
iSeries

Security -- Validation List APIs

Version 5 Release 3

ERserver

���

iSeries

Security -- Validation List APIs

Version 5 Release 3

ERserver

���

Note

Before using this information and the product it supports, be sure to read the information in

“Notices,” on page 57.

Sixth Edition (August 2005)

This edition applies to version 5, release 3, modification 0 of Operating System/400 (product number 5722-SS1) and

to all subsequent releases and modifications until otherwise indicated in new editions. This version does not run on

all reduced instruction set computer (RISC) models nor does it run on CISC models.

© Copyright International Business Machines Corporation 1998, 2005. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Validation List APIs 1

APIs 1

Add Validation List Entry (QSYADVLE) API 2

Authorities and Locks 2

Required Parameter Group 2

Field Descriptions 4

Error Messages 6

QsyAddValidationLstEntry()—Add Validation List

Entry API 7

Authorities 7

Parameters 7

Return Value 10

Error Conditions 11

Example 11

Change Validation List Entry (QSYCHVLE) API . . 12

Authorities and Locks 12

Required Parameter Group 12

Field Descriptions 14

Error Messages 16

QsyChangeValidationLstEntry()—Change Validation

List Entry API 17

Authorities 17

Parameters 17

Return Value 21

Error Conditions 21

Example 21

QsyFindFirstValidationLstEntry()—Find First

Validation List Entry API 22

Authorities 22

Parameters 22

Return Value 24

Error Conditions 24

Example 24

QsyFindNextValidationLstEntry()—Find Next

Validation List Entry API 25

Authorities 26

Parameters 26

Return Value 27

Error Conditions 27

Example 28

Find Validation List Entry (QSYFDVLE) API . . . 29

Authorities and Locks 29

Required Parameter Group 30

Field Descriptions 31

Error Messages 33

QsyFindValidationLstEntry()—Find Validation List

Entry API 34

Authorities 34

Parameters 34

Return Value 36

Error Conditions 36

Example 36

QsyFindValidationLstEntryAttrs()—Find Validation

List Entry Attributes API 38

Authorities 38

Parameters 38

Return Value 42

Error Conditions 42

Example 42

Open List of Validation List Entries (QSYOLVLE)

API 44

Authorities and Locks 44

Required Parameter Group 45

Format of List information 46

Field Descriptions 46

VLDE0100 Format 47

Field Descriptions 47

Error Messages 48

QsyRemoveValidationLstEntry()—Remove

Validation List Entry API 49

Authorities 49

Parameters 49

Return Value 50

Error Conditions 50

Example 50

Remove Validation List Entry (QSYRMVLE) API . . 51

Authorities and Locks 51

Required Parameter Group 51

Field Descriptions 52

Error Messages 52

QsyVerifyValidationLstEntry()—Verify Validation

List Entry API 52

Authorities 53

Parameters 53

Return Value 54

Error Conditions 54

Example 55

Appendix. Notices 57

Trademarks 58

Terms and conditions for downloading and printing

publications 59

Code disclaimer information 60

© Copyright IBM Corp. 1998, 2005 iii

iv iSeries: Security -- Validation List APIs

Validation List APIs

Validation lists contain entries that consist of an identifier, data that will be encrypted when it is stored,

and free-form data. Entries can be added, changed, removed, found, and validated. You can validate

entries by providing the correct entry identifier and data that is encrypted.

One way to use validation lists is to store the user names of a Web browser. The entry identifier would

be the user name, the data to encrypt would be the user’s password, and the free-form data field would

contain any additional data about the user that the browser wanted to store.

The validation list APIs are:

v “Add Validation List Entry (QSYADVLE) API” on page 2 (QSYADVLE) adds an entry to a validation

list object.

v “QsyAddValidationLstEntry()—Add Validation List Entry API” on page 7

(QsyAddValidationLstEntry()) adds an entry to a validation list object.

v “Change Validation List Entry (QSYCHVLE) API” on page 12 (QSYCHVLE) changes an entry in a

validation list object.

v “QsyChangeValidationLstEntry()—Change Validation List Entry API” on page 17

(QsyChangeValidationLstEntry()) changes an entry in a validation list object.

v “QsyFindFirstValidationLstEntry()—Find First Validation List Entry API” on page 22

(QsyFindFirstValidationLstEntry()) finds the first entry in a validation list object and returns

information about the validation list entry.

v “QsyFindNextValidationLstEntry()—Find Next Validation List Entry API” on page 25

(QsyFindNextValidationLstEntry()) finds the next entry in a validation list object after the entry that is

passed in the Entry_ID parameter and returns information about the validation list entry.

v “Find Validation List Entry (QSYFDVLE) API” on page 29 (QSYFDVLE) finds an entry in a validation

list object and returns it.

v “QsyFindValidationLstEntry()—Find Validation List Entry API” on page 34

(QsyFindValidationLstEntry()) finds an entry in a validation list object and returns information about

the validation list entry.

v “QsyFindValidationLstEntryAttrs()—Find Validation List Entry Attributes API” on page 38

(QsyFindValidationLstEntryAttrs()) finds an entry in a validation list object, and the attributes

associated with the entry.

v “Open List of Validation List Entries (QSYOLVLE) API” on page 44 (QSYOLVLE) returns a list of

validation list entries in a validation list object.

v “QsyRemoveValidationLstEntry()—Remove Validation List Entry API” on page 49

(QsyRemoveValidationLstEntry()) removes an entry from a validation list object.

v “Remove Validation List Entry (QSYRMVLE) API” on page 51 (QSYRMVLE) removes an entry from a

validation list object.

v “QsyVerifyValidationLstEntry()—Verify Validation List Entry API” on page 52

(QsyVerifyValidationLstEntry()) verifies an entry in a validation list object.

 Top | Security APIs | APIs by category

APIs

These are the APIs for this category.

© Copyright IBM Corp. 1998, 2005 1

#TOP_OF_PAGE
sec.htm
aplist.htm

Add Validation List Entry (QSYADVLE) API

 Required Parameter Group:

1 Qualified validation list name

Input Char(20)

2 Entry ID information

Input Char(*)

3 Data to encrypt information

Input Char(*)

4 Entry data information

Input Char(*)

5 Attribute information

Input Char(*)

6 Error code

I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Add Validation List Entry (QSYADVLE) API adds an entry to a validation list object. Entries are

stored in hexadecimal sort sequence. The first entry will always be the one in which the entry ID has the

smallest hexadecimal value.

Conversions are not done on any data when entries are added. The CCSID value for each field is stored

as part of the record but is not used when the entry is added to the validation list.

Authorities and Locks

Validation List Object

*USE and *ADD

Validation List Object Library

*EXECUTE

Required Parameter Group

Qualified validation list name

INPUT; CHAR(20)

 The qualified object name of the validation list to add the entry to. The first 10 characters specify

the validation list name, and the second 10 characters specify the library.

 You can use these special values for the library name:

 *CURLIB The current library is used to locate the validation list. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the validation list.

2 iSeries: Security -- Validation List APIs

Entry ID information

INPUT; CHAR(*)

 The format of the entry ID information is as follows. See the “Field Descriptions” on page 4 for

more information.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of entry ID

>4 4 BINARY(4) CCSID of entry ID

>8 8 CHAR(*) Entry ID

Data to encrypt information

INPUT; CHAR(*)

 Data that is associated with the entry ID and is encrypted by the system when it is stored.

 The format of the data to encrypt information is as follows. See the “Field Descriptions” on page

4 for more information.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of data to encrypt

4 4 BINARY(4) CCSID of data to encrypt

8 8 CHAR(*) Data to encrypt

Entry data information

INPUT; CHAR(*)

 Data information that is associated with the entry ID. The format of the entry data information is

as follows. See the “Field Descriptions” on page 4 for more information.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of data

4 4 BINARY(4) CCSID of data

8 8 CHAR(*) Data

Attribute information

INPUT; CHAR(*)

 Attribute information that is associated with the entry. The format of the attribute information is

as follows. See the “Field Descriptions” on page 4 for more information.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of attributes

4 4 CHAR(*) Attribute structures

 The format of the attribute structure is as follows. See the “Field Descriptions” on page 4 for

more information.

Validation List APIs 3

Offset

Type Field Dec Hex

0 0 BINARY(4) Length of attribute entry

4 4 BINARY(4) Attribute location

8 8 BINARY(4) Attribute type

12 C BINARY(4) Displacement to attribute ID

16 10 BINARY(4) Length of attribute ID

20 14 BINARY(4) Displacement to attribute data

24 18 BINARY(4) Length of attribute data

 CHAR(*) Attribute ID

 CHAR(*) Attribute data

 For attributes that are stored in the validation list object, the format of the attribute data is as

follows. See the “Field Descriptions” for more information.

 Offset

Type Field Dec Hex

0 0 BINARY(4) CCSID of attribute

4 4 BINARY(4) Length of attribute

8 8 CHAR(8) Reserved

16 10 CHAR(*) Attribute value

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Field Descriptions

Attribute data. The information that describes the attribute data.

Attribute ID. The ID of the attribute. For system-defined attributes, the allowed values are:

 String value Description

QsyEncryptData This is the attribute that is associated with the data to encrypt.

Attribute location. Where the attribute should be stored.

The allowed value is:

 0 The attribute is stored in the validation list object.

Attribute structures. Zero or more attribute structures that define the attributes to be associated with the

entry.

Attribute type. The type of attribute.

4 iSeries: Security -- Validation List APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

The allowed value follows:

 0 This is a system-defined attribute.

Attribute value. The value of the attribute that is associated with the entry.

For the QsyEncryptData attribute, the allowed values follow:

 0 The data to be encrypted can only be used to verify an entry. This is the default.

1 The data to be encrypted can be used to verify an entry and can be returned on a find operation.

The system value QRETSVRSEC (Retain server security data) is used to determine if the data to be

encrypted is stored in the entry or not.

If the system value is set to 0 (Do not retain data), the entry will be added, but the data to be

encrypted will not be stored with the entry. The return value from this function will be -2 to

indicate that the entry was added, but the data to be encrypted was not stored.

If the system value is set to 1 (Retain data), then the data to be encrypted will be stored in

encrypted form when the entry is added.

CCSID of attribute. An integer that represents the CCSID for the attribute. Valid CCSID values are in the

range -1 through 65535.

The special values follow:

 -1 No CCSID value is stored with the attribute. If the attribute is QsyEncryptData, this value must be

specified.

0 The default CCSID for the current user is stored.

CCSID of data to encrypt. An integer that represents the CCSID for the data to encrypt. Valid CCSID

values are in the range 1 through 65535.

The special value follows:

 0 The default CCSID for the current user is stored.

CCSID of data. An integer that represents the CCSID for the entry data. Valid CCSID values are in the

range 1 through 65535.

The special value follows:

 0 The default CCSID for the current user is stored.

CCSID of entry ID. An integer that represents the CCSID for the entry ID. Valid CCSID values are in the

range 1 through 65535.

The special value follows:

 0 The default CCSID for the current user is stored.

Data. The data to store in the validation list entry.

Data to encrypt. The data to be encrypted before storing it in the validation list entry.

Validation List APIs 5

Displacement to attribute data. The displacement in the attribute entry to the start of the attribute data

information.

Displacement to attribute ID. The displacement in the attribute entry to the start of the attribute ID

value.

Entry ID. The data that is used to identify this entry in the validation list.

Length of attribute. The number of bytes of data in the attribute value. The length must be greater than

0. For the QsyEncryptData attribute, the length must be 1.

Length of attribute data. The number of bytes of data in the attribute data structure. The length must be

greater than 0.

Length of attribute entry. The length (in bytes) of the current entry. This length can be used to access the

next entry, and must be a multiple of 4.

Length of attribute ID. The number of bytes of data in the attribute ID. The length must be greater than

0.

Length of data to encrypt. The number of bytes of data to be encrypted and stored in this validation list

entry. Possible values are 0 through 600. If the length is 0, no encrypted data will be stored in the entry.

Length of data. The number of bytes of data to be stored in this validation list entry. Possible values are

0 through 1000. If the length is 0, no data will be stored in the entry.

Length of entry ID. The number of bytes of data that is provided as the entry ID. Possible values are 1

through 100.

Number of attributes. The number of attributes to be added. This value must be greater than or equal to

0. If this value is 0, then no attributes will be added to the entry.

Reserved. This is an ignored field.

Error Messages

 Message ID Error Message Text

CPFA0AA E Error occurred while attempting to obtain space.

CPF226A E Validation list entry already exists.

CPF226D E Not all information stored.

CPF3CF1 E Error code parameter not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R1

 Top | Security APIs | APIs by category

6 iSeries: Security -- Validation List APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

QsyAddValidationLstEntry()—Add Validation List Entry API

 Syntax

 #include <qsyvldl.h>

 int QsyAddValidationLstEntry

 (Qsy_Qual_Name_T *Validation_Lst,

 Qsy_Entry_ID_Info_T *Entry_ID,

 Qsy_Entry_Encr_Data_Info_T *Encrypt_Data,

 Qsy_Entry_Data_Info_T *Entry_Data,

 void *Attribute_Info);

 Service Program Name: QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

The QsyAddValidationLstEntry() function adds an entry to a validation list object. Entries are stored in

hexadecimal sort sequence. The first entry will always be the one in which the entry ID has the smallest

hexadecimal value.

Conversions are not done on any data when entries are added. The CCSID value for each field is stored

as part of the record but is not used when the entry is added to the validation list.

Authorities

Validation List Object

*USE and *ADD

Validation List Object Library

*EXECUTE

Parameters

Validation_Lst

(Input) A pointer to the qualified object name of the validation list to add the entry to. The first

10 characters specify the validation list name, and the second 10 characters specify the library.

You can use these special values for the library name:

 *CURLIB The current library is used to locate the validation list. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry_ID

(Input) A pointer to the entry ID information. The format of the Qsy_Entry_ID_Info_T structure is

as follows:

 int Entry_ID_Len The number of bytes of data that is

provided as the entry ID. Possible

values are from 1 through 100.

Validation List APIs 7

unsigned int Entry_ID_CCSID An integer that represents the CCSID

for the entry ID. Valid CCSID values

are in the range 1 through 65535. The

special value follows:

0 The default CCSID for the

current user is stored.

unsigned char Entry_ID[] The data that is used to identify this

entry in the validation list.

Encrypt_Data

(Input) A pointer to data that is associated with the entry ID and is encrypted by the system

when it is stored. If the pointer is NULL, there is no encrypted data associated with the entry ID.

The format of the Qsy_Entry_Encr_Data_Info_T structure is as follows:

 int Encr_Data_Len The number of bytes of data to be

encrypted and stored in this

validation list entry. Possible values

are from 1 through 600.

unsigned int Encr_Data_CCSID An integer that represents the CCSID

for the data to encrypt. Valid CCSID

values are in the range 1 through

65535. The special value follows:

0 The default CCSID for the

current user is stored.

unsigned char Encr_Data[] The data to be encrypted before

storing it in the validation list entry.

Entry_Data

(Input) A pointer to the data information that is associated with the entry ID. If the pointer is

NULL, there is no data associated with the entry ID. The format of the Qsy_Entry_Data_Info_T

structure is as follows:

 int Entry_Data_Len The number of bytes of data to be

stored in this validation list entry.

Possible values are from 1 through

1000.

unsigned int Entry_Data_CCSID An integer that represents the CCSID

for the data. Valid CCSID values are

in the range 1 through 65535. The

special value follows:

0 The default CCSID for the

current user is stored.

unsigned char Entry_Data[] The data to be stored in the

validation list entry.

Attribute_Info

(Input) A pointer to a structure that contains attribute information that is associated with the

entry ID. If the pointer is NULL, there is no attribute information associated with the entry ID.

The format of the Qsy_Attr_Info_T structure is as follows:

8 iSeries: Security -- Validation List APIs

int Number_Attrs The number of attributes being

added. This value must be greater

than 0.

char Res_Align[12] Reserved for boundary alignment.

Qsy_Attr_Descr_T Attr_Descr[] An array of attribute description

structures.

 The format of the Qsy_Attr_Descr_T structure is as follows:

 int Attr_Location Where the attribute should be stored.

The allowed value follows:

0 QSY_IN_VLDL

The attribute is stored in the

validation list object.

int Attr_Type The type of attribute. The allowed

value follows:

0 QSY_SYSTEM_ATTR

This is a system-defined

attribute.

union Attr_Res Res_1[8] Reserved data. This value must be

hexadecimal zero.

char * Attr_ID The ID of the attribute. For

system-defined attributes, the allowed

value is:

String value

Description

QsyEncryptData

This is the attribute that is

associated with the data to

encrypt.

union Attr_Other_Descr Res_1[32] Reserved data. This value must be

hexadecimal zero.

union Attr_Data_Info The information describing the

attribute data.

union Attr_Other_Data Res_1[32] Reserved data. This value must be

hexadecimal zero.

 The format of the Attr_Data_Info union is as follows:

 Qsy_In_VLDL_T Attr_VLDL The attribute data information for an

attribute that is stored in the

validation list object.

union Attr_In_Other Res_1[96] Reserved data. The last 64 bytes must

be zero.

Validation List APIs 9

The format of the Qsy_In_VLDL_T structure is as follows:

 int Attr_CCSID An integer that represents the CCSID

for the attribute. Valid CCSID values

are in the range -1 through 65535. The

special values follow:

-1 No CCSID value is stored

with the attribute. If the

attribute is QsyEncryptData,

this value must be specified.

0 The default CCSID for the

current user is stored.

int Attr_Len The number of bytes of data in the

attribute value. The length must be

greater than 0. For the

QsyEncryptData attribute, the length

must be 1.

union Attr_Res Res_1[8] Reserved data. This value must be

hexadecimal zero.

void * Attr_Value A pointer to the value of the attribute

associated with the entry. For the

QsyEncryptData attribute, the

allowed values follow:

0 QSY_VFY_ONLY

The data to be encrypted can

only be used to verify an

entry. This is the default.

1 QSY_VFY_FIND

The data to be encrypted can

be used to verify an entry

and can be returned on a

find operation.

 If the QSY_VFY_FIND value is specified for the QsyEncryptData attribute, the system value

QRETSVRSEC (Retain server security data) is used to determine if the data to be encrypted is stored in

the entry or not.

If the system value is set to 0 (Do not retain data), the entry will be added, but the data to be encrypted

will not be stored with the entry. The return value from this function will be -2 to indicate that the entry

was added, but the data to be encrypted was not stored.

If the system value is set to 1 (Retain data), then the data to be encrypted will be stored when the entry

is added.

Return Value

 0 QsyAddValidationLstEntry() was successful.

-1 QsyAddValidationLstEntry() was not successful. The errno global variable is set to indicate the

error.

-2 QsyAddValidationLstEntry() was successful, but the data to be encrypted was not stored.

10 iSeries: Security -- Validation List APIs

Error Conditions

If QsyAddValidationLstEntry() is not successful, errno indicates one of the following errors:

 3401 [EACCES]

The current user does not have *USE and *ADD authorities to the validation list object, or does

not have *EXECUTE authority to the validation list object library.

3406 [EAGAIN]

The validation list object is currently locked by another process.

3484 [EDAMAGE]

The validation list object is damaged.

3457 [EEXIST]

Specified entry already exists.

3021 [EINVAL]

Parameter value is not valid.

3025 [ENOENT]

The validation list object was not found.

3404 [ENOSPC]

No space available.

3474 [EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Example

See Code disclaimer information for information pertaining to code examples.

The following example adds an entry for a user named FRED to the validation list object WEBUSRS.

FRED has encrypted data (password), but no other data. The CCSID for the entry ID is set to the current

user’s default CCSID. The CCSID for the encryption data is set to 65535.

#include <qsyvldl.h>

main()

{

 #define VLD_LST “WEBUSRS WEBLIB ”

 Qsy_Entry_ID_Info_T entry_info;

 Qsy_Entry_Encr_Data_Info_T encrypt_data;

 entry_info.Entry_ID_Len = 4;

 entry_info.Entry_ID_CCSID = 0;

 strncpy(entry_info.Entry_ID,“FRED”,entry_info.Entry_ID_Len);

 encrypt_data.Encr_Data_Len = 7;

 strncpy(encrypt_data.Encr_Data,“N1LJDTS”,

 encrypt_data.Encr_Data_Len);

 encrypt_data.Encr_Data_CCSID = 65535;

 if (0 != QsyAddValidationLstEntry((Qsy_Qual_Name_T *)&VLD_LST,

 &entry_info,

 &encrypt_data,

 NULL,

 NULL))

 perror(“QsyAddValidationLstEntry()”);

}

Validation List APIs 11

aboutapis.htm#CODEDISCLAIMER

API introduced: V4R1

 Top | Security APIs | APIs by category

Change Validation List Entry (QSYCHVLE) API

 Required Parameter Group:

1 Qualified validation list name

Input Char(20)

2 Entry ID information

Input Char(*)

3 Data to encrypt information

Input Char(*)

4 Entry data information

Input Char(*)

5 Attribute information

Input Char(*)

6 Error code

I/O Char(*)

 Default Public Authority: *USE

 Threadsafe: Yes

The Change Validation List Entry (QSYCHVLE) API changes an entry in a validation list object. The data

to be encrypted, the entry data values, and some of the entry attributes may be changed.

To identify an entry to be changed, there must be an exact match in the entry for the value that is

specified in the entry ID parameter and the length of the entry ID. For example, an entry ID value of

SMITH with a length of 5 would not allow you to change an entry where the entry ID is SMITH and the

length is 7.

Conversions are not done on any data when entries are changed. The CCSID values for the fields are

stored as part of the record but are not used when the entry is changed.

Authorities and Locks

Validation List Object

*USE and *UPD

Validation List Object Library

*EXECUTE

Required Parameter Group

Qualified validation list name

INPUT; CHAR(20)

12 iSeries: Security -- Validation List APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

The qualified object name of the validation list that contains the entry to change. The first 10

characters specify the validation list name, and the second 10 characters specify the library.

 You can use these special values for the library name:

 *CURLIB The current library is used to locate the validation list. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry ID information

INPUT; CHAR(*)

 The format of the entry ID information is as follows. See the “Field Descriptions” on page 14 for

more information.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of entry ID

4 4 BINARY(4) CCSID of entry ID

8 8 CHAR(*) Entry ID

Data to encrypt information

INPUT; CHAR(*)

 The data is encrypted by the system when it is stored. The format of the data to encrypt

information is as follows. See the “Field Descriptions” on page 14 for more information.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of data to encrypt

4 4 BINARY(4) CCSID of data to encrypt

8 8 CHAR(*) Data to encrypt

Entry data information

INPUT; CHAR(*)

 The format of the entry data information is as follows. See the “Field Descriptions” on page 14

for more information.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of data to encrypt

0 0 BINARY(4) Length of data

4 4 BINARY(4) CCSID of data

8 8 CHAR(*) Data

Attribute information

INPUT; CHAR(*)

 Attribute information that is associated with the entry. The format of the attribute information is

as follows. See the “Field Descriptions” on page 14 for more information.

Validation List APIs 13

Offset

Type Field Dec Hex

0 0 BINARY(4) Length of data to encrypt

0 0 BINARY(4) Number of attributes

4 4 CHAR(*) Attribute structures

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of attribute entry

4 4 BINARY(4) Attribute location

8 8 BINARY(4) Attribute type

12 C BINARY(4) Displacement to attribute ID

16 10 BINARY(4) Length of attribute ID

20 14 BINARY(4) Displacement to attribute data

24 18 BINARY(4) Length of attribute data

 CHAR(*) Attribute ID

 CHAR(*) Attribute data

 For attributes that are stored in the validation list object, the format of the attribute data is as

follows. See the “Field Descriptions” for more information.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of data to encrypt

0 0 BINARY(4) CCSID of attribute

4 4 BINARY(4) Length of attribute

8 8 CHAR(8) Reserved

16 10 CHAR(*) Attribute value

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Field Descriptions

Attribute data. The information that describes the attribute data.

Attribute ID. The ID of the attribute.

For system-defined attributes, the allowed value is:

14 iSeries: Security -- Validation List APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD

String value Description

QsyEncryptData This is the attribute that is associated with the data to encrypt. This attribute can only be

changed if the length of data to encrypt is not -1.

Attribute location. Where the attribute should be stored.

The allowed value is:

 0 The attribute is stored in the validation list object.

Attribute structures. Zero or more attribute structures that define the attributes associated with the entry.

Attribute type. The type of attribute.

The allowed value follows:

 0 This is a system-defined attribute.

Attribute value. The value of the attribute that is associated with the entry.

For the QsyEncryptData attribute, the allowed values follow:

 0 The data to be encrypted can only be used to verify an entry. This is the default.

1 The data to be encrypted can be used to verify an entry and can be returned on a find operation.

The system value QRETSVRSEC (Retain server security data) is used to determine if the data to be

encrypted is stored in the entry or not.

If the system value is set to 0 (Do not retain data), the entry will be added, but the data to be

encrypted will not be stored with the entry. The return value from this function will be -2 to

indicate that the entry was added, but the data to be encrypted was not stored.

If the system value is set to 1 (Retain data), then the data to be encrypted will be stored in

encrypted form when the entry is added.

CCSID of attribute. An integer that represents the CCSID for the attribute. Valid CCSID values are in the

range -1 through 65535.

The special values follow:

 -1 No CCSID value is stored with the attribute. If the attribute is QsyEncryptData, this value must be

specified.

0 The default CCSID for the current user is stored.

CCSID of data to encrypt. An integer that represents the CCSID for the data to encrypt. Valid CCSID

values are in the range 1 through 65535.

The special value follows:

 0 The default CCSID for the current user is stored.

CCSID of data. An integer that represents the CCSID for the entry data. Valid CCSID values are in the

range 1 through 65535.

Validation List APIs 15

The special value follows:

 0 The default CCSID for the current user is stored.

CCSID of entry ID. An integer that represents the CCSID for the entry ID. Valid CCSID values are in the

range 0 through 65535. This field is not used to change the entry.

Data. The data to store in the validation list entry.

Data to encrypt. The data to be encrypted before storing it in the validation list entry.

Displacement to attribute data. The displacement in the attribute entry to the start of the attribute data

information.

Displacement to attribute ID. The displacement in the attribute entry to the start of the attribute ID

value.

Entry ID. The data that is used to identify this entry in the validation list.

Length of attribute. The number of bytes of data in the attribute value. The length must be greater than

or equal to 0. If a length of 0 is specified, the attribute is removed from the entry. For the

QsyEncryptData attribute, the maximum length is 1.

Length of attribute data. The number of bytes of data in the attribute data structure. The length must be

greater than 0.

Length of attribute entry. The length (in bytes) of the current entry. This length can be used to access the

next entry, and must be a multiple of 4.

Length of attribute ID. The number of bytes of data in the attribute ID. The length must be greater than

0.

Length of data to encrypt. The number of bytes of data to be encrypted and stored in this validation list

entry. Possible values are -1 through 600. If the length is 0, any encrypted data that is associated with the

entry ID will be removed. If the length is -1, the encrypted data that is associated with the entry ID is not

changed.

Length of data. The number of bytes of data to be stored in this validation list entry. Possible values are

-1 through 1000. If the length is 0, any data that is associated with the entry ID will be removed. If the

length is -1, the data that is associated with the entry ID is not changed.

Length of entry ID. The number of bytes of data that is provided as the entry ID. Possible values are 1

through 100.

Number of attributes. The number of attributes to be added. This value must be greater than or equal to

0. If this value is 0, then no attributes will be changed in the entry.

Reserved. This is an ignored field.

Error Messages

 Message ID Error Message Text

CPFA0AA E Error occurred while attempting to obtain space.

CPF226B E Validation list entry does not exist.

CPF226D E Not all information stored.

16 iSeries: Security -- Validation List APIs

Message ID Error Message Text

CPF3CF1 E Error code parameter not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R2

 Top | Security APIs | APIs by category

QsyChangeValidationLstEntry()—Change Validation List Entry API

 Syntax

#include <qsyvldl.h>

int QsyChangeValidationLstEntry

 (Qsy_Qual_Name_T *Validation_Lst,

 Qsy_Entry_ID_Info_T *Entry_ID,

 Qsy_Entry_Encr_Data_Info_T *Encrypt_Data,

 Qsy_Entry_Data_Info_T *Entry_Data,

 void *Attribute_Info);

 Service Program Name: QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

The QsyChangeValidationLstEntry() function changes an entry in a validation list object. The data to be

encrypted, the entry data values, and some of the entry attributes may be changed.

To identify an entry to be changed, there must be an exact match in the entry for the value that is

specified in the Entry_ID parameter and the length of the entry ID. For example, an entry ID value of

″SMITH″ with a length of 5 would not allow you to change an entry where the entry ID is ″SMITH″ and

the length is 7.

Conversions are not done on any data when entries are changed. The CCSID values are stored as part of

the record, to be available to the user of the API, but are not used when the entry is changed.

Authorities

Validation List Object

*USE and *UPD

Validation List Object Library

*EXECUTE

Parameters

Validation_Lst

(Input)

Validation List APIs 17

#TOP_OF_PAGE
sec.htm
aplist.htm

A pointer to the qualified object name of the validation list that contains the entry to change. The

first 10 characters specify the validation list name, and the second 10 characters specify the

library. You can use these special values for the library name:

 *CURLIB The current library is used to locate the validation list. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry_ID

(Input)

 A pointer to the entry ID information. The Qsy_Entry_ID_Info_T structure is as follows:

 int Entry_ID_Len The number of bytes of data that is

provided as the entry ID. Possible

values are from 1 through 100.

unsigned int Entry_ID_CCSID An integer that represents the CCSID

for the entry ID. Valid CCSID values

are in the range 0 through 65535.

This field is not used to change the

entry.

unsigned char Entry_ID[] The data that is used to identify this

entry in the validation list.

Encrypt_Data

(Input)

 A pointer to the data that is associated with the entry ID. The data is encrypted by the system

when it is stored. If the pointer is NULL, the encrypted data that is associated with the entry ID

is not changed. The format of the Qsy_Entry_Encr_Data_Info_T structure is as follows:

 int Encr_Data_Len The number of bytes of data to be

encrypted and stored in this

validation list entry. Possible values

are from 0 through 600.

unsigned int Encr_Data_CCSID An integer that represents the CCSID

for the data to encrypt. Valid CCSID

values are in the range 1 through

65535. The special value follows:

0 The default CCSID for the

current user is stored.

unsigned char Encr_Data[] The data to be encrypted before

storing it in the validation list entry.

If Encr_Data_Len is 0, any encrypted data that is associated with the entry ID will be removed.

Entry_Data

(Input)

 A pointer to the data information that is associated with the entry ID. If the pointer is NULL, the

data that is associated with the entry ID is not changed. The format of the

Qsy_Entry_Data_Info_T structure is as follows:

 int Entry_Data_Len The number of bytes of data to be

stored in this validation list entry.

Possible values are from 0 through

1000.

18 iSeries: Security -- Validation List APIs

unsigned int Entry_Data_CCSID An integer that represents the CCSID

for the data. Valid CCSID values are

in the range 1 through 65535. The

special value follows:

0 The default CCSID for the

current user is stored.

unsigned char Entry_Data[] The data to be stored in the

validation list entry.

If the Entry_Data_Length is 0, any data that is associated with the entry ID will be removed.

Attribute_Info

(Input)

 A pointer to a structure that contains attribute information that is associated with the entry ID. If

the pointer is NULL, the attributes associated with the entry ID are not changed. The format of

the Qsy_Attr_Info_T structure is as follows:

 int Number_Attrs The number of attributes being

changed. This value must be greater

than 0.

char Res_Align[12] Reserved for boundary alignment.

Qsy_Attr_Descr_T Attr_Descr[] An array of attribute description

structures.

 The format of the Qsy_Attr_Descr_T structure is as follows:

 int Attr_Location Where the attribute should be stored.

The allowed value follows:

0 QSY_IN_VLDL

The attribute is stored in the

validation list object.

int Attr_Type The type of attribute. The allowed

value follows:

0 QSY_SYSTEM_ATTR

This is a system-defined

attribute.

union Attr_Res Res_1[8] Reserved data. This value must be

hexadecimal zero.

char * Attr_ID The ID of the attribute. For

system-defined attributes, the

allowed value is:

 String value Description

 QsyEncryptData This is the attribute that is associated

with the data to encrypt. This

attribute can only be changed if the

Encrypt_Data parameter is not

NULL.

union Attr_Other_Descr Res_1[32] Reserved data. This value must be

hexadecimal zero.

union Attr_Data_Info The information that describes the

attribute data.

Validation List APIs 19

union Attr_Other_Data Res_1[32] Reserved data. This value must be

hexadecimal zero.

 The format of the Attr_Data_Info_T union is as follows:

 Qsy_In_VLDL_T Attr_VLDL The attribute data information for an

attribute that is stored in the

validation list object.

union Attr_In_Other Res_1[96] Reserved data. The last 64 bytes must

be zero.

 The format of the Qsy_In_VLDL_T structure is as follows:

 int Attr_CCSID An integer that represents the CCSID

for the attribute. Valid CCSID values

are in the range -1 through 65535.

The special values follow:

-1 No CCSID value is stored

with the attribute. If the

attribute is QsyEncryptData,

this value is assumed.

0 The default CCSID for the

current user is stored.

int Attr_Len The number of bytes of data in the

attribute value. The length must be

greater than or equal to 0. If a length

of 0 is specified, the attribute is

removed from the entry. For the

QsyEncryptData attribute, the

maximum length is 1.

union Attr_Res Res_1[8] Reserved data. This value must be

hexadecimal zero.

void * Attr_Value Pointer to the value of the attribute

associated with the entry. For the

QsyEncryptData attribute, the

allowed values follow:

0 QSY_VFY_ONLY

The data to be encrypted

can only be used to verify

an entry. This is the default.

1 QSY_VFY_FIND

The data to be encrypted

can be used to verify an

entry and can be returned

on a find operation.

If the QSY_VFY_FIND value is specified for the QsyEncryptData attribute, the system value

QRETSVRSEC (Retain server security data) is used to determine if the data to be encrypted is

stored in the entry or not. If the system value is set to 0 (Do not retain data), the entry will be

changed, but the data to be encrypted will not be stored with the entry. The return value from

20 iSeries: Security -- Validation List APIs

this function will be -2, to indicate that the entry was changed, but the data to be encrypted was

not stored. If the system value is set to 1 (Retain data), then the data to be encrypted will be

stored when the entry is changed.

Return Value

 0 QsyChangeValidationLstEntry() was successful.

-1 QsyChangeValidationLstEntry() was not successful. The errno global variable is set to indicate the

error.

-2 QsyChangeValidationLstEntry() was successful, but the data to be encrypted was not stored.

Error Conditions

If QsyChangeValidationLstEntry() is not successful, errno indicates one of the following errors.

 3401 [EACCES]

The current user does not have *USE and *UPD authorities to the validation list object, or does not

have *EXECUTE authority to the validation list object library.

3406 [EAGAIN]

The validation list object is currently locked by another process.

3484< [EDAMAGE]

The validation list object is damaged.

3021 [EINVAL]

Parameter value is not valid.

3025 [ENOENT]

The validation list object was not found.

3026 [ENOREC]

Specified entry does not exist.

3404 [ENOSPC]

No space available.

3474 [EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Example

See Code disclaimer information for information pertaining to code examples.

The following example changes an entry for a user named FRED in the validation list object WEBUSRS.

FRED’s encrypted data (password) and the CCSID for the encrypted data are being changed, but not any

other data.

#include <qsyvldl.h>

main()

{

 #define VLD_LST "WEBUSRS WEBLIB "

 Qsy_Entry_ID_Info_T entry_info;

 Qsy_Entry_Encr_Data_Info_T encrypt_data;

 entry_info.Entry_ID_Len = 4;

 strncpy(entry_info.Entry_ID,"FRED",entry_info.Entry_ID_Len);

 encrypt_data.Encr_Data_Len = 7;

 encrypt_data.Encr_Data_CCSID = 37;

Validation List APIs 21

aboutapis.htm#CODEDISCLAIMER

strncpy(encrypt_data.Encr_Data,"MSN1TJG",

 encrypt_data.Encr_Data_Len);

 if (0 != QsyChangeValidationLstEntry(

 (Qsy_Qual_Name_T *)&VLD_LST,

 &entry_info,

 &encrypt_data,

 NULL,

 NULL))

 perror("QsyChangeValidationLstEntry()");

}

API introduced: V4R1

 Top | Security APIs | APIs by category

QsyFindFirstValidationLstEntry()—Find First Validation List Entry API

 Syntax

#include <qsyvldl.h>

int QsyFindFirstValidationLstEntry

 (Qsy_Qual_Name_T *Validation_Lst,

 Qsy_Rtn_Vld_Lst_Ent_T *First_Entry);

 Service Program Name: QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

The QsyFindFirstValidationLstEntry() function finds the first entry in a validation list object. The

function then returns the information for the first entry in the buffer that is pointed to by the First_Entry

parameter. The entries are stored in hexadecimal sort sequence, so the first entry will be the one where

the entry ID has the smallest hexadecimal value.

Authorities

Validation List Object

*USE

Validation List Object Library

*EXECUTE

 Note: If the QsyEncryptData attribute is set to QSY_VFY_FIND_E (1), then the user must have *USE,

*ADD, and *UPD authority to the validation list to get the data to be encrypted returned in the

First_Entry parameter.

Parameters

Validation_Lst

(Input)

 A pointer to the qualified object name of the validation list to find the first entry in. The first 10

characters specify the validation list name, and the second 10 characters specify the library. You

22 iSeries: Security -- Validation List APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

can use these special values for the library name:

 *CURLIB The current library is used to locate the validation list. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the validation list.

First_Entry

(Output)

 A pointer to the buffer where the first entry information is placed. The buffer must be allocated

to the size of the Qsy_Rtn_Vld_Lst_Ent_T structure or the results will be unpredictable.

 The format of the Qsy_Rtn_Vld_Lst_Ent_T structure is as follows:

 Qsy_Entry_ID_Info_T Entry_ID_Info The entry ID information structure.

Qsy_Entry_Encr_Data_Info_T Encr_Data_Info The data to be encrypted information

structure.

Qsy_Entry_Data_Info_T Entry_Data_Info The entry data information structure.

char Reserved[4] This is an ignored field.

void * Entry_More_Info A pointer to additional information.

This pointer is currently set to NULL.

The format of the Qsy_Entry_ID_Info_T structure is as follows:

 int Entry_ID_Len The length of the entry ID.

unsigned int Entry_ID_CCSID The CCSID associated with the entry ID.

unsigned char Entry_ID[100] The entry ID.

The format of the Qsy_Entry_Encr_Data_Info_T structure is as follows:

 int Encr_Data_Len The number of bytes of encrypted

data that is stored in this validation

list entry. If the QsyEncryptData

attribute is 0 or the QRETSVRSEC

system value is ’0’, the length will

always be 0.

unsigned int Encr_Data_CCSID The CCSID associated with the

encrypted data.

unsigned char Encr_Data[600] If the QsyEncryptData attribute is 1

and the QRETSVRSEC system value

is ’1’, then the encrypted data that is

stored in the entry will be decrypted

and returned in this field. If the

QsyEncryptData attribute is 0 or the

QRETSVRSEC system value is ’0’,

then the encrypted data cannot be

returned, and the contents of this

field are unpredictable.

The format of the Qsy_Entry_Data_Info_T structure is as follows:

 int Entry_Data_Len The length of the entry data.

unsigned int Entry_Data_CCSID The CCSID associated with the entry data.

unsigned char Entry_Data[1000] The entry data.

Validation List APIs 23

Return Value

 0 QsyFindFirstValidationLstEntry() was successful. The return value points to the entry.

-1 QsyFindFirstValidationLstEntry() was not successful. The errno global variable is set to indicate the

error.

Error Conditions

If QsyFindFirstValidationLstEntry() is not successful, errno indicates one of the following errors:

 3401 [EACCES]

The current user does not have *USE authority to the validation list object, or does not have

*EXECUTE authority to the validation list object library.

3406 [EAGAIN]

The validation list object is currently locked by another process.

3484 [EDAMAGE]

The validation list object is damaged.

3021 [EINVAL]

Parameter value is not valid.

3025 [ENOENT]

The validation list object was not found.

3026 [ENOREC]

There are no entries in the validation list object.

3474 [EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Example

See Code disclaimer information for information pertaining to code examples.

The following example finds all the entries in the validation list object WEBUSRS.

#include <qsyvldl.h>

#include <errno.h>

main()

{

 #define VLD_LST "WEBUSRS WEBLIB "

 Qsy_Rtn_Vld_Lst_Ent_T entry_1;

 Qsy_Rtn_Vld_Lst_Ent_T entry_2;

 Qsy_Rtn_Vld_Lst_Ent_T *input_info,

 *output_info,

 *temp;

 Qsy_Entry_ID_Info_T *input_entry;

 short int i;

 int rtn_errno;

 /* Initialize pointers to input and output buffers. */

 output_info = addr(entry_1);

 input_info = addr(entry_2);

 /* Get the first entry in the validation list. */

 rtn_errno = QsyFindFirstValidationLstEntry(

 (Qsy_Qual_Name_T *)&VLD_LST,

 output_info))

 while (0 == rtn_errno)

24 iSeries: Security -- Validation List APIs

aboutapis.htm#CODEDISCLAIMER

{ /* Process all the entries in the validation list. */

 .

 .

 .

 (process the entry)

 .

 .

 .

 /* Switch the pointers to the buffers so that the output from */

 /* the last find operation is used as input to the ’find-next’

 /* operation. */

 temp = output_info;

 output_info = input_info;

 input_info = temp;

 /* Find the next entry. */

 rtn_errno = QsyFindNextValidationLstEntry(

 (Qsy_Qual_Name_T *)&VLD_LST,

 &input_info->Entry_ID_Info,

 output_info))

 }

 /* Check if an error occurred. */

 if (0 != rtn_errno && ENOREC != errno)

 perror("Find of validation list entry");

}

API introduced: V4R1

 Top | Security APIs | APIs by category

QsyFindNextValidationLstEntry()—Find Next Validation List Entry API

 Syntax

 #include <qsyvldl.h>

 int QsyFindNextValidationLstEntry

 (Qsy_Qual_Name_T *Validation_Lst,

 Qsy_Entry_ID_Info_T *Entry_ID,

 Qsy_Rtn_Vld_Lst_Ent_T *Next_Entry);

 Service Program Name: QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

The QsyFindNextValidationLstEntry() function finds the next entry in a validation list object after the

entry that is passed in the Entry_ID parameter. It then returns the information for the next entry in the

buffer that is pointed to by the Next_Entry parameter. The entries are stored in hexadecimal sort

sequence; therefore, the next entry will be the one with an entry ID whose hexadecimal value would

follow the hexadecimal value of the entry passed in the Entry_ID parameter. The entry specified in the

Entry_ID parameter does not need to exist in the validation list, and this function does not have to follow

a QsyFindFirstValidationLstEntry() or QsyFindValidationLstEntry() function call.

Validation List APIs 25

#TOP_OF_PAGE
sec.htm
aplist.htm

Authorities

Validation List Object

*USE

Validation List Object Library

*EXECUTE

 Note: If the QsyEncryptData attribute is set to QSY_VFY_FIND_E (1), then the user must have *USE,

*ADD, and *UPD authority to the validation list to get the data to be encrypted returned in the

Next_Entry parameter.

Parameters

Validation_Lst

(Input)

 A pointer to the qualified object name of the validation list to find the next entry in. The first 10

characters specify the validation list name, and the second 10 characters specify the library. You

can use these special values for the library name:

 *CURLIB The current library is used to locate the validation list. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry_ID

(Input)

 A pointer to the entry ID information. The format of the Qsy_Entry_ID_Info_T structure is as

follows:

 int Entry_ID_Len The number of bytes of data that is

provided as the entry ID. Possible

values are from 1 through 100.

unsigned int Entry_ID_CCSID An integer that represents the CCSID

for the entry ID. Valid CCSID values

are in the range 0 through 65535.

This value is not used to find the

entry.

unsigned char Entry_ID[100] The data that is used to identify this

entry in the validation list.

Next_Entry

(Output)

 A pointer to the buffer where the next entry information is placed. The buffer must be allocated

to the size of the Qsy_Rtn_Vld_Lst_Ent_T structure or the results will be unpredictable. The

format of the Qsy_Rtn_Vld_Lst_Ent_T structure is as follows:

 Qsy_Entry_ID_Info_T Entry_ID_Info The entry ID information structure.

Qsy_Entry_Encr_Data_Info_T Encr_Data_Info The data to be encrypted information

structure.

Qsy_Entry_Data_Info_T Entry_Data_Info The entry data information structure.

char Reserved[4] This is an ignored field.

void * Entry_More_Info A pointer to additional information.

This pointer is currently set to NULL.

26 iSeries: Security -- Validation List APIs

See the Entry_ID (page 26) parameter for the format of the Qsy_Entry_ID_Info_T structure.

 The format of the Qsy_Entry_Encr_Data_Info_T structure is as follows:

 int Encr_Data_Len The number of bytes of encrypted

data that is stored in this validation

list entry. If the QsyEncryptData

attribute is 0 or the QRETSVRSEC

system value is ’0’, the length will

always be 0.

unsigned int Encr_Data_CCSID The CCSID associated with the

encrypted data.

unsigned char Encr_Data[600] If the QsyEncryptData attribute is 1

and the QRETSVRSEC system value

is ’1’, then the encrypted data that is

stored in the entry will be decrypted

and returned in this field. If the

QsyEncryptData attribute is 0 or the

QRETSVRSEC system value is ’0’,

then the encrypted data cannot be

returned, and the contents of this

field are unpredictable.

The format of the Qsy_Entry_Data_Info_T structure is as follows:

 int Entry_Data_Len The length of the entry data.

unsigned int Entry_Data_CCSID The CCSID associated with the entry data.

unsigned char Entry_Data[1000] The entry data.

Return Value

 0 QsyFindNextValidationLstEntry() was successful. The return value points to the entry.

-1 QsyFindNextValidationLstEntry() was not successful. The errno global variable is set to indicate

the error.

Error Conditions

If QsyFindNextValidationLstEntry() is not successful, errno indicates one of the following errors:

 3401 [EACCES]

The current user does not have *USE authority to the validation list object, or does not have

*EXECUTE authority to the validation list object library.

3406 [EAGAIN]

The validation list object is currently locked by another process.

3484 [EDAMAGE]

The validation list object is damaged.

3021 [EINVAL]

Parameter value is not valid.

3025 [ENOENT]

The validation list object was not found.

Validation List APIs 27

3026 [ENOREC]

There are no more entries in the validation list object.

3474 [EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Example

See Code disclaimer information for information pertaining to code examples.

The following example finds all the entries in the validation list object WEBUSRS.

#include <qsyvldl.h>

#include <errno.h>

main()

{

 #define VLD_LST "WEBUSRS WEBLIB "

 Qsy_Rtn_Vld_Lst_Ent_T entry_1;

 Qsy_Rtn_Vld_Lst_Ent_T entry_2;

 Qsy_Rtn_Vld_Lst_Ent_T *input_info,

 *output_info,

 *temp;

 Qsy_Entry_ID_Info_T *input_entry;

 short int i;

 int rtn_errno;

 /* Initialize pointers to input and output buffers. */

 output_info = addr(entry_1);

 input_info = addr(entry_2);

 /* Get the first entry in the validation list. */

 rtn_errno = QsyFindFirstValidationLstEntry(

 (Qsy_Qual_Name_T *)&VLD_LST,

 output_info))

 while (0 == rtn_errno)

 { /* Process all the entries in the validation list. */

 .

 .

 .

 (process the entry)

 .

 .

 .

 /* Switch the pointers to the buffers so that the output from */

 /* the last find operation is used as input to the ’find-next’

 /* operation. */

 temp = output_info;

 output_info = input_info;

 input_info = temp;

 /* Find the next entry. */

 rtn_errno = QsyFindNextValidationLstEntry(

 (Qsy_Qual_Name_T *)&VLD_LST,

 &(input_info->Entry_ID_Info),

 output_info))

 }

 /* Check if an error occurred. */

 if (0 != rtn_errno && ENOREC != errno)

 perror("Find of validation list entry");

}

28 iSeries: Security -- Validation List APIs

aboutapis.htm#CODEDISCLAIMER

API introduced: V4R1

 Top | Security APIs | APIs by category

Find Validation List Entry (QSYFDVLE) API

 Required Parameter Group:

1 Qualified validation list name

Input Char(20)

2 Entry ID information

Input Char(*)

3 Attribute information

Input Char(*)

4 Return entry

Output Char(1724)

5 Return attributes

Output Char(*)

6 Error Code

I/O Char(*)

 Service Program Name: QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

The Find Validation List Entry (QSYFDVLE) API finds an entry in a validation list object and returns it.

Also, any attributes associated with the entry can be returned. To find an entry, there must be an exact

match in the entry for the value that is specified in the entry ID parameter and the length of the entry ID.

For example, an entry ID value of SMITH with a length of 5 would not find an entry where the entry ID

is SMITH and the length is 7.

Authorities and Locks

Validation List Object

*USE

Validation List Object Library

*EXECUTE

 Note: If the QsyEncryptData attribute is set to 1, then the user must have *USE, *ADD, and *UPD

authorities to the validation list to get the data to be encrypted returned in the encrypted data field.

Validation List APIs 29

#TOP_OF_PAGE
sec.htm
aplist.htm

Required Parameter Group

Qualified validation list name

INPUT; CHAR(20)

 The qualified object name of the validation list in which to find the entry. The first 10 characters

specify the validation list name, and the second 10 characters specify the library.

 You can use these special values for the library name:

 *CURLIB The current library is used to locate the validation list. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry ID information

INPUT; CHAR(*)

 The format of the entry ID information is as follows. See “Field Descriptions” on page 31 for

more information.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of entry ID

4 4 BINARY(4) CCSID of entry ID

8 8 CHAR(*) Entry ID

Attribute information

INPUT; CHAR(*)

 The format of the attribute information is as follows. See “Field Descriptions” on page 31 for

more information.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Number of attributes

4 4 CHAR(*) Attribute structures

The format of the attribute structure is as follows. See “Field Descriptions” on page 31 for more

information.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of attribute entry

4 4 BINARY(4) Attribute location

8 8 BINARY(4) Attribute type

12 C BINARY(4) Displacement to attribute ID

16 10 BINARY(4) Length of attribute ID

20 14 BINARY(4) Bytes provided for attribute

 CHAR(*) Attribute ID

30 iSeries: Security -- Validation List APIs

Return entry

OUTPUT; CHAR(1724)

 The format of the return entry information is as follows. See “Field Descriptions” for more

information.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of entry ID

4 4 BINARY(4) CCSID of entry ID

8 8 CHAR(100) Entry ID

108 6C BINARY(4) Length of encrypted data

112 70 BINARY(4) CCSID of encrypted data

116 74 CHAR(600) Encrypted data

716 2CC BINARY(4) Length of data

720 2D0 BINARY(4) CCSID of data

724 2D4 CHAR(1000) Data

1724 6BC CHAR(20) Reserved

Return attributes

OUTPUT; CHAR(*)

 The format of the return attributes information is as follows. See “Field Descriptions” for more

information.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of attribute entry

4 4 BINARY(4) Bytes returned

8 8 BINARY(4) Bytes available

12 C BINARY(4) Length of attribute

16 10 BINARY(4) CCSID of attribute

20 14 CHAR(*) Attribute value

The size of this buffer must be 24 bytes multiplied by the number of attributes, plus the bytes

provided in the buffer for each attribute. For example, if you are requesting 2 attributes and

providing 8 bytes for one attribute and 5 bytes for the other attribute, you would need a 61-byte

buffer. If the buffer is not large enough, the results are unpredictable.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Field Descriptions

Attribute ID. The ID of the attribute. For system-defined attributes, the allowed values are:

Validation List APIs 31

error.htm#HDRERRCOD
error.htm#HDRERRCOD

String value Description

QsyEncryptData This is the attribute that is associated with the data to encrypt.

QsyEntryUsage This is the entry usage information attribute.

QsyX509Cert This is the X.509 certificate attribute for the entry.

Attribute location. Where the attribute is stored. The allowed value is:

 0 The attribute is stored in the validation list object.

Attribute structures. Zero or more attribute structures that define the attributes that are associated with

the entry.

Attribute type. The type of attribute. The allowed value follows:

 0 This is a system-defined attribute.

Attribute value. The value of the returned attribute. If the attribute ID is QsyEncryptData or

QsyX509Cert, the data will be in the form of variable length character array. If the attribute ID is

QsyEntryUsage, the data will be in the form of Qsy_Rtn_Entry_Usage_Attr_T.

The format of the Qsy_Rtn_Entry_Usage_Attr_T structure is as follows. See “Field Descriptions” on page

31 for more information.

 Offset

Type Field Dec Hex

0 0 CHAR(8) Create date

8 8 CHAR(8) Last used date

16 10 CHAR(8) Encrypted data change date

24 18 BINARY(4) Not valid verify count

Bytes available. The number of bytes of data that is available to be returned to the user for the current

attribute. If all data is returned, bytes available is the same as the number of bytes returned. If the bytes

available is 16, then the specified attribute is not defined for this entry.

Bytes provided for attribute. The number of bytes provided in the return attributes buffer for the

attribute value. The minimum length is 0. If 0 is specified, the bytes available will indicate if the attribute

exists and how many bytes of data are needed to return the attribute.

Bytes returned. The number of bytes of data that is returned to the user for the current attribute. This is

the lesser of the number of bytes available to be returned and bytes provided for attribute plus 20.

CCSID of attribute. An integer that represents the CCSID for the attribute. Valid CCSID values are in the

range 0 through 65535. This value is the CCSID value that was specified when the attribute was added or

changed. If the value is 0, then no CCSID value was stored with the attribute.

CCSID of encrypted data. An integer that represents the CCSID for the encrypted data.

CCSID of data. An integer that represents the CCSID for the data.

CCSID of entry ID. An integer that represents the CCSID for the entry ID. Valid CCSID values are in the

range 0 through 65535. This field is not used to find the entry. The value is returned in the return entry.

32 iSeries: Security -- Validation List APIs

Create date. The date the entry was added to the validation list, in *DTS (date-time stamp) format.

Data. The data that is stored in the validation list entry.

Displacement to attribute ID. The displacement in the attribute entry to the start of the attribute ID.

Encrypted data. If the QsyEncryptData attribute for this entry is 1 and the QRETSVRSEC system value is

’1’, then the encrypted data that is stored in the entry will be decrypted and returned in this field. If the

QsyEncryptData attribute is 0 or the QRETSVRSEC system value is ’0’, then the encrypted data cannot be

returned and the contents of this field are unpredictable.

Encrypted data change date. The date the encrypted data was last changed, in *DTS (date-time stamp)

format.

Entry ID. The data that is used to find the entry in the validation list.

Last used date. The date of the last successful verify, in *DTS (date-time stamp) format.

Length of attribute. The length (in bytes) of the returned attribute value. This value will be less than or

equal to the bytes provided for attribute.

Length of attribute entry. The length (in bytes) of the current entry. This length can be used to access the

next entry, and must be a multiple of 4.

Length of attribute ID. The number of bytes of data in the attribute ID. The length must be greater than

0.

Length of data. The number of bytes of data that is stored in this validation list entry. Possible values are

0 to 1000.

Length of encrypted data. The number of bytes of encrypted data that is stored in this validation list

entry. Possible values are 0 to 600. If the QsyEncryptData attribute is 0 or the QRETSVRSEC system value

is ’0’, then the length will always be 0.

Length of entry ID. The number of bytes of data that is provided as the entry ID. Possible values are 1

through 100.

Not valid verify count. The number of times that incorrect encrypted data has been specified on a verify

since the last successful verify.

Number of attributes. The number of attributes to be returned. This value must be greater than or equal

to 0. If the value is 0, then no attributes will be returned.

Reserved. This is an ignored field.

Error Messages

 Message ID Error Message Text

CPFA0AA E Error occurred while attempting to obtain space.

CPF226B E Validation list entry does not exist.

CPF3CF1 E Error code parameter not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

Validation List APIs 33

Message ID Error Message Text

CPF9804 E Object &2 in library &3 damaged.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R2

 Top | Security APIs | APIs by category

QsyFindValidationLstEntry()—Find Validation List Entry API

 Syntax

 #include <qsyvldl.h>

 int QsyFindValidationLstEntry

 (Qsy_Qual_Name_T *Validation_Lst,

 Qsy_Entry_ID_Info_T *Entry_ID,

 Qsy_Rtn_Vld_Lst_Ent_T *Rtn_Entry);

 Service Program Name: QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

The QsyFindValidationLstEntry() function finds an entry in a validation list object. The function then

returns the information for the entry in the buffer that is pointed to by the Rtn_Entry parameter. To find

an entry, there must be an exact match in the entry for the value that is specified in the Entry_ID

parameter and the length of the entry ID. For example, an entry ID value of ″SMITH″ with a length of 5

would not find an entry where the entry ID is ″SMITH ″ and the length is 7.

Authorities

Validation List Object

*USE

Validation List Object Library

*EXECUTE

 Note: If the QsyEncryptData attribute is set to QSY_VFY_FIND_E (1), then the user must have *USE,

*ADD, and *UPD authority to the validation list to get the data to be encrypted returned in the Rtn_Entry

parameter.

Parameters

Validation_Lst

(Input)

 A pointer to the qualified object name of the validation list in which to find the entry. The first 10

characters specify the validation list name, and the second 10 characters specify the library. You

can use these special values for the library name:

 *CURLIB The current library is used to locate the validation list. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the validation list.

34 iSeries: Security -- Validation List APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Entry_ID

(Input)

 A pointer to the entry ID information. The format of the Qsy_Entry_ID_Info_T structure is as

follows:

 int Entry_ID_Len The number of bytes of data that is

provided as the entry ID. Possible

values are from 1 through 100.

unsigned int Entry_ID_CCSID An integer that represents the CCSID

for the entry ID. Valid CCSID values

are in the range 0 through 65535.

This value is not used to find the

entry.

unsigned char Entry_ID[100] The data that is used to identify this

entry in the validation list.

Rtn_Entry

(Output)

 A pointer to the buffer where the entry information is placed. The buffer must be allocated to the

size of the Qsy_Rtn_Vld_Lst_Ent_T structure or the results will be unpredictable. The format of

the Qsy_Rtn_Vld_Lst_Ent_T structure is as follows:

 Qsy_Entry_ID_Info_T Entry_ID_Info The entry ID information structure.

Qsy_Entry_Encr_Data_Info_T Encr_Data_Info The data to be encrypted information

structure.

Qsy_Entry_Data_Info_T Entry_Data_Info The entry data information structure.

char Reserved[4] This is an ignored field.

void * Entry_More_Info A pointer to additional information.

This pointer is currently set to NULL.

See the Entry_ID (page 35) parameter for the format of the Qsy_Entry_ID_Info_T structure.

 The format of the Qsy_Entry_Encr_Data_Info_T structure is as follows:

 int Encr_Data_Len The number of bytes of encrypted

data that is stored in this validation

list entry. If the QsyEncryptData

attribute is 0 or the QRETSVRSEC

system value is ’0’, the length will

always be 0.

unsigned int Encr_Data_CCSID The CCSID associated with the

encrypted data.

unsigned char Encr_Data[600] If the QsyEncryptData attribute is 1

and the QRETSVRSEC system value

is ’1’, then the encrypted data that is

stored in the entry will be decrypted

and returned in this field. If the

QsyEncryptData attribute is 0 or the

QRETSVRSEC system value is ’0’,

then the encrypted data cannot be

returned, and the contents of this

field are unpredictable.

Validation List APIs 35

The format of the Qsy_Entry_Data_Info_T structure is as follows:

 int Entry_Data_Len The length of the entry data.

unsigned int Entry_Data_CCSID The CCSID associated with the entry data.

unsigned char Entry_Data[1000] The entry data.

Return Value

 0 QsyFindValidationLstEntry() was successful. The return value points to the entry.

-1 QsyFindValidationLstEntry() was not successful. The errno global variable is set to indicate the

error.

Error Conditions

If QsyFindValidationLstEntry() is not successful, errno indicates one of the following errors:

 3401 [EACCES]

The current user does not have *USE authority to the validation list object, or does not have

*EXECUTE authority to the validation list object library.

3406 [EAGAIN]

The validation list object is currently locked by another process.

3484 [EDAMAGE]

The validation list object is damaged.

3021 [EINVAL]

Parameter value is not valid.

3025 [ENOENT]

The validation list object was not found.

3026 [ENOREC]

Specified entry does not exist.

3474 [EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Example

See Code disclaimer information for information pertaining to code examples.

The following example finds all the entries in the validation list object WEBUSRS where the entry ID

starts with ’abc’.

#include <qsyvldl.h>

#include <errno.h>

main()

{

 #define VLD_LST "WEBUSRS WEBLIB "

 Qsy_Rtn_Vld_Lst_Ent_T entry_1;

 Qsy_Rtn_Vld_Lst_Ent_T entry_2;

 Qsy_Rtn_Vld_Lst_Ent_T *input_info,

 *output_info,

36 iSeries: Security -- Validation List APIs

aboutapis.htm#CODEDISCLAIMER

*temp;

 Qsy_Entry_ID_Info_T *input_entry;

 short int i;

 int rtn_errno;

 /* Set up entry ID to find. */

 strncpy(entry_1.Entry_ID_Info.Entry_ID,"abc",3);

 entry_1.Entry_ID_Info.Entry_ID_Len = 3;

 /* Initialize pointers to input and output buffers. */

 input_info = addr(entry_1);

 output_info = addr(entry_2);

 /* Try to find an entry for ’abc’. */

 rtn_errno = QsyFindValidationLstEntry(

 (Qsy_Qual_Name_T *)&VLD_LST,

 &entry_1.Entry_ID_Info,

 output_info))

 /* If an ’abc’ entry does not exist. */

 if (0 != rtn_errno && ENOREC == errno)

 /* Find the next entry after ’abc’. */

 rtn_errno = QsyFindNextValidationLstEntry(

 (Qsy_Qual_Name_T *)&VLD_LST,

 &entry_1.Entry_ID_Info,

 output_info))

 while (0 == rtn_errno &&

 3 <= output_info->Entry_ID_Info.Entry_ID_Len &&

 0 == strncmp(output_info->Entry_ID_Info.Entry_ID,"abc",3))

 { /* Process all the entries in the validation list that */

 /* begin with ’abc’. */

 .

 .

 .

 (process the entry)

 .

 .

 .

 /* Switch the pointers to the buffers so that the output from */

 /* the last find operation is used as input to the ’find-next’ */

 /* operation. */

 temp = output_info;

 output_info = input_info;

 input_info = temp;

 /* Find the next entry. */

 rtn_errno = QsyFindNextValidationLstEntry(

 (Qsy_Qual_Name_T *)&VLD_LST,

 &(input_info->Entry_ID_Info),

 output_info))

 }

 /* Check if an error occurred. */

 if (0 != rtn_errno && ENOREC != errno)

 perror("Find of validation list entry");

}

API introduced: V4R1

 Top | Security APIs | APIs by category

Validation List APIs 37

#TOP_OF_PAGE
sec.htm
aplist.htm

QsyFindValidationLstEntryAttrs()—Find Validation List Entry Attributes

API

 Syntax

 #include <qsyvldl.h>

 int QsyFindValidationLstEntryAttrs

 (Qsy_Qual_Name_T *Validation_Lst,

 Qsy_Entry_ID_Info_T *Entry_ID,

 Qsy_Rtn_Vld_Lst_Ent_T *Rtn_Entry,

 Qsy_Attr_Info_T *Rtn_Attributes);

 Service Program Name: QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

The QsyFindValidationLstEntryAttrs() function finds an entry in a validation list object, and the

attributes associated with the entry. The function then returns the information for the entry in the buffer

that is pointed to by the Rtn_Entry parameter, and the information for the attributes in the buffer that is

pointed to by the Rtn_Attributes parameter. To find an entry, there must be an exact match in the entry

for the value that is specified in the Entry_ID parameter and the length of the entry ID. For example, an

entry ID value of ″SMITH″ with a length of 5 would not find an entry where the entry ID is ″SMITH ″

and the length is 7.

Authorities

Validation List Object

*USE

Validation List Object Library

*EXECUTE

 Note: If the QsyEncryptData attribute is set to QSY_VFY_FIND (1), then the user must have *USE, *ADD,

and *UPD authority to the validation list to get the data to be encrypted returned in the Rtn_Entry

parameter.

Parameters

Validation_Lst

(Input)

 A pointer to the qualified object name of the validation list in which to find the entry. The first 10

characters specify the validation list name, and the second 10 characters specify the library. You

can use these special values for the library name:

 *CURLIB The current library is used to locate the validation list. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry_ID

(Input)

 A pointer to the entry ID information. The format of the Qsy_Entry_ID_Info_T structure is as

follows:

38 iSeries: Security -- Validation List APIs

int Entry_ID_Len The number of bytes of data that is

provided as the entry ID. Possible

values are from 1 through 100.

unsigned int Entry_ID_CCSID An integer that represents the CCSID

for the entry ID. Valid CCSID values

are in the range 1 through 65535.

This value is not used to find the

entry.

unsigned char Entry_ID[] The data that is used to identify this

entry in the validation list.

Rtn_Entry

(Output)

 A pointer to the buffer where the entry information is placed. The buffer must be allocated to the

size of the Qsy_Rtn_Vld_Lst_Ent_T structure or the results will be unpredictable. The format of

the Qsy_Rtn_Vld_Lst_Ent_T structure is as follows:

 Qsy_Entry_ID_Info_T Entry_ID_Info The entry ID information structure.

Qsy_Entry_Encr_Data_Info_T Encr_Data_Info The data to be encrypted information

structure.

Qsy_Entry_Data_Info_T Entry_Data_Info The entry data information structure

char Reserved[4] This is an ignored field.

void * Entry_More_Info A pointer to additional information.

This pointer is currently set to NULL.

 See the Entry_ID (page 38) parameter for the format of the Qsy_Entry_ID_Info_T structure.

 The format of the Qsy_Entry_Encr_Data_Info_T structure is as follows:

 int Encr_Data_Len The number of bytes of encrypted

data that is stored in this validation

list entry. If the QsyEncryptData

attribute is 0 or the QRETSVRSEC

system value is ’0’, the length will

always be 0.

unsigned int Encr_Data_CCSID The CCSID associated with the

encrypted data.

unsigned char Encr_Data[600] If the QsyEncryptData attribute is 1

and the QRETSVRSEC system value

is ’1’, then the encrypted data that is

stored in the entry will be decrypted

and returned in this field. If the

QsyEncryptData attribute is 0 or the

QRETSVRSEC system value is ’0’,

then the encrypted data cannot be

returned, and the contents of this

field are unpredictable.

 The format of the Qsy_Entry_Data_Info_T structure is as follows:

Validation List APIs 39

int Entry_Data_Len The length of the entry data.

unsigned int Entry_Data_CCSID The CCSID associated with the entry data.

unsigned char Entry_Data[1000] The entry data.

Rtn_Attributes

(Input) A pointer to a structure that indicates the attributes to return. The format of the

Qsy_Attr_Info_T structure is as follows:

 int Number_Attrs The number of attributes to be

returned. This value must be greater

than 0.

char Res_Align[12] Reserved for boundary alignment.

Qsy_Attr_Descr_T Attr_Descr[] An array of attribute description

structures.

 The format of the Qsy_Attr_Descr_T structure is as follows:

 int Attr_Location Where the attribute is stored. The

allowed value follows:

0 QSY_IN_VLDL

The attribute is stored in the

validation list object.

int Attr_Type The type of attribute. The allowed

value follows:

0 QSY_SYSTEM_ATTR

This is a system-defined

attribute.

union Attr_Res
 Res_1[8]

Reserved data. This value must be

hexadecimal zero.

char * Attr_ID The ID of the attribute. For

system-defined attributes, the

allowed values are:

 String value Description

 QsyEncryptData This is the attribute that is associated

with the data to encrypt.

 QsyX509Cert This is the X.509 certificate attribute

for the entry.

 QsyEntryUsage This is the entry usage information

attribute.

union Attr_Other_Descr
 Res_1[32]

Reserved data. This value must be

hexadecimal zero.

union Attr_Data_Info The information that describes the

attribute data.

union Attr_Other_Data
 Res_1[32]

Reserved data. This value must be

hexadecimal zero.

40 iSeries: Security -- Validation List APIs

The format of the Attr_Data_Info union is as follows:

 Qsy_In_VLDL_T Attr_VLDL The attribute data information for an

attribute that is stored in the

validation list object.

union Attr_In_Other
 Res_1[96]

Reserved data. The last 64 bytes must

be hexadecimal zero.

 The format of the Qsy_In_VLDL_T structure is as follows:

 int Attr_CCSID An integer that represents the CCSID

for the attribute. Valid CCSID values

are in the range -1 through 65535.

This value is not used.

int Attr_Len The number of bytes of data in the

buffer to return the attribute value.

The minimum length is 12.

union Attr_Res
 Res_1[8]

Reserved data. This value must be

hexadecimal zero.

void * Attr_Value A pointer to a Qsy_Rtn_VLDL_Attr_T

structure in which to return the

attribute.

 The format of the Qsy_Rtn_VLDL_Attr_T structure is as follows:

 int Bytes_Returned The number of bytes of data that is

returned to the user in the attribute

buffer. This is the lesser of the

number of bytes available to be

returned and Attr_Len in

Qsy_In_VLDL_T.

int Bytes_Available The number of bytes of data that is

available to be returned to the user in

the attribute buffer. If all data is

returned, bytes available is the same

as the number of bytes returned. If

the bytes available is 12, then the

specified attribute is not defined for

this entry.

int Attr_Len The length (in bytes) of the returned

attribute.

unsigned int Attr_CCSID An integer that represents the CCSID

for the attribute. Valid CCSID values

are in the range 0 through 65535.

This value is the CCSID value that

was specified when the attribute was

added or changed. If the value is 0,

then no CCSID value was stored with

the attribute.

unsigned char Attr_Data[] The value of the returned attribute.

Validation List APIs 41

The format of the Qsy_Rtn_Entry_Usage_Attr_T structure is as follows:

 char Create_Date[8] The date the entry was added to the

validation list.

char Last_Used_Date[8] The date of the last successful verify.

char Encr_Data_Chg_Date[8] The date the encrypted data was last

changed.

int Not_Valid_Verify_Count The number of times that incorrect

encrypted data has been specified on

a verify since the last successful

verify.

Return Value

 0 QsyFindValidationLstEntryAttrs() was successful. The return value points to the entry. The return

attribute points to the attribute list.

-1 QsyFindValidationLstEntryAttrs() was not successful. The errno global variable is set to indicate

the error.

Error Conditions

If QsyFindValidationLstEntryAttrs() is not successful, errno indicates one of the following errors:

 3401 [EACCES]

The current user does not have *USE authority to the validation list object, or does not have

*EXECUTE authority to the validation list object library.

3406 [EAGAIN]

The validation list object is currently locked by another process.

3484 [EDAMAGE]

The validation list object is damaged.

3021 [EINVAL]

Parameter value is not valid.

3025 [ENOENT]

The validation list object was not found.

3026 [ENOREC]

Specified entry does not exist.

3404 [ENOSPC]

No space available.

3474 [EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Example

See Code disclaimer information for information pertaining to code examples.

42 iSeries: Security -- Validation List APIs

aboutapis.htm#CODEDISCLAIMER

The following example finds an entry for a user named FRED in the validation list object WEBUSRS, and

returns the attribute that is associated with the encrypted data field.

#include <stdlib.h>

#include <qsyvldl.h>

#include <errno.h>

main()

{

 #define VLD_LST "WEBUSRS WEBLIB "

 Qsy_Rtn_Vld_Lst_Ent_T rtn_ent;

 struct {

 Qsy_Attr_Info_T attr_info;

 Qsy_Attr_Desc_T attr_desc;

 } rtn_attr;

 struct {

 Qsy_Rtn_VLDL_Attr_T encr_info;

 char encr_val;

 } encr_attr;

 Qsy_Entry_ID_Info_T *input_entry;

 /* Set up entry ID to find. */

 strncpy(rtn_ent.Entry_ID_Info.Entry_ID,"FRED",4);

 rtn_ent.Entry_ID_Info.Entry_ID_Len = 4;

 /* Set up the attribute information. */

 /* Initialize reserved fields. */

 memset(rtn_attr.attr_desc.Attr_Res.Res_1,

 0,

 sizeof(rtn_attr.attr_desc.Attr_Res.Res_1));

 memset(rtn_attr.attr_desc.Attr_Other_Descr.Res_1,

 0,

 sizeof(rtn_attr.attr_desc.Attr_Other_Descr.Res_1));

 memset(rtn_attr.attr_desc.Attr_Data_Info.Attr_In_Other.Res_1,

 0,

 sizeof(rtn_attr.attr_desc.Attr_Data_Info.Attr_In_Other.Res_1));

 memset(rtn_attr.attr_desc.Attr_Other_Data.Res_1,

 0,

 sizeof(rtn_attr.attr_desc.Attr_Other_Data.Res_1));

 /* Set number of attrs. */

 rtn_attr.attr_info.Numbers_Attrs = 1;

 /* Set location of attribute. */

 rtn_attr.attr_desc.Attr_Location = QSY_IN_VLDL;

 /* Set attribute type. */

 rtn_attr.attr_desc.Attr_Type = QSY_SYSTEM_ATTR;

 /* Set attribute type. */

 rtn_attr.attr_desc.Attr_ID = (char *)QSY_ENCRYPT_DATA;

 /* Set length to retrieve. */

 rtn_attr.attr_desc.Attr_Data_Info.Attr_VLDL.Attr_Len =

 sizeof(encr_attr);

 /* Set CCSID value. */

 rtn_attr.attr_desc.Attr_Data_Info.Attr_VLDL.Attr_CCSID = -1;

 /* Set pointer to return buffer */

 rtn_attr.attr_desc.Attr_Data_Info.Attr_VLDL.Attr_Value =

 (void *)&encr_attr;

 /* Try to find an entry for ’FRED’. */

 if (0 == QsyFindValidationLstEntryAttrs(

 (Qsy_Qual_Name_T *)&VLD_LST,

 &rtn_ent.Entry_ID_Info,

 &rtn_ent,

 (Qsy_Attr_Info_T *)&rtn_attr))

 { /* Entry was found */

 .

 .

 .

Validation List APIs 43

(process the entry)

 .

 .

 .

 }

 else /* Error on find of entry. */

 perror("Find of validation list entry");

}

API introduced: V4R2

 Top | Security APIs | APIs by category

Open List of Validation List Entries (QSYOLVLE) API

 Required Parameter Group:

1 Receiver variable

Output Char(*)

2 Length of receiver variable

Input Binary(4)

3 List information

Output Char(80)

4 Number of records to return

Input Binary(4)

5 Format name

Input Char(8)

6 Qualified validation list name

Input Char(20)

7 Error code

I/O Char(*)
 Default Public Authority: *USE

 Threadsafe: No

The Open List of Validation List Entries (QSYOLVLE) API returns a list of validation list entries in a

validation list object. Upon successful completion of this API, a handle is returned in the list information

parameter. You may use this handle on subsequent calls to the following APIs:

v Get List Entries (QGYGTLE)

v Find List Entry (QGYFNDE)

v Close List (QGYCLST)

Authorities and Locks

Authority to Validation List

*USE

44 iSeries: Security -- Validation List APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

Authority to Validation List Library

*EXECUTE

Required Parameter Group

Receiver variable

OUTPUT; CHAR(*)

 The receiver variable that receives the information requested. You can specify the size of the area

to be smaller than the format requested as long as you specify the length parameter correctly. As

a result, the API returns only the data that the area can hold.

Length of receiver variable

INPUT; BINARY(4)

 The length of the receiver variable. If the length is larger than the size of the receiver variable, the

results are not predictable.

List Information

OUTPUT; CHAR(80)

 Information about the list that is created by this program. See “Format of List information” on

page 46 for a description of the layout of this parameter.

Number of records to return

INPUT; BINARY(4)

 The number of records in the list to put into the receiver variable. Possible values follow:

 -1 The entire list is built synchronously.

0 The entire list is built asynchronously in a server job.

Positive number of

records

At least that many records will be built synchronously and the remainder will be built

asynchronously in a server job.

Format name

INPUT; CHAR(8)

 The name of the format that is used to return information about the validation list entries.

 You can specify these formats:

 “VLDE0100

Format” on page

47

The order and format of the data that is returned in the receiver variable for each validation list

entry in the list.

Qualified validation list name

INPUT; CHAR(20)

 The qualified object name of the validation list that contains the entries to return. The first 10

characters specify the validation list name, and the second 10 characters specify the library. You

can use these special values for the library name:

 *CURLIB The current library is used to locate the validation list. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the validation list.

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Validation List APIs 45

error.htm#HDRERRCOD
error.htm#HDRERRCOD

Format of List information

For detailed descriptions of the fields in the tables, see “Field Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Total records

4 4 BINARY(4) Records returned

8 8 CHAR(4) Request handle

12 C BINARY(4) Record length

16 10 CHAR(1) Information complete indicator

17 11 CHAR(13) Date and time created

30 1E CHAR(1) List status indicator

31 1F CHAR(1) Reserved

32 20 BINARY(4) Length of information returned

36 24 BINARY(4) First record in buffer

40 28 CHAR(40) Reserved

Field Descriptions

Date and time created. The date and time when the list was created. The 13 characters are:

 1 Century, where 0 indicates years 19xx and 1 indicates years 20xx.

2-7 The date, in YYMMDD (year, month, and day) format.

8-13 The time of day, in HHMMSS (hours, minutes, and seconds) format.

First record in buffer. The number of the first record in the receiver variable.

Information complete indicator. Whether all information that was requested has been supplied.

 I Incomplete information. An interruption causes the list to contain incomplete information about a

buffer or buffers.

P Partial and accurate information. Partial information is returned when the maximum space was

used and not all of the buffers requested were read.

C Complete and accurate information. All the buffers requested are read and returned.

Length of information returned. The size in bytes of the information returned in the receiver variable.

List status indicator. The status of building the list. Possible values follow:

 0 The list building is pending.

1 The list is in the process of being built.

2 The list has been completely built.

3 An error occurred when building the list. An error will be signalled to the caller of the QGYGTLE

API.

4 The list is primed and ready to be built.

Record length. The length of each record of information returned. This value will be set to 0 because the

record lengths are variable. You can obtain the length of individual records from the records themselves.

46 iSeries: Security -- Validation List APIs

Records returned. The number of records returned in the receiver variable.

This is the smallest of the following three values:

v The number of records that fit into the receiver variable.

v The number of records in the list.

v The number of records that are requested.

Request handle. The handle of the request that can be used for subsequent requests of information from

the list. The handle is valid until the Close List (QGYCLST) API is called to close the list, or until the job

ends.

Note: This field should be treated as a hexadecimal field. It should not be converted from one CCSID to

another, for example, EBCDIC to ASCII, because doing so could result in an unusable value.

Reserved. An ignored field.

Total records. The total number of records available in the list.

VLDE0100 Format

The following table describes the order and format of the data that is returned in the receiver variable for

each validation list entry in the list. For detailed descriptions of the fields in the table, see “Field

Descriptions.”

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of entry

4 4 BINARY(4) Displacement to entry ID

8 8 BINARY(4) Length of entry ID

12 C BINARY(4) CCSID of entry ID

16 10 BINARY(4) Displacement to encrypted data

20 14 BINARY(4) Length of encrypted data

24 18 BINARY(4) CCSID of encrypted data

28 1C BINARY(4) Displacement to entry data

32 20 BINARY(4) Length of entry data

36 24 BINARY(4) CCSID of entry data

 CHAR(*) Entry ID

 CHAR(*) Encrypted data

 CHAR(*) Entry data

Field Descriptions

CCSID of encrypted data. The CCSID of the encrypted data that was specified when the validation list

entry was added or changed.

CCSID of entry data. The CCSID of the entry data that was specified when the validation list entry was

added or changed.

CCSID of entry ID. The CCSID of the entry ID that was specified when the validation list entry was

added.

Validation List APIs 47

Displacement to encrypted data. The displacement in the entry to the start of the encrypted data.

Displacement to entry data. The displacement in the entry to the start of the entry data.

Displacement to entry ID. The displacement in the entry to the start of the entry ID.

Encrypted data. The encrypted data associated with the validation list entry. This data is only returned if

the entry specifies that the encrypted data is two way encrypted, the QRETSVRSEC system value is ’1’,

and the user has *USE, *ADD, and *UPD authority to the validation list. If the data is to be returned, it is

decrypted and returned in this field.

Entry data. The data associated with the validation list entry.

Entry ID. The entry ID for the validation list entry.

Length of encrypted data. The length (in bytes) of the encrypted data. If the data is one-way encrypted,

the QRETSVRSEC system value is ’0’, or the user is not authorized to have the encrypted data returned,

this value will be 0.

Length of entry. The length (in bytes) of the current entry. This length can be used to access the next

entry.

Length of entry data. The length (in bytes) of the entry data.

Length of entry ID. The length (in bytes) of the entry ID.

Error Messages

 Message ID Error Message Text

CPF24B4 E Severe error while addressing parameter list.

CPF226B E Validation list entry does not exist.

CPF3C19 E Error occurred with receiver variable specified.

CPF3C21 E Format name &1 is not valid.

CPF3C90 E Literal value cannot be changed.

CPF3CF1 E Error code parameter not valid.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9821 E Not authorized to program &1 in library &2.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

GUI0002 E &2 is not valid for length of receiver variable.

GUI0027 E &1 is not valid for number of records to return.

API introduced: V4R2

 Top | Security APIs | APIs by category

48 iSeries: Security -- Validation List APIs

#TOP_OF_PAGE
sec.htm
aplist.htm

QsyRemoveValidationLstEntry()—Remove Validation List Entry API

 Syntax

 #include <qsyvldl.h>

 int QsyRemoveValidationLstEntry

 (Qsy_Qual_Name_T *Validation_Lst,

 Qsy_Entry_ID_Info_T *Entry_ID);

 Service Program Name: QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

The QsyRemoveValidationLstEntry() function removes an entry from a validation list object. To identify

an entry to be removed, there must be an exact match in the entry for the value that is specified in the

Entry_ID parameter and the length of the entry ID. For example, an entry ID value of ″SMITH″ with a

length of 5 would not remove an entry where the entry ID is ″SMITH ″ and the length is 7.

Authorities

Validation List Object

*USE and *DLT

Validation List Object Library

*EXECUTE

Parameters

dt>Validation_Lst

(Input)

 A pointer to the qualified object name of the validation list that contains the entry to remove. The

first 10 characters specify the validation list name, and the second 10 characters specify the

library. You can use these special values for the library name:

 *CURLIB The current library is used to locate the validation list. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry_ID

(Input)

 A pointer to the entry ID information. Qsy_Entry_ID_Info_T structure is as follows:

 int Entry_ID_Len The number of bytes of data that is

provided as the entry ID. Possible

values are from 1 through 100.

unsigned int Entry_ID_CCSID An integer that represents the CCSID

for the entry ID. Valid CCSID values

are in the range 0 through 65535.

This value is not used to remove the

entry.

unsigned char Entry_ID[100] The data that is used to identify this

entry in the validation list.

Validation List APIs 49

Return Value

 0 QsyRemoveValidationLstEntry() was successful.

-1 QsyRemoveValidationLstEntry() was not successful.

The errno global variable is set to indicate the error.

Error Conditions

If QsyRemoveValidationLstEntry() is not successful, errno indicates one of the following errors:

 3401 [EACCES]

The current user does not have *USE and *DLT authorities to the validation list object, or does not

have *EXECUTE authority to the validation list object library.

3406 [EAGAIN]

The validation list object is currently locked by another process.

3484 [EDAMAGE]

The validation list object is damaged.

3021 [EINVAL]

Parameter value is not valid.

3025 [ENOENT]

The validation list object was not found.

3026 [ENOREC]

Specified entry does not exist.

3474 [EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

Example

See Code disclaimer information for information pertaining to code examples.

The following example removes an entry for a user named FRED in the validation list object WEBUSRS.

#include <qsyvldl.h>

main()

{

 #define VLD_LST "WEBUSRS WEBLIB "

 Qsy_Entry_ID_Info_T entry_info;

 entry_info.Entry_ID_Len = 4;

 strncpy(entry_info.Entry_ID,"FRED",entry_info.Entry_ID_Len);

 if (0 != QsyRemoveValidationLstEntry(

 (Qsy_Qual_Name_T *)&VLD_LST,

 &entry_info))

 perror("QsyRemoveValidationLstEntry()");

}

API introduced: V4R1

 Top | Security APIs | APIs by category

50 iSeries: Security -- Validation List APIs

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
sec.htm
aplist.htm

Remove Validation List Entry (QSYRMVLE) API

 Required Parameter Group:

1 Qualified validation list name

Input Char(20)

2 Entry ID information

Input Char(*)

3 Error code

I/O Char(*)

 Threadsafe: Yes

The Remove Validation List Entry (QSYRMVLE) API removes an entry from a validation list object. To

identify an entry to be removed, there must be an exact match in the entry for the value that is specified

in the entry ID parameter and the length of the entry ID. For example, an entry ID value of ″SMITH″

with a length of 5 would not remove an entry where the entry ID is ″SMITH ″ and the length is 7.

Authorities and Locks

Validation List Object

*USE and *DLT

Validation List Object Library

*EXECUTE

Required Parameter Group

Qualified validation list name

INPUT; CHAR(20)

 The qualified object name of the validation list that contains the entry to remove. The first 10

characters specify the validation list name, and the second 10 characters specify the library. You

can use these special values for the library name:

 *CURLIB The current library is used to locate the validation list. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry ID information

INPUT; CHAR(*)

 The format of the entry ID information is as follows. See the “Field Descriptions” on page 52 for

more information.

 Offset

Type Field Dec Hex

0 0 BINARY(4) Length of entry ID

4 4 BINARY(4) CCSID of entry ID

Validation List APIs 51

Offset

Type Field Dec Hex

8 8 CHAR(*) Entry ID

Error code

I/O; CHAR(*)

 The structure in which to return error information. For the format of the structure, see Error Code

Parameter.

Field Descriptions

CCSID of entry ID. An integer that represents the CCSID for the entry ID. Valid CCSID values are in the

range 0 through 65535. This field is not used to remove the entry.

Entry ID. The data that is used to identify the entry to be removed from the validation list.

Length of entry ID. The number of bytes of data that is provided as the entry ID. Possible values are 1

through 100.

Error Messages

 Message ID Error Message Text

CPF226B E Validation list entry does not exist.

CPF3CF1 E Error code parameter not valid.

CPF3C36 E Number of parameters, &1, entered for this API was not valid.

CPF3C90 E Literal value cannot be changed.

CPF9801 E Object &2 in library &3 not found.

CPF9802 E Not authorized to object &2 in &3.

CPF9803 E Cannot allocate object &2 in library &3.

CPF9804 E Object &2 in library &3 damaged.

CPF9872 E Program or service program &1 in library &2 ended. Reason code &3.

API introduced: V4R2

 Top | Security APIs | APIs by category

QsyVerifyValidationLstEntry()—Verify Validation List Entry API

 Syntax

 #include <qsyvldl.h>

 int QsyVerifyValidationLstEntry

 (Qsy_Qual_Name_T *Validation_Lst,

 Qsy_Entry_ID_Info_T *Entry_ID,

 Qsy_Entry_Encr_Data_Info_T *Encrypt_Data);

 Service Program Name: Name QSYVLDL

 Default Public Authority: *USE

 Threadsafe: Yes

52 iSeries: Security -- Validation List APIs

error.htm#HDRERRCOD
error.htm#HDRERRCOD
#TOP_OF_PAGE
sec.htm
aplist.htm

The QsyVerifyValidationLstEntry() function verifies an entry in a validation list object. It verifies the

entry by finding the validation list object, then finding the entry that is specified in the Entry_ID

parameter. To find an entry, there must be an exact match in the entry for the value that is specified in

the Entry_ID parameter and the length of the entry ID. For example, an entry ID value of ″SMITH″ with

a length of 5 would not find an entry where the entry ID is ″SMITH ″ and the length is 7.

If the entry is found, the data specified in the Encrypt_Data parameter is encrypted by the system and

compared to the encrypted data that is stored for the entry. If the encrypted data fields do not match,

then -2 is returned by the function.

The verification of an entry should be done within the same process as the work that is being done on

behalf of this entry ID so that there is accountability for the actions that are taken. Also, an entry ID

should be verified just before the work is done on behalf of that entry ID, instead of verifying a set of

entry IDs and then doing work on behalf of the different entry IDs.

Authorities

Validation List Object

*USE

Validation List Object Library

*EXECUTE

Parameters

Validation_Lst

(Input) A pointer to the qualified object name of the validation list that contains the entry to

verify. The first 10 characters specify the validation list name, and the second 10 characters

specify the library. You can use these special values for the library name:

 *CURLIB The current library is used to locate the validation list. If there is no current library, QGPL (general

purpose library) is used.

*LIBL The library list is used to locate the validation list.

Entry_ID

(Input)

 A pointer to the entry ID information. The format of the Qsy_Entry_ID_Info_T structure is as

follows:

 int Entry_ID_Len The number of bytes of data that is

provided as the entry ID. Possible

values are from 1 through 100.

unsigned int Entry_ID_CCSID An integer that represents the CCSID

for the entry ID. Valid CCSID values

are in the range 1 through 65535.

This field is not used to verify the

entry.

unsigned char Entry_ID[100] The data that is used to identify this

entry in the validation list.

Encrypt_Data

(Input)

 A pointer to the encrypted data information that is associated with the entry ID. The format of

the Qsy_Entry_Encr_Data_Info_T structure is as follows:

Validation List APIs 53

int Encr_Data_Len The number of bytes of data to be

encrypted and compared to the

encrypted data in the validation list

entry. Possible values are 1 through

600.

unsigned int Encr_Data_CCSID An integer that represents the CCSID

for the data to encrypt. Valid CCSID

values are in the range 0 through

65535. This value is not used to

verify the entry.

unsigned char Encr_Data[600] The data to be encrypted and

compared to the encrypted data that

is found for the specified entry ID in

the validation list.

Return Value

 0 QsyVerifyValidationLstEntry() was successful.

-1 QsyVerifyValidationLstEntry() was not successful.

The errno global variable is set to indicate the error.

-2 QsyVerifyValidationLstEntry() was not successful because the encrypted data was incorrect.

Error Conditions

If QsyVerifyValidationLstEntry() is not successful, errno indicates one of the following errors:

 3401 [EACCES]

The current user does not have *USE authority to the validation list object, or does not have

*EXECUTE authority to the validation list object library.

3406 [EAGAIN]

The validation list object is currently locked by another process.

3484 [EDAMAGE]

The validation list object is damaged.

3021 [EINVAL]

Parameter value is not valid.

3025 [ENOENT]

The validation list object was not found.

3026 [ENOREC]

Specified entry does not exist.

3474 [EUNKNOWN]

Unknown system state. Check the job log for a CPF9872 message.

54 iSeries: Security -- Validation List APIs

Example

See Code disclaimer information for information pertaining to code examples.

The following example validates the entry for a user named FRED in the validation list object WEBUSRS.

#include <qsyvldl.h>

main()

{

 #define VLD_LST "WEBUSRS WEBLIB "

 Qsy_Entry_ID_Info_T entry_info;

 Qsy_Entry_Encr_Data_Info_T encrypt_data;

 entry_info.Entry_ID_Len = 4;

 strncpy(entry_info.Entry_ID,"FRED",entry_info.Entry_ID_Len);

 encrypt_data.Encr_Data_Len = 7;

 strncpy(encrypt_data.Encr_Data,"MSN1TJG",

 encrypt_data.Encr_Data_Len);

 if (0 != QsyVerifyValidationLstEntry((Qsy_Qual_Name_T *)&VLD_LST,

 &entry_info,

 &encrypt_data))

 perror("QsyVerifyValidationLstEntry()");

}

API introduced: V4R1

 Top | Security APIs | APIs by category

Validation List APIs 55

aboutapis.htm#CODEDISCLAIMER
#TOP_OF_PAGE
sec.htm
aplist.htm

56 iSeries: Security -- Validation List APIs

Appendix. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.

Consult your local IBM representative for information on the products and services currently available in

your area. Any reference to an IBM product, program, or service is not intended to state or imply that

only that IBM product, program, or service may be used. Any functionally equivalent product, program,

or service that does not infringe any IBM intellectual property right may be used instead. However, it is

the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this

document. The furnishing of this document does not grant you any license to these patents. You can send

license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other country where such

provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION

PROVIDES THIS PUBLICATION ″AS IS″ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some

states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this

statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically

made to the information herein; these changes will be incorporated in new editions of the publication.

IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in

any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of

the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without

incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the

exchange of information between independently created programs and other programs (including this

one) and (ii) the mutual use of the information which has been exchanged, should contact:

© Copyright IBM Corp. 1998, 2005 57

IBM Corporation

Software Interoperability Coordinator, Department YBWA

3605 Highway 52 N

Rochester, MN 55901

U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,

payment of a fee.

The licensed program described in this information and all licensed material available for it are provided

by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement,

IBM License Agreement for Machine Code, or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the

results obtained in other operating environments may vary significantly. Some measurements may have

been made on development-level systems and there is no guarantee that these measurements will be the

same on generally available systems. Furthermore, some measurements may have been estimated through

extrapolation. Actual results may vary. Users of this document should verify the applicable data for their

specific environment.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without

notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate

them as completely as possible, the examples include the names of individuals, companies, brands, and

products. All of these names are fictitious and any similarity to the names and addresses used by an

actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming

techniques on various operating platforms. You may copy, modify, and distribute these sample programs

in any form without payment to IBM, for the purposes of developing, using, marketing or distributing

application programs conforming to the application programming interface for the operating platform for

which the sample programs are written. These examples have not been thoroughly tested under all

conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

The following terms are trademarks of International Business Machines Corporation in the United States,

other countries, or both:
Advanced 36
Advanced Function Printing
Advanced Peer-to-Peer Networking
AFP
AIX
AS/400
COBOL/400
CUA
DB2
DB2 Universal Database
Distributed Relational Database Architecture
Domino
DPI

58 iSeries: Security -- Validation List APIs

DRDA
eServer
GDDM
IBM
Integrated Language Environment
Intelligent Printer Data Stream
IPDS
iSeries
Lotus Notes
MVS
Netfinity
Net.Data
NetView
Notes
OfficeVision
Operating System/2
Operating System/400
OS/2
OS/400
PartnerWorld
PowerPC
PrintManager
Print Services Facility
RISC System/6000
RPG/400
RS/6000
SAA
SecureWay
System/36
System/370
System/38
System/390
VisualAge
WebSphere
xSeries

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the

United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other

countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, and service names may be trademarks or service marks of others.

Terms and conditions for downloading and printing publications

Permissions for the use of the information you have selected for download are granted subject to the

following terms and conditions and your indication of acceptance thereof.

Personal Use: You may reproduce this information for your personal, noncommercial use provided that

all proprietary notices are preserved. You may not distribute, display or make derivative works of this

information, or any portion thereof, without the express consent of IBM(R).

Appendix. Notices 59

Commercial Use: You may reproduce, distribute and display this information solely within your

enterprise provided that all proprietary notices are preserved. You may not make derivative works of this

information, or reproduce, distribute or display this information or any portion thereof outside your

enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either

express or implied, to the information or any data, software or other intellectual property contained

therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of

the information is detrimental to its interest or, as determined by IBM, the above instructions are not

being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable

laws and regulations, including all United States export laws and regulations. IBM MAKES NO

GUARANTEE ABOUT THE CONTENT OF THIS INFORMATION. THE INFORMATION IS PROVIDED

″AS-IS″ AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING

BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT,

AND FITNESS FOR A PARTICULAR PURPOSE.

All material copyrighted by IBM Corporation.

By downloading or printing information from this site, you have indicated your agreement with these

terms and conditions.

Code disclaimer information

This document contains programming examples.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM(R), ITS

PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR

CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND

NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR

ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:

1. LOSS OF, OR DAMAGE TO, DATA;

2. SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC CONSEQUENTIAL

DAMAGES; OR

3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR

CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS OR EXCLUSIONS

MAY NOT APPLY TO YOU.

60 iSeries: Security -- Validation List APIs

����

Printed in USA

	Contents
	Validation List APIs
	APIs
	Add Validation List Entry (QSYADVLE) API
	Authorities and Locks
	Required Parameter Group
	Field Descriptions
	Error Messages

	QsyAddValidationLstEntry()—Add Validation List Entry API
	Authorities
	Parameters
	Return Value
	Error Conditions
	Example

	Change Validation List Entry (QSYCHVLE) API
	Authorities and Locks
	Required Parameter Group
	Field Descriptions
	Error Messages

	QsyChangeValidationLstEntry()—Change Validation List Entry API
	Authorities
	Parameters
	Return Value
	Error Conditions
	Example

	QsyFindFirstValidationLstEntry()—Find First Validation List Entry API
	Authorities
	Parameters
	Return Value
	Error Conditions
	Example

	QsyFindNextValidationLstEntry()—Find Next Validation List Entry API
	Authorities
	Parameters
	Return Value
	Error Conditions
	Example

	Find Validation List Entry (QSYFDVLE) API
	Authorities and Locks
	Required Parameter Group
	Field Descriptions
	Error Messages

	QsyFindValidationLstEntry()—Find Validation List Entry API
	Authorities
	Parameters
	Return Value
	Error Conditions
	Example

	QsyFindValidationLstEntryAttrs()—Find Validation List Entry Attributes API
	Authorities
	Parameters
	Return Value
	Error Conditions
	Example

	Open List of Validation List Entries (QSYOLVLE) API
	Authorities and Locks
	Required Parameter Group
	Format of List information
	Field Descriptions
	VLDE0100 Format
	Field Descriptions
	Error Messages

	QsyRemoveValidationLstEntry()—Remove Validation List Entry API
	Authorities
	Parameters
	Return Value
	Error Conditions
	Example

	Remove Validation List Entry (QSYRMVLE) API
	Authorities and Locks
	Required Parameter Group
	Field Descriptions
	Error Messages

	QsyVerifyValidationLstEntry()—Verify Validation List Entry API
	Authorities
	Parameters
	Return Value
	Error Conditions
	Example

	Appendix. Notices
	Trademarks
	Terms and conditions for downloading and printing publications
	Code disclaimer information

