
iSeries

User Interface Manager APIs

Version 5 Release 3

ERserver

���

iSeries

User Interface Manager APIs

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 103.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

User Interface Manager (UIM) APIs . . . 1

APIs 3

Add List Entry (QUIADDLE) API 3

Required Parameter Group 3

Error Messages 4

Add List Multiple Entries (QUIADDLM) API . . . 6

Required Parameter Group 6

Error Messages 9

Add Pop-Up Window (QUIADDPW) API 10

Required Parameter Group 10

Optional Parameter Group 11

Error Messages 12

Add Print Application (QUIADDPA) API 13

Authorities and Locks 13

Required Parameter Group 14

Optional Parameter Group 14

Format of Data Returned 15

Error Messages 15

Close Application (QUICLOA) API 16

Required Parameter Group 16

Error Messages 16

Delete List (QUIDLTL) API 17

Required Parameter Group 17

Error Messages 18

Display Command Line Window (QUSCMDLN)

API 18

Display Appearance Problems 19

Error Messages 19

Display Help (QUHDSPH) API 20

Authorities and Locks 21

Required Parameter Group 21

Optional Parameter Group 23

Error Messages 25

Display Long Text (QUILNGTX) API 26

Required Parameter Group 26

Error Messages 27

Display Panel (QUIDSPP) API 28

Required Parameter Group 29

Optional Parameter Group 1 30

Optional Parameter Group 2 33

Error Messages 33

Get Dialog Variable (QUIGETV) API 34

Required Parameter Group 34

Error Messages 35

Get List Entry (QUIGETLE) API 36

Required Parameter Group 37

Error Messages 40

Get List Multiple Entries (QUIGETLM) API . . . 41

Required Parameter Group 42

Error Messages 45

Open Display Application (QUIOPNDA) API . . . 46

Authorities and Locks 46

Required Parameter Group 47

Optional Parameter Group 48

Format of Data Returned 48

Error Messages 49

Open Print Application (QUIOPNPA) API 50

Authorities and Locks 51

Required Parameter Group 51

Optional Parameter Group 53

Format of Data Returned 53

Error Messages 53

Print Help (QUHPRTH) API 54

Warning: Temporary Level 3 Header 54

Authorities and Locks 54

Required Parameter Group 54

Error Messages 55

Print Panel (QUIPRTP) API 56

Required Parameter Group 56

Error Messages 57

Put Dialog Variable (QUIPUTV) API 57

Required Parameter Group 58

Error Messages 58

Remove List Entry (QUIRMVLE) API 59

Required Parameter Group 59

Error Messages 60

Remove Pop-Up Window (QUIRMVPW) API . . . 61

Required Parameter Group 61

Error Messages 61

Remove Print Application (QUIRMVPA) API . . . 62

Required Parameter Group 62

Error Messages 63

Retrieve Help Text (QUHRHLPT) API 63

Authorities and Locks 64

Required Parameter Group 64

Format of the receiver variable 65

Field Descriptions 65

Format of help identifiers to be retrieved . . . 66

Field Descriptions 66

Format of the help identifier text 67

Field Descriptions 67

Error Messages 67

Retrieve List Attributes (QUIRTVLA) API 68

Required Parameter Group 68

Format of Data Returned 69

Error Messages 69

Set List Attributes (QUISETLA) API 70

Required Parameter Group 71

Error Messages 72

Set Screen Image (QUISETSC) API 73

Required Parameter Group 73

Error Messages 74

Update List Entry (QUIUPDLE) API 74

Required Parameter Group 75

Error Messages 76

Exit Programs 76

Exit Program for an Action List Option or

Pull-Down Field Choice 76

Single Parameter Interface 77

Multiple Parameter Interface 78

Exit Program for Application Formatted Data . . . 79

Single Parameter Interface 80

© Copyright IBM Corp. 1998, 2005 iii

Multiple Parameter Interface 80

CALL Program for a Function Key 81

Single Parameter Interface 81

Multiple Parameter Interface 82

CALL Program for a Menu Item 82

Single Parameter Interface 82

Multiple Parameter Interface 83

CALL Program for an Action List Option and

Pull-Down Field Choice 83

Single Parameter Interface 84

Multiple Parameter Interface 85

Exit Program for Conditioning Panel Items 86

Single Parameter Interface 87

Multiple Parameter Interface 88

Exit Program for a Cursor-Sensitive Prompt . . . 88

Single Parameter Interface 89

Multiple Parameter Interface 90

Exit Program for General Panel Checking 90

Single Parameter Interface 91

Multiple Parameter Interface 93

Exit Program for an Incomplete List 93

Single Parameter Interface 94

Multiple Parameter Interface 95

Exit Program for Text Area Data 95

Single Parameter Interface 96

Multiple Parameter Interface 97

Concepts 97

Using the User Interface Manager (UIM) APIs . . . 98

Terms and Definitions 98

Using the User Interface Manager (UIM) Exit

Programs 99

Calling a UIM Exit Program 99

Using a Parameter Interface 100

Handling Messages 100

Appendix. Notices 103

Trademarks 104

Terms and conditions for downloading and

printing publications 105

Code disclaimer information 106

iv iSeries: User Interface Manager APIs

User Interface Manager (UIM) APIs

The user interface manager (UIM) APIs handle various aspects of the user interface, allowing your

applications to display help, display a command line window, convert date and time formats, control

keyboard buffering, display screens and pop-up windows, and to build screens.

These APIs allow an application developer to manipulate the user interface. These APIs are used in

combination with variables, lists, and panel definitions in a panel group object. For more information on

creating panel group objects, see the Application Display Programming

book.

For additional information, see:

v “Using the User Interface Manager (UIM) APIs” on page 98

v User Interface Manager APIs by task

v “Using the User Interface Manager (UIM) Exit Programs” on page 99

The UIM APIs are:

v “Add List Entry (QUIADDLE) API” on page 3 (QUIADDLE) adds one new entry to a list.

v “Add List Multiple Entries (QUIADDLM) API” on page 6 (QUIADDLM) adds one or more new entries

to a list.

v “Add Pop-Up Window (QUIADDPW) API” on page 10 (QUIADDPW) begins the ability to display

panels within a pop-up window.

v “Add Print Application (QUIADDPA) API” on page 13 (QUIADDPA) enables print functions in a

previously opened display application by opening the printer file for the application.

v “Close Application (QUICLOA) API” on page 16 (QUICLOA) closes a UIM application that was

opened using the Open Display Application (QUIOPNDA) API or the Open Print Application

(QUIOPNPA) API.

v “Delete List (QUIDLTL) API” on page 17 (QUIDLTL) deletes an active list and provides a way for the

application to start over with a new list.

v “Display Command Line Window (QUSCMDLN) API” on page 18 (QUSCMDLN) displays a window

containing a command line.

v “Display Help (QUHDSPH) API” on page 20 (QUHDSPH) displays help information.

v “Display Long Text (QUILNGTX) API” on page 26 (QUILNGTX) displays a pop-up window containing

the string of text that is passed to it.

v “Display Panel (QUIDSPP) API” on page 28 (QUIDSPP) displays a panel and waits for the user to

press either a function key or the Enter key.

v “Get Dialog Variable (QUIGETV) API” on page 34 (QUIGETV) allows a program to obtain the value of

one or more dialog variables by specifying the application program’s variable buffer and the name of a

variable record defined in the panel group for the open application.

v “Get List Entry (QUIGETLE) API” on page 36 (QUIGETLE) accesses an entry in a list and optionally

updates the corresponding dialog variables to the values in the list entry.

v “Get List Multiple Entries (QUIGETLM) API” on page 41 (QUIGETLM) accesses one or more entries in

a list and updates the corresponding dialog variables with the values contained in the list entry.

v “Open Display Application (QUIOPNDA) API” on page 46 (QUIOPNDA) initiates a UIM display

application by opening the panel group that the application program specifies.

v “Open Print Application (QUIOPNPA) API” on page 50 (QUIOPNPA) initiates a UIM print application

by opening the panel group that the application program specifies.

© Copyright IBM Corp. 1998, 2005 1

uim1b.htm

v “Print Help (QUHPRTH) API” on page 54 (QUHPRTH) prints help information from help modules

named when this API is called.

v “Print Panel (QUIPRTP) API” on page 56 (QUIPRTP) prints a panel to the printer file for an opened

print application.

v “Put Dialog Variable (QUIPUTV) API” on page 57 (QUIPUTV) updates the value of one or more dialog

variables by specifying variable buffer of the application program and naming the variable record

defined in the panel group for the open application.

v “Remove List Entry (QUIRMVLE) API” on page 59 (QUIMVLE) removes the list entry identified by the

value of the current entry pointer for the list.

v “Remove Pop-Up Window (QUIRMVPW) API” on page 61 (QUIRMVPW) removes the pop-up

window created by the Add Pop-Up Window (QUIADDPW) API.

v “Remove Print Application (QUIRMVPA) API” on page 62 (QUIRMVPA) stops print functions in a

previously opened display application.

v “Retrieve Help Text (QUHRHLPT) API” on page 63 (QUHRHLPT) lets you generate an Extended

Markup Language (XML) source listing of the help identifiers in a panel group or menu object.

v “Retrieve List Attributes (QUIRTVLA) API” on page 68 (QUIRTVLA) retrieves list attributes

v “Set List Attributes (QUISETLA) API” on page 70 (QUISETLA) sets list attributes

v “Set Screen Image (QUISETSC) API” on page 73 (QUISETSC) establishes the screen image for a UIM

application.

v “Update List Entry (QUIUPDLE) API” on page 74 (QUIUPDLE) updates the list entry identified by the

current entry pointer for the list or the extended action entry.

The UIM exit programs are:

v “Exit Program for an Action List Option or Pull-Down Field Choice” on page 76 adds, updates, or

removes a list entry for the application when the action list option or pull-down choice action is a

command string.

v “Exit Program for Application Formatted Data” on page 79 updates the data formatted by the

application every time a panel is displayed, and returns control to the UIM through a normal return.

v “CALL Program for a Function Key” on page 81 is assigned to a function key to process requests that

are specific to the application.

v “CALL Program for a Menu Item” on page 82 is assigned to a menu item to process requests that are

specific to the application.

v “CALL Program for an Action List Option and Pull-Down Field Choice” on page 83 can specify the

CALL dialog command on the ENTER, EXTENTER, PROMPT, and EXTPROMPT attributes of the list

action (LISTACT) tag.

v “Exit Program for Conditioning Panel Items” on page 86 may be called during condition evaluation for

conditions specified on the EXPR attribute of the COND tag and the LINKWHEN and UNLESSn

attributes of the LINK tag.

v “Exit Program for a Cursor-Sensitive Prompt” on page 88 can be specified on the PROMPT attribute of

the data item (DATAI), data item extender (DATAIX), and list column (LISTCOL) tags. This attribute

specifies the name of a dialog variable identifying the program to call.

v “Exit Program for General Panel Checking” on page 90 may be specified on the USREXIT attribute of

the panel definition (PANEL) tag. This attribute specifies the name of a dialog variable identifying the

program to call.

v “Exit Program for an Incomplete List” on page 93 allows an application to display part of a list

without having to build the entire list.

v “Exit Program for Text Area Data” on page 95 can update the data in a text area every time a panel is

displayed and returns control to the UIM through a normal return.

 Top | APIs by category

2 iSeries: User Interface Manager APIs

#TOP_OF_PAGE
aplist.htm

APIs

These are the APIs for this category.

Add List Entry (QUIADDLE) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 Variable buffer

Input Char(*)

3 Variable buffer length

Input Binary(4)

4 Variable record name

Input Char(10)

5 List name

Input Char(10)

6 Option

Input Char(4)

7 List entry handle

Output Char(4)

8 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Add List Entry (QUIADDLE) API adds one new entry to a list. The new entry is inserted

immediately before or immediately after the entry identified by the current entry pointer for the list. The

new entry can also be inserted at the beginning or at the end of the list. On return to the application

program, the current entry points to the newly inserted entry.

Required Parameter Group

Application handle

INPUT; CHAR(8)

 A value assigned by the UIM and returned to the application program by the Open Display

Application (QUIOPNDA) API or the Open Print Application (QUIOPNPA) API when the

application is opened.

Variable buffer

INPUT; CHAR(*)

 Program storage containing values of one or more dialog variables, from which dialog variable

values are copied. Dialog variables are copied in the order specified in the variable record

definition.

 If the variable record name parameter specifies the name of a variable record defined in the panel

group for an open application, dialog variables are copied from the variable buffer to the

User Interface Manager (UIM) APIs 3

application variable pool before the list entry is added. This parameter operation is the same as

using the Put Dialog Variable (QUIPUTV) API immediately before the QUIADDLE API.

Variable buffer length

INPUT; BINARY(4)

 The length of the variable buffer. The buffer must be large enough to contain all the dialog

variables in the variable record definition specified in the variable record name parameter. If the

buffer is not large enough, an error condition is reported.

Variable record name

INPUT; CHAR(10)

 The name of the variable record that determines which dialog variables are copied from the

variable buffer to the application variable pool. The variable record must be defined in the panel

group for the open application. The following special value can be used:

 *NONE The QUIPUTV API is not used during the QUIADDLE API. The variable buffer parameter and variable buffer

length are ignored.

List name

INPUT; CHAR(10)

 The name of the list to which an entry is added. If the list is not currently active in the open

application, it is activated by this API.

Option

INPUT; CHAR(4)

 The location of the new entry in the list. When an entry is added to the list, the current entry is

always changed to point to the new list entry.

 One of the following values must be specified to indicate the new entry’s location:

 FRST Added as the first entry in the list

LAST Added as the last entry in the list

NEXT Added after the current entry

PREV Added before the current entry

List entry handle

OUTPUT; CHAR(4)

 A value representing an entry in a UIM list and returned to the application program representing

the current entry in the list until it is removed from the list, even if other entries are inserted and

removed from the list. This value is the handle of the entry just inserted in the list.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6AA0 E Request is not allowed when extending a list that is not complete.

CPF6AA1 E The value of the action field is not correct at this time. Reason code &5.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A0F E Previous error occurred while running application &3.

CPF6A2B E Value for Option parameter not valid.

4 iSeries: User Interface Manager APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A36 E Data not correct for dialog variable &4 in panel group &1 in &2.

CPF6A37 E Data not correct for dialog variable &4 in panel group &1 in &2.

CPF6A38 E Variable record &4 not defined in panel group.

CPF6A39 E Variable buffer length too small.

CPF6A9D E Size limit reached for list &4.

CPF6A90 E Value not correct. Reason code &3.

CPF6A91 E List &4 does not exist.

CPF6A93 E Operation not valid when current entry is &5.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

User Interface Manager (UIM) APIs 5

#TOP_OF_PAGE
aplist.htm

Add List Multiple Entries (QUIADDLM) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 Variable buffer

Input Char(*)

3 Variable buffer length

Input Binary(4)

4 Variable record name

Input Char(10)

5 List name

Input Char(10)

6 Option

Input Char(4)

7 List entry handle

Output Char(4)

8 Number of records

Input Binary(4)

9 Record numbers

Input Char(*)

10 Record size

Input Binary(4)

11 Record count

Output Binary(4)

12 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Add List Multiple Entries (QUIADDLM) API adds one or more new entries to a list. The new entries

are inserted immediately before or immediately after the entry identified by the current entry for the list.

They can also be inserted at the beginning or end of the list. On return to the application program, the

current entry points to the most recently inserted entry.

The contents of all dialog variables corresponding to columns in the list are saved in each added entry.

When the operation completes successfully, the corresponding dialog variables contain the values from

the last list entry successfully added.

Required Parameter Group

Application handle

INPUT; CHAR(8)

6 iSeries: User Interface Manager APIs

The application handle assigned by the UIM and returned to the application program by the

Open Display Application (QUIOPNDA) API or the Open Print Application (QUIOPNPA) API

when the application is opened.

Variable buffer

INPUT; CHAR(*)

 The program buffer from which dialog variable values are copied. The dialog variables are copied

in the order specified in the variable record definition.

 If the variable record name parameter specifies the name of a variable record defined in the panel

group for an open application, dialog variables are copied from the variable buffer to the

application variable pool before the list entry is added. This parameter operation is the same as

using the Put Dialog Variable (QUIPUTV) API immediately before the Add List Multiple Entry

(QUIADDLM) API.

 The variable buffer must be large enough to contain all the variables specified in the variable

record definition.

 When the number of records parameter has a value greater than one and the record numbers

parameter has a value of zero, the size of the variable buffer must be at least equal to the value

on the number of records parameter multiplied by the value on the record size parameter.

 When the number of records parameter has a value greater than one and the record numbers

parameter has a nonzero value, the size of the variable buffer must be at least equal to the largest

value in the array of record numbers multiplied by the value of the record size parameter.

Variable buffer length

INPUT; BINARY(4)

 The length of the variable buffer. The buffer must be large enough to contain all the dialog

variables in the variable record definition specified in the variable record name parameter.

Variable record name

INPUT; CHAR(10)

 The name of the variable record determining which dialog variables are copied from the variable

buffer to the application variable pool. The variable record must be defined in the panel group

for the open application.

 The following special value can be used:

 *NONE The QUIPUTV API is not used during the QUIADDLM API. The variable buffer, variable buffer length,

number of records, record size, and record numbers parameters are ignored.

List name

INPUT; CHAR(10)

 The name of the list to which entries are added. If the list is not currently active in the open

application, it is activated by this API.

Option

INPUT; CHAR(4)

 The location of the new entry in the list. When an entry is added to the list, the current entry is

always changed to point to the new list entry.

 One of the following values must be specified to indicate the new entry’s location:

 FRST Added as the first entry in the list

LAST Added as the last entry in the list

NEXT Added after the current entry

PREV Added before the current entry

User Interface Manager (UIM) APIs 7

List entry handle

OUTPUT; CHAR(4)

 The list entry handle returned to the application program from the current entry. This value is the

handle of the entry just inserted into the list. If more than one list entry is added, this parameter

contains the list entry handle of the last entry successfully added.

Number of records

INPUT; BINARY(4)

 The total number of entries the application program wants to add to the list. If the variable

record name parameter specifies the name of a variable record defined in the panel group for this

open application, this parameter can be used with the record size, record count, and record

numbers parameters to add multiple entries to the list. When the variable record name parameter

has the value *NONE, the number of records parameter is ignored.

 The following special value can be used:

 1 Only one entry is added to the list. The record size, record count, and record numbers parameters are ignored.

When the number of records parameter is greater than 1, the variable buffer parameter must

contain all the entries to be added to the list. The record size parameter defines the size of each

record within the variable buffer, and is used to calculate the offset of each record from the first

record. The variable record, identified by the variable record name parameter, defines the format

of each record.

Record numbers

INPUT; CHAR (*)

 An array of record numbers. Each entry in the array is a BINARY(4) value from 1 to 32767. The

array specifies the order in which entries are added to the list. The first record number defines

the first entry added to the list, the second record number defines the second entry, and so forth.

Each record number specifies a record from the variable buffer containing the values for an entry

to be added to the list. The dimension of the array must be at least as large as the value for the

number of records parameter.

 The following special value can be used in the first array element:

 0 Records from the variable buffer are used in sequential order. The array of record numbers needs to have only

one element.

When the record numbers parameter is 0, the size of the variable buffer must be at least equal to

the value specified on the number of records parameter multiplied by the value on the record

size parameter. When the record numbers parameter has a nonzero value, the size of the variable

buffer must be at least equal to the largest value specified in the record numbers array multiplied

by the record size value.

 The record numbers parameter allows applications to add more than one list entry from data

structures already available to the application program. This is useful when the existing order of

records in the data structures is not desired for the list entries, or when certain records should not

be added to the list.

Record size

INPUT; BINARY(4)

 The size of each record within the variable buffer when multiple records are added to the list.

The record size is also used to calculate the offset of each record after the first record.

 When the number of records parameter is 1, this parameter is ignored.

Record count

OUTPUT; BINARY(4)

8 iSeries: User Interface Manager APIs

The number of list entries actually added. Validation is done on packed or zoned data values in

each record. If an error is found, the Add List Multiple Entries (QUIADDLM) API ends at that

point with an exception; unusable data causes a partial update of the list. This parameter returns

the number of list entries successfully added to the application program, even if an error occurs.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6AA0 E Request is not allowed when extending a list that is not complete.

CPF6AA1 E The value of the action field is not correct at this time. Reason code &5.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A0F E Previous error occurred while running application &3.

CPF6A06 E Record size or record number too large.

CPF6A2B E Value for Option parameter not valid.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A30 E Value for Record Numbers parameter not valid.

CPF6A36 E Data not correct for dialog variable &4 in panel group &1 in &2.

CPF6A37 E Data not correct for dialog variable &4 in panel group &1 in &2.

CPF6A38 E Variable record &4 not defined in panel group.

CPF6A39 E Variable buffer length too small.

CPF6A9D E Size limit reached for list &4.

CPF6A90 E Value not correct. Reason code &3.

CPF6A91 E List &4 does not exist.

CPF6A93 E Operation not valid when current entry is &5.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

User Interface Manager (UIM) APIs 9

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Add Pop-Up Window (QUIADDPW) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 Pop-up window location

Input Char(10)

3 Row

Input Binary(4)

4 Column

Input Binary(4)

5 Error code

I/O Char(*)
 Optional Parameter Group:

6 Depth

Input Binary(4)
 Default Public Authority: *USE

 Threadsafe: No

The Add Pop-Up Window (QUIADDPW) API begins the ability to display panels within a pop-up

window. All subsequent panel displays for the open application remain in the pop-up window until the

Remove Pop-up Window (QUIRMVPW) API is called, or until the QUIADDPW API is called again to

add another pop-up window. The maximum number of pop-up windows that can be added to an open

application is 20.

Required Parameter Group

Application handle

INPUT; CHAR(8)

 The application handle assigned by the UIM and returned to the application program by the

Open Display Application (QUIOPNDA) API when the application is opened.

Pop-up window location

INPUT; CHAR(10)

 The name of a field used for field-adjacent positioning. Field-adjacent positioning places a pop-up

window near a field on the underlying panel. The field name must correspond to a name

specified on the NAME attribute on one of the following tags of the immediately underlying

panel or pop-up window:

v Command Line (CMDLINE)

v Data Item Group (DATAGRP)

v Data Item (DATAI)

v List Column (LISTCOL)

v List Column Group (LISTGRP)

v Menu Item (MENUI)

10 iSeries: User Interface Manager APIs

v Option Line (OPTLINE)

One of these special values may be used to position the window:

 *OFFSET The pop-up window is offset from the top left corner of the most recent underlying panel or pop-up window.

*PULLDOWN The pop-up window is positioned adjacent to the previous position of the pull-down choice. If the most recent

action for the most recently displayed panel was not the selection of a pull-down choice, offset positioning is

used.

*ROWCOL The row and column parameters indicate where the upper left corner of the pop-up window appears. Row

and column positioning should be used only when displaying a pop-up window over a non-UIM panel, in

conjunction with the Set Screen Image (QUISETSC) API.

Row INPUT; BINARY(4)

 The absolute row used when row and column positioning is requested. The value is either a

positive or negative integer.

 If a negative integer is provided, the last row for the pop-up window is calculated using the

absolute value of the integer, relative to the bottom of the display. A pop-up window cannot

begin in row one, and a minimum-depth pop-up window must fit at the specified first row.

 When a negative integer is provided, the absolute location of the window is determined by the

size of the first panel displayed in the pop-up window. If another panel is displayed in the same

window with a smaller width or depth, the location is not recalculated based on the negative

integer. If another panel is displayed in the same window with a larger width or depth, the

window is changed to use offset positioning.

Column

INPUT; BINARY(4)

 The absolute column used when row and column positioning is requested. The value is either a

positive or a negative integer.

 If a negative integer is provided, the last column for the pop-up window is calculated using the

absolute value of the integer, relative to the right side of the display. A pop-up window cannot

begin in column one, and a minimum-width pop-up window must fit at the specified first

column.

 When a negative integer is provided, the absolute location of the window is determined by the

size of the first panel displayed in the pop-up window. If another panel is displayed in the same

window with a smaller width or depth, the location is not recalculated based on the negative

integer. If another panel is displayed in the same window with a larger width or depth, the

window is changed to use offset positioning.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group

Depth INPUT; BINARY(4)

 The depth of the pop-up window to be displayed.

 If the depth is specified on a panel without a TEXT area defined, it will be ignored and the depth

specified on the PANEL tag will be used. If the depth specified on the API is larger than the

depth specified on the PANEL tag, the depth specified on the API will be used.

 The maximum supported depth for a pop-up panel depends on what the display device can

support. On a device that can only support 24 rows by 80 bytes, the maximum depth of a pop-up

window is 21 lines. On a device that can support 27 rows by 132 bytes, the maximum depth of a

pop-up window is 24 lines.

User Interface Manager (UIM) APIs 11

error.htm#HDRERRCOD
error.htm#HDRERRCOD

The minimum allowed depth is 5 lines.

 The special value of 0 may be specified to indicate that the depth on the PANEL tag should be

used. The default value is 0.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6A0A E Pop-up window depth too small.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A0F E Previous error occurred while running application &3.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A3E E Application not open for display.

CPF6A81 E Pop-up window cannot be added at this time.

CPF6A82 E &4 is not a valid window location.

CPF6A83 E Row or column given for positioning is not valid.

CPF6A85 E Attempted to display more than &4 windows at a time.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

12 iSeries: User Interface Manager APIs

#TOP_OF_PAGE
aplist.htm

Add Print Application (QUIADDPA) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 Qualified printer file name

Input Char(20)

3 Alternative file name

Input Char(10)

4 Share open data path

Input Char(1)

5 User data

Input Char(10)

6 Error code

I/O Char(*)
 Optional Parameter Group:

7 Open data receiver

Output Char(*)

8 Length of open data receiver

Input Binary(4)

9 Length of available open data

Output Binary(4)
 Default Public Authority: *USE

 Threadsafe: No

The Add Print Application (QUIADDPA) API enables print functions in a previously opened display

application by opening the printer file for the application. The QUIADDPA API and the Remove Print

Application (QUIRMVPA) API are used in pairs to add and remove printing from applications.

Because the QUIADDPA API requires an open application for display, this print function does not work

in a batch environment. For printing in batch, use the Open Print Application (QUIOPNPA) API.

Authorities and Locks

Library Authority

*READ

Printer Device File Authority

*USE

Printer Device File Lock

*SHRNUP

User Interface Manager (UIM) APIs 13

Required Parameter Group

Application handle

INPUT; CHAR(8)

 The application handle assigned by the UIM and returned to the application program by the

Open Display Application (QUIOPNDA) API when the application is opened.

Qualified printer file name

INPUT; CHAR(20)

 The name of the printer device file used for print operations. The first 10 characters contain the

name of the *FILE object, and the second 10 characters contain the name of the library in which

the printer device file resides. These special values can be used for the library name:

 *CURLIB The job’s current library

*LIBL The library list

The user must have *USE authority to the file named by this parameter.

Alternative file name

INPUT; CHAR(10)

 An alternative name for the spooled file. The following special value can be used:

 *NONE There is no alternative name for the spooled file. The name of the spooled file is the name of the printer device

file.

Share open data path

INPUT; CHAR(1)

 Indicates whether or not the open data path (ODP) for the printer file is shared. Sharing the ODP

allows multiple UIM applications to print to the same spooled file. One of the following values

must be used:

 Y The ODP is shared.

N The ODP is not shared.

F Use the share value of the printer file.

User data

INPUT; CHAR(10)

 User data associated with the spooled file. This data becomes an attribute of the spooled file. The

following special values can be used:

 *FILE The user data of the spooled file will be set to the user data value of the printer file being opened.

*NONE There is no user data associated with the spooled file. The user data value of the printer file being opened will

be set to blanks.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group

Open data receiver

OUTPUT; CHAR(*)

 The variable that is to receive the open data information requested. For the format of the open

data receiver variable, see “Format of Data Returned” on page 15.

14 iSeries: User Interface Manager APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Length of open data receiver

INPUT; BINARY(4)

 The amount of data the application program is prepared to receive. If the length specified is

larger than the amount of data available, the receiver is not changed beyond the amount of data

available. If the length specified is larger than the actual length of the open data receiver

parameter, unpredictable results may occur.

Length of available open data

OUTPUT; BINARY(4)

 The length of all open data available. All available open data is returned if enough space is

provided.

Format of Data Returned

The format of the data available, returned in the open data receiver parameter, is as follows:

CHAR(1)

Whether or not an error occurred while attempting to obtain the conversion tables needed to

process the panel group. The conversion tables are needed when the CHRID attribute of the

panel group is not equal to the CHRID attribute of the device, or when the CHRID attribute of

the panel group is *JOBCCSID and the job CCSID is not equal to the device CHRID. A CPD6A2A

diagnostic message will be logged in the job log for each conversion table that is not found.

 One of the following values is returned:

 N No error occurred while obtaining the conversion tables or the conversion tables were not necessary.

Y An error occurred while obtaining the conversion tables.

CHAR(1)

Whether or not the conversion of data from the job to the device and from the device to the job

will result in loss of fidelity of the data. Conversion will be done when the CHRID attribute of

the panel group is not equal to the CHRID attribute of the device, or when the CHRID attribute

of the panel group is *JOBCCSID and the job CCSID is not equal to the device CHRID.

 One of the following values is returned:

 N No loss of fidelity will occur.

Y Loss of fidelity may occur on the conversions.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A0F E Previous error occurred while running application &3.

CPF6A1A E Application already has an open print file.

CPF6A1C E Unable to add print function.

CPF6A1E E Object cannot be used with this device or print file.

CPF6A11 E Value is not correct. Reason code is &3.

CPF6A20 E Print code page not identical to display code page.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A3A E Value for Open Data Receiver is not valid. Reason code &1

CPF9850 E Override of printer file &1 not allowed.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

User Interface Manager (UIM) APIs 15

Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Close Application (QUICLOA) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 Close option

Input Char(1)

3 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Close Application (QUICLOA) API closes a UIM application that was opened using the Open

Display Application (QUIOPNDA) API or the Open Print Application (QUIOPNPA) API. The open and

close APIs must be used in pairs to open and close each UIM application.

The QUICLOA API releases all UIM resources associated with the open application, destroying the

variable pool and deleting any associated active lists. The storage for internal control blocks supporting

the application is freed, and all locks acquired for the open application are released.

Required Parameter Group

Application handle

INPUT; CHAR(8)

 The open application for which this API is called. The application handle is assigned by the UIM

and returned to the application program when the application is opened.

Close option

INPUT; CHAR(1)

 Indicates whether to perform a normal or abnormal close operation. One of the following values

must be specified:

 A An abnormal close operation is performed. This operation is used when the application prematurely ends

processing in the most efficient manner possible. When an application with an open printer file is closed with

the abnormal option, the printer trailer text specified on the print trailer message (PRTTRAIL) tag is not

printed.

M A normal close operation is performed.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

16 iSeries: User Interface Manager APIs

#TOP_OF_PAGE
aplist.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A11 E Value is not correct. Reason code is &3.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Delete List (QUIDLTL) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 List name

Input Char(10)

3 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Delete List (QUIDLTL) API deletes an active list and provides a way for the application to start over

with a new list.

QUIDLTL does not need to be used before the Close Application (QUICLOA) API because all lists

associated with an open application are automatically deleted when the application is closed.

Required Parameter Group

Application handle

INPUT; CHAR(8)

 The application handle assigned by the UIM and returned to the application program by the

Open Display Application (QUIOPNDA) API or Open Print Application (QUIOPNPA) API when

the application is opened.

List name

INPUT; CHAR(10)

 The name of the list to be deleted. If the list is not currently active in the open application, an

error is reported. A list is made active the first time an entry is inserted with the Add List Entry

(QUIADDLE) API or Add List Multiple Entries (QUIADDLM) API, or when the list attributes are

set with the Set List Attributes (QUISETLA) API.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

User Interface Manager (UIM) APIs 17

#TOP_OF_PAGE
aplist.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6AA0 E Request is not allowed when extending a list that is not complete.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A0F E Previous error occurred while running application &3.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A91 E List &4 does not exist.

CPF6A92 E List &4 not active.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Display Command Line Window (QUSCMDLN) API

 Default Public Authority: *USE

 Threadsafe: No

The Display Command Line Window (QUSCMDLN) API displays a window containing a command line.

A window is an area on the display that is treated as a separate display. Windows have visible

boundaries and appear to overlay the display from which they are requested.

From the command line displayed, the user can:

v Enter commands.

v Retrieve commands and run programs.

v Prompt for commands.

v Use help for CL commands.

v Request override commands. When the command line window is removed, all overrides are deleted.

The QUSCMDLN API has no parameters.

For consistency with other OS/400 displays, you should use the F9 key to request a command line

window.

The command line window produced by the QUSCMDLN API is shown at the bottom of the following

display:

+--+

| CSTINV Customer Invoice Menu |

| |

| Select one of the following: |

| |

| 1. Enter or change orders |

| 2. Print picking slips |

| 3. Release orders |

| 4. Print invoices |

| |

| |

18 iSeries: User Interface Manager APIs

#TOP_OF_PAGE
aplist.htm

| |

| |

| |

| |

| |

| |

| |

| .. |

| : Command : |

| : : |

| : ===> : |

| : F4=Prompt F9=Retrieve F12=Cancel : |

| : : |

| :..: |

+--+

Display Appearance Problems

There are two rare situations where portions of the underlying display might not be shown correctly

while the command line window is shown. The underlying display is not actually changed, and it is

shown correctly once the command line window is removed.

The situations are:

1. The underlying display is a text editor or other display that uses special work station printer mode

functions. While the command line window is displayed, the special work station printer mode

characters are not shown.

2. The underlying display is a bidirectional right-to-left display. While the command line window is

displayed, the underlying display is flipped and shown from left-to-right.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF9871 E Error occurred while processing.

API Introduced: V1R3

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

User Interface Manager (UIM) APIs 19

#TOP_OF_PAGE
aplist.htm

Display Help (QUHDSPH) API

 Required Parameter Group:

1 Help identifier array

Input Char(*)

2 Number of help identifiers

Input Binary(4)

3 Help type

Input Array(2) of Binary(4)

4 Full display title

Input Char(55)

5 Qualified search index object name

Input Char(20)

6 Display type

Input Char(1)

7 Upper-left corner

Input Array(2) of Binary(4)

8 Lower-right corner

Input Array(2) of Binary(4)

9 Cursor location

Input Array(2) of Binary(4)

10 Error code

I/O Char(*)
 Optional Parameter Group:

11 Help bookshelf name

Input Char(8)

12 Border attribute

Input Array(2) of Char(1)

13 Border characters

Input Array(8) of Char(1)
 Default Public Authority: *USE

 Threadsafe: No

The Display Help (QUHDSPH) API displays help information. The help can be either contextual or

extended. It can be formatted as a full display or in a window.

Contextual help provides information about a single item, such as the field on which the user’s cursor is

positioned when help is requested. Extended help provides help for all the items on the display; it

contains all contextual help items and can contain additional information as well. A window is an area

on the display that is treated as a separate display. Windows have visible boundaries and appear to

overlay the display from which they are requested.

20 iSeries: User Interface Manager APIs

You can use the QUHDSPH API to handle Help key processing in applications written in data

description specifications (DDS) or user-defined data streams (UDDS). You do not need it to handle help

requests in applications that use record-level DDS display files with DDS help keywords to present

panels because the DDS help keywords handle all help requests.

You do not need to use this API to display help for applications written using panel groups to present

panels, because the UIM handles all help requests.

Authorities and Locks

Library Authority

*READ

Search Index Object Authority

*USE

Search Index Object Library Authority

*READ

Search Index Object Lock

*SHRRD

Panel Group Authority

*USE

Panel Group Lock

*SHRRD

Required Parameter Group

Help identifier array

INPUT; CHAR(*)

 An array of the help identifiers to display. The list can contain up to 2000 items. Each item has

two parts:

Qualified help panel group name

CHAR(20)

 The panel group (*PNLGRP) object that contains the help module to display, and the

library in which it is located. (A panel group is an object with an object type of

*PNLGRP. It contains display panels, print panels, or help modules.)

 The first 10 characters contain the panel group object name, and the second 10 characters

contain the library name. You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Help module name

CHAR(32)

 The name specified on the NAME attribute of a :HELP. tag in the panel group object. The

name must be specified using uppercase, alphabetic characters.

Number of help identifiers

INPUT; BINARY(4)

 The number of help identifiers in the help identifier array parameter. The number must be

between 1 and 2000.

User Interface Manager (UIM) APIs 21

Help type

INPUT; ARRAY(2) of BINARY(4)

 Whether this is a request to display extended or contextual help, and which help identifiers to

display for the latter. For contextual help, only a subset of the help identifiers in the help

identifier array parameter is initially displayed, and a function key is enabled to display extended

help. Extended help includes all help identifiers in the help identifier array parameter, including

those used in contextual help.

 This parameter is a 2-element array of BINARY(4) values. Both elements are used as indexes into

the help identifier array. The array elements are:

1. The first help identifier to display for contextual help. The value must be greater than or

equal to 1, and less than or equal to the number of help identifiers in the help identifier array.

2. The last help identifier to display for contextual help. The value must be greater than or equal

to the value specified in the first element of this parameter, and less than or equal to the

number of help identifiers in the help identifier array.

To display extended help, set the value of the first array element to 1 and the value of the second

array element to the value specified in the number of help identifiers parameter.

Full display title

INPUT; CHAR(55)

 The default title to use if the help is shown in a full display and if no title is found in the help

panel group object.

Qualified search index object name

INPUT; CHAR(20)

 The search index (*SCHIDX) object that can be accessed from the help display, and the library in

which it is located. The first 10 characters contain the search index object name, and the second

10 characters contain the library name.

 You can use the following special value for this parameter:

 *NONE The search index function is not made available for this help request. The library name must be blank.

You can use the following special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Note: The qualified search index object name must be *NONE if the help bookshelf name is

something other than *NONE.

Display type

INPUT; CHAR(1)

 Whether the help information is displayed in a full screen or a window. You must use one of the

following values:

 Y The help is displayed in a full screen.

N The help can be displayed in a window, depending on the user option (USROPT) value of the user profile.

Upper-left corner

INPUT; ARRAY(2) of BINARY(4)

 The upper-left corner of the area on the display for which help is requested. If the help is

displayed in a window, the window is adjacent to the area identified, if possible. The array

elements are:

v The row number of the upper-left corner

22 iSeries: User Interface Manager APIs

v The column number of the upper-left corner

Lower-right corner

INPUT; ARRAY(2) of BINARY(4)

 The lower-right corner of the area on the display for which help is requested. If the help is

displayed in a window, the window is adjacent to the area identified, if possible. The array

elements are:

v The row number of the lower-right corner

v The column number of the lower-right corner

Cursor location

INPUT; ARRAY(2) of BINARY(4)

 The position of the cursor when help is requested. If the help is displayed in a window, this

cursor position is used by the UIM to decide the position and size of the window. The array

elements are the row number of the cursor position and the column number of the cursor

position.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group

Help bookshelf name

INPUT; CHAR(8)

 This parameter is no longer supported and any value entered will be ignored.

Border attribute

INPUT; ARRAY(2) of CHAR(1)

 The border attributes of the pop-up window in which the help may be displayed. The two array

elements are:

v The border attribute for a monochrome display. The default for a monochrome display is

normal.

v The border attribute for a color display. The default for a color display is blue.

Border attributes

 Hex Value Color Display Monochrome Display

X’01’ Green Normal

X’02’ Green
Reverse

Reverse Image

X’03’ White High Intensity

X’04’ Green
Reverse

High Intensity Reverse

X’05’ Green
Underscore

Underscore

X’06’ Green Underscore
Reverse

Underscore
Reverse

X’07’ White
Underscore

High Intensity
Underscore

X’08’ Nondisplay Nondisplay

X’09’ Red Blink

User Interface Manager (UIM) APIs 23

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Hex Value Color Display Monochrome Display

X’0A’ Red
Reverse

Blink
Reverse

X’0B’ Red
Blink

Blink
High Intensity

X’0C’ Red
Blink
Reverse

Blink
High Intensity
Reverse

X’0D’ Red
Underscore

Blink
Underscore

X’0E’ Red
Underscore
Reverse

Blink
Underscore
Reverse

X’0F’ Red
Blink
Underscore

Blink
Underscore
High Intensity

X’10’ Turquoise
Column Separator

Column Separator

X’11’ Turquoise
Column Separator
Reverse Image

Column Separator
Reverse Image

X’12’ Yellow
Column Separator

Column Separator
High Intensity

X’13’ Yellow
Column Separator
Reverse Image

Column Separator
High Intensity
Reverse Image

X’14’ Turquoise
Column Separator
Underscore

Column Separator
Underscore

X’15’ Turquoise
Column Separator
Reverse Image
Underscore

Column Separator
Reverse Image
Underscore

X’16’ Yellow
Column Separator
Underscore

Column Separator
Underscore

X’17’ Pink Blink
Column Separator

X’18’ Pink
Reverse Image

Blink
Column Separator
Reverse Image

X’19’ Blue Blink
Column Separator
High Intensity

X’1A’ Blue
Reverse Image

Blink
Column Separator
High Intensity
Reverse Image

X’1B’ Pink
Underscore

Blink
Column Separator
Underscore

X’1C’ Pink
Reverse Image
Underscore

Blink
Column Separator
Reverse Image
Underscore

X’1D’ Blue
Underscore

Blink
Column Separator
High Intensity
Underscore

24 iSeries: User Interface Manager APIs

Border characters

INPUT; ARRAY(8) of CHAR(1)

 The border characters that define the pop-up window in which the help may be displayed. The

eight array characters are:

1. The character to define the top left corner.

2. The character to define the top margin.

3. The character to define the top right corner.

4. The character to define the left margin.

5. The character to define the right margin.

6. The character to define the bottom left corner.

7. The character to define the bottom margin.

8. The character to define the bottom right corner.

The help window would look like this:

 12222222222223

 4 5

 4 5

 4 5

 67777777777778

When using the default values, the border would look like this:

 : :

 : :

 : :

 :............:

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6Exx E All CPF6Exx messages could be signalled. xx is from 01 to FF.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R1

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

User Interface Manager (UIM) APIs 25

#TOP_OF_PAGE
aplist.htm

Display Long Text (QUILNGTX) API

 Required Parameter Group:

1 Text string

Input Char(*)

2 Length of text string

Input Binary(4)

3 Message ID

Input Char(7)

4 Qualified message file name

Input Char(20)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Display Long Text (QUILNGTX) API displays a pop-up window containing the string of text that is

passed to it.

This API may not be used to display text that is bidirectional right to left.

Required Parameter Group

Text string

INPUT; CHAR(*)

 The text string that is to be displayed in a pop-up window.

Length of text string

INPUT; BINARY(4)

 The length of the text string, in bytes. The value must be greater than zero and less than or equal

to 15 728 640.

Message ID

INPUT; CHAR(7)

 The specified message ID of the panel title text that will be retrieved. If the message ID is not

found in the specified message file, the message ID will be displayed at the top of the panel as

the title. If the message ID is blank, the title for the panel is blank.

Qualified message file name

INPUT; CHAR(20)

 The name of the message file containing the message ID. The first 10 characters contain the name

of the *MSGF object, and the second 10 characters contain the name of the library in which the

message file resides. If the message file and library name are left blank, the program uses the

default QCPFMSG message file in *LIBL. You can use the special value *LIBL for the library

name.

Error code

I/O; CHAR(*)

26 iSeries: User Interface Manager APIs

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed

CPF6A4C E At least one parameter value is not correct. Reason code is &1

CPF9871 E Error occurred while processing

API introduced: V3R6

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

User Interface Manager (UIM) APIs 27

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Display Panel (QUIDSPP) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 Function requested

Output Binary(4)

3 Panel name

Input Char(10)

4 Redisplay option

Input Char(1)

5 Error code

I/O Char(*)
 Optional Parameter Group 1:

6 User task

Input Char(1)

7 Call stack counter

Input Binary(4)

8 Call message queue

Input Char(*)

9 Message reference key

Input Char(4)

10 Cursor position option

Input Char(1)

11 Last list entry

Input Char(4)

12 Error list entry

Input Char(4)

13 Wait time

Input Binary(4)
 Optional Parameter Group 2:

14 Length of call message queue name

Input Binary(4)

15 Call qualification

Input Char(20)
 Default Public Authority: *USE

 Threadsafe: No

28 iSeries: User Interface Manager APIs

The Display Panel (QUIDSPP) API displays a panel and waits for the user to press either a function key

or the Enter key.

The values for all I/O fields in the panel definition are taken from dialog variables in the variable pool. If

the panel contains list areas, these values are also taken from list entries in the lists associated with the

open application.

The application program can also control which list entry is initially displayed at the top of a list area by

using the Set List Attributes (QUISETLA) API. If the panel contains a list area displaying an incomplete

list and if the list does not have enough entries to fill the list area, the UIM calls the program identified

by the program dialog variable parameter of the QUISETLA API to add more list entries. The program is

called repeatedly until the requested number of entries is added or until the list is marked as complete.

If the panel contains an extended action list area and if the list is not currently active in the open

application, the list is activated by the QUIDSPP API.

Any information the user enters into input fields on the panel is validated according to the specifications

of the tag language, then saved in the corresponding dialog variables and list entries.

Control returns to the application program only after all necessary functions are completed as defined by

UIM processing rules and tag language specifications. The application program can retrieve dialog

variables and list entries after the QUIDSPP API returns to determine what values were specified by the

user.

The QUIDSPP API can be called with a long or short argument list. For the short argument list,

arguments must be passed to the QUIDSPP API with the required parameters described below. For the

long argument list, arguments must be passed to the QUIDSPP API with all the required and optional

parameters described below.

Required Parameter Group

Application handle

INPUT; CHAR(8)

 The application handle assigned by the UIM and returned to the application program by the

Open Display Application (QUIOPNDA) API when the application is opened.

Function requested

OUTPUT; BINARY(4)

 The function requested by the user. Only special UIM-defined functions and functions using the

RETURN dialog command are returned to the application program. Any other functions

requested by the user are either handled by the UIM or rejected. If they are rejected, an error

message is displayed on the panel.

 The RETURN dialog command can be specified as follows:

v On the ACTION attribute of the key list item (KEYI), pull-down field choice (PDFLDC), or

menu item (MENUI) UIM tags

v On the ENTER and SELECT attributes of the display panel (PANEL) UIM tag

The RETURN dialog command returns numbers from 1 through 32 767. The return values for

UIM-defined functions are as follows:

 0 The enter function is requested. This value is returned in the following situations:

v When the user has entered options in the list for a panel with a list area of ACTOR=CALLER.

v When enter has been pressed in a text area and the text area exit program has sent message CPF6A07 to end

the enter function and return to the application program.

-4 The exit function is requested.

User Interface Manager (UIM) APIs 29

-8 The cancel function is requested.

-10 The prompt function is requested. This value is returned only for a panel with an ACTOR=CALLER list area,

and only when the user has entered options in the list.

-20 No function was requested before the time specified on the wait time parameter has ended. This value is

returned only when the wait time parameter specifies a time-out value.

Panel name

INPUT; CHAR(10)

 The name of the panel to display. The panel must be defined in the panel group for the open

application.

Redisplay option

INPUT; CHAR(1)

 Indicates whether or not the panel is formatted and displayed as a first-time display or as a

redisplay.

 One of the following values must be used:

 Y The panel is formatted as a redisplay. If the panel has not been displayed in the application before, processing

for the first-time display is done and this parameter is ignored.

Cursor positioning that is controlled by the program is ignored when the redisplay option is used. Cursor

positioning controlled by action list processing is supported when the redisplay option is used.

Dialog variables are edited for a new displayable value only if the variable pool contains a value more current

than the value from the last time the panel was displayed. When VARUPD=NO is processed, the panel is

redisplayed with values entered in input fields but not stored in the variable pool.

N The panel is formatted as a first-time display. The panel is displayed with the first conditioned-on item at the

top of each pageable data and menu area. Pageable information areas are positioned at the first line of text. All

dialog variables displayed on the screen are edited to produce a displayable value.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group 1

User task

INPUT; CHAR(1)

 Indicates whether or not this panel is the logical start of a new user task. The value used

determines whether or not the UIM returns to the application program when the EXIT dialog

command is requested by a lower level program, such as an action on the KEYI tag.

 The user task has no effect on UIM operations when the EXIT dialog command is specified

directly in the definition of this panel as the function key, pull-down choice, or menu item action.

 One of the following values must be specified:

 N This panel is the logical start of a new user task. If the user generates the EXIT dialog command at a lower call

level (for example, by pressing the exit function key on a panel displayed by a list action from the original

panel), this panel is redisplayed without returning control to the application program.

O This panel is not the start of a new user task. If the user generates the EXIT dialog command at a lower call

level, control returns to the application program with an indication that the exit function was requested. This

is the default value when a short argument list is passed to the QUIDSPP API.

Call stack counter

INPUT; BINARY(4)

30 iSeries: User Interface Manager APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

A number identifying the location in the program stack of the call message queue for the UIM to

use. This parameter is used with the call message queue parameter.

 Any nonnegative number can be specified for the relative program call number.

 0 The message queue of the program specified in the call message queue parameter. This is the default value

when a short argument list is passed to the QUIDSPP API.

1 The message queue of the program that calls the program specified in the call message queue parameter is

used for messages displayed to the user.

n The message queue of the nth program up the stack from the program specified in the call message queue

parameter is used for messages displayed to the user.

Call message queue

INPUT; CHAR(*)

 The name of the message queue for the UIM to use, or the name of the program to start counting

from when using a value other than zero for the call stack counter parameter. The program you

specify must be in the call stack. The UIM will:

v Receive a message from this queue to initially display on the message line of the panel. This is

done using the value passed for the message reference key parameter.

v Move to this message queue all completion, information, diagnostic, and escape messages sent

to the UIM by programs or commands called to process an action defined in the panel. Note

that escape messages are changed to diagnostic messages when they are moved.

The following special value can be used:

 *CALLER The application program calling the QUIDSPP API is the starting point for identifying the call message queue.

This is the default value when a short argument list is passed to the QUIDSPP API.

This parameter can be from 1 to 256 characters in length. The length of call message queue parameter specifies

this parameter’s length. If the length of call message queue parameter is not used, then the length of this

parameter is assumed to be 10 characters. If further qualification is needed to identify the call, the call

qualification parameter can be used.

Message reference key

INPUT; CHAR(4)

 The messages in the call message queue that are displayed on the panel. The call message queue

is identified by the call stack counter parameter and the call message queue parameter. This

parameter must be set to the message reference key for the first (oldest) message on the call

message queue that should be displayed on the panel. One of the following special values can be

used:

 (blank) No messages are shown to the user on the initial panel, even if there are messages in the call message queue.

This is the default value when a short argument list is passed to the Display Panel (QUIDSPP) API.

FRST All new messages in the call message queue, starting with the first new message in the queue, are presented

on the initial panel.

Cursor position option

INPUT; CHAR(1)

 The rules that determine the initial position of the cursor when the panel is displayed. This

parameter controls only the initial cursor placement when the panel is displayed by the QUIDSPP

API. When a panel is redisplayed by the UIM or by the application program, the cursor remains

where it was left by the user.

 One of the following values must be used:

 A Cursor positioning for action list processing is performed. This value is used when the panel is redisplayed

after action list processing when ACTOR=CALLER is on the list area (LIST) tag. The cursor and list are

positioned as defined by the last list entry and error list entry parameters.

User Interface Manager (UIM) APIs 31

D Default cursor positioning is performed. The specific cursor position depends on whether or not any variables

or list entries associated with the panel are marked in error. This is the default value when a short argument

list is passed to the display panel (QUIDSPP) API.

P Cursor positioning that is controlled by the program is performed. The cursor is positioned using the current

value of the dialog variables associated with the CSRVAR, CSRPOS, CSRLST, and CSREID attributes of the

panel definition (PANEL) tag. Cursor positioning controlled by the program is allowed only for a panel

containing all four cursor positioning attributes.

With cursor positioning controlled by the program, each pageable, nonlist area is repositioned to make sure

that the first input field in error is visible, but the cursor is not positioned at the first input field in error. If the

value of any of the dialog variables for cursor position identified in the panel definition is unusable, the cursor

defaults to the first input field on the panel.

Last list entry

INPUT; CHAR(4)

 The list entry handle for the last action list entry that had an action processed.

 This information is used to position the cursor. Cursor positioning for action list processing must

be specified in the cursor position option parameter or this parameter is ignored. One of the

following special values can be used:

 EXTE The last list action processed is for the extended action entry.

NONE The application is providing no value for this parameter. This is the default value when a short argument list

is passed to the Display Panel (QUIDSPP) API.

Error list entry

INPUT; CHAR(4)

 The list entry handle for the first and only list entry that had an error while processing list

actions. This parameter is also set when action list processing is stopped because a user pressed

F3 (Exit) or F12 (Cancel). This information displays the correct page of list information.

 Cursor positioning for action list processing must be specified in the cursor position option

parameter, or this parameter is ignored.

 One of the following special values can be used:

 EXTE The extended action entry is in error; the UIM does not reposition the list.

NONE The application is providing no value for this parameter. This is the default value when a short argument list

is passed to the Display Panel (QUIDSPP) API.

Wait time

INPUT; BINARY(4)

 The number of seconds to wait for data to become available from the work station. After this

amount of time, the keyboard locks, control returns to the application, and the function requested

parameter returns an indication that the wait time ended. Because the wait time ended, input

dialog variables associated with the panel are not updated. The number of seconds specified

should be a positive integer.

 One of the following special values can be used:

 -1 The UIM waits indefinitely until data becomes available from the work station. This is the default value when

a short argument list is passed to the Display Panel (QUIDSPP) API.

0 The UIM does not wait for data to become available from the work station. The panel is displayed with the

keyboard locked, and control returns immediately to the application with an indication in the function

requested parameter that the wait time ended.

32 iSeries: User Interface Manager APIs

Optional Parameter Group 2

Length of call message queue name

INPUT; BINARY(4)

 The length of the call message queue name. Valid values for this parameter range from 1 to 256.

If the value is not valid, an error will occur.

 The default value for this parameter is 10.

Call qualification

INPUT; CHAR(20)

 The name of the module and bound program that contain the procedure. This value is used to

further qualify the procedure identified in the call message queue parameter. The first 10

characters specify the module name, and the second 10 characters specify the bound program

name. When the call qualification parameter is specified, the call stack will be searched only for a

procedure within a bound program.

 If this parameter is not used, only the call message queue parameter will be used to identify the

call.

 The special value of *NONE can be used for the module or bound program name, or for both.

When *NONE is specified for one of the names, then that name will not be used when searching

for the qualified procedure. If *NONE is specified for both names, only the call message queue

parameter will be used to identify the call. Original program model (OPM) programs should

specify *NONE for both names.

Error Messages

 Message ID Error Message Text

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A0F E Previous error occurred while running application &3.

CPF6A11 E Value is not correct. Reason code is &3.

CPF6A13 E Application &3 closed prematurely.

CPF6A14 E Program defined by variable &4 cannot be called.

CPF6A15 E Errors occurred in list exit program.

CPF6A22 E Panel cannot be displayed in a window.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A3E E Application not open for display.

CPF6A3F E Panel &4 was not found in panel group &1.

CPF6A4A E Panel &4 is too large to display as a pop-up window.

CPF6A4B E Value for Redisplay Option parameter not valid.

CPF6A40 E Panel &4 is already in use.

CPF6A41 E Default cursor positioning required for panel &4.

CPF6A42 E Display of panel &4 not allowed.

CPF6A43 E Cannot use program message queue &6.

CPF6A50 E Error was found during display file or printer file operation.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

User Interface Manager (UIM) APIs 33

#TOP_OF_PAGE
aplist.htm

Get Dialog Variable (QUIGETV) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 Variable buffer

Output Char(*)

3 Variable buffer length

Input Binary(4)

4 Variable record name

Input Char(10)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Get Dialog Variable (QUIGETV) API allows a program to obtain the value of one or more dialog

variables by specifying the application program’s variable buffer and the name of a variable record

defined in the panel group for the open application.

Required Parameter Group

Application handle

INPUT; CHAR(8)

 The application handle assigned by the UIM and returned to the application program by the

Open Display Application (QUIOPNDA) API or the Open Print Application (QUIOPNPA) API

when the application is opened.

Variable buffer

OUTPUT; CHAR(*)

 The program buffer into which dialog variable values are copied. The variable buffer must be

large enough to contain all the variables specified in the definition of the variable record. The

dialog variables are copied in the order specified in the variable record, which is specified in the

variable record name parameter.

Variable buffer length

INPUT; BINARY(4)

 The length of the variable buffer. The buffer must be large enough to contain all the dialog

variables in the definition of the variable record, which is specified in the variable record name

parameter.

Variable record name

INPUT; CHAR(10)

 The name of the variable record definition that determines which dialog variables are copied

from the application variable pool to the variable buffer. The variable record must be defined in

the panel group for the open application.

Error code

I/O; CHAR(*)

34 iSeries: User Interface Manager APIs

The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A0F E Previous error occurred while running application &3.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A38 E Variable record &4 not defined in panel group.

CPF6A39 E Variable buffer length too small.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

User Interface Manager (UIM) APIs 35

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Get List Entry (QUIGETLE) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 Variable buffer

Output Char(*)

3 Variable buffer length

Input Binary(4)

4 Variable record name

Input Char(10)

5 List name

Input Char(10)

6 Positioning option

Input Char(4)

7 Copy option

Input Char(1)

8 Selection criteria

Input Char(20)

9 Selection handle

Input Char(4)

10 Extend option

Input Char(1)

11 List entry handle

Output Char(4)

12 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Get List Entry (QUIGETLE) API accesses an entry in a list and optionally updates the corresponding

dialog variables to the values in the list entry.

The entry accessed depends on the positioning option parameter and the value of the current entry

pointer for the list. On return to the application program, the current entry pointer in the list points to

the entry retrieved, except when retrieving the extended action entry. The extended action entry is a

pseudo list entry that can be retrieved using this API, and can be updated using the Update List Entry

(QUIUPDLE) API.

If requested, the corresponding dialog variables contain the values from the list entry retrieved.

If an error variable corresponding to a field in the list entry is specified in the variable record, identified

by the variable record name parameter, it is set according to the error state of the corresponding dialog

variable.

36 iSeries: User Interface Manager APIs

Required Parameter Group

Application handle

INPUT; CHAR(8)

 The application handle assigned by the UIM and returned to the application program by the

Open Display Application (QUIOPNDA) or Open Print Application (QUIOPNPA) API when the

application is opened.

Variable buffer

OUTPUT; CHAR(*)

 The program buffer into which dialog variable values are copied. The dialog variables are copied

in the order specified in the variable record definition.

 If the variable record name parameter specifies the name of a variable record defined in the panel

group for this open application, dialog variables are copied into the variable buffer from the

application variable pool after the list entry is retrieved. This parameter does the same job as

using the Get Dialog Variable (QUIGETV) API immediately after the QUIGETLE API.

 The variable buffer must be large enough to contain all the variables specified in the variable

record definition.

Variable buffer length

INPUT; BINARY(4)

 The length of the variable buffer. The buffer must be large enough to contain all the dialog

variables in the variable record definition, which is specified in the variable record name

parameter.

Variable record name

INPUT; CHAR(10)

 The name of the variable record that determines which dialog variables are copied between the

application variable pool and the variable buffer. The variable record must be defined in the

panel group for the open application. The following special value can be used:

 *NONE The QUIGETV API is not done during the QUIGETLE API; the parameter for the variable buffer is ignored

when this value is used.

List name

INPUT; CHAR(10)

 The name of the list from which an entry is retrieved. If the list is not currently active in the open

application, an error is reported. A list is made active the first time an entry is inserted with the

Add List Entry (QUIADDLE) API or Add List Multiple Entries (QUIADDLM) API, or when the

list attributes are set with the Set List Attributes (QUISETLA) API.

Positioning option

INPUT; CHAR(4)

 The placement of the current entry pointer to the list entry specified. If a positioning error occurs,

the current list position is not changed. One of the following values must be specified to set the

entry pointer to the appropriate position:

 Value Pointer Position

BOT The bottom of the list. A special position just after the last list entry in a list that is complete at the bottom.

FRST The first entry in the currently built list. If the list is empty, an error is reported.

User Interface Manager (UIM) APIs 37

FSLT The entire list is searched in a forward direction to locate an entry satisfying the condition specified by the

selection criteria parameter. If the list is empty, an error is reported. The current entry pointer for the list entry

is repositioned at the first entry in the list and the search proceeds forward, including the first entry. The

search does not wrap. Note that if the list is incomplete at the top, the incomplete list processing program will

not be called to complete the list at the top. It will start searching from the first entry in the currently built list.

The incomplete list processing program will be called to fill in the entries at the bottom if the list is incomplete

at the bottom.

HNDL The list entry specified by the selection handle parameter.

LAST The last entry in the currently built list. If the list is empty, an error is reported.

LSLT The entire list is searched in a backward direction to locate an entry satisfying the condition specified by the

selection criteria parameter. If the list is empty, an error is reported. The current list entry pointer is

repositioned to the last entry in the list and the search proceeds backward, including the last entry. The search

does not wrap. Note that if the list is incomplete at the bottom, the incomplete list processing program will not

be called to complete the list at the bottom. It will start searching from the last entry in the currently built list.

The incomplete list processing program will be called to fill in the entries at the top if the list is incomplete at

the top.

NEXT The current entry pointer is advanced one entry, pointing to the next entry in the list.

NSLT The list is searched in a forward direction to locate an entry satisfying the condition specified by the selection

criteria parameter. The search starts with the entry after the current list entry pointer and does not wrap.

PREV The current entry pointer is moved back one entry, pointing to the previous entry in the list.

PSLT The list is searched in a backward direction to locate an entry satisfying the condition specified by the

selection criteria parameter. The search starts with the entry before the current list entry pointer and does not

wrap.

SAME The current entry pointer remains unchanged, pointing to the same entry in the list.

TOP The top of the list. A special position just prior to the first list entry in a list that is complete at the top.

Note: After running the QUIGETLE API once with the positioning option parameter of FSLT or

LSLT, the application program should change the positioning option parameter to NSLT or PSLT.

It does this to avoid repeatedly positioning at the beginning or end of the list and searching the

same list entries.

Copy option

INPUT; CHAR(1)

 Determines whether or not the data values in the list entry are copied into the corresponding

dialog variables when positioning is complete. One of the following values must be specified:

 Y The data values in the current list entry after the positioning operations are performed are copied into

corresponding dialog variables. This value must be specified if the variable record name parameter specifies

the name of a variable record defined in the panel group for the open application. This value is not allowed

when the current entry is positioned to TOP or BOT.

N The data values in the current list entry after positioning the list are not copied into corresponding dialog

variables.

Selection criteria

INPUT; CHAR(20)

 The selection criteria used when positioning the list by variable selection. Positioning by variable

selection allows the application program to search forward to find the next entry, or backward to

find a previous entry satisfying a given condition. The search is not dependent on sorted list

entries, but the application program might need to build the list in sorted order to get a

consistent result when application comparison operators are other than equal (EQ) or not equal

(NE).

 This parameter is only used when one of the following values is specified for the positioning

option parameter: FSLT, LSLT, NSLT, or PSLT. It is ignored if any other value is specified.

 The relational condition defined by this parameter must exist between the value of a dialog

variable and that dialog variable’s corresponding value in a list entry when selection positioning

is performed.

 The first 10 characters of this parameter must contain a comparison operator. The operator must

be left-adjusted and padded with blanks.

38 iSeries: User Interface Manager APIs

One of the following values must be specified for the comparison operator:

 EQ The list entry value equals the dialog variable value.

NE The list entry value is not equal to the dialog variable value.

GT The list entry value is greater than the dialog variable value.

LT The list entry value is less than the dialog variable value.

GE The list entry value is greater than or equal to the dialog variable value.

LE The list entry value is less than or equal to the dialog variable value.

The second 10 characters of this parameter must contain the name of the dialog variable used in

the comparison. The dialog variable name specified must be defined in the list being searched.

Selection handle

INPUT; CHAR(4)

 The list entry handle used when positioning the current entry pointer to a specific entry. This

parameter is used only when the positioning option parameter has the value HNDL; it is ignored

if any other value is specified.

 The following special value can be specified:

 EXTE Retrieves the contents of the extended action entry. The contents of the extended action entry are copied to the

associated dialog variables in the variable pool. However, the current entry pointer for the list is not changed

when the extended action entry is retrieved.

A list entry handle uniquely distinguishes an entry until it is removed from the list, even if other

entries are inserted and removed from the list.

Extend option

INPUT; CHAR(1)

 Indicates whether or not an incomplete list is automatically extended in the attempt to retrieve

the requested list entry. The list can be extended when one of the following values is specified for

the positioning option parameter: NEXT, PREV, TOP, BOT, NSLT, PSLT, FSLT, or LSLT. This

parameter is ignored and the list is not extended if any other value is specified for the

positioning option parameter.

 One of the following values must be specified:

 Y The list is extended, if necessary, to find the requested list entry.

N The list is not extended to find the requested list entry. This option can be used if the program calling the

QUIGETLE API needs to process only entries already in the list.

List entry handle

OUTPUT; CHAR(4)

 The list entry handle from the current entry pointer in the list. This value is the handle of the

entry to which the list was last positioned by this API. The following special values may be

returned:

 TOP The current entry pointer is positioned at the top of the list.

BOT The current entry pointer is set at the bottom of the list.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

User Interface Manager (UIM) APIs 39

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6AA0 E Request is not allowed when extending a list that is not complete.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A0F E Previous error occurred while running application &3.

CPF6A14 E Program defined by variable &4 cannot be called.

CPF6A15 E Errors occurred in list exit program.

CPF6A2C E Value for Option parameter not valid.

CPF6A2D E Value for Selection Criteria parameter not valid.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A27 E Value for Extend Option parameter not valid.

CPF6A38 E Variable record &4 not defined in panel group.

CPF6A39 E Variable buffer length too small.

CPF6A91 E List &4 does not exist.

CPF6A92 E List &4 not active.

CPF6A93 E Operation not valid when current entry is &5.

CPF6A95 E List &4 either not complete or not extended.

CPF6A96 E Variable &5 is not in list definition.

CPF6A97 E Variable &5 not valid type for select comparison.

CPF6A98 E Entry not found in list &4 in panel group &1 in &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R6

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

40 iSeries: User Interface Manager APIs

#TOP_OF_PAGE
aplist.htm

Get List Multiple Entries (QUIGETLM) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 Variable buffer

Output Char(*)

3 Variable buffer length

Input Binary(4)

4 Variable record name

Input Char(10)

5 List name

Input Char(10)

6 Positioning option

Input Char(4)

7 Copy option

Input Char(1)

8 Selection criteria

Input Char(20)

9 Selection handle

Input Char(4)

10 Extend option

Input Char(1)

11 List entry handle

Output Char(4)

12 Number of records

Input Binary(4)

13 Record size

Input Binary(4)

14 Record count

Output Binary(4)

15 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Get List Multiple Entries (QUIGETLM) API accesses one or more entries in a list and updates the

corresponding dialog variables with the values contained in the list entry.

The entry accessed depends on the positioning option parameter and the value of the current entry

pointer for the list. On return to the application program, the current entry pointer in the list points to

User Interface Manager (UIM) APIs 41

the last entry retrieved, except when retrieving the extended action entry. The extended action entry can

be retrieved using this API, and can be updated using the Update List Entry (QUIUPDLE) API.

When the operation completes successfully, the corresponding dialog variables contain the values from

the last list entry retrieved.

If an error variable corresponding to a field in the list entry is specified in the variable record, which is

identified by the variable record name parameter, it is set according to the error state of the

corresponding dialog variable.

Required Parameter Group

Application handle

INPUT; CHAR(8)

 The application handle assigned by the UIM and returned to the application program by the

Open Display Application (QUIOPNDA) API or Open Print Application (QUIOPNPA) API when

the application is opened.

Variable buffer

OUTPUT; CHAR(*)

 The program buffer into which dialog variable values are copied. The dialog variables are copied

in the order specified in the variable record definition.

 Dialog variables are copied into the variable buffer from the application variable pool after the

list entry is retrieved. This parameter does the same job as using the Get Dialog Variable

(QUIGETV) API immediately after the list entry is retrieved.

 The variable buffer must be large enough to contain all the variables specified in the variable

record definition.

 When the number of records parameter is greater than 1, the size of the variable buffer must be

at least equal to the value specified on the number of records parameter multiplied by the value

specified on the record size parameter.

Variable buffer length

INPUT; BINARY(4)

 The length of the variable buffer. The buffer must be large enough to contain all the dialog

variables in the variable record definition specified in the variable record name parameter.

Variable record name

INPUT; CHAR(10)

 The name of the variable record that determines which dialog variables are copied between the

application variable pool and the variable buffer. The variable record must be defined in the

panel group for the open application.

 The special value of *NONE may not be used with the QUIGETLM API.

List name

INPUT; CHAR(10)

 The name of the list from which an entry is retrieved. If the list is not currently active in the open

application, an error is reported. A list is made active the first time an entry is inserted with the

Add List Entry (QUIADDLE) or Add List Multiple Entries (QUIADDLM) API, or when the list

attributes are set with the Set List Attributes (QUISETLA) API.

Positioning option

INPUT; CHAR(4)

 Sets the current entry pointer to the list entry specified. If a positioning error occurs, the current

list position is not changed. One of the following values must be specified to set the entry pointer

42 iSeries: User Interface Manager APIs

to the appropriate position:

 Value Pointer Position

BOT The bottom of the list. A special position just after the last list entry in a list that is complete at the bottom.

FRST The first entry in the currently built list. If the list is empty, an error is reported.

FSLT The entire list is searched in a forward direction to locate an entry satisfying the condition specified by the

selection criteria parameter. If the list is empty, an error is reported. The current pointer for the list entry is

repositioned at the first entry in the list, and the search proceeds forward, including the first entry. The search

does not wrap.

HNDL The list entry specified by the selection handle parameter.

LAST The last entry in the currently built list. If the list is empty, an error is reported.

LSLT The entire list is searched in a backward direction to locate an entry satisfying the condition specified by the

selection criteria parameter. If the list is empty, an error is reported. The current list entry pointer is

repositioned to the last entry in the list, and the search proceeds backward, including the last entry. The search

does not wrap.

NEXT The current entry pointer is advanced one entry, pointing to the next entry in the list.

NSLT The list is searched in a forward direction to locate an entry satisfying the condition specified by the selection

criteria parameter. The search starts with the entry after the current list entry pointer, and does not wrap.

PREV The current entry pointer is moved back one entry, pointing to the previous entry in the list.

PSLT The list is searched in a backward direction to locate an entry satisfying the condition specified by the

selection criteria parameter. The search starts with the entry before the current list entry pointer and does not

wrap.

SAME The current entry pointer remains unchanged, pointing to the same entry in the list.

TOP The top of the list. A special position just prior to the first list entry in a list that is complete at the top.

Note: After running the QUIGETLM API once with the positioning option parameter of FSLT or

LSLT, the application program should change the positioning option parameter to NSLT or PSLT.

It does this to avoid repeatedly positioning at the beginning or end of the list and searching the

same list entries.

Copy option

INPUT; CHAR(1)

 Determines whether or not the data values in the list entry are copied into the corresponding

dialog variables when positioning is complete. One of the following values must be specified:

 Y The data values in the current list entry after the positioning operations are performed are copied into

corresponding dialog variables. This value must be specified if the variable record name parameter specifies

the name of a variable record defined in the panel group for the open application. Y must be used if the

number of records parameter is greater than 1. This value is not allowed when the current entry is positioned

to TOP or BOT.

N The data values in the current list entry after positioning the list are not copied into corresponding dialog

variables.

Selection criteria

INPUT; CHAR(20)

 The selection criteria used when positioning the list by variable selection. Positioning by variable

selection allows the application program to search forward to find the next entry, or backward to

find a previous entry satisfying a given condition. The search is not dependent on sorted list

entries, but the application program might need to build the list in sorted order to get a

consistent result when using comparison operators other than equal (EQ) or not equal (NE).

 This parameter is only used when FSLT, LSLT, NSLT, or PSLT is specified for the positioning

option parameter. It is ignored if any other value is specified.

 The relational condition defined by this parameter must exist between the dialog variable value

and that dialog variable’s corresponding value in a list entry when selection positioning is

performed.

 The first 10 characters of this parameter must contain a comparison operator. The operator must

be left-adjusted and padded with blanks.

User Interface Manager (UIM) APIs 43

One of the following values must be specified for the comparison operator:

 EQ The list entry value equals the dialog variable value.

NE The list entry value is not equal to the dialog variable value.

GT The list entry value is greater than the dialog variable value.

LT The list entry value is less than the dialog variable value.

GE The list entry value is greater than or equal to the dialog variable value.

LE The list entry value is less than or equal to the dialog variable value.

The second 10 characters of this parameter contain the name of the dialog variable used in the

comparison. The dialog variable name specified must be defined in the list being searched.

Selection handle

INPUT; CHAR(4)

 The list entry handle used when positioning the current entry pointer to a specific entry. This

parameter is used only when the positioning option parameter has the value HNDL; it is ignored

if any other value is specified.

 The following special value can be specified:

 EXTE Retrieves the content of the extended action entry. The contents of the extended action entry are copied to the

associated dialog variables in the variable pool. However, the current entry pointer for the list is not changed

when the extended action entry is retrieved.

A list entry handle uniquely distinguishes an entry until it is removed from the list, even if other

entries are inserted and removed from the list.

Extend option

INPUT; CHAR(1)

 Indicates whether or not an incomplete list is automatically extended in the attempt to retrieve

the requested list entry. The list can be extended when one of the following values is specified for

the positioning option parameter: NEXT, PREV, TOP, BOT, NSLT, PSLT, FSLT, or LSLT. If any

other value is specified for the positioning option parameter, this parameter is ignored and the

list is not extended.

 One of the following values must be specified:

 Y The list is extended, if necessary, to find the requested list entry.

N The list is not extended to find the requested list entry. This option can be used if the program calling the

QUIGETLE API needs to process only entries already in the list.

List entry handle

OUTPUT; CHAR(4)

 The list entry handle from the current entry pointer in the list. This value is the handle of the

entry to which the list was last positioned by this API.

 The following special values may be returned.

 TOP The current entry pointer is positioned at the top of the list.

BOT The current entry pointer is set at the bottom of the list.

Number of records

INPUT; BINARY(4)

 The total number of entries to retrieve from the list. The following special value can be used:

 1 Only one entry is retrieved from the list. The record size and record count parameters are ignored when this

value is used.

44 iSeries: User Interface Manager APIs

When this parameter is greater than 1, the variable buffer must contain space for all the entries

retrieved from the list.

 When this parameter is greater than 1 (multiple entries are being retrieved), the positioning

option parameter must have one of the following values: NEXT, PREV, NSLT, PSLT, FSLT, or

LSLT.

Record size

INPUT; BINARY(4)

 The size of each record within the variable buffer when multiple records are retrieved from the

list. This parameter also calculates the offset of each record after the first one.

 When the number of records parameter is 1, this parameter is ignored.

Record count

OUTPUT; BINARY(4)

 The number of list entries actually retrieved. When the number of records parameter is 1, this

parameter is ignored.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 CPF3C90 E Literal value cannot be changed.

CPF6AA0 E Request is not allowed when extending a list that is not complete.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A0F E Previous error occurred while running application &3.

CPF6A06 E Record size or record number too large.

CPF6A13 E Application &3 closed prematurely.

CPF6A14 E Program defined by variable &4 cannot be called.

CPF6A15 E Errors occurred in list exit program.

CPF6A2C E Value for Option parameter not valid.

CPF6A2D E Value for Selection Criteria parameter not valid.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A27 E Value for Extend Option parameter not valid.

CPF6A38 E Variable record &4 not defined in panel group.

CPF6A39 E Variable buffer length too small.

CPF6A90 E Value not correct. Reason code &3.

CPF6A91 E List &4 does not exist.

CPF6A92 E List &4 not active.

CPF6A93 E Operation not valid when current entry is &5.

CPF6A95 E List &4 either not complete or not extended.

CPF6A96 E Variable &5 is not in list definition.

CPF6A97 E Variable &5 not valid type for select comparison.

CPF6A98 E Entry not found in list &4 in panel group &1 in &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

User Interface Manager (UIM) APIs 45

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Open Display Application (QUIOPNDA) API

 Required Parameter Group:

1 Application handle

Output Char(8)

2 Qualified panel group name

Input Char(20)

3 Application scope

Input Binary(4)

4 Exit parameter interface

Input Binary(4)

5 Full-screen help

Input Char(1)

6 Error code

I/O Char(*)
 Optional Parameter Group:

7 Open data receiver

Output Char(*)

8 Length of open data receiver

Input Binary(4)

9 Length of available open data

Output Binary(4)
 Default Public Authority: *USE

 Threadsafe: No

The Open Display Application (QUIOPNDA) API initiates a UIM display application by opening the

panel group that the application program specifies. The QUIOPNDA API and the Close Application

(QUICLOA) API must be used in pairs to open and close each UIM display application.

Multiple applications can be opened at the same time. Each open application contains a complete set of

dialog variables and active lists, and is independent of other open applications. A panel group can be

opened more than once per job, but each call of the QUIOPNDA API initiates a new UIM display

application and returns a unique application handle.

Authorities and Locks

Library Authority

*READ

Panel Group Authority

*USE

Panel Group Lock

*SHRRD

46 iSeries: User Interface Manager APIs

Required Parameter Group

Application handle

OUTPUT; CHAR(8)

 The application handle for the opened application. The QUIOPNDA API returns a unique handle

for each application opened. This handle must be provided as a parameter to every other UIM

API that operates on the application, including the QUICLOA API, which must be used to close

the application.

Qualified panel group name

INPUT; CHAR(20)

 The name of the *PNLGRP object opened for this UIM application. The first 10 characters contain

the name of the *PNLGRP object, and the second 10 characters contain the name of the library in

which the panel group resides. These special values can be used for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Application scope

INPUT; BINARY(4)

 The scope of the resources for the application. The UIM uses the scope to determine whether or

not to automatically close the application when reclaim resource processing is performed through

the Reclaim Resource command (RCLRSC), the Reclaim Activation Group command

(RCLACTGRP), or the End Request command (ENDRQS). During reclaim resource processing,

the UIM closes all applications whose scope is no longer active.

 One of the following values must be used:

 -1 The calling program is the scope for the application. If the calling program is an original program model

(OPM) program and the application program is no longer active, the UIM will automatically close the

application during reclaim resource processing. If the calling program is an Integrated Language Environment

(ILE) program and the activation group mark is no longer active, the UIM will automatically close the

application during reclaim resource processing.

0 The job is the scope for the application. The application is not automatically closed by the UIM until the job is

ended.

Exit parameter interface

INPUT; BINARY(4)

 The type of parameter interface used with exit programs and programs called as a result of the

CALL dialog command for the UIM application being opened.

 All exit and CALL programs receive a single parameter or multiple parameters, which are space

pointers to information describing the state of the UIM application.

 One of the following values must be used:

 0 Used by programs written in languages that can efficiently process structures.

1 Used by programs written in languages that cannot efficiently process structures. This value indicates that all

application programs called as exits or as a result of the CALL dialog command accept the parameter lists

described for interface level 1.

2 Used by programs written in languages that cannot efficiently process structures. This value indicates that all

application programs called as exits or as a result of the CALL dialog command accept the parameter lists

described for interface level 2.

For a detailed description of the structure passed for each type of exit and CALL program and

for a description of the exit parameter lists, see “User Interface Manager (UIM) APIs,” on page 1.

Full-screen help

INPUT; CHAR(1)

User Interface Manager (UIM) APIs 47

Determines whether or not the UIM help for the application is displayed in pop-up windows or

with a full screen. One of the following values must be used:

 Y The online help information is displayed with a full screen.

N The online help information is displayed using pop-up windows, unless the user profile indicates that help is

displayed with a full screen.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Optional Parameter Group

Open data receiver

OUTPUT; CHAR(*)

 The receiver variable that is to receive the open data information requested. For the format of the

open data receiver variable, see “Format of Data Returned.”

Length of open data receiver

INPUT; BINARY(4)

 The amount of data the application program is prepared to receive. If the length specified is

larger than the amount of data available, the receiver is not changed beyond the amount of data

available. If the length specified is greater than the actual length of the open data receiver

parameter, unpredictable results may occur.

Length of available open data

OUTPUT; BINARY(4)

 The length of all open data available. All available open data is returned if enough space is

provided.

Format of Data Returned

The format of the data available, returned in the open data receiver parameter, is as follows:

 CHAR(1) Whether or not an error occurred while attempting to obtain the conversion tables needed to process the panel

group. The conversion tables are needed when the CHRID attribute of the panel group is not equal to the

CHRID attribute of the device, or when the CHRID attribute of the panel group is *JOBCCSID and the job

CCSID is not equal to the device CHRID. A CPD6A2A diagnostic message will be logged in the job log for

each conversion table that is not found.

One of the following values is returned:

N No error occurred while obtaining the conversion tables or the conversion tables were not necessary.

Y An error occurred while obtaining the conversion tables.

CHAR(1) Whether or not the conversion of data from the job to the device and from the device to the job will result in

loss of fidelity of the data. Conversion will be done when the CHRID attribute of the panel group is not equal

to the CHRID attribute of the device, or when the CHRID attribute of the panel group is *JOBCCSID and the

job CCSID is not equal to the device CHRID.

One of the following values is returned:

N No loss of fidelity will occur.

Y Loss of fidelity may occur on the conversions.

48 iSeries: User Interface Manager APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6A1E E Object cannot be used with this device or print file.

CPF6A12 E Unable to open panel group.

CPF6A17 E Panel group &1 in library &2 is not at the current release level.

CPF6A2A E Value for Application Scope parameter not valid.

CPF6A2E E Value for Exit Parameter Interface parameter not valid.

CPF6A2F E Value for Full-screen Help parameter not valid.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A26 E Resources not available to open application.

CPF6A3A E Value for Open Data Receiver is not valid. Reason code &1.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

User Interface Manager (UIM) APIs 49

#TOP_OF_PAGE
aplist.htm

Open Print Application (QUIOPNPA) API

 Required Parameter Group:

1 Application handle

Output Char(8)

2 Qualified panel group name

Input Char(20)

3 Application scope

Input Binary(4)

4 Exit parameter interface

Input Binary(4)

5 Qualified name of printer device file

Input Char(20)

6 Alternative file name

Input Char(10)

7 Share open data path

Input Char(1)

8 User data

Input Char(10)

9 Error code

I/O Char(*)
 Optional Parameter Group:

10 Open data receiver

Output Char(*)

11 Length of open data receiver

Input Binary(4)

12 Length of available open data

Output Binary(4)
 Default Public Authority: *USE

 Threadsafe: No

The Open Print Application (QUIOPNPA) API initiates a UIM print application by opening the panel

group that the application program specifies. The QUIOPNPA API and the Close Application (QUICLOA)

API must be used in pairs to open and close each UIM print application.

Multiple applications can be opened at the same time. Each open application contains a complete set of

dialog variables and active lists, and is independent of other open applications. The same panel group

can be opened more than once per job, but each call of the QUIOPNPA API initiates a new UIM print

application and returns a unique application handle.

50 iSeries: User Interface Manager APIs

Authorities and Locks

Library Authority

*READ

Panel Group Authority

*USE

Panel Group Lock

*SHRRD

Printer Device File Authority

*USE

Printer Device File Lock

*SHRNUP

Required Parameter Group

Application handle

OUTPUT; CHAR(8)

 The application handle for the open application. The Open Display Application (QUIOPNDA)

API returns a unique handle for each application opened. This handle must be provided as a

parameter to every other UIM API that operates on the application, including the QUICLOA API,

which must be used to close the application.

Qualified panel group name

INPUT; CHAR(20)

 The name of the *PNLGRP object opened for this UIM application. The first 10 characters contain

the name of the *PNLGRP object, and the second 10 characters contain the name of the library in

which the panel group resides. These special values can be used for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Application scope

INPUT; BINARY(4)

 The scope of the resources for the application. The UIM uses the scope to determine whether or

not to automatically close the application when reclaim resource processing is performed through

the Reclaim Resource (RCLRSC) command, the Reclaim Activation Group (RCLACTGRP)

command, or the End Request (ENDRQS) command. During reclaim resource processing, the

UIM closes all applications whose scope is no longer active.

 One of the following values must be used:

 -1 The calling program is the scope for the application. If the calling program is an original program model

(OPM) program and the application program is no longer active, the UIM will automatically close the

application during reclaim resource processing. If the calling program is an Integrated Language Environment

(ILE) program and the activation group mark is no longer active, the UIM will automatically close the

application during reclaim resource processing.

0 The job is the scope for the application. The application is not automatically closed by the UIM until the job is

ended.

Exit parameter interface

INPUT; BINARY(4)

 The type of parameter interface used with exit programs and programs called as a result of the

CALL dialog command for the UIM application being opened.

User Interface Manager (UIM) APIs 51

All exit and CALL programs receive a single parameter or multiple parameters, which are space

pointers to information describing the state of the UIM application.

 One of the following values must be used:

 0 Used by programs written in languages that can efficiently process structures.

1 Used by programs written in languages that cannot efficiently process structures. This value indicates that all

application programs called as exits or as a result of the CALL dialog command accept the parameter lists

described for interface level 1.

2 Used by programs written in languages that cannot efficiently process structures. This value indicates that all

application programs called as exits or as a result of the CALL dialog command accept the parameter lists

described for interface level 2.

For a detailed description of the exit parameter lists, and for a description of the type of structure

passed for each type of exit and CALL program, see “User Interface Manager (UIM) APIs,” on

page 1.

Qualified name of printer device file

INPUT; CHAR(20)

 The name of the printer device file used in print operations. The first 10 characters contain the

*FILE object name, and the second 10 characters contain the name of the library in which the

printer device file resides. These special values can be used for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Alternative file name

INPUT; CHAR(10)

 An alternative name for the spooled file. The following special value can be used:

 *NONE There is no alternative name for the spooled file. The name of the spooled file is the name of the printer device

file.

Share open data path

INPUT; CHAR(1)

 Determines whether or not the printer device file’s open data path (ODP) is shared. Sharing the

ODP allows multiple UIM applications to print to the same spooled file. One of the following

values must be used:

 Y The ODP is shared.

N The ODP is not shared.

F Use the share value of the print file.

User data

INPUT; CHAR(10)

 User data associated with the spooled file. This data becomes an attribute of the spooled file. The

following special values can be used:

 *FILE The user data of the spooled file will be set to the user data value of the printer file being opened.

*NONE There is no user data associated with the spooled file. The user data value of the printer file being opened will

be set to blanks.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

52 iSeries: User Interface Manager APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Optional Parameter Group

Open data receiver

OUTPUT; CHAR(*)

 The receiver variable that is to receive the open data information requested. For the format of the

open data receiver variable, see “Format of Data Returned.”

Length of open data receiver

INPUT; BINARY(4)

 The amount of data the application program is prepared to receive. If the length specified is

larger than the amount of data available, the receiver is not changed beyond the amount of data

available. If the length specified is greater than the actual length of the open data receiver

parameter, unpredictable results may occur.

Length of available open data

OUTPUT; BINARY(4)

 The length of all open data available. All available open data is returned if enough space is

provided.

Format of Data Returned

The format of the data available, returned in the open data receiver parameter, is as follows:

One of the following values is returned:

 CHAR(1) Whether or not an error occurred while attempting to obtain the conversion tables needed to process the panel

group. The conversion tables are needed when the CHRID attribute of the panel group is not equal to the

CHRID attribute of the device, or when the CHRID attribute of the panel group is *JOBCCSID and the job

CCSID is not equal to the device CHRID. A CPD6A2A diagnostic message will be logged in the job log for

each conversion table that is not found.

N No error occurred while obtaining the conversion tables or the conversion tables were not necessary.

Y An error occurred while obtaining the conversion tables.

CHAR(1) Whether or not the conversion of data from the job to the device and from the device to the job will result in

loss of fidelity of the data. Conversion will be done when the CHRID attribute of the panel group is not equal

to the CHRID attribute of the device, or when the CHRID attribute of the panel group is *JOBCCSID and the

job CCSID is not equal to the device CHRID.

One of the following values is returned:

N No loss of fidelity will occur.

Y Loss of fidelity may occur on the conversions.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6A1C E Unable to add print function.

CPF6A1E E Object cannot be used with this device or print file.

CPF6A11 E Value is not correct. Reason code is &3.

CPF6A12 E Unable to open panel group.

CPF6A17 E Panel group &1 in library &2 is not at the current release level.

CPF6A2A E Value for Application Scope parameter not valid.

CPF6A2E E Value for Exit Parameter Interface parameter not valid.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A26 E Resources not available to open application.

CPF6A3A E Value for Open Data Receiver is not valid. Reason code &1.

CPF9850 E Override of printer file &1 not allowed.

User Interface Manager (UIM) APIs 53

Message ID Error Message Text

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Print Help (QUHPRTH) API

 Required Parameter Group:

1 Help identifier array

Input Char(*)

2 Number of help identifiers

Input Binary(4)

3 Help title

Input CHAR(55)

4 Error code

I/O Char(*)
 Threadsafe: No

The Print Help (QUHPRTH) API prints help information from help modules named when this API is

called.

Warning: Temporary Level 3 Header

Restriction

This API is only valid in an interactive job. It cannot be run from a batch process.

Authorities and Locks

Library Authority

*READ

Panel Group Authority

*USE

Panel Group Lock

*SHRRD

Required Parameter Group

Help identifier array

INPUT; CHAR(*)

 An array of the help identifiers to print. The list can contain up to 2000 items. Each item has two

parts:

Qualified help panel group name

CHAR(20)

 The panel group (*PNLGRP) object that contains the help module to be printed, and the

library in which it is located. (A panel group is an object with an object type of

*PNLGRP. It contains display panels, print panels, or help modules.)

54 iSeries: User Interface Manager APIs

#TOP_OF_PAGE
aplist.htm

The first 10 characters contain the panel group object name, and the second 10 characters

contain the library name. You can use these special values for the library name:

 *CURLIB The job’s current library

*LIBL The library list

Help module name

CHAR(32)

 The name specified on the NAME attribute of a :HELP. tag in the panel group object. The

name must be specified using uppercase, alphabetic characters.

Number of help identifiers

INPUT; BINARY(4)

 The number of help identifiers in the help identifier array parameter. The number must be

between 1 and 2000.

Help title

INPUT; CHAR(55)

 The title to print if no title is found in the help panel group object.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6Exx E All CPF6Exx messages could be signalled. xx is from 01 to FF.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V3R1

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

User Interface Manager (UIM) APIs 55

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Print Panel (QUIPRTP) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 Print panel name

Input Char(10)

3 Eject option

Input Char(1)

4 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Print Panel (QUIPRTP) API prints a panel to the printer file for an opened print application. The

values for all output fields used in the panel definition are taken from dialog variables in the variable

pool. If the panel contains list areas, the values are also taken from list entries in the lists associated with

the open application.

If the panel contains a list area that is incomplete at the bottom, the UIM automatically calls the program

identified by the program dialog variable parameter of the Set List Attributes (QUISETLA) API to acquire

more list entries. The program is called repeatedly until either the requested number of entries is added

to the list or the list is marked complete at the bottom. For lists that are incomplete at the top, printing

begins with the first entry in the list.

Required Parameter Group

Application handle

INPUT; CHAR(8)

 The application handle assigned by the UIM and returned to the application program by the

Open Display Application (QUIOPNDA) API or the Open Print Application (QUIOPNPA) API

when the application is opened.

Print panel name

INPUT; CHAR(10)

 The name of the print head panel or print panel defined in the panel group for the open

application.

Eject option

INPUT; CHAR(1)

 Determines whether or not this panel begins on a new page. An automatic page eject is done

when a print head panel is printed after a print panel. However, even if Y is specified on the

QUIPRTP API when the next print panel is printed, it does not cause a second page eject.

 One of the following values must be used:

 Y The panel is printed at the top of a new page.

N The panel is not always printed at the top of a new page.

56 iSeries: User Interface Manager APIs

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A0F E Previous error occurred while running application &3.

CPF6A1F E An active display already exists for this application.

CPF6A11 E Value is not correct. Reason code is &3.

CPF6A13 E Application &3 closed prematurely.

CPF6A14 E Program defined by variable &4 cannot be called.

CPF6A15 E Errors occurred in list exit program.

CPF6A18 E Print heading must be specified first.

CPF6A19 E Prologue is only allowed in first heading.

CPF6A23 E Page length too small to print the list column headings.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A3B E Application not open for print.

CPF6A3E E Application not open for display.

CPF6A3F E Panel &4 was not found in panel group &1.

CPF6A50 E Error was found during display file or printer file operation.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Put Dialog Variable (QUIPUTV) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 Variable buffer

Input Char(*)

3 Variable buffer length

Input Binary(4)

4 Variable record name

Input Char(10)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

User Interface Manager (UIM) APIs 57

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

The Put Dialog Variable (QUIPUTV) API updates the value of one or more dialog variables by specifying

variable buffer of the application program and naming the variable record defined in the panel group for

the open application.

Required Parameter Group

Application handle

INPUT; CHAR(8)

 The application handle assigned by the UIM and returned to the application program by the

Open Display Application (QUIOPNDA) API or the Open Print Application (QUIOPNPA) API

when the application is opened.

Variable buffer

INPUT; CHAR(*)

 The program buffer from which dialog variable values are copied. The dialog variables are copied

in the order specified in the variable record, which is named in the variable record name

parameter.

Variable buffer length

INPUT; BINARY(4)

 The length of the variable buffer. The buffer must be large enough to contain all the dialog

variables in the definition of the variable record, which is specified in the variable record name

parameter.

Variable record name ..

INPUT; CHAR(10)

 The name of the variable record that determines which dialog variables are copied from the

variable buffer into the application variable pool. The variable record must be defined in the

panel group for the open application.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A0F E Previous error occurred while running application &3.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A36 E Data not correct for dialog variable &4 in panel group &1 in &2.

CPF6A37 E Data not correct for dialog variable &4 in panel group &1 in &2.

CPF6A38 E Variable record &4 not defined in panel group.

CPF6A39 E Variable buffer length too small.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

58 iSeries: User Interface Manager APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Remove List Entry (QUIRMVLE) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 List name

Input Char(10)

3 Extend option

Input Char(1)

4 List entry handle

Output Char(4)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Remove List Entry (QUIRMVLE) API removes the list entry identified by the value of the current

entry pointer for the list. The current entry pointer is always updated to the entry before the one

removed. If the first list entry is removed, the current entry pointer is set to the top of the list if the list is

complete at the top.

If the list is incomplete at the top, the UIM calls the incomplete list extension program to add another

entry to the list.

If the list entry identified by the display position attribute parameter of the Set List Attributes

(QUISETLA) API is removed, the display position attribute is set at the entry before the one that was

removed. If the new display position attribute is the first entry in the list, the display position attribute is

set at the top of the list (logically the entry before the first entry in the list) if the list is complete at the

top.

Required Parameter Group

Application handle

INPUT; CHAR(8)

 The application handle assigned by the UIM and returned to the application program by the

Open Display Application (QUIOPNDA) API or the Open Print Application (QUIOPNPA) API

when the application is opened.

List name

INPUT; CHAR(10)

 The name of the list from which an entry is removed. If the list is not currently active in the open

application, an error message is reported. A list is made active the first time an entry is inserted

with the Add List Entry (QUIADDLE) API, Add List Multiple Entries (QUIADDLM) API, or its

attributes are set with the QUISETLA API.

Extend option

INPUT; CHAR(1)

User Interface Manager (UIM) APIs 59

Specifies whether or not an incomplete list is automatically extended in an attempt to remove the

first entry from a list that is incomplete at the top. One of the following values must be specified:

 Y The list is extended, if necessary, to add at least one entry to the top of the list or to mark the list as complete

at the top.

N The list is not extended to find the entry before the entry being removed, and the entry is not removed from

the list.

List entry handle

OUTPUT; CHAR(4)

 The list entry handle value from the current entry pointer. A list entry handle uniquely

distinguishes an entry until it is removed from the list, even if other entries are inserted and

removed from the list. A value of TOP indicates that the current entry pointer is positioned at the

top of the list.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6AA0 E Request is not allowed when extending a list that is not complete.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A0F E Previous error occurred while running application &3.

CPF6A13 E Application &3 closed prematurely.

CPF6A14 E Program defined by variable &4 cannot be called.

CPF6A15 E Errors occurred in list exit program.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A27 E Value for Extend Option parameter not valid.

CPF6A91 E List &4 does not exist.

CPF6A92 E List &4 not active.

CPF6A93 E Operation not valid when current entry is &5.

CPF6A94 E Incomplete list &4 requires extension.

CPF6A95 E List &4 either not complete or not extended.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

60 iSeries: User Interface Manager APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

Remove Pop-Up Window (QUIRMVPW) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 Remove option

Input Char(1)

3 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Remove Pop-Up Window (QUIRMVPW) API removes the pop-up window created by the Add

Pop-Up Window (QUIADDPW) API. After calling the QUIRMVPW API, subsequent calls to the Display

Panel (QUIDSPP) API display either a full-screen panel or a panel in a pop-up window defined by a

previous call of the QUIADDPW API. A pop-up window cannot be removed if an action or exit program

is currently being processed for a panel displayed in that pop-up window.

Required Parameter Group

Application handle

INPUT; CHAR(8)

 The application handle assigned by the UIM and returned to the application program by the

Open Display Application (QUIOPNDA) API when the application is opened.

Remove option

INPUT; CHAR(1)

 The pop-up windows that are removed from the open application. One of the following values

must be used:

 I All inactive pop-up windows. A pop-up window is inactive if there are no panels currently displayed in that

window.

L The most recently added pop-up window.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A0F E Previous error occurred while running application &3.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A3E E Application not open for display.

CPF6A84 E Window cannot be removed at this time.

User Interface Manager (UIM) APIs 61

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF6A90 E Value not correct. Reason code &3.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Remove Print Application (QUIRMVPA) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 Close option

Input Char(1)

3 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Remove Print Application (QUIRMVPA) API stops print functions in a previously opened display

application. The Add Print Application (QUIADDPA) API and the QUIRMVPA API are used in pairs to

add and remove printing from display applications.

The QUIRMVPA API closes the printer file for the application. If the QUIRMVPA API is not performed

before the application is closed, the Close Application (QUICLOA) API performs the QUIRMVPA API.

Required Parameter Group

Application handle

INPUT; CHAR(8)

 The application handle assigned by the UIM and returned to the application program by the

Open Display Application (QUIOPNDA) API when the application is opened.

Close option

INPUT; CHAR(1)

 Specifies whether or not to perform a normal or abnormal close operation on the printer file. One

of the following values must be specified:

 A An abnormal close operation is performed, and the trailer message is not printed.

M A normal close operation is performed.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

62 iSeries: User Interface Manager APIs

#TOP_OF_PAGE
aplist.htm
error.htm#HDRERRCOD
error.htm#HDRERRCOD

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A1B E Application does not have an open print file.

CPF6A11 E Value is not correct. Reason code is &3.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Retrieve Help Text (QUHRHLPT) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 Format name

Input Char(8)

4 Help identifiers to be retrieved

Input Array(*) of (*)

5 Number of help identifiers

Input Binary(4)

6 Help identifier text

Output Char(*)

7 Length of help identifier text

Input Binary(4)

8 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: Yes

The Retrieve Help Text (QUHRHLPT) API lets you generate an Extensible Markup Language (XML)

source listing of the help identifiers in a panel group or menu object. The QUHRHLPT API returns the

XML source in UTF-8 (CCSID 1208). You can use the QUHRHLPT API to generate XML source

representing the help text as defined in help identifiers in UIM panel groups or menus.

The QUHRHLPT API returns information in one format.

Special consideration: The text for the UIM LINK tag will be displayed, but there will be no link

generated in the XML source.

User Interface Manager (UIM) APIs 63

#TOP_OF_PAGE
aplist.htm

Authorities and Locks

Help Panel Group/Menu Authority

*READ

Help Panel Group/Menu Library Authority

*EXECUTE

Imported Help Panel Group Authority

*READ

Imported Help Panel Group Library Authority

*EXECUTE

Required Parameter Group

Receiver variable

INPUT; CHAR(*)

 The variable that is to receive the information requested. For the format of the structure, see

“Format of the receiver variable” on page 65.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. If the length is larger than the size of the receiver variable, the

results may be unpredictable. The minimum length is 8 bytes.

Format name

INPUT; CHAR(8)

 The format of the information returned for the help identifiers that are requested. The following

format name must be used:

 RHLP0100

For details about the formats, see “Format of the receiver variable” on page 65.

Help identifiers to be retrieved

INPUT; Array(*) of (*)

 An array of help identifiers to be formatted. The list can contain up to 2000 items. For the format

of the structure, see “Format of help identifiers to be retrieved” on page 66.

Number of help identifiers

INPUT; BINARY(4)

 The number of help identifer names passed in on the help identifiers to be retrieved parameter.

Help identifier text

OUTPUT; Char(*)

 The variable that is to receive the generated Xml output. The information returned potentially

could be very large. In this case, a user space with the auto-extendable attribute set may act as a

better choice for a receiver variable. For further information about using a user space, see User

spaces for list APIs in API concepts. For the format of the structure, see “Format of the help

identifier text” on page 67. If the variable is not large enough, no data may be returned.

Length of help identifier text

INPUT; BINARY(4)

 The length of the help identifier text parameter. If the length specified is larger than the size of

the parameter, the results may be undesirable. The minimum length is 8 bytes.

64 iSeries: User Interface Manager APIs

listUserSpace.htm
listUserSpace.htm

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter. If this parameter is omitted, diagnostic and escape messages are issued to the

application.

Format of the receiver variable

The receiver variable contains:

v A header section

v A list data section

For detailed descriptions of each field in the header section, see “Field Descriptions.”

RHLP0100

 Offset

Type Field Dec Hex

0 0 BINARY(4 Bytes returned

4 4 BINARY(4) Bytes available

8 8 CHAR(8) Format name

16 10 BINARY(4) Offset to help identifiers

20 14 BINARY(4) Number of entries

24 18 BINARY(4) Size of each entry

* * CHAR(*) Help identifiers

Help identifier entries

 Offset

Type Field Dec Hex

0 0 CHAR(32) Help identifier name

32 20 CHAR(10) Object name

42 2A CHAR(10) Object library name

52 34 CHAR(10) Object type

62 3E CHAR(1) Help identifier found

63 3F CHAR(96) Help identifier anchor name

167 A7 CHAR(33) Reserved

Field Descriptions

Bytes available. The number of bytes of information available to be returned.

Bytes returned. The number of bytes of information returned.

Format name. The format name that was passed to this API.

Help identifier anchor name. The name of the anchor within the help document.

Help identifier found. A one-character field indicating the status of the help ID when the caller selects

the help identifiers to be retrieved. The possible values are:

User Interface Manager (UIM) APIs 65

error.htm#HDRERRCOD
error.htm#HDRERRCOD

0 Not found due to incorrect name

1 Help identifier found

2 Object access failure; see joblog for details

If none of the requested help identifiers are found, the API will also signal a CPF6E3B escape

message.

Help identifier name. The name specified on the NAME attribute of a :HELP. tag in the panel group or

menu object.

Number of entries. The number of entries being returned in the list data section.

Object library name. The library containing the panel group or menu object in which the help identifier

was found.

Object name. A 10-character name used to identify the panel group or menu object in which the help

identifier was found.

Object type. The type of the object in which the help identifier was found.

Offset to help identifiers. The offset from the start of the receiver variable to the first help identifier.

Reserved. An ignored field.

Size of each entry. The size of each entry in bytes in the list data section.

Format of help identifiers to be retrieved

The following information is accepted as input. For detailed descriptions of the fields in the table, see

“Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 CHAR(32) Help identifier name

32 20 CHAR(10 Object name

42 2A CHAR(10) Object library name

52 34 CHAR(10) Object type

62 3E CHAR(18) Reserved

Field Descriptions

Help identifier name. The name specified on the NAME attribute of a :HELP. tag in the panel group or

menu object. The name must be specified using uppercase, alphabetic characters.

Object library name. The library containing the panel group or menu object in which the help identifier

was found. As input, this value must be in uppercase letters. You can use these special values for the

library name:

 *CURLIB The job’s current library

*LIBL The library list

Object name. A 10-character name used to identify the panel group or menu object in which the help

identifier was found. As input, this value must be in uppercase letters.

66 iSeries: User Interface Manager APIs

Object type. The type of the object in which the help identifier was found. This value must be *PNLGRP

or *MENU.

Reserved. This field should be set to blanks.

Format of the help identifier text

The following is a description of the data in the help identifier text parameter.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Bytes returned

4 4 BINARY(4) Bytes available

* * Char(*) Data

Field Descriptions

Bytes available. The number of bytes of information available to be returned.

Bytes returned. The number of bytes of information returned.

Data. The UIM online help formatted in Xml. This information contains:

v A document header section

v Xml-formatted tags

v A document footer section

Each formatted help identifier contains a <div> tag representing the help identifier being formatted, such

as:

v <div>

v (Xml-formatted help text is contained here)

v </div>

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF3CF1 E Error code parameter not valid.

CPF3CF2 E Error(s) occurred during running of &1 API.

CPF3C20 E Error found by program &1.

CPF3C21 E Format name &1 is not valid.

CPF3C24 E Length of receiver variable not valid.

CPF3C31 D Object type &1 is not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF9801 D Object &2 in library &3 not found.

CPF9802 D Not authorized to object &2 in &3.

CPF6E3B E Help information is not available.

CPF9803 D Cannot allocate object &2 in library &3.

CPF9804 D Object &2 in library &3 damaged.

CPF9810 D Library &1 not found.

CPF9820 D Not authorized to use library &1.

CPF9838 E User profile storage limit exceeded.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V5R1

User Interface Manager (UIM) APIs 67

Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Retrieve List Attributes (QUIRTVLA) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 List name

Input Char(10)

3 Receiver

Output Char(*)

4 Receiver length

Input Binary(4)

5 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Retrieve List Attributes (QUIRTVLA) API retrieves the following list attributes:

v The list contents attribute, indicating whether or not all entries are present in the list, and which entries

are missing if it is incomplete

v The name of the dialog variable that identifies the program called when the UIM needs to add entries

to an incomplete list

v The display position attribute, which is the list entry handle for the entry presented at the top-most

row of any list area that displays a list

v The allow trim attribute, which indicates whether or not the UIM trims a full list when adding new

entries

Required Parameter Group

Application handle

INPUT; CHAR(8)

 The application handle assigned by the UIM and returned to the application program by the

Open Display Application (QUIOPNDA) API or by the Open Print Application (QUIOPNPA) API

when the application is opened.

List name

INPUT; CHAR(10)

 The name of the list whose attributes are retrieved. If the list is not currently active in the open

application, an error is reported. A list is made active the first time an entry is inserted with the

Add List Entry (QUIADDLE) or Add List Multiple Entries (QUIADDLM) API, or the fist time the

list’s attributes are set with the Set List Attributes (QUISETLA) API.

Receiver

OUTPUT; CHAR(*)

68 iSeries: User Interface Manager APIs

#TOP_OF_PAGE
aplist.htm

The current attributes of the list. For the format of the receiver variable, see “Format of Data

Returned.”

Receiver length

INPUT; BINARY(4)

 The amount of data the application program is prepared to receive. If the length specified is

larger than the amount of data available, the receiver is not changed beyond the amount of data

available.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Format of Data Returned

The format of the data available, returned in the receiver parameter, is as follows:

 CHAR(4) The list contents attribute, indicating whether or not the list contains all or some of the entries available for

display or printing. For more information about the meaning of each possible return value, see the “Set List

Attributes (QUISETLA) API” on page 70. The following values can be returned in this parameter:

ALL The list is complete. This value is returned when either the QUISETLA API has not been called to set

the list attribute or when ALL is the last list contents attribute specified on a call to the QUISETLA

API for the list.

TOP Only the top part of an incomplete list is available. This value is returned when TOP is the last list

contents attribute specified on a call to the QUISETLA API for the list.

BOT Only the bottom part of an incomplete list is available. This value is returned when BOT is the last

list contents attribute specified on a call to the QUISETLA API for the list.

MORE Only the middle part of an incomplete list is available. This value is returned when MORE is the last

list contents attribute specified on a call to the QUISETLA API for the list.

CHAR(10) The name of the dialog variable identifying the program the UIM calls when more entries are needed in an

incomplete list.

CHAR(4) The display position attribute, which is the list entry handle at the top of the list area on the next panel that

displays this list. The UIM does not use the display position attribute for print applications.

The value returned is the handle for a specific entry in the list, or one of the following special values:

TOP The top entries in the list are displayed.

BOT The bottom entries in the list are displayed.

If the list entry identified by the display position attribute of a list is removed before the list is displayed on a

panel, the UIM adjusts the attribute to display the entry before the one that was removed. The value returned

by this API is not meaningful if entries are removed from the list after the display position attribute is

retrieved.

CHAR(1) The allow trim attribute, which indicates whether or not the UIM trims the list when a new list entry causes

the list to exceed its maximum size. For additional details, see the “Set List Attributes (QUISETLA) API” on

page 70.

One of the following values is returned:

Y The UIM automatically trims the list.

N The UIM does not automatically trim the list.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

User Interface Manager (UIM) APIs 69

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF6A0F E Previous error occurred while running application &3.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A91 E List &4 does not exist.

CPF6A92 E List &4 not active.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Set List Attributes (QUISETLA) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 List name

Input Char(10)

3 List contents

Input Char(4)

4 Program dialog variable

Input Char(10)

5 Display position attribute

Input Char(4)

6 Allow trim attribute

Input Char(1)

7 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Set List Attributes (QUISETLA) API sets the following list attributes:

v The list contents attribute, which indicates whether or not all entries are present in the list and which

entries are missing if it is incomplete

v The name of the dialog variable that identifies the program the UIM calls when additional entries are

needed in an incomplete list

v The display position attribute, which is the list entry handle for the entry presented at the top row of a

list area displaying the list

v An attribute indicating whether or not the UIM trims the list if the maximum list size is exceeded

when adding a new entry to the list

If the QUISETLA API has not been called for a list since the first entry was inserted, the list contents

default value is ALL and the list is complete. An error message is displayed if the user attempts to page

beyond either end of the list. The UIM does not call a program for more entries or return to the program

that called the Display Panel (QUIDSPP) API.

70 iSeries: User Interface Manager APIs

#TOP_OF_PAGE
aplist.htm

Required Parameter Group

Application handle

INPUT; CHAR(8)

 The application handle assigned by the UIM and returned to the application program by the

Open Display Application (QUIOPNDA) API or by the Open Print Application (QUIOPNPA) API

when the application is opened.

List name

INPUT; CHAR(10)

 The name of the list whose attributes are changed. If the list is not currently active in the open

application, it is activated by this API.

List contents

INPUT; CHAR(4)

 Indicates whether or not the list contains all or some of the entries available. One of the following

values must be specified:

 SAME This list contents attribute of the list is not changed.

ALL The entire list has been built. A message is displayed if the user attempts to page beyond the top or the

bottom of the list.

TOP Only the top part of the list is built. A message is displayed if the user attempts to page beyond the beginning

of the list. If the user attempts to page beyond the bottom of the list, the program specified by the program

dialog variable parameter is called by the UIM, with parameters indicating the need for more entries at the

bottom of the list.

BOT Only the bottom part of the list is built. A message is displayed if the user attempts to page beyond the

bottom of the list. If the user attempts to page beyond the top of the list, the program specified by the

program dialog variable parameter is called by the UIM, with parameters indicating the need for more entries

at the top of the list.

MORE Only the middle of the list is built. If the user attempts to page beyond either the top or the bottom the list,

the program specified by the program dialog variable parameter is called by the UIM, with parameters

indicating the need for more entries at the top or bottom of the list.

If the application program marks the list complete in a given direction, the application program cannot

subsequently mark the list incomplete in that same direction.

Program dialog variable

INPUT; CHAR(10)

 The name of a dialog variable in an open application. This dialog variable contains information

identifying the program called by the UIM when more entries must be added to an incomplete

list. The dialog variable must be defined and set properly according to the rules used for the

CALL dialog command.

 For a description of the CALL dialog command, see the Application Display Programming

book. For a description of the interface between the UIM and the incomplete list exit program,

see “Using the User Interface Manager (UIM) Exit Programs” on page 99.

 The following special value can be used:

 *SAME The program dialog variable is not changed.

Display position attribute

INPUT; CHAR(4)

 The list entry that should be positioned at the top of the list area on the next panel that displays

this list. The UIM does not use the display position attribute when printing the list.

 The value specified must be the list entry handle currently existing in the list or one of the

following special values:

User Interface Manager (UIM) APIs 71

SAME The display position attribute of the list is not changed.

TOP The entries at the top of the list should be positioned at the top of the list area on the next panel.

BOT The bottom n entries of the list should be displayed in the list area on the next panel, where n is the number

of list entries that can be displayed in the current view of the list. If the list contains fewer than n list entries,

the complete list is displayed.

If the list entry identified by the display position attribute of a list is removed before the list is

displayed on a panel, the UIM automatically adjusts the attribute to display the entry before the

one removed. If there is no previous entry in the list, the attribute is set at the top of the list, and

the next panel displaying the list shows the first entry in the list.

 During incomplete list extension, the application program must specify SAME for the display

position attribute.

Allow trim attribute

INPUT; CHAR(1)

 Indicates whether or not the UIM should trim the list during the Add List Entry (QUIADDLE) or

the Add List Multiple Entries (QUIADDLM) API if adding the new entry exceeds the maximum

list size. The UIM trims only lists that have been marked as incomplete by using the QUISETLA

API. When the UIM removes the list entry, the UIM marks the list incomplete in the direction

from which the entry was removed, regardless of whether or not the list was previously

incomplete in this direction.

 If an application is adding an entry to the bottom of the list when the maximum size list is

reached, the UIM removes the first list entry and marks the list incomplete at the top. The

incomplete list exit program of the application must be prepared to add list entries in either

direction of an incomplete list.

 When the incomplete list exit program is called to add list entries, the QUIADDLE or

QUIADDLM API can be called to add entries in the middle of the list. If the entries are added to

the middle of the list when the list is complete; trimming does not take place and an error is

reported indicating that the maximum list size has been reached.

 One of the following values must be specified:

 S The allow trim attribute of the list should not be changed.

Y The UIM automatically trims the list.

N The UIM does not automatically trim the list.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6AA0 E Request is not allowed when extending a list that is not complete.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A0F E Previous error occurred while running application &3.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A9A E Dialog variable required to specify incomplete list.

CPF6A9B E Dialog variable &5 not the correct type.

CPF6A9C E List entry handle not correct.

CPF6A9E E Value for Allow Trim parameter not valid.

72 iSeries: User Interface Manager APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Message ID Error Message Text

CPF6A9F E Attribute for list &4 not valid.

CPF6A90 E Value not correct. Reason code &3.

CPF6A91 E List &4 does not exist.

CPF6A99 E Dialog variable &5 not found in panel group &1 in &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Set Screen Image (QUISETSC) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Set Screen Image (QUISETSC) API establishes the screen image for a UIM application. This API is

used when a pop-up window is displayed over a panel that was not displayed using the same UIM

application.

For displaying pop-up windows over data description specifications (DDS) screens, it is the responsibility

of the application program to save and restore the display before and after displaying the pop-up

window. This can be done by specifying RSTDSP(*YES) for the DDS display file.

When the QUISETSC API is called, a read screen command is sent to the requesting program device. The

screen image returned from the read screen operation is saved for the open application. Subsequent

panels displayed in pop-up windows are displayed on top of this image. Using this API to set the screen

image is functionally similar to using the Display Panel (QUIDSPP) API to establish the primary panel on

which pop-up windows are overlaid.

The UIM does not preserve the extended character buffer (ECB) attributes on the underlying panel. This

means that the UIM issues a read screen command instead of a read screen with ECB command. Any

highlighting on the underlying panel that was specified using ECB attributes is lost. When the application

redisplays the underlying panel after the pop-up window is removed, the correct highlighting is restored.

No half-index ECB attributes are preserved.

Any double-byte character string (DBCS) data in the underlying panel is supported, including DBCS data

whose shift-in and shift-out characters are specified in ECB attributes.

Required Parameter Group

Application handle

INPUT; CHAR(8)

User Interface Manager (UIM) APIs 73

#TOP_OF_PAGE
aplist.htm

The application handle assigned by the UIM and returned to the application program by the

Open Display Application (QUIOPNDA) API when the application is opened.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A0F E Previous error occurred while running application &3.

CPF6A1F E An active display already exists for this application.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A3E E Application not open for display.

CPF6A50 E Error was found during display file or printer file operation.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Update List Entry (QUIUPDLE) API

 Required Parameter Group:

1 Application handle

Input Char(8)

2 Variable buffer

Input Char(*)

3 Variable buffer length

Input Binary(4)

4 Variable record name

Input Char(10)

5 List name

Input Char(10)

6 Option

Input Char(4)

7 List entry handle

Output Char(4)

8 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

74 iSeries: User Interface Manager APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

The Update List Entry (QUIUPDLE) API updates the list entry identified by the current entry pointer for

the list or the extended action entry. The current contents of all dialog variables corresponding to dialog

variables in the list are saved in the entry. The current entry pointer of the list is not changed by this

operation.

Required Parameter Group

Application handle

INPUT; CHAR(8)

 The application handle assigned by the UIM and returned to the application program by the

Open Display Application (QUIOPNDA) API or the Open Print Application (QUIOPNPA) API

when the application is opened.

Variable buffer

INPUT; CHAR(*)

 The program buffer from which dialog variable values are copied. The dialog variables are copied

in the order specified in the variable record definition.

 If the variable record name parameter specifies the name of a variable record, which is defined in

the panel group for this open application, dialog variables are copied from the variable buffer to

the application variable pool before the list entry is updated. The operation of this parameter is

the same as using the Put Dialog Variable (QUIPUTV) API immediately before the QUIUPDLE

API.

 The variable buffer must be large enough to contain all the variables specified in the variable

record definition.

Variable buffer length

INPUT; BINARY(4)

 The length of the variable buffer provided. The buffer must be large enough to contain all the

dialog variables in the definition of the variable record, specified in the variable record name

parameter.

Variable record name

INPUT; CHAR(10)

 The name of the variable record that determines which dialog variables are copied between the

variable buffer and the application variable pool. The variable record must be defined in the

panel group for the open application.

 The following special value can be used:

 *NONE The QUIPUTV API is not done during the QUIUPDLE API. The variable buffer parameter is ignored when

this value is used.

List name

INPUT; CHAR(10)

 The name of the list in which an entry is updated. If the list is not currently active in the open

application, an error is reported. A list is made active the first time an entry is inserted with the

Add List Entry (QUIADDLE) API or the Add List Multiple Entries (QUIADDLM) API, or its

attributes are set with the Set List Attributes (QUISETLA) API.

Option

INPUT; CHAR(4)

 The updated list entry. One of the following values must be specified:

 EXTE The extended action entry is updated.

SAME The list entry identified by the current entry pointer is updated.

User Interface Manager (UIM) APIs 75

List entry handle

OUTPUT; CHAR(4)

 The list entry handle for the updated list entry. A list entry handle uniquely distinguishes an

entry until it is removed from the list, even if other entries are inserted and removed from the

list.

 When the option parameter has the value EXTE, this parameter returns the value EXTE,

indicating that the extended action entry is updated.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Error Messages

 Message ID Error Message Text

CPF3C90 E Literal value cannot be changed.

CPF6AA1 E The value of the action field is not correct at this time. Reason code &5.

CPF6A0B E Application handle &3 not valid.

CPF6A0C E Application domain error for application &1.

CPF6A0F E Previous error occurred while running application &3.

CPF6A24 E Parameter &1 not passed correctly.

CPF6A25 E Return code length of &1 not valid.

CPF6A28 E Value for Option parameter not valid.

CPF6A36 E Data not correct for dialog variable &4 in panel group &1 in &2.

CPF6A37 E Data not correct for dialog variable &4 in panel group &1 in &2.

CPF6A38 E Variable record &4 not defined in panel group.

CPF6A39 E Variable buffer length too small.

CPF6A90 E Value not correct. Reason code &3.

CPF6A91 E List &4 does not exist.

CPF6A92 E List &4 not active.

CPF6A93 E Operation not valid when current entry is &5.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Exit Programs

These are the Exit Programs for this category.

Exit Program for an Action List Option or Pull-Down Field Choice

An exit program can be specified for an action list option using the USREXIT attribute of the list action

(LISTACT) tag. The exit program is called immediately after the action specified on the ENTER,

PROMPT, EXTENTER, or EXTPROMPT attribute of the LISTACT tag is processed.

An exit program for a pull-down field choice can be specified using the USREXIT attribute of the

pull-down field choice (PDFLDC) tag. The exit program is called immediately after the action specified

on the ACTION attribute of the PDFLDC tag is processed.

Normally, this exit program adds, updates, or removes a list entry for the application when the action list

option or pull-down choice action is a command string. The exit program should not change list entries

other than the one currently being processed. If it does, remaining UIM list processing may not perform

76 iSeries: User Interface Manager APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
aplist.htm

as expected. If the exit program changes the current entry for the list by adding a new entry to the list,

the exit program should reset the current entry to the one currently being processed before returning

control to the UIM. If the exit program does not do this, remaining UIM list processing may not perform

as expected.

Escape messages received by the UIM from the exit program cause the UIM to stop list processing, and

display the messages when the panel is reshown. If the dialog variable identifying the exit program is

null (for a pointer variable) or blanks (for a character variable), no exception is reported by the UIM and

processing continues as if the USREXIT attribute is not specified.

The cancel and exit flags for the job are not reset before the exit program is called, and the flags are not

checked after the exit program returns control to the UIM. Therefore, the cancel and exit flags should not

be turned on by the exit program.

Single Parameter Interface

QSYSINC Member Name: EUIALEX

Structure level

BINARY(4); positions 1-4

 The interface level supported by this structure, indicating which fields and values are available

for the current interface level.

Reserved

CHAR(8); positions 5-12

Type of call

BINARY(4); positions 13-16

 Set to the following value:

 5 The exit program is called for an action list option or pull-down choice when ACTFOR=LIST is specified on

the PDFLDC tag.

Application handle

CHAR(8); positions 17-24

 The application handle of the application currently being processed by the UIM.

Panel name

CHAR(10); positions 25-34

 The name of the panel currently being processed by the UIM.

List name

CHAR(10); positions 35-44

 The name of the list currently being processed by the UIM.

List entry handle

CHAR(4); positions 45-48

 The handle of the list entry being processed by the UIM. The following value may be used:

 EXTE Processes the extended action entry.

Option number

BINARY(4); positions 49-52

 The option number of the list action or pull-down choice being processed for the specified list

entry.

User Interface Manager (UIM) APIs 77

Function qualifier

BINARY(4); positions 53-56

 Set to one of the following values:

 0 Performs the action specified on the ENTER or EXTENTER attribute of the list action (LISTACT) tag or the

ACTION attribute of the PDFLDC tag.

-10 Performs the action specified on the PROMPT or EXTPROMPT attribute of the LISTACT tag.

Action results

BINARY(4); positions 57-60

 Set to one of the following values, indicating whether or not the list action or pull-down choice

was successful:

 0 The list action or pull-down choice is successful.

1 The list action or pull-down choice is unsuccessful.

A list action or pull-down choice is considered unsuccessful if any of the following occurs:

v An escape message is sent by the action program or command.

v The cancel flag for the job is set on by the action program or command.

v The exit flag for the job is set on by the action program or command.

Conversely, the list action is successful if none of the above occur.

Pull-down field name

CHAR(10); positions 61-70

 The pull-down field name from which the pull-down choice is selected. If the pull-down choice

does not have a name, this field is set to blanks.

 When the action being processed is not a pull-down choice, this field is set to blanks.

 This field is available only when the structure level field is set to two or greater.

Multiple Parameter Interface

The description of parameters listed in the following table is the same as the corresponding field in the

structure for a single parameter interface. The positions listed for each field in the structure do not apply

to the multiple parameter interface.

78 iSeries: User Interface Manager APIs

Parameters for interface level 1:

1 Type of call

Input Binary(4)

2 Application handle

Input Char(8)

3 Panel name

Input Char(10)

4 List name

Input Char(10)

5 List entry handle

Input Char(4)

6 Option number

Input Binary(4)

7 Function qualifier

Input Binary(4)

8 Action results

Input Binary(4)
 Additional parameter for interface level 2:

9 Pull-down field name

Input Char(10)

Exit program introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Exit Program for Application Formatted Data

The exit program can update the data formatted by the application every time a panel is displayed, and

returns control to the UIM through a normal return. The UIM then finishes formatting the panel and

displays it. The area formatted by the application is displayed as defined by the contents of the dialog

variable.

An application format exit program can be specified on the USREXIT attribute of the application

formatted area (APPFMT) tag. This attribute specifies the name of a dialog variable identifying the

program to call.

The UIM does not reevaluate conditions after the text area exit program is called; therefore, changing

dialog variables that affect conditions has no effect during this display of the panel.

This exit program is called during the formatting of the panel whenever the panel is displayed. If the

dialog variable identifying the program is nulls for a pointer variable or blanks for a character variable,

no exception is reported and processing continues as if the USREXIT attribute is not specified.

The exit program can send messages to the UIM for display on the panel. To have the messages shown,

the exit program must return control to the UIM by sending a CPF6A05 status or escape message. In this

User Interface Manager (UIM) APIs 79

#TOP_OF_PAGE
aplist.htm

case, any messages sent to the UIM by the incomplete list exit program are shown when the panel is

displayed. Otherwise, the exit program returns control to the UIM by doing a normal return.

The exit and cancel flags for the job are not reset before the exit program is called, and the flags are not

checked after the exit program returns control to the UIM. Therefore, the exit and cancel flags should not

be turned on by the exit program.

Single Parameter Interface

QSYSINC Member Name: EUIAFEX

Structure level

BINARY(4); positions 1-4

 The interface level supported by this structure, indicating which fields and values are available

for the current interface level.

Reserved

CHAR(8); positions 5-12

Type of call

BINARY(4); positions 13-16

 Set to the following value:

 7 The exit program is called to update the application formatted data.

Application handle

CHAR(8); positions 17-24

 The application handle of the application currently being processed by the UIM.

Panel name

CHAR(10); positions 25-34

 The name of the panel currently being processed by the UIM.

Panel bidirectional orientation

CHAR(1); positions 35-35

 Identifies the attribute orientation of the panel group.

 Set to one of the following values:

 N BIDI=NONE is specified or the default on the panel group (PNLGRP) tag.

L BIDI=LTR is specified on the PNLGRP tag.

R BIDI=RTL is specified on the PNLGRP tag.

Device code page

BINARY(4); positions 36-39

 The number of the code page of the requester’s display device.

Multiple Parameter Interface

The description of parameters listed in the following table is the same as the corresponding field in the

structure for a single parameter interface. The positions listed for each field in the structure do not apply

to the multiple parameter interface.

80 iSeries: User Interface Manager APIs

Parameters for interface level 1:

1 Type of call

Input Binary(4)

2 Application handle

Input Char(8)

3 Panel name

Input Char(10)

4 Panel bidirectional orientation

Input Char(1)

5 Device code page

Input Binary(4)

 No additional parameters are required for interface level 2.

Exit program introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

CALL Program for a Function Key

Function keys can be assigned to the CALL dialog command on the ACTION attribute of the key item

(KEYI) tag. When the function key is pressed, the UIM calls the specified program.

The CALL dialog command is assigned to a function key to process requests that are specific to the

application. These requests either do not have a command interface or require more knowledge about the

current application than can normally be passed through a command.

The application can perform most functions, but the application developer must be aware of the effects of

changing dialog variables, displaying other panels, and so on.

Single Parameter Interface

QSYSINC Member Name: EUIFKCL

Structure level

BINARY(4); positions 1-4

 The interface level supported by this structure, indicating which fields and values are available

for the current interface level.

Reserved

CHAR(8); positions 5-12

Type of call

BINARY(4); positions 13-16

 Set to the following value:

 1 Processes a function key.

Application handle

CHAR(8); positions 17-24

 The application handle of the application currently being processed by the UIM.

User Interface Manager (UIM) APIs 81

#TOP_OF_PAGE
aplist.htm

Panel name

CHAR(10); positions 25-34

 The name of the panel currently being processed by the UIM.

Function key pressed

BINARY(4); positions 35-38

 The function key that is pressed:

 1-24 A function key (F1-F24) is processed.

26 The default action when the Enter key is pressed.

Multiple Parameter Interface

The description of parameters listed in the following table is the same as the corresponding field in the

structure for a single parameter interface. The positions listed for each field in the structure do not apply

to the multiple parameter interface.

 Parameters for interface level 1:

1 Type of call

Input Binary(4)

2 Application handle

Input Char(8)

3 Panel name

Input Char(10)

4 Function key pressed

Input Binary(4)
 No additional parameters are required for interface level 2.

Exit program introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

CALL Program for a Menu Item

Menu items can be assigned to the CALL dialog command on the ACTION attribute of the menu item

(MENUI) tag. When the menu item is selected, the UIM calls the specified program.

The CALL dialog command is assigned to a menu item to process requests that are specific to the

application. These requests either do not have a command interface or require more knowledge about the

current application than can normally be passed through a command.

The application can perform most functions, but the application developer must be aware of the effects of

changing dialog variables, displaying other panels, and so on.

Single Parameter Interface

QSYSINC Member Name: EUIMICL

Structure level

BINARY(4); positions 1-4

 The interface level supported by this structure, indicating which fields and values are available.

82 iSeries: User Interface Manager APIs

#TOP_OF_PAGE
aplist.htm

Reserved

CHAR(8); positions 5-12

Type of call

BINARY(4); positions 13-16

 Set to the following value:

 2 Processes a menu item.

Application handle

CHAR(8); positions 17-24

 The application handle of the application currently being processed by the UIM.

Panel name

CHAR(10); positions 25-34

 The name of the panel currently being processed by the UIM.

Menu option

BINARY(4); positions 35-38

 The option number of the menu item selected by the user.

Multiple Parameter Interface

The description of parameters listed in the following table is the same as the corresponding field in the

structure for a single parameter interface. The positions listed for each field in the structure do not apply

to the multiple parameter interface.

 Parameters for interface level 1:

1 Type of call

Input Binary(4)

2 Application handle

Input Char(8)

3 Panel name

Input Char(10)

4 Menu option

Input Binary(4)

 No additional parameters are required for interface level 2.

Exit program introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

CALL Program for an Action List Option and Pull-Down Field Choice

An action list option can specify the CALL dialog command on the ENTER, EXTENTER, PROMPT, and

EXTPROMPT attributes of the list action (LISTACT) tag. When processing an action list, the UIM calls the

specified program.

A pull-down choice can specify the CALL dialog command on the ACTION attribute of the pull-down

field choice (PDFLDC) tag. When processing a selected pull-down choice, the UIM calls the specified

program.

User Interface Manager (UIM) APIs 83

#TOP_OF_PAGE
aplist.htm

The CALL dialog command on an action list or pull-down choice with ACTFOR=LIST on the PDFLDC

tag allows the application to handle a request for a single list entry. When processing the list, the UIM

calls the program once for each selected entry in the list. Care must be taken in changing other list entries

and the current position because the UIM is accessing the same information to perform the remaining

action list processing. For example, changing the current position past some selected list entries causes

the UIM to not process the skipped ones.

The CALL dialog command on a pull-down choice with ACTFOR=PANEL on the PDFLDC tag allows the

application to handle a request related to the panel as a whole. The UIM calls the program only once

before redisplaying the panel.

An escape message received by the UIM while performing list processing stops the processing and

displays the messages. The action or selection field still contains the option number or selection character

and is marked in error.

Single Parameter Interface

QSYSINC Member Name: EUIALCL

Structure level

BINARY(4); positions 1-4

 The interface level supported by this structure, indicating which fields and values are available

for the current interface level.

Reserved

CHAR(8); positions 5-12

Type of call

BINARY(4); positions 13-16

 Set to one of the following values:

 3 A program is called for action list option processing or pull-down choice processing when ACTFOR=LIST is

specified on the PDFLDC tag.

9 A pull-down choice. A program is called for pull-down choice processing when ACTFOR=PANEL is specified

on the PDFLDC tag.

Application handle

CHAR(8); positions 17-24

 The application handle of the application currently being processed by the UIM.

Panel name

CHAR(10); positions 25-34

 The name of the panel currently being processed by the UIM.

List name

CHAR(10); positions 35-44

 The name of the list currently being processed by the UIM. Blanks indicate that the pull-down

choice being processed does not operate against a list entry because ACTFOR=PANEL is specified

on the PDFLDC tag.

List entry handle

CHAR(4); positions 45-48

 The list entry handle currently being processed by the UIM. Hexadecimal zeros indicate that the

pull-down choice being processed does not operate against a list entry.

84 iSeries: User Interface Manager APIs

The following value may be used:

 EXTE Processes the extended action entry.

Option number

BINARY(4); positions 49-52

 The option number of the list action or pull-down choice being processed.

Function qualifier

BINARY(4); positions 53-56

 One of the following values:

 0 Performs the action specified on the ENTER or EXTENTER attribute of the LISTACT tag or the ACTION

attribute of the PDFLDC tag.

-10 Performs the action specified on the PROMPT or EXTPROMPT attribute of the LISTACT tag.

Pull-down field name

CHAR(10); positions 57-66

 The name of the pull-down field from which the pull-down choice is selected. If this pull-down

field does not have a name, this field is set to blanks.

 This field is only available when the field for the structure level is set to two or greater.

Multiple Parameter Interface

The description of parameters listed in the following table is the same as the corresponding field in the

structure for a single parameter interface. The positions listed for each field in the structure do not apply

to the multiple parameter interface.

User Interface Manager (UIM) APIs 85

Parameters for interface level 1:

1 Type of call

Input Binary(4)

2 Application handle

Input Char(8)

3 Panel name

Input Char(10)

4 List name

Input Char(10)

5 List entry handle

Input Char(4)

6 Option number

Input Binary(4)

7 Function qualifier

Input Binary(4)

 Additional parameter for interface level 2:

8 Pull-down field name

Input Char(10)

Exit program introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Exit Program for Conditioning Panel Items

An exit program may be called during condition evaluation for conditions specified on the EXPR

attribute of the COND tag and the LINKWHEN and UNLESSn attributes of the LINK tag.

The exit program can be provided for those instances when the determination of user class or existence of

an object is not sufficient.

The exit program is called during the evaluation of conditions on a panel. For hypertext link calls, this

program will be run every time. When the CHKPGM function is specified on the COND tag, the EVAL

attribute on the COND tag will determine when this program is called. A return code set by the exit

program will indicate to UIM whether the CHKPGM function should be evaluated to true or false.

The default for the function will be false if the exit program cannot be called. A message will be

displayed at the bottom of the panel in the case of an error on the call to the exit program.

If the exit program is being called to process a COND tag on a menu item in a *MENU object, the

multiple parameter interface will always be used. The multiple parameter interface will always be used

when processing the the LINKWHEN and UNLESSn attributes on a hypertext link also.

86 iSeries: User Interface Manager APIs

#TOP_OF_PAGE
aplist.htm

Single Parameter Interface

Structure level

BINARY(4); positions 1-4

 The interface level supported by this structure, indicating which fields and values are available

for the current interface level.

Reserved

CHAR(8); positions 5-12

Type of call

BINARY(4); positions 13-16

 Set to the following value:

 12 The exit program is called to evaluate the condition for the given panel group, menu, or hypertext link.

Application handle

CHAR(8); positions 17-24

 The application handle of the application currently being processed by the UIM. This value will

be set only when processing a *PNLGRP object. It will be set to blanks when the exit program is

called for a *MENU object or LINK tag condition processing.

Object name

CHAR(10); positions 25-34

 The name of the panel group or menu object being processed. If the exit program is called to

process the condition on a LINKWHEN or UNLESSn attribute on a LINK tag, this field will

contain the name of the panel group that contains the help identifier named in the LINK tag.

Library name

CHAR(10); positions 35-44

 The name of the library containing the object being processed. If the exit program is called to

process the condition on a LINKWHEN or UNLESSn attribute on a LINK tag, this field will

contain the name of the library that contains the panel group named in the previous parameter.

Object type

CHAR(10); positions 45-54

 The type of object (*MENU or *PNLGRP) being processed.

Help module name

CHAR(32); positions 55-86

 The name of the help module being processed when the exit program is called to process the

condition on a LINKWHEN or UNLESSn attribute on a LINK tag. When processing conditions on

a menu or panel item, this field will be blank.

Panel name

CHAR(10); positions 87-96

 The name of the panel being processed. This value will be blank when the exit program is called

to process the condition on a LINKWHEN or UNLESSn attribute on a LINK tag.

Condition name

CHAR(10); positions 97-106

 The name of the condition currently being evaluated. This is the name as it was entered on the

COND NAME attribute of the panel group source. If the exit program is called to process the

condition on a LINKWHEN or UNLESSn attribute on a LINK tag, this field will be set to blanks.

User Interface Manager (UIM) APIs 87

Return code

CHAR(1); position 107

 Return code from exit program indicating true or false condition. If a value other than one of

those listed below is returned, the condition will be set to false.

 1 Condition of the CHKPGM function is true.

0 Condition of the CHKPGM function is false.

Multiple Parameter Interface

The description of parameters listed in the following table is the same as the corresponding field in the

structure for a single parameter interface. The positions listed for each field in the structure do not apply

to the multiple parameter interface.

 Parameters for interface level 1:

1 Type of call

Input Binary(4)

2 Application handle

Input Char(8)

3 Object name

Input Char(10)

4 Library name

Input Char(10)

5 Object type

Input Char(10)

6 Help module name

Input Char(32)

7 Panel name

Input Char(10)

8 Condition name

Input Char(10)

9 Return code

Output Char(1)

Exit program introduced: V4R4

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Exit Program for a Cursor-Sensitive Prompt

An exit program for handling a cursor prompt request can be specified on the PROMPT attribute of the

data item (DATAI), data item extender (DATAIX), and list column (LISTCOL) tags. This attribute specifies

the name of a dialog variable identifying the program to call.

This dialog variable cannot be blanks or nulls. The UIM cannot process a prompt request without the exit

program.

88 iSeries: User Interface Manager APIs

#TOP_OF_PAGE
aplist.htm

Normally, the exit program displays a selection list panel. Such a list panel allows the user to select one

or more entries from a list of possible choices. The application then sets the selected choices in the

appropriate dialog variables, which are shown when the UIM redisplays the panel where the prompt

function was requested.

The exit and cancel flags for the job are not reset before the exit program is called, and the flags are not

checked after the exit program returns control to the UIM. Therefore, the exit and cancel flags should not

be turned on by the exit program.

Single Parameter Interface

QSYSINC Member Name: EUICSEX

Structure level

BINARY(4); positions 1-4

 The interface level supported by this structure, indicating which fields and values are available

for the current interface level.

Reserved

CHAR(8); positions 5-12

Type of call

BINARY(4); positions 13-16

 Set to the following value:

 8 The exit program is called to provide cursor-sensitive prompting.

Application handle

CHAR(8); positions 17-24

 The application handle of the application currently being processed by the UIM.

Panel name

CHAR(10); positions 25-34

 The name of the panel currently being processed by the UIM.

Panel element type

CHAR(1); positions 35-35

 One of the following values identify the type of panel element prompt:

 1 Prompts for a data item (DATAI tag).

2 Prompts for a data item extender (DATAIX tag).

3 Prompts for a list column (LISTCOL tag).

Reserved

CHAR(1); positions 36-36

Dialog variable name

CHAR(10); positions 37-46

 The name of the dialog variable where the cursor was positioned when the prompt function was

requested.

List name

CHAR(10); positions 47-56

 The name of the list where the cursor was positioned when the prompt function was requested.

This field is set only when the panel element type field indicates a LISTCOL tag is prompted.

User Interface Manager (UIM) APIs 89

List entry handle

CHAR(4); positions 57-60

 The list entry handle where the cursor was positioned when the prompt function was requested.

This field is set only when the panel element type field indicates a LISTCOL tag is prompted.

Multiple Parameter Interface

The description of parameters listed in the following table is the same as the corresponding field in the

structure for a single parameter interface. The positions listed for each field in the structure do not apply

to the multiple parameter interface.

 Parameters for interface level 1:

1 Type of call

Input Binary(4)

2 Application handle

Input Char(8)

3 Panel name

Input Char(10)

4 Panel element type

Input Char(1)

5 Dialog variable name

Input Char(10)

6 List name

Input Char(10)

7 List entry handle

Input Char(4)

 No additional parameters are required for interface level 2.

Exit program introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Exit Program for General Panel Checking

A general exit program may be specified on the USREXIT attribute of the panel definition (PANEL) tag.

This attribute specifies the name of a dialog variable identifying the program to call.

The UIM calls the program:

v After any necessary validity checking is done by the UIM

For a VARUPD=YES attribute on the key item (KEYI) or pull-down field choice (PDFLDC) tags, the

UIM has already performed validity checking on all displayed values. If errors are found, the UIM

does not call the exit program. The current panel is automatically redisplayed with the appropriate

message and error highlighting.

For a VARUPD=NO attribute, the UIM saves all values from entry fields in their displayed form and

does not update the dialog variables. The exit program does not have access to these values.

v After the UIM determines what function to perform

90 iSeries: User Interface Manager APIs

#TOP_OF_PAGE
aplist.htm

For some dialog commands, the UIM does not call the exit program. For more information on when

the UIM calls the exit program, see Application Display Programming

book.

Any errors detected during function determination cause the UIM to redisplay the panel without

calling the exit program.

v Before the UIM performs the determined function, including dialog variable substitution in command

strings specified in the CMD dialog command.

The UIM calls the general exit program and passes information about the function. The exit program

performs its task and returns control to the UIM through a normal return or by sending a CPF6A02 or

CPF6A03 status message. These messages are transient messages.

If the exit program returns control by sending a CPF6A02 status or escape message, the UIM does not

perform the determined function. The panel is redisplayed and any previous messages sent to the UIM

are shown.

If the exit program returns control by sending a CPF6A03 status or escape message, the UIM continues

performing the determined function. Any previous messages sent to the UIM by the general exit program

are shown if and when the function completes. These messages are transient messages.

If the exit program returns control by sending any escape message other than CPF6A02 or CPF6A03, the

UIM does not perform the determined function. The panel is redisplayed and any previous messages sent

to the UIM are shown. These messages are user messages.

If the exit program returns control normally or sends a non-escape message other than CPF6A02 or

CPPF6A03, the UIM continues performing the determined function.

Messages sent to the UIM are displayed only once. They are cleared when the next dialog command is

performed, excluding the HELP, PRINT, and PAGEUP or PAGEDOWN (only if paging the message line)

dialog commands. If the exit program marks dialog variables in error, the exit program or other

application code is responsible for resetting the dialog variables when the variable is no longer incorrect.

The general exit program allows applications to perform extended validity checking on field values.

However, other functions are possible because the exit program has access to panel information used by

the UIM to perform a specified function. The exit program can prevent the UIM from processing the

function. For example, the exit program could intercept a function key, perform some other function, and

tell the UIM to not process the function key. While the UIM does not prevent this type of thing, it is the

application developer’s responsibility to understand enough about UIM processing to ensure that things

work properly.

The action performed by the UIM is determined before the exit program is called. Some actions, such as

whether or not to perform the action list processing, depend on the contents of dialog variables or list

entries. Changes to these variables or list entries do not cause the UIM to evaluate the determined action

again.

Dialog variable substitution into command strings is not done until after the exit program is called;

changing dialog variables can affect the final, submitted command.

The exit and cancel flags for the job are not reset before the exit program is called, and they are not

checked after the exit program returns control to the UIM. Therefore, exit and cancel flags should not be

turned on by the exit program.

Single Parameter Interface

QSYSINC Member Name: EUIPGEX

User Interface Manager (UIM) APIs 91

Structure level

BINARY(4); positions 1-4

 The interface level supported by this structure, indicating which fields and values are available

for the current interface level.

Reserved

CHAR(8); positions 5-12

Type of call

BINARY(4); positions 13-16

 Set to the following value:

 4 Processes a general panel exit.

Application handle

CHAR(8); positions 17-24

 The application handle of the application currently being processed by the UIM.

Panel name

CHAR(10); positions 25-34

 The name of the panel currently being processed by the UIM.

Function key pressed

BINARY(4); positions 35-38

 The function key that is pressed:

 1-24 A function key (F1-F24) is pressed.

26 The Enter key is pressed.

28 The Page Up key is pressed.

29 The Page Down key is pressed.

31 The Home key is pressed.

The general exit program is not called for any other keys.

Function key qualifier

BINARY(4); positions 9-42

 Provides information about the function that will be performed unless the exit program returns

through a CPF6A02 message:

 -1 Submits a command from the command line.

-2 Performs list action processing. The ACTOR attribute of the list area (LIST) tag determines whether the

processing is to be performed by the UIM or by the application program displaying the panel.

-3 Processes a menu item selection.

-4 The Enter key is pressed and there is no function for the UIM to perform. The default enter action specified on

the ENTER attribute of the display panel (PANEL) tag will be performed.

-5 Processes a cursor-sensitive prompt function.

-6 Processes a selection from a pull-down choice. This value is used only when the structure level is two or

greater.

-7 Processes the default selection action specified on the SELECT attribute of the PANEL tag because the Enter

key was pressed or the user selected one or more entries in an action list or selection list, and there was no

function for the UIM to perform.

Option number

BINARY(4); positions 43-46

 When the field for the function key qualifier indicates that the UIM is processing a menu item,

this field is set to the option number of the menu item selected by the user.

92 iSeries: User Interface Manager APIs

When the field for the function key qualifier indicates that the UIM is processing a pull-down

choice, this field is set to the option number of the pull-down choice selected by the user.

 For all other values for the function key qualifier, this field is not set.

Pull-down field name

CHAR(10); positions 47-57

 The name of the pull-down field from which the pull-down choice is selected. If this pull-down

field does not have a name, it is set to blanks.

 For all other values of the function key qualifier, this field is not set.

 This field is only available when the field for the structure level is set to two or greater.

Multiple Parameter Interface

The description of parameters listed in the following table is the same as the corresponding field in the

structure for a single parameter interface. The positions listed for each field in the structure do not apply

to the multiple parameter interface.

 Parameters for interface level 1:

1 Type of call

Input Binary(4)

2 Application handle

Input Char(8)

3 Panel name

Input Char(10)

4 Function key pressed

Input Binary(4)

5 Function key qualifier

Input Binary(4)

6 Option number

Input Binary(4)
 Additional parameter for interface level 2:

7 Pull-down field name

Input Char(10)

Exit program introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Exit Program for an Incomplete List

An exit program for handling an incomplete list is defined using the Set List Attributes (QUISETLA) API.

A dialog variable is specified identifying the program to call.

The dialog variable cannot be blanks or nulls. The UIM cannot process an incomplete list without the exit

program.

User Interface Manager (UIM) APIs 93

#TOP_OF_PAGE
aplist.htm

This exit allows an application to display part of a list without having to build the entire list. It must

either add more entries or mark the list as complete in the direction being extended. If the list is not

marked complete and fewer entries than the minimum requested by the UIM are added, the exit program

is called again. If the list is not marked complete and no entries are added by the exit program, a

CPF6A95 error is reported to the program that called the Display Panel (QUIDSPP), Get List Entry

(QUIGETLE), Get List Multiple Entries (QUIGETLM), or Remove List Entry (QUIRMVLE) API.

The exit program can send messages to the UIM for display on the panel. To have the messages shown,

the exit program must return control to the UIM by sending a CPF6A05 status or escape message. In this

case, any messages sent to the UIM by the incomplete list exit program are shown when the panel is

displayed. Otherwise, the exit program returns control to the UIM by doing a normal return.

Sometimes the exit program for an incomplete list is called when no panel is displayed; such a call occurs

when the QUIGETLE, the QUIGETLM, or the QUIRMVLE API is used. If no panel is displayed when the

exit program sends a CPF6A05 status or escape message, any messages sent to the UIM by the exit

program are moved to the program message queue for the program calling that API.

The exit and cancel flags for the job are not reset before the exit program is called, and the flags are not

checked after the exit program returns control to the UIM. Therefore, the exit and cancel flags should not

be turned on by the exit program.

Single Parameter Interface

QSYSINC Member Name: EUIILEX

Structure level

BINARY(4); positions 1-4

 The interface level supported by this structure, indicating which fields and values are available

for the current interface level.

Reserved

CHAR(8); positions 5-12

Type of call

BINARY(4); positions 13-16

 Set to the following value:

 6 Processes an incomplete list exit program.

Application handle

CHAR(8); positions 17-24

 The application handle of the application currently being processed by the UIM.

Reserved

CHAR(10); positions 25-34

List name

CHAR(10); positions 35-44

 The name of the list currently being processed by the UIM.

Incomplete list direction

BINARY(4); positions 45-48

 The direction from the current list entry in which additional entries must be added.

 Set to one of the following values:

 0 More list entries are required after the current list entry.

1 More list entries are required before the current list entry.

94 iSeries: User Interface Manager APIs

Number of entries required

BINARY(4); positions 49-52

 The minimum number of entries that must be added to the list.

Multiple Parameter Interface

The description of parameters listed in the following table is the same as the corresponding field in the

structure for a single parameter interface. The positions listed for each field in the structure do not apply

to the multiple parameter interface.

 Parameters for interface level 1:

1 Type of call

Input Binary(4)

2 Application handle

Input Char(8)

3 List name

Input Char(10)

4 Incomplete list direction

Input Binary(4)

5 Number of entries required

Input Binary(4)

 No additional parameters are required for interface level 2.

Exit program introduced: V2R2

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Exit Program for Text Area Data

The exit program can update the data in a text area every time a panel is displayed and returns control to

the UIM through a normal return. The UIM will then finish formatting the panel and display it. The area

formatted by the application is displayed as defined by the contents of the dialog variable or by the data

pointed to by the dialog variable.

A text area exit program can be specified on the USREXIT attribute of the text area (TEXT) tag. This

attribute specifies the name of a dialog variable identifying the program to call. The UIM calls the

program when:

v The panel is displayed or redisplayed using display panel UIM functions.

v The user presses a key assigned to the PAGEUP, PAGEDOWN, MOVEtop, or ENTER dialog commands

and the cursor position is such that the text area should be scrolled.

If the dialog variable identifying the program to call is null for a pointer variable or blanks for a

character variable, escape message CPF6A14 is sent to the calling program. If the exit program returns

control normally, any messages sent to the UIM by the exit program are displayed on the message line.

The UIM does not reevaluate conditions after the text area exit program is called; therefore, changing

dialog variables that affect conditions has no effect during this display of the panel.

User Interface Manager (UIM) APIs 95

#TOP_OF_PAGE
aplist.htm

The exit and cancel flags for the job are not reset before the exit program is called and the flag are not

checked after the exit program returns control to the UIM. Therefore, the exit and cancel flags should not

be turned on by the exit program.

Single Parameter Interface

QSYSINC Member Name: EUITAEX

Structure level

BINARY(4); positions 1-4

 The interface level supported by this structure, indicating which fields and values are available

for the current interface level.

Reserved

CHAR(8); positions 5-12

Type of call

BINARY(4); positions 13-16

 Set to the following value:

 11 The exit program is called to update the text area data.

Application handle

CHAR(8); positions 17-24

 The application handle of the application currently being processed by the UIM.

Panel name

CHAR(10); positions 25-34

 The name of the panel currently being processed by the UIM.

Function key pressed

BINARY(4); positions 35-38

 The function key that is pressed:

 0 A key other than F1-F24.

1-24 A function key (F1-F24) is pressed.

Function key qualifier

BINARY(4); positions 39-42

 Provides information about why the user exit program is being called.

 0 The exit program is called for the initial display or redisplay of the panel.

-1 A key assigned to the PAGEUP dialog command is pressed.

-2 A key assigned to the PAGEDOWN dialog command is pressed.

-3 A key assigned to the MOVEtop dialog command is pressed.

-4 A key assigned to the ENTER dialog command is pressed.

Text area width

BINARY(4); positions 43-46

 The width of the text area within this panel to be formatted.

Text area depth

BINARY(4); positions 47-50

 The depth of the text area within this panel to be formatted.

96 iSeries: User Interface Manager APIs

Panel bidirectional orientation

CHAR(1); positions 51-51

 Identifies the attribute orientation of the panel group. Set one of the following values:

 N BIDI=NONE is specified or the default on the panel group (PNLGRP) tag.

L BIDI=LTR is specified or the default on the PNLGRP tag.

R BIDI=RTL is specified or the default on the PNLGRP tag.

Device code page

BINARY(4); positions 52-55

 The number for the code page of the requester’s display device.

Multiple Parameter Interface

The description of parameters listed in the following table is the same as the corresponding field in the

structure for a single parameter interface. The positions listed for each field in the structure do not apply

to the multiple parameter interface.

 Parameters for interface level 1:

1 Type of call

Input Binary(4)

2 Application handle

Input Char(8)

3 Panel name

Input Char(10)

4 Function key pressed

Input Binary(4)

5 Function key qualifier

Input Binary(4)

6 Text area width

Input Binary(4)

7 Text area depth

Input Binary(4)

8 Panel bidirectional orientation

Input Char(1)

9 Device code page

Input Binary(4)

 No additional parameters are required for interface level 2.

Exit program introduced: V3R1

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Concepts

These are the concepts for this category.

User Interface Manager (UIM) APIs 97

#TOP_OF_PAGE
aplist.htm

Using the User Interface Manager (UIM) APIs

When calling UIM APIs, the calling program must pass arguments by reference. That is, all UIM API

programs expect the calling program to pass a space pointer to each of the argument values. For some

HLL compilers, this is the only way of passing arguments when calling a program.

Unless otherwise noted, all argument values must be in uppercase, and left-adjusted with trailing blanks.

For example, if a program accepts a special value of ″ALL″ for a parameter defined as CHAR(4), ″ALL″

must be passed (without the quotes).

Terms and Definitions

Application variable pool. The set of all dialog variable values for an open application.

Argument list. In UIM, this list consists of values that are passed to a program.

Coded character set identifier (CCSID). A 32-bit number identifying a specific set of encoding scheme

identifiers, character set identifiers, code page identifiers, and other relevant information that uniquely

identifies the coded graphic character representation used.

Contextual help. Help information about a single item, such as the field on which the cursor is

positioned when help is requested.

Dialog variable. A named element in a panel group used to pass data values between programs or

between a program and a user. The current contents of all dialog variables corresponding to variables in

the list are saved as each entry is added.

Error variable. The dialog variable specified on the ERRVAR attribute of the variable definition (VAR)

tag. The error variable is used to set and test the error status of the dialog variable named on the NAME

attribute of the VAR tag.

Extended action entry. The first line below the column headings in a list. This line contains entry-capable

fields for the option column and for at least one additional list column.

Extended action list area. A list area of a panel that contains an extended action entry.

Extended help. Help information for all the items on the display; it contains all contextual help items and

can contain additional information as well.

List entry handle. A value that uniquely distinguishes an entry in a UIM list until it is removed from the

list. A list entry handle is meaningful only for a particular open application, list, and entry combination.

It has no meaning in any other open UIM application, or even in the same application if the list or the

entry is deleted and then re-created. Unpredictable results are possible if a list entry handle is used

outside of this definition.

Message reference key. A unique string of characters that identify a particular instance of a message in a

queue. The message key can also be used to refer to a specific instance of a message in order to move,

receive, reply to, resend, or move it.

Open data path (ODP). A control block containing information about the merged file attributes and

information returned by I/O operations.

Pop-up window. An area of the screen with visible borders, which supplements the dialog occurring in

the full- screen panel or in a previous pop-up window.

Pull-down field choice. A choice that appears in a pull-down menu.

98 iSeries: User Interface Manager APIs

Trimming. An operation performed by removing a list entry from the end of the list opposite from the

end where the new entry is added.

Variable buffer. A buffer used to pass dialog variables between the application program and the UIM.

Variable record. A named element of a panel group that identifies the content and layout of a buffer of

dialog variables.

Window. An area on the display that is treated as a separate display. Windows have visible boundaries

and appear to overlay the display from which they are requested.

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

Using the User Interface Manager (UIM) Exit Programs

Through panel definitions and APIs, an application program can cause the UIM to call other application

programs as part of normal panel management. These programs are divided into two classes: programs

called through the CALL dialog command and programs called as exit programs.

This section describes the different exits and CALL situations. The UIM does not require a program to

follow prescribed actions in its operating environment; attempts to use these exit programs for purposes

other than the intended purpose may cause problems for applications and their users.

The CALL dialog command is provided so that an application can link programs and panels without a

command interface.

The CALL dialog command causes program calls to handle one of the following requests:

v Function keys

v Menu items

v Action list options

v Pull-down field choices

Exit programs allow applications to perform functions for which the UIM does not provide generic

support. Exit program capability exists for the following purposes:

v Action list update processing

v Application formatting of data

v Conditioning panel items

v Cursor-sensitive prompting

v General panel checking

v Incomplete list processing

v Text area data

Calling a UIM Exit Program

All programs are specified by naming a dialog variable, which identifies the program to call. For the

incomplete list exit program, the dialog variable name is specified on the call to the Set List Attributes

(QUISETLA) API. For all other exit and CALL programs, the dialog variable name is specified as a

parameter to the CALL dialog command in the tag language source.

The UIM uses the current value of the dialog variable to identify the program to call. Depending on the

definition of the dialog variable, there are three different ways to call the program:

User Interface Manager (UIM) APIs 99

#TOP_OF_PAGE
aplist.htm

Call by address

When the dialog variable specified is defined with BASETYPE=PTR on the class definition

(CLASS) tag, the program is called by address.

 It is the responsibility of the application program to ensure that the pointer is set correctly.

Call by name

When the dialog variable specified is defined with BASETYPE=’CHAR 20’ on the CLASS tag, the

program is called by name. It is the responsibility of the application program to ensure that the

variable contains the object and library name of the program called.

Extended program model (EPM) call

When the dialog variable specified is defined with BASETYPE=’CHAR 130’ on the CLASS tag,

the program is called in the extended program model (EPM) environment. This type of call is

used when the target program is written in an EPM language such as Pascal or ILE C. It is the

responsibility of the application program to ensure that the variable contains the appropriate

information for calling an entry point for an EPM environment.

 The UIM can call programs in the Integrated Language Environment(R) (ILE) model using call by address

or call by name. Only the main entry point of the program can be used.

Using a Parameter Interface

When a UIM application is opened, the calling program must specify whether all application programs,

called as an exit program or using the CALL dialog command, are passed a single or multiple parameter

interface.

When a single parameter is passed, that parameter is a space pointer to a structure containing

information for the type of exit or CALL function.

The single parameter interface is used by programs written in languages that can efficiently process data

structures. Passing a single parameter is more efficient than passing multiple parameters, and any

extensions to the interface are accessible without changing the parameter list of the program being called.

When the single parameter interface is chosen, the structure passed contains a field indicating the level of

the structure. Beginning in Version 2 Release 2 (V2R2) of the OS/400(R) operating system, the structure

level is set to two. All parameters and values of a structure are passed when the structure level is equal

to or greater than one, unless the parameter description notes otherwise. For more information about

choosing the interface level for exit programs, see “Open Display Application (QUIOPNDA) API” on

page 46 and “Open Print Application (QUIOPNPA) API” on page 50.

The interface with multiple parameters is available for programs written in languages that cannot

efficiently process data structures. When multiple parameters are passed, each parameter is a space

pointer to a piece of information necessary for the type of exit or CALL function.

When the multiple parameter interface is chosen by the program opening the UIM application, the

program must also choose which interface level to use. The interface level defines the number of

parameters passed for a given type of exit or CALL function. This interface allows the parameter

interfaces to be extended in the future with upward compatibility for existing application exit programs.

Because the application handle is passed, programs can use dialog variables to access common

information. It is more efficient to place one pointer variable that points to a structure or array into the

variable pool than to place all the variables from the structure or array into the variable pool.

Handling Messages

After the UIM calls an application program or runs a control language (CL) command, it handles

messages sent to the UIM. There are two kinds of messages: transient and user.

100 iSeries: User Interface Manager APIs

Transient

Messages sent by the general exit program are moved to an internal UIM message queue if the exit

program returns control to the UIM by sending CPF6A02 or CPF6A03 as a status or escape message.

Escape messages are changed to diagnostic messages when they are moved from one message queue to

another. These messages are referred to as transient messages. When the panel is redisplayed by the UIM

and the exit program returns control to the UIM as described above, the transient messages are shown on

the message line of the panel. Any escape message will cancel the action as CPF6A02 does, but messages

will become user messages not transient. When the message is seen on the panel and the to program is

QUIMGFLW, then the message is transient; otherwise, it’s a user message.

When certain dialog commands are subsequently performed for the panel, in most cases, transient

messages are removed from the UIM’s internal message queue and no longer appear in the job log. These

messages are not removed if the next dialog command performed is HELP, PRINT, PAGEUP, or

PAGEDOWN (if paging the message line).

User

Messages sent by other types of exit programs or by a CL command are moved to the call message queue

identified on the call to the Display Panel (QUIDSPP) API. This is also true if the general exit program

returns control to the UIM by sending any escape message, other the CPF6A02 or CPF6A03. Escape

messages are changed to diagnostic messages when they are moved from one message queue to another.

These messages are referred to as user messages. When the panel is redisplayed by the UIM, the user

messages are shown on the message line of the panel.

When certain dialog commands are subsequently performed for the panel, the UIM no longer displays

the user messages on the panel, see the Application Design Programming

book. The UIM never

changes or removes messages from the call message queue. It is the responsibility of the application

program to remove these messages from the call message queue as appropriate.

The following table shows how the UIM handles messages sent by exit programs.

Messages and exit programs

 Exit program Action when messages are sent to the

UIM

Escape message difference

CALL Program for a Function Key All messages1 sent by the exit program

become user messages.

None

CALL Program for a Menu Item All messages1 sent by the exit program

become user messages.

None

CALL Program for Action List Option and

Pull-Down Field Choice

All messages1 sent by the exit program

become user messages.

Escape messages stop action or choice

processing and the panel is redisplayed.

The option or choice is highlighted and

any user messages are displayed.

Exit Program for General Panel Checking All messages1 sent by the exit program

become transient messages only if the exit

program returns control to the UIM by

sending CPF6A02 or CPF6A03 as a status

or escape message.

CPF6A02 ends the user action. Other

messages sent are displayed as transient

messages. CPF6A03 does not end the user

action. Other messages sent are displayed

as transient messages. Escape messages

other than CPF6A02 and CPF6A03 ends

the user action. Other messages sent are

displayed as user messages. See the

section for this exit program for details.

Exit Program for Action List Option or

Pull-Down Field Choice

All messages1 sent by the exit program

become user messages.

Escape messages stop action or choice

processing and the panel is redisplayed.

The option or choice is highlighted and

any user messages are displayed.

User Interface Manager (UIM) APIs 101

Exit program Action when messages are sent to the

UIM

Escape message difference

Exit Program for Incomplete List All messages1 sent by the exit program

become user messages only if the exit

program returns control to the UIM by

sending CPF6A05 as a status or escape

message.

If an escape message other than CPF6A05

is sent the UIM cannot complete the list

and will send CPF6A95 as an escape

message to the application.

Exit Program for Application Formatted

Data

All1 but escape messages sent by the exit

program are ignored.

Escape messages cause the UIM to not

call this exit program again until another

display panel is done for the panel.

Dialog variables pointing to the exit

program have to be set again. The escape

message will be displayed on the panel as

a user message.

Exit Program for a Cursor-Sensitive

Prompt

All messages1 sent by the exit program

become user messages.

None

Exit Program for Text Area Data All messages1 sent by the exit program

become user messages.

CPF6A07 causes the UIM to end the

display of this text area panel and return

to the display panel caller. See the section

for this exit program for details.

1 Messages refer to ESCAPE, INFO, COMP, and DIAG messages.

Escape messages and other accompanying messages are displayed on the panel message line. If the

program is sent an escape message to be resent to the UIM, it needs to do the following:

1. Receive the escape message and save its message reference key.

2. Move all INFO, COMP, and DIAG messages to the previous program message queue.

3. Perform any cleanup processing required for the application program.

4. Resend the escape message using its message reference key.

Whenever an escape message is sent to the UIM from the program or a CL command, the message

indicates that the function performed was unsuccessful. The UIM then takes whatever action is

appropriate for the unsuccessful function. Usually this will be a redisplay of the panel.

 Top | “User Interface Manager (UIM) APIs,” on page 1 | APIs by category

102 iSeries: User Interface Manager APIs

#TOP_OF_PAGE
aplist.htm

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 103

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

104 iSeries: User Interface Manager APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 105

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

106 iSeries: User Interface Manager APIs

����

Printed in USA

	Contents
	User Interface Manager (UIM) APIs
	APIs
	Add List Entry (QUIADDLE) API
	Required Parameter Group
	Error Messages

	Add List Multiple Entries (QUIADDLM) API
	Required Parameter Group
	Error Messages

	Add Pop-Up Window (QUIADDPW) API
	Required Parameter Group
	Optional Parameter Group
	Error Messages

	Add Print Application (QUIADDPA) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Format of Data Returned
	Error Messages

	Close Application (QUICLOA) API
	Required Parameter Group
	Error Messages

	Delete List (QUIDLTL) API
	Required Parameter Group
	Error Messages

	Display Command Line Window (QUSCMDLN) API
	Display Appearance Problems
	Error Messages

	Display Help (QUHDSPH) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Error Messages

	Display Long Text (QUILNGTX) API
	Required Parameter Group
	Error Messages

	Display Panel (QUIDSPP) API
	Required Parameter Group
	Optional Parameter Group 1
	Optional Parameter Group 2
	Error Messages

	Get Dialog Variable (QUIGETV) API
	Required Parameter Group
	Error Messages

	Get List Entry (QUIGETLE) API
	Required Parameter Group
	Error Messages

	Get List Multiple Entries (QUIGETLM) API
	Required Parameter Group
	Error Messages

	Open Display Application (QUIOPNDA) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Format of Data Returned
	Error Messages

	Open Print Application (QUIOPNPA) API
	Authorities and Locks
	Required Parameter Group
	Optional Parameter Group
	Format of Data Returned
	Error Messages

	Print Help (QUHPRTH) API
	Warning: Temporary Level 3 Header
	Restriction

	Authorities and Locks
	Required Parameter Group
	Error Messages

	Print Panel (QUIPRTP) API
	Required Parameter Group
	Error Messages

	Put Dialog Variable (QUIPUTV) API
	Required Parameter Group
	Error Messages

	Remove List Entry (QUIRMVLE) API
	Required Parameter Group
	Error Messages

	Remove Pop-Up Window (QUIRMVPW) API
	Required Parameter Group
	Error Messages

	Remove Print Application (QUIRMVPA) API
	Required Parameter Group
	Error Messages

	Retrieve Help Text (QUHRHLPT) API
	Authorities and Locks
	Required Parameter Group
	Format of the receiver variable
	RHLP0100
	Help identifier entries

	Field Descriptions
	Format of help identifiers to be retrieved
	Field Descriptions
	Format of the help identifier text
	Field Descriptions
	Error Messages

	Retrieve List Attributes (QUIRTVLA) API
	Required Parameter Group
	Format of Data Returned
	Error Messages

	Set List Attributes (QUISETLA) API
	Required Parameter Group
	Error Messages

	Set Screen Image (QUISETSC) API
	Required Parameter Group
	Error Messages

	Update List Entry (QUIUPDLE) API
	Required Parameter Group
	Error Messages

	Exit Programs
	Exit Program for an Action List Option or Pull-Down Field Choice
	Single Parameter Interface
	Multiple Parameter Interface

	Exit Program for Application Formatted Data
	Single Parameter Interface
	Multiple Parameter Interface

	CALL Program for a Function Key
	Single Parameter Interface
	Multiple Parameter Interface

	CALL Program for a Menu Item
	Single Parameter Interface
	Multiple Parameter Interface

	CALL Program for an Action List Option and Pull-Down Field Choice
	Single Parameter Interface
	Multiple Parameter Interface

	Exit Program for Conditioning Panel Items
	Single Parameter Interface
	Multiple Parameter Interface

	Exit Program for a Cursor-Sensitive Prompt
	Single Parameter Interface
	Multiple Parameter Interface

	Exit Program for General Panel Checking
	Single Parameter Interface
	Multiple Parameter Interface

	Exit Program for an Incomplete List
	Single Parameter Interface
	Multiple Parameter Interface

	Exit Program for Text Area Data
	Single Parameter Interface
	Multiple Parameter Interface

	Concepts
	Using the User Interface Manager (UIM) APIs
	Terms and Definitions

	Using the User Interface Manager (UIM) Exit Programs
	Calling a UIM Exit Program
	Using a Parameter Interface
	Handling Messages
	Transient
	User

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

