbuf_ptr;

 iconv_t cd;

 size_t ret_iconv;

 /* Indicates to convert from ccsid 13488 to 37. */

 QtqCode_T toCode = {37,0,0,0,0,0};

 QtqCode_T fromCode = {13488,0,0,1,0,0};

 if (path_to_print_pointer != NULL)

 {

 /***/

 /* Point to and get the size of the path name. */

 /***/

 pns = (struct pnstruct *)path_to_print_pointer;

 if (path_to_print_pointer->Path_Type & PATH_TYPE_POINTER)

 path_ptr = pns->pn.pn_ptr_type;

 else path_ptr = (char *)(pns->pn.pn_char_type);

 insz = pns->qlg_struct.Path_Length; /* Get path length.*/

 /***/

 /* Initialize the print buffer. */

 /***/

 outbuf_ptr = (char *)outbuf;

 memset(outbuf_ptr, 0x00, insz);

 /***/

 /* Use iconv to convert the CCSID. */

 /***/

 cd = QtqIconvOpen(&toCode,

 &fromCode); /* Open a descriptor*/

 if (cd.return_value == -1)

 { perror("Open conversion descriptor error");

 return;

 }

 if (0 != ((iconv(cd,

 (char **)&(path_ptr),

 &insz,

 (char **)&(outbuf_ptr),

 &outsz))))

 {

 ret_iconv= iconv_close(cd);/* Close conversion descriptor*/

 perror("Conversion error");

 return;

 }

 /***/

 /* Print the name and close the conversion descriptior. */

 /***/

 printf("The file’s path is: %s\n",outbuf);

 ret_iconv = iconv_close(cd);

 } /* path_to_print_pointer != NULL */

} /* Path_Print */

Output:

Path retrieved successfully.

The file’s path is: /myfile

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 339

#TOP_OF_PAGE
unix.htm
aplist.htm

QlgGetpwnam()—Get User Information for User Name (using

NLS-enabled path name)

 Syntax

 #include <pwd.h>

 struct qplg_passwd *QlgGetpwnam(const char *name);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: No

The QlgGetpwnam() function returns a pointer to an object of type struct qplg_passwd containing an

entry from the user database with a matching name.

Parameters

name (Input) User profile name.

 The struct qplg_passwd, which is defined in the pwd.h header file, has the following elements:

 char * pw_name User name

uid_t pw_uid User ID

uid_t pw_gid Group ID

Qlg_Path_Name_T* pw_dir Initial working directory

char * pw_shell Initial user program

See “getpwnam()—Get User Information for User Name” on page 181 for more on the parameter.

Authorities

*READ authority is required to the user profile associated with the name.

Note: Adopted authority is not used.

Return Value

value QlgGetpwnam was successful. The return value points to static data that is overwritten on each

call to this function. This static storage area is also used by the QlgGetpwuid() function.

NULL pointer

QlgGetpwnam was not successful. The errno global variable is set to indicate the error.

Error Conditions

If QlgGetpwnam() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the name is currently locked by another process.

[EC2] Detected pointer that is not valid.

340 iSeries: UNIX-Type -- Integrated File System APIs

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with the name was not found.

[ENOMEM]

The user profile associated with the UID has exceeded its storage limit or is unable to allocate

memory.

[EPERM]

The calling job does not have *READ authority to the user profile associated with the name.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify

that the home directory field in the user profile can be displayed.

Usage Notes

The path name is returned in the default IFS UNICODE CCSID.

Related Information

v The <pwd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “getpwnam()—Get User Information for User Name” on page 181—Get User Information for User

Name Qlg getpwnam_r

v “getpwnam_r()—Get User Information for User Name” on page 183—Get User Information for User

Name

v “QlgGetpwnam_r()—Get User Information for User Name (using NLS-enabled path name)” on page

342—Get User Information for User Name (using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets the user database information for the user name of MYUSER. The UID is 22.

The GID is 1012. The initial working directory is /home/MYUSER. The initial user program is

*LIBL/QCMD.

#include <pwd.h>

main()

{

 struct qplg_passwd *pd;

 if (NULL == (pd = QlgGetpwnam("MYUSER")))

 perror("QlgGetpwnam() error.");

 else

 {

 printf("The user name is: %s\n", pd->pw_name);

 printf("The user id is: %u\n", pd->pw_uid);

 printf("The group id is: %u\n", pd->pw_gid);

 printf("The initial working directory length is: %d\n",

 pd->pw_dir->Path_Length);

 printf("The initial working directory CCSID is : %d\n",

 pd->pw_dir->CCSID);

 printf("The initial user program is: %s\n", pd->pw_shell);

 }

}

Output:

Integrated File System APIs 341

aboutapis.htm#CODEDISCLAIMER

The user name is: MYUSER

 The user id is: 22

 The group id is: 1012

 The initial working directory length is: 24

 The initial working directory CCSID is : 13488

 The initial user program is: *LIBL/QCMD

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgGetpwnam_r()—Get User Information for User Name (using

NLS-enabled path name)

 Syntax

 #include <sys/types.h>

 #include <pwd.h>

 int QlgGetpwnam_r(const char *name,

 struct qplg_passwd *pwd,

 char *buffer,

 size_t bufsize,

 struct qplg_passwd **result);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The QlgGetpwnam_r() function updates the qplg_passwd structure pointed to by pwd and stores a pointer

to that structure in the location pointed to by result. The structure contains an entry from the user

database with a matching name.

Parameters

name (Input) A pointer to a user profile name.

pwd (Input) A pointer to a qplg_passwd structure.

buffer (Input) A pointer to a buffer from which memory is allocated to hold storage areas referenced by

the structure pwd.

bufsize

(Input) The size of buffer in bytes.

result (Input) A pointer to a location in which a pointer to the updated qplg_passwd structure is stored.

If an error occurs or if the requested entry cannot be found, a NULL pointer is stored in this

location.

 The struct qplg_passwd, which is defined in the pwd.h header file, has the following elements:

 char * pw_name User name

uid_t pw_uid User ID

uid_t pw_gid Group ID

Qlg_Path_Name_T* pw_dir Initial working directory

char * pw_shell Initial user program

342 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

See “getpwnam_r()—Get User Information for User Name” on page 183 for more on the pwd, result and

other parameters.

Authorities

*READ authority is required to the user profile associated with the name.

Return Value

0 QlgGetpwnam_r was successful.

Any other value

Failure: The return value contains an error number indicating the error.

Error Conditions

If QlgGetpwnam_r() is not successful, the return value usually indicates one of the following errors.

Under some conditions, the value could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the name is currently locked by another process.

[EC2] Detected pointer that is not valid.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with the name was not found.

[ENOMEM]

The user profile associated with the UID has exceeded its storage limit or is unable to allocate

memory.

[EPERM]

The calling job does not have *READ authority to the user profile associated with the name.

[ERANGE]

Insufficient storage was supplied through buffer and bufsize to contain the data to be referenced

by the resulting group structure.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify

that the home directory field in the user profile can be displayed.

Usage Notes

The path name is returned in the default IFS UNICODE CCSID.

Related Information

v The <pwd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “getpwnam()—Get User Information for User Name” on page 181—Get User Information for User

Name

v “getpwnam_r()—Get User Information for User Name” on page 183—Get User Information for User

Name

v “QlgGetpwnam()—Get User Information for User Name (using NLS-enabled path name)” on page

340—Get User Information for User Name (using NLS-enabled path name)

Integrated File System APIs 343

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets the user database information for the user name of MYUSER. The uid is 22.

The gid is 1012. The initial working directory is /home/MYUSER. The initial user program is

*LIBL/QCMD.

#include <sys/types.h>

#include <pwd.h>

#include <stdio.h>

#include <errno.h>

main()

{

 struct qplg_passwd pd;

 qplg_passwd ** tempPwdPtr;

 char pwdbuffer[200];

 int pwdlinelen = sizeof(pwdbuffer);

 if ((QlgGetpwnam_r("MYUSER",&pd,pwdbuffer,pwdlinelen,tempPwdPtr))!=0)

 perror("QlgGetpwnam_r() error.");

 else

 {

 printf("\nThe user name is: %s\n", pd->pw_name);

 printf("The user id is: %u\n", pd->pw_uid);

 printf("The group id is: %u\n", pd->pw_gid);

 printf("The initial working directory length is: %d\n",

 pd->pw_dir->Path_Length);

 printf("The initial working directory CCSID is : %d\n",

 pd->pw_dir->CCSID);

 printf("The initial user program is: %s\n", pd->pw_shell);

 }

}

Output:

 The user name is: MYUSER

 The user id is: 22

 The group id is: 0

 The intial working directory length is: 24

 The intial working directory CCSID is : 13488

 The initial user program is: *LIBL/QCMD

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

344 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

QlgGetpwuid()—Get User Information for User ID (using NLS-enabled

path name)

 Syntax

 #include <pwd.h>

 struct qplg_passwd *QlgGetpwuid(uid_t uid);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: No

The QlgGetpwuid() function returns a pointer to an object of type struct qplg_passwd containing an

entry from the user database with a matching user ID (UID).

Parameters

UID (Input) User ID.

 The struct qplg_passwd, which is defined in the pwd.h header file, has the following elements:

 char * pw_name User name

uid_t pw_uid User ID

uid_t pw_gid Group ID

Qlg_Path_Name_T* pw_dir Initial working directory

char * pw_shell Initial user program

See “getpwuid()—Get User Information for User ID” on page 186 for more on the parameter.

Authorities

*READ authority is required to the user profile associated with the UID.

Note: Adopted authority is not used.

Return Value

value QlgGetpwuid() was successful. The return value points to static data that is overwritten on each

call to this function. This static storage area is also used by the QlgGetpwnam() function.

NULL pointer

QlgGetpwuid() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If QlgGetpwuid() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the uid is currently locked by another process.

[EC2] Detected pointer that is not valid.

Integrated File System APIs 345

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with UID was not found.

[ENOMEM]

The user profile associated with the UID has exceeded its storage limit or is unable to allocate

memory.

[ENOSPC]

Machine storage limit exceeded.

[EPERM]

The calling job does not have *READ authority to the user profile associated with the UID.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify

that the home directory field in the user profile can be displayed.

Usage Notes

Th path name is returned in the default IFS UNICODE CCSID

Related Information

v The <pwd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “getpwuid()—Get User Information for User ID” on page 186—Get User Information for User ID

v “getpwuid_r()—Get User Information for User ID” on page 189—Get User Information for User ID

v “QlgGetpwuid_r()—Get User Information for User ID (using NLS-enabled path name)” on page

347—Get User Information for User ID (using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets the user database information for the uid of 22. The user name is MYUSER.

The gid is 1012. The initial working directory is /home/MYUSER. The initial user program is

*LIBL/QCMD.

#include <pwd.h>

main()

{

 struct qplg_passwd *pd;

 if (NULL == (pd = QlgGetpwuid(22)))

 perror("QlgGetpwuid() error.");

 else

 {

 printf("The user name is: %s\n", pd->pw_name);

 printf("The user id is: %u\n", pd->pw_uid);

 printf("The group id is: %u\n", pd->pw_gid);

 printf("The initial working directory length is: %d\n",

 pd->pw_dir->Path_Length);

 printf("The initial working directory CCSID is : %d\n",

 pd->pw_dir->CCSID);

 printf("The initial user program is: %s\n", pd->pw_shell);

 }

}

Output:

346 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

The user name is: MYUSER

 The user id is: 22

 The group id is: 1012

 The intial working directory length is: 24

 The intial working directory CCSID is : 13488

 The initial user program is: *LIBL/QCMD

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgGetpwuid_r()—Get User Information for User ID (using NLS-enabled

path name)

 Syntax

 #include <sys/types.h>

 #include <pwd.h>

 int QlgGetpwuid_r(uid_t uid,

 struct qplg_passwd *pwd,

 char *buffer,

 size_t bufsize,

 struct qplg_passwd **result);

 Service Program Name: QSYPAPI

 Default Public Authority: *USE

 Threadsafe: Yes

The QlgGetpwuid_r() function updates the qplg_passwd structure pointed to by pwd and stores a pointer

to that structure in the location pointed to by result. The structure contains an entry from the user

database with a matching UID.

Parameters

UID (Input) A pointer to a user ID.

pwd (Input) A pointer to a struct qplg_passwd.

buffer (Input) A pointer to a buffer from which memory is allocated to hold storage areas referenced by

the structure qplg_passwd.

bufsize

(Input) The size of buffer in bytes.

result (Input) A pointer to a location in which a pointer to the updated qplg_passwd structure is stored.

If an error occurs or if the requested entry cannot be found, a NULL pointer is stored in this

location.

 The struct qplg_passwd, which is defined in the pwd.h header file, has the following elements:

 char * pw_name User name

uid_t pw_uid User ID

uid_t pw_gid Group ID

Qlg_Path_Name_T pw_dir Initial working directory

char * pw_shell Initial user program

Integrated File System APIs 347

#TOP_OF_PAGE
unix.htm
aplist.htm

See “getpwuid_r()—Get User Information for User ID” on page 189 for more on the pwd, result and other

parameters.

Authorities

*READ authority is required to the user profile associated with the UID.

Return Value

0 QlgGetpwuid_r() was successful.

Any other value

Failure: The return value contains an error number indicating the error.

Error Conditions

If QlgGetpwuid_r() is not successful, the error value usually indicates one of the following errors. Under

some conditions, the value could indicate an error other than those listed here.

[EAGAIN]

The user profile associated with the uid is currently locked by another process.

[EC2] Detected pointer that is not valid.

[EINVAL]

Value is not valid. Check the job log for messages.

[ENOENT]

The user profile associated with uid was not found.

[ENOMEM]

The user profile associated with the UID has exceeded its storage limit or is unable to allocate

memory.

[ENOSPC]

Machine storage limit exceeded.

[EPERM]

The calling job does not have *READ authority to the user profile associated with the UID.

[ERANGE]

Insufficient storage was supplied using buffer and bufsize to contain the data to be referenced by

the resulting group structure.

[EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message. If there is no message, verify

that the home directory field in the user profile can be displayed.

Usage Notes

The path name is returned in the default IFS UNICODE CCSID.

Related Information

v The <pwd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “getpwuid()—Get User Information for User ID” on page 186—Get User Information for User ID

v “getpwuid_r()—Get User Information for User ID” on page 189—Get User Information for User ID

v “QlgGetpwuid()—Get User Information for User ID (using NLS-enabled path name)” on page

345—Get User Information for User ID (using NLS-enabled path name)

348 iSeries: UNIX-Type -- Integrated File System APIs

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets the user database information for the uid of 22. The user name is MYUSER.

The GID is 1012. The intial working directory is /home/MYUSER. The initial user program is

*LIBL/QCMD.

#include <sys/types.h>

#include <pwd.h>

#include <stdio.h>

#include <errno.h>

main()

{

 struct qplg_passwd pd;

 passwd ** tempPwdPtr;

 char pwdbuffer[200];

 int pwdlinelen = sizeof(pwdbuffer);

 if ((QlgGetpwuid_r(22,&pd,pwdbuffer,pwdlinelen,tempPwdPtr))!=0)

 perror("QlgGetpwuid_r() error.");

 else

 {

 printf("\nThe user name is: %s\n", pd->pw_name);

 printf("The user id is: %u\n", pd->pw_uid);

 printf("The group id is: %u\n", pd->pw_gid);

 printf("The initial working directory length is: %d\n",

 pd->pw_dir->Path_Length);

 printf("The initial working directory CCSID is : %d\n",

 pd->pw_dir->CCSID);

 printf("The initial user program is: %s\n", pd->pw_shell);

 }

}

Output:

 The user name is: MYUSER

 The user ID is: 22

 The group ID is: 0

 The initial working directory length is: 24

 The initial working directory CCSID is : 13488

 The initial user program is: *LIBL/QCMD

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 349

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

QlgLchown()—Change Owner and Group of Symbolic Link (using

NLS-enabled path name)

 Syntax

 #include <unistd.h>

 int QlgLchown(Qlg_Path_Name_T *path, uid_t owner,gid_t

 group);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “lchown()—Change Owner and Group of Symbolic Link” on page

203.

The QlgLchown() function, like the lchown() function, changes the owner and group of a file. The

difference is that the QlgLchown() function takes a pointer to a Qlg_Path_Name_T structure, while

lchown() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more on the path parameter and for a

discussion of other parameters, authorities required, return values, and related information, see

“lchown()—Change Owner and Group of Symbolic Link” on page 203—Change Owner and Group of

Symbolic Link.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the file whose owner and group are being changed. For more information on the

Qlg_Path_Name_T structure, see Path name format.

Related Information

v “lchown()—Change Owner and Group of Symbolic Link” on page 203—Change Owner and Group of

Symbolic Link

v “QlgChmod()—Change File Authorizations (using NLS-enabled path name)” on page 327—Change File

Authorizations

v “QlgLstat()—Get File or Link Information (using NLS-enabled path name)” on page 354—Get File or

Link Information

v “QlgStat()—Get File Information (using NLS-enabled path name)” on page 384—Get File Information

Example

See Code disclaimer information for information pertaining to code examples.

The following example changes the owner and group of a file:

#include <stdio.h>

#include <unistd.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <Qp0lstdi.h>

main() {

#define mypath_link_name "temp.link"

350 iSeries: UNIX-Type -- Integrated File System APIs

pns.htm
aboutapis.htm#CODEDISCLAIMER

#define mypath_fn "temp.file"

 const char US_const]3[= "US";

 const char Language_const]4[="ENU";

 struct stat info;

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn]100[; /* This array size must be >= the */

 /* length of the path name or this must */

 /* be a pointer to the path name. */

 };

 struct pnstruct path_link;

 struct pnstruct path_fn;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path_link, 0x00, sizeof(struct pnstruct));

 path_link.qlg_struct.CCSID = 37;

 memcpy(path_link.qlg_struct.Country_ID,US_const,2);

 memcpy(path_link.qlg_struct.Language_ID,Language_const,3);

 path_link.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path_link.qlg_struct.Path_Length = sizeof(mypath_link_name)-1;

 path_link.qlg_struct.Path_Name_Delimiter]0[= ’/’;

 memcpy(path_link.pn,mypath_link_name,sizeof(mypath_link_name)-1);

 memset((void*)&path_fn, 0x00, sizeof(struct pnstruct));

 path_fn.qlg_struct.CCSID = 37;

 memcpy(path_fn.qlg_struct.Country_ID,US_const,2);

 memcpy(path_fn.qlg_struct.Language_ID,Language_const,3);

 path_fn.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path_fn.qlg_struct.Path_Length = sizeof(mypath_fn)-1;

 path_fn.qlg_struct.Path_Name_Delimiter]0[= ’/’;

 memcpy(path_fn.pn,mypath_fn,sizeof(mypath_fn)-1);

 if (QlgSymlink((Qlg_Path_Name_T *)&path_fn,

 (Qlg_Path_Name_T *)&path_link) == -1)

 perror("QlgSymlink() error");

 else {

 QlgLstat((Qlg_Path_Name_T *)&path_link, &info);

 printf("original owner was %d and group was %d\n", info.st_uid,

 info.st_gid);

 if (QlgLchown((Qlg_Path_Name_T *)&path_link, 152, 0) != 0)

 perror("QlgLchown() error");

 else {

 QlgLstat((Qlg_Path_Name_T *)&path_link, &info);

 printf("after QlgLchown(), owner is %d and group is %d\n",

 info.st_uid, info.st_gid);

 }

 QlgUnlink((Qlg_Path_Name_T *)&path_link);

 }

}

Output:

original owner was 137 and group was 0

after QlgLchown(), owner is 152 and group is 0

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 351

#TOP_OF_PAGE
unix.htm
aplist.htm

QlgLink()—Create Link to File (using NLS-enabled path name)

 Syntax

 #include <unistd.h>

 int QlgLink(Qlg_Path_Name_T *existing, Qlg_Path_Name_T *new);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “link()—Create Link to File” on page 210.

The QlgLink() function, like the link() function, provides an alternative path name for the existing file so

that the file can be accessed by either the existing name or the new name. The difference is that the

QlgLink() function supports pointers to Qlg_Path_Name_T structures, while link() supports pointers to

character strings.

Limited information on the existing and the new parameters is provided here. For more information on

these parameters and for a discussion of the authorities required, return values, and related information,

see “link()—Create Link to File” on page 210—Create Link to File.

Parameters

existing

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of an existing file to which a new link is to be created. For more information on the

Qlg_Path_Name_T structure, see Path name format.

new (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name that is the name of the new link. For more information on the Qlg_Path_Name_T

structure, see Path name format.

Related Information

v “link()—Create Link to File” on page 210—Create Link to File

v “Qp0lUnlink()—Remove Link to File” on page 526—Remove Link to File (using NLS-enabled path

name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses QlgLink():

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdlib.h>

#include <Qp0lstdi.h>

main()

{

 int file_descriptor;

 struct stat info;

#define mypath_fn "link.example.file"

352 iSeries: UNIX-Type -- Integrated File System APIs

pns.htm
pns.htm
aboutapis.htm#CODEDISCLAIMER

#define mypath_ln "link.example.link"

 const char US_const[3]= "US";

 const char Language_const[4] ="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= the */

 /* length of the path name or must */

 /* be a pointer to the path name. */

 };

 struct pnstruct path_fn;

 struct pnstruct path_ln;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path_fn, 0x00, sizeof(struct pnstruct));

 path_fn.qlg_struct.CCSID = 37;

 memcpy(path_fn.qlg_struct.Country_ID,US_const,2);

 memcpy(path_fn.qlg_struct.Language_ID,Language_const,3);

 path_fn.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path_fn.qlg_struct.Path_Length = sizeof(mypath_fn)-1;

 path_fn.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path_fn.pn,mypath_fn,sizeof(mypath_fn)-1);

 memset((void*)&path_ln, 0x00, sizeof(struct pnstruct));

 path_ln.qlg_struct.CCSID = 37;

 memcpy(path_ln.qlg_struct.Country_ID,US_const,2);

 memcpy(path_ln.qlg_struct.Language_ID,Language_const,3);

 path_ln.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path_ln.qlg_struct.Path_Length = sizeof(mypath_ln)-1;

 path_ln.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path_ln.pn,mypath_ln,sizeof(mypath_ln)-1);

 if ((file_descriptor = QlgCreat((Qlg_Path_Name_T *)&path_fn, S_IWUSR)) < 0)

 perror("QlgCreat() error");

 else {

 close(file_descriptor);

 puts("before QlgLink()");

 QlgStat((Qlg_Path_Name_T *)&path_fn,&info);

 printf(" number of links is %hu\n",info.st_nlink);

 if (QlgLink((Qlg_Path_Name_T *)&path_fn,

 (Qlg_Path_Name_T *)&path_ln) != 0) {

 perror("QlgLink() error");

 QlgUnlink((Qlg_Path_Name_T *)&path_fn);

 }

 else {

 puts("after QlgLink()");

 QlgStat((Qlg_Path_Name_T *)&path_fn,&info);

 printf(" number of links is %hu\n",info.st_nlink);

 QlgUnlink((Qlg_Path_Name_T *)&path_ln);

 puts("after first QlgUnlink()");

 QlgLstat((Qlg_Path_Name_T *)&path_fn,&info);

 printf(" number of links is %hu\n",info.st_nlink);

 QlgUnlink((Qlg_Path_Name_T *)&path_fn);

 }

 }

}

Output:

Integrated File System APIs 353

before QlgLink()

 number of links is 1

after QlgLink()

 number of links is 2

after first QlgUnlink()

 number of links is 1

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgLstat()—Get File or Link Information (using NLS-enabled path

name)

 Syntax

 #include <sys/stat.h>

 int QlgLstat(Qlg_Path_Name_T *path,struct stat *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “lstat()—Get File or Link Information” on page 224.

The QlgLstat() function, like the lstat() function, gets status information about a specified file and places

it in the area of memory pointed to by buf. The difference is that the QlgLstat() function takes a pointer

to a Qlg_Path_Name_T structure, while lstat() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“lstat()—Get File or Link Information” on page 224—Get File or Link Information.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the file. For more information on the Qlg_Path_Name_T structure, see Path name

format.

Related Information

v “lstat()—Get File or Link Information” on page 224—Get File or Link Information

v “QlgChmod()—Change File Authorizations (using NLS-enabled path name)” on page 327—Change File

Authorizations (using NLS-enabled path name)

v “QlgChown()—Change Owner and Group of File (using NLS-enabled path name)” on page

329—Change Owner and Group of File (using NLS-enabled path name)

v “QlgCreat()—Create or Rewrite File (using NLS-enabled path name)” on page 331—Create or Rewrite

File (using NLS-enabled path name)

v “QlgLink()—Create Link to File (using NLS-enabled path name)” on page 352—Create Link to File

(using NLS-enabled path name)

v “QlgMkdir()—Make Directory (using NLS-enabled path name)” on page 359—Make Directory (using

NLS-enabled path name)

354 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
pns.htm
pns.htm

v “QlgReadlink()—Read Value of Symbolic Link (using NLS-enabled path name)” on page 374—Read

Value of Symbolic Link (using NLS-enabled path name)

v “QlgStat()—Get File Information (using NLS-enabled path name)” on page 384—Get File Information

(using NLS-enabled path name)

v “QlgSymlink()—Make Symbolic Link (using NLS-enabled path name)” on page 391—Make Symbolic

Link (using NLS-enabled path name)

v “QlgUtime()—Set File Access and Modification Times (using NLS-enabled path name)” on page

395—Set File Access and Modification Times (using NLS-enabled path name)

v “Qp0lUnlink()—Remove Link to File” on page 526—Remove Link to File (using NLS-enabled path

name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example provides status information for a file:

#include <sys/types.h>

#include <sys/stat.h>

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

#include <time.h>

#include <stdio.h>

#include <Qp0lstdi.h>

main() {

 struct stat info;

 int file_descriptor;

 #define mypath_fn "temp.file"

 #define mypath_ln "temp.link"

 const char US_const[3]= "US";

 const char Language_const[4] ="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= the */

 /* length of the path name or this must */

 /* be a pointer to the path name. */

 };

 struct pnstruct path_fn;

 struct pnstruct path_ln;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path_fn, 0x00, sizeof(struct pnstruct));

 path_fn.qlg_struct.CCSID = 37;

 memcpy(path_fn.qlg_struct.Country_ID,US_const,2);

 memcpy(path_fn.qlg_struct.Language_ID,Language_const,3);

 path_fn.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path_fn.qlg_struct.Path_Length = sizeof(mypath_fn)-1;

 path_fn.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path_fn.pn,mypath_fn,sizeof(mypath_fn)-1);

 memset((void*)&path_ln, 0x00, sizeof(struct pnstruct));

 path_ln.qlg_struct.CCSID = 37;

 memcpy(path_ln.qlg_struct.Country_ID,US_const,2);

 memcpy(path_ln.qlg_struct.Language_ID,Language_const,3);

 path_ln.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path_ln.qlg_struct.Path_Length = sizeof(mypath_ln)-1;

 path_ln.qlg_struct.Path_Name_Delimiter[0] = ’/’;

Integrated File System APIs 355

aboutapis.htm#CODEDISCLAIMER

memcpy(path_ln.pn,mypath_ln,sizeof(mypath_ln)-1);

 if ((file_descriptor = QlgCreat((Qlg_Path_Name_T *)&path_fn, S_IWUSR)) < 0)

 perror("QlgCreat() error");

 else {

 close(file_descriptor);

 if (QlgLink((Qlg_Path_Name_T *)&path_fn,

 (Qlg_Path_Name_T *)&path_ln)

 !=0

 perror("QlgLink() error");

 else {

 if (QlgLstat((Qlg_Path_Name_T *)&path_ln, &info) != 0)

 perror("QlgLstat() error");

 else {

 puts("QlgLstat() returned:");

 printf(" inode: %d\n", (int) info.st_ino);

 printf(" dev id: %d\n", (int) info.st_dev);

 printf(" mode: %08x\n", info.st_mode);

 printf(" links: %d\n", info.st_nlink);

 printf(" uid: %d\n", (int) info.st_uid);

 printf(" gid: %d\n", (int) info.st_gid);

 }

 QlgUnlink((Qlg_Path_Name_T *)&path_ln);

 }

 QlgUnlink((Qlg_Path_Name_T *)&path_fn);

 }

}

Output:

QlgLstat() returned:

 inode: 8477

 dev id: 0

 mode: 00008080

 links: 2

 uid: 1782

 gid: 0

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgLstat64()—Get File or Link Information (large file enabled and using

NLS-enabled path name)

 Syntax

 #include <sys/stat.h>

 int QlgLstat64(Qlg_Path_Name_T *path, struct stat64 *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “lstat()—Get File or Link Information” on page 224.

The QlgLstat64() function, like the lstat64() function, gets status information about a specified file and

places it in the area of memory pointed to by buf. The difference is that the QlgLstat64() function takes a

pointer to a Qlg_Path_Name_T structure, while lstat64() takes a pointer to a character string.

356 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“lstat64()—Get File or Link Information (Large File Enabled)” on page 231—Get File or Link Information

(Large File Enabled) or “lstat()—Get File or Link Information” on page 224—Get File or Link Information.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the file. For more information on the Qlg_Path_Name_T structure, see Path name

format.

Related Information

v “lstat64()—Get File or Link Information (Large File Enabled)” on page 231—Get File or Link

Information (large file enabled and using NLS-enabled path name)

v “lstat()—Get File or Link Information” on page 224—Get File or Link Information (using NLS-enabled

path name)

v “QlgChmod()—Change File Authorizations (using NLS-enabled path name)” on page 327—Change File

Authorizations (using NLS-enabled path name)

v “QlgChown()—Change Owner and Group of File (using NLS-enabled path name)” on page

329—Change Owner and Group of File (using NLS-enabled path name)

v “QlgCreat()—Create or Rewrite File (using NLS-enabled path name)” on page 331—Create or Rewrite

File (using NLS-enabled path name)

v “QlgLink()—Create Link to File (using NLS-enabled path name)” on page 352—Create Link to File

(using NLS-enabled path name)

v “QlgMkdir()—Make Directory (using NLS-enabled path name)” on page 359—Make Directory (using

NLS-enabled path name)

v “QlgReadlink()—Read Value of Symbolic Link (using NLS-enabled path name)” on page 374—Read

Value of Symbolic Link (using NLS-enabled path name)

v “QlgStat()—Get File Information (using NLS-enabled path name)” on page 384—Get File Information

(using NLS-enabled path name)

v “QlgSymlink()—Make Symbolic Link (using NLS-enabled path name)” on page 391—Make Symbolic

Link (using NLS-enabled path name)

v “QlgUtime()—Set File Access and Modification Times (using NLS-enabled path name)” on page

395—Set File Access and Modification Times (using NLS-enabled path name)

v “Qp0lUnlink()—Remove Link to File” on page 526—Remove Link to File (using NLS-enabled path

name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example provides status information for a file:

#define _LARGE_FILE_API

#include <sys/types.h>

#include <sys/stat.h>

#include <stdio.h>

#include <fcntl.h>

#include <unistd.h>

#include <time.h>

#include <Qp0lstdi.h>

main() {

 struct stat64 info;

 int file_descriptor;

#define mypath_fn "temp.file"

Integrated File System APIs 357

pns.htm
pns.htm
aboutapis.htm#CODEDISCLAIMER

#define mypath_ln "temp.link"

 const char US_const[3]= "US";

 const char Language_const[4] ="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= the */

 /* length of the path name or must */

 /* be a pointer to the path name. */

 };

 struct pnstruct path_fn;

 struct pnstruct path_ln;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path_fn, 0x00, sizeof(struct pnstruct));

 path_fn.qlg_struct.CCSID = 37;

 memcpy(path_fn.qlg_struct.Country_ID,US_const,2);

 memcpy(path_fn.qlg_struct.Language_ID,Language_const,3);

 path_fn.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path_fn.qlg_struct.Path_Length = sizeof(mypath_fn)-1;

 path_fn.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path_fn.pn,mypath_fn,sizeof(mypath_fn)-);

 memset((void*)&path_ln, 0x00, sizeof(struct pnstruct));

 path_ln.qlg_struct.CCSID = 37;

 memcpy(path_ln.qlg_struct.Country_ID,US_const,2);

 memcpy(path_ln.qlg_struct.Language_ID,Language_const,3);

 path_ln.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path_ln.qlg_struct.Path_Length = sizeof(mypath_ln)-1;

 path_ln.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path_ln.pn,mypath_ln,sizeof(mypath_ln)-);

 if ((file_descriptor = QlgCreat64((Qlg_Path_Name_T *)&path_fn, S_IWUSR)) <

 perror("QlgCreat64() error");

 else {

 close(file_descriptor);

 if (QlgLink((Qlg_Path_Name_T *)&path_fn,

 (Qlg_Path_Name_T *)&path_ln) != 0)

 perror("QlgLink() error");

 else {

 if (QlgLstat64((Qlg_Path_Name_T *)&path_ln, &info) != 0)

 perror("QlgLstat64() error");

 else {

 puts("QlgLstat64() returned:");

 printf(" inode: %d\n", (int) info.st_ino);

 printf(" dev id: %d\n", (int) info.st_dev);

 printf(" mode: %08x\n", info.st_mode);

 printf(" links: %d\n", info.st_nlink);

 printf(" uid: %d\n", (int) info.st_uid);

 printf(" gid: %d\n", (int) info.st_gid);

 printf(" size: %lld\n", (long long) info.st_size);

 }

 QlgUnlink((Qlg_Path_Name_T *)&path_ln);

 }

 QlgUnlink((Qlg_Path_Name_T *)&path_fn);

 }

}

Output:

QlgLstat() returned:

 inode: 258

 dev id: 1

 mode: 00008080

358 iSeries: UNIX-Type -- Integrated File System APIs

links: 2

 uid: 137

 gid: 500

 size: 18

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgMkdir()—Make Directory (using NLS-enabled path name)

 Syntax

 #include <sys/stat.h>

 int QlgMkdir(Qlg_Path_Name_T *path, mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “mkdir()—Make Directory” on page 233.

The QlgMkdir() function, like the mkdir() function, creates a new, empty directory whose name is

defined by path. The difference is that the QlgMkdir() function takes a pointer to a Qlg_Path_Name_T

structure, while mkdir() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“mkdir()—Make Directory” on page 233—Make Directory.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the directory to be created. For more information on the Qlg_Path_Name_T

structure, see Path name format.

Related Information

v “mkdir()—Make Directory” on page 233—Make Directory

v “QlgChmod()—Change File Authorizations (using NLS-enabled path name)” on page 327—Change File

Authorizations (using NLS-enabled path name)

v “QlgStat()—Get File Information (using NLS-enabled path name)” on page 384—Get File Information

(using NLS-enabled path name)

v “QlgPathconf()—Get Configurable Path Name Variables (using NLS-enabled path name)” on page

368—Get Configurable Path Name Variables (using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a new directory:

#include <sys/stat.h>

#include <unistd.h>

#include <stdio.h>

Integrated File System APIs 359

#TOP_OF_PAGE
unix.htm
aplist.htm
pns.htm
aboutapis.htm#CODEDISCLAIMER

main() {

 #define mypath "new_dir"

 const char US_const[3]= "US";

 const char Language_const[4] ="ENU";

 const char mypath_DOT_DOT[3] = "..";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= the */

 /* length of the path name or this must */

 /* be a pointer to the path name. */

 };

 struct pnstruct path;

 struct pnstruct path_DOT_DOT;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 path.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.pn,mypath,sizeof(mypath)-1);

 memset((void*)&path_DOT_DOT, 0x00, sizeof(struct pnstruct));

 path_DOT_DOT.qlg_struct.CCSID = 37;

 memcpy(path_DOT_DOT.qlg_struct.Country_ID,US_const,2);

 memcpy(path_DOT_DOT.qlg_struct.Language_ID,Language_const,3);

 path_DOT_DOT.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path_DOT_DOT.qlg_struct.Path_Length = sizeof(mypath_DOT_DOT)-1;

 path_DOT_DOT.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path_DOT_DOT.pn,mypath_DOT_DOT,sizeof(mypath_DOT_DOT)-1);

 if (QlgMkdir((Qlg_Path_Name_T *)&path,

 S_IRWXU|S_IRGRP|S_IXGRP) != 0)

 perror("QlgMkdir() error");

 else if (QlgChdir((Qlg_Path_Name_T *)&path) != 0)

 perror("first QlgChdir() error");

 else if (QlgChdir((Qlg_Path_Name_T *)&path_DOT_DOT) != 0)

 perror("second QlgChdir() error");

 else if (QlgRmdir((Qlg_Path_Name_T *)&path) != 0)

 perror("QlgRmdir() error");

 else

 puts("success!");

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

360 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

QlgMkfifo()—Make FIFO Special File (using NLS-enabled path name)

 Syntax

 #include <sys/types.h>

 #include <sys/stat.h>

 #include <Qlg.h>

 int QlgMkfifo(const Qlg_Path_Name_T *path,

 mode_t mode);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “mkfifo()—Make FIFO Special File” on page 242.

The QlgMkfifo() function, like the mkfifo() function, creates a new FIFO special file whose name is

defined by path. The difference is that the QlgMkfifo() function takes a pointer to a Qlg_Path_Name_T

structure, while mkfifo() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“mkfifo()—Make FIFO Special File” on page 242—Make FIFO Special File.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the FIFO to be created. For more information on the Qlg_Path_Name_T structure,

see Path name format.

Related Information

v “mkfifo()—Make FIFO Special File” on page 242—Make FIFO Special File

v “QlgChmod()—Change File Authorizations (using NLS-enabled path name)” on page 327—Change File

Authorizations (using NLS-enabled path name)

v “QlgStat()—Get File Information (using NLS-enabled path name)” on page 384—Get File Information

(using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates a new FIFO:

#include <sys/stat.h>

#include <stdio.h>

#include <string.h>

#include <Qlg.h>

void main()

{

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char[100] pn; /* This size must be >= the path */

 /* name length or a pointer to */

 /* the path name. */

 };

Integrated File System APIs 361

pns.htm
aboutapis.htm#CODEDISCLAIMER

struct pnstruct path;

 char *mypath = "/newFIFO";

 /**/

 /* Initialize Qlg_Path_Name_T structure. */

 /**/

 memset((void*)path name, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID, "US", 2);

 memcpy(path.qlg_struct.Language_ID, "ENU", 3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = strlen(mypath);

 path.qlg_struct.Path_Name_Delimiter = ’/’;

 memcpy(path.pn, mypath, strlen(mypath));

 if (QlgMkfifo((Qlg_Path_Name_T *)path name,

 S_IRWXU|S_IRWXO) != 0)

 perror("QlgMkfifo() error");

 else

 puts("success!");

 return;

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgOpen()—Open a File (using NLS-enabled path name)

 Syntax

 #include <fcntl.h>

 #include <stdio.h>

 #include <Qp0lstdi.h>

 int QlgOpen(Qlg_Path_Name_T *Path_Name,

 int oflag, . . .);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “open()—Open File” on page 267 API.

The QlgOpen() function, like the open() function, opens a file or creates a new, empty file whose name is

defined by path and returns a number called a file descriptor. The difference is that the QlgOpen()

function takes a pointer to a Qlg_Path_Name_T structure, while open() takes a pointer to a character

string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, usage notes, return values, and related

information, see “open()—Open File” on page 267—Open a File.

362 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the file to be opened. For more information on the Qlg_Path_Name_T structure, see

Path name format.

Related Information

v “open()—Open File” on page 267—Open a File

v “QlgCreat()—Create or Rewrite File (using NLS-enabled path name)” on page 331—Create or Rewrite

File (using NLS-enabled path name)

v “QlgOpen64()—Open File (large file enabled and using NLS-enabled path name)” on page 364—Open

File (large file enabled and using NLS-enabled path name)

v “QlgStat()—Get File Information (using NLS-enabled path name)” on page 384—Get File Information

(using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates and opens an output file for exclusive access. This program was stored in

a source file with CCSID 37, so the constant string ″newfile″ will be compiled in CCSID 37. Therefore, the

language and country or region specified are United States English, and the CCSID specified is 37.

#include <fcntl.h>

#include <stdio.h>

#include <Qp0lstdi.h>

main()

{

 int fildes;

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[7];

 };

 struct pnstruct pns;

 struct pnstruct *pns_ptr = NULL;

 char fn[]="newfile";

 memset((void*)&pns, 0x00, sizeof(struct pnstruct));

 pns.qlg_struct.CCSID = 37;

 memcpy(pns.qlg_struct.Country_ID,US_const,2);

 memcpy(pns.qlg_struct.Language_ID,Language_const,3);;

 pns.qlg_struct.Path_Type = 0;

 pns.qlg_struct.Path_Length = sizeof(fn) - 1;

 pns.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(pns.pn,fn,sizeof(fn)-1);

 pns_ptr = &pns;

 if(fildes = QlgOpen((Qlg_Path_Name_T *)pns_ptr,

 O_WRONLY|O_CREAT|O_EXCL, S_IRWXU)) == -1)

 {

 perror("QlgOpen() error");

 }

}

Integrated File System APIs 363

pns.htm
aboutapis.htm#CODEDISCLAIMER

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgOpen64()—Open File (large file enabled and using NLS-enabled

path name)

 Syntax

 #include <fcntl.h>

 int QlgOpen64(Qlg_Path_Name_T *path, int oflag, . . .);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “open()—Open File” on page 267.

The QlgOpen64() function, like the open64() and open() functions, opens a file and returns a number

called a file descriptor. QlgOpen64() differs from open64() in that the QlgOpen64() function takes a

pointer to a Qlg_Path_Name_T structure, while open64() takes a pointer to a character string.

QlgOpen64() differs from open() in that it automatically opens a file with the O_LARGEFILE flag set.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“open()—Open File” on page 267—Open a File or “open64()—Open File (Large File Enabled)” on page

287—Open File (Large File Enabled).

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the file to be opened. For more information on the Qlg_Path_Name_T structure, see

Path name format.

Related Information

v “open()—Open File” on page 267—Open a File

v “open64()—Open File (Large File Enabled)” on page 287—Open File (Large File Enabled)

v “QlgCreat()—Create or Rewrite File (using NLS-enabled path name)” on page 331—Create or Rewrite

File (using NLS-enabled path name)

v “QlgStat()—Get File Information (using NLS-enabled path name)” on page 384—Get File Information

(using NLS-enabled path name)

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

364 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
pns.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

QlgOpendir()—Open Directory (using NLS-enabled path name)

 Syntax

 #include <sys/types.h>

 #include <dirent.h>

 DIR *QlgOpendir(Qlg_Path_Name_T *dirname);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “opendir()—Open Directory” on page 288.

The QlgOpendir() function, like the opendir() function, opens a directory so it can be read. The

difference is that the QlgOpendir() function takes a pointer to a Qlg_Path_Name_T structure, while the

opendir() function takes a pointer to a character string. The QlgOpendir() function opens a directory so it

can be read with the QlgReaddir() function.

Names returned on calls to QlgReaddir() are returned in the coded character set identifier (CCSID)

specified at the time the directory is opened. QlgOpendir() allows the CCSID to be specified in the

Qlg_Path_Name_T structure. opendir() uses the CCSID that is in effect for the current job at the time the

opendir() function is called. See “opendir()—Open Directory” on page 288—Open Directory for more on

the job CCSID.

Limited information on the dirname parameter is provided here. For more information on the dirname

parameter and for a discussion of authorities required, return values, and related information, see

“opendir()—Open Directory” on page 288—Open Directory.

Parameters

dirname

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the directory to be opened. For more information on the Qlg_Path_Name_T

structure, see Path name format.

Related Information

v “opendir()—Open Directory” on page 288—Open Directory

v “QlgReaddir()—Read Directory Entry (using NLS-enabled path name)” on page 370—Read Directory

Entry (using NLS-enabled path name)

v QlgSpawn()—Spawn Process (using NLS-enabled path name)

v QlgSpawnp()—Spawn Process with Path (using NLS-enabled fileh name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example opens a directory:

#include <sys/types.h>

#include <dirent.h>

#include <sys/stat.h>

#include <sys/types.h>

#include <errno.h>

#include <stdio.h>

Integrated File System APIs 365

pns.htm
spawnu.htm
spawnpu.htm
aboutapis.htm#CODEDISCLAIMER

void traverse(char *fn, int indent) {

 DIR *dir;

 int count;

 struct stat info;

 typedef struct my_dirent_lg

 {

 struct dirent_lg *entry;

 char d_lg_name[1];

 };

 struct my_dirent_lg lg_struct;

 struct dirent_lg *entry;

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[1025]; /* This array size must be >= */

 /* the length of the path name or */

 /* this must be a pointer to the */

 /* path name. */

 };

 struct pnstruct path;

 struct pnstruct path_to_stat;

 char *temp_char_path[1025];

 /***/

 /* Initialize Qlg_Path_Name_T structure, since the path name */

 /* was not in the Qlg_Path_Name_T format when this function */

 /* was called. */

 /***/

 memset((void*)&path, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 path.qlg_struct.Path_Length = strlen(fn);

 memcpy(path.pn,fn,strlen(fn));

 for (count=0; count < indent; count++) printf(" ");

 printf("%s\n", fn);

 if ((dir = QlgOpendir((Qlg_Path_Name_T *)&path)) == NULL)

 perror("QlgOpendir() error");

 else

 {

 path_to_stat = path;

 while ((entry = QlgReaddir(dir)) != NULL)

 {

 if

 (entry->d_lg_name[0] != ’.’)

 {

 /* Concat the components of the path name into a */

 /* Qlg_Path_Name_T structure that is used on the */

 /* next function that is called. Clear and */

 /* use a temporary buffer to ensure that only */

 /* characters returned by QlgReaddir() are */

 /* included in the concatenated path name */

 /* structure. */

 strcpy(path_to_stat.pn,path.pn);

366 iSeries: UNIX-Type -- Integrated File System APIs

strcat(path_to_stat.pn, "/");

 memset(temp_char_path, 0x00,1025);

 memcpy(temp_char_path,

 entry->d_lg_name,entry->d_lg_qlg.Path_Length);

 strcat(path_to_stat.pn,(char *)&temp_char_path);

 /* Calculate the size of the path, including the */

 /* length of the path specified on the open, the */

 /* length of the name returned by QlgReaddir(), */

 /* and the delimiter. */

 path_to_stat.qlg_struct.Path_Length =

 (path.qlg_struct.Path_Length +

 entry->d_lg_qlg.Path_Length + 1);

 /* Call QlgStat() to determine if the path name */

 /* is a directory. */

 if (QlgStat((Qlg_Path_Name_T *)&path_to_stat,

 &info) != 0)

 {

 fprintf(stderr, "QlgStat() error on %s: %s\n",

 path_to_stat.pn,

 strerror(errno));

 }

 else if (S_ISDIR(info.st_mode))

 {

 /* this a directory so loop to open its objects.*/

 traverse(path_to_stat.pn, indent+1);

 }

 else printf(" %s\n",path_to_stat.pn);

 }

 }

 closedir(dir);

 }

}

main() {

 puts("Directory structure:");

 traverse("/etc", 0);

}

Output:

Directory structure:

/etc

 /etc/samples

 /etc/samples/IBM

 /etc/IBM

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 367

#TOP_OF_PAGE
unix.htm
aplist.htm

QlgPathconf()—Get Configurable Path Name Variables (using

NLS-enabled path name)

 Syntax

 #include <unistd.h>

 long QlgPathconf(Qlg_Path_Name_T *path, int name);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “pathconf()—Get Configurable Path Name Variables” on page 295.

The QlgPathconf() function, like the pathconf() function, lets an application determine the value of a

configuration variable (name) associated with a particular file or directory (path). The difference is that the

QlgPathconf() function takes a pointer to a Qlg_Path_Name_T structure, while pathconf() takes a pointer

to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“pathconf()—Get Configurable Path Name Variables” on page 295—Get Configurable Path Name

Variables.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name for which the value of the configuration variable is requested. For more information

on the Qlg_Path_Name_T structure, see Path name format.

Related Information

v “fpathconf()—Get Configurable Path Name Variables by Descriptor” on page 127—Get Configurable

Path Name Variables by Descriptor

v “pathconf()—Get Configurable Path Name Variables” on page 295—Get Configurable Path Name

Variables

v “QlgChown()—Change Owner and Group of File (using NLS-enabled path name)” on page

329—Change Owner and Group of File (using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example determines the maximum number of bytes in a file name:

#include <stdio.h>

#include <unistd.h>

#include <errno.h>

main() {

 long result;

#define mypath "/"

 const char US_const[3]= "US";

 const char Language_const[4] ="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

368 iSeries: UNIX-Type -- Integrated File System APIs

pns.htm
aboutapis.htm#CODEDISCLAIMER

char pn[100]; /* This array size must be >= the */

 /* length of the path name or must */

 /* be a pointer to the path name. */

 };

 struct pnstruct path;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 path.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.pn,mypath,sizeof(mypath)-1);

 errno = 0;

 puts("examining NAME_MAX limit for root filesystem");

 if ((result = QlgPathconf((Qlg_Path_Name_T *)&path,

 _PC_NAME_MAX)) == -1)

 if (errno == 0)

 puts("There is no limit to NAME_MAX.");

 else perror("QlgPathconf() error");

 else

 printf("NAME_MAX is %ld\n", result);

}

Output:

examining NAME_MAX limit for root filesystem

NAME_MAX is 255

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgProcessSubtree()—Process a Path Name (using NLS-enabled path

name)

 Syntax

 #include <Qp0lstdi.h>

 int QlgProcessSubtree (

 Qlg_Path_Name_T *Path_Name,

 uint Subtree_level,

 Qp0l_Objtypes_List_t *Objtypes_array_ptr,

 uint Local_remote_obj,

 Qp0l_IN_EXclusion_List_t *IN_EXclusion_ptr,

 uint Err_recovery_action,

 Qp0l_User_Function_t *UserFunction_ptr,

 void *Function_CtlBlk_ptr, ...);

 Service Program Name: QP0LLIB2

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “Qp0lProcessSubtree()—Process a Path Name” on page 451.

Integrated File System APIs 369

#TOP_OF_PAGE
unix.htm
aplist.htm

For a description of this function and information on its parameters, authorities required, return values,

error conditions, error messages, usage notes, and related information, see

“Qp0lProcessSubtree()—Process a Path Name” on page 451—Process a Path Name.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgReaddir()—Read Directory Entry (using NLS-enabled path name)

 Syntax

 #include <sys/types.h>

 #include <dirent.h>

 struct dirent_lg *QlgReaddir(DIR *dirp);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: No; see Usage Notes for “readdir()—Read Directory Entry” on page 557.

The QlgReaddir() function, like the readdir() function, returns a pointer to a structure describing the next

directory entry in the directory stream associated with dirp. The difference is that the QlgReaddir()

function takes a pointer to a dirent_lg structure, while readdir() takes a pointer to a dirent structure.

Limited information on the dirp parameter is provided here. For more information on the dirp parameter

and for a discussion of authorities required, return values, and related information, see “readdir()—Read

Directory Entry” on page 557—Read Directory Entry.

Parameters

dirp (Input) A pointer to DIR that refers to the open directory stream to be read. This pointer is

returned by QlgOpendir().

 A dirent_lg structure has the following contents:

 char d_reserved1[16] Reserved.

unsigned int d_fileno_gen_id The generation ID associated with the file ID.

ino_t d_fileno The file ID of the file. This number uniquely identifies

the object within a file system.

unsigned int d_reclen The length of the directory entry in bytes.

int d_reserved3 Reserved.

char d_reserved4[6] Reserved.

char d_reserved5[2] Reserved.

Qlg_Path_Name_T d_lg_name A Qlg_Path_Name_T that gives the name of a file in the

directory. The path name is not null-terminated within

the structure. The structure also provides National

Language Support information, which includes ccsid,

country_id, and language_id. This structure has a

maximum length of {_QP0L_DIR_NAME_LG} bytes. For

more information on the Qlg_Path_Name_T structure,

see Path name format.

370 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
pns.htm

Related Information

v “readdir()—Read Directory Entry” on page 557—Read Directory Entry

v “QlgOpendir()—Open Directory (using NLS-enabled path name)” on page 365—Open Directory (using

NLS-enabled path name)

v “QlgPathconf()—Get Configurable Path Name Variables (using NLS-enabled path name)” on page

368—Get Configurable Path Name Variables (using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example reads the contents of a root directory:

#include <sys/types.h>

#include <dirent.h>

#include <errno.h>

#include <stdio.h>

main() {

 typedef struct my_dirent_lg

 {

 struct dirent_lg *entry;

 char d_lg_name[1];

 };

 struct my_dirent_lg lg_struct;

 struct dirent_lg *entry;

#define mypath "/"

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= */

 /* the length of the path name */

 /* or this must be a pointer */

 /* to the path name. */

 };

 struct pnstruct path;

 DIR *dir;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 path.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if ((dir = QlgOpendir((Qlg_Path_Name_T *)&path)) == NULL)

 perror("QlgOpendir() error");

 else {

 puts("contents of root:");

 while ((entry = QlgReaddir(dir)) != NULL)

 printf(" %s\n", entry->d_lg_name);

 closedir(dir);

 }

}

Integrated File System APIs 371

aboutapis.htm#CODEDISCLAIMER

Output:

contents of root:

 .

 ..

 QSYS.LIB

 QDLS

 QOpenSys

 QOPT

 home

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgReaddir_r()—Read Directory Entry (using NLS-enabled path name)

 Syntax

 #include <sys/types.h>

 #include <dirent.h>

 int QlgReaddir_r(DIR *dirp, struct dirent_lg *entry,

 struct dirent_lg **result);

 Service Program Name: QP0LLIBTS

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “readdir_r()—Read Directory Entry” on page 563.

The QlgReaddir_r() function, like the readdir_r() function, initializes a structure that is referenced by

entry to represent the next directory entry in the directory stream that is associated with dirp. The

difference is that the QlgReaddir_r() dirp parameter points to a dirent_lg structure, while the readdir_r()

dirp parameter points to a dirent structure.

The QlgReaddir_r functions stores a pointer to the entry structure at the location referenced by result.

Limited information on the dirp parameter, the entry parameter, and the result parameter is provided here.

For more information on these parameters and for a discussion of authorities required, return values, and

related information, see “readdir_r()—Read Directory Entry” on page 563—Read Directory Entry.

Parameters

dirp (Input) A pointer to a DIR that refers to the open directory stream to be read. This pointer is

returned by QlgOpendir().

entry (Output) A pointer to a dirent_lg structure in which the directory entry is to be placed.

result (Output) A pointer to a pointer to a dirent_lg structure. Upon successfully reading a directory

entry, this dirent_lg pointer is set to the same value as entry. Upon reaching the end of the

directory stream, this pointer is set to NULL.

 A dirent_lg structure has the following contents:

 char d_reserved1[16] Reserved.

unsigned int d_fileno_gen_id The generation ID associated with the file ID.

372 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

ino_t d_fileno The file ID of the file. This number uniquely identifies

the object within a file system.

unsigned int d_reclen The length of the directory entry in bytes.

int d_reserved3 Reserved.

char d_reserved4[6] Reserved.

char d_reserved5[2] Reserved.

Qlg_Path_Name_T d_lg_name A Qlg_Path_Name_T structure that gives the name of a

file in the directory. The path name is not

null-terminated within the structure. The structure also

provides National Language Support information, which

includes ccsid, country_id, and language_id. This

structure has a maximum length of

{_QP0L_DIR_NAME_LG} bytes. For more information on

the Qlg_Path_Name_T structure, see Path name format.

Related Information

v “readdir()—Read Directory Entry” on page 557—Read Directory Entry

v “QlgOpendir()—Open Directory (using NLS-enabled path name)” on page 365—Open Directory (using

NLS-enabled path name)

v “QlgPathconf()—Get Configurable Path Name Variables (using NLS-enabled path name)” on page

368—Get Configurable Path Name Variables (using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example reads the contents of a root directory:

#include <sys/types.h>

#include <dirent.h>

#include <errno.h>

#include <stdio.h>

main() {

 int return_code;

 DIR *dir;

 struct dirent_lg entry;

 struct dirent_lg *result;

 typedef struct my_dirent_lg

 {

 struct dirent_lg *entry;

 char d_lg_name[1];

 };

 struct my_dirent_lg lg_struct;

#define mypath "/"

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= */

 /* the length of the path name or this */

 /* must be a pointer to the path name. */

 };

 struct pnstruct path;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

Integrated File System APIs 373

pns.htm
aboutapis.htm#CODEDISCLAIMER

memset((void*)&path, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 path.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if ((dir = QlgOpendir((Qlg_Path_Name_T *)&path)) == NULL)

 perror("QlgOpendir() error");

 else {

 puts("contents of root:");

 for (return_code = QlgReaddir_r(dir, &entry, &result);

 result != NULL && return_code == 0;

 return_code = QlgReaddir_r(dir, &entry, &result))

 printf(" %s\n", entry.d_lg_name);

 if (return_code != 0)

 perror("QlgReaddir_r() error");

 closedir(dir);

 }

}

Output:

contents of root:

 .

 ..

 QSYS.LIB

 QDLS

 QOpenSys

 QOPT

 home

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgReadlink()—Read Value of Symbolic Link (using NLS-enabled path

name)

 Syntax

 #include <unistd.h>

 int QlgReadlink(Qlg_Path_Name_T *path, Qlg_Path_Name_T *buf,

 size_t bufsiz);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “readlink()—Read Value of Symbolic Link” on page 569.

The QlgReadlink() function, like the readlink() function, places the contents of the symboliclink path in

the buffer buf. The difference is that the QlgReadlink() function uses pointers to Qlg_Path_Name_T

structures, while readlink() uses pointers to character strings.

374 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Limited information on the path parameter, the buf parameter, and the size parameter is provided here.

For more information on these parameters and for a discussion authorities required, return values, and

related information, see “readlink()—Read Value of Symbolic Link” on page 569—Read Value of Symbolic

Link.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the symbolic link. For more information on the Qlg_Path_Name_T structure, see

Path name format.

buf (Output) A pointer to the area in which the contents of the link should be stored. For more

information on the Qlg_Path_Name_T structure, see Path name format.

bufsiz (Input) The size of buf in bytes.

Related Information

v “readlink()—Read Value of Symbolic Link” on page 569—Read Value of Symbolic Link

v “QlgLstat()—Get File or Link Information (using NLS-enabled path name)” on page 354—Get File or

Link Information (using NLS-enabled path name)

v “QlgStat()—Get File Information (using NLS-enabled path name)” on page 384—Get File Information

(using NLS-enabled path name)

v “QlgSymlink()—Make Symbolic Link (using NLS-enabled path name)” on page 391—Make Symbolic

Link (using NLS-enabled path name)

v “Qp0lUnlink()—Remove Link to File” on page 526—Remove Link to File

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses QlgReadlink():

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <Qp0lstdi.h>

main() {

 int file_descriptor;

 #define mypath_fn "readlink.file"

 #define mypath_sl "readlink.symlink"

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= the length */

 /* of the path name or this must be a */

 /* pointer to the path name. */

 };

 struct pnstruct path_fn;

 struct pnstruct path_sl;

 struct pnstruct path_buf;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

Integrated File System APIs 375

pns.htm
pns.htm
aboutapis.htm#CODEDISCLAIMER

/***/

 memset((void*)path name_fn, 0x00, sizeof(struct pnstruct));

 path_fn.qlg_struct.CCSID = 37;

 memcpy(path_fn.qlg_struct.Country_ID,US_const,2);

 memcpy(path_fn.qlg_struct.Language_ID,Language_const,3);

 path_fn.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path_fn.qlg_struct.Path_Length = sizeof(mypath_fn)-1;

 path_fn.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path_fn.pn,mypath_fn,sizeof(mypath_fn)-1);

 memset((void*)path name_sl, 0x00, sizeof(struct pnstruct));

 path_sl.qlg_struct.CCSID = 37;

 memcpy(path_sl.qlg_struct.Country_ID,US_const,2);

 memcpy(path_sl.qlg_struct.Language_ID,Language_const,3);

 path_sl.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path_sl.qlg_struct.Path_Length = sizeof(mypath_sl)-1;

 path_sl.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path_sl.pn,mypath_sl,sizeof(mypath_sl)-1);

 if ((file_descriptor = QlgCreat((Qlg_Path_Name_T *)path name_fn, S_IWUSR)) < 0)

 perror("QlgCreat() error");

 else {

 close(file_descriptor);

 if (QlgSymlink((Qlg_Path_Name_T *)path name_fn,

 (Qlg_Path_Name_T *)path name_sl) != 0)

 perror("QlgSymlink() error");

 else {

 if (QlgReadlink((Qlg_Path_Name_T *)path name_sl,

 (Qlg_Path_Name_T *)path name_buf,

 sizeof(path_buf)) < 0)

 perror("QlgReadlink() error");

 else printf("QlgReadlink() returned ’%s’ for ’%s’\n",

 path name_buf.pn,

 path name_sl.pn);

 QlgUnlink((Qlg_Path_Name_T *)path name_sl);

 }

 QlgUnlink((Qlg_Path_Name_T *)path name_fn);

 }

}

Output:

QlgReadlink() returned ’readlink.file’ for ’readlink.symlink’

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

376 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

QlgRenameKeep()—Rename File or Directory, Keep ″new″ If It Exists

(using NLS-enabled path name)

 Syntax

 #include <Qp0lstdi.h>

 int QlgRenameKeep(Qlg_Path_Name_T *old, Qlg_Path_Name_T *new);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “Qp0lRenameKeep()—Rename File or Directory, Keep ″new″ If It

Exists” on page 471.

The QlgRenameKeep() function, like the Qp0lRenameKeep() function, renames a file or a directory

specified by old to the name given by new. The difference is that the QlgRenameKeep() function takes

pointers to Qlg_Path_Name_T structures, while Qp0lRenameKeep() takes pointers to character strings.

Limited information on the old and new parameters is provided here. For more information on these

parameters and for a discussion of the authorities required, return values, and related information, see

“Qp0lRenameKeep()—Rename File or Directory, Keep ″new″ If It Exists” on page 471—Rename File or

Directory, Keep ″new″ If It Exists.

Parameters

old (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to the

path name of the file to be renamed. For more information on the Qlg_Path_Name_T structure,

see Path name format.

new (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to the

path name of the new name for the file. For more information on the Qlg_Path_Name_T

structure, see Path name format.

Related Information

v “Qp0lRenameKeep()—Rename File or Directory, Keep ″new″ If It Exists” on page 471—Rename File or

Directory, Keep ″new″ If It Exists

v “QlgPathconf()—Get Configurable Path Name Variables (using NLS-enabled path name)” on page

368—Get Configurable Path Name Variables (using NLS-enabled path name)

v “QlgRenameUnlink()—Rename File or Directory, Unlink ″new″ If It Exists (using NLS-enabled path

name)” on page 379—Rename File or Directory, Unlink ″new″ If It Exists (using NLS-enabled path

name)

Example

See Code disclaimer information for information pertaining to code examples.

When you pass two file names to this example, it changes the first file name to the second file name

using QlgRenameKeep().

#include <Qp0lstdi.h>

#include <stdio.h>

int main(int argc, char **argv)

{

Integrated File System APIs 377

pns.htm
pns.htm
aboutapis.htm#CODEDISCLAIMER

if (argc != 3)

 {

 printf("Usage: %s old_fn new_fn\n", argv[0]);

 perror ("Could not rename file");

 }

 else

 {

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 /*** EXTRA STORAGE MAY BE NEEDED ***/

 char pn[1025]; /* This size must be >= the path */

 /* name length or a pointer to */

 /* the path name. */

 };

 struct pnstruct path_old;

 struct pnstruct path_new;

 struct pnstruct *path_old_ptr;

 struct pnstruct *path_new_ptr;

 memset((void*)&path_old, 0x00, sizeof(struct pnstruct));

 path_old_ptr = &path_old;

 path_old.qlg_struct.CCSID = 37;

 memcpy(path_old.qlg_struct.Country_ID,US_const,2);

 memcpy(path_old.qlg_struct.Language_ID,Language_const,3);;

 path_old.qlg_struct.Path_Type = 0;

 path_old.qlg_struct.Path_Length = strlen(argv[1]);

 path_old.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path_old.pn,argv[1],sizeof(argv[1])-1);

 memset((void*)&path_new, 0x00, sizeof(struct pnstruct));

 path_new_ptr = &path_new;

 path_new.qlg_struct.CCSID = 37;

 memcpy(path_new.qlg_struct.Country_ID,US_const,2);

 memcpy(path_new.qlg_struct.Language_ID,Language_const,3);;

 path_new.qlg_struct.Path_Type = 0;

 path_new.qlg_struct.Path_Length = strlen(argv[2]);

 path_new.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path_new.pn,argv[2],sizeof(argv[2])-1);

 if (QlgRenameKeep((Qlg_Path_Name_T *)path_old_ptr,

 (Qlg_Path_Name_T *)path_new_ptr) != 0)

 {perror ("Could not rename file."); }

 else {perror ("File renamed."); }

 }

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

378 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

QlgRenameUnlink()—Rename File or Directory, Unlink ″new″ If It Exists

(using NLS-enabled path name)

 Syntax

 #include <Qp0lstdi.h>

 int QlgRenameUnlink(Qlg_Path_Name_T *old, Qlg_Path_Name_T *new);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “Qp0lRenameUnlink()—Rename File or Directory, Unlink ″new″ If It

Exists” on page 480.

The QlgRenameUnlink() function, like the Qp0lRenameUnlink() function, renames a file or a directory

specified by old to the name given by new. The difference is that the QlgRenameUnlink() function takes a

pointer to a Qlg_Path_Name_T structure, while Qp0lRenameUnlink() takes a pointer to a character

string.

Limited information on the old and old parameters is provided here. For more information on these

parameters and for a discussion of the authorities required, return values, and related information, see

“Qp0lRenameUnlink()—Rename File or Directory, Unlink ″new″ If It Exists” on page 480—Rename File or

Directory, Unlink ″new″ If It Exists.

Parameters

old (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the file to be renamed. For more information on the Qlg_Path_Name_T structure,

see Path name format.

new (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the new name of the file. For more information on the Qlg_Path_Name_T structure,

Path name format.

Related Information

v “Qp0lRenameUnlink()—Rename File or Directory, Unlink ″new″ If It Exists” on page 480—Rename File

or Directory, Unlink ″new″ If It Exists

v “QlgPathconf()—Get Configurable Path Name Variables (using NLS-enabled path name)” on page

368—Get Configurable Path Name Variables (using NLS-enabled path name)

v “QlgRenameKeep()—Rename File or Directory, Keep ″new″ If It Exists (using NLS-enabled path

name)” on page 377—Rename File or Directory, Keep ″new″ If It Exists (using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

When you pass two file names to this example, it tries to change the file name from the first name to the

second using QlgRenameUnlink().

#include <Qp0lstdi.h>

#include <stdio.h>

int main(int argc, char **argv)

{

Integrated File System APIs 379

pns.htm
pns.htm
aboutapis.htm#CODEDISCLAIMER

if (argc != 3)

 {

 printf("Usage: %s old_fn new_fn\n", argv[0]);

 perror ("Could not unlink the file");

 }

 else

 {

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 /*** EXTRA STORAGE MAY BE NEEDED ***/

 char pn[1025]; /* This size must be >= the path */

 /* name length or a pointer to */

 /* the path name. */

 };

 struct pnstruct path_old;

 struct pnstruct path_new;

 struct pnstruct *path_old_ptr;

 struct pnstruct *path_new_ptr;

 memset((void*)&path_old, 0x00, sizeof(struct pnstruct));

 path_old_ptr = &path_old;

 path_old.qlg_struct.CCSID = 37;

 memcpy(path_old.qlg_struct.Country_ID,US_const,2);

 memcpy(path_old.qlg_struct.Language_ID,Language_const,3);;

 path_old.qlg_struct.Path_Type = 0;

 path_old.qlg_struct.Path_Length = strlen(argv[1]);

 path_old.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path_old.pn,argv[1],sizeof(argv[1]));

 memset((void*)&path_new, 0x00, sizeof(struct pnstruct));

 path_new_ptr = &path_new;

 path_new.qlg_struct.CCSID = 37;

 memcpy(path_new.qlg_struct.Country_ID,US_const,2);

 memcpy(path_new.qlg_struct.Language_ID,Language_const,3);;

 path_new.qlg_struct.Path_Type = 0;

 path_new.qlg_struct.Path_Length = strlen(argv[2]);

 path_new.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path_new.pn,argv[2],sizeof(argv[2]));

 if (QlgRenameUnlink((Qlg_Path_Name_T *)path_old_ptr,

 (Qlg_Path_Name_T *)path_new_ptr) != 0)

 {perror ("Could not unlink the file."); }

 else {perror ("File unlinked."); }

 }

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

380 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

QlgRmdir()—Remove Directory (using NLS-enabled path name)

 Syntax

 #include <unistd.h>

 int QlgRmdir(Qlg_Path_Name_T *path,);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “rmdir()—Remove Directory” on page 585.

The QlgRmdir() function, like the rmdir() function, removes a directory, path, provided that the directory

is empty; that is, the directory contains no entries other than ″dot″ (.) or ″dot-dot″ (..). The difference is

that the QlgRmdir() function takes a pointer to a Qlg_Path_Name_T structure, while rmdir() takes a

pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of authorities required, return values, usage notes, and related information, see

“rmdir()—Remove Directory” on page 585—Remove Directory.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the directory to be removed. For more information on the Qlg_Path_Name_T

structure, see Path name format.

Related Information

v “rmdir()—Remove Directory” on page 585—Remove Directory

v “QlgMkdir()—Make Directory (using NLS-enabled path name)” on page 359—Make Directory (using

NLS-enabled path name)

v “Qp0lUnlink()—Remove Link to File” on page 526—Remove Link to File (using NLS-enabled path

name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example removes a directory:

#include <sys/stat.h>

#include <unistd.h>

#include <stdio.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <Qp0lstdi.h>

main() {

#define mypath_d "new_dir"

#define mypath_f "new_dir/new_file"

 const char US_const[3]= "US";

 const char Language_const[4] ="ENU";

 typedef struct pnstruct

 {

Integrated File System APIs 381

pns.htm
aboutapis.htm#CODEDISCLAIMER

Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= the */

 /* length of the path name or must */

 /* be a pointer to the path name. */

 };

 struct pnstruct path_d;

 struct pnstruct path_f;

 int file_descriptor;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path_d, 0x00, sizeof(struct pnstruct));

 path_d.qlg_struct.CCSID = 37;

 memcpy(path_d.qlg_struct.Country_ID,US_const,2);

 memcpy(path_d.qlg_struct.Language_ID,Language_const,3);

 path_d.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path_d.qlg_struct.Path_Length = sizeof(mypath_d)-1;

 path_d.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path_d.pn,mypath_d,sizeof(mypath_d)-1);

 memset((void*)&path_f, 0x00, sizeof(struct pnstruct));

 path_f.qlg_struct.CCSID = 37;

 memcpy(path_f.qlg_struct.Country_ID,US_const,2);

 memcpy(path_f.qlg_struct.Language_ID,Language_const,3);

 path_f.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path_f.qlg_struct.Path_Length = sizeof(mypath_f)-1;

 path_d.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path_f.pn,mypath_f,sizeof(mypath_f)-1);

 if (QlgMkdir((Qlg_Path_Name_T *)&path_d,S_IRWXU|S_IRGRP|S_IXGRP) !

 perror("QlgMkdir() error");

 else if ((file_descriptor = QlgCreat((Qlg_Path_Name_T *)&path_f,S_IWUSR)) <

 perror("QlgCreat() error");

 else {

 close(file_descriptor);

 QlgUnlink((Qlg_Path_Name_T *)&path_f);

 }

 if (QlgRmdir((Qlg_Path_Name_T *)&path_d) != 0)

 perror("QlgRmdir() error");

 else

 puts("removed!");

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

382 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

QlgSaveStgFree()—Save Storage Free (using NLS-enabled path name)

 Syntax

 #include <Qp0lstdi.h>

 int QlgSaveStgFree(

 Qlg_Path_Name_T *Path_Name,

 Qp0l_StgFree_Function_t *UserFunction_ptr,

 void *Function_CtlBlk_ptr);

 Service Program Name: QP0LLIB3

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “Qp0lSaveStgFree()—Save Storage Free” on page 503.

For a description of this function and more information on the parameters, authorities required, return

values, error conditions, error messages, usage notes, and related information, see

“Qp0lSaveStgFree()—Save Storage Free” on page 503—Save Storage Free.

API introduced: V5R1

 Top | Backup and Recovery APIs | UNIX-Type APIs | APIs by category

QlgSetAttr()—Set Attributes (using NLS-enabled path name)

 Syntax

 #include <Qp0lstdi.h>

 int QlgSetAttr

 (Qlg_Path_Name_T *Path_Name,

 char *Buffer_ptr,

 uint Buffer_Size,

 uint Follow_Symlnk, ...);

 Service Program Name: QP0LLIB3

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “Qp0lSetAttr()—Set Attributes” on page 509.

For a description of this function and information on its parameters, authorities required, return values,

error conditions, error messages, usage notes, and related information, see “Qp0lSetAttr()—Set Attributes”

on page 509—Set Attributes.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 383

#TOP_OF_PAGE
back1.htm
unix.htm
aplist.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

QlgStat()—Get File Information (using NLS-enabled path name)

 Syntax

 #include <sys/stat.h>

 int QlgStat(Qlg_Path_Name_T *path,struct stat *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “stat()—Get File Information” on page 592.

The QlgStat() function, like the stat() function, gets status information about a specified file and places it

in the area of memory pointed to by the buf argument. The difference is that the QlgStat() function takes

a pointer to a Qlg_Path_Name_T structure, while stat() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“stat()—Get File Information” on page 592—Get File Information.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the file from which information is required. For more information on the

Qlg_Path_Name_T structure, see Path name format.

Related Information

v “stat()—Get File Information” on page 592—Get File Information

v “QlgStat64()—Get File Information (large file enabled and using NLS-enabled path name)” on page

386—Get File Information (large file enabled and using NLS-enabled path name)

v “QlgChmod()—Change File Authorizations (using NLS-enabled path name)” on page 327—Change File

Authorizations (using NLS-enabled path name)

v “QlgChown()—Change Owner and Group of File (using NLS-enabled path name)” on page

329—Change Owner and Group of File (using NLS-enabled path name)

v “QlgCreat()—Create or Rewrite File (using NLS-enabled path name)” on page 331—Create or Rewrite

File (using NLS-enabled path name)

v “QlgLink()—Create Link to File (using NLS-enabled path name)” on page 352—Create Link to File

(using NLS-enabled path name)

v “QlgLstat()—Get File or Link Information (using NLS-enabled path name)” on page 354—Get File or

Link Information (using NLS-enabled path name)

v “QlgMkdir()—Make Directory (using NLS-enabled path name)” on page 359—Make Directory (using

NLS-enabled path name)

v “QlgReadlink()—Read Value of Symbolic Link (using NLS-enabled path name)” on page 374—Read

Value of Symbolic Link (using NLS-enabled path name)

v “QlgSymlink()—Make Symbolic Link (using NLS-enabled path name)” on page 391—Make Symbolic

Link (using NLS-enabled path name)

v “QlgUtime()—Set File Access and Modification Times (using NLS-enabled path name)” on page

395—Set File Access and Modification Times (using NLS-enabled path name)

v “Qp0lUnlink()—Remove Link to File” on page 526—Remove Link to File

384 iSeries: UNIX-Type -- Integrated File System APIs

pns.htm

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets status information about a file:

#include <sys/types.h>

#include <sys/stat.h>

#include <stdio.h>

#include <time.h>

main() {

 struct stat info;

 #define mypath "/"

 const char US_const[3]= "US";

 const char Language_const[4] ="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= the */

 /* length of the path name or must */

 /* be a pointer to the path name. */

 };

 struct pnstruct path;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 path.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if (QlgStat((Qlg_Path_Name_T *)&path, &info) != 0)

 perror("QlgStat() error");

 else {

 puts("QlgStat() returned the following information about root f/s:")

 printf(" inode: %d\n", (int) info.st_ino);

 printf(" dev id: %d\n", (int) info.st_dev);

 printf(" mode: %08x\n", info.st_mode);

 printf(" links: %d\n", info.st_nlink);

 printf(" uid: %d\n", (int) info.st_uid);

 printf(" gid: %d\n", (int) info.st_gid);

 }

}

Output: note that the following information will vary from system to system.

QlgStat() returned the following information about root f/s:

 inode: 0

 dev id: 1

 mode: 010001ed

 links: 3

 uid: 137

 gid: 500

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 385

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

QlgStat64()—Get File Information (large file enabled and using

NLS-enabled path name)

 Syntax

 #include <sys/stat.h>

 int QlgStat64(Qlg_Path_Name_T *path, struct stat64 *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “stat64()—Get File Information (Large File Enabled)” on page 601.

TheQlgStat64() function, like the stat64() function, gets status information about a specified file and

places it in the area of memory pointed to by the buf argument. The difference is that the QlgStat64()

function takes a pointer to a Qlg_Path_Name_T structure, while stat64() takes a pointer to a character

string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“stat64()—Get File Information (Large File Enabled)” on page 601—Get File Information (Large File

Enabled).

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the file from which information is required. For more information on the

Qlg_Path_Name_T structure, see Path name format.

Related Information

v “stat()—Get File Information” on page 592—Get File Information

v “stat64()—Get File Information (Large File Enabled)” on page 601—Get File Information (Large File

Enabled)

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets status information about a file:

#define _LARGE_FILE_API

#include <sys/types.h>

#include <sys/stat.h>

#include <stdio.h>

#include <time.h>

main() {

 struct stat64 info;

 #define mypath "/"

 const char US_const[3]= "US";

 const char Language_const[4] ="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

386 iSeries: UNIX-Type -- Integrated File System APIs

pns.htm
aboutapis.htm#CODEDISCLAIMER

char pn[100]; /* This array size must be >= the */

 /* length of the path name or this must */

 /* be a pointer to the path name. */

 };

 struct pnstruct path;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 path.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.pn,mypath,sizeof(mypath));

 if (QlgStat64((Qlg_Path_Name_T *)&path, &info) != 0)

 perror("QlgStat64() error");

 else {

 puts("QlgStat64() returned the following information about root f/s:");

 printf(" inode: %d\n", (int) info.st_ino);

 printf(" dev id: %d\n", (int) info.st_dev);

 printf(" mode: %08x\n", info.st_mode);

 printf(" links: %d\n", info.st_nlink);

 printf(" uid: %d\n", (int) info.st_uid);

 printf(" gid: %d\n", (int) info.st_gid);

 }

}

Output: note that the following information will vary from system to system.

QlgStat64() returned the following information about root f/s:

 inode: 0

 dev id: 1

 mode: 010001ed

 links: 3

 uid: 137

 gid: 500

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgStatvfs()—Get File System Information (using NLS-enabled path

name)

 Syntax

 #include <sys/statvfs.h>

 int QlgStatvfs(Qlg_Path_Name_T *path, struct statvfs *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “statvfs()—Get File System Information” on page 604.

Integrated File System APIs 387

#TOP_OF_PAGE
unix.htm
aplist.htm

The QlgStatvfs() function, like the statvfs() function, gets status information about the file system that

contains the file named by the path argument. The difference is that the QlgStatvfs() function takes a

pointer to a Qlg_Path_Name_T structure, while statvfs() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“statvfs()—Get File System Information” on page 604—Get File System Information.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the file from which file system information is required. For more information on the

Qlg_Path_Name_T structure, see Path name format.

Related Information

v “statvfs()—Get File System Information” on page 604—Get File System Information

v “QlgStatvfs64()—Get File System Information (64-Bit enabled and using NLS-enabled path name)” on

page 390—Get File System Information (64-Bit Enabled and using NLS-enabled path name)

v “QlgChmod()—Change File Authorizations (using NLS-enabled path name)” on page 327—Change File

Authorizations (using NLS-enabled path name)

v “QlgChown()—Change Owner and Group of File (using NLS-enabled path name)” on page

329—Change Owner and Group of File (using NLS-enabled path name)

v “QlgCreat()—Create or Rewrite File (using NLS-enabled path name)” on page 331—Create or Rewrite

File (using NLS-enabled path name)

v “QlgLink()—Create Link to File (using NLS-enabled path name)” on page 352—Create Link to File

(using NLS-enabled path name)

v “QlgUtime()—Set File Access and Modification Times (using NLS-enabled path name)” on page

395—Set File Access and Modification Times (using NLS-enabled path name)

v “Qp0lUnlink()—Remove Link to File” on page 526—Remove Link to File

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets status information about a file system:

#include <sys/statvfs.h>

#include <stdio.h>

#include <sys/types.h>

main() {

 struct statvfs info;

 #define mypath "/"

 const char US_const[3]= "US";

 const char Language_const[4] ="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= the */

 /* length of the path name or must */

 /* be a pointer to the path name. */

 };

 struct pnstruct path;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)path name, 0x00, sizeof(struct pnstruct));

388 iSeries: UNIX-Type -- Integrated File System APIs

pns.htm
aboutapis.htm#CODEDISCLAIMER

path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 path.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if (-1 == QlgStatvfs((Qlg_Path_Name_T *)path name, &info))

 perror("QlgStatvfs() error");

 else {

 puts("QlgStatvfs() returned the following information");

 puts("about the Root (’/’) file system:");

 printf(" f_bsize : %u\n", info.f_bsize);

 printf(" f_blocks : %08X%08X\n",

 *((int *)&info.f_blocks[0]),

 *((int *)&info.f_blocks[4]));

 printf(" f_bfree : %08X%08X\n",

 *((int *)&info.f_bfree[0]),

 *((int *)&info.f_bfree[4]));

 printf(" f_files : %u\n", info.f_files);

 printf(" f_ffree : %u\n", info.f_ffree);

 printf(" f_fsid : %u\n", info.f_fsid);

 printf(" f_flag : %X\n", info.f_flag);

 printf(" f_namemax : %u\n", info.f_namemax);

 printf(" f_pathmax : %u\n", info.f_pathmax);

 printf(" f_basetype : %s\n", info.f_basetype);

 }

}

Output: The following information will vary from file system to file system.

QlgStatvfs() returned the following information

about the Root (’/’) file system:

 f_bsize : 4096

 f_blocks : 00000000002BF800

 f_bfree : 0000000000091703

 f_files : 4294967295

 f_ffree : 4294967295

 f_fsid : 0

 f_flag : 1A

 f_namemax : 255

 f_pathmax : 4294967295

 f_basetype : "root" (/)

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 389

#TOP_OF_PAGE
unix.htm
aplist.htm

QlgStatvfs64()—Get File System Information (64-Bit enabled and using

NLS-enabled path name)

 Syntax

 #include <sys/statvfs.h>

 int QlgStatvfs64(Qlg_Path_Name_T *path,

 struct statvfs64 *buf

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “statvfs()—Get File System Information” on page 604.

The QlgStatvfs64() function, like the statvfs64() function, gets status information about the file system

that contains the file named by the path argument. The difference is that the QlgStatvfs64() function takes

a pointer to a Qlg_Path_Name_T structure, while statvfs64() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“statvfs()—Get File System Information” on page 604—Get File System Information.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the file from which file system information is required. For more information on the

Qlg_Path_Name_T structure, see Path name format.

Related Information

v “statvfs()—Get File System Information” on page 604—Get File System Information

v “statvfs64()—Get File System Information (64-Bit Enabled)” on page 612—Get File System Information

(64-Bit Enabled)

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets information about a file system.

#include <sys/statvfs.h>

#include <stdio.h>

#include <sys/types.h>

main() {

 struct statvfs info;

 #define mypath "/"

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100];

 /* This array size must be >= the length */

 /* of the path name or must be a pointer */

390 iSeries: UNIX-Type -- Integrated File System APIs

pns.htm
aboutapis.htm#CODEDISCLAIMER

/* to the path name. */

 };

 struct pnstruct path;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 path.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.pn,mypath,sizeof(mypath)-);

 if (-1 == (QlgStatvfs64((Qlg_Path_Name_T *)&path,

 (struct statvfs64 *)&info)))

 {

 perror("QlgStatvfs64() error");

 }

 else

 {

 puts("QlgStatvfs64() returned the following information");

 puts("about the Root (’/’) file system:");

 printf(" f_bsize : %u\n", info.f_bsize);

 printf(" f_blocks : %08X%08X\n",

 *((int *)&info.f_blocks[0]),

 *((int *)&info.f_blocks[4]));

 printf(" f_bfree : %08X%08X\n",

 *((int *)&info.f_bfree[0]),

 *((int *)&info.f_bfree[4]));

 printf(" f_files : %u\n", info.f_files);

 printf(" f_ffree : %u\n", info.f_ffree);

 printf(" f_fsid : %u\n", info.f_fsid);

 printf(" f_flag : %X\n", info.f_flag);

 printf(" f_namemax : %u\n", info.f_namemax);

 printf(" f_pathmax : %u\n", info.f_pathmax);

 printf(" f_basetype : %s\n", info.f_basetype);

 }

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgSymlink()—Make Symbolic Link (using NLS-enabled path name)

 Syntax

 #include <unistd.h>

 int QlgSymlink(

 Qlg_Path_Name_T *pname, Qlg_Path_Name_T *slink);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “symlink()—Make Symbolic Link” on page 614.

Integrated File System APIs 391

#TOP_OF_PAGE
unix.htm
aplist.htm

The QlgSymlink() function, like the symlink() function, creates the symbolic link named by slink with

the value specified by pname. The difference is that the QlgSymlink() function takes a pointer to a

Qlg_Path_Name_T structure, while symlink() takes a pointer to a character string.

Limited information on the *pname and the *slink parameter is provided here. For more information on

these parameters and for a discussion of authorities required, return values, and related information, see

“symlink()—Make Symbolic Link” on page 614—Make Symbolic Link.

Parameters

pname (Input) A pointer to a Qlg_Path_Name_T structure that contains a value or a pointer to a value of

the symbolic link. For more information on the Qlg_Path_Name_T structure, see Path name

format.

slink (Input) A pointer to a Qlg_Path_Name_T structure that contains a name or a pointer to a name of

the symbolic link to be created. For more information on the Qlg_Path_Name_T structure, see

Path name format.

Related Information

v “symlink()—Make Symbolic Link” on page 614—Make Symbolic Link

v “QlgLink()—Create Link to File (using NLS-enabled path name)” on page 352—Create Link to File

(using NLS-enabled path name)

v “QlgReadlink()—Read Value of Symbolic Link (using NLS-enabled path name)” on page 374—Read

Value of Symbolic Link (using NLS-enabled path name)

v “Qp0lUnlink()—Remove Link to File” on page 526—Remove Link to File

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses QlgSymlink():

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdlib.h>

#include <Qp0lstdi.h>

main() {

 char buf[30];

 int fd;

 #define mypath_fn "readlink.file"

 #define mypath_sl "readlink.symlink"

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= */

 /* the length of the path name or */

 /* this must be a pointer to the */

 /* path name. */

 };

 struct pnstruct path_fn;

 struct pnstruct path_sl;

 struct pnstruct path_buf;

392 iSeries: UNIX-Type -- Integrated File System APIs

pns.htm
pns.htm
pns.htm
aboutapis.htm#CODEDISCLAIMER

/***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path_fn, 0x00, sizeof(struct pnstruct));

 path_fn.qlg_struct.CCSID = 37;

 memcpy(path_fn.qlg_struct.Country_ID,US_const,2);

 memcpy(path_fn.qlg_struct.Language_ID,Language_const,3);

 path_fn.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path_fn.qlg_struct.Path_Length = sizeof(mypath_fn)-1;

 path_fn.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path_fn.pn,mypath_sl,sizeof(mypath_fn)-1);

 memset((void*)&path_sl, 0x00, sizeof(struct pnstruct));

 path_sl.qlg_struct.CCSID = 37;

 memcpy(path_sl.qlg_struct.Country_ID,US_const,2);

 memcpy(path_sl.qlg_struct.Language_ID,Language_const,3);

 path_sl.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path_sl.qlg_struct.Path_Length = sizeof(mypath_sl)-1;

 path_sl.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path_sl.pn,mypath_sl,sizeof(mypath_sl)-1);

 if ((fd = QlgCreat((Qlg_Path_Name_T *)&path_fn, S_IWUSR))

 < 0)

 perror("QlgCreat() error");

 else {

 close(fd);

 if (QlgSymlink((Qlg_Path_Name_T *)&path_fn,

 (Qlg_Path_Name_T *)&path_sl) != 0)

 perror("QlgSymlink() error");

 else {

 if (QlgReadlink((Qlg_Path_Name_T *)&path_sl,

 (Qlg_Path_Name_T *)&path_buf,

 sizeof(struct pnstruct))

 < 0)

 perror("QlgReadlink() error");

 else printf("QlgReadlink() returned ’%s’ for ’%s’\n",

 (Qlg_Path_Name_T *)&path_buf.pn,

 (Qlg_Path_Name_T *)&path_sl.pn);

 QlgUnlink((Qlg_Path_Name_T *)&path_sl);

 }

 QlgUnlink((Qlg_Path_Name_T *)&path_fn);

 }

}

Output:

QlgReadlink() returned ’readlink.file’ for ’readlink.symlink’

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 393

#TOP_OF_PAGE
unix.htm
aplist.htm

QlgUnlink()—Remove Link to File (using NLS-enabled path name)

 Syntax

 #include <Qp0lstdi.h>

 int QlgUnlink(Qlg_Path_Name_T *Path_Name);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “open()—Open File” on page 267.

The QlgUnlink() function, similar to the unlink() function, removes a directory entry that refers to a file.

QlgUnlink()differs from unlink() in that the Path_Name parameter is a pointer to a Qlg_Path_Name_T

structure instead of a pointer to a character string.

For more information on the *Path_Name parameter and a discussion of the authorities required, return

values, and related information, see “unlink()—Remove Link to File” on page 624—Remove Link to File.

Parameters

Path_Name

(Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the object to be unlinked. For more information on the Qlg_Path_Name_T structure,

see Path name format.

Related Information

v “unlink()—Remove Link to File” on page 624—Remove Link to File

v “link()—Create Link to File” on page 210—Create Link to File

v “QlgOpen()—Open a File (using NLS-enabled path name)” on page 362—Open a File (using

NLS-enabled path name)

v “QlgRmdir()—Remove Directory (using NLS-enabled path name)” on page 381—Remove Directory

(using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example removes a link to a file. This program was stored in a source file with CCSID 37,

so the constant string ″newfile″ will be compiled in CCSID 37. Therefore, the country or region and

language specified are United States English, and the CCSID specified is 37.

#include <fcntl.h>

#include <stdio.h>

#include <Qp0lstdi.h>

main() {

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[7];

 };

394 iSeries: UNIX-Type -- Integrated File System APIs

pns.htm
aboutapis.htm#CODEDISCLAIMER

struct pnstruct pns;

 struct pnstruct *pns_ptr = NULL;

 char fn[]="unlink.file";

 memset((void*)&pns, 0x00, sizeof(struct pnstruct));

 pns.qlg_struct.CCSID = 37;

 memcpy(pns.qlg_struct.Country_ID,US_const,2);

 memcpy(pns.qlg_struct.Language_ID,Language_const,3);;

 pns.qlg_struct.Path_Type = 0;

 pns.qlg_struct.Path_Length = sizeof(fn)-1;

 pns.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(pns.pn,fn,sizeof(fn)-1);

 pns_ptr = &pns;

 if (QlgUnlink((Qlg_Path_Name_T *)&pns) != 0)

 {

 perror("QlgUnlink() error");

 }

 else printf("QlgUnlink() successful");

}

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

QlgUtime()—Set File Access and Modification Times (using

NLS-enabled path name)

 Syntax

 #include <utime.h>

 int QlgUtime(Qlg_Path_Name_T *path, const struct utimbuf

 *times);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “utime()—Set File Access and Modification Times” on page 632.

The QlgUtime() function, like the utime() function, sets the access and modification times of path to the

values in the utimbuf structure. The difference is that the QlgUtime() function takes a pointer to a

Qlg_Path_Name_T structure, while utime() takes a pointer to a character string.

Limited information on the path parameter is provided here. For more information on the path parameter

and for a discussion of other parameters, authorities required, return values, and related information, see

“utime()—Set File Access and Modification Times” on page 632—Set File Access and Modification Times.

Parameters

path (Input) A pointer to a Qlg_Path_Name_T structure that contains a path name or a pointer to a

path name of the file for which the times should be changed. For more information on the

Qlg_Path_Name_T structure, see Path name format.

Integrated File System APIs 395

#TOP_OF_PAGE
unix.htm
aplist.htm
pns.htm

Related Information

v “utime()—Set File Access and Modification Times” on page 632—Set File Access and Modification

Times

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses QlgUtime():

#include <utime.h>

#include <time.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <Qp0lstdi.h>

main() {

 int file_descriptor;

 struct utimbuf ubuf;

 struct stat info;

 #define mypath "utime.file"

 const char US_const[3]= "US";

 const char Language_const[4] ="ENU";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[100]; /* This array size must be >= the */

 /* length of the path name or must */

 /* be a pointer to the path name. */

 };

 struct pnstruct path;

 /***/

 /* Initialize Qlg_Path_Name_T parameters */

 /***/

 memset((void*)&path, 0x00, sizeof(struct pnstruct));

 path.qlg_struct.CCSID = 37;

 memcpy(path.qlg_struct.Country_ID,US_const,2);

 memcpy(path.qlg_struct.Language_ID,Language_const,3);

 path.qlg_struct.Path_Type = QLG_CHAR_SINGLE;

 path.qlg_struct.Path_Length = sizeof(mypath)-1;

 path.qlg_struct.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.pn,mypath,sizeof(mypath)-1);

 if ((file_descriptor =

 QlgCreat((Qlg_Path_Name_T *)&path, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 close(file_descriptor);

 puts("before QlgUtime()");

 QlgStat((Qlg_Path_Name_T *)&path,&info);

 printf(" utime.file modification time is %ld\n",

 info.st_mtime);

 ubuf.modtime = 0; /* set modification time to Epoch */

 time(&ubuf.actime);

 if (QlgUtime((Qlg_Path_Name_T *)&path, &ubuf) != 0)

 perror("QlgUtime() error");

 else {

 puts("after QlgUtime()");

 QlgStat((Qlg_Path_Name_T *)&path,&info);

 printf(" utime.file modification time is %ld\n",

 info.st_mtime);

396 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

}

 QlgUnlink((Qlg_Path_Name_T *)&path);

 }

}

Output:

before QlgUtime()

 utime.file modification time is 749323571

after QlgUtime()

 utime.file modification time is 0

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

Perform Miscellaneous File System Functions (QP0FPTOS) API

 Required Parameter Group:

1 Function type

Input Char(*)

2 Function extension 1

Input Char(*)

3 Function extension 2

Input Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Perform Miscellaneous File System Function (QP0FPTOS) API is used to perform a variety of file

system functions. The first parameter defines the type of function that is requested. Other parameters are

optional, depending on the selected function. The output from this API varies, based on the selected

function. See the function descriptions for more details.

Authorities and Locks

To call this program you must have *SERVICE special authority, or be authorized to the Service Dump

function of Operating System/400 through iSeries Navigator’s Application Administration support. The

Change Function Usage (CHGFCNUSG) command or

Change Function Usage Information

(QSYCHFUI) API, with a function ID of QIBM_SERVICE_DUMP, also can be used to change the list of

users allowed to perform dump operations.

Note: Adopted authority is not used.

Required Parameter Group

Required parameters vary according to the selected function. The selected function is identified by the

first parameter on the call to the API.

Function Type

INPUT; CHAR(*)

 The desired file system function to perform. Valid values follow:

Integrated File System APIs 397

#TOP_OF_PAGE
unix.htm
aplist.htm
qsychfui.htm
qsychfui.htm

(1) *DUMP

Creates a general file system dump in a spooled file with file name ″QSYSPRT″ and with

″QP0FDUMP″ in the User Data field. No other parameters are required or supported

when *DUMP is specified.

(2) *DUMPALL

Creates a variety of file system dumps in a single spooled file with file name ″QSYSPRT″

and with ″QP0FDUMP″ in the User Data field. The following table describes the optional

parameter when *DUMPALL is specified.

 Function Function extension 1 Function extension 2 Description

*DUMPALL Job number (CHAR 6) (Not supported) Specifies the job that is

dumped. If a job is not

specified, the data is

dumped for all jobs. If

there are multiple jobs with

the same number, the first

one encountered will be

dumped.

(3) *DUMPLFS

Creates a dump of logical file system data in a spooled file with file name ″QSYSPRT″

and with ″QP0FDUMP″ in the User Data field. The following table describes the optional

parameter when *DUMPLFS is specified.

 Function Function extension 1 Function extension 2 Description

*DUMPLFS Job number (CHAR 6) (Not supported) Specifies the job that is

dumped. If a job is not

specified, the data is

dumped for all jobs. If

there are multiple jobs with

the same number, the first

one encountered will be

dumped.

(4) *NFSFORCE

Sets various values and modes for the network file system. The following table describes

the required parameters when *NFSFORCE is specified.

 Function Function extension 1 Function extension 2 Description

*NFSFORCE V2 ON or OFF If ON, indicates version 2

mounts only by the client.

If QNFSMNTD is started

afterwards, then server will

permit version 2 mounts

only.

(5) *REBUILDDEVNULL

Attempts to create the /dev/null and dev/zero character special files. If an existing

dev/null or dev/zero object exists that is not a character special file, then the object is

renamed to /dev/null.prv or dev/zero.prv. If /dev/null.prv or /dev/zero.prv exists,

then it it renamed to /dev/null.prv.001 or /dev/zero.prv.001, /dev/null.prv.002 or

398 iSeries: UNIX-Type -- Integrated File System APIs

/dev/zero.prv.002, and so on, until a name is found for the object. If 999 is exceeded and

the rename cannot be done, the object is not renamed and an informational message is

issued and the QP0FPTOS program completes successfully. No other parameters are

required or supported when *REBUILDDEVNULL is specified.

(6) *TRACE6ON or *TRACE6OFF

*TRACE6ON starts the logging of trace messages in the user job log for some network

file system functions. *TRACE6OFF stops the logging of these messages.

(7) *TRACE8ON or *TRACE8OFF

*TRACE8ON starts the logging of trace messages to the QSYSOPR message queue for

some network file system functions. *TRACE8OFF stops the logging of these messages.

(8) *TRACE9ON or *TRACE9OFF

*TRACE9ON starts the collection of some network file system statistics and resets the

statistics. *TRACE9OFF stops the collection of these statistics.

(9) *DUMPNFSSTATS

Creates a file system dump of network file system (NFS) statistics (both client and server)

in a spooled file with file name ″QSYSPRT″ and with ″QP0FDUMP″ in the User Data

field. The information dumped comes from a window of time specified with the

*TRACE9ON/OFF function. No other parameters are required or supported when

*DUMPNFSSTATS is specified.

Function extension 1

INPUT; CHAR(*)

 Function extension 1 is optional or required, based on the first parameter. Whenever it is valid,

function extension 1 is described above along with a first parameter description. Function

extension 1 is valid when the first parameter is listed below:

(1) *DUMPALL

(2) *DUMPLFS

(3) *NFSFORCE

Function extension 2

INPUT; CHAR(*)

 Function extension 2 is optional or required, based on the first parameter. Whenever it is valid,

function extension 2 is described above along with a first parameter description. Function

extension 2 is valid when the first parameter is listed below:

(1) *NFSFORCE

Usage Notes

If this API is called without the first parameter that is required, then message CPFBC53 is issued to the

caller. This message specifies a parameter that is not valid. To recover, the caller is pointed to the API

documentation.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA0A0 E Object name already exists.

Integrated File System APIs 399

Message ID Error Message Text

CPFA0D4 E File system error occurred. Error number &1.

CPDA0FF E Program not called. You need *SERVICE authority to call this program.

CPFBC53 E Invalid parameter.

CPFBC54 E Not authorized to call program.

Examples

See Code disclaimer information for information pertaining to code examples.

 CALL QP0FPTOS *DUMP

CALL QP0FPTOS (*DUMPALL ’055229’)

CALL QP0FPTOS (*DUMPLFS ’055229’)

CALL QP0FPTOS (*NFSFORCE V2 ON)

CALL QP0FPTOS *REBUILDDEVNULL

CALL QP0FPTOS *TRACE6ON

CALL QP0FPTOS *TRACE6OFF

CALL QP0FPTOS *TRACE8ON

CALL QP0FPTOS *TRACE8OFF

CALL QP0FPTOS *TRACE9ON

CALL QP0FPTOS *TRACE9OFF

CALL QP0FPTOS *DUMPNFSSTATS

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

Qp0lCvtPathToQSYSObjName()— Resolve Integrated File System Path

Name into QSYS Object Name

 Syntax

 #include <qp0lstdi.h>

 void Qp0lCvtPathToQSYSObjName(

 Qlg_Path_Name_T *path_name,

 void *qsys_info,

 char format_name[8],

 uint bytes_provided,

 uint desired_CCSID,

 void *error_code);

 Service Program Name: QP0LLIB2

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 404.

The Qp0lCvtPathToQSYSObjName() function resolves a given integrated file system path name into the

four-part QSYS.LIB or independent ASP QSYS.LIB file system name. The primary three parts of the path

name are the following components: library, object, and member. The fourth part of the path name is a

character representation of the ASP associated with the object, or the independent ASP name. This

depends on whether the path refers to an object in the QSYS.LIB file system or and object in an

independent ASP QSYS.LIB file system. If the path contains symbolic links, they will be resolved. If, after

400 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

symbolic links have been resolved, the path does not refer to an object that could be in either the

QSYS.LIB file system or an independent ASP QSYS.LIB file system, the API will return with the error

message CPFA0DB indicated in the error_code structure. Note that the API does not verify that the object

exists.

The API also handles wildcard (*) characters in the path name. If the name or type of a library, object, or

member is just an asterisk, *ALL is returned as the name or the type. If an asterisk is part of a library,

object, or member name, a name containing an asterisk is returned. For example if the following path

name is passed in:

/qsys.lib/test*.file/*.*

the API will return:

v Library name: QSYS

v Library type: *LIB

v Object name: TEST*

v Object type: *FILE

v Member name: *ALL

v Member type: *ALL

v ASP name: *SYSBAS

Note that path name components that follow one containing a wildcard character are ignored.

If less than 8 bytes are supplied for the error_code structure, errors will cause an exception to be returned

to the caller.

Parameters

path_name

(Input) The path name that refers to the QSYS.LIB or independent ASP QSYS.LIB file system

object. The path name must refer to an object on the local file system; this API does not recognize

file system objects accessed remotely. This path name is in the Qlg_Path_Name_T format. For

more information on this structure, see Path name format. If the path_name parameter is NULL

or points to invalid storage, a CPFA0CE error message is returned.

qsys_info

(Output) A pointer of type void * that refers to a structure that contains the object name. The

format of the data returned is specified by the format_name parameter. If the qsys_info parameter

is NULL or points to invalid storage, a CPF24B4 error message is returned.

format_name

(Input) An 8-byte character array that indicates how the data will be formatted in the qsys_info

parameter that is returned. The format is as follows:

QSYS0100

For the format of this structure, see the section “Returned Data Format” on page 402.

If the format_name parameter is NULL or points to invalid storage, a CPF24B4 error message is

returned.

bytes_provided

(Input) The number of bytes of data provided in the structure referred to by the qsys_info

parameter. This value must be at least 8, or a CPF3C24 error message will be returned.

Integrated File System APIs 401

pns.htm

desired_CCSID

(Input) The CCSID the returned object names and types should be converted to. If the value of

this parameter is 0, the object names and types will be returned in the job CCSID.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Authorities

Note: Adopted authority is not used.

Authorization Required for the Qp0lCvtPathToQSYSObjName() API

Object Referred to

Authority
Required Message ID

Each directory, preceding the last

component, in the path name.

*X CPFA09C

Object in the QSYS.LIB or

independent ASP QSYS.LIB file

system that the path name refers to.

None None

Returned Data Format

The following table describes the format of the data returned in the qsys_info parameter if the QSYS0100

format is specified. For details on the fields of the structure, see the section “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes_Returned

4 4 BINARY(4) Bytes_Available

8 8 BINARY(4) CCSID_Out

12 C CHAR(28) Lib_Name

40 28 CHAR(20) Lib_Type

60 3C CHAR(28) Obj_Name

88 58 CHAR(20) Obj_Type

108 6C CHAR(28) Mbr_Name

136 88 CHAR(20) Mbr_Type

156 9C CHAR(28) Asp_Name

Field Descriptions

ASP Name. The path name component that represents the ASP name, if part of the path, or the ASP that

the path is associated with. For paths that refer to objects in independent ASP QSYS.LIB file systems, this

will be the name of the ASP device description object. For paths that refer to objects in the QSYS.LIB file

system, the value of ASP Name will be *SYSBAS.

Bytes_Available. The total number of bytes required to hold all of the data available in the qsys_info

parameter.

Bytes_Returned. The number of bytes actually returned in the caller’s buffer for the qsys_info parameter.

402 iSeries: UNIX-Type -- Integrated File System APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

CCSID_Out. The CCSID that the returned text is in. This may be different than the desired_CCSID if

conversion failed. The text is internally normalized, then converted to the desired CCSID. If this

conversion from the normalized form does not succeed, the text will be returned in the CCSID of the

normalized form.

Lib_Name. The name of the library that the path name refers to. This field is NULL terminated.

Lib_Type. The type of the object, beginning with an * (asterisk). This field will return either *LIB or

*ALL. This field is NULL terminated.

Mbr_Name. The name of the member that the path name refers to. This field is NULL terminated, and

could be all NULL (all x’00’).

Mbr_Type. The type of the member that the path name refers to. This field is NULL terminated. This

field will contain *MBR, *ALL, or all NULL (all x’00’).

Obj_Name. The name of the object that the path name refers to. This field is NULL terminated, and

could be all NULL (all x’00’).

Obj_Type. The type of the object that the path name refers to. This field is NULL terminated. This field

could contain an object type (for example *FILE), *ALL, or be NULL (all x’00’).

The Lib_Name, Lib_Type, Obj_Name, Obj_Type, Mbr_Name, and Mbr_Type fields of the

Qp0l_QSYS_Info_t structure will be filled in as appropriate.

If the object that the path name refers to is a library (*LIB), then the lib_name and lib_type fields will

contain that library name and *LIB, respectively, and the Obj_Name and Mbr_Name fields will be NULL

(all x’00’).

If the object name is not an *FILE object with members, then the Mbr_Name field is NULL (all x’00’).

If the object name contains quoted strings, the characters within the strings will not be converted to

uppercase.

Error Conditions

None.

Error Messages

 Message ID Error Message Text

CPE3101 E I/O exception non-recoverable error.

CPE3101 E I/O exception non-recoverable error.

CPE3418 E Possible APAR condition or hardware failure.

CPE3474 E Unknown system state.

CPF24B4 E Severe error while addressing parameter list.

CPF3BF6 E Path type value not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program &1 in library &2 ended. Reason code is &3.

CPFA092 E Path name not converted.

CPFA09C E Not authorized to object. Object is &1.

CPFA09E E Object in use. Object is &1.

CPFA09F E Object damaged. Object is &1.

CPFA0A1 E An input or output error occurred.

CPFA0A2 E Information passed to this operation was not valid.

Integrated File System APIs 403

Message ID Error Message Text

CPFA0A3 E Path name resolution causes looping.

CPFA0A7 E Path name too long.

CPFA0A8 E Operation not allowed in a job running multiple threads.

CPFA0A9 E Object not found. Object is &1.

CPFA0AA E Error occurred while attempting to obtain space.

CPFA0AD E Function not supported by file system.

CPFA0B1 E Requested operation not allowed. Access problem.

CPFA0C0 E Buffer overflow occurred.

CPFA0C1 E CCSID &1 not valid.

CPFA0CE E Error occurred with path name parameter specified.

CPFA0D4 E File system error occurred. Error number &1.

CPFA0D9 E Character string not converted.

CPFA0DB E Object not a QSYS.LIB object. Object is &1.

CPFA0DD E Function was interrupted.

CPFA0E0 E File ID conversion of a directory failed.

CPFA0E1 E The file ID table is damaged.

CPFA0E2 E System unable to establish a communications connection to a file server.

CPFA0E4 E The communications connection with the file server was abnormally ended.

CPFA0E5 E The communications connection with the file server was abnormally ended.

CPFA0E6 E Object handle rejected by file server.

CPFA0E7 E System cannot establish a communications connection with a file server.

CPFA1C5 E Object is a read only object. Object is &1.

Usage Notes

1. This API will fail and return the error message CPFA0A8 when all the following conditions are true:

v Where multiple threads exist in the job.

v The object this function is operating on resides in a file system that is not threadsafe. Only the

following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined file system

– QSYS.LIB

– Independent ASP QSYS.LIB
2. This API ignores trailing blank spaces at the end of a path name.

For example, if the path name is

"/qsys.lib/fred.lib/foo.file/abc.mbr "

the trailing blank spaces will be ignored. Thus, the above path name is equivalent to

"/qsys.lib/fred.lib/foo.file/abc.mbr"

Related Information

v The <qp0lstdi.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “QlgCvtPathToQSYSObjName()— Resolve Integrated File System Path Name into QSYS Object Name

(using NLS-enabled path name)” on page 334— Resolve Integrated File System Path Name into QSYS

Object Name

404 iSeries: UNIX-Type -- Integrated File System APIs

Example

See Code disclaimer information for information pertaining to code examples.

The following example program gets the three-part QSYS name from an integrated file system path name

passed to it.

#include <qp0lstdi.h> /* For Qp0lCvtPathToQSYSObjName */

 /* type Qp0l_QSYS_Info_t */

 /* type Qlg_Path_Name_T */

#include <qusec.h> /* For type Qus_EC_T */

#include <stdlib.h>

#include <stdio.h>

int main ()

{

 /***/

 /* Declaration of path_name parameter */

 /***/

 char path_info_array[500];

 Qlg_Path_Name_T *path_name;

 const char fname[] =

 "/qsys.lib/jerold.lib/qcsrc.file/testconv.mbr";

 const char US_const[] = "US";

 const char Language_const[] = "ENU";

 const char Path_Name_Del_const[] = "/";

 /***/

 /* Declaration of qsys_info parameter */

 /***/

 Qp0l_QSYS_Info_t qsys_info;

 /***/

 /* Declaration of format_name parameter */

 /***/

 char format_name[8] = "QSYS0100";

 /***/

 /* Declaration of bytes_provided parameter */

 /***/

 uint bytes_provided;

 /***/

 /* Declaration of desired_CCSID parameter. */

 /***/

 uint desired_CCSID;

 /***/

 /* Declarations for error_code parameter */

 /***/

 Qus_EC_t error_code;

 char error_string[8];

 /***/

 /* Initialize path_name parameter */

 /***/

 memset(path_info_array, 0, sizeof(path_info_array));

 path_name = (Qlg_Path_Name_T *) path_info_array;

 path_name->CCSID = 37;

 memcpy(path_name->Country_ID, US_const, 2);

 memcpy(path_name->Language_ID, Language_const, 3);

 path_name->Path_Type = 0;

 path_name->Path_Length = strlen(fname);

 memcpy(path_name->Path_Name_Delimiter, Path_Name_Del_const, 1);

 memcpy(&(((char *) path_name)[sizeof(Qlg_Path_Name_T)]),

 fname,

Integrated File System APIs 405

aboutapis.htm#CODEDISCLAIMER

strlen(fname));

 /***/

 /* Initialize qsys_info parameter */

 /***/

 /* No initialization requirements for this parameter. */

 /***/

 /* Initialize format_name parameter */

 /***/

 /* No additional initialization required. */

 /***/

 /* Initialize bytes_provided parameter. */

 /***/

 bytes_provided = sizeof(Qp0l_QSYS_Info_t);

 /***/

 /* Initialize desired_CCSID parameter. */

 /***/

 desired_CCSID = 37;

 /***/

 /* Initialize error_code param */

 /***/

 memset(&error_code, 0, sizeof(error_code));

 error_code.Bytes_Provided = sizeof(error_code);

 /***/

 /* Call API */

 /***/

 Qp0lCvtPathToQSYSObjName(path_name,

 QSYS.LIB_info,

 format_name,

 bytes_provided,

 desired_CCSID,

 &error_code);

 if (error_code.Bytes_Available > 0)

 {

 /***/

 /* Error occurred. */

 /***/

 printf ("Error occurred: ");

 memcpy (error_string, error_code.Exception_Id, 7);

 error_string[7] = ’\0’;

 printf ("%s\n", error_string);

 printf ("Bytes available in error code structure: %d.\n",

 error_code.Bytes_Available);

 exit(1);

 }

 /***/

 /* API returned successfully. */

 /***/

 printf ("Library name: %s\n", qsys_info.Lib_Name);

 printf ("Library type: %s\n", qsys_info.Lib_Type);

 printf ("Object name: %s\n", qsys_info.Obj_Name);

 printf ("Object type: %s\n", qsys_info.Obj_Type);

 printf ("Member name: %s\n", qsys_info.Mbr_Name);

406 iSeries: UNIX-Type -- Integrated File System APIs

printf ("Member type: %s\n", qsys_info.Mbr_Type);

 printf ("Asp name: %s\n", qsys_info.Asp_Name);

 exit(0);

}

Output:

Library name: JEROLD

Library type: *LIB

Object name: QCSRC

Object type: *FILE

Member name: TESTCONV

Member type: *MBR

Asp name: *SYSBAS

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

Perform File System Operation (QP0LFLOP) API

 Required Parameter Group:

1 File System Operation

Input Binary(4)

2 Input Buffer

Input Char(*)

3 Length of input buffer

Input Binary(4)

4 Output Buffer

Output Char(*)

5 Length of output buffer

Input Binary(4)

6 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Perform File System Operation (QP0LFLOP) API performs miscellaneous file system operations.

Authorities and Locks

The authorities required vary for each operation:

(1) QP0L_RETRIEVE_NETGROUP_FILE_ENTRIES

v The user must have execute (*X) data authority to the /etc directory (if it exists).

v The user must have read (*R) data authority to the /etc/netgroup file (if it exists).

(2) QP0L_WRITE_NETGROUP_FILE_ENTRIES

v The user must have write and execute (*WX) data authority to the /etc directory (if it exists).

Integrated File System APIs 407

#TOP_OF_PAGE
unix.htm
aplist.htm

v The user must have read and write (*RW) data authority to the /etc/netgroup file (if it exists).

(3) QP0L_RETRIEVE_REMOTE_EXPORTS

 No special authority required.

(4) QP0L_RETRIEVE_MOUNTED_FILE_SYSTEMS

 No special authority required.

 Note: Adopted authority is not used.

Required Parameter Group

The following parameters are required.

File system operation

INPUT; BINARY(4)

 The desired file system operation to perform.

 You can specify one of the following operations:

(1) QP0L_RETRIEVE_NETGROUP_FILE_ENTRIES

Returns information about all netgroup definitions currently defined in the /etc/netgroup

file.

(2) QP0L_WRITE_NETGROUP_FILE_ENTRIES

Recreates the /etc/netgroup file with only the entries provided.

(3) QP0L_RETRIEVE_REMOTE_EXPORTS

Returns all of the Network File System (NFS) exports for a given server.

(4) QP0L_RETRIEVE_MOUNTED_FILE_SYSTEMS

Returns a list of mounted file systems for the local machine along with certain properties

of each.

Input buffer

INPUT; CHAR(*)

 Information that is required for a given file system operation. The input buffer parameter should

be set as follows:

(1) QP0L_RETRIEVE_NETGROUP_FILE_ENTRIES

NULL (no input buffer is required).

(2) QP0L_WRITE_NETGROUP_FILE_ENTRIES

FLOP0200 structure containing the new netgroup entries. For a detailed description of

this structure, see “Format of FLOP0200 Structure” on page 412.

(3) QP0L_RETRIEVE_REMOTE_EXPORTS

FLOP0300_INPUT structure containing the remote Network File System (NFS) server

name to query the exports from. For a detailed description of this structure, see “Format

of FLOP0300 Input Structure” on page 413.

408 iSeries: UNIX-Type -- Integrated File System APIs

(4) QP0L_RETRIEVE_MOUNTED_FILE_SYSTEMS

FLOP0400_INPUT structure containing the selective filtering information for the mounted

file systems requested. For a detailed description of this structure, see “Format of

FLOP0400 Input Structure” on page 413.

Length of input buffer

INPUT;BINARY(4)

 The length of the input buffer provided. The length of the input buffer parameter may be

specified up to the size of the input buffer area specified by the user program. The length of the

input buffer should be 0 when the input buffer is NULL.

Output buffer

OUTPUT; CHAR(*)

 Information that is provided by a given file system operation. The output buffer parameter

should be set as follows:

(1) QP0L_RETRIEVE_NETGROUP_FILE_ENTRIES

FLOP0100 structure containing enough space to hold all netgroup entries in the

/etc/netgroup file. For a detailed description of this structure, see “FLOP0100 Structure

Description” on page 410. No partial entries will be returned. To determine if all of the

entries were returned, the following semantics will be used:

v If the /etc/netgroup file has no entries defined, bytes available and bytes returned will

both be set to 12.

v If the /etc/netgroup file has at least one entry defined, then the bytes available will be

greater than 12.

v If all of the defined entries in the /etc/netgroup file could not be returned, then the

bytes available will not have the same value as bytes returned.

For example, if the /etc/netgroup file is empty, then bytes available and bytes returned

would both be equal to 12. For a different example, if the /etc/netgroup file is not empty,

but the length of the output buffer is less than what is required to hold all entries in the

/etc/netgroup file, then bytes available would be greater than 12 and bytes returned

would be set to 12.

(2) QP0L_WRITE_NETGROUP_FILE_ENTRIES

NULL (no output buffer is required).

(3) QP0L_RETRIEVE_REMOTE_EXPORTS

FLOP0300 structure containing enough space to hold all the export entries from the

remote server. For a detailed description of this structure, see “FLOP0300 Output

Structure Description” on page 411. No partial entries will be returned. To determine if all

of the entries were returned, the following semantics will be used:

v If the server has no exports to return, bytes available and bytes returned will both be

set to 12.

v If the server is returning at least one export, then the bytes available will be greater

than 12.

v If all of the exports given by the server could not be returned in the space provided,

then the bytes available will not have the same value as bytes returned. To retrieve all

the entries, the request should be made again using an output buffer of at least this

size.

Integrated File System APIs 409

(4) QP0L_RETRIEVE_MOUNTED_FILE_SYSTEMS

FLOP0400 structure containing enough space to hold each of the returned mounted file

system entries. For a detailed description of this structure, see “FLOP0400 Output

Structure Description” on page 411. No partial entries will be returned. To determine if all

of the entries were returned, the following semantics will be used:

v If there are no mounted file systems meeting the request criteria, bytes available and

bytes returned will both be set to 12.

v If there exists mounted file systems that match the request criteria, then the bytes

available will be greater than 12.

v If all the mounted file system entries that match the request criteria could not fit in the

buffer space given, then the bytes available will not have the same value as bytes

returned. To retrieve all the entries, the request should be made again using an output

buffer of at least this size.

Length of output buffer

INPUT; BINARY(4)

 The length of the output buffer provided. The length of the output buffer parameter may be

specified up to the size of the output buffer area specified by the user program. The length of the

output buffer should be 0 when the output buffer is NULL.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Output Buffer Description

The following tables describe the order and format of the data returned in the output buffer for each

of the allowable file system operations. For a detailed description of each field, see “Field Descriptions”

on page 413.

FLOP0100 Structure Description

This structure is used to return netgroup definitions taken from the /etc/netgroup file.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of netgroup entries

These fields repeat for

each netgroup entry.

BINARY(4) Length of netgroup entry

BINARY(4) Length of netgroup name

BINARY(4) Displacement to member names

BINARY(4) Number of member names

CHAR(*) Netgroup name

These fields repeat for

each member name in

the netgroup entry.

BINARY(4) Length of member name entry

BINARY(4) Member name status

BINARY(4) Length of member name

CHAR(*) Member name

410 iSeries: UNIX-Type -- Integrated File System APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

FLOP0300 Output Structure Description

This structure is used to return export entries given by an NFS server.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of export entries

These fields repeat for

each export entry.

BINARY(4) Length of export entry

BINARY(4) Length of export name

BINARY(4) CCSID of export name

BINARY(4) Displacement to export items

BINARY(4) Number of export items

CHAR(*) Export name

These fields repeat for

each export item in the

export entry.

BINARY(4) Length of export item entry

BINARY(4) Length of export item

BINARY(4) CCSID of export item

CHAR(*) Export item

FLOP0400 Output Structure Description

This structure is used to return mounted file system entries.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of mount entries

Integrated File System APIs 411

Offset

Type Field Dec Hex

These fields repeat for

each mount entry.

BINARY(4) Length of mount entry

BINARY(8) File system id

BINARY(4) File system type

BINARY(4) Mount flags

BINARY(4) Unique mount id

BINARY(4) Time of mount

BINARY(4) Mount visibility

BINARY(4) Displacement to mounted file system (MFS) name

BINARY(4) Length of MFS name

BINARY(4) CCSID of MFS name

BINARY(4) Displacement to mount over dir name

BINARY(4) Length of mount over dir name

BINARY(4) CCSID of mount over dir name

BINARY(4) Displacement to remote host name

BINARY(4) Length of remote host name

BINARY(4) CCSID of remote host name

BINARY(4) Displacement to mount options

BINARY(4) Length of mount options

BINARY(4) CCSID of mount options

CHAR(*) MFS name

CHAR(*) Mount over dir name

CHAR(*) Remote host name

CHAR(*) Mount options

Input Buffer Description

The following tables describe the order and format of the data given in the input buffer parameter for

each of the allowable file system operations. For a detailed description of each field, see “Field

Descriptions” on page 413.

Format of FLOP0200 Structure

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of netgroup entries

These fields repeat for

each netgroup entry.

BINARY(4) Length of netgroup entry

BINARY(4) Length of netgroup name

BINARY(4) Displacement to member names

BINARY(4) Number of member names

CHAR(*) Netgroup name

412 iSeries: UNIX-Type -- Integrated File System APIs

Offset

Type Field Dec Hex

These fields repeat for

each member name in

the netgroup entry.

BINARY(4) Length of member name entry

BINARY(4) Member name status

BINARY(4) Length of member name

CHAR(*) Member name

Format of FLOP0300 Input Structure

 Offset

Type Field Dec Hex

0 0 BINARY(4) Preferred output CCSID

4 4 BINARY(4) Expected CCSID

8 8 BINARY(4) Length of server name

12 C BINARY(4) CCSID of Server name

16 10 CHAR(256) Server name

Format of FLOP0400 Input Structure

 Offset

Type Field Dec Hex

0 0 BINARY(4) Preferred output CCSID

4 4 BINARY(4) File system type filter

8 8 BINARY(4) Only visible mounts

Field Descriptions

Bytes available. The number of bytes of data available to be returned to the user in the output buffer. If

all data is returned, bytes available is the same as the number of bytes returned. If the receiver variable

was not large enough to contain all of the data, this value is set based on the total number of entries that

could be returned.

Bytes returned. The number of bytes of data returned to the user in the output buffer.

CCSID of export item. The CCSID of the export item data. This may not be the same as the Preferred

output CCSID if the data cannot be converted to that CCSID.

CCSID of export name. The CCSID of the export name data. This may not be the same as the Preferred

output CCSID if the data cannot be converted to that CCSID.

Integrated File System APIs 413

CCSID of MFS name. The CCSID of the MFS name data. This may not be the same as the Preferred

output CCSID if the data cannot be converted to that CCSID.

CCSID of mount options. The CCSID of the Mount options data. This may not be the same as the

Preferred output CCSID if the data cannot be converted to that CCSID.

CCSID of mount over dir name. The CCSID of the mount over dir name data. This may not be the same

as the Preferred output CCSID if the data cannot be converted to that CCSID.

CCSID of remote host name name. The CCSID of the remote host name data. This may not be the same

as the Preferred output CCSID if the data cannot be converted to that CCSID.

CCSID of server name. The CCSID of the server name. A value of 0 indicates that the data is in the

CCSID of the job.

Displacement to export items. The offset (in bytes) from the beginning of the export entry to the export

items in the export entry.

Displacement to member names. The offset (in bytes) from the beginning of the netgroup entry to the

member names in the netgroup entry.

Displacement to MFS name. The offset (in bytes) from the beginning of the mount entry to the mounted

file system (MFS) name in the entry.

Displacement to mount options. The offset (in bytes) from the beginning of the mount entry to the

mount options in the entry.

Displacement to mount over dir name. The offset (in bytes) from the beginning of the mount entry to

the mount over dir name in the entry.

Displacement to remote host name. The offset (in bytes) from the beginning of the mount entry to the

remote host name in the entry. If the value is 0, then there is no remote host name associated with the

mount entry.

Expected CCSID. This value should contain the CCSID that the remote NFS server is expected to return

string data in. A value of 0 means to calculate an ASCII CCSID based on the default CCSID of the job

(recommended).

Export item. Information item that pertains to the current export. Export items are controlled by the NFS

server, and it is not specified what they will contain. They are assumed to be strings and are converted

into the Preferred output CCSID, if possible. Normally, an export item contains the hostname of a

machine allowed to access or mount the export.

Export name. The pathname of the returned export.

File system id. A number uniquely identifying the mounted file system. Each returned mount entry

should have a different file system id.

File system type. Identifies the type of the mounted file system. Refer to the different type values given

under the file system type filter field description below.

414 iSeries: UNIX-Type -- Integrated File System APIs

File system type filter. An ORed value of flags to limit the types of mounted file systems to return. It

must be a combination of the following file system type values:

 File System Type Value (Hex) File System Type Value (Integer) File System Type

0x00000000 0 Other (Non-Specified)

0x00000001 1 ″Root″ (/)

0x00000002 2 QOpenSys

0x00000004 4 QDLS

0x00000008 8 QSYS.LIB

0x00000010 16 NFS Version 2

0x00000020 32 NFS Version 3

0x00000040 64 User-Defined File System (UDFS)

0x00000080 128 Optical

0x00000100 256 QFileServer.400

0x00000200 512 Netware

0x00000400 1024 QNTC

0x00000800 2048 Independent ASP QSYS.LIB

0x00001000 4096 UDFS Management

0x00000270 624 All Dynamic MFS

0xFFFFFFFF 4294967295 All MFS

Note: All Dynamic MFS includes all of the dynamically mounted file systems: Network File System

(NFS), User-Defined File Systems (UDFS), and Netware. These file systems can be mounted on demand

in different parts of the namespace.

Length of export entry. The length (in bytes) of the current export entry. The length can be used to access

the next entry.

Length of export item. The length (in bytes) of the export item.

Length of export item entry. The length (in bytes) of the current export item entry. The length can be

used to access the next entry.

Length of export name. The length (in bytes) of the exported name (export pathname).

Length of MFS name. The length (in bytes) of the mounted file system name.

Length of mount options. The length (in bytes) of the mount options.

Length of mount over dir name. The length (in bytes) of the mount over dir name.

Length of remote host name. The length (in bytes) of the remote host name. This value will be 0 when

the file system is not mounted from a remote host.

Length of netgroup entry. The length (in bytes) of the current netgroup entry. The length can be used to

access the next entry.

Length of member name. The length (in bytes) of the member name.

Integrated File System APIs 415

Length of member name entry. The length (in bytes) of this member name entry.

Length of mount entry. The length (in bytes) of the current mount entry. The length can be used to

access the next entry.

Length of netgroup name. The length (in bytes) of the netgroup name.

Length of server name. The length (in bytes) of the requested server name which follows. The maximum

value for this field is 255.

Member name. The member name. This is assumed to be in the CCSID of the job.

Member name status. Describes the type of member name. Possible values follow:

(1) QP0L_MEMBER_IS_A_HOST_NAME

The member name refers to an individual host name.

(2) QP0L_MEMBER_IS_A_NETGROUP_NAME

The member name refers to a netgroup name.

(3) QP0L_MEMBER_IS_AN_IP_ADDRESS

The member name refers to an IP address in the form xxx.xxx.xxx.xxx (for example 123.4.56.78).

MFS name. The name of the mounted file system. This is normally the source path name.

Mount over dir name. The pathname of the directory that is mounted over by the mounted file system.

This is where the mount is accessible in the local system’s namespace if the mounted file system is

visible.

Mount flags. An ORed value of flags that supplies information on how the file system is mounted.

 Mount Flag Value Mount Flag Description

0x0001 File system is read-only

0x0002 File system is not case sensitive

0x0004 If the file system is not case sensitive, renaming of a file

to a different casing of the same name will change the

casing of the name

0x0008 File system cannot be mounted over

0x0010 File system cannot be exported through NFS

0x0020 File system can be dynamically unmounted

0x0040 File system supports synchronous writes

0x0080 File system is thread safe

0x0100 Default file format for *STMF objects is *TYPE1

0x0200 File system supports the SUID and SGID mode bits, but

the bits are not surfaced due to a mount option

0x0400 File system is a Network File System hard mount

416 iSeries: UNIX-Type -- Integrated File System APIs

Mount options. The string representation of the valid options used to mount the file system. Valid

options vary by the type of the mounted file system.

Mount visibility. A value of 1 indicates this mount has not been mounted over and is accessble (visible)

through the parent file system’s namespace. A value of 0 indicates the mounted file system has itself been

mounted over.

Netgroup name. The netgroup name. This is assumed to be in the CCSID of the job.

Number of export entries. The number of complete export entries returned. A value of zero is used if

there are no exports available on the server or if insufficient space was provided to hold even a single

entry.

Number of export items. The number of export items for this export entry.

Number of member names. The number of member names in the netgroup entry.

Number of mount entries. The number of complete mounted file system entries returned. A value of

zero is used if there are no mounts meeting the selection criteria or if insufficient space was provided to

hold even a single entry.

Number of netgroup entries. The number of complete entries. A value of zero is used if there are no

valid entries for the /etc/netgroup file or if the file does not exist.

Only visible mounts. A value of 1 requests that only visible (accessible, topmost) mounted file systems

be retrieved. A value of 0 means to not limit the retrieved mounts based on visiblity.

Preferred output CCSID. The CCSID into which the output will be converted. If a conversion failure

occurs, the output may be returned in another CCSID. A value of 0 indicates that the data should be

returned in the CCSID of the job.

Remote host name. The name of the host on which the source file system resides. This is the machine

being mounted from and is only applicable for remote mounts. For local mounts, the value of

Displacement to remote host name will be 0, and this value will not be returned.

Server name. The host name of the server to retrieve the Network File System (NFS) export entries from.

Time of mount. The time when the file system was mounted.

Unique mount id. This value gives indication of the order in which the file systems were mounted. For

example, multiple file systems may be mounted over the same directory. The topmost one (and therefore

the one that is visible) will be the one with the largest mount sequence number.

Integrated File System APIs 417

Usage Notes

The include file for this API is QP0LFLOP.

If none of the required parameters are passed to this API, then message CPFB41F will be issued to the

caller. This message lists all of the file operations currently available to the QP0LFLOP API.

WARNING - When the (2) QP0L_WRITE_NETGROUP_FILE_ENTRIES file system operation is requested,

the existing /etc/netgroup file will be completely rewritten resulting in a loss of the previous contents of

the file.

A netgroup is a way of defining one name (the netgroup name) to represent many other names. The

names contained within a netgroup definition are called ’members’ of that netgroup. A netgroup member

can be either the name of a host system, the name of another netgroup, or an IP address. Netgroup

definitions are stored in the /etc/netgroup file and are commonly used by the Network File System

(NFS) support when a large group of host systems require common NFS access semantics.

An export entry describes a remote file system or subdirectory in a file system residing on an

Network File System (NFS) server that is mountable by an NFS client.

Error Messages

 Message ID Error Message Text

CPFA0D4 E File system error occurred.

CPE3418 E Possible APAR condition or hardware failure.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPDA1B9 E An error has occurred in the Network File System (NFS).

CPFA0AA E Error occurred while attempting to obtain space.

CPFA0D0 E CCSID conversion error occurred.

CPFA1CE E Cannot find address for specified system name.

CPFB41F E File system operation failed.

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

418 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Qp0lGetAttr()—Get Attributes

 Syntax

 #include <Qp0lstdi.h<

 int Qp0lGetAttr

 (Qlg_Path_Name_T *Path_Name,

 Qp0l_AttrTypes_List_t *Attr_Array_ptr,

 char *Buffer_ptr,

 uint Buffer_Size_Provided,

 uint *Buffer_Size_Needed_ptr,

 uint *Num_Bytes_Returned_ptr,

 uint Follow_Symlnk, ...);

 Service Program Name: QP0LLIB2

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 441.

The Qp0lGetAttr() function gets one or more attributes, on a single call, for the object that is referred to

by the input Path_Name. The object must exist, the user must have authority to it, and the requested

attributes must be supported by the specific file system

or object type.

For each requested attribute

that is not supported by the file system

or object type

, Qp0lGetAttr() returns zero in the Size of

attribute data field, pointed to by the Buffer_ptr parameter, for that attribute.

Qp0lGetAttr() either returns the attributes of the symbolic link, or returns the attributes of the object that

the symbolic link names. This depends upon the value of the Follow_Symlnk parameter.

Qp0lGetAttr() returns all times in seconds since the Epoch so that they are consistent with UNIX-type

APIs. The Epoch is the time 0 hours, 0 minutes, 0 seconds, January 1, 1970, Coordinated Universal Time.

If the OS/400 date is set prior to 1970, all time values are zero.

Parameters

Path_Name

(Input) The path name of the object for which attribute information is returned. This path name is

in the Qlg_Path_Name_T format. For more information on this structure, see Path name format.

Attr_Array_ptr

(Input) A pointer to a structure listing the requested attributes returned for the object identified

by the Path_Name parameter. Each entry in the array identifies an attribute, by a constant value,

that Qp0lGetAttr() returns. The number of requested attributes field must equal the total number

of constants. If the Attr_Array_ptr is NULL or if the Number of requested attributes field is zero,

Qp0lGetAttr() returns all the attributes that the API supports that are available for the object. The

format of this parameter follows.

 Attribute array pointer

Offset

Type Field Dec Hex

0 0 BINARY(4) Number of requested attributes

4 4 ARRAY(*) of

BINARY(4)

Array of attribute constants

Integrated File System APIs 419

pns.htm

Array of attribute constants. A list of predefined constants, each identifying a requested attribute.

Qp0lGetattr() also returns one of these constants in the Attribute identification field, pointed to

by the Buffer_ptr parameter. The constant must be used to identify the returned attribute because

the attributes are returned in any order. Note that the Size of attribute data field, pointed to by

the Buffer_ptr parameter, contains the total size of data that Qp0lGetattr() returns for the

constants in this array. Valid values, and sizes of the returned attributes, follow:

0 QP0L_ATTR_OBJTYPE: (CHAR(10)) The object type. See Control Language (CL)

information in the iSeries Information center for descriptions of all iSeries object types.

1 QP0L_ATTR_DATA_SIZE: (UNSIGNED BINARY(4)) The size in bytes of the data in this

object.

The size varies by object type and file system.

This size does not include

object headers or the size of extended attributes associated with the object. If this

attribute is requested and the size cannot be represented in a BINARY(4) data type,

Qp0lGetAttr() fails with errno [EOVERFLOW]. Refer to QP0L_ATTR_DATA_SIZE_64 for

objects whose data sizes are greater than BINARY(4).

2 QP0L_ATTR_ALLOC_SIZE: (UNSIGNED BINARY(4)) The number of bytes that have

been allocated for this object.

The allocated size varies by object type and file system.

For example, the allocated size includes the object data size as shown in

QP0L_ATTR_DATA_SIZE or QP0L_ATTR_DATA_SIZE_64 as well as any logically sized

extents to accomodate anticipated future requirements for the object data. It may or may

not include additional bytes for attribute information.

If this size cannot be

represented in a BINARY(4) data type, Qp0lGetAttr() fails with errno [EOVERFLOW].

Refer to QP0L_ATTR_ALLOC_SIZE_64 for objects whose allocated sizes are greater than

BINARY(4).

3 QP0L_ATTR_EXTENDED_ATTR_SIZE: (UNSIGNED BINARY(4)) The total number of

extended attribute bytes.

4 QP0L_ATTR_CREATE_TIME: (UNSIGNED BINARY(4)) The time the object was created.

5 QP0L_ATTR_ACCESS_TIME: (UNSIGNED BINARY(4)) The time that the object’s data

was last accessed.

6 QP0L_ATTR_CHANGE_TIME: (UNSIGNED BINARY(4)) The time that the object’s data

or attributes were last changed.

7 QP0L_ATTR_MODIFY_TIME: (UNSIGNED BINARY(4)) The time that the object’s data

was last changed.

8 QP0L_ATTR_STG_FREE: (CHAR(1)) Whether the object’s data has been moved offline,

freeing its online storage. Valid values are:

 x’00’ QP0L_SYS_NOT_STG_FREE: The object’s data is not

offline.

x’01’ QP0L_SYS_STG_FREE: The object’s data is offline.

9 QP0L_ATTR_CHECKED_OUT: Whether an object is checked out or not. When an object

is checked out, other users can read and copy the object. Only the user who has the

object checked out can change the object. The checkout format is defined in the

Qp0lstdi.h header file as data type Qp0l_Checkout_t, and is described in the following

table.

 Checkout Format

Offset

Type Field Dec Hex

0 0 CHAR(1) Flag indicating whether an object is checked out

420 iSeries: UNIX-Type -- Integrated File System APIs

Checkout Format

Offset

Type Field Dec Hex

1 1 CHAR(10) User to whom checked out

11 B CHAR(1) Reserved

12 C BINARY(4) Time checked out

Flag. An indicator as to whether an object is checked out. Valid values are:

 x’00’ QP0L_NOT_CHECKED_OUT: The object is not checked out.

x’01’ QP0L_CHECKED_OUT: The object is checked out.

Reserved. A reserved field. This field must be set to binary zero.

 Time checked out. The time the object was checked out. This field represents the number

of seconds since the Epoch.

 User to whom checked out. The user who has the object checked out. This field is blank

if it is not checked out.

10 QP0L_ATTR_LOCAL_REMOTE: (CHAR(1)) Whether an object is stored locally or stored

on a remote system. The decision of whether a file is local or remote varies according to

the respective file system rules. Objects in file systems that do not carry either a local or

remote indicator are treated as remote. Valid values are:

 x’01’ QP0L_LOCAL_OBJ: The object’s data is stored locally.

x’02’ QP0L_REMOTE_OBJ: The object’s data is on a remote

system.

11 QP0L_ATTR_AUTH: The public and private authorities associated with the object.

 When the QP0L_ATTR_AUTH attribute is requested, the attribute data is returned in the

buffer in the following format. This format is defined in header file Qp0lstdi.h as data

type Qp0l_Authority_General_t.

 General Authority Format

Offset

Type Field Dec Hex

0 0 CHAR(10) Object owner

10 0A CHAR(10) Primary group

20 14 CHAR(10) Authorization list name

30 1E CHAR(10) Reserved

40 28 BINARY(4) Offset to array of users

44 2C BINARY(4) Number of users

48 30 BINARY(4) Size of user entry field entry

52 34 CHAR(12) Reserved

 ARRAY(*) Array of users

Array of users. The names and authorities of the users who are authorized to use the

object.

Integrated File System APIs 421

Authorization list name. The name of the authorization list that is used to secure the

named object. The value *NONE indicates that no authorization list is used in

determining authority to the object.

 Number of users. The number of users that are authorized to the object. This is the

number of users returned in the array of users.

 The QFileSvr.400 file system returns zero for the Number of users and zero for the Offset

to array of users. If a primary group is specified, the Network File System (NFS) returns

one for the Number of users.

 Object owner. The name of the user profile that is the owner of the object or the

following special value:

 *NOUSRPRF This special value is used by the Network File System to indicate that there is no user profile on

the local iSeries server with a user ID (UID) matching the UID of the remote object.

Offset to array of users. The offset to the names and authorities of the users who are

authorized to use the object. This offset is relative to the

start of

the buffer pointed

to by the Buffer_ptr parameter.

 Primary group. The name of the user profile that is the primary group of the object or

the following special values:

 *NONE The object does not have a primary group.

*NOUSRPRF This special value is used by the Network File System to indicate that there is no user profile on

the local server with a group ID (GID) matching the GID of the remote object.

Reserved. A reserved field. This field must be set to binary zero.

 Size of user entry field entry. The number of bytes returned for each user.

 When the QP0L_ATTR_AUTH attribute is requested, the array of users is returned in the

buffer in the following format. This format is defined in header file Qp0lstdi.h as data

type Qp0l_Authority_Users_t.

 Data and Object Authority Format

Offset

Type Field Dec Hex

0 0 CHAR(10) User name

10 0A CHAR(10) User data authority

Object rights

20 14 CHAR(1) Object management

21 15 CHAR(1) Object existence

22 16 CHAR(1) Object alter

23 17 CHAR(1) Object reference

24 18 CHAR(10) Reserved

Data rights

34 22 CHAR(1) Object operational

35 23 CHAR(1) Read

36 24 CHAR(1) Add

37 25 CHAR(1) Update

38 26 CHAR(1) Delete

422 iSeries: UNIX-Type -- Integrated File System APIs

Data and Object Authority Format

Offset

Type Field Dec Hex

39 27 CHAR(1) Execute

40 28 CHAR(1) Exclude

41 29 CHAR(7) Reserved

Add (*ADD). Authority to add entries to the object. Valid values are:

 0 The user does not have add data rights.

1 The user does have add data rights.

Delete (*DELETE). Authority to remove entries from the object. Valid values are:

 0 The user does not have delete data rights.

1 The user does have delete data rights.

Execute (*EXECUTE). Authority to run a program or search a library or directory. Valid

values are:

 0 The user does not have execute data rights.

1 The user does have execute data rights.

Exclude (*EXCLUDE). The user is prevented from accessing the object. Valid values are:

 0 The user does not have exclude data rights.

1 The user does have exclude data rights.

Object alter (*OBJALTER). Authority to change the attributes of an object, such as

adding or removing triggers for a database file. Valid values are:

 0 The user does not have alter object rights.

1 The user does have alter object rights.

Object existence (*OBJEXIST). Authority to control the object’s existence and ownership.

Valid values are:

 0 The user does not have object existence rights.

1 The user does have object existence rights.

Object management (*OBJMGT). Authority to specify security, to move or rename the

object, and to add members if the object is a database file. Valid values are:

 0 The user does not have object management rights.

1 The user does have object management rights.

Object operational (*OBJOPR). Authority to look at the object’s attributes and to use the

object as specified by the data authorities that the user has to the object. Valid values are:

 0 The user does not have object operational rights.

1 The user does have object operational rights.

Integrated File System APIs 423

Object reference (*OBJREF). Authority to specify the object as the first level in a

referential constraint. Valid values are:

 0 The user does not have object reference rights.

1 The user does have object reference rights.

Read (*READ). Authority to access the contents of the object. Valid values are:

 0 The user does not have read data rights.

1 The user does have read data rights.

Reserved. A reserved field. This field must be set to binary zero.

 Update (*UPDATE). Authority to change the content of existing entries in the object.

Valid values are:

 0 The user does not have update data rights.

1 The user does have update data rights.

User data authority. The operation, use, or access that the user has to an object. Valid

values follow:

 *RWX Allows all operations on the object except those that are limited to the owner or controlled by the

object rights.

*RW Allows access to the object attributes and allows the object to be changed. The user cannot use the

object.

*WX Allows use of the object and allows the object to be changed. The user cannot access the object

attributes.

*R Allows access to the object attributes.

*W Allows the object to be changed.

*X Allows the use of the object.

*EXCLUDE All operations on the object are prohibited.

*NONE Displayed by the system when the user does not have any data authorities.

USER DEF Displayed by the system when the specific data authorities do not match any of the predefined

data authority levels above.

User name. The name of a user authorized to use the object. This may be the name of the

user profile or one of the following special values:

 *NOUSRPRF The authorities of either the owner or the primary group of the object for which the profile name

could not be determined. This value is used by the Network File System only. It indicates that the

user ID (UID) or the group ID (GID) for the remote object does not match any profile on the local

iSeries server with that UID or GID.

*NTWIRF The authorities of the NetWare Inherited Rights Filter for the object. This value is only used by the

QNetWare file system.

*NTWEFF The NetWare effective rights to the object. This value is only used by the QNetWare file system.

*PUBLIC The authorities of users who are not specifically named and who are not in the object’s

authorization list.

12 QP0L_ATTR_FILE_ID: (CHAR(16)) An identifier associated with the referred to object. A

file ID can be used with “Qp0lGetPathFromFileID()—Get Path Name of Object from Its

File ID” on page 446 to retrieve an object’s path name. The file ID is defined in header

file Qp0lstdi.h as data type Qp0lFID_t.

13 QP0L_ATTR_ASP: (BINARY(2)) The auxiliary storage pool in which the object is stored.

14 QP0L_ATTR_DATA_SIZE_64: (UNSIGNED BINARY(8)) The size in bytes of the data in

this object.

The size varies by object type and file system.

This size does not

424 iSeries: UNIX-Type -- Integrated File System APIs

include object headers or the size of extended attributes associated with the object.

QP0L_ATTR_DATA_SIZE may be used for objects whose data size can be represented in

a BINARY(4) data type.

15 QP0L_ATTR_ALLOC_SIZE_64: (UNSIGNED BINARY(8)) The number of bytes that have

been allocated for this object.

The allocated size varies by object type and file system.

For example, the allocated size includes the object data size as shown in

QP0L_ATTR_DATA_SIZE or QP0L_ATTR_DATA_SIZE_64 as well as any logically sized

extents to accomodate anticipated future requirements for the object data. It may or may

not include additional bytes for attribute information.

QP0L_ATTR_ALLOC_SIZE may

be used for objects whose allocated size can be represented in a BINARY(4) data type.

16 QP0L_ATTR_USAGE_INFORMATION: Fields indicating how often an object is used.

Usage has different meanings according to the specific file system and according to the

individual object types supported within a file system. Usage can indicate the opening or

closing of a file or can refer to adding links, renaming, restoring, or checking out an

object. The usage information format is defined in the Qp0lstdi.h header file as data type

Qp0l_Usage_t and is shown in the following table.

 Qp0l_Usage_t

Offset

Type Field Dec Hex

0 0 BINARY(4) Reset date

4 4 BINARY(4) Last used date

8 8 BINARY(4) Days used count

12 C CHAR(4) Reserved

Days used count. The number of days an object has been used. Usage has different

meanings according to the specific file system and according to the individual object

types supported within a file system. Usage can indicate the opening or closing of a file

or can refer to adding links, renaming, restoring, or checking out an object. This count is

incremented once each day that an object is used and is reset to zero by calling the

Qp0lSetAttr() API.

 Last used date. The number of seconds since the Epoch that corresponds to the date the

object was last used. This field is zero when the object is created. If usage data is not

maintained for the OS/400 type or the file system to which an object belongs, this field is

zero.

 Reserved. A reserved field set to binary zeros.

 Reset date. The number of seconds since the Epoch that corresponds to the date the days

used count was last reset to zero (0). This date is set to the current date when the

Qp0lSetAttr() API is called to reset the Days used count to zero.

17 QP0L_ATTR_PC_READ_ONLY: (CHAR(1)) Whether the object can be written to or

deleted, have its extended attributes changed or deleted, or have its size changed. Valid

values are:

 x’00’ QP0L_PC_NOT_READONLY: The object can be changed.

x’01’ QP0L_PC_READONLY: The object cannot be changed.

18 QP0L_ATTR_PC_HIDDEN: (CHAR(1)) Whether the object can be displayed using an

ordinary directory listing.

Integrated File System APIs 425

x’00’ QP0L_PC_NOT_HIDDEN: The object is not hidden.

x’01’ QP0L_PC_HIDDEN: The object is hidden.

19 QP0L_ATTR_PC_SYSTEM: (CHAR(1)) Whether the object is a system file and is excluded

from normal directory searches.

 x’00’ QP0L_PC_NOT_SYSTEM: The object is not a system file.

x’01’ QP0L_PC_SYSTEM: The object is a system file.

20 QP0L_ATTR_PC_ARCHIVE: (CHAR(1)) Whether the object has changed since the last

time the file was examined.

 x’00’ QP0L_PC_NOT_CHANGED: The object has not changed.

x’01’ QP0L_PC_CHANGED: The object has changed.

21 QP0L_ATTR_SYSTEM_ARCHIVE: (CHAR(1)) Whether the object has changed and needs

to be saved. It is set on when an object’s change time is updated, and set off when the

object has been saved.

 x’00’ QP0L_SYSTEM_NOT_CHANGED: The object has not changed and does not need to be saved.

x’01’ QP0L_SYSTEM_CHANGED: The object has changed and does need to be saved.

22 QP0L_ATTR_CODEPAGE: (BINARY(4)) The code page derived from the coded character

set identifier (CCSID) used for the data in the file or the extended attributes of the

directory. If the returned value of this field is zero (0), there is more than one code page

associated with the st_ccsid. If the st_ccsid is not a supported system CCSID, the

st_codepage is set equal to the st_ccsid.

23 QP0L_ATTR_FILE_FORMAT: (CHAR(1)) The format of the stream file (*STMF). Valid

values are:

 x’00’ QP0L_FILE_FORMAT_TYPE1: The object has the same format as *STMF objects created on

releases prior to Version 4 Release 4.

It has a mimimum object size of 4096 bytes and a

maximum object size of approximately 256 gigabytes.

x’01’ QP0L_FILE_FORMAT_TYPE2:

A QP0L_FILE_FORMAT_TYPE2 (*TYPE2) *STMF has high

performance file access and was new in Version 4 Release 4 of OS/400. It has a minimum object

size of 4096 bytes and a maximum object size of approximately one terabyte in the ″root″ (/),

QOpenSys and user-defined file systems. Otherwise, the maximum is approximately 256

gigabytes. A *TYPE2 *STMF is capable of memory mapping as well as the ability to specify an

attribute to optimize main storage allocation.

24 QP0L_ATTR_UDFS_DEFAULT_FORMAT: (CHAR(1)) The default file format of stream

files (*STMF) created in the user-defined file system. Valid values are:

 x’00’ QP0L_UDFS_DEFAULT_TYPE1: The stream file (*STMF) has the same format as *STMFs created

on releases prior to Version 4 Release 4 of OS/400.

It has a mimimum object size of 4096 bytes

and a maximum object size of approximately 256 gigabytes.

x’01’ QP0L_UDFS_DEFAULT_TYPE2:

A *TYPE2 *STMF has high performance file access and was

new in Version 4 Release 4 of OS/400. It has a minimum object size of 4096 bytes and a maximum

object size of approximately one terabyte in the ″root″ (/), QOpenSys and user-defined file

systems. Otherwise, the maximum is approximately 256 gigabytes. A *TYPE2 *STMF is capable of

memory mapping as well as the ability to specify an attribute to optimize main storage allocation.

25 QP0L_ATTR_JOURNAL_INFORMATION: Basic Journaling information for this object.

The journaling information format is defined in the Qp0lstdi.h header file as data type

Qp0l_Journal_Info_t and is shown in the following table:

426 iSeries: UNIX-Type -- Integrated File System APIs

Qp0l_Journal_Info_t

Offset

Type Field Dec Hex

0 0 CHAR(1) Journaling status

1 1 CHAR(1) Options

2 2 CHAR(10) Journal identifier (JID)

12 0C CHAR(10) Current or last journal name

22 16 CHAR(10) Current or last journal library name

32 20 BINARY(4),

UNSIGNED

Last journaling start time

For extended journaling information see

QP0L_ATTR_JOURNAL_EXTENDED_INFORMATION.

 Current or last journal library name. If the value of the journaling status is

QP0L_JOURNALED, then this field contains the name of the library containing the

currently used journal. If the value of the journaling status is QP0L_NOT_JOURNALED,

then this field contains the name of the library containing the last used journal. All bytes

in this field will be set to binary zero if this object has never been journaled.

 Current or last journal name. If the value of the journaling status is QP0L_JOURNALED,

then this field contains the name of the journal currently being used. If the value of the

journaling status is QP0L_NOT_JOURNALED, then this field contains the name of the

journal last used for this object. All bytes in this field will be set to binary zero if this

object has never been journaled.

 Journal identifier (JID). This field associates the object being journaled with an identifier

that can be used on various journaling-related commands and APIs.

 Journaling status. Current journaling status of the object. This field will be one of the

following values:

 x’00’ QP0L_NOT_JOURNALED: The object is currently not being journaled.

x’01’ QP0L_JOURNALED: The object is currently being journaled.

Last journaling start time. The number of seconds since the Epoch that corresponds to

the last date and time for which the object had journaling started for it. This field will be

set to binary zero if this object has never been journaled.

 Options. This field describes the current journaling options. This field is composed of

several bit flags and contains one or more of the following bit values:

 x’80’ QP0L_JOURNAL_SUBTREE: When this flag is returned, this object is a directory with IFS

journaling subtree semantics. New objects created within this directory’s subtree will inherit the

journaling attributes and options from this directory.

x’08’ QP0L_JOURNAL_OPTIONAL_ENTRIES: When journaling is active, entries that are considered

optional are journaled. The list of optional journal entries varies for each object type. See the

Integrated file system information in the Files and file systems topic for information regarding

these optional entries for various objects.

x’20’ QP0L_JOURNAL_AFTER_IMAGES: When journaling is active, the image of the object after a

change is journaled.

x’40’ QP0L_JOURNAL_BEFORE_IMAGES: When journaling is active, the image of the object prior to a

change is journaled.

Integrated File System APIs 427

26 QP0L_ATTR_ALWCKPWRT: (CHAR(1)) Whether a stream file (*STMF) can be shared

with readers and writers during the save-while-active checkpoint processing. Valid values

are:

 x’00’ QP0L_NOT_ALWCKPWRT: The object can be shared with readers only.

x’01’ QP0L_ALWCKPWRT: The object can be shared with readers and writers.

27 QP0L_ATTR_CCSID: (BINARY(4)) The CCSID of the data and extended attributes of the

object.

28 QP0L_ATTR_SIGNED: (CHAR(1)) Whether an object has an OS/400 digital signature.

This attribute is only returned for *STMF objects. Valid values are:

 x’00’ QP0L_NOT_SIGNED: The object does not have an OS/400 digital signature.

x’01’ QP0L_SIGNED: The object does have an OS/400 digital signature.

29 QP0L_ATTR_SYS_SIGNED: (CHAR(1)) Whether the object was signed by a source that is

trusted by the system. This attribute is only returned for *STMF objects. Note: this

attribute is not returned if the QP0L_ATTR_SIGNED attribute has the value

QP0L_NOT_SIGNED. Valid values are:

 x’00’ QP0L_SYSTEM_SIGNED_NO: (CHAR(1)) None of the signatures came from a source that is

trusted by the system.

x’01’ QP0L_SYSTEM_SIGNED_YES: The object was signed by a source that is trusted by the system. If

the object has multiple signatures, at least one of the signatures came from a source that is trusted

by the system.

30 QP0L_ATTR_MULT_SIGS: (CHAR(1)) Whether an object has more than one OS/400

digital signature. This attribute is only returned for *STMF objects. Note: this attribute is

not returned if the QP0L_ATTR_SIGNED attribute has the value QP0L_NOT_SIGNED.

Valid values are:

 x’00’ QP0L_MULT_SIGS_NO: The object has only one digital signature.

x’01’ QP0L_MULT_SIGS_YES: The object has more than one digital signature. If the

QP0L_ATTR_SYS_SIGNED attribute has the value QP0L_SYS_SIGNED, at least one of the

signatures is from a source trusted by the system.

31 QP0L_ATTR_DISK_STG_OPT (CHAR(1)) This option should be used to determine how

auxiliary storage is allocated by the system for the specified object. This option can only

be specified for stream files in the ″root″ (/), QOpenSys and user-defined file systems.

This option will be ignored for *TYPE1 byte stream files. Valid values are:

 x’00’ QP0L_STG_NORMAL: The auxiliary storage will be allocated normally. That is, as additional

auxiliary storage is required, it will be allocated in logically sized extents to accomodate the

current space requirement, and anticipated future requirements, while minimizing the number of

disk I/O operations.

x’01’ QP0L_STG_MINIMIZE: The auxiliary storage will be allocated to minimize the space used by the

object. That is, as additional auxiliary storage is required, it will be allocated in small sized extents

to accomodate the current space requirement. Accessing an object composed of many small extents

may increase the number of disk I/O operations for that object.

x’02’ QP0L_STG_DYNAMIC: The system will dynamically determine the optimum auxiliary storage

allocation for the object, balancing space used versus disk I/O operations. For example, if a file

has many small extents, yet is frequently being read and written, then future auxiliary storage

allocations will be larger extents to minimize the number of disk I/O operations. Or, if a file is

frequently truncated, then future auxiliary storage allocations will be small extents to minimize the

space used. Additionally, information will be maintained on the stream file sizes for this system

and its activity. This file size information will also be used to help determine the optimum

auxiliary storage allocations for this object as it relates to the other objects sizes.

428 iSeries: UNIX-Type -- Integrated File System APIs

32 QP0L_ATTR_MAIN_STG_OPT: (CHAR(1)) This option should be used to determine how

main storage is allocated and used by the system for the specified object. This option can

only be specified for stream files in the ″root″ (/), QOpenSys and user-defined file

systems. Valid values are:

 x’00’ QP0L_STG_NORMAL: The main storage will be allocated normally. That is, as much main storage

as possible will be allocated and used. This minimizes the number of disk I/O operations since

the information is cached in main storage.

x’01’ QP0L_STG_MINIMIZE: The main storage will be allocated to minimize the space used by the

object. That is, as little main storage as possible will be allocated and used. This minimizes main

storage usage while increasing the number of disk I/O operations since less information is cached

in main storage.

x’02’ QP0L_STG_DYNAMIC: The system will dynamically determine the optimum main storage

allocation for the object depending on other system activity and main storage contention. That is,

when there is little main storage contention, as much storage as possible will be allocated and

used to minimize the number of disk I/O operations. And when there is significant main storage

contention, less main storage will be allocated and used to minimize the main storage contention.

This option only has an effect when the storage pool’s paging option is *CALC. When the storage

pool’s paging option is *FIXED, the behavior is the same as QP0L_STG_NORMAL. When the

object is accessed thru a file server, this option has no effect. Instead, its behavior is the same as

QP0L_STG_NORMAL.

33 QP0L_ATTR_DIR_FORMAT: (CHAR(1)) The format of the specified directory object. Valid

values are:

 x’00’ QP0L_DIR_FORMAT_TYPE1: The directory of type *DIR has the original directory format. The

Convert Directory (CVTDIR) command may be used to convert from the *TYPE1 format to the

*TYPE2 format.

x’01’ QP0L_DIR_FORMAT_TYPE2: The directory of type *DIR is optimized for performance, size, and

reliability compared to directories having the *TYPE1 format.

34 QP0L_ATTR_AUDIT: (CHAR(10)) The auditing value associated with the object. Valid

values are:

 *NONE No auditing occurs for this object when it is read or changed regardless of the user who is

accessing the object.

*USRPRF Audit this object only if the current user is being audited. The current user is tested to determine

if auditing should be done for this object. The user profile can specify if only change access is

audited or if both read and change accesses are audited for this object.

*CHANGE Audit all change access to this object by all users on the system.

*ALL Audit all access to this object by all users on the system. All access is defined as a read or change

operation.

35 QP0L_ATTR_CRTOBJSCAN: (CHAR(1)) Whether the objects created in a directory will be

scanned when exit programs are registered with any of the integrated file system

scan-related exit points.

 The integrated file system scan-related exit points are:

v “Integrated File System Scan on Close Exit Program” on page 656

v “Integrated File System Scan on Open Exit Program” on page 666.

This attribute can only have been specified for directories in the ″root″ (/), QOpenSys

and user-defined file systems. Even though this attribute can be set for *TYPE1 and

*TYPE2 directories, only objects which are in *TYPE2 directories will actually be scanned,

no matter what value is set for this attribute.

Integrated File System APIs 429

Valid values are:

 x’00’ QP0L_SCANNING_NO: After an object is created in the directory, the object will not be scanned

according to the rules described in the scan-related exit programs.

Note: If the Scan file systems control (QSCANFSCTL) value *NOPOSTRST is not specified when

an object with this attribute is restored, the object will be scanned at least once after the restore.

x’01’ QP0L_SCANNING_YES: After an object is created in the directory, the object will be scanned

according to the rules described in the scan-related exit programs if the object has been modified

or if the scanning software has been updated since the last time the object was scanned.

x’02’ QP0L_SCANNING_CHGONLY: After an object is created in the directory, the object will be

scanned according to the rules described in the scan-related exit programs only if the object has

been modified since the last time the object was scanned. It will not be scanned if the scanning

software has been updated. This attribute only takes effect if the Scan file systems control

(QSCANFSCTL) system value has *USEOCOATR specified. Otherwise, it will be treated as if the

attribute is QP0L_SCANNING_YES.

Note: If the Scan file systems control (QSCANFSCTL) value *NOPOSTRST is not specified when

an object with this attribute is restored, the object will be scanned at least once after the restore.

36 QP0L_ATTR_SCAN: (CHAR(1)) Whether the object will be scanned when exit programs

are registered with any of the integrated file system scan-related exit points.

 The integrated file system scan-related exit points are:

v “Integrated File System Scan on Close Exit Program” on page 656

v “Integrated File System Scan on Open Exit Program” on page 666.

This attribute can only have been specified for stream files in the ″root″ (/), QOpenSys

and user-defined file systems. Even though this attribute can be set for objects in *TYPE1

and *TYPE2 directories, only objects which are in *TYPE2 directories will actually be

scanned, no matter what value is set for this attribute.

 Valid values are:

 x’00’ QP0L_SCANNING_NO: The object will not be scanned according to the rules described in the

scan-related exit programs.

Note: If the Scan file systems control (QSCANFSCTL) value *NOPOSTRST is not specified when

an object with this attribute is restored, the object will be scanned at least once after the restore.

x’01’ QP0L_SCANNING_YES: The object will be scanned according to the rules described in the

scan-related exit programs if the object has been modified or if the scanning software has been

updated since the last time the object was scanned.

x’02’ QP0L_SCANNING_CHGONLY: The object will be scanned according to the rules described in the

scan-related exit programs only if the object has been modified since the last time the object was

scanned. It will not be scanned if the scanning software has been updated. This attribute only

takes effect if the Scan file systems control (QSCANFSCTL) system value has *USEOCOATR

specified. Otherwise, it will be treated as if the attribute is QP0L_SCANNING_YES.

Note: If the Scan file systems control (QSCANFSCTL) value *NOPOSTRST is not specified when

an object with this attribute is restored, the object will be scanned at least once after the restore.

37 QP0L_ATTR_SCAN_INFO: Scan information for this object. The scan information format

is defined in the qp0lstdi.h header file as data type Qp0l_Scan_Info_t and is shown in the

following table:

430 iSeries: UNIX-Type -- Integrated File System APIs

Qp0l_Scan_Info_t

Offset

Type Field Dec Hex

0 0 CHAR(1) Scan status

1 1 CHAR(1) Scan signatures different

2 2 CHAR(1) Binary scan

3 3 CHAR(1) Reserved

4 4 BINARY(4), UNSIGNED CCSID 1

8 8 BINARY(4), UNSIGNED CCSID 2

Note: Historical information is only kept for the last two CCSIDs which have been

scanned, as well as the binary scan indication.

 Binary scan. This indicates if the object has been scanned in binary mode when it was

previously scanned. This field will be one of the following values:

 x’00’ QP0L_SCAN_NO: The object was not scanned in binary mode.

x’01’ QP0L_SCAN_YES: The object was scanned in binary mode. If the object scan status is

QP0L_SCAN_SUCCESS, then the object was successfully scanned in binary. If the object scan

status is QP0L_SCAN_FAILURE, then the object failed the scan in binary.

CCSID 1. A CCSID value that the object has been scanned in if it was previously scanned

in a CCSID. If the object scan status is QP0L_SCAN_SUCCESS, then the object was

successfully scanned in this CCSID. If the object scan status is QP0L_SCAN_FAILURE,

then the object failed the scan in this CCSID. A value of 0 means this field does not apply.

 CCSID 2. A CCSID value that the object has been scanned in if it was previously scanned

in a CCSID. If the object scan status is QP0L_SCAN_SUCCESS, then the object was

successfully scanned in this CCSID. If the object scan status is QP0L_SCAN_FAILURE,

then this field will be 0. A value of 0 means this field does not apply.

 Reserved. A reserved field. This field will be set to binary zero.

 Scan signatures different. The scan signatures give an indication of the level of the

scanning software support. For more information, see “Scan Key List and Scan Key

Signatures” on page 673 in “Integrated File System Scan on Open Exit Program” on page

666.

 When an object is in an independent ASP group, the object scan signature is compared to

the associated independent ASP group scan signature. When an object is not in an

independent ASP group, the object scan signature is compared to the global scan

signature value. This field will be one of the following values:

 x’00’ QP0L_SCAN_NO: The compared signatures are not different.

x’01’ QP0L_SCAN_YES: The compared signatures are different.

Scan status. The scan status associated with this object. This field will be one of the

following values:

 x’00’ QP0L_SCAN_REQUIRED: A scan is required for the object either because it has not yet been

scanned by the scan-related exit programs, or because the objects data or CCSID has been

modified since it was last scanned. Examples of object data or CCSID modifications are: writing to

the object, directly or through memory mapping; truncating the object; clearing the object; and

changing the objects CCSID attribute etc..

Integrated File System APIs 431

x’01’ QP0L_SCAN_SUCCESS: The object has been scanned by a scan-related exit program, and at the

time of that last scan request, the object did not fail the scan.

x’02’ QP0L_SCAN_FAILURE: The object has been scanned by a scan-related exit program, and at the

time of that last scan request, the object failed the scan and the operation did not complete. Once

an object has been marked as a failure, it will not be scanned again until the object’s scan

signature is different than the global scan key signature or independent ASP group scan key

signature as appropriate. Therefore, subsequent requests to work with the object will fail with a

scan failure indication. Examples of requests which will fail are opening the object, changing the

CCSID of the object, copying the object etc..

x’05’ QP0L_SCAN_PENDING_CVN: The object is not in a *TYPE2 directory, and therefore will not be

scanned until the directory is converted. For information on *TYPE2 directories, see the Convert

Directory (CVTDIR) command and the Integrated file system information in the Files and file

systems topic.

x’06’ QP0L_SCAN_NOT_REQUIRED: The object does not require any scanning because the object is

marked to not be scanned.

38 QP0L_ATTR_ALWSAV: (CHAR(1)) Whether the object can be saved or not. Valid values

are:

 x’00’ QP0L_ALWSAV_NO: This object will not be saved when using the Save Object (SAV) command or

the QsrSave() API.

Additionally, if this object is a directory, none of the objects in the directory’s subtree will be saved

unless they were explicitly specified as an object to be saved. The subtree includes all

subdirectories and the objects within those subdirectories.

Note: If this attribute is chosen for an object that has private authorities associated with it, or is

chosen for the directory of an object that has private authorities associated with it, then the

following consideration applies. When the private authorities are saved, the fact that an object has

the QP0L_ALWSAV_NO attribute is not taken into consideration. (Private authorities can be saved

using either the Save System (SAVSYS) or Save Security Data (SAVSECDTA) command or the Save

Object List (QSRSAVO) API.) Therefore, when a private authority is restored using the Restore

Authority (RSTAUT) command, message CPD3776 will be seen for each object that was not saved

either because it had the QP0L_ALWSAV_NO attribute specified, or because the object was not

specified on the save and it was in a directory that had the QP0L_ALWSAV_NO attribute

specified.

x’01’ QP0L_ALWSAV_YES: This object will be saved when using the Save Object (SAV) command or

the QsrSave() API.

39 QP0L_ATTR_RSTDRNMUNL: (CHAR(1)) Restricted renames and unlinks for objects

within a directory. Objects can be linked into a directory that has this attribute set on, but

cannot be renamed or unlinked from it unless one or more of the following are true for

the user performing the operation:

v The user is the owner of the object.

v The user is the owner of the directory.

v The user has *ALLOBJ special authority.

This restriction only applies to directories. Other types of object can have this attribute

on, however, it will be ignored. This attribute is equivalent to the S_ISVTX mode bit for

an object. Valid values are:

 x’00’ QP0L_RSTDRNMUNL_OFF: No additional restrictions for rename and unlink operations.

x’01’ QP0L_RSTDRNMUNL_ON: Additional restrictions for rename and unlink operations.

40 QP0L_ATTR_JOURNAL_EXTENDED_INFORMATION: Extended Journaling information

for this object. The journaling information format is defined in the Qp0lstdi.h header file

as data type Qp0l_Journal_Extended_Info_t and is shown in the following table:

432 iSeries: UNIX-Type -- Integrated File System APIs

QsrSave.htm
qsrsavo.htm
qsrsavo.htm
QsrSave.htm

Qp0l_Journal_Extended_Info_t

Offset

Type Field Dec Hex

0 0 CHAR(1) Journaling status

1 1 CHAR(1) Options

2 2 CHAR(10) Journal identifier (JID)

12 0C CHAR(10) Current or last journal name

22 16 CHAR(10) Current or last journal library name

32 20 BINARY(4),

UNSIGNED

Last journaling start time

36 24 CHAR(10) Starting journal receiver for apply

46 2E CHAR(10) Starting journal receiver library name

56 38 CHAR(10) Starting journal receiver ASP device

66 42 CHAR(1) Apply journaled changes required

67 43 CHAR(1) Rollback was ended

68 44 CHAR(12) Reserved

Apply journaled changes required. Whether the object was restored with partial

transactions which would require an Apply Journaled Changes (APYJRNCHG) command

to complete the transaction. A partial transaction can occur if an object was saved using

save-while-active requesting that transactions with pending record changes do not have

to reach a commit boundary before the object is saved. The valid values are:

 x’00’ QP0L_APYJRNCHG_REQ_NO: The object does not have partial transactions.

x’01’ QP0L_APYJRNCHG_REQ_YES: The object was restored with partial transactions. This object can

not be used until the Apply Journaled Changes (APYJRNCHG) or Remove Journaled Changes

(RMVJRNCHG) command is used to complete or rollback the partial transactions.

Current or last journal library name. If the value of the journaling status is

QP0L_JOURNALED, then this field contains the name of the library containing the

currently used journal. If the value of the journaling status is QP0L_NOT_JOURNALED,

then this field contains the name of the library containing the last used journal. All bytes

in this field will be set to binary zero if this object has never been journaled.

 Current or last journal name. If the value of the journaling status is QP0L_JOURNALED,

then this field contains the name of the journal currently being used. If the value of the

journaling status is QP0L_NOT_JOURNALED, then this field contains the name of the

journal last used for this object. All bytes in this field will be set to binary zero if this

object has never been journaled.

 Journal identifier (JID). This field associates the object being journaled with an identifier

that can be used on various journaling-related commands and APIs.

 Journaling status. Current journaling status of the object. This field will be one of the

following values:

 x’00’ QP0L_NOT_JOURNALED: The object is currently not being journaled.

x’01’ QP0L_JOURNALED: The object is currently being journaled.

Integrated File System APIs 433

Last journaling start time. The number of seconds since the Epoch that corresponds to

the last date and time for which the object had journaling started for it. This field will be

set to binary zero if this object has never been journaled.

 Options. This field describes the current journaling options. This field is composed of

several bit flags and contains one or more of the following bit values:

 x’80’ QP0L_JOURNAL_SUBTREE: When this flag is returned, this object is a directory with IFS

journaling subtree semantics. New objects created within this directory’s subtree will inherit the

journaling attributes and options from this directory.

x’08’ QP0L_JOURNAL_OPTIONAL_ENTRIES: When journaling is active, entries that are considered

optional are journaled. The list of optional journal entries varies for each object type. See the

Integrated file system information in the Files and file systems topic for information regarding

these optional entries for various objects.

x’20’ QP0L_JOURNAL_AFTER_IMAGES: When journaling is active, the image of the object after a

change is journaled.

x’40’ QP0L_JOURNAL_BEFORE_IMAGES: When journaling is active, the image of the object prior to a

change is journaled.

Reserved. A reserved field. This field will be set to binary zero.

 Rollback was ended. Whether the object had rollback ended prior to completion of a

request to roll back a transaction. The valid values are:

 x’00’ QP0L_ROLLBACK_END_NO: The object did not have a rollback operation ended prior to

completion of a request to roll back a transaction.

x’01’ QP0L_ROLLBACK_END_YES: The object had a rollback operation ended using the ″End

Rollback″ option on the Work with Commitment Definition (WRKCMTDFN) screnn. It is

recommended that the object be restored as it can not be used. As a last resort, the Change

Journaled Object (CHGJRNOBJ) command can be used to allow the object to be used. Doing this,

however, may leave the object in an inconsistent state.

Starting journal receiver ASP device. The name of the ASP for the library that contains

the starting journal receiver. This field will be blank if no information is available. The

valid values are:

 *SYSBAS The journal receiver library resides in the system or user ASPs

ASP device The journal receiver library resides in this ASP.

Starting journal receiver for apply. The oldest journal receiver needed to successfully

Apply Journaled Changes (APYJRNCHG). When the Apply journaled Changes required

field is set to QP0L_APYJRNCHG_REQ_YES the journal receiver contains the journal

entries representing the start of the partial transaction. Otherwise; the journal receiver

contains the journal entries representing the start-of-the-save operation. This field will be

blank if no information is available.

 Starting journal receiver library name. The name of the library that contains the journal

receiver. This field will be blank if no information is available.

300 QP0L_ATTR_SUID: (CHAR(1)) Set effective user ID (UID) at execution time. This value is

ignored if the specified object is a directory. Valid values are:

 x’00’ QP0L_SUID_OFF: The user ID (UID) is not set at execution time.

x’01’ QP0L_SUID_ON: The object owner is the effective user ID (UID) at execution time.

301 QP0L_ATTR_SGID: (CHAR(1)) Set effective group ID (GID) at execution time. Valid

values are:

434 iSeries: UNIX-Type -- Integrated File System APIs

x’00’ QP0L_SGID_OFF: If the object is a file, the group ID (GID) is not set at execution time. If the

object is a directory in the ″root″ (/), QOpenSys, and user-defined file systems, the group ID (GID)

of objects created in the directory is set to the effective GID of the thread creating the object. This

value cannot be set for other file systems.

x’01’ QP0L_SGID_ON: If the object is a file, the group ID (GID) is set at execution time. If the object is a

directory, the group ID (GID) of objects created in the directory is set to the GID of the parent

directory.

Number of requested attributes. The total number of requested attributes that Qp0lGetAttr()

returns. This field is required when the Attr_Array_ptr parameter is not NULL and must equal

the number of constants in the array to which it points. When this field is zero, Qp0lGetAttr()

returns all the attributes that are supported by the API and that are available for the object.

Buffer_ptr

(Input) A pointer to a buffer that the caller allocates for Qp0lGetAttr() to return the requested

data. The caller also sets the Buffer_Size_Provided parameter to the number of bytes that are

allocated for this buffer.

 If the buffer provided is not large enough to hold all of the requested data, Qp0lGetAttr() fills

the buffer with as much data as possible and sets the value pointed to by the

Buffer_Size_Needed_ptr parameter equal to the number of bytes required for all of the requested

data to be returned.

 When the Buffer_ptr is NULL, Qp0lGetAttr() returns the total number of bytes needed to hold all

of the requested attributes and sets the Buffer_Size_Needed_ptr parameter to point to this value.

 Qp0lGetAttr() identifies each entry that it returns in the buffer with the constant that the user

supplied in the input structure pointed to by the Attr_Array_ptr parameter. Qp0lGetAttr() returns

this constant in the Attribute identification field. The constant must be used to identify the

returned attribute because the attributes are returned in any order.

 Qp0lGetAttr() fills the buffer with an entry for each requested attribute in the following format:

 Buffer Pointer

Offset

Type Field Dec Hex

0 0 BINARY(4) Offset to next attribute entry

4 4 BINARY(4) Attribute identification

8 8 BINARY(4) Size of attribute data

12 C CHAR(4) Reserved

16 10 CHAR(*) Attribute data

Attribute data. The attribute data that was requested.

 Attribute identification. The constant that identifies the returned attribute. Valid values follow

and are the same constants as provided by the caller of Qp0lGetAttr(), pointed to by the

Attr_Array_ptr parameter.

 See the Attr_Array_ptr (page 419) parameter for descriptions of each of these attribute values.

 0 QP0L_ATTR_OBJTYPE

1 QP0L_ATTR_DATA_SIZE

2 QP0L_ATTR_ALLOC_SIZE

3 QP0L_ATTR_EXTENDED_ATTR_SIZE

4 QP0L_ATTR_CREATE_TIME

Integrated File System APIs 435

5 QP0L_ATTR_ACCESS_TIME

6 QP0L_ATTR_CHANGE_TIME

7 QP0L_ATTR_MODIFY_TIME

8 QP0L_ATTR_STG_FREE

9 QP0L_ATTR_CHECKED_OUT

10 QP0L_ATTR_LOCAL_REMOTE

11 QP0L_ATTR_AUTH

12 QP0L_ATTR_FILE_ID

13 QP0L_ATTR_ASP

14 QP0L_ATTR_DATA_SIZE_64

15 QP0L_ATTR_ALLOC_SIZE_64

16 QP0L_ATTR_USAGE_INFORMATION

17 QP0L_ATTR_PC_READ_ONLY

18 QP0L_ATTR_PC_HIDDEN

19 QP0L_ATTR_PC_SYSTEM

20 QP0L_ATTR_PC_ARCHIVE

21 QP0L_ATTR_SYSTEM_ARCHIVE

22 QP0L_ATTR_CODEPAGE

23 QP0L_ATTR_FILE_FORMAT

24 QP0L_ATTR_UDFS_DEFAULT_FORMAT

25 QP0L_ATTR_JOURNAL_INFORMATION

26 QP0L_ATTR_ALWCKPWRT

27 QP0L_ATTR_CCSID

28 QP0L_ATTR_SIGNED

29 QP0L_ATTR_SYS_SIGNED

30 QP0L_ATTR_MULT_SIGS

31 QP0L_ATTR_DISK_STG_OPT

32 QP0L_ATTR_MAIN_STG_OPT

33 QP0L_ATTR_DIR_FORMAT

34 QP0L_ATTR_AUDIT

35 QP0L_ATTR_CRTOBJSCAN

36 QP0L_ATTR_SCAN

37 QP0L_ATTR_SCAN_INFO

38 QP0L_ATTR_ALWSAV

39 QP0L_ATTR_RSTDRNMUNL

40 QP0L_ATTR_JOURNAL_EXTENDED_INFORMATION

300 QP0L_ATTR_SUID

301 QP0L_ATTR_SGID

Offset to next attribute entry. The offset to the next attribute entry in the buffer. This offset is

relative to the start of the buffer. An offset of zero means that no more attribute entries follow.

 Reserved. A reserved field set to binary zero.

 Size of attribute data. The total size of all the data for this attribute. The special value of 0 in this

field indicates that the attribute is not supported by the file system in which the object is stored.

The attribute data is padded with hexadecimal zeros. The size indicated in this field does not

include the padding bytes.

Buffer_Size_Provided

(Input) The number of bytes the caller allocates in a buffer for the return of requested data. The

buffer is pointed to by the Buffer_ptr parameter.

 If this size is set to zero or is not large enough to hold all of the requested data, Qp0lGetAttr()

fills the buffer with as much data as possible and sets the value pointed to by the

Buffer_Size_Needed_ptr parameter equal to the number of bytes required for all of the requested

data to be returned.

436 iSeries: UNIX-Type -- Integrated File System APIs

When determining the appropriate allocation, the caller should assume that the returned

attribute data will be aligned on a minimum of an 8-byte boundary.

Buffer_Size_Needed_ptr

(Output) A pointer to the number of bytes that the caller needs to allocate for Qp0lGetAttr() to

return all of the requested data.

Num_Bytes_Returned_ptr

(Output) A pointer to the actual number of bytes of data returned in the user buffer. This field is

zero if the Buffer_ptr parameter is NULL.

Follow_Symlnk

(Input) If the last component in the Path_Name is a symbolic link, this parameter determines if the

symbolic link or the path contained in the symbolic link is acted upon: Valid values are:

 0 QP0L_DONOT_FOLLOW_SYMLNK: A symbolic link in the last component is not followed.

Attributes of the symbolic link object are returned.

1 QP0L_FOLLOW_SYMLNK: A symbolic link in the last component is followed. The attributes of

the object contained in the symbolic link are returned.

Authorities

Note: Adopted authority is not used.

 Authorization Required for Qp0lGetAttr()

Object Referred to Authority Required errno

Each directory, preceding the last component, in the Path_Name *X EACCES

Object, when retrieving the QP0L_ATTR_AUTH attribute *OBJMGT EACCES

Note: If the file system supports *ALLOBJ special authority and if you have *ALLOBJ special authority, you do not

need the listed object authority.

Return Value

 0 Qp0lGetAttr() was successful.

-1 Qp0lGetAttr() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If Qp0lGetAttr() is not successful, errno indicates one of the following errors:

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

Integrated File System APIs 437

Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECANCEL]

 Operation canceled.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

438 iSeries: UNIX-Type -- Integrated File System APIs

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent auxiliary storage pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EOFFLINE]

 Object is suspended.

Integrated File System APIs 439

You have attempted to use an object that has had its data saved and the storage associated with it

freed. An attempt to retrieve the object’s data failed. The object’s data cannot be used until it is

successfully restored. The object’s data was saved and freed either by saving the object with the

STG(*FREE) parameter, or by calling an API.

[EOVERFLOW]

 Object is too large to process.

 The object’s data size exceeds the limit allowed by this function.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 Additionally, if interaction with a file server is required to access the object, errno could also indicate one

of the following errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

440 iSeries: UNIX-Type -- Integrated File System APIs

File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

– QFileSvr.400

2.

″Root″ (/), QOpenSys, and User-Defined File System Differences

The QP0L_ATTR_ALLOC_SIZE and QP0L_ATTR_ALLOC_SIZE_64 values can be influenced by the

setting of the disk storage option attribute. See QP0L_ATTR_DISK_STG_OPT for more information.

3. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

Qp0lGetAttr() could return zero for the QP0L_ATTR_ACCESS_TIME value (in the buffer area) under

some conditions.

Refer to the CL Programming

book for more information regarding which object types maintain

usage information that is returned for the QP0L_ATTR_USAGE_INFORMATION attribute.

When Qp0lGetAttr() is performed on a physical file member, the

QP0L_ATTR_JOURNAL_INFORMATION or QP0L_ATTR_JOURNAL_EXTEND_INFORMATION

attribute will contain journaling information applicable to the physical file that contains the member.

Integrated File System APIs 441

Related Information

v The <Qp0lstdi.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <qlg.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “chmod()—Change File Authorizations” on page 29—Change File Authorizations

v

“Integrated File System Scan on Close Exit Program” on page 656

v

“Integrated File System Scan on Open Exit Program” on page 666.

v “fstat()—Get File Information by Descriptor” on page 132—Get File Information by Descriptor

v “lstat()—Get File or Link Information” on page 224—Get File or Link Information

v “QlgGetAttr()—Get Attributes (using NLS-enabled path name)” on page 335—Get Attributes (using

NLS-enabled path name)

v “QlgStat()—Get File Information (using NLS-enabled path name)” on page 384—Get File Information

(using NLS-enabled path name)

v “QlgLstat()—Get File or Link Information (using NLS-enabled path name)” on page 354—Get File or

Link Information (using NLS-enabled path name)

v “Qp0lSetAttr()—Set Attributes” on page 509—Set Attributes

v

Retrieve System Values (QWCRSVAL) API

v “stat()—Get File Information” on page 592—Get File Information

Example

See Code disclaimer information for information pertaining to code examples.

Following is an example showing a call to Qp0lGetAttr(). The example also shows a call to

Qp0lSaveStgFree().

/***/

#include "Qp0lstdi.h"

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

#include <sys/types.h>

#include <qusec.h>

#include <time.h>

int Save(Qp0l_Pathnames_t *Path_name_ptr)

{

 /**/

 /* No function here in the example */

 /**/

};

void SaveAnObject(Qp0l_Pathnames_t *Path_name_ptr,

 int *Return_code_ptr,

 int *Return_value_ptr,

 void *Function_CtlBlk_ptr)

{

 /**/

 /* This function saves a file and its hard links to tape. */

 /**/

 int rc;

 if ((Path_name_ptr == (Qp0l_Pathnames_t *)NULL) ||

 (Path_name_ptr->Number_Of_Names == 0))

 {

 printf("In User Exit Program with null Path \n");

 }

 else

 {

 /* This example calls a function (Save) that could call the */

442 iSeries: UNIX-Type -- Integrated File System APIs

qwcrsval.htm
aboutapis.htm#CODEDISCLAIMER

/* Save Object (QsrSave) API. The QsrSave API is designed to */

 /* save a copy of one or more objects that can be used in the */

 /* integrated file system. For details on using QsrSave, see */

 /* the Backup and Recovery API part. */

 rc = (Save(Path_name_ptr));

 *Return_code_ptr = rc;

 *Return_value_ptr = errno;

 if (rc == 0)

 {

 /* Other processing for a successfully saved object. */

 }

 else

 {

 /* Optional processing such as storing information */

 /* to be returned to the caller in the function */

 /* control block area, or building a list of the */

 /* files whose save attempts failed, or other. */

 }

 }

 return;

} /* end SaveAnObject exit program */

int main (int argc, char *argv[])

{

#define MYPN "ADIR/ASTMF"

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 const char Path_Name_Del_const[2] = "/";

 struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[1];

 };

 struct pnstruct pns;

 struct pnstruct *pns_ptr = NULL;

 struct attrStruct

 {

 Qp0l_AttrTypes_List_t attr_struct;

 uint AttrTypes[10];

 };

 struct attrStruct Attr_types_ptr;

 Qp0l_Attr_Header_t *attrPtr;

 char *attrValp;

 Qp0l_StgFree_Function_t User_function;

 struct

 {

 uint AnyData_to_the_exitprogram;

 uint AnyData_not_processed_by_the_API;

 } CtlBlkAreaName;

 time_t mytime;

 char BufferArea[250];

 unsigned int buff_size_provided;

 unsigned int buff_size_needed = 0;

 unsigned int num_bytes_returned = 0;

 unsigned int follow_sym;

 int done=0;

 int rc;

 int returned_data_index = 0;

Integrated File System APIs 443

/**/

 /* Initialize Get Attributes Parameters */

 /**/

 memset((void*)&pns, 0x00, sizeof(struct pnstruct));

 pns.qlg_struct.CCSID = 37;

 memcpy(pns.qlg_struct.Country_ID,US_const,2);

 memcpy(pns.qlg_struct.Language_ID,Language_const,3);

 pns.qlg_struct.Path_Type = 0;

 pns.qlg_struct.Path_Length = sizeof(MYPN)-1;

 memcpy(pns.qlg_struct.Path_Name_Delimiter,Path_Name_Del_const,1);

 memcpy(pns.pn,MYPN,sizeof(MYPN));

 memset((void *)&Attr_types_ptr, 0x00,sizeof(struct attrStruct));

 pns_ptr = &pns;

 Attr_types_ptr.attr_struct.Number_Of_ReqAttrs = 2;

 Attr_types_ptr.AttrTypes[0] = QP0L_ATTR_ACCESS_TIME;

 Attr_types_ptr.AttrTypes[1] = QP0L_ATTR_STG_FREE;

 buff_size_provided = 250;

 follow_sym = QP0L_FOLLOW_SYMLNK;

 /**/

 /* Call the Qp0lGetAttr() API to retrieve attributes to */

 /* determine if selection criteria can be met for calling */

 /* the Qp0lSaveStgFree() API. */

 /**/

 rc = Qp0lGetAttr((Qlg_Path_Name_T *)&pns,

 (Qp0l_AttrTypes_List_t *)&Attr_types_ptr,

 BufferArea,

 buff_size_provided,

 &buff_size_needed,

 &num_bytes_returned,

 follow_sym);

 if (rc == 0) /* check API return code */

 {

 /* Must first check if any data was returned. */

 if (num_bytes_returned > 0)

 {

 attrPtr = (Qp0l_Attr_Header_t *)BufferArea;

 while(!done)

 {

 attrValp = (char *)attrPtr +

 sizeof(Qp0l_Attr_Header_t); /* Point to attr value */

 /**/

 /* The following code prints the two attributes that */

 /* were returned. Add more code here, for example, */

 /* to determine if the returned attributes meet */

 /* the criteria or policies for storage freeing. */

 /**/

 printf ("**\n");

 printf ("Attr ID #%d = %d - ",

 returned_data_index,

 attrPtr->Attr_ID);

 if(attrPtr->Attr_Size > 0)

 {

 switch (attrPtr->Attr_ID)

 {

 case QP0L_ATTR_ACCESS_TIME:

 printf("QP0L_ATTR_ACCESS_TIME\n");

 memcpy((void *)&mytime,

 (void *)attrValp,

 attrPtr->Attr_Size);

 printf ("%s", ctime(&mytime));

 break;

 case QP0L_ATTR_STG_FREE:

 printf ("QP0L_ATTR_STG_FREE\n");

444 iSeries: UNIX-Type -- Integrated File System APIs

switch (attrValp[0])

 {

 case QP0L_SYS_STG_FREE:

 printf ("--Is storage freed--\n");

 break;

 case QP0L_SYS_NOT_STG_FREE:

 printf ("--Is not storage freed--\n");

 break;

 default:

 printf ("Invalid data: %d.\n",

 attrValp[0]);

 break;

 }

 break;

 default:

 printf ("Undefined return type (attr id unknown.)\n");

 break;

 } /* end switch */

 }

 else

 printf("Attribute has no value\n");

 printf("***Size of this attr’s data: %d\n",

 attrPtr->Attr_Size);

 printf("***Offset to next attr: %d\n",

 attrPtr->Next_Attr_Offset);

 ++returned_data_index;

 if(attrPtr->Next_Attr_Offset > 0) /* If more data */

 attrPtr = (Qp0l_Attr_Header_t *) /* Set attribute */

 &(BufferArea[attrPtr->Next_Attr_Offset]); /* pointer */

 else /* No more data */

 done = 1; /* End the loop */

 }

 /**/

 /* Initialize Save Storage Free Parameters. The path */

 /* name parameter was already initialized as part of the */

 /* call to Qp0lGetAttr() API and is assumed, in this */

 /* example, to be the same pathname. Both APIs require */

 /* the same path name format. */

 /**/

 memset((void *)&User_function,0x00,sizeof(Qp0l_StgFree_Function_t));

 User_function.Mltthdacn[0] = QP0L_MLTTHDACN_NOMSG;

 User_function.Function_Type = QP0L_USER_FUNCTION_PTR;

 User_function.Procedure = &SaveAnObject;

 rc = Qp0lSaveStgFree((Qlg_Path_Name_T *)&pns,

 &User_function,

 &CtlBlkAreaName);

 if(rc == 0)

 printf("Qp0lSaveStgFree() Successful!");

 else

 {/* Unsuccessful return from Qp0lSaveStgFree() API. */

 /* The following code prints the errno value message. */

 rc = errno;

 printf("ERROR on Qp0lSaveStgFree(): error = %d\n", rc);

 perror("Error message");

 }

 } /* if (num_bytes_returned > 0) */

 else

 rc = EUNKNOWN;

 } /* end rcGA == 0, Qp0lGetAttr() was successful */

 else

 {

 rc = errno;

 printf("ERROR on Qp0lGetAttr(): error = %d\n", rc);

Integrated File System APIs 445

perror("Error message");

 }

 return(rc);

} /* end main */

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

Qp0lGetPathFromFileID()—Get Path Name of Object from Its File ID

 Syntax

 #include <Qp0lstdi.h>

 char *Qp0lGetPathFromFileID(char *buf, size_t size,

 Qp0lFID_t fileid);

 Service Program Name: QP0LLIB2

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0lGetPathFromFileID() function determines an absolute path name of the file identified by fileid

and stores it in buf. The components of the returned path name are not symbolic links. If the file has

more than one path name, only one is returned.

The access time of each directory in the absolute path name of the file (excluding the file itself) is

updated.

If buf is a NULL pointer, Qp0lGetPathFromFileID() returns a NULL pointer and the EINVAL error.

The contents of buf after an error are not defined.

Qp0lGetPathFromFileID() is supported in the root (/), QOpenSys, and user-defined file systems.

Parameters

buf (Output) A pointer to a buffer that will be used to hold an absolute path name of the file

identified by fileid. The buffer must be large enough to contain the full path name including the

terminating NULL character.

 The path name is returned in the CCSID (coded character set identifier) currently in effect for the

job. If the CCSID of the job is 65535, this parameter is assumed to be represented in the default

CCSID of the job.

 See “QlgGetPathFromFileID()—Get Path Name of Object from Its File ID (using NLS-enabled

path name)” on page 337 for a description and an example of supplying the buf in any CCSID.

size (Input) The number of bytes in the buffer buf.

fileid (Input) The identifier of the file whose path name is to be returned. This identifier is logged in

audit journal entries to identify the file being audited. See the Parent File ID and Object File

ID fields of the audit journal entries described in the iSeries Security Reference

book.

446 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Authorities

Note: Adopted authority is not used.

Authorization required for Qp0lGetPathFromFileID()

 Object Referred to Authority Required errno

Each directory in the path name preceding the file *RX EACCES

The file itself *R EACCES

Return Value

value Qp0lGetPathFromFileID() was successful. The value returned is a pointer to buf.

NULL Qp0lGetPathFromFileID() was not successful. The errno global variable is set to indicate the

error. After an error, the contents of buf are not defined.

Error Conditions

If Qp0lGetPathFromFileID() is not successful, errno usually indicates one of the following errors. Under

some conditions, errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

Integrated File System APIs 447

While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

 No path names were found for this fileid or the user is not authorized to any of the paths.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ERANGE]

 A range error occurred.

 The value of an argument is too small, or a result too large.

 The size argument is too small. It is greater than zero but smaller than the length of the path

name plus a NULL character.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

448 iSeries: UNIX-Type -- Integrated File System APIs

The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. File System Differences

The following file systems do not support Qp0lGetPathFromFileID():

v Network File System

v QSYS.LIB

v Independent ASP QSYS.LIB

v QDLS

v QOPT

v QFileSvr.400

v QNetWare

v QNTC

Related Information

v The <Qp0lstdi.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “QlgGetPathFromFileID()—Get Path Name of Object from Its File ID (using NLS-enabled path name)”

on page 337—Get Path Name of Object from Its File ID (using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example determines the path name of a file, given its file ID. In this example, the fileid is

hardcoded. More realistically, the fileid is obtained from the audit journal entry and passed to

Qp0lGetPathFromFileID().

#include <Qp0lstdi.h>

#include <stdio.h>

main()

{

 char path[1024];

 Qp0lFID_t fileid = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x00, 0x80, 0xFF, 0xCF, 0x00};

 if (Qp0lGetPathFromFileID(path, sizeof(path), fileid) == NULL)

 perror("Qp0lGetPathFromFileID() error");

 else

 printf("The file’s path is: %s\n", path);

}

Output:

The file’s path is: /myfile

Integrated File System APIs 449

aboutapis.htm#CODEDISCLAIMER

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Qp0lOpen()—Open File

 Syntax

 #include <Qp0lstdi.h>

 int Qp0lOpen(Qlg_Path_Name_T *Path_Name,

 int oflag, . . .);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Theadsafe: Conditional; see Usage Notes for “open()—Open File” on page 267 API.

The Qp0lOpen() function, similar to the open() function, opens a file and returns a number called a file

descriptor. Qp0lOpen()differs from open() in that the Path_Name parameter is a pointer to a

Qlg_Path_Name_T structure instead of a pointer to a character string.

Only the Path_Name parameter is described here. For a discussion of the other parameters, authorities

required, return values, and related information, see “open()—Open File” on page 267.

 Note: To use this API with large file APIs, you must specify the

O_LARGEFILE flag on the oflag parameter.

Parameters

Path_Name

(Input) The path name of the file to be opened. This path name is in the Qlg_Path_Name_T

format. For more information on this structure, see Path Name Format.

Related Information

v The <fcntl.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “open()—Open File” on page 267—Open File

v “close()—Close File or Socket Descriptor” on page 46—Close File or Socket Descriptor

Example

See Code disclaimer information for information pertaining to code examples.

The following example creates and opens an output file for exclusive access. This program was stored in

a source file with CCSID 37, so the constant string ″newfile″ will be compiled in coded character set

identifier (CCSID) 37. Therefore, the country or region and language specified are United States English,

and the CCSID specified is 37.

#include <fcntl.h>

#include <stdio.h>

#include <Qp0lstdi.h>

main()

{

450 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
pns.htm
aboutapis.htm#CODEDISCLAIMER

int fildes;

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 const char Path_Name_Del_const[2] = "/";

 struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[7];

 };

 struct pnstruct pns;

 struct pnstruct *pns_ptr = NULL;

 char fn[]="newfile";

 memset((void*)&pns, 0x00, sizeof(struct pnstruct));

 pns.qlg_struct.CCSID = 37;

 memcpy(pns.qlg_struct.Country_ID,US_const,2);

 memcpy(pns.qlg_struct.Language_ID,Language_const,3);;

 pns.qlg_struct.Path_Type = 0;

 pns.qlg_struct.Path_Length = sizeof(fn) - 1;

 memcpy(pns.qlg_struct.Path_Name_Delimiter,

 Path_Name_Del_const,1);

 memcpy(pns.pn,fn,sizeof(fn));

 pns_ptr = &pns;

 if(fildes = Qp0lOpen((Qlg_Path_Name_T *)pns_ptr,

 O_WRONLY|O_CREAT|O_EXCL, S_IRWXU)) == -1)

 {

 perror("Qp0lOpen() error");

 }

}

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

Qp0lProcessSubtree()—Process a Path Name

 Syntax

 #include <Qp0lstdi.h>

 int Qp0lProcessSubtree (

 Qlg_Path_Name_T *Path_Name,

 uint Subtree_level,

 Qp0l_Objtypes_List_t *Objtypes_array_ptr,

 uint Local_remote_obj,

 Qp0l_IN_EXclusion_List_t *IN_EXclusion_ptr,

 uint Err_recovery_action,

 Qp0l_User_Function_t *UserFunction_ptr,

 void *Function_CtlBlk_ptr, ...);

 Service Program Name: QP0LLIB2

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 460.

Integrated File System APIs 451

#TOP_OF_PAGE
unix.htm
aplist.htm

The Qp0lProcessSubtree() function searches the directory tree under a specific path name. It selects and

passes objects, one at a time, to an exit program that is identified on its call. The exit program can be

either a procedure or a program.

Qp0lProcessSubtree() performs recursive read operations to access any object in any file system. The

order in which objects are selected and passed to the exit program can vary within a given file system

and within a given directory, dependent on file system rules. The only guaranteed ordering is that all

selected objects within a given directory are passed to the exit program before the parent directory is

passed to the exit program.

Parameters

Path_Name

(Input) The path name where Qp0lProcessSubtree() starts its search. All relative path names are

relative to the current directory at the time of the call to Qp0lProcessSubtree(). This path name is

in the Qlg_Path_Name_T format. For more information on this structure, see Path Name Format.

The Path_Name parameter must be NULL to use the IN_EXclusion_ptr parameter to enter multiple

path names for inclusion on a single call to Qp0lProcessSubtree().

Subtree_level

(Input) An unsigned integer that tells Qp0lProcessSubtree() whether or not to open

subdirectories in the path being processed. Valid values follow:

0 QP0L_SUBTREE_YES: All subdirectories are opened by Qp0lProcessSubtree() so that the

objects they contain are sent to the exit program if they meet the caller’s selection criteria.

1 QP0L_SUBTREE_NO: Only first-level objects are processed. The names of subdirectories,

which meet the selection criteria, are passed to the exit program, but they are not opened

by Qp0lProcessSubtree(). Thus, the objects the subdirectories contain are not matched

against selection criteria and therefore are not sent to the exit program.

Objtypes_array_ptr

(Input) A pointer to an array of object types. Each entry in the array identifies an object type that

Qp0lProcessSubtree() uses to determine what will be passed to the exit program. The Number of

object types field contains the total number of object types in the array. A NULL pointer means

that there is no filtering according to object type and that all object types that meet other selection

criteria are passed to the exit program.

 The structure for this parameter follows.

 Object Types Array Pointer

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of object types

4 4 ARRAY(*) of CHAR(11) Array of object types structure

Array of object types structure

An array identifying each object type used to determine what will be passed to the exit

program when processing a path. Each entry is limited to 11 characters, including a

NULL terminator, and is padded with blanks. Object types must be entered in standard

OS/400 object type format which is all capital letters, preceded by an asterisk (*). For a

complete list of the available object types, see Object Types in the CL topic.

452 iSeries: UNIX-Type -- Integrated File System APIs

pns.htm

Qp0lProcessSubtree() verifies that valid OS/400 object types are entered and returns the

errno EINVAL when an object type that is not valid is entered. Although some object

types are scoped to a specific file system, Qp0lProcessSubtree() does not validate object

types according to file systems.

 Valid special values for this parameter follow:

*ALLDIR:

Select all directory object types. This includes *LIB, *DIR, *FLR, *FILE, and *DDIR

object types.

*ALLQSYS:

Select all QSYS.LIB object types. This includes all objects in the QSYS.LIB file

system and all independent ASP QSYS.LIB file systems which are available when

the API is first called.

 Note: IN_EXclusion_ptr must also be specified as an inclusion array. If *NOQSYS

is specified, *ALLQSYS cannot also be specified.

*ALLSTMF:

Select all OS/400 stream file object types. This includes *MBR, *DOC, *STMF,

*DSTMF, and *USRSPC object types.

*MBR: Select all OS/400 database file member types.

*NOQSYS:

Exclude all QSYS.LIB object types. This includes all objects in the QSYS.LIB file

system and all independent ASP QSYS.LIB file systems which are available when

the API is first called.

 Note: This special value only has meaning if ’/’ or ’/asp_name’ is specified for

the Path_Name parameter (where asp_name is the name of an independent ASP

which is available when the API is first called). Additionally, if IN_EXclusion_ptr

is specified, it must only be as an exclusion array. If *ALLQSYS is specified,

*NOQSYS cannot also be specified.

Number of object types

The number of types included in the search.

Local_remote_obj

(Input) An unsigned integer that tells Qp0lProcessSubtree() whether to select only local objects,

only remote objects, or both. Note that the decision of whether a file is local or remote varies

according to the respective file system rules. Objects in file systems that do not carry either a

local or remote indicator are treated as remote. Valid values follow:

0 QP0L_LOCAL_REMOTE_OBJ: Both local and remote objects are passed to the exit

program.

1 QP0L_LOCAL_OBJ: Only local objects are passed to the exit program.

2 QP0L_REMOTE_OBJ: Only remote objects are passed to the exit program.

IN_EXclusion_ptr

(Input) A pointer to an array of pointers. Each pointer in the array points to a specific path name

that identifies a directory, and all of its subdirectories, that Qp0lProcessSubtree() either includes

or excludes in its search to find objects that meet the caller’s input criteria. If this pointer is not

Integrated File System APIs 453

NULL, the IN_EXclusion pointer type must indicate whether the list is an inclusive or exclusive

list. The Number of pointers field must contain the number of path names for inclusion or

exclusion on the search.

 Use an inclusive list to specify multiple path names for searches on a single call to

Qp0lProcessSubtree() versus using the Path_Name parameter, which searches only one path per

call. The Path_Name parameter and an inclusive list are mutually exclusive. EINVAL is returned if

both parameters are specified. The IN_EXclusion_ptr must be NULL if not used. All of the rules

that apply to a single Path_Name entry apply to each inclusive list entry.

 While an inclusion list allows the caller of Qp0lProcessSubtree() to identify multiple path names

for processing, Qp0lProcessSubtree() does not perform any verification to ensure uniqueness of

path names or to verify any other relationship between path names entered in the inclusion array.

For example, if the path names entered represent nested directories, Qp0lProcessSubtree() calls

the exit program multiple times without any error message or other notification of this nesting.

 Specify the root directory for a given file system as an exclusive list entry to eliminate that file

system from a search.

 All relative path names are relative to the current directory of the job that calls

Qp0lProcessSubtree().

 The structure for this parameter follows.

 IN_EXclusion Pointer

 This points to a list of path names to either include or exclude from a search.

 Offset

Type Field Dec Hex

0 0 BINARY(4) IN_EXclusion pointer type

4 4 BINARY(4) Number of pointers

8 8 CHAR(8) Reserved

16 10 ARRAY(*) Path name pointers

IN_EXclusion pointer type

Whether a path name array contains directories that are included or contains directories

that are excluded. Valid values follow:

0 QP0L_INCLUSION_TYPE: An inclusion array is identified.

1 QP0L_EXCLUSION_TYPE: An exclusion array is identified.

Number of pointers

The number of path name pointers that are in the inclusion or exclusion array.

Path name pointers

An array of pointers. Each pointer points to a path name that is included or excluded.

Each path name must follow the Qlg_Path_Name_T structure. For more information on

this structure, see Path Name Format.

Reserved

A reserved field. This field must be set to binary zero.

454 iSeries: UNIX-Type -- Integrated File System APIs

pns.htm

Err_recovery_action

(Input) An unsigned integer that describes how Qp0lProcessSubtree() handles errors that are not

severe enough to force the API to end processing. Valid values follow:

0 QP0L_PASS_WITH_ERRORID: Calls the exit program and specifies the name (when the

name is available) of the object being accessed when an error occurs. This value also

sends a valid errno to the exit program.

1 QP0L_BYPASS_NO_ERRORID: Bypasses the object being accessed when an error occurs,

and moves to process the next object in the tree without notification to the calling

program or to the exit program that an error has occurred.

2 QP0L_JOBLOG_NO_ERRORID: Sends message CPDA1C0 to the job log to identify the

object being accessed when an error occurs. This value returns to process the next object

without notification to the calling program or to the exit program that an error has

occurred.

3 QP0L_NULLNAME_ERRORID: Calls the exit program with a NULL object name and a

valid errno.

4 QP0L_END_PROCESS_SUBTREE: Quits Qp0lProcessSubtree() when an error occurs,

and returns to the calling program, regardless of the error type. Note that the exit

program is still given a call but cannot override the caller’s decision to end processing.

Calling the exit program allows the exit program to perform other tasks before the API

returns to the caller. For example, the exit program can put information in the function

control block that can be processed by the caller when the caller regains control.

UserFunction_ptr

(Input) A pointer to the name of an exit program that the caller wants Qp0lProcessSubtree() to

call upon finding an object that matches the selection criteria. This exit program can be either a

procedure or a program. See “Process a Path Name Exit Program” on page 677 for the syntax of

the user exit program.

 The structure for this parameter follows.

 User Function Pointer

 This points to the user exit program. The exit program can be a procedure or a program.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Function type flag

4 4 CHAR(10) Program library

14 E CHAR(10) Program name

24 18 CHAR(1) Multithreaded job action

25 19 CHAR(7) Reserved

32 20 PP(*) Procedure pointer to the exit procedure

Function type flag

An unsigned integer that indicates whether the user-supplied exit program that is called

by Qp0lProcessSubtree() is a procedure or a program. Valid values follow:

0 QP0L_USER_FUNCTION_PTR: A user procedure is called.

1 QP0L_USER_FUNCTION_PGM: A user program is called.

Integrated File System APIs 455

Multithreaded job action

(Input) A CHAR(1) value that indicates the action to take in a multithreaded job. The

default value is QP0L_MLTTHDACN_SYSVAL. For release compatibility and for

processing this parameter against the QMLTTHDACN system value, x’00, x’01’, x’02’, &

x’03’ are treated as x’F0’, x’F1’, x’F2’, and x’F3’. Valid values follow:

x’00’ QP0L_MLTTHDACN_SYSVAL: The API evaluates the QMLTTHDACN system

value to determine the action to take in a multithreaded job. Although the API

can make repetitive calls to an exit program, the system value is evaluated once

before Qp0lProcessSubtree() issues its first exit program call. This value is used

on subsequent calls until the API returns control to its caller. Valid

QMLTTHDACN system values follow:

’1’ Call the exit program. Do not send an informational message.

’2’ Call the exit program. Send informational message CPI3C80.

Qp0lProcessSubtree() may call the exit program multiple times; however,

this message is sent only once for each call to Qp0lProcessSubtree().

’3’ The exit program is not called when the API determines that it is running

in a multithreaded job. ENOTSAFE is returned.

x’01’ QP0L_MLTTHDACN_NOMSG: Call the exit program. Do not send an

informational message.

x’02’ QP0L_MLTTHDACN_MSG: Call the exit program. Send informational message

CPI3C80. Qp0lProcessSubtree() may call the exit program multiple times;

however, this message is sent only once for each call to Qp0lProcessSubtree().

x’03’ QP0L_MLTTHDACN_NO: The exit program is not called when the API

determines that it is running in a multithreaded job. ENOTSAFE is returned.

Procedure pointer to the exit procedure

A procedure pointer to the procedure that Qp0lProcessSubtree() calls. This field must be

NULL if a program is called instead of a procedure.

Program library

The library in which the called program, identified by Program name, is located. This

field must be blank if a procedure is called instead of a program.

Program name

The name of the program that is called. The program is located in the library identified

by Program library. This field must be blank if a procedure is called instead of a program.

Reserved

A reserved field. This field must be set to binary zero.

Function_CtlBlk_ptr

(Input) A pointer that Qp0lProcessSubtree() passes to the user-defined exit program that is

called. Qp0lProcessSubtree() does not process this pointer or what is referred to by the pointer. It

passes the pointer as a parameter to the user-defined exit program that was specified. This is a

means for the caller of Qp0lProcessSubtree() to pass information to and from the Process a Path

Name exit program.

456 iSeries: UNIX-Type -- Integrated File System APIs

Authorities

Note: Adopted authority is not used.

Authorization Required for Qp0lProcessSubtree()

 Object Referred to Authority Required errno

Each directory, preceding the last component, in a Path Name *X EACCES

The Path Name directory and all subdirectories of the Path Name

that are included in the search.

*RX

(See Note)

EACCES

Each directory, preceding the last component, in any path name

pointed to by the IN_EXclusion ptr

*X EACCES

The Path Name directory and all subdirectories of any path name

pointed to by an inclusive list

*RX

(See Note)

EACCES

The object identified by the path name that is passed to the exit

program, if the object is a user profile (*USRPRF)

Any authority greater

than *EXCLUDE

EACCES

Any called program pointed to by the UserFunction_ptr parameter *X EACCES

Any library that contains the called program pointed to by the

UserFunction_ptr parameter

*X EACCES

Note: If the directory or subdirectories have no objects in them, only *R is required.

Return Value

0 Qp0lProcessSubtree() was successful.

-1 Qp0lProcessSubtree() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0lProcessSubtree() is not successful, the errno indicates one of the following errors:

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

Integrated File System APIs 457

An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EISDIR]

 Specified target is a directory.

 The path specified named a directory where a file or object name was expected.

 The path name given is a directory.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[EMFILE]

 Too many open files for this process.

 An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of

OPEN_MAX can be retrieved using the sysconf() function.

 The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENFILE]

 Too many open files in the system.

458 iSeries: UNIX-Type -- Integrated File System APIs

A system limit has been reached for the number of files that are allowed to be concurrently open

in the system.

 The entire system has too many other file descriptors already open.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOSYSRSC]

 System resources not available to complete request.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

The following message may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

Integrated File System APIs 459

Message ID Error Message Text

CPF3CF2 E Error(s) occurred during running of &1 API.

CPFA0D4 E File system error occurred. Error number &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. If the exit program called by Qp0lProcessSubtree() is not threadsafe or uses a function that is not

threadsafe, then Qp0lProcessSubtree() is not threadsafe.

3. If the exit program called by Qp0lProcessSubtree() uses a function that fails when there are

secondary threads active in the job, Qp0lProcessSubtree() may fail as a result.

4. Basic function and usage considerations

v Qp0lProcessSubtree() does not perform the following tasks but is designed to work with the user

exit function and other APIs to be useful in accomplishing the following and other tasks:

– Retrieve object attributes (like authorities, dates, or sizes).

– Build lists from selected objects.

– Delete directories.

– Identify multiple occurrences of an object within or across directories.

– Count the number of objects in a directory.
v DosSetRelMaxFH() is called to increase to the maximum the number of file descriptors that can be

opened during processing such that Qp0lProcessSubtree() is not likely to fail due to a lack of

descriptors. This value is not reset when Qp0lProcessSubtree() ends because the API could be

running in a multithreaded job.
5. Object locking

Qp0lProcessSubtree() does not perform any object locking, other than what is done when opening a

directory to read the objects it contains, so that the exit program does not encounter or need to

manage locks held by Qp0lProcessSubtree(). Once Qp0lProcessSubtree() has started searching a path,

the addition, deletion, or removal of mounted directories or objects may not have any effect on the

results of the search.

If Qp0lProcessSubtree() encounters a directory that is locked, Qp0lProcessSubtree() uses the defined

Err_recovery_action to determine how to handle the locked condition. Locks on objects that are not

directories have no effect on Qp0lProcessSubtree().

6. Design considerations for parameters

460 iSeries: UNIX-Type -- Integrated File System APIs

a. Symbolic links

When the last component of the path name supplied on the initial call of Qp0lProcessSubtree() is

a symbolic link, Qp0lProcessSubtree() resolves and follows the initial link to its target and

performs its normal functions on the target. All other symbolic links that are encountered in the

same search are not resolved to their targets.

If the path name supplied on the initial call of Qp0lProcessSubtree() is a symbolic link that points

to another file system or that points to a remote file system, the API resolves and processes the

initial link only. It does not resolve other symbolic links that are encountered in the same search.

However, if the caller specified that remote objects are not processed, but the initial path name

(whether a symbolic link or not) points to a remote file system, the link is not resolved.

Qp0lProcessSubtree() calls the exit program with a NULL path name and an indicator that

Qp0lProcessSubtree() has completed successfully without any error indicators to the exit program.

When *SYMLNK is specified as part of the selection criteria, Qp0lProcessSubtree() does not

resolve the selected names.

b. Recovery Actions

There are three separate parameters that control error recovery during a search. The caller of the

API determines how an error should be reported to the exit program by setting the

Err_recovery_actions parameter. The API sets the Selection status pointer and sends it to the exit

program to indicate one of four conditions: the API search status is OK, the last object has been

processed, the API has encountered recoverable errors, or the search cannot continue. For error

conditions it also sends a valid errno. The exit program returns an indicator back to the API either

to continue or to end the search by setting the Return value pointer. For error conditions, it also

returns a valid errno, pointed to by the Return value pointer. Each time Qp0lProcessSubtree()

regains control from the exit program, it determines whether the search should continue or end by

evaluating the Err_recovery_actions parameter, its Selection status pointer, and the Return value

pointer. Upon ending, Qp0lProcessSubtree() returns 0 to indicate a successful search, or a -1 and

an errno to indicate the error condition. This errno may have been set by the exit program (Return

value pointer).

This error recovery design allows for flexibility in handling errors between the caller, the API, and

the exit program. Whenever an unrecoverable error occurs, if possible, the exit program is given a

final call; this call allows the exit program to do such tasks as cleanup or to put information in the

function control block, or to record information about the error. However, the exit program cannot

decide that the search should continue. The API will return to its caller when it regains control.

There are only two specific instances in which the API determines that the exit program is not

called:

v When the API cannot resolve the exit program name or its authorization.

v When input parameters are missing or specified incorrectly. (The API returns EINVAL to the

caller before any other processing.)

Following is a diagram showing the flow and relationship of these parameters.

Integrated File System APIs 461

Scenarios

Following are scenarios showing calls and the results of calls to Qp0lProcessSubtree(). “Figure: Directory

Structure A” on page 463 and “Figure: Directory Structure B” on page 464 define the input directory

structure for these scenarios.

462 iSeries: UNIX-Type -- Integrated File System APIs

Figure: Directory Structure A

This directory structure represents three subdirectories (a, b, c), three objects (x, y, z), and a symbolic link

(t).

Integrated File System APIs 463

Figure: Directory Structure B

This directory structure represents six subdirectories (a, b, c, d, e, f) and seven objects (t, u, v, w, x, y, z).

Scenario 1

This scenario assumes processing a directory as shown by Directory Structure A in “Figure: Directory

Structure A” on page 463.

This scenario shows a call to the API without any criteria to filter the selection of objects in the path

being searched. If the API call were coded with the parameter values as shown by Input value in “Figure:

Scenario 1 API Input,” the exit program would be called nine times and would pass the object names as

shown by the Object Name Pointer in “Figure: Results of a call” on page 465. Because

QP0L_SUBTREE_YES is specified, all of the directories in the path will be opened and the name of all the

objects that they contain will be passed to the exit program. Note that the only guaranteed order is that

parent directories are passed to the exit program after all of their children.

Figure: Scenario 1 API Input

 Input Parameter Input value

*Path_Name ’/’ (’/’ processes every directory on the system and is

not recommended if performance is a consideration)

Subtree_level QP0L_SUBTREE_YES

464 iSeries: UNIX-Type -- Integrated File System APIs

Input Parameter Input value

*Objtypes_array_ptr NULL

Local_remote_obj QP0L_LOCAL_REMOTE_OBJ

*IN_EXclusion_ptr NULL

Err_recovery_action QP0L_PASS_WITH_ERRORID

*UserFunction_ptr QP0L_USER_FUNCTION_PTR

*Function_CtlBlk_ptr NULL

Figure: Results of a call

 Exit Program Call Count Object Name Pointer

1 /a/b/y

2 /a/b

3 /a/x

4 /a/t

5 /a/c/z

6 /a/c

7 /a

8 /

9 NULL path name (indicates the API completed)

Scenario 2

This scenario assumes processing a directory as shown by Directory Structure A in the “Figure: Directory

Structure A” on page 463.

This shows a call to the API with the Subtree level parameter set to retrieve only one level, without any

object filtering. Since QP0L_SUBTREE_NO is specified, the names of all objects in the path will be passed

to the exit program, however, none of the directories will be opened. This allows a caller to perform tasks

such as identifying all of the root objects for a file system. For example, this would identify all of the first

level folders, when processing against the QDLS file system. Then the API can be called recursively from

within the exit program, with each of these folders specified as the path to be searched.

If the API call were coded with the parameter values as shown by Input value in “Figure: Scenario 2 API

Input,” the exit program would be called six times and would pass the object names as shown by the

Object Name Pointer in “Figure: Results of a call” on page 466.

Figure: Scenario 2 API Input

 Input Parameter Input value

*Path_Name ’/a’

Subtree_level QP0L_SUBTREE_NO

*Objtypes_array_ptr NULL

Local_remote_obj QP0L_LOCAL_REMOTE_OBJ

*IN_EXclusion_ptr NULL

Err_recovery_action QP0L_PASS_WITH_ERRORID

Integrated File System APIs 465

Input Parameter Input value

*UserFunction_ptr QP0L_USER_FUNCTION_PTR

*Function_CtlBlk_ptr NULL

Figure: Results of a call

 Exit Program Call Count Object Name Pointer

1 /a/b

2 /a/x

3 /a/t

4 /a/c

5 /a

6 NULL path name (indicates the API completed)

Scenario 3

This scenario assumes processing a directory as shown by Directory Structure B in the “Figure: Directory

Structure B” on page 464.

This scenario represents a call to the API with an inclusion list. Note that the Path Name parameter is not

used as the starting directory since each entry in an inclusion list is treated as a starting directory.

If the API call were coded with the parameter values as shown by Input value in “Figure: Scenario 3 API

Input,” the exit program would be called six times and would pass the object names as shown by the

Object Name Pointer in “Figure: Results of a call” on page 467.

Note that /a/b/c/d/v could be returned before /a/b/c/d/u, as shown in this scenario, since children in

a directory can be returned in any order. The only guaranteed order is that the exit program is called

with all children objects before being called with the parent to allow the exit program to delete directories

if desired.

Figure: Scenario 3 API Input

 Input Parameter Input value

*Path_Name NULL (not used with an inclusion list)

Subtree_level QP0L_SUBTREE_YES

*Objtypes_array_ptr ’*DIR ’ ’*STMF ’

Local_remote_obj QP0L_LOCAL_OBJ

*IN_EXclusion_ptr QP0L_INCLUSION_TYPE, ’/a/b/c/d/’ ’/a/b/c/e/’

Err_recovery_action QP0L_PASS_WITH_ERRORID

*UserFunction_ptr QP0L_USER_FUNCTION_PTR

*Function_CtlBlk_ptr NULL

466 iSeries: UNIX-Type -- Integrated File System APIs

Figure: Results of a call

 Exit Program Call Count Object Name Pointer

1 /a/b/c/d/v

2 /a/b/c/d/u

3 /a/b/c/d

4 /a/b/c/e/w

5 /a/b/c/e/

6 NULL path name (indicates the API completed)

Scenario 4

This scenario assumes processing a directory as shown by Directory Structure B in the “Figure: Directory

Structure B” on page 464.

This scenario represents a call to the API with an exclusion list. Note that each relative entry in the

exclusion list is resolved relative to the current working directory at the time the API is called. This

scenario assumes that the current working directory is /a/b/.

If the API call were coded with the parameter values as shown by Input value in “Figure: Scenario 4 API

Input,” the exit program would be called eight times and would pass the object names as shown by the

Object Name Pointer in “Figure: Results of a call.”

This scenario also shows that children in a directory can be returned in any order. The only guaranteed

order is that the exit program is called with all children objects before being called with the parent to

allow the exit program to delete directories if desired.

Figure: Scenario 4 API Input

 Input Parameter Input value

*Path_Name ’/a/b/’

Subtree_level QP0L_SUBTREE_YES

*Objtypes_array_ptr ’*DIR ’ ’*STMF ’

Local_remote_obj QP0L_LOCAL_OBJ

*IN_EXclusion_ptr QP0L_EXCLUSION_TYPE, ’c/d/’ ’c/e/’

Err_recovery_action QP0L_PASS_WITH_ERRORID

*UserFunction_ptr QP0L_USER_FUNCTION_PTR

*Function_CtlBlk_ptr NULL

Figure: Results of a call

 Exit Program Call Count Object Name Pointer

1 /a/b/t

2 /a/b/c/y

3 /a/b/c/f/z

4 /a/b/c/f

Integrated File System APIs 467

Exit Program Call Count Object Name Pointer

5 /a/b/c/x

6 /a/b/c

7 /a/b

8 NULL path name (indicates the API completed)

Related Information

v The <Qp0lstdi.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <qlg.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “QlgProcessSubtree()—Process a Path Name (using NLS-enabled path name)” on page 369—Process a

Path Name (using NLS-enabled path name)

v “Process a Path Name Exit Program” on page 677

Example

See Code disclaimer information for information pertaining to code examples.

Following is a code example showing a call to the Qp0lProcessSubtree() API with a procedure as the exit

program:

/***/

/***/

#include <Qp0lstdi.h>

#include <stdio.h>

#include <errno.h>

#include <qtqiconv.h>

void Obj_Print_Function

 (uint *Selection_status_pointer,

 uint *Error_value_pointer,

 uint *Return_value_pointer,

 Qlg_Path_Name_T *Object_name_pointer,

 void *Function_control_block_pointer)

{

 /**/

 /* This exit program example prints the names, one at a time, */

 /* of each entry in a directory structure that it receives on */

 /* each call from Qp0lProcessSubtree(). */

 /**/

 #define PATH_TYPE_POINTER 0x00000001 /* If this flag is on, */

 /* the qlg structure contains a */

 /* pointer to the path name. */

 /* Otherwise, the path name is in */

 /* contiguous storage within the */

 /* qlg structure. */

 typedef union pn_input_type

 {

 char pn_char_type[256]; /* path name is in */

 /* contiguous storage */

 char *pn_ptr_type; /* path name is a pointer */

 };

typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 union pn_input_type pn;

 };

468 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

struct pnstruct *pns;

 char *path_ptr;

 size_t insz;

 size_t outsz = 1000;

 char outbuf[1000];

 char *outbuf_ptr;

 iconv_t cd;

 size_t ret_iconv;

 QtqCode_T toCode = {37,0,0,0,0,0};

 QtqCode_T fromCode = {61952,0,0,1,0,0};

 if (*Selection_status_pointer == QP0L_SELECT_OK)

 {

 if (Object_name_pointer != NULL)

 {

 /**/

 /* Point to the pathname and get the size of the pathname */

 /* that was sent from the Qp0lProcessSubtree() API. The */

 /* format of the pathname must be determined by evaluating */

 /* Path_Type in the qlg structure. */

 /**/

 pns = (struct pnstruct *)Object_name_pointer;

 if (Object_name_pointer->Path_Type & PATH_TYPE_POINTER)

 {

 path_ptr = pns->pn.pn_ptr_type;

 }

 else

 {

 path_ptr = (char *)(pns->pn.pn_char_type);

 }

 insz = pns->qlg_struct.Path_Length;

 /**/

 /* Initialize the print buffer. */

 /**/

 outbuf_ptr = (char *)outbuf;

 memset(outbuf_ptr, 0x00, insz);

 /**/

 /* Use iconv to convert from 61952 to the job CCSID. */

 /* REMEMBER iconv will change the data that it receives. */

 /**/

 cd = /* Open the conversion descriptor.*/

 QtqIconvOpen(&toCode,

 &fromCode);

 if (cd.return_value == -1)

 {

 /***/

 /* If conversion descriptor was not opened successfully, */

 /* return an error and errno (ECONVERT) to the API. */

 /***/

 *Return_value_pointer = errno;

 return;

 }

 ret_iconv = /* Perform the conversion.*/

 (iconv(cd,

 (char **)&(path_ptr),

 &insz,

 (char **)&(outbuf_ptr),

 &outsz));

 if (ret_iconv != 0)

 {

Integrated File System APIs 469

/***/

 /* If the conversion failed, close the conversion */

 /* descriptor and return an error and errno (ECONVERT) */

 /* to the API. */

 /***/

 ret_iconv= iconv_close(cd);

 *Return_value_pointer = errno;

 return;

 }

 /**/

 /* Print the name of the object being processed and close */

 /* the conversion descriptor. */

 /**/

 printf("In User Exit Program. Path is %s.\n", outbuf);

 ret_iconv = iconv_close(cd);

 } /* end Object_name_pointer != NULL */

 else

 {

 printf"In User Exit Program with a null Pathname \n");

 }

 } /* end *Selection_status_pointer == QP0L_SELECT_OK */

 *Return_value_pointer = 0;

} /* end Exit program */

int main (int argc, char *argv[])

 {

 #define MYPN "/TestDir"

 const int zero = 0;

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 const char Path_Name_Del_const[2]= "/";

 const char LibObj_const[12]= "*LIB ";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[50]; /* Must be greater than */

 /* or equal the length */

 /* of the path name. */

 };

 struct pnstruct pns;

 Qp0l_Objtypes_List_t MyObj_types;

 Qp0l_User_Function_t User_function;

 struct

 {

 uint AnyData_to_the_exitprogram;

 uint AnyData_not_processed_by_the_API;

 } CtlBlkAreaName;

 int rc;

 /***/

 /* In this example, the pathname is defined by MYPN as TestDir */

 /* and it is assumed that the TestDir directory exists on the */

 /* system. Various other functions or other routines could be */

 /* included here to (for example): */

 /* 1) determine the beginning search directory. */

 /* 2) construct the path name in the correct format. */

 /* 3) others... */

 /***/

 /***/

 /***/

470 iSeries: UNIX-Type -- Integrated File System APIs

/* Initialize Qp0lProcessSubtree() API Parameters */

 /***/

 memset((void*)&pns, 0x00, sizeof(struct pnstruct));

 pns.qlg_struct.CCSID = 37;

 memcpy(pns.qlg_struct.Country_ID,US_const,2);

 memcpy(pns.qlg_struct.Language_ID,Language_const,3);

 pns.qlg_struct.Path_Type = zero;

 pns.qlg_struct.Path_Length = sizeof(MYPN)-1;

 memcpy(pns.qlg_struct.Path_Name_Delimiter,Path_Name_Del_const,1);

 memcpy(pns.pn,MYPN,sizeof(MYPN));

 MyObj_types.Number_Of_Objtypes = zero;

 memset((void *)&User_function, 0x00, sizeof(Qp0l_User_Function_t));

 User_function.Function_Type = QP0L_USER_FUNCTION_PTR;

 User_function.Mltthdacn[0] = QP0L_MLTTHDACN_NOMSG;

 User_function.Procedure = &Obj_Print_Function;

 if (rc = Qp0lProcessSubtree((Qlg_Path_Name_T *)&pns,

 QP0L_SUBTREE_YES,

 (Qp0l_Objtypes_List_t *)NULL,

 QP0L_LOCAL_REMOTE_OBJ,

 (Qp0l_IN_EXclusion_List_t *)NULL,

 QP0L_PASS_WITH_ERRORID,

 &User_function,

 &CtlBlkAreaName) == 0)

 {

 printf("Qp0lProcessSubtree() Successful : error = %d\n", errno);

 }

 else

 {/*unsuccessful return from Qp0lProcessSubtree() API */

 printf("ERROR on Qp0lProcessSubtree(): error = %d\n", errno);

 perror("Error message");

 }

 } /* end main */

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

Qp0lRenameKeep()—Rename File or Directory, Keep ″new″ If It Exists

 Syntax

 #include <Qp0lstdi.h>

 int Qp0lRenameKeep(const char *old, const char *new);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 478.

The Qp0lRenameKeep() function renames a file or a directory specified by old to the name given by new.

The old pointer must specify the name of an existing file or directory. Both old and new must be of the

same type; that is, both directories or both files. old and new must not end in ″dot″ (.) or ″dot-dot″ (..).

If new already exists, Qp0lRenameKeep() fails with the [EEXIST] error.

Integrated File System APIs 471

#TOP_OF_PAGE
unix.htm
aplist.htm

If the old argument points to a symbolic link, the symbolic link is renamed. Qp0lRenameKeep() does not

affect any file or directory named by the contents of the symbolic link. See “Usage Notes” on page 478

for more information.

When Qp0lRenameKeep() is successful, it updates the change and modification times for the parent

directories of old and new.

If the old object is checked out, Qp0lRenameKeep() fails with the [EBUSY] error.

Parameters

old (Input) A pointer to the null-terminated path name of the file to be renamed.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgRenameKeep()—Rename File or Directory, Keep ″new″ If It Exists (using NLS-enabled

path name)” on page 377 for a description and an example of supplying the old in any CCSID.

new (Input) A pointer to the null-terminated path name of the new name of the file.

 This parameter is assumed to be represented in the CCSID currently in effect for the job. If the

CCSID of the job is 65535, this parameter is assumed to be represented in the default CCSID of

the job.

 The new file name is assumed to be represented in the language and country or region currently

in effect for the job.

 See “QlgRenameKeep()—Rename File or Directory, Keep ″new″ If It Exists (using NLS-enabled

path name)” on page 377 for a description and an example of supplying the new in any CCSID.

Authorities

Note: Adopted authority is not used.

Authorization Required for Qp0lRenameKeep() (excluding QSYS.LIB, independent ASP QSYS.LIB,

QDLS, and QOPT)

 Object Referred to Authority Required errno

Each directory in old path name preceding the object to be renamed *X EACCES

Parent directory of old object *WX EACCES

old object if it is a directory *OBJMGT + *W EACCES

old object if it is not a directory *OBJMGT EACCES

Each directory in new path name preceding the object *X EACCES

Parent directory of new object *WX EACCES

Parent directory of the old object has the S_ISVTX mode bit set to

binary one (see Note).

*ALLOBJ, or owner of

the old object, or

owner of the parent

directory of the old

object

EPERM

Note: The S_ISVTX mode bit (which is equivalent to the ’Restricted rename and unlink’ object attribute)

restriction only applies to objects in the root (’/’), QOpenSys, and user-defined file systems.

Authorization Required for Qp0lRenameKeep() in the QSYS.LIB and independent ASP QSYS.LIB File

Systems

472 iSeries: UNIX-Type -- Integrated File System APIs

Object Referred to Authority Required errno

Each directory in old path name preceding the object to be renamed *X EACCES

Parent directory of old object if the object is a database file member *OBJMGT EACCES

Parent directory of the parent directory of old object if the object is a

database file member

*UPD EACCES

Parent directory of old object if the object is not a database file

member

*RWX EACCES

old object if it is a database file member None None

old object if it is not a database file member *OBJMGT EACCES

Each directory in new path name preceding the object *X EACCES

Parent directory of new object if object is not a database file member *RWX EACCES

Authorization Required for Qp0lRenameKeep() in the QDLS File System

 Object Referred to Authority Required errno

Each directory in old path name preceding the object to be renamed *X EACCES

Parent directory of old object *CHANGE EACCES

old object *ALL EACCES

Each directory in new path name preceding the object *X EACCES

Parent directory of new object *CHANGE EACCES

Authorization Required for Qp0lRenameKeep() in the QOPT File System

 Object Referred to Authority Required errno

Volume authorization list for volume to be renamed in a media

library device

*ALL EACCES

Volume authorization list for volume to be renamed in a stand

alone device

*CHANGE EACCES

Volume authorization list for volume containing object to be

renamed

*CHANGE EACCES

Root directory (/) of volume to be renamed if volume media format

is Universal Disk Format (UDF)

*RWX EACCES

Each directory in old path name preceding the object to be renamed

if volume media format is Universal Disk Format (UDF)

*X EACCES

Parent directory of old object if volume media format is Universal

Disk Format (UDF)

*WX EACCES

Old object if volume media format is Universal Disk Format (UDF) *W EACCES

Each directory in new path name preceding the object if volume

media format is Universal Disk Format (UDF)

*X EACCES

Parent directory of new object if volume media format is Universal

Disk format (UDF)

*WX EACCES

Object and parent directories if volume media format is not

Universal Disk format (UDF)

None None

Return Value

0 Qp0lRenameKeep() was successful.

Integrated File System APIs 473

-1 Qp0lRenameKeep() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If Qp0lRenameKeep() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EDATALINK]

 Object is a datalink object.

[EEXIST]

 File exists.

 The file specified already exists and the specified operation requires that it not exist.

 The named file, directory, or path already exists.

[EFAULT]

 The address used for an argument is not correct.

474 iSeries: UNIX-Type -- Integrated File System APIs

In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL. May be returned if the directories

preceding the object to be renamed in the old path name are part of new, or if either name refers

to dot or dot-dot.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EISDIR]

 Specified target is a directory.

 The path specified named a directory where a file or object name was expected.

 The path name given is a directory. New is a directory, but old is not a directory.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

Integrated File System APIs 475

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

476 iSeries: UNIX-Type -- Integrated File System APIs

A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EMLINK]

 Maximum link count for a file was exceeded.

 An attempt was made to have the link count of a single file exceed LINK_MAX. The value of

LINK_MAX can be determined using the pathconf() or the fpathconf() function.

 old is a directory and the link count of the parent directory of new would exceed LINK_MAX.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

[EXDEV]

 Improper link.

 A link to a file on another file system was attempted.

 old and new identify files or directories in different file systems. Links between different file

systems are not allowed.

 If interaction with a file server is required to access the object, errno could also indicate one of the

following errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

Integrated File System APIs 477

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

 1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

– QFileSvr.400

478 iSeries: UNIX-Type -- Integrated File System APIs

2. About the Rename Functions

The integrated file system provides two functions that rename a file or directory. Both rename the old

path name to a new path name. The difference is determined by what happens when new already

exists:

v If new already exists when using Qp0lRenameKeep(), the rename fails with the [EEXIST] error.

v If new already exists when using Qp0lRenameUnlink(), the existing path name is unlinked

(removed) before old is renamed to new.

These functions are defined in the <Qp0lstdi.h> header file. When <Qp0lstdi.h> is included, the

rename() function is defined to be either Qp0lRenameUnlink() or Qp0lRenameKeep(), depending

on the definitions of the _POSIX_SOURCE and _POSIX1_SOURCE macros:

v When _POSIX_SOURCE and _POSIX1_SOURCE are not defined, rename() is defined to be

Qp0lRenameKeep(). Either rename() or Qp0lRenameKeep() can be used to rename a file or

directory with the semantics of Qp0lRenameKeep().

v When _POSIX_SOURCE or _POSIX1_SOURCE is defined, rename() is defined to be

Qp0lRenameUnlink(). Either rename() or Qp0lRenameUnlink() can be used to rename a file or

directory with the semantics of Qp0lRenameUnlink().

When the <Qp0lstdi.h> header file is not included, rename() operates only on database files in the

QSYS.LIB and independent ASP QSYS.LIB file systems, as it did before the introduction of the

integrated file system.

 3. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

v When a database member is being renamed, the part of the new path name preceding the object

must be the same as that of the old path name. That is, the sequence of ″directories″ (library and

file) preceding the object in the new path name must be the same as the sequence of directories

preceding the object in the old path name.

v The following object types cannot be renamed when there are secondary threads active in the job:

*CFGL, *CNNL, *CTLD, *DEVD, *LIND, *NWID. The operation will fail with error code

[ENOTSAFE].

v When a library is being renamed, the part of the new path name preceding the object must be the

same as that of the old path name. That is, the sequence of ″directories″ (/QSYS.LIB or

/asp_name/QSYS.LIB, where asp_name is the independent Auxiliary Storage Pool name)

preceding the object in the new path name must be the same as the sequence of directories

preceding the object in the old path name [EINVAL].
 4. QDLS File System Differences

When a folder is being renamed, the part of the new path name preceding the object must be the

same as that of the old path name. That is, a folder must remain in the same parent folder.

 5. QOPT File System Differences

You can rename only a volume or a file, not a directory.

 6. QFileSvr.400 File System Differences

You cannot rename the first-level directory. For example, you cannot rename Dir1 in the path name

/QFileSvr.400/Dir1/Dir2/Object. The first-level directory identifies the target system in a

communications connection.

 7. QNetWare File System Differences

The new and old files or directories must exist on the same NetWare server. This function cannot be

used to move data from one server to another.

 8. QNTC File System Differences

The new and the old files or directories must exist on the same Windows NT server. This function

cannot be used to move data from one server to another.
 9. Root (/) and User-defined File System Differences

Integrated File System APIs 479

If the file being renamed is in the root file system or in a monocase user-defined file system, and the

file system has the *TYPE2 directory format, and both old and new refer to the same link, but their

case is different (eg. /ABC and /Abc), Qp0lRenameUnlink() changes the link name to the new name.

10.

The file cannot be renamed if the file is a DataLink column in an SQL table and where a row in

that SQL table references this file.

Related Information

v The <stdio.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <Qp0lstdi.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “pathconf()—Get Configurable Path Name Variables” on page 295—Get Configurable Path Name

Variables

v “rename()—Rename File or Directory” on page 581—Rename File or Directory

v “QlgRenameKeep()—Rename File or Directory, Keep ″new″ If It Exists (using NLS-enabled path

name)” on page 377—Rename File or Directory, Keep ″new″ If It Exists (using NLS-enabled path name)

v “Qp0lRenameUnlink()—Rename File or Directory, Unlink ″new″ If It Exists”—Rename File or Directory,

Unlink ″new″ If It Exists

Example

See Code disclaimer information for information pertaining to code examples.

When you pass two file names to this example, it will try to change the file name from the first name to

the second using Qp0lRenameKeep().

#include <Qp0lstdi.h>

int main(int argc, char ** argv) {

 if (argc != 3)

 printf("Usage: %s old_fn new_fn\n", argv[0]);

 else if (Qp0lRenameKeep(argv[1], argv[2]) != 0

 perror ("Could not rename file");

}

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Qp0lRenameUnlink()—Rename File or Directory, Unlink ″new″ If It

Exists

 Syntax

 #include <Qp0lstdi.h>

 int Qp0lRenameUnlink(const char *old, const char *new);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 488.

480 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

The Qp0lRenameUnlink() function renames a file or a directory specified by old to the name given by

new. The old pointer must specify the name of an existing file or directory. Both old and new must be of

the same type; that is, both directories or both files. old and new must not end in ″dot″ (.) or ″dot-dot″ (..).

If new already exists, it is removed before old is renamed to new. Therefore, if new specifies the name of

an existing directory, the directory must be empty.

If the old argument points to a symbolic link, the symbolic link is renamed. If the new argument points to

a symbolic link, the link is removed and old is renamed to new. Qp0lRenameUnlink() does not affect any

file or directory named by the contents of the symbolic link.

If old and new both refer to the same file, Qp0lRenameUnlink() returns successfully and performs no

other action. See “Usage Notes” on page 488 for more information.

When Qp0lRenameUnlink() is successful, it updates the change and modification times for the parent

directories of old and new.

If the old object is checked out, Qp0lRenameUnlink() fails with the [EBUSY] error.

Parameters

old (Input) A pointer to the null-terminated path name of the file to be renamed.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgRenameUnlink()—Rename File or Directory, Unlink ″new″ If It Exists (using NLS-enabled

path name)” on page 379 for a description and an example of supplying the old in any CCSID.

new (Input) A pointer to the null-terminated path name of the new name of the file.

 This parameter is assumed to be represented in the CCSID currently in effect for the job. If the

CCSID of the job is 65535, this parameter is assumed to be represented in the default CCSID of

the job.

 The new file name is assumed to be represented in the language and country or region currently

in effect for the process.

 See “QlgRenameUnlink()—Rename File or Directory, Unlink ″new″ If It Exists (using NLS-enabled

path name)” on page 379 for a description and an example of supplying the new in any CCSID.

Authorities

Note: Adopted authority is not used.

Authorization Required for Qp0lRenameUnlink() (excluding QSYS.LIB, independent ASP QSYS.LIB,

QDLS, and QOPT)

 Object Referred to Authority Required errno

Each directory in old path name preceding the object to be renamed *X EACCES

Parent directory of old object *WX EACCES

old object if it is a directory *OBJMGT + *W EACCES

old object if it is not a directory *OBJMGT EACCES

Each directory in new path name preceding the object *X EACCES

Parent directory of new object *WX EACCES

New object, if it exists *OBJEXIST EACCES

Integrated File System APIs 481

Object Referred to Authority Required errno

Parent directory of the old object has the S_ISVTX mode bit set to

binary one (see Note).

*ALLOBJ, or owner of

the old object, or

owner of the parent

directory of the old

object

EPERM

Parent directory of the new object, if it exists, has the S_ISVTX

mode bit set to binary one (see Note).

*ALLOBJ, or owner of

the new object, or

owner of the parent

directory of the new

object

EPERM

Note: The S_ISVTX mode bit (which is equivalent to the ’Restricted rename and unlink’ object attribute) restriction

only applies to objects in the root (’/’), QOpenSys, and user-defined file systems.

Authorization Required for Qp0lRenameUnlink() in the QSYS.LIB and independent ASP QSYS.LIB

File Systems

 Object Referred to Authority Required errno

Each directory in old path name preceding the object to be renamed *X EACCES

Parent directory of old object if the object is a database file member *OBJMGT EACCES

Parent directory of the parent directory of old object if the object is a

database file member

*UPD EACCES

Parent directory of old object if the object is not a database file

member

*RWX EACCES

old object if it is a database file member None None

old object if it is not a database file member *OBJMGT, Ownership

required if new object

already exists

EACCES

old object if it is a *FILE object type *OBJMGT, *OBJOPR,

Ownership required if

new object already

exists

EACCES

Each directory in new path name preceding the object *X EACCES

Parent directory of new object if object is not a database file member *RWX EACCES

new object if object already exists and is not a database file member,

*PGM, *MENU, *FILE, *LIB, or *SBSD object type

*OBJEXIST, *OBJMGT EACCES

new object if object already exists and is a *PGM object type *OBJEXIST, *OBJMGT,

*READ

EACCES

new object if object already exists and is a *MENU or *FILE object

type

*OBJEXIST, *OBJOPR EACCES

new object if object already exists and is a *LIB or *SBSD object type *OBJEXIST, *OBJMGT,

*RX

EACCES

Authorization Required for Qp0lRenameUnlink() in the QDLS File System

 Object Referred to Authority Required errno

Each directory in old path name preceding the object to be renamed *X EACCES

Parent directory of old object *CHANGE EACCES

old object *ALL EACCES

482 iSeries: UNIX-Type -- Integrated File System APIs

Object Referred to Authority Required errno

Each directory in new path name preceding the object *X EACCES

Parent directory of new object *CHANGE EACCES

Authorization Required for Qp0lRenameUnlink() in the QOPT File System

 Object Referred to Authority Required errno

Volume to be renamed *ALL EACCES

Volume containing object to be renamed *CHANGE EACCES

Object within volume None None

Return Value

0 Qp0lRenameUnlink() was successful.

-1 Qp0lRenameUnlink() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If Qp0lRenameUnlink() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

Integrated File System APIs 483

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EDATALINK]

 Object is a datalink object.

[EEXIST]

 File exists.

 The file specified already exists and the specified operation requires that it not exist.

 The named file, directory, or path already exists.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL. May be returned if the directories

preceding the object to be renamed in the old path name are part of new, or if either name refers

to dot or dot-dot.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EISDIR]

 Specified target is a directory.

 The path specified named a directory where a file or object name was expected.

 The path name given is a directory. New is a directory, but old is not a directory.

[EJRNDAMAGE]

 Journal damaged.

484 iSeries: UNIX-Type -- Integrated File System APIs

A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTEMPTY]

 Directory not empty.

Integrated File System APIs 485

You tried to remove a directory that is not empty. A directory cannot contain objects when it is

being removed.

 The specified directory is not empty.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EMLINK]

 Maximum link count for a file was exceeded.

 An attempt was made to have the link count of a single file exceed LINK_MAX. The value of

LINK_MAX can be determined using the pathconf() or the fpathconf() function.

 old is a directory and the link count of the parent directory of new would exceed LINK_MAX.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

486 iSeries: UNIX-Type -- Integrated File System APIs

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

[EXDEV]

 Improper link.

 A link to a file on another file system was attempted.

 old and new identify files or directories on different file systems. Links between different file

systems are not allowed.

 If interaction with a file server is required to access the object, errno could also indicate one of the

following errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Integrated File System APIs 487

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

 1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

– QFileSvr.400

 2. About the Rename Functions

The integrated file system provides two functions that rename a file or directory. Both rename the old

path name to a new path name. The difference is determined by what happens when new already

exists:

v If new already exists when using Qp0lRenameUnlink(), the existing path name is unlinked

(removed) before old is renamed to new.

v If new already exists when using Qp0lRenameKeep(), the rename fails with the [EEXIST] error.

These functions are defined in the <Qp0lstdi.h> header file. When <Qp0lstdi.h> is included, the

rename() function is defined to be either Qp0lRenameUnlink() or Qp0lRenameKeep(), depending

on the definitions of the _POSIX_SOURCE and _POSIX1_SOURCE macros:

v When _POSIX_SOURCE or _POSIX1_SOURCE is defined, rename() is defined to be

Qp0lRenameUnlink(). Either rename() or Qp0lRenameUnlink() can be used to rename a file or

directory with the semantics of Qp0lRenameUnlink().

v When _POSIX_SOURCE and _POSIX1_SOURCE are not defined, rename() is defined to be

Qp0lRenameKeep(). Either rename() or Qp0lRenameKeep() can be used to rename a file or

directory with the semantics of Qp0lRenameKeep().

When the <Qp0lstdi.h> header file is not included, rename() operates only on database files in the

QSYS.LIB and independent ASP QSYS.LIB file systems, as it did before the introduction of the

integrated file system.

 3. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

v When a database member is being renamed, the part of the new path name preceding the object

must be the same as that of the old path name. That is, the sequence of ″directories″ (library and

file) preceding the object in the new path name must be the same as the sequence of directories

preceding the object in the old path name. If new already exists, [ENOTSUP] is returned.

488 iSeries: UNIX-Type -- Integrated File System APIs

v The following object types cannot be renamed when there are secondary threads active in the job:

*CFGL, *CNNL, *CTLD, *DEVD, *LIND, *NWID. The operation will fail with error code

[ENOTSAFE].

v When a library is being renamed, the part of the new path name preceding the object must be the

same as that of the old path name. That is, the sequence of ″directories″ (/QSYS.LIB or

/asp_name/QSYS.LIB, where asp_name is the independent Auxiliary Storage Pool name)

preceding the object in the new path name must be the same as the sequence of directories

preceding the object in the old path name.
 4. QDLS File System Differences

When a folder is being renamed, the part of the new path name preceding the object must be the

same as that of the old path name. That is, a folder must remain in the same parent folder.

If the object identified by the new path name exists, QDLS returns the [EEXIST] error.

 5. QOPT File System Differences

You can rename only a volume or a file, not a directory.

If the object identified by the new path name exists, QOPT returns the [EEXIST] error.

 6. QFileSvr.400 File System Differences

You cannot rename the first-level directory. For example, you cannot rename Dir1 in the path name

/QFileSvr.400/Dir1/Dir2/Object. The first-level directory identifies the target system in a

communications connection.

 7. QNetWare File System Differences

The new and old files or directories must exist on the same NetWare server. This function cannot be

used to move data from one server to another.

 8. QNTC File System Differences

The new and the old files or directories must exist on the same Windows NT server. This function

cannot be used to move data from one server to another.

 9. Root (/) and User-defined File System Differences

If the file being renamed is in the root file system or in a monocase user-defined file system, and the

file system has the *TYPE2 directory format, and both old and new refer to the same link, but their

case is different (eg. /ABC and /Abc), Qp0lRenameUnlink() changes the link name to the new name.

10.

The file cannot be renamed if the file is a DataLink column in an SQL table and where a row in

that SQL table references this file.

Related Information

v The <stdio.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <Qp0lstdi.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “pathconf()—Get Configurable Path Name Variables” on page 295—Get Configurable Path Name

Variables

v “rename()—Rename File or Directory” on page 581—Rename File or Directory

v “Qp0lRenameKeep()—Rename File or Directory, Keep ″new″ If It Exists” on page 471—Rename File or

Directory, Keep ″new″ If It Exists

v “QlgRenameUnlink()—Rename File or Directory, Unlink ″new″ If It Exists (using NLS-enabled path

name)” on page 379—Rename File or Directory, Unlink ″new″ If It Exists (using NLS-enabled path

name)

Example

See Code disclaimer information for information pertaining to code examples.

When you pass two file names to this example, it will try to change the file name from the first name to

the second using Qp0lRenameUnlink().

Integrated File System APIs 489

aboutapis.htm#CODEDISCLAIMER

#include <Qp0lstdi.h>

int main(int argc, char ** argv) {

 if (argc != 3)

 printf("Usage: %s old_fn new_fn\n", argv[0]);

 else if (Qp0lRenameUnlink(argv[1], argv[2]) != 0

 perror ("Could not rename file");

}

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Retrieve Object References (QP0LROR)

 Syntax

 #include <qp0lror.h>

 void QP0LROR(

 void * Receiver_Ptr,

 unsigned int Receiver_Length,

 char * Format_Ptr,

 Qlg_Path_Name_T * Path_Ptr,

 void * Error_Code_Ptr

);

 Default Public Authority: *USE

 Threadsafe: Yes

The QP0LROR() API is used to retrieve information about integrated file system references on an object.

A reference is an individual type of access or lock obtained on the object when using integrated file

system interfaces. An object may have multiple references concurrently held, provided that the reference

types do not conflict with one another.

This API will not return information about byte range locks that may currently be held on an object.

Parameters

Receiver_Ptr

(Output)

 The variable that is to receive the information requested. You can specify the size of this area to

be smaller than the format requested as long as you specify the length parameter correctly. As a

result, the API returns only the data that the area can hold.

 The format of the output is described by either the RORO0100 output format or the RORO0200

output format. See “RORO0100 Output Format Description (Qp0l_RORO0100_Output)” on page

491 or the “RORO0200 Output Format Description (Qp0l_RORO0200_Output)” on page 492 for a

detailed description of these output formats.

Receiver_Length

(Input)

 The length of the receiver variable. If the length is larger than the size of the receiver variable, the

results may not be predictable. The minimum length is 8 bytes.

490 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Format_Ptr

(Input)

 Pointer to a 8 byte character string that identifies the desired output format. It must be one of the

following values:

RORO0100

The reference type output will be formatted in a RORO0100 format. See “RORO0100

Output Format Description (Qp0l_RORO0100_Output).” This format gives the caller a

quick view of the object’s references.

RORO0200

The reference type output will be formatted in a RORO0200 format. See “RORO0200

Output Format Description (Qp0l_RORO0200_Output)” on page 492. Specifying this

format may cause QP0LROR to be a long running operation. The length of time it will

take to complete depends on the number of jobs active on the system, and the number of

jobs currently using objects through integrated file system interfaces.

Path_Ptr

(Input)

 Pointer to the path name to the object whose reference information is to be obtained. The path

name must be specified in an NLS-enabled format specified by the Qlg_Path_Name structure. For

more information on the Qlg_Path_Name_T structure, see Path name format.

 If the last element of the path is a symbolic link, the Qp0lROR() function does not resolve the

contents of the symbolic link. The reference information will be obtained for the symbolic link

itself.

Error_Code_Ptr

(Input/Output)

 Pointer to an error code structure to receive error information. See Error Code Parameter for more

information.

Authorities and Locks

Directory Authority

The user must have execute (*X) data authority to each directory preceding the object whose

references are to be obtained.

Object Authority

The user must have read (*R) data authority to the object whose references are to be obtained.

Output Structure Formats

RORO0100 Output Format Description (Qp0l_RORO0100_Output)

This structure is used to return object reference information.

 Offset

Type Field Dec Hex

0 0 BINARY(4), UNSIGNED Bytes Returned

4 4 BINARY(4), UNSIGNED Bytes Available

8 8 BINARY(4), UNSIGNED Offset to Simple Reference Types

Integrated File System APIs 491

pns.htm
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

12 0C BINARY(4), UNSIGNED Length of Simple Reference Types

16 10 BINARY(4), UNSIGNED Reference Count

20 14 BINARY(4), UNSIGNED In-Use Indicator

Offset determined from

Offset to Simple

Reference Types field

Qp0l_Sim_Ref_Types_Output

Structure

Simple Reference Types Structure. See “Simple Object

Reference Types Structure Description

(Qp0l_Sim_Ref_Types_Output)” on page 493 for a

description of this structure.

RORO0200 Output Format Description (Qp0l_RORO0200_Output)

This output format is used to return object reference information, including a list of jobs known to be

referencing the object. This includes everything from the RORO0100 structure plus additional

information.

 Offset

Type Field Dec Hex

0 0 BINARY(4), UNSIGNED Bytes Returned

4 4 BINARY(4), UNSIGNED Bytes Available

8 8 BINARY(4), UNSIGNED Reference Count

12 0C BINARY(4), UNSIGNED In-Use Indicator

16 10 BINARY(4), UNSIGNED Offset to Simple Reference Types

20 14 BINARY(4), UNSIGNED Length of Simple Reference Types

24 18 BINARY(4), UNSIGNED Offset to Extended Reference Types

28 1C BINARY(4), UNSIGNED Length of Extended Reference Types

32 20 BINARY(4), UNSIGNED Offset to Job List

36 24 BINARY(4), UNSIGNED Jobs Returned

40 28 BINARY(4), UNSIGNED Jobs Available

Offset determined from

Offset to Simple

Reference Types field

Qp0l_Sim_Ref_Types_Output

Structure

Simple Reference Types Structure See “Simple Object

Reference Types Structure Description

(Qp0l_Sim_Ref_Types_Output)” on page 493 for a

description of this structure.

Offset determined from

the Offset to Extended

Reference Types field

Qp0l_Ext_Ref_Types_Output

Structure

Extended Reference Types Structure. See “Extended

Object Reference Types Structure Description

(Qp0l_Ext_Ref_Types_Output)” on page 494 for a

description of this structure. The reference counts

contained within this structure represent the number of

references for all jobs in the job list.

Offset determined from

Offset to Job List field

Qp0l_Job_Using_Object Structure Referencing job list. The “Job Using Object Structure

Description (Qp0l_Job_Using_Object)” will be repeated

for each job.

Job Using Object Structure Description (Qp0l_Job_Using_Object)

This structure is imbedded within the RORO0200 format. It is used to return information about a job that

is known to be holding a reference on the object.

492 iSeries: UNIX-Type -- Integrated File System APIs

Offset

Type Field Dec Hex

0 0 BINARY(4), UNSIGNED Displacement to Simple Reference Types

4 4 BINARY(4), UNSIGNED Length of Simple Reference Types

8 8 BINARY(4), UNSIGNED Displacement to Extended Reference Types

12 0C BINARY(4), UNSIGNED Length of Extended Reference Types

16 10 BINARY(4), UNSIGNED Displacement to Next Job Entry

20 14 CHAR(10) Job Name

30 1E CHAR(10) Job User

40 28 CHAR(6) Job Number

Offset determined from

the Displacement to

Simple Reference Types

field

Qp0l_Sim_Ref_Types_Output

Structure

Simple Reference Types Structure. See “Simple Object

Reference Types Structure Description

(Qp0l_Sim_Ref_Types_Output)” for a description of this

structure.

Offset determined from

the Displacement to

Extended Reference Types

field

Qp0l_Ext_Ref_Types_Output

Structure

Extended Reference Types Structure. See “Extended

Object Reference Types Structure Description

(Qp0l_Ext_Ref_Types_Output)” on page 494 for a

description of this structure. The reference counts

contained within this structure represent the number of

references for this specific job.

Simple Object Reference Types Structure Description

(Qp0l_Sim_Ref_Types_Output)

This structure is imbedded within the RORO0100 and RORO0200 formats. It is used to return object

reference type information.

Each binary field reference type will be set to either 0 or a positive value that represents the number of

references for that type. This number will have different meanings depending on the structure it is

imbedded within. When this structure is imbedded within a RORO0100 output, or imbedded within the

header portion of the RORO0200 output, then these values represent the number of known references of

this type. When this structure is imbedded within a specific job list entry, then these values represent the

number of references for that specific type within that specific job itself.

 Offset

Type Field Dec Hex

0 0 BINARY(4), UNSIGNED Read Only

4 4 BINARY(4), UNSIGNED Write Only

8 8 BINARY(4), UNSIGNED Read/Write

12 0C BINARY(4), UNSIGNED Execute

16 10 BINARY(4), UNSIGNED Share with Readers Only

20 14 BINARY(4), UNSIGNED Share with Writers Only

24 18 BINARY(4), UNSIGNED Share with Readers and Writers

28 1C BINARY(4), UNSIGNED Share with neither Readers nor Writers

32 20 BINARY(4), UNSIGNED Attribute Lock

36 24 BINARY(4), UNSIGNED Save Lock

40 28 BINARY(4), UNSIGNED Internal Save Lock

Integrated File System APIs 493

Offset

Type Field Dec Hex

44 2C BINARY(4), UNSIGNED Link Changes Lock

48 30 BINARY(4), UNSIGNED Checked Out

52 34 CHAR(10) Checked Out User Name

62 3E CHAR(2) Reserved (Binary 0)

Extended Object Reference Types Structure Description

(Qp0l_Ext_Ref_Types_Output)

This structure is imbedded within the RORO0200 format. It is used to return object reference type

information.

Each binary field reference type will be set to either 0 or a positive value that represents the number of

references for that type. This number will have different meanings depending on the structure it is

imbedded within. When this structure is imbedded within the header portion of the RORO0200 output,

then these values represent the number of jobs in the job list that contains a reference of this type. When

this structure is imbedded within a specific job list entry, then these values represent the number of

references for that specific type within that specific job itself.

 Offset

Type Field Dec Hex

0 0 BINARY(4), UNSIGNED Read Only, Share with Readers Only

4 4 BINARY(4), UNSIGNED Read Only, Share with Writers Only

8 8 BINARY(4), UNSIGNED Read Only, Share with Readers and Writers

12 0C BINARY(4), UNSIGNED Read Only, Share with neither Readers nor Writers

16 10 BINARY(4), UNSIGNED Write Only, Share with Readers Only

20 14 BINARY(4), UNSIGNED Write Only, Share with Writers Only

24 18 BINARY(4), UNSIGNED Write Only, Share with Readers and Writers

28 1C BINARY(4), UNSIGNED Write Only, Share with neither Readers nor Writers

32 20 BINARY(4), UNSIGNED Read/Write, Share with Readers Only

36 24 BINARY(4), UNSIGNED Read/Write, Share with Writers Only

40 28 BINARY(4), UNSIGNED Read/Write, Share with Readers and Writers

44 2C BINARY(4), UNSIGNED Read/Write, Share with neither Readers nor Writers

48 30 BINARY(4), UNSIGNED Execute, Share with Readers Only

52 34 BINARY(4), UNSIGNED Execute, Share with Writers Only

56 38 BINARY(4), UNSIGNED Execute, Share with Readers and Writers

60 3C BINARY(4), UNSIGNED Execute, Share with neither Readers nor Writers

64 40 BINARY(4), UNSIGNED Execute/Read, Share with Readers Only

68 44 BINARY(4), UNSIGNED Execute/Read, Share with Writers Only

72 48 BINARY(4), UNSIGNED Execute/Read, Share with Readers and Writers

76 4C BINARY(4), UNSIGNED Execute/Read, Share with neither Readers nor Writers

80 50 BINARY(4), UNSIGNED Attribute Lock

84 54 BINARY(4), UNSIGNED Save Lock

494 iSeries: UNIX-Type -- Integrated File System APIs

Offset

Type Field Dec Hex

88 58 BINARY(4), UNSIGNED Internal Save Lock

92 5C BINARY(4), UNSIGNED Link Changes Lock

96 60 BINARY(4), UNSIGNED Current Directory

100 64 BINARY(4), UNSIGNED Root Directory

104 68 BINARY(4), UNSIGNED File Server Reference

108 6C BINARY(4), UNSIGNED File Server Working Directory

112 70 BINARY(4), UNSIGNED Checked Out

116 74 CHAR(10) Checked Out User Name

126 7E CHAR(2) Reserved (Binary 0)

Field Descriptions for RORO0100 and RORO0200 Output Structures

and their Imbedded Structures

Attribute Lock. Attribute changes are prevented.

Bytes Available. Number of bytes of output data that was available to be returned.

Bytes Returned. Number of bytes returned in the output buffer.

Checked Out. Indicates whether the object is currently checked out. If it is checked out, then the Checked

Out User Name contains the name of the user who has it checked out.

Checked Out User Name. Contains the name of the user who has the object checked out, when the

Checked Out field indicates that it is currently checked out. This field is set to blanks (x’40) if the object is

not checked out.

Current Directory. The object is a directory that is being used as the current directory of the job.

Displacement to Extended Reference Types. Displacement from the beginning of the structure containing

this field to the beginning of the Extended Reference Types structure. If this field is 0, then no extended

reference types were available to be returned, or not enough space was provided to include any portion

of the Extended Reference Types structure.

Displacement to Next Job Entry. Displacement from the beginning of the structure containing this field

to the beginning of the next Job Using Object structure. If this field is 0, then there are no more jobs in

the list, or not enough space was provided to include any more Job Using Object structures.

Displacement to Simple Reference Types. Displacement from the beginning of the structure containing

this field to the beginning of the Simple Reference Type structure. If this field is 0, then no simple

reference types were available to be returned, or not enough space was provided to include any portion

of the Simple Reference Types structure.

Execute. Execute only access.

Execute, Share with Readers Only. Execute only access. The sharing mode allows sharing with read and

execute access intents only.

Execute, Share with Readers and Writers. Execute only access. The sharing mode allows sharing with

read, execute, and write access intents.

Integrated File System APIs 495

Execute, Share with Writers Only. Execute only access. The sharing mode allows sharing with write

access intents only.

Execute, Share with neither Readers nor Writers. Execute only access. The sharing mode allows sharing

with no other access intents.

Execute/Read, Share with Readers Only. Execute and read access. The sharing mode allows sharing with

read and execute access intents only.

Execute/Read, Share with Readers and Writers. Execute and read access. The sharing mode allows

sharing with read, execute, and write access intents.

Execute/Read, Share with Writers Only. Execute and read access. The sharing mode allows sharing with

write access intents only.

Execute/Read, Share with neither Readers nor Writers. Execute and read access. The sharing mode

allows sharing with no other access intents.

Extended Reference Types Structure. This is a Qp0l_Ext_Ref_Types_Output structure containing fields

that indicate different types of references that may be held on an object. Some of these are actually a

grouping of multiple Simple Reference Types that were known to have been specified by the referring

instance. These are not additional references; they are a redefinition of the same references described in

the Simple Reference Types structure.

File Server Reference. The File Server is holding a generic reference on the object on behalf of a client.

File Server Working Directory. The object is a directory, and the File Server is holding a working

directory reference on it on behalf of a client.

In-Use Indicator The object is currently in-use. NOTE: This indicator will be set to one of the following

values:

QP0L_OBJECT_NOT_IN_USE (0)

The object is not in use and all of the reference type fields returned are 0.

QP0L_OBJECT_IN_USE (1)

The object is in use. At least one of the reference type fields is greater than 0. This condition may

occur even if the Reference Count field’s value is 0.

 Internal Save Lock. The object is being referenced internally during a save operation on a different

object.

Job Name. Name of the job.

Job Number. Number associated with the job.

Job User. User profile associated with the job.

Jobs Available. Number of referencing jobs available. This may be greater than the Jobs Returned field

when the caller did not provide enough space to receive all of the job information.

Jobs Returned. Number of referencing jobs returned in the job list.

Length of Extended Reference Types. Length of the Extended Reference Types information.

Length of Simple Reference Types. Length of the Simple Reference Types information.

496 iSeries: UNIX-Type -- Integrated File System APIs

Link Changes Lock. Changes to links in the directory are prevented.

Offset to Extended Reference Types. Offset from the beginning of the Receiver_Ptr to the beginning of

the Extended Reference Types structure. If this field is 0, then no extended reference types were available

to be returned, or not enough space was provided to include any portion of the Extended Reference

Types structure.

Offset to Job List. Offset from the beginning of the Receiver_Ptr to the beginning of the first Job Using

Object structure. If this field is 0, then there are no jobs in the list.

Offset to Simple Reference Types. Offset from the beginning of the Receiver_Ptr to the beginning of the

Simple Reference Type structure. If this field is 0, then no simple reference types were available to be

returned, or not enough space was provided to include any portion of the Simple Reference Types

structure.

Read Only. Read only access.

Read Only, Share with Readers Only. Read only access. The sharing mode allows sharing with read and

execute access intents only.

Read Only, Share with Readers and Writers. Read only access. The sharing mode allows sharing with

read, execute, and write access intents.

Read Only, Share with Writers Only. Read only access. The sharing mode allows sharing with write

access intents only.

Read Only, Share with neither Readers nor Writers. Read only access. The sharing mode allows sharing

with no other access intents.

Read/Write. Read and write access.

Read/Write, Share with Readers Only. Read and write access. The sharing mode allows sharing with

read and execute access intents only.

Read/Write, Share with Readers and Writers. Read and write access. The sharing mode allows sharing

with read, execute, and write access intents.

Read/Write, Share with Writers Only. Read and write access. The sharing mode allows sharing with

write access intents only.

Read/Write, Share with neither Readers nor Writers. Read and write access. The sharing mode allows

sharing with no other access intents.

Reference Count. Current number of references on the object. NOTE: This may be 0 even though the

In-Use Indicator indicates that the object is in use.

Referencing Job List. Variable length list of Qp0l_Job_Using_Object structures for jobs that are currently

referencing the object.

Root Directory. The object is a directory that is being used as the root directory of the job.

Save Lock. The object is being referenced by an object save operation.

Share with Readers Only. The sharing mode allows sharing with read and execute access intents only.

Integrated File System APIs 497

Share with Readers and Writers. The sharing mode allows sharing with read, execute, and write access

intents.

Share with Writers Only. The sharing mode allows sharing with write access intents only.

Share with neither Readers nor Writers. The sharing mode allows sharing with no other access intents.

Simple Reference Types Structure. This is a Qp0l_Sim_Ref_Types_Output structure containing fields that

indicate different types of references that may be held on an object.

Write Only. Write only access.

Write Only, Share with Readers Only. Write only access. The sharing mode allows sharing with read and

execute access intents only.

Write Only, Share with Readers and Writers. Write only access. The sharing mode allows sharing with

read, execute, and write access intents.

Write Only, Share with Writers Only. Write only access. The sharing mode allows sharing with write

access intents only.

Write Only, Share with neither Readers nor Writers. Write only access. The sharing mode allows sharing

with no other access intents.

Error Messages

 CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of the receiver variable is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3CF1 E Error code parameter not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

1. Since both available formats are variable length, following are the recommended minimum lengths

pertaining to their corresponding formats:

v RORO0100: The size of a RORO0100 Output structure plus the size of a Simple Reference Types

structure.

v RORO0200: This structure varies dynamically, and therefore there is no formula that can yield a size

large enough to always retrieve all of the available information. However, programs may consider

first calling QP0LROR with the RORO0100 format. This will quickly return the number of

references currently on the object. Then the program could allocate a buffer equal in size to: size of

a Job Using Object structure (including the size of both the Simple and Extended Reference Type

structures) multiplied by the number of references, and then add the sizes of a RORO0100 output,

RORO0200 output, and Simple Reference Types structures. Now the program could call QP0LROR

with the RORO0200 format requested and the computed size.

If the RORO0200 format was specified, but there was not enough space provided to receive a

complete list of job information, then only those job entries that completely fit in the buffer will be

returned. The RORO0200 output structure contains a field called JobsAvailable that will always

contain the total number of referencing jobs that were available for returning to the caller at that

instance in time.

Notes

498 iSeries: UNIX-Type -- Integrated File System APIs

v There are no locks obtained on the object while this API is running. Therefore, when this API is

used on an object that is actively in use (e.g., its lock and reference state is changing while this API

is running), some fields in the returned information may be inconsistent with other fields returned

on the same invocation of QP0LROR.

v The number of references on the object may change between multiple calls to this API. Therefore,

the above formula for calculating output buffer size for a RORO0200 format may not be enough

space under all conditions.

v There are some reference types that are obtained on the object without incrementing the object’s

reference count. This could result in a reference count of zero while the object contains reference

types. In this instance, the above formula for calculating output buffer size for a RORO0200 format

may not be enough space.
2. The list of simple object reference types in the base portions of the RORO0100 and RORO0200 output

structures may not contain complete information for objects residing in file systems other than the

″root″ (/), QOpenSys, and user-defined file systems. The simple reference types will, however, be set

in the job array elements in the RORO0200 output structure for any file system.

3. The list of object reference types in the RORO0200 output formats may be an incomplete list of

references for objects residing in file systems other than the ″root″ (/), QOpenSys, and user-defined

file systems. Objects in some of the other file systems can be locked with interfaces that do not use

the integrated file system. Therefore, references returned by this API will only be references that were

obtained as part of an integrated file system operation, or an operation that cause the integrated file

system operation to occur.

4. Under some circumstances, the list of jobs that are referencing the object may be incomplete.

However, jobs not listed in the job list may still have their references listed in the RORO0100 output.

This occurs when system programs obtain references directly on an object without obtaining an open

descriptor for the object.

5. At some instances during the save or restore of an integrated file system object, the object may have

references held by the job even though its reference count is 0.

6.

The Network File System (NFS)

will only be returning references that are locally obtained on the

object. Any references that the remote system may have on the remote object are not returned by this

API.

7.

Use of this API on an object accessed via the QFileSvr.400 file system will not return any job

references, even if the object was opened using the QFileSvr.400 client.

8. This type of reference information is also viewable through the iSeries Navigator application. The

terminology, however, differs in that iSeries Navigator refers to this type of information as ″Usage″

information instead of ″Reference″ information.

Related Information

v The <qp0lror.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v

Retrieve Referenced Objects (QP0LRRO) API

Example

See Code disclaimer information for information pertaining to code examples.

The following is an example use of this API.

#include <qp0lror.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

void main()

{

 struct PathNameStruct

 {

 Qlg_Path_Name_T header;

Integrated File System APIs 499

qp0lrro.htm
aboutapis.htm#CODEDISCLAIMER

char p[50];

 };

 struct PathNameStruct path;

 char pathName[] = "/CustomerData";

 Qus_EC_t errorCode;

 /* Define a constant for the number of output buffer bytes

 provided for the RORO0100 format. */

#define OUTPUT_BYTES_RORO0100 \

 (sizeof(Qp0l_RORO0100_Output_T) + \

 sizeof(Qp0l_Sim_Ref_Types_Output_T) + \

 100) /* Pad space for potential gap between

 the 2 structures. */

 /* Declare some space for the RORO0100 output. */

 char output100Buf[OUTPUT_BYTES_RORO0100];

 /* Declare a pointer for retrieving the RORO0100 format. */

 Qp0l_RORO0100_Output_T *output100P;

 /* Declare a pointer to retrieve the RORO0200 format. */

 Qp0l_RORO0200_Output_T *output200P;

 /* Declare a job using object pointer. */

 Qp0l_Job_Using_Object_T *jobP;

 unsigned outputBufSize;

 /* Set output buffer pointer and length for retrieving the

 RORO0100 format. */

 output100P = (Qp0l_RORO0100_Output_T *)output100Buf;

 /* Setup the object’s path name structure. */

 memset(&path, 0, sizeof(path));

 path.header.CCSID = 37;

 memcpy(path.header.Country_ID,"US",2);

 memcpy(path.header.Language_ID,"ENU",3);

 path.header.Path_Type = QLG_CHAR_SINGLE;

 path.header.Path_Length = strlen(pathName);

 path.header.Path_Name_Delimiter[0] = ’/’;

 memcpy(path.p, pathName, path.header.Path_Length);

 /* Setup the error code structure to cause the error to be

 returned within the error structure. */

 errorCode.Bytes_Provided = sizeof(errorCode);

 errorCode.Bytes_Available = 0;

 /* First call QP0LROR to get the short format. We will

 use that information about references to conditionally

 allocate more space and then get the longer

 running format’s information. */

 QP0LROR(output100P,

 OUTPUT_BYTES_RORO0100,

 QP0LROR_RORO0100_FORMAT,

 (Qlg_Path_Name_T *) &path,

 &errorCode);

 /* Check if an error occurred. */

 if (errorCode.Bytes_Available != 0)

 {

 printf("Error occurred for RORO0100.\n");

 return;

 }

500 iSeries: UNIX-Type -- Integrated File System APIs

/* Check if we received any references that might be

 associated with a job. If not, return. */

 if (output100P->Count == 0)

 {

 printf("QP0LROR returned a reference count of %d\n",

 output100P->Count);

 return;

 }

 /* If we get here, then we have at least 1 reference that

 may be identifiable to a job. We will call the

 QP0LROR API to get the RORO0200 format. First we

 compute a buffer size to use. Note: this calculation

 sums up the sizes of all structures contained within

 the RORO0200 format, but doesn’t consider gaps between

 each of the structure. To attempt to cover potential

 gaps between structures, an extra 1000 bytes is being

 allocated and room for 10 additional jobs. */

 outputBufSize =

 sizeof(Qp0l_RORO0200_Output_T) +

 sizeof(Qp0l_Sim_Ref_Types_Output_T) +

 sizeof(Qp0l_Ext_Ref_Types_Output_T) +

 ((output100P->Count + 10) *

 (sizeof(Qp0l_Job_Using_Object_T) +

 sizeof(Qp0l_Sim_Ref_Types_Output_T) +

 sizeof(Qp0l_Ext_Ref_Types_Output_T)

) + 1000

);

 if (NULL == (output200P =

 (Qp0l_RORO0200_Output_T *)malloc(outputBufSize)))

 {

 printf("No space available.\n");

 return;

 }

 /* Retrieve object references. */

 QP0LROR(output200P,

 outputBufSize,

 QP0LROR_RORO0200_FORMAT,

 (Qlg_Path_Name_T *) &path,

 &errorCode);

 /* Check if an error occurred. */

 if (errorCode.Bytes_Available != 0)

 {

 free(output200P);

 printf("Error occurred for RORO0200.\n");

 return;

 }

 /* If there was more information available than we had

 provided receiver space for, then we will allocate a

 larger buffer and try once again. This could potentially

 keep reoccurring, but this example will stop after this

 second retry. */

 if (output200P->BytesReturned < output200P->BytesAvailable)

 {

 /* Use the bytes available value to determine how much

 more buffer size is needed. We will pad it with an

 extra 1000 bytes to try and handle more jobs obtaining

 references between calls to QP0LROR. */

 outputBufSize = output200P->BytesAvailable + 1000;

 if (NULL == (output200P = (Qp0l_RORO0200_Output_T *)

 realloc((void *)output200P,

 outputBufSize)))

Integrated File System APIs 501

{

 printf("No space available.\n");

 return;

 }

 QP0LROR(output200P,

 outputBufSize,

 QP0LROR_RORO0200_FORMAT,

 (Qlg_Path_Name_T *) &path,

 &errorCode);

 /* Check if an error occurred. */

 if (errorCode.Bytes_Available != 0)

 {

 free(output200P);

 printf("Error occurred for RORO0200 (2nd call).\n");

 return;

 }

 }

 /* Print some output. */

 printf("Reference count: %d\n",output200P->Count);

 printf("Jobs returned: %d\n",output200P->JobsReturned);

 if (output200P->JobsReturned > 0)

 {

 jobP = (Qp0l_Job_Using_Object_T *)

 ((char *)output200P + output200P->JobsOffset);

 printf("First job’s name: %10.10s %10.10s %6.6s",

 jobP->Name,

 jobP->User,

 jobP->Number);

 }

 free(output200P);

 return;

}

Example Output:

Reference count: 1

Jobs returned: 1

First job’s name: JOBNAME123 JOBUSER123 123456

API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

502 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Qp0lSaveStgFree()—Save Storage Free

 Syntax

 #include <Qp0lstdi.h>

 int Qp0lSaveStgFree(

 Qlg_Path_Name_T *Path_Name,

 Qp0l_StgFree_Function_t *UserFunction_ptr,

 void *Function_CtlBlk_ptr);

 Service Program Name: QP0LLIB3

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 508.

The Qp0lSaveStgFree() function calls a user-supplied exit program to save OS/400 objects of type *STMF

and, upon successful completion of the exit program, frees the storage for the object and marks the object

as storage freed. The *STMF object and its attributes remain on the system, but the storage occupied by

the *STMF object’s data is deleted. The *STMF object cannot be used until it is restored to the system.

This is accomplished by either of the following:

v Restoring the object using the RST command.

v Requesting an operation on the object, requiring one of the following, which will dynamically retrieve

(restore) the *STMF object:

– Accessing the object’s data (open(), creat(), MOV, CPY, CPYFRMSTMF, or CPYTOSTMF).

– Adding a new name to the object (RNM, ADDLNK, link(), rename(), Qp0lRenameKeep(), or

Qp0lRenameUnlink()).

– Checking out the object (CHKOUT).

The restore operation is done by calling a user-provided exit program registered against the Storage

Extension exit point QIBM_QTA_STOR_EX400. For information on this exit point, see the Storage

Extension Exit Program.

Qp0lSaveStgFree() returns EOFFLINE for an object that is already storage freed or returns EBUSY for an

object that is checked out.

The user exit program can be either a procedure or a program.

Parameters

Path_Name

(Input) A pointer to a path name whose last component is the object that is saved and whose

storage is freed. This path name is in the Qlg_Path_Name_T format. For more information on this

structure, see Path name format.

 If the last component of the path name supplied on the call to Qp0lSaveStgFree() is a symbolic

link, then Qp0lSaveStgFree() resolves and follows the link to its target and performs its normal

Qp0lSaveStgFree() functions on that target. If the symbolic link refers to an object in a remote file

system, Qp0lSaveStgFree() returns ENOTSUP to the calling program.

UserFunction_ptr

(Input) A pointer to a structure that contains information about the user exit program that the

caller wants Qp0lSaveStgFree() to call to save an *STMF object. This user exit program can be

Integrated File System APIs 503

XTASX400.htm
XTASX400.htm
pns.htm

either a procedure or a program. If this pointer is NULL, Qp0lSaveStgFree() does not call an exit

program to save the object but does free the object’s storage and marks it as storage freed.

 User Function Pointer

Offset

Type Field Dec Hex

0 0 BINARY(4) Function type flag

14 E CHAR(10) Program library

4 4 CHAR(10) Program name

24 18 CHAR(1) Multithreaded job action

25 19 CHAR(7) Reserved

32 20 PP(*) Procedure pointer to exit procedure

Function type flag. A flag that indicates whether the Save Storage Free exit program called by

Qp0lSaveStgFree() is a procedure or a program. If the exit program is a procedure, this flag is set

to 0, and the procedure pointer to exit procedure field points to the procedure called by

Qp0lSaveStgFree(). If the exit program is a program, this flag is set to 1 and a program name

and program library are provided, respectively, in the program name and program library fields.

Valid values follow:

 0 QP0L_USER_FUNCTION_PTR: A user procedure is called.

1 QP0L_USER_FUNCTION_PGM: A user program is called.

Multithreaded job action. (Input) A CHAR(1) value that indicates the action to take in a

multithreaded job. The default value is QP0L_MLTTHDACN_SYSVAL. For release compatibility

and for processing this parameter against the QMLTTHDACN system value, x’00, x’01’, x’02’, &

x’03’ are treated as x’F0’, x’F1’, x’F2’, and x’F3’.

 x’00’ QP0L_MLTTHDACN_SYSVAL: The API evaluates the QMLTTHDACN system value to determine

the action to take in a multithreaded job. Valid QMLTTHDACN system values follow:

’1’ Call the exit program. Do not send an informational message.

’2’ Call the exit program and send informational message CPI3C80.

’3’ The exit program is not called when the API determines that it is running in a

multithreaded job. ENOTSAFE is returned.

x’01’ QP0L_MLTTHDACN_NOMSG: Call the exit program. Do not send an informational message.

x’02’ QP0L_MLTTHDACN_MSG: Call the exit program and send informational message CPI3C80.

x’03’ QP0L_MLTTHDACN_NO: The exit program is not called when the API determines that it is

running in a multithreaded job. ENOTSAFE is returned.

Procedure pointer to exit procedure. If the function type flag is 0, which indicates that a

procedure is called instead of a program, this field contains a procedure pointer to the procedure

that Qp0lSaveStgFree() calls. This field must be NULL if the function type flag is 1.

 Program library. If the function type flag is 1, indicating a program is called, this field contains

the library in which the program being called (identified by the program name field) is located.

This field must be blank if the function type flag is 0.

 Program name. If the function type flag is 1, indicating a program is called, this field contains

the name of the program that is called. The program should be located in the library identified by

the program library field. This field must be blank if the function type flag is 0.

 Reserved. A reserved field. This field must be set to binary zero.

504 iSeries: UNIX-Type -- Integrated File System APIs

Function_CtlBlk_ptr

(Input) A pointer to any data that the caller of Qp0lSaveStgFree() wants to have passed to the

user-defined Save Storage Free exit program that Qp0lSaveStgFree() calls to save an *STMF

object. Qp0lSaveStgFree() does not process the data that is referred to by this pointer. The API

passes this pointer as a parameter to the user-defined Save Storage Free exit program that was

specified on its call. This is a means for the caller of Qp0lSaveStgFree() to pass information to

and from the Save Storage Free exit program.

Authorities

The following table shows the authorization required for the Qp0lSaveStgFree() API.

 Object Referred to Authority Required errno

Each directory, preceding the last component, in a path name *RX EACCES

Object *SAVSYS or *RW EACCES

Any called program pointed to by the UserFunction_ptr parameter *X EACCES

Any library containing the called program pointed to by the

UserFunction_ptr parameter

*X EACCES

Return Value

 0 Qp0lSaveStgFree() was successful.

-1 Qp0lSaveStgFree() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If Qp0lSaveStgFree() is not successful, errno indicates one of the following errors:

[EACCES]

Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

Operation would have caused the process to be suspended.

[EBADNAME]

The object name specified is not correct.

[EBUSY]

Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

Integrated File System APIs 505

[EFAULT]

The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO] Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EISDIR]

Specified target is a directory.

 The path specified named a directory where a file or object name was expected.

 The path name given is a directory.

[ELOOP]

A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[EMFILE]

Too many open files for this process.

 An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of

OPEN_MAX can be retrieved using the sysconf() function.

 The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENAMETOOLONG]

A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENFILE]

Too many open files in the system.

 A system limit has been reached for the number of files that are allowed to be concurrently open

in the system.

 The entire system has too many other file descriptors already open.

[ENOENT]

No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

506 iSeries: UNIX-Type -- Integrated File System APIs

[ENOMEM]

Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOSPC]

No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOSYSRSC]

System resources not available to complete request.

[ENOTSAFE]

Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EOFFLINE]

Object is suspended.

 You have attempted to use an object that has had its data saved and the storage associated with it

freed. An attempt to retrieve the object’s data failed. The object’s data cannot be used until it is

successfully restored. The object’s data was saved and freed either by saving the object with the

STG(*FREE) parameter, or by calling an API.

[EUNKNOWN]

Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPI3C80 I An exit program has been called for which the threadsafety status was not known.

CPFA0D4 E File system error occurred.

Integrated File System APIs 507

Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

v This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

– Where multiple threads exist in the job.

– The object this function is operating on resides in a file system that is not threadsafe. Only the

following file systems are threadsafe for this function:

- Root

- QOpenSys

- User-defined

- QNTC

- QSYS.LIB

- QOPT

-

Network File System

-

QFileSvr.400

v If the Save Storage Free exit program calls the SAV command or the QsrSave function or any other

function that is not threadsafe, and there are secondary threads active in the job, Qp0lSaveStgFree()

may fail as a result.

v If the Save Storage Free exit program is not threadsafe or uses a function that is not threadsafe, then

Qp0lSaveStgFree() is not threadsafe.

Related Information

v The <Qp0lstdi.h> file

v “QlgSaveStgFree()—Save Storage Free (using NLS-enabled path name)” on page 383—Save Storage

Free (using NLS-enabled path name)
v “Save Storage Free Exit Program” on page 679

Example

See Code disclaimer information for information pertaining to code examples.

See “Qp0lGetAttr()—Get Attributes” on page 419 description for a code example that shows a call to

Qp0lSaveStgFree() by using a procedure as the exit program. This API also shows an example of a call to

Qp0lGetAttr().

API introduced: V4R3

 Top | Backup and Recovery APIs | UNIX-Type APIs | APIs by category

508 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
back1.htm
unix.htm
aplist.htm

Qp0lSetAttr()—Set Attributes

 Syntax

 #include <Qp0lstdi.h>

 int Qp0lSetAttr

 (Qlg_Path_Name_T *Path_Name,

 char *Buffer_ptr,

 uint Buffer_Size,

 uint Follow_Symlnk, ...);

 Service Program Name: QP0LLIB3

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 520.

The Qp0lSetAttr() function sets one of a set of defined attributes, on each call, for the object that is

referred to by the input *Path_Name. The object must exist, the user must have authority to it, and the

attribute must be supported by the file system to which the object belongs. When an attribute is not

supported by the file system, Qp0lSetAttr() will fail with ENOTSUP. See the “Usage Notes” on page 520

for more information.

If the last component of the Path_Name parameter is a symbolic link, the Qp0lSetAttr() either sets the

attribute of the symbolic link or sets the attribute of the object that the symbolic link names. This

depends on the value of the Follow_Symlnk parameter.

All times that are set by Qp0lSetAttr() are in seconds since the Epoch so that they are consistent with

UNIX-type APIs. The Epoch is the time 0 hours, 0 minutes, 0 seconds, January 1, 1970, Coordinated

Universal Time. If the OS/400 date is set prior to 1970, all time values will be zero.

Parameters

Path_Name

(Input) The path name of the object for which attribute information is set. This path name is in

the Qlg_Path_Name_T format. For more information on this structure, see Path name format.

Buffer_ptr

(Input) A pointer to a buffer containing a constant that identifies the attribute and the value for

the attribute that Qp0lSetAttr() sets. The number of bytes allocated for this buffer is in the

Buffer_Size parameter.

 The following table describes the format of the entry in the buffer.

 Buffer Pointer

Offset

Type Field Dec Hex

0 0 BINARY(4) Offset to next attribute entry

4 4 BINARY(4) Attribute identification

8 8 BINARY(4) Size of attribute data

12 C CHAR(4) Reserved

16 10 CHAR(*) Attribute data

Attribute data. The value to which the attribute is set.

Integrated File System APIs 509

pns.htm

Attribute identification. The constant identifying the attribute being set. Valid values are:

 4 QP0L_ATTR_CREATE_TIME: (UNSIGNED (BINARY(4)) The time the object was created.

5 QP0L_ATTR_ACCESS_TIME: (UNSIGNED (BINARY(4)) The time the object’s data was last

accessed.

7 QP0L_ATTR_MODIFY_TIME: (UNSIGNED (BINARY(4)) The time the object’s data was last

changed.

17 QP0L_ATTR_PC_READ_ONLY: (CHAR(1)) Whether the object can be written to or deleted, have

its extended attributes changed or deleted, or have its size changed. Valid values are:

x’00’ QP0L_PC_NOT_READONLY: The object can be changed.

x’01’ QP0L_PC_READONLY: The object cannot be changed.

18 QP0L_ATTR_PC_HIDDEN: (CHAR(1)) Whether the object can be displayed using an ordinary

directory listing.

x’00’ QP0L_PC_NOT_HIDDEN: The object is not hidden.

x’01’ QP0L_PC_HIDDEN: The object is hidden.

19 QP0L_ATTR_PC_SYSTEM: (CHAR(1)) Whether the object is a system file and is excluded from

normal directory searches.

x’00’ QP0L_PC_NOT_SYSTEM: The object is not a system file.

x’01’ QP0L_PC_SYSTEM: The object is a system file.

20 QP0L_ATTR_PC_ARCHIVE: (CHAR(1)) Whether the object has changed since the last time the file

was saved or reset by a PC client.

x’00’ QP0L_PC_NOT_CHANGED: The object has not changed.

x’01’ QP0L_PC_CHANGED: The object has changed.

21 QP0L_ATTR_SYSTEM_ARCHIVE: (CHAR(1)) Whether the object has changed and needs to be

saved. It is set on when an object’s change time is updated, and set off when the object has been

saved.

x’00’ QP0L_SYSTEM_NOT_CHANGED: The object has not changed and does not need to be

saved.

x’01’ QP0L_SYSTEM_CHANGED: The object has changed and does need to be saved.

22 QP0L_ATTR_CODEPAGE: (BINARY(4)) The code page used to derive a coded character set

identifier (CCSID) used for the data in the file or the extended attributes of the directory.

26 QP0L_ATTR_ALWCKPWRT: (CHAR(1)) Whether a stream file (*STMF) can be shared with readers

and writers during the save-while-active checkpoint processing. Setting this attribute may cause

unexpected results.

See the Back up your server topic for details on this attribute

.

x’00’ QP0L_NOT_ALWCKPWRT: The object can be shared with readers only.

x’01’ QP0L_ALWCKPWRT: The object can be shared with readers and writers.

27 QP0L_ATTR_CCSID: (BINARY(4)) The CCSID of the data and extended attributes of the object.

510 iSeries: UNIX-Type -- Integrated File System APIs

31 QP0L_ATTR_DISK_STG_OPT (CHAR(1)) Which option should be used to determine how

auxiliary storage is allocated by the system for the specified object. The option will take effect

immediately and be part of the next auxiliary storage allocation for the object. This option can

only be specified for byte stream files in the ″root″ (/), QOpenSys and user-defined file systems.

This option will be ignored for *TYPE1 byte stream files. Valid values are:

x’00’ QP0L_STG_NORMAL: The auxiliary storage will be allocated normally. That is, as

additional auxiliary storage is required, it will be allocated in logically sized extents to

accomodate the current space requirement, and anticipated future requirements, while

minimizing the number of disk I/O operations. If the QP0L_ATTR_DISK_STG_OPT

attribute has not been specified for an object, this value is the default.

x’01’ QP0L_STG_MINIMIZE: The auxiliary storage will be allocated to minimize the space

used by the object. That is, as additional auxiliary storage is required, it will be allocated

in small sized extents to accomodate the current space requirement. Accessing an object

composed of many small extents may increase the number of disk I/O operations for that

object.

x’02’ QP0L_STG_DYNAMIC: The system will dynamically determine the optimum auxiliary

storage allocation for the object, balancing space used versus disk I/O operations. For

example, if a file has many small extents, yet is frequently being read and written, then

future auxiliary storage allocations will be larger extents to minimize the number of disk

I/O operations. Or, if a file is frequently truncated, then future auxiliary storage

allocations will be small extents to minimize the space used. Additionally, information

will be maintained on the byte stream file sizes for this system and its activity. This file

size information will also be used to help determine the optimum auxiliary storage

allocations for this object as it relates to the other objects sizes.

32 QP0L_ATTR_MAIN_STG_OPT: (CHAR(1)) Which option should be used to determine how main

storage is allocated and used by the system for the specified object. The option will take effect the

next time the specified object is opened. This option can only be specified for byte stream files in

the ″root″ (/), QOpenSys and user-defined file systems. Valid values are:

x’00’ QP0L_STG_NORMAL: The main storage will be allocated normally. That is, as much

main storage as possible will be allocated and used. This minimizes the number of disk

I/O operations since the information is cached in main storage. If the

QP0L_ATTR_MAIN_STG_OPT attribute has not been specified for an object, this value is

the default.

x’01’ QP0L_STG_MINIMIZE: The main storage will be allocated to minimize the space used by

the object. That is, as little main storage as possible will be allocated and used. This

minimizes main storage usage while increasing the number of disk I/O operations since

less information is cached in main storage.

x’02’ QP0L_STG_DYNAMIC: The system will dynamically determine the optimum main

storage allocation for the object depending on other system activity and main storage

contention. That is, when there is little main storage contention, as much storage as

possible will be allocated and used to minimize the number of disk I/O operations. And

when there is significant main storage contention, less main storage will be allocated and

used to minimize the main storage contention.

Integrated File System APIs 511

35 QP0L_ATTR_CRTOBJSCAN: (CHAR(1)) Whether the objects created in a directory will be scanned

when exit programs are registered with any of the integrated file system scan-related exit points.

The integrated file system scan-related exit points are:

v “Integrated File System Scan on Close Exit Program” on page 656

v “Integrated File System Scan on Open Exit Program” on page 666.

This attribute can only be specified for directories in the ″root″ (/), QOpenSys and user-defined

file systems. Even though this attribute can be set for *TYPE1 and *TYPE2 directories, only objects

which are in *TYPE2 directories will actually be scanned, no matter what value is set for this

attribute.

Valid values are:

x’00’ QP0L_SCANNING_NO: After an object is created in the directory, the object will not be

scanned according to the rules described in the scan-related exit programs.

 Note: If the Scan file systems control (QSCANFSCTL) value *NOPOSTRST is not

specified when an object with this attribute is restored, the object will be scanned at least

once after the restore.

x’01’ QP0L_SCANNING_YES: After an object is created in the directory, the object will be

scanned according to the rules described in the scan-related exit programs if the object

has been modified or if the scanning software has been updated since the last time the

object was scanned. If the QP0L_ATTR_CRTOBJSCAN attribute has not been specified for

a directory, this value is the default.

x’02’ QP0L_SCANNING_CHGONLY: After an object is created in the directory, the object will

be scanned according to the rules described in the scan-related exit programs only if the

object has been modified since the last time the object was scanned. It will not be scanned

if the scanning software has been updated. This attribute only takes effect if the Scan file

systems control (QSCANFSCTL) system value has *USEOCOATR specified. Otherwise, it

will be treated as if the attribute is QP0L_SCANNING_YES.

 Note: If the Scan file systems control (QSCANFSCTL) value *NOPOSTRST is not

specified when an object with this attribute is restored, the object will be scanned at least

once after the restore.

512 iSeries: UNIX-Type -- Integrated File System APIs

36 QP0L_ATTR_SCAN: (CHAR(1)) Whether the object will be scanned when exit programs are

registered with any of the integrated file system scan-related exit points.

The integrated file system scan-related exit points are:

v “Integrated File System Scan on Close Exit Program” on page 656

v “Integrated File System Scan on Open Exit Program” on page 666.

This attribute can only be specified for stream files in the ″root″ (/), QOpenSys and user-defined

file systems. Even though this attribute can be set for objects in *TYPE1 and *TYPE2 directories,

only objects which are in *TYPE2 directories will actually be scanned, no matter what value is set

for this attribute.

Valid values are:

x’00’ QP0L_SCANNING_NO: The object will not be scanned according to the rules described

in the scan-related exit programs.

 Note: If the Scan file systems control (QSCANFSCTL) value *NOPOSTRST is not

specified when an object with this attribute is restored, the object will be scanned at least

once after the restore.

x’01’ QP0L_SCANNING_YES: The object will be scanned according to the rules described in

the scan-related exit programs if the object has been modified or if the scanning software

has been updated since the last time the object was scanned. If the QP0L_ATTR_SCAN

attribute has not been specified for an object, this value is the default.

x’02’ QP0L_SCANNING_CHGONLY: The object will be scanned according to the rules

described in the scan-related exit programs only if the object has been modified since the

last time the object was scanned. It will not be scanned if the scanning software has been

updated. This attribute only takes effect if the Scan file systems control (QSCANFSCTL)

system value has *USEOCOATR specified. Otherwise, it will be treated as if the attribute

is QP0L_SCANNING_YES.

 Note: If the Scan file systems control (QSCANFSCTL) value *NOPOSTRST is not

specified when an object with this attribute is restored, the object will be scanned at least

once after the restore.

38 QP0L_ATTR_ALWSAV: (CHAR(1)) Whether the object can be saved or not.

Note: It is highly recommended that this attribute not be changed for any system created objects.

Valid values are:

x’00’ QP0L_ALWSAV_NO: This object will not be saved when using the Save Object (SAV)

command or the QsrSave() API.

 Additionally, if this object is a directory, none of the objects in the directory’s subtree will

be saved unless they were explicitly specified as an object to be saved. The subtree

includes all subdirectories and the objects within those subdirectories.

 Note: If this attribute is chosen for an object that has private authorities associated with

it, or is chosen for the directory of an object that has private authorities associated with it,

then the following consideration applies. When the private authorities are saved, the fact

that an object has the QP0L_ALWSAV_NO attribute is not taken into consideration.

(Private authorities can be saved using either the Save System (SAVSYS) or Save Security

Data (SAVSECDTA) command or the Save Object List (QSRSAVO) API.) Therefore, when

a private authority is restored using the Restore Authority (RSTAUT) command, message

CPD3776 will be seen for each object that was not saved either because it had the

QP0L_ALWSAV_NO attribute specified, or because the object was not specified on the

save and it was in a directory that had the QP0L_ALWSAV_NO attribute specified.

x’01’ QP0L_ALWSAV_YES: This object will be saved when using the Save Object (SAV)

command or the QsrSave() API. If the QP0L_ATTR_ALWSAV attribute has not been

specified for an object, this value is the default.

Integrated File System APIs 513

QsrSave.htm
qsrsavo.htm
QsrSave.htm

39 QP0L_ATTR_RSTDRNMUNL: (CHAR(1)) Restricted renames and unlinks for objects within a

directory. Objects can be linked into a directory that has this attribute set on, but cannot be

renamed or unlinked from it unless one or more of the following are true for the user performing

the operation:

v The user is the owner of the object.

v The user is the owner of the directory.

v The user has *ALLOBJ special authority.

This restriction only applies to directories. Other types of object can have this attribute on,

however, it will be ignored. In addition, this attribute can only be specified for objects within the

Network File System (NFS), QFileSvr.400, ″root″ (/), QOpenSys, or user-defined file systems. Both

the NFS and QFileSvr.400 file systems support this attribute by passing it to the server and

surfacing it to the caller. This attribute is also equivalent to the S_ISVTX mode bit for an object.

Valid values are:

x’00’ QP0L_RSTDRNMUNL_OFF: No additional restrictions for rename and unlink operations.

x’01’ QP0L_RSTDRNMUNL_ON: Additional restrictions for rename and unlink operations.

200 QP0L_ATTR_RESET_DATE: (UNSIGNED (BINARY(2)) The count of the number of days an object

has been used. Usage has different meanings according to the file system and according to the

individual object types supported within a file system. Usage can indicate the opening or closing

of a file or can refer to adding links, renaming, restoring, or checking out an object. The usage

information format is defined in the Qp0lstdi.h header file as data type Qp0l_Usage_t and is

shown in the following table. This attribute can be set to zero only. An attempt to set to any other

value will result in errno [EINVAL].

When this attribute is set, the date use count reset for the object is set to the current date.

300 QP0L_ATTR_SUID: (CHAR(1)) Set effective user ID (UID) at execution time. This value is ignored

if the specified object is a directory. Valid values are:

x’00’ QP0L_SUID_OFF: The user ID (UID) is not set at execution time.

x’01’ QP0L_SUID_ON: The object owner is the effective user ID (UID) at execution time.

301 QP0L_ATTR_SGID: (CHAR(1)) Set effective group ID (GID) at execution time. Valid values are:

x’00’ QP0L_SGID_OFF: If the object is a file, the group ID (GID) is not set at execution time. If

the object is a directory in the ″root″ (/), QOpenSys, and user-defined file systems, the

group ID (GID) of objects created in the directory is set to the effective GID of the thread

creating the object. This value cannot be set for other file systems.

x’01’ QP0L_SGID_ON: If the object is a file, the group ID (GID) is set at execution time. If the

object is a directory, the group ID (GID) of objects created in the directory is set to the

GID of the parent directory.

Offset to next attribute entry. (Output) This field is not used by the Qp0lSetAttr() function. It is

provided for alignment so that the same buffer format returned from the Qp0lGetAttr() function

can be used as input to the Qp0lSetAttr() function.

 Reserved. A reserved field. This field must be set to binary zero.

 Size of attribute data. The exact size of the data for this attribute. If this size does not match the

size that the system stores for this attribute, [EINVAL] is returned.

Buffer_Size

(Input) The size in bytes of the buffer pointed to by the Buffer_ptr parameter.

Follow_Symlnk

(Input) If the last component in the *Path_Name is a symbolic link, Qp0lSetAttr() either acts upon

the symbolic link or the path contained in the symbolic link. This depends on the value of the

Follow_Symlnk parameter. Valid values are:

 0 QP0L_DONOT_FOLLOW_SYMLNK: A symbolic link in the last component is not followed.

Attributes of the symbolic link object are set.

514 iSeries: UNIX-Type -- Integrated File System APIs

1 QP0L_FOLLOW_SYMLNK: A symbolic link in the last component is followed. The attributes of

the object contained in the symbolic link are set.

Authorities

Note: Adopted authority is not used.

 Authorization Required for Qp0lSetAttr() (excluding QSYS.LIB, independent ASP QSYS.LIB,

and QDLS)

Object Referred to Authority Required errno

Each directory, preceding the last component, in the path name *X EACCES

Object, when setting the QP0L_ATTR_RESET_DATE,

QP0L_ATTR_ALWCKPWRT,

QP0L_ATTR_ALWSAV,

QP0L_ATTR_DISK_STG_OPT or QP0L_ATTR_MAIN_STG_OPT attribute

*OBJMGT EACCES

Object, when setting the QP0L_ATTR_CREATE_TIME,

QP0L_ATTR_ACCESS_TIME, or QP0L_ATTR_MODIFY_TIME attribute to

the current time

Owner or *W (See

Note)

EACCES

Object, when setting the

QP0L_ATTR_RSTDRNMUNL,

QP0L_ATTR_SUID, or QP0l_ATTR_SGID values

Owner (See Note)

EPERM

Object, when setting the QP0L_ATTR_CREATE_TIME,

QP0L_ATTR_ACCESS_TIME, or QP0L_ATTR_MODIFY_TIME attribute to

a specific time

*W EPERM

User, when setting the QP0L_ATTR_CRTOBJSCAN or

QP0L_ATTR_SCAN attribute

*ALLOBJ, *SECADM EPERM

Object, when setting any other attribute *W EACCES

Note: If the file system supports *ALLOBJ special authority and if you have *ALLOBJ special authority, you do not

need the listed object authority.

 Authorization Required for Qp0lSetAttr() in the QSYS.LIB and independent ASP QSYS.LIB File Systems

Object Referred to Authority Required errno

Each directory, preceding the last component, in the path name *X EACCES

Object, when setting the QP0L_ATTR_RESET_DATE attribute and the

object type is *FILE

*OBJOPR and

*OBJMGT

EACCES or

EPERM

Object, when setting the QP0L_ATTR_RESET_DATE attribute and the

object is a database file member

*X and *OBJMGT EACCES or

EPERM

Object, when setting the QP0L_ATTR_RESET_DATE attribute and the

object is neither a *FILE object type nor a database file member

*OBJMGT EACCES or

EPERM

Authorization Required for Qp0lSetAttr() in the QDLS File System

Object Referred to Authority Required errno

Each directory, preceding the last component, in the path name *X EACCES

Object, when setting the QP0L_ATTR_RESET_DATE attribute *W, *OBJMGT (See

Note)

EACCES

Object, when setting any other attribute *W (See Note) EACCES

Note: If you have *ALLOBJ special authority, you do not need the listed object authority.

Integrated File System APIs 515

Return Value

 0 The Qp0lSetAttr() API was successful.

-1 The Qp0lSetAttr() API was not successful. The errno global variable is set to indicate the error.

Error Conditions

If the Qp0lSetAttr() API is not successful, errno indicates one of the following errors:

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECANCEL]

 Operation canceled.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

516 iSeries: UNIX-Type -- Integrated File System APIs

In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

Integrated File System APIs 517

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent auxiliary storage pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

518 iSeries: UNIX-Type -- Integrated File System APIs

The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EOFFLINE]

 Object is suspended.

 You have attempted to use an object that has had its data saved and the storage associated with it

freed. An attempt to retrieve the object’s data failed. The object’s data cannot be used until it is

successfully restored. The object’s data was saved and freed either by saving the object with the

STG(*FREE) parameter, or by calling an API.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESCANFAILURE]

 Object failed scan processing.

 You have attempted to modify an object that has been marked as a scan failure due to processing

by an exit program associated with the scan-related integrated file system exit points.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 Additionally, if interaction with a file server is required to access the object, errno could also indicate one

of the following errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

Integrated File System APIs 519

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPE3418 E Possible APAR condition or hardware failure.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

– QFileSvr.400

2. ″Root″ (/), QOpenSys, and User-Defined File System Differences

The QP0L_ATTR_CREATE_TIME and QP0L_ATTR_RESET_DATE attributes are supported for objects

of type *STMF only. Attempts to set them on other objects will result in the operation failing with

errno set to [ENOTSUP].

The QP0L_ALWSAV_YES value cannot be specified for the QP0L_ATTR_ALWSAV attribute for

/dev/null, /dev/zero or objects of type *SOCKET. Attempts to set it on these objects will result in the

operation failing with errno set to [ENOTSUP].

520 iSeries: UNIX-Type -- Integrated File System APIs

The QP0L_ATTR_SGID attribute of the directory affects what the group ID (GID) is for objects that

are created in the directory. If the QP0L_ATTR_SGID attribute of the parent directory is off, the group

ID (GID) is set to the effective GID of the thread creating the object. If the QP0L_ATTR_SGID attribute

of the parent directory is on, the group ID (GID) of the new object is set to the GID of the parent

directory. For all other file systems, the GID of the new object is set to the GID of the parent directory.

When setting the QP0L_ATTR_RSTDRNMUNL, QP0L_ATTR_SUID, or QP0L_ATTR_SGID attributes

on an object that has a primary group, it must match the primary group ID or one of the

supplemental group IDs of the caller of this API; otherwise, the QP0L_ATTR_SGID attribute is set to

QP0L_SGID_OFF.

3. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

The following attribute may be set on objects in these file system:

v QP0L_ATTR_RESET_DATE

Attempting to set any other attribute

other than QP0L_ATTR_SUID or QP0L_ATTR_SGID

will

result in the operation failing with errno set to [ENOTSUP].

When you set the QP0L_ATTR_RESET_DATE attribute of a database file, all members in that file will

have their days used count reset to 0 also.

QSYS.LIB and Independent ASP QSYS.LIB do not support setting the QP0L_ATTR_SUID or

QP0L_ATTR_SGID attributes. They will be ignored if specified.

4. Network File System Differences

When you set the following attributes on objects in the Network File System, the operation will fail

with the errno set to [ENOTSUP] if the attribute is not set to the following attribute value.

v If set, QP0L_ATTR_PC_READ_ONLY must be set to an attribute value of

QP0L_PC_NOT_READ_ONLY.

v If set, QP0L_ATTR_PC_HIDDEN must be set to an attribute value of QP0L_PC_NOT_HIDDEN.

v If set, QP0L_ATTR_PC_SYSTEM must be set to an attribute value of QP0L_PC_NOT_SYSTEM.

v If set, QP0L_ATTR_PC_ARCHIVE must be set to an attribute value of QP0L_PC_NOT_CHANGED;

however, if the object is of type *STMF, the attribute value must be QP0L_PC_CHANGED.

v If set, QP0L_ATTR_SYSTEM_ARCHIVE must be set to an attribute value of

QP0L_SYSTEM_NOT_CHANGED.
The QP0L_ATTR_CREATE_TIME, QP0L_ATTR_RESET_DATE, QP0L_ATTR_CODEPAGE,

QP0L_ATTR_CCSID,

QP0L_ATTR_ALWSAV, QP0L_ATTR_ALWCKPWRT,

QP0L_ATTR_DISK_STG_OPT and QP0L_ATTR_MAIN_STG_OPT

attributes cannot be set on

objects within the Network File System or they will result in the operation failing with errno set to

[ENOTSUP].

The NFS client supports the QP0L_ATTR_SUID, QP0L_ATTR_SGID, and

QP0L_ATTR_RSTDRNMUNL attributes by passing them to the server over the network and surfacing

them to the caller. Whether a particular network file system supports the setting of these attributes

depends on the server. Most servers have the capability of masking off the QP0L_ATTR_SUID and

QP0L_ATTR_SGID attributes if the NOSUID option is specified on the export. The default, however,

is to support these attributes.

5. QNetWare File System Differences

The QNetWare File System does not support setting

QP0L_ATTR_RSTDRNMUNL,

QP0L_ATTR_SYSTEM_ARCHIVE or QP0L_ATTR_RESET_DATE. If you set any attribute on a

NetWare Directory Services (NDS) object, the operation will fail with errno set to [ENOTSUP].

QNetWare supports the QP0L_ATTR_SUID and QP0L_ATTR_SGID attributes by passing them to

the server and surfacing them to the caller. Some versions of NetWare may support the attributes and

others may not.

6.

QDLS File System Differences

The following attributes may be set on objects in this file system:

v QP0L_ATTR_ACCESS_TIME

Integrated File System APIs 521

v QP0L_ATTR_CCSID

v QP0L_ATTR_CODEPAGE

v QP0L_ATTR_MODIFY_TIME

v QP0L_ATTR_PC_ARCHIVE

v QP0L_ATTR_PC_HIDDEN

v QP0L_ATTR_PC_READ_ONLY

v QP0L_ATTR_PC_SYSTEM

v QP0L_ATTR_RESET_DATE (for documents only)

Attempting to set any other than the QP0L_ATTR_SUID or QP0L_ATTR_SGID attributes attributes

will result in the operation failing with errno set to [ENOTSUP].

QDLS does not support setting the QP0L_ATTR_SUID or QP0L_ATTR_SGID attributes. They will be

ignored if specified.

7.

QOPT File System Differences

If you set the QP0L_ALWSAV_YES value for the QP0L_ATTR_ALWSAV attribute, the operation will

fail with errno set to [ENOTSUP].

QOPT does not support setting the QP0L_ATTR_SUID, QP0L_ATTR_SGID, and

QP0L_ATTR_RSTDRNMUNL attributes for any optical media format. If any attribute is specified, the

operation will fail with errno set to [ENOTSUP].

8.

QFileSvr.400 File System Differences

QFileSvr.400 supports the QP0L_ATTR_SUID, QP0L_ATTR_SGID, and QP0L_ATTR_RSTDRNMUNL

attributes by passing them to the server and surfacing them to the caller.

QFileSvr.400 does not support setting the QP0L_ATTR_ALWSAV attribute. The operation will fail if

this attribute is specified.

9.

QNTC File System Differences

QNTC does not support setting the QP0L_ATTR_SUID or QP0L_ATTR_SGID attributes. They will be

ignored if specified.

QNTC does not support setting the QP0L_ATTR_RSTDRNMUNL attribute. The operation will fail if

this attribute is specified.

Related Information

v The <Qp0lstdi.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <qlg.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “chmod()—Change File Authorizations” on page 29—Change File Authorizations

v

“Integrated File System Scan on Close Exit Program” on page 656

v

“Integrated File System Scan on Open Exit Program” on page 666.

v “QlgSetAttr()—Set Attributes (using NLS-enabled path name)” on page 383—Set Attributes (using

NLS-enabled path name)

v “Qp0lGetAttr()—Get Attributes” on page 419—Get Attributes

v

Retrieve System Values (QWCRSVAL) API

Example

See Code disclaimer information for information pertaining to code examples.

The following is an example showing a call to the Qp0lSetAttr() and the Qp0lGetAttr() APIs.

 /***/

#include "Qp0lstdi.h"

#include <stdio.h>

#include <errno.h>

#include <stdlib.h>

522 iSeries: UNIX-Type -- Integrated File System APIs

qwcrsval.htm
aboutapis.htm#CODEDISCLAIMER

#include <sys/types.h>

 int GetAttrObject(

 Qlg_Path_Name_T *Pathname_ptr,

 char *Buffer_ptr,

 unsigned int Buffer_size)

 {

 /**/

 /* Local variables */

 /**/

 struct attrStruct

 {

 Qp0l_AttrTypes_List_t attr_struct;

 uint AttrTypes[10];

 };

 struct attrStruct Attr_types_ptr;

 unsigned int buff_size_needed;

 unsigned int num_bytes_returned;

 unsigned int follow_sym;

 int rc;

 /**/

 /* Start of executable code */

 /**/

 /**/

 /* Initialize Get Attributes Parameters */

 /**/

 memset((void *)&Attr_types_ptr, 0x00,sizeof(struct attrStruct));

 Attr_types_ptr.attr_struct.Number_Of_ReqAttrs = 3;

 Attr_types_ptr.AttrTypes[0] = QP0L_ATTR_PC_READ_ONLY;

 Attr_types_ptr.AttrTypes[1] = QP0L_ATTR_PC_HIDDEN;

 Attr_types_ptr.AttrTypes[2] = QP0L_ATTR_CODEPAGE;

 buff_size_needed = 0;

 follow_sym = QP0L_FOLLOW_SYMLNK;

 /**/

 /* Call Qp0lGetAttr() to retrieve attributes. */

 /**/

 rc = Qp0lGetAttr(Pathname_ptr,

 (Qp0l_AttrTypes_List_t *)&Attr_types_ptr,

 Buffer_ptr,

 Buffer_size,

 &buff_size_needed,

 &num_bytes_returned,

 follow_sym);

 if((rc == 0) && /* If successful, but */

 (num_bytes_returned <= 0)) /* Incorrect bytes returned */

 rc = EUNKNOWN; /* Unknown error */

 return(rc);

 } /* End GetAttrObject() */

 int SetAttrObject(

 Qlg_Path_Name_T *Pathname_ptr,

 char *Buffer_ptr,

 unsigned int Buffer_size)

 {

 /**/

 /* Local variables */

 /**/

Integrated File System APIs 523

unsigned int follow_sym;

 int rc;

 int done = 0;

 unsigned int attrSize;

 Qp0l_Attr_Header_t *attrPtr;

 /**/

 /* Start of executable code */

 /**/

 /**/

 /* Initialize Set Attributes Parameters */

 /**/

 follow_sym = QP0L_FOLLOW_SYMLNK;

 /**/

 /* Qp0lSetAttr() only sets one attribute at a time. The */

 /* buffer from Qp0lGetAttr may contain more than one */

 /* attribute to set. We may have to call Qp0lSetAttr() */

 /* multiple times. The Next_Attr_Offset value is the key. */

 /* If it is greater than zero, then there is another */

 /* attribute in the buffer. Also, it is important to note */

 /* that the value stored there is the offset from the start */

 /* of the buffer, not the offset from the start of the */

 /* current entry. */

 /**/

 attrPtr = (Qp0l_Attr_Header_t *)Buffer_ptr;

 while(!done)

 {

 attrSize = attrPtr->Attr_Size +

 sizeof(Qp0l_Attr_Header_t); /* Calculate attr size */

 /***/

 /* Call Qp0lSetAttr() to set the attribute */

 /***/

 rc=Qp0lSetAttr(Pathname_ptr,

 (char *)attrPtr,

 attrSize,

 follow_sym);

 if(rc != 0) /* If the function failed */

 done = 1; /* End the loop */

 else if(attrPtr->Next_Attr_Offset > 0) /* If more data */

 attrPtr = (Qp0l_Attr_Header_t *) /* Set attribute */

 (Buffer_ptr + attrPtr->Next_Attr_Offset); /* pointer */

 else /* No more data */

 done = 1; /* End the loop */

 }

 return(rc);

 } /* End SetAttrObject() */

 int main (int argc, char *argv[])

 {

 #define MYPN "FRED"

 #define MYPN2 "FRED2"

 /**/

 /* Local variables */

 /**/

 const char US_const[3] = "US";

 const char Language_const[4] = "ENU";

 const char Path_Name_Del_const[2] = "/";

 typedef struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[sizeof(MYPN)];

 } ;

524 iSeries: UNIX-Type -- Integrated File System APIs

typedef struct pnstruct2

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[sizeof(MYPN2)];

 } ;

 struct pnstruct pns;

 struct pnstruct2 pns2;

 int rc;

 char BufferArea[250];

 unsigned int buffer_size = 250;

 /**/

 /* Start of executable code */

 /**/

 /**/

 /* Initialize Pathname for original object */

 /**/

 memset((void *)&pns, 0, sizeof(struct pnstruct));

 pns.qlg_struct.CCSID = 37;

 memcpy(pns.qlg_struct.Country_ID,US_const,2);

 memcpy(pns.qlg_struct.Language_ID,Language_const,3);;

 pns.qlg_struct.Path_Type = 0;

 pns.qlg_struct.Path_Length = sizeof(MYPN) - 1;

 memcpy(pns.qlg_struct.Path_Name_Delimiter,Path_Name_Del_const,1);

 memcpy(pns.pn,MYPN,sizeof(MYPN));

 /**/

 /* Call GetAttrObject to retrieve attributes from the source */

 /* object. */

 /**/

 rc = GetAttrObject((Qlg_Path_Name_T *)&pns,

 BufferArea,

 buffer_size);

 if (rc == 0) /* If GetAttr succeeded */

 {

 /**/

 /* Initialize Pathname for target object */

 /**/

 memset((void *)&pns2, 0, sizeof(struct pnstruct2));

 pns2.qlg_struct.CCSID = 37;

 memcpy(pns2.qlg_struct.Country_ID,US_const,2);

 memcpy(pns2.qlg_struct.Language_ID,Language_const,3);;

 pns2.qlg_struct.Path_Type = 0;

 pns2.qlg_struct.Path_Length = sizeof(MYPN2)-1;

 memcpy(pns2.qlg_struct.Path_Name_Delimiter,Path_Name_Del_const,1);

 memcpy(pns2.pn,MYPN2,sizeof(MYPN2));

 /**/

 /* Call SetAttrObject to set attributes on the target */

 /* object. */

 /**/

 rc=SetAttrObject((Qlg_Path_Name_T *)&pns2,

 BufferArea,

 buffer_size);

 if (rc != 0)

 {

 rc = errno; /* return errno from SetAttrObject */

 printf("Qp0lSetAttr() for %s failed with %i.\n",pns2.pn,rc);

 }

 } /* end check GetAttrObject rc */

 else /* GetAttrObject failed */

 {

 rc = errno; /* return errno from GetAttrObject */

 printf("Qp0lGetAttr() for %s failed with %s.\n",pns.pn,rc);

Integrated File System APIs 525

}

 return(rc);

 } /* end main */

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

Qp0lUnlink()—Remove Link to File

 Syntax

 #include <Qp0lstdi.h>

 int Qp0lUnlink(Qlg_Path_Name_T *path_name);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes on “open()—Open File” on page 267.

The Qp0lUnlink() function, similar to the unlink() function, removes a directory entry that refers to a

file. Qp0lUnlink()differs from unlink() in that the path_name parameter is a pointer to a

Qlg_Path_Name_T structure instead of a pointer to a character string.

For a discussion of the authorities required, return values, and related information, see

“unlink()—Remove Link to File” on page 624.

Parameters

Path_Name

(Input) The path name of the object to be unlinked. This path name is in the Qlg_Path_Name_T

format. For more information on this structure, see Path Name Format.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “unlink()—Remove Link to File” on page 624—Remove Link to File

v “link()—Create Link to File” on page 210—Create Link to File

v “open()—Open File” on page 267—Open File

v “close()—Close File or Socket Descriptor” on page 46—Close File or Socket Descriptor

v “rmdir()—Remove Directory” on page 585—Remove Directory

Example

See Code disclaimer information for information pertaining to code examples.

The following example removes a link to a file: This program was stored in a source file with CCSID 37,

so the constant string ″newfile″ will be compiled in coded character set identifier (CCSID) 37. Therefore,

the country or region and language specified are United States English, and the CCSID specified is 37.

#include <fcntl.h>

#include <stdio.h>

#include <Qp0lstdi.h>

526 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm
pns.htm
aboutapis.htm#CODEDISCLAIMER

main() {

 const char US_const[3]= "US";

 const char Language_const[4]="ENU";

 const char Path_Name_Del_const[2] = "/";

 struct pnstruct

 {

 Qlg_Path_Name_T qlg_struct;

 char pn[7];

 };

 struct pnstruct pns;

 struct pnstruct *pns_ptr = NULL;

 char fn[]="unlink.file";

 memset((void*)&pns, 0x00, sizeof(struct pnstruct));

 pns.qlg_struct.CCSID = 37;

 memcpy(pns.qlg_struct.Country_ID,US_const,2);

 memcpy(pns.qlg_struct.Language_ID,Language_const,3);;

 pns.qlg_struct.Path_Type = 0;

 pns.qlg_struct.Path_Length = sizeof(fn)-1;

 memcpy(pns.qlg_struct.Path_Name_Delimiter,

 Path_Name_Del_const,1);

 memcpy(pns.pn,fn,sizeof(fn));

 memset((void *)&Attr_types_ptr, 0x00,

 sizeof(struct attrStruct));

 pns_ptr = &pns;

 if (Qp0lUnlink((Qlg_Path_Name_T *)&pns) != 0)

 perror("Qp0lunlink() error");

}

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

Qp0zPipe()—Create Interprocess Channel with Sockets

 Syntax

 #include <spawn.h>

 int Qp0zPipe(int fildes[2]);

 Service Program Name: QP0ZSPWN

 Default Public Authority: *USE

 Threadsafe: Yes

The Qp0zPipe() function creates a data pipe that can be used by two processes. One end of the pipe is

represented by the file descriptor returned in fildes[0]. The other end of the pipe is represented by the file

descriptor returned in fildes[1]. Data that is written to one end of the pipe can be read from the other end

of the pipe in a first-in-first-out basis. Both ends of the pipe are open for reading and writing.

The Qp0zPipe() function is often used with the spawn() function to allow the parent and child processes

to send data to each other.

Integrated File System APIs 527

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

fildes[2]

(Input) An integer array of size 2 that will contain the pipe descriptors.

Authorities

None.

Return Value

 0 Qp0zPipe() was successful.

-1 Qp0zPipe() was not successful. The errno variable is set to indicate the error.

Error Conditions

If Qp0zPipe() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EMFILE]

 Too many open files for this process.

 An attempt was made to open more files than allowed by the value of OPEN_MAX. The value of

OPEN_MAX can be retrieved using the sysconf() function.

 The process has more than OPEN_MAX descriptors already open (see the sysconf() function).

[ENFILE]

 Too many open files in the system.

 A system limit has been reached for the number of files that are allowed to be concurrently open

in the system.

 The entire system has too many other file descriptors already open.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

528 iSeries: UNIX-Type -- Integrated File System APIs

[EOPNOTSUPP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Usage Notes

The OS/400 implementation of the Qp0zPipe()function is based on sockets rather than pipes and,

therefore, uses socket descriptors. There are several differences:

1. After calling the fstat() function using one of the file descriptors returned on a Qp0zPipe() call, when

the st_mode from the stat structure is passed to the S_ISFIFO() macro, the return value indicates

FALSE. When the st_mode from the stat structure is passed to S_ISSOCK(), the return value indicates

TRUE.

2. The file descriptors returned on a Qp0zPipe() call can be used with the send(), recv(), sendto(),

recvfrom(), sendmsg(), and recvmsg() functions.

3.

If this function is called by a thread executing one of the scan-related exit programs (or any of its

created threads), the descriptors that are returned are scan descriptors. See “Integrated File System

Scan on Open Exit Program” on page 666 and “Integrated File System Scan on Close Exit Program”

on page 656 for more information. If a process is spawned, these scan descriptors are not inherited by

the spawned process and therefore cannot be used in that spawned process. Therefore, in this case,

the descriptors returned by Qp0zPipe() function will only work within the same process.

If you want to use the traditional implementation of pipes, in which the descriptors returned are pipe

descriptors instead of socket descriptors, use the pipe() function.

Related Information

v The <spawn.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “fstat()—Get File Information by Descriptor” on page 132—Get File Information by Descriptor

v “pipe()—Create an Interprocess Channel” on page 302—Create an Interprocess Channel

v spawn()—Spawn Process

v socketpair()—Create a Pair of Sockets

v “stat()—Get File Information” on page 592—Get File Information

 API introduced: V4R1

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 529

spawn.htm
socketp.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

qsygetgroups()—Get Supplemental Group IDs

 Syntax

 #include <qsysetid.h>

 int qsygetgroups(int gidsetsize, gid_t grouplist[])

 Service Program Name: QSYSETIDS

 Default Public Authority: *USE

 Threadsafe: No

If the gidsetsize argument is zero, qsygetgroups() returns the number of supplemental group IDs

associated with the calling thread without modifying the array pointed to by the grouplist argument.

Otherwise, qsygetgroups() fills in the array grouplist with the supplementary group IDs of the calling

thread and returns the actual number of group IDs stored. The values of array entries with indexes larger

than or equal to the returned value are undefined.

Parameters

gidsetsize

(Input) The number of elements in the supplied array grouplist.

grouplist

(Output) The supplementary group IDs.

Authorities

No authorization is required.

Return Value

 0 or > 0 qsygetgroups() was successful. If the gidsetsize argument is 0, the number of supplementary group

IDs is returned. If gidsetsize is greater than 0, the array grouplist is filled with the supplementary

group IDs of the calling thread and the return value represents the actual number of group IDs

stored.

-1 qsygetgroups() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If qsygetgroups() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EINVAL]

The gidsetsize argument is not equal to zero and is less than the number of group IDs.

 API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

530 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

qsysetegid()—Set Effective Group ID

 Syntax

 #include <qsysetid.h>

 int qsysetegid(gid_t gid);

 Service Program Name: QSYSETIDS

 Default Public Authority: *USE

 Threadsafe: Yes

If gid is equal to either the real, effective, saved group ID, or one of the groups in the supplemental group

list, qsysetegid() sets the effective group ID to gid.

If gid is not equal to any of the current groups, but the thread has *USE authority to the user profile

associated with the gid, qsysetegid() sets the effective group ID to gid.

Job scoped locks with a lock state of *SHRRD are held on the user profiles associated with the real user

ID, effective user ID, saved user ID, real group ID, effective group ID, saved group ID, and all of the

supplemental groups.

Parameters

gid (Input) Group ID.

 This field must contain one of the following values:

0 There is no effective group ID.

1 to 4294967294

The group ID value for the set operation.

Authorities and Locks

User profile associated with uid authority

*USE authority is required to the user profile associated with gid if gid is not equal to the real,

effective, saved group IDs or one of the groups in the supplemental group list.

User profile associated with uid lock

*SHRRD

Return Value

0 qsysetegid() was successful.

-1 qsysetegid() was not successful. errno is set to indicate the error.

Error Conditions

If qsysetegid() is not successful, errno indicates one of the following errors.

[EAGAIN]

 User profile associated with the gid is locked. Try again.

Integrated File System APIs 531

[EINVAL]

 The value of the gid argument is not valid. Following are possible reasons:

v Out of range.

v Not associated with a user profile.

v

[EDAMAGE]

 The user profile associated with the gid or an internal system object is damaged.

[ENOTSUP]

 Operation not supported. The current effective user profile specifies OWNER(*GRPPRF), but the

group profile associated with this gid is not equal to the user profile’s first group and the user’s

first group is not in the list of supplemental groups.

[EPERM]

 Operation not permitted. Following are possible reasons:

v The thread does not have *USE authority to the user profile associated with the gid and the gid

to be set is not the same as the real, effective, saved group IDs or any of the supplemental

groups.

v gid cannot be set to 0 if there are supplemental groups.

v

[EUNKNOWN]

 An unknown error has occurred. Check the joblog for error messages.

 API introduced: V4R5

 Top | UNIX-Type APIs | APIs by category

qsyseteuid()—Set Effective User ID

 Syntax

 #include <qsysetid.h>

 int qsyseteuid(uid_t uid);

 Service Program Name: QSYSETIDS

 Default Public Authority: *USE

 Threadsafe: Yes

If uid is equal to the real, effective, or saved user ID, qsyseteuid() sets the effective user ID to uid.

If uid is not equal to the real, effective, or saved user ID, but the thread has *USE authority to the user

profile associated with uid, qsyseteuid() sets the effective user ID to uid.

Job scoped locks with a lock state of *SHRRD are held on the user profiles associated with the real user

ID, effective user ID, saved user ID, real group ID, effective group ID, saved group ID, and all of the

supplemental groups.

532 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

uid (Input) User ID.

 This field must contain one of the following values:

0 to 4294967294

The user ID value for the set operation.

Authorities and Locks

User profile associated with uid authority

*USE authority is required to the user profile associated with uid if uid is not equal to the real,

effective or saved user IDs.

User profile associated with uid lock

*SHRRD

Return Value

0 qsyseteuid() was successful.

-1 qsyseteuid() was not successful. errno is set to indicate the error.

Error Conditions

If qsyseteuid() is not successful, errno indicates one of the following errors.

[EAGAIN]

 User profile associated with the uid is locked. Try again.

[EDAMAGE]

 The user profile associated with the uid or an internal system object is damaged.

[EINVAL]

 The value of the uid argument is not valid. Following are possible reasons:

v Out of range.

v Not associated with a user profile.

[ENOTSUP]

 Operation not supported. The user profile associated with this uid specifies OWNER(*GRPPRF),

but the user profile’s first group is not the current effective group, nor is it in the list of

supplemental groups.

[EPERM]

 Operation not permitted. The thread does not have *USE authority to the user profile and the uid

to be set is not the same as the real, effective, or saved user IDs.

[EUNKNOWN]

 An unknown error has occurred. Check the joblog for error messages.

 API introduced: V4R5

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 533

#TOP_OF_PAGE
unix.htm
aplist.htm

qsysetgid()—Set Group ID

 Syntax

 #include <qsysetid.h>

 int qsysetgid(gid_t gid);

 Service Program Name: QSYSETIDS

 Default Public Authority: *USE

 Threadsafe: Yes

If the thread has *ALLOBJ special authority, qsysetgid() sets the real, effective and saved groups to gid.

If the thread does not have *ALLOBJ special authority, but gid is equal to the real, effective or saved

group IDs, the qsysetgid() function sets the effective group ID to gid. The real group and saved group

IDs remain unchanged.

Any supplementary group IDs of the calling thread remain unchanged.

Job scoped locks with a lock state of *SHRRD are held on the user profiles associated with the real user

ID, effective user ID, saved user ID, real group ID, effective group ID, saved group ID, and all of the

supplemental groups.

Parameters

gid (Input) Group ID.

 This field must contain one of the following values:

0 There is no group ID. The effective group ID can be set to 0 only if there are no

supplemental groups.

1 to 4294967294

The group ID value for the set operation.

Authorities and Locks

*ALLOBJ special authority

*ALLOBJ special authority is required if gid is not equal to the real, effective or saved group ID.

User profile associated with gid lock

*SHRRD

Return Value

0 qsysetgid() was successful.

-1 qsysetgid() was not successful. errno is set to indicate the error.

Error Conditions

If qsysetgid() is not successful, errno indicates one of the following errors.

[EAGAIN]

534 iSeries: UNIX-Type -- Integrated File System APIs

User profile associated with the gid is locked. Try again.

[EDAMAGE]

 The user profile associated with the gid or an internal system object is damaged.

[EINVAL]

 The value of the gid argument is not valid. Following are possible reasons:

v Out of range.

v Not associated with a user profile.

[ENOTSUP]

 Operation not supported. The current effective user profile specifies OWNER(*GRPPRF), but the

group profile associated with this gid is not equal to the user profile’s first group and the user’s

first group is not in the list of supplemental groups.

[EPERM]

 Operation not permitted. Following are possible reasons:

v The thread does not have *ALLOBJ special authority and gid is not the same as the real,

effective or saved group ID.

v Tried to set effective group ID to 0 when there are supplemental groups.

[EUNKNOWN]

 An unknown error has occurred. Check the joblog for error messages.

 API introduced: V4R5

 Top | UNIX-Type APIs | APIs by category

qsysetgroups()—Set Supplemental Group IDs

 Syntax

 #include <qsysetid.h>

 int qsysetgroups(int gidsetsize, gid_t grouplist[])

 Service Program Name: QSYSETIDS

 Default Public Authority: *USE

 Threadsafe: No

The qsysetgroups API sets the supplementary group IDs of the calling thread. The qsysetgroups API

cannot set more than (NGROUPS_MAX-1) groups in the group set.

Parameters

gidsetsize

(Input) The number of elements in the supplied array grouplist.

grouplist

(Input) The supplementary group IDs.

Integrated File System APIs 535

#TOP_OF_PAGE
unix.htm
aplist.htm

Authorities and locks

User profile associated with gid Authority

*USE authority is required to the user profile associated with each gid in the group list if the gid

is not equal to the current thread’s real, effective, or saved group IDs or one of the groups in the

current thread’s supplemental group list.

User profile associated with each gid Lock

*SHRRD

Return Value

 0 qsysetgroups() was successful.

-1 qsysetgroups() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If qsysetgroups() is not successful, errno usually indicates one of the following errors. Under some

conditions, errno could indicate an error other than those listed here.

[EAGAIN]

 User profile associated with a gid is locked. Try again.

[EDAMAGE]

 The user profile associated with a gid or an internal system object is damaged.

[EINVAL]

 One of the GID values in the grouplist argument is not valid. Following are possible reasons:

v Out of range.

v Not associated with a user profile.

v gidsetsize too large.

[ENOTSUP]

 Operation not supported. The current effective user profile specifies OWNER(*GRPPRF), but the

user’s first group is not equal to the current effective group profile and the user’s first group is

not in this list of supplemental groups.

[EPERM]

 Operation not permitted. Following are possible reasons:

v The thread does not have *USE authority to the user profile associated with the GID and the

GID to be set is not the same as the real, effective, saved group IDs or any of the supplemental

groups.

v Supplemental groups cannot be set if effective GID is 0.

[EUNKNOWN]

 An unknown error has occurred. Check the joblog for error messages.

 API introduced: V5R2

 Top | UNIX-Type APIs | APIs by category

536 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

qsysetregid()—Set Real and Effective Group IDs

 Syntax

 #include <qsysetids.h>

 int qsysetregid(gid_t rgid, gid_t egid);

 Service Program Name: QSYSETIDS

 Default Public Authority: *USE

 Threadsafe: Yes

The qsysetregid() function is used to set the real and effective group IDs. The real and effective group

IDs may be set to different values in the same call.

A thread with *ALLOBJ special authority can set the real group ID and the effective group ID to any

valid value.

A thread without *ALLOBJ special authority can only set the real group ID to the saved group ID. A

thread without *ALLOBJ special authority can only set the effective group ID to the saved group ID or

the real group ID.

Any supplemental group IDs remain unchanged.

Job scoped locks with a lock state of *SHRRD are held on the user profiles associated with the real user

ID, effective user ID, saved user ID, real group ID, effective group ID, saved group ID, and all of the

supplemental groups.

Parameters

real gid

(Input) Group ID.

 This field must contain one of the following values:

0 There is no real group ID.

1 to 4294967294

The group ID value for the set operation.

4294967295

The real group ID does not change. This value is the same as X’FFFFFFFF’ or -1 in

languages that do not support unsigned integers.

effective gid

(Input) Group ID.

 This field must contain one of the following values:

0 There is no effective group ID.

1 to 4294967294

The group ID value for the set operation.

Integrated File System APIs 537

4294967295

The effective group ID does not change. This value is the same as X’FFFFFFFF’ or -1 in

languages that do not support unsigned integers.

Authorities and Locks

*ALLOBJ special authority

*ALLOBJ special authority is required to change the real group ID if rgid is not equal to the saved

group ID. *ALLOBJ special authority is required to set the effective group ID if the egid is not

equal to the real group ID or the saved group ID.

User profile associated with rgid lock

*SHRRD

User profile associated with egid lock

*SHRRD

Return Value

0 qsysetregid() was successful.

-1 qsysetregid() was not successful. The errno is set to indicate the error.

Error Conditions

If qsysetregid() is not successful, errno indicates one of the following errors.

[EAGAIN]

 User profile associated with the rgid or rgid is locked. Try again.

[EDAMAGE]

 The user profile associated with one of the GIDs or an internal system object is damaged.

[EINVAL]

 The value of the GID argument is not valid. Following are possible reasons:

v Out of range.

v Not associated with a user profile.

[ENOTSUP]

 Operation not supported. The current effective user profile specifies OWNER(*GRPPRF), but the

group profile associated with this gid is not equal to the user profile’s first group and the user’s

first group is not in the list of supplemental groups.

[EPERM]

 Operation not permitted. Following are possible reasons:

v The thread does not have *ALLOBJ special authority and a change other than changing the real

group ID to the saved group ID, or changing the effective group ID to the real group ID or the

saved group ID was requested.

v Tried to set effective group ID to 0 when there are supplemental groups.

[EUNKNOWN]

 An unknown error has occurred. Check the joblog for error messages.

 API introduced: V4R5

 Top | UNIX-Type APIs | APIs by category

538 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

qsysetreuid()—Set Real and Effective User IDs

 Syntax

 int qsysetreuid(uid_t ruid, uid_t euid);

 Service Program Name: QSYSETIDS

 Default Public Authority: *USE

 Threadsafe: Yes

The qsysetreuid() function sets the real and effective user IDs to the values specified by ruid and euid.

A thread with *ALLOBJ special authority can set either ID to any value.

A thread without *ALLOBJ special authority can only set the effective user ID if the euid argument is

equal to the real, effective, or saved user ID.

Job scoped locks with a lock state of *SHRRD are held on the user profiles associated with the real user

ID, effective user ID, saved user ID, real group ID, effective group ID, saved group ID, and all of the

supplemental groups.

Parameters

real uid

(Input) User ID.

 This field must contain one of the following values:

0 to 4294967294

The user ID value for the set operation.

4294967295

The real user ID does not change. This value is the same as X’FFFFFFFF’ or -1 in

languages that do not support unsigned integers.

effective uid

(Input) User ID.

 This field must contain one of the following values:

0 to 4294967294

The user ID value for the set operation.

4294967295

The effective user ID does not change. This value is the same as X’FFFFFFFF’ or -1 in

languages that do not support unsigned integers.

Integrated File System APIs 539

Authorities and Locks

*ALLOBJ special authority

*ALLOBJ special authority is required to change the real user ID. *ALLOBJ special authorty is

required to change the effective user ID if the euid is not equal to the real, effective, or saved user

ID.

User profile associated with euid lock

*SHRRD

User profile associated with ruid lock

*SHRRD

Return Value

0 qsysetreuid() was successful.

-1 qsysetreuid() was not successful. The errno variable is set to indicate the error.

Error Conditions

If qsysetreuid() is not successful, errno indicates one of the following errors.

[EAGAIN]

 User profile associated with ruid or euid is locked. Try again.

[EDAMAGE]

 The user profile associated with ruid or euid or an internal system object is damaged.

[EINVAL]

 The value of the ruid or euid argument is not valid. Following are possible reasons:

v Out of range.

v Not associated with a user profile.

[ENOTSUP]

 Operation not supported. The user profile associated with this uid specifies OWNER(*GRPPRF),

but the user profile’s first group is not the current effective group, nor is it in the list of

supplemental groups.

[EPERM]

 Operation not permitted. The current thread does not have *ALLOBJ special authority, and either

an attempt was made to change the effective user ID to a value other than the real user ID or the

saved set-user-ID or an an attempt was made to change the real user ID.

[EUNKNOWN]

 An unknown error has occurred. Check the joblog for error messages.

 API introduced: V4R5

 Top | UNIX-Type APIs | APIs by category

540 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

qsysetuid()—Set User ID

 Syntax

 #include <qsysetid.h>

 int qsysetuid(uid_t uid);

 Service Program Name: QSYSETIDS

 Default Public Authority: *USE

 Threadsafe: Yes

If the thread has *ALLOBJ special authority, qsysetuid() sets the real, effective, and saved user ID to uid.

If the thread does not have *ALLOBJ special authority, but uid is equal to the real, effective or saved user

ID, qsysetuid() sets the effective user ID to uid. The real and saved user IDs remain unchanged.

Job scoped locks with a lock state of *SHRRD are held on the user profiles associated with the real user

ID, effective user ID, saved user ID, real group ID, effective group ID, saved group ID, and all of the

supplemental groups.

Parameters

uid (Input) User ID.

 This field must contain one of the following values:

0 to 4294967294

The user ID value for the set operation.

Authorities and Locks

*ALLOBJ special authority

*ALLOBJ special authority is required if uid is not equal to the real, effective, or saved user ID.

User profile associated with uid lock

*SHRRD

Return Value

0 qsysetuid() was successful.

-1 qsysetuid() was not successful. errno is set to indicate the error.

Error Conditions

If qsysetuid() is not successful, errno indicates one of the following errors.

[EAGAIN]

 User profile associated with the uid is locked. Try again.

[EDAMAGE]

 The user profile associated with the uid or an internal system object is damaged.

[EINVAL]

Integrated File System APIs 541

The value of the uid is not valid. Following are possible reasons:

v Out of range.

v Not associated with a user profile.

[ENOTSUP]

 Operation not supported. The user profile associated with this uid specifies OWNER(*GRPPRF),

but the user profile’s first group is not the current effective group, nor is it in the list of

supplemental groups.

[EPERM]

 Operation not permitted. The thread does not have *ALLOBJ special authority and uid is not the

same as the real, effective or saved user ID.

[EUNKNOWN]

 An unknown error has occurred. Check the joblog for error messages.

 API introduced: V4R5

 Top | UNIX-Type APIs | APIs by category

542 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Retrieve Network File System Export Entries (QZNFRTVE) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable in bytes

Input Binary(4)

3 Returned records feedback information

Output Char(16)

4 Format name

Input Char(8)

5 Object path name

Input Char(*)

6 Length of object path name in bytes

Input Binary(4)

7 CCSID of object path name given

Input Binary(4)

8 Desired CCSID of the object path
names returned

Input Binary(4)

9 Handle

Input Binary(4)

10 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Retrieve Network File System Export Entries (QZNFRTVE) API returns the list of Network File

System (NFS) export entries for objects currently exported to NFS clients or for objects referenced in the

/etc/exports file.

Authorities and Locks

v The user must have execute (*X) data authority to the /etc directory (if it exists).

v The user must have read (*R) data authority to the /etc/exports file (if it exists).

Note: Adopted authority is not used.

Usage Notes

If none of the required parameters are passed to this API, then all of the entries that are currently

exported will be returned to the joblog by messages (CPIB41A). If there are no entries currently exported,

then message CPIB41B will be returned.

Integrated File System APIs 543

Required Parameter Group

The following parameters are required.

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. The API returns only data that the

area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable provided. The length of the receiver variable parameter may

be specified up to the size of the receiver variable area specified by the user program.

 No partial entries will be returned. If the length of the receiver variable is less than what is

required by the format selected, then an error is returned (CPFB419) and the size required will be

indicated in the feedback structure.

Returned records feedback information

OUTPUT; CHAR(16)

 Information about the entries that are returned in the receiver variable.

 For a detailed description of this format, see “Format of Returned Records Feedback Information”

on page 547.

Format name

INPUT; CHAR(8)

 The name of the format that is used to retrieve NFS export entries.

 You can specify one of the following formats:

EXPE0100

Returns information about export entries that are currently exported. These are sometimes

called temporary exports. For a detailed description of this format, see “EXPE0100 and

EXPE0200 format” on page 545.

EXPE0200

Returns information about export entries that are in the /etc/exports file. These are

sometimes called permanent exports. For a detailed description of this format, see

“EXPE0100 and EXPE0200 format” on page 545.

Object path name

INPUT; CHAR(*)

 The object path name at which to start listing NFS export entries. Possible values follow:

*FIRST

NFS export entries are returned starting with the first object path name in the NFS export

entry list.

*HANDLE

NFS export entries are returned starting with the object path name that corresponds to

the specified handle.

 When the receiver variable is not large enough to hold all of the entries in the NFS export

entry list, the API returns a non-zero handle in the returned records feedback information

parameter. This handle can be used on a subsequent call to the API to continue retrieving

NFS export entries with the next object path name in the NFS export entry list.

544 iSeries: UNIX-Type -- Integrated File System APIs

There is no implied order to the export entries that are returned. While no sorting or

sequencing has been done on the returned entries, a complete list will eventually be

returned if the *HANDLE option is used.

Object path name

The NFS export entry for the specified object path name is returned.

Length of object path name

INPUT; BINARY(4)

 The length of the object path name in bytes. If one of the special values is given for the object

path name, then the length should be given for that special value.

CCSID of object path name given

INPUT; BINARY(4)

 The CCSID of the object path name given as an input parameter. Possible values follow:

0 The current Default Job CCSID should be used.

value A valid CCSID number.

Desired CCSID of object the path names returned.

INPUT; BINARY(4)

 The Desired CCSID of the object path names returned. The output structure will contain the

actual CCSID of the returned object path names. This will match the Desired CCSID given as

input, if possible. Possible values follow:

0 The current Default Job CCSID should be used.

value A valid CCSID number.

Handle of starting object path name

INPUT; BINARY(4)

 The handle returned from a previous call to the QZNFRTVE API.

 This parameter should be 0 if *HANDLE was NOT specified for the object path name parameter.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Receiver Variable Description

The following table describes the order and format of the data returned in the receiver variable. For a

detailed description of each field, see “Field Descriptions” on page 547.

EXPE0100 and EXPE0200 format

This structure is used to return NFS export information for a single object path name for both the

EXPE0100 and the EXPE0200 formats.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of entry

Integrated File System APIs 545

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Offset

Type Field Dec Hex

4 4 BINARY(4) Displacement to object path name

8 8 BINARY(4) Length of object path name

12 C BINARY(4) CCSID of object path name

16 10 BINARY(4) Read-only flag

20 14 BINARY(4) NOSUID flag

24 18 BINARY(4) Displacement to read-write host names

28 1C BINARY(4) Number of read-write host names

32 20 BINARY(4) Displacement to root host names

36 24 BINARY(4) Number of root host names

40 28 BINARY(4) Displacement to access host names

44 2C BINARY(4) Number of access host names

48 30 BINARY(4) Displacement to host options

52 34 BINARY(4) Number of host options

56 38 BINARY(4) Anonymous user ID

60 3C CHAR(10) Anonymous User Profile

* * CHAR(*) Object path name

These fields repeat for

each host name in the

read-write access list.

BINARY(4) Length of host name entry

BINARY(4) Length of host name

CHAR(*) Host name

These fields repeat for

each host name in the

root access list.

BINARY(4) Length of host name entry

BINARY(4) Length of host name

CHAR(*) Host name

These fields repeat for

each host name in the

access list.

BINARY(4) Length of host name entry

BINARY(4) Length of host name

CHAR(*) Host name

These fields repeat for

each host name in the

host options list.

BINARY(4) Length of host name options entry

BINARY(4) Network data file CCSID

BINARY(4) Network path name CCSID

BINARY(4) Write mode flag

BINARY(4) Length of host name

CHAR(*) Host name

Returned Records Feedback Information Description

The following table describes the order and format of the data returned in the returned records feedback

information parameter. For a detailed description of each field, see “Field Descriptions” on page 547.

546 iSeries: UNIX-Type -- Integrated File System APIs

Format of Returned Records Feedback Information

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

8 8 BINARY(4) Number of NFS export entries

12 C BINARY(4) Handle

Field Descriptions

Anonymous User ID. The user ID used as the effective user ID for requests from unknown users. Hex

value 0xFFFFFFFF (a value of -1 if this were a signed integer) indicates requests from unknown users are

not allowed.

Anonymous User Profile. This is the OS/400 User Profile name that is associated with the Anonymous

User ID returned. If the Anonymous User ID has the special value of hex value 0xFFFFFFFF (a value of

-1 if this were a signed integer), then the Anonymous User Profile will be set to the special value of

*NONE.

Bytes available. The number of bytes of data available to be returned to the user in the receiver variable.

If all data is returned, bytes available is the same as the number of bytes returned. If the receiver variable

was not large enough to contain all of the data, this value is estimated based on the total number of

entries in the NFS export entry list that could be returned.

Bytes returned. The number of bytes of data returned to the user in the receiver variable.

CCSID of object path name. The CCSID of the object path name.

Object path name. The path name of the object for which export information is to be returned.

Displacement to access host names. The offset (in bytes) from the beginning of the NFS export entry to

the host names in the access list.

Displacement to host options. The offset (in bytes) from the beginning of the NFS export entry to the

host options list.

Displacement to object path name. The offset (in bytes) from the beginning of the NFS export entry to

the object path name.

Displacement to read-write host names. The offset (in bytes) from the beginning of the NFS export entry

to the host names in the read-write access list.

Displacement to root host names. The offset (in bytes) from the beginning of the NFS export entry to the

host names in the root access list.

Handle. The handle to be used on a subsequent call to the API to continue retrieving NFS export entries

with the next object path name in the NFS export entry list. 0 indicates all remaining NFS export entries

have been returned.

Host name. The host name.

Integrated File System APIs 547

Length of entry. The length (in bytes) of the current NFS export entry. The length can be used to access

the next entry.

Length of host name. The length (in bytes) of the host name.

Length of host name entry. The length (in bytes) of this host name entry.

Length of host name options entry. The length (in bytes) of this host name options entry.

Length of object path name. The length (in bytes) of the object path name.

Network data file CCSID. The CCSID used for data of the files sent to and received from the specified

host name.

Network path name CCSID. The CCSID used for path name components of the files sent to and received

from the specified host name.

NOSUID flag. Whether an attempt by the client to enable bits other than the permission bits will be

ignored. Possible values follow:

0 An attempt to set bits other than the permission bits will be carried out.

1 An attempt to set bits other than the permission bits will be ignored.

 Number of access host names. The number of host names in the access list.

Number of host options. The number of entries in the host options list.

Number of NFS export entries. The number of complete entries returned in the list of NFS export

entries. A value of zero is returned if the list is empty relative to the requested starting position.

Number of read-write host names. The number of host names in the read-write access list.

Number of root host names. The number of host names in the root access list.

Read-only flag. Whether the object is exported allowing only read access. Possible values follow:

0 The object is exported allowing read-write access for all client hosts that are not specifically

indicated to have read-only access.

1 The object is exported allowing read-only access for all client hosts that are not specifically

indicated to have read-write access.

 Write mode flag. Whether write requests are handled synchronously or asynchronously. Synchronously

means that data will be written to disk immediately. Asynchronously does not guarantee that data is

written to disk immediately, and can be used to improve server performance. Possible values follow:

0 Write requests are performed synchronously.

1 Write requests are performed asynchronously.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

548 iSeries: UNIX-Type -- Integrated File System APIs

Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

read()—Read from Descriptor

 Syntax

 #include <unistd.h>

 ssize_t read(int file_descriptor,

 void *buf, size_t nbyte);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 554.

From the file or socket indicated by file_descriptor, the read() function reads nbyte bytes of input into the

memory area indicated by buf. If nbyte is zero, read() returns a value of zero without attempting any

other action.

If file_descriptor refers to a ″regular file″ (a stream file that can support positioning the file offset) or any

other type of file on which the job can do an lseek() operation, read() begins reading at the file offset

associated with file_descriptor. A successful read() changes the file offset by the number of bytes read.

If read() is successful and nbyte is greater than zero, the access time for the file is updated.

read() is not supported for directories.

If file_descriptor refers to a descriptor obtained using the open() function with O_TEXTDATA specified, the

data is read from the file assuming it is in textual form. The maximum number of bytes on a single read

that can be supported for text data is 2,147,483,408 (2GB - 240) bytes. The data is converted from the code

page of the file to the code page of the application, job, or system as follows:

v When reading from a true stream file, any line-formatting characters (such as carriage return, tab, and

end-of-file) are just converted from one code page to another.

v When reading from record files that are being used as stream files, end-of-line characters are added to

the end of the data in each record.

There are some important considerations when the file is open for text conversion and the CCSIDs

involved are not strictly single-byte:

v The read() will return the exact number of bytes requested. For some CCSIDs, this may mean that

partial characters are returned at the end of the user buffer. In this case, the remainder of the character

has been read from the file and internally buffered. The next consecutive read() will begin with the

remainder of the partial character. However, if an lseek() is performed, the buffered data will be

discarded. See “lseek()—Set File Read/Write Offset” on page 217 for more information.

v Because of the above consideration and because of the possible expansion or contraction of converted

data, applications using the O_CCSID flag should avoid assumptions about data size and the current

Integrated File System APIs 549

#TOP_OF_PAGE
unix.htm
aplist.htm

file offset. For example, a file might have a physical size of 100 bytes, but after an application has read

100 bytes from the file, the current file offset may be 50. In order to read the whole file, the application

might have to read 200 bytes or more, depending on the CCSIDs involved.

If O_TEXTDATA was not specified on the open(), the data is read from the file without conversion. The

application is responsible for handling the data.

In the QSYS.LIB and independent ASP QSYS.LIB file systems, most end-of-file characters are symbolic;

that is, they are stored outside the member. When reading:

v If O_TEXTDATA is specified, both symbolic and nonsymbolic end-of-file characters can be seen.

v If O_TEXTDATA is not specified (binary mode), only nonsymbolic end-of-file characters can be seen.

See the Usage Notes for “write()—Write to Descriptor” on page 639.

When file_descriptor refers to a socket, the read() function reads from the socket identified by the socket

descriptor.

When attempting to read from an empty pipe or FIFO:

v If no job has the pipe or FIFO open for writing, read() return 0 to indicate end-of-file.

v If some job has the pipe or FIFO open for writing and O_NONBLOCK was specified, read() will fail

and errno will be set to [EAGAIN].

v If some job has the pipe or FIFO open for writing and O_NONBLOCK was not specified, read() will

block the calling thread until some data is written or until the pipe or FIFO is closed by all jobs that

had the pipe or FIFO open for writing.

Parameters

file_descriptor

(Input) The descriptor to be read.

buf (Output) A pointer to a buffer in which the bytes read are placed.

nbyte (Input) The number of bytes to be read.

Authorities

No authorization is required.

Return Value

value read() was successful. The value returned is the number of bytes actually read and placed in buf.

This number is less than or equal to nbyte. It is less than nbyte only if read() reached the end of

the file before reading the requested number of bytes. If read() is reading a regular file and

encounters a part of the file that has not been written (but before the end of the file), read()

places bytes containing zeros into buf in place of the unwritten bytes.

-1 read() was not successful. The errno global variable is set to indicate the error. If the value of

nbyte is greater than SSIZE_MAX, read() sets errno to [EINVAL].

Error Conditions

If read() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

550 iSeries: UNIX-Type -- Integrated File System APIs

The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

 This may occur if file_descriptor refers to a socket and the socket is using a connection-oriented

transport service, and a connect() was previously completed. The thread, however, does not have

the appropriate privileges to the objects that were needed to establish a connection. For example,

the connect() required the use of an APPC device that the thread was not authorized to.

[EAGAIN]

 Operation would have caused the process to be suspended.

 If file_descriptor refers to a pipe or FIFO that has its O_NONBLOCK flag set, this error occurs if

the read() would have blocked the calling thread.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file. Or, this read request was made to a file that was

only open for writing.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

Integrated File System APIs 551

A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 This may occur if file_descriptor refers to a socket that is using a connectionless transport service,

is not a socket of type SOCK_RAW, and is not bound to an address.

 The file resides in a file system that does not support large files, and the starting offset of the file

exceeds 2GB minus 2 bytes.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENXIO]

 No such device or address.

[EOVERFLOW]

 Object is too large to process.

 The object’s data size exceeds the limit allowed by this function.

 The file is a regular file, nbyte is greater than 0, the starting offset is before the end-of-file, and the

starting offset is greater than or equal to 2GB minus 2 bytes.

[ERESTART]

 A system call was interrupted and may be restarted.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

552 iSeries: UNIX-Type -- Integrated File System APIs

When the descriptor refers to a socket, errno could indicate one of the following errors:

[ECONNABORTED]

 Connection ended abnormally.

 This error code indicates that the transport provider ended the connection abnormally because of

one of the following:

v The retransmission limit has been reached for data that was being sent on the socket.

v A protocol error was detected.

v

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EINTR]

 Interrupted function call.

[ENOTCONN]

 Requested operation requires a connection.

 This error code is returned only on sockets that use a connection-oriented transport service.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

 A non-blocking connect() was previously completed that resulted in the connection timing out.

No connection is established. This error code is returned only on sockets that use a

connection-oriented transport service.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EWOULDBLOCK]

 Operation would have caused the process to be suspended.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

Integrated File System APIs 553

A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

554 iSeries: UNIX-Type -- Integrated File System APIs

This function will fail with error code [ENOTSAFE] if the object on which this function is operation is

a save file and multiple threads exist in the job.

This function will fail with error code [EIO] if the file specified is a save file and the file does not

contain complete save file data.

The file access time for a database member is updated using the normal rules that apply to database

files. At most, the access time is updated once per day.

If you previously used the integrated file system interface to manipulate a member that contains an

end-of-file character, you should avoid using other interfaces (such as the Source Entry Utility or

database reads and writes) to manipulate the member. If you use other interfaces after using the

integrated file system interface, the end-of-file information will be lost.

3. QOPT File System Differences

The file access time is not updated on a read() operation.

When reading from files on volumes formatted in Universal Disk Format (UDF), byte locks on the

range being read are ignored.

4. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. Once a file is open, subsequent requests to perform operations on the file can

fail because file attributes are checked at the server on each request. If permissions on the file are

made more restrictive at the server or the file is unlinked or made unavailable by the server for

another client, your operation on an open file descriptor will fail when the local Network File System

receives these updates. The local Network File System also impacts operations that retrieve file

attributes. Recent changes at the server may not be available at your client yet, and old values may be

returned from operations. (Several options on the Add Mounted File System (ADDMFS) command

determine the time between refresh operations of local data.)

Reading and writing to files with the Network File System relies on byte-range locking to guarantee

data integrity. To prevent data inconsistency, use the fcntl() API to get and release these locks.

5. QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If a larger buffer is passed, the error EINVAL will be

received.

6. For sockets that use a connection-oriented transport service (for example, sockets with a type of

SOCK_STREAM), a return value of zero indicates one of the following:

v The partner program has issued a close() for the socket.

v The partner program has issued a shutdown() to disable writing to the socket.

v The connection is broken and the error was returned on a previously issued socket function.

v A shutdown() to disable reading was previously done on the socket.
7. The following applies to sockets that use a connectionless transport service (for example, a socket

with a type of SOCK_DGRAM).

v If a connect() has been issued previously, then data can be received only from the address specified

in the previous connect().

v The address from which data is received is discarded, since the read() has no address parameter.

v The entire message must be read in a single read operation. If the size of the message is too large to

fit in the user supplied buffer, the remaining bytes of the message are discarded.

v A returned value of zero indicates one of the following:

– The partner program has sent a NULL message (a datagram with no user data).

– A shutdown() to disable reading was previously done on the socket.

– The buffer length specified was zero.
8. For file systems that do not support large files, read() will return [EINVAL] if the starting offset

exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do

support large files, read() will return [EOVERFLOW] if the starting offset exceeds 2GB minus 2 bytes

and the file was not opened for large file access.

Integrated File System APIs 555

9. Using this function successfully on the /dev/null or /dev/zero character special file results in a

return value of zero. In addition, the access time for the file is updated.

Related Information

v The <limits.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “dup()—Duplicate Open File Descriptor” on page 76—Duplicate Open File Descriptor

v “dup2()—Duplicate Open File Descriptor to Another Descriptor” on page 79—Duplicate Open File

Descriptor to Another Descriptor

v

“fclear()—Write (Binary Zeros) to Descriptor” on page 108—Write (Binary Zeros) to Descriptor

v “fclear64()—-Write (Binary Zeros) to Descriptor (Large File Enabled)” on page 114—Write (Binary

Zeros) to Descriptor (Large File Enabled)

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 193—Perform I/O Control Request

v “lseek()—Set File Read/Write Offset” on page 217—Set File Read/Write Offset

v “open()—Open File” on page 267—Open File

v “pread()—Read from Descriptor with Offset” on page 305—Read from Descriptor with Offset

v “pread64()—Read from Descriptor with Offset (large file enabled)” on page 311—Read from Descriptor

with Offset (large file enabled)

v “pwrite()—Write to Descriptor with Offset” on page 313—Write to Descriptor with Offset

v “pwrite64()—Write to Descriptor with Offset (large file enabled)” on page 320—Write to Descriptor

with Offset (large file enabled)

v “readv()—Read from Descriptor Using Multiple Buffers” on page 575—Read from Descriptor Using

Multiple Buffers

v recv()—Receive Data

v recvfrom()—Receive Data

v recvmsg()—Receive Data or Descriptors or Both

v “write()—Write to Descriptor” on page 639—Write to Descriptor

v “writev()—Write to Descriptor Using Multiple Buffers” on page 649—Write to Descriptor Using

Multiple Buffers

Example

See Code disclaimer information for information pertaining to code examples.

The following example opens a file and reads input:

#include <stdio.h>

#include <unistd.h>

#include <fcntl.h>

main() {

 int ret, file_descriptor, rc;

 char buf[]="Test text";

 if ((file_descriptor = creat("test.output", S_IWUSR))!= 0)

 perror("creat() error");

 else {

 if (-1==(rc=write(file_descriptor, buf, sizof(buf)-1)))

 perror("write() error");

 if (close(file_descriptor)!= 0)

 perror("close() error");

 }

556 iSeries: UNIX-Type -- Integrated File System APIs

recv.htm
recvfr.htm
recvms.htm
aboutapis.htm#CODEDISCLAIMER

if ((file_descriptor = open("test.output", O_RDONLY)) < 0)

 perror("open() error");

 else {

 ret = read(file_descriptor, buf, sizeof(buf)-1));

 buf[ret] = 0x00;

 printf("block read: \n<%s>\", buf);

 if (close(file_descriptor)!= 0)

 perror("close() error");

 }

 if (unlink("test.output")!= 0)

 perror("unlink() error");

}

Output:

block read:

<Test text>

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

readdir()—Read Directory Entry

 Syntax

 #include <sys/types.h>

 #include <dirent.h>

 struct dirent *readdir(DIR *dirp);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: No; see “Usage Notes” on page 561.

The readdir() function returns a pointer to a dirent structure describing the next directory entry in the

directory stream associated with dirp.

A call to readdir() overwrites data produced by a previous call to readdir() on the same directory stream.

Calls for different directory streams do not overwrite the data of each other.

If the call to readdir() actually reads the directory, the access time of the directory is updated.

readdir() performs translation if necessary to convert the directory entry name into the CCSID (coded

character set identifier) of the job at the time of the call to opendir().

Parameters

dirp (Input) A pointer to a DIR that refers to theopen directory stream to be read. This pointer is

returned by opendir() (see “opendir()—Open Directory” on page 288—Open Directory).

 See “QlgReaddir()—Read Directory Entry (using NLS-enabled path name)” on page 370—Read

Directory Entry for a description and an example of supplying the dirp in any CCSID, using a

dirent_lg structure.

Integrated File System APIs 557

#TOP_OF_PAGE
unix.htm
aplist.htm

A dirent structure has the following contents:

 char d_reserved1[16] Reserved.

unsigned int d_fileno_gen_id The generation ID associated with the file ID.

ino_t d_fileno The file ID of the file. This number uniquely identifies the object

within a file system.

unsigned int d_reclen The length of the directory entry in bytes.

int d_reserved3 Reserved.

char d_reserved4[6] Reserved.

char d_reserved5[2] Reserved.

qlg_nls_t d_nlsinfo National language information about d_name. The following fields

are defined:

int ccsid

CCSID of the characters in the d_name field.

char country_id[2]

Country or region identifier associated with the d_name

field.

char language_id[3]

Language identifier associated with the d_name field.

char nls_reserved[3]

Reserved.

unsigned int d_namelen The length of the name in bytes, excluding the null terminator.

char d_name[640] A string that gives the name of a file in the directory. This string

ends in a terminating null, and has a maximum length of

{NAME_MAX} bytes, not including the terminating NULL (see

“pathconf()—Get Configurable Path Name Variables” on page 295).

Authorities

No authorization is required. Authorization is verified during opendir().

Note: When reading the contents of the /QSYS.LIB directory, user profile (*USRPRF) objects to which

the caller does not have any authority (i.e., *EXCLUDE) will not be returned from readdir().

Return Value

value readdir() was successful. The value returned is a pointer to a dirent structure describing the next

directory entry in the directory stream.

NULL pointer

One of the following has occurred:

v readdir() reached the end of the directory stream. The errno global variable is not changed.

v readdir() was not successful. The errno is set.

Error Conditions

If readdir() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

558 iSeries: UNIX-Type -- Integrated File System APIs

The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ENOSPC]

Integrated File System APIs 559

No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

560 iSeries: UNIX-Type -- Integrated File System APIs

Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. The readdir_r() API should be used to read a directory when running in a multithreaded job.

2. Save the data from readdir(), if required, before calling closedir(), because closedir() frees the data.

3. If the dirp argument passed to readdir() does not refer to an open directory stream, readdir() returns

the [EBADF] error.

4. readdir() buffers multiple directory entries to improve performance. This means the directory is not

actually read on each call to readdir(). As a result, files that are added to the directory after opendir()

or rewinddir() may not be returned on calls to readdir(), and files that are removed may still be

returned on calls to readdir().

5. readdir() also returns directory entries for dot (.) and dot-dot (..) subdirectories.

6. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

Calls to readdir() that update the access time of the directory use the normal rules that apply to

libraries and database files. At most, the access time is updated once per day.

7. QDLS File System Differences

The access time of the directory is updated on opendir(). The access time is not affected by readdir().

When objects in QDLS are accessed, the country or region ID and language ID of the directory entry

name are always set to the country or region ID and language ID of the system.

When a readdir() operation specifies the /QDLS directory, the user must have *USE authority to each

child object of the /QDLS directory (that is, *USE authority to each object immediately below QDLS

in the directory hierarchy). A directory entry is returned only for those objects for which the user has

*USE authority. If the readdir() operation specifies a directory below QDLS, a directory entry is

returned for all objects, even if the user does not have *USE authority for some of the objects.

8. QOPT File System Differences

The access time of the directory is not updated on a readdir() operation.

Integrated File System APIs 561

Related Information

v The <sys/types.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <dirent.h> file see “Header Files for UNIX-Type Functions” on page 680)

v “opendir()—Open Directory” on page 288—Open Directory

v “QlgReaddir()—Read Directory Entry (using NLS-enabled path name)” on page 370—Read Directory

Entry

v “rewinddir()—Reset Directory Stream to Beginning” on page 583—Reset Directory Stream to Beginning

v “closedir()—Close Directory” on page 52—Close Directory

v “pathconf()—Get Configurable Path Name Variables” on page 295-Get Configurable Path Name

Variables

Example

See Code disclaimer information for information pertaining to code examples.

The following example reads the contents of a root directory:

#include <sys/types.h>

#include <dirent.h>

#include <errno.h>

#include <stdio.h>

main() {

 DIR *dir;

 struct dirent *entry;

 if ((dir = opendir("/")) == NULL)

 perror("opendir() error");

 else {

 puts("contents of root:");

 while ((entry = readdir(dir)) != NULL)

 printf(" %s\n", entry->d_name);

 closedir(dir);

 }

}

Output:

contents of root:

 .

 ..

 QSYS.LIB

 QDLS

 QOpenSys

 QOPT

 home

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

562 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

readdir_r()—Read Directory Entry

 Syntax

 #include <sys/types.h>

 #include <dirent.h>

 int readdir_r(DIR *dirp, struct dirent *entry,

 struct dirent **result);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 567.

The readdir_r() function initializes the dirent structure that is referenced by entry to represent the next

directory entry in the directory stream that is associated with dirp. The readdir_r() function then stores a

pointer to the entry structure at the location referenced by result.

The storage pointed to by entry must be large enough for a dirent structure.

If the call to readdir_r() actually reads the directory, the access time of the directory is updated.

The readdir_r() function performs translation, if necessary, to convert the directory entry name into the

coded character set identifier (CCSID) of the job at the time of the call to opendir().

Parameters

dirp (Input) A pointer to a DIR that refers to the open directory stream to be read. This pointer is

returned by opendir() (see “opendir()—Open Directory” on page 288—Open Directory).

 See “QlgReaddir()—Read Directory Entry (using NLS-enabled path name)” on page 370—Read

Directory Entry for a description and an example of supplying the dirp in any CCSID.

entry (Output) A pointer to a dirent structure in which the directory entry is to be placed.

result (Output) A pointer to a pointer to a dirent structure. Upon successfully reading a directory entry,

this dirent pointer is set to the same value as entry. Upon reaching the end of the directory

stream, this pointer will be set to NULL.

 A dirent structure has the following contents:

 char d_reserved1[16] Reserved.

unsigned int d_fileno_gen_id The generation ID associated with the file ID.

ino_t d_fileno The file ID of the file. This number uniquely identifies the object

within a file system.

unsigned int d_reclen The length of the directory entry in bytes.

int d_reserved3 Reserved.

char d_reserved4[6] Reserved.

char d_reserved5[2] Reserved.

Integrated File System APIs 563

qlg_nls_t d_nlsinfo National language information about d_name. The following fields

are defined:

int ccsid

CCSID of the characters in the d_name field.

char country_id[2]

Country or region identifier that is associated with the

d_name field.

char language_id[3]

Language identifier that is associated with the d_name

field.

char nls_reserved[3]

Reserved.

unsigned int d_namelen The length of the name in bytes, excluding the null terminator.

char d_name[640] A string that gives the name of a file in the directory. This string

ends in a terminating null, and has a maximum length of

{NAME_MAX} bytes, not including the terminating NULL (see

“pathconf()—Get Configurable Path Name Variables” on page 295).

Authorities

No authorization is required. Authorization is verified during opendir().

Return Value

0 readdir_r() was successful. The result parameter points to one of the following:

v A pointer to a dirent structure that describes the next directory entry in the directory stream.

This will be the same value as the entry parameter.

v A NULL pointer. readdir_r() reached the end of the directory stream. The errno global variable

is not changed.

error code

readdir_r() was not successful. This value is set to the same value as the errno global variable.

Error Conditions

If readdir_r() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

564 iSeries: UNIX-Type -- Integrated File System APIs

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

Integrated File System APIs 565

To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

566 iSeries: UNIX-Type -- Integrated File System APIs

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. readdir_r() is threadsafe only when directed to a directory in a threadsafe file system.

3. If the dirp argument that is passed to readdir_r() does not refer to an open directory stream,

readdir_r() returns the [EBADF] error.

4. readdir_r() caches multiple directory entries to improve performance. This means the directory is not

actually read on each call to readdir_r(). As a result, files that are added to the directory after

opendir() or rewinddir() may not be returned on calls to readdir_r(), and files that are removed may

still be returned on calls to readdir_r().

5. readdir_r() also returns directory entries for dot (.) and dot-dot (..) subdirectories.

6. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

Calls to readdir_r() that update the access time of the directory use the normal rules that apply to

libraries and database files. At most, the access time is updated once per day.

7. QDLS File System Differences

The access time of the directory is updated on opendir(). The access time is not affected by

readdir_r().

When objects in QDLS are accessed, the country or region ID and language ID of the directory entry

name are always set to the country or region ID and language ID of the system.

When a readdir_r() operation specifies the /QDLS directory, the user must have *USE authority to

each object in the /QDLS directory (that is, *USE authority to each object immediately below QDLS in

the directory hierarchy). A directory entry is returned only for those objects for which the user has

*USE authority. If the readdir_r() operation specifies a directory below QDLS, a directory entry is

returned for all objects, even if the user does not have *USE authority for some of the objects.

8. QOPT File System Differences

The access time of the directory is not updated on a readdir_r() operation.

Integrated File System APIs 567

Related Information

v The <sys/types.h> file (see “Header Files for UNIX-Type Functions” on page 680) >

v The <dirent.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “opendir()—Open Directory” on page 288—Open Directory

v “QlgReaddir()—Read Directory Entry (using NLS-enabled path name)” on page 370—Read Directory

Entry

v “readdir_r_ts64()—Read Directory Entry” on page 569—Read Directory Entry

v “rewinddir()—Reset Directory Stream to Beginning” on page 583—Reset Directory Stream to Beginning

v “closedir()—Close Directory” on page 52—Close Directory

v “pathconf()—Get Configurable Path Name Variables” on page 295—Get Configurable Path Name

Variables

Example

See Code disclaimer information for information pertaining to code examples.

The following example reads the contents of a root directory:

#include <sys/types.h>

#include <dirent.h>

#include <errno.h>

#include <stdio.h>

main() {

 int return_code;

 DIR *dir;

 struct dirent entry;

 struct dirent *result;

 if ((dir = opendir("/")) == NULL)

 perror("opendir() error");

 else {

 puts("contents of root:");

 for (return_code = readdir_r(dir, &entry, &result);

 result != NULL && return_code == 0;

 return_code = readdir_r(dir, &entry, &result))

 printf(" %s\n", entry.d_name);

 if (return_code != 0)

 perror("readdir_r() error");

 closedir(dir);

 }

}

Output:

contents of root:

 .

 ..

 QSYS.LIB

 QDLS

 QOpenSys

 QOPT

 home

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

568 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

readdir_r_ts64()—Read Directory Entry

 Syntax

 #include <sys/types.h>

 #include <dirent.h>

 int readdir_r_ts64(DIR * __ptr64 dirp,

 struct dirent * __ptr64 entry,

 struct dirent * __ptr64 * __ptr64 result);

 Service Program Name: QP0LLIBTS

 Default Public Authority: *USE

 Threadsafe: Conditional; see Usage Notes for “readdir_r()—Read Directory Entry” on page 563.

The readdir_r_ts64() function initializes the dirent structure that is referenced by entry to represent the

next directory entry in the directory stream that is associated with dirp. readdir_r_ts64() differs from

readdir_r() in that it accepts 8-byte process local pointers.

For a discussion of the parameters, authorities required, return values, related information, usage notes,

and an example for the readdir_r() API, see “readdir_r()—Read Directory Entry” on page 563.

API introduced: V5R1

 Top | UNIX-Type APIs | APIs by category

readlink()—Read Value of Symbolic Link

 Syntax

 #include <unistd.h>

 int readlink(const char *path, char *buf, size_t bufsiz);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 574.

The readlink() function places the contents of the symbolic link path in the buffer buf. The size of the

buffer is set by bufsiz. The contents of the returned buffer do not include a terminating NULL. When

bufsiz is 0, the number of bytes contained in the symbolic link is returned and the buffer is unchanged.

If the buffer is too small to contain the contents of the symbolic link, the contents are truncated to the

size of the buffer (bufsiz).

A successful readlink(), where bufsiz is greater than zero, sets the access time of the symbolic link.

Parameters

path (Input) A pointer to the null-terminated path name of the symbolic link.

Integrated File System APIs 569

#TOP_OF_PAGE
unix.htm
aplist.htm

This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgReadlink()—Read Value of Symbolic Link (using NLS-enabled path name)” on page

374—Read Value of Symbolic Link for a description and an example of supplying the path in any

CCSID.

buf (Output) A pointer to the area in which the contents of the link should be stored.

 This parameter will be returned in the CCSID currently in effect for the job. If the CCSID of the

job is 65535, this parameter is assumed to be represented in the default CCSID of the job.

bufsiz (Input) The size of buf in bytes.

Authorities

Note: Adopted authority is not used.

Authorization required for readlink()

Object Referred to

Authority

Required errno

Each directory in the path name preceding the object *X EACCES

Object None None

Return Value

value readlink() was successful.

 When bufsiz is greater than zero, the value returned is the number of bytes placed in the buffer.

When bufsiz is zero, the value returned is the number of bytes contained in the symbolic link. The

buffer is not changed.

 If the return value is equal to bufsiz, the entire contents of the symbolic link may not have been

returned. You can determine the size of the contents of the symbolic link by using either lstat() or

readlink() with a zero value for bufsiz.

-1 readlink() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If readlink() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

570 iSeries: UNIX-Type -- Integrated File System APIs

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The named file is not a symbolic link.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EISDIR]

 Specified target is a directory.

 The path specified named a directory where a file or object name was expected.

Integrated File System APIs 571

The path name given is a directory.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

572 iSeries: UNIX-Type -- Integrated File System APIs

The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

Integrated File System APIs 573

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

–

Network File System

–

QFileSvr.400

2. File System Differences

The following file systems do not support readlink().

v QSYS.LIB

v Independent ASP QSYS.LIB

v QDLS

v QOPT

v QNetWare

v QNTC

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “lstat()—Get File or Link Information” on page 224—Get File or Link Information

v “QlgReadlink()—Read Value of Symbolic Link (using NLS-enabled path name)” on page 374—Read

Value of Symbolic Link

v “stat()—Get File Information” on page 592—Get File Information

v “symlink()—Make Symbolic Link” on page 614—Make Symbolic Link

v “unlink()—Remove Link to File” on page 624—Remove Link to File

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses readlink():

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

574 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

#include <fcntl.h>

main() {

 char fn[]="readlink.file";

 char sl[]="readlink.symlink";

 char buf[30];

 int file_descriptor;

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 close(file_descriptor);

 if (symlink(fn, sl) != 0)

 perror("symlink() error");

 else {

 if (readlink(sl, buf, sizeof(buf)) < 0)

 perror("readlink() error");

 else printf("readlink() returned ’%s’ for ’%s’\n", buf, sl);

 unlink(sl);

 }

 unlink(fn);

 }

}

Output:

readlink() returned ’readlink.file’ for ’readlink.symlink’

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

readv()—Read from Descriptor Using Multiple Buffers

 Syntax

 #include <sys/types.h>

 #include <sys/uio.h>

 int readv(int descriptor,

 struct iovec *io_vector[],

 int vector_length)

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 580.

The readv() function is used to receive data from a file or socket descriptor. readv() provides a way for

data to be stored in several different buffers (scatter/gather I/O).

See “read()—Read from Descriptor” on page 549 for more information related to reading from a

descriptor.

Parameters

descriptor

(Input) The descriptor to be read. The descriptor refers to a file or a socket.

Integrated File System APIs 575

#TOP_OF_PAGE
unix.htm
aplist.htm

io_vector[]

(I/O) The pointer to an array of type struct iovec. struct iovec contains a sequence of pointers to

buffers in which the data to be read is stored. The structure pointed to by the io_vector parameter

is defined in <sys/uio.h>.

 struct iovec {

 void *iov_base;

 size_t iov_len;

 }

iov_base and iov_len are the only fields in iovec used by sockets. iov_base contains the pointer to a

buffer and iov_len contains the buffer length. The rest of the fields are reserved.

vector_length

(Input) The number of entries in io_vector.

Authorities

No authorization is required.

Return Value

readv() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is the number of bytes read.

Error Conditions

If readv() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

 This may occur if file_descriptor refers to a socket and the socket is using a connection-oriented

transport service, and a connect() was previously completed. The thread, however, does not have

the appropriate privileges to the objects that were needed to establish a connection. For example,

the connect() required the use of an APPC device that the thread was not authorized to.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file. Or, this readv request was made to a file that was

only open for writing.

576 iSeries: UNIX-Type -- Integrated File System APIs

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 This may occur if file_descriptor refers to a socket that is using a connectionless transport service,

is not a socket of type SOCK_RAW, and is not bound to an address.

 The file resides in a file system that does not support large files, and the starting offset of the file

exceeds 2 GB minus 2 bytes.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

Integrated File System APIs 577

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[EOVERFLOW]

 Object is too large to process.

 The object’s data size exceeds the limit allowed by this function.

 The file is a regular file, nbyte is greater than 0, the starting offset is before the end-of-file and is

greater than or equal to 2GB minus 2 bytes.

[ERESTART]

 A system call was interrupted and may be restarted.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 When the descriptor refers to a socket, errno could indicate one of the following errors:

[ECONNABORTED]

 Connection ended abnormally.

 This error code indicates that the transport provider ended the connection abnormally because of

one of the following:

v The retransmission limit has been reached for data that was being sent on the socket.

v A protocol error was detected.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EINTR]

 Interrupted function call.

[ENOTCONN]

 Requested operation requires a connection.

 This error code is returned only on sockets that use a connection-oriented transport service.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

 A non-blocking connect() was previously completed that resulted in the connection timing out.

No connection is established. This error code is returned only on sockets that use a

connection-oriented transport service.

[EUNATCH]

578 iSeries: UNIX-Type -- Integrated File System APIs

The protocol required to support the specified address family is not available at this time.

[EWOULDBLOCK]

 Operation would have caused the process to be suspended.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Integrated File System APIs 579

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. The io_vector[] parameter is an array of struct iovec structures. When a readv() is issued, the system

processes the array elements one at a time, starting with io_vector[0]. For each element, iov_len bytes

of received data are placed in storage pointed to by iov_base. Data is placed in storage until all

buffers are full, or until there is no more data to receive. Only the storage pointed to by iov_base is

updated. No change is made to the iov_len fields. To determine the end of the data, the application

program must use the following:

v The function return value (the total number of bytes received).

v The lengths of the buffers pointed to by iov_base.
3. For sockets that use a connection-oriented transport service (for example, sockets with a type of

SOCK_STREAM), a returned value of zero indicates one of the following:

v The partner program has issued a close() for the socket.

v The partner program has issued a shutdown() to disable writing to the socket.

v The connection is broken and the error was returned on a previously issued socket function.

v A shutdown() to disable reading was previously done on the socket.
4. The following applies to sockets that use a connectionless transport service (for example, a socket

with a type of SOCK_DGRAM):

v If a connect() has been issued previously, then data can be received only from the address specified

in the previous connect().

v The address from which data is received is discarded, because the readv() has no address parameter.

v The entire message must be read in a single read operation. If the size of the message is too large to

fit in the user-supplied buffers, the remaining bytes of the message are discarded.

v A returned value of zero indicates one of the following:

– The partner program has sent a NULL message (a datagram with no user data).

– A shutdown() to disable reading was previously done on the socket.

– The buffer length specified by the application was zero.
5. For the file systems that do not support large files, readv() will return [EINVAL] if the starting offset

exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do

support large files, readv() will return [EOVERFLOW] if the starting offset exceeds 2GB minus 2 bytes

and file was not opened for large file access.

580 iSeries: UNIX-Type -- Integrated File System APIs

6. QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If a larger buffer is passed, the error EINVAL will be

received.

7. QOPT File System Differences

When reading from files on volumes formatted in Universal Disk Format (UDF), byte locks on the

range being read are ignored.

8. Using this function successfully on the /dev/null or /dev/zero character special file results in a

return value of 0. In addition, the access time for the file is updated.

Related Information

v The <limits.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “dup()—Duplicate Open File Descriptor” on page 76—Duplicate Open File Descriptor

v “dup2()—Duplicate Open File Descriptor to Another Descriptor” on page 79—Duplicate Open File

Descriptor to Another Descriptor

v

“fclear()—Write (Binary Zeros) to Descriptor” on page 108—Write (Binary Zeros) to Descriptor

v “fclear64()—-Write (Binary Zeros) to Descriptor (Large File Enabled)” on page 114—Write (Binary

Zeros) to Descriptor (Large File Enabled)

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 193—Perform I/O Control Request

v “lseek()—Set File Read/Write Offset” on page 217—Set File Read/Write Offset

v “open()—Open File” on page 267—Open File

v “read()—Read from Descriptor” on page 549—Read from Descriptor

v recv()—Receive Data

v recvfrom()—Receive Data

v recvmsg()—Receive Data or Descriptors or Both

v “write()—Write to Descriptor” on page 639—Write to Descriptor

v “writev()—Write to Descriptor Using Multiple Buffers” on page 649—Write to Descriptor Using

Multiple Buffers

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

rename()—Rename File or Directory

 Syntax

 #include <Qp0lstdi.h>

 int rename(const char *old, const char *new);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 582.

Integrated File System APIs 581

recv.htm
recvfr.htm
recvms.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

The rename() function can be defined to be either Qp0lRenameUnlink() or Qp0lRenameKeep(),

depending upon the definitions of the _POSIX_SOURCE and _POSIX1_SOURCE macros in the

<Qp0lstdi.h> header file:

v When _POSIX_SOURCE or _POSIX1_SOURCE is defined, rename() is defined to be

Qp0lRenameUnlink(). Either rename() or Qp0lRenameUnlink() can be used to rename a file or

directory with the semantics of Qp0lRenameUnlink().

v When _POSIX_SOURCE and _POSIX1_SOURCE are not defined, rename() is defined to be

Qp0lRenameKeep(). Either rename() or Qp0lRenameKeep() can be used to rename a file or directory

with the semantics of Qp0lRenameKeep().

When the <Qp0lstdi.h> header file is not included, rename() operates only on database files in the

QSYS.LIB or independent ASP QSYS.LIB file system, as it did before the introduction of the integrated

file system.

For details on the use of rename(), see the “Qp0lRenameUnlink()—Rename File or Directory, Unlink

″new″ If It Exists” on page 480 and “Qp0lRenameKeep()—Rename File or Directory, Keep ″new″ If It

Exists” on page 471 functions.

Parameters

old (Input) A pointer to the null-terminated path name of the file to be renamed.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

new (Input) A pointer to the null-terminated path name of the new name of the file.

 This parameter is assumed to be represented in the CCSID currently in effect for the job. If the

CCSID of the job is 65535, this parameter is assumed to be represented in the default CCSID of

the job.

 The new file name is assumed to be represented in the language and country or region currently

in effect for the process.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

Related Information

v The <stdio.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <Qp0lstdi.h> file (see “Header Files for UNIX-Type Functions” on page 680)

582 iSeries: UNIX-Type -- Integrated File System APIs

v “pathconf()—Get Configurable Path Name Variables” on page 295—Get Configurable Path Name

Variables

v “Qp0lRenameKeep()—Rename File or Directory, Keep ″new″ If It Exists” on page 471—Rename File or

Directory, Keep ″new″ If It Exists

v “Qp0lRenameUnlink()—Rename File or Directory, Unlink ″new″ If It Exists” on page 480—Rename File

or Directory, Unlink ″new″ If It Exists

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

rewinddir()—Reset Directory Stream to Beginning

 Syntax

 #include <sys/types.h>

 #include <dirent.h>

 void rewinddir(DIR *dirp);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The rewinddir() function ″rewinds″ the position of an open directory stream to the beginning. dirp points

to a DIR associated with an open directory stream.

The next call to readdir() reads the first entry in the directory. If the contents of the directory have

changed since the directory was opened and rewinddir() is called, subsequent calls to readdir() read the

changed contents.

Parameters

dirp (Input) A pointer to a DIR that refers to the open directory stream to be rewound. This pointer is

returned by the opendir() function.

Authorities

No authorization is required. Authorization is verified during opendir().

Return Value

None.

Error Conditions

None.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

Integrated File System APIs 583

#TOP_OF_PAGE
unix.htm
aplist.htm

Message ID Error Message Text

CPF1F05 E Directory handle not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

Usage Notes

1. If the dirp argument passed to rewinddir() does not refer to an open directory, unexpected results

could occur.

2. Files that are added to the directory after opendir() or rewinddir() may not be returned on calls to

readdir().

Related Information

v The <sys/types.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <dirent.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “opendir()—Open Directory” on page 288—Open Directory

v “readdir()—Read Directory Entry” on page 557—Read Directory Entry

v “closedir()—Close Directory” on page 52—Close Directory

Example

See Code disclaimer information for information pertaining to code examples.

The following example produces the contents of a directory by opening it, rewinding it, and closing it:

#include <sys/types.h>

#include <dirent.h>

#include <errno.h>

#include <stdio.h>

main() {

 DIR *dir;

 struct dirent *entry;

 if ((dir = opendir("/")) == NULL)

 perror("opendir() error");

 else {

 puts("contents of root:");

 while ((entry = readdir(dir)) != NULL)

 printf("%s ", entry->d_name);

 rewinddir(dir);

 puts("");

 while ((entry = readdir(dir)) != NULL)

 printf("%s ", entry->d_name);

 closedir(dir);

 puts("");

 }

}

Output:

contents of root:

 . .. QSYS.LIB QDLS QOpenSys QOPT home

 . .. QSYS.LIB QDLS QOpenSys QOPT home newdir

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

584 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

rmdir()—Remove Directory

 Syntax

 #include <unistd.h>

 int rmdir(const char *path);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 591.

The rmdir() function removes a directory, path, provided that the directory is empty; that is, the directory

contains no entries other than ″dot″ (.) or ″dot-dot″ (..). path must not end in dot (.) or dot-dot (..).

If no job currently has the directory open, rmdir() deletes the directory itself. The space occupied by the

directory is freed for new use. If one or more jobs have the directory open, rmdir() removes the link and

the dot (.) or dot-dot (..). entries. The directory itself is not removed until the last job closes the directory.

New files cannot be created under a directory after the last link is removed, even if the directory is still

open.

rmdir() does not remove a directory that still contains files or subdirectories. If path refers to a directory

that is not empty, the [ENOTEMPTY] error is returned. If path refers to the current directory of the

current job, to the root (/) directory, or to a directory that cannot be removed, the [EBUSY] error is

returned.

If path refers to a symbolic link, rmdir() does not affect any file or directory named by the contents of the

symbolic link.

If rmdir() is successful, the change and modification times for the parent directory are updated.

Parameters

path (Input) A pointer to the null-terminated path name of the directory to be removed.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgRmdir()—Remove Directory (using NLS-enabled path name)” on page 381 for a

description and an example of supplying the path in any CCSID.

Authorities

Note: Adopted authority is not used.

Authorization Required for rmdir() (excluding QSYS.LIB, independent ASP QSYS.LIB, and QDLS)

 Object Referred to Authority Required errno

Each directory in the path name preceding the directory to be

removed

*X EACCES

Parent directory of the directory to be removed *WX EACCES

Directory to be removed *OBJEXIST EACCES

Integrated File System APIs 585

Object Referred to Authority Required errno

Parent directory of the directory to be removed has the S_ISVTX

mode bit set to binary one (see Note).

*ALLOBJ, or owner of

the directory to be

removed, or owner of

the parent directory of

the directory to be

removed

EPERM

Note: The S_ISVTX mode bit (which is equivalent to the ’Restricted rename and unlink’ object attribute) restriction

only applies to objects in the root (’/’), QOpenSys, and user-defined file systems.

Authorization Required for rmdir() in the QSYS.LIB and independent ASP QSYS.LIB File Systems

 Object Referred to Authority Required errno

Each directory in the path name preceding the directory to be

removed

*X EACCES

Parent directory of the directory to be removed *X EACCES

Directory to be removed, if it is a library *OBJEXIST, *RX EACCES

Directory to be removed, if it is a database file *OBJEXIST, *OBJOPR EACCES

Authorization Required for rmdir() in the QDLS File System

 Object Referred to Authority Required errno

Each directory in the path name preceding the directory to be

removed

*X EACCES

Parent directory of the directory to be removed *X EACCES

Directory to be removed *OBJEXIST, *X EACCES

Authorization Required for rmdir() in the QOPT File System

 Object Referred to Authority Required errno

Volume authorization list *CHANGE EACCES

Each directory in the path name preceding the directory to be

removed if volume media format is Universal Disk Format (UDF)

*X EACCES

Parent directory of the directory to be removed if volume media

format is Universal Disk Format (UDF)

*WX EACCES

Directory to be removed if volume media format is Universal Disk

Format (UDF)

*W EACCES

Directory and parent directories if volume media format is not

Universal Disk Format (UDF)

None None

Return Value

0 rmdir() was successful.

-1 rmdir() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If rmdir() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

586 iSeries: UNIX-Type -- Integrated File System APIs

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

 The path cannot be removed because it is the current working directory of the current process, or

it is currently being used by the system.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

Integrated File System APIs 587

The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL. The last component of path is ’dot’ or

’dot-dot’.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

588 iSeries: UNIX-Type -- Integrated File System APIs

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string. The last component of the path

name is dot or dot-dot.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTEMPTY]

 Directory not empty.

 You tried to remove a directory that is not empty. A directory cannot contain objects when it is

being removed.

 The specified directory is not empty.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

Integrated File System APIs 589

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

590 iSeries: UNIX-Type -- Integrated File System APIs

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

If one or more jobs have the library or file open, rmdir() returns [EBUSY].

If rmdir() is successful, the change and modification times for the parent library are updated only if

the ″directory″ being removed is a database file.

3. QDLS File System Differences

If one or more jobs have the folder open, or are using the folder as their current directory, rmdir()

returns [EBUSY].

4. QOPT File System Differences

The change and modification times of the parent directory are not updated.

If path refers to a directory that any job has open, the [EBUSY] error is returned.

5. QNTC File System Differences

The change and modification times of the parent directory are not updated.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “mkdir()—Make Directory” on page 233—Make Directory

v “QlgRmdir()—Remove Directory (using NLS-enabled path name)” on page 381—Remove Directory

(using NLS-enabled path name)

Integrated File System APIs 591

v “unlink()—Remove Link to File” on page 624—Remove Link to File

Example

See Code disclaimer information for information pertaining to code examples.

The following example removes a directory:

#include <sys/stat.h>

#include <unistd.h>

#include <stdio.h>

#include <sys/stat.h>

#include <fcntl.h>

main() {

 char new_dir[]="new_dir";

 char new_file[]="new_dir/new_file";

 int file_descriptor;

 if (mkdir(new_dir, S_IRWXU|S_IRGRP|S_IXGRP) != 0)

 perror("mkdir() error");

 else if ((file_descriptor = creat(new_file, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 close(file_descriptor);

 unlink(new_file);

 }

 if (rmdir(new_dir) != 0)

 perror("rmdir() error");

 else

 puts("removed!");

}

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

stat()—Get File Information

 Syntax

 #include <sys/stat.h>

 int stat(const char *path, struct stat *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 599.

The stat() function gets status information about a specified file and places it in the area of memory

pointed to by the buf argument.

If the named file is a symbolic link, stat() resolves the symbolic link. It also returns information about the

resulting file.

592 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

path (Input) A pointer to the null-terminated path name of the file from which information is required.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgStat()—Get File Information (using NLS-enabled path name)” on page 384 for a

description and an example of supplying the path in any CCSID.

buf (Output) A pointer to the area to which the information should be written.

 The information is returned in the following stat structure, as defined in the <sys/stat.h> header file:

 mode_t st_mode A bit string indicating the permissions and privileges of the file.

Symbols are defined in the <sys/stat.h> header file to refer to bits in

a mode_t value; these symbols are listed in “chmod()—Change File

Authorizations” on page 29.

ino_t st_ino The file ID for the object. This number uniquely identifies the object

within a file system. When st_ino and st_dev are used together, they

uniquely identify the object on the system.

nlink_t st_nlink The number of links to the file. This field will be 65,535 if the value

could not fit in the specified nlink_t field. The complete value will

be in the st_nlink32 field.

unsigned short st_reserved2 Reserved.

uid_t st_uid The numeric user ID (uid) of the owner of the file.

gid_t st_gid The numeric group ID (gid) for the file.

off_t st_size Defined as follows for each file type:

Regular File

The number of data bytes in the file.

Directory

The number of bytes allocated to the directory.

Symbolic Link

The number of bytes in the path name stored in the

symbolic link.

Local Socket

Always zero.

OS/400 Native Object

This value is dependent on the object type.

time_t st_atime The most recent time the file was accessed.

time_t st_mtime The most recent time the contents of the file were changed.

time_t st_ctime The most recent time the status of the file was changed.

dev_t st_dev The file system ID to which the object belongs. This number

uniquely identifies the file system to which the object belongs. When

st_ino and st_dev are used together, they uniquely identify the

object on the system. This field will be 4,294,967,295 if the value

could not fit in the specified dev_t field. The complete value will be

in the st_dev64 field.

size_t st_blksize The block size of the file in bytes.

This number is the number of

bytes in a block of disk unit storage.

Integrated File System APIs 593

unsigned long st_allocsize The number of bytes allocated to the file.

The allocated size

varies by object type and file system. For example, the allocated size

includes the object data size as shown in st_size as well as any

logically sized extents to accomodate anticipated future

requirements for the object data. It may or may not include

additional bytes for attribute information.

qp0l_objtype_t st_objtype The iSeries object type; for example, *STMF or *DIR. Refer to CL

Programming

for a list of the iSeries object types.

unsigned short st_codepage The code page derived from the CCSID used for the data in the file

or the extended attributes of the directory. If the returned value of

this field is zero (0), there is more than one code page associated

with the st_ccsid. If the st_ccsid is not a supported iSeries CCSID,

the st_codepage is set equal to the st_ccsid.

unsigned short st_ccsid The CCSID used for the data in the file or the extended attributes of

the directory.

dev_t st_rdev The device ID of the object if the object is a character special file or

block special file. This number uniquely identifies the file device.

This field will be 4,294,967,295 if the value could not fit in the

specified dev_t field. The complete value will be in the st_rdev64

field.

nlink32_t st_nlink32 The number of links to the file.

dev64_t st_rdev64 The device ID of the object in 64 bit format. See st_rdev for more

information.

dev64_t st_dev64 The file system ID to which the object belongs in 64 bit format. See

st_dev for more information.

char st_reserved1[36] Reserved.

unsigned int st_ino_gen_id The generation ID associated with the file ID.

Values of time_t are given in terms of seconds since a fixed point in time called the Epoch.

You can examine properties of a mode_t value from the st_mode field using a collection of macros defined

in the <sys/stat.h> header file. If mode is a mode_t value, then:

S_ISBLK(mode)

Is nonzero for block special files

S_ISCHR(mode)

Is nonzero for character special files

S_ISDIR(mode)

Is nonzero for directories

S_ISFIFO(mode)

Is nonzero for pipes and FIFO special files

S_ISREG(mode)

Is nonzero for regular files

S_ISLNK(mode)

Is nonzero for symbolic links

S_ISSOCK(mode)

Is nonzero for local sockets

S_ISNATIVE(mode)

Is nonzero for OS/400 native objects

594 iSeries: UNIX-Type -- Integrated File System APIs

Authorities

Note: Adopted authority is not used.

Authorization Required for stat()

 Object Referred to Authority Required errno

Each directory in the path name preceding the

object

*X EACCES

Object, if object type is not *USRPRF None None

Object, if object type is *USRPRF Any authority greater than

*EXCLUDE

ENOENT

Return Value

0 stat() was successful. The information is returned in buf.

-1 stat() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If stat() is not successful, errno usually indicates one of the following errors. Under some conditions, errno

could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

Integrated File System APIs 595

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

596 iSeries: UNIX-Type -- Integrated File System APIs

A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EOVERFLOW]

 Object is too large to process.

 The object’s data size exceeds the limit allowed by this function.

 The file size in bytes cannot be represented correctly in the structure pointed to by buf (the file is

larger than 2GB minus 1 byte).

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

Integrated File System APIs 597

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

598 iSeries: UNIX-Type -- Integrated File System APIs

Usage Notes

1. This function will fail with error code [ENOTSAFE] when both of the following conditions occur:

v Where multiple threads exist in the job.

v The object this function is operating on resides in a file system that is not threadsafe. Only the

following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

– QFileSvr.400

2.

″Root″ (/), QOpenSys, and User-Defined File System Differences

The st_allocsize value can be influenced by the setting of the disk storage option attribute. See

“Qp0lSetAttr()—Set Attributes” on page 509 for more information.

3. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

The stat() function could return zero for the st_atime value (in the stat structure) under some

conditions.

4. QDLS File System Differences

If the date corresponding to the st_atime, st_mtime, or st_ctime value precedes 1970, stat() returns

zero for that value. Also, if the specified path is /QDLS, stat() returns zero for all three values

st_atime, st_mtime, and st_ctime.

5. QOPT File System Differences

The value for st_atime will always be zero. The value for st_ctime will always be the creation date

and time of the file or directory.

The user, group, and other mode bits are always on for an object that exists on a volume not

formatted in Universal Disk Format (UDF).

If the object exists on a volume formatted in Universal Disk Format (UDF), the authorization that is

checked for the object and preceding directories in the path name follows the rules described in

Authorization Required for stat() (page 595), ″.″ If the object exists on a volume formatted in some

other media format, no authorization checks are made on the object or on each directory in the path

name. The volume authorization list is checked for *USE authority regardless of the media format of

the volume.

stat on /QOPT will always return 2,147,483,647 for size fields.

stat on optical volumes will return the volume capacity or 2,147,483,647, whichever is smaller.

The file access time is not changed.

6. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. Once a file is open, subsequent requests to perform operations on the file can

fail because file attributes are checked at the server on each request. If permissions on the file are

made more restrictive at the server or the file is unlinked or made unavailable by the server for

another client, your operation on an open file descriptor will fail when the local Network File System

receives these updates. The local Network File System also impacts operations that retrieve file

Integrated File System APIs 599

attributes. Recent changes at the server may not be available at your client yet, and old values may be

returned from operations. (Several options on the Add Mounted File System (ADDMFS) command

determine the time between refresh operations of local data.)

7. QNetWare File System Differences

The QNetWare file system does not fully support mode bits. See Netware on iSeries in the iSeries

Information Center for more information.

8. This function will fail with the [EOVERFLOW] error if the file size in bytes cannot be represented

correctly in the structure pointed to by buf (the file is larger than 2GB minus 1 byte).

9. When you develop in C-based languages and this function is compiled with _LARGE_FILES defined,

it will be mapped to “stat64()—Get File Information (Large File Enabled)” on page 601. Note that the

type of the buf parameter, struct stat *, also will be mapped to type struct stat64 *.

Related Information

v The <sys/stat.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <sys/types.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “chmod()—Change File Authorizations” on page 29—Change File Authorizations

v “chown()—Change Owner and Group of File” on page 38—Change Owner and Group of File

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “dup()—Duplicate Open File Descriptor” on page 76—Duplicate Open File Descriptor

v

“fclear()—Write (Binary Zeros) to Descriptor” on page 108—Write (Binary Zeros) to Descriptor

v “fclear64()—-Write (Binary Zeros) to Descriptor (Large File Enabled)” on page 114—Write (Binary

Zeros) to Descriptor (Large File Enabled)

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v “fstat()—Get File Information by Descriptor” on page 132—Get File Information by Descriptor

v “link()—Create Link to File” on page 210—Create Link to File

v “lstat()—Get File or Link Information” on page 224—Get File or Link Information

v “mkdir()—Make Directory” on page 233—Make Directory

v “open()—Open File” on page 267—Open File

v “QlgStat()—Get File Information (using NLS-enabled path name)” on page 384—Get File Information

(using NLS-enabled path name)

v “read()—Read from Descriptor” on page 549—Read from Descriptor

v “readlink()—Read Value of Symbolic Link” on page 569—Read Value of Symbolic Link

v “stat64()—Get File Information (Large File Enabled)” on page 601—Get File Information (Large File

Enabled)

v “symlink()—Make Symbolic Link” on page 614—Make Symbolic Link

v “unlink()—Remove Link to File” on page 624—Remove Link to File

v “utime()—Set File Access and Modification Times” on page 632—Set File Access and Modification

Times

v “write()—Write to Descriptor” on page 639—Write to Descriptor

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets status information about a file:

#include <sys/types.h>

#include <sys/stat.h>

#include <stdio.h>

#include <time.h>

600 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

main() {

 struct stat info;

 if (stat("/", &info) != 0)

 perror("stat() error");

 else {

 puts("stat() returned the following information about root f/s:");

 printf(" inode: %d\n", (int) info.st_ino);

 printf(" dev id: %d\n", (int) info.st_dev);

 printf(" mode: %08x\n", info.st_mode);

 printf(" links: %d\n", info.st_nlink);

 printf(" uid: %d\n", (int) info.st_uid);

 printf(" gid: %d\n", (int) info.st_gid);

 }

}

Output: note that the following information will vary from system to system.

stat() returned the following information about root f/s:

 inode: 0

 dev id: 1

 mode: 010001ed

 links: 3

 uid: 137

 gid: 500

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

stat64()—Get File Information (Large File Enabled)

 Syntax

 #include <sys/stat.h>

 int stat64(const char *path, struct stat64 *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 604.

The stat64() function gets status information about a specified file and places it in the area of memory

pointed to by the buf argument.

If the named file is a symbolic link, stat64() resolves the symbolic link. It also returns information about

the resulting file.

stat64() is enabled for large files. It is capable of operating on files larger than 2GB minus 1 byte and

returning correct sizes.

For additional information about authorities required, error conditions, and examples, see “stat()—Get

File Information” on page 592—Get File Information.

Parameters

path (Input) A pointer to the null-terminated path name of the file from which information is required.

Integrated File System APIs 601

#TOP_OF_PAGE
unix.htm
aplist.htm

This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgStat64()—Get File Information (large file enabled and using NLS-enabled path name)” on

page 386 for a description and an example of supplying the path in any CCSID.

buf (Output) A pointer to the area to which the information should be written.

 The information is returned in the following stat64 structure, as defined in the <sys/stat.h> header file:

 mode_t st_mode A bit string indicating the permissions and privileges of the file.

Symbols are defined in the <sys/stat.h> header file to refer to bits in

a mode_t value; these symbols are listed in “chmod()—Change File

Authorizations” on page 29.

ino_t st_ino The file ID for the object. This number uniquely identifies the object

within a file system. When st_ino and st_dev are used together, they

uniquely identify the object on the system.

uid_t st_uid The numeric user ID (uid) of the owner of the file.

gid_t st_gid The numeric group ID (GID) for the file.

off64_t st_size Defined as follows for each file type:

Regular File

The number of data bytes in the file.

Directory

The number of bytes allocated to the directory.

Symbolic Link

The number of bytes in the path name stored in the

symbolic link.

Local Socket

Always zero.

OS/400 Native Object

This value is dependent on the object type.

time_t st_atime The most recent time the file was accessed.

time_t st_mtime The most recent time the contents of the file were changed.

time_t st_ctime The most recent time the status of the file was changed.

dev_t st_dev The file system ID to which the object belongs. This number

uniquely identifies the file system to which the object belongs. When

st_ino and st_dev are used together, they uniquely identify the

object on the system. This field will be 4,294,967,295 if the value

could not fit in the specified dev_t field. The complete value will be

in the st_dev64 field.

size_t st_blksize The block size of the file in bytes.

This number is the number of

bytes in a block of disk unit storage.

nlink_t st_nlink The number of links to the file. This field will be 65,535 if the value

could not fit in the specified nlink_t field. The complete value will

be in the st_nlink32 field.

unsigned short st_codepage The code page derived from the CCSID used for the data in the file

or the extended attributes of the directory. If the returned value of

this field is 0, a code page could not be derived.

602 iSeries: UNIX-Type -- Integrated File System APIs

unsigned long long st_allocsize The number of bytes allocated to the file.

The allocated size

varies by object type and file system. For example, the allocated size

includes the object data size as shown in st_size as well as any

logically sized extents to accomodate anticipated future

requirements for the object data. It may or may not include

additional bytes for attribute information.

unsigned int st_ino_gen_id The generation ID associated with the file ID.

qp0l_objtype_t st_objtype The iSeries0 object type; for example, *STMF or *DIR. Refer to CL

Programming

for a list of the iSeries object types.

char st_reserved2[5] Reserved.

dev-t st_rdev The device ID of the object if the object is a character special file or

block special file. This number uniquely identifies the file device.

This field will be 4,294,967,295 if the value could not fit in the

specified dev_t field. The complete value will be in the st_rdev64

field.

dev64_t st_rdev64 The device ID of the object in 64 bit format. See st_rdev for more

information.

dev64_t st_dev64 The file system ID to which the object belongs in 64 bit format. See

st_dev for more information.

nlink32_t st_nlink32 The number of links to the file.

char st_reserved1[26] Reserved.

unsigned short st_ccsid The CCSID used for the data in the file or the extended attributes of

the directory.

Values of time_t are given in terms of seconds since a fixed point in time called the Epoch.

You can examine properties of a mode_t value from the st_mode field using a collection of macros defined

in the <sys/stat.h> header file. If mode is a mode_t value, then:

S_ISBLK(mode)

Is nonzero for block special files

S_ISCHR(mode)

Is nonzero for character special files

S_ISDIR(mode)

Is nonzero for directories

S_ISFIFO(mode)

Is nonzero for pipes and FIFO special files

S_ISREG(mode)

Is nonzero for regular files

S_ISLNK(mode)

Is nonzero for symbolic links

S_ISSOCK(mode)

Is nonzero for local sockets

S_ISNATIVE(mode)

Is nonzero for OS/400 native objects

Integrated File System APIs 603

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden. To

use either the stat64() API or the QlgStat64() API and the struct stat64 data type, you must compile

the source with _LARGE_FILE_API defined.

2. All of the usage notes for stat() also apply to stat64() and to QlgStat64(). See “Usage Notes” on page

599 in the stat() API.

API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

statvfs()—Get File System Information

 Syntax

 #include <sys/statvfs.h>

 int statvfs(const char *path, struct statvfs *buf);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 610.

The statvfs() function gets status information about the file system that contains the file named by the

path argument. The information will be placed in the area of memory pointed to by the buf argument.

If the named file is a symbolic link, statvfs() resolves the symbolic link.

Parameters

path (Input) A pointer to the null-terminated path name of the file from which file system information

is required.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgStatvfs()—Get File System Information (using NLS-enabled path name)” on page 387 for

a description and an example of supplying the path in any CCSID.

buf (Output) A pointer to the area to which the information should be written.

 The information is returned in the following statvfs structure, as defined in the <sys/statvfs.h> header

file. Signed fields of the statvfs structure that are not supported by the mounted file system will be set

to -1.

 unsigned long f_bsize The file system block size in bytes.

This number is the number of

bytes in a block of disk unit storage.

Some file systems may

return zero in this field. If this field is zero, then the contents of the

f_blocks, f_bfree, and f_bavail fields are undefined.

unsigned long f_frsize The fundamental file system block size in bytes. Some file systems

may return zero in this field. If this field is zero, then the contents of

the f_blocks, f_bfree, and f_bavail fields are undefined.

604 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

_Bin8 f_blocks The total number of blocks in the file system in terms of f_frsize.

_Bin8 f_bfree The total number of free blocks in the file system.

_Bin8 f_bavail The total number of free blocks available to a non-privileged

process.

unsigned long f_files The total number of file serial numbers.

unsigned long f_ffree The total number of free file serial numbers.

unsigned long f_favail The number of free file serial numbers available to a non-privileged

process.

unsigned long f_fsid The file system ID. This field will be 4,294,967,295 if the value could

not fit in the specified unsigned long field.

unsigned long f_flag File system flags. Symbols are defined in the <sys/statvfs.h> header

file to refer to bits in this field (see “The f_flags field”).

unsigned long f_namemax The maximum file name length in the file system. Some file systems

may return the maximum value that can be stored in an unsigned

long to indicate the file system has no maximum file name length.

The maximum value that can be stored in an unsigned long is

defined in <limits.h> as ULONG_MAX.

This value is the number of bytes allowed in the file name if it were

encoded in the CCSID of the job. If the CCSID is mixed, this

number is an estimate and may be larger than the actual allowable

maximum.

unsigned long f_pathmax The maximum path length in the file system. Some file systems may

return the maximum value that can be stored in an unsigned long to

indicate the file system has no maximum path length. The

maximum value that can be stored in an unsigned long is defined in

<limits.h> as ULONG_MAX.

This value is the number of bytes allowed in the file name if it were

encoded in the CCSID of the job. If the CCSID is mixed, this

number is an estimate and may be larger than the actual allowable

maximum.

long f_objlinkmax The maximum number of hard links for objects other than

directories.

long f_dirlinkmax The maximum number of hard links for a directory.

char f_reserved1[4] Reserved.

unsigned long long f_fsid64 The file system ID in 64 bit format.

char f_basetype[80] The NULL-terminated file system type name. The text in this field

will be returned in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this is

assumed to be represented in the default CCSID of the job.

Warning: Temporary Level 4 Header

The f_flags field: The following symbols are defined in the <sys/statvfs.h> header file to refer to bits

that may be returned in the f_flags field:

ST_RDONLY

The file system is mounted for read-only access.

ST_NOSUID

The file system does not support setuid/setgid semantics.

ST_CASE_SENSITIVE

The file system is case sensitive.

ST_CHOWN_RESTRICTED

The file system restricts the changing of the owner or primary group to a process that has the

appropriate privileges.

Integrated File System APIs 605

ST_THREAD_SAFE

The file system is thread-safe. Thread-safe APIs may operate on objects in this file system in a

thread-safe manner.

ST_DYNAMIC_MOUNT

The file system allows itself to be dynamically mounted and unmounted.

ST_NO_MOUNT_OVER

The file system does not allow any part of it to be mounted over.

ST_NO_EXPORTS

The file system does not allow any of its objects to be exported to the Network File System (NFS)

Server.

ST_SYNCHRONOUS

The file system supports the ″synchronous write″ semantic of NFS Version 2.

Authorities

Note: Adopted authority is not used.

Authorization Required for statvfs()

 Object Referred to Authority Required errno

Each directory in the path name that precedes the object *X EACCES

Object None None

Return Value

0 statvfs() was successful. The information is returned in buf.

-1 statvfs() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If statvfs() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

606 iSeries: UNIX-Type -- Integrated File System APIs

To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

Integrated File System APIs 607

A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

608 iSeries: UNIX-Type -- Integrated File System APIs

The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Integrated File System APIs 609

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. Root (″/″) and QOpenSys File System Differences

These file systems return the f_flag field with the ST_NOSUID flag bit turned off. However, support for

the setuid/setgid semantics is limited to the ability to store and retrieve the S_ISUID and S_ISGID flags

when these file systems are accessed from the Network File System server.

3. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. The local Network File System also impacts operations that retrieve file

attributes. Recent changes at the server may not be available at your client yet, and old values may be

returned from operations. (Several options on the Add Mounted File System (ADDMFS) command

determine the time between refresh operations of local data.)

4. When you develop in C-based languages and this function is compiled with _LARGE_FILES defined,

it will be mapped to statvfs64(). Additionally, the struct statvfs data type will be mapped to a

struct statvfs64.

Related Information

v The <sys/statvfs.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <sys/types.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “chmod()—Change File Authorizations” on page 29—Change File Authorizations

v “chown()—Change Owner and Group of File” on page 38—Change Owner and Group of File

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “dup()—Duplicate Open File Descriptor” on page 76—Duplicate Open File Descriptor

v

“fclear()—Write (Binary Zeros) to Descriptor” on page 108—Write (Binary Zeros) to Descriptor

v “fclear64()—-Write (Binary Zeros) to Descriptor (Large File Enabled)” on page 114—Write (Binary

Zeros) to Descriptor (Large File Enabled)

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v “fstatvfs()—Get File System Information by Descriptor” on page 140—Get File System Information by

Descriptor

v “link()—Create Link to File” on page 210—Create Link to File

v “open()—Open File” on page 267—Open File

v “QlgStatvfs()—Get File System Information (using NLS-enabled path name)” on page 387—Get File

System Information (using NLS-enabled path name)

v “read()—Read from Descriptor” on page 549—Read from Descriptor

610 iSeries: UNIX-Type -- Integrated File System APIs

v “statvfs64()—Get File System Information (64-Bit Enabled)” on page 612—Get File System Information

(64-Bit Enabled)

v “unlink()—Remove Link to File” on page 624—Remove Link to File

v “utime()—Set File Access and Modification Times” on page 632—Set File Access and Modification

Times

v “write()—Write to Descriptor” on page 639—Write to Descriptor

Example

See Code disclaimer information for information pertaining to code examples.

The following example gets status information about a file system:

#include <sys/statvfs.h>

#include <stdio.h>

main() {

 struct statvfs info;

 if (-1 == statvfs("/", &info))

 perror("statvfs() error");

 else {

 puts("statvfs() returned the following information");

 puts("about the Root (’/’) file system:");

 printf(" f_bsize : %u\n", info.f_bsize);

 printf(" f_blocks : %08X%08X\n",

 *((int *)&info.f_blocks[0]),

 *((int *)&info.f_blocks[4]));

 printf(" f_bfree : %08X%08X\n",

 *((int *)&info.f_bfree[0]),

 *((int *)&info.f_bfree[4]));

 printf(" f_files : %u\n", info.f_files);

 printf(" f_ffree : %u\n", info.f_ffree);

 printf(" f_fsid : %u\n", info.f_fsid);

 printf(" f_flag : %X\n", info.f_flag);

 printf(" f_namemax : %u\n", info.f_namemax);

 printf(" f_pathmax : %u\n", info.f_pathmax);

 printf(" f_basetype : %s\n", info.f_basetype);

 }

}

Output: The following information will vary from file system to file system.

statvfs() returned the following information

about the Root (’/’) file system:

 f_bsize : 4096

 f_blocks : 00000000002BF800

 f_bfree : 0000000000091703

 f_files : 4294967295

 f_ffree : 4294967295

 f_fsid : 0

 f_flag : 1A

 f_namemax : 255

 f_pathmax : 4294967295

 f_basetype : "root" (/)

API introduced: V4R2

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 611

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

statvfs64()—Get File System Information (64-Bit Enabled)

 Syntax

 #include <sys/statvfs.h>

 int statvfs64(const char *path, struct statvfs64 *buf)

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 613.

The statvfs64() function gets status information about the file system that contains the file named by the

path argument. The information is placed in the area of memory pointed to by the buf argument.

If the named file is a symbolic link, statvfs64() resolves the symbolic link.

For details about authorities required, error conditions, and examples, see “statvfs()—Get File System

Information” on page 604—Get File System Information.

Parameters

path (Input) A pointer to the null-terminated path name of the file from which file system information

is required.

 This parameter is assumed to be represented in the coded character set identifier (CCSID)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgStatvfs64()—Get File System Information (64-Bit enabled and using NLS-enabled path

name)” on page 390 for a description and an example of supplying the path in any CCSID.

buf (Output) A pointer to the area to which the information should be written.

 The information is returned in the following statvfs64 structure, as defined in the <sys/statvfs.h> header

file. Signed fields of the statvfs64 structure that are not supported by the mounted file system will be set

to -1.

 unsigned long f_bsize The file system block size in bytes.

This number is the number of

bytes in a block of disk unit storage.

Some file systems may

return zero in this field. If this field is zero, then the contents of the

f_blocks, f_bfree, and f_bavail fields are undefined.

unsigned long f_frsize The fundamental file system block size in bytes. Some file systems

may return zero in this field. If this field is zero, then the contents of

the f_blocks, f_bfree, and f_bavail fields are undefined.

unsigned long long f_blocks The total number of blocks in the file system in terms of f_frsize.

unsigned long long f_bfree The total number of free blocks in the file system.

unsigned long long f_bavail The total number of free blocks available to a non-privileged

process.

unsigned long f_files The total number of file serial numbers.

unsigned long f_ffree The total number of free file serial numbers.

unsigned long f_favail The number of free file serial numbers available to a non-privileged

process.

unsigned long f_fsid The file system ID. This field will be 4,294,967,295 if the value could

not fit in the specified unsigned long field.

612 iSeries: UNIX-Type -- Integrated File System APIs

unsigned long f_flag File system flags. Symbols are defined in the <sys/statvfs.h> header

file to refer to bits in this field (see “The f_flags field” on page 605).

unsigned long f_namemax The maximum file name length in the file system. Some file systems

may return the maximum value that can be stored in an unsigned

long to indicate the file system has no maximum file name length.

The maximum value that can be stored in an unsigned long is

defined in <limits.h> as ULONG_MAX.

This value is the number of bytes allowed in the file name if it were

encoded in the CCSID of the job. If the CCSID is mixed, this

number is an estimate and may be larger than the actual allowable

maximum.

unsigned long f_pathmax The maximum path length in the file system. Some file systems may

return the maximum value that can be stored in an unsigned long to

indicate the file system has no maximum path length. The

maximum value that can be stored in an unsigned long is defined in

<limits.h> as ULONG_MAX.

This value is the number of bytes allowed in the file name if it were

encoded in the CCSID of the job. If the CCSID is mixed, this

number is an estimate and may be larger than the actual allowable

maximum.

long f_objlinkmax The maximum number of hard links for objects other than

directories.

long f_dirlinkmax The maximum number of hard links for a directory.

char f_reserved1[4] Reserved.

unsigned long long f_fsid64 The file system ID in 64 bit format.

char f_basetype[80] The NULL-terminated file system type name. The text in this field

will be returned in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this is

assumed to be represented in the default CCSID of the job.

For further details about the f_flags field, see “statvfs()—Get File System Information” on page 604.

Usage Notes

1. When you develop in C-based languages, the prototypes for the 64-bit APIs are normally hidden. To

use the statvfs64() API or the QlgStatvfs64() API and the struct statvfs64 data type, you must

compile the source with the _LARGE_FILE_API macro defined.

2. All of the usage notes for statvfs() apply to statvfs64() and QlgStatvfs64(). See “Usage Notes” on

page 610 in the statvfs() API.

 API introduced: V4R4

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 613

#TOP_OF_PAGE
unix.htm
aplist.htm

symlink()—Make Symbolic Link

 Syntax

 #include <unistd.h>

 int symlink(const char *pname, const char *slink);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 618.

The symlink() function creates the symbolic link named by slink with the value specified by pname. File

access checking is not performed on the file pname, and the file need not exist. In addition, a symbolic

link can cross file system boundaries.

If slink names a symbolic link, symlink() fails with the [EEXIST] error.

A symbolic link path name is resolved in the following manner:

v When a component of a path name refers to a symbolic link rather than to a directory, the path name

contained in the symbolic link is resolved.

v If the path name in the symbolic link begins with / (slash), the symbolic link path name is resolved

relative to the root directory for the job.

If the path name in the symbolic link does not start with / (slash), the symbolic link path name is

resolved relative to the directory that contains the symbolic link.

v If the symbolic link is the last component of a path name, it may or may not be resolved. Resolution

depends on the function using the path name. For example, rename() does not resolve a symbolic link

when the symbolic link is the final component of either the new or old path name. However, open()

does resolve a symbolic link when the link is the last component.

v If the symbolic link is not the last component of the original path name, remaining components of the

original path name are resolved relative to the symbolic link.

v When a / (slash) is the last component of a path name and it is preceded by a symbolic link, the

symbolic link is always resolved.

Any files and directories to which a symbolic link refers are checked for access permission.

symlink() sets the access, change, modification, and creation times for the new symbolic link. It also sets

the change and modification times for the directory that contains the new symbolic link.

Parameters

pname (Input) A pointer to the null-terminated value of the symbolic link.

 The value of the symbolic link is assumed to be represented in the CCSID (coded character set

identifier) currently in effect for the job. If the CCSID of the job is 65535, this parameter is

assumed to be represented in the default CCSID of the job.

 See “QlgSymlink()—Make Symbolic Link (using NLS-enabled path name)” on page 391 for a

description and an example of supplying the pname in any CCSID.

slink (Input) A pointer to the null-terminated name of the symbolic link to be created.

614 iSeries: UNIX-Type -- Integrated File System APIs

This parameter is assumed to be represented in the CCSID, language, and country or region

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgSymlink()—Make Symbolic Link (using NLS-enabled path name)” on page 391 for a

description and an example of supplying the slink in any CCSID.

Authorities

Note: Adopted authority is not used.

Authorization Required for symlink()

 Object Referred to Authority Required errno

Each directory in the path name preceding the object to be created *X EACCES

Parent directory of object to be created *WX EACCES

Return Value

0 symlink() was successful.

-1 symlink() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If symlink() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

Integrated File System APIs 615

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EEXIST]

 File exists.

 The file specified already exists and the specified operation requires that it not exist.

 The named file, directory, or path already exists.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EISDIR]

 Specified target is a directory.

 The path specified named a directory where a file or object name was expected.

 The path name given is a directory.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

616 iSeries: UNIX-Type -- Integrated File System APIs

A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOSYS]

 Function not implemented.

 An attempt was made to use a function that is not available in this implementation for any object

or any arguments.

 The path name given refers to an object that does not support this function.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

Integrated File System APIs 617

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. File System Differences

The following file systems do not support symlink():

v QSYS.LIB

v Independent ASP QSYS.LIB

v QDLS

v QOPT

618 iSeries: UNIX-Type -- Integrated File System APIs

v QFileSvr.400

v QNetWare

v QNTC

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “link()—Create Link to File” on page 210—Create Link to File

v “QlgSymlink()—Make Symbolic Link (using NLS-enabled path name)” on page 391—Make Symbolic

Link (using NLS-enabled path name)

v “readlink()—Read Value of Symbolic Link” on page 569—Read Value of Symbolic Link

v “unlink()—Remove Link to File” on page 624—Remove Link to File

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses symlink():

#include <stdio.h>

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdlib.h>

main() {

 char fn[]="readlink.file";

 char sl[]="readlink.symlink";

 char buf[30];

 int file_descriptor;

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 close(file_descriptor);

 if (symlink(fn, sl) != 0)

 perror("symlink() error");

 else {

 if (readlink(sl, buf, sizeof(buf)) < 0)

 perror("readlink() error");

 else printf("readlink() returned ’%s’

 for ’%s’\n", buf, sl);

 unlink(sl);

 }

 unlink(fn);

 }

}

Output:

readlink() returned ’readlink.file’ for ’readlink.symlink’

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs 619

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

sysconf()—Get System Configuration Variables

 Syntax

 #include <unistd.h>

 long sysconf(int name);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

The sysconf() function returns the value of a system configuration option. The configuration option to be

obtained is specified by name.

Parameters

name (Input) The named variable whose value is to be returned.

 The value of name can be any one of the following symbols defined in the <unistd.h> header file, each

corresponding to a system configuration option:

 _SC_ARG_MAX (Not supported by the iSeries server). Represents ARG_MAX, which

indicates the maximum number of bytes of arguments and

environment data that can be passed in an exec function.

_SC_CHILD_MAX (Not supported by the iSeries server). Represents CHILD_MAX,

which indicates the maximum number of jobs that a real user ID

(UID) can have running simultaneously.

_SC_CLK_TCK Represents the CLK_TCK macro, which indicates the number of clock

ticks in a second. CLK_TCK is defined in the <time.h> header file.

_SC_JOB_CONTROL (Not supported by the iSeries server). Represents the

_POSIX_JOB_CONTROL macro, which indicates that certain job

control operations are implemented by this version of the operating

system. If _POSIX_JOB_CONTROL is defined (in the <unistd.h>

header file), various APIs, such as setpgid(), provide more function

than when the macro is not defined.

_SC_NGROUPS_MAX Represents NGROUPS_MAX, which indicates the maximum number

of supplementary group IDs (GIDs) that can be associated with a job.

_SC_OPEN_MAX Represents OPEN_MAX, which indicates the maximum number of

files that a single job can have open at one time.

_SC_PAGESIZE Represents the system hardware page size. The symbol

_SC_PAGESIZE is defined as the decimal value 11.

_SC_PAGE_SIZE Represents the system hardware page size. The symbol

_SC_PAGE_SIZE is defined as the decimal value 12.

_SC_SAVED_IDS (Not supported by the iSeries server). Represents the

_POSIX_SAVED_IDS macro, which indicates that this POSIX

implementation has a saved set UID and a saved set GID. If the

macro exists, it is defined in the <unistd.h> header file. This symbol

affects the behavior of such functions as setuid() and setgid().

_SC_STREAM_MAX Represents the STREAM_MAX macro, which indicates the maximum

number of streams that a job can have open at one time. The macro

is defined in the <limits.h> header file.

_SC_TZNAME_MAX (Not supported by the iSeries server). Represents the TZNAME_MAX

macro, which indicates the maximum length of the name of a time

zone. If the macro exists, it is defined in the <limits.h> header file.

620 iSeries: UNIX-Type -- Integrated File System APIs

_SC_VERSION (Not supported by the iSeries server). Represents the

_POSIX_VERSION macro, which indicates the version of the POSIX.1

standard that the system conforms to. If the macro exists, it is

defined in the <unistd.h> header file.

_SC_CCSID Represents the default coded character set identifier (CCSID) used

internally for integrated file system path names. A CCSID uniquely

identifies the coded graphic character representation of a path name

and includes such information as the character set and code page

identifier. The symbol _SC_CCSID is defined as the decimal value 10.

Authorities

No authorization is required.

Return Value

 value sysconf() was successful. The value associated with the specified option is returned.

-1 One of the following has occurred:

v The variable corresponding to name is valid but is not supported by the system. The errno

global variable is not changed.

v sysconf() failed in some other way. The errno is set to indicate the error.

Error Conditions

If sysconf() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The value for name is not valid.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

Integrated File System APIs 621

Example

See Code disclaimer information for information pertaining to code examples.

The following example determines the value of OPEN_MAX:

#include <stdio.h>

#include <unistd.h>

#include <errno.h>

main() {

 long result;

 errno = 0;

 puts("examining OPEN_MAX limit");

 if ((result = sysconf(_SC_OPEN_MAX)) == -1)

 if (errno == 0)

 puts("OPEN_MAX is not supported.");

 else perror("sysconf() error");

 else

 printf("OPEN_MAX is %ld\n", result);

}

Output:

examining OPEN_MAX limit

OPEN_MAX is 200

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

umask()—Set Authorization Mask for Job

 Syntax

 #include <sys/stat.h>

 mode_t umask(mode_t cmask);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Yes

Every job has a file creation mask. When a job starts, the value of the file creation mask is zero. The value

of zero means that no permissions are masked when a file or directory is created in the job. The umask()

function changes the value of the file creation mask for the current job to the value specified in cmask.

The cmask argument controls file permission bits that should be set whenever the job creates a file. File

permission bits set to 1 in the file creation mask are set to 0 in the file permission bits of files that are

created by the job.

For example, if a call to open() specifies a mode argument with file permission bits, the file creation mask

of the job affects the mode argument; bits that are 1 in the mask are set to 0 in the mode argument and,

therefore, in the mode of the created file.

622 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
unix.htm
aplist.htm

Only the file permission bits of cmask are used. The other bits in cmask must be cleared (not set), or the

CPFA0D3 message is issued.

Parameters

cmask (Input) The new value of the file creation mask. For a description of the permission bits, see

“chmod()—Change File Authorizations” on page 29.

Authorities

No authorization is required.

Return Value

umask() returns the previous value of the file creation mask. It does not return -1 or set the errno global

variable.

Error Conditions

None.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D3 E >cmask parameter is not valid.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. QNTC File System Differences

umask() does not update the file creation mask for QNTC. The settings specified in cmask are ignored.

Related Information

v The <sys/stat.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “chmod()—Change File Authorizations” on page 29—Change File Authorizations

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “mkdir()—Make Directory” on page 233—Make Directory

v “open()—Open File” on page 267—Open File

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses umask():

#include <stdio.h>

#include <fcntl.h>

#include <sys/stat.h>

main()

{

 int file_descriptor;

 struct stat info;

Integrated File System APIs 623

aboutapis.htm#CODEDISCLAIMER

umask(S_IRWXG);

 if ((file_descriptor =

 creat("umask.file", S_IRWXU|S_IRWXG)) < 0)

 perror("creat() error");

 else {

 fstat(file_descriptor, &info);

 printf("permissions are: %08x\n", info.st_mode);

 close(file_descriptor);

 unlink("umask.file");

 }

}

Output:

permissions are: 000081c0

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

unlink()—Remove Link to File

 Syntax

 #include <unistd.h>

 int unlink(const char *path);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 630.

The unlink() function removes a directory entry that refers to a file. This unlink() deletes the link named

by path and decrements the link count for the file itself.

If the link count becomes zero and no job currently has the file open, the file itself is deleted. The space

occupied by the file is freed for new use, and the current contents of the file are lost. If one or more jobs

have the file open when the last link is removed, unlink() removes the link, but the file itself is not

removed until the last job closes the file.

unlink() cannot be used to remove a directory; use rmdir() instead.

If path refers to a symbolic link, unlink() removes the symbolic link but not a file or directory named by

the contents of the symbolic link.

If unlink() succeeds, the change and modification times for the parent directory are updated. If the link

count of the file is not zero, the change time for the file is also updated. If unlink() fails, the link is not

removed.

If the file is checked out, unlink() fails with the [EBUSY] error. If the file is marked ″read-only″, unlink()

fails with the [EROOBJ] error.

624 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Parameters

path (Input) A pointer to the null-terminated path name of the file to be unlinked.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgUnlink()—Remove Link to File (using NLS-enabled path name)” on page 394 for a

description and an example of supplying the path in any CCSID.

Authorities

Note: Adopted authority is not used.

Authorization Required for unlink() (excluding QSYS.LIB, independent ASP QSYS.LIB, QDLS and

QOPT)

 Object Referred to Authority Required errno

Each directory in the path name preceding the object to be unlinked *X EACCES

Parent directory of the object to be unlinked *WX EACCES

Object to be unlinked *OBJEXIST EACCES

Parent directory of the object to be unlinked has the S_ISVTX

mode bit set to binary one (see Note).

*ALLOBJ, or owner of

the object to be

unlinked, or owner of

the parent directory of

the object to be

unlinked

EPERM

Note: The S_ISVTX mode bit (which is equivalent to the ’Restricted rename and unlink’ object attribute) restriction

only applies to objects in the root (’/’), QOpenSys, and user-defined file systems.

Authorization Required for unlink() in the QSYS.LIB and independent ASP QSYS.LIB File Systems

 Object Referred to Authority Required errno

Each directory in the path name preceding the object to be unlinked *X EACCES

Parent directory of the object to be unlinked See Note EACCES

Object to be unlinked See Note EACCES

Note: The required authorization varies for each object type. See the DLTxxx commands in the iSeries Security

Reference

book for details.

Authorization Required for unlink() in the QDLS File System

 Object Referred to Authority Required errno

Each directory in the path name preceding the object to be unlinked *X EACCES

Parent directory of the object to be unlinked *X EACCES

Object to be unlinked *ALL EACCES

Authorization Required for unlink() in the QOPT File System

 Object Referred to Authority Required errno

Volume authorization list *CHANGE EACCES

Integrated File System APIs 625

Object Referred to Authority Required errno

Each directory in the path name preceding the object to be unlinked

if volume media format is Universal Disk Format (UDF)

*X EACCES

Parent directory of the object to be unlinked if volume media

format is Universal Disk Format (UDF)

*WX EACCES

Object to be unlinked if volume media format is Universal Disk

Format (UDF)

*W EACCES

Object to be unlinked and parent directories if volume media

format is not Universal Disk Format (UDF)

None None

Return Value

0 unlink() was successful.

-1 unlink() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If unlink() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

 The file may be checked out.

[ECONVERT]

 Conversion error.

626 iSeries: UNIX-Type -- Integrated File System APIs

One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EDATALINK]

 Object is a datalink object.

[EEXIST]

 File exists.

 The file specified already exists and the specified operation requires that it not exist.

 The named file, directory, or path already exists.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

Integrated File System APIs 627

The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

628 iSeries: UNIX-Type -- Integrated File System APIs

Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

 unlink() is not permitted on directories in this part of the directory hierarchy, or unlink() is

permitted but the user does not have sufficient authority.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

[EXDEV]

 Improper link.

 A link to a file on another file system was attempted.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

Integrated File System APIs 629

Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

– QOpenSys

– User-defined

– QNTC

630 iSeries: UNIX-Type -- Integrated File System APIs

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

– QFileSvr.400

2. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

The link to a file cannot be removed when a job has the file open.

The following object types cannot be unlinked when there are secondary threads active in the job:

*CFGL, *CNNL, *COSD, *CTLD, *DEVD, *IPXD, *LIND, *MODD, *NTBD, *NWID, *NWSD. The

operation will fail with error code [ENOTSAFE].

3. QDLS File System Differences

The link to a document cannot be removed when a job has the document open (returns the [EBUSY]

error).

4. QOPT File System Differences

The change and modification times of the parent directory are not updated.

The link to a file cannot be removed when a job has the file open.

5.

The link to a file cannot be removed if the file is a DataLink column in an SQL table and where a

row in that SQL table references this file.

Related Information

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “close()—Close File or Socket Descriptor” on page 46—Close File or Socket Descriptor

v “link()—Create Link to File” on page 210—Create Link to File

v “open()—Open File” on page 267—Open File

v “QlgOpen()—Open a File (using NLS-enabled path name)” on page 362—Open a File (using

NLS-enabled path name)

v “QlgRmdir()—Remove Directory (using NLS-enabled path name)” on page 381—Remove Directory

(using NLS-enabled path name)

v “QlgUnlink()—Remove Link to File (using NLS-enabled path name)” on page 394—Remove Link to

File (using NLS-enabled path name)

v “rmdir()—Remove Directory” on page 585—Remove Directory

Example

See Code disclaimer information for information pertaining to code examples.

The following example removes a link to a file:

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <stdio.h>

main() {

 int file_descriptor;

 char fn[]="unlink.file";

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 close(file_descriptor);

Integrated File System APIs 631

aboutapis.htm#CODEDISCLAIMER

if (unlink(fn) != 0)

 perror("unlink() error");

 }

}

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

utime()—Set File Access and Modification Times

 Syntax

 #include <utime.h>

 int utime(const char *path, const struct utimbuf *times);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 637.

The utime() function sets the access and modification times of path to the values in the utimbuf structure.

If times is a NULL pointer, the access and modification times are set to the current time. If the named file

is a symbolic link, utime() resolves the symbolic link.

If the file is checked out by another user (someone other than the user profile of the current job), utime()

fails with the [EBUSY] error.

When utime() completes successfully, it marks the change time of the file to be updated.

Parameters

path (Input) A pointer to the null-terminated path name of the file for which the times should be

changed.

 This parameter is assumed to be represented in the CCSID (coded character set identifier)

currently in effect for the job. If the CCSID of the job is 65535, this parameter is assumed to be

represented in the default CCSID of the job.

 See “QlgUtime()—Set File Access and Modification Times (using NLS-enabled path name)” on

page 395 for a description and an example of supplying the path in any CCSID.

times (Input) A pointer to a structure utimbuf, which contains the times to be updated.

 The structure utimbuf is defined according to the POSIX.1 definition as follows:

struct utimbuf {

 time_t actime; /* The new access time */

 time_t modtime; /* The new modification time */

 }

The time_t type gives the number of seconds since the Epoch.

632 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Authorities

Note: Adopted authority is not used.

Authorization Required for utime() (excluding QDLS)

 Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object when changing the time to a specified value Owner (See Note) EPERM

Object when changing the time to the current time Owner or *W (See

Note)

EACCES

Note: You do not need the listed authority if you have *ALLOBJ special authority.

Authorization Required for utime() in the QDLS File System

 Object Referred to Authority Required errno

Each directory in the path name preceding the object *X EACCES

Object when changing the time to a specified value *W EPERM

Object when changing the time to the current time *W EACCES

Return Value

0 utime() was successful. The file access and modification times are changed.

-1 utime() was not successful. The file times are not changed. The errno global variable is set to

indicate the error.

Error Conditions

If utime() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems. times is NULL and the job does not have authority to perform the

requested function.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

Integrated File System APIs 633

[EBADNAME]

 The object name specified is not correct.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[ECONVERT]

 Conversion error.

 One or more characters could not be converted from the source CCSID to the target CCSID.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFILECVT]

 File ID conversion of a directory failed.

 Try to run the Reclaim Storage (RCLSTG) command to recover from this error.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EISDIR]

 Specified target is a directory.

 The path specified named a directory where a file or object name was expected.

 The path name given is a directory.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

634 iSeries: UNIX-Type -- Integrated File System APIs

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ELOOP]

 A loop exists in the symbolic links.

 This error is issued if the number of symbolic links encountered is more than POSIX_SYMLOOP

(defined in the limits.h header file). Symbolic links are encountered during resolution of the

directory or path name.

[ENAMETOOLONG]

 A path name is too long.

 A path name is longer than PATH_MAX characters or some component of the name is longer

than NAME_MAX characters while _POSIX_NO_TRUNC is in effect. For symbolic links, the

length of the name string substituted for a symbolic link exceeds PATH_MAX. The PATH_MAX

and NAME_MAX values can be determined using the pathconf() function.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOENT]

 No such path or directory.

 The directory or a component of the path name specified does not exist.

 A named file or directory does not exist or is an empty string.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

Integrated File System APIs 635

No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTDIR]

 Not a directory.

 A component of the specified path name existed, but it was not a directory when a directory was

expected.

 Some component of the path name is not a directory, or is an empty string.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ENOTSUP]

 Operation not supported.

 The operation, though supported in general, is not supported for the requested object or the

requested arguments.

[EPERM]

 Operation not permitted.

 You must have appropriate privileges or be the owner of the object or other resource to do the

requested operation.

 times is not NULL and the thread does not have authority to perform the requested function.

[EROOBJ]

 Object is read only.

 You have attempted to update an object that can be read only.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

636 iSeries: UNIX-Type -- Integrated File System APIs

Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPFA0D4 E File system error occurred. Error number &1.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– Root

Integrated File System APIs 637

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. QSYS.LIB and Independent ASP QSYS.LIB File System Differences

These file systems do not support utime().

3. QDLS File System Differences

Changing the times of the /QDLS directory (the root folder) is not allowed.

4. QOPT File System Differences

The QOPT file system does not support utime().

5. QNTC File System Differences

The QNTC file system does not set the access and modification times of path. The values in the

utimbuf structure are ignored.

Related Information

v The <utime.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <limits.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “QlgUtime()—Set File Access and Modification Times (using NLS-enabled path name)” on page

395—Set File Access and Modification Times (using NLS-enabled path name)

Example

See Code disclaimer information for information pertaining to code examples.

The following example uses utime():

#include <utime.h>

#include <time.h>

#include <stdio.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

main() {

 int file_descriptor;

 char fn[]="utime.file";

 struct utimbuf ubuf;

 struct stat info;

 if ((file_descriptor = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

 close(file_descriptor);

 puts("before utime()");

 stat(fn,&info);

 printf(" utime.file modification time is %ld\n",

 info.st_mtime);

 ubuf.modtime = 0; /* set modification time to Epoch */

 time(&ubuf.actime);

 if (utime(fn, &ubuf) != 0)

 perror("utime() error");

 else {

 puts("after utime()");

638 iSeries: UNIX-Type -- Integrated File System APIs

aboutapis.htm#CODEDISCLAIMER

stat(fn,&info);

 printf(" utime.file modification time is %ld\n",

 info.st_mtime);

 }

 unlink(fn);

 }

}

Output:

before utime()

 utime.file modification time is 749323571

after utime()

 utime.file modification time is 0

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

write()—Write to Descriptor

 Syntax

 #include <unistd.h>

 ssize_t write

 (int file_descriptor, const void *buf, size_t nbyte);

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 646.

The write() function writes nbyte bytes from buf to the file or socket associated with file_descriptor. nbyte

should not be greater than INT_MAX (defined in the <limits.h> header file). If nbyte is zero, write()

simply returns a value of zero without attempting any other action.

If file_descriptor refers to a ″regular file″ (a stream file that can support positioning the file offset) or any

other type of file on which the job can do an lseek() operation, write() begins writing at the file offset

associated with file_descriptor, unless O_APPEND is set for the file (see below). A successful write()

increments the file offset by the number of bytes written. If the incremented file offset is greater than the

previous length of the file, the length of the file is set to the new file offset.

If O_APPEND (defined in the <fcntl.h> header file) is set for the file, write() sets the file offset to the end

of the file before writing the output.

If there is not enough room to write the requested number of bytes (for example, because there is not

enough room on the disk), the write() function writes as many bytes as the remaining space can hold.

If write() is successful and nbyte is greater than zero, the change and modification times for the file are

updated.

If file_descriptor refers to a descriptor obtained using the open() function with O_TEXTDATA specified, the

data is written to the file assuming it is in textual form. The maximum number of bytes on a single write

that can be supported for text data is 2,147,483,408 (2GB - 240) bytes. The data is converted from the code

page of the application, job, or system to the code page of the file as follows:

Integrated File System APIs 639

#TOP_OF_PAGE
unix.htm
aplist.htm

v When writing to a true stream file, any line-formatting characters (such as carriage return, tab, and

end-of-file) are just converted from one code page to another.

v When writing to a record file that is being used as a stream file:

– End-of-line characters are removed.

– Records are padded with blanks (for a source physical file member) or nulls (for a data physical file

member).

– Tab characters are replaced by the appropriate number of blanks to the next tab position.

There are some important considerations if O_CCSID was specified on the open().

v The write() will attempt to convert all of the data in the user’s buffer. Successfully converted data will

be written. Unconverted data is usually assumed to be a partial character. Partial characters will be

buffered internally and data from the next consecutive write will be appended to the buffered data. If

incorrect data is provided on a consecutive write, the write may fail with the [ECONVERT] error.

If an lseek() is performed, the file is closed, or the current job is ended, the buffered data will be

discarded. Discarded data will not be written to the file. See “lseek()—Set File Read/Write Offset” on

page 217—Set File Read/Write Offset for more information.

v Because of the above consideration and because of the possible expansion or contraction of converted

data, applications using the O_CCSID flag should avoid assumptions about data size and the current

file offset. For example, the user may supply a buffer to 100 bytes, but after an application has written

the buffer to a new file, the file size may be 50, 200, or something else, depending on the CCSIDs

involved.

If O_TEXTDATA was not specified on the open(), the data is written to the file without conversion. The

application is responsible for handling the data.

When file_descriptor refers to a socket, the write() function writes to the socket identified by the socket

descriptor.

Note: When the write completes successfully, the S_ISUID (set-user-ID) and S_ISGID (set-group-ID) bits

of the file mode will be cleared. If the write is unsuccessful, the bits are undefined.>

Write requests to a pipe or FIFO are handled the same as a regular file, with the following exceptions:

v The S_ISUID and S_ISGID file mode bits will not be cleared.

v There is no file offset associated with a pipe or FIFO. Each write request will append to the end of the

pipe or FIFO.

v Write requests of [PIPE_BUF] bytes or less will not be interleaved with data from other threads

performing writes on the same pipe or FIFO. Writes of greater than [PIPE_BUF] bytes may have data

interleaved on arbitrary boundaries with writes by other threads, whether or not the O_NONBLOCK

flag of the file status flags is set.

v If the O_NONBLOCK flag was not specified and the pipe or FIFO is full, the write request will block

the calling thread until the requested amount of data in nbyte is written.

v If the O_NONBLOCK flag was specified, then the following pertain to various write requests:

– The write() function will not block the calling thread.

– A write request for [PIPE_BUF] or fewer bytes will have the following effect:

If there is sufficient space available in the pipe or FIFO, write() will transfer all the data and return

the number of bytes requested. If there is not sufficient space in the pipe or FIFO, write() will

transfer no data, return -1, and set errno to [EAGAIN].

– A write request for more than [PIPE_BUF] bytes will cause one of the following:

640 iSeries: UNIX-Type -- Integrated File System APIs

- When at least one byte can be written, write() will transfer what it can and return the number of

bytes written.

- When no data can be written, write() will transfer no data, return -1, and set errno to [EAGAIN].

Parameters

file_descriptor

(Input) The descriptor of the file to which the data is to be written.

buf (Input) A pointer to a buffer containing the data to be written.

nbyte (Input) The size in bytes of the data to be written.

Authorities

No authorization is required.

Return Value

 value write() was successful. The value returned is the number of bytes actually written. This number is

less than or equal to nbyte.

-1 write() was not successful. The errno global variable is set to indicate the error.

Error Conditions

If write() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

 If writing to a socket, this error code indicates one of the following:

v The destination address specified is a broadcast address and the socket option SO_BROADCAST

was not set (with a setsockopt()).

v The process does not have the appropriate privileges to the destination address. This error code

can only be returned on a socket with an address family of AF_INET and a type of SOCK_DGRAM.

[EAGAIN]

 Operation would have caused the process to be suspended.

 If file_descriptor refers to a pipe or FIFO that has its O_NONBLOCK flag set, this error occurs if

the write() would have blocked the calling thread.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

Integrated File System APIs 641

A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file. Or this write() request was made to a file that was

only open for reading.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

 The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFBIG]

 Object is too large.

 The size of the object would exceed the system allowed maximum size or the process soft file size

limit.

 The file is a regular file, nbyte is greater than 0, and the starting offset is greater than or equal to 2

GB minus 2 bytes.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The file system that the file resides in does not support large files, and the starting offset exceeds

2GB minus 2 bytes.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

642 iSeries: UNIX-Type -- Integrated File System APIs

A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

Integrated File System APIs 643

[ENXIO]

 No such device or address.

[ERESTART]

 A system call was interrupted and may be restarted.

[ETRUNC]

 Data was truncated on an input, output, or update operation.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, thenretry the operation.

 When the descriptor refers to a socket, errno could indicate one of the following errors:

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

 This error code can only be returned on sockets that use a connectionless transport service.

[EDESTADDRREQ]

 Operation requires destination address.

 A destination address has not been associated with the socket pointed to by the fildes parameter.

This error code can only be returned on sockets that use a connectionless transport service.

[EHOSTDOWN]

 A remote host is not available.

 This error code can only be returned on sockets that use a connectionless transport service.

[EHOSTUNREACH]

 A route to the remote host is not available.

 This error code can only be returned on sockets that use a connectionless transport service.

[EINTR]

 Interrupted function call.

[EMSGSIZE]

 Message size out of range.

 The data to be sent could not be sent atomically because the size specified by nbyte is too large.

[ENETDOWN]

 The network is not currently available.

 This error code can only be returned on sockets that use a connectionless transport service.

[ENETUNREACH]

 Cannot reach the destination network.

644 iSeries: UNIX-Type -- Integrated File System APIs

This error code can only be returned on sockets that use a connectionless transport service.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

[ENOTCONN]

 Requested operation requires a connection.

 This error code can only be returned on sockets that use a connection-oriented transport service.

[EPIPE]

 Broken pipe.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EWOULDBLOCK]

 Operation would have caused the thread to be suspended.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

Integrated File System APIs 645

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.>

Error Messages

The following messages may be sent from this function:

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

Usage Notes

1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

2. QSYS.LIB and independent ASP QSYS.LIB File System Differences

This function will fail with error code [ENOTSAFE] if the object on which this function is operating is

a save file and multiple threads exist in the job.

If the file specified is a save file, only complete records will be written into the save file. A write()

request that does not provide enough data to completely fill a save file record will cause the partial

record’s data to be saved by the file system. The saved partial record will then be combined with

additional data on subsequent write()’s until a complete record may be written into the save file. If

the save file is closed prior to a saved partial record being written into the save file, then the saved

partial record is discarded, and the data in that partial record will need to be written again by the

application.

A successful write() updates the change, modification, and access times for a database member using

the normal rules that apply to database files. At most, the access time is updated once per day.

You should be careful when writing end-of-file characters in the QSYS.LIB and independent ASP

QSYS.LIB file systems. These file systems end-of-file characters are symbolic; that is, they are stored

outside the file member. However, some situations can result in actual, nonsymbolic end-of-file

characters being written to a member. These nonsymbolic end-of-file characters could cause some

tools or utilities to fail. For example:

646 iSeries: UNIX-Type -- Integrated File System APIs

v If you previously wrote an end-of-file character as the last character of a member, do not continue

to write data after that end-of-file character. Continuing to write data will cause a nonsymbolic

end-of-file to be written. As a result, a compile of the member could fail.

v If you previously wrote an end-of-file character as the last character of a member, do not write

other end-of-file characters preceding it in the file. This will cause a nonsymbolic end-of-file to be

written. As a result, a compile of the member could fail.

v If you previously used the integrated file system interface to manipulate a member that contains an

end-of-file character, avoid using other interfaces (such as the Source Entry Utility or database reads

and writes) to manipulate the member. If you use other interfaces after using the integrated file

system interface, the end-of-file information will be lost.
3. QOPT File System Differences

The change and modification times of the file are updated when the file is closed.

When writing to files on volumes formatted in Universal Disk Format (UDF), byte locks on the range

being written are ignored.

4. Network File System Differences

Local access to remote files through the Network File System may produce unexpected results due to

conditions at the server. Once a file is open, subsequent requests to perform operations on the file can

fail because file attributes are checked at the server on each request. If permissions on the file are

made more restrictive at the server or the file is unlinked or made unavailable by the server for

another client, your operation on an open file descriptor will fail when the local Network File System

receives these updates. The local Network File System also impacts operations that retrieve file

attributes. Recent changes at the server may not be available at your client yet, and old values may be

returned from operations (several options on the Add Mounted File System (ADDMFS) command

determine the time between refresh operations of local data).

Reading and writing to files with the Network File System relies on byte-range locking to guarantee

data integrity. To prevent data inconsistency, use the fcntl() API to get and release these locks.

5. QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If a larger buffer is passed, the error EINVAL will be

received.

6. Sockets Usage Notes

a. write() only works with sockets on which a connect() has been issued, since it does not allow the

caller to specify a destination address.

b. To broadcast on an AF_INET socket, the socket option SO_BROADCAST must be set (with a

setsockopt()).

c. When using a connection-oriented transport service, all errors except [EUNATCH] and [EUNKNOWN]

are mapped to [EPIPE] on an output operation when either of the following occurs:

v A connection that is in progress is unsuccessful.

v An established connection is broken.

To get the actual error, use getsockopt() with the SO_ERROR option, or perform an input operation

(for example, read()).
7. For the file systems that do not support large files, write() will return [EINVAL] if the starting offset

exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do

support large files, write() will return [EFBIG] if the starting offset exceeds 2GB minus 2 bytes and the

file was not opened for large file access.

8. Using this function successfully on the /dev/null or /dev/zero character special file results in a

return value of the total number of bytes requested to be written. No data is written to the character

special file. In addition, the change and modification times for the file are updated.

9. If the write exceeds the process soft file size limit, signal SIFXFSZ is issued.

Integrated File System APIs 647

Related Information

v The <fcntl.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

v “dup()—Duplicate Open File Descriptor” on page 76—Duplicate Open File Descriptor

v “dup2()—Duplicate Open File Descriptor to Another Descriptor” on page 79—Duplicate Open File

Descriptor to Another Descriptor

v

“fclear()—Write (Binary Zeros) to Descriptor” on page 108—Write (Binary Zeros) to Descriptor

v “fclear64()—-Write (Binary Zeros) to Descriptor (Large File Enabled)” on page 114—Write (Binary

Zeros) to Descriptor (Large File Enabled)

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 193—Perform I/O Control Request

v “lseek()—Set File Read/Write Offset” on page 217—Set File Read/Write Offset

v “open()—Open File” on page 267—Open File

v “pread()—Read from Descriptor with Offset” on page 305—Read from Descriptor with Offset

v “pread64()—Read from Descriptor with Offset (large file enabled)” on page 311—Read from Descriptor

with Offset (large file enabled)

v “pwrite()—Write to Descriptor with Offset” on page 313—Write to Descriptor with Offset

v “pwrite64()—Write to Descriptor with Offset (large file enabled)” on page 320—Write to Descriptor

with Offset (large file enabled)

v “read()—Read from Descriptor” on page 549—Read from Descriptor

v “readv()—Read from Descriptor Using Multiple Buffers” on page 575—Read from Descriptor Using

Multiple Buffers

v send()—Send Data

v sendmsg()—Send Data or Descriptors or Both

v sendto()—Send Data

v “writev()—Write to Descriptor Using Multiple Buffers” on page 649—Write to Descriptor Using

Multiple Buffers

Example

See Code disclaimer information for information pertaining to code examples.

The following example writes a specific number of bytes to a file:

#include <unistd.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <stdio.h>

#include <stdlib.h>

#define mega_string_len 1000000

main() {

 char *mega_string;

 int file_descriptor;

 int ret;

 char fn[]="write.file";

 if ((mega_string = (char*) malloc(mega_string_len)) == NULL)

 perror("malloc() error");

 else if ((file_descriptor = creat(fn, S_IWUSR)) < 0)

 perror("creat() error");

 else {

648 iSeries: UNIX-Type -- Integrated File System APIs

send.htm
sendms.htm
sendto.htm
aboutapis.htm#CODEDISCLAIMER

memset(mega_string, ’0’, mega_string_len);

 if ((ret = write(file_descriptor, mega_string, mega_string_len)) == -1)

 perror("write() error");

 else printf("write() wrote %d bytes\n", ret);

 if (close(file_descriptor)!= 0)

 perror("close() error");

 if (unlink(fn)!= 0)

 perror("unlink() error");

 }

 free(mega_string);

}

Output:

write() wrote 1000000 bytes

API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

writev()—Write to Descriptor Using Multiple Buffers

 Syntax

 #include <sys/types.h>

 #include <sys/uio.h>

 int writev(int descriptor,

 struct iovec *io_vector[],

 int vector_length)

 Service Program Name: QP0LLIB1

 Default Public Authority: *USE

 Threadsafe: Conditional; see “Usage Notes” on page 655.

The writev() function is used to write data to a file or socket descriptor. writev() provides a way for the

data that is going to be written to be stored in several different buffers (scatter/gather I/O).

Note: When the write completes successfully, the S_ISUID (set-user-ID) and S_ISGID (set-group-ID) bits

of the file mode will be cleared. If the write is unsuccessful, the bits are undefined.

See “write()—Write to Descriptor” on page 639 for more information related to writing to a descriptor.

Parameters

descriptor

(Input) The descriptor to which the data is to be written. The descriptor refers to either a file or a

socket.

io_vector[]

(Input) The pointer to an array of type struct iovec. struct iovec contains a sequence of pointers

to buffers in which the data to be written is stored. The structure pointed to by the io_vector

parameter is defined in <sys/uio.h>.

Integrated File System APIs 649

#TOP_OF_PAGE
unix.htm
aplist.htm

struct iovec {

 void *iov_base;

 size_t iov_len;

 }

iov_base and iov_len are the only fields in iovec used by sockets. iov_base contains the pointer to a

buffer and iov_len contains the buffer length. The rest of the fields are reserved.

vector_length

(Input) The number of entries in io_vector.

Authorities

No authorization is required.

Return Value

writev() returns an integer. Possible values are:

v -1 (unsuccessful)

v n (successful), where n is the number of bytes written.

Error Conditions

If writev() is not successful, errno usually indicates one of the following errors. Under some conditions,

errno could indicate an error other than those listed here.

[EACCES]

 Permission denied.

 An attempt was made to access an object in a way forbidden by its object access permissions.

 The thread does not have access to the specified file, directory, component, or path.

 If you are accessing a remote file through the Network File System, update operations to file

permissions at the server are not reflected at the client until updates to data that is stored locally

by the Network File System take place. (Several options on the Add Mounted File System

(ADDMFS) command determine the time between refresh operations of local data.) Access to a

remote file may also fail due to different mappings of user IDs (UID) or group IDs (GID) on the

local and remote systems.

 If writing to a socket, this error code indicates one of the following:

v The destination address specified is a broadcast address and the socket option SO_BROADCAST

was not set (with a setsockopt()).

v The process does not have the appropriate privileges to the destination address. This error code

can only be returned on a socket with an address family of AF_INET and a type of SOCK_DGRAM.

[EAGAIN]

 Operation would have caused the process to be suspended.

[EBADF]

 Descriptor not valid.

 A file descriptor argument was out of range, referred to a file that was not open, or a read or

write request was made to a file that is not open for that operation.

 A given file descriptor or directory pointer is not valid for this operation. The specified descriptor

is incorrect, or does not refer to an open file. Or this writev() request was made to a file that was

only open for reading.

[EBADFID]

 A file ID could not be assigned when linking an object to a directory.

650 iSeries: UNIX-Type -- Integrated File System APIs

The file ID table is missing or damaged.

 To recover from this error, run the Reclaim Storage (RCLSTG) command as soon as possible.

[EBUSY]

 Resource busy.

 An attempt was made to use a system resource that is not available at this time.

[EDAMAGE]

 A damaged object was encountered.

 A referenced object is damaged. The object cannot be used.

[EFAULT]

 The address used for an argument is not correct.

 In attempting to use an argument in a call, the system detected an address that is not valid.

 While attempting to access a parameter passed to this function, the system detected an address

that is not valid.

[EFBIG]

 Object is too large.

 The size of the object would exceed the system allowed maximum size or the process soft file size

limit.

 The file is a regular file, nbyte is greater than 0, and the starting offset is greater than or equal to

2GB minus 2 bytes.

[EINTR]

 Interrupted function call.

[EINVAL]

 The value specified for the argument is not correct.

 A function was passed incorrect argument values, or an operation was attempted on an object

and the operation specified is not supported for that type of object.

 An argument value is not valid, out of range, or NULL.

 The file resides in a file system that does not support large files, and the starting offset exceeds

2GB minus 2 bytes.

[EIO]

 Input/output error.

 A physical I/O error occurred.

 A referenced object may be damaged.

[EJRNDAMAGE]

 Journal damaged.

 A journal or all of the journal’s attached journal receivers are damaged, or the journal sequence

number has exceeded the maximum value allowed. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNENTTOOLONG]

 Entry too large to send.

 The journal entry generated by this operation is too large to send to the journal.

Integrated File System APIs 651

[EJRNINACTIVE]

 Journal inactive.

 The journaling state for the journal is *INACTIVE. This error occurs during operations that were

attempting to send an entry to the journal.

[EJRNRCVSPC]

 Journal space or system storage error.

 The attached journal receiver does not have space for the entry because the storage limit has been

exceeded for the system, the object, the user profile, or the group profile. This error occurs during

operations that were attempting to send an entry to the journal.

[ENEWJRN]

 New journal is needed.

 The journal was not completely created, or an attempt to delete it did not complete successfully.

This error occurs during operations that were attempting to start or end journaling, or were

attempting to send an entry to the journal.

[ENEWJRNRCV]

 New journal receiver is needed.

 A new journal receiver must be attached to the journal before entries can be journaled. This error

occurs during operations that were attempting to send an entry to the journal.

[ENOMEM]

 Storage allocation request failed.

 A function needed to allocate storage, but no storage is available.

 There is not enough memory to perform the requested function.

[ENOSPC]

 No space available.

 The requested operations required additional space on the device and there is no space left. This

could also be caused by exceeding the user profile storage limit when creating or transferring

ownership of an object.

 Insufficient space remains to hold the intended file, directory, or link.

[ENOTAVAIL]

 Independent Auxiliary Storage Pool (ASP) is not available.

 The independent ASP is in Vary Configuration (VRYCFG), or Reclaim Storage (RCLSTG)

processing.

 To recover from this error, wait until processing has completed for the independent ASP.

[ENOTSAFE]

 Function is not allowed in a job that is running with multiple threads.

[ERESTART]

 A system call was interrupted and may be restarted.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

652 iSeries: UNIX-Type -- Integrated File System APIs

[ETRUNC]

 Data was truncated on an input, output, or update operation.

[EUNKNOWN]

 Unknown system state.

 The operation failed because of an unknown system state. See any messages in the job log and

correct any errors that are indicated, then retry the operation.

 When the descriptor refers to a socket, errno could indicate one of the following errors:

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

 This error code can only be returned on sockets that use a connectionless transport service.

[EDESTADDRREQ]

 Operation requires destination address.

 A destination address has not been associated with the socket pointed to by the fildes parameter.

This error code can only be returned on sockets that use a connectionless transport service.

[EHOSTDOWN]

 A remote host is not available.

 This error code can only be returned on sockets that use a connectionless transport service.

[EHOSTUNREACH]

 A route to the remote host is not available.

 This error code can only be returned on sockets that use a connectionless transport service.

[EINTR]

 Interrupted function call.

[EMSGSIZE]

 Message size out of range.

 The data to be sent could not be sent atomically because the size specified by nbyte is too large.

[ENETDOWN]

 The network is not currently available.

 This error code can only be returned on sockets that use a connectionless transport service.

[ENETUNREACH]

 Cannot reach the destination network.

 This error code can only be returned on sockets that use a connectionless transport service.

[ENOBUFS]

 There is not enough buffer space for the requested operation.

[ENOTCONN]

 Requested operation requires a connection.

 This error code can only be returned on sockets that use a connection-oriented transport service.

[EPIPE]

 Broken pipe.

Integrated File System APIs 653

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

[EWOULDBLOCK]

 Operation would have caused the thread to be suspended.

 If interaction with a file server is required to access the object, errno could indicate one of the following

errors:

[EADDRNOTAVAIL]

 Address not available.

[ECONNABORTED]

 Connection ended abnormally.

[ECONNREFUSED]

 The destination socket refused an attempted connect operation.

[ECONNRESET]

 A connection with a remote socket was reset by that socket.

[EHOSTDOWN]

 A remote host is not available.

[EHOSTUNREACH]

 A route to the remote host is not available.

[ENETDOWN]

 The network is not currently available.

[ENETRESET]

 A socket is connected to a host that is no longer available.

[ENETUNREACH]

 Cannot reach the destination network.

[ESTALE]

 File or object handle rejected by server.

 If you are accessing a remote file through the Network File System, the file may have been

deleted at the server.

[ETIMEDOUT]

 A remote host did not respond within the timeout period.

[EUNATCH]

 The protocol required to support the specified address family is not available at this time.

Error Messages

 Message ID Error Message Text

CPE3418 E Possible APAR condition or hardware failure.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

CPFA081 E Unable to set return value or error code.

CPFA0D4 E File system error occurred. Error number &1.

654 iSeries: UNIX-Type -- Integrated File System APIs

Usage Notes

 1. This function will fail with error code [ENOTSAFE] when all the following conditions are true:

v Where multiple threads exist in the job.

v The object on which this function is operating resides in a file system that is not threadsafe. Only

the following file systems are threadsafe for this function:

– ″Root″ (/)

– QOpenSys

– User-defined

– QNTC

– QSYS.LIB

– Independent ASP QSYS.LIB

– QOPT

–

Network File System

–

QFileSvr.400

 2. writev() only works with sockets on which a connect() has been issued, since the call does not allow

the caller to specify a destination address.

 3. writev() is an atomic operation on sockets of type SOCK_DGRAM and SOCK_RAW in that it produces one

packet of data every time it is issued. For example, a writev() to a datagram socket results in a single

datagram.

 4. To broadcast on an AF_INET socket, the socket option SO_BROADCAST must be set (with a setsockopt()).

 5. When using a connection-oriented transport service, all errors except [EUNATCH] and [EUNKNOWN] are

mapped to [EPIPE] on an output operation when either of the following occurs:

v A connection that is in progress is unsuccessful.

v An established connection is broken.
To get the actual error, use getsockopt() with the SO_ERROR option, or perform an input operation (for

example, read()).

 6. For the file systems that do not support large files, writev() will return [EINVAL] if the starting

offset exceeds 2GB minus 2 bytes, regardless of how the file was opened. For the file systems that do

support large files, writev() will return [EFBIG] if the starting offset exceeds 2GB minus 2 bytes and

the file was not opened for large file access.

 7. QFileSvr.400 File System Differences

The largest buffer size allowed is 16 megabytes. If a larger buffer is passed, the error EINVAL will be

received.

 8. QOPT File System Differences

When writing to files on volumes formatted in Universal Disk Format (UDF), byte locks on the

range being written are ignored.

 9. Using this function successfully on the dev/null or /dev/zero character special file results in a

return value of the total number of bytes requested to be written. No data is written to the character

special file. In addition, the change and modification times for the file are updated.

10. If the write exceeds the process soft file size limit, signal SIFXFSZ is issued.

Related Information

v The <fcntl.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v The <unistd.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v “creat()—Create or Rewrite File” on page 57—Create or Rewrite File

Integrated File System APIs 655

v “dup()—Duplicate Open File Descriptor” on page 76—Duplicate Open File Descriptor

v “dup2()—Duplicate Open File Descriptor to Another Descriptor” on page 79—Duplicate Open File

Descriptor to Another Descriptor

v

“fclear()—Write (Binary Zeros) to Descriptor” on page 108—Write (Binary Zeros) to Descriptor

v “fclear64()—-Write (Binary Zeros) to Descriptor (Large File Enabled)” on page 114—Write (Binary

Zeros) to Descriptor (Large File Enabled)

v “fcntl()—Perform File Control Command” on page 115—Perform File Control Command

v “ioctl()—Perform I/O Control Request” on page 193—Perform I/O Control Request

v “lseek()—Set File Read/Write Offset” on page 217—Set File Read/Write Offset

v “open()—Open File” on page 267—Open File

v “read()—Read from Descriptor” on page 549—Read from Descriptor

v “readv()—Read from Descriptor Using Multiple Buffers” on page 575—Read from Descriptor Using

Multiple Buffers

v send()—Send Data

v sendmsg()—Send Data or Descriptors or Both

v sendto()—Send Data

v “write()—Write to Descriptor” on page 639—Write to Descriptor

 API introduced: V3R1

 Top | UNIX-Type APIs | APIs by category

Exit Programs

These are the Exit Programs for this category.

Integrated File System Scan on Close Exit Program

 Required Parameter Group:

1 Integrated file system close exit information

Input Char(*)

2 Status information

Output Char(*)
 QSYSINC Member Name: QP0LSCAN

 Exit Point Name: QIBM_QP0L_SCAN_CLOSE

 Exit Point Format Name: SCCL0100

The integrated file system scan on close exit program is called to do scan processing when an integrated

file system object is closed under the following conditions.

The exit program will not be called if:

v No exit programs exist for this exit point.

v -or- the Scan file systems (QSCANFS) system value has *NONE specified so that no file systems will be

scanned.

656 iSeries: UNIX-Type -- Integrated File System APIs

send.htm
sendms.htm
sendto.htm
#TOP_OF_PAGE
unix.htm
aplist.htm

v -or- the object was marked to not be scanned and a scan is not required because the object was

restored.

v -or- the object being closed was opened for write access only.

v -or- the object is the storage which was allocated for Integrated xSeries servers to use as virtual disk

drives for the xSeries servers. From the perspective of the iSeries server, virtual drives appear as byte

stream files within the integrated file system.

v -or- the object is not being accessed from a file server, and the Scan file systems control

(QSCANFSCTL) system value has *FSVRONLY specified so that only file server accesses are scanned.

v -or- the object is in a *TYPE1 directory.

If the previous conditions have been met, the exit program will be called if:

v The object has never been scanned.

v -or- the object’s data has been modified since the last time it was scanned. Data modifications include

writes, memory map writes, truncates or clears.

v -or- the CCSID of the object has been modified since the last time it was scanned.

v -or- the To CCSID specified on the open request associated with this close is different than the last two

To CCSIDs that were specified and previously scanned for this object.

v -or- the object was opened in binary in association with this close request, and it has not previously

been scanned in binary.

v -or- there have been updates to the scanning software and the object was not marked to be scanned

only if the object changed. Updates to scanning software occur by either registering additional exit

programs for the scan-related exit points, or by calling Change Scan Signature (QP0LCHSG) API to

update the scan key signature associated with existing exit program scan keys.

Note: If there are multiple descriptors referencing the same open instance of the object, then the exit

program will only be called for the close request on the last descriptor. Additionally, the From CCSID of

the object will be the value it is at the point in time of the close operation while the To CCSID will be

reflective of the value specified at open.

For more information on close processing, see “close()—Close File or Socket Descriptor” on page 46. For

more information on the scan-related attributes which can be set for objects, see “Qp0lSetAttr()—Set

Attributes” on page 509 For more information on the integrated file system scan processing and various

options, see the Integrated file system information in the Files and file systems topic.

The exit point supports a maximum of 50 exit programs. For information about adding an exit program

to an exit point, see the Registration Facility.

Note: If the integrated file system exit program returns any error messages or if any errors are received

when attempting to call the exit program, the object will be treated as if the program was not called and

the object was not scanned. Therefore, the close operation will continue unless the Scan file systems

control (QSCANFSCTL) system value has *ERRFAIL specified which will cause the operation to fail. If a

scan detects a failure, the close operation will still proceed and complete to release the resources. If the

Scan file systems control (QSCANFSCTL) system value has *NOFAILCLO specified, the close operation

will not return any failure indication. If *NOFAILCLO is not specified, the close operation will fail with

error code [ESCANFAILURE].

Restrictions

v Only objects of type *STMF that are in *TYPE2 directories in the ″root″ (/), QOpenSys, and

user-defined file systems are scanned. For information on *TYPE2 directories, see the Convert

Directory(CVTDIR) command and the Integrated file system information in the Files and file systems

topic.

v The exit programs will not be called during an IPL or the vary-on of an independent Auxiliary Storage

Pool (ASP).

Integrated File System APIs 657

chgscansgn.htm
reg1.htm

v The exit programs will not be called when objects are being closed as a part of a process end request.

v During the call to the exit programs, the ASP group associated with the thread will not be able to be

changed.

v The exit programs must exist in the system ASP or in a basic user ASP. They cannot exist in an

independent ASP. Any ASP group could be associated with the thread when the exit program is called.

If the exit program is not found, the object will be treated as if the program was not called and the

object was not scanned. Therefore, the close operation will continue unless the Scan file systems control

(QSCANFSCTL) system value has *ERRFAIL specified which will cause the operation to fail. If the

Scan file systems control (QSCANFSCTL) system value has *NOFAILCLO specified, the close operation

will not return any failure indication. If *NOFAILCLO is not specified, the close operation will fail with

error code [ESCANFAILURE].

v The exit programs could be called from an exit point within a multi-threaded job and must be written

to be threadsafe.

Authorities and Locks

User Profile Authority

*ALLOBJ (all object) and *SECADM (security administrator) special authorities to add exit

programs to the registration facility

 *ALLOBJ and *SECADM special authorities to remove exit programs from the registration facility

Program Data

When you register the exit program, the following program data must be provided. The following table

shows the structure of the program data information. For a description of the fields in this format, see

“Field Descriptions” on page 659. This structure is defined in header file qp0lscan.h as data type

Qp0l_Scan_Program_Data_t.

 Offset

Type Field Dec Hex

0 0 Char(10) User profile

10 A Char(20) Scan key

30 1E Char(12) Scan key signature

Required Parameter Group

Integrated file system close exit information

INPUT; CHAR(*)

 Information that is needed by the exit program to do its object scan processing. For details, see

“Format of Integrated File System Close Exit Information (Input).”

Status information

OUTPUT; CHAR(*)

 Information that is returned by the exit program indicating what scan processing has occurred.

For details, see “Format of Status Information (Output)” on page 659.

Format of Integrated File System Close Exit Information (Input)

The following table shows the structure of the integrated file system close exit information for exit point

format SCCL0100. For a description of the fields in this format, see “Field Descriptions” on page 659. This

structure is defined in header file qp0lscan.h as data type Qp0l_Scan_Exit_Information_t.

658 iSeries: UNIX-Type -- Integrated File System APIs

Offset

Type Field Dec Hex

0 0 BINARY(4) Integrated file system close exit information length

4 4 CHAR(20) Exit point name

24 18 CHAR(8) Exit point format name

32 20 BINARY(4) Length of status information

32 20 BINARY(4) Scan descriptor

36 24 BINARY(4), UNSIGNED From CCSID

40 28 BINARY(4), UNSIGNED To CCSID

44 2C BINARY(4), UNSIGNED Last failure CCSID

48 30 BINARY(4) Oflags

52 34 CHAR(16) File ID

68 44 CHAR(10) Object type

78 4E CHAR(1) File system

79 4F CHAR(1) Additional call

80 50 CHAR(1) Object modified since last scan

81 51 CHAR(1) Scan signatures different

82 52 CHAR(1) Call after previous failure

Format of Status Information (Output)

The following table shows the structure of the status information. For a description of the fields in this

format, see “Field Descriptions.” This structure is defined in header file qp0lscan.h as data type

Qp0l_Scan_Status_Information_t.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Close scan status information length

4 4 BINARY(4), UNSIGNED Failing CCSID

8 8 CHAR(1) Update object scan information

9 9 CHAR(1) Scan status

Field Descriptions

Additional call. Whether the exit program was called an additional time because another “Integrated File

System Scan on Close Exit Program” on page 656 that was called has indicated the object was modified.

See the scan status field for this modify indication. The possible values are:

 QP0L_SCAN_CALL_FIRST (x’00’) The first call to the exit program.

QP0L_SCAN_CALL_ADDL (x’01’) An additional call to the exit program because another exit program

has indicated the object was modified.

Call after previous failure. Whether the exit program was called after the object had previously been

scanned and a failure detected. The possible values are:

 QP0L_SCAN_NO (x’00’) This is not a call after a previous scan failure.

Integrated File System APIs 659

QP0L_SCAN_YES (x’01’) This is a call after a previous scan failure. The Last failure CCSID field

in conjunction with the From CCSID indicate the CCSID or binary

indication of the failing scan request.

Note: If the Failing CCSID and From CCSID values match, it is the

same as if the object would have been opened in binary.

Close scan status information length. The length in bytes of all data returned from the integrated file

system close exit program. The only valid value for this field is 10. If anything else is specified, the object

will be treated as if the program was not called and the object was not scanned. Therefore, the close

operation will continue unless the Scan file systems control (QSCANFSCTL) system value has *ERRFAIL

specified which will cause the operation to fail. If the Scan file systems control (QSCANFSCTL) system

value has *NOFAILCLO specified, the close operation will not return any failure indication. If

*NOFAILCLO is not specified, the close operation will fail with error code [ESCANFAILURE].

Exit point format name. The format name for the integrated file system scan on close exit program. The

possible format name follows:

 SCCL0100 The format name that is used while an object is being closed.

Exit point name. The name of the exit point that is calling the exit program.

Failing CCSID. This field only has meaning if the Call after previous failure field had a value of

QP0L_SCAN_YES when the exit program was called, and if the Update object scan information field has a

value of QP0L_SCAN_YES, and if the Scan status field has a value of QP0L_SCAN_FAILURE or

QP0L_SCAN_FAIL_WANT_MODIFY. When the Call after previous failure had a value of QP0L_SCAN_YES,

then the scan exit program should verify that the object does not have any problems when scanned using

both the To CCSID and Last failure CCSID values. If either scan fails, then this field should be filled in

with the failing CCSID which will be stored as part of the object scan information with the failure

indication. If the value of this field does not match either of the two input CCSID fields, then the To

CCSID value will be used. If more than one exit program indicates a failure, the failing CCSID value

which will be preserved is from the last exit program which scanned the object and indicated a failure.

For more information on CCSIDs and conversions, see “Coded Character Set Identifier (CCSID)

Information” on page 674 in “Integrated File System Scan on Open Exit Program” on page 666.

Note: If the Failing CCSID and From CCSID values match, it is the same as if the object would have been

opened in binary.

File ID. A unique identifier associated with the object that is being closed. A file ID can be used with

“Qp0lGetPathFromFileID()—Get Path Name of Object from Its File ID” on page 446, to retrieve an

object’s path name.

File system. The file system that the object being scanned is in. The possible value follows:

 QP0L_SCAN_ROOT_QOPENSYS_UDFS (x’00’) The object is in the ″root″ (/), QOpenSys, or a user-defined file

system.

From CCSID. The CCSID value that the data is in on the system itself at the point in time of the close

operation. Therefore, this will be the CCSID in which data is to be returned (when reading from the

object using the Scan descriptor), or the CCSID in which data is being supplied (when writing to the object

using the Scan descriptor). For more information on CCSIDs and conversions, see “Coded Character Set

Identifier (CCSID) Information” on page 674 in “Integrated File System Scan on Open Exit Program” on

page 666.

660 iSeries: UNIX-Type -- Integrated File System APIs

Integrated file system close exit information length. The length in bytes of all data passed to the

integrated file system close exit program.

Last failure CCSID. The CCSID value that was specified when this object was last scanned and indicated

a scan failure. This field only has meaning if the Call after previous failure field has a value of

QP0L_SCAN_YES. Therefore, this would have been the CCSID in which data was to have been returned

(when the user was to be reading from the object), or the CCSID in which data was to have been

supplied (when the user was to be writing to the object). However, that request failed for this CCSID.

This is now being returned so that this CCSID can also be scanned, if it is different than the To CCSID

value. For more information on CCSIDs and conversions, see “Coded Character Set Identifier (CCSID)

Information” on page 674 in “Integrated File System Scan on Open Exit Program” on page 666.

Note: If the Last failure CCSID and From CCSID values match, it is the same as if the object would have

been opened in binary.

Length of status information. The length in bytes allocated for the returned status information.

Object modified since last scan. Whether the exit program was called because the objects data or CCSID

has been modified since it was last scanned. Examples of object data or CCSID modifications are: writing

to the object, directly or through memory mapping; truncating the object; clearing the object; and

changing the objects CCSID attribute, etc.. The possible values are:

 QP0L_SCAN_NO (x’00’) The object has not been modified since it was last scanned.

QP0L_SCAN_YES (x’01’) The object has been modified since it was last scanned.

Object type. The object type. See Control Language (CL) information in the iSeries Information Center for

descriptions of all iSeries object types.

Oflags. The oflags that were specified on the open request associated with this close request with the

following exceptions. For a description of all possible oflag values, see “open()—Open File” on page 267

v If the oflags do not contain write access, the system will attempt to upgrade the access intent to

include write, unless the Scan file systems control (QSCANFSCTL) system value has *NOWRTUPG

specified or the object is not eligible for write access. If the upgrade is not attempted or is unsuccessful,

the access intent matches the users invocation. If it is successful, the write access intent is included in

this oflag information. This upgrade would be useful if the exit program wanted to modify the object

to correct any problems found while scanning.

v The CCSID related flags will have been removed. This includes O_TEXTDATA, O_CCSID,

O_CODEPAGE, and O_TEXT_CREATE.

v The synchronization flags will have been removed. This includes O_SYNC, O_DSYNC, and O_RSYNC.

Scan descriptor. A descriptor representing the object that is being closed. This scan descriptor has the

following characteristics:

v It can be used to do any read processing on the object being processed. Reads using this descriptor will

not update the last access timestamp information for the object.

v It can be used to do any write processing on the object being processed. If write processing is done by

the exit program, the exit program should indicate QP0L_SCAN_MODIFY in the Scan status field. If it

does not, the object’s scan information will be cleared as if the objects data has been modified.

v It cannot be used to memory map the object, see “mmap()—Memory Map a File” on page 249

v It cannot be used to close the object using “close()—Close File or Socket Descriptor” on page 46. When

control returns from the exit program, the system code will do the close of this scan descriptor. The

system will wait on this close attempt until all accesses to this object are closed. Therefore, if the exit

program uses givedescriptor()—Pass Descriptor Access to Another Job and takedescriptor()—Receive

Socket Access from Another Job or sendmsg()—Send Data or Descriptors or Both and

Integrated File System APIs 661

gvsoc.htm
tksoc.htm
tksoc.htm
sendms.htm

recvmsg()—Receive Data or Descriptors or Both to pass the descriptor to another job, the job which

used takedescriptor() or recvmsg() must close that descriptor when it is done processing, else the

system will be waiting for that close.

v “dup()—Duplicate Open File Descriptor” on page 76 and “fcntl()—Perform File Control Command” on

page 115 with F_DUPFD cannot be used to duplicate the scan descriptor. This is so the system has tight

control of the closing of this scan descriptor.

v Data read using this descriptor will be in the From CCSID format. If any data is written using this

descriptor, it must be in the From CCSID format. For more information on CCSIDs see “Coded

Character Set Identifier (CCSID) Information” on page 674 in “Integrated File System Scan on Open

Exit Program” on page 666.

v It will be a different descriptor than was specified on the close request.

v The oflags for this descriptor are what are passed on this interface.

v It is scoped to the process. However, one can use givedescriptor() and takedescriptor() or sendmsg()

and recvmsg() to pass this descriptor to another job or process. Again, that process must complete its

use of that descriptor before control is returned to the system from the exit program because the

system will close the descriptor when exit program processing is complete. The system will wait on

this close attempt until all accesses to this object are closed.

v No other threads in the process, other than those created by the exit program, will be able to access

this descriptor.

v It only lives for the life of the exit program invocation. That is, once control is returned from the exit

program, it will be destroyed. Therefore, it cannot be stored for later use.

Scan key. The scan key associated with this exit program. The first character of this scan key can not be

hex zeros or a blank. For more information on the scan key, see “Scan Key List and Scan Key Signatures”

on page 673 in “Integrated File System Scan on Open Exit Program” on page 666.

Scan key signature. The scan key signature associated with the specified scan key. For more information

on the scan key signature, see “Scan Key List and Scan Key Signatures” on page 673 in “Integrated File

System Scan on Open Exit Program” on page 666. If the specified scan key already exists in the scan key

list, and the exit program is being added to replace an existing exit program entry, then the specified scan

key signature must match the scan key signature associated with the scan key in the scan key list. If the

specified scan key already exists in the scan key list, and the exit program is not being added to replace

an existing exit program entry, then the specified scan key signature must match the scan key signature

associated with the scan key in the scan key list unless the scan key signature associated with the scan

key in the scan key list is all hex zeros. More than one exit program, including exit programs associated

with the “Integrated File System Scan on Open Exit Program” on page 666, can have the same scan key

signature.

Scan signatures different. Whether the exit program was called because the object’s current scan key

signature is different than the appropriate associated signature. When an object is in an independent ASP

group, the object scan signature is compared to the associated independent ASP group scan signature.

When an object is not in an independent ASP group, the object scan signature is compared to the global

scan signature. The possible values are:

 QP0L_SCAN_NO (x’00’) The compared signatures are not different.

QP0L_SCAN_YES (x’01’) The compared signatures are different.

Scan status. The status of the scan processing. This field is only used if the Update object scan information

field value specifies a value of QP0L_SCAN_YES. The possible values are:

 QP0L_SCAN_SUCCESS (x’01’) The object was scanned and has no failures. If this indicator is

returned by all exit programs that were called, the object will be

marked as scan successful, and the close operation completes with no

errors.

662 iSeries: UNIX-Type -- Integrated File System APIs

recvms.htm
gvsoc.htm
tksoc.htm
sendms.htm
recvms.htm

QP0L_SCAN_FAILURE (x’02’) The object was scanned and has at least one failure. If this indicator

is returned by at least one of the exit programs that was called, the

object will be marked as scan failure, and the close operation fails.

Additionally, only the CCSID or binary indication related to this

failing request will be kept in the object scan information, and the

rest of the historical CCSID or binary information will be cleared.

Once an object has been marked as a failure under this condition, it

will not be scanned again until the object’s scan signature is different

than the global scan key signature or independent ASP group scan

key signature as appropriate. Therefore, subsequent requests to work

with the object will fail with a scan failure indication. Examples of

requests which will fail are opening the object, changing the CCSID

of the object, copying the object etc..

QP0L_SCAN_FAIL_WANT_MODIFY (x’03’) The object was scanned and has at least one failure. However, the

exit program wanted to modify the file to correct the failure, but

could not because it did not have write access. If this indicator is

returned by at least one of the exit programs that was called, the

object will be marked as scan failure, and the close operation fails.

Additionally, only the CCSID or binary indication related to this

failing request will be kept in the object scan information, and the

rest of the historical CCSID or binary information will be cleared.

Once an object has been marked as a failure under this condition, it

will not be scanned again until the object’s scan signature is different

than the global scan key signature or independent ASP group scan

key signature as appropriate, or if a subsequent access would allow

write access to be given to the exit program. Therefore, subsequent

requests to work with the object will fail with a scan failure

indication. Examples of requests which will fail are opening the

object, changing the CCSID of the object, copying the object etc..

QP0L_SCAN_MODIFY (x’04’) The object was scanned, one or more failures were found, but the

object was modified to remove the failures. If this indicator is

returned by at least one of the exit programs that was called, then

any exit programs which have previously been called will be called

one more time so that they can scan the modified object information.

This second call is indicated by an Additional call field value. If after

this additional call, no failures are found, the object will be marked

as scan successful, and the close operation completes with no errors.

If a value other than the possible values is specified, the object will be treated as if the program was not

called and the object was not scanned. Therefore, the close operation will continue unless the Scan file

systems control (QSCANFSCTL) system value has *ERRFAIL specified which will cause the operation to

fail. If the Scan file systems control (QSCANFSCTL) system value has *NOFAILCLO specified, the close

operation will not return any failure indication. If *NOFAILCLO is not specified, the close operation will

fail with error code [ESCANFAILURE].

To CCSID. The CCSID value that was specified on the open request associated with this close request.

Therefore, this will be the CCSID in which data was returned (when the user was reading from the

object), or the CCSID in which data was be supplied (when the user was writing to the object). Therefore,

the exit program should be converting the data to this CCSID since this is how the data was presented to

the user after their open request completed. For more information on CCSIDs and conversions, see

“Coded Character Set Identifier (CCSID) Information” on page 674 in “Integrated File System Scan on

Open Exit Program” on page 666.

Note: If the To CCSID and From CCSID values match, it is the same as if the object was opened in binary.

Update object scan information. Whether the scan information associated with the object should be

updated or not. The object scan information includes the following:

Integrated File System APIs 663

v Scan status for the object.

v Scan signature associated with the object scan status.

v The To CCSID value of the object which was scanned or if the object was scanned in binary.

Note: Actually, the last two To CCSID values which have been scanned will be maintained as well as a

separate indication of binary scans.

The possible values are:

 QP0L_SCAN_NO (x’00’) The object scan information should not be updated. This might be

used when the object was not actually scanned by the exit program,

perhaps because it did not need to be, or perhaps because a deferred

scan was initiated.

QP0L_SCAN_YES (x’01’) The object scan information should be updated. When this value is

set, then the values in the Scan status field and Failing CCSID are

used. If at least one exit program specified this value, then the object

scan information will be updated.

If a value other than the possible values is specified, a value of QP0L_SCAN_NO is assumed.

User profile. The exit program will be called under this user profile. Therefore, this user profile should

have *USE authority to the exit program, and *EXECUTE authority to the exit program library. If the user

profile is not valid or accessible at the time the exit program is called, the object will be treated as if the

program was not called and the object was not scanned. Therefore, the close operation will continue

unless the Scan file systems control (QSCANFSCTL) system value has *ERRFAIL specified which will

cause the operation to fail. If the Scan file systems control (QSCANFSCTL) system value has

*NOFAILCLO specified, the close operation will not return any failure indication. If *NOFAILCLO is not

specified, the close operation will fail with error code [ESCANFAILURE]. The first character of the user

profile can not be hex zeros or a blank.

Note: The system will not do any additional verification that this specified profile has authority to the

object for which the exit program is being called when that exit program is being called, even when the

access levels for the object are upgraded to include write. By registering this exit program, you are

indicating this is acceptable.

Usage Notes

1. When the exit program is executing (including any created threads), if it does any operations on other

objects which might normally trigger another call to a scan-related exit program, the scan-related exit

program will not be called, and it will be treated as if no scanning occurred for the object. For

example, if the exit program opens a separate object, that object will not be scanned as part of that

open request, even if an exit program is registered to the QIBM_QP0L_SCAN_OPEN exit point. If

however, that object has previously failed a scan, then the operation will fail with error code

[ESCANFAILURE].
2. When the exit program is executing (including any created threads), if it does any opens of other

objects, then the descriptors which will be returned will come from the same table of descriptors that

the Scan descriptor is derived from. Therefore, customer application code will not be impacted by

’regular’ descriptors being used and possibly reaching an application specified limit on the number of

descriptors which can be used. Additionally, the exit program will not be able to use any of the

’regular’ descriptors when it or any of its created threads are executing. That is, it will not be able to

access any objects which have been opened outside the scope of the exit program execution. Any

attempts to do so will fail with error code [EBADF].
3. When the following APIs are called from the thread executing the exit program and any of its created

threads, the table of Scan descriptors, will not be inherited by the spawned process.

v spawn()—Spawn Process

v spawnp()—Spawn Process with Path

664 iSeries: UNIX-Type -- Integrated File System APIs

spawn.htm
spawnp.htm

Therefore, when the following APIs are called from the thread executing the exit program and any of

its created threads, the descriptors returned by these APIs will only work within the same process.

v “pipe()—Create an Interprocess Channel” on page 302—Create Interprocess Channel

v “Qp0zPipe()—Create Interprocess Channel with Sockets” on page 527—Create Interprocess Channel

with Sockets()

v socketpair()—Create a Pair of Sockets
4. When the exit programs are executing (including any created threads), signals are blocked from being

delivered to a thread. When a signal is blocked, the signal-handling action associated with the signal

is not taken. The signal remains pending until all exit programs have completed execution. For more

information, see Signal concepts.
5. When the following APIs are called from the thread executing the exit program and any of its created

threads, they will fail with the listed error code.

v “DosSetFileLocks()—Lock and Unlock a Byte Range of an Open File” on page 67— [ENOTSUP]

v “DosSetFileLocks64()—Lock and Unlock a Byte Range of an Open File (Large File Enabled)” on

page 72— [ENOTSUP]

v “fcntl()—Perform File Control Command” on page 115 with F_SETLK, F_SETLK64, F_SETLKW or

F_SETLKW64 — [ENOTSUP]

v “DosSetRelMaxFH()—Change Maximum Number of File Descriptors” on page 73 —

[ERROR_GEN_FAILURE]

v “dup2()—Duplicate Open File Descriptor to Another Descriptor” on page 79 — [ENOTSUP]

v takedescriptor()—Receive Socket Access from Another Job — [ENOTSUP]
6. Unpredictable results will occur if the select()—Wait for events on multiple sockets API and any of its

associated type and macro definitions are used in the thread executing the exit program and any of its

created threads. Therefore, these interfaces should not be used under these conditions.
7. It is recommended that the exit program use the large-file enabled APIs such as “lseek64()—Set File

Read/Write Offset (Large File Enabled)” on page 223 to work with the scan descriptor as these APIs

will work with any size object.
8. If Kerberos is configured on the system, then the thread executing the exit program and any of its

created threads will not be able to access objects in any file systems which use Kerberos for

authentication. If they do, the operation will fail with error code [ENOTSUP]. E.g. the exit program

cannot access objects in the QFileSvr.400 file system when Kerberos is configured.

9. The exit program should not call the open or close API interfaces on the object represented by the

scan descriptor. If this is done from the thread executing the exit program, then [EDEADLK] will be

returned. If the object is opened or closed from any other process or thread, that process or thread

will wait until this invocation’s scan is completed.

Related Information

v The <qp0lscan.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v Change Scan Signature (QP0LCHSG) API

v “Integrated File System Scan on Open Exit Program” on page 666

v “Qp0lGetAttr()—Get Attributes” on page 419

v “Qp0lSetAttr()—Set Attributes” on page 509

v Retrieve Scan Signature (QP0LRTSG) API

v Retrieve System Values (QWCRSVAL) API

Exit program introduced: V5R3

 Top | “Integrated File System APIs,” on page 1 | APIs by category

Integrated File System APIs 665

socketp.htm
unix5a2.htm#SIGCONCEPTS
tksoc.htm
sselect.htm
chgscansgn.htm
rtvscansgn.htm
qwcrsval.htm
#TOP_OF_PAGE
aplist.htm

Integrated File System Scan on Open Exit Program

 Required Parameter Group:

1 Integrated file system open exit information

Input Char(*)

2 Status information

Output Char(*)
 QSYSINC Member Name: QP0LSCAN

 Exit Point Name: QIBM_QP0L_SCAN_OPEN

 Exit Point Format Name: SCOP0100

The integrated file system scan on open exit program is called to do scan processing when an integrated

file system object is opened under the following conditions.

The exit program will not be called if:

v No exit programs exist for this exit point.

v -or- the Scan file systems (QSCANFS) system value has *NONE specified so that no file systems will be

scanned.

v -or- the object was marked to not be scanned and a scan is not required because the object was

restored.

v -or- the object is being opened for write access only.

v -or- the object is being truncated as part of the open request.

v -or- the object is the storage which was allocated for Integrated xSeries servers to use as virtual disk

drives for the xSeries servers. From the perspective of the iSeries server, virtual drives appear as byte

stream files within the integrated file system.

v -or- the object is not being accessed from a file server, and the Scan file systems control

(QSCANFSCTL) system value has *FSVRONLY specified so that only file server accesses are scanned.

v -or- the object is in a *TYPE1 directory.

If the previous conditions have been met, the exit program will be called if:

v The object has never been scanned.

v -or- the object’s data has been modified since the last time it was scanned. Data modifications include

writes, memory map writes, truncates or clears.

v -or- the CCSID of the object has been modified since the last time it was scanned.

v -or- the To CCSID specified on the open request is different than the last two To CCSIDs that were

specified and previously scanned for this object.

v -or- the object is being opened in binary, and it has not previously been scanned in binary.

v -or- there have been updates to the scanning software and the object was not marked to be scanned

only if the object changed. Updates to scanning software occur by either registering additional exit

programs for the scan-related exit points, or by calling Change Scan Signature (QP0LCHSG) API to

update the scan key signature associated with existing exit program scan keys.

666 iSeries: UNIX-Type -- Integrated File System APIs

chgscansgn.htm

For more information on open processing, as well as CCSID values, see “open()—Open File” on page 267.

For more information on the scan-related attributes which can be set for objects, see “Qp0lSetAttr()—Set

Attributes” on page 509 For more information on the integrated file system scan processing and various

options, see the Integrated file system information in the Files and file systems topic

The exit point supports a maximum of 50 exit programs. For information about adding an exit program

to an exit point, see the Registration Facility.

Note: If the integrated file system exit program returns any error messages or if any errors are received

when attempting to call the exit program, the object will be treated as if the program was not called and

the object was not scanned. Therefore, the open operation will continue unless the Scan file systems

control (QSCANFSCTL) system value has *ERRFAIL specified which will cause the operation to fail.

Restrictions

v Only objects of type *STMF that are in *TYPE2 directories in the ″root″ (/), QOpenSys, and

user-defined file systems are scanned. For information on *TYPE2 directories, see the Convert

Directory(CVTDIR) command and the Integrated file system information in the Files and file systems

topic.

v The exit programs will not be called during an IPL or the vary-on of an independent Auxiliary Storage

Pool (ASP).

v During the call to the exit programs, the ASP group associated with the thread will not be able to be

changed.

v The exit programs must exist in the system ASP or in a basic user ASP. They cannot exist in an

independent ASP. Any ASP group could be associated with the thread when the exit program is called.

If the exit program is not found, the object will be treated as if the program was not called and the

object was not scanned. Therefore, the open operation will continue unless the Scan file systems control

(QSCANFSCTL) system value has *ERRFAIL specified which will cause the operation to fail.

v The exit programs could be called from an exit point within a multi-threaded job and must be written

to be threadsafe.

Authorities and Locks

User Profile Authority

*ALLOBJ (all object) and *SECADM (security administrator) special authorities to add exit

programs to the registration facility

 *ALLOBJ and *SECADM special authorities to remove exit programs from the registration facility

Program Data

When you register the exit program, the following program data must be provided. The following table

shows the structure of the program data information. For a description of the fields in this format, see

“Field Descriptions” on page 669. This structure is defined in header file qp0lscan.h as data type

Qp0l_Scan_Program_Data_t.

 Offset

Type Field Dec Hex

0 0 Char(10) User profile

10 A Char(20) Scan key

30 1E Char(12) Scan key signature

Integrated File System APIs 667

reg1.htm

Required Parameter Group

Integrated file system open exit information

INPUT; CHAR(*)

 Information that is needed by the exit program to do its object scan processing. For details, see

“Format of Integrated File System Open Exit Information (Input).”

Status information

OUTPUT; CHAR(*)

 Information that is returned by the exit program indicating what scan processing has occurred.

For details, see “Format of Status Information (Output).”

Format of Integrated File System Open Exit Information (Input)

The following table shows the structure of the integrated file system open exit information for exit point

format SCOP0100. For a description of the fields in this format, see “Field Descriptions” on page 669.

This structure is defined in header file qp0lscan.h as data type Qp0l_Scan_Exit_Information_t.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Integrated file system open exit information length

4 4 CHAR(20) Exit point name

24 18 CHAR(8) Exit point format name

32 20 BINARY(4) Length of status information

36 24 BINARY(4) Scan descriptor

40 28 BINARY(4), UNSIGNED From CCSID

44 2C BINARY(4), UNSIGNED To CCSID

48 30 BINARY(4), UNSIGNED Last failure CCSID

52 34 BINARY(4) Oflags

56 38 CHAR(16) File ID

72 48 CHAR(10) Object type

82 52 CHAR(1) File system

83 53 CHAR(1) Additional call

84 54 CHAR(1) Object modified since last scan

85 55 CHAR(1) Scan signatures different

86 56 CHAR(1) Call after previous failure

Format of Status Information (Output)

The following table shows the structure of the status information. For a description of the fields in this

format, see “Field Descriptions” on page 669. This structure is defined in header file qp0lscan.h as data

type Qp0l_Scan_Status_Information_t.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Open scan status information length

4 4 BINARY(4), UNSIGNED Failing CCSID

8 8 CHAR(1) Update object scan information

668 iSeries: UNIX-Type -- Integrated File System APIs

Offset

Type Field Dec Hex

9 9 CHAR(1) Scan status

Field Descriptions

Additional call. Whether the exit program was called an additional time because another “Integrated File

System Scan on Open Exit Program” on page 666 that was called has indicated the object was modified.

See the scan status field for this modify indication. The possible values are:

 QP0L_SCAN_CALL_FIRST (x’00’) The first call to the exit program.

QP0L_SCAN_CALL_ADDL (x’01’) An additional call to the exit program because another exit program

has indicated the object was modified.

Call after previous failure. Whether the exit program was called after the object had previously been

scanned and a failure detected. The possible values are:

 QP0L_SCAN_NO (x’00’) This is not a call after a previous scan failure.

QP0L_SCAN_YES (x’01’) This is a call after a previous scan failure. The Last failure CCSID field

in conjunction with the From CCSID indicate the CCSID or binary

indication of the failing scan request.

Note: If the Failing CCSID and From CCSID values match, it is the

same as if the object would have been opened in binary.

Exit point format name. The format name for the integrated file system scan on open exit program. The

possible format name follows:

 SCOP0100 The format name that is used while an object is being opened.

Exit point name. The name of the exit point that is calling the exit program.

Failing CCSID. This field only has meaning if the Call after previous failure field had a value of

QP0L_SCAN_YES when the exit program was called, and if the Update object scan information field has a

value of QP0L_SCAN_YES, and if the Scan status field has a value of QP0L_SCAN_FAILURE or

QP0L_SCAN_FAIL_WANT_MODIFY. When the Call after previous failure had a value of QP0L_SCAN_YES,

then the scan exit program should verify that the object does not have any problems when scanned using

both the To CCSID and Last failure CCSID values. If either scan fails, then this field should be filled in

with the failing CCSID which will be stored as part of the object scan information with the failure

indication. If the value of this field does not match either of the two input CCSID fields, then the To

CCSID value will be used. If more than one exit program indicates a failure, the failing CCSID value

which will be preserved is from the last exit program which scanned the object and indicated a failure.

For more information on CCSIDs and conversions, see “Coded Character Set Identifier (CCSID)

Information” on page 674.

Note: If the Failing CCSID and From CCSID values match, it is the same as if the object would have been

opened in binary.

File ID. A unique identifier associated with the object that is being opened. A file ID can be used with

“Qp0lGetPathFromFileID()—Get Path Name of Object from Its File ID” on page 446, to retrieve an

object’s path name.

File system. The file system that the object being scanned is in. The possible value follows:

Integrated File System APIs 669

QP0L_SCAN_ROOT_QOPENSYS_UDFS The object is in the ″root″ (/), QOpenSys, or a user-defined file

system.

From CCSID. The CCSID value that the data is in on the system itself. Therefore, this will be the CCSID

in which data is to be returned (when reading from the object using the Scan descriptor), or the CCSID in

which data is being supplied (when writing to the object using the Scan descriptor). For more information

on CCSIDs and conversions, see “Coded Character Set Identifier (CCSID) Information” on page 674.

Integrated file system open exit information length. The length in bytes of all data passed to the

integrated file system open exit program.

Last failure CCSID. The CCSID value that was specified when this object was last scanned and indicated

a scan failure. This field only has meaning if the Call after previous failure field has a value of

QP0L_SCAN_YES. Therefore, this would have been the CCSID in which data was to have been returned

(when the user was to be reading from the object), or the CCSID in which data was to have been

supplied (when the user was to be writing to the object). However, that request failed for this CCSID.

This is now being returned so that this CCSID can also be scanned, if it is different than the To CCSID

value. For more information on CCSIDs and conversions, see “Coded Character Set Identifier (CCSID)

Information” on page 674.

Note: If the Last failure CCSID and From CCSID values match, it is the same as if the object would have

been opened in binary.

Length of status information. The length in bytes allocated for the returned status information.

Object modified since last scan. Whether the exit program was called because the objects data or CCSID

has been modified since it was last scanned. Examples of object data or CCSID modifications are: writing

to the object, directly or through memory mapping; truncating the object; clearing the object; and

changing the objects CCSID attribute, etc.. The possible values are:

 QP0L_SCAN_NO (x’00’) The object has not been modified since it was last scanned.

QP0L_SCAN_YES (x’01’) The object has been modified since it was last scanned.

Object type. The object type. See Control Language (CL) information in the iSeries Information Center for

descriptions of all iSeries object types.

Oflags. The oflags that were specified on the open request with the following exceptions. For a

description of all possible oflag values, see “open()—Open File” on page 267

v If the oflags do not contain write access, the system will attempt to upgrade the access intent to

include write, unless the Scan file systems control (QSCANFSCTL) system value has *NOWRTUPG

specified or the object is not eligible for write access. If the upgrade is not attempted or is unsuccessful,

the access intent matches the users invocation. If it is successful, the write access intent is included in

this oflag information. This upgrade would be useful if the exit program wanted to modify the object

to correct any problems found while scanning.

v The CCSID related flags will have been removed. This includes O_TEXTDATA, O_CCSID,

O_CODEPAGE, and O_TEXT_CREATE.

v The synchronization flags will have been removed. This includes O_SYNC, O_DSYNC, and O_RSYNC.

Open scan status information length. The length in bytes of all data returned from the integrated file

system open exit program. The only valid value for this field is 10. If anything else is specified, the object

will be treated as if the program was not called and the object was not scanned. Therefore, the open

operation will continue unless the Scan file systems control (QSCANFSCTL) system value has *ERRFAIL

specified which will cause the operation to fail.

670 iSeries: UNIX-Type -- Integrated File System APIs

Scan descriptor. A descriptor representing the object that is being opened. This scan descriptor has the

following characteristics:

v It can be used to do any read processing on the object being processed. Reads using this descriptor will

not update the last access timestamp information for the object.

v It can be used to do any write processing on the object being processed. If write processing is done by

the exit program, the exit program should indicate QP0L_SCAN_MODIFY in the Scan status field. If it

does not, the object’s scan information will be cleared as if the objects data has been modified.

v It cannot be used to memory map the object, see “mmap()—Memory Map a File” on page 249

v It cannot be used to close the object using “close()—Close File or Socket Descriptor” on page 46. When

control returns from the exit program, the system code will do the close of this scan descriptor. The

system will wait on this close attempt until all accesses to this object are closed. Therefore, if the exit

program uses givedescriptor()—Pass Descriptor Access to Another Job and takedescriptor()—Receive

Socket Access from Another Job or sendmsg()—Send Data or Descriptors or Both and

recvmsg()—Receive Data or Descriptors or Both to pass the descriptor to another job, the job which

used takedescriptor() or recvmsg() must close that descriptor when it is done processing, else the

system will be waiting for that close.

v “dup()—Duplicate Open File Descriptor” on page 76 and “fcntl()—Perform File Control Command” on

page 115 with F_DUPFD cannot be used to duplicate the scan descriptor. This is so the system has tight

control of the closing of this scan descriptor.

v Data read using this descriptor will be in the From CCSID format. If any data is written using this

descriptor, it must be in the From CCSID format. For more information on CCSIDs see “Coded

Character Set Identifier (CCSID) Information” on page 674.

v It will be a different descriptor than will actually be returned to the user, if the open is ultimately

successful.

v The oflags for this descriptor are what are passed on this interface.

v It is scoped to the process. However, one can use givedescriptor() and takedescriptor() or sendmsg()

and recvmsg() to pass this descriptor to another job or process. Again, that process must complete its

use of that descriptor before control is returned to the system from the exit program because the

system will close the descriptor when exit program processing is complete. The system will wait on

this close attempt until all accesses to this object are closed.

v No other threads in the process, other than those created by the exit program, will be able to access

this descriptor.

v It only lives for the life of the exit program invocation. That is, once control is returned from the exit

program, it will be destroyed. Therefore, it cannot be stored for later use.

Scan key. The scan key associated with this exit program. The first character of this scan key can not be

hex zeros or a blank. For more information on the scan key, see “Scan Key List and Scan Key Signatures”

on page 673

Scan key signature. The scan key signature associated with the specified scan key. For more information

on the scan key signature, see “Scan Key List and Scan Key Signatures” on page 673. If the specified scan

key already exists in the scan key list, and the exit program is being added to replace an existing exit

program entry, then the specified scan key signature must match the scan key signature associated with the

scan key in the scan key list. If the specified scan key already exists in the scan key list, and the exit

program is not being added to replace an existing exit program entry, then the specified scan key signature

must match the scan key signature associated with the scan key in the scan key list unless the scan key

signature associated with the scan key in the scan key list is all hex zeros. More than one exit program,

including exit programs associated with the “Integrated File System Scan on Close Exit Program” on page

656, can have the same scan key signature.

Scan signatures different. Whether the exit program was called because the object’s current scan key

signature is different than the appropriate associated signature. When an object is in an independent ASP

Integrated File System APIs 671

gvsoc.htm
tksoc.htm
tksoc.htm
sendms.htm
recvms.htm
gvsoc.htm
tksoc.htm
sendms.htm
recvms.htm

group, the object scan signature is compared to the associated independent ASP group scan signature.

When an object is not in an independent ASP group, the object scan signature is compared to the global

scan signature. The possible values are:

 QP0L_SCAN_NO (x’00’) The compared signatures are not different.

QP0L_SCAN_YES (x’01’) The compared signatures are different.

Scan status. The status of the scan processing. This field is only used if the Update object scan information

field value specifies a value of QP0L_SCAN_YES. The possible values are:

 QP0L_SCAN_SUCCESS (x’01’) The object was scanned and has no failures. If this indicator is

returned by all exit programs that were called, the object will be

marked as scan successful, and the open operation completes with no

errors.

QP0L_SCAN_FAILURE (x’02’) The object was scanned and has at least one failure. If this indicator

is returned by at least one of the exit programs that was called, the

object will be marked as scan failure, and the open operation fails.

Additionally, only the CCSID or binary indication related to this

failing request will be kept in the object scan information, and the

rest of the historical CCSID or binary information will be cleared.

Once an object has been marked as a failure under this condition, it

will not be scanned again until the object’s scan signature is different

than the global scan key signature or independent ASP group scan

key signature as appropriate. Therefore, subsequent requests to work

with the object will fail with a scan failure indication. Examples of

requests which will fail are opening the object, changing the CCSID

of the object, copying the object etc..

QP0L_SCAN_FAIL_WANT_MODIFY (x’03’) The object was scanned and has at least one failure. However, the

exit program wanted to modify the file to correct the failure, but

could not because it did not have write access. If this indicator is

returned by at least one of the exit programs that was called, the

object will be marked as scan failure, and the open operation fails.

Additionally, only the CCSID or binary indication related to this

failing request will be kept in the object scan information, and the

rest of the historical CCSID or binary information will be cleared.

Once an object has been marked as a failure under this condition, it

will not be scanned again until the object’s scan signature is different

than the global scan key signature or independent ASP group scan

key signature as appropriate, or if a subsequent access would allow

write access to be given to the exit program. Therefore, subsequent

requests to work with the object will fail with a scan failure

indication. Examples of requests which will fail are opening the

object, changing the CCSID of the object, copying the object etc..

QP0L_SCAN_MODIFY (x’04’) The object was scanned, one or more failures were found, but the

object was modified to remove the failures. If this indicator is

returned by at least one of the exit programs that was called, then

any exit programs which have previously been called will be called

one more time so that they can scan the modified object information.

This second call is indicated by an Additional call field value. If after

this additional call, no failures are found, the object will be marked

as scan successful, and the open operation completes with no errors.

If a value other than the possible values is specified, the object will be treated as if the program was not

called and the object was not scanned. Therefore, the open operation will continue unless the Scan file

systems control (QSCANFSCTL) system value has *ERRFAIL specified which will cause the operation to

fail.

672 iSeries: UNIX-Type -- Integrated File System APIs

To CCSID. The CCSID value that was specified on the open request. Therefore, this will be the CCSID in

which data will be returned (when the user will be reading from the object), or the CCSID in which data

will be supplied (when the user will be writing to the object). Therefore, the exit program should be

converting the data to this CCSID since this is how the data will be presented to the user if the open

request completes successfully. For more information on CCSIDs and conversions, see “Coded Character

Set Identifier (CCSID) Information” on page 674.

Note: If the To CCSID and From CCSID values match, it is the same as if the object will be opened in

binary.

Update object scan information. Whether the scan information associated with the object should be

updated or not. The object scan information includes the following:

v Scan status for the object.

v Scan signature associated with the object scan status.

v The To CCSID value of the object which was scanned or if the object was scanned in binary.

Note: Actually, the last two To CCSID values which have been scanned will be maintained as well as a

separate indication of binary scans.

The possible values are:

 QP0L_SCAN_NO (x’00’) The object scan information should not be updated. This might be

used when the object was not actually scanned by the exit program,

perhaps because it did not need to be, or perhaps because a deferred

scan was initiated.

QP0L_SCAN_YES (x’01’) The object scan information should be updated. When this value is

set, then the values in the Scan status field and Failing CCSID are

used. If at least one exit program specified this value, then the object

scan information will be updated.

If a value other than the possible values is specified, a value of QP0L_SCAN_NO is assumed.

User profile. The exit program will be called under this user profile. Therefore, this user profile should

have *USE authority to the exit program, and *EXECUTE authority to the exit program library. If the user

profile is not valid or accessible at the time the exit program is called, the object will be treated as if the

program was not called and the object was not scanned. Therefore, the open operation will continue

unless the Scan file systems control (QSCANFSCTL) system value has *ERRFAIL specified which will

cause the operation to fail. The first character of the user profile can not be hex zeros or a blank.

Note: The system will not do any additional verification that this specified profile has authority to the

object for which the exit program is being called when that exit program is being called, even when the

access levels for the object are upgraded to include write. By registering this exit program, you are

indicating this is acceptable.

Scan Key List and Scan Key Signatures

A list of scan keys and associated scan key signatures will be used to help minimize unnecessary scan calls,

while allowing users to ensure scans occur when needed. The scan key list and scan key signature will

allow an association of scanning software level with the various scan-related exit programs (“Integrated

File System Scan on Close Exit Program” on page 656 and “Integrated File System Scan on Open Exit

Program” on page 666). Updates to this information will allow the system to increment its global scan

signature field to reflect the software updates.

The system will maintain a global scan signature field and independent ASP group scan signature fields.

Each integrated file system object which supports scanning will have an object scan signature field.

Integrated File System APIs 673

The global scan signature indicates the state or level of the scanning software. It will or will not be

modified under the following rules:

v When the scan-related exit programs are added or registered, the user specifies a scan key and a scan

key signature. These values are added to the scan key list. If the scan key has previously been

specified, e.g. for a different exit program registration, then the global scan signature will only be

incremented if the specified scan key signature is not hex zero. If the scan key has not previously been

specified, and the scan key signature is not a hex zero value, the global scan signature will be

incremented.

v By calling the Change Scan Signature (QP0LCHSG) API to specify that a new scan key signature be

associated with a specific scan key. This will cause the system to update the scan key list and

increment the current global scan signature value.

v When the scan-related exit programs are removed, the user specifies a scan key and a scan key

signature. These values are removed from the scan key list if no other scan-related exit programs are

registered that have that scan key. Removing entries from the scan key list does not update the global

scan signature.

The independent ASP group scan signature indicates the state of the scanning software as well. Since it

moves with the independent ASP group, it represents the state of the scanning code software in

relationship to when and where that independent ASP group was varied on. The independent ASP group

scan key list and independent ASP group scan signature will or will not be modified under the following

rules:

v If the independent ASP group is available and online, the independent ASP group scan key list will be

updated whenever the system scan key list is updated. Any changes to the independent ASP group

scan key list will cause the independent ASP group scan signature to be incremented under the same

rules as to when the global scan signature is updated.

v If the independent ASP group is varied on after any global scan key list changes, then when the first

scannable integrated file system object on the independent ASP group is opened or its scan information

is retrieved, the independent ASP group scan key list will be compared to the global scan key list.

– If the global scan key list has more scan keys or different scan key signatures than the independent

ASP group scan key list has, then the independent ASP group scan list will be updated to match.

Additionally, the independent ASP group scan signature will be incremented.

– If the global scan key list is a proper subset of the scan keys and scan key signatures in the

independent ASP group scan key list, then the independent ASP group scan list will be updated to

match. However, the independent ASP group scan signature will not be incremented. If the global

scan key list exactly matchs the scan keys and scan key signatures in the independent ASP group

scan key list, then no changes are made.

It is highly recommended that the scanning software level of support which is indicated by scan keys and

scan key signatures be maintained the same across all systems in the independent ASP Cluster group. See

Cluster for more information.

When an object in an independent ASP group is about to be scanned or its scan information is retrieved,

the object scan signature will be compared to the associated independent ASP group scan signature.

When an object is not in an independent ASP group, the object scan signature will be compared to the

global scan signature value.

When an object is successfully scanned, the object scan signature will be updated to match the global

scan signature or independent ASP group scan signature when scanning was begun as appropriate. Other

associated fields will be updated as well as described in Update object scan information.

Coded Character Set Identifier (CCSID) Information

The CCSID values presented on this interface have the following meanings and inter-relationships. The

From CCSID represents the value for the data that is stored in the object. Therefore, when discussing

reading and writing in the From CCSID format, it means the data is read or written as is, no conversion

674 iSeries: UNIX-Type -- Integrated File System APIs

chgscansgn.htm
clust1.htm

occurs between what is given to or returned by the system, and the data in the object itself. The scan

descriptor that is passed to the exit program is not an open instance which provides CCSID conversion.

But, when the object is ultimately opened, the file descriptor that is returned will include conversion

using the value in To CCSID. If the To CCSID and From CCSID values match, it is the same as if the object

would have been opened in binary. If the object is not being opened in binary, the scan exit program

should do its scanning using the To CCSID value, and can use the appropriate APIs to do the conversion.

If the scan succeeds or fails, then the CCSID which is preserved with the scan status information is the To

CCSID, except for the following case. If the Call after previous failure field has a value of

QP0L_SCAN_YES, and the value in the Last Failure CCSID is different than To CCSID, then the scan exit

program should also scan the object data using the Last Failure CCSID. In this case, if the scan succeeds,

then the CCSID which is preserved with the scan status information is the To CCSID. If the scan fails,

then the CCSID which is preserved with the scan status information is the Failing CCSID.

For more information on CCSIDs and conversions, see “open()—Open File” on page 267 and

Globalization topic.

Usage Notes

1. When the exit program is executing (including any created threads), if it does any operations on other

objects which might normally trigger another call to a scan-related exit program, the scan-related exit

program will not be called, and it will be treated as if no scanning occurred for the object. For

example, if the exit program opens a separate object, that object will not be scanned as part of that

open request, even if an exit program is registered to the QIBM_QP0L_SCAN_OPEN exit point. If

however, that object has previously failed a scan, then the operation will fail with error code

[ESCANFAILURE].
2. When the exit program is executing (including any created threads), if it does any opens of other

objects, then the descriptors which will be returned will come from the same table of descriptors that

the Scan descriptor is derived from. Therefore, customer application code will not be impacted by

’regular’ descriptors being used and possibly reaching an application specified limit on the number of

descriptors which can be used.

Additionally, the exit program will not be able to use any of the ’regular’ descriptors when it or any

of its created threads are executing. That is, it will not be able to access any objects which have been

opened outside the scope of the exit program execution. Any attempts to do so will fail with error

code [EBADF].
3. When the following APIs are called from the thread executing the exit program and any of its created

threads, the table of Scan descriptors, will not be inherited by the spawned process.

v spawn()—Spawn Process

v spawnp()—Spawn Process with Path

Therefore, when the following APIs are called from the thread executing the exit program and any of

its created threads, the descriptors returned by these APIs will only work within the same process.

v “pipe()—Create an Interprocess Channel” on page 302—Create Interprocess Channel

v “Qp0zPipe()—Create Interprocess Channel with Sockets” on page 527—Create Interprocess Channel

with Sockets()

v socketpair()—Create a Pair of Sockets
4. When the exit programs are executing (including any created threads), signals are blocked from being

delivered to a thread. When a signal is blocked, the signal-handling action associated with the signal

is not taken. The signal remains pending until all exit programs have completed execution. For more

information, see Signal concepts.
5. When the following APIs are called from the thread executing the exit program and any of its created

threads, they will fail with the listed error code.

v “DosSetFileLocks()—Lock and Unlock a Byte Range of an Open File” on page 67— [ENOTSUP]

v “DosSetFileLocks64()—Lock and Unlock a Byte Range of an Open File (Large File Enabled)” on

page 72— [ENOTSUP]

Integrated File System APIs 675

spawn.htm
spawnp.htm
socketp.htm
unix5a2.htm#SIGCONCEPTS

v “fcntl()—Perform File Control Command” on page 115 with F_SETLK, F_SETLK64, F_SETLKW or

F_SETLKW64 — [ENOTSUP]

v “DosSetRelMaxFH()—Change Maximum Number of File Descriptors” on page 73 —

[ERROR_GEN_FAILURE]

v “dup2()—Duplicate Open File Descriptor to Another Descriptor” on page 79 — [ENOTSUP]

v takedescriptor()—Receive Socket Access from Another Job — [ENOTSUP]
6. Unpredictable results will occur if the select()—Wait for events on multiple sockets API and any of its

associated type and macro definitions are used in the thread executing the exit program and any of its

created threads. Therefore, these interfaces should not be used under these conditions.
7. It is recommended that the exit program use the large-file enabled APIs such as “lseek64()—Set File

Read/Write Offset (Large File Enabled)” on page 223 to work with the scan descriptor as these APIs

will work with any size object.

8. If Kerberos is configured on the system, then the thread executing the exit program and any of its

created threads will not be able to access objects in any file systems which use Kerberos for

authentication. If they do, the operation will fail with error code [ENOTSUP]. E.g. the exit program

cannot access objects in the QFileSvr.400 file system when Kerberos is configured.

9. The exit program should not call the open or close API interfaces on the object represented by the

scan descriptor. If this is done from the thread executing the exit program, then [EDEADLK] will be

returned. If the object is opened or closed from any other process or thread, that process or thread

will wait until this invocation’s scan is completed.

Related Information

v The <qp0lscan.h> file (see “Header Files for UNIX-Type Functions” on page 680)

v Change Scan Signature (QP0LCHSG) API

v “Integrated File System Scan on Close Exit Program” on page 656

v “Qp0lGetAttr()—Get Attributes” on page 419

v “Qp0lSetAttr()—Set Attributes” on page 509

v Retrieve Scan Signature (QP0LRTSG) API

v Retrieve System Values (QWCRSVAL) API

Exit program introduced: V5R3

 Top | “Integrated File System APIs,” on page 1 | APIs by category

676 iSeries: UNIX-Type -- Integrated File System APIs

tksoc.htm
sselect.htm
chgscansgn.htm
rtvscansgn.htm
qwcrsval.htm
#TOP_OF_PAGE
aplist.htm

Process a Path Name Exit Program

 Required Parameter Group:

1 Selection status pointer

Input BINARY(4)

2 Error value pointer

Input BINARY(4)

3 Return value pointer

Output BINARY(4)

4 Object name pointer

Input CHAR(*)

5 Function control block pointer

Input CHAR(*)

The Process a Path Name exit program is a user-specified exit program that is called by the

Qp0lProcessSubtree() function for each object in the API’s search that meets the caller’s selection criteria.

This exit program can be either a procedure or program.

When the user exit program is given control, it can call other APIs, build lists or tables, or do other

processing. Since the API passes the names of all the children objects to the user exit program before

passing the name of the parent, the user exit program can also delete directories.

If the exit program encounters an error during processing, it returns a valid errno in the Return value

pointer field, that Qp0lProcessSubtree() returns to its caller. When its processing is complete, the exit

program return code is set to tell Qp0lProcessSubtree() to do one of the following:

v End processing.

v Continue processing by calling the exit program again with the next object from the same directory.

v Continue processing by calling the exit program again, but not with objects from the same directory. In

this case, Qp0lProcessSubtree() moves to the next directory or object that meets the specified criteria

and calls the exit program with it.

If Qp0lProcessSubtree() encounters any problems in resolving to a user exit program,

Qp0lProcessSubtree() ends and returns to its caller. If Qp0lProcessSubtree() encounters any errors with

any other parameters, it ends and returns control to its caller, after a call to the user exit program. This

call allows the exit program to perform any desired cleanup before Qp0lProcessSubtree() ends. Use the

Err_recovery_action parameter of Qp0lProcessSubtree() to set other conditions for calling or not calling the

user exit program.

Storage referred to by the Selection status pointer, Error value pointer, Return value pointer, or the Object

name pointer when the Process a Path Name exit program is called, are destroyed or reused when

Qp0lProcessSubtree() regains control.

See “Qp0lProcessSubtree()—Process a Path Name” on page 451 for more information.

Integrated File System APIs 677

Parameters

Selection status pointer

INPUT; BINARY(4)

 A pointer to an unsigned integer. This pointer indicates whether Qp0lProcessSubtree()

encountered any problems in processing. Valid values follow:

 0 QP0L_SELECT_OK: Indicates to that no problems were encountered during the selection of the

current object. The Error value pointer parameter is set to NULL.

1 QP0L_SELECT_DONE: Indicates that the last object was processed and that this is the last call to

the Process a Path Name exit program. The Object name pointer and the Error value pointer

parameters are set to NULL.

2 QP0L_SELECT_NOT_OK: Indicates that Qp0lProcessSubtree() has encountered an error but that

the Process a Path Name exit program can decide if the operation should continue or end. The

Error value pointer parameter points to a valid errno.

3 QP0L_SELECT_FAILED: Indicates that Qp0lProcessSubtree() has encountered an unrecoverable

error and that Qp0lProcessSubtree() will return to its caller when it regains control. The Error

value pointer parameter points to a valid errno.

Error value pointer

INPUT; BINARY(4)

 A pointer to a valid errno that describes any problems encountered by the API during the

processing of the current object. Any valid errno can be passed in this field when this parameter

is not NULL.

Return value pointer

OUTPUT; BINARY(4)

 A pointer to a value from the Process a Path Name exit program that instructs the API to

continue or to end processing. Valid values follow.

 0 Process a Path Name exit program was successful.

-1 Process a Path Name exit program was successful. Qp0lProcessSubtree() should skip processing

any remaining objects in this directory and move on to process objects in other directories.

> 0 (an errno) Process a Path Name exit program was not successful. Qp0lProcessSubtree() ends.

Object name pointer

INPUT; CHAR(*)

 A pointer to the path name structure that contains the fully qualified name of the object being

processed by Qp0lProcessSubtree(). The Path_Type flag defined in the qlg.h header file must be

used to determine whether the Object name pointer contains a pointer or is a character string.

This flag must also be used to determine whether the path name delimiter character is 1 or 2

characters long. Value values follow:

 0 The path name is a character string, and the path name delimiter is 1 character long.

1 The path name is a pointer, and the path name delimiter character is 1 character long.

2 The path name is a character string, and the path name delimiter is 2 characters long.

3 The path name is a pointer, and the path name delimiter character is 2 characters long.

Function control block pointer

INPUT; CHAR(*)

 A pointer to the data that is passed to Qp0lProcessSubtree() on its call. Qp0lProcessSubtree()

does not process the data that is referred to by this pointer, but passes this pointer as a parameter

when it calls the exit program.

678 iSeries: UNIX-Type -- Integrated File System APIs

Exit program introduced: V4R3

 Top | UNIX-Type APIs | APIs by category

Save Storage Free Exit Program

 Required Parameter Group:

1 Path name pointers

Input Char(*)

2 Return code pointer

Output Binary(4)

3 Return value pointer

Output Binary(4)

4 Function control block pointer

Input Char(*)

The Save Storage Free exit program is a user-specified program that is called by Qp0lSaveStgFree() to

save an OS/400 object of type *STMF. This exit program can be either a procedure or program.

When the Save Storage Free exit program is given control, it should save the object so it can be

dynamically retrieved at a later time. The *STMF object is locked when the exit program is called to

prevent changes to it until the storage free operation is complete. If the Save Storage Free exit program

ends unsuccessfully, it must return a valid errno in the storage pointed to by the return value pointer.

Qp0lSaveStgFree() then passes this errno to its caller with a minus one return code.

Storage referred to by the path name pointers or the return code pointer when the Save Storage Free exit

program is called is destroyed or reused when Qp0lSaveStgFree() regains control.

Required Parameter Group

Path names pointers

INPUT; CHAR(*)

 All of the path names to the *STMF object being storage freed. There is one path name for each

link to the object. These path names are in the Qlg_Path_Name_T format and are in the UCS-2

CCSID. See Path name format for more information on this format. For information about UCS-2,

see the Globalization topic.

 Path Name Pointers

Offset

Type Field Dec Hex

0 0 BINARY(4) Number of path names

4 4 CHAR(12) Reserved

16 10 ARRAY(*) Array of path name pointers

Integrated File System APIs 679

#TOP_OF_PAGE
unix.htm
aplist.htm
pns.htm

Array of path name pointers. Pointers to each path name that Qp0lSaveStgFree() found for the

object identified by the path name on the call to Qp0lSaveStgFree(). Each path name is in the

Qlg_Path_Name_T format.

 Number of path names. The total number of path names that Qp0lSaveStgFree() found for the

object identified by the caller of Qp0lSaveStgFree().

 Reserved. A reserved field. This field must be set to binary zero.

Return code pointer

OUTPUT; BINARY(4)

 A pointer to an indicator that is returned to indicate whether the exit program was successful or

whether it failed. Valid values follow:

 0 The Save Storage Free exit program was successful.

-1 The Save Storage Free exit program was not successful. The Return value pointer is set to indicate

the error.

Return value pointer

OUTPUT; BINARY(4)

 A pointer to a valid errno that is returned from the exit program to identify the reason it was not

successful.

Function control block pointer

INPUT; CHAR(*)

 A pointer to the data that is passed to Qp0lSaveStgFree() on its call. Qp0lSaveStgFree() does not

process the data that is referred to by this pointer, but passes this pointer as a parameter when it

calls the exit program.

Related Information

v “Qp0lSaveStgFree()—Save Storage Free” on page 503—Save Storage Free

 Exit program introduced: V4R3

 Top | Backup and Recovery APIs | UNIX-Type APIs | APIs by category

Concepts

These are the concepts for this category.

Header Files for UNIX-Type Functions

Programs using the UNIX(R)-type functions must include one or more header files that contain

information needed by the functions, such as:

v Macro definitions

v Data type definitions

v Structure definitions

v Function prototypes

The header files are provided in the QSYSINC library, which is optionally installable. Make sure

QSYSINC is on your system before compiling programs that use these header files. For information on

installing the QSYSINC library, see Include files and the QSYSINC Library.

680 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
back1.htm
unix.htm
aplist.htm
conQSYSINC.htm

The table below shows the file and member name in the QSYSINC library for each header file used by

the UNIX-type APIs in this publication.

 Name of Header File Name of File in QSYSINC Name of Member

arpa/inet.h ARPA INET

arpa/nameser.h ARPA NAMESER

bse.h H BSE

bsedos.h H BSEDOS

bseerr.h H BSEERR

dirent.h H DIRENT

errno.h H ERRNO

fcntl.h H FCNTL

grp.h H GRP

inttypes.h H INTTYPES

limits.h H LIMITS

mman.h H MMAN

netdbh.h H NETDB

netinet/icmp6.h NETINET ICMP6

net/if.h NET IF

netinet/in.h NETINET IN

netinet/ip_icmp.h NETINET IP_ICMP

netinet/ip.h NETINET IP

netinet/ip6.h NETINET IP6

netinet/tcp.h NETINET TCP

netinet/udp.h NETINET UDP

netns/idp.h NETNS IDP

netns/ipx.h NETNS IPX

netns/ns.h NETNS NS

netns/sp.h NETNS SP

net/route.h NET ROUTE

nettel/tel.h NETTEL TEL

os2.h H OS2

os2def.h H OS2DEF

pwd.h H PWD

Qlg.h H QLG

qp0lchsg.h H QP0LCHSG

qp0lflop.h H QP0LFLOP

qp0ljrnl.h H QP0LJRNL

qp0lror.h H QP0LROR

qp0lrro.h H QP0LRRO

qp0lrtsg.h H QP0LRTSG

qp0lscan.h H QP0LSCAN

Qp0lstdi.h H QP0LSTDI

Integrated File System APIs 681

Name of Header File Name of File in QSYSINC Name of Member

qp0wpid.h H QP0WPID

qp0zdipc.h H QP0ZDIPC

qp0zipc.h H QP0ZIPC

qp0zolip.h H QP0ZOLIP

qp0zolsm.h H QP0ZOLSM

qp0zripc.h H QP0ZRIPC

qp0ztrc.h H QP0ZTRC

qp0ztrml.h H QP0ZTRML

qp0z1170.h H QP0Z1170

qsoasync.h H QSOASYNC

qtnxaapi.h H QTNXAAPI

qtnxadtp.h H QTNXADTP

qtomeapi.h H QTOMEAPI

qtossapi.h H QTOSSAPI

resolv.h H RESOLVE

semaphore.h H SEMAPHORE

signal.h H SIGNAL

spawn.h H SPAWN

ssl.h H SSL

sys/errno.h H ERRNO

sys/ioctl.h SYS IOCTL

sys/ipc.h SYS IPC

sys/layout.h H LAYOUT

sys/limits.h H LIMITS

sys/msg.h SYS MSG

sys/param.h SYS PARAM

sys/resource.h SYS RESOURCE

sys/sem.h SYS SEM

sys/setjmp.h SYS SETJMP

sys/shm.h SYS SHM

sys/signal.h SYS SIGNAL

sys/socket.h SYS SOCKET

sys/stat.h SYS STAT

sys/statvfs.h SYS STATVFS

sys/time.h SYS TIME

sys/types.h SYS TYPES

sys/uio.h SYS UIO

sys/un.h SYS UN

sys/wait.h SYS WAIT

ulimit.h H ULIMIT

unistd.h H UNISTD

682 iSeries: UNIX-Type -- Integrated File System APIs

Name of Header File Name of File in QSYSINC Name of Member

utime.h H UTIME

You can display a header file in QSYSINC by using one of the following methods:

v Using your editor. For example, to display the unistd.h header file using the Source Entry Utility

editor, enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(5)

v Using the Display Physical File Member command. For example, to display the sys/stat.h header file,

enter the following command:

DSPPFM FILE(QSYSINC/SYS) MBR(STAT)

You can print a header file in QSYSINC by using one of the following methods:

v Using your editor. For example, to print the unistd.h header file using the Source Entry Utility editor,

enter the following command:

STRSEU SRCFILE(QSYSINC/H) SRCMBR(UNISTD) OPTION(6)

v Using the Copy File command. For example, to print the sys/stat.h header file, enter the following

command:

CPYF FROMFILE(QSYSINC/SYS) TOFILE(*PRINT) FROMMBR(STAT)

Symbolic links to these header files are also provided in directory /QIBM/include.

 Top | UNIX-Type APIs | APIs by category

Errno Values for UNIX-Type Functions

Programs using the UNIX(R)-type functions may receive error information as errno values. The possible

values returned are listed here in ascending errno value sequence.

 Name Value Text

EDOM 3001 A domain error occurred in a math function.

ERANGE 3002 A range error occurred.

ETRUNC 3003 Data was truncated on an input, output, or update operation.

ENOTOPEN 3004 File is not open.

ENOTREAD 3005 File is not opened for read operations.

EIO 3006 Input/output error.

ENODEV 3007 No such device.

ERECIO 3008 Cannot get single character for files opened for record I/O.

ENOTWRITE 3009 File is not opened for write operations.

ESTDIN 3010 The stdin stream cannot be opened.

ESTDOUT 3011 The stdout stream cannot be opened.

ESTDERR 3012 The stderr stream cannot be opened.

EBADSEEK 3013 The positioning parameter in fseek is not correct.

EBADNAME 3014 The object name specified is not correct.

EBADMODE 3015 The type variable specified on the open function is not correct.

EBADPOS 3017 The position specifier is not correct.

Integrated File System APIs 683

#TOP_OF_PAGE
unix.htm
aplist.htm

Name Value Text

ENOPOS 3018 There is no record at the specified position.

ENUMMBRS 3019 Attempted to use ftell on multiple members.

ENUMRECS 3020 The current record position is too long for ftell.

EINVAL 3021 The value specified for the argument is not correct.

EBADFUNC 3022 Function parameter in the signal function is not set.

ENOENT 3025 No such path or directory.

ENOREC 3026 Record is not found.

EPERM 3027 The operation is not permitted.

EBADDATA 3028 Message data is not valid.

EBUSY 3029 Resource busy.

EBADOPT 3040 Option specified is not valid.

ENOTUPD 3041 File is not opened for update operations.

ENOTDLT 3042 File is not opened for delete operations.

EPAD 3043 The number of characters written is shorter than the expected

record length.

EBADKEYLN 3044 A length that was not valid was specified for the key.

EPUTANDGET 3080 A read operation should not immediately follow a write operation.

EGETANDPUT 3081 A write operation should not immediately follow a read operation.

EIOERROR 3101 A nonrecoverable I/O error occurred.

EIORECERR 3102 A recoverable I/O error occurred.

EACCES 3401 Permission denied.

ENOTDIR 3403 Not a directory.

ENOSPC 3404 No space is available.

EXDEV 3405 Improper link.

EAGAIN 3406 Operation would have caused the process to be suspended.

EWOULDBLOCK 3406 Operation would have caused the process to be suspended.

EINTR 3407 Interrupted function call.

EFAULT 3408 The address used for an argument was not correct.

ETIME 3409 Operation timed out.

ENXIO 3415 No such device or address.

EAPAR 3418 Possible APAR condition or hardware failure.

ERECURSE 3419 Recursive attempt rejected.

EADDRINUSE 3420 Address already in use.

EADDRNOTAVAIL 3421 Address is not available.

EAFNOSUPPORT 3422 The type of socket is not supported in this protocol family.

EALREADY 3423 Operation is already in progress.

ECONNABORTED 3424 Connection ended abnormally.

ECONNREFUSED 3425 A remote host refused an attempted connect operation.

ECONNRESET 3426 A connection with a remote socket was reset by that socket.

EDESTADDRREQ 3427 Operation requires destination address.

EHOSTDOWN 3428 A remote host is not available.

684 iSeries: UNIX-Type -- Integrated File System APIs

Name Value Text

EHOSTUNREACH 3429 A route to the remote host is not available.

EINPROGRESS 3430 Operation in progress.

EISCONN 3431 A connection has already been established.

EMSGSIZE 3432 Message size is out of range.

ENETDOWN 3433 The network currently is not available.

ENETRESET 3434 A socket is connected to a host that is no longer available.

ENETUNREACH 3435 Cannot reach the destination network.

ENOBUFS 3436 There is not enough buffer space for the requested operation.

ENOPROTOOPT 3437 The protocol does not support the specified option.

ENOTCONN 3438 Requested operation requires a connection.

ENOTSOCK 3439 The specified descriptor does not reference a socket.

ENOTSUP 3440 Operation is not supported.

EOPNOTSUPP 3440 Operation is not supported.

EPFNOSUPPORT 3441 The socket protocol family is not supported.

EPROTONOSUPPORT 3442 No protocol of the specified type and domain exists.

EPROTOTYPE 3443 The socket type or protocols are not compatible.

ERCVDERR 3444 An error indication was sent by the peer program.

ESHUTDOWN 3445 Cannot send data after a shutdown.

ESOCKTNOSUPPORT 3446 The specified socket type is not supported.

ETIMEDOUT 3447 A remote host did not respond within the timeout period.

EUNATCH 3448 The protocol required to support the specified address family is not

available at this time.

EBADF 3450 Descriptor is not valid.

EMFILE 3452 Too many open files for this process.

ENFILE 3453 Too many open files in the system.

EPIPE 3455 Broken pipe.

ECANCEL 3456 Operation cancelled.

EEXIST 3457 File exists.

EDEADLK 3459 Resource deadlock avoided.

ENOMEM 3460 Storage allocation request failed.

EOWNERTERM 3462 The synchronization object no longer exists because the owner is no

longer running.

EDESTROYED 3463 The synchronization object was destroyed, or the object no longer

exists.

ETERM 3464 Operation was terminated.

ENOENT1 3465 No such file or directory.

ENOEQFLOG 3466 Object is already linked to a dead directory.

EEMPTYDIR 3467 Directory is empty.

EMLINK 3468 Maximum link count for a file was exceeded.

ESPIPE 3469 Seek request is not supported for object.

ENOSYS 3470 Function not implemented.

EISDIR 3471 Specified target is a directory.

Integrated File System APIs 685

Name Value Text

EROFS 3472 Read-only file system.

EUNKNOWN 3474 Unknown system state.

EITERBAD 3475 Iterator is not valid.

EITERSTE 3476 Iterator is in wrong state for operation.

EHRICLSBAD 3477 HRI class is not valid.

EHRICLBAD 3478 HRI subclass is not valid.

EHRITYPBAD 3479 HRI type is not valid.

ENOTAPPL 3480 Data requested is not applicable.

EHRIREQTYP 3481 HRI request type is not valid.

EHRINAMEBAD 3482 HRI resource name is not valid.

EDAMAGE 3484 A damaged object was encountered.

ELOOP 3485 A loop exists in the symbolic links.

ENAMETOOLONG 3486 A path name is too long.

ENOLCK 3487 No locks are available.

ENOTEMPTY 3488 Directory is not empty.

ENOSYSRSC 3489 System resources are not available.

ECONVERT 3490 Conversion error.

E2BIG 3491 Argument list is too long.

EILSEQ 3492 Conversion stopped due to input character that does not belong to

the input codeset.

ETYPE 3493 Object type mismatch.

EBADDIR 3494 Attempted to reference a directory that was not found or was

destroyed.

EBADOBJ 3495 Attempted to reference an object that was not found, was

destroyed, or was damaged.

EIDXINVAL 3496 Data space index used as a directory is not valid.

ESOFTDAMAGE 3497 Object has soft damage.

ENOTENROLL 3498 User is not enrolled in system distribution directory.

EOFFLINE 3499 Object is suspended.

EROOBJ 3500 Object is a read-only object.

EEAHDDSI 3501 Hard damage on extended attribute data space index.

EEASDDSI 3502 Soft damage on extended attribute data space index.

EEAHDDS 3503 Hard damage on extended attribute data space.

EEASDDS 3504 Soft damage on extended attribute data space.

EEADUPRC 3505 Duplicate extended attribute record.

ELOCKED 3506 Area being read from or written to is locked.

EFBIG 3507 Object too large.

EIDRM 3509 The semaphore, shared memory, or message queue identifier is

removed from the system.

ENOMSG 3510 The queue does not contain a message of the desired type and

(msgflg logically ANDed with IPC_NOWAIT).

EFILECVT 3511 File ID conversion of a directory failed.

686 iSeries: UNIX-Type -- Integrated File System APIs

Name Value Text

EBADFID 3512 A file ID could not be assigned when linking an object to a

directory.

ESTALE 3513 File handle was rejected by server.

ESRCH 3515 No such process.

ENOTSIGINIT 3516 Process is not enabled for signals.

ECHILD 3517 No child process.

EBADH 3520 Handle is not valid.

ETOOMANYREFS 3523 The operation would have exceeded the maximum number of

references allowed for a descriptor.

ENOTSAFE 3524 Function is not allowed.

EOVERFLOW 3525 Object is too large to process.

EJRNDAMAGE 3526 Journal is damaged.

EJRNINACTIVE 3527 Journal is inactive.

EJRNRCVSPC 3528 Journal space or system storage error.

EJRNRMT 3529 Journal is remote.

ENEWJRNRCV 3530 New journal receiver is needed.

ENEWJRN 3531 New journal is needed.

EJOURNALED 3532 Object already journaled.

EJRNENTTOOLONG 3533 Entry is too large to send.

EDATALINK 3534 Object is a datalink object.

ENOTAVAIL 3535 IASP is not available.

ENOTTY 3536 I/O control operation is not appropriate.

EFBIG2 3540 Attempt to write or truncate file past its sort file size limit.

ETXTBSY 3543 Text file busy.

EASPGRPNOTSET 3544 ASP group not set for thread.

ERESTART 3545 A system call was interrupted and may be restarted.

ESCANFAILURE 3546 An object has been marked as a scan failure due to processing by

an exit program associated with the scan-related integrated file

system exit points.

 Top | UNIX-Type APIs | APIs by category

Integrated File System APIs—Time Stamp Updates

Each object (file and directory) has three time values associated with it:

 Access Time The time that the data in the object is accessed.

Change Time The time that the attributes of the object are changed.

Modify Time The time that the data in the object is changed.

These values are returned by the stat(), fstat(), lstat(), and QlgStat() APIs.

Integrated File System APIs 687

#TOP_OF_PAGE
unix.htm
aplist.htm

When it is stated that an API sets or updates one of these time values, the value may be “marked for

update” by the API rather than actually updated. When a subsequent stat(), fstat(), lstat(), and QlgStat()

API is called, or the file is closed by all processes, the times that were previously “marked for update”

are updated and the update marks are cleared.

The value of these times is measured in seconds since the Epoch. The Epoch is the time 0 hours, 0

minutes, 0 seconds, January 1, 1970, Coordinated Universal Time. If the system date is set prior to 1970,

all time values will be zero. The following table shows which of these times are “marked for update” by

each of the APIs.

 Time Stamp Updates for Integrated File System APIs

Function Access Change Modify

access No No No

accessx No No No

chdir No No No

chmod No Yes No

chown No Yes No

close No No No

closedir No No No

creat1 (new file) Yes Yes Yes

creat1 (parent directory of new file) No Yes Yes

creat2 (existing file) No Yes Yes

DosSetFileLocks No No No

DosSetRelMaxFH No No No

dup No No No

dup2 No No No

faccessx No No No

fchdir No No No

fchmod No Yes No

fchown No Yes No

fclear No Yes Yes

fclear64 No Yes Yes

fcntl No No No

fpathconf No No No

fstat No No No

fstatvfs No No No

fsync No No No

ftruncate No Yes Yes

getcwd Yes3 No No

getegid No No No

geteuid No No No

getgid No No No

getgrgid No No No

getgrgid_r No No No

688 iSeries: UNIX-Type -- Integrated File System APIs

Time Stamp Updates for Integrated File System APIs

Function Access Change Modify

getgrnam No No No

getgrnam_r No No No

getgroups No No No

getpwnam No No No

getpwnam_r No No No

getpwuid No No No

getpwuid_r No No No

getuid No No No

givedescriptor No No No

ioctl No No No

lchown No Yes No

link4 (file) No Yes No

link4 (parent directory) No Yes Yes

lseek No No No

lstat No No No

mkdir5 (new directory) Yes Yes Yes

mkdir5 (parent directory) No Yes Yes

mkfifo6 (new directory) Yes Yes Yes

mkfifo6 (parent directory) No Yes Yes

open O_CREAT7 (new file) Yes Yes Yes

open O_CREAT7 (parent directory) No Yes Yes

open O_TRUNC8 (existing file) No Yes Yes

open9 (existing file) No No No

opendir No No No

pathconf No No No

pread

Yes14

No No

pread64

Yes14

No No

pwrite No Yes Yes

pwrite64 No Yes Yes

QlgAccess No No No

QlgAccessx No No No

QlgChdir No No No

QlgChmod No Yes No

QlgChown No Yes No

QlgCreat1 (new file) Yes Yes Yes

QlgCreat1 (parent directory of new file) No Yes Yes

QlgCreat2 (existing file) No Yes Yes

QlgCvtPathToQSYSObjName No No No

QlgGetAttr No Yes No

QlgGetcwd Yes3 No No

Integrated File System APIs 689

Time Stamp Updates for Integrated File System APIs

Function Access Change Modify

QlgGetPathFromFileID Yes10 No No

QlgLchown No Yes No

QlgLink4 (file) No Yes No

QlgLink4 (parent directory) No Yes Yes

QlgLstat No No No

QlgMkdir5 (new directory) Yes Yes Yes

QlgMkdir5 (parent directory) No Yes Yes

QlgMkfifo5 (new directory) Yes Yes Yes

QlgMkfifo5 (parent directory) No Yes Yes

QlgOpen O_CREAT7 (new file) Yes Yes Yes

QlgOpen O_CREAT7 (parent directory) No Yes Yes

QlgOpen O_TRUNC8 (existing file) No Yes Yes

QlgOpen9 (existing file) No No No

QlgOpendir No No No

QlgPathconf No No No

QlgProcessSubtree Yes No No

QlgReaddir Yes No No

QlgReaddir_r Yes No No

QlgReadlink Yes No No

QlgRenameKeep (parent directories) No Yes Yes

QlgRenameUnlink (parent directories) No Yes Yes

QlgRmdir (parent directory) No Yes Yes

QlgSetAttr No Yes No

QlgStat No No No

QlgStatvfs No No No

QlgSymlink11 (new link) Yes Yes Yes

QlgSymlink11 (parent directory) No Yes Yes

QlgUtime13 No Yes No

QlgUnlink12 (file) No Yes No

QlgUnlink12 (parent directory) No Yes Yes

QP0FPTOS Yes No No

QP0LCHSG No No No

Qp0lCvtPathToQSYSObjName No No No

Qp0lGetAttr No Yes No

Qp0lGetPathFromFileID Yes10 No No

Qp0lProcessSubtree Yes No No

Qp0lRenameKeep (parent directories) No Yes Yes

Qp0lRenameUnlink (parent directories) No Yes Yes

QP0LROR No No No

QP0LRRO No No No

690 iSeries: UNIX-Type -- Integrated File System APIs

Time Stamp Updates for Integrated File System APIs

Function Access Change Modify

QP0LRTSG No No No

Qp0lSetAttr No Yes No

qsysetegid() No No No

qsyseteuid() No No No

qsysetgid() No No No

qsysetregid() No No No

qsysetreuid() No No No

qsysetuid() No No No

read

Yes14

No No

readv

Yes14

No No

readdir Yes No No

readdir_r Yes No No

readlink Yes No No

rewinddir No No No

rmdir (parent directory) No Yes Yes

select No No No

stat No No No

statvfs No No No

symlink11 (new link) Yes Yes Yes

symlink11 (parent directory) No Yes Yes

sysconf No No No

takedescriptor No No No

umask No No No

unlink12 (file) No Yes No

unlink12 (parent directory) No Yes Yes

utime13 No Yes No

write No Yes Yes

writev No Yes Yes

Integrated File System APIs 691

Time Stamp Updates for Integrated File System APIs

Function Access Change Modify

Notes:

 1. When the file did not previously exist, a successful creat() or QlgCreat() set the access, change, and

modification times for the new file. It also sets the change and modification times of the directory that contains

the new file (parent directory).

 2. When the file previously existed, a successful creat() or QlgCreat() sets the change and modification times for

the file.

 3. The access time of each directory in the absolute path name of the current directory (excluding the current

directory itself) is updated.

 4. A successful link() or QlgLink() sets the change time of the file and the change and modification times of the

directory that contains the new link (parent directory).

 5. A successful mkdir() or QlgMkdir() sets the access, change, and modification times for the new directory. It

also sets the change and modification times of the directory that contains the new directory (parent directory).

 6. A successful mkfifo() or QlgMkfifo() sets the access, change, and modification times for the new FIFO

(first-in-first-out) special file. It also sets the change and modification times of the parent directory that contains

the new FIFO file.

 7. When O_CREAT is specified and the file did not previously exist, a successful open() or QlgOpen() sets the

access, change, and modification times for the new file. It also sets the change and modification times of the

directory that contains the new file (parent directory).

 8. When O_TRUNC is specified and the file previously existed, a successful open() or QlgOpen() sets the change

and modification times for the file.

 9. When O_CREAT and O_TRUNC are not specified, open() or QlgOpen() does not update any time stamps.

10. A successful Qp0lGetPathFromFileID() or QlgGetPathFromFileID() sets the access time of each directory in

the absolute path name to the file.

11. A successful symlink() or QlgSymlink() sets the access, change, and modification times for the new symbolic

link. It also sets the change and modification times of the directory that contains the new directory (parent

directory).

12. A successful unlink() or QlgUnlink() sets the change and modification times of the directory that contains the

file being unlinked (parent directory). If the link count for the file is not zero, the change time for the file is set.

13. A successful utime() or QlgUtime() sets the access and modify times of the file as specified by the application.

The change time of the file is set to the current time.

14.

If the read operation was done using a scan descriptor passed to one of the integrated file system scan

related exit programs, the Access time is not updated. See “Integrated File System Scan on Open Exit Program”

on page 666 and “Integrated File System Scan on Close Exit Program” on page 656 for more information.

 Top | UNIX-Type APIs | APIs by category

692 iSeries: UNIX-Type -- Integrated File System APIs

#TOP_OF_PAGE
unix.htm
aplist.htm

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 693

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

694 iSeries: UNIX-Type -- Integrated File System APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 695

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

696 iSeries: UNIX-Type -- Integrated File System APIs

����

Printed in USA

	Contents
	Integrated File System APIs
	APIs
	access()—Determine File Accessibility
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	accessx()—Determine File Accessibility for a Class of Users
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	chdir()—Change Current Directory
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	chmod()—Change File Authorizations
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	chown()—Change Owner and Group of File
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	close()—Close File or Socket Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	closedir()—Close Directory
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	creat()—Create or Rewrite File
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	creat64()—Create or Rewrite a File (Large File Enabled)
	Usage Notes

	DosSetFileLocks()—Lock and Unlock a Byte Range of an Open File
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	DosSetFileLocks64()—Lock and Unlock a Byte Range of an Open File (Large File Enabled)
	Usage Notes
	Related Information

	DosSetRelMaxFH()—Change Maximum Number of File Descriptors
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	dup()—Duplicate Open File Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	dup2()—Duplicate Open File Descriptor to Another Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	faccessx()—Determine File Accessibility for a Class of Users
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	fchdir()—Change Current Directory by Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	fchmod()—Change File Authorizations by Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	fchown()—Change Owner and Group of File by Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	fclear()—Write (Binary Zeros) to Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	fclear64()—-Write (Binary Zeros) to Descriptor (Large File Enabled)
	Usage Notes

	fcntl()—Perform File Control Command
	Parameters
	Flags
	File Locking
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	fpathconf()—Get Configurable Path Name Variables by Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	fstat()—Get File Information by Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	fstat64()—Get File Information by Descriptor (Large File Enabled)
	Usage Notes
	Example

	fstatvfs()—Get File System Information by Descriptor
	Parameters
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	fstatvfs64()—Get File System Information by Descriptor (64-Bit Enabled)
	Usage Notes

	fsync()—Synchronize Changes to File
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	ftruncate()—Truncate File
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	ftruncate64()—Truncate File (Large File Enabled)
	Usage Notes

	getcwd()—Get Current Directory
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	getegid()—Get Effective Group ID
	Parameters
	Authorities
	Return Value
	Error Conditions
	Related Information
	Example

	geteuid()—Get Effective User ID
	Parameters
	Authorities
	Return Value
	Error Conditions
	Related Information
	Example

	getgid()—Get Real Group ID
	Parameters
	Authorities
	Return Value
	Error Conditions
	Related Information
	Example

	getgrgid()—Get Group Information Using Group ID
	Parameters
	Authorities
	Return Value
	Error Conditions
	Related Information
	Example

	getgrgid_r()—Get Group Information Using Group ID
	Parameters
	Authorities
	Return Value
	Error Conditions
	Related Information
	Example

	getgrgid_r_ts64()—Get Group Information Using Group ID
	getgrnam()—Get Group Information Using Group Name
	Parameters
	Authorities
	Return Value
	Error Conditions
	Related Information
	Example

	getgrnam_r()—Get Group Information Using Group Name
	Parameters
	Authorities
	Return Value
	Error Conditions
	Related Information
	Example

	getgrnam_r_ts64()—Get Group Information Using Group Name
	getgroups()—Get Group IDs
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	getpwnam()—Get User Information for User Name
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	getpwnam_r()—Get User Information for User Name
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	getpwnam_r_ts64()—Get User Information for User Name
	getpwuid()—Get User Information for User ID
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	getpwuid_r()—Get User Information for User ID
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	getpwuid_r_ts64()—Get User Information for User ID
	getuid()—Get Real User ID
	Parameters
	Authorities
	Return Value
	Error Conditions
	Related Information
	Example

	ioctl()—Perform I/O Control Request
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	lchown()—Change Owner and Group of Symbolic Link
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	link()—Create Link to File
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	lseek()—Set File Read/Write Offset
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	lseek64()—Set File Read/Write Offset (Large File Enabled)
	Usage Notes

	lstat()—Get File or Link Information
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	lstat64()—Get File or Link Information (Large File Enabled)
	Usage Notes
	Example

	mkdir()—Make Directory
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	mkfifo()—Make FIFO Special File
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	mmap()—Memory Map a File
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	mmap64()—Memory map a Stream File (Large File Enabled)
	Usage Notes

	mprotect()—Change Access Protection for Memory Mapping
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	msync()—Synchronize Modified Data with Mapped File
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	munmap()—Remove Memory Mapping
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	open()—Open File
	Parameters
	Using the oflag Parameter
	Using CCSIDs and code pages
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Examples

	open64()—Open File (Large File Enabled)
	Usage Notes

	opendir()—Open Directory
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	pathconf()—Get Configurable Path Name Variables
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	pipe()—Create an Interprocess Channel
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	pread()—Read from Descriptor with Offset
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	pread64()—Read from Descriptor with Offset (large file enabled)
	Usage Notes
	Example

	pwrite()—Write to Descriptor with Offset
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	pwrite64()—Write to Descriptor with Offset (large file enabled)
	Usage Notes
	Example

	QlgAccess()—Determine File Accessibility (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgAccessx()—Determine File Accessibility for a Class of Users (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgChdir()—Change Current Directory (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgChmod()—Change File Authorizations (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgChown()—Change Owner and Group of File (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgCreat()—Create or Rewrite File (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgCreat64()—Create or Rewrite a File (large file enabled and using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgCvtPathToQSYSObjName()— Resolve Integrated File System Path Name into QSYS Object Name (using NLS-enabled path name)
	QlgGetAttr()—Get Attributes (using NLS-enabled path name)
	QlgGetcwd()—Get Current Directory (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgGetPathFromFileID()—Get Path Name of Object from Its File ID (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgGetpwnam()—Get User Information for User Name (using NLS-enabled path name)
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	QlgGetpwnam_r()—Get User Information for User Name (using NLS-enabled path name)
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	QlgGetpwuid()—Get User Information for User ID (using NLS-enabled path name)
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	QlgGetpwuid_r()—Get User Information for User ID (using NLS-enabled path name)
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information
	Example

	QlgLchown()—Change Owner and Group of Symbolic Link (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgLink()—Create Link to File (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgLstat()—Get File or Link Information (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgLstat64()—Get File or Link Information (large file enabled and using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgMkdir()—Make Directory (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgMkfifo()—Make FIFO Special File (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgOpen()—Open a File (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgOpen64()—Open File (large file enabled and using NLS-enabled path name)
	Parameters
	Related Information

	QlgOpendir()—Open Directory (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgPathconf()—Get Configurable Path Name Variables (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgProcessSubtree()—Process a Path Name (using NLS-enabled path name)
	QlgReaddir()—Read Directory Entry (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgReaddir_r()—Read Directory Entry (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgReadlink()—Read Value of Symbolic Link (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgRenameKeep()—Rename File or Directory, Keep "new" If It Exists (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgRenameUnlink()—Rename File or Directory, Unlink "new" If It Exists (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgRmdir()—Remove Directory (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgSaveStgFree()—Save Storage Free (using NLS-enabled path name)
	QlgSetAttr()—Set Attributes (using NLS-enabled path name)
	QlgStat()—Get File Information (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgStat64()—Get File Information (large file enabled and using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgStatvfs()—Get File System Information (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgStatvfs64()—Get File System Information (64-Bit enabled and using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgSymlink()—Make Symbolic Link (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgUnlink()—Remove Link to File (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	QlgUtime()—Set File Access and Modification Times (using NLS-enabled path name)
	Parameters
	Related Information
	Example

	Perform Miscellaneous File System Functions (QP0FPTOS) API
	Authorities and Locks
	Required Parameter Group
	Usage Notes
	Error Messages
	Examples

	Qp0lCvtPathToQSYSObjName()— Resolve Integrated File System Path Name into QSYS Object Name
	Parameters
	Authorities
	Returned Data Format
	Field Descriptions
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	Perform File System Operation (QP0LFLOP) API
	Authorities and Locks
	Required Parameter Group
	Output Buffer Description
	FLOP0100 Structure Description
	FLOP0300 Output Structure Description
	FLOP0400 Output Structure Description
	Input Buffer Description
	Format of FLOP0200 Structure
	Format of FLOP0300 Input Structure
	Format of FLOP0400 Input Structure
	Field Descriptions
	Usage Notes
	Error Messages

	Qp0lGetAttr()—Get Attributes
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	Qp0lGetPathFromFileID()—Get Path Name of Object from Its File ID
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	Qp0lOpen()—Open File
	Parameters
	Related Information
	Example

	Qp0lProcessSubtree()—Process a Path Name
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Scenarios
	Figure: Directory Structure A
	Figure: Directory Structure B
	Scenario 1
	Figure: Scenario 1 API Input
	Figure: Results of a call
	Scenario 2
	Figure: Scenario 2 API Input
	Figure: Results of a call
	Scenario 3
	Figure: Scenario 3 API Input
	Figure: Results of a call
	Scenario 4
	Figure: Scenario 4 API Input
	Figure: Results of a call
	Related Information
	Example

	Qp0lRenameKeep()—Rename File or Directory, Keep "new" If It Exists
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	Qp0lRenameUnlink()—Rename File or Directory, Unlink "new" If It Exists
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	Retrieve Object References (QP0LROR)
	Parameters
	Authorities and Locks
	Output Structure Formats
	RORO0100 Output Format Description (Qp0l_RORO0100_Output)
	RORO0200 Output Format Description (Qp0l_RORO0200_Output)
	Job Using Object Structure Description (Qp0l_Job_Using_Object)
	Simple Object Reference Types Structure Description (Qp0l_Sim_Ref_Types_Output)
	Extended Object Reference Types Structure Description (Qp0l_Ext_Ref_Types_Output)
	Field Descriptions for RORO0100 and RORO0200 Output Structures and their Imbedded Structures
	Error Messages
	Usage Notes
	Related Information
	Example

	Qp0lSaveStgFree()—Save Storage Free
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	Qp0lSetAttr()—Set Attributes
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	Qp0lUnlink()—Remove Link to File
	Parameters
	Related Information
	Example

	Qp0zPipe()—Create Interprocess Channel with Sockets
	Parameters
	Authorities
	Return Value
	Error Conditions
	Usage Notes
	Related Information

	qsygetgroups()—Get Supplemental Group IDs
	Parameters
	Authorities
	Return Value
	Error Conditions

	qsysetegid()—Set Effective Group ID
	Parameters
	Authorities and Locks
	Return Value
	Error Conditions

	qsyseteuid()—Set Effective User ID
	Parameters
	Authorities and Locks
	Return Value
	Error Conditions

	qsysetgid()—Set Group ID
	Parameters
	Authorities and Locks
	Return Value
	Error Conditions

	qsysetgroups()—Set Supplemental Group IDs
	Parameters
	Authorities and locks
	Return Value
	Error Conditions

	qsysetregid()—Set Real and Effective Group IDs
	Parameters
	Authorities and Locks
	Return Value
	Error Conditions

	qsysetreuid()—Set Real and Effective User IDs
	Parameters
	Authorities and Locks
	Return Value
	Error Conditions

	qsysetuid()—Set User ID
	Parameters
	Authorities and Locks
	Return Value
	Error Conditions

	Retrieve Network File System Export Entries (QZNFRTVE) API
	Authorities and Locks
	Usage Notes
	Required Parameter Group
	Receiver Variable Description
	EXPE0100 and EXPE0200 format
	Returned Records Feedback Information Description
	Format of Returned Records Feedback Information
	Field Descriptions
	Error Messages

	read()—Read from Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	readdir()—Read Directory Entry
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	readdir_r()—Read Directory Entry
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	readdir_r_ts64()—Read Directory Entry
	readlink()—Read Value of Symbolic Link
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	readv()—Read from Descriptor Using Multiple Buffers
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	rename()—Rename File or Directory
	Parameters
	Usage Notes
	Related Information

	rewinddir()—Reset Directory Stream to Beginning
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	rmdir()—Remove Directory
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	stat()—Get File Information
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	stat64()—Get File Information (Large File Enabled)
	Parameters
	Usage Notes

	statvfs()—Get File System Information
	Parameters
	Warning: Temporary Level 4 Header

	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	statvfs64()—Get File System Information (64-Bit Enabled)
	Parameters
	Usage Notes

	symlink()—Make Symbolic Link
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	sysconf()—Get System Configuration Variables
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Related Information
	Example

	umask()—Set Authorization Mask for Job
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	unlink()—Remove Link to File
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	utime()—Set File Access and Modification Times
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	write()—Write to Descriptor
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information
	Example

	writev()—Write to Descriptor Using Multiple Buffers
	Parameters
	Authorities
	Return Value
	Error Conditions
	Error Messages
	Usage Notes
	Related Information

	Exit Programs
	Integrated File System Scan on Close Exit Program
	Restrictions
	Authorities and Locks
	Program Data
	Required Parameter Group
	Format of Integrated File System Close Exit Information (Input)
	Format of Status Information (Output)
	Field Descriptions
	Usage Notes
	Related Information

	Integrated File System Scan on Open Exit Program
	Restrictions
	Authorities and Locks
	Program Data
	Required Parameter Group
	Format of Integrated File System Open Exit Information (Input)
	Format of Status Information (Output)
	Field Descriptions
	Scan Key List and Scan Key Signatures
	Coded Character Set Identifier (CCSID) Information
	Usage Notes
	Related Information

	Process a Path Name Exit Program
	Parameters

	Save Storage Free Exit Program
	Required Parameter Group
	Related Information

	Concepts
	Header Files for UNIX-Type Functions
	Errno Values for UNIX-Type Functions
	Integrated File System APIs—Time Stamp Updates

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

